
Gaming Media and Social Effects

Chang-Hun Kim
Sun-Jeong Kim
Soo-Kyun Kim
Shin-Jin Kang

Real-Time
Visual Effects
for Game
Programming

www.allitebooks.com

http://www.allitebooks.org

Gaming Media and Social Effects

Editor-in-chief

Henry Been-Lirn Duh, Hobart, Australia

Series editor

Anton Nijholt, Enschede, The Netherlands

www.allitebooks.com

http://www.allitebooks.org

More information about this series at http://www.springer.com/series/11864

www.allitebooks.com

http://www.springer.com/series/11864
http://www.allitebooks.org

Chang-Hun Kim • Sun-Jeong Kim
Soo-Kyun Kim • Shin-Jin Kang

Real-Time Visual Effects
for Game Programming

123

www.allitebooks.com

http://www.allitebooks.org

Chang-Hun Kim
Computer Science and Engineering
Korea University
Seoul
Korea, Republic of (South Korea)

Sun-Jeong Kim
Convergence Software
Hallym University
Chuncheon
Korea, Republic of (South Korea)

Soo-Kyun Kim
Game Engineering
Pai Chai University
Daejeon
Korea, Republic of (South Korea)

Shin-Jin Kang
School of Game
Hongik University
Sejong
Korea, Republic of (South Korea)

ISSN 2197-9685 ISSN 2197-9693 (electronic)
Gaming Media and Social Effects
ISBN 978-981-287-486-3 ISBN 978-981-287-487-0 (eBook)
DOI 10.1007/978-981-287-487-0

Library of Congress Control Number: 2015934438

Springer Singapore Heidelberg New York Dordrecht London
© Springer Science+Business Media Singapore 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media Singapore Pte Ltd. is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

We would like to specially thank Jeong-Mo Hong. In our lab, he was a pioneer in
the field of fluid simulation and inspired colleagues with a lot of brilliant ideas. Also
we really appreciate the great support of Jaeho Im, MyungJin Choi, Jong-Hyun
Kim, Ki-hoon Kim, and TaeHyeong Kim. Finally, we wish to express gratitude and
love to our family.

This book was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT and Future Planning (No. 2014R1A2A2A01007143).

v

www.allitebooks.com

http://www.allitebooks.org

Contents

1 Basic Concepts of Visual Effects . 1
1.1 Water . 1

1.1.1 Eulerian Method for Water and Bubbles 2
1.1.2 Hybrid Method for Water and Bubbles 5
1.1.3 High-Order Surface Tracking 8
1.1.4 Miscible Multiphase Fluids 9

1.2 Smoke. 11
1.2.1 Animating Smoke with Dynamic Balance 12
1.2.2 Procedural Synthesis Using Vortex Particle

Method . 13
1.3 Fire and Ice . 15
1.4 Fluid Interaction . 17

1.4.1 Coupling . 18
1.4.2 Controlling Fluid . 19
1.4.3 Target Driven Animation . 22

References. 25

2 Water and Bubbles . 27
2.1 Animation of Bubbles in Liquid . 27

2.1.1 Introduction . 27
2.1.2 Previous Work . 29
2.1.3 Overview. 31
2.1.4 Simulation of Multiphase Flows 33
2.1.5 Visualization . 39
2.1.6 Results and Discussion . 40
2.1.7 Conclusion and Future Work 43

2.2 Discontinuous Fluids . 43
2.2.1 Introduction . 43
2.2.2 Previous Work . 44
2.2.3 Overview of Navier–Stokes Simulation 46
2.2.4 Discontinuous Interfacial Dynamics. 47

vii

www.allitebooks.com

http://dx.doi.org/10.1007/978-981-287-487-0_1
http://dx.doi.org/10.1007/978-981-287-487-0_1
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec14
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec14
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec21
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec21
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec22
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec22
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec22
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec23
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec23
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec24
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec24
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_1#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_1#Bib1
http://dx.doi.org/10.1007/978-981-287-487-0_2
http://dx.doi.org/10.1007/978-981-287-487-0_2
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec11
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec11
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec15
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec15
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec16
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec16
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec18
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec18
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec19
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec19
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec21
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec21
http://www.allitebooks.org

2.2.5 Results . 52
2.2.6 Conclusion. 54

2.3 Bubbles Alive . 55
2.3.1 Introduction . 55
2.3.2 Previous Work . 56
2.3.3 A Hybrid Approach . 56
2.3.4 Bubbles . 58
2.3.5 Examples. 61
2.3.6 Conclusion. 61

2.4 Hybrid Simulation of Miscible Mixing with Viscous
Fingering . 62
2.4.1 Introduction . 62
2.4.2 Related Work . 63
2.4.3 Modeling Miscible Fluids with Multiple

Level-Sets . 64
2.4.4 Basic Fluids Simulation . 65
2.4.5 Viscous Fingering . 67
2.4.6 Chemical Mass Transfer . 68
2.4.7 Hybrid Method. 69
2.4.8 Results . 73
2.4.9 Conclusions . 74

2.5 Anisotropic Particle Level-Set Method for Multiphase
Fluid . 75
2.5.1 Introduction . 76
2.5.2 Related Work . 76
2.5.3 Particle Level-Set Method (PLS). 77
2.5.4 Anisotropic Particle Level-Set Method (APLS) 78
2.5.5 Results . 81
2.5.6 Conclusion and Future Work 84

References. 84

3 Smoke . 89
3.1 Animating Smoke with Dynamic Balance 89

3.1.1 Introduction . 89
3.1.2 Related Work . 91
3.1.3 Computing Errors in the Advection Term 92
3.1.4 Vortex Advection Based on Vorticity Confinement . . . 94
3.1.5 Implementation. 96
3.1.6 Results and Discussion . 97
3.1.7 Conclusion. 99

3.2 Procedural Synthesis Using Vortex Particle Method
for Fluid Simulation . 100
3.2.1 Introduction . 101
3.2.2 Previous Work . 102

viii Contents

www.allitebooks.com

http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec24
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec24
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec28
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec28
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec29
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec29
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec33
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec33
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec38
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec38
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec39
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec39
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec40
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec40
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec40
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec41
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec41
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec42
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec42
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec43
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec43
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec43
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec44
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec44
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec45
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec45
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec46
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec46
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec47
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec47
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec50
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec50
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec51
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec51
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec52
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec52
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec52
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec53
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec53
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec54
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec54
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec55
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec55
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec56
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec56
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec61
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec61
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec62
http://dx.doi.org/10.1007/978-981-287-487-0_2#Sec62
http://dx.doi.org/10.1007/978-981-287-487-0_2#Bib1
http://dx.doi.org/10.1007/978-981-287-487-0_3
http://dx.doi.org/10.1007/978-981-287-487-0_3
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec12
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec12
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec13
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec13
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec14
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec14
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec14
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec15
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec15
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec16
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec16
http://www.allitebooks.org

3.2.3 High-Resolution Fluid Synthesis 103
3.2.4 Examples. 106
3.2.5 Conclusions and Future Work 108

References. 109

4 Fire and Ice . 111
4.1 Shrinkage, Wrinkling, and Ablation of Burning

Cloth and Paper . 111
4.1.1 Introduction . 111
4.1.2 Related Work . 113
4.1.3 The Shell Configuration. 114
4.1.4 Simulation Overview. 117
4.1.5 Heat Transfer . 117
4.1.6 Adjusting Target Lengths and Remeshing 119
4.1.7 Shell Dynamics . 121
4.1.8 Results . 125
4.1.9 Conclusions . 129

4.2 Combustion Waves on the Point Set Surface 129
4.2.1 Introduction . 130
4.2.2 Related Work . 131
4.2.3 Combustion Model . 132
4.2.4 Results . 141
4.2.5 Conclusion. 146

4.3 A Particle-Grid Method for Opaque Ice Formation 146
4.3.1 Introduction . 146
4.3.2 Previous Work . 147
4.3.3 Overview. 148
4.3.4 Simulation of Freezing Ice . 149
4.3.5 Results and Discussion . 154
4.3.6 Conclusion and Future Work 158

References. 158

5 Fluid Interaction. 163
5.1 Solid-Fluid Collision Detection. 163

5.1.1 Fast Coupling for Particle-Based Simulation
with Motions . 163

5.2 Controlling Fluid Animation. 176
5.2.1 Interchangeable SPH and Level-Set Method

in Multiple Fluids . 176
5.2.2 Simulation of Swirling Bubbly Water

Using Bubble Particles . 183
5.2.3 Controlling Shapes of Air Bubbles in a Multiphase

Fluid Simulation . 190
References. 198

Contents ix

www.allitebooks.com

http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec22
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec22
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec23
http://dx.doi.org/10.1007/978-981-287-487-0_3#Sec23
http://dx.doi.org/10.1007/978-981-287-487-0_3#Bib1
http://dx.doi.org/10.1007/978-981-287-487-0_4
http://dx.doi.org/10.1007/978-981-287-487-0_4
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec8
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec8
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec13
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec13
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec16
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec16
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec18
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec18
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec19
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec19
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec20
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec26
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec27
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec28
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec28
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec29
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec29
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec30
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec30
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec31
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec31
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec37
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec37
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec40
http://dx.doi.org/10.1007/978-981-287-487-0_4#Sec40
http://dx.doi.org/10.1007/978-981-287-487-0_4#Bib1
http://dx.doi.org/10.1007/978-981-287-487-0_5
http://dx.doi.org/10.1007/978-981-287-487-0_5
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec17
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_5#Sec25
http://dx.doi.org/10.1007/978-981-287-487-0_5#Bib1
http://www.allitebooks.org

6 Real-Time Visual Effects Programming . 201
6.1 GPU Programming: CUDA . 201

6.1.1 Introduction to CUDA. 201
6.1.2 Installation and Setup . 202
6.1.3 Structure of CUDA Functions 204

6.2 Real-Time Fluid Programming . 204
6.2.1 Position-Based Fluid . 204
6.2.2 Data Structure for Vectors . 205
6.2.3 Hash Table . 205
6.2.4 Simulation Programming . 207
6.2.5 Visualization Programming 209

References. 210

Appendix A: Data Structure for SDF . 211

Appendix B: Surface Tracking . 219

Appendix C: Rendering . 223

x Contents

www.allitebooks.com

http://dx.doi.org/10.1007/978-981-287-487-0_6
http://dx.doi.org/10.1007/978-981-287-487-0_6
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec1
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec2
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec3
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec4
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec5
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec5
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec6
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec6
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec7
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec8
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec8
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec9
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_6#Sec10
http://dx.doi.org/10.1007/978-981-287-487-0_6#Bib1
http://www.allitebooks.org

Introduction

Over the past 20 years, Computer Graphics (CG) have improved significantly, and
now contribute to various industries. In particular, CG enables the realistic ren-
dering of water, fire, smoke, fabric, fur, and wind effects in the virtual world.
Movies and games are two representative industries to which CG technology is
applied commercially. In these fields, CG is called Visual Effects.

Visual effects in movies often focus on realism. They are planned and manu-
factured on the assumption that sufficient hardware resources are available. Each
frame for a movie takes several hours to be rendered and is displayed on DVD at a
rate of 24/30 frames per second. These high-quality realistic visual effects provide
people with a high degree of immersion in the virtual world. In movies, the story-
telling is linear and cameras move along planned tracks. Therefore, audiences are
permitted to see only limited scenes following these camera paths. These features
impose spatiotemporal restrictions on the visual effects in movies, allowing them to
be produced in independent studios.

Visual effects in games focus on real-time rendering under limited memory and
CPU capacity. Frames should be rendered at 30/60 frames per second on the players
machine. Storytelling within games is nonlinear, with players able to control
the camera and navigate around a virtual world with few geometric restrictions.
The main purpose of games is that players should enjoy themselves. Because the
emotional state of enjoyment is difficult to evaluate, game development follows a
long-term iterative process. During this process, games are frequently modified,
requiring the organization of additional effects teams.

The visual effects of water, fire, smoke, and wind for movies and games have
different development processes, but share common CG algorithms. Specifically,
water, fire, smoke, and ice effects are realistically implemented in movies, but the
complexity of their algorithms and hardware limitations mean they cannot be
successfully implemented in games. This book introduces some common physics-
based rendering algorithms for games, and then discusses methods for improving
the real-time rendering process.

The remainder of this book is organized as follows. The basics of visual effects
are introduced in Chap. 1. Chapters 2–4 then present the simulation schemes for

xi

http://dx.doi.org/10.1007/978-981-287-487-0_1
http://dx.doi.org/10.1007/978-981-287-487-0_2
http://dx.doi.org/10.1007/978-981-287-487-0_4

water, smoke, fire, ice, and snow. Chapter 5 introduces techniques for controlling
fluid animation and fluid interaction, such as mechanisms for collision detection
between solids and fluids. Programming issues related to real-time visual effects are
discussed in Chap. 6.

xii Introduction

http://dx.doi.org/10.1007/978-981-287-487-0_5
http://dx.doi.org/10.1007/978-981-287-487-0_6

Chapter 1
Basic Concepts of Visual Effects

Abstract This chapter introduces the fundamental theory for understanding the
entire contents of this book. A method to solve fluid equation for fire, water, and
smoke simulations is explained. And also, background knowledge and research
trends for modeling the natural environment such as ice formation are described.
In addition to fluid dynamics, a coupling problem for solid–fluid collision detection
and various methods of controlling fluid animation are dealt with. This chapter is
organized as follows: underlying concepts for simulations of water, smoke, fire and
ice are presented in Sects. 1.1–1.3. Collision response of fluid and target-driven fluid
animation are discussed in Sect. 1.4.

1.1 Water

In CG, the simulation of water is implemented by various schemes. There are
two main implementation methods: grid-based and particle-based. The grid-based
method defines water as small particles, and controls the movement of the water by
storing the physical quantity of each particle in a grid. In contrast, the particle-based
method controls the movement of water by replacing its molecules with N particles
and solving the Navier–Stokes equation using the physical quantities of each parti-
cle, such as their density, pressure, and velocity. The grid-based method can solve
very complex equations and is faster than the particle-based method for large-scale
simulations, although some numerical dissipation can occur. The performance of the
particle-based method can deteriorate when large numbers of particles are used, but
it is still possible to generate relatively accurate simulations. The current trend for
water simulation is moving to particle-based simulations.

Because the surface tension property of water is unlike that of any other fluid,
surface tension is used to produce realisticwater simulations.Whereas smoke spreads
and dissipates in the air during simulation, water simulations must guarantee that the
volume is conserved and that an explicit surface is maintained. Therefore, in water
simulations, the main issues are to minimize the numerical dissipation occurring in
the calculation process and accurately track the surface of the water. The level-set
method is a typical surface tracking technique that generates and uses a signed
distance field (SDF). Further details about SDF are given in Appendix A.1.

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_1

1

2 1 Basic Concepts of Visual Effects

Fig. 1.1 Bubbles alive [10]: Pouring water with turbulent multiphase bubble flows (left) and rising
bubbles in calm water (right)

We cannot achieve sufficiently good water simulation using elaborate surface
tracking to calculate the movement of the water, because motion is generated from
a variety of splashes, bubbles, and so on. Therefore, there has been a considerable
amount of research in the representation of splashes and bubbles (Fig. 1.1).

This book presents water simulation techniques that track the surface and pre-
cisely calculate the motion using a grid-based approach and the level-set method.
In addition, to ensure a realistic simulation, a variety of techniques are presented to
generate bubbles and express the movement of water under surface tension.

1.1.1 Eulerian Method for Water and Bubbles

1.1.1.1 Multiphase Flows

We consider a multiphase Navier–Stokes solver that includes buoyancy and sur-
face tension. Our system is designed to use the merits of Navier–Stokes simulation
schemes developed for CG animation.

∂(ρu)

∂t
= μ∇ · (∇u) − ∇ · (ρuu) − ∇ P + ρg +

∫
�(t)

σκnδ(x − x f)ds (1.1)

1.1.1.2 Bubbles

We introduce one more subject pertaining to liquid animation: bubbles. Bubbles are
pockets of air enclosed by liquid, and can be found wherever liquid and air coexist.
Two flows must be considered: those occurring inside and outside of the bubble.

1.1 Water 3

Fig. 1.2 Rising bubbles in liquids [7]: Photo image (left) and rendered image (right)

Differences in specific gravity between the two fluids generate buoyancy forces, and
surface tension forces are exerted at the interface between the two fluids. We will
develop a new fluid animation method in which liquid and gas interact with each
other using the example of bubbles rising in water (Fig. 1.2).

1.1.1.3 Minimum-Stress Surface Tension

In the multiphase fluid configuration, the surface is constructed as the blue lines in
Fig. 1.3. To construct the blue lines, we first find the zero-stress surface of each cell
(red line), and gradually move toward these surfaces. This tendency is equivalent
to surface tension defined on the simulation grids. Finally, we add this force to the
velocity as a body force. The Navier–Stokes solver can then handle this scenario
naturally.

Fig. 1.3 Minimum-stress surface tension method (left); the velocity field induced by the surface
tension forces (right)

4 1 Basic Concepts of Visual Effects

Fig. 1.4 Left step A, middle: step B, and right step C

1.1.1.4 Numerical Simulation of Buoyancy

Instead of employing experimental equations, we numerically simulate buoyancy
effects (Fig. 1.4). This method can be easily implemented as part of a multiphase
simulation system.

[Step A] Add gravity forces to the velocity field, as the buoyancy comes from the
density difference between two materials.

[Step B] Correct the velocity field by solving the hyperbolic partial differential
equations.

[Step C] Trace the interfaces following the velocity field.

1.1.1.5 Mass Conservation

Because this method is partially based on the volume-of-fluid scheme, we can explic-
itly correct the total mass of the enclosed fluids after each interface-capturing step
(Fig. 1.5).

Fig. 1.5 Left initial state; middle: mass conservation step skipped; and right mass conservation
step used

1.1 Water 5

Fig. 1.6 Rising bubbles in a
liquid [7]

1.1.1.6 Results

Finally, we can animate rising bubbles in a liquid within the Navier–Stokes fluid
simulation scheme. A number of particles were employed to make the animated
scene more lively, and the interfaces were rendered by the vertex-shader technique
(Fig. 1.6).

1.1.2 Hybrid Method for Water and Bubbles

We now propose a hybrid method for simulating multiphase fluids such as bubbly
water. The appearance of subgrid visual details is improved by incorporating a new
bubblemodel based on smoothed particle hydrodynamics (SPH) into a Eulerian grid-
based simulation that handles the background flow of large bodies of water and air.
To overcome the difficulty of simulating small bubbles in the context of multiphase
flows on a coarse grid, we heuristically model the interphase properties of water
and air by means of the interactions between bubble particles. As a result, we can
efficiently animate the lively motion of bubbly water with small-scale details.

1.1.2.1 Hybrid Eulerian and Lagrangian Approach

We can use the Eulerian method to generate the background motion of water and air
bodies that are large enough to be captured using a simulation grid using a single-
CPU machine. The bubbling details that are too small to be handled on the grid are
simulated by SPH. We build our system on the particle level-set (PLS) fluid solver
to generate bubble particles by incorporating escaped particles back into the SPH
system as bubbles (Fig. 1.7).

6 1 Basic Concepts of Visual Effects

Fig. 1.7 Schematic outline
of our hybrid system [10].
The body of water is colored
blue and bubble particles are
drawn as white circles

1.1.2.2 Drag Force at a Bubble Surface

Because the density of water is 800 times that of air, the force applied to water by air
is insignificant. Conversely, water induces buoyancy and a drag force on bubbles. A
drag force is applied to the upper portion of the air bubble by buoyancy. Ellingsen
and Risso [4] observed that an air bubble injected into water retains its ellipsoidal
shape while it rises, implying that the drag force only acts on the upper portion of the
air bubble. We can control the shape of air bubbles using the drag force (Fig. 1.8).

1.1.2.3 Interchangeable SPH and Level Set

Wewill display small-scale bubble motion based on Lagrangian SPH in a grid-based
simulation to detect detailed subgrid features. In fact, the cohesion force in SPH
enables particles to merge, yielding a higher density and creating air bubbles that are
large enough to be depicted in a grid. Though SPHwas originally created to describe
subgrid details, the integration of particles that are larger than subgrid size reduces
the simulation accuracy. When the size of the particles in SPH outgrows that of the
subgrid, we turn to a grid-based level set.

1.1.2.4 Swirling Bubbly Water

The effect of surface tension is dynamically and realistically represented within a
multiphase fluid simulation. Air bubbles are seeded with ‘bubble particles,’ which
move randomly. These molecule-like movements modify the surface of the air bub-
bles and generate turbulence in the water. The surface tension between air bubble
and water, determined by the composition of the water, remains constant regardless
of bubble size. However, external forces produce unstable fluid motion as the surface
tension strives to exert itself, causing bubbles to split andmerge. The bubble particles

1.1 Water 7

Fig. 1.8 Ellipsoidal shape of
air bubbles using our
proposed drag force [16]

can also be used to mitigate the numerical dissipation usually experienced in grid-
based fluid simulations, restoring the lost volume of individual bubbles. The realistic
tearing of bubble surfaces is shown in a range of examples (Figs. 1.9 and 1.10).

Fig. 1.9 Example of pouring water [17]: SPH particles showing the motion of the subgrid (left)
and air bubbles formed by converting merged SPH particles into a level set (right). Dots denote
SPH particles

8 1 Basic Concepts of Visual Effects

Fig. 1.10 An air bubble rising in calm water (left); air bubbles spiraling upwards (right) [18]

1.1.3 High-Order Surface Tracking

At the interface between different fluids, properties such as density, viscosity, and
molecular cohesion are discontinuous. To realistically animate small-scale details of
incompressible viscous multiphase fluids, we focus on the discontinuities in the state
variables that express these properties. The surface tension of both the free surface
and the bubble ismodeled using a jumpcondition in the pressure field.Discontinuities
in the velocity gradient field, driven by viscosity differences, are also considered.
To obtain the derivatives of the pressure and velocity fields with subgrid accuracy, we
extrapolate these quantities across the interface using continuous variables based on
physical properties. The numerical methods that we present are easy to implement
and do not affect the performance of existing solvers. Small-scale fluid motion, such
as capillary instability, breakup of liquid sheets (Fig. 1.11), and bubbly water, can all
be successfully animated.

Fig. 1.11 Breakup of a liquid sheet [9]. The effective resolution is 5123

www.allitebooks.com

http://www.allitebooks.org

1.1 Water 9

1.1.3.1 Discontinuous Fluid

There is a discontinuous pressure profile at the interface � between two different
fluids. Figure1.12 illustrates this discontinuous pressure at the interface. The pressure
on the right of � is different to that on the left. This makes it difficult to differentiate
the pressure across � using standard finite differencing.

1.1.3.2 Anisotropic Particle Level Set

We will demonstrate how to track the surface of a multiphase fluid more accurately
using the PLS method with anisotropic particles (APLS) instead of spherical par-
ticles. We use a weighted principal component analysis (WPCA) to construct the
anisotropic particles, although the computational cost of this approach is high. We
use the directional derivative to generate the distribution of anisotropic particles.
Compared with PLS, this approach provides more surface detail, corrects numerical
dissipation, and preserves the volume of the fluid (Fig. 1.13). Furthermore, we will
present anisotropic particle-based fluid simulations with surface reconstructions.

1.1.4 Miscible Multiphase Fluids

Bymodelingmass transfer phenomena,wewill simulate solids and liquids dissolving
or changing to other substances, and also deal with the very small-scale phenomena
that occur when a fluid spreads out at the interface of another fluid.Wewill model the
pressure at the interfaces between fluids with Darcy’s Law, and represent the viscous
fingering phenomenon in which a fluid interface spreads out with a fractal-like shape.
Hybrid grid-based simulations and SPH will be used to simulate intermolecular

Fig. 1.12 Discontinuous
pressure field near an
interface �

10 1 Basic Concepts of Visual Effects

Fig. 1.13 Water drop tower: PLS (left), APLS with WPCA (middle), and APLS with directional
derivative (right) [15]

diffusion and attraction using particles at a computable scale. As a result, we can
animate fluids mixing and objects dissolving.

1.1.4.1 Viscous Fingerling

When fluids mix, we can observe that they spread out irregularly as their mixing
surface makes a fractal-like shape. Viscous fingering refers to the onset and evolution
of these instabilities in the displacement of fluids. The unstable flow of a fluid in a
porous medium, or by analogy in a Hele–Shaw cell, has been studied for 50years.
The results have applications in areas such as enhanced oil recovery andmicrofluidics
(Fig. 1.14).

Fig. 1.14 Dropping red ink
[23]. Two different liquids
mix (grids:256 × 256 × 128,
particles: about 120,000)

1.1 Water 11

1.1.4.2 Conclusions

Our technique enables the modeling of miscible multiphase fluid flow by improving
the handling of interfacial properties and chemical reactions. With this technique,
we can construct naturalistic scenarios in which a solid body melts or liquids are
mixed. These combinations of viscous fingering, chemical-based mass transfer, and
molecular forces are relatively easy to model with techniques familiar to the CG
community.

1.2 Smoke

Modeling the flow of smoke is the basis of fluid simulation. Based on smoke simu-
lations, other fluid flow techniques are often developed.

In natural phenomena, smoke consists of nanoscale particles that form various
shapes under external forces such aswind.One of themain issues in smoke simulation
is the calculation and expression of themovement of a substance that is very sensitive
to movement in the surrounding air. The complex motion of smoke is calculated
by dividing the simulation space into a grid, and then solving the Navier–Stokes
equation to discover the changes in velocity and mass across the grid. In the process
of solving the equation, mathematical techniques from computational fluid dynamics
(CFD) and the finite difference method (FDM) are used. Since Jos Stam presented
the “Stable Fluid” approach [24], which guarantees numerical stability, his scheme
has become the basis for subsequent research.

Generally, a large number of calculations are required to produce the desired
smoke simulation. This is due to the problem of solving the Navier–Stokes equation
in a grid, and is common to other fluid simulations. The higher the grid resolution, the
more realistic and accurate the resulting simulation, although the computational cost
will increase sharply. This is the trade-off between quality and cost. To overcome this
problem, an adaptive approach is proposed: the space in which the smoke is actively
moving is divided finely, whereas the other space is divided coarsely. A data-driven
method has also been studied to give faster results using previously simulated data.

Recently, the development of multi-core and many-core processors has enabled
multiple calculations to be performed at high speed. Researchers have studied the
Navier–Stokes equation in a multi-thread environment, and NVIDIA presented a 3D
simulation generated in real time using CUDA (Compute Unified Device Architec-
ture). Because these results are achieved by techniques that occupy the majority of
a devices resources, they are difficult to directly reproduce in games.

Some researchers have attempted to optimize the trade-off between quality and
cost. That is, they employ additional operations to producemore realistic results at the
same grid resolution. For example, vorticity confinement is a commonly used scheme
introduced by Fedkiw et al. in “Visual Simulation of Smoke” [5]. The turbulence of
smoke is represented by adding noise to the grid to compute the curl. In addition,

12 1 Basic Concepts of Visual Effects

techniques such as using a subgrid or inserting particles to increase the number of
vortices have been studied (Fig. 1.15).

Smoke has also been represented using particles rather than a grid. Filament-based
simulations can produce more sophisticated results than grid-based methods in small
scenes. However, it is difficult to apply the filament-based scheme to the large-scale
scenes that are often shown in movies and games.

1.2.1 Animating Smoke with Dynamic Balance

We will propose a numerical method for maintaining a dynamic rolling motion in
animated gaseous phenomena, such as smoke, while avoiding dissipation due to
numerical error. The errors induced by a semi-Lagrangian scheme are compensated
using an error estimate for each time interval. We develop a new advection term, and
perform vortex advection based on a vorticity confinement force. Example simula-
tions show that this method retains smoke features, even near the center of a vortex
(Figs. 1.16 and 1.17).

Fig. 1.15 Results of procedural synthesis using vortex particle method for fluid simulation [26]

1.2 Smoke 13

Fig. 1.16 Smoke motion
with vortex advection and
error compensation [8]

Fig. 1.17 Rising smoke
swirling over a sphere [8]

1.2.2 Procedural Synthesis Using Vortex Particle Method

We will propose a fast and effective technique to improve the subgrid visual details
of the grid-based fluid simulation. Our approach procedurally synthesizes the flow
fields coming from the incompressible Navier–Stokes solver and the vorticity fields
generated by the vortex particle method for subgrid turbulence. We can efficiently
animate highly turbulent, swirling smoke with small-scale details. Because this tech-
nique does not solve the linear system in high-resolution grids, the fluid simulation
can be performed more rapidly. We can easily estimate the influence of turbulence
and swirling on the fluid flow (Figs. 1.18 and 1.19).

14 1 Basic Concepts of Visual Effects

Fig. 1.18 Rising smoke [26]

Fig. 1.19 Explosion-like
effect [26]

1.3 Fire and Ice 15

1.3 Fire and Ice

Fire simulation is a very popular effect in movies and computer games, and is a
challenging research field. In natural phenomena, fire occurs through extremely com-
plex chemical processes involving fuel and high temperatures. In CG, the aim is to
render and control flame realistically with a simplified model.

Early research attempted to control the fire motion using particles. “Realistic and
Controllable Fire Simulation” [1] is a representative introduction to this approach,
simulating fire with an object mesh via propagation, animation and rendering, and
producing flame motion with its skeleton.

Since then, grid-based simulation has become themain approach tomodeling fire.
The framework described in “Physically Based Modeling and Animation of Fire”
[3] proposed a state model that handled the process of combustion, i.e., burning fuel
results in high temperature, and simulated flame using the location and temperature
of the fuel. The position of the fuel (specifically, the reaction zone) was traced by
the level-set method, and flame was modeled using the surface normal direction
and curvature term. In addition, buoyancy caused by temperature differences was
modeled, and a rendering technique was presented that defines the color of the flame
according to the theory of black body radiation.

Based on this research, schemes that produce more realistic and detailed flame
shapes and motion have been studied. “Wrinkled Flames and Cellular Patterns” [11]
proposed the detonation shock dynamics (DSD) framework for flame wrinkling and
cellular patterns.

Recently, industrial demands and advances in computing power have resulted in a
change in research direction. The game industry requires plausible flame movement
to be drawn in real time. Various approaches have been developed for this problem,
such as creating a sprite image that is precisely rendered in advance or adding light-
ing effects with GPU shaders to generate realistic results. The film industry often
requires large-scale explosions and flames caused by strong turbulence. Approaches
that reduce the computational load of these effects have been studied, such as coarsely
dividing the space in which the motion of fire is to be calculated and then adding
details later. “Directable, High-Resolution Simulation of Fire on the GPU” [13]
proposed a technique to calculate a vector field on a coarse grid by solving the
Navier–Stokes equation, advecting particles through a vector field, and performing
a further computation to obtain detailed information according to the viewpoint of
the user. The scene is then composited by mapping a fire texture to each particle.

Researchers have also studied the burning or deformation of objects by temper-
ature variation. “Multi-Representation Interaction for Physically-Based Modeling”
[21] proposed a technique to model and simulate the heat transfer inside an object
and its effect on the air around the object. “Melting and Burning Solids into Liq-
uids and Gases” [20] presented a simulation of the deformation of objects by heat,
and “Physically Based Simulation of Solid Objects’ Burning” [19] simulated the
free-form deformation of objects.

16 1 Basic Concepts of Visual Effects

Fig. 1.20 Simulation of air bubble shapes like needles [14]

Fig. 1.21 Without any opaque area (top left); Using particles only (top right); Dissolved air field
only (bottom left); Both particles and the field (bottom right) [14]

1.3 Fire and Ice 17

In CG, the simulation of natural phenomena has several important issues, such as
how to produce fast and realistic simulation results. In the winter, we often see snow
and ice, so simulations of these phenomena are often used in films and advertising.
However, the rendering scheme for a fluttering snowflake and snow piled-up on the
surface of an object requires a large number of particles and considerable computation
to produce realistic results. In the case of ice simulation, rendering opaque ice requires
designers to spend a lot of time drawing the internal representation of the ice. Thus,
transparent ice simulations are sometimes used in films and computer games. To
solve the above problems, this book presents a physically based simulation method
to rapidly produce exact, detailed ice and snow simulation results.

Many researchers have proposed grid-based or particle-based simulation schemes,
and these give very artistic results. Recently, hybrid simulation methods have been
proposed to simulate realistic ice. “A Particle-Grid method for Opaque Ice Forma-
tion” [14] presents the simulation of explicit air bubbles in the inside of ice using
a particle-based method and creates nanoscale air bubbles to simulate mist using a
grid-based technique (Figs. 1.20 and 1.21).

1.4 Fluid Interaction

Fluids often interact with the same or different materials, such as in fluid–fluid or
solid–fluid interactions. In particular, fluid–fluid interactions are called a “coupling”
(Fig. 1.22 left). As CG techniques are being applied to films and advertising more
frequently, the simulation of solids (e.g., rigid and deformable bodies, cloth) has
become an attractive research topic. This includes solid–fluid and solid–solid inter-
actions, as well as fluid dynamics simulations of water, smoke, and fire. In CG, such
fluid–fluid and solid–fluid interactions require separate fluid and solid simulation
techniques, as well as highly precise and rapid computational methods to represent
the visual effects.

Fig. 1.22 Coupling (left) and controlling a fluid (right)

18 1 Basic Concepts of Visual Effects

1.4.1 Coupling

One important technique for fluid interactions is collision detection. The
particle-based simulation of fluid, cloth, and hair using the Lagrangian method
requires a great many particles to precisely represent their deformation (Figs. 1.23
and 1.24). Hence, collision detection schemes for large numbers of particles have
been studied. In a typical solid–fluid collision detection method, the velocity of fluid
particles at the interface is interpolated and then used to determine the force of the
solid.

Figure1.25 illustrates a boundary condition that checks whether the ray between
two adjacent cell centers whose pressures are defined intersects an object. If the
boundary condition is not examined properly, a problem occurs in the thin surface
layer of water formed by the collision with a thin solid object (namely, the thin
water surface is quickly compressed and its density vanishes). That is, if the collision
between a solid surface and afluid particle is not detected correctly, a stickingproblem
or penetration problem will arise.

For particle-based simulations, adaptively sampled distance fields (ADFs) are
used for the rapid computation of fluid velocities (Fig. 1.26). Because this method
adaptively divides the simulation space, its simulation speed is relatively fast com-
pared with previous methods. However, because the total computational load of this
method depends on the number of particles, large-scale problems can result in a
decline in simulation speed.

Fig. 1.23 Coupling a fluid with a deformable body

www.allitebooks.com

http://www.allitebooks.org

1.4 Fluid Interaction 19

Fig. 1.24 Coupling a fluid with a rigid body

Fig. 1.25 Neumann
boundary condition (denoted
in bold red) is enforced at a
cell face if the ray between
two adjacent cell centers
(where pressures are defined)
intersects an object

1.4.2 Controlling Fluid

This section introduces a new fluid control technique that uses a geometrically
induced potential field. Instead of optimizing the control forces exerted at each frame,
as in previouswork, a potential is added as an extra dimension to the simulation space.
This coerces the fluid inside this space to form the target shape (Fig. 1.22 right). This
type of shape control requires practically no additional run-time computation by the

20 1 Basic Concepts of Visual Effects

Fig. 1.26 Various example ADFs a C glyph. b Sphere c Stanford Bunny

Navier–Stokes solver, and adds little overhead to the implementation. The confine-
ment potentials are induced from geometric information given by animators, and so
the control forces that take fluids to a lower potential can be determined in a pre-
processing step. A slightly generalized Navier–Stokes equation for fluids in potential
fields can be simulated without changing the solver itself, and a harmonic potential
function can be quickly found with the Poisson solver, which is already implemented
as part of the Navier–Stokes solver. Two- and three-dimensional flows designed by
commonmethods such as hand drawing, traditional shapemodeling, and key-framing
can be animated efficiently with our control technique (Figs. 1.27 and 1.28).

A simple control problem in one dimension can be modeled as shown in Fig. 1.29.
There is a physical entity A, currently at x0, that we want to place at xtarget. Control
means checking the error and taking action to reduce it. In Fig. 1.29, the error e
is xtarget − x0. Control forces will be continuously exerted on A such that e tends
toward zero. Determining these forces is themajor concern of classical control theory
(interested readers are referred to [6]). This frameworkwas usedbyTreuille et al. [25],
who developed novel techniques to determine and optimize the control forces for
fluids. However, the very existence of an external controller can be burdensome to a

Fig. 1.27 Two-dimensional flow control: a blossoming flower [12]

1.4 Fluid Interaction 21

Fig. 1.28 Three-dimensional keyframing: knot, teapot, and rabbit model [12]

Fig. 1.29 Sample control
problem

Fig. 1.30 Our control frame
work

Navier–Stokes solver. Furthermore, because fluids have many degrees of freedom, it
is questionable whether this approach is applicable to complicated three-dimensional
target shapes. The alternative is to insert the uncertainty into the physical model, as
was done byChenney andForsyth [2]; for similar reasons, this is still computationally
burdensome.

Figure1.30 shows the key idea of our method. Intuitively, we can confirm that,
without external control, A′ will start moving and will stop at xtarget at some later
time, as for a rock rolling into a ravine.1 This means that our method—adding a
potential dimension to the simulation space and adjusting it to design the animation—
reformulates the control problem as an initial-value problem. There is no need for
control during the simulation; we control the animation by designing U (x) in a
preprocessing step. Because the vertical axis that we have introduced is not a geo-

1 This is known as a potential well in physics.

22 1 Basic Concepts of Visual Effects

metric dimension, the dimensionality and size of the simulation space have not been
increased, and so the performance of the numerical simulation is maintained. The
only change to the fluid dynamics resulting from the potential field is the introduction
of Fpotential, which is

F(x)potential = −∇U (x), (1.2)

from the energy-force relationship of Newtonian mechanics. As the potential scalar
field U (x) is determined during preprocessing, the gradient vector field ∇U (x) can
be found at the same time. This makes it possible to simulate fluids in a potential field
without lowering the performance of the Navier–Stokes solver. Details are given in
the next section.

1.4.3 Target Driven Animation

This section introduces a novel method of controlling a multiphase fluid so that
it flows into a target shape in a natural manner (Figs. 1.31 and 1.32). To preserve
the sharp detail of the target shape, we represent it as an implicit function, and
construct the level set of that function. Previous approaches have added a target-
driven control force as an external term. This term is then attenuated during the
velocity projection step, making the convergence process unstable and causing sharp
detail to be lost from the target shape. In contrast, we calculate the force on the fluid
from the pressure discontinuity at the interface between phases, and integrate the
control force into the projection step so as to preserve its effect. The control force
is calculated using an enhanced version of the ghost fluid method (GFM), which
guarantees that the fluid flows from the source shape and converges on the target
shape, while achieving a more natural animation than other approaches. Our control
force is merged during the projection step, avoiding the need for a post-optimization
process to eliminate divergence at the liquid interface. This makes our method easy
to implement using existing fluid engines, and it incurs little computational overhead.
Experimental results demonstrate the accuracy and robustness of this technique.

Unlike morphing techniques, methods of controlling fluid produce a natural-
looking fluid flow between a source shape and a target shape. Some of these tech-
niques also use a multiphase fluid simulation so that liquids can be included in the
animation. Control is achieved by adding external forces to the Navier–Stokes equa-
tion, ensuring the fluid flows from the source to the target configuration. However,
existing techniques do not take account of the interfacial discontinuities in pressure
and density that occur when two different fluids are adjacent to one another. Some
important fluid properties, such as surface tension and capillary phenomena, occur
at such discontinuities. In addition, the flow around objects is greatly influenced by
these discontinuities at the interface. Our method improves the control of multiphase
fluid simulations by considering interfacial discontinuities. To allow a user to change
the direction and shape of a fluid flow, we add control forces at the projection step
of a modified GFM, which is able to take account of discontinuities at the interface

1.4 Fluid Interaction 23

Fig. 1.31 Liquid flowing from a Venus to a bunny. Our method (bottom) [22] is compared with a
previous method (top) that uses an external force. The resolution is 1283

Fig. 1.32 Liquids making
the word ‘Flower’ flow into
the target image, which is an
oriental painting (top right)
[22]

24 1 Basic Concepts of Visual Effects

Fig. 1.33 Discontinuous
pressure field and the new
ghost value

between different fluids. Users may provide an image, 3D mesh data, or sketches.
Based on this input, the level set of the target shape is constructed as an SDF, from
which pressure jump values can be determined.

Controlling a liquid animation by adding forces at the interface between two
immiscible fluids has several advantages:

• Because we are adding the control force at the projection step, the force is accu-
rately preserved.

• The fluid simulation is still divergence-free and robust, despite the control force,
and no optimization is required.

• Additional natural forces such as gravity and buoyancy can be added to the envi-
ronment as external forces. Control and external forces are added independently
at different stages.

• Control forces can easily be added within an existing fluid simulation pipeline.

There is a discontinuous pressure profile at the interface � between two different
fluids. Figure1.33 shows the discontinuous pressure at this interface. The different
pressures to the right and left of� make it difficult to differentiate the pressure across
the interface using standard finite differencing.

The ghost values pG
i and pG

i+1 are based on the assumption that the differential
values of the pressure on either side of the interface are always equal [9]. To accom-
modate a pressure differential, the ghost values must be modified as follows:

pNewG
i = pi + J + (pi+1

∗ − pi+2
∗) (1.3)

pNewG
i+1 = pi+1 − J + (pi

∗ − pi−1
∗), (1.4)

where (pi+1
∗ − pi+2

∗) and (pi
∗ − pi−1

∗) are obtained using the pressure value p∗
from the time-step before the projection.

Tomake a liquid flow into the target shape, we impose a control pressure using the
pressure jump. This causes the pressure values to change rapidly, which affects the
pressure differential across the interface. The modified GFM deals with this situation
efficiently.

1.4 Fluid Interaction 25

Fig. 1.34 Shape feedback
force on the liquid interface

To ensure a fluid converges to a detailed target shape, the desired shape must be
clearly described. We represent the target shape as a level set with an SDF modeled
by an octree. From this shape information, we can calculate the shape feedback force.

As shown in Fig. 1.34, the force on a point P1 outside the target shape is calculated
in the direction− ∇φtarget

||∇φtarget|| , while the force on P2 inside the target shape is calculated

in the direction
∇φliquid

||∇φliquid|| . The term φtarget (x, t) is an SDF of the target shape at time

t , and φliquid(x, t) is an SDF of the liquid boundary.

References

1. Beaudoin P, Paquet S, Poulin P (2001) Realistic and controllable fire simulation. Proc Graph
Interface 2001:159–166

2. ChenneyS, ForsythDA (2000) Sampling plausible solutions tomulti-body constraint problems.
In: Proceedings of ACM SIGGRAPH 2000, pp 219–228

3. Nguyen DQ, Fedkiw R, Jensen HW (2002) Physically based modeling and animation of fire.
In: Proceedings of ACM SIGGRAPH 2002. ACM transactions on graphics (TOG), July 2002,
vol 21(3), pp 721–728

4. Ellingsen K, Risso F (2001) On the rise of an ellipsoidal bubble in water: oscillatory paths and
liquid-induced velocity. J Fluid Mech 440:235–268

5. Fedkiw R, Stam J, Jensen HW (2001) Visual simulation of smoke. In: Proceedings of SIG-
GRAPH, pp 15–22

6. Franklin GF, Powell JD, Emami-Naeini A (2002) Feedback control of dynamic systems. Pren-
tice Hall, Englewood Cliffs

7. Hong J-M, Kim C-H (2003) Animation of bubbles in liquid. Computer graphics forum (Euro-
graphics 2003 Proceedings), vol 22(3), pp 253–262, September 2003

8. Hong J-K, Kim C-H (2005) Animating smoke with dynamic balance. In: Proceedings of com-
puter animation and social agents 2005. Computer animation and virtual worlds, July 2005,
vol 16(3–4), pp 405–414

9. Hong J-M, Kim C-H (2015) Discontinuous fluids. In: Proceedings of ACM SIGGRAPH 2005.
ACM transactions on graphics, July 2005, vol 24(3), pp 915–920

10. Hong J-M, Lee H-Y, Yoon J-C, Kim C-H (2008) Bubbles alive. In: Proceedings of ACM
SIGGRAPH 2008. ACM transactions on graphics, August 2008, vol 27(3), p 48,

11. Hong J-M, Shinar T, Fedkiw R (2007) Wrinkled flames and cellular patterns. In: Proceedings
of ACM SIGGRAPH. ACM transactions on graphics (TOG), July 2007, vol 26(3), Article 47

12. Hong J-M, Kim C-H (2004) Controlling fluid animation with geometric potential. Comput
Animat Virtual Worlds (CASA 2004) 15(3–4):147–157

13. Horvath C, Geiger W (2009) Directable, high-resolution simulation of fire on the GPU. In:
Proceedings of ACM SIGGRAPHACM. ACM transactions on graphics (TOG), August 2009,
vol 28(3), Article 41

26 1 Basic Concepts of Visual Effects

14. Im J, Park H, Kim J-H, Kim C-H (2013) A particle-grid method for opaque ice formation.
Comput Graph Forum 3(2):371–377

15. Kim P-R, Lee H-Y, Lee Jung, Kim C-H (2012) Anisotropic particle level-set method for
multiphase fluid. J Res Pract Inf Technol

16. KimP-R, LeeH-Y,Kim J-H,KimC-H (2012)Controlling shapes of air bubbles in amulti-phase
fluid simulation. Vis Comput 28(6–8):597–602

17. Lee H-Y, Hong J-M, Kim C-H (2009) Interchangeable SPH and level set method in multiphase
fluids. Vis Comput 25(5–7):713–718

18. Lee H-Y, Hong J-M, Kim C-H (2009) Simulation of swirling bubbly water using bubble par-
ticles. Vis Comput 25(5–7):707–712

19. Liu S, An T, Gong Z, Hagiwara I (2012) Physically based simulation of solid objects’ burning.
In: Pan Z, Cheok AD, Chang W, Zhang M (eds) Transactions on edutainment VII. Springer,
Berlin, pp 110–120

20. Losasso F, Irving G, Guendelman E, Fedkiw R (2006) Melting and burning solids into liquids
and gases. IEEE Trans Vis Comput Graph 12(3):343–352

21. Melek Z, Keyser J (2005) Multi-representation interaction for physically based modeling. In:
Proceedings of the 2005. ACM symposium on solid and physical modeling (SPM’05), pp
187–196

22. Shin S-H, Kim C-H (2007) Target-driven liquid animation with interfacial discontinuities.
Comput Animat Virtual Worlds (CASA 2007) 18(4–5):447–453

23. Shin S-H, Kam HR, Kim C-H (2010) Hybrid simulation of miscible mixing with viscous
fingering. Comput Graph Forum 29(2):675–683

24. Stam J (1999) Stable fluids. In: Proceedings of ACM SIGGRAPH 1999, pp 121–128
25. Treuille A, McNamara A, Popović Z, Stam J (2003) Keyframe control of smoke simulations,

In: Proceedings of ACM SIGGRAPH 2003. ACM transactions on graphics, July 2003, vol
22(3), pp 716–723

26. Yoon J-C, KamHR, Hong J-M, Jin Kang S, Kim C-H (2009) Procedural synthesis using vortex
particle method for fluid simulation. Comput Graph Forum 28(7):1853–1859

Chapter 2
Water and Bubbles

2.1 Animation of Bubbles in Liquid

Abstract This section introduces a new fluid animation technique in which liquid
and gas interact with each other, using the example of bubbles rising in water. In con-
trast to previous studies which only focused on one fluid, this system considers both
the liquid and gas simultaneously. In addition to the flowing motion, the interactions
between liquid and gas cause buoyancy, surface tension, deformation, and move-
ment of the bubbles. For the natural manipulation of topological changes and the
removal of the numerical diffusion, we combine the volume of fluid method and the
front-tracking method developed in the field of computational fluid dynamics. Our
minimum stress surface tension method enables this complementary combination.
The interfaces are constructed using the marching cubes algorithm. Optical effects
are rendered using vertex shader techniques.

2.1.1 Introduction

Liquids are very attractive substances. As well as having beautiful optical properties,
their movements are mysterious, or as an eastern saying goes, “just observing water
can provide goodmeditation.”Many studies have been done in an attempt to animate
and render liquids in the computer graphics field. And thanks to recent improvements
in computing powers and simulation techniques, more phenomena related to liquids
have become subjects of animation.

This section introduces one more subject pertaining to liquid animation, i.e.,
bubbles.

Bubbles are pockets of air enclosed by liquid and exist everyplacewhere liquid and
air coexist. As opposed to air skimming over liquid surfaces, bubbles are governed
by the interactions between air and liquid. There are many factors to be considered
when attempting to simulate the deformation and movement of bubbles. There are
two flows to consider—i.e., those occurring inside and outside of the bubble bodies.
Differences in specific gravity between the two fluids generate buoyancy forces.
Surface tension forces are exerted at the interfaces between the two fluids.

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_2

27

28 2 Water and Bubbles

In general, the density of liquids is much higher than that of gases. For example,
water is eight hundred times heavier than air. This fact is one of the reasons for
the free surface approximation in which the existence of air is generally ignored in
liquid simulations. Many recent studies on liquid animation have referred to the free
surface studies which have been done in computational fluid dynamics (CFD). These
studies showed very natural results and some air flows were able to be inserted as
surface boundary conditions—e.g.,wind.However, since enclosed air is an altogether
different affair, those studies are not suitable for bubbles. Besides the additional
factors described above, one more consideration needs to be taken into account—
i.e., two fluids have to be simulated at the same time. This problem is studied in the
form of multiphase flows in CFD with the phase change problem.

Like other fluid problems, many techniques have been developed for the simu-
lation of multiphase flows in CFD. However, since all techniques have their own
characteristic approach, in order to decide which technique to use for computer ani-
mation, a set of selection criteria are needed. The criteria that we use in this section
are the ease of programming, the numerical stability and the fast simulation, even at
the cost of accuracy. However, since the main virtue of CFD is accuracy, no existing
technique matched these characteristics exactly, therefore we combine and modify
various existing techniques for our purposes.

This section presents a new fluid animation technique in which liquid and gas
interact with each other, using the example of bubbles rising in water (Fig. 2.1). This
system is based on the complementary combination of the volume of fluid (VOF)
method and the front-tracking method which were developed in the field of CFD.
The VOF method is an efficient and fast scheme for free surface simulation with
the inherent capability of topological changes. It can be easily extended for the
simulation of multiphase flows. However, to reduce the effect of numerical diffusion
in the VOF scheme, the interfaces between the two fluids in the simulation grid need
to be decided exactly, which is simple in 2D, but complicated and computationally
expensive in 3D with fluid volume constraints. In contrast to the VOF method, the
front-tracking method introduces no numerical diffusion. However, a bookkeeping
process tomaintain the front connectivity is needed to handle the topological changes
and physically accurate interfacial geometry is required for the calculation of surface
tension. Since our minimum stress surface tension method calculates the surface
tension effects not from the interfacial geometry but directly from the simulation
data, it was possible to combine these two methods.

Due to the VOF scheme being used, fast interface construction is possible with the
marching cubes algorithm. Interfaces composed of polygon meshes are rendered by
means of the vertex shader. Optical effects—refract, reflection, and dispersion—are
included.

Section2.1.2 presents the previous works on liquid animation and some related
CFD techniques, in order to explain the limitations of previous works and the char-
acteristics of our approaches. Section2.1.3 introduces some new concepts for the
representation ofmultiphase fluids and overviews ourmethod. In Sect. 2.1.4, the sim-
ulation process is discussed in relation to the Navier–Stokes equation. Section2.1.5
discusses the techniques introduced for visualization. In Sect. 2.1.6, we present our

www.allitebooks.com

http://www.allitebooks.org

2.1 Animation of Bubbles in Liquid 29

Fig. 2.1 Rising bubbles in
liquids. Photo image (top)
and rendered image (bottom)

results. We conclude and discuss ideas for the future research in Sect. 2.1.7. All fig-
ures are explained in two dimensions and their extension to three dimensions should
be fairly evident.

2.1.2 Previous Work

The characteristics of a physically based model are strongly influenced by the phys-
ical and mathematical foundation of that model. Therefore, a combination of both
models andCFD techniques is necessary in order to provide amoremeaningful expla-
nation. CFD researches include many topics—the accuracy of simulation, numerical
techniques, the handling of geometry, and so on. Among them, we will concentrate
on only those parts which are directly related to our purpose.

30 2 Water and Bubbles

The governing equation of fluids is known as the momentum or Navier–Stokes
equations. Following some initial approaches using simplified versions of theNavier–
Stokes equations [37, 62], the animation of complex water was studied [19] using
the marker and cell (MAC) method [32] with the full 3D Navier–Stokes equation.
In the MAC method, the Navier–Stokes equation is discretized within some fixed
uniform cells and fluids are expressed by Marker particles. Marker particles were
able to describe both natural and detailed scenes [19, 32]. This scheme is also applied
to melting animations [5]. In order to treat the smooth and detailed surfaces using
these marker particles, the implicit surfaces and level-set methods were used [16].
Realistic optical properties were rendered with the physically based ray tracer. In the
simulation of very complex scenes, volume loss occurred and to fix this problem the
particle level-set method was introduced [14]. This approach enabled the animation
of very complex scenes and velocity extrapolation gave us more control with coarse
grids. Although the MAC method presents the explicit expression of liquids with
marker particles, it is difficult to estimate the volume of liquid in a cell from marker
particles. To represent and simulate two fluids with one grid system, we have to know
the volume of each fluid in one grid. Therefore, the animation techniques based on
MAC method [5, 14, 16, 19] are not suitable for our purposes.

For fast animation of liquids [43], the volumeoffluid (VOF)method [29]was used,
in which the liquid surfaces were constructed using the marching cubes algorithm
[44] and rendered with polygonal techniques. The VOF method handles topological
changes naturally with the marching cubes algorithm, and basically uses only one
scalar value—the volume of fluid—for one cell, through which we can know the
total volume of fluid in the simulation space. The VOF method assumes that the
liquid in a cell is gathered in one corner. From the volume value of one cell and its
adjacent cells, the exact position of the liquids needs to be estimated to eliminate
the effects of numerical diffusion. This is a problem involving the intersection of a
line and a square in 2D cases [67]. In 3D, these become a plane and a cube [23],
and some numerical iteration is required in order to find a solution. Therefore, it
is inefficient to eliminate numerical diffusion within VOF scheme for computer
animation purposes.

Some spherical objects related to fluids such as liquid foams [42], water droplets
[17, 89], and soap bubbles [10] have been studied. However for air bubbles enclosed
in liquids, the simulation of environmental liquids is unavoidable. This phenom-
enon can be explained as a kind of multiphase flows. The front-tracking method
[80] involves the simulation of multiphase flows without numerical diffusion. The
original front-tracking method explicitly discretized the free surface using particles
and maintains a connectivity list between these particles [85]. This connectivity list
is difficult to maintain when parts of the free surface break apart or merge together
as is often seen in complex flows of water and other liquids. To avoid this diffi-
culty, the point-set method was introduced [79]. Although this approach unchains
the front-tracking method from its dependence on logical interface point connectiv-
ity, the point regeneration algorithm is complex and computationally expensive. The
level contour reconstruction method [72] is similar to the combination of the VOF
method and the marching cubes algorithm used in [43], which possesses the inherent

2.1 Animation of Bubbles in Liquid 31

capability of being able to deal with topological changes. The feedback from inter-
faces to simulation grids still removes numerical diffusion. However, for the cal-
culation of surface tension forces and for numerical accuracy, the physically exact
interfaces are needed.

Our minimum stress surface tension method is implemented independently from
the details of interfacial geometry with the sufficient convergence for computer ani-
mation. Moreover, the feedback provided by the front-tracking method removes the
numerical diffusion and guarantees mass conservation with the benefits coming from
the VOF scheme.

In solving the Navier–Stokes equations, the initial approach was based on explicit
finite difference scheme [19, 32]. For computer graphics, the stable fluid scheme [77]
based on implicit approaches such as semi-Lagrangianmethod and implicit diffusion
was proposed for large time-steps and numerical stability. Subsequently, efficient
pressure iteration was introduced [16]. Our method utilizes these techniques instead
of the standard CFD techniques (see Sect. 2.1.4.1).

2.1.3 Overview

2.1.3.1 Representation of Multiphase Fluids

In contrast to previous works which have dealt with the free surface problem, we
consider twofluids simultaneously.To represent twofluidswith onefixedgrid system,
we define an indicator function I = I (x, t). I (x, t) takes the value 1 in one fluid and
0 in the other fluid. A material field is defined by the values of I in each cell and
Fig. 2.2a shows an example. As you can see in Fig. 2.2a, there are some transition
zones between 0 and 1, which are at the interfaces between the two fluids.

We can define the interfaces between two fluids with some isosurface construction
algorithm. As is shown in Fig. 2.2b, we used the marching cubes algorithm with a
threshold value of 0.5. Details are discussed in Sect. 2.1.5.1.

2.1.3.2 System Outline

In this section, we divide our animation process into three steps in order to provide
a conceptual explanation. They are the velocity field update, material field update,
and visualization processes. A more detailed explanation of the general processes
involved in fluid animation can be found in the literature [16, 19, 29, 32, 77].

Velocity Field Update
In this step, the velocity field is updated from the initial or previous velocity field
by solving the Navier–Stokes equation. Material field data are needed for the calcu-
lation of the gravity forces and surface tension forces. The details are discussed in
Sects. 2.1.4.1 and 2.1.4.2.

32 2 Water and Bubbles

Fig. 2.2 Material field a and
interfaces b constructed from
this material field

Material Field Update

After updating the velocity field, we should update the material field by evolving the
indicator function to reflect the movement of the fluids caused by the velocity field.
This involves the flow of materials. The details are discussed in Sect. 2.1.4.3.

Visualization

From the updated material field, we construct rendering primitives and render them.
As well as the polygonal meshes representing the interfaces, some particles are
included for the sake of providing more detailed scenes. The details are discussed in
Sect. 2.1.5.

2.1 Animation of Bubbles in Liquid 33

2.1.4 Simulation of Multiphase Flows

2.1.4.1 Navier–Stokes Equation

The momentum equation, the so-called Navier–Stokes equation for multiphase
flows [80] is

∂(ρu)

∂t
= μ∇ · (∇u) − ∇ · (ρuu) − ∇ P + ρg +

∫
�(t)

ρκnδ(x − x f)ds (2.1)

where u is the velocity, ρ is the density, μ is viscosity, P is the pressure, and g is the
gravity. The surface integral is a surface tension term. The physical definition and
finite difference scheme of surface tension are described in Sect. 2.1.4.2.

Conservation of mass written for the entire flow field is

∇ · (ρu) = −∂ρ

∂t
. (2.2)

The discrete forms for the finite difference method of Eqs. (2.1) and (2.2) can be
written as

wn+1 − wn

Δt
= An + Fn+1 − ∇h P (2.3)

∇h · wn+1 = Mn+1. (2.4)

Here w = ρu is the fluid mass flux. The advection, diffusion, and external forces
terms in Eq. (2.1) are lumped into A, the right side of Eq. (2.2) is denoted by M , and
the surface integral in Eq. (2.1) is denoted by F.

Following the spirit of Chorin’s projection method, we split the momentum equa-
tion into

w̃ − wn

Δt
= An + Fn+1 (2.5)

and
wn+1 − w̃

Δt
= −∇h P (2.6)

where we introduce the variable w̃, which is the new fluid mass flux if the effect of
pressure is ignored. The first step is to find this mass flux using Eq. (2.5)

w̃ = wn + Δt (An + Fn+1). (2.7)

The pressure is found by taking the divergence of Eq. (2.6) and using Eq. (2.4).
This leads to a Poisson equation for P

34 2 Water and Bubbles

∇2P = ∇ · w̃ − Mn+1

Δt
, (2.8)

which can be solved using a standard Poisson solver. The updated mass flux is found
from Eq. (2.6)

wn+1 = w̃ − Δt∇ P. (2.9)

The updated velocity is un+1 = wn+1/ρn+1.
In this section, the phase change problem coming from heat transfer is not

included. In isothermal cases, ∂ρ/∂t = 0, which reduces Eq. (2.2) to

∇ · u = 0 (2.10)

and Eq. (2.5) to
∇h · wn+1 = 0 (2.11)

with M = 0. If we consider Eq. (2.10) as a volume conserving condition, the whole
process of finding a solution becomes similar to one involving free surface conditions.

Since there is no vacant space in our simulation, unlike free surface simulations, all
cells should be simulated. Therefore, the free surface conditioning such as classifying
cells and modifying the velocities of surface cells [19, 32], is not needed.

In the first projection step of Eqs. (2.5) and (2.7), the stable fluids scheme [77] is
incorporated, in which the advection is calculated using the semi-Lagrangianmethod
and the diffusion is calculated with implicit method. The second projection step of
Eqs. (2.6), (2.8), and (2.9) is solved in the form of amass conservation process [16], in
which we use a standard conjugate gradient solver as a Poisson solver. All equations
are discretized on the standard staggered MAC grids [32].

2.1.4.2 Surface Tension

Surface tension is the apparent interfacial tensile stress (force per unit length of
interface) that acts whenever a liquid has a density interface, such as when the liquid
is in contacts with a gas, vapor, second liquid, or solid. The mathematical definition
of surface tension F in Eq. (2.1) is

F =
∫

�(t)
σκnδ(x − x f)ds (2.12)

where σ is the surface tension coefficient, κ is twice the mean interface curvature,
n is the unit normal to the interface, x f = x(x, t) represents the parameterization
of the interface �(t), and δ(x − x f) is a three-dimensional delta function that is
nonzero only where x = x f . Figure2.3 visually explains the surface tension forces
defined in Eq. (2.12). The black lines refer to a portion of the surfaces. Light blue
arrows represent the tension forces being exerting at the interfaces. The red arrow,

2.1 Animation of Bubbles in Liquid 35

Fig. 2.3 Surface tension
forces

representing the sum of these tension forces, represents the total force being exerting
on this portion of the surface.

In front-tracking scheme, these forces are calculated using the polygon meshes
representing interfaces and distributed to the simulation grids as body forces [72,
80, 85]. Since, the interfaces are constructed from material field discretized on the
simulation grids, it is inefficient and unreliable to distribute surface tension forces to
the simulation grids estimated from those interfaces. To overcome this inefficiency
and remove dependency on interfacial geometry in surface tension calculation as dis-
cussed in Sect. 2.1.2, our minimum stress surface tension method calculates surface
tension forces directly from the material field. The physical meaning of Eq. (2.12)
is that the surface tension is a tendency to minimize the total stress of interfacial
surfaces. So, we define the stress of material field and let surface tension forces to
minimize this stress.

To define the stress of a position on the material field, S(x), first, we define an
imaginary stress-zero isosurface whose value is I 0(x), on which S(x) = 0. Then,
S(x) can be defined by the deviation of I (x) from I 0(x). In Cartesian coordinate
system, S(x) is defined as

S(x) = c
∑

l

(I 0l (x) − I (x)) · nl , (2.13)

where c is a control coefficient, l is {x, y} in 2D and {x, y, z} in 3D, and nl is the
unit normal of l direction. In our implementation, we define I 0l (x) as

I 0l (x) =
∑

l

nl ·
⎧⎨
⎩

∑
p=m−l

(I (xp+) + I (xp−))

⎫⎬
⎭ /a, (2.14)

where m = {x, y} and a = 2 in 2D, and m = {x, y, z} and a = 4 in 3D. Finally, we
can define the material field version of Eq. (2.12) as

F(x) = −
∑

l

(S(x) · nl)∇l I (x), (2.15)

where ∇l I (x) = (∇ I (x) · nl)nl .

36 2 Water and Bubbles

Fig. 2.4 The minimum
stress surface tension method

Figure2.4 shows an example of our method. To find the y portion of F(center),
first, we assume an imaginary stress-zero isosurface (red line). In this case, the
value of this isosurface, I 0j (center), is (Ix− + Ix+)/2 = (0.3 + 0.5)/2 = 0.4 using
Eq. (2.14). The material value of the center cell 0.9 is bigger than 0.4 and this implies
that the interfaces constructed by marching cubes algorithm (blue line) would not be
on the stress-zero surface. Now, we can calculate the direction and magnitude of the
y portion of F(center) using Eq. (2.14). The x portion of F(center) can be calculated
in the same way. The extension to 3D cases are fairly evident.

The calculated surface tension forces are inserted to Eq. (2.3) as body forces for
Navier–Stokes simulation. Figure2.5 shows an example. The small lines—the direc-
tion is heading from black to white—are normalized surface tension forces inserted
as body forces. Red arrows are introduced as visually understandable explanations
of the surface tension forces.

Fig. 2.5 The surface tension
forces inserted as body
forces

2.1 Animation of Bubbles in Liquid 37

2.1.4.3 Update of Material Field

The last step in the simulation is the update of the material field. As described in
Sect. 2.1.3.1, our system describes the positioning of fluids by means of an indicator
function. After getting the velocity field as in Sect. 2.1.4.1, we should evolve the
indicator function to reflect the movement of the fluids caused by the velocity field.

The time dependence of indicator function I on a velocity field is governed by
the equation [29],

∂ I

∂t
+ u

∂ I

∂x
+ v

∂ I

∂y
= 0. (2.16)

In the VOF representation, Eq. (2.16) can be solved by transporting the volume
of fluid from one cell to another cell [29]. Through some experiments to get the
smoothness of animation in the combination of marching cubes algorithm, we can
decide our discretized form of Eq. (2.16). In the case of Fig. 2.6, the change of center
cell with our discretization is

ΔIC

Δt
= −IC · vN − IC · vW − IC · vE + IS · vS . (2.17)

While Eq. (2.17) is easy to implement and shows very smooth animation in com-
bination of marching cubes algorithm (will be discussed in Sect. 2.1.5.1), it has the
inherent property of numerical diffusion. In ideal simulations, material values of the
cells far from interfaces must be 0 or 1. Numerical diffusion occurs when this con-
dition is not fulfilled as shown in Fig. 2.7b. Numerical diffusion prevents the robust
and correct liquid simulation. As discussed in Sect. 2.1.2, it is difficult to meet this
condition within VOF scheme. However, with the aid of front-feedbacks used in
front-tracking method, numerical diffusion can be corrected. In contrast to the MAC
representation, we can know the total volume or mass of fluids explicitly with the
VOF representation. The total mass of a volume at time t , Mt is

Mt =
∫

V
ρI t (x)dV . (2.18)

Fig. 2.6 An example of
indicator function update

38 2 Water and Bubbles

Therefore, what we have to do to correct the mass loss is just to modify I t+Δt to
meet Mt+Δt = Mt by changing some material values.

Since we use marching cubes algorithm for constructing interfaces, it is easy to
find the location of interfaces or fronts, and move them by scaling adjacent material
values. In this modifying step, we fix the value of the indicator function to 0 or 1
except for the cells near interfaces or fronts in order to remove numerical diffusion
and maintain the location of the interfaces at the same time. Subsequently, we pull
out or push back the interfaces to maintain the total mass by scaling the material
values near the interfaces. The scaling factor is decided as

SF = Mt − Mfixed

Mt+Δt − Mfixed
. (2.19)

Figure2.7 is a rising bubble example. Figure2.7a represents initial configurations.
Unlike Fig. 2.7b, with our correcting step, Fig. 2.7c shows the numerically perfect
mass conservation and no numerical diffusion.

Fig. 2.7 Restricting the numerical diffusion

www.allitebooks.com

http://www.allitebooks.org

2.1 Animation of Bubbles in Liquid 39

2.1.5 Visualization

2.1.5.1 Interface Construction

In the front-tracking method, the interfaces between two materials—in our case,
water and air—are composed of polygon meshes for the easy calculation of the
surface tension. Bookkeeping method [85] in the case of polygon meshes is difficult
because of the topological changes of the fluids. Recently, the isosurface construction
method for front tracking [72] was used to solve this problem. This approach handles
topology changes in natural way, which is appropriate for the purpose of animation.
Since our use of surface tension steps using the minimum stress tendencies discussed
in Sect. 2.1.4.2 reduces the need for a detailed expression of the interfaces, we were
able to use themarching cubes algorithm for isosurface construction. In addition to its
compatibility with our staggered grid system, the lookup table style of the marching
cubes algorithm supports fast animation [43, 44]. In this case, the material field plays
a role of the intensity field needed in marching cubes algorithm (see Fig. 2.2b). The
vertex normal was calculated by interpolating the gradient of the material field.

With the marching cubes algorithm, there are many possibilities of discontinuities
arising in the animation. Furthermore, since our indicator function is defined by a
discontinuous delta function, the continuity of the animation could be damaged.
However, though the approach we used to update the indicator function introduces
the numerical diffusion without front-tracking steps, it shows smooth animation with
the marching cubes algorithm. This is one more benefit which arises from the use of
our indicator function update method (discussed in Sect. 2.1.4.3).

2.1.5.2 Particle System

Small bubbles are spherical due to the domination of the surface tension forces. We
use the particle system for small bubbles with no deformation. While the computa-
tional cost associated with the particles is small, they provide for a lively animation.
The velocity of a particle is determined by the linear interpolation of six facial veloci-
ties of the cell containing that particle. For natural behavior, buoyant forces are added
as body forces, which is similar to the approach taken in the MACmethod. Sizes and
initial positions are randomly decided. In some cases, the use of the particle system
alone could provide for a good animation of bubbles.

2.1.5.3 Rendering

Unlike other approaches using implicit surfaces [14, 16], in our system, the interfaces
are composed of polygon meshes, which enables fast rendering supported by hard-
ware acceleration [43]. Some optical effects were able to be implemented by means
of a vertex shader. Reflection, refraction, and dispersion effects were applied using
conventional vertex shader codes [93], which results in visually pleasing scenes.

40 2 Water and Bubbles

2.1.6 Results and Discussion

Following are the results of our animation system implemented using the OpenGL
APIs and the NVIDIA vertex shader codes. This system was tested on Windows PC
system and the test machine is a PC with 512MB of RAM and an Intel Pentium IV
processor running at 1.4GHz. It uses an NVIDIA GeForce 2MX graphics card with
64MB of video RAM.

Before simulation process, the properties and the initial conditions of fluids should
be given. They are the initial velocity field, viscosity and density of each fluid, gravity,
surface tension coefficient between two fluids, and initial configuration.

Surface Tension

Figures 2.8 and 2.9 are examples provided to show the convergence of our minimum
stress surface tension method. The influence of gravity was omitted for clarity. Even
though our algorithm calculates the surface tension forces using material field inde-
pendently from the details of interface geometry, any arbitrary shapes converged to
the spherical ones with no volume loss. In spherical shapes, all surface tension forces
are canceled by each other. Some oscillatory phenomena were also included, which
are similar to those observed in nature. 13× 13× 13 simulation grids were used and
frame rate was 7.6 fps.

Fig. 2.8 Surface tension convergency

Fig. 2.9 Deformation and merging caused by surface tension

2.1 Animation of Bubbles in Liquid 41

Fig. 2.10 A bubble merges into a free surface

A Bubble Near a Free Surface

When rising bubbles arrive at free surfaces, they are absorbed by the atmospheric
air leaving violent impacts on the free surfaces. Figure2.10 shows this phenomenon.
In spite of the severe shape changes, this simulation shows natural animation. The
merging of bubble meshes and surface meshes, is done naturally. 15 × 15 × 15
simulation grids were used and frame rate was 5.2 fps.

Although this result proves that it is possible to deal with the free surface con-
dition within our simulation frameworks, there occurs a problem of volume gain of
atmospheric air—i.e., the free surfaces lower before meeting the bubble. The rea-
son of this problem is that we conserve whole air volume or whole liquid volume
in our current implementation as discussed in Sect. 2.1.4.3. To fix this problem, we
have to check each separated air volumes—i.e., Mt = ∑

i Mt
i —and conserve each

of them. With our front-feedbacks, we can easily find the separated volumes and
conserve them. This problem with free surface conditions can be handled as a future
work.

Rising Bubbles

Figure 2.11 shows a decorated version of the rising bubbles problem. The bubble
rises due to their buoyancy. After merging with other small bubble, it rises with
certain fixed shape. The shape constitutes a kind of balance point between buoyancy
forces and the surface tension forces. The small bubbles are animated using particle
system with no deformation as discussed in Sect. 2.1.5.2. Visually pleasing optical
effects were included using vertex shader techniques. 9 × 9 × 25 simulation grids
were used and frame rate was 1.2 fps.

42 2 Water and Bubbles

Fig. 2.11 Rising bubbles in a liquid (from left-up to right-down)

2.1 Animation of Bubbles in Liquid 43

2.1.7 Conclusion and Future Work

In this section, we studied a new fluid animation technique in which liquid and gas
interact with each other. This algorithm is based on a complementary combination
of various CFD techniques which are selected and modified for computer animation
purposes with the aid of our minimum stress surface tension method. The finite
difference scheme for the simulation of the multiphase Navier–Stokes equation was
introduced and we used appropriate visualization techniques using the marching
cubes algorithm and the hardware acceleration.

Since this algorithm can handle topological changes and surface tension fairly
easily and with no volume loss or numerical diffusion, we can extend it to the phys-
ically based simulation of water droplet model interacting with static environments
or other droplets.

2.2 Discontinuous Fluids

Abstract At interfaces between different fluids, properties such as density, viscosity,
and molecular cohesion are discontinuous. To animate small-scale details of incom-
pressible viscous multiphase fluids realistically, this section focuses on the discon-
tinuities in the state variables that express these properties. Surface tension of both
free and bubble surfaces is modeled using the jump condition in the pressure field;
and discontinuities in the velocity gradient field, driven by viscosity differences, are
also considered. To obtain derivatives of the pressure and velocity fields with subgrid
accuracy, they are extrapolated across interfaces using continuous variables based
on physical properties. The numerical methods presented in this section are easy to
implement and do not impact the performance of existing solvers. Small-scale fluid
motions, such as capillary instability, breakup of liquid sheets, and bubbly water can
all be successfully animated.

2.2.1 Introduction

Close-up scenes of splashing water have mysterious attractions. To emphasize the
luxurious image of their products in an advertisement, to depict the tense atmosphere
before the sword fight in a movie, or just to show off the performance of their brand-
newdigital camera,manypeople are trying to catch amoment of this beauty.Recently,
the computer graphics community has made great advances in fluid animation, and
we are taking one more step toward small-scale realism.

All fluids in our environment are essentially multiphase. This means that property
variables are discontinuous at the interfaces between different phases. The small-
scale motion of fluids is strongly influenced by these discontinuities. For example,

44 2 Water and Bubbles

Fig. 2.12 Capillary instability of a liquid jet; liquid pouring on to a sphere; and bubbly water

the discontinuity of molecular cohesion induces surface tension, which is the
phenomenon that smooths out liquid surfaces. It is an interesting fact that surface ten-
sion is also responsible for the capillary instability that can break up fluid into small
droplets or bubbles. Similarly, discontinuity of density is the reason for Rayleigh–
Taylor instability, as well as for buoyancy; and the discontinuity of viscosity influ-
ences the shape of air bubbles in water.

In this chapter, we extend previous fluid simulation techniques based on Eulerian
grids [14, 16, 47, 77] to incompressible viscous multiphase fluids, focusing on sur-
face tension effects and viscosity changes at both free surfaces and bubble surfaces,
as well as on buoyancy. This requires a robust treatment of discontinuities in the
pressure and velocity gradient fields. To differentiate them accurately across inter-
faces, we deploy the ghost fluid method (GFM) of Fedkiw et al. [15], which was
developed in computational physics. In combination with the implicit representation
of level-set surfaces [63], GFM can treat discontinuities accurately. Surface tension
can be modeled using the jump condition in the pressure field, and discontinuities in
the velocity gradient field, driven by viscosity differences, can also be considered,
permitting subgrid accuracy. Since the numerical methods derived in this section
are formulated as simple modifications of previous techniques, they are very easy to
implement and do not influence the performance of existing solvers. Results show
interesting aspects of small-scale fluid motions such as capillary instability, breakup
of liquid sheets, and bubbly water (Fig. 2.12).

2.2.2 Previous Work

The first simulation of the fully three-dimensional Navier–Stokes equation for ani-
mating liquids [19] was based on the marker and cell method [32] from compu-
tational fluid dynamics. Foster and Metaxas [19] used explicit finite differencing
for advection and viscosity, successive over relaxation (SOR) for pressure projec-
tion and incompressibility, and massless marker particles for surface representation.
Explicit integration methods were subsequently replaced by implicit methods [77]
such as semi-Lagrangian advection and implicit viscosity integration, which greatly
increased the numerical stability of fluid simulators both for liquid and gas, and

2.2 Discontinuous Fluids 45

made them easier to implement. Later [16], SOR was replaced by more efficient
linear solvers, such as the conjugate gradient method, and the particle-based surface
representation was reinforced by implicit level-set surfaces, which greatly improved
the smoothness of liquid surfaces and their robustness under topological changes.
This hybrid surface representation was enhanced by the particle level-set method
[14], which has a much improved mass conservation.

While free surface animation techniques, inwhich the environmental and enclosed
air are ignored, have been extensively developed for liquid animation, the dynamics
of multiphase fluids have received less attention. Takahashi et al. [81] reported a
multiphase fluid simulator that handles liquid and gas simultaneously, but gave no
attention to the dynamic characteristics of liquid–gas interactions. On the other hand,
[25] mainly focused on buoyancy and surface tension in their animation of bubbles
in liquids. Although their results showed the interesting characteristics of multiphase
fluids containing bubbles, it is not clear that their heuristic implementation of surface
tension is generally useful. Furthermore, the effect of viscosity differences was not
considered, in spite of the large influence of viscosity on bubble shapes. Carlson et al.
and Rasmussen et al. [5, 66] used the variational viscosity method to handle thermal
changes of viscosity, but they did not consider the large changes that occur across
interfaces. More attention to the small-scale features of multiphase fluid was paid
by [76]. They demonstrated the characteristics of enclosed air and modeled surface
tension using the continuum surface force model [2] that has been generally used in
computational fluid dynamics; but Song et al. commented that surface tension effects
were not visually significant in their work. We believe that is because they replaced
small-scale features by undeformable particles instead of simulating them directly.
Similarly, [22] used escaped particles within a particle level-set method to represent
air bubbles. A breakthroughwasmade by [47], who animated the crown phenomenon
exhibited by milk by accurately simulating the surface tension of free surfaces. They
were able to use a sufficiently large grid, for example 5123, so that they did not lose
small-scale details. However, neither surface tension in bubble surfaces nor viscosity
was considered. Their fluid simulator was based on an octree data structure, which
is also the basis of the work of this section.

In computational physics, extensive studies have been undertaken to simulatemul-
tiphase fluids. For a good survey, [9, 78, 80] and their references are recommended.
Although it is difficult to evaluate the techniques reported in those papers from the
viewpoint of computer graphics, the work of [36] is found most compatible with the
liquid simulation techniques widely used in computer graphics, such as the particle
level-set method [14]. The methods used by [36] are motivated by the ghost fluid
method [15], and developed using the variable coefficient Poisson equation [45]. In
computer graphics, GFM has been used for physically based modeling of fire [61].

Because of the different requirements of computational physics and computer
graphics, we separate the pressure jump condition from the density and velocity
gradient discontinuities. This is much easier for computer graphics programmers to
understand and implement. Although we are approximating the accurate method of
[36], our techniques are powerful and robust in animating multiphase fluids with
relatively coarse grids.

46 2 Water and Bubbles

2.2.3 Overview of Navier–Stokes Simulation

The Navier–Stokes equation for an incompressible viscous fluid is

ut = −(u · ∇)u + ∇ · (v∇u) − ∇ p

ρ
+ f (2.20)

∇ · u = 0, (2.21)

where u = {u, v, w} is the velocity, ρ is the density, and v is the (kinematic) viscosity,
which is the ratio between the absolute viscosity μ and ρ. The term f can be used to
add external forces such as gravity, buoyancy [20], surface tension forces [25, 76],
and control forces [18, 26, 54, 83].

The numerical simulation of Eqs. (2.20) and (2.21) advances by updating the value
of u at the nth time-step, un to un+1 during a finite time-stepΔt . Following Chorin’s
projection method [4], we discretize Eq. (2.20) by splitting it into two equations with
intermediate status u∗:

u∗ − un

Δt
= −(un · ∇)un + ∇ · (v∇un) + f (2.22)

un+1 − u∗

Δt
= −∇ p

ρ
. (2.23)

To obtain u∗ from un , we compute the advection term,−(un ·∇)un , using a semi-
Lagrangian method [77], and the viscosity term, ∇ · (v∇un), using explicit finite
differencing or an implicit variable viscosity formulation [5].

The final step is determining un+1 from u∗. We can write the divergence of
Eq. (2.23) as a form of Poisson’s equation,1

∇2 p = ρ

Δt
∇ · u∗, (2.24)

since Eq. (2.21) tells us that ∇ · un+1 should be zero. Once the pressure profile is
determined by solving Eq. (2.24), we can get the final velocity profile:

un+1 = u∗ − Δt

ρ
∇ p. (2.25)

Buoyancy can be implemented in a simple way by exerting buoyant forces with
the spatial constant ρ [20], or more accurately by allowing for the fact that ρ = ρ(x)

in the solution of Eq. (2.23) [76]. Since the modeling of buoyancy is not new to the
computer graphics community, we will focus on surface tension and viscosity in

1If ρ is spatially varying, Eq. (2.24) is only an approximation, but one that is necessary to decouple
the pressure jump condition and the density discontinuity.

2.2 Discontinuous Fluids 47

Sect. 2.2.4. Instead of exerting continuous surface tension forces [76] using f , we
use the discontinuity of p in solving Eq. (2.24) to model surface tension effects and
thus obtain subgrid accuracy. Viscosity change across the interfaces is also taken into
account in solving Eq. (2.22).

One more topic to be considered is the interface tracking method.We use a signed
distance function, φ, to represent implicitly the interfaces of two immiscible fluids,
at least one of which is a liquid. The advection of φ, driven by u, can be described
by the level-set equation:

φt + u · ∇φ = 0 (2.26)

To solve Eq. (2.26) numerically, we use the semi-Lagrangian particle level-set
method [13].

2.2.4 Discontinuous Interfacial Dynamics

We will now describe numerical methods to implement surface tension and viscos-
ity changes at interfaces. Discontinuous variables are extrapolated across interfaces
using continuous variables based on their physical properties. This is applied to both
the pressure and velocity field, to obtain accurate derivatives at interfaces. Examples
are provided in a single dimension for clarity. Extension to two or three dimensions
is straightforward.

2.2.4.1 Surface Tension

We will assume the existence of a pressure profile near the interface � between two
different, immiscible fluids. Using the signed distance function φ to represent the
geometry of the situation, � exists where φ = 0. As shown in Fig. 2.13, surface
tension causes a jump J in pressure across �, and the magnitude of J is σκ� .

Fig. 2.13 The discontinuous
pressure field near an
interface �

48 2 Water and Bubbles

At �, σ is the surface tension bcoefficient and κ� is the curvature, which can be
determined by interpolating between the curvatures κ = ∇ · (∇φ/|∇φ|) of near
nodes, using θκi + (1 − θ)κi+1, since κ is continuous across � due to the implicit
surface representation. When κ� is positive, J is positive and vice versa.

The existence of the pressure jump induces a discontinuity in the pressure at �,
i.e., in Fig. 2.13 the pressure of the left side of the interface, pLeft

� , and the pressure of

the right side, pRight
� , are different. This makes it difficult to differentiate p across �,

in order to discretize Eqs. (2.24) and (2.25) using standard finite differencing. Instead
of resolving this problem by smearing out the pressure profile at i −1, i , i +1, i +2,
we follow the implementation of the variable coefficient Poisson’s equation in [45]
to keep the profile sharp. First, the pressure at node i , pi , and the pressure at node
i + 1, pi+1, are extrapolated across � to decide the ghost values, pG

i+1 and pG
i :

pG
i = pi + J (2.27)

pG
i+1 = pi+1 − J. (2.28)

Using these ghost values, accurate derivatives at � can be determined:

pLeft
x,� = pLeft

x,i+ 1
2

= pG
i+1 − pi

Δx
(2.29)

pRight
x,� = pRight

x,i+ 1
2

= pi+1 − pG
i

Δx
. (2.30)

We can discretize Poisson’s equation (2.24) at i and i + 1 as

∇2 pi = pxx,i =
pLeft

x,� − px,i− 1
2

Δx
= D(xi) (2.31)

∇2 pi+1 = pxx,i+1 =
px,i+ 3

2
− pRight

x,�

Δx
= D(xi+1). (2.32)

where D represents the right-hand side of Eq. (2.24) in one dimension. Equations
(2.31) and (2.32) can be rewritten, using Eqs. (2.29) and (2.30), as

pG
i+1−pi

Δx − pi −pi−1
Δx

Δx
= D(xi) (2.33)

pi+2−pi+1
Δx − pi+1−pG

i
Δx

Δx
= D(xi+1) (2.34)

and using Eqs. (2.27) and (2.28) as

www.allitebooks.com

http://www.allitebooks.org

2.2 Discontinuous Fluids 49

(pi+1−J)−pi
Δx − pi −pi−1

Δx

Δx
= D(xi) (2.35)

pi+2−pi+1
Δx − pi+1−(pi +J)

Δx

Δx
= D(xi+1). (2.36)

Fortunately, Eqs. (2.35) and (2.36) can be rewritten as follows:

pi+1 + pi−1 − 2pi

Δx2
= D(xi) + J

Δx2
(2.37)

pi+2 + pi − 2pi+1

Δx2
= D(xi+1) − J

Δx2
. (2.38)

These equations can be assembled into a linear system Ax = b, where the matrix
A is symmetric and positive definite with appropriate boundary conditions. Note
that the left-hand side terms of Eqs. (2.37) and (2.38) are identical to those used in
[16]. A small modification of b involving the pressure jump, J , is all that is required
for accurate implementation of surface tension. This method is applicable to both
free surfaces and internal interfaces (bubble surfaces) and can be combined with
discretization using an octree data structure [47] without any inconsistency. For free
surfaces, the ambient air pressure is used as the Dirichlet boundary condition at
nodes which adjoin ambient air, and then the jump condition activates the surface
tension effect. Extension to the two- or three-dimensional case is simple. A J term
for each coordinate is superposed and then added to or subtracted from D(x), in the
same way as in Eqs. (2.37) and (2.38). We can then solve this linear system using the
conjugate gradient method with a modified ILU preconditioner [69]. After solving
Poisson’s equation (2.24), the pressure derivatives of Eq. (2.25) are also determined
from Eqs. (2.29) or (2.30), which allows us to compute un+1.

2.2.4.2 Viscosity

Wewill assumeavelocity profile near an interface� between twoviscous, immiscible
fluids, with viscosities denoted2 as v− and v+. Note that the discontinuity of viscosity
brings about a discontinuity of velocity gradient field across �, even though velocity
is continuous at �. In general, the exact velocity at the interface, u� , cannot be stored
in a Eulerian grid. This means that we cannot determine the exact derivatives of
u across �, which leads to errors in the viscosity step of Eq. (2.22), which will be
propagated to adjacent grid elements. Larger differences in viscosity will cause more
serious errors.

To resolve this problem, the ghost values, uG
i+1 and uG

i , are obtained by extrapo-
lation ui and ui+1 across u� , as shown in Fig. 2.14. Then we can express the exact

2The notation + or − originated from the level-set representation of the interfaces. We use φ < 0
regions for water and φ ≥ 0 regions for air. Instead of + or −, “left” or “right” was used in
Sect. 2.2.4.1 since the sign of the pressure jump is not dependent on the sign of φ.

50 2 Water and Bubbles

Fig. 2.14 Velocity profile
near an interface

derivatives just left and right of � as

u−
x,� = u−

x,i+ 1
2

= uG
i+1 − ui

Δx
(2.39)

u+
x,� = u+

x,i+ 1
2

= ui+1 − uG
i

Δx
, (2.40)

while the standard finite difference formulation is

ux,i+ 1
2

= ui+1 − ui

Δx
. (2.41)

Now we can use the known physical properties of interfaces. First, the velocity
should be continuous:

u−
x,�θΔx + u+

x,�(1 − θ)Δx = ux,�Δx . (2.42)

And, due to the no-slip condition, the viscous acceleration should be the same on
both sides of the interface:

v−u−
x,� = v+u+

x,�. (2.43)

After rearranging Eqs. (2.42) and (2.43), we can rewrite v−u−
x,� and v+u+

x,� as

v−u−
x,� = v̂ux,i+ 1

2
(2.44)

v+u+
x,� = v̂ux,i+ 1

2
, (2.45)

2.2 Discontinuous Fluids 51

where the effective viscosity3 v̂ is (θ
v− + 1−θ

v+)−1. We note that it is unnecessary to
decide the values of uG

i and uG
i+1, since the discontinuity is not in the value of u but

in that of ux .
The diffusion equation,

unew = u + ∇ · (v∇u)Δt, (2.46)

is part of Eq. (2.22); we can discretize it at node i as

unew
i = ui +

v−u−
x,� − v−ux,i− 1

2

Δx
Δt. (2.47)

Using Eq. (2.44), we can rewrite this equation as

unew
i = ui +

v̂ux,i+ 1
2

− v−ux,i− 1
2

Δx
Δt. (2.48)

After repeating a similar process at node i +1, we obtain two equationswhich express
the velocities near �:

unew
i = ui + v̂ ui+1−ui

Δx − v− ui −ui−1
Δx

Δx
Δt (2.49)

unew
i+1 = ui+1 + v+ ui+2−ui+1

Δx − v̂ ui+1−ui
Δx

Δx
Δt. (2.50)

High viscosities, large differences, and large time-steps are all troublesome in this
explicit scheme. Therefore, we rewrite Eqs. (2.49) and (2.50) in implicit form:

− λv−unew
i−1 + (1 + λv̂ + λv−)unew

i − λv̂unew
i+1 = ui (2.51)

−λv̂unew
i + (1 + λv+ + λv̂)unew

i+1 − λv+unew
i+2 = ui+1, (2.52)

where λ = Δt/Δx2.
These equations form two rows of a linear system Ax = b. This is a modification

of the single-phase case of [77], but nevertheless A is still symmetric and positive
definite, in the same manner as the variable viscosity of [5]. When implemented,
based on an octree data structure, the unpreconditioned conjugate gradient method
showed better performance than preconditioned methods when the initial guess for
x was un . Using an adaptive grid, the terms Δx in Eq. (2.39) and in Eq. (2.47) are
different. The errors caused by T-junctions [47] do not significantly impact the visual
results.

3This approach separates the pressure jump condition from the viscosity gradient jump condition.
For a more complicated and coupled treatment, see [36].

52 2 Water and Bubbles

2.2.5 Results

Let us explain the small-scale features of fluid motion simulated by the techniques
just described with examples. The first example is the capillary instability of the
liquid jet in Fig. 2.15. A 5mm diameter jet is introduced into the computational
domain from the left and gravity accelerates it rightward. First, the head of the jet
becomes rounded by surface tension. As the head gets bigger, necking develops, and
then the head is pinched off. This is the start of instability. This process is propagated
to the liquid following, causing repeated sequential pinching-off. The oscillation of
drops due to surface tension makes them look like elastic balls. The very thin and
short filaments left after breaking also coalesce into small droplets, but some of them
are lost, as reported by [21]. Refer to Picture 122 and 123 in [11] as a comparison of
the simulated results with a real picture.

Similar phenomena are found in a liquid sheet, as shown in Fig. 2.16. Surface
tension rounds the edges of a thin liquid sheet, then forms it into pipes, which tear
the sheet. The torn parts coalesce with adjacent regions of the original sheet, but
some fragments are lost because they are so thin. These phenomena also appear in
photographs, such as Picture 149 in [11]. Some more interesting scenes are shown
in Fig. 2.17. Here, liquid is poured on to a static sphere which causes it to spread into
sheets. These are agglomerated by surface tension, finally forming many drops. The
strong surface tension makes the liquid sheet behave as an elastic membrane.

Fig. 2.15 The capillary instability of a liquid jet. The effective resolution is 643 by 25

Fig. 2.16 The breakup of a liquid sheet. The effective resolution is 5123

2.2 Discontinuous Fluids 53

Fig. 2.17 A small-scale scene of liquid pouring. The effective resolution was 5123 by 2

Figure2.18 shows an animation of bubblywater. Air is introduced from the bottom
and a static sphere disturbs its flow. The breakup of air, the formation and rising of
bubbles, and explosions at the surface are all animated. The phenomena simulated
in previous examples are also seen in this animation, but viscosity has now become
significant. It is difficult to get visually pleasing bubbles without considering the
viscosity jump, because the ratio between the viscosities of two fluids influences the
position of the buoyant vortex center which affects bubble shapes as much as surface
tension.

These simulations were performed on a desktop PC with 3.4GHz CPU and 2GB
RAM. For the octree data structure, the implementation of [46, 47] was followed.
Each time-step took at most 2min of computation time with an average of 1min.
At most, 20 time-steps per frame were used, allowing one example sequence to
be generated in two days of computing. This method is not primarily intended to
compete with existing techniques in terms of efficiency; however, it is known that
surface tension effects can induce surface oscillationswhen large time-steps are used,
thus slowing the simulation as a whole. However, what limits the time-step in our
experience is not the surface tension, but the swirling near very small droplets or
bubbles.

54 2 Water and Bubbles

Fig. 2.18 The animation of bubbly water. The effective resolution was 2563

2.2.6 Conclusion

This section has described a technique for animatingfluidswhich have a discontinuity
in their state variables. We have extended previous techniques to multiphase fluids
with surface tension effects and viscosity changes at their interfaces, as well as
modeling buoyancy. Discontinuities in the pressure and velocity gradient fields were
treated in a sharp fashion which preserved subgrid details. The resulting numerical
methods are easy to implement and do not influence the performance of existing
solvers. Based on these techniques, we have been able to show new aspects of small-
scale fluid motions.

2.2 Discontinuous Fluids 55

One technical extension of this work would be to consider the discontinuity of
velocities tangent to interfaces. And also this method of modeling viscosity could be
enhanced to include elastic or plastic bodies. An efficient shape control algorithm
for multiphase fluids would be another interesting project.

2.3 Bubbles Alive

Abstract This section proposes a hybrid method for simulating multiphase fluids
such as bubbly water. The appearance of subgrid visual details is improved by incor-
porating a new bubble model based on smoothed particle hydrodynamics (SPH) into
a Eulerian grid-based simulation that handles background flows of large bodies of
water and air. To overcome the difficulty in simulating small bubbles in the con-
text of the multiphase flows on a coarse grid, we heuristically model the interphase
properties of water and air by means of the interactions between bubble particles.
As a result, we can animate lively motion of bubbly water with small-scale details
efficiently.

2.3.1 Introduction

The lively but chaotic motion of bubbles has enchanted and challenged many scien-
tists. Besides the engineering applications, including ship hydrodynamics, cooling
of nuclear reactors, and laundry machines, an understanding of bubbles is indispens-
able to the visual realism of computer-generated animations that show themultiphase
characteristics of fluids. In computer graphics, many researchers are struggling to
get more realistic bubbles and foams by means of physics-based fluid animation,
powered by computational fluid dynamics.

The two major approaches, based on Eulerian grids and Lagrangian particles,
have been competing with each other, but are now being combined. This is desir-
able because they are complementary methods: a particle system based on smoothed
particle hydrodynamics (SPH) can be much more flexible and controllable if it con-
centrates on small-scale details, while large bodies of water and air can be handled
efficiently and faithfully by a grid-based solver, without requiring excessive resolu-
tion.

The hybrid approach to multiphase flows (including bubbles) has received less
attention than the simulation of splashes and droplets, because the difference in scale
as compared to the background flow is more severe for bubbles than droplets. Water
dominates the inertia because its density is 800 times higher than that of air, and
thus bubbles require the surrounding water to be simulated in more detail than the
air around a splash. In our experience, each bubble should occupy at least 33 nodes
(or 32 in 2D) to have numerical meaning. This makes it infeasible to refine the grid
sufficiently to capture all the small details, especially in a graphics context. That is

56 2 Water and Bubbles

why it is desirable to develop a dynamic model appropriate for representing details
at the subgrid scale.

This section proposes a hybridmethod for simulatingmultiphase fluids, especially
focusing on bubbles. To avoid excessive refinement of the background grid, while
maintaining the subgrid details of bubble motion including path instability, wemodel
the interphase properties of water and air in terms of the interactions between bubble
particles. While this is ultimately a heuristic approach, it is underpinned by the SPH
vorticity confinement method and an analysis of the cohesive forces that generate
subgrid turbulence. This combination enables us to capture the natural look of mov-
ing bubbles in a way that harmonizes with an underlying grid-based simulation of
multiphase flows.

2.3.2 Previous Work

The success of grid-based liquid animation techniques that use a free surface single-
phase model (see [14, 16, 19] for examples) led to work on the direct numerical
simulation of multiphase phenomena [25, 27, 31, 39, 41, 51, 57, 76].

Premoze et al. [65] presented a particle-based method for fluid simulations that
can handle multiphase liquids. Müller et al. [60] applied the SPHmethod to multiple
phases, and [6] modeled the nucleation, collision, and drag interactions of bubbles
and foams, based on a background SPH simulation.

Kim et al. [35] used the SPH method to model escaped particles within the par-
ticle level-set method [12], so as to resolve subgrid splashes. Losasso et al. [52]
improved this approach by coupling amodel of dense water volume to diffuse sprays.
Greenwood and House [22] also modeled escaped particles to give a more detailed
look to bubbles and foams, but without using SPH. Thüerey et al. [84] coupled SPH
bubbles to shallow water simulations using locally defined vortices on particles.

2.3.3 A Hybrid Approach

We use the Eulerian method to model the background motions of water and air
bodies which are large enough to be captured using a simulation grid which can
be managed by an ordinary single-CPU computer. The bubbling details that are too
small to be handled on such a grid are simulated by SPH particles. We build our
system on the particle level-set fluid solver [14] in order to generate bubble particles
by incorporating the escaped particles back into the SPH system as bubbles, similar
to [22]. However, this hybrid framework and our bubble model would also integrate
well with other grid-based techniques such as the CIP method [76], the BFECC
method [39], the CLSVOF method [57], or the Lattice Boltzmann method [82], if
appropriate ways of generating bubbles were available.

2.3 Bubbles Alive 57

Fig. 2.19 A schematic
outline of our hybrid system.
The body of water is colored
blue and bubble particles are
drawn as white circles

Figure2.19 is a schematic overview of our hybrid system. Since we accelerate our
solver by using an octree grid [47], the scale difference between the grid spacing and
the particle radius is large. This difficulty is resolved by our subgrid-scale bubble
dynamics, which we develop in Sect. 2.3.4.

2.3.3.1 Grid-based Background Simulation

The Navier–Stokes equations describing inviscid incompressible fluid motion are

ut + (u · ∇)u + ∇ p/ρ = f (2.53)

∇ · u = 0, (2.54)

where u is the velocity, p is the pressure, ρ is the density, and f is the aggregate
of the external forces including gravity and the momentum exchange from the SPH
bubbles that occur during coupling. Since numerical methods of solving Eqs. (2.53)
and (2.54) are well known, we refer readers to [14, 27, 47] for details.

2.3.3.2 SPH Overview

The acceleration of a particle i is determined by a sum of forces exerted by adjacent
particles, f ij, as follows:

ai =
∑

j

f ij/ρi , (2.55)

where the density of a particle i is defined asρi = ∑
mi W (xij, ri).Weuse the radially

symmetric kernel functions W (x, r) with support r , as defined in [59]. The velocity

58 2 Water and Bubbles

and the position of a particle can be determined by sequential Euler integrations such
as vt+Δt = vt +atΔt and pt+Δt = pt +vt+ΔtΔt , whereΔt is a time-step. Following
the adaptive radius approach of [1], which provides a versatile description of bubble
details, the pressure force can be expressed as

fpressure
ij = −Vi Vj (Pi + Pj)(∇W (xij, ri) + ∇W (xij, r j))/2, (2.56)

where the volume Vi is mi/ρi , r is the radius, the mass mi is proportional to r3i ,
xij = x j − xi , and the pressure Pi = kρi with a control parameter k. In general,
SPH systems largely depend on viscosity, especially to improve stability when they
are used to simulate large bodies. Since we use a grid-based solver to deal with large
bodies, the viscous forces can be omitted.

2.3.3.3 Two-way Coupling

The major coupling forces which make the bubble particles follow the background
flows are drag and lift forces [6, 53], given by

fdrag
i = −kdragr2i |vi − ui |(vi − ui) (2.57)

f lift
i = −kliftVi (vi − ui) × ωi , (2.58)

where ui and ωi = ∇ × ui are the velocity and the vorticity, which are interpo-
lated at pi from the grid values. Initially, we tried to simulate a simulation for the
path instability of bubbles with lift forces, but this did not work well enough since
Eq. (2.58) relies on the vorticity field around pi being highly refined. This is one of
the motivations to develop the heuristic bubble model of Sect. 2.3.4.

The forces reacting to these coupling forces are transferred to the surrounding
fluid through Eq. (2.53) after being distributed across a number of adjacent nodes.
We also use reaction forces to model the popping of bubbles when they merge with
the ambient air. In many cases, the SPH time-step needs to be smaller than the grid
simulation time-step. Since the reaction forces change the grid velocities and repeated
updating makes their values diverge, they must be stored separately and only added
to the right-hand side of Eq. (2.53) once per grid simulation time-step.

2.3.4 Bubbles

2.3.4.1 SPH Vorticity Confinement

Unlike droplets moving through ambient air, bubble particles are subject to strong
velocity diffusion because they are coupled to the surrounding fluid by drag and
lift forces. Furthermore, these forces are determined from values interpolated on the

www.allitebooks.com

http://www.allitebooks.org

2.3 Bubbles Alive 59

coarse grid. To simulate the motion of bubbles in more detail, we therefore introduce
a heuristic representation of the vorticity confinement [20] into the SPH method.

First, we measure the vorticity ω = ∇ ×v at the mass center of two SPH particles,
p⊕ = (mi pi + m j p j)/(mi + m j). In contrast to the grid-based method of [20], we
are able to express the vorticity location vector η as η = p⊕ − pi . We can use a
normalized version of η, N = η

|η| , to determine the confinement force:

fvorticity
ij = ε

(
N × ω

|ω|
)

ρi . (2.59)

The original vorticity confinement method used by [20] can amplify the existing
vorticity over time because the incompressibility enforced by the projection step
ensures stability. Taking a similar approach makes the SPH system diverge and we
therefore use a normalized ω.

2.3.4.2 Cohesive Forces

Due to the very large density ratio of water to air, water exerts a high pressure on air
bubbles causing them to merge rapidly. To achieve a physically accurate simulation,
multiphase SPH methods such as those of [24, 60] are desirable. However, because
we simulate the water on a coarse grid, we have to take care of the multiphase
interactions without explicit models of water particles or detailed velocities around
air particles. By assuming that air particles are surrounded by water except where
they are explicitly modeled, we can handle this multiphase property by simulating
the attraction forces between touching particles, rather than attempting to model the
forces exerted by water particles on air particles. Finally, we introduce a cohesive
attraction force between particles:

fattraction
ij = kattractionWattraction(xij, ri + r j)ρi . (2.60)

We use a constant-valued function for Wattraction tomake it easy to establish a force
that balances the pressure forces. The pressure force in Eq. (2.56) pushes adjacent
particles outward when the density ρi becomes high due to the attraction forces.
Becker and Teschner [3] introduced a similar force to represent surface tension, but
this can be adequately modeled by the intrinsic properties of SPH in the physical
situation with which we are dealing.

One way of inducing clustering would be to use the pressure kernels of [1] or [3]
with a negative term so that attraction forces are exerted on adjacent particles when
the particle density is low. This is a reasonable approach, but our attraction force will
be physically more plausible for bubbles under large water pressure. It also works
better with the vorticity confinement techniques explained in the previous section,
since it can suppress the scattering of particles by centrifugal effects to the extent
required.

60 2 Water and Bubbles

2.3.4.3 Subgrid Turbulence

The beauty of bubble motions is mainly a result of their unstable paths. Even a single
bubble rising in calm water moves along a zigzag or spiral path due to its own wake
(see [74] for an example). Our combination of a cohesive attraction force and SPH
vorticity confinement approximates this characteristic motion (see Fig. 2.20) when
two or more particles are close together. For single bubbles, it is simplest to add
disturbances to the particles’ velocities based on random numbers. This also helps
to generate an initial vorticity and our system generates the natural look of turbulent
bubble motion with the combination of these techniques.

2.3.4.4 Buoyancy

The rising velocities of bubbles are determined by the balance between drag and
buoyancy, which establishes a terminal upward velocity. We generally make the
buoyant force fbuoyancy proportional to the volume of each particle. An alternative is
to make the buoyant force proportional to the difference between the current velocity
and a terminal velocity approximately proportional to the particle radius [55]. This
could be used to improve the upward motion of the bubbles.

Fig. 2.20 Rising bubbles in
calm water. This example
shows the realistic motion of
bubbles generated by our
bubble model coupled to
background flows.
Simulation took 3h on an
octree grid with an effective
resolution of 256 × 1282. A
maximum of 2,600 SPH
particles were used

2.3 Bubbles Alive 61

Fig. 2.21 Water pouring
with turbulent multiphase
bubble flows. Simulation
took 6h on an octree grid
with an effective resolution
of 256 × 1282. A maximum
of 8,000 SPH particles were
used

2.3.5 Examples

Both water surfaces and bubbles can be ray traced as a single level-set surface by
performing on-the-flyBoolean operations that subtract air bubbles fromwater bodies.
The particle radii were set between 0.3 and 0.8 of the grid spacing. Simulations were
performed on a PC with an Intel Core2 CPU running at 3GHz.

Figure2.20 shows bubbles freely rising in water. In this example, bubble particles
are seeded randomly at the bottom and then rise, demonstrating the basic capabilities
of our bubble model. The lively and natural motion of bubbles, including flickering,
merging, separation, and spiral path instability were simulated successfully. On the
accompanying video there are animations with andwithout our vorticity confinement
heuristic, which show that simply adding random disturbances is not adequate. Our
bubbles pop as soon as they reach the surface, rather than persisting as foam, which
could be implemented using the methods already investigated by [6, 22]. Figure2.21
shows water being poured.

The atomization of large bodies of air is naturally modeled by escaped particles,
and the coupled motion of level-set surfaces and SPH particles achieves realistic
bubbly water.

2.3.6 Conclusion

This section has presented a hybrid of Eulerian grid-based simulation andLagrangian
SPH for the realistic simulation of multiphase fluids, focusing on bubbles. Using this
heuristic bubble model, we can generate natural looking computer-generated bubbly
water.

62 2 Water and Bubbles

2.4 Hybrid Simulation of Miscible Mixing
with Viscous Fingering

Abstract In this section, we simulate solids and liquids dissolving or changing to
other substance by modeling mass transfer phenomena, and deal with the very small-
scale phenomena that occur when a fluid spreads out at the interface of another
fluid. We model the pressure at the interfaces between fluids with Darcy’s Law
and represent the viscous fingering phenomenon in which a fluid interface spreads
out with a fractal-like shape. We use hybrid grid-based simulation and smoothed
particle hydrodynamics (SPH) to simulate intermolecular diffusion and attraction
using particles at a computable scale. As a result, we animate fluids mixing and
objects dissolving.

2.4.1 Introduction

In computer graphics, many fluid simulation techniques have been developed and
used to create realistic animations. However, most of those techniques focus on
immiscible fluids such as water, air, and bubbles. Losasso et al. [51] simulated fire
and more than two liquids in the same scene, but did not deal with miscible fluids.
Recently, Zhu et al. [91], Mullen et al. [58], and Park et al. [64] have presented misci-
ble fluid simulations. However, they excluded the physical and chemical phenomena
in which fluids are mixed and react with each other. When two different fluids meet,
they spread out in a fractal shape because of physical pressure differences and dif-
fusion laws. We can see this happen when ink is dropped into water. Substances can
also melt and be dissolved by mass transfer caused by chemical reaction, and then
change into other substances. Molecules of solute float about in the flowing fluid and
spread out in a complicated fashion. This section proposes methods of simulating
complicated fluid phenomena like those described above, and present animations of
the interaction of miscible fluids such as ink, water, bubbles, and melting solids.

Stam [77] demonstrated stable fluid simulation using a semi-Lagrangian advection
method and a decomposed version of the Navier–Stokes equation. Following Foster
and Fedkiw [16], many researchers have developed multiphase fluid simulation tech-
niques that use a level-set method. These techniques are used by the special effects
industry and help to produce movies, advertisements, and games. The technique, in
this section, is built on these existing technologies, with the aim of achieving sta-
bility and straightforward implementation. Other researches on miscible fluids [58,
64, 91] have used the lattice Boltzmann method (LBM), the density-based weighted
essentially non-oscillatory (WENO) method, or the phase field method (PFM), but
we employ none of these.

We track the interfaces of a large number of fluids using a similar approach to
multiple level-set techniques.We use a separate level-set for each separate substance,
and name the interface where the substances mix the mixing surface. At the mixing

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 63

surfaces defined by these multiple level-sets, intricate mixing phenomena occur that
create complicated fractal shapes because of the differences in concentration, viscos-
ity, and pressure between the different substances. We assume that these phenomena
are sufficiently like the flow of liquids through porous media, which follows Darcy’s
Law, and we model the viscous fingering exhibited by mixing fluids and simulate
it using the ghost fluid method (GFM). The viscous fingering model proposed in
this section is simple and easy to implement since it is modeled with pressure jump.
We also model the mass transfer phenomena caused by chemical reactions using the
equation of heat-dependent mass transfer proposed by Mihalef et al. [57] and Son
et al. [71]. These techniques allow us to animate substances that change phase and
melt to form other substances.

Hong et al. [28] and Losasso et al. [52] simulated detailed splashing and bubble
motion by combining a grid-based version of Euler’s method with a particle-based
Lagrangian approach. We simulate the motion of molecule-like particles that repre-
sent a concentration using this hybrid method. These concentration particles experi-
ence forces that include diffusion and quasi-intermolecular attraction and repulsion.
We control and simulate these forces simply using smoothed particle hydrodynamics
(SPH).

2.4.2 Related Work

Numerical simulation of the Navier–Stokes equation has become a standard tech-
nique for the realistic animation of fluids. Foster andMetaxas [19] introduced a fully
three-dimensional Navier–Stokes solver into computer graphics, and an effective and
robust solution to the Navier–Stokes equation that includes semi-Lagrangian advec-
tion was reported by Stam [77]. Foster and Fedkiw [16] used a conjugate gradient
method to solve the Poisson equation and an implicit level-set surface to represent the
interface area effectively. Their method smooths the fluid interface, and changes of
topology are represented robustly. This method has been extended to a particle level-
set method by Enright et al. [14], with the addition of conservation of mass. Losasso
et al. [47] used an adaptive octree data structure to show detailed fluid effects such as
the crown phenomenon. Losasso et al. [51] then simulated various immiscible fluids
such as oil, water, or fire using multiple level-sets. Hong and Kim [27] dealt with
interface discontinuities using the GFM [15, 36]. They considered surface tension at
the interface between two immiscible fluids at the projection step and introduced a
discontinuous viscosity condition. Shin and Kim [73] modeled the force that drives
liquids to a target shape using a pressure jumpwithin theGFM.Wemodel the viscous
fingering phenomenon in a similar way.

There has been a spate of recent research in the computer graphics community,
on the animation of phase transitions. Mihalef et al. [57] animated air bubbles in
boiling water. They controlled the number and the volume of the bubbles produced
by applying the equation of mass transfer by heat. Kim et al. [39] conserved the
volume of air bubbles by revising the local value of divergence. Losasso et al. [49]

64 2 Water and Bubbles

simulated phase transitions such as ice melting and paper burning. Wojtan et al. [86]
animated corrosion and erosion of solid. In our scenario, phase changes, liquid to
liquid as well, result from chemical reactions.

Desbrun and Gascuel [7] modified the SPH method to handle viscous fluids, and
Müller et al. [59] proposed an interactive method in which SPH underpins the simu-
lation of water; these authors also developed a multiphase SPH method to describe
fluids of different compositions [60]. Cleary et al. [6] have improved the realismwith
which the collision of foam and bubbles on a complicated surface can be modeled.

Recently, much of effort has been applied to improving the efficiency of fluid
simulations by modeling the details of fluid behavior on an underlying subgrid,
which can be achieved by combining a Eulerian grid with Lagrangian particles. Kim
et al. [35] modeled splashing by combining the SPH method with escaped particles
from a particle level-set. Losasso et al. [52] developed a two-way coupling between
a particle level-set and SPH to simulate diffuse regions such as splashing. Hong
et al. [28] used SPH to model lively air bubbles on a coarse grid while retaining
small-scale features of the flow. Lee et al. [48] proposed a way of making particle
and level-set representationsmore interchangeable.We use the techniquesmentioned
above to simulate floating particles representing concentration factors.

2.4.3 Modeling Miscible Fluids with Multiple Level-Sets

To simulate fluids mixing, it is necessary to simulate more than two fluids and track
the interfaces between them. Losasso et al. [51] tracked numerous interfaces of
immiscible fluids using multiple level-sets, and this is the approach that we use here.
We use multiple level-sets in miscible fluids to trace mixing surfaces in which we
make a pressure jump according to Darcy’s Law and simulate pressure term.We then
trace the new mixing surfaces that viscous fingering creates. Chemical mass transfer
also occurs at mixing surfaces.

We use fields containing the velocity of each substance for eachmultiple level-set.
When using a single velocity field, it is difficult to represent the mixing surfaces’
characteristics described above, because the velocity field of each fluid is scattered by
the effect of the diffusion and pressure terms. Therefore, we must simulate scenarios
that satisfy the divergence-free condition for each fluid while considering that fluid’s
changes of phase. We calculate the pressure term for each fluid incorporating the
effect of Darcy’s Law and mass transfer. Each velocity field is extrapolated and then
advected by the semi-Lagrangian advection method.We create a single velocity field
for the fluid by combining the calculated velocity fields and calculate the pressure
term for the velocity field of the entire fluid in an additional step. The velocity
field must be adjusted so that it fulfills the divergence-free condition, and finally we
calculate the diffusion term. We perform this simulation repeatedly while dividing
the velocity field to match the multiple level-sets. This method is expensive, but it is
able to control the changes to the multiple level-sets that occur after reactions and
interactions, so it is necessary. Figure2.22 shows a schematic outline of our method.

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 65

Fig. 2.22 Schematic outline
of our simulation

Fig. 2.23 When using a
combined level-set, surface
tension (left) is more
accurate than when using
individual level-sets (right)

In this section, we create and use combined level-sets to describe the mixing
surfaces of entire fluids, as shown in Fig. 2.23. This method allows us to choose what
data to assign to the combined level-set of the entire fluid, and to the level-set of
each fluid when calculating surface tensions. When using numerous level-sets, it is
possible for the direction of the surface tension to be miscalculated at the intersection
between level-sets, as shown in Fig. 2.23 (right). We therefore consider all the level-
sets to represent a single fluid, and calculate the surface tension using the combined
level-set data. This allows us to determine the correct direction for the surface tension
across the whole mixed fluid, as shown in Fig. 2.23 (left).

2.4.4 Basic Fluids Simulation

The Navier–Stokes equation, which is the basis of our simulation, preserves mass
and momentum:

ut = −(u · ∇)u + ∇ · τ

ρ
− ∇ p

ρ
+ f (2.61)

∇ · u = 0, (2.62)

66 2 Water and Bubbles

where u is the velocity, τ is the viscous stress tensor, and ρ is the density. The term
f can be used to add external forces such as gravity and buoyancy. The numerical
simulation of Eqs. (2.61) and (2.62) requires the value of u to be updated from un to
un+1 at the nth time-step. We discretize Eq. (2.61) by splitting it into two equations
by introducing an intermediate velocity u∗:

u∗ − un

Δt
= −(un · ∇)un + ∇ · τ

ρ
+ f (2.63)

un+1 − u∗

Δt
= −∇ p

ρ
. (2.64)

The variable u∗ can be used to compute the advection term using the semi-
Lagrangian method of Stam [77]. We can write the divergence of Eq. (2.64) as a
form of Poisson’s equation:

∇2 p = ρ

Δt
∇ · u∗. (2.65)

Once the pressure profile has been determined by solving this equation, we can
obtain the final velocity profile:

un+1 = u∗ − Δt

ρ
∇ p. (2.66)

There is a discontinuous pressure profile at the interface between two different
fluids. It is possible to take the discontinuous pressure at the interface into account,
using GFM [27, 36]. The pressure at node i , which is pi , and the pressure at node
i + 1, which is pi+1, are extrapolated across � to determine the ghost values, pG

i+1
and pG

i :

pG
i = pi + J (2.67)

pG
i+1 = pi+1 − J. (2.68)

Using these equations, Eq. (2.65) can be expanded as follows [27]:

pi+1 + pi−1 − 2pi

Δx2
= D(xi) + J

Δx2
(2.69)

pi+2 + pi − 2pi+1

Δx2
= D(xi+1) − J

Δx2
, (2.70)

where D represents the right-hand side of Eq. (2.65) in one dimension. These equa-
tions can be solved using the linear system that has been used to solve Poisson’s
equation.

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 67

Generally, pressure jumps are modeled by surface tension, but we model∇ PDarcy

as the pressure jump J generated at the interface of mixing fluids. This J causes
viscous fingering, and will be explained in Sect. 2.4.5.

We use an octree in the same way as Losasso et al. [47] to focus on the fluid
interface, and can create a smooth surface from a complicated liquid interface by
means of the particle level-set method [14].

2.4.5 Viscous Fingering

When fluids mix, we can see them spread out irregularly as their mixing surface
makes a fractal-like shape. Viscous fingering refers to the onset and evolution of these
instabilities in the displacement of fluids. The unstable flow of a fluid in a porous
medium, or by analogy in a Hele-Shaw cell, has been studied for 50years [30]. The
results have applications in areas such as enhanced oil recovery and microfluidics.

In our scenario, we model viscous fingering with Darcy’s Law, which expresses
the state of a fluid passing through a porous medium. We assume that a mixing
process is equivalent to a fluid infiltrating a fluid consisting of molecules. At the
mixing surface between two fluids, there is a pressure jump that results from the
properties of the fluid. According to Darcy’s Law, the pressure gradient vector is:

∇ PDarcy = μ̂U
k

+ ρ̂g, (2.71)

where μ̂ is viscosity, U is velocity, k is permeability, ρ̂ is density, and g is gravity.
There is a discontinuity of density and viscosity at an interface between two fluids.

To calculate the density at a fluid interface exactly, we use an equation proposed by
Losasso et al. [51]:

β̂ = (β−β+)/{θβ+ + (1 − θ)β−}, (2.72)

where θ = |φ(xi)|/(|φ(xi)|+|φ(xi+1)|), and the− and+ superscripts refer to values
from different sides of the interface. The viscosity at the interface can be calculated
in a similar way. As mentioned in Sect. 2.4.3, each substance has its own velocity
field, and U is the velocity of the solute.

The porosity equation is formulated using the curvature of the interface of the
solute that is infiltrating into a fluid. As shown in Fig. 2.24, if the curvature is high,
the fluid surface is convex and the probability of infiltration is high, but if this shape
is flat or concave, the probability of infiltration is low. Thus, we express porosity as
k = ακlevelset, where α is a constant that we set to 0.1, and κlevelset is the curvature

of the level-set, which can be expressed as follows: κlevelset = ∇ ·
(∇φ

||∇φ||
)
.

We define ∇ PDarcy as the pressure jump J generated at the interface of mixing
fluids. The u, v, and w velocities and pressure jump J are defined at the centers
of each face of a cell and referenced locally [19]. The pressure jump is therefore

68 2 Water and Bubbles

Fig. 2.24 In our model, if
the curvature is high, the
porosity is high and the
probability of infiltration is
high

Fig. 2.25 Viscous fingering.
Miscible fluids mixing (left),
and our simulation result
(right)

calculated on the face of the cell that is defined as the interface in which the neighbor
cell has opposite sign. Therefore, U is used for the velocity of the cell face, which is a
scalar. For example, if there are interfaces on three cell faces, individually calculated
J value for each cell face are stored. J consists of a scalar value for each dimension
(x, y, z):

J(x,y,z) = μ̂U(x,y,z)

k
+ ρ̂g(z). (2.73)

This formulation allows us to demonstrate viscous fingering at amixing surface, as
shown in 2D in Fig. 2.25. This is a similar structure to that shown in a real photograph
of mixing fluids, due to Habermann [30], also reproduced in Fig. 2.25.

2.4.6 Chemical Mass Transfer

When fluids mix, chemical reactions can occur. Then, the volume of fluid may
decrease or increase and some of the fluid may change into another type of fluid.
We model and simulate this kind of mass transfer. Mihalef et al. [57] simulated the
mass transfer that occurs when water boils. The mass transfer because of chemical
reaction is similar to the phase transition that can be caused by heat. The rate of mass
transfer resulting from a chemical reaction can be expressed as follows:

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 69

ṁc = −cfsolute · N − cfsolvent · N
H

, (2.74)

where cf is the chemical flux defined by cf = −D∇Ccell, N is the outward facing
normal from cfsolute to cfsolvent, H is the heat of reaction, Ccell is the concentration
of each cell, and D is the coefficient of diffusivity for the concentration.

The rate of mass transfer by chemical reaction depends on the concentration of
the substance. Depending on the rate of mass transfer, the level-set of the fluid is
updated as follows:

φ∗ = φn − Δt
ṁc

ρ̂
|∇φ|. (2.75)

φ∗ is advected to φn+1 using level-set method after updated. Because the volume of
the fluid changes, we must revise the divergence value of the pressure term by using
the rate of mass transfer to control the volume of fluid, as follows:

∇ · un+1 = ṁc

ρ̂
|N|, (2.76)

∇2 p = ρ̂

Δt
∇ · u∗ − ṁc

Δt
|N|. (2.77)

This method is similar to those explained in [39, 57]. This allows us to simulate
phenomena in which the volume of the substance changes, such as the melting of
a solid because of a chemical reaction. Figure2.26 shows a solid teapot melting in
a transparent liquid. Because of mass transfer, the volume of the teapot decreases.
The solid teapot shape is defined by an implicit surface using level-set data, which
makes it easy to implement this scenario.

2.4.7 Hybrid Method

It is hard to model intermolecular forces using only grid-based advection of con-
centration. We therefore simulate the effect of molecular diffusion and interaction
on concentration using what we call concentration particles. The advection of con-
centration is simulated using both a grid-based model of semi-Lagrangian advection
and particle-based advection. We can assume that the concentration particles are not
completely absorbed in the solvent in which they dissolve, but float about like over-
size molecules. Figure2.27 shows a 2D simulation of the mixing of two substances
using this hybrid method.

70 2 Water and Bubbles

Fig. 2.26 Pouring water on the teapot. The solid teapot melts by chemical mass transfer.
(grids:128 × 128 × 128; particles: about 20,000)

Fig. 2.27 Hybrid simulation
of particle and grid-based
method. The grid is 64 × 64
(6-level octree). The blue
and yellow points are the
level-sets and the red points
are concentration particles.
The dark blue points are
particles modeling the
concentration after the
reaction

2.4.7.1 Concentration Particles and Absorption

Concentration particles are generated in the grid cells corresponding to a mixing
surface. They are defined by position, velocity, radius, and concentration. The number
of particles that are reseeded depends on the maximum that has been set for each

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 71

cell. That is, we simulate more particles with reseeding to have maxp particles in a
mixing surface cell if the number of particles is less thanmaxp.maxp is themaximum
number of particles that a cell can have. In our experiment, we set maxp to four or
eight. When a particle is seeded, its concentration is initialized to Cequilibrium/maxp.

When one or more concentration particles exist in a cell, absorption occurs from
the particles to the grid. The reaction rate is proportional to the concentration of the
substance. In general, the reaction rate of two substances is kreaction[A][B], where
[A] is the sum of the particle concentrations existing in each cell (

∑np
i Cn

particlei
) and

[B] is the concentration of solvent in the cell.
In the simulation, we limit the maximum number of cell concentrations to

Cequilibrium, and we assume that the concentration of solvent [B] is initialized to
Cequilibrium. Because the concentration of substance [B] is proportionally reduced as
reaction product is generated, we can model [B] as (Cequilibrium − Ccell). Thus, the
cell concentration of reaction product absorbed from a particle for the next time-step,
Cn+1

cell is:

Cn+1
cell = Cn

cell +
np∑
i

kreactionCn
particlei

(Cequilibrium − Cn
cell), (2.78)

where Ccell is the concentration of product in the cell, Cparticlei
is the i th particle’s

concentration in the cell, np is the number of particles in the cell, and kreaction is a
coefficient that defines the rate of the chemical reaction. In our experiment, we use
a small number, typically 0.001, for kreaction and set Cequilibrium to 1.0.

When a concentration particle is absorbed into the cell, the particle concentration
of the solute is reduced:

Cn+1
particle = Cn

particle − kreactionCn
particle(Cequilibrium − Cn

cell). (2.79)

Depending on Eq. (2.79), if a particle’s concentration is less than a fixed threshold,
which is 0.01, the particle is deleted. If Cn

cell is larger than Cn
equilibrium, the concen-

tration of product decreases and the particle concentration of solute increases in the
next step. The process is similar to maintaining a state of chemical equilibrium. This
allows the computation to be simplified without a significant effect on accuracy.

2.4.7.2 Concentration Particle Advection

Concentration particles are advected by their own velocity according to a Lagrangian
method. Each of their positions is updated using the equation: pn+1

particle = pn
particle +

un
particle · Δt . The velocity of a particle uparticle is calculated using the equation:

un+1
particle = un

particle +fadvection ·Δt . The advection of concentration particles depends
on the intermolecular diffusion, infiltration, and coupling forces:

fadvection = fdiffusion + fcapillary + fmolecular + fcoupling. (2.80)

72 2 Water and Bubbles

Concentration particles spread out in the direction of the concentration gradient.
The diffusive flux follows Fick’s Law:

fdiffusion = −D∇Ccell, (2.81)

where D is the diffusion coefficient. It is not easy to model complicated diffusion
scenarios in which irregular filaments are produced and spread out, using only the
above Eq. (2.81). Thus, we use a capillary force and intermolecular forces.

The capillary force is modeled using the gradient of curvature of the concentration
field. Because regions of high curvature have a high porosity, it is easy for a fluid to
infiltrate in that region. We therefore model the capillary force as follows:

fcapillary = I |κconcentration|∇κconcentration, (2.82)

where κconcentration is the curvature of the concentration field and I is the infil-
tration coefficient. The value of κconcentration can be expressed as κconcentration =
∇ · (∇Ccell/||∇Ccell||).

We simulate intermolecular forces using the SPH method. The intermolecular
forces themselves are modeled by the interaction forces between concentration par-
ticles. The following equation, which is typically used to calculate pressure in SPH-
based fluid simulations, has been found experimentally to be effective in modeling
the attractive force between concentration particles:

fmolecular = A
∑

j

m j

(
Pi

Cparticlei
2 + Pj

Cparticle j
2

)
∇W (x j − xi), (2.83)

where the pressure Pi = αCparticlei
with the control parameter α, A is the attraction

coefficient, andm is themass of a particle.We assume that themass of all the particles
is the same, with a value of 1.

When a concentration particle moves between different fluids, a resistance force
is provided by the fluid into which the particle is moving. This force causes the
coupling between the velocity of grid and particle. The magnitude of this force is
proportional to the relative velocity of the concentration particle and the receiving
fluid, and can be expressed as:

fcoupling = −R(uparticle − ucell), (2.84)

where R is the resistance coefficient. The overall advection of the particles is provided
by the sum of the forces in Eqs. (2.81)–(2.84).

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 73

2.4.8 Results

Simulations were performed on an Intel PC with a 3.0GHz CPU. In general, simula-
tion grids are economically implemented as octrees, but we must use a regular grid
for scenarios where concentration must be modeled. In this case, the value of the
level-set is less than 0. In other words, we can simulate concentrations where liquid
is present without ambient air. Therefore, if φ over the whole level-set is more than
0, we could use an octree data structure instead of the dense regular grid that we used
where φ is less than 0.

Because an octree data structure is being used, the computation cost increases
in proportion to the volume of fluid that is simulated. The simulation shown in
Fig. 2.26 takes at least 15 s per frame and at most 120s. Mental Ray in Maya is used
for rendering. Simulation data are saved as a mesh and a scalar field to be rendered
in Maya.

Figure2.28 shows that the Venus-shaped volume of fluid dives into an open water
surface and is mixed. The two different fluids intermingle and spread out just as ink
mixes with water. This experiment was performed using a 256×256×128 grid. The
simulations took approximately 9min per frame, including running the fluid solver
and the file I/O.

Fig. 2.28 Dropping red ink. Two different liquids mix (grids: 256 × 256 × 128, particles: about
120,000)

74 2 Water and Bubbles

Fig. 2.29 Dissolving a solid teapot. By mass transfer, the volume of the solid decreases (grids:
128 × 128 × 128, particles: about 30,000)

Fig. 2.30 Dissolving a liquid teapot.Viscous fingering occurs at themixing surface (grids, particles:
same as above)

Figure2.29 shows how a solid teapot shape dissolves in a liquid. As the volume
of the solid is reduced by mass transfer, the solid teapot dissolves in water. Violet
material from the teapot that has beenmixed inwater floats on the surface and interacts
with air bubbles. Figure2.30 shows a somewhat different scenario in which a liquid
teapotmixeswith thewater that surrounds it. In contrast to Fig. 2.29, viscousfingering
now takes place because of the difference in pressure at the interface between the
two fluids and a liquid core itself flows. Bubbles were intentionally inserted to show
the comparison between the solid and the liquid when interacting with bubbles. We
can thus see the complicated phenomena of liquids mixing. The size of grid for the
simulations shown in Figs. 2.29 and 2.30 was 1283. The average simulation time per
frame was 120s.

Figure2.31 presents a dramatic scenario in which a liquid teapot and a rigid teapot
are dropped into water one by one. First, it shows how they react when they are of the
same type of substance, clear water. Second, the insoluble object drops, and when
it reaches the bottom of the water, it turns into blue ink teapot. It slowly dissolves
and mixes with the water. The grid for this simulation was 1283, and the average
simulation time per frame was 100s.

2.4.9 Conclusions

This section has described a technique for modeling the flow of miscible multiphase
fluids by improving the handling of interfacial properties and chemical reactions. In
several experiments,we constructed naturalistic scenarios inwhich a solid bodymelts
or liquids are mixed. These combinations of viscous fingering, chemical-based mass

2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering 75

Fig. 2.31 Water meets three types of teapots: clear water, steel, and blue ink (grid:128×128×128,
particles: about 25,000)

transfer, and molecular forces are relatively easy to model with techniques familiar
to the computer graphics community. In the future, it can be researched to simulate
smaller scale features such as the filaments that appear when ink spreads out in
water. And also, simulations for the liquid–solid reaction could be performed, based
on accurate chemical laws such as solution and solidification with a state of chemical
equilibrium.

2.5 Anisotropic Particle Level-Set Method
for Multiphase Fluid

Abstract This section presents how to track the surface of a multiphase fluid more
accurately by using the particle level-set method with anisotropic particles instead
of spherical particles. While we use the weighted version of principal component
analysis (WPCA) to construct the anisotropic particles, its computational cost is high.
We adopt the distribution of particles from the directional derivative to generate the
anisotropic particles. Compared to particle level-set method, this approach provides
more details of surface, corrects numerical dissipation, and preserves the volume
of the fluid. Furthermore, this section presents particle-based fluid simulations with
surface reconstruction that uses anisotropic particles.

76 2 Water and Bubbles

2.5.1 Introduction

Accurately capturing the interfaces of a multiphase fluid is a challenging problem
in computer graphics. The level-set method within a Eulerian simulation can track
the free surface of a liquid [16]. However, the standard grid-based semi-Lagrangian
advection method only has first-order accuracy, so there is a large amount of numer-
ical dissipation. Attempts to track the fluid interface more accurately have included
the use of various triangle meshes or marker particles. Mesh-based surface track-
ing combines existing resampling methods with the use of convex hulls to connect
surface features during topological changes [83, 87]. The particle level-set method
corrects the level-set near the surface. Enright et al. [14] added Lagrangian particles
to the level-set in order to represent surface details more accurately. To implement
this method, marker particles are seeded near the surface and advected by a velocity
which is tri-linearly interpolated at the particle position. Then the particles can be
used to correct errors caused by numerical dissipation. To calculate the level-set on
both sides of the fluid interface, the particles are considered as spheres, with radii
determined by their distance from the surface. This method is widely used because
it is very simple and resulting surface preserves the volume of the fluid.

This section proposes an anisotropic particle level-set method to achieve a more
accurate fluid interface than the spherical particles. We create an anisotropic particle
by considering distribution of particles. Though use of a weighted version of prin-
cipal component analysis(WPCA) results the fluid surface accurately, the search for
neighboring particles required to calculating singular value decomposition involves
a high computational cost. So this section devises a new method in which directional
derivative is used to generate the anisotropic particles. This reduces the computational
costs but still allows the fluid interface to be tracked more accurately.

2.5.2 Related Work

The simulation of liquid using the Navier–Stokes equation has been researched
for a long time. Foster and Metaxas [19] developed a three-dimensional Navier–
Stokes method for fluid simulation. Stam [77] proposed a semi-Lagrangian integra-
tion scheme to simulate unconditionally stable fluids using a three-dimensional grid.
Losasso et al. [47] utilized an adaptive octree structure to obtain a high resolution
surface. Hong and Kim [27] considered surface tension between multiphase fluids
using the ghost fluid method (GFM) to deal with discontinuities at the fluid inter-
face. To represent the fluid surface more accurately, Enright et al. [14] proposed
the particle level-set method. Then, they improved this method by introducing a
semi-Lagrangian approach to track the surface more accurately and rapidly. Mihalef
et al. [56] handled the dynamics of a liquid and its surface color. Ianniell and Mas-
cio [33] tracked the interfaces by Lagrangian oriented particles in conjunction with a
level-set. Advection of simulation is also for greater accuracy, while CIP [76] ensure

2.5 Anisotropic Particle Level-Set Method for Multiphase Fluid 77

high order accuracy. Furthermore, there are several hybrid approaches for bubble
[22] and splash [28, 35]. Losasso et al. [52] used two-way coupled particle level-set
and SPH [48] in order to simulate diffuse regions such as splashing. Kim et al. [38]
simulate an ellipsoidal shape of an air bubble by a drag force on its upper surface.
Wojtan et al. [88] were able to represent detailed fluid surfaces with thinner features
using triangle meshes. Our anisotropic particle level-set approach has been inspired
by anisotropic particle methods. Liu et al. [50] employed anisotropic kernels in the
SPH simulation. Yu and Turk [90] formulated anisotropic smoothing kernels using
the WPCA method. Jo et al. [34] simulated SPH-based fluids using anisotropic ker-
nels formed by the particle velocities. We refer to works of Donia et al. [8], Zheng
et al. [92], and Rahman and Murshed [68] for creation of anisotropic kernel. Donia
et al. [8] propose a texture generation method by computing their movement of a
motion distribution followed by the generation of image frames. Zheng et al. [92]
detected a pattern by judging of eclipse and Support Vector Machines (SVM). Other
interesting works include viscoelastic fluids [21], control methodology [83], vortex
particle [75], and subgrid turbulence model [70].

2.5.3 Particle Level-Set Method (PLS)

We use the Navier–Stokes equation to simulate large volumes of liquid. The momen-
tum conservation equation is

ut + (u · ∇)u + ∇ p

ρ
= f (2.85)

and the mass conservation equation is

∇ · u = 0 (2.86)

where u = (u, v, w) is velocity, p is pressure, and f is the sum of the external
forces, including gravity and control forces. We use octree structures [47] for fast
grid simulation, back and forth error compensation and correction (BFECC) [40] to
achieve second-order accuracy in fluid volume preservation, and the particle level-set
method [14] to represent complicated fluid surfaces.

First, marker particles are seeded in the surface region. The radius rp of a particle
as follows:

rp =

⎧⎪⎨
⎪⎩

rmax if spφ(xp) > rmax

spφ(xp) if rmin ≤ spφ(xp) ≤ rmax

rmin if spφ(xp) < rmin

(2.87)

where sp is the sign of the particle,φ(xp) is the implicit function, and xp is the particle
position. The minimum radius is 0.1 · min(dx, dy, dz) and the maximum radius is

78 2 Water and Bubbles

0.5·min(dx, dy, dz). Inmost of the examples presented later in this paper, 32marker
particles are used each cell. Then the level-set is integrated using Eq. (2.85), while
the particles are advected with the interpolated velocity at their positions. The error
correction scheme proposed byEnright et al. [14] uses spherical particles. A spherical
implicit function φp(x) is determined by the marker particle radius, as follows:

φp(x) = sp(rp − |x − xp|) (2.88)

where rp is the particle radius and x is the position of the node. Then a new value
of the level-set is determined by comparing the spherical implicit function φp(x)

with the current level-set value. The positive and negative level-set values are then
obtained as follows:

φ+ = max∀p∈E+(φp,φ
+) (2.89)

φ− = max∀p∈E−(φp,φ
−) (2.90)

where φ+ is the level-set value in the φ > 0 region, φ− is the level-set value in the
φ < 0 region, E+ is the set of escaped positive particles, and E− is the set of escaped
negative particles. More details on this are given elsewhere [13, 14].

2.5.4 Anisotropic Particle Level-Set Method (APLS)

We use anisotropic, instead of spherical, particles in the particle level-set method.
We specify an anisotropic particle by its position, its three axes and its magnitudes
along three axes.

2.5.4.1 Determining Particle Axes and Magnitudes Using WPCA

Wefirst determine the axes of a particle from the distribution of neighboring particles
by employing the WPCA Method [90]. We compute weighted mean xw

i from the
neighboring particle to construct the covariance matrix, as follows:

xw
i =

∑
j wijx j∑

j wij
min∀p∈E−(φp,φ

−) (2.91)

The weight function wij is calculated by using neighbor particles which have the
same sign within radius ri , as follows:

wij =
{
1 − (||xi − x j ||)3 if ||xi − x j || < ri

0 otherwise
(2.92)

2.5 Anisotropic Particle Level-Set Method for Multiphase Fluid 79

Then, the covariance matrix Ci is obtained as follows:

Ci =
∑

j wij(x j − xw
i)(x j − xw

i)T

∑
j wij

(2.93)

For eachmarker particle, we perform a singular value decomposition of the covari-
ance matrix Ci to obtain the eigenvectors and eigenvalues, which become the axes
and magnitudes (σ1 < σ2 < σ3) of the anisotropic particle.

2.5.4.2 Error Correction Using Anisotropic Particles

Becausewe use anisotropic particles, we need tomodify the error corrections scheme
of the particle level-set method.We can obtain the radius of an anisotropic particle rp

in any direction by solving Eq. (2.94). The local coordinate system of each particle
transforms the position of the node. The local coordinate system is determined by
three axes in Sect. 2.5.4.1. We can calculate rp for an arbitrary direction as follows:

rp =
√√√√√

1

x2lx

σ′
1
2 + x2ly

σ′
2
2 + x2lz

σ′
3
2

(2.94)

where xl = (xlx , xly, xlz) is the position of node in the local coordinate system, σ′
1 is

the shortest distance (φp) to the surface, σ′
2 = (σ2/σ1)φp and σ′

3 = (σ3/σ1)φp. So
we apply this rp to Eq. (2.88) and obtain the new φp(x) using anisotropic particle.
This approach improves the representation of the level-set surface, but it takes about
21 times longer than particle level-set method. This is because the data structures
used in the anisotropic particle level-set method using WPCA are inappropriate for
neighbor searching. We could use fewer anisotropic particles but then the resulting
surface is to be worse. Section2.5.4.3 introduces a newmethod to avoid this problem.

2.5.4.3 Reducing of Computational Cost Using the Directional Derivative

If the number of anisotropic particles in APLS using WPCA decreases, the com-
putational cost also decreases but the results would be of lower quality. Therefore,
this section proposes a new method that has good performance in time consump-
tion as well as improves representation of the surface. We generate an anisotropic
particle using directional derivative instead of WPCA method. First, we discard the
WPCA calculation. Second, we update the level-set using PLS. Third, we determine
three axes of the anisotropic particle using directional derivative; the error correction
module is computed in the anisotropic particle level-set method. More details are
described in Algorithm 3.1.

80 2 Water and Bubbles

Algorithm 3.1 APLS Method
1 for all leaf nodes do
2 (re)seed marker particles and set their radius
3 for all leaf nodes do
4 for all particles do
5 Time integration of marker particles
6 for all leaf nodes do
7 Time integration of the implicit function
8 for all leaf nodes do
9 for all particles do
10 delete and add marker particles
11 compute updated φp(x) using PLS
12 for all leaf nodes do
13 for all particles do
14 compute normal at the its position (∇φ)

15 set minor axis (e1)
16 set major axis e2 using the directional derivative
17 set last axis e3= cross product(e1, e2)
18 for all leaf nodes do
19 for all particles do
20 compute new φp(x) using the anisotropic particles

The minor axis e1 is determined from the gradient of φ. The major axis is the axis
with the minimum variation of level-set value. The direction of minimum variation
is calculated using the directional derivative, as follows:

∇eφ(x) = φ(x + he) − φ(x − he)
2h

(2.95)

where φ(x) is the level-set value at the position x and e is the direction that we seek,
||e|| = 1. In our example, h is the particle radius. To find the minimum variation, we
calculate the directional derivative iteratively using Eq. (2.95) on the plane, normal
to e1. The direction that has the minimum variation is the major axis e2. The e3
axis is calculated by the cross product of the minor axis e1 and the major axis e2.
We can introduce into Eq. (2.94) since we can obtain σ1, σ2 and σ3 by calculating
the directional derivative along the axes e1, e2 and e3 using Eq. (2.95). The value
of σ1, σ2, and σ3 are inversely proportional to the variation of the level-set in the
corresponding direction. This simple calculation improves the performance of the
anisotropic particle level-set method using directional derivative.

2.5.4.4 Additional Trials

Our newmethodwas applied to the surface reconstructionmodule of a particle-based
fluid simulation using SPH [1, 59, 60]. Our simulations and surface reconstruction
algorithms largely follow [90].Weonlymodify theirmethodof setting the anisotropic
kernels using WPCA.

2.5 Anisotropic Particle Level-Set Method for Multiphase Fluid 81

The normal vector at each particle that is used to calculating the surface tension
force is the minor axis of the anisotropic particle. We calculate the rate of density
change for all neighboring particles. If a particle j has the smallest rate of density
change, we temporarily align the vector x j − xi with the major axis. The direction
of the third axis is the cross product of the minor and major axes. However, the
major and minor axes must be at right align to each other. So we have to change the
direction of the major axis to become the cross product of the direction of the minor
axis and the third axis. The value of σ1, σ2 and σ3 are inversely proportional to the
rate of density change along the corresponding axes. This approach eliminates the
computational time required to obtain three eigenvectors and three eigenvalues.

Algorithm 3.2.1 Particle-based Fluid Simulation
1 for all particles i ∈ S do
2 find neighbors Ni
3 for all particles i ∈ S do
4 compute ρi , pi
5 for all particles i ∈ S do
6 compute forces (gravity, pressure, viscosity, surface

tension)
7 for all particles i ∈ S (for all about previous step) do
8 compute anisotropic kernel (compute three axes)

→ Algorithm 3.2.2
9 compute node density (for surface reconstruction)
10 for all particles i ∈ S do
11 compute new vi , xi

Algorithm 3.2.2 Compute Anisotropic Particle
1 major axis = normal vector of particles
2 for all particles i ∈ Ni do
3 compute rate of density change i , j (Δρi j)
4 if (Δρmin > Δρi j)

5 Δρmin = Δρi j
6 major axis = x j − xi
7 end if
8 the other axis = cross product(minor axis, major axis)
9 major axis = cross product(minor axis, the other axis)

2.5.5 Results

Simulations were performed on an Intel Core i7 CPU running at 2.93GHz, and
rendered the fluid models by ray tracing. BFECC (back and forth error compensation
and correction) was used for the advection, with an octree grid. The maximum depth

82 2 Water and Bubbles

of the octree is 7, so yielding a 128 × 128 × 128 grid. Monte Carlo integration was
used to measure the volume of the fluid.

Figure2.32 shows that the water ball bounced back from the surface. Figure2.32a
is the 21st frame with the PLS. It takes 0.7226s to run the advection module with
32 particles, and the volume of fluid decreases by 0.00129. Figure2.32b is the 21st
frame with the APLS using WPCA. It takes 15.8472s to run the advection module
with 32 particles, and the volume of fluid decreases by 0.00123. Figure2.32c is the
21st frame with the APLS using directional derivative. It takes 0.7477s to run the
advection module with 32 particles, and the volume of fluid decreases by 0.00107.
Figure2.32c shows complex water surface by adding trivial time.

Figure2.33 shows that the water ball was dropped onto the fluid surface.
Figure2.33a is initial water ball drop and Fig. 2.33b is the 7th frame with the PLS.
It takes 0.6172s to run the advectionmodulewith 32 particles, and the volume of fluid
decreases by 0.00027. Figure2.33c is the 7th frame with the APLS using WPCA. It
takes 14.3663s to run the advectionmodule with 32 particles, and the volume of fluid
decreases by 0.00011. Figure2.33d is the 7th frame with the APLS using directional
derivative. It takes 0.6226s to run the advection module with 32 particles, and the
volume of fluid decreases by 0.00005. Figure2.33d is similar to Fig. 2.33c for the
volume, although the computational time of Fig. 2.33d is about 0.04333 times lower
than the APLS with WPCA.

Fig. 2.32 Water drop tower: a PLS b APLS with WPCA c APLS with directional derivative

Fig. 2.33 Water ball drop:
a The initial water ball drop
b PLS c APLS with WPCA
d APLS with directional
derivative

2.5 Anisotropic Particle Level-Set Method for Multiphase Fluid 83

Fig. 2.34 Water pouring into a tank: a 26th frame, b 43rd frame, c 60th frame

Table 2.1 Volume and time-consuming for water ball drop

Frame PLS APLS with WPCA APLS with directional
derivative

1st 1.15089 1.15089 1.15089

(0.6010 s) (14.0895 s) (0.6073 s)

7th 1.15062 1.15078 1.15084

(0.6172 s) (14.3663 s) (0.6226 s)

21st 1.1496 1.14966 1.14982

(0.7226 s) (15.8472 s) (0.7477 s)

70th 1.13582 1.15089 1.14146

(0.8449 s) (18.5929 s) (0.8896 s)

100th 1.12717 1.15089 1.13641

(0.0160 s) (22.6637 s) (1.0378 s)

Figure2.34 shows water pouring into a tank. The stretching feature of the liquid’s
surface is observed in this physical behavior and visual result. Figure2.34a shows
a water source and it was added in every frame. Figure2.34b shows water colliding
with a wall. The anisotropic particle level-set helps the water surface maintain sharp
features. Next, Fig. 2.34c shows the complex surface of the water.

Table2.1 shows how the volume of fluid in Figs. 2.32 and 2.33 is conserved. Com-
pared to the first frame, the large amount of volume with the PLS in the 70th frame
and the 100th frame is lost. But the volume of the fluid is conserved in the third and
fourth column. In the 100th frame, it takes 1.0160s to run the advection module with
PLS and 1.0378s to run the advection module with APLS using directional deriva-
tive. As a result, the PLS and the APLS with directional derivative have the similar
time-consuming, but the volume of fluid with APLS using directional derivative is
more conserved.

84 2 Water and Bubbles

2.5.6 Conclusion and Future Work

This section presented the anisotropic particle level-set method that captures the
interface of the multiphase fluid accurately. The anisotropic particle is created by
particles’ distribution. To get the three axes, the gradient of level-set value and direc-
tional derivative are used. As a result, this anisotropic particle level-set method pro-
vides more accurate simulation than spherical particle level-set method and faster
than APLS with WPCA. However, there is still numerical dissipation into thin fea-
ture. Anisotropic escaped particles can be included to handle this problem. They act
as splash where numerical dissipation occurred.

References

1. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. In: Pro-
ceedings of ACM SIGGRAPH 2007. ACM transactions on graphics (TOG), vol 26(3), pp
481–487, July 2007

2. Brackbill JU, Kothe DB, Zemach C (1992) A continuummethod for modeling surface tension.
J Comput Phys 100(2):335–354

3. BeckerM, TeschnerM (2007)Weakly compressible SPH for free surface flows. In: Proceedings
of the ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

4. Chorin AJ (1997) A numerical method for solving incompressible viscous flow problems. J
Comput Phys 135(2):118–125

5. Carlson M, Mucha PJ, Van Horn II RB Turk G (2002) Melting and flowing. In: ACM SIG-
GRAPH symposium on computer animation, pp 167–174

6. Cleary PW, Pyo SH, PrakashM, Koo BK (2007) Bubbling and frothing liquids. In: Proceedings
of ACM SIGGRAPH 2007. ACM transactions on graphics (TOG), vol 26(3), pp 971–976, July
2007

7. Desbrun M, Gascuel M-P (1996) Smoothed particles: a new paradigm for animating highly
deformable bodies. In: Computer animation and simulation’96. pp 61–76

8. Donia T, Gabriel A, Serban, Andreea M, Rada M (2009) Textual entailment as a directional
relation. J Res Pract Inf Technol 41(1)

9. de Sousa F, Mangiavacchi N, Nonato L, Castelo A, Tome M, Ferreira V, Cuminato J, Mckee S
(2004) A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with
free-surfaces. J Comput Phys 198(2):469–499

10. Durikovic R (2001) Animation of soap bubble dynamics, cluster formation and collision.
Computer Graphics Forum (Eurographics 2001 Proceedings), vol 20(3), pp 67–76

11. Dyke MV (1982) An album of fluid motion. The Parabolic Press, Stanford
12. Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for

improved interface capturing. J Comput Phys 183(1):83–116
13. Enright D, Losasso F, Fedkiw R (2005) A fast and accurate semi-lagrangian particle level set

method. Comput Struct 83(6–7):479–490
14. Enright D,Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces.

In: Proceedings of ACM SIGGRAPH 2002. ACM transactions on graphics (TOG), vol 21(3),
pp 736–744, July 2002

15. Fedkiw R, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to
interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152(2):457–492

16. FosterN, FedkiwR (2001) Practical animation of liquids. In: Proceedings ofACMSIGGRAPH,
pp 23–30

References 85

17. Fournier A, Habibi, Poulin P (1998) Simulating the flow of liquid droplets. In: Graphics inter-
face’98, June 1998

18. Fattal R, Lischinski D (2004) Target-driven smoke animation. In: Proceedings of Proceedings
of ACM SIGGRAPH 2004. ACM transactions on graphics, vol 23(3), pp 441–448, August
2004

19. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process
58(5):471–483

20. Fedkiw R, Stam J, Jensen HW (2001) visual simulation of smoke. In: Proceedings of SIG-
GRAPH, 15–22

21. Goktekin TG, Bargteil AW, O’brien JF (2004) A method for animating viscoelastic fluids. In:
Proceedings of ACMSIGGRAPH2004. ACM transactions on graphics, vol 23(3), pp 463–468,
August 2004

22. Greenwood S, House D (2004) Better with bubbles: enhancing the visual realism of simulated
fluid. In: ACM SIGGRAPH/Eurographics symposium on computer animation, pp 287–296

23. Gueyffier D, Li J, Nadim A, Scardoveli R, Zaleski S (1999) Volume-of-fluid interface tracking
with smoothed surface stress method for three-dimensional flows. J Comput Phys 152(2):423–
456

24. Hu X, Adams N (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J
Comput Phys 213(2):844–861

25. Hong J-M, Kim C-H (2003) Animation of bubbles in liquid. In: Computer Graphics Forum
(Eurographics 2003 Proceedings), vol 22(3), pp 253–262, Sept 2003

26. Hong J-M, Kim C-H (2004) Controlling fluid animation with geometric potential. Comput
Animat Virtual Worlds 15(3–4):147–157

27. Hong J-M, Kim C-H (2005) Discontinuous fluids. In: Proceedings of ACM SIGGRAPH 2005.
ACM transactions on graphics (TOG), vol 24(3), pp 915–920, July 2005

28. Hong J-M, Lee H-Y, Yoon J-C, Kim C-H (2008) Bubbles alive. In: Proceedings of ACM
SIGGRAPH 2008. ACM transactions on graphics (TOG), vol 27(3), pp 48:1–48:4, Aug 2008

29. HirtCW,NicholsBD(1981)Volumeoffluid (VOF)method for the dynamics of free boundaries.
J Comput Phys 39(1):201–255

30. Homsy GM (1987) Viscous fingering in porous media. Annu Rev Fluid Mech 19:271–311
31. Hong J-M, Shinar T, Fedkiw R (2007) Wrinkled flames and cellular patterns. In: Proceedings

of ACM SIGGRAPH 2007. ACM transactions on graphics (TOG), vol 26(3), pp 471–476, July
2007

32. Harlow FH,Welch JE (1965) Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surfaces. Phys Fluids 8:2182–2189

33. Ianniello S,Mascio AD (2010) A self-adaptive oriented particles Level-Set method for tracking
interfaces. J Comput Phys 229(4):1353–1380

34. Jo E-C, Kim D-Y, Song O-Y (2011) A new SPH fluid simulation method using ellipsoidal
kernels. J Vis 14(4):371–379

35. Kim J, Cha D, Chang B, Koo B, Ihm I (2006) Practical animation of turbulent splashing water.
In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation,
pp 335–344

36. Kang M, Fedkiw RP, Liu X-D (2000) A boundary condition capturing method for multiphase
incompressible flow. J Sci Comput 15(3):323–360

37. Kass M, Miller G (1990) Rapid, stable fluid dynamics for computer graphics. In: Computer-
Graphics (Proceedings of ACMSIGGRAPH’90), vol 24, pp 49–57

38. KimP-R, LeeH-Y,Kim J-H,KimC-H (2012)Controlling shapes of air bubbles in amulti-phase
fluid simulation. Vis Comput 28(6–8):597–602

39. Kim B, Liu Y, Llamas I, Jiao X, Rossignac J (2007) Simulation of bubbles in foam with the
volume control method. In: Proceedings of ACM SIGGRAPH 2007. ACM transactions on
graphics (TOG), vol 26(3), pp 98:1–98:9, July 2007

40. Kim B, Liu Y, Llamas I, Rossignac J, Flowfixer (2005) Using BFECC for fluid simulation. In:
Proceedings of Eurographics workshop on natural phenomena, pp 51–56

86 2 Water and Bubbles

41. Kim B, Liu Y, Llamas I, Rossignac J (2007) Advections with significantly reduced dissipation
and diffusion. IEEE Trans Vis Comput Graph 13(1):135–144

42. Kuck H, Vogelgsang C, Greiner G (2002) Simulation and rendering of liquid foams. Graph
Interface

43. Kunimatsu A, Watanabe Y, Fujii H, Saito T, Hiwada K, Takahashi T, Ueki H (2001) Fast
simulation and rendering techniques for fluid objects. Computer Graphics Forum (Proceedings
of Eurographics 2001) 20(3):357–367

44. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction
algorithm. In: Proceedings of ACM SIGGRAPH’87, vol 21(4), pp 163–169, July 1987

45. Liu X-D, Fedkiw RP, Kang M-J (2000) A boundary condition capturing method for poisson’s
equation on irregular domain. J Comput Phys 172(1):71–98

46. Losasso F, Fedkiw R, Osher S (2005) Spatially adaptive techniques for level set methods and
incompressible flow. Comput Fluids

47. Losasso F, Gibou F, FedkiwR (2004) Simulatingwater and smokewith an octree data structure.
In: Proceedings of ACM SIGGRAPH 2004. ACM Transactions on Graphics (TOG), vol 23(3),
pp 457–462, Aug 2004

48. Lee H-Y, Hong J-M, Kim c-h (2005) Interchangeable SPH and level set method in multiphase
fluids. Vis Comput 25:713–718

49. Losasso F, Irving G, Guendelman E, Fedkiw R (2006) Melting and burning solids into liquids
and gases. IEEE Trans Vis Comput Graph 12(3):343–352

50. Liu MB, Liu g r, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain
hydrodynamics with material strength. Shock Waves 15(1):21–29

51. Losasso f, Shinar t, Selle A, Fedkiw R (2006) Multiple interacting liquids. In: Proceedings of
ACM SIGGRAPH 2006. ACM transactions on graphics (TOG), vol 25(3), pp 812–819, July
2006

52. Losasso f, Talton j, Kwatra n, Fedkiw R (2008) Two-way coupled SPH and particle level set
fluid simulation. IEEE Trans Vis Comput Graph 14(4):797–804

53. Magnaudet J, Eames I (2000) The motion of high reynolds-number bubbles in inhomogeneous
flows. Annu Rev Fluid Mech 32:659–708

54. Mcnamara A, Treuille A, Popovic Z, Stam J (2004) Fluid control using the adjoint method. In:
Proceedings of ACM SIGGRAPH 2004. ACM transactions on graphics (TOG), vol 23(3), pp
449–456, Aug 2004

55. Mendelson HD (1967) The prediction of bubble terminal velocities from wave theory. Adv
Chem Eng J 13(2):250–253

56. Mihalef V, Metaxas D, Sussman M (2007) Textured liquids based on the marker level set.
Comput Graph Forum 26(3):457–466

57. Mihalef V, Unlusu B, Metaxas D, Sussman M, Hussaini MY (2006) Physics based boiling
simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer
animation 1:317–324

58. Mullen P,Mckenzie A, TongY,DesbrunM,A (2007) Variational approach to eulerian geometry
processing. In: Proceedings of ACMSIGGRAPH 2007. ACM transactions on graphics (TOG),
vol 26(3), pp 66:1–66:10, July 2007

59. Müller M, Charypar D, Gross M (2003) Particle based fluid simulation for interactive appli-
cations. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer ani-
mation pp 154–159

60. Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In:
Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pp
237–244

61. Nguyen D, Fedkiw R, Jensen H (2002) Physically based modeling and animation of fire. In:
Proceedings of ACM SIGGRAPH 200. ACM transactions on graphics (TOG), vol 21(3), pp
721–728, July 2002

62. O’Brien J, Hodgins J (1995) Dynamic simulation of splashing fluids. Proc Comput Animat
95:198–205

References 87

63. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New
York

64. Park J, Kim Y, Wi D, Kang N, Shin SY, Noh J (2008) A unified handling of immiscible and
miscible fluids. Comput Animat Virtual Worlds 19(3–4):455–467

65. Premoze S, Tasdizen T, Bigler J, Lefohn A, Whitaker R (2003) Particle-based simulation of
fluids. In: Computer Graphics Forum (Eurographics Proceedings), vol 22, pp 401–410

66. RasmussenN, Enright D, NguyenD,Marino S, Sumner N, GeigerW,Hoon S, FedkiwR (2004)
Directable photorealistic liquids. In: Proceedings of the ACM SIGGRAPH/Eurographics sym-
posium on computer animation, pp 193–202

67. RiderWJ,KotheDB (April 1998)Reconstructing volume tracking. J Comput Phys 141(2):112–
152

68. Rahman A, Manzur M (2008) Dynamic texture synthesis using motion distribution statistics.
J Res Pract Inf Technol 40(2):129–148

69. SAAD Y (1996) Iterative methods for sparse linear systems. PWS Publishing
70. Schechter H, Bridson R (2008) Evolving sub-grid turbulence for smoke animation. In: Pro-

ceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pp 1–7
71. Son G, Dhir VK, Ramanujapu N (1999) Dynamics and heat transfer associated with a single

bubble during nucleate boiling on a horizontal surface. J Heat Transf 121(3):623–631
72. Shin S, Juric D (2002) Three-dimensional multiphase flow using a level contour reconstruction

method for front tracking without connectivity. J Comput Phys 180(2):427–470
73. Shin S-H, KIM C-H (2007) Target-driven liquid animation with interfacial discontinuities.

Comput Animat Virtual Worlds 18(4–5):447–453
74. Shew WL, Pinton J-F (2006) Dynamical model of bubble path instability. Phys Rev Lett

97:144508
75. Selle A, Rasmussen N, Fedkiw R (2005) A vortex particle method for smoke, water and

explosions. In: Proceedings of ACMSIGGRAPH 2005. ACM transactions on graphics (TOG),
vol 24(3), pp 910–914, July 2005

76. Song O-Y, Shin H-C, Ko H-S (2005) Stable but non-dissipative water. ACM Trans Graph
24(1):81–97

77. Stam J (1999) Stable fluids. In: Proceedings of ACM SIGGRAPH, pp 121–128
78. SussmanM (2003) A second order coupled level set and volume of-fluid method for computing

growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136
79. Torres DJ, Brackbill JU (2000) The point-set method: front-tracking without connectivity. J

Comput Phys 165(2):620–644
80. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawashi N, Tauber W, Han J, Nas S, Jan

Y-J (2001) A front tracking method for the computations of multiphase flow. J Comput Phys
169(2):708–759

81. Takahashi T, Fujii H, Kunimatsu A, Hiwada K, Saito T, Tanaka K, Ueki H (2003) Realis-
tic animation of fluid with splash and foam. Computer Graphics Forum (In: Proceedings of
Eurographics 2003), vol 22(3), pp 391–400, Sept 2003

82. Thüerey N (2007) Physically based animation of free surface flows with the lattice Boltzmann
method. Ph.D. thesis, University of Erlangen-Nuremberg

83. Treuille A, Mcnamara A, Popović Z, Stam J (2003) Keyframe control of smoke simulations.
In: Proceedings of ACM SIGGRAPH 2003. ACM transactions on graphics (TOG), vol 22(3),
pp 716–723, July 2003

84. Thüerey N, Sadlo F, Schirm S, Müller-Fischer M, Gross, M (2007) Real-time simulations
of bubbles and foam within a shallow water framework. In: Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation, pp 191–198

85. Unverdi S, Tryggvason G (1992) A front tracking method for viscous, incompressible, multi-
fluid flows. J Comput Phys 100(1):25–37

86. Wojtan C, Carlson M, Muycha PJ, Turk G (2007) Animating corrosion and erosion. Euro-
graphics workshop on natural phenomena, pp 15–22

87. Wojtan C, Thürey N, Gross M, Turk G (2009) Deforming meshes that split and merge. ACM
Trans Graph 28(3)

88 2 Water and Bubbles

88. Wojtan C, Thürey N, Gross M, Turk G (2010) Physics-inspired topology changes for thin fluid
features. In: Proceedings of ACM SIGGRAPH 2010. ACM transactions on graphics (TOG),
vol 29(4), July 2010

89. Yu Y, Ho Jung, Cho H (1999) A new water droplet model using metaball in the gravitational
field. Comput Graph 23(2):213–222

90. Yu J-H, Turk G (2010) Reconstructing surfaces of particle-based fluids using anisotropic ker-
nels. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer anima-
tion, p 217

91. Zhu H, Liu X, Liu Y, Wu E (2006) Simulation of miscible binary mixtures based on lattice
Boltzmann method: research articles. Comput Animat Virtual Worlds 17(3–4):403–410

92. Zheng Z, Yang J, Zhu Y (2006) Face detection and recognition using colour sequential images.
J Res Pract Inf Technol 38(2)

93. http://developer.nvidia.com/

http://developer.nvidia.com/

Chapter 3
Smoke

3.1 Animating Smoke with Dynamic Balance

Abstract This section proposes a numerical method for maintaining a dynamic
rollingmotionof animatedgaseousphenomena, such as smoke, that avoids dissipation
due to numerical error. It compensates for the errors induced by a semi-Lagrangian
schemeusing an error estimate for each time interval.And it develops a newadvection
term and perform vortex advection based on a vorticity confinement force. Example
simulations show that this method is able to keep smoke features alive, even near the
center of a vortex.

3.1.1 Introduction

The simulation of natural phenomena such as smoke, fire, and water is a challenging
problem in computer graphics. Gaseous phenomena are popularly used in movies
and video games for special effects. An ideal computer graphics model of smoke is
what is easy to use and generates stable results. To achieve this, we need to develop
a scheme which is easy to implement and in which the numerical error caused by
discretization is as small as possible.

Many researchers in the field of computer graphics have used physically based
techniques to create a realistic gaseous motion that is self-perpetuating. We want to
create a model that is close to realistic, but avoids dissipation, which is especially
important to represent a feature of smoke such as a vortex. In previous work toward
this goal, an artificial external force was used to amplify the existing effect of the
simulation results. Although this achieves a plausible appearance, it leaks accuracy.
This section introduces a new solution that fundamentally improves the accuracy of
the simulation, without including much additional computation.

In computer graphics, fluids are simulated by updating a field of substance data,
such as density, temperature, and velocity. Beyond some threshold conditions, a fluid
simulation may produce unexpected results due to the occurrence of an unstable
state. Our new method for animating smoke avoids this problem by using a dynamic
balance to maintain the coherence of the field. To preserve the properties of the

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_3

89

90 3 Smoke

initial flow, it is important that the simulation is achieved by gradual changes to
the vector fields representing quantities such as position and velocity. Our approach
includes compensation for losses in the energy of the velocity field by an advection
step. We arrange for the substance field to move along a velocity field, which can
be thought of as a framework of movement. Compensating for errors in the velocity
field contributes to the coherence of the flow and creates a stable simulation. In this
section, we aim to produce Karman vortex motions, as shown in Fig. 3.1, which are
created by turbulent smoke moving over an obstacle. A separated vortex results from
the difference in viscosity at the interface. Figure3.1 shows the simulation of vortex
street [39]. In simulating of this kind of smoke motion, it is important to maintain
the momentum of the vortex [31]. Inspired by the work of Fedkiw et al. [7]. we
focus on maintaining the vorticity, which is a feature of smoke that occurs within the
velocity field. We represent a vortex as a substance field, and therefore the vorticity
confinement force moves along the velocity field in the same way as density and
temperature. In this way, we separate the vorticity field from the main velocity field
and create a new advection term which conserves vorticity.

In the new advection step, we estimate the error during each time interval and
compensate for it. This process reduces the numerical dissipation which necessarily
results from the linear interpolation of a semi-Lagrangian scheme. The use of vortex
advection allowsus to generate a smokemodelwith a unique type of vortex, compared
to previous smoke models, and implicitly maintain the momentum of the vortex,
rather than requiring an external force to sustain it.

The specific contributions of this work are: (1) Improving the method for solving
the differential equation for the advection step by using error compensation; and (2)
allowing the smoke model to remain dynamic near the center of a vortex by the use
of vortex advection. Our method is fully Eulerian and so it is simple and easy for
implementation.

Fig. 3.1 Karman vortex

3.1 Animating Smoke with Dynamic Balance 91

Section3.1.2 addresses related works. Section3.1.3 describes our scheme on
Computing Errors in the Advection Term and, in Sect. 3.1.4, on Vortex Advection
Based on Vorticity Confinement. Section3.1.5 describes the implementation of our
method; then Sect. 3.1.6 presents experimental results and discussion. And we con-
clude in Sect. 3.1.7.

3.1.2 Related Work

In the field of computer graphics, there has been a lot of research on simulating
natural phenomena such as smoke, water, and fire. Foster and Metaxas [12] were
the first to use the Navier-Stokes equation to simulate fluid flow. Recent results have
received attention because they can automatically generate passive motion [6, 8,
24, 35]. These physics-based techniques are derived from the computational fluid
dynamics (CFD) literature [1], and some of them have the advantage of providing
higher precision by the use of lower-order polynomials. This is very helpful for
simulating fluid flows which demonstrate complicated phenomena such as vortex
and turbulence [13]. Fluid simulation can be achieved by computing an approximate
solution to a partial differential equation (PDE) expressing a local function that
represents the fluid flow. Physically based techniques allow the user to create the
appearance of smoke automatically [6, 16, 38].

While these techniques are powerful, they have unavoidable errors associated
with a numerical solution of a differential equation. For that reason, developing an
adaptive method for reducing numerical errors is a significant problem [4, 19].

There are a lot of works related to this problem in computer graphics. Fattal and
Lischinski [6] forced the fluid to form a user-defined shape, and they use a density
error term to reverse the diffusion process so as to match a user-defined shape. Hong
and Kim [16] maintained the density of smoke by keeping the total mass of particles
constant during a simulation. These approaches are attractive, but they considered
the density errors only.

Some research has focused more closely on velocity. Fedkiw et al. [7] kept alive
small-scale features of smoke by applying a vorticity confinement term to the inviscid
Euler equation. This allows a vortex to persist but, despite the exclusion of viscosity,
they could not counteract severe dissipation of the smoke over time.

Other research has focused on maintaining a given property at its initial level.
Dupont and Liu [5] used backward and forward forms of the Euler equation to
determine the extent of the advection error. Their approach updates the level-set
function over time to obtain the zero-set more accurately, and reduces the numerical
error during topological changes.Ourmethod is similar in that it estimates the amount
of advection error and compensates for it during the simulation. Kim et al. [20]
independently introduced BFECC to computer graphics recently. Song et al. [36]
used CIP method to prevent dissipation of small-scale features of multiphase fluid.
By the calculation of derivative values at the grid points, they obtained the less

92 3 Smoke

dissipative fluid motion at each time step. But this technique is computationally
expensive compared to ours.

Whatever the underlying method, a major problem is reducing the dissipative
error, which is the focus of this section. Because a vortex is one of the elements that
makes smoke look realistic, we concentrate on handling the vortex effect. Recently,
some research has focused on vortex effects as fluid features [2, 28, 33]. They used
vortex particles based on the Lagrangian to alleviate dissipation within a method
based on an Eulerian grid. On the other hand, we make good use of fully Eulerian
method which is simple and easy to implement. To represent the effects of viscosity,
we use the viscous Navier-Stokes equation for simulating fluid motion. We do not
attempt to achieve all the features of smoke, but our results show that we can preserve
a smoke vortex from the effects of numerical dissipation.

3.1.3 Computing Errors in the Advection Term

This section presents a method for error compensation using the Navier-Stokes
equation.

3.1.3.1 The Equations of Flow

Weassume a viscous gas, and therefore use theNavier-Stokes equation for simulating
flow.We denote the velocity vector field as u = (u, v,w), and then the Navier-Stokes
equation is:

∂u
∂t

= −(u · ∇)u − ∇ p

ρ
+ ν∇2u + f (3.1)

∇ · u = 0 (3.2)

where f accounts for external forces such as gravity and buoyancy, p is the pressure
in the velocity field, and ρ is the density of the gas. Equations (3.1) and (3.2) model
the conservation of momentum and of mass, respectively. They can be found in any
standard text [14]. To make it easier to understand how these equations are solved,
we consider a standard fluid simulation process:

M ◦ Aρ ◦ P ◦ D ◦ Av ◦ F

The term F applies forces to the velocity field; Av is the self-advection of the veloc-
ity vector field; D is a diffusion step; P projects the resulting field so that it is
divergence-free; Aρ advects the density along the velocity vector field; and M is a
mass conservation step to counteract dissipation.

3.1 Animating Smoke with Dynamic Balance 93

In the simulation, step Av corresponds to the first term of right-hand side of
Eq. (3.1):

Av = −(u · ∇)u (3.3)

3.1.3.2 Error Compensation Scheme

To solve Eq. (3.3), which is nonlinear, we use a semi-Lagrangian scheme with error
compensation that considers the time intervals before and after the advection step.

Let us denote some position in a smoke simulation by x = (x, y). To determine
the velocity at time t + 1, we use the velocity at time t . We describe the state of a
simulation using the Euler method at time t as a function ϕt (x). We have defined ϕ
as a function of both t and x, but this function depends not only on previous values
but also on the subsequent state.

To calculate the forward update step, we describe F , including the component
ϕt (x), which corresponds to the Euler equation at time t . This is used to determine
the state of the simulation at time t + 1:

ϕ̃t+1(x) = F (ϕt (x)) (3.4)

And we represent the backward advection step asB:

ϕ̂t (x) = B(ϕ̃t+1(x)) (3.5)

In an ideal situation, ϕt (x) is equal to ϕ̂t (x); but in practice, we cannot achieve this
result because of numerical dissipation, as shown in Fig. 3.2a.

We want to minimize the error associated with the difference between ϕt (x) and
ϕ̂t (x). This error e(vecx) can be found from the approximate solution of the Euler
equation:

e(x) = ϕt (x) − ϕ̂t (x) (3.6)

Fig. 3.2 Estimated errors before and after error compensation: a before error compensation; b after
error compensation

94 3 Smoke

Fig. 3.3 Simulated smoke: a without error compensation, leading to an irregularly scattered
appearance; b with error compensation, showing a better approximation of the effect of the force
on the field

We assume that this error occurs while moving back and forth in simulated time. We
expect that the loss of energy in the forward advection step will be about 1

2e(x). We
use this observation to reduce the dissipation resulting from the numerical solution.
We do this by injecting the missing energy from the velocity vector field before the
advection step:

ϕnew
t (x) = ϕt (x) + 1

2
e(x) (3.7)

Now we use this value to determine the velocity at time t + 1. Figure3.2b shows
how this reduces the error after updating using ϕnew

t (x). This process can be applied
to the density field in the same way. Our error compensation algorithm has the same
accuracy as the second-order improved Euler scheme. This backward compensation
can be replaced by forward correction because they are duals of each other. See
Dupont and Liu [5] for more details.

Each image in Fig. 3.3 shows the plane Z = 30 at one moment in a 3D smoke
simulation on a 200 × 200 × 60 grid. The scattered appearance of the smoke in
Fig. 3.3a results from numerical dissipation, rather than any change in momentum of
the vortex resulting from the effect of viscosity. Figure3.3b shows now the error com-
pensation term reduces the dissipation of the fluid motion and allows characteristic
smoke features to develop over time.

3.1.4 Vortex Advection Based on Vorticity Confinement

Using vortex advection based on vorticity confinement, this section proposes modi-
fied equations for developing a fluid simulation with a continuous vortex.

3.1 Animating Smoke with Dynamic Balance 95

3.1.4.1 Vorticity Confinement

A vorticity confinement term generates forces that sustain a smoke feature such as
a swirling motion. The motion of the smoke is represented by a velocity field u. Let
us denote vorticity as follows:

ω = ∇ × u (3.8)

where ω is the vorticity, which is the axis around which a velocity field spins. It has
x and y components which can be computed as the curl of velocity. We can now
obtain a normalized vector field N:

N = ∇|ω|
|∇|ω|| (3.9)

From Eqs. (3.8) and (3.9), we can determine the direction and magnitude of the
force required to spin a vector field forward through one time step. Then, we denote
the vorticity confinement force as follows:

uc = εh(N × ω) (3.10)

This provides a force which enforces the rolling feature of smoke. The constant ε is
used to control the confinement force.

3.1.4.2 Vortex Advection Scheme

Two important properties of dynamic balance are: (i) It has an advection step with
error compensation; and (ii) it uses vortex advection.

We assume that a vortex advects along a velocity vector field. We describe the
evolution of the smoke feature flow in terms of the vorticity field, rather than in terms
of the velocity field. We separate the vorticity field from the main velocity field and
create a new advection termwhich conserves vorticity. To describe this, we substitute
uc for u in Eq. (3.3).
Then, the advection term associated with uc is

Ac = −(uc · ∇)uc (3.11)

We add Ac to the velocity vector field Av for the advection step, and use this term
to create a new advection term Anew:

Anew = Av + Ac (3.12)

We apply the solution of this equation to the Navier-Stokes equation in a new advec-
tion step, and the modified fluid simulation process becomes:

M ◦ Aρ ◦ P ◦ D ◦ Anew ◦ F

96 3 Smoke

To achieve a dynamic balance of the velocity vector field, we advect the term uc of
Eq. (3.10) along the vector field with error compensation. Since the new simulation
process is still based on the standard fluid flow equation, we can guarantee that this
process is physically stable.

Results from themodified simulation schemeare shown inResults andDiscussion.

3.1.5 Implementation

We will now describe the application of our method to a standard fluid simulation
in which Eqs. (3.1) and (3.2) are implemented using a standard computer graphics
approach [38].

3.1.5.1 Simulation Steps

The simulation process is represented as pseudo-code in Table3.1.
We subdivide space into voxels and define values such as velocity and density in

the center of each voxel. In the first stage, we add external forces such as gravity and
buoyancy to the initial velocity field, then determine the vorticity confinement force,
vc, from the velocity field. This makes the velocity field representing the smoke to
spin. Before we apply the advection step to this vector field, we need to create an
additional vector field which includes error compensation. This involves copying the
vector field and then advecting the substance field along the compensated field, and
using the result to update the vector field on which we are working.

Table 3.1 Pseudo-code for
fluid simulation

Pseudo-code
f ← FORCE(u)
v ← v+ f
vc ← VORTICITY(v)
while (SIMULATING)
{

vnew ← COMPENSATE(v)
vc new ← COMPENSATE(vc)
vnew ← ADVECT(v,vnew)
vc new ← ADVECT(vc,vc new)
v ← vnew
vc ← vc new

}
v ← FORCE(vc)
v ← DIFFUSE(v)
v ← PROJECT(v)
ρ ← ADVECT(v,ρ)
ρ ← PRESERVEMASS(ρ)
return (u)

3.1 Animating Smoke with Dynamic Balance 97

Next, we add a vorticity field to the updated velocity field, which gives us the
vector field to be used in the advection step. This is followed by a diffusion process
which models the effect of viscosity. To get the pressures across the velocity field,
we perform a projection using a Poisson solver and to solve a linear system, we use a
conjugate gradient method [29]. Next, we advect the density field along an updated
velocity field, and finally process that density field to ensure that mass is conserved.

At every time step, our simulator outputs a grid that contains the density, ρ, which
is then used for rendering the smoke. The 2D and 3D simulation results were rendered
by OpenGL and Mental Ray for MAYA.

3.1.6 Results and Discussion

Simulations were implemented in 2D and in 3D using the C programming language.
All the experiments were performed on a Pentium IV CPU 3.2GHz with 1GB RAM
running Windows, and a NVIDIA GeForce4 Ti 4400 graphics card with 128MB of
video RAM.

To simulate the features of smoke, a velocity field was set up proportional to
density and a buoyancy field and a density source were applied as initial conditions.
Figures3.4, 3.5, and 3.6 show the difference made by the error compensation field
under experimental conditions. Simulations are started with short of source to show
the effect of the vortex clearly. Figure3.4 shows results on a 200 × 200 grid gen-
erated using the standard flow equation without a vorticity confinement term. This
simulation took less than 1min. In Fig. 3.4, small-scale smoke features in a viscous
fluid dissipate over time. In Fig. 3.5, the initial conditions are the same as those for
Fig. 3.4, but a vorticity confinement term is added to the velocity field before the
advection step. Figure3.5 shows a better defined swirling motion than Fig. 3.4, but

Fig. 3.4 Simulation without a vorticity confinement term

98 3 Smoke

Fig. 3.5 Simulation with a vorticity confinement term

Fig. 3.6 Simulation with both a vorticity confinement term and vortex advection

the vortex is lost quickly. Indeed, the spinning axis eventually disappears at a position
near the center of the vortex, as can be seen in Fig. 3.5d.

Figure3.6 shows how this problem was resolved using vortex advection. Now
the smoke keeps spinning and motion features become visible near the center of the
smoke. Notice that the smoke in Fig. 3.6d remains closer to the center of the vortex
than in Fig. 3.5d. Even though Fig. 3.5c shows more swirling than Fig. 3.6c, it does
not persist.

Figure3.7 shows frames from another simulation on a 200× 200 grid. Turbulent
interaction between the smoke and solid objects creates a swirling motion. The top
row of images was generated using an advection step with a vorticity confinement
force and vortex advection disabled. This seems to be close to a natural behavior
with scattering, but our aim is a rolling motion near the center of the vortex without
scattering. The bottom row of images was generated using vortex advection based
on a vorticity confinement force. This shows the properties of the smoke being
maintained at a position near the center of the vortex. As the confinement force ε

3.1 Animating Smoke with Dynamic Balance 99

Fig. 3.7 Smoke motion without (a) and with (b) vortex advection, created using a velocity field
with error compensation. The separated vortex of a shows rolling motion which becomes scattered;
but in b the center of the vortex is retained

increases, the difference between the two cases become clear, as the top row shows
heavy scattering.

Figures3.8 and 3.9 show smoke motion with an advection step with error com-
pensation. These frames demonstrate how smoke, simulated on a 200 × 200 × 60
grid using our method, retains its properties near the center of the vortex.

3.1.7 Conclusion

This section has proposed a newmethod for persistentmodeling of the unique features
of smoke such as vortices. Using the method, we have generated animations of
rolling of smoke without scattering, as shown in Figs. 3.8 and 3.9. Many interesting
simulations of real smoke effects [39] could be created using this technique. It will be
effective for fluid simulation, in which there is an interaction between an object and

100 3 Smoke

Fig. 3.8 Smoke motion with vortex advection and error compensation

the fluid, and could also be used for liquids or multiphase fluids [15, 18]. Synergy
with the particle method can be explored to preserve properties such as vorticity and
density. And also, an animator for advanced effects with a GUI could be provided.

3.2 Procedural Synthesis Using Vortex Particle Method for
Fluid Simulation

Abstract This section proposes a fast and effective technique to improve subgrid
visual details of the grid based fluid simulation. It procedurally synthesizes the flow
fields coming from the incompressible Navier-Stokes solver and the vorticity fields
generated by vortex particlemethod for subgrid turbulence. This enables to efficiently
animate smoke which is highly turbulent and swirling with small-scale details. Since
this technique does not solve the linear system in high-resolution grids, it can perform
fluid simulation more rapidly. The influence of turbulent and swirling effect to the
fluid flow can be easily estimated.

3.2 Procedural Synthesis Using Vortex Particle Method for Fluid Simulation 101

Fig. 3.9 Rising smoke swirling over a sphere, while the vortex is preserved

3.2.1 Introduction

As the use of computer graphics is increasing in movies, commercials, and other
media, the work of animating fluids such as explosion and fire has become an impor-
tant process in that area.

Recently, fluid dynamics technologies are applied to a range of special effects, yet
achieving precise calculations is still a time-consuming process, which is why vari-
ous technologies are being studied for better balance between productivity and the
reality of graphics. Therefore, in the area of graphics, enhancing productivity while
maintaining an adequate level of visual quality—even at the modest expense of phys-
ical/mathematical accuracy—presents a challenge to fluid animation technologies.

While the vortex particle method [33] is useful for generating turbulent effects, its
drawback is that the grid is too coarse to accommodate the vorticity of all particles.
Although it is possible to use high-resolution grids in simulation, it would require
much more time and memory capacity. Recently introduced techniques [23, 26, 32]
have improved details in grids by using noise.

This section proposes a new technique for improving details in grids in fluid
simulation. This technique depicts the uncomplicated motion of fluid through flow
fields calculated by solving the incompressibleNavier-Stokes equations, and detailed
mo tion of fluid through vorticity field calculated by the vortex particle method. This

102 3 Smoke

technique does not solve the linear system in high-resolution grids, thus it performs
large-scale grid simulation efficiently. Another benefit is that it generates turbulent
effects of explosion or rough motion of smoke as the vorticity of vortex particles is
transferred to the high-resolution grid.

This approach has the following characteristics:

• A degree of resolution equivalent to the result of simulation using the (k × n)3

grid is achieved by solving fluid equations of the n3 grid in a three-dimensional
space. k is a constant making desired resolution.

• Since the result can be quickly drawn through low-resolution simulation, if the
result is satisfactory, a high-resolution result can be obtained without running
simulation with adjusted parameters.

• Highly turbulent and swirling effects can be achieved that cannot be generated
easily by using noise for simulating explosion, smoke, etc. since it is hard to
anticipate how they will affect flow when using noise.

• Vortex particle carries the vorticity calculated from low-resolution and high-
resolution vorticity field is created using the vorticity. This field uses the informa-
tion from the base simulation.

• We can easily control the size of turbulence depending on the frequency by adjust-
ing the particle radius.

3.2.2 Previous Work

Stam and Fiume [37] proposed a method to depict gaseous phenomena through the
ambient turbulence that is used to add new eddies by noise. Smoke simulation using
the three-dimensional Navier-Stokes equations began with Foster and Metaxas [13].
Stam [38] presented a Semi-Lagrangian advection model which allows stable sim-
ulation with large time step. Fedkiw et al. [7] introduced a simulation model for
generating a vorticity effect which is hard to depict in coarse grids. This vorticity
confinement method reduced the loss of small-scale details and increased the amount
of swirling motion. Felici and Drela [9–11] coupled an Eulerian and a Lagrangian
Solver and tried to reduce numerical diffusion. Selle et al. [33] presented vortex par-
ticle method which allowed effective simulation by incorporating localized vorticity
confinement in grid. It directly computes the velocity for particles by trilinear inter-
polation. It reduces the numerical loss because each vortex particle stores a vorticity
value. But it is slow for high-resolution simulation. And Park and Kim [28] pre-
sented a Lagrangian method for gaseous phenomena simulation based on the vortex
method. Hong and Kim [17] proposed the method for vortex advection based on
vorticity confinement. Angelidis et al. [3] used the vortex filament methods based
on the vorticity formulation of the Navier-Stokes equations. They defined a vorticity
preserving flow field around a set of vortex primitives.

Previous research results were only useful in small-scale simulation due to the
high computational cost. Although the use of fluid technologies is increasing, the

3.2 Procedural Synthesis Using Vortex Particle Method for Fluid Simulation 103

improvement of computing environment still falls short of the demand of developers,
which has led to a number of attempts to find ways to enhance the quality as well as
reality of simulation. Neyret [27] increased the details of fluid by advecting texture to
the velocity field. Rasmussen et al. [30] proposed an efficient method for large-scale
fluid simulation, and Losasso et al. [24] introduced a method to reduce simulation
time by limiting the refinement to the fluid surface part of the grid using octree
data structure instead of using uniform grid. Another approach is to employ error
correction schemes such as BFECC [21] or a Mac-Cormack method [34], or less
dissipative advection schemes such as USCIP [22], to reduce the diffusion in the
numerical method directly.

Recently, methods for adding further details in subgrid by using noise have been
introduced. These methods are similar to our method’s schematic outline, adding
the small-scaled detail to the upsampled field gained by interpolation in coarse-grid
simulation for making a new velocity field. Kim et al. [23] used wavelet method and
synthesized missing turbulent flow components with band-limited wavelet noise.
This helps to show small-scaled detail in a coarse grid. Schechter and Bridson [32]
presented subgrid turbulence evolution model for fluid simulation. They tracked
bands of turbulent energy using a simple linear model and created the turbulent
velocity using flow noise. They added a predictor step to the usual time splitting of
the incompressible Euler equation and corrected the additional vorticity dissipation
due to time splitting of the pressure and advection. Narain et al. [26] introduced
a technique coupling a procedural turbulence model with a numerical fluid solver.
They used an energy function and a Lagrangian approach to advect noise when
synthesizing an incompressible turbulent velocity field. They applied the method to
simulation of liquids with free surfaces.

Turbulence can be edited easily using these methods because the turbulence is
independent from the large-scale flow and able to be added like a post process. But,
in our method, we do not include a noise and energy function but vortex particle
method, i.e., vortex particle carries the vorticity calculated from low-resolution and
the high-resolution vorticity field is created using the vorticity. This field uses the
information from the base simulation while the noise addition is unrelated to the base
simulation. In addition, our method is easy to implement and able to show highly
turbulent effects such as an explosion or rocket smoke that is hard to be generated
from a noise function.

3.2.3 High-Resolution Fluid Synthesis

This section discusses the high-resolution method of synthesizing vortex particles in
fluid simulation (Fig. 3.10). The notation used is as follows. Bold denotes a vector,
and nonbold represents a scalar. Parameters used in low-resolution simulation are
marked with lower-case letters and parameters used in high-resolution simulation
are marked with upper-case letters, while x represents the location. I (u,X) is the

104 3 Smoke

Fig. 3.10 Overview of our method

function for interpolation of velocity field u by high-resolution location X. A(U, D)

is the function for advection of density D by U.

3.2.3.1 Base Fluid Simulation

We simulate the motion of fluid by solving the incompressible Navier-Stokes equa-
tions commonly used to animate fluid in graphics. The Navier-Stokes equations
describing inviscid incompressible fluid motion are

ut + (u · ∇)u + ∇ p

ρ
= f (3.13)

∇ · u = 0, (3.14)

whereu = (u, v,w) is thefluid’s velocity, p is the pressure,ρ is the density, and f is the
external forces such as gravity and vorticity confinement. Since upsampled velocity
field depends on that of base simulation, using a vorticity confinement results inmore
dynamic flow than not using it. Since numerical methods of solving Eqs. (3.13) and
(3.14) are well known, you can refer to [7, 38] for details.

3.2 Procedural Synthesis Using Vortex Particle Method for Fluid Simulation 105

3.2.3.2 Saving Grid Vorticity to Vortex Particle

We use vortex particle method in this section. The Navier-Stokes equations can be
put into vorticity form by taking the curl of Eq. (3.13) to obtain

ωt + (u · ∇)ω − (ω · ∇)u = μ∇2ω + ∇ × f (3.15)

where ω = ∇ ×u, ω is vorticity. The vorticity advection term (u ·∇)ω and the vortex
stretching term (ω · ∇)u are calculated and saved in the particles, thereby preserving
the magnitude of vorticity in each step. We ignore the μ∇2ω and ∇ × f terms like
Selle et al. [33].

3.2.3.3 Generating Vorticity Field

The vorticity of vortex particles obtained in Sect. 3.2.3.2 is transferred to high-
resolution vorticity field Uvortici t y which is different from Selle et al. [33]. We get
the vorticity of a particle, ω∗

p(X) = ξp(X − Xp)ωp by using the distribution kernel,
ξp(X − Xp) which is a function of the distance between the particle position and
the high-resolution grid point. Then we calculate the sum of all contributions from
all particles by the normalized location vector from grid point to vortex particle,
Np(X) = Xp−X

||Xp−X||and the confinement force, Fp(X) = εp(Np × ω∗
p) to update the

vorticity field element which is in the influence of the particles.
Discussion: The vorticity field generated by above method is not divergence-free.

To make vorticity field divergence-free, we can calculate curl of particle’s vorticity
taken by a ramp function instead of using (Np × ω∗

p). Our result came from the
method of Sect. 3.2.3.3. The nondivergence-free status in vorticity field at subgrid
level is ignorable since the vorticity field is newly created at each step instead of
being advected. Our result shows little difference as compared with divergence-free
case and it operates a little faster.

3.2.3.4 Blending Vorticity Field with Upsampled Velocity Field

We create a new field Uadvection for the advection of density D, as follows:

Uadvection(X, t) = kUvorticity(X, t) + Uinterpolation(X, t) (3.16)

where k is a constant that controls influence of the vorticity field and Uinterpolation =
I (u,X). We use k = 1.0 in our experiment and simple linear interpolation for
Uinterpolation = I (u,X).

106 3 Smoke

Pseudo-code
1 Advection(u)
2 Vorcity Confinement(u)
3 Projection(u)
4 Uinter polation = I (u,X)

5 Uvortici t y = Vortex Particle Method(u)
6 Uadvection = kUvortici t y + Uinter polation
7 A(Uadvection,D)

3.2.4 Examples

The following kernel function [25] is used to generate vorticity field from vortex
particles.

ξp(X − Xp) =
{
(r2 − (X − Xp)

2)3 0 ≤ (X − Xp) ≤ r
0 otherwise

(3.17)

where r is the radius of the particles, which determines the influence range when the
force of the vortex particle is transferred to Uvorticity. A particle radius is definedlong
enough to cover about two to three U cells.

Figure3.11 shows smoke rising from a spherical density source due to buoyancy
forces. In this example, vortex particles are randomly seeded where the density
is sourced. Vortex particle method (approximately 300 vortex particles for low-
resolution field and 20,000 vortex particles for high-resolution field, respectively)
and Vorticity Confinement were used for base simulation and the BFECC advection
method was used for density and velocity advection. Figures3.12 and 3.13 show the
comparison between low-resolution and high-resolution simulations.

Fig. 3.11 Rising smoke: Simulation sequence of synthesizing a 200 × 600 × 200 resolution from
a 50 × 150 × 50 resolution by adding detail using a procedural vortex particle method

3.2 Procedural Synthesis Using Vortex Particle Method for Fluid Simulation 107

Fig. 3.12 2D simulation comparison: the low-resolution simulation (30× 90) is shown in the left.
An effective resolution of 480 × 1440 using our method is shown in the right

This method is prominently faster than an equivalent full-resolution simulation
and performs around seven times faster than the full solver as shown in Table3.2.
All the experiments were performed on an Intel Quad Core CPU 2.4GHz processor
with 2GB RAM.

Limitations: This method has following limitations. As we calculate the sum of
all contributions from every vortex particle when generating vorticity field, vortic-
ity force is added to velocity field in proportion to the number of vortex particles
gathering together in the particle radius. And then strong vorticity force can cause
unnaturalness in fluid’s motion. This method cannot reproduce physically correct
high-resolution simulation, and its boundary condition depends on low resolution.
So there could be a velocity going into an obstacle at subgrid level.

Table 3.2 Comparison of computation time: Performance comparison of our method with the
traditional Navier-Stokes solver needed to generate the same visual detail

Our method Traditional NS solver

Resolultion 120 × 360 × 120 120 × 360 × 120

Time per frame 9.2 s 59.0 s

Our method used the result of base simulation (30 × 90 × 30, 0.58 s per frame)

108 3 Smoke

Fig. 3.13 Explosion-like
effect: The low-resolution
simulation (50 × 100 × 50)
is shown in the left half of
the image. The high-
resolution simulation
(200 × 400 × 200) is in the
right

3.2.5 Conclusions and Future Work

This section proposed a synthesizingmethod using vortex particlemethod to improve
subgrid visuals of fluid simulation. We modified the technique to apply the vortex
particlemethod instead of using a noise function.We created flowfield by solving the
incompressible Navier-Stokes equations. It is upsampled through linear interpolation
and blended with vorticity field which is calculated by vortex particle method. High-
resolution results were achieved by advecting the density with using the calculated
velocity field, and made it possible to simulate highly turbulent swirling motion of
fluid.

We used vortex particle method. Compared with previous noise based work [23,
26], our work can show more subgrid details with high turbulences and swirls, and
the generation of subgrid details can be expected more easily. Overall process of ours
and theirs is similar but we have different approach in generating turbulence, so the
computational time of our work is a little different from that of their work, and the
computational time depends on the number of vortex particles and the radius of the
particles.

In the future, our method could be applied to animation of liquids with free
surfaces and make proper boundary conditions at the subgrid level for more precise
simulation.

References 109

References

1. Abbott MB (1989) Computational fluid dynamics. Wiley, New York
2. Angelidis A, Neyret F (2005) Simulation of smoke based on vortex filament primitives. In:

Eurographics/ACM SIGGRAPH symposium on computer animation, pp 87–96
3. Angelidis A, Neyret F, Singh K, Nowrouzezahrai D (2006) A controllable, fast and stable basis

for vortex based smoke simulation. In: Eurographics/SIGGRAPH symposium on computer
animation, pp 25–32

4. Bruger A, Gustafsson B, Lotstedt P, Nilsson J (2005) High-order accurate solution of the
incompressible Navier-Stokes equations. J Comput Phys 203(1):49–71

5. Dupont TF, LiuY (2003) Back and forth error compensation and correctionmethods for remov-
ing errors induced by uneven gradients of the level set function. J Comput Phys 190(1):311–324

6. Fattal R, Lischinski D (2004) Target-driven smoke animation. ACM Trans Graph 23(3):
441–448

7. Fedkiw R, Stam J,Wann Jensen H (2001) Visual simulation of smoke. In: Proceedings of ACM
SIGGRAPH, pp 15–22

8. Feldman BE, O’Brien JF, Arikan O (2003) Animating suspended particle explosions. ACM
Trans Graph 22(3):708–715

9. Felici HM, Drela M (1990) Eulerian/Lagrangian solution of 3-d rotational flows. In: AIAA
21st fluid dynamics, plasma dynamics and lasers conference, 12 June 1990

10. Felici HM, Drela M (1993) Reduction of numerical diffusion in three-dimensional vortical
flows using a coupled Eulerian/Lagrangian solution procedure. In: AIAA 24th fluid dynamics
conference, 12 July 1993

11. Felici HM, Drela M (1995) An Eulerian/Lagrangian coupling procedure for three-dimensional
vortical flows. AIAA J 33(1):48–55

12. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process
58(5):471–483

13. Foster N, Metaxas D (1997) Modeling the motion of a hot, turbulent gas. In: Proceedings of
SIGGRAPH, pp 181–188

14. Griebel M, Dornseifer T, Neunhoffer T (1988) Numerical simulation in fluid dynamics: a
practical introduction. Cambridge University Press, Cambridge

15. Hong J-M, Kim C-H (2003) Animation of bubbles in liquid, computer graphics forum. In:
Proceedings of Eurographics 2003, vol 22(3), pp 253–262, September 2003

16. Hong J-M, Kim C-H (2004) Controlling fluid animation with geometric potential. Comput
Animat Virtual Worlds 15(3–4):147–157

17. Hong J-K, Kim C-H (2005) Animating smoke with dynamic balance: natural phenomena and
special effects. Comput Animat Virtual Worlds 16(3–4):405–414

18. Hong J-M, Kim C-H (2005) Discontinuous fluids. ACM Trans Graph 24(3):915–920
19. Johnston H, Liu J-G (2004) Accurate, stable, and efficient Navier-Stokes solvers based on

explicit treatment of the pressure term. J Comput Phys 199(1):221–259
20. Kim B-M, Liu Y, Llamas I, Rossignac J (2005) Flowfixer: using BFECC for fluid simulation.

In: Eurographics workshop on natural phenomena, pp 51–56
21. Kim B, Liu Y, Llamas I, Rossignac J (2007) Advections with significantly reduced dissipation

and diffusion. IEEE Trans Vis Comput Graph 13(1):135–144
22. Kim D, Song O-Y, Ko H-S (2008) A semi-Lagrangian CIP fluid solver without dimensional

splitting. Comput Graph Forum 27(2):467–475
23. Kim T, Thurey N, James D, Gross M (2008) Wavelet turbulence for fluid simulation. ACM

Trans Graph 27(3):1–6
24. Losasso F, Gibou F, FedkiwR (2004) Simulatingwater and smokewith an octree data structure.

ACM Trans Graph 23(3):457–462
25. Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applica-

tions. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer
animation, pp 154–159

110 3 Smoke

26. Narain R, Sewall J, Carlson M, Lin M (2008) Fast animation of turbulence using energy
transport and procedural synthesis. ACM Trans Graph 27(5):1–8

27. Neyret F (2003) Advected textures. In: Proceedings of Eurographics/SIGGRAPH symposium
on computer animation, pp 147–153

28. Park SI, Kim MJ (2005) Vortex fluid for gaseous phenomena. In: Eurographics/SIGGRAPH
symposium on computer animation, pp 261–270

29. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1988) Numerical recipes in C. Cam-
bridge University Press, Cambridge

30. Rasmussen N, Nguyen D, Geiger W, Fedkiw R (2003) Smoke simulation for large scale phe-
nomena. ACM Trans Graph 22(3):703–707

31. Saffman PG (1992) Vortex dynamics. Cambridge University Press, Cambridge
32. Schechter H, Bridson R (2008) Evolving sub-grid turbulence for smoke animation. In: Euro-

graphics/SIGGRAPH symposium on computer animation, pp 1–7
33. Selle A, Rasmussen N, Fedkiw R (2005) A vortex particle method for smoke, water and

explosions. ACM Trans Graph 24(3):910–914
34. Selle A, Fedkiw R, Kim B, Liu Y, Rossignac J (2008) An unconditionally stable Maccormack

method. J Sci Comput 35(2–3):350–371
35. Shi L, Yu Y (2005) Controllable smoke animation with guiding objects. ACM Trans Graph

24(1):140–164
36. Song O-Y, Shin H-C, Ko H-S (2005) Stable but non-dissipative water. ACM Trans Graph

24(1):81–97
37. Stam J, Fiume E (1993) Turbulent wind fields for gaseous phenomena. In: Proceedings of

SIGGRAPH, pp 369–376
38. Stam J, Stable fluids. In: Proceedings of SIGGRAPH, vol 99, pp 121–128
39. Van Dyke M (1982) An album of fluid motion. The Parabolic Press, California

Chapter 4
Fire and Ice

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth
and Paper

Abstract The burning of a sheet of cellulose-based material, such as paper or cloth,
involves uneven shrinkage which causes wrinkling. In this section, we simulate this
geometrically complicated phenomenon by modeling the effects of heat transfer,
shrinkage, and partial ablation on a thin shell. A strain limitation technique is applied
to a two-layer structure of springs arranged as a body-centered square. Although this
structure is overconstrained, convergence can be achieved using a new successive
fast projection method. We also remesh the shells dynamically to deal with the
topological changes that occur as regions burn away.

4.1.1 Introduction

Heat changes the shape of solid objects by altering thematerial’s physical and chemi-
cal state and properties.During combustion, a portion ofmaterial rapidly decomposes
into gases. The residual solid is an ash which has different mass and density, caus-
ing shrinkage; as a result, the shell bends, crumples and tears, generating distinctive
wrinkles.

Shells made of common combustible materials, such as cloth and paper, rarely
stretch or compress in the plane of the shell, but easily bend. This property is called
developability. When compressive forces are applied in the plane of a thin shell, it
buckles but maintains its surface area. As a shell burns, mass is not lost evenly and
the differential shrinkage in adjacent regions causes stresses, even though there is no
external force. But the effect is the same: the shell curves to reach equilibrium.

Recent research on the simulation of burning shells has attempted to capture
these complicated deformations. Losasso et al. [1] simulated melting and burning
objects by tracing the changing surface of the remaining solid region. Their results

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_4

111

112 4 Fire and Ice

are only plausible superficially, because the deformations of burnt regions caused by
shrinkage of the solid are not incorporated into their simulation. Later, Melek and
Keyser [2] and Liu et al. [3] introduced deformation techniques to bend and crumple
thin shells. However, their free-form deformation (FFD)method and the mass-spring
systems produce simply curved shapes without the fine detail seen in reality, because
these approaches do not fully enforce the inextensibility of thin shells.

This section proposes a method of simulating the bending, crumpling, and wrin-
kling of burning shells by integrating simulations of heat transfer and the structure
of developable surface (Fig. 4.1). In order to produce fine wrinkles, it is necessary
to model the internal dynamics of thin shells accurately. Inspired by the linear beam

Fig. 4.1 Simulation of burning paper. Simulated temperature is higher than the ignition point, and
the rate of mass loss is weighted using the texture shown. As the mass of the paper falls, the paper
crumples and wrinkles

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 113

geometry which is used to explain the bending of shells, this section proposes a
double-layer shell model with finite thickness based on a body-centered square con-
figuration of springs. This structure enables us to control the stretching and bending
of thin shells by using the springs to limit the strain.

This requires a robust method for determining the extensions of a network of
springs. The fast projection method is a powerful approach to limiting strain which
is based on constrained Lagrangian mechanics. However, when applied to the shell
structure above, fast projection diverges because the structure is overly constrained
and the gradient of the spring constraints is linearly dependent. To avoid this, we
break up the constraints into sets to satisfy convergence conditions and which we
can project successively.

The extension of each spring is determined by considering the reduction in mass
and density which occurs in regions which are burning because the temperature
exceeds the ignition point. Different rates between adjacent regions, and the two
layers of our shell model, buckle the shell. This approach ismore physically plausible
and produces more satisfyingly complicated wrinkles than existing methods, which
simply relate bending to differences in temperature. To support this approach, this
section also provides a remeshing technique to account for the topological changes
produced by burning.

We will review related works in Sect. 4.1.2. Section4.1.3 introduces the double-
layered shell configuration. Section4.1.4 presents the overview of heat transfer sim-
ulation process that is used to model shell deformation. Sections4.1.5, 4.1.6, and
4.1.7 successively describe this heat transfer, the changes of material properties that
occur during combustion, and the shell dynamics, respectively. Simulation results,
details of the implementations, and a discussion of the limitations of our approach
follow in Sect. 4.1.8. Finally, we conclude in Sect. 4.1.9.

4.1.2 Related Work

Focusing on the generation of wrinkles in burning shells, we will briefly reviewwork
on the deformation of solid objects related to heat transfer and developable shells.

Terzopoulos et al. [4] adopted particle-spring systems to discretize 3D volumes
and model phase changes in melting solids by controlling the stiffness of springs.
Carlson et al. [5] simulated the melting of solids, but they adjusted viscosity within a
fluid dynamics simulation. Their grid-based representation straightforwardly handles
fluid flows and topological changes. Losasso et al. [1] detected the boundary of the
remaining solid in burning or melting by embedding these solids within a body-
centered cubic lattice and then extracting the boundary of the solid by evaluating
level-set values at lattice points.

Melek and Keyser [2] looked at the bending and crumpling of a burning object
during combustion, and presented a deformation method to simulate it in real time.
The burning object is encompassed by a low-resolution grid which is subjected
to free-form deformations. Liu et al. [3] also deformed thin shells indirectly by

114 4 Fire and Ice

modifying an enclosing lattice. However, theymodeled the crumpling forces induced
by differences in temperature in lattice points on either side of the shell instead of
using geometric deformation.

A realistic simulation of thin shells is feasible if its internal dynamics can be
accurately modeled. Early seminal works on cloth simulation [6, 7] regarded thin
shells as elastic, but an elastic shell shrinks and loses detail when compressive forces
are applied in its plane. Moreover, displacements from the rest shape cause an elastic
shell to produce large restoring forces which reduce numerical stability. The more
accurate implicit [6], semi-implicit [8], and BDF2 [9] integration methods have been
proposed to improve convergence. Nevertheless, methods based on potential energy
still produce unrealistically smooth results which motivate more aggressive methods
of strain limitation.

Provot [10] limited the deformation rate of springs to 10% of their rest lengths,
and shrank locally elongated springs iteratively until they arewithin this limit.Müller
et al. [11] enforced length constraints on springs by projecting two points into the
line of action of a spring until they reach valid positions. Constraint-based methods
have been successfully used to simulate quasi-inextensible cloth by enforcing global
constraints. Enforcing implicit constraints [12] provide more stable convergence and
allows the use of a larger time-step than the explicit method. Fast projection [13] is
a linearized implicit integration which converges much more quickly than implicit
methods, but still keeps strain under 0.1%. English and Bridson [14] adopted fast
projection and BDF2 to maintain the rest lengths of edges in a new nonconform-
ing discretization which prevents spurious bending forces which imparts spurious
stiffness to shells.

An explicit model of bending is indispensable in the realistic simulation of wrin-
kles in thin shells. Early cloth simulations [6, 8, 15] simply controlled bending
forces in terms of the angles between adjacent faces. Thomaszweski andWacker [16]
introduced a physically more accurate nonlinear bending model which accounts for
curvatures. Later, the linear [17], quadratic [18], and cubic polynomial [19] approx-
imate bending models were introduced to improve performance and controllability.
The bending models of Grinspun et al. [15] and Bridson et al. [8] use nonzero rest
angles to preserve the curved and wrinkled rest shape of cloth while responding
to collisions. The constraint-based approach [20] introduces hard angle constraints
which allow a shell with sharp creases to be modeled.

4.1.3 The Shell Configuration

Existing cloth simulations use independent stretching and bending models because
thin shells are developable. However, the stretching forces caused by uneven shrink-
age in the plane of shell generate wrinkles, motivating us to control all internal
dynamics using a unified model.

This section first clarifies the principle of bending with the linear beam element,
and then explains how both bending and stretching of thin shells can be managed by

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 115

in-plane tensile and compressive forces. Then it proposes a particle-spring system in
which a body-centered square defines two layers and finite thickness, based on the
beam model.

4.1.3.1 The Linear Beam Element

Thomaszewski and Wacker [16] explained the bending of thin shells in terms of
the geometry of a simple beam (Fig. 4.2a) which corresponds to the classical beam
element. This beam geometry has a neutral axis (green lines), top and bottom layers
(blue lines), and a finite thickness spanned by normal lines (red lines). Based on the
Kirchhoff–Love assumptions, the lengths of the neutral axis and the normal lines do
not change, whereas the top and bottom layers stretch or shrink in response to the
tensile and compressive stresses which occur when the neutral axis of the loaded
geometry assumes a curved shape (Fig. 4.2c).

Applying the beam geometry to a shell, we see that the restoring forces in the
plane of the shell correspond to bending forces exerted on the neutral axis of a beam.
Stretched or compressed layers tend to be returned to their rest states by the restoring
forces, the neutral axis restores flat. If a beam is extremely stiff, it tends to remain
rigid, whereas flexible material such as cloth has a low stiffness. Therefore, it is
possible to control inextensibility and bending stiffness by applying only stretching
forces to the neutral axis and the top layer (we can disregard the bottom layer, since
it is dependent on the top layer).

A combinedmodel which accounts for both stretching and bending is more appro-
priate for generating realistic wrinkles on thin shells for two reasons: First, main-
taining the rest curvature of a stiff shell or forcing that shell to bend require large
forces which make the simulation unstable. The implicit method [6] offers a solu-
tion to this problem, but implicit integration of a nonlinear bending model is tricky
because the gradient of the formula is difficult to calculate. Second, the bending of
thin shells during burning is not caused by differences in temperature [2, 3], but by
shrinkage caused by changes of mass and density. The use of bending model requires
an additional formula to relate the amount of shrinkage to the curvature of the shell,
whereas our model bends as implicitly one layer shrinks.

Fig. 4.2 a The linear beam geometry, and b and our BCS shell, shown diagrammatically in 2D.
The two layers and the normals connecting them correspond to the blue, green, and red springs,
respectively. When the top layer shrinks and the blue springs contract, both c the beam geometry
and d our shell curve

116 4 Fire and Ice

A thin shell with two layers is not an approach that has been generally applied to
cloth simulation, but it has already been used in [2, 3] to model burning object. A
thin shell can be embedded in a 3D lattice and then the lattice is deformed in response
to differences in temperature between adjacent nodes in the structure. This approach
involves the assumption that the bending of thin shells is caused by the temperature
difference between the top and bottom layers.

4.1.3.2 A Double-Layered Shell Based on the Body-Centered Square

The body-centered square (BCS) is two-dimensional analog of the BCC lattice,
which is commonly found in stable molecular or crystal structures. Its uniform point
distribution, symmetry, and stability have caused it to be used for many applications
in computer graphics, including tetrahedralization [21], 3D volume deformations
[21], and shell simulations [1].

The BCS consists of a set of rectangular cells, each of which has a lattice point at
its center and four more points at its corners (Fig. 4.3a). We can create four types of
spring which connect the lattice and corner points, and we can associate each type
of spring with a color: Red, green, blue, and yellow (Fig. 4.3c), following Molino
et al. [21]. The green and blue orthogonal springs, SG and SB , correspond to the
top and bottom surfaces of the linear beam model; the red intermediate springs, SR ,
stitch the two layers together diagonally to maintain adjacency and thickness, and
the yellow springs, SY , link the two diagonal corner points of a unit cell to control
shearing. Since the lattice points and corner points are in the same plane, the resulting
spring structure is still a 2Dmanifoldmesh (Fig. 4.3b). Therefore, we offset the lattice
points from the plane of the rest shell to create a shell of finite thickness (Fig. 4.3d).

Fig. 4.3 The double-layer shell configuration with thickness based on the body-centered square.
The structure consists of four independent quadrilateral meshes: red, blue, green, and yellow

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 117

All the springs are used in modeling the dynamics of the shell, but only the
quadrilateral mesh of blue springs is required for rendering. This mesh can easily be
converted as an isotropic triangular mesh. However, because our shell has thickness,
the lattice points are no longer in the same plane as the corner points. Therefore,
we replace each lattice point with a virtual center point, which is placed at the
average position of the four corner points, and update its position after computing the
dynamics of the shell. The resulting triangular mesh is used for collision detections
as well as rendering.

4.1.4 Simulation Overview

We construct a particle-spring system using the body-centered square structure.
A shell consists of a set of particles P, and four sets of springs SR , SG , SB , and
SY . A particle pi has physical attributes, including a position xi , a velocity vi , a
mass mi , and a temperature Ti at its position. A spring s j connects two end particles
p0 and p1. The length l of a spring in the rest state is called the target length.

At each time-step n, the attributes of particles and springs are updated in the
following order:

1. The temperatures Tn of particles are determined by simulating the heat transfer.
2. The masses mn of particles at temperatures higher than the ignition point are

reduced.
3. The particle-spring structure and the rendering mesh are remeshed to account for

the deleted particles and springs.
4. The positions xn and velocity vn of particles are determined by simulating the

shell dynamics and interactions with the environment.

4.1.5 Heat Transfer

A burning shell receives heat from its environment by convection and radiation,
produces its own heat through combustion, and the heat is conducted through and
along the shell. Incorporating fire simulations into our system could enhance the
realism of burning scenes, since changing flame shapes produce natural variations in
temperature across burning shells. However, we use simpler external heat sources,
such as heat balls (Figs. 4.1 and 4.10) and heat textures (Fig. 4.4). We express the
change in temperature produced by these heat sources as Text . Additionally, when
the temperature of particles exceeds the ignition point, the temperature rises quickly
due to the reduced mass and the ratio of heat to mass, μ. As a result of all these, the
temperature of the particles can be expressed as follows:

Tn = Tn−1 + Text + ηΔmn−1. (4.1)

118 4 Fire and Ice

Fig. 4.4 Comparisons of the results of various burning effects when a very hot sphere passes across
thin shells: a boundary change only; b shrinkage; c boundary change and shrinkage; and d using a
texture to adjust the rate of mass loss

We also simulate the conduction of heat over the shell. Physically, accurate
diffusion can be obtained by solving the heat equation,

∂Tn

∂t
= α∇2, (4.2)

where α is thermal diffusivity.
To solve the heat equation for our particle-spring structure, we use the method of

Desbrun et al. [22], which approximates the Laplacian by umbrella operators. Since
the spring lengths in our model are not identical and are changed by burning, we
need to consider them as parameters in the heat equation. We use a scale-dependent
umbrella operator which weights the Laplacian by the inverse of the distance dij

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 119

between two particles pi and p j ,

L(xi) = 2

E

∑
j∈N1(i)

x j − xi

|dij| , where E =
∑

j∈N1(i)

|dij|, (4.3)

and N1(i) are the 1-ring neighbors of particle i . This enables the uniform transfer
of heat across irregular meshes. By using the implicit backward Euler method, we
can have longer time-steps and higher thermal diffusivity, α, in a stable simulation
of heat diffusion. Best of all, the diffusion of heat is unrelated to the structure of
the shell; whereas, the explicit method can only transfer heat from a particle to its
neighbors.

4.1.6 Adjusting Target Lengths and Remeshing

A burning shell shrinks and the boundary of the remaining regions changes. We
model this phenomenon by shortening springs and updating the connectivity of the
particle-spring system depending on the mass change.

During combustion, the initial mass minit
i of a particle i decreases by chemical

processes when the temperature T n
i is higher than the ignition point T ignition. The

reduced mass of the particle at time-step n can be expressed as follows:

Δmn
i = −μhminit

i (T n
i − T ignition), (4.4)

where μ is the rate at which the mass decreases.
The mass at which a particle starts to disappear is mloss, and mmin as the minimum

mass that a particle can have. When mloss is close to minit
i , then the shell burns out

quickly; but if mloss is less than mmin, the shell wrinkles but remains intact. If the
initial masses of two particles p0 and p1 connected by a spring j are m0 and m1, and
their relative masses during burning are m′

0 = m0 − mloss and m′
1 = m0 − mloss,

then we can clarify the states of their connecting spring as follows:

1. Shrunk: m′
0 ≥ 0 and m′

1 ≥ 0
2. Partly burnt: m′

0m′
1 < 0

3. Burnt: m′
0 < 0 and m′

1 < 0 .

The shrinkage of a spring is proportional to the change in mass and density of
the two particles which it connects. Since volume is equal to mass over density, the
volume of a particle pi changes from minit

i /ρinit
i to mi/ρi , where ρinit

i and ρi are the
densities of the initial and burnt material. We can now calculate the proportional loss
in volume of the ratio of a particle υi as follows:

υi = mi/ρi

minit
i /ρinit

i

(0 ≤ υi ≤ 1). (4.5)

120 4 Fire and Ice

If the proportional loss in volume of the two particles at the ends of spring j is υ0
and υ1, and l initj is the initial length, of the spring, then its new target length l j is
determined as follows:

l j = lrestj (υ0 + υ1)/2. (4.6)

When particles are completely burnt out (m′
i < 0), they can be removed from

the structure, and then we remesh the particle-spring system. Since the abrupt disap-
pearance of particles would lead to aliasing during the rendering of our lattice-based
shell, we interpolate smoothly varying boundaries for the remaining regions using the
technique proposed by Losasso et al. [1]: Level-set values are maintained at lattice
points and the structure is remeshed using marching triangles (Fig. 4.5).

A partly burnt spring (m′
0m′

1 < 0) is divided into burnt and unburnt regions by an
intermediate point xmid, determined by linear interpolation between x0 and x1:

xmid = x0(1 − t) + x1t, where t = m′
0

m′
0 − m′

1
. (4.7)

Figure4.6 presents five examples which show how the state of a spring is changed
by the masses of two particles that it converts. In cases (a) and (b), the spring only
shrinks since both m′

0 and m′
1 are positive, and the proportional changes in length

are 87.5 and 62.5%. The springs in (c) and (d) have already been shorten as much as
57.5 and 50% of their initial lengths, because they are partly burnt. In case (e), the
spring is burnt out.

Fig. 4.5 Four cases of a triangle in marching triangles, depending on the unburnt mass

Fig. 4.6 The states of springs with respect to m′
0 and m′

1

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 121

When the particles and springs have been updated, we remesh the particle-spring
structure and the rendering mesh. Each triangle of the rendering mesh has one of
four states, depending on the number of the particles remaining. If a triangle is left in
the rendering mesh and there is at least one of the particles which connects positive
relative mass, then we remesh the remaining particles using Marching triangles. If
both triangles that share a spring disappear, we remove that spring from the system.

4.1.7 Shell Dynamics

Given the positions xn and velocities vn of particles at the beginning of time-step n,
we first integrate the external forces Fext, such as gravity, using the forward Euler
method:

ṽn = vn + hFext, (4.8)

x̃n = xn + ṽn . (4.9)

Since our simulation of the internal dynamics, stretching, shearing, and bend-
ing of shell relies on the strain in the particle-spring systems, adopting a proper
strain-limiting method is critical. We prefer the fast projection method [13] based on
constrained Lagrangian mechanics, because it converges quickly to the target length.

If xa and xb are the two endpoints of a spring and l is its target length, then
a constraint that preserves the spring length and its gradient can be expressed as
follows:

C(xa, xb) = ||xa − xb||2
l

− l = 0 (4.10)

∇Cxa (xa, xb) = 2(xa − xb)

l
. (4.11)

Spring lengths that are changed by heat transfermay violate the spring constraints.
Then the unconstrained positions x̃n are moved to the positions x̂n , which satisfy the
constraint, by fast projection (this is explained in more detail in Sect. 4.1.7.1). The
constrained velocity v̂n is obtained from the displacements during time-step h:

x̂n = fast_projection(x̃n), (4.12)

v̂n = ṽn + (x̂n − x̃n)

h
. (4.13)

Finally, we correct the positions and velocities to avoid intersections with other
objects and self-collision to obtain the final results:

xn+1 = position_correction(x̂n
), (4.14)

vn+1 = velocity_correction(v̂n
). (4.15)

122 4 Fire and Ice

Performing collision detection after fast projection could violate the constraints.
But if the order of these processes is reverted, the shell could intersect other objects.
Collisions with simple primitives, such as a sphere or plane, are detected at each
projection step, and the positions and velocities of particles are corrected to avoid
the collision.

4.1.7.1 Successive Fast Projection

Fast projection [13] progressively projects points onto the closer manifold until they
approach a constraint manifold C(x) = 0 within some threshold. At each projection
step j , the unconstrained point xn

j is moved by Newton’s method in the direction of
negative gradient of the constraint, which is expressed by the Lagrange multiplier
−∇C(xn

j)λ j+1. The position ofxn+1
j after a projection step j is determinedby solving

the following linear system with respect to λ j+1:

(∇C(x j)∇C(x j)
T)λ j+1 = C(x j). (4.16)

Each displacement is then updated in turn:

xn+1
j = xn

j − ∇C(xn
j)λ j+1. (4.17)

We represent this projection process at step j as a function of S, which is the set
of springs on which we wish to enforce the constraint

xn
j+1 = project(xn

j , S). (4.18)

The numerical stability of the fast projection method mainly depends on the
characteristics of the linear system (4.16). To guarantee convergence, the matrix
in (4.16), a multiplication of the constraint gradient matrix and its transpose matrix,
should be positive definite. The systemwill converge stably if the constraint gradients
are linearly independent and the matrix is full ranked. The ratio of the number of
constraints to the number of positional DOFs of the particles is an additional concern.
A ratio of more than one prevents a solution. For example, the average ratios of a
quadrilateral or triangular mesh are 2/3 or 1, making these structures stable.

Unfortunately, the BCS does notmeet these two requirements. First, the constraint
gradients of the diagonal springs are linear combinations of those of the orthogonal
springs which share the same particle, and so the system matrix suffers from rank
deficiency. In addition, if Nc is the total number of cells, the average sizes of the four
constraint sets, SR , SG , SB and SY , are 4Nc, 2Nc, 2Nc and 2Nc, and the number of
DOFs of corner and lattice particles are 3Nc and 3Nc, respectively. This makes the
ratio of the number of constraints to the number of positional DOFs is 10:6, which
is more than 1.

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 123

Our solution is to divide the constraints into subsets, each of which satisfies the
convergence conditions, and solve them sequentially. We can create appropriate sub-
sets by taking the springs of each color; the springs of each type constitute a network
with the same topology as the orthogonal quadrilateral mesh used in previous tech-
niques [13, 14]. There are four spring colors, giving us four constraints to apply
successively. We achieve this using a fast projection step j consisting of four subse-
quences. The points x j (=xn

j) input to the projection step j are moved closer to the

constraint CR of the spring set SR . The resulting points xR
j are then projected onto

the manifold CG . This is the first of four projections:

xR
j = project(x j , SR),

xG
j = project(xR

j , SG),

xB
j = project(xG

j , SB),

x j+1 = project(xB
j , SY).

This completes projection step j . The graphs in Fig. 4.7 show how the constraint
errors ||C(x)|| change through successive projection steps proceeding. We see that
the projection of one constraint set may increase the error of the other sets, but the
sum of all the constraints always decreases.

It was experimented to see whether a point would converge at a stable location
if two independent spring constraints are applied to it. Figure4.8a shows how two
types of springs, green, and blue, are connected to the particle p, and the other points
are fixed. When the target lengths of the two springs are changed from 1 to 1.65 and

Fig. 4.7 Errors in ||C(x)|| of all types of spring and their sum. The total error (gray curve) decreases
during successive fast projection

124 4 Fire and Ice

Fig. 4.8 Convergence of two mutually exclusive springs which share a point, a before projections,
b after projections

Table 4.1 Positions of the
unconstrained particle at each
projection step j

Projection step j Project (SG) Project (SB)

Input 0.0 0.0

1 0.4306 0.4401

2 0.5527 0.4954

3 0.5767 0.5038

4 0.5804 0.5050

5 0.5810 0.5052 (output)

0.55 (Fig. 4.8b), they compete to assume their new lengths. Vibrations occur, but the
system quickly converges to an equilibrium point (0.5), as shown in Table4.1.

4.1.7.2 Weighted Constraints

The stiffness of an elastic body depends on its material properties. Even though the
constraint C(x) does not use the material stiffness as a parameter, we can obtain the
same effect by relaxing the spring constraints.

Each projection in (4.18) is equivalent to a step in Newton’s method. As the slope
of the gradient ∇C(x j) increases, the variable x j converges more slowly. If w is
the weight applied to a spring, we divide the displacement by the spring weight to
produce a weighted displacement −∇C(xn

j)λ j+1/w, which leads to the modified
linear system:

(∇C(x j)∇C(x j)
T)λ j+1 = WC(x j), (4.19)

where W is a diagonal matrix which contains the weights of all springs. Figure4.9
shows how we can adjust the weights of the blue and yellow springs to obtain a
flexible shell. It is also possible to obtain a shell which has inhomogeneous bending
stiffness by assigning different weights to the springs in each subset.

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 125

Fig. 4.9 Different types of thin shells produced by adjusting theweights of springs and the thickness
of the shell. The ratio of the thickness of each shell to the length of its longest side and the weight
for blue and yellow springs are a 1:20 and 1.0, b 1:80 and 1.0, c 1:400 and 1.0, and d 1:400 and 0.1

4.1.8 Results

The shell structure was tested using external heat sources. An initial temperature
was assigned to a shell (Fig. 4.1) and then moving spheres of high temperature were
introduced (Figs. 4.4 and 4.10). The burning process and its randomness were con-
trolled by adjusting the rate of mass lossμ, and the thermal diffusivity α, by applying
a texture. The texture colors c ∈ [0, 1] were used at the uv coordinates to weight the
simulation parameters of each particle. The textures we used can be found with the
simulation results.

Figures4.1 and 4.11 show a simulation of burning paper. The initial temperature
was set higher than the ignition point of the paper, and the rate of mass loss was
varied using the shown texture. The partly burnt regions bend because of the loss
of mass, but interior regions where the initial mass still remains also wrinkle due
to the bending of the boundaries. In Fig. 4.4, a hot sphere is passed across a thin
shell whose two corners are fixed. As a result, the shell separates into two parts. The
same scene was simulated with the addition of topological changes and shrinkage.
Figure4.4a shows a shell which only changes its connectivity [1]. As we apply more
effects, the simulation results becomemore detailed and realistic. Figure4.4d, shows

126 4 Fire and Ice

Fig. 4.10 Snapshots of an animation of a burning torus

the results of changing the rate of mass loss μ using a texture to produce a tearing
effect. A BCS-based shell can be derived from any quadrilateral mesh in Fig. 4.10,
heat transfer and shrinkage of a toroidal shell were simulated.

Our strain-limitingmethodwas verified by comparing results produced by amass-
spring model, based on Hooke’s law, with those from successive fast projection.
Figure4.12a, b shows a torus falling on a sphere. The inner diameter of the torus
is smaller than the sphere, and so the torus is supposed to remain on the sphere.
However, the torus in Fig. 4.12b has passed over the sphere and fallen to the ground,
because the mass-spring model cannot preserve the strains of springs, and allows
the torus to stretch. Conversely, the torus simulated by our method maintains its
rest shape and bounces against the sphere. In the second example, in Fig. 4.12c, d,
the blue springs of the shell was made shrink by reducing the masses of the corner
particles uniformly. Since the blue and green springs contract at different rates,
realistic wrinkles appear in our simulation result (c). However, the shell in (d) lost
its details, because the springs constrained by the masses and springs simply extend
or compress.

4.1.8.1 Computation Times

The simulation of shell dynamics takes most of the computation time, because it
involves the solution of a linear system with the conjugate gradient method at each
projection step j and time-step n. The bottleneck in this solution process is thematrix-
vector multiplication in the conjugate gradient method. To speed up the computation,
we compress the matrix into the ELLPACK format [23], which separates values from

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 127

Fig. 4.11 Simulation of burning paper

indices. This reduces the size of thematrix from N 2
s to Ns Nn , where Ns is the number

of springs and Nn is themaximumnumber of neighbors of a spring.Our shell structure
can make good use of this format, because each spring set is a quadrilateral mesh
and the number of neighbors of each spring is fixed (Ns = 7). Using the ELLPACK
structure, the computation time is linearly proportional to the number of springs.
Table4.2 shows computation times against the number of springs.

128 4 Fire and Ice

Fig. 4.12 Our robust strain-limiting method preserves the rest shape of thin shells and the details
of wrinkles produced by shrinkage. In (a) and (b), a torus has fallen on a sphere whose radius
is 1.2 times bigger than hole in the torus. In (b), the torus simulated by the mass-spring system
passes the sphere and contacts ground plane since it does not preserve the target length. In (c) and
(d), the whole thin shell shrinks uniformly, but only the shell simulated by our method (c) creates
complicated wrinkles, whereas the shell in (d) loses its details

4.1.8.2 Limitations

Successive fast projection is based upon the premise that each spring set is a stable
quadrilateral structure. If a spring set contains points with more than six neighbors,
then the simulation does not converge. Therefore, it is not straightforward to apply
our method to adaptive BCS, BCC, or irregular meshes.

Ashes in burnt regions are easily torn and broken. We simulate this effect by
reducing mass more quickly where we want the shell to break, as shown in Fig. 4.1.
However, this phenomenon is not only caused by loss of mass. When two adjacent
regions shrink at different rates, the region which shrinks more slowly prevents the
other region from shrinking at its own speed. This creates tensile stresses in the more
quickly shrinking region. If the tensile force is larger than the strength of the material

4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper 129

Table 4.2 Computation times for thin shells with different numbers of springs

(a) (b) (c) (c)/(a)

1,000 6.50 142.46 0.142

4,000 27.93 362.69 0.090

16,000 159.17 1268.00 0.079

25,000 211.67 1877.92 0.075

10,000 1045.02 7412.92 0.074

The time-step h, the maximum numbers of iterations, and the threshold of the fast projection are
0.002, 7, and 107. The computation times and the number of springs are linearly proportional to
each other. These tests were performed on the quad-core machine with 4GB of memory. (a) The
number of springs, (b) the computation time (ms) with convergence conditions, (c) the computation
time (ms) without convergence conditions (simulations fully iterate), (d) the average computation
time per spring ((c)/(a))

left in this region, the shell tears. However, we did not model this effect, and so our
examples exhibit too many wrinkles and too few tears.

The proposed shell structuremaintains its thickness using only red springs. There-
fore, the rapid application of a large force will make the point on one layer move
into the other layer. Since we do not explicitly correct the orientation of springs, the
points in the other layer remain fixed because of the red springs producing sharp
crease in the shell. This problem can be fixed by collision detection, but we do not
apply this because it helps to create complicated wrinkles on the shell.

4.1.9 Conclusions

In this section, we generated realistic fine wrinkles on a burning shell using a new
shell structure and a method of strain limitation. A two-layer shell with thickness
was created with a body-centered square (BCS) structure, and this shell wrinkled in
response to stresses produced by the change in material properties that occur during
burning. During successive fast projection, we dealt with subsets of the springs
individually, allowing our overconstrained structure to converge. Remeshing burnt
regions and setting parameters using textures improved the reality of our simulation.

4.2 Combustion Waves on the Point Set Surface

Abstract This section introduces a combustion model of heat transfer and fuel con-
sumption for the propagation of a fire front on a point cloud surface. The heat transfer
includes the heat advection by the airflow as well as diffusion, chemical reaction, and
heat loss to generate complex, but controllable heat flows with a designed airflow
velocity. For the stable heat advection, we solve a semi-Lagrangian method on point

130 4 Fire and Ice

Fig. 4.13 Simulation of combustion waves on the surface of a point cloud: Heat transfer, fuel
consumption, and reaction zones from the left. The heat transfer model includes diffusion and
advection with airflow velocity fields to generate complicated flows

samples using discrete exponential maps to trace the position from which the wind
blows while preserving the geodesic distance. This section also proposes angular
Voronoi weights for a discrete Laplace–Beltrami operator that shows better isotropic
diffusion on the inhomogeneous distribution of point clouds than the cotangent or
moving least-squares schemes. A diversity of burning scenarios are demonstrated
by incorporating factors affecting the fire spreading such as buoyancy and object
geometries in the airflow velocity fields, or by synthesizing patterns.

4.2.1 Introduction

Combustion waves represent the propagation of reaction zones across combustible
material. Finding these chemical reaction zones is central to the simulation of burning
scenes: Heat and the gas fuels produced in the zone become the source of fire [24–26],
and the burnt surface decomposes or deforms [2, 3, 27, 28].

The borders of a fire front are complicated, reflecting turbulent fire flows.
Williams [29] noted that the spread of fire is influenced by many factors, including
object geometry, airflow, buoyancy (for upward flows), and oxygen concentration.
Most of these factors are intuitive; we know that fire spreads more rapidly upward
and propagates in the direction of the wind.

Recent techniques [3, 27, 30, 31] for modeling the propagation of burning regions
have largely been based on diffusion; but diffusion delivers heat energy evenly in all
directions, making the fire front unrealistically smooths, regardless of environmental
conditions or object geometries. Conversely, the modeling of convection requires the
simulation of complicated flows of fluids [26, 32] such as air, heat, smoke and fire,
and the exchange of heat and fuels between fluids and solids [1, 28, 30, 33]. Physics-
based simulations of convection provide accurate and detailed representations of fluid
flows. However, their high-computational cost prevents them from being used with
a high-resolution mesh, because the complexity of the fluid motion depends on the
resolution of the 3D grid.

We take a new approach, in which we calculate the heat flow directly from a 3D
model, rather than coupling the model to a 3D grid to obtain the fluid velocity and

4.2 Combustion Waves on the Point Set Surface 131

Fig. 4.14 The simulation
process: Instead of
simulating convection using
a grid, we synthesize fluid
flow vectors and other
factors which affect heat
transfer. The output of our
combustion model can be
post-processed to produce a
fire simulation

heat transfer (Figs. 4.13 and 4.14). Stam [34] simulated flows on arbitrary surfaces
realistically by solving the equations of stable fluid motion [32] in a 2D texture space
on the 3D surface. Other flow models have used triangular meshes [35], but we use
a point cloud, which is more general, but obliges us to address issues caused by the
lack of connectivity and the irregular distribution of points.

In this section, we mainly focus on the spread of a fire front on the surface of a
burning object. We simulate the heat propagation using numerical models [36] of
combustion waves, which integrate fuel consumption and heat transfer. The latter
includes diffusion, chemical reaction, heat loss, and advection. Advection in particu-
lar is a key process in turbulent fire flows. This technique also allows users to design
velocity fields with complicated patterns for artistic purpose. The contributions of
this section can be summarized as follows:

• The introduction of an angular Voronoi weight for the Laplace–Beltrami operator
for isotropic diffusion on an unorganized cloud of points;

• Modeling stable heat advection in point clouds by a semi-Lagrangian method with
discrete exponential maps;

• Control of complicated heat flows by designing fluid velocities.

4.2.2 Related Work

In early work on fire spreading, the fire front was represented by a set of points
which propagated across a polygonal surface, causing heat to be conductedwithin the
burning object [37–40]. A multiscale fluid field [38] allows small-scale turbulence to
be separated from large-scale flows. The lattice Boltzmann model (LBM) [40, 41] is
used to generate fluid velocity fields to move flame particles around burning objects.

Physics-based techniques [30, 33] simulate the heat conduction within an object
using the Laplace equation, while the motion of fluids such as air convection or

132 4 Fire and Ice

fire are modeled by the stable fluids [32]. As fire propagates over solids, the burning
object decomposes, shrinking, and deforming. The level-setmethod can be employed
to track changes in the object’s boundaries as fuel is consumed [1, 28, 31]. The
changing shape of the burning object is modeled as free-form deformations [2, 3] or
cloth simulations [27].

Regarding techniques for modeling fluids flowing over the surface of a 3D object
on the discretization of that surface, Stam [34] modeled flows over arbitrary sur-
faces by solving the stable fluids [32] in curvilinear coordinates over Catmull–Clark
surfaces; Um et al. [42] solved the Navier–Stokes equations in a 2D domain on a
deformable 3D surface to model the absorption of water by a solid. However, these
methods require additional analysis and computation to model the distortions and
the boundary conditions linking parameterizations in 2D and 3D. To overcome these
problems, Shi and Yu [35] directly simulated inviscid flows on a triangular mesh.
They tracked points in the fluid as it moves over the triangular mesh to provide data
to model semi-Lagrangian advection, and solved the discrete Poisson equation for
incompressible fluids.Wang et al. [43] solved generalized shallowwave equations on
a height field over the triangular mesh to model the phenomena associated with water
moving over a surface. The LBM [44] method can model a fluid flowing over a point
distribution, but it requires local point neighborhood information. Auer et al. [45]
converted the surface flow problem into partial differential equations by embedding
a 3D surface model in an adaptive grid using the closest point method.

Fluid flowing over deformable surfaces poses distinct problems. Neill et al. [46]
simulated a fluid flowing over deforming and interacting surfaces using an efficient
interpolation technique on a triangular mesh. Angst et al. [47] introduced an efficient
algorithm to solve the shallow water equation on a deforming triangular mesh.

4.2.3 Combustion Model

Combustible material has properties such as a pyrolysis temperature Tpyr and an
ignition point Tign, a diffusion coefficient D, a heat loss rate h, a heat production rate
α, and a fuel consumption rate β. If we consider cellulose, for which Tpyr = 220K
and Tign = 230K can make a useful simplification assuming that Tpyr is the same
as Tign. The oxygen concentration also affects combustion, but we will assume that
enough oxygen is always available.

The travel of combustion waves is governed by the equations for the conservation
of heat T and solid fuel F [36]:

∂T

∂t
= D∇2T︸ ︷︷ ︸

diffusion

+ w · ∇T︸ ︷︷ ︸
advection

+αR(F, T)︸ ︷︷ ︸
reaction

− h(T − Tamb)︸ ︷︷ ︸
heat loss

+ Text︸︷︷︸
external

, (4.20)

∂ F

∂t
= −β R(F, T), (4.21)

4.2 Combustion Waves on the Point Set Surface 133

R(F, T) =
{

Fe−1/(T −Tign) if T > Tign
0 else

. (4.22)

These equations describe the transfer of heat energy (Eq.4.20), the loss of solid
fuel (Eq. 4.21), and the Arrhenius equation for the chemical reaction rate (Eq.4.22).
The heat transfer model in Eq. (4.20) includes diffusion, airflow-guided advection,
heat generated by reactions, heat loss, and heat absorbed from external sources. The
process of burning from ignition to extinguishment can be modeled as follows:

Pyrolysis and ignition: Pyrolysis β R(F, T) is the process by which a solid fuel
is decomposed into ash, gas fuels, and other chemicals by absorbing heat energy.
Ignition is an exothermic process αR(F, T) in which gas fuels are oxidized at tem-
peratures above their ignition point. These chemical reactions start when the mate-
rial’s temperature reaches Tpyr or Tign, respectively, as it absorbs heat from external
sources, at a temperature Text such as an adjacent fire. We call the regions with
R(F, T) > 0, reaction zones (Fig. 4.15c).

Heat transfer: Simplified heat models rely on thermal diffusion ∇2T , but our com-
bustion model also includes heat advection w ·∇T by fluid flow. This advection term
makes the combustion waves chaotic, as found in real burning phenomena, rather
than concentric. Because the temperature increases in the direction of the airflow
w · ∇T > 0 and decreases when the airflow is opposed w · ∇T < 0, the heat follows
the direction of the airflow.

Fig. 4.15 Characteristics of a combustion waves: a temperature, b solid fuel remaining, c and
reaction zones

134 4 Fire and Ice

Extinguishment: When the solid fuel is completely consumed, F = 0, or the tem-
perature drops through heat loss −h(T − Tamb), or heat transfer, so that T < Tign.
Then the chemical reactions cease, the fire is extinguished, and the reaction zone is
empty, R(F, T) = 0.

We apply this combustion model to surfaces represented by a discrete-point
clouds. The main problems in doing this are the diffusion and advection terms,
which require a gradient. This is a partial derivative of position, and is distorted by
irregular distribution of the points in the cloud. Stability of numerical methods is
also an important issue.

We model diffusion on the surface of a point cloud using a Laplace–Beltrami
operator with an angular Voronoi weight, and semi-Lagrangian advection on discrete
exponential maps. This approach shifts the main numerical problem from that of
determining gradients on the surface of a point cloud to one of local optimization
and point tracking on a discrete-point geometry.

4.2.3.1 Discrete Exponential Maps

We represent a 3D object as a set of discrete points {pi }. A point pi has a position xi ,
a fuel mass Fi , a temperature Ti , an air flow wi , a normal ni , and an exponential map
ei . The 1-ring neighbor points q j ∈ N1(pi) are the k-nearest neighbors of pi ; this
form of neighborhood computationally more efficient than ε-neighborhoods [48].

An exponential map e is defined by a tangential plane, spanned by two basis
vectors, ex and ey, which are perpendicular to the normal n (Fig. 4.16a) at the position
x of a point p. The two bases and the normal can be expressed as follows:

ey = 〈n × (x0 − x)〉, ex = 〈ey × n〉, (4.23)

n =
〈 ∑

j∈N1(p)

(x j − x) × (x j+1 − x)

〉
, (4.24)

where x j denotes the position of the j th neighbor point qi of p. The operator 〈a〉 =
a/||a|| denotes the normalization of a vector a.

The positions of neighbor points {x j } in the local coordinates, which are {x̄ j }
(Fig. 4.16b), are found by projection onto the exponential map while preserving their

Fig. 4.16 An exponential
map e and b the projection of
x to x̄ on e, while preserving
the geodesic distance r–p

4.2 Combustion Waves on the Point Set Surface 135

geodesic distance to p. The projected x̄ j of x j on the exponential map e is found as
follows:

x̄ j = project(e, x j) = 〈ex(ex · ẋ) + ey(ey · ẋ)〉||ẋ||, (4.25)

where ẋ = x j − x. The point x̄ j can be represented in the polar coordinates (r j , θ j),
where:

r j = ||x̄ j ||, (4.26)

θ j = cos−1
(

ex · x̄ j

||x̄||
)
sign(ey · x̄ j). (4.27)

4.2.3.2 Angular Voronoi Weights for Isotropic Diffusion

In isotropic diffusion, points at the same geodesic distance from a heat source receive
the same amount of heat energy. This is easy tomodel on a uniform grid, but isotropic
diffusion on irregular discrete points is more difficult, because the distribution and
connectivity of the points distorts the gradient and the Laplacian.

We use a Laplace–Beltrami operator to simulate heat diffusion on a point cloud
surface. The Laplacian L(x) = ∇2 of a point pi can be approximated by the solution
of a local optimization problem using a normalized weight function W (x) for the
positions of pi and its 1-ring neighbors q j ∈ N1(pi). We can represent a discrete
Laplace–Beltrami operator in a general form as follows:

L(x) =
∑

j∈N1(i)

W j (x)(Tj − Ti). (4.28)

The effect of a discrete Laplace operator depends on the weight function W j (x).
For diffusion on a regular grid [32] or the umbrella operator [22], the weight func-
tion is W j (x) = 1/#N1(pi), where #N1(pi) is the number of 1-ring neighbors of
pi . However, when points are irregularly distributed, the underlying discrete-point
geometry needs to be included in the weight function.

The positions of neighbor points on the exponential map have two degrees of
freedom: (1) The distance r from the center pi and (2) the angle θ between neighbors.
The scale-independent Laplacian [22] incorporates the inverse of distance into its
weight function:

W SIL
j (x) = 2

E

1

||x j − xi || , E =
∑

j∈N1(pi)

||x j − xi ||. (4.29)

It modifies the influence of each neighbor, depending on its distance r from the
center pi .

In addition, the angle θ between neighbors also can be irregular. For exam-
ple, when five points qi are the same distance from p, as shown in Fig. 4.17a, the

136 4 Fire and Ice

Fig. 4.17 The values at p obtained from a moving least-squares approximation are different when
obtained from: a the Lagrangian or b Eulerian sampling of fire neighbors q j at the same distance
from p. The weight function needs to incorporate the influence of each point for Eulerian sampling

weighted average value at p obtained by a moving least-squares approximation is
1/5. However, we consider that the value at p should be zero in this configuration,
so the weights applied to the neighbors of p are changed from 1/5(1, 1, 1, 1, 1) to
1/4(1/2, 1, 1, 1, 1/2), as shown in Fig. 4.17b.

A cotangent weighting scheme [49] is widely used when discrete Laplace–
Beltrami operators are applied to 2D manifold meshes

W cot
j (x) = cot α j + cot β j

2
, (4.30)

where α j and β j are two opposite angles of two triangles which share the edge e j

between pi and q j (Fig. 4.18b). A normalized version of the cotangent scheme [22]
is also used:

WNcot
j (x) = 1∑

j (cot α j + cot β j)
(cot α j + cot β j). (4.31)

This function weights the contribution of a neighbor point q j by the length of the
edge of the Voronoi region that separates q j from p. Thus weights WNcot

j applied to
neighbor points depend on their distribution.

The cotangent weight function produces isotropic diffusion on the anisotropic
mesh in Fig. 4.19a, because it ignores points along the diagonals of the mesh
by allocating them zero weights (cot(π/2) = 0), that would otherwise cause

Fig. 4.18 a The positions and scalar values of six neighbor particles of a particle A. The weights
for the neighbor point B are computed by b the cotangent scheme and c the angular Voronoi weight

4.2 Combustion Waves on the Point Set Surface 137

Fig. 4.19 Comparison of diffusion results with (1–3) different weight functions and (a–g) distri-
butions of points within a cloud. (1) The proposed angular Voronoi weight shows better isotropic
diffusion on nonuniform distributions of point clouds, compared with (2) a MLS approximation
and (3) the cotangent scheme. The pair of point clouds (a, c) and (b, d) have the same distribu-
tions, but in (a) and (b) the connectivity is computed by triangulation and in (c) and (d) by finding
k-nearest neighbors (k = 8). The table shows the two errors: Δd = (dmax − dmin)/dmean and
εd = |dmax − di |/(dmean Nb) for each example

distortions. On point cloud surfaces, however, this function achieves poor diffusion
(Fig. 4.19c–g), because cot(x) tends to ±∞ when two neighbors become too close
or in the opposite directions.

Having seen the shortcomings of other weighting schemes, we use an angular
Voronoi weight to achieve isotropic diffusion on point cloud surfaces. Our weight
WAV

j is a function of the average φ j of adjacent angles of the edge between pi and
q j (Fig. 4.18c):

WAV
j (x) = φ j

2π
= θ j+1 − θ j−1

4π
, (4.32)

where (r j , θ j) are the polar coordinates of q j on an exponential map centered on xi ,
and φ j = (θ j+1 − θ j)/2 + (θ j − θ j−1)/2. We add 2π to φ j if it is negative.

We can incorporate this angular Voronoi weight into the scale-independent Lapla-
cian as follows:

L(x) = 2

E

∑
j∈N1(i)

(
θ j+1 − θ j−1

||x j − xi ||
)

(Tj − Ti), (4.33)

where E = ∑
j∈N1(i)(θ j+1 − θ j−1)/||x j − xi ||. This formulation reduces the distor-

tion caused by the irregular distribution of neighbors in polar coordinates (r, θ).

138 4 Fire and Ice

The discrete Laplacian operator L from Eq. (4.28) can be implicitly integrated
[22]; and we can solve the resulting linear system using a conjugate gradient:

(I − DΔtL)Tn+1 = Tn, (4.34)

where T is an N p × 1 vector of the temperatures of N p points, L is an N p × N p

matrix that contains the weight values for the Laplacian operator in Eq. (4.33), and I
is the identity matrix.

4.2.3.3 Semi-Lagrangian Advection on Discrete Exponential Maps

The semi-Lagrangian method [32] has been widely used to simulate the advection
of fluids; it is sample and stable with large time-steps. To approximate the quantity
f at the position pn+1 at the next time-step, this method traces the current velocity
backward −wnΔt to obtain its position qn at the current step, in which the quantity
f (qn)will flow from qn into pn+1. Thus, determining the heat advection termw ·∇T
is no longer gradient-related, but becomes a position tracking problem.

To calculate the advection term w · ∇T using a semi-Lagrangian method applied
to discrete points, we adopt discrete exponential maps [50] to track the position q by
projecting the airflow velocity −wnΔt on the surface of the point cloud, while the
geodesic distance between p and q remains constant.

Projection of airflow: We first obtain the projection w̄ of the position p − wnΔt on
the exponential map of a point p. When we calculate the projection w̄ of the airflow
velocity on the exponential map e, its magnitude can change because only the airflow
in the tangential direction affects the point p (Fig. 4.20a):

w̄ = −Δt (ex · wn + ey · wn). (4.35)

Projections of discrete exponential maps: Starting from p, we successively trace
the closest point among the neighbors {qk

j } of a point pk to w̄ at each projection

step k, until the distance from p to pk approaches ||w̄|| (Fig. 4.21). Since we project

Fig. 4.20 a Projection of
airflow, b and c projections
of discrete exponential maps,
d advance to the next step,
e and f termination
conditions

4.2 Combustion Waves on the Point Set Surface 139

Fig. 4.21 Point tracking of
w̄ on discrete exponential
maps

points on the local exponential map ek , all positions are relative to the center point
of ek . Thus, we use dk to represent the position of pk relative to the center p of the
exponential map e, and d0 = 0.

Given a point pk at projection step k, we project the positions {qk
j } of neigh-

bor points on the local exponential map ek to bring them on to its tangent plane
(Fig. 4.20b):

q∗
j = project(ek, qk

j). (4.36)

Since the normals of the two exponential maps e and ek are different, we must
factor in the rotation from e to ek to project the neighbor points {q∗

j } on the tangential
plane of e. A rotation from e to ek is defined by an axis-angle Aθ , where A and θ

denote the axis and the angle between two normals n and nk . Then, q∗
j is transformed

as follows (Fig. 4.20c):
q̄k

j = Rot2D(q∗
j ,−Aθ). (4.37)

Advance to the next step: We find the closest neighbor q j to the airflow vector
w̄ − dk on ek which maximizes (Fig. 4.20d)

qa = argmax
j

(
q̄k

j · (w̄ − dk)

‖q̄k
j‖‖w̄ − dk‖

)
. (4.38)

We set the closest neighbor qa to pk+1 to advance the projection to the next step.
The position of pk+1 relative to p, which is dk+1, is updated by the position of the
closest neighbor, so that dk+1 = dk + q̄k

j .

Termination conditions:We find qb to define a triangle (pk, qa, qb)which intersects
with the vector w̄ − dk :

qb =
{

q j+1 if q̄k
j × (w̄ − dk) > 0

q j−1 else
, (4.39)

where the indexes of neighbors are arranged in a counterclockwise direction.
Given the triangle, we can calculate the barycentric coordinates bw(b0, b1, b2) of

w̄ − dk in the triangle (pk, qa, qb), whose local positions are (0, qa, qb) on ek , to
determine whether further projection is required. If 0 ≤ bi ≤ 1, we terminate the
projections and approximate the quantity f (q) by barycentric interpolation of the
quantities at the triangle points (Fig. 4.20e).

140 4 Fire and Ice

Also, if the angle between qa and qb is larger than a threshold, or we have already
visited pk+1, projection stops, because w̄ is outside the surface boundary. We look
for the intersection between the airflow velocity w̄ and the edges pkqa and pkqb. If
(w̄ × dk) · (w̄ × qa) < 0, then the intersection point q is on pkqa ; otherwise, it is
on pkqb. If we refer qi to qa or qb, the quantity f (q) is approximated by a linear
interpolation of f (pk) and f (qi) using the weight w, which is obtained as follows
(Fig. 4.20f):

w = ‖w̄ × dk‖
‖w̄ × dk‖ + ‖w̄ × (dl + qi)‖ . (4.40)

4.2.3.4 Airflow Velocity Fields

The airflow velocities at discrete points are determined from environmental and
internal factors, and artificial velocity fields, as described below.

Nonadiabatic space: The divergence-free constraint is an important property for
general fluid simulation, but we do not force this constraint in our fire spreading
model, since we consider that the simulation space to be nonadiabatic. For example,
in a gust of wind, a burning object can suddenly burst into flames, thereby increasing
the total heat energy within the object, whereas an opposite wind might extinguish
combustion. In our simulation, therefore, the heat energy in a burning object flows
upward by buoyancy and disappears at the sink of the velocity fields, located at the
apex of the object. Nevertheless, if we wished to force the airflow to be adiabatic, a
divergence-free vector field for point samples could be obtained from the Helmholtz-
Hodge decomposition [51].

Environmental factors: In our simulation, buoyancy forces is simply modeled by a
constant vector in the opposite direction to gravity:

wbuoy = −cbuoyg. (4.41)

Curl from scalar fields: Bridson et al. [52] introduced a curl-noise method that
generates turbulent velocities from noisy scalar fields. Given a set of scalar values
{ f (pi)} assigned to the discrete points {pi }, we can calculate the curl ci from gradient
∇ f (pi) of pi , and rotate the gradient π/2 around the normal ni :

∇ f (pi) = 1

E

∑
j∈N1(pi)

(
W AV

j (x)(f (p j) − f (pi))(x j − xi)
)
, (4.42)

ci = Rot2D
(
∇ f (pi),

π

2
ni

)
, (4.43)

where E = ∑
j∈N1(pi)

W AV
j (x), which normalizes the weight function. Then, the

airflow velocity obtained from the curl is:

4.2 Combustion Waves on the Point Set Surface 141

wcurl
i = −ccurlci . (4.44)

Different flows can be generated using scalar fields created by formulas, textures,
Perlin noise, or reaction–diffusion patterns. We use the Gray-Scott model [53] to
produce the reaction–diffusion pattern as shown in Fig. 4.22.

Geometry: Airflow only affects a point in a direction which lies in the tangent
plane of the surface of the point cloud. Therefore, the airflow velocity w obtained by
summing all the factors is projected on the exponential map at the beginning of the
advection step, using Eq. (4.35).

4.2.4 Results

Most of the point cloud models used as examples were obtained from triangular
meshes, which simplifies rendering. To visualize heat, fuel remaining, and reaction
zones, a spectrum of colors was assigned to the attribute, and then the color was
assigned corresponding to the value at each point. Then the triangular mesh was
rendered with Mental Ray in 3ds Max. The random points shown in the examples

Fig. 4.22 Parameters of the
Gray-Scott model for
advection with designed
airflows using reaction–
diffusion patterns

142 4 Fire and Ice

in Fig. 4.19 were generated using fast Poisson disk sampling [54] with adaptive
distances, controlled by the intensity of a grayscale texture.

Reaction zones: Figure4.13 shows the results produced by our combustion model
on the surface of a point cloud; they show heat, fuel remaining, and reaction zones.
Figure4.15 explains some features of our combustion model. In previous techniques
[1, 3, 28], reaction zones were considered as thin bands around the boundaries of
burning regions which move in the direction of the gradient of the level-set, whereas
reaction zones in our method can be of differing width, as shown on the chest and
right wing of the Lucy model in Fig. 4.15c.

Designing airflow: As shown in Fig. 4.23a, the advection term can result in the
fire front moving upward along the surface by buoyancy without any simulation in
3D. When the diffusion term is included, the heat spreads along the whole object
surface by internal conduction. In Fig. 4.22, three different sets of parameters for the
Gray-Scott model are used to generate the scalar fields for curl vectors. The resulting
pattern of heat flow looks artificial, but might well be used for artistic purposes.

Point tracking on discrete exponential maps: To assess the accuracy of our semi-
Lagrangian methods on discrete exponential maps, q j (red points) were projected
regularly distributed around a center point p on the Bunny model. The points were
successfully projected on the curved surface (blue points), even on the sharp curves
of the ears, as shown in Fig. 4.24.

Isotropic diffusion: Fig. 4.19 compares the results of diffusion by the cotangent
weight, MLS, and the angular Voronoi weight on a 2D manifold mesh and on point
clouds. The colors show the change in fuel F . A sphere-shaped external heat source is

Fig. 4.23 Changes in heat (top) and fuel mass (bottom) obtained from the combustion model:
a advection by buoyancy only and b advection and diffusion simultaneously

4.2 Combustion Waves on the Point Set Surface 143

Fig. 4.24 Regularly sampled points (red) on each exponential map are successfully projected onto
the curved surface (blue) by our point tracking method

placed at the center and only diffusion and chemical reactions occur in the combustion
model (Eq.4.20).

On the triangular mesh, the angular Voronoi weights bias the boundaries of burnt
regions in the direction of the edges. However, on point clouds, the boundary of the
burnt regions modeled by angular Voronoi weights is nearly circular, whereas heat
diffuses more slowly in dense areas using the MLS and the cotangent weight. We
find that heat does not reach some points with the cotangent scheme, because the
cotangent values tend to infinity as neighbors become too close.

The accuracy of isotropic diffusion was estimated using the distance di between
the center of the heat source and a point at the boundary of the burnt region in
Fig. 4.19. The table below the figure shows the errorsΔd = (dmax−dmin)/dmean and
εd = ∑

i |dmax − di |/(dmeanNb) which are, respectively, deviations from circularity
and from the actual circle around the center of the heat source. The distances dmean,
dmin and dmax, Nb denote the average, shortest, and largest values of {di }, and the
number of boundary points. The errors Δd and εd are scaled by 1/dmean for fair
comparison. As the distribution of the points within a cloud becomes move ill-
conditioned, the difference in errors between the proposed angular Voronoi weight
and other methods become larger.

Fire simulation by post-processing: The results of our combustion model can be
used as inputs to commercial CG tools for fire simulation. We use two textures for
solid fuels and reaction zones. Each texture is used to change the color of smoldering
regions, and to represent reaction zones, in which gas fuel and heat are being gener-
ated, respectively. In the solid fuel map (top-right in Fig. 4.25), the unburnt regions
are dark. In the reaction zone map (bottom-right), we see that a line of fire separates
burnt and unburnt material. Figure4.26 shows a series of frames from an animation
of burning cloth.

144 4 Fire and Ice

Fig. 4.25 Two texture maps of solid fuel (top) and reaction zones (bottom) for the burning object
(left)

Fig. 4.26 The simulation of fire by post-processing

Computation times: The combustion model was run on a multicore machine with
an Intel Core i7-3660 processor and 16 GB of RAM. The simulation was parallelized
by Open MP.

Table4.3 shows computation times broken down between simulation steps. (A)
When the simulation begins, (B) when the positions of points are updated, and (C)
at each time-step, the attributes used for diffusion and advection are calculated. The
most time-consuming operations are performed once in Step A. Step B only has
to be performed once during initialization, if the point surface is stationary, but it
must be calculated before Step C per frame if the geometry of the point cloud is
changing. Figure4.27 shows results obtained from our combustion model coupled
with deformable surface.

4.2 Combustion Waves on the Point Set Surface 145

Table 4.3 Computation times (ms) for simulation steps

Step Model Bunny Lucy Dragon

No. of points 34,835 50,014 99,932

(A) k-neighbors (8) 724 2710 7274

Reaction–diffusion 178 268 576

Sum 902 2978 7850

(B) n, ex, ey, (r, θ) 154 130 402

WAV 32 34 82

WMLS 20 24 64

WNcot 94 104 282

Sum (+WAV) 186 164 484

(C) Chemical reaction 11 11 42

Advection 78 136 306

Diffusion 34 162 514

Sum 123 309 862

Fig. 4.27 Combustion waves on draping cloth (top). Our combustion model can be applied to
deformable bodies. The lower images show the corresponding pattern, fuel, and reaction zones of
top–left image

146 4 Fire and Ice

4.2.5 Conclusion

We simulated combustion waves moving over point cloud surfaces. This model can
generate a variety of realistic animations of spreading fire which compare favorably
with existing diffusion-based methods. The angular Voronoi weight for a Laplace
operator shows better isotropic diffusion than the cotangent scheme or a MLS on ill-
conditioned point clouds. A semi-Lagrangian method on discrete exponential maps
results in stable advection on curved Riemannian manifolds.

Ourmodel of heat flowwith designed airflows is not physically accurate, but it can
generate complicated flows without the need for a 3D grid-based fluid simulation. It
can be very suitable for creative use, because it allows designers to create a spreading
fire in burning scenes by generating patterns or painting directly on the surface. Our
combustion model can easily be integrated into the simulation of burning scenes by
exchanging physical properties with 3D fluid simulations. Finally, because it is used
on point clouds, our method can be applied to raw point data obtained from real-time
capture systems such as 3D scanners.

4.3 A Particle-Grid Method for Opaque Ice Formation

Abstract This section presents a particle-grid method to simulate the generation of
opaque ice which has air bubbles in it. Water temperature is diffused over a grid,
and the exchange of dissolved air between ice and water particles is simulated. A
particle is rendered as an air bubble if it has sufficient air. Otherwise, it is treated as
a cloudy volume by distributing air into dissolved air field when the final state has
been reached. In addition, the method includes a model in which heat transfer rate
may change across the grid. Unlike previous models which could generate an ice
volume of only fixed shapes, this approach uses signed distance function (SDF) to
generate opaque ice volumes stored in containers of various geometric shapes and
can render needle-shaped or egg-shaped bubbles.

4.3.1 Introduction

Ice found in daily life is often opaque due to air bubbles trapped inside while being
frozen. However, existing techniques focused primarily on modeling of liquidifica-
tion or solidification between ice and water. Rendering of ice found in movies often
shows transparent and solid object with flat opaque texture with no volume (see
Fig. 4.28). In order to render opaque ice volume, designers have to engage in tedious
and time-consuming task of modeling behavior of air bubble particles inside of ice.

This section proposes a hybridmethod to render opaque ice.We focusesmainly on
behavior of water being frozen while stored in containers of various shapes. When
rendered image do not suffer significantly in quality, we choose to ignore minor

4.3 A Particle-Grid Method for Opaque Ice Formation 147

Fig. 4.28 a Real ice and versus b transparent rendered ice

details to optimize the rendering process. We describe air bubbles found inside of an
ice volume using both grid and particles. Amount of dissolved air found in ice defines
the objects state. Ellipsoidal particles allowgeneration of either needle-shapedor egg-
shaped bubbles depending on how quickly water is frozen. This model also includes
an enhanced heat model with variable transfer rate.

4.3.2 Previous Work

Phase changes in various types of fluids have been investigated by many researchers
who developed techniques to capture melting or freezing process of solid or fluid
objects [5, 55, 56]. However, they paid little attention on what happens when water
is being frozen.

Kim et al. [57] developed a hybrid method for simulating frost over arbitrary
surface by combining dynamic Lie algebra method [58], phase-field approach [59],
and stable fluid simulation [32]. However, the technique focused only on generation
of a thin frost layer, and it could not be applied on a volume of ice. Other papers
addressed generation of an icicle [60, 61]. However, such techniques are suitable
only for the generation of images in shapes similar to icicles or stalactites, and the
generated icicles appeared transparent.

Hong et al. [62] proposed a method to simulate the movement and transformation
of air bubbles inside of fluid object. It used grids to describe the fluid and particles
for air bubbles, and it shows the merging and splitting of air bubbles in conjunction
with a level-set method. However, this paper did not address phase changes taking
place in water.

Madrazo et al. [63] simulated the generation of trapped air bubbles inside of an ice
volume using only grid. Rendered results, whose qualities are largely dependent on
the grid resolution, also appearmonotonous because themethodgenerated air bubbles
only at the center of each grid square. Furthermore, the technique worked only on

148 4 Fire and Ice

simulations of slowly freezing cubic ice, and bubbles lacked directional property. On
the contrary, the technique in this section supports simulation of objects being frozen
while stored in containers of various geometric shapes. Other advantages include (1)
various attributes (e.g., direction and speed) can be modeled; and (2) air bubbles can
be placed anywhere independent of the grid location.

Seipel and Nivfors [64] used textures to show opaque ice. The paper focused on
real-time ice rendering including reflection and refraction. But, it used textures to
render opaque area which is highly dependent on the view point and was limited to
only convex geometries.

In order to accurately model directional movement of bubbles, we use ellipsoidal
particle method as suggested by [65]. Jo et al. [66] improved the method to describe
a smooth surface of fluid. In this section, we use particles with ellipsoidal kernel to
accurately describe directional property of particles.

Carte [67] described the behavior of air bubbles trapped inside of an ice volume,
but visualization has remained undone.

4.3.3 Overview

Realistic rendering of opaque ice requires deep understanding of properties of water
as well as physical phenomenon that occur in water when temperature drops [68].
Generally, water contains various types of dissolved gases such as nitrogen, chlo-
rine, and oxygen. These materials easily separate themselves from solvent as the
temperature is lowered. When water kept in a container is frozen inside a freezer, the
outer layer starts to freeze first because cold air first meets water at the containers
surface. As the freezing ice layer becomes thick, dissolved air is repelled from the
ice, thereby increasing the air volume toward the center of the container. The opaque
region is created when there exists excess air inside the water volume and dissolved
air can no longer be transferred externally.

Our method, illustrated in Fig. 4.29, consists of six steps. The initial and final
steps, in green background, are performed on a grid, and all other steps, colored
red involve transformations applied on particles. The grid is formed to model heat
transfer through water and render particles as small cloudy air bubbles. Particles are
used and classified each aswater, frozen ice, or air bubble. As the amount of dissolved
air around the center becomes high, dissolved air will be transformed either as air
bubble particles or a group of small cloudy air bubbles.

Fig. 4.29 System flow

4.3 A Particle-Grid Method for Opaque Ice Formation 149

Thefirst step simulates heat transfer that occur acrosswater and frozen ice using an
enhanced equation over a grid. Then attributes of the particles and grid are updated in
steps 2 through 5.Water particles update their temperature from the neighboring grid
cells via interpolation. The amount of heat contained in a particle indicates whether it
is frozen or not. Because ice cannot contain as much dissolved air as liquid water can;
in the second step, we move repelled air from a frozen particle to nearby particles.
Frozen particles search for nearby unfrozen particles to release dissolved air. Status
of each water particle is updated next. Frozen particles are classified as a large air
bubble or a group of small air bubbles depending on the amount of residual air. Next
step computes the direction and shape of each particles depending on the freezing
rate and the amount of dissolved air in it. The former follows that of ice being frozen
while the latter is determined by how fast it is being frozen. Air volume is decided by
the dissolved air the particle contains. The last step forms the dissolved air field by
updating grid cells based on the amount of dissolved air contained in nearby frozen
particles that are classified as groups of small cloudy air bubbles. This simulation is
terminated when all water particles eventually become ice particles.

4.3.4 Simulation of Freezing Ice

Tomodel heat transfer across the freezing water, we solve a heat equation using finite
difference method and Dirichlet boundary conditions. This equation can represent
different rates of heat transfer depending on the status of water particles. Water
particles fetch heat from the grid using trilinear interpolation.

Most of the heat transfer taking place in freezing water occurs by conduction
through the solid frozen ice. During simulation, we ignore both heat transfer within
water volume by convection and radiation heat transfer because we assume that (1)
freezing occurs in a freezer where convection and radiation barely affects the freezing
process, and (2) water is kept in a relatively small container.

4.3.4.1 Heat Transfer

Irregular patterns found in ice occur because the transfer rate of cold energy is
different between liquid water and frozen ice.

Figure4.30a, rendered using conventional heat equations, assumes the fixed heat
transfer rate for all of the grid cells, thereby resulting in symmetric advection of
heat. We enhance the heat equation to accommodate different heat transfer rates.
Conventional heat transfer equation is

∂u

∂t
− α∇2u = 0. (4.45)

150 4 Fire and Ice

Fig. 4.30 Comparison between a conventional heat equation and b our approach

In Eq. (4.45), α is the heat transfer constant, u is temperature and t is time, respec-
tively. We enhance it to more accurately capture physical phenomenon

α = (1 − W)αwater + Wαice, (4.46)

W = Pice

Pice + Pwater
. (4.47)

α is the heat transfer rate modifier for a grid cell. αwater and αice are the heat transfer
constants for water and ice, respectively. W is the ratio on the number of ice particles
to the total number of particles in the grid cell. To calculate α, we check the status of
particles inside the grid cell and adjust its value according to W .When there are fewer
frozen particles than water particles, α will be assigned a higher value. Conversely,
it will have a lower value when there are more frozen particles than water particles.

Figure4.30b shows the rendered image based on revised heat transfer equation.
Compared against the counterpart image, irregular distribution of heat transfer is
visually apparent.

To update the particle status, we have to transfer heat contained within a grid cell
to particles in the nearby cells. Amount of heat contained in each particle is computed
using information obtained from weneighboring cells using trilinear interpolation.
Each particle that has fetched heat from the grid will then be classified as either
a water or an ice particle. When the temperature falls below 0, it becomes an ice
particle.

4.3.4.2 Transfer of Dissolved Air

When a particle is frozen, it repels dissolved air toward nearby particles. Algo-
rithm 5.1 is the pseudocode to model such behavior. It computes the distribution of

4.3 A Particle-Grid Method for Opaque Ice Formation 151

dissolved air carried by a recently frozen ice particle DPi into nearby water particles
DPj . Amount of air transferred from particle Pi to Pj is computed by ΔDPj :

ΔDPj =
∑

i WijΔDPi∑
i Wij

, (4.48)

where

ΔDPi = min

(∑
j Wij DPi∑

j Wij
, DPi

)
,

Wij = 1

dij
(d ≤ 1).

ΔDPj is determined by the distance between the particles dij, which adjusts the
weight Wi and the amount of the air particles Pi can provide. Upon completion of
this step, there exist ice particles containing excessive volume of air. Such air will
separate itself out of ice and forman air bubble trapped inside.Whendissolved air DPi

in the i th ice particle exceeds T hair , it is rendered as an air bubble (Table 4.4). When
the value remains between 0 and T hair , air in the ice particles will be transferred to
the dissolved air field and rendered as small, cloudy air bubbles. Should the threshold
value be increased, bubbles become smaller and ice becomes increasingly foggy.

Algorithm 5.1 Transfer of dissolved air
for All particles do

if The phase the i th particle is ICE then
for Every neighboring particle around the i th particle do

if The phase of the j th neighbor of the i th particle is WATER then
DPj = DPj + ΔDPj (Eq.4.48)
DPi = DPi − ΔDPj

end if
end for

end if
end for

4.3.4.3 Generation of Directional Air Bubbles

As water transforms into ice, it transfers the dissolved air to nearby water particles.
As the speed of the freezing process is faster than that of the air being transferred,
air will become a bubble aligned to the direction of ice growth (See Fig. 4.31a). The
volume depends on the amount of the dissolved air, and the shape is affected by
the direction and speed of the freezing process. At faster freezing rate, bubbles will
form a thinner and sharper shape. We use ellipsoidal particles to generate directional
bubbles.

152 4 Fire and Ice

Fig. 4.31 a Air bubbles shaped like needles appearing in the fast-frozen ice. b Our simulation of
air bubble shapes like needles

Table 4.4 Phase dependency
on dissolved oxygen (DO)

State Condition Description

DO field 0 < DPi < T hair Stores DO in the grid

Air bubble T hair ≤ DPi Forms an air bubble

Exact process on how bubbles are created inside of an ice volume is still being
studied [69]. In our method, bubble shape and volume are assumed to depend on the
freezing speed and the amount of dissolved air [67]. Following equation is used to
describe directional property of bubbles:

V = 4π

3
p2(xz)q(y), (4.49)

where q = 1 + F and p = √
1/q . The bubble ellipsoid has two scale factors, q

which is aligned to the direction of the growth of the along y axis, p for the rest. V
is the volume of air bubble which is calculated by a simple scalar multiplication of
the amount of the dissolved air associated with the particle. F is the freezing rate,
which ranges from 0 to 1. Using the scale factors, we derive the following matrix for
scaling.

S =
⎡
⎣ p 0 0
0 q 0
0 0 p

⎤
⎦ (4.50)

Bubble is then aligned with the growth of ice. We generate a matrix which rotates
y axis of the particle to match the direction of the growth. The particle will then be
transformed with both matrices to produce a directional property (See Fig. 4.32).

Figure4.31b shows a result of bubbles with directional property using ellipsoidal
particles. We assume the same heat transfer rate over entire surface, and the result
shows bubbles pointing inward.

4.3 A Particle-Grid Method for Opaque Ice Formation 153

Fig. 4.32 Transformation between world coordinate and local coordinate

4.3.4.4 Generation of the Dissolved Air Field

The center of an ice volume has foggy opaque region. Air bubbles further from
the center tend to be larger, and become progressively smaller toward the center
(Fig. 4.36a). Near the center, bubbles are sufficiently small that they appear like
cloud. It is extremely time consuming to simulate every air bubble separately in
this region. Therefore, we render a particle as an air bubble if it has sufficient air.
Otherwise, we apply a volume-rendering technique using dissolved air values and
generate cloudy volume image when the final state has been reached. We fill each
cell of the dissolved air field by averaging the volume of dissolved air contained in
ice particles within radius h as shown in the Fig. 4.33a. While such simplification
would introduce a slight margin of error in computing the volume of dissolved air,
it does not cause serious impact the quality of rendered image while simplifying
computational complexity.

Figure4.33b visualizes dissolved air field containing sufficient air in red and the
air bubble particles in white. Our method can depict both large air bubbles and a
group of small, cloudy air bubbles without requiring excessive numbers of particles.

Because we use both particles and grids to describe air bubbles, we can naturally
display how air is distributed. Other techniques using only grids would result in

Fig. 4.33 Fetching the air around a grid cell

154 4 Fire and Ice

Fig. 4.34 a The tracked model surface derived by Frisken’s method. b The placement of the water
particles

blocky formation of the bubbles. In addition, as demonstrated in Fig. 4.33b, our
simulation can accurately depict air bubbles that are clustered or isolated.

4.3.4.5 Freezing Simulations for Other Shapes

Past research mainly addressed simulation of cubic ice models. But, in reality, con-
tainers of arbitrary shape are widely used when freezing water. Our model used the
SDF method suggested by Frisken [70] to simulate opaque ice of an arbitrary shape
(Fig. 4.34).

Figure4.35 shows the simulation results applied on various geometric shapes.
Frozen particles are visualized in blue, the air bubbles in white, and dissolved air
field in red, respectively. While conducting simulation using modified heat equation,
it is assumed that the same amount of heat was transferred from outside. The figure
captures the ice gradually freezing thicker toward the center.

4.3.5 Results and Discussion

4.3.5.1 Implementation and Results

The simulation was run on Intel Core2 2.66GHz equipped with 6.0G RAM and
NVidia GeForce 8800GTS graphic card. Ice surfaces were rendered by ray tracing
method with photon mapping to show caustics. Typical rendering took about 5min
with 1024 × 768 resolution by Mental ray in Autodesk Maya 2010. During the
rendering process, air bubbles were depicted as an ellipsoid, and dissolved air field
was processed using volume rendering. Exact timedepends on the number of particles
processed. The cube model (Fig. 4.36b), with 295,000 particles, took about 10min.
Simpler models were processed in less than 2min.

4.3 A Particle-Grid Method for Opaque Ice Formation 155

Fig. 4.35 Simulation results for various geometries

Fig. 4.36 Comparison between a real ice and b our result

156 4 Fire and Ice

Particles were placed so as not to overlap each other in the beginning. Particles
outside of the target geometry were then removed. To prevent large gaps between
particles or excessive clusterization, it is made sure that particles maintain certain
radius between each other. Same radius was also used for dissolved air distribution
process. Initial temperature began at 10 ◦C.

Particles do not move during simulation since freezing water being frozen inside
a static container will not exhibit drastic movement. Based on the similar assumption
that water particles would exhibit little movement, grid was used instead of smoothed
particle hydrodynamics (SPH) [56] to solve heat equation. SPH has an advantage
of enabling more accurate image being generated when simulating body of fluid
that move actively (e.g., river or fall). However, it is inefficient and does not deliver
superior rendering quality when the subject is mostly stationary. It must be noted
buoyancy simulationwas not considered since bubbles are created onlywhen trapped
inside of the frozen volume.

Figure4.36 compares our results against a photographic image of real ice. It is
visually apparent that we achieved an impressive rendering quality which closely
resembles that of a real object. Prior to taking the photo shown in Fig. 4.36a, water
was first boiled and then placed in a freezer to reduce volume of dissolved air. In
simulation, the rate of heat transfer on the bottom of the model was reduced to
accurately reflect that the floor of a freezer delivers less heat than the air inside the
freezer.

Figure4.37 illustrates our approach in progressive phases. SDF was used to sim-
ulate freezing kept in a container of arbitrary shape and equal heat transfer rate was
applied on all over the surface. 25,000 particles were used in the figure, and the num-
ber of air particles in the final image was 4,472. Visualization of only the air bubble
particles cannot perfectly describe small cloudy air bubble groups. On the other hand,
visualization of only the dissolved air field would result in a smoky image. Our result
shows that realistic image of opaque ice was created using dissolved air field and air
bubble particles.

All results were generated on 50 × 50 × 50 grid. Figure4.38 involved 85,650
particles, showing results viewed from the top and the side. Figure4.39 shows the
result of gargoyle statue model, and it convincingly demonstrates that our simulation
works well on complex geometric shapes.

4.3.5.2 Limitation

The techniqueproposed in this sectiondoes not yet fully support accurate and step-by-
step simulation of volume increase that occur during freezing process. Furthermore,
physical phenomenon that occur during liquidification or solidification was outside
the scope. Water is assumed to have no movement inside. In addition, supercooled
water would exhibit a distinctively different behavior as it does not allow dissolved
water to aggregate into larger bubbles. Such issues need to be addressed in future
works.

4.3 A Particle-Grid Method for Opaque Ice Formation 157

Fig. 4.37 a Without any opaque area. b Using particle only. c Dissolved air field only. d Both
particles and the field

Fig. 4.38 Teeth model: the numbers of water particles and produced air particles are 85,650 and
13,026

158 4 Fire and Ice

Fig. 4.39 Gargoyle statue model: the numbers of water particles and produced air particles are
90,203, and 15,731

4.3.6 Conclusion and Future Work

This section has presented an enhanced simulationmethod to generate realistic image
of ice that contain air bubbles. Unlike previous methods, which worked well only on
cubic models and produced only spherical bubbles, our method can simulate genera-
tion of opaque ice with arbitrary shape and directional bubbles. Moreover, it provides
high-quality results even in a low-resolution grid. Our method supports a mechanism
to model opaque region as a set of particles and dissolved air field, respectively. It
handles both large air bubbles as well as small and cloudy air bubbles. By employing
the dissolved air field, we developed relatively simple yet realistic enough opaque
ice without a need to use excessive numbers of particles and memory. Enhanced heat
equation allowed irregular pattern of freezing ice by accommodating different heat
transfer rates for water and ice. While our heat transfer method is not fully accurate
with respect to the law of physics, it produced visually convincing images.

The primary focus of this section is the generation of ice contained within a
stationary container. Inclusion of equations on fluid dynamics would allow us to
extend the model into freezing phenomenon that occur river or waterfall, which can
be the next topic to work on.

References

1. Losasso F, Irving G, Guendelman E, Fedkiw R (2006) Melting and burning solids into liquids
and gases. IEEE Trans Vis Comput Graph 12(3):343–352

2. Melek Z, Keyser J (2007) Driving object deformations from internal physical processes. In:
Proceedings of the 2007 ACM symposium on solid and physical modeling, pp 1–59

References 159

3. Liu S, Liu Q, An T, Sun J, Peng Q (2009) Physically based simulation of thin-shell objects’
burning. Vis Comput Int J Comput Graph 25(5–7):687–696

4. Terzopoulos D, Platt J, Fleischer K (1989) Heating and melting deformable models (from goop
to glop). Graph Interface 219:226

5. Carlson M, Mucha PJ, Van Horn RB III, Turk G (2002) Melting and flowing. In: Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 167–174

6. Baraff D, Witkin A (1998) Large steps in cloth simulation. In: SIGGRAPH’98: proceedings
of the 25th annual conference on computer graphics and interactive techniques, pp 43–54

7. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. In: Pro-
ceedings of the 14th annual conference on computer graphics and interactive techniques, pp
205–214

8. Bridson R, Marino S, Fedkiw R (2003) Simulation of clothing with folds and wrinkles. In:
Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pp
28–36

9. Choi KJ, Ko HS (2002) Stable but responsive cloth. ACM Trans Graph 21(3):604–611
10. Provot X (1995) Deformation constraints in a mass-spring model to describe rigid cloth behav-

ior. Graph Interface 147:154
11. MüllerM, Heidelberger B, HennixM, Ratcliff J (2007) Position based dynamics. Vis Commun

Image Represent 18(2):109–118
12. Hong M, Choi M, Jung S, Welch S (2005) Effective constrained dynamic simulation using

implicit constraint enforcement. In: International conference on robotics and automation, pp
4520–4525

13. Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E (2007) Efficient simulation of
inextensible cloth. In: Proceedings of ACM SIGGRAPH 2007, ACM transactions on graphics
(TOG), vol. 26(3): Article No. 49

14. English E, Bridson R (2008) Animating developable surfaces using nonconforming elements.
ACM Trans Graph 27(3):1–5

15. Grinspun E, Hirani AN, Desbrun M, Schröder P (2003) Discrete shells. In: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA’03, pp 62–67

16. Thomaszewski B, Wacker M (2006) Bending models for thin flexible objects. In: WSCG short
communication proceedings 9

17. Volino P,Magnenat-Thalmann N (2006) Simple linear bending stiffness in particle systems. In:
Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation,
pp 101–105

18. Bergou M, Wardetzky M, Harmon D, Zorin D, Grinspun E (2006) A quadratic bending model
for inextensible surfaces. In: Proceedings of the fourth Eurographics symposium on geometry
processing, SGP’06, pp 227–230

19. Garg A, Grinspun E, Wardetzky M, Zorin D (2007) Cubic shells. In: Proceedings of the ACM
SIGGRAPH/Eurographics symposium on computer animation, SCA’07, pp 91–98

20. Choi MH, Hong M, Welch S (2004) Modeling and simulation of sharp creases. In: SIG-
GRAPH’04: ACM SIGGRAPH 2004 sketches, p 95

21. Molino N, Bridson R, Teran J, Fedkiw R (2003) A crystalline, red green strategy for meshing
highly deformable objects with tetrahedral. In: IMR, pp 103–114

22. Desbrun M, Meyer M, Schröder P, Barr AH (1999) Implicit fairing of irregular meshes using
diffusion and curvature flow. In: Proceedings of the 26th annual conference on computer graph-
ics and interactive techniques, SIGGRAPH’99, New York, pp 317–324

23. Bell N, Garland M (2008) Efficient sparse matrix-vector multiplication on Cuda, NVIDIA
Technical report NVR-2008-004

24. Hong J-M, Shinar T, Fedkiw R (2007) Wrinkled flames and cellular patterns. In: Proceedings
of ACM. ACM transactions on graphics (TOG), vol 26(3), pp 47:1–47:6

25. Min K, Metaxas D (2007) A combustion-based technique for fire animation and visualization.
Vis Comput: Int J Comput Graph 23(9):679–687

26. Nguyen DQ, Fedkiw R, Jensen HW (2002) Physically based modeling and animation of fire.
In: Proceedings of ACM SIGGRAPH 2002. ACM transactions on graphics (TOG), vol 21(3),
pp 721–728

160 4 Fire and Ice

27. Jeong S, Kim T-H, Kim C-H (2011) Shrinkage, wrinkling and ablation of burning cloth and
paper. Vis Comput: Int J Comput Graph—CGI’2011 27(6–8):417–427

28. Zhu J, Chang Y, Wu E (2011) Realistic, fast, and controllable simulation of solid combustion.
Comput Animat Virtual Worlds 22(23):125–132

29. Williams F (1977) Mechanisms of fire spread. Int Symp Combust 16(1):1281–294
30. Melek Z, Keyser J (2003) Interactive simulation of burning objects. In: Proceedings of the 11th

Pacific conference on computer graphics and applications, PG’03, pp 462–466
31. Melek Z, Keyser J (2005) Multi-representation interaction for physically based modeling. In:

Proceedings of the 2005 ACM symposium on solid and physical modeling, SPM’05, pp 187–
196

32. STAM J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer
graphics and interactive techniques, pp 121–128

33. Ishikawa T, Miyazaki R, Dobashi Y, Nishita T (2005) Visual simulation of spreading fire. In:
Proceedings of the NICOGRAPH, international, pp 43–48

34. STAM J (2003) Flows on surfaces of arbitrary topology. In: Proceedings of ACM SIGGRAPH
2003. ACM transactions on graphics (TOG), vol 22(3), pp 724–731

35. Shi L, Yu Y (2004) Inviscid and incompressible fluid simulation on triangle meshes. In: Com-
puter animation and virtual worlds—special issue: the very best papers from CASA 2004, vol
15(34), pp 173–181

36. Graham-Eagle J, Schult D (2001) The effect of wind on combustion waves with reactant
depletion. Proc R Soc Lond Ser A: Math Phys Eng Sci 457:2397–2417

37. Beaudoin P, Paquet S, Poulin P (2001) Realistic and controllable fire simulation. Proc Graph,
Interface159–166

38. LeeH,KimL,MeyerM,DesbrunM (2001)Meshes on fire. In: Proceedings of the Eurographics
workshop on computer animation and simulation, pp 75–84

39. Perry CH, Picard RW (1994) Synthesizing flames and their spreading. In: Proceedings of the
fifth Eurographics workshop on animation and simulation, pp 1–14

40. Zhao Y, Wei X, Fan Z, Kaufman A, Qin H (2003) Voxels on fire. In: Proceedings of the 14th
IEEE visualization 2003, p 36

41. Wei X, LiW,Mueller K, KaufmanA (2002) Simulating fire with texture splats. In: Proceedings
of the conference on visualization’02, pp 227–235

42. UmK, Kim T-Y, Kwon Y, Han J (2013) Porous deformable shell simulation with surface water
flow and saturation. Comput Animat Virtual Worlds 24(34):247–254

43. Wang H, Miller G, Turk G (2007) Solving general shallow wave equations on surfaces. In:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation,
pp 229–238

44. Fan Z, Zhao Y, Kaufman A, He Y (2005) Adapted unstructured LBM for flow simulation on
curved surfaces. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
computer animation, SCA’05, pp 245–254

45. Auer S, Macdonald CB, Treib M, Schneider J, Westermann R (2008) Real-time fluid effects
on surfaces using the closest point method. Comput Graph Forum 31(6):1909–1923

46. Neill P, Metoyer R, Zhang E (2007) Fluid flow on interacting deformable surfaces. In: SIG-
GRAPH’07 ACM SIGGRAPH 2007 posters. Article no. 57

47. Angst R, Thuerey N, Botsch M, Gross M (2008) Robust and efficient wave simulations on
deforming meshes. Comput Graph Forum 27(7):1895–1900

48. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Comput 15(6):1373–1396

49. Pinkall U, Polthier K (1993) Computing discrete minimal surfaces and their conjugates. Exp
Math 2(1):15–36

50. Schmidt R, GrimmC,Wyvill B (2006) Interactive decal compositing with discrete exponential
maps. In: Proceedings of ACM SIGGRAPH 2006. ACM transactions on graphics (TOG), vol
25(3), pp 605–613

51. Petronetto F, Paiva A, Lage M, Tavares G, Lopes H, Lewiner T (2010) Meshless Helmholtz-
Hodge decomposition. IEEE Trans Vis Comput Graph 16(2):338–349

References 161

52. BridsonR,Houriham J, NordenstamM (2007) Curl-noise for procedural fluid flow.ACMTrans
Graph 26(3):46:1–46:3

53. Pearson JE (1993) Complex patterns in a simple system. Science 261:189–192
54. Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH

2007, sketche. Article no. 22
55. FujisawaM,MiuraKT (2007)Animationof icemelting phenomenonbasedon thermodynamics

with thermal radiation. In: Proceedings of the 5th international conference on computer graphics
and interactive techniques in Australia and Southeast Asia, pp 249–256

56. Iwasaki K, Uchida H, Dobashi Y, Nishita T (2010) Fast particle-based visual simulation of ice
melting. Comput Graph Forum 29(7):2215–2223

57. Kim T, Henson M, Lin MC (2004) A hybrid algorithm for modeling ice formation. In: Pro-
ceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on computer animation,
SCA’04, Eurographics association, pp 305–314

58. Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon.
Phys Rev Lett 47:1400–1403

59. Ma S, Grinstein G, Mazenko G (1986) Directions in condensed matter physics: memorial
volume in honor of Shang-Keng Ma., World Scientific Series on Directions in Condensed
Matter PhysicsWorld Scientific, Singapore

60. Kim T, Adalsteinsson D, Lin MC (2006) Modeling ice dynamics as a thin-film Stefan prob-
lem. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer
animation, SCA’06, Eurographics association, pp 167–176

61. KharitonskyD,Gonczarowski J (1993)Aphysically basedmodel for icicle growth.VisComput
10(2):88–100

62. Hong J-M, Lee H-Y, Yoon J-C, Kim C-H (2008) Bubbles alive. In: Proceedings of ACM
SIGGRAPH 2008. ACM transactions on Graph (TOG), vol 27(3), pp 48:1–48:4

63. Madrazo C, Tsuchiya T, Sawano H, Koyanagi K (2009) Air bubbles in ice by simulating
freezing phenomenon. J Soc Art Sci 8(1):35–42

64. Seipel S, Nivfors A (2007) Real-time rendering of ice. In: Proceedings of the ninth IASTED
international conference on computer graphics and imaging, CGIM’07, pp 60–66

65. Owen JM, Villumsen JV, Shapiro PR, Martel H (1998) Adaptive smoothed particle hydrody-
namics: methodology. Astrophys J Suppl Ser II 116(2):155–209

66. Jo E, Kim D, Song O-Y (2011) A new SPH fluid simulation method using ellipsoidal kernels.
J Vis 14(4):371–379

67. Carte AE (1961) Air bubbles in ice. Proc Phys Soc 77(3):757–769
68. Monk P (2004) Physical chemistry: understanding our chemical world. Wiley, Chichester
69. Forbes G (2007) Texture and bubble size measurements for modelling concentrate grade in

flotation froth systems
70. Frisken SF, Perry RN, Rockwood AP, Jones TR (2000) Adaptively sampled distance fields:

a general representation of shape for computer graphics. In: Proceedings of the 27th annual
conference on computer graphics and interactive techniques, pp 249–254

Chapter 5
Fluid Interaction

5.1 Solid-Fluid Collision Detection

5.1.1 Fast Coupling for Particle-Based Simulation
with Motions

Abstract This section proposes a direct motion tree (DMT) method to speedup
the particle-solid coupling process in fluid simulations through prediction of the
particle motion path. The DMT method is adaptively constructed, and each node
stores the signed distance to the object, as well as a list of particles that are likely
to collide with that. The possibility of collision is determined based on the particles
predicted motion path, derived from the current position and velocity. So we can
robustly deal with the tunneling problem that the previous approaches suffer from
when there are particles moving quickly in comparison to the width of leaf node.
To extract collision-candidate particles (called DMT particles in this section) and
follow the constraint of Courant-Friedrichs-Lewy (CFL) condition for them, we
introduce a new particle transfer method. Particles are transferred to child nodes,
based on the intersecting patterns between the nodes and the motion path of each
particle. As a result, the DMT particles are robustly found and the leaking particles
are barely shown in simulations. In addition, a new parallel hashing scheme is also
introduced into the signed distance value calculation process, which significantly
improves the performance of the entire particle simulation. Experimental results
show the improved performance and robustness over the previous approaches.

5.1.1.1 Introduction

The use of computer graphics in films is growing rapidly. However, a technique
that still requires a lot of research is the modeling of rigid or deformable bodies
interacting with various fluids. Collision detection is a key process in modeling
interactions between multiple objects. While Lagrangian methods work well with

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_5

163

164 5 Fluid Interaction

Fig. 5.1 Afalling bunny interactingwith fluids of 3,687,560 particles.Our directmotion tree (DMT,
blue curve) method accelerates collision detection for arbitrary scenes with any rigid/deformable
objects. b On average, DMT shows about ×17 speedup over an adaptively sampled distance field
(ADF, red curve) [7] (Red circular arrow represents the scene transition)

simple objects, an enormous number of particles are required to model collisions
of complex objects such as cloth, hair, or fluids. But its computational requirement
grows with the number of primitives, motivating the development of more efficient
culling methods.

The bounding volume hierarchy (BVH) is an efficient culling method for rigid
bodies. But if an object is deformable, its BVH structure must be updated at 40
every time-step, which has a serious impact on performance. This issue is addressed
by recent techniques in which spherical approximations are combined with BVH to
simulate particle-based fluids, as well as rigid-body interactions. Another method is
to use a signed distance field (SDF) to simulate the interaction of both rigid objects
and deformable bodies, such as cloth [7, 23].

This section proposes a direct motion tree (DMT) method for efficient culling in
simulating the motion of particles (see Fig. 5.1). Unlike previous BVH-based culling
methods for polygonal models, this technique is designed to improve the speed of a
Lagrangian particle simulation. Generally, Lagrangian approaches require a greater
number of particles than the number of polygons involved inmesh-based simulations,
and it becomes a serious bottleneck. Because this DMT investigates only the particles
with a high possibility of collision, its performance is much higher than previous
ADF-based methods. The contributions of this method are as follows:

• Fast and robust collision detection: To handle the enormous number of particles
efficiently, DMT has a structure of adaptively subdivided spaces such as the BVH
or ADF. In previous BVH/ADF approaches, tunneling problems—where many
colliding particles are not detected—sometimes occur when they only use the leaf
nodes. This is because the magnitudes of their velocities exceed the grid size of a

5.1 Solid-Fluid Collision Detection 165

leaf node. Unlike the previous approaches, our method shows very robust collision
detection, because it only finds surface particles by considering the motion of the
particles as well as the location of the particles. Furthermore, the performance is
way above those of previous approaches, since the number of particles near the
surface is very small compared to that of entire particles.

• Parallel hash-based ADF: A new hash-based parallel data structure is introduced
which is suitable for both rigid and deformable bodies, based on the adaptively
sampled distance field (ADF) presented by Frisken [22].

• Efficiency of representation: Because this method is performed on just one sim-
ulation field which includes multiple objects, it is easier to represent fluid interac-
tions.

5.1.1.2 Related Work

Collision detection methods have been studied in fields such as computer graphics,
robotics, and computational geometry. Traditional culling techniques can be clas-
sified as either discrete or continuous approaches, depending on the timing of the
collision detection.

Discrete Collision Detection (DCD) finds the collisions that occur during time-
steps of a fixed length, at which point BVH approaches are generally applied. There
are many variations of DCD, some of which consider the topological properties
of the objects. For example, convex hull tree and Voronoi Marching methods are
designed to detect collisions between convex polygons [16, 17]. Due to the inherent
discreteness of DCD, it is difficult to find consecutive collisions that occur in the
middle of consecutive time-steps.

Continuous Collision Detection (CCD) was developed to find close sequential
collisions. Various CCD techniques include:

– Algebraic equation solution provides a simple vector representation of the collision
space [56].

– Swept volume constructs the volume swept by a moving-object over consecutive
time-steps, to find the collision between that volume and other objects [4].

– Adaptive bisection detects changes in the configuration of primitives over a certain
time interval by determining distances between neighboring primitives. It repeat-
edly subdivides two consecutive time-steps until it converges to the moment of
collision [57, 66].

Most CCD techniques are not fast enough for real-time applications, prompting the
development of other methods to improve the efficiency of collision detection.

Bounding Volume Hierarchy (BVH) techniques provide efficient culling that uses
a bounding volume with a simpler topology than the actual object [27]. The bound-
ing volumes may be spheres, axis-aligned bounding boxes, object-oriented bound-
ing boxes, k-DOPs (discrete oriented polytopes), etc. However, the BVH approach
requires a lengthy preprocessing step for the hierarchy construction, and when the
models are deformable, the hierarchy refit is repeatedly incurred at every time-step.

166 5 Fluid Interaction

Spherical approximation, which generates surface spheres for approximating
triangular meshes, has been widely used in collision detection [15]. It is also used
to model the objects interacting with water sheets [2, 3], while others used it to
model the interactions between rigid-bodies and particle-based fluids [9, 59]. One
criticism of spherical approximation has been that they are very slow due to the enor-
mous number of spheres (see Fig. 5.2b). To solve this problem, the inner sphere tree
method is proposed, in which a shape is approximated by a tree of adaptively sized
spheres [55, 73]. However, reconstructing this tree would take too long to allow this
method to be used for simulating deformable bodies. To enhance the performance
of collision detection, spheres are created only near the surface of an object (see
Fig. 5.2c), needless to approximate the interior of the object. As a result, the num-
ber of spheres will be greatly reduced, leading to a significant improvement in the
performance of collision detection. But this approach may fail if particles move too
quickly, since some ‘leaking’ particles penetrate the surface whose interior has not
been approximated by spheres.

Signed Distance Field (SDF) contains the distances from every cell in a grid
covering the scene to the nearest object surface (see Fig. 5.3). Because SDF makes it
easy to perform Boolean operations for 3D shapes, it is widely used in applications

Fig. 5.2 Spherical approximation: a mesh contour, b all spheres, c surface spheres

Fig. 5.3 A 2D illustration of SDF: a original image, b distance field, c outline + b

5.1 Solid-Fluid Collision Detection 167

such as computer-aided designs, computer graphics, and rapid prototyping. Applying
SDF approaches to physics simulations with millions of particles incurs a lot of
computation overhead, especially when investigating whether each particle collides
with the surface.

There has been much effort put into accelerating SDF computations for complex
polygonal models, rather than just particles. Mauch and Mauch constructed a trian-
gular net which contained prisms, cones, and wedges, which represented the nearest
faces, vertices, edges, and objects [48]. Points in the same zone of the net share the
same nearest surface primitive. The efficiency of this approach can be improved by
tuning various parameters, but determining the sign of the distance values remains a
problem. Sigg et al. proposed a prism scan algorithmwhichmodifiesMauchsmethod
by constructingVoronoi sites for various types of vertices such as convexes, concaves,
saddles, or planes [64]. In their method, a net structure is constructed only at the faces
of the object, after which a subsequent scan conversion is performed on the graphics
hardware. While this reduces the computation time, the sign of the distance value
for a certain point is sometimes miscalculated when its nearest primitive is a vertex.

Additionally, errors can occur in determining normal vectors from SDF, because it
contains no information about the surface topology. To collect the signs for distance
values, Baerentzen and Aanaes introduced the concept of an angle-weighted pseudo-
normal, which is associated with the vertices and edges of objects [5]. It is obtained
by calculating the weighted average of the normal vectors of all triangles connected
to each target vertex. Guéziec improved the computation of the distance fields using
a hierarchical triangular mesh of objects [28]. He also introduced related traversal
algorithms to reduce the time for constructing the SDF. Sud et al. determined the
Voronoi regions of the primitives from which objects are constructed [62]. Subse-
quently, they created a distance field for each slice of a grid, and used the Voronoi
regions to speedup the search for the primitive nearest to each grid point. Lefebvre
and Hoppe also exploited spatial coherence by using an adaptive primal tree [44].
Huang et al. introduced methods that measured the complete distance fields, which
represent distances accurately [33]. Houston et al., on the other hand, also proposed
an RLE (Run Length Encoding) method [35] which computed sparse level sets by
encoding the regions using RLE with respect to their distance only in the narrow
band. Nielsen and Museth [53] proposed a new structure named the dynamic tubular
grid (DT-grid). Finally, Frisken et al. used adaptively sampled distance fields (ADF),
which have a sampling resolution that varies with the amount of local surface details
[22]. The sampled distances are then stored in an octree structure (see Fig. 5.4). We
utilized this method to create an SDF.

5.1.1.3 Parallel SDF Framework

It is time-consuming to construct an SDF for models with large numbers of primi-
tives. Likewise, computing SDF at every time-step on nonlinearly deformed objects
requires a large computational overhead. To reduce this cost, this section introduces

168 5 Fluid Interaction

Fig. 5.4 ADF construction examples (green line: zero-contours): a C glyph, b sphere, c Stanford
bunny

Fig. 5.5 Multithreaded ADF construction. The same thread at each level has the same color: a
entire structure, b ADF at the level 6, c ADF at the level 7

a novel method, which uses parallel computation to construct and maintain an ADF
in conjunction with a hash table for querying its distance values [7].

ADF Construction with Parallel Hashing

To apply parallel computation to the ADF calculation, we handle the nodes at the
same level bymultithreading (see Fig. 5.5). EachADFcell has a corresponding thread
index, which are reused at higher levels of the ADF (see Fig. 5.5a).

When performing the ray-casting for the subdivision, the same operation is
repeated for some nodes, slowing the construction of the ADF. To reduce this redun-
dancy, we used a hash table to access nodes quickly.

Algorithm 5.1:Hash Key(c)
Input: Corner c of each node
length ← 1.0/2level

size ← length + 1
// calculate coordinate index x, y, z
i, j, k ← c.getCoordinateIndex()
key ← i × size × size + j × size + k
return(key)

5.1 Solid-Fluid Collision Detection 169

Table 5.1 Comparison of
ADF construction time with
and without our hashing
scheme

Method Depth Timing (sec)

Without hashing 4 3.27

6 15.25

8 86.50

With hashing 4 1.61

6 5.69

8 36.05

Each cell in an ADF is always subdivided into eight subcells of equal size. Thus,
a unique key for each ADF cell can be calculated by encoding its coordinate indices
(seeAlgorithm6.1). The cell containing a query location can thenbe retrieved reliably
and efficiently from the resulting hash table. Level is the depth of the ADF tree and i,
j, and k are the coordinate indices of the current node. As shown in Fig. 5.5, all nodes
at the same level can be processed in parallel, and the creation of the hash table can
also be performed in parallel.

Teschner et al. also proposed an optimized spatial hashing technique [71], but
they assigned a hash key to each primitive, which creates a long delay if the number
of primitives increases. On the other hand, our method evenly subdivides the space
into an octree and creates a hash key for each node. As a result, the number of
primitives has a smaller influence on performance. Table5.1 shows that parallel
ADF construction using a hash table is about 11 times faster than the serial ADF.

5.1.1.4 Construction of Direct Motion Tree

Leaking Particles by Tunneling Problem

Leaking particles are a well-known problem with particle-based techniques, includ-
ing spherical approximation and SDF. The method of spherical approximation can
take a long time, since toomany unnecessary spheres are constructed inside the object
(see Fig. 5.2b). Performance is increased if spheres are created only near the surface
of objects (see Fig. 5.2c). However, when simulating scenes that change rapidly, some
particles end up penetrating the object surface without their collision with the surface
spheres being accurately detected.

If a collision detection is performed for all particles in the SDF approach, nonewill
leak. However, it is slow to query all the particles, because only those near the object
surfaces usually collide with an object. If we handle only particles near the surfaces,
the leaking particle problem can also occur under the aforementioned rapidly chang-
ing scenes during spherical approximation. Figure5.6 shows the leaking particles
when only the surface particles are considered.

Figure5.7a shows that spherical approximation has the same problem. Because
some particles penetrate inside the base stone, only a little volume of water remains.

170 5 Fluid Interaction

Fig. 5.6 Leaking particles in an SDF-based simulation

Fig. 5.7 Comparison of leaking particles: a spherical approximation, b DMT

We address this problem by integrating the predicted motion path of particles into
the collision detection framework, not just the particle positions.

Coupling

One-way coupling: To simulate the interaction between the particles and the object,
we use themodified version of [7]. Consider a collision between a particle p traveling
at velocity vp and a target object with its own level-set data. At the location of p,
we use the local level-set value φ, the outward normal n = ∇φ/|∇φ|, and the local
velocity v of the target object.

Equation (5.1) predicts how the current level-set value of the particle pwill change
at the next time-step. This equation includes a term that accounts for the relative

5.1 Solid-Fluid Collision Detection 171

motion between the particle and the object in the normal direction. If φt+1 is positive,
then the particle will still be outside the object and nothing else will be required.
Otherwise, a collision will occur, at which point the time must be calculated. By
setting φt+1 = 0 in Eq. (5.1), we obtain Eq. (5.2), which gives us the time of collision
Δτ .

φt+1 = φt + Δτ(vp − vs) · n (5.1)

φt + Δτ(vp − vs) · n = 0
→ Δτ = −φt

(vp−vs)·n
(5.2)

Figure5.8 provides an example of interactions between cloth and a rigid-body,
which shows a lot of detail. To make the collision response, the method of Bridson
et al. is used that is based on the level-set data [7].

Two-way coupling: To perform two-way coupling with a deformable body, each
DMT node also stores the shortest distance to an object surface and the identifier
of the nearest primitive, as well as the indices of all particles passing through that
node. Information about the nearest primitive makes the two-way coupling faster
when processing the interactions of particles which are near an object surface. Our
method for collision responses is based on that of Bridson et al.

Equations (5.3) and (5.4) determine the adjusted positions of vertices on the
colliding faces [7]. For the particle-triangle case, where the member vertices of face
xyz with barycentric coordinates w1w2w3 are interacting with a particle p, we use
linear interpolation to determine the velocity of a particle in the interior of a triangular
face.

Ĩ = 2c

1 + w2
1 + w2

2 + w2
3

(5.3)

Fig. 5.8 Interaction between the cloth and a rigid body

172 5 Fluid Interaction

vnew
i =

∑Ω
p=0

(
vi + wp

i
Ĩ

mi
n̂
)

Ω
(5.4)

In Eq. (5.4), i is the index of a vertex of the target face, and Ĩ is the linearly
interpolated impulse of magnitude in the direction n̂, normal to the face. c is a
parameter which controls the flow of the coupling simulation. Ω is the number of
particles inside the triangle. The new velocity vnew

i is obtained by interpolating the
velocities of these particles, using Eq. (5.4).

5.1.1.5 Implementation and Applications

Our direct motion tree can be applied to a number of graphics tasks. We compare this
method to spherical approximation and ADF in four different scenarios : coupling
with rigid and deformable bodies, splash particles in a moving object, and cloth
falling on a rigid body. Simulations used an Intel i7-2600k 3.40GHz CPU with
16GB of memory, and an NVIDIA GeForce GTX 580 graphic card.

Coupling of Fluid with Rigid and Deformable Bodies

Applying DMT to rigid and deformable bodies must be done in different ways. The
distance field associated with a deformable body is updated at every time-step, so the
particle transfer is performed during the modification of DMT. On the other hand,
the distance field is constant for a rigid body, so it might be an overhead if the particle
transfer is done by re-traversing the entire tree at every time-step.

To reduce this overhead, the phase region method is introduced. The phase region
is simply divided into interior and exterior parts of an object (see Fig. 5.9b). All
particles belong to the exterior region at the current time-step. By approximating the
positions of particles at the next time-step through the utilizing their current positions
and velocities, we are able to quickly find them near the object surface.

Only the particles that may belong to the interior region at the next time-step are
tested through accurate collision detection. Figure5.10 shows the result of coupling
the particle-based fluid simulation with a rigid body. Our DMT accelerated the com-
putation efficiency approximately 31 times faster than the method of [7], and 2,075
times faster than spherical approximation. Using spherical approximation, it is easy
to find the sphere nearest to each particle, but the computational overhead in the
entire process is large because of the need to process interactions between particles
and spheres.

We use the finite element method (FEM) to model the deformation of an object.
Figure5.1 shows the result of coupling a particle-based fluid to a deformable body.
The results for the spherical approximation method are not presented because they
were too slow. On average, DMT ran about 17 times faster than ADF. As seen from
the spikes in the plots in Fig. 5.1a, the processing time becomes slightly longer due
to the increase in the number of DMT particles when the bunny collides with the

5.1 Solid-Fluid Collision Detection 173

Fig. 5.9 DMT structure on rigid-body: a DMT nodes (green), b phase region (blue interior, red
exterior)

Fig. 5.10 Coupling of fluid with a rigid body: a performance, b DMT speedup over ADF

liquid surfaces. Because the number of extracted DMT particles directly affects the
entire performance, our performance exceeds that of the previous ADF method that
considers all the particles by traversing the adaptive tree. The improvement of the
performance is shown very well in Fig. 5.1b.

174 5 Fluid Interaction

Fig. 5.11 Splash particles in rotating boundary: a performance, b DMT speedup over ADF

Splash Particle in Rotating Boundary

Simulating a fluid with a rotating boundary is known to be computationally very
expensive [32]. Figure5.11 shows an example of this scenario in which a bunny-
shaped transparent boundary continuously rotates around its z-axis. The motion of
the particles is not stabilized, as it is when simulating deformable bodies, which
results in excessive particle–surface interactions. DMT showed to be approximately
5 times faster than ADF, as well as no signs of leaking particles. The number of
particles considered in collision detection was also greatly reduced. The particles
are leaked around the object boundary. On the contrary, DMT robustly finds the
particles with a high possibility of collision in interior nodes by considering the
particle motion.

Figure5.11 shows dynamically interacting particles inside a rotating object. The
number of extracted DMT particles is kept in a certain range, because the surface–
particle collision starts from the beginning of the simulation and the colliding appear-
ance has no big change during the entire simulation (see subcaptions (1), (2), and
(3) in Fig. 5.11b). Even in a dynamic scene like this, our method shows faster per-
formance than the ADF-based approach.

Coupling Cloth Falling on a Rigid Body

Figure5.12 shows the particles involved in the interaction between the cloth and a
rigid body. Red particles represent the DMT particles which can be collided with
the object. Unlike the fluid simulation, many cloth particles are classified as DMT
particles due to the draping effect (see subcaptions (2) and (3) in Fig. 5.13b). This

5.1 Solid-Fluid Collision Detection 175

Fig. 5.12 Visualizing DMT particles (red)

Fig. 5.13 Coupling cloth falling on a rigid body: a performance, b DMT speedup over ADF

slows down the performance of DMT processing, but DMT still shows better effi-
ciency than the previous methods.

Contrary to general particle-based fluid simulation, many particles stay near the
object surface in cloth simulation due to the draping effect, which reduces the
improvement by DMT. As shown in the results in Fig. 5.13b, our performance over
the ADF is not so big, but still about 2 times faster on average.The Constrained
Lagrangian Mechanics (CLM) by [26] was used for the cloth simulation.

176 5 Fluid Interaction

5.1.1.6 Conclusion

The DMT speedsup collision detection by investigating only the particles in its leaf
nodes. The problem of leaking particles is significantly reduced by considering the
predicted motions of particles at the particle transfer stage. Additionally, the con-
struction of the DMT is accelerated by employing a new parallel hashing technique.
Experimental results demonstrated improved performance and robustness. The par-
allel DMT construction algorithm can be converted into a framework for a GPU.

5.2 Controlling Fluid Animation

5.2.1 Interchangeable SPH and Level-Set Method in Multiple
Fluids

Abstract In grid-based fluid simulation, subgrid-scale fluid is difficult to represent
realistically. In this section, we describe such small-scale details effectively, even on
a coarse grid by using escaped particles. These particles, when simulated through
smooth particle hydrodynamics, allow the illustration of dynamic and realistic fluids.
Particles in SPH have a force for them to bemergedwithin the range of each particle’s
radius. However, the SPH approach does not address the objective of only the part
indescribable on a grid being portrayed through the particle method, decreasing the
accuracy of the simulation. Integrated particles which are able to be described by
level-set method are also likely to end up simulated by particles. To address this
problem, this section introduces a method through which the indefinable part of a
grid is denoted in particles, while level-set method is used to describe the particles
merged on the grid.

5.2.1.1 Introduction

Fluids research in the computer graphics community has largely been focused on the
precision and realistic visual quality of simulations. Advection of simulation is also
indispensable for greater accuracy, while BFECC [41] and CIP [67, 68] ensure sec-
ond order accuracy. This section adopts the BFECC method to improve simulation
accuracy and implements simulation using the particle level-set method [18, 20] to
detect smooth surfaces. Even with both methods applied, Eulerian grid-based simu-
lation, which is based on Navier–Stokes equations, continues to result in dissipation.
Currently, a great deal of research on this problem is underway. One outstanding
example, and a primary motive for this section, is [34]. The combination of particle
and grid-based methods boosts realistic visual attributes and, most notably, plays
an important role in depicting splashing, foam, and bubbles. Generally, the particles
remaining outside the level-set surface after the correction of the particle level-set

5.2 Controlling Fluid Animation 177

method are utilized. Meanwhile, this research is being conducted to improve authen-
ticity through the addition of SPH-based physical properties. In this section, we
also perform SPH-adopting simulation for the remaining escaped particles. Then,
particles and grid are attempted two-way coupling using physical dynamics. Also,
vorticity confinement method and cohesive force are added to SPH particle to harmo-
nize grid-based simulation and particle simulation. Cohesive force refers to a force
through which particles draw one another together. This force attracts neighboring
particles and eventually engenders particle clustering. Prior research has adopted a
hybrid approach for particle and grid-based simulation in order to exhibit the inde-
finable part on a grid. Therefore, we will focus on method to improve the accuracy
of simulation. To this end, we utilize SPH particles to display the indefinable on the
grid scale while small-scale features and particles which are clustered and become
large enough to be depicted via the grid method are converted to level set on a grid.

5.2.1.2 Previous Work

Foster and Metaxas [21] made three-dimensional fluid simulation based on Navier–
Stokes equations and Stam [68] suggested a semi-Lagrangian integration scheme
and introduced unconditionally stable fluid. Authors of [18, 20] adopted particle
and level set and pioneered tracking complicated water surfaces. In [29], the vol-
ume of fluid method shows multiphase fluid simulation of surface tension between
water and air bubble. Subsequently, Hong and Kim [31] suggest a numerical method
that emphasizes a discontinuous interface among different fluids. Desbrun and Gas-
cuel [14] focus on the SPH method to handle viscous fluids and Müller et al. [49]
propose an interactive method, an underpinning of SPH in the simulation of water,
and represent a multiphase SPH method to describe fluids with different composi-
tions [51]. Cleary et al. [13] treat the collision motion of foam and bubbles on a
complicated surface realistically. Recently, great effort is being made to highlight
the details of an underlying subgrid, facilitated by the hybridization of a Eulerian
grid and Lagrangian particle. Greenwood and House [25] portray small-scale fea-
tures of a subgrid on a grid-based simulation by adding the particle level-set method
[18], which uses the escaped marker particle from water or air. Kim et al. [37] also
depicted splash by combining SPHmethod with escaped particles from particle level
set. Losasso et al. two-way coupled particle level set and SPH [47] in order to sim-
ulate diffuse regions such as splashing. Finally, Hong et al. [34], the fundamental
foundation of this section, utilized SPH air bubbles on a coarse grid to create lively
air bubbles with small-scale features.

178 5 Fluid Interaction

5.2.1.3 Fluid Simulation

Grid-Based Fluid Simulation

The Navier–Stokes equation provides the simulation of incompressible fluid, and
preserves mass and momentum.

ut = −(u · ∇)u + ∇p/ρ + f (5.5)

∇ · u = 0 (5.6)

where u is the velocity, ρ is the density, and f is external force (such as gravity,
buoyancy etc.). Equations (5.5) and (5.6) are solved using Chorin’s method [12]. We
divide Eq. (5.5) into two equations by intermediate velocity u∗.

u∗ − un

Δt
= −(un · ∇)un + f (5.7)

un+1 − u∗

Δt
= −∇p

ρ
(5.8)

To obtain u∗, first, we should define −(un · ∇)un, the advection term, from the
semi-Lagrangian method [68], and the rest of the equation, excluding pressure, is
added. Next, we make Eq. (5.8) Poisson’s equation in Eq. (5.9) and yield the pressure
profile, based on the divergence-free condition from Eq. (5.6).

∇2p = ρ

Δt
∇ · u∗ (5.9)

Substitute pressure value in Eq. (5.10) to generate the velocity of the next step.

un+1 = u∗ − Δt

ρ
∇p (5.10)

We use the octree [43] focused on the interface. BFECC (Back and forth Error
Compensation and Correction) method reduces easily volume loss; so we imple-
ment the BFECC method to satisfy second-order accuracy. Furthermore, smooth
surface from complicated water surface are found through the particle level-set
method [18, 20].

SPH Fluid Simulation

SPH is a technique to interpolate the particle system. The equation to obtain A(xi)

at a particle xi is as follows:

A(xi) =
∑

j

mj
Aj

ρj
W (xij, h) (5.11)

5.2 Controlling Fluid Animation 179

where ρ is the density of particle i; W (xij, h) is a smoothing kernel with core radius
h. mj is the mass of particle j. The acceleration of particle i is calculated by dividing
particle force f i with density. Acceleration and velocity are used to yield velocity
and position.

ai = dvi

dt
= f i

ρ
(5.12)

Adams et al. suggest the adaptive sampling algorithms [1]. In order to describe
a variety of bubbles we use the radius adaptive. Pressure force is provided as in the
following equation.

fpressure
ij = −ViVj(Pi + Pj)(∇W (xij, ri) + ∇W (xij, rj))/2 (5.13)

where the volume Vi is mi/ρi, r is the radius, the mass mi is proportional to r3i ,
xij = xj − xi, and the pressure Pi = kρi with a control parameter k. SPH requires
the calculation of the viscosity term but since we have implemented a grid-based
simulationwe leave out viscous force. External force is introduced in the next section.

5.2.1.4 Method to Make SPH and Level Set Interchangeable

SPH Bubble Particles in the Subgrid Dynamic

Our hybrid simulation uses the particle level-set method. When the value of the φ

value of marker particles is 0 or less than 0, water is corrected, while more than 0
requires air. However, when marker particles in the particle level-set method are left
on the opposite side after correction for level set, they are replaced with escaped
particles. Then, in SPH-adjusted simulation method, escaped particles are used to
illustrate small-scale features of an underlying subgrid dynamically. Buoyancy is
determined to make it proportional to each particle volume. Authors of [13, 50] used
drag force and lift force in the next equation.

fdrag
i = −kdragr2i |vi − ui|(vi − ui) (5.14)

f lift
i = −klift Vi(vi − ui) × ωi (5.15)

whereui andωi = ∇×ui are the liquid’s velocity and vorticity,which are interpolated
from the value of the particle’s position in the grid; vi is the particle’s velocity. The
coefficients kdrag and klift are given in 6000 and 200. Then, the lift force is used to
make the path of air bubbles unstable. Additionally, Hong et al. [34] proposes SPH
vorticity confinement.

fvorticity
ij = ε

(
N × ω

|ω|
)

ρi. (5.16)

180 5 Fluid Interaction

ω = ∇ × v denotes vorticity at the mass center of two SPH particles. Suppose that
mass center is p∗ and vorticity location vector means n = p∗ − pi. Normalizing n
becomes N = n/|n|. Meanwhile, the greater density ratio of water than that of air
induces air bubbles to be merged immediately.

fattraction
ij = kattractionWattraction(xij, ri + rj)ρi. (5.17)

Becker andTeschner [8] introduces cohesive attraction force to produce the cluster
of air bubbles and shows the physically plausible phenomenon of SPH particles.
Attraction force influencing air bubbles to be integrated enhances the ρ of SPH
particles which in turn induces rising high and eventually generates natural bubble
turbulence motion in an unstable path when Eq. (5.11) pushes adjacent particles and
maintains the surface tension of SPH particles.

Large-Scale SPH Particle Back to Grid-Based Level Set

We displayed small-scaled bubble motion based on Lagrangian SPH particles in a
grid-based simulation to detect detailed features of the subgrid. In fact, the cohesion
force SPH particles contain enables particles to be merged, yielding high density and
creating air bubbles large enough to be depicted in a grid. Though the creation of
SPH particles was originally intended to describe details of a subgrid, the integration
of SPH particles larger than subgrid size reduces the simulation accuracy of SPH
particles. When the size of SPH particles outgrows that of the subgrid, we turn to
grid-based level set.

φ
temp
i =

∑
j

mVjW (xij, rj) (5.18)

denotes the level-set value of a temporary i node on a grid: m mass coefficient:
Vj the volume of particle j. When an SPH particle exists on the i node, it attains
temporary value byusing the particle on the designated node and recursively checking
neighboring nodes and calculating the node value if present. When these nodes are
described by grid size, temporary node value is changed into level-set value on the
grid. In [47] when an SPH particle has a significantly high density, the SPH particle
acts as a marker particle of particle level set and back to the level set. However,
we render the level-set model by SPH particle even when our SPH particle has no
marker particle of level set in order for the grid and particle method to faithfully
fulfill each intended function: SPH particles in the subgrid method and level set in
the grid-based method.

5.2.1.5 Result

These simulations were performed on an Intel Core 2 CPU 3.0GHz and rendered by
ray-tracing. The simulation adopted particle level set and BFECC method on a max
level 7 octree grid and the radius of particles ranged from 0.3 to 0.8 of a leaf cell.

5.2 Controlling Fluid Animation 181

Fig. 5.14 Example of pouring water. All the bubbles are simulated as SPH particles using [34]
method on the left while right includes our method of describing large air bubbles in level set and
smaller ones as SPH particles

Fig. 5.15 An example of pouring water. The left denotes SPH particles, showing the motion of the
subgrid. Meanwhile, the right displays air bubbles by converting merged SPH particles into level
set. Dots denote SPH particles

Figures5.14 and 5.15 demonstrate a pouring water simulation. When air bubbles are
merged, the left simulation renders particles intact while the right simulation converts
larger air bubbles to level set and renders them. Physical dynamics were applied to
SPH particles in the subgrid-based simulation and SPH bubble particles above grid
size were converted into level set to ensure more accurate simulation. In Fig. 5.16,

182 5 Fluid Interaction

Fig. 5.16 Pouring water in an empty box generates numerous particles. Air bubbles on the right
side of the figure are described in level set from merged particles

pouring water on the wall of an empty box creates strong turbulence. In this state, so
many escaped particles are formed that the process of transforming SPH particles to
level set is clearly shown. The number of SPH particles produced in the simulation
shown in Fig. 5.16 stands at 39,435 and a successful simulation is performed to show
the natural motion of air bubbles from SPH particles to level set without significant
computational cost.

5.2.1.6 Conclusion

In a grid-based fluid simulation using Lagrangian particles, we realistically displayed
small-scale details of water and air bubbles which are indefinable on a subgrid.
SPHmethod and physical dynamics facilitated this process. Moreover, we raised the
accuracy of simulation by transforming SPH particles larger than subgrid into level
set, in which merged particles become large enough to be depicted on a grid. This
hybrid fluid simulation more precisely and naturally illustrates water and air bubbles
in multiphase fluid.

5.2 Controlling Fluid Animation 183

5.2.2 Simulation of Swirling Bubbly Water Using Bubble
Particles

Abstract The effect of surface tension is dynamically and realistically represented
within a multiphase fluid simulation. Air bubbles are seeded with ‘bubble particles’,
which move randomly. These molecule-like movements modify the surface of the air
bubbles and generate turbulence in the water. The surface tension between air bubble
andwater, determined by the composition of thewater, remains constant regardless of
the size of the bubble, while external forces cause unstable fluidmotion as the surface
tension strives to remain constant, bubbles split and merge. The bubble particles can
also compute for the numerical dissipation usually experienced in grid-based fluid
simulations, by restoring the lost volume of individual bubbles. The realistic tearing
of bubble surfaces is shown in a range of examples.

5.2.2.1 Introduction

Recent fluid animation techniques based on computational fluid dynamics (CFD)
have achieved representation of fluid motion which are highly realistic, especially
small-scale effects. The appearance of small-scale details such as splashes and bub-
bles can be enhanced by combining the use of particles with a grid-based simulation.
This section is about the simulation of single bubbles tearing into multiple bubbles
within a multiphase fluid. When air is injected from below into a container of water,
it forms several bubbles which rise to the surface of the water. Simultaneously, tur-
bulence can be observed in the water. Figure5.17 (left) shows a rather simplistic
simulation of a bubble rising through calm water. In Fig. 5.17 (right), in contrast, tur-
bulence was simulated through surface tension, gravity, pressure and other external
forces, producing a more complicated and realistic effect. This phenomenon of bub-
bles breaking up occurs because of a range of different forces that act at the interface
between air bubbles and water. To produce a turbulence effect at the bubble interface,
we seed bubbles with particles which move randomly, like molecules, and push the
level set that represents the wall of a bubble, thereby tearing it into several small
bubbles. This method is similar to the vortex particle method in which a dissipated
vortex force is added to grid simulations. As well as tearing bubbles, our approach
causes the bubbles to spiral under the lift and drag forces produced by the particle
dynamics. This section also introduces a new fluid simulation in which Eulerian and
Lagrangian methods are combined. The movement of the particles allows animators
to create a variety of fluid motions by changing the curvature of the bubble walls.

5.2.2.2 Previous Work

Foster and Metaxas [21] were the first to study grid-based 3D fluid simulations
using the Navier–Stokes equation; Stam [68] proposed a semi-Lagrangian integra-
tion scheme for simulating an unconditionally stable fluid. Other authors [18, 20]

184 5 Fluid Interaction

Fig. 5.17 An air bubble rising in calm water (left); Air bubbles spiraling upwards (right)

tracked a smooth water surface using a level set and particles. Takahashi et al. [70]
introduced a multiphase simulation in which gas and liquid could be modeled simul-
taneously; Hong and Kim [29] also simulated multiphase fluids, focusing on the
surface tension between bubbles and the liquid. Other multiphase fluid simulations
include numerical methods to model surface tension and viscosity changes at inter-
faces [31], the simulation of a fluids with many components (such as water, air, and
fuel) [46], inhomogeneous flow [52], and the small-scale features of multiphase flu-
ids [67]. Shi and Yu [69] controlled a liquid animation using a feedback force; Shin
and Kim [60] controlled air bubble in a similar way. Fluid simulations using SPH
(smoothed particle hydrodynamics) have been based on the particle method [51];
the hybrid technique using a grid with particles models small-scale droplets and
bubbles [25, 37]. Fedkiw et al. [24] introduced vorticity confinement to model the
small-scale rolling features characteristic of smoke. Selle et al. presented the vortex
particle method [65] to model highly turbulent effects such as explosions or rough
water. Hong et al. developed a simulation of bubbly water, in which the sub-grid
details were improved by incorporating SPH into a coarse grid [34]. Losasso et al.
also improved this technique by coupling a model of dense water volumes to the
diffuse regions [47]. These papers represented lively bubble and splash using SPH
particles in grid simulation, but in this section we try to simulate turbulent bubbly
water using bubble particles.

5.2.2.3 Fluid Simulation

The Navier–Stokes equation provides the simulation of incompressible fluid and
preserves mass and momentum.

5.2 Controlling Fluid Animation 185

ut + (u · ∇)u + ∇p/ρ = f (5.19)

∇ · u = 0 (5.20)

where ρ is the density of the fluid, and f is external force which includes gravity and
control forces. This equation can be solved in two steps. First, intermediate velocity
u∗, when pressure is not considered, is solved.

u∗ = u + Δt (−(u · ∇)u + f) (5.21)

Since∇·u should be zero, the pressure profile is determined by solving Eq. (5.23);
and we get the final velocity profile by Eq. (5.22).

u = u∗ − Δt

ρ
∇p (5.22)

∇ · u = ∇ · u∗ − Δt

ρ
∇2p = 0 (5.23)

We use an octree [43], to focuses on the interface between the air and water. The
particle level-set method [18, 20] makes this interface a smooth surface (Fig. 5.18).

5.2.2.4 Bubble Particle Method

Water has tension that minimizes the surface in a free surface; thus air bubbles in
water tend to become spherical. However, fluids are also subject to external forces
such as gravity, pressure, and turbulence that can tear air bubbles into pieces. We
use the seeding of bubble particles to provide a more realistic simulation of bubbles
spiraling upward (Fig. 5.19).

Generation of Bubble Particles

We create bubble particles that move like molecules as follows:

(1) Search for air bubbles cell by cell; when a cell with an air bubble is detected, an
index is assigned to that cell. If the same air bubble is also found in neighboring
cells, the same index is given to those cells. The volume of the air bubble is then
calculated. In the case of a cell completely full of air, the volume is the cube of
the cell’s length. When a cell includes the interface between air and water, the
volume is calculated by Monte Carlo integration.

(2) Continue this procedure until no air bubble remains without an index.
(3) Find a leaf cell in the octree which includes a bubble particle, and assign the

index of that cell to that particle.
(4) If there is no bubble particle in an air bubble, new bubble particles are seeded

within that bubble.

186 5 Fluid Interaction

Fig. 5.18 Level-set changes in evolving bubble particles (in two dimensions)

Fig. 5.19 Bubble particles
are seeded in every air
bubble; the red spheres in
this three dimensional
example are bubble particles

(5) If bubble particleswith different indices are foundwithin one air bubble, it means
two air bubbles have merged. So the bubble particles should be given the same
index and the volume of the air bubble should be recalculated. When bubble
particles with the same index are found in different air bubbles, it means the air
bubble has split. In this case the bubble particles should be given another index
and the volume should be recalculated as well.

5.2 Controlling Fluid Animation 187

Movement of a Bubble Particle

Abubble particlemoves in an air bubblewith a randompath like amolecule exhibiting
Brownian motion. Bubble particle is given an initial velocity and its subsequent
movement is irregular. We model this irregular motion as follows:

un+1
bp = un

bp + k∇φ, φ ≤ rbp (5.24)

where un
bp is a bubble particle’s velocity in the current time-step; un+1

bp is the bubble
particle’s velocity in the next time-step; k is the coefficient of the degree to which
the bubble particle is pushed toward a higher gradient of φ, so the bubble particle
bounces against the interface between the air and water, evolving like a molecule. φ
is the level-set value of a bubble particle’s position. rbp is a bubble particle’s radius. If
a bubble particle is near the interface between water and bubble, that is, the level-set
value of the bubble particle’s position is almost zero, the bubble particle turns in the
direction of the level set’s gradient of its position, causing it to move as a molecule
does. Authors of [13, 50] simulated using drag force (fdrag = 1

2ρπr2|vparticle −
uliquid |(vparticle − uliquid)) and lift force (f lift = −ρV (vparticle − uliquid) × ∇ × u).
The drag force offsets the particle’s velocity by the velocity of liquid; the lift force
generates vortex force around the particle’s position. These forces cause the spiraling
movement of an air bubble, but in their simulations, the air bubble was made of a
particle. This can be seen in the interaction between the air bubble and water. In
contrast, in this section, air bubbles move upward, while swirling and changing level
set, which makes the simulation appear more realistic.

The Effect of a Bubble Particle on the Surface of an Air Bubble

A bubble particle affects the velocity of its neighbors in the grid, so the level set of
the fluid and the surface of air bubbles change. Consequently, air bubbles split while
spiraling. The neighboring velocity’s affection equation by bubble particle’s velocity
is:

un+1
nb = un

nb + sun
bp, |Pnb − Pbp| ≤ rbp (5.25)

where un+1
np is a neighboring node’s new velocity, un

nb is the neighboring node’s
current velocity, s is a coefficient of a neighboring node’s velocity pushed by a bubble
particle, un

bp is a bubble particle’s velocity. Pnb is a neighboring node’s position,
and Pbp is a bubble particle’s position. This process should be performed before
the projection step. The bubble surface is changed by updating neighboring node’s
velocities; the bubble tears into several smaller bubbles and rise in a zig zag manner.
The vortex particle method [65] also attempted to make turbulence, but it did not
present bubbles tearing at their rims. We assist bubble particles to generate Rayleigh
instability phenomenon; air bubbles appear alive without the lift and drag forces of
a particle system.

188 5 Fluid Interaction

5.2.2.5 Correcting Air Bubble Volumes

In grid-based fluid simulations, advection causes the dissipation of air bubble vol-
umes; the larger the size of a cell in the grid and the time-step, the bigger this dissi-
pation becomes. When an air bubble moves up that is smaller than the size of a cell,
it disappears, in most cases, by numerical dissipation before reaching the surface.
BFECC and volume control method [40] have been studied in order to significantly
reduce this numerical dissipation. We also correct bubbles’ volume with a similar
method. We got bubble volume in Sect. 5.2.2.4, and assumed V n

i is the volume of
index i at nth time-step. If there is no dissipation of an air bubble, V n

i = V n−1
i ;

if there is dissipation, when xn
i is the volume dissipated, xn

i = V n
i − V n−1

i . The
volume dissipated should be compensated for in the air bubbles; divergence value
cn

i = −kpxn
i , where kp is the bubble loss compensation coefficient. This divergence

value cn
i is calculated in the projection step.

In a cell without bubble particles

∇2p = ρ

Δt
(∇ · u∗) (5.26)

and in a cell that contains bubble particles

∇2p = ρ

Δt
(∇ · u∗ − cn

i) (5.27)

When the projection step is calculated as above, the air bubble with bubble par-
ticles is compensated for its loss of volume. Although this compensation solution
is similar to that of [40], they differ in the following ways: first whereas [40] com-
pensated for the loss of whole fluid, our simulation focuses on air bubbles, only
compensating for the volume loss of air bubbles; second, our method also checks the
mergers and the splits of air bubbles by bubble particles. This is its strength.

5.2.2.6 Result

Simulations were performed on a PC with an Intel Core2 CPU 3.0, and rendered
by ray tracing. In Fig. 5.20, we compare bubble particle method with base simula-
tion, vorticity confinement method, and vortex particle method. The bubble particle
method shows swirling bubbly water while other simulations fail to present tearing
at the rim of air bubbles. The extra computational cost incurred by using bubble
particle was about 10% overhead. Figure5.21 shows air bubbles interacting with a
rigid sphere; In Fig. 5.22, bubble particles, seeded in air bubbles, change the level-set
value by moving, thereby creating lively fluid motions in calm water.

5.2 Controlling Fluid Animation 189

Fig. 5.20 Images from left to right: base simulation, bubble particle method, vorticity confinement
method, and vortex particle method

Fig. 5.21 Rising air bubbles with bubble particles interacting with a rigid sphere

5.2.2.7 Conclusion

We seeded Lagrangian bubble particles in air bubbles and caused them to move
like molecules in order to create turbulence and consequently simulate realistic fluid
in a grid-based fluid simulation. Large air bubbles tear into several small bubbles;
small bubbles zig zag. When the Rayleigh instability phenomenon appears in this
simulation, the flow field must be considered in the future work.We removed the dis-
sipation of air bubbles by making bubble particles check the volumes of air bubbles.
In conclusion, the contributions of this section is that it enables animators to control
various fluid motions by creating turbulence with bubble particles and correcting the
volume of air bubbles (Table 5.2).

190 5 Fluid Interaction

Fig. 5.22 Bubbles zigzagging as they rise

Table 5.2 Comparison of simulation time bubble particle method with base simulation, vorticity
confinement, and vortex particle method in 128 × 256 × 128 grid simulation

Base simulation
(sec/frame)

Bubble particle
method (sec/frame)

Vorticity confinement
(sec/frame)

Vortex particle
(sec/frame)

82.1 91.7 85.2 88.4

5.2.3 Controlling Shapes of Air Bubbles in a Multiphase Fluid
Simulation

Abstract Controlling shapes is a challenging problem in a multiphase fluid simu-
lation. Bubble particles enable the details of air bubbles to be represented within a
simulation based on a Euler grid. We control the target shapes of bubbles by the gra-
dient vectors of the signed distance field and attraction forces associated with control
particles. This hybrid approach enables to simulate physically plausible movements
of bubbles while preserving the details of a target shape. Furthermore, we control the
paths of moving bubbles using user-defined curves and the shape of an air bubbles
by drag force. An accurate model of the drag force near the fluid surface means that
bubbles have realistic ellipsoidal shapes.

5.2.3.1 Introduction

In recent SF movies, physics-based fluid simulation has been used to produce effects
which are hard to distinguish from reality. In the computer game industry, too, real-
time fluid simulation methods have become a common ingredient in plausible virtual
worlds. Target-driven fluid simulation techniques are required to produce these spe-
cial effects; but it remains challenging to control fluid flow while preserving its
physical characteristics.

5.2 Controlling Fluid Animation 191

In this section, we adopt the smoothed particle hydrodynamics (SPH) technique
based on grid-based multiphase fluid simulation [34]. Particles are simulated by
solving the Navier–Stokes equation, and the target shapes of air bubbles are con-
trolled by external forces; as a result, our method captures small-scale details which
are ignored by existing target-driven grid-based methods, which allow features of
the target shape to disappear due to numerical dissipation. Conversely, particle-based
approaches are fast and preserve features of the target shape but have difficulty in sim-
ulating multiphase fluids. By combining grid-based and particle-based techniques,
we can simulate multiphase fluids while preserving target shapes.

A hybrid method of Eulerian and Lagrangian fluid simulations was introduced by
Greenwood and House [25]. They simulated air bubbles as particles escaping from
the particle level set [18], whereas Hong et al. [34] simulated escaped particles by
SPH. By modeling an air bubble as a combination of several particles interacting
with each other within the SPH vorticity confinement, it is possible to obtain bubbles
with dynamically deforming shapes. However, this approach is still not adequate to
represent real bubbles accurately, because the drag forces applied to each particle
in an air bubble are almost the same, and so the bubble stays spherical. In reality,
a rising bubble deforms into ellipsoid or a mushroom shape because a large drag
force acts on its upper surface. Unlike Hong et al., our computation of the drag force
applied to the particles near the bubble surface takes account of the overall shape of
the air bubble to produce more realistic results.

We simulate the complicated behavior of fluids and air bubbles by the interaction
between grid-based liquids and SPH-based air bubbles, subject to a vorticity force
and a cohesive force. In addition, this section proposes techniques to control the
flow of air bubbles using curves and the shape of bubbles using target shapes. The
resulting fluid movements are stable without artifacts.

5.2.3.2 Related Work

Stam [68] proposed a semi-Lagrangian integration scheme to simulate uncondition-
ally stable fluids using a three-dimensional grid. Enright et al. [18] contributed to a
particle level-set method to detect the fluid surface accurately using marker particles.
Losasso et al. [43] utilized an adaptive octree structure to obtain a high-resolution
surface. Kim et al. proposed volume control method and regional level-set method
for multiphase fluid simulation [38, 40]. Hong and Kim [31] considered surface
tension between multiphase fluids using the ghost fluid method (GFM) to deal with
discontinuities at the fluid surface. Robinson-Mosher et al. introduced interactions
between rigid bodies and a fluid [54]. Hong and Kim [30] and Shin and Kim [60]
controlled the shape of a fluid using a gradient-based non-linear method, and Shi
and Yu [69] introduced a target-driven method to force fluids to follow a rapidly
deforming target shape.

Desbrun and Gascuel [14] used SPH to animate elastic bodies. Müller et al. [49]
contributed to the simulation and rendering of liquid using the SPH.Müller et al. [49]
devised a particle system to animate elastic and plastic objects with specified

192 5 Fluid Interaction

material properties.Adams et al. [1] proposed adaptively-sized SPHparticles. Thürey
et al. [72] introduced a technique to control liquid, which preserves its details using
high-pass and low-pass filters.

Fluid simulation techniques can be divided into grid-based Eulerian and particle-
based Lagrangian methods; and hybrid techniques combine these two methods.
Greenwood and House [25] represented air bubbles positively as particles escap-
ing from a particle level set. However, since they treat an air bubble as a sphere, the
results are unrealistic. But in later work [45, 47] air bubbles and water drops are
simulated using SPH, and their realism is complete. Kim et al. [42] represented the
flow of dispersed bubbles using a stochastic solver, but their method still has a limited
ability to deal with the collision, merger and overlapping of particles. Rasmussen
et al. [54] used a hybrid method to control fluids for photorealistic effects.

Additionally, we control the path and shape of air bubbles. The application of [11]
allows animators to control fluids intuitively. The path is used to define the location
of fluid flow. The direction of drag is by definition opposite to the velocity. A bubble
has been observed in experiments that the short axis of the ellipsoidal bubble is
always aligned with the bubble velocity vector [63]. Jo et al. [36] proposed a new
SPH simulation method that utilizes ellipsoidal kernels instead of spherical kernels.

5.2.3.3 Fluid Simulation

We use the Navier–Stokes equation to simulate large volumes of water. The momen-
tum conservation equation is

ut + (u · ∇)u + ∇p/ρ = f, (5.28)

and the mass conservation equation is

∇ · u = 0, (5.29)

where u = (u, v, w) is velocity, p is pressure, ρ is density, and f is the sum of the
external forces, including gravity and control forces. We use the particle level-set
method [18] to represent complicated fluid surfaces, and octree structure [43] for
fast grid simulation, and back and forth error compensation and correction (BFECC)
[41] to achieve second-order accuracy in preserving the fluid volume. We employ
the adaptive SPH technique [1] to simulate small-scale air bubbles. The equation for
the pressure force acting on an air bubble is

fpressureij = −ViVj(Pi + Pj)(∇W (xij, ri) + ∇W (xij, rj))/2, (5.30)

where the volume Vi is mi/ρi, r is the radius, the mass mi is proportional to r3i and
xij = xj −xi; the pressurePi = kρi, where k is a control parameter. Using an Eulerian
grid to model water and Lagrangian SPH to model air bubbles, we employ the SPH

5.2 Controlling Fluid Animation 193

vorticity confinement and cohesive forces due to Hong et al. [34] to improve the
realism of the air bubbles.

5.2.3.4 Control of Air Bubbles

Controlling Target Shapes of Air Bubbles

In this section, we control the shape of air bubbles using hybrid method. To attract air
bubbles to a target shape, we create control particles in regions which have negative
level-set values in the region of the signed distance field corresponding to the target
region [10]. The control force fctl applied to an air particle is determined by the
negative gradient vector of the signed distance field −∇φshape and the attraction
force fa, as follows:

fctl = −α∇φshape + (1 − α)fa, (5.31)

α =
{

kctlφp φp > 0,
0 φp ≤ 0,

(5.32)

where φp is the level-set value at the position of an air particle p, and α is linearly
proportional to the distance between p and the surface of the target shape. If the level-
set value φp is negative, α = 0 and the control particle only applies the attraction
force fa. We model the effect of fa on an air particle, which makes it move toward
control particles in a similar way to Thürey et al. [72]:

fa =
∑

i

βi
ci − p

‖ci − p‖W (d, h), (5.33)

where ci is the position of the control particle i, p is the position of the air particle,
and W is the kernel function of the control particle; d is the distance between ci

and p, h is the kernel size, and βi is a coefficient which is inversely proportional to
the density of air particles at the control particle i. Therefore, if there are already
enough air particles around the control particle, further air particles are only weakly
attracted. In Fig. 5.23, the bubble particle moves into the target shape.

The Drag Force at a Bubble Surface

Since the density of water is 800 times that of air, the force applied to water by air is
insignificant. Conversely, water induces buoyancy, drag, and left forces on bubbles.
For example, in the left-hand image in Fig. 5.24, a drag force is applied to the upper
portion of the air bubble by buoyancy. Ellingsen and Risso [19] observed that an air
bubble injected into water retains its ellipsoidal shape while it rises, implying that the
drag force only acts on the upper portion of the air bubble in Fig. 5.25. Although the
interaction between water and air bubbles occurs at the upper surface, the resulting
force affects other particles by solving theSPH.Therefore,wedonot need to calculate

194 5 Fluid Interaction

Fig. 5.23 An animation of the varying shape of air bubbles

the drag forces of particles which are located in lower portion of air bubble. Hong
et al. [34] and Cleary et al. [13] computed the interaction between water and air
bubbles at each SPH particle. Then, as they use in the right-hand image in Fig. 5.24,
bubbles are influenced by the drag force which is almost omnidirectional, and the
shape of a bubble is spherical. Conversely, we model the drag force fdragi acting on
an air particle i taking account of the position and direction of the bubble, so that

fdragi = −kdragr2i |v⊕ − u⊕|(v⊕ − u⊕), (5.34)

Fig. 5.24 The allocation of the drag force to air using particles in our method (left) and that of
Hong et al. (right) [34]

5.2 Controlling Fluid Animation 195

Fig. 5.25 Ellipsoidal shape of air bubbles using our proposed drag force

where pi is the position of an air particle i, p⊕ is the center of the bubble and

p⊕ = 1
N

∑n
i pi; v⊕ is the velocity of p⊕, and u⊕ is the velocity on the grid of the

fluid at position p⊕. N is the number of particles in one bubble. Since our formation
of the drag force only affects the upper surface of a bubble, kdrag of the drag force is
as follows:

kdrag =
{

ηγ |pi − p⊕| γ > 0,
0 γ ≤ 0,

(5.35)

where γ = (pi − p⊕) · (vi − u⊕).
If γ is negative, the particle is not influenced by the drag force; kdrag is zero. η

is the coefficient of kdrag. Therefore, as shown in the left-hand image in Fig. 5.24,
air particles (red > yellow > green) near the upper surface of a bubble experience
strong drag force; but these forces barely affect particles (blue) in the interior of the
bubble or near its lower surface.

196 5 Fluid Interaction

Control of Air Bubble Flow

We provide users with artistic control over the flow of air bubbles by allowing them
to specify a curve f(t). L1 and L2 are other curves paralleled to a curve f(t). If the
position of bubble particle pn is on the curve Ln, the fcurve is as follows:

fcurve = −μ
g′(t)
|g′(t)| (5.36)

where g(t) = f(t)vn, vn is translation vector for curve Ln and μ is coefficient of
fcurve. This causes bubble to follow paths approximately parallel to the user-defined
curve.

5.2.3.5 Result

Simulations were performed on an Intel Core i7 CPU running at 2.93GHz, and
rendered the fluid models by ray-tracing.

In Fig. 5.23, the air bubbles gather to form a target dragon model. The flow of
the bubbles is controlled by the sum of the gradient vectors of the signed distance
field of the target model and the attraction force of the control particles. Although
water was simulated with a coarse grid, air particles move freely toward the control
particles, which are independent of the grid. Air particles were added at each frame,
and the number of particles at the last scene in Fig. 5.23 is 13,815.

The shape and path of air bubbles were controlled in a multiphase fluid simulation
to demonstrate user-controlled motions. Figure5.26 shows air bubbles controlled
by user defined curves in Fig. 5.27. The bubbles appear to rise naturally, but the
external force associated with the curves makes them follow its paths. The left-hand,
middle, and right-hand images in Fig. 5.26 are the 31st, 58th, and 253rd frames of
the simulation, and the numbers of particles in the simulation at each frame are 390,
676, and 1,030, respectively.

Fig. 5.26 User control of the flow of bubbles: the 31st frame, 58th frame, and 253rd frame of a
movie

5.2 Controlling Fluid Animation 197

Fig. 5.27 The path of bubbles controlled by user-defined curves

Fig. 5.28 The simulation of dispersed air bubbles after tracing the target shape CGI 2012

In the example of Fig. 5.28, the control force fctl in Eq. (5.31) drives the air bubbles
to form the characters ‘CGI 2012’. In the third image, the bubbles disperse as all
control forces are removed, and finally they move buoyantly upward.

5.2.3.6 Conclusion

This section has introduced a method to control the shape and flow of air bubbles
in a multiphase fluid simulation. Using simple functions such as a curve or a three-
dimensional mesh, users can control the motion of the bubbles. We derive parallel
curves from the simple curve so that bubbles which are not located on the curvemove
on parallel paths. To control the shape of the bubbles,we combine the gradient vectors
of the signed distance field of the target shape and the attraction forces associatedwith
the control particles. Despite the provision of user control, the simulation results look
physically plausible. Since the drag force only affects the upper part of the surface
of a bubble, the bubbles maintain their ellipsoidal shape as they rise.

198 5 Fluid Interaction

References

1. Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. In: Pro-
ceedings of ACM SIGGRAPH 2007. ACM Transactions on Graph (TOG), vol 26(3), pp
481–487

2. AndoR, TsurunoR (2011)Aparticle-basedmethod for preserving fluid sheets. In: Proceedings
of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 7–16

3. Ando R, Thürey N, Tsuruno R (2012) Preserving fluid sheets with adaptively sampled
anisotropic particles. IEEE Trans Vis Comput Graph 18(8):1202–1214

4. Abdel-MalekK,YangY,BlackmoreD, JoyK (2006) Swept volumes: foundations perspectives
and applications. Int J Shape Model 12(1):87–127

5. Baerentzen J, Aanaes H (2005) Signed distance computation using the angle weighted pseudo-
normal. IEEE Trans Vis Comput Graph 11(3):243–253

6. Bridson R, Fedkiw R, Anderson J (2002) Robust treatment of collisions contact and friction
for cloth animation. ACM Trans Graph (TOG) 21(3):594–603

7. Bridson R, Marino S, Fedkiw R (2003) Simulation of clothing with folds and wrinkles. In:
Proceedings of the 2003 ACMSIGGRAPH/Eurographics symposium on computer animation,
pp 28–36

8. BeckerM,TeschnerM(2007)Weakly compressibleSPHfor free surfaceflows. In: Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217

9. BeckerM,TessendorfH,TeschnerM(2009)Direct forcing forLagrangian rigid-fluid coupling.
IEEE Trans Vis Comput Graph 15(3):493–503

10. Bell N,YuY,Mucha PJ (2005) Particle-based simulation of granularmaterials. In: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation (SCA 05),
pp 77–86

11. Coleman P (2002) Motion control for fluid animation: flow along a control path. Technical
report, Ohio State University, Undergraduate thesis

12. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J
Comput Phys 2(1):12–16

13. Cleary PW, Pyo SH, Prakash M, Koo BK (2007) Bubbling and frothing liquids. ACM Trans
Graph (TOG) 26(3):971–976

14. Desbrun M, Gascuel M-P (1996) Smoothed particles: a new paradigm for animating highly
deformable bodies. In: Proceedings of the Eurographics workshop on computer animation and
simulation, pp 61–76

15. Erleben K, Dohlmann H (2007) GPU Gems 3:611–632
16. Ehmann S, Lin M (2000) Accelerated proximity queries between convex polyhedra by multi-

level voronoi marching. In: Proceedings of IEEE/RSJ international conference, vol 3, pp
2101–2106

17. Ehmann SA, Lin MC (2001) Accurate and fast proximity queries between polyhedra using
convex surface decomposition. Comput Graph Forum 20(3):500–510

18. Enright D,Marschner S, FedkiwR (2002)Animation and rendering of complexwater surfaces.
ACM Trans Graph (TOG) 21(3):736–744

19. Ellingsen K, Risso F (2001) On the rise of an ellipsoidal bubble in water: oscillatory paths and
liquid-induced velocity. J Fluid Mech 440:235–268

20. Foster N, Fedkiw R (2001) Practical animation of liquids. In: Proceedings of the 28th annual
conference on computer graphics and interactive techniques, pp 23–30

21. Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process
58(5):471–483

22. Frisken SF, Perry RN, Rockwood AP, Jones TR (2000) Adaptively sampled distance fields:
a general representation of shape for computer graphics. In: Proceedings of the 27th annual
conference on computer graphics and interactive techniques, pp 249–254

23. Fuhrmann A, Sobottka G, Grob C (2003) Distance fields for rapid collision detection in
physically based modeling. In: Proceedings of GraphiCon, pp 58–65

References 199

24. Fedkiw R, Stam J, Jensen HW (2001) Visual simulation of smoke. In: Proceedings of the 28th
annual conference on computer graphics and interactive techniques, pp 15–22

25. Greenwood ST, House DH (2004) Better with bubbles: enhancing the visual realism of sim-
ulated fluid. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on
computer animation, pp 287–296

26. Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E (2007) Efficient simulation of
inextensible cloth. ACM Trans Graph (TOG) 26(3):49

27. Gottschalk S, Lin MC, Manocha D (1996) OBBTree: a hierarchical structure for rapid inter-
ference detection. In: Proceedings of the 23rd annual conference on computer graphics and
interactive techniques, pp 171–180

28. Guéziec A (2001) Meshsweeper: dynamic point-to-polygonal mesh distance and applications.
IEEE Trans Vis Comput Graph 7(1):47–61

29. Hong J-M, Kim C-H (2003) Animation of bubbles in liquid. Comput Graph Forum 22(3):
253–262

30. Hong J-M, Kim C-H (2004) Controlling fluid animation with geometric potential. Comput
Animat Virtual Worlds 15(3–4):147–157

31. Hong J-M, Kim C-H (2005) Discontinuous fluids. ACM Trans Graph (TOG) 24(3):915–920
32. Harada T, Koshizuka S, Kawaguchi Y (2007) Improvement in the boundary conditions of

smoothed particle hydrodynamics. Comput Graph Geom 9(3):2–15
33. Huang J, Li Y, Crawfis R, Lu SC, Liou SY (2001) A complete distance field representation.

In: Proceedings of the conference on visualization’01, pp 247–254
34. Hong J-M, Lee H-Y, Yoon J-C, Kim C-H (2008) Bubbles alive. ACM Trans Graph (TOG)

27(3):48
35. Houston B, Wiebe M, Batty C (2004) RLE sparse level sets. In: ACM SIGGRAPH 2004

sketches, pp 137–137
36. Jo E, Kim D, Song O-Y (2011) A new SPH fluid simulation method using ellipsoidal kernels.

J Vis 14(4):371–379
37. Kim J, Cha D, Chang B, Koo B, Ihm I (2006) Practical animation of turbulent splashing

water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer
animation, pp 335–344

38. Kim B (2010) Multi-phase fluid simulations using regional level sets. ACM Trans Graph
(TOG) 29(6):175

39. KimD,KoH-S (2007)Eulerianmotionblur. In:Eurographicsworkshoponnatural phenomena,
pp 39–46

40. Kim B, Liu Y, Llamas I, Jiao X, Rossignac J (2007) Simulation of bubbles in foam with the
volume control method. ACM Trans Graph (TOG) 26(3):98

41. Kim B, Liu Y, Llamas I, Rossignac J (2005) Flowflxer: using BFECC for fluid simulation. In:
proceedings of the first Eurographics conference on natural phenomena, pp 51–56

42. KimD, Song O-Y, KoH-S (2010) A practical simulation of dispersed bubble flow. ACMTrans
Graph (TOG) 29(4):70

43. Losasso F,GibouF, FedkiwR (2004) Simulatingwater and smokewith an octree data structure.
ACM Trans Graph (TOG) 23(3):457–462

44. Lefebvre S, Hoppe H (2007) Compressed random access trees for spatially coherent data. In:
Proceedings of the 18th Eurographics conference on rendering techniques, pp 339–349

45. Lee H-Y, Hong J-M, Kim C-H (2009) Interchangeable sph and level set method in multiphase
fluids. Vis Comput 25(5–87):713–718

46. Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACMTrans Graph
(TOG) 25(3):812–819

47. Losasso F, Talton J, Kwatra N, Fedkiw R (2008) Two-way coupled SPH and particle level set
fluid simulation. IEEE Trans Vis Comput Graph 14(4):797–804

48. MauchS (2003)Efficient algorithms for solving staticHamilton-Jacobi equations. Ph.D. thesis,
California Institute of Technology

49. Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive appli-
cations. In: Proceedings of 2003 ACM SIGGRAPH symposium on computer animation, pp
154–159

200 5 Fluid Interaction

50. Magnaudet J, Eames I (2000) Themotion of high-Reynolds number bubbles in inhomogeneous
flow. Annu Rev Fluid Mech 32(1):659–708

51. Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In:
Proceedings of the 2005 ACMSIGGRAPH/Eurographics symposium on computer animation,
pp 237–244

52. Mihalef V, Unlusu B,Metaxas D, SussmanM,HussainiMY (2006) Physics based boiling sim-
ulation. In: Proceedings of the 2006ACMSIGGRAPH/Eurographics symposium on computer
animation, pp 317–324

53. NielsenMB,Museth K (2006) Dynamic tubular grid: an efficient data structure and algorithms
for high resolution level sets. J Sci Comput 26(3):261–299

54. RasmussenN,EnrightD,NguyenD,Marino S, SumnerN,GeigerW,HoonS, FedkiwR (2004)
Directable photorealistic liquids. In: Proceedings of the 2004ACMSIGGRAPH/Eurographics
symposium on computer animation, pp 193–202

55. Rene W, Gabriel Z (2011) Inner sphere trees and their application to collision detection.
Springer

56. Redon S, Keddar A, Coquillart S (2000) An algebraic solution to the problem of collision
detection for rigid polyhedral objects. In: Proceeding of IEEE conference on robotics and
automation, vol 4

57. Redon S, Kheddar A, Coquillart S (2000) Fast continuous collision detection between rigid
bodies. Comput Graph Forum 21(3):279–287

58. Robinson-Mosher A, Shinar T, Gretarsson J, Su J, Fedkiw R (2008) Two-way coupling of
fluids to rigid and deformable solids and shells. ACM Trans Graph (TOG) 27(3):46

59. Sun H, Han J (2010) Particle-based realistic simulation of fluid/solid interaction. Comput
Animat Virtual Worlds 21(6):589–595

60. Shin S-H, Kim C-H (2007) Target-driven liquid animation with interfacial discontinuities.
Comput Animat Virtual Worlds 18(4–5):447–453

61. Selle A, Lentine M, Fedkiw R (2008) A mass spring model for hair simulation. ACM Trans
Graph (TOG) 27(3):64

62. SudA, OtaduyMA,Manocha D (2004) Difi: Fast 3d distance field computation using graphics
hardware. Comput Graph Forum 23(3):557–566

63. ShewWL, Poncet S, Pinton JF (2006) Viscoelastic effects on the dynamics of a rising bubble.
J Stat Mech: Theory Exp 2006(01):P01009

64. Sigg C, Peikert R, Gross M (2003) Signed distance transform using graphics hardware. In:
IEEE visualization, pp 83–90

65. Selle A, Rasmussen N, Fedkiw R (2005) A vortex particle method for smoke water and
explosions. ACM Trans Graph (TOG) 24(3):910–914

66. Schwarzer F, SahaM,Latombe J-C (2004)Exact collision checking of robot paths.Algorithmic
foundations of robotics V, pp 25–42

67. Song O, Shin H, Ko H-S (2005) Stable but nondissipative water. ACM Trans Graph (TOG)
24(1):81–97

68. Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer
graphics and interactive techniques, pp 121–128

69. Shi L, Yu Y (2005) Taming liquids for rapidly changing targets. In: Proceedings of ACM
SIGGRAPH/Eurographics symposium on computer animation, pp 229–236

70. Takahashi T, Fujii H, Kunimatsu A, Hiwada K, Saito T, Tanaka K, Ueki H (2003) Realistic
animation of fluid with splash and foam. Comput Graph Forum 22(3):391–400

71. Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M (2003) Optimized spatial
hashing for collision detection of deformable objects. In: Proceedings of vision modeling
visualization, pp 47–54

72. Thürey N, Keiser R, Pauly M, Rüde U (2009) Detail-preserving fluid control. Graph Models
71(6):221–228

73. Weller R, ZachmannG (2009) Inner sphere trees for proximity and penetration queries. Robot-
ics: science and systems, vol 2. MIT Press, Cambridge

Chapter 6
Real-Time Visual Effects Programming

Abstract This chapter shows the essential part to implement real-time visual effects.
An application such as a game should run in real time to interact with users. For
smooth interaction, its rendering speed should bemore than30FPS (33msper frame).
Due to recent technological advances computation power becomes very high, but it
is almost impossible to obtain real-time visual effects using CPU-based computation
yet. To overcome this shortcoming, CUDASDK fromNVIDIAutilizes idle resources
of the graphic card for computation and it leads to maximizing operational efficiency
and enhancing computation power. This chapter presents an example of visual effects
programming with CUDA SDK. The programming codes in this chapter help to
implement and directly control a simple 3D fluid simulation. For stability of the
simulation, the most up-to-date method, “Position-based Fluid” and the screen space
rendering method are implemented. Both methods optimize the usage of GPUs and
shaders.

6.1 GPU Programming: CUDA

Most high-quality visual effects are generated through physically based simulations
that involve very time-consuming and complex processes. Recently, to overcome
this disadvantage, GPUs have been used to reduce the computation time. There are
a number of ways to use GPUs, such as DirectX, OpenCL, and Compute Unified
Device Architecture (CUDA) programming. This chapter describes how to design
and implement simulations using CUDA.

6.1.1 Introduction to CUDA

CUDA provides parallel computing and general-purpose GPU techniques that allow
programs to run on GPUs using C-like and industry-standard programming lan-
guages. The preparation for CUDA programming simple involves installing a GPU

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0_6

201

202 6 Real-Time Visual Effects Programming

driver and the NVIDIA architecture. It is easy for beginners to set up a CUDA
development environment and develop a CUDA program.

Additionally, because CUDA provides both low- and high-level APIs, there is no
restriction on the design of CUDAprogramming. Comparedwith traditional general-
purpose GPUs, the use of CUDA graphics APIs has the following advantages:

• Random access: Data can be read from any location in the GPU memory.
• Shared memory: CUDA can divide a task and then assign it to multiple threads in
the high-speed shared memory area (16 or 48KB). This memory can be used for
user-management cash memory, and this technique provides faster computation
than using a texture look-up table.

• The read/write process on the GPU is faster than on the CPU.
• Integer computation and bitwise operations are supported, including an integer-
type texture look-up table.

Despite its many advantages, the following limitations must be understood before
CUDA programs can be designed:

• CUDA does not support texture rendering.
• The recursive function is not supported.
• There is a bottleneck in bus bandwidth between the GPU and CPU, which may
cause some time delay.

• Optimum performance is only achieved when at least 32 threads are running at
the same time and the total number of threads is in the thousands. If 32 threads are
running along the same path, branches in the CUDA program do not significantly
impact performance.

• CUDA programs only run on NVIDIA graphics devices such as GeForce, Quadro,
Terga, and Tesla.

6.1.2 Installation and Setup

In early versions of CUDA, the installation and setup were very complicated.
Since version 5.0, the CUDA software development kit (SDK) installer sets up the
Microsoft Visual Studio environment directly.

First, we examine the steps involved in creating and setting up a CUDA project.
A new project is created by selecting File ⇒ New ⇒ Project, as shown in Fig. 6.1.

If the CUDA SDK installation is successful, NVIDIA items will be created in
the Project Templates folder (Fig. 6.2). Select a project template that has the same
CUDA version as your own.

Projects created by the above steps will have a "kernel.cu" file. "*.cu" is a unique
CUDA filename extension, and functions used in the GPU architecture are defined
in such files. Their basic structure is similar to "*.c" or "*.cpp" files, because the
host (CPU level) function may also be defined there. For header files, the "*.cuh"
extension is used.

6.1 GPU Programming: CUDA 203

Fig. 6.1 Creating a new project

If the CUDA SDK is installed correctly, the compiled project should look like
that shown in Fig. 6.3. When examining files in the project, you may find unfamiliar

Fig. 6.2 Project templates

204 6 Real-Time Visual Effects Programming

Fig. 6.3 Example of a compile result

code (__global__) that is different from the well-known C language. Details of
such code is addressed in Sect. 6.1.3.

6.1.3 Structure of CUDA Functions

CUDA has three types of function: Host, global, and device. These are classified
according to where they are to be called and executed. Host functions are called
and executed in the host (CPU), and correspond to general functions in C. Global
functions are called in the host but executed in the device (GPU). The return type
of global function must be void, and all parallel algorithms are programmed in this
function. Device functions are called and executed in the device, and have no return
type restriction. Recursivemodules cannot be used in the global and device functions.

The prefixes __host__, __global__, and __device__ are used to denote
the definition of these functions. Note that __host__ can be omitted and used at
the same time as__device__. For example,__global__ void addKernel
(int *c, const int *a, const int *b) is a global function and int
main() is a host function.

6.2 Real-Time Fluid Programming

6.2.1 Position-Based Fluid

This section introduces an example fluid simulation using CUDA. Traditional SPH
uses small time-steps to guarantee the stability of the simulation. Even when the gen-
erated simulation has a high frame rate, the animation is shown in slow motion. To
solve this problem, various techniques have beenproposed.A typical technique is PCI
SPH [2], which improves the stability of a simulation using an iterative solver. How-
ever, a bottleneck may occur in the GPU program, because PCI SPH uses adaptive
iteration. Therefore, this section introduces CUDA programming for a “Point-Based

6.2 Real-Time Fluid Programming 205

Fluid” [1] instead of PCI SPH. This method optimizes the use of multiple threads by
nonadaptive iteration, and is appropriate for stable real-time simulations.

6.2.2 Data Structure for Vectors

For 3D simulations, some data structure is needed for the 3D vectors. However,
we develop a data structure for 4D vectors, because the simulation and rendering
processes are performed on a GPU, which is well suited to 4D vectors. We use the
header file “Vector_type.h” provided by CUDA SDK for 4D vectors.

6.2.3 Hash Table

In particle-based simulations, the most important issue is to search neighboring
particles. Because it takes too much time to search the entire set of particles, we need
only search adjacent particles. A hash table is used to determine the nearest neighbor.
First, we divide the simulation space into a grid, and then compute the location of
grid cells that contain particles using the particle positions in world coordinates. This
leaves the problem of searching the adjacent grid cells. To solve this problem, we
propose the “Building the Grid using Sorting” method, which rearranges particles
according to the indices of their respective cells. The thrust function is used for
the sorting operation, where dGridParticleHash is the index of a cell including
a particle, dGridParticleIndex is the previous particle index in the array, and
numParticles is the number of particles to be sorted.

thrust::sort_by_key(thrust::device_ptr<uint>(dGridParticleHash),

thrust::device_ptr<uint>(dGridParticleHash + numParticles),

thrust::device_ptr<uint>(dGridParticleIndex));

The sort_by_key function returns the sorted list of key(dGridParticle
Hash) values. Because only the indices have been sorted, a further step is required
to sort the data according to the sorted indices.

int originalIndex = gridParticleIndex[index];

sortedData[index] = originalData[originalIndex];

Using a hash table, we want to sort the data as described above and identify a
data structure that can access both the particle index and grid index during fluid
simulations. To build such a data structure, we store the first and last particle indices
in a grid as flags for the range of the grid index of sorted data.

206 6 Real-Time Visual Effects Programming

hash = gridParticleHash[index];

sharedHash[threadIdx.x+1] = hash;

if (index > 0 && threadIdx.x == 0) {

sharedHash[0] = gridParticleHash[index-1];

}

if (index == 0 || hash != sharedHash[threadIdx.x]) {

cellStart[hash] = index;

if (index > 0)

cellEnd[sharedHash[threadIdx.x]] = index;

if (index == numParticles - 1)

cellEnd[hash] = index + 1;

}

The following code shows that hash keys are updated using the shared GPUmem-
ory.Whenagrid index is different from that in the neighboringmemory, the difference
is stored in the shared memory. Incorrect results will be produced if threads simulta-
neously access the memory. We use the __syncthreads function to synchronize
threads and prevent such simultaneous access.

__global__ void reorderDataAndFindCellStartD(uint *cellStart,

uint *cellEnd, float4 *sortedPos,

float4 *sortedVel, uint *gridParticleHash,

uint *gridParticleIndex, float4 *oldPos,

float4 *oldVel, uint numParticles)

{

extern __shared__ uint sharedHash[];

uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;

uint hash;

if (index < numParticles) {

hash = gridParticleHash[index];

sharedHash[threadIdx.x+1] = hash;

if (index > 0 && threadIdx.x == 0)

sharedHash[0] = gridParticleHash[index-1];

}

__syncthreads();

if (index < numParticles) {

if (index == 0 || hash != sharedHash[threadIdx.x]) {

cellStart[hash] = index;

if (index > 0)

cellEnd[sharedHash[threadIdx.x]] = index;

}

if (index == numParticles - 1)

cellEnd[hash] = index + 1;

uint originalIndex = gridParticleIndex[index];

6.2 Real-Time Fluid Programming 207

float4 pos = oldPos[originalIndex];

float4 vel = oldVel[originalIndex];

sortedPos[index] = pos;

sortedVel[index] = vel;

}

}

Particle and grid indices can be mutually accessed using the cellStart,
cellEnd, and gridParticleHash variables. Because the access is performed
via the sorted data, neighboring memory can be accessed very quickly. If the final
update uses old data, continuous simulation is possiblewithout any change of indices.

6.2.4 Simulation Programming

We have completed the preparations necessary for a CUDA fluid simulation. This
section describes the implementation of a particle-based simulation using CUDA.
One advantage of particle-based simulations is that rapid computation can be per-
formed by assigning one thread per particle. The basic design is as follows:

__global__ void globalFunction(float4 *oldPos, float4 *oldVel,

float4 *sortedPos, float4 *sortedVel,

uint *gridParticleIndex, uint *cellStart,

uint *cellEnd, uint numParticles)

{

uint index = __mul24(blockIdx.x, blockDim.x) + threadIdx.x;

uint originalIndex = gridParticleIndex[index];

if (index >= numParticles) return;

float4 pos = sortedPos[index];

float4 vel = sortedVel[index];

float4 oldParticlePos = oldPos[originalIndex];

int3 gridPos = calcGridPos(oldParticlePos);

resultStructure output = make_result(0.0f);

for (int z=-1; z<=1; z++) {

for (int y=-1; y<=1; y++) {

for (int x=-1; x<=1; x++) {

int3 neighbourPos = gridPos + make_int3(x, y, z);

output += gridCalculate(neighbourPos, index, pos,

vel, sortedPos, sortedVel, cellStart, cellEnd);

}

}

}

}

The calGridPos function returns a grid index as a 3D integer vector, which
is computed from the particle position in world coordinates. Using nested for

208 6 Real-Time Visual Effects Programming

statements, the 3D index of adjacent cells is stored in the variable neighbourPos.
Particles in neighboring cells are searched with the variable neighbourPos, and
then the dynamics between particles are computed. The gridCalculate function
uses data from the updated hash table as follows:

__device__ resultStructure gridCalculate(int3 gridPos, uint index,

float4 pos, float4 vel,

float4 *oldPos, float4 *oldVel,

uint *cellStart, uint *cellEnd)

{

uint gridHash = calcGridHash(gridPos);

uint startIndex = cellStart[gridHash];

resultStructure output = make_result(0.0f);

if (startIndex != 0xffffffff) {

// iterate over particles in this cell

uint endIndex = cellEnd[gridHash];

for (uint j=startIndex; j<endIndex; j++) {

float4 pos2 = oldPos[j];

float4 vel2 = oldVel[j];

output += neighborParticleCalculate(pos, pos2,

vel, vel2);

}

}

return output;

}

Toupdate the physical properties of a particle, it is first necessary tofind a particle’s
grid index. Because the input argument gridPos is a 3D index, we must convert
this into a 1D index. This conversion process is responsible for the calcGridHash
function. With the converted 1D index, we access the hash table created in the previ-
ous step, and then obtain the value of startIndex from the cellStart array. If
the value of startIndex is equal to0xffffffff, there is no particle in that cell,
and the update process can be skipped. Otherwise, numbers from startIndex to
endIndex become the indices of the particles in the grid. With these indices, we
obtain data on neighboring particles and update the pressure and position. Finally,
the updated results are returned.

Inner functions and variables can be changed as required, and properties such as
the density and velocity can be updated via user-controllable variables. Note that
“old data” should be updated, not “sorted data.” Otherwise, unexpected results may
occur because of the simultaneous access and update of data.

6.2 Real-Time Fluid Programming 209

Fig. 6.4 Rendering with a
sphere model

6.2.5 Visualization Programming

This section introduces a visualization technique for the fluid simulations imple-
mented in the previous section. Figure6.4 shows the drawing of spheres for particle
data.

In Fig. 6.4, the motion of each particle is similar to the movement of water, but it
looks like a granular simulation rather than a water simulation. We can create a more
plausible visualization through additional rendering tasks. Among the many ways of
visualizing fluid simulations, we describe the screen space rendering method, which
produces a more heuristic result using on-screen rendering information.

First, a normal map is needed. This is easily created using the fragment shader as
follows:

vec3 N;

N.xy = gl_TexCoord[0].xy*vec2(2.0, -2.0) + vec2(-1.0, 1.0);

float mag = dot(N.xy, N.xy);

if (mag > 1.0) discard;

N.z = sqrt(1.0-mag);

N *= 0.5f;

N += vec3(0.5);

gl_FragColor = vec4(N, 1.0f);

Because a normal vector is stored as an RGB value in a normal map, x , y, and z
coordinates between +1 and −1 should be converted into color values of between 0
and 1.

After creating a normal map, we apply a smoothing step to the normal map and
add lighting effects. The above processes produce a final result similar to that in
Fig. 6.5.

210 6 Real-Time Visual Effects Programming

Fig. 6.5 Visualization of
fluid simulation

References

1. Macklin M, Müller M (2013) Position based fluids. ACM Trans Graph 32(4):104
2. Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible SPH. In: Proceedings of

ACM SIGGRAPH 2009. ACM transactions on graphics (TOG), vol 28(3), p 40, August 2009

Appendix A
Data Structure for SDF

A.1 Level-Set Method

In everyday life, we constantly interact with complex and beautiful surfaces and
deformations. One of the best examples is our interaction with water, which is so
natural to us that we hardly acknowledge the intricate ways inwhich it merges, forms,
and breaks up. To a large degree, the ambition of CG is to simulate and reproduce the
appearance and dynamic behavior of phenomena in the world. Simulations are par-
ticularly useful when the effect of a certain phenomenon cannot be easily reproduced
by artists or animators.

For this task, CG unites several different scientific disciplines. For instance, to
achieve computational techniques capable of reproducing the behavior of water, we
must resolve theory and practice from the disciplines of mathematics and physics.
Many ideas are also retooled from fields such as engineering. A level set is a math-
ematical construction that captures a dynamic implicit surface that possesses the
properties required to represent complex surface deformations, such as those of
water. The adjective ‘dynamic refers to the ability of the surface to change over
time, and ‘implicit refers to how the surface is represented. The level-set method was
introduced by Osher and Sethian [4] in 1988 as a method for tracking interfaces (i.e.
surfaces) in computational physics. Since then, considerable efforts have been made
to develop more accurate and robust numerical methods for solving the equations
that govern the dynamic behavior of a level set. Level sets have also been used in
the surface representation of several areas spanning multiple fields. In CG and com-
puter vision, in particular, these areas include (but are certainly not limited to) fluid
simulations of water and fire, collision detection in particle simulations, geomet-
ric modeling, shape metamorphosis, and the segmentation of volumetric datasets.
Examples of the applications mentioned above can be found in Figs.A.1 and A.2.
Further examples of level-set applications in image processing, computer vision, and
computational physics can be found in the book by Osher and Paragios [3], to which
we refer interested readers.

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0

211

212 Appendix A: Data Structure for SDF

Fig. A.1 Top Even a mundane act such as pouring a glass of water results in highly complex
and detailed behavior. The water surface is represented by a level set. Bottom A physically based
simulation of fire. The blue core of the flame is represented using a level set

Fig. A.2 An example of shape metamorphosis in which a beer mug morphs into a four-link chain.
The level set gracefully handles topological changes during the metamorphosis

Level sets provide a number of unique advantages over other surface representa-
tions. A level set cannot self-intersect, i.e. the surface cannot cross over itself, which
is a simple consequence of the definition of level sets. Furthermore, complex topo-
logical changes are handled automatically by the underlying mathematics. These
properties are not shared by explicit representations, such as triangle meshes, which
are currently the most widely used surface representation in CG. Finally, numerical
schemes for the dynamics of level sets are relatively simple to employ. These unique
features are all utilized in the applications mentioned above. For example, fluid sur-
faces such as water often undergo complex topological and geometrical changes as
they merge and pinch off in elaborate ways. These changes are handled automati-
cally by employing level sets as the underlying surface representation (see Fig.A.1).
In shape metamorphosis, topological changes are handled gracefully when utilizing
level sets (see Fig.A.2). Geometric modeling with traditional surface representa-
tions, such as triangle meshes, often results in self-intersecting geometry due to the

Appendix A: Data Structure for SDF 213

inherent properties of the common workflows. This is clearly undesirable in final
models that are to be used for physically based simulations or physical prototyping.
Level sets can be used in the modeling process to avoid this problem. Various surface
editing operators that are somewhat complex in triangle meshes can be easily applied
with level sets. These surface editing operators can be used to repair digital models
scanned from real-world geometry. Using physical models to create characters, for
instance, is a very popular technique in many feature film productions, and therefore
the ability to repair the scanned geometry is very useful.

The dynamic nature of level sets rests on a solid and rather advanced mathemat-
ical and numerical framework that can be elegantly generalized to any number of
dimensions. However, as we are concerned with CG, we will mostly work in three
dimensions. Therefore, we restrict ourselves to descriptions in three dimensions that
are reduced to one or two dimensions when it serves the exposition. We first focus
on describing the basics of the level-set method, and then look at extensions and
improvements. In the next section, we briefly describe the ideas behind implicit sur-
faces and contrast them with explicit surface representations. We then discuss the
theory behind the dynamics of the level-set method, and look closely at the equations
governing themovement. Finally, we describe numerical schemes used to implement
the level-set theory on a computer.

A.2 Implicit Surface

Implicit surfaces and their properties are generally well understood in mathematical
terms, and come in many distinct forms in CG, each associated with its own the-
ory and unique properties. An explicit surface representation specifies the points on
the surface. Expressed mathematically, an explicit surface representation provides
a map between a parameter space and the points on the surface. In CG, there are
several examples of explicit surfaces. They are typically sampled (i.e. discrete) rep-
resentations in the sense that they specify a finite number of possible points along
with information on their connectivity and how to interpolate the surface between
them. Trianglemeshes, point-based representations, NURBS(Non-UniformRational
B-Spline), and subdivision surfaces are examples of such representations.

An implicit surface representation instead specifies a surface as the isocontour of
a scalar function. Mathematically, given a scalar embedding function φ : R3 → R,
an implicit surface is represented as the pre-image φ−1(k) of some scalar k. In other
words, the surface consists of the set of points x for R3 at which φ(x) = k. Usually,
and without loss of generality, we restrict our attention to the zero isocontour k = 0.
Because a two-dimensional surface is defined by a three-dimensional embedding
function, the implicit surface has co-dimension one.

Spheres and circles are easy to describe implicitly. A circle of radius r , for exam-
ple, is given by the expression φ(x, y) = √

x2 + y2−r = 0. The left side of Fig.A.3
illustrates this example, while an explicit representation of the same circle is given

214 Appendix A: Data Structure for SDF

Fig. A.3 Left Circle implicitly represented as the zero isocontour of the embedding function
φ(x, y) = √

x2 + y2 − r . The color has been clamped to get a noticeable color gradient near
the interface. Right Circle explicitly represented as (cos θ, sin θ) with θ ∈ [0, 2π]

to the right. Note that an implicit surface representation does not directly specify
the points on the surface. Instead, it queries whether or not a given point lies on the
surface. This may make implicit representations seem inferior to explicit ones, and
there are some applications within CG where this is true. However, very powerful
tools are readily available using the implicit representation.

The level-set method only deals with closed implicit surfaces. This means that the
surface must partition R3 into clearly defined interior and exterior regions, denoted
asΩ− andΩ+, respectively. We will assume that the implicit surface is given by the
zero isocontour, and that the embedding function maps points in the interior region
to negative values, with points in the exterior region assigned to positive values. This
can be seen on the left of Fig.A.3, where the blue color is the interior region of
negative values and the exterior region is shown in white.

At this point, we can identify two important advantages of level sets. First, for
a given point in space, we can determine whether it is inside or outside the surface
simply by evaluating the embedding function at that point and looking at the sign.
For explicit representations, such as meshes, this kind of query is more complicated,
and the result is ambiguous if the mesh contains holes or self-intersections. Second,
a level set cannot contain self-intersections. This stems from the simple fact that an
implicit surface is represented by a single-valued embedding function. Thus, any
point in R3 cannot have both a negative and a positive sign at the same time.

Implicit surfaces are often not represented analytically, because no analytical
expression is available or known for a given surface. Instead, the embedding func-
tion is sampled on a grid, as shown on the left in Fig.A.4. A sampling of an explicit
representation is shown on the right. Sampling an implicit representation on a fixed
grid is referred to as an Eulerian representation, because it captures the interface
rather than tracking it. Sampling an explicit representation is often referred to as
a Lagrangian representation. Note that grid points in the Eulerian representation
remain fixed during any deformation. It is changes to the scalar values of the sam-
pled embedding function that cause the surface to move. In a purely Lagrangian

Appendix A: Data Structure for SDF 215

Fig. A.4 Left Circle implicitly represented as the zero isocontour of the embedding function
φ(x, y) = √

x2 + y2 − r sampled on a dense uniform grid. The rather coarse sampling serves
to illustrate the principle of an Eulerian representation. Right Circle explicitly represented by points
connected by line segments. Again, a rather coarse sampling has been used to illustrate the principle
of a Lagrangian representation

representation, it is the sample points that move throughout the deformation. Various
grids have been suggested, and the dense uniform grid of Fig.A.4 is one of the most
common.

Placing the implicit surface in an embedding function gives access to a power-
ful differential toolbox. In particular, the surface normal pointing outwards can be
computed directly from the normalized gradient

N = Δφ

|Δφ| , (A.1)

while the mean curvature in three dimensions is given by

k = 1

2
∇ · N, (A.2)

where∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
is a differential operator. Quantities such as the surface and

volume integrals can be computed in a similar manner, as explained by Osher and
Fedkiw [2]. From a theoretical viewpoint, the embedding function is immaterial as
long as it is Lipschitz continuous. Even so, one particular class of functions has proved
very useful in CG and level-set simulations. The SDF assigns the shortest distance
to the surface to each point in R3. This distance is multiplied by 1/2 for points in the
interior region. The expression given previously for the implicit representation of a
circle is, in fact, an SDF. Many operations and formulas can be simplified as a result
of the properties of the SDF. Besides being able to immediately distinguish whether
a point is in the interior or exterior region, we are now also given the shortest distance
to the surface.

216 Appendix A: Data Structure for SDF

A.3 Expressing Implicit Surfaces in the Sample
Implementation

This section presents two algorithms that approximate the contour of an implicit
surface with polygons, and describes a specific software implementation (Fig.A.5).
This implementation (for both algorithms) is closely tied to how an implicit surface
is actually described to the software. Therefore, it is important to first describe the
classes that define an implicit surface. An implicit surface is defined by a deriva-
tive of the class Isosurface. This class is the interface for implementing the field
function d = f (x, y, z) discussed above, providing a pure virtual function Iso-
surface::fDensity() that computes the field function. To gain better performance,
fDensity() can compute any number of points, starting at a point specified by three
parameters (x0, y0, z0) and progressing towards the +z axis according to a delta
value specified by the parameter dz. As an example, an implementation of the field
function of a sphere using Isosurface proceeds as follows:

The constructor of SphereIsosurface computes an axis-aligned bounding box
containing the sphere and reports it using Isosurface::addBoundingBox(). It is
not easy to determine the bounding box just by looking at the field function. A few
algorithms have been proposed to address this problem, but they are not perfect: for
example, they may not work correctly when the field function describes volumes that
are not connected. In many cases, Isosurface is derived to implement solid primi-
tives, such as a sphere, box, or torus, whose bounding box can be easily computed.
Therefore, it is reasonable to expect the implementation of an Isosurface to report
its own bounding box.

Appendix A: Data Structure for SDF 217

Fig. A.5 A result of SDF using ADF [1]

The implementation of Isosurface also permits the transformation of the vol-
ume. The Matrix class implements a 4 × 4 transformation matrix that can represent
any combination of translation, rotation, scaling, and shearing operations at a point
(or an object made up of a collection of points) in 3D space. The Matrix class is
also compatible with the way OpenGL deals with matrices. The Transform class,
which inherits Matrix without adding any new data members, contains a function
Transform::glMultMatrix() that is simply a wrapper around the OpenGL function
glMultMatrixf().

A transformation matrix can be applied to the implicit surface using Isosur-
face::setTransform(). Consider a sphere of radius 1 that has been translated on the
x-axis and is now centered at (−5, 0, 0). Evaluating the field function for the point at
(0, 0, 0) should return a result indicating that the point is outside the volume. In this
case, SphereIsosurface::fDensity(), as presented above, will evaluate the result
incorrectly, as it does not take the translation into account. However, the definition
can be easily revised to account for any kind of transformation:

The revised version first transforms the specified point given by (x0, y0, z0)
according to the inverted matrix of the transformation applied to the implicit sur-
face. When no transformation has been applied, the transformation matrix is the
identity matrix (and so is its inverse), resulting in xt = x0, yt = y0, zt = z0. To
revisit the last example, where a sphere is translated by (5, 0, 0), the inverted matrix
would translate the point by (+5, 0, 0), resulting in xt = (x0 +5), yt = y0, zt = z0.

218 Appendix A: Data Structure for SDF

Thus, evaluating the field function at (0, 0, 0)would correctly return a result indicat-
ing that the point is outside the volume, whereas evaluating the point at (−5, 0, 0)
would correctly indicate that the point is inside the volume.

References

1. Frisken SF, Perry RN, Rockwood AP, Jones TR (2000) Adaptively sampled dis-
tance fields: a general representation of shape for computer graphics. In: Proceed-
ings of SIGGRAPH 2000, pp 249–254

2. Osher SJ, Fedkiw RP (2002) Level Set Methods and Dynamic Implicit Surfaces,
Springer, Oct 2002. ISBN 0387954821

3. Osher S, Paragios N (2003) Geometric level set methods in imaging vision and
graphics, Springer. ISBN 0387954880

4. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

Appendix B
Surface Tracking

B.1 Marching Cubes

TheMarching cubes algorithm generates a 3D polygonalmesh from a 3D scalar field.
(In the 2D case, there is aMarching squares algorithm to generate a 2D polygon from
2D data.) A scalar field represents not only density values in a grid structure, but
also Boolean values in simpler models. A 3D polygonal mesh is the surface of the
3D scalar field we wish to track.

For example, medical data can be converted to a 3D scalar field representing the
densitymeasurement of an organ, and this can then be represented by a 3Dmesh using
Marching cubes. This mesh refers to the surface of an organ. In fluid simulations,
the density of the fluid is recorded at every time step, and a 3D polygonal surface is
then generated using the Marching cubes algorithm. This mesh describes the surface
of the fluid.

The Marching cubes algorithm is used in many areas, but this chapter describes
its application in fluid simulations.

B.1.1 Basics

To use the Marching cubes algorithm in fluid simulations, the simulation space
must first be approximated to a grid. Every grid point contains information, such as a
Boolean to denote whether it is inside or outside the fluid and scalar values describing
the density of the fluid at that position.

The simplest form of the Marching cubes algorithm uses Boolean values stored
at each grid point. In the case of a particle-based simulation, if the simpler model
is used, it is easy to implement the Marching cubes algorithm: we simply refer to
a hash table and generate a 3D mesh without any complicated computations. In the
case of grid-based simulations, the same grid resolution is used for both the fluid
simulation andMarching cubes algorithm. A 3D polygonal surface is generated with
Boolean values of ‘true to denote that the density in a grid cell is positive (which

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0

219

220 Appendix B: Surface Tracking

Fig. B.1 Fifteen cube
configurations [1]

means that particles exist in that cell). However, in both cases, it is noticeable that
aliasing occurs in the generated 3D mesh, and its quality is not particularly good.

To obtain higher-quality results, we use the fluid density to generate a 3D polyg-
onal mesh. It is possible to produce a more natural and smooth surface when repre-
senting large volumes in a high-density grid cell and small volumes in a low-density
grid cell. This method will be described in detail in the next section.

The Marching cubes algorithm proceeds one grid cell at a time, and each grid cell
has eight grid points. A total of 256 (28) possible configurations within a cell are
precalculated, and these are finally reduced to 15 configurations by removing cases
of rotation and symmetry.

In Fig.B.1, the big black dots are inside the fluid and small white points are
vertexes of the generated 3D polygonal mesh. It is possible to obtain a more natural
mesh by adjusting the position of these white points, as described in more detail in
Sect.B.1.3.

The 256 cases are implemented with a table in the header file, and every grid cell
references this table. One or more triangles are generated in each grid cell, and these
triangles give the surface of the fluid being simulated.

Appendix B: Surface Tracking 221

B.1.2 Density

In fluid simulations, the Marching cubes algorithm uses the density field of the fluid
to generate a more natural surface.

• Grid-based (Eulerian): If the grid resolution is the same for both the simulation
and the Marching cubes algorithm, the density is used as it is. If the resolutions
are different, the density is interpolated prior to being used.

• Particle-based (Lagrangian): Because the density is stored in a particle, it is
necessary to recalculate and store the density in grid points to implementMarching
cubes. Generally, there are two methods. First, we can add the particle density to
the grid point density of a cell containing the particle. The other method places a
kernel on a particle and adds its density to that of the grid points within the kernel
with a weight that is inversely proportional to the distance between the particle
and the grid point. In both methods, the density of every grid point is initialized
to 0 and then calculated.

The density stored using the above method is interpolated to produce a more
natural polygonal mesh for the fluid.

B.1.3 Interpolation Method

An interpolation technique must be introduced to generate a smooth curved surface
for the fluid. This technique can be applied to grid cells that contain both fluid and
air. That is, the interpolation function determines where to put the vertexes of an
isosurface on edges that have one endpoint inside the fluid and the other endpoint
outside the fluid. The threshold is the criterion of setting the vertex position. It is
very important to find an appropriate threshold value, because the appearance of
a polygonal mesh representing a fluid depends on this threshold value. FigureB.2
shows the position of a vertex according to the threshold value.

Fig. B.2 The interpolated
position of a vertex

222 Appendix B: Surface Tracking

A smoother curved surface is generated when interpolation is applied with a
suitable threshold value than when interpolation is not used.

Reference

1. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface
construction algorithm. ACM Comput Graph 21(4):163–169

Appendix C
Rendering

C.1 3ds Max

The 3ds Max software provides an integrated rendering production system, includ-
ing two global illumination algorithms called “ray tracing” and “radiosity”. 3ds
Max allows specular, transparent, and special lighting effects to be added using the
radiosity, scanline, or ray tracing renderer at a specific time. Therefore, it is possible
to correct inaccurate ambient light and produce a more realistic rendering result.
Because 3ds Max integrates techniques from fast and interactive lighting up to real-
istic global rendering, such as radiosity and ray tracing, it can be used to visualize
the full range of phenomena.

This chapter looks at the high-quality rendering of fluid simulation data using 3ds
Max.

1. A polygonal model generated using the Marching cubes algorithm is exported to
an OBJ file format, and the sequence of polygonal meshes for all frames in the
fluid simulation is successively exported and stored.

© Springer Science+Business Media Singapore 2015
C.-H. Kim et al., Real-Time Visual Effects for Game Programming,
Gaming Media and Social Effects, DOI 10.1007/978-981-287-487-0

223

224 Appendix C: Rendering

2. An OBJ file is imported into 3ds Max; all OBJ files can be imported sequentially
using a script.

The following shows a 3dsMax script to import a series of OBJ files, render them,
and store the rendered scenes in BMP files.

Appendix C: Rendering 225

3. Scene configuration in 3dsMax is set for fluid rendering.Light and camera settings
should be set, and a primitive can be added to the scene using 3ds Max modeling
tools. In this process, it is possible to apply the ray tracing or radiosity rendering
techniques.

226 Appendix C: Rendering

The above screenshot shows a dialog box for rendering setup in 3ds Max. To
render a fluid, users assign the ‘Production’ and ‘Material Editor’ types in the
‘Assign Renderer’ box by changing the default scanline renderer to the mental
ray renderer. The following shows thematerial editor, where one of variousmental
ray materials can be chosen.

4. When the scenehas been configured, 3dsMaxperforms the renderingprocess. The
rendering result can be saved as an image file, and a script allows the generation of
consecutive images for all simulation frames. Finally, a moving fluid simulation
is completed by sequentially connecting all images.

Appendix C: Rendering 227

	Acknowledgments
	Contents
	Introduction
	1 Basic Concepts of Visual Effects
	1.1 Water
	1.1.1 Eulerian Method for Water and Bubbles
	1.1.2 Hybrid Method for Water and Bubbles
	1.1.3 High-Order Surface Tracking
	1.1.4 Miscible Multiphase Fluids

	1.2 Smoke
	1.2.1 Animating Smoke with Dynamic Balance
	1.2.2 Procedural Synthesis Using Vortex Particle Method

	1.3 Fire and Ice
	1.4 Fluid Interaction
	1.4.1 Coupling
	1.4.2 Controlling Fluid
	1.4.3 Target Driven Animation

	References

	2 Water and Bubbles
	2.1 Animation of Bubbles in Liquid
	2.1.1 Introduction
	2.1.2 Previous Work
	2.1.3 Overview
	2.1.4 Simulation of Multiphase Flows
	2.1.5 Visualization
	2.1.6 Results and Discussion
	2.1.7 Conclusion and Future Work

	2.2 Discontinuous Fluids
	2.2.1 Introduction
	2.2.2 Previous Work
	2.2.3 Overview of Navier--Stokes Simulation
	2.2.4 Discontinuous Interfacial Dynamics
	2.2.5 Results
	2.2.6 Conclusion

	2.3 Bubbles Alive
	2.3.1 Introduction
	2.3.2 Previous Work
	2.3.3 A Hybrid Approach
	2.3.4 Bubbles
	2.3.5 Examples
	2.3.6 Conclusion

	2.4 Hybrid Simulation of Miscible Mixing with Viscous Fingering
	2.4.1 Introduction
	2.4.2 Related Work
	2.4.3 Modeling Miscible Fluids with Multiple Level-Sets
	2.4.4 Basic Fluids Simulation
	2.4.5 Viscous Fingering
	2.4.6 Chemical Mass Transfer
	2.4.7 Hybrid Method
	2.4.8 Results
	2.4.9 Conclusions

	2.5 Anisotropic Particle Level-Set Method for Multiphase Fluid
	2.5.1 Introduction
	2.5.2 Related Work
	2.5.3 Particle Level-Set Method (PLS)
	2.5.4 Anisotropic Particle Level-Set Method (APLS)
	2.5.5 Results
	2.5.6 Conclusion and Future Work

	References

	3 Smoke
	3.1 Animating Smoke with Dynamic Balance
	3.1.1 Introduction
	3.1.2 Related Work
	3.1.3 Computing Errors in the Advection Term
	3.1.4 Vortex Advection Based on Vorticity Confinement
	3.1.5 Implementation
	3.1.6 Results and Discussion
	3.1.7 Conclusion

	3.2 Procedural Synthesis Using Vortex Particle Method for Fluid Simulation
	3.2.1 Introduction
	3.2.2 Previous Work
	3.2.3 High-Resolution Fluid Synthesis
	3.2.4 Examples
	3.2.5 Conclusions and Future Work

	References

	4 Fire and Ice
	4.1 Shrinkage, Wrinkling, and Ablation of Burning Cloth and Paper
	4.1.1 Introduction
	4.1.2 Related Work
	4.1.3 The Shell Configuration
	4.1.4 Simulation Overview
	4.1.5 Heat Transfer
	4.1.6 Adjusting Target Lengths and Remeshing
	4.1.7 Shell Dynamics
	4.1.8 Results
	4.1.9 Conclusions

	4.2 Combustion Waves on the Point Set Surface
	4.2.1 Introduction
	4.2.2 Related Work
	4.2.3 Combustion Model
	4.2.4 Results
	4.2.5 Conclusion

	4.3 A Particle-Grid Method for Opaque Ice Formation
	4.3.1 Introduction
	4.3.2 Previous Work
	4.3.3 Overview
	4.3.4 Simulation of Freezing Ice
	4.3.5 Results and Discussion
	4.3.6 Conclusion and Future Work

	References

	5 Fluid Interaction
	5.1 Solid-Fluid Collision Detection
	5.1.1 Fast Coupling for Particle-Based Simulation with Motions

	5.2 Controlling Fluid Animation
	5.2.1 Interchangeable SPH and Level-Set Method in Multiple Fluids
	5.2.2 Simulation of Swirling Bubbly Water Using Bubble Particles
	5.2.3 Controlling Shapes of Air Bubbles in a Multiphase Fluid Simulation

	References

	6 Real-Time Visual Effects Programming
	6.1 GPU Programming: CUDA
	6.1.1 Introduction to CUDA
	6.1.2 Installation and Setup
	6.1.3 Structure of CUDA Functions

	6.2 Real-Time Fluid Programming
	6.2.1 Position-Based Fluid
	6.2.2 Data Structure for Vectors
	6.2.3 Hash Table
	6.2.4 Simulation Programming
	6.2.5 Visualization Programming

	References

	Appendix AData Structure for SDF
	Appendix BSurface Tracking
	Appendix CRendering

