
Real-World
Hadoop

Ted Dunning & Ellen Friedman

www.allitebooks.com

http://www.allitebooks.org


Real-World
Hadoop

Ted Dunning & Ellen Friedman

REA
L-W

O
RLD

 H
A

D
O

O
P

ISBN: 978-1-491-92266-8

US $24.99  CAN $28.99

If you’re a business team leader, CIO, business analyst, or developer interested in 
how Apache Hadoop and Apache HBase–related technologies can address 
problems involving large-scale data in cost-effective ways, this book is for you. 
Using real-world stories and situations, authors Ted Dunning and Ellen Friedman 
show Hadoop newcomers and seasoned users alike how NoSQL databases and 
Hadoop can solve a variety of business and research issues. 

You’ll learn about early decisions and pre-planning that can make the process 
easier and more productive. If you’re already using these technologies, you’ll 
discover ways to gain the full range of benefits possible with Hadoop. While you 
don’t need a deep technical background to get started, this book does provide 
expert guidance to help managers, architects, and practitioners succeed with 
their Hadoop projects.

n	 Examine a day in the life of big data: India’s ambitious Aadhaar project

n	 Review tools in the Hadoop ecosystem such as Apache’s Spark, Storm, and 
Drill to learn how they can help you

n	 Pick up a collection of technical and strategic tips that have helped others 
succeed with Hadoop 

n	 Learn from several prototypical Hadoop use cases, based on how organi-
zations have actually applied the technology

n	 Explore real-world stories that reveal how MapR customers combine use 
cases when putting Hadoop and NoSQL to work, including in production

Ted Dunning is Chief Applications Architect at MapR Technologies, and committer 
and PMC member of Apache’s Drill, Storm, Mahout, and ZooKeeper projects. He is 
also mentor for Apache’s Datafu, Kylin, Zeppelin, Calcite, and Samoa projects.

Ellen Friedman is a solutions consultant, speaker, and author, writing mainly about 
big data topics. She is a committer for the Apache Mahout project and a contributor 
to the Apache Drill project. 

www.allitebooks.com

http://www.allitebooks.org


Ted Dunning and Ellen Friedman

Real-World Hadoop

www.allitebooks.com

http://www.allitebooks.org


Real-World Hadoop
by Ted Dunning and Ellen Friedman

Copyright © 2015 Ted Dunning and Ellen Friedman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editors: Mike Hendrickson and Tim Mc‐
Govern
Cover Designer: Karen Montgomery

Interior Designer: David Futato
Illustrator: Rebecca Demarest

January 2015: First Edition

Revision History for the First Edition:

2015-01-26: First release

2015-03-18: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781491922668 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Real-World Ha‐
doop, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without lim‐
itation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

Unless otherwise noted, images are copyright Ted Dunning and Ellen Friedman.

ISBN: 978-1-491-92266-8

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491922668
http://www.allitebooks.org


The authors dedicate this book with gratitude to Yorick Wilks, Fellow
of the British Computing Society and Professor Emeritus in the Natural
Language Processing Group at University of Sheffield, Senior Research
Fellow at the Oxford Internet Institute, Senior Research Scientist at the

Florida Institute for Human and Machine Cognition, and an
extraordinary person.

Yorick mentored Ted Dunning as Department Chair and his graduate
advisor during Ted’s doctoral studies in Computing Science at the Uni‐
versity of Sheffield. He also provided guidance as Ted’s supervisor while
Yorick was Director of the Computing Research Laboratory, New Mex‐
ico State University, where Ted did research on statistical methods for
natural language processing (NLP). Yorick’s strong leadership showed
that critical and open examination of a wide range of ideas is the foun‐
dation of real progress. Ted can only hope to try to live up to that ideal.

We both are grateful to Yorick for his outstanding and continuing con‐
tributions to computing science, especially in the fields of artificial in‐
telligence and NLP, through a career that spans five decades. His bril‐
liance in research is matched by a sparkling wit, and it is both a pleasure

and an inspiration to know him.

These links provide more details about Yorick’s work:

http://staffwww.dcs.shef.ac.uk/people/Y.Wilks/

http://en.wikipedia.org/wiki/Yorick_Wilks

www.allitebooks.com

http://staffwww.dcs.shef.ac.uk/people/Y.Wilks/
http://en.wikipedia.org/wiki/Yorick_Wilks
http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

1. Turning to Apache Hadoop and NoSQL Solutions. . . . . . . . . . . . . . . . .  1
A Day in the Life of a Big Data Project                                             2
From Aadhaar to Your Own Big Data Project                                 5
What Hadoop and NoSQL Do                                                           6
When Are Hadoop and NoSQL the Right Choice?                        9

2. What the Hadoop Ecosystem Offers. . . . . . . . . . . . . . . . . . . . . . . . . . .  11
Typical Functions                                                                               12
Data Storage and Persistence                                                           13
Data Ingest                                                                                          15

Apache Kafka                                                                                  16
Apache Sqoop                                                                                 17
Apache Flume                                                                                 17

Data Extraction from Hadoop                                                         17
Processing, Transforming, Querying                                              18

Streaming                                                                                        18
Micro-batching                                                                               18
Batch Processing                                                                            18
Interactive Query                                                                           19
Search Abuse—Using Search and Indexing for Interactive

Query                                                                                            20
Visualization Tools                                                                         21

Integration via ODBC and JDBC                                                    21

3. Understanding the MapR Distribution for Apache Hadoop. . . . . . . .  23
Use of Existing Non-Hadoop Applications                                    23

v

www.allitebooks.com

http://www.allitebooks.org


Making Use of a Realtime Distributed File System                      26
Meeting SLAs                                                                                     27
Deploying Data at Scale to Remote Locations                               27
Consistent Data Versioning                                                              28
Finding the Keys to Success                                                             28

4. Decisions That Drive Successful Hadoop Projects. . . . . . . . . . . . . . . .  29
Tip #1: Pick One Thing to Do First                                                 30
Tip #2: Shift Your Thinking                                                              31
Tip #3: Start Conservatively But Plan to Expand                          33
Tip #4: Be Honest with Yourself                                                      34
Tip #5: Plan Ahead for Maintenance                                              34
Tip #6: Think Big: Don’t Underestimate What You Can (and

Will) Want to Do                                                                            35
Tip #7: Explore New Data Formats                                                 35
Tip #8: Consider Data Placement When You Expand a

Cluster                                                                                              37
Tip #9: Plot Your Expansion                                                            38
Tip #10: Form a Queue to the Right, Please                                   39
Tip #11: Provide Reliable Primary Persistence When Using

Search Tools                                                                                    39
Tip #12: Establish Remote Clusters for Disaster Recovery          40
Tip #13: Take a Complete View of Performance                           41
Tip #14: Read Our Other Books (Really!)                                      42
Tip # 15: Just Do It                                                                             42

5. Prototypical Hadoop Use Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Data Warehouse Optimization                                                        43
Data Hub                                                                                             46
Customer 360                                                                                     48
Recommendation Engine                                                                 50
Marketing Optimization                                                                   53
Large Object Store                                                                             54
Log Processing                                                                                   56
Realtime Analytics                                                                             57
Time Series Database                                                                         61

6. Customer Stories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Telecoms                                                                                              66
What Customers Want                                                                      67
Working with Money                                                                        70

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Sensor Data, Predictive Maintenance, and a “Time Machine”   75
A Time Machine                                                                             76

Manufacturing                                                                                    81
Extending Quality Assurance                                                       82

7. What’s Next?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

A. Additional Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Preface

This book is for you if you are interested in how Apache Hadoop and
related technologies can address problems involving large-scale data
in cost-effective ways. Whether you are new to Hadoop or a seasoned
user, you should find the content in this book both accessible and
helpful.

Here we speak to business team leaders, CIOs, business analysts, and
technical developers to explain in basic terms how NoSQL Apache
Hadoop and Apache HBase–related technologies work to meet big
data challenges and the ways in which people are using them, including
using Hadoop in production. Detailed knowledge of Hadoop is not a
prerequisite for this book. We do assume you are rougly familiar with
what Hadoop and HBase are, and we focus mainly on how best to use
them to advantage. The book includes some suggestions for best prac‐
tice, but it is intended neither as a technical reference nor a compre‐
hensive guide to how to use these technologies, and people can easily
read it whether or not they have a deeply technical background. That
said, we think that technical adepts will also benefit, not so much from
a review of tools, but from a sharing of experience.

Based on real-world situations and experience, in this book we aim to
describe how Hadoop-based systems and new NoSQL database tech‐
nologies such as Apache HBase have been used to solve a wide variety
of business and research problems. These tools have grown to be very
effective and production-ready. Hadoop and associated tools are being
used successfully in a variety of use cases and sectors. To choose to
move into these new approaches is a big decision, and the first step is
to recognize how these solutions can be an advantage to achieve your
own specific goals. For those just getting started, we describe some of

ix



the pre-planning and early decisions that can make the process easier
and more productive. People who are already using Hadoop and
NoSQL-based technologies will find suggestions for new ways to gain
the full range of benefits possible from employing Hadoop well.

In order to help inform the choices people make as they consider these
new solutions, we’ve put together:

• An overview of the reasons people are turning to these technol‐
ogies

• A brief review of what the Hadoop ecosystem tools can do for you
• A collection of tips for success
• A description of some widely applicable prototypical use cases
• Stories from the real world to show how people are already using

Hadoop and NoSQL successfully for experimentation, develop‐
ment, and in production

This book is a selection of various examples that should help guide
decisions and spark your ideas for how best to employ these technol‐
ogies. The examples we describe are based on how customers use the
Hadoop distribution from MapR Technologies to solve their big data
needs in many situations across a range of different sectors. The uses
for Hadoop we describe are not, however, limited to MapR. Where a
particular capability is MapR-specific, we call that to your attention
and explain how this would be handled by other Hadoop distributions.
Regardless of the Hadoop distribution you choose, you should be able
to see yourself in these examples and gain insights into how to make
the best use of Hadoop for your own purposes.

How to Use This Book
If you are inexperienced with Apache Hadoop and NoSQL non-
relational databases, you will find basic advice to get you started, as
well as suggestions for planning your use of Hadoop going forward.

If you are a seasoned Hadoop user and have familiarity with Hadoop-
based tools, you may want to mostly skim or even skip Chapter 2 except
as a quick review of the ecosystem.

For all readers, when you reach Chapter 5 and Chapter 6, consider
them together. The former explains some of the most rewarding of
prototypical Hadoop use cases so that you see what your options are.

x | Preface



Chapter 6 then shows you how Hadoop users are putting those options
together in real-world settings to address many different problems.

We hope you find this approach helpful.

—Ted Dunning and Ellen Friedman, January 2015

Preface | xi





CHAPTER 1

Turning to Apache Hadoop and
NoSQL Solutions

Some questions are easier to answer than others. In response to the
question, “Is Hadoop ready for production?,” the answer is, simply,
“yes.”

This answer may surprise you, given how young the Apache Hadoop
technology actually is. You may wonder on what basis we offer this
definitive response to the question of Hadoop’s readiness for produc‐
tion. The key reason we say that it is ready is simply because so many
organizations are already using Hadoop in production and doing so
successfully. Of course, being ready for production is not the same
thing as being a mature technology.

Will Hadoop-based technologies change over the next few years? Of
course they will. This is a rapidly expanding new arena, with continual
improvements in the underlying technology and the appearance of
innovative new tools that run in this ecosystem. The level of experience
and understanding among Hadoop users is also rapidly increasing. As
Hadoop and its related technologies continue progress toward ma‐
turity, there will be a high rate of change. Not only will new features
and capabilities be added, these technologies will generally become
easier to use as they become more refined.

Are these technologies a good choice for you? The answer to that ques‐
tion is more complicated, as it depends on your own project goals,
your resources, and your willingness to adopt new approaches. Even
with a mature technology, there would be a learning curve to account
for in planning the use of something different; with a maturing tech‐

1



nology you also have to account for a cost of novelty and stay adaptable
to rapid change in the technology. Hadoop and NoSQL solutions are
still young, so not only are the tools themselves still somewhat short
of maturity, there is also a more limited pool of experienced users from
which to select when building out your own team than with some older
approaches.

Even so, Hadoop adoption is widespread and growing rapidly. For
many, the question is no longer whether or not to turn to Hadoop and
NoSQL solutions for their big data challenges but rather, “What are
the best ways to use Hadoop and NoSQL to carry our projects success‐
fully?” and “When should we start?”

This book aims to help answer these questions by providing a con‐
versation around the choices that drive success in big data projects, by
sharing tips that others have found useful, and by examining a selec‐
tion of use cases and stories from successful Hadoop-based projects.
What makes this collection of use cases different is that we include
examples of how people are already using Hadoop in production and
in near-production settings. We base our stories and recommenda‐
tions on the experiences of real teams running real workloads. Of
course, we do not focus only on Hadoop in production—we also pro‐
vide advice to help you get started and to use Hadoop successfully in
development.

When is the time right to give Hadoop a try? There is no “right” answer
to that question, as each situation is different, but now may be a good
time to give Hadoop a try even if you’re not yet ready to consider it in
a production setting for your own projects. If you start now, you will
not be a Hadoop pioneer—the true pioneers are the ones already using
it in production. But there is still an early-mover advantage to be had
for those starting now. For one thing, you will find out if this technol‐
ogy holds promise for your situation. For another, you will begin
building Hadoop expertise within your organization, which may
prove very valuable. Even if you do not at present have an urgent need
for a Hadoop-based solution, it’s very likely you will need it or a sol‐
ution similar to it soon. Having teams who are savvy about using Ha‐
doop is an investment in the future.

A Day in the Life of a Big Data Project
Before we look in detail at what Hadoop is and how you might use it,
let’s start with a look at an unusual Hadoop-based project that is

2 | Chapter 1: Turning to Apache Hadoop and NoSQL Solutions



changing society in fundamental ways. The story begins with this
challenge: suppose you need to be able to identify every person in
India, uniquely and reliably—all 1.2 billion of them. And suppose you
need to be able to authenticate this identification for any individual
who requests it, at any time, from any place in India, in less than a
second. Does this sound sufficiently challenging?

That description is the central mission for India’s Aadhaar project, the
Unique Identification Authority of India (UIDAI). The project pro‐
vides a unique 12-digit, government-issued identification number that
is tied to biometric data to verify the identity and address for each
person in India. The biometric data includes an iris scan of both eyes
plus multipoint data from the fingerprint pattern of all 10 fingers, as
suggested by the illustration in Figure 1-1. The unique Aadhaar ID
number is a random number, and it is assigned without classification
based on caste, religion, or creed, assuring an openness and equality
to the project.

Figure 1-1. Unique Identification Authority of India (UIDAI) is run‐
ning the Aadhaar project, whose goal is to provide a unique 12-digit
identification number plus biometric data to authenticate to every
one of the roughly 1.2 billion people in India. This is the largest scale
ever reached by a biometric system. (Figure based on image by Chris‐
tian Als/Panos Pictures.)

The need for such an identification program and its potential impact
on society is enormous. In India, there is no social security card, and

A Day in the Life of a Big Data Project | 3



much of the population lacks a passport. Literacy rates are relatively
low, and the population is scattered across hundreds of thousands of
villages. Without adequately verifiable identification, it has been dif‐
ficult for many citizens to set up a bank account or otherwise partic‐
ipate in a modern economy.

For India’s poorer citizens, this problem has even more dire conse‐
quences. The government has extensive programs to provide wide‐
spread relief for the poor—for example, through grain subsidies to
those who are underfed and through government-sponsored work
programs for the unemployed. Yet many who need help do not have
access to benefit programs, in part because of the inability to verify
who they are and whether they qualify for the programs. In addition,
there is a huge level of so-called “leakage” of government aid that dis‐
appears to apparent fraud. For example, it has been estimated that over
50% of funds intended to provide grain to the poor goes missing, and
that fraudulent claims for “ghost workers” siphon off much of the aid
intended to create work for the poor.

The Aadhaar program is poised to change this. It is in the process of
creating the largest biometric database in the world, one that can be
leveraged to authenticate identities for each citizen, even on site in
rural villages. A wide range of mobile devices from cell phones to mi‐
cro scanners can be used to enroll people and to authenticate their
identities when a transaction is requested. People will be able to make
payments at remote sites via micro-ATMs. Aadhaar ID authentication
will be used to verify qualification for relief food deliveries and to
provide pension payments for the elderly. Implementation of this
massive digital identification system is expected to save the equivalent
of millions and perhaps billions of dollars each year by thwarting ef‐
forts at fraud. While the UIDAI project will have broad benefits for
the Indian society as a whole, the greatest impact will be for the poorest
people.

The UIDAI project is a Hadoop-based program that is well into pro‐
duction. At the time of this writing, over 700 million people have been
enrolled and their identity information has been verified. The target
is to reach a total of at least 100 crore (1 billion) enrollments during
2015. Currently the enrollment rate is about 10 million people every
10 days, so the project is well positioned to meet that target.

From a technical point of view, what are the requirements for such an
impressive big data project? Scalability and reliability are among the

4 | Chapter 1: Turning to Apache Hadoop and NoSQL Solutions



most significant requirements, along with capability for very high
performance. This challenge starts with the enrollment process itself.
Once address and biometric data are collected for a particular indi‐
vidual, the enrollment must undergo deduplication. Deduplication for
each new enrollment requires the processing of comparisons against
billions of records. As the system grows, deduplication becomes an
even greater challenge.

Meanwhile, the Aadhaar digital platform is also busy handling au‐
thentication for each transaction conducted by the millions of people
already enrolled. Authentication involves a profile lookup, and it is
required to support thousands of concurrent transactions with re‐
sponse times on the order of 100ms. The authentication system was
designed to run on Hadoop and Apache HBase. It currently uses the
MapR distribution for Hadoop. Rather than employ HBase, the au‐
thentication system uses MapR-DB, a NoSQL database that supports
the HBase API and is part of MapR. We’ll delve more into how MapR-
DB and other technologies interrelate later in this chapter and in
Chapter 2. In addition to being able to handle the authentication
workload, the Aadhaar authentication system also has to meet strict
availability requirements, provide robustness in the face of machine
failure, and operate across multiple datacenters.

Chief Architect of the Aadhaar project, Pramod Varma, has pointed
out that the project is “built on sound strategy and a strong technology
backbone.” The most essential characteristics of the technology in‐
volved in Aadhaar are to be highly available and to be able to deliver
sub-second performance.

From Aadhaar to Your Own Big Data Project
The Aadhaar project is not only an impressive example of vision and
planning, it also highlights the ability of Hadoop and NoSQL solutions
to meet the goals of an ambitious program. As unusual as this project
seems—not everyone is trying to set up an identification program for
a country the size of India—there are commonalities between this un‐
usual project and more ordinary projects both in terms of the nature
of the problems being addressed and the design of successful solutions.
In other words, in this use case, as in the others we discuss, you should
be able to see your own challenges even if you work in a very different
sector.

From Aadhaar to Your Own Big Data Project | 5



One commonality is data size. As it turns out, while Aadhaar is a large-
scale project with huge social impact and fairly extreme requirements
for high availability and performance, as far as data volume goes, it is
not unusually large among big data projects. Data volumes in the fi‐
nancial sector, for instance, are often this size or even larger because
so many transactions are involved. Similarly, machine-produced data
in the area of the industrial Internet can easily exceed the volumes of
Aadhaar. The need for reliable scalability in India’s project applies to
projects in these cases as well.

Other comparisons besides data volume can be drawn between Aad‐
haar and more conventional use cases. If you are involved with a large
retail business, for instance, the idea of identity or profile lookup is
quite familiar. You may be trying to optimize an advertising campaign,
and as part of the project you need to look up the profiles of customers
to verify their location, tastes, or buying behaviors, possibly at even
higher rates than needed by Aadhaar. Such projects often involve more
than simple verification, possibly relying on complex analytics or ma‐
chine learning such as predictive filtering, but the need to get the in‐
dividual profile data for a large number of customers is still an essential
part of implementing such a solution. The challenging performance
requirements of Aadhaar are also found in a wide range of projects.
In these situations, a Hadoop-based NoSQL solution such as HBase
or MapR-DB provides the ability to scale horizontally to meet the
needs of large volume data and to avoid traffic problems that can re‐
duce performance.

What Hadoop and NoSQL Do
The most fundamental reason to turn to Hadoop is for the ability to
handle very large-scale data at reasonable cost in a reasonable time.
The same applies to Hadoop-based NoSQL database management
solutions such as HBase and MapR-DB. There are other choices for
large-scale distributed computing, including Cassandra, Riak, and
more, but Hadoop-based systems are widely used and are the focus of
our book. Figure 1-2 shows how interest in Hadoop has grown, based
on search terms used in Google Trends.

6 | Chapter 1: Turning to Apache Hadoop and NoSQL Solutions

www.allitebooks.com

http://www.allitebooks.org


Figure 1-2. Google Trends shows a sharp rise in popularity of the term
“hadoop” in searches through recent years, suggesting an increased in‐
terest in Hadoop as a technology. We did not include “cassandra” as a
search term because its popularity as a personal name means there is
no easy way to disambiguate results for the database from results for
human names.

In addition to the ability to store large amounts of data in a cost-
effective way, Hadoop also provides mechanisms to greatly improve
computation performance at scale. Hadoop involves a distributed
storage layer plus a framework to coordinate that storage. In addition,
Hadoop provides a computational framework to support parallel pro‐
cessing. In its original form, Hadoop was developed as an open source
Apache Foundation project based on Google’s MapReduce paradigm.
Today there are a variety of different distributions for Hadoop.

One of the key aspects of this distributed approach to computation
involves dividing large jobs into a collection of smaller tasks that can
be run in parallel, completely independently of each other. The outputs
of these tasks are shuffled and then processed by other tasks. By run‐
ning tasks in parallel, jobs can be completed more quickly, which al‐
lows the system to have very high throughput. The original Hadoop
MapReduce provided a framework that allowed programs to be built
in a relatively straightforward way that could run in this style and thus
provided highly scalable computation. MapReduce programs run in
batch, and they are useful for aggregation and counting at large scale.

Another key factor for performance is the ability to move the com‐
putation to where the data is stored rather than having to move data
to the computation. In traditional computing systems, data storage is
segregated from computational systems. With Hadoop, there is no
such segregation, and programs can run on the same machines that

What Hadoop and NoSQL Do | 7



store the data. The result is that you move only megabytes of program
instead of terabytes of data in order to do a very large-scale compu‐
tation, which results in greatly improved performance.

The original Hadoop MapReduce implementation was innovative but
also fairly limited and inflexible. MapReduce provided a start and was
good enough to set in motion a revolution in scalable computing. With
recent additions to the Hadoop ecosystem, more advanced and more
flexible systems are also becoming available. MapReduce is, however,
still an important method for aggregation and counting, particularly
in certain situations where the batch nature of MapReduce is not a
problem. More importantly, the basic ideas on which MapReduce is
based—parallel processing, data locality, and the shuffle and re-
assembly of results—can also be seen underlying new computational
tools such as Apache Spark, Apache Tez, and Apache Drill. Most likely,
more tools that take advantage of these basic innovations will also be
coming along.

All of these computational frameworks run on the Hadoop storage
layer, as shown in Figure 1-3. An important difference in these new
systems is that they avoid storing every intermediate result to disk,
which in turn provides improved speed for computation. Another
difference is that the new systems allow computations to be chained
more flexibly. The effect of these differences is better overall perfor‐
mance in some situations and applicability to a wider range of prob‐
lems.

Figure 1-3. A variety of different computational frameworks for par‐
allel processing are available to run on the Apache Hadoop storage
layer for large data systems.

8 | Chapter 1: Turning to Apache Hadoop and NoSQL Solutions



In addition to the ability to scale horizontally at low cost and to per‐
form large-scale computations very efficiently and rapidly, Hadoop-
based technologies are also changing the game by encouraging the use
of new types of data formats. Both files and NoSQL databases allow
you to use a wide range of data formats, including unstructured or
semistructured data. Concurrent with the development of Hadoop’s
computational capabilities, there have been dramatic improvements
in our understanding of how to store data in flat files and NoSQL
databases. These new ways for structuring data greatly expand the op‐
tions and provide a greater degree of flexibility than you may be used
to. We say more about new data formats among the tips in Chapter 4.

NoSQL nonrelational databases can augment the capabilities of the
flat files with the ability to access and update a subset of records, each
identified by a unique key, rather than having to scan an entire file as
you would with flat files.

With their ability to scale in a cost-effective way and to handle un‐
structured data, NoSQL databases provide a powerful solution for a
variety of use cases, but they should not be thought of as a replacement
for the function of traditional databases. This distinction is described
in more detail in Chapter 2, but the essential point to note is that each
of these technologies—NoSQL databases and traditional relational
databases (RDBMS)—should be used for the things they do best. Some
NoSQL databases have a better ability to scale and to do so while
keeping costs down. They can handle raw, unstructured data that also
affects use cases for which they are well suited. In contrast, there is a
price to be paid with RDBMS (literally and in terms of the effort re‐
quired for processing and structuring data for loading). The reward
for this cost, however, can be extremely good performance with
RDBMS for specific, highly defined tasks such as critical path billing
and standardized reporting. However, to get these benefits, the data
must already be prepared for the tasks.

When Are Hadoop and NoSQL the
Right Choice?
The need to handle large amounts of data cost effectively has led to
the development of scalable distributed computing systems such as
those discussed in this book, based on Hadoop and on NoSQL data‐
bases. But these new technologies are proving so effective that they go
beyond providing solutions for existing projects; they are inviting ex‐

When Are Hadoop and NoSQL the Right Choice? | 9



ploration into new problems that previously would have seemed im‐
practical to consider.

A key distinction of these systems from previous ones is flexibility.
This flexibility is manifested in the platform itself through the capa‐
bility to handle new data types and multiple computational models, as
well as to scale to very large data sizes. Hadoop adds flexibility in your
choices by being able to store essentially “raw” data and make decisions
about how to process and use it later. Flexibility is also manifested in
the ways that developers are combining diverse data streams and new
analysis techniques in a single platform. In the MapR distribution for
Hadoop, there is further flexibility to use existing non-Hadoop appli‐
cations side by side on the same systems and operate on the same data
as Hadoop applications.

Chapter 2 provides you with an overview of the functions supported
by Hadoop ecosystem tools, while Chapter 3 explains some of the extra
capabilities of MapR’s distribution so that you will be better able to
extrapolate from our examples to your own situation, whichever Ha‐
doop distribution you choose to try. In Chapter 4, we provide a list of
tips for success when working with Hadoop that offer help for new‐
comers and for experienced Hadoop users.

In order to help you better understand how these technologies may
bring value to your own projects, this book also describes a selection
of Hadoop use cases based on how MapR customers are using it. MapR
currently has over 700 paying customers across a wide range of sectors
including financial services, web-based businesses, manufacturing,
media, telecommunications, and retail. Based on those, we have iden‐
tified a variety of key usage patterns that we describe in Chapter 5 as
well as telling example stories in Chapter 6 that show how customers
combine these solutions to meet their own big data challenges.

Are the examples described in this book MapR specific? For the most
part, no. There are some aspects of what people are doing that rely on
specific MapR features or behaviors, but we’ve tried to call those to
your attention and point out what the alternatives would be. The use
cases and customer stories have been chosen to show the power of
Hadoop and NoSQL solutions to provide new ways to solve problems
at scale. Regardless of the Hadoop distribution you choose, the mate‐
rial in this book should help guide you in the decisions you’ll need to
make in order to plan well and execute successful big data projects.

10 | Chapter 1: Turning to Apache Hadoop and NoSQL Solutions



CHAPTER 2

What the Hadoop
Ecosystem Offers

Apache Hadoop and related technologies are rapidly evolving, and as
such they are spawning a large array of new tools. As people see grow‐
ing value and expanding use cases in this area, the number of tools to
address significant needs also grows. This trend is good news in that
it provides a wide range of functions to support the activities you may
want to carry out in this new arena. However, the wealth of new and
unfamiliar tools can feel a bit overwhelming.

In order to help guide you through the choices being offered in the
Hadoop ecosystem in a meaningful way, we take a look here at some
of the key actions that are commonly desired in Hadoop and NoSQL
use cases and provide you with a description of some of the tools widely
used to carry out those operations. This is by no means a full catalog
of what’s available, nor is it a how-to manual for using the tools. In‐
stead, our focus is on the issues associated with functions common to
many Hadoop-based projects. This high-level view of what various
Hadoop ecosystem tools are used for is intended to help you to assess
tools of interest to you, whether or not they’re included in our list, in
terms of how they may be helpful for your projects.

To get started, we’ve put together a chart of some major needs that are
common to many use cases and that shows you a few of the tools
associated with each one. In Table 2-1, a selection of the most prom‐
inent tools in the Hadoop ecosystem are broken down roughly by
time-scale and by their typical purposes.

11



Table 2-1. Hadoop ecosystem tools broken down by time-scale and
general purpose. Note that all tools generally work on all platforms,
with a few exceptions. For instance, NFS and direct file access allow
realtime updates and POSIX semantics on MapR but not on other
platforms. Also, some interface methods such as ODBC and NFS (de‐
pending on platform, as noted) open up a huge range of tools. Note
that Impala and ElasticSearch are open source with a closed commu‐
nity. MapR-DB, Teradata, and Tableau are closed source. The rest
listed here are fully open source projects.

Ingest Process Persist Extract

Batch Flume,
sqoop,
Kafka, NFS

Hive, Pig Files NFS, Teradata, and
other connectors

Ad hoc Flume, NFS Spark, Impala, Drill,
Hive (soon), Solr,
ElasticSearch

File, HBase, MapR-
DB

ODBC tools such as
Tableau, direct web
access

Streaming
and realtime

Flume,
Kafka, NFS

Spark streaming,
Storm, Samza

HBase, MapR-DB,
file (on some
platforms)

HBase, MapR-DB, NFS

Typical Functions
Table 2-1 divides the functions to be done in big data applications into
ingestion, data processing or transformation, persistence, and extrac‐
tion. Ingestion is the process of getting data into a system with minimal
processing or transformation applied during ingestion. Processing is
where all significant computing and transformation is done. The most
common operation in processing raw data is that it is aggregated into
summaries or arranged into profiles. Data is commonly persisted after
processing, but in Hadoop systems, data is also commonly persisted
in nearly raw form as it is ingested but before it is processed. The
retention of relatively raw data makes it possible for errors in stream
processing to be corrected. It is also advantageous in that it widens the
opportunities for data exploration and avoids discarding data that may
later be of great value, as we discuss further in Chapter 4, Chapter 5,
and Chapter 6.

Different forms of persistence lend themselves to different kinds of
processing. For example, files can be used to achieve very high scan
rates that are particularly useful in batch programming, while HBase
or MapR-DB are very useful in real time or streaming processing
where updates may have to be made each time a record is processed.

12 | Chapter 2: What the Hadoop Ecosystem Offers



Finally, data must somehow be transmitted to other systems via some
form of extraction.

For each kind of function, it is typical that the tool of choice depends
strongly on the time scale in which the processing must be done.

The time scale dealt with in Table 2-1 ranges from batch, through ad
hoc, to streaming and realtime. Batch processing is typically done on
all the data that accumulates over a period of minutes to days or even
a month or longer. The emphasis in batch processing is total through‐
put, and it usually doesn’t matter how long it takes to process any single
input record as long many records are processed quickly.

In ad hoc processing, the emphasis is on a quick (in human terms)
response, but the data being processed is very much like the input for
a batch process in that it typically consists of all of the data available
or all of the data for a recent time period. In fact, ad hoc processing
can be thought of as batch processing that is initiated by some user
action instead of being based on a schedule. Ad hoc processing is
sometimes mislabeled as realtime because there is a user-visible re‐
sponse time, but this is a serious misnomer that could lead to some
confusion about which tool is appropriate to use.

With streaming or realtime processing, records are processed as they
arrive or in very small batches known as micro batches. Realtime pro‐
cessing adds the additional constraint that records must not only be
processed as they arrive, but that processing must complete before a
pre-specified deadline passes. Requiring that records be processed one
at a time is more expensive than processing large batches of records
since it does not allow certain economies of scale that are possible in
batch processing.

The rest of this chapter will provide a quick inventory of the tools used
in the Hadoop ecosystem to carry out these functions.

Data Storage and Persistence
The most obvious requirement for data storage in this new arena is
for scalability, both in terms of starting with large amounts of data and
in being able to adapt to growing data volumes in future. For large-
scale and long-term storage, reliability is, of course, a critical require‐
ment for most projects.

Data Storage and Persistence | 13



Data storage comes in different forms that have different virtues. Stor‐
age as files has the virtue of being fast to scan and is therefore well
suited for batch processing. It is difficult, however, to find a particular
record in large input files or to find a number of records that pertain
to a single individual. Furthermore, updates to files can be difficult to
coordinate. These actions are much better supported by some sort of
database, and in the Hadoop ecosystem, that means Apache HBase or
MapR-DB. Reading or updating single records is easy with these
NoSQL databases at the significant cost in scanning performance rel‐
ative to flat files.

Another aspect of storage that is almost as important as scalability is
the shift toward storing a wide variety of data sources, including un‐
structured or semistructured data. This change in what is being stored
also reflects the change in when data is processed: in these systems,
the storage layer is often used to store raw data at scale and persist it
for long periods of time in a relatively raw form. Choices about how
to process, extract, and analyze data come after this “ingestion” step,
which is a very different approach than the extract, transform, and
load (ETL) process that is usual for traditional relational databases, for
instance. The traditional style of ETL processing is not required for
storage in Hadoop-based systems, although using Hadoop to do ETL
for a traditional RDBMS resource is a widely beneficial Hadoop use
case (more on that in Chapter 5).

For highly scalable flat file storage, the tools of interest here are
Hadoop-based. These are Hadoop Distributed File System (HDFS) or
the storage layer of the MapR distribution of Hadoop (MapR-FS). Files
in both of these systems can be created and accessed using the HDFS
API or, in the case of MapR-FS, files also can be created, accessed, and
updated using standard file operations via the network file system
(NFS).

For persistence of data in a nonrelational NoSQL database, there are
a number of popular non-Hadoop choices, including Cassandra, Riak,
or the Hadoop-based NoSQL databases such as HBase or MapR-DB,
a NoSQL database integrated into the MapR file system.

As mentioned briefly in Chapter 1, NoSQL databases are not intended
to completely replace relational databases. Each has its own strengths
and should be used for what it does best. NoSQL databases generally
have given up some of the capabilities of relational databases such as
advanced indexing and transactions in order to allow them to scale to

14 | Chapter 2: What the Hadoop Ecosystem Offers



much higher throughput and data sizes than are possible with rela‐
tional systems.

The data stored in files or NoSQL databases is often very different from
the data stored in a traditional relational database. Somewhat ironi‐
cally, the term “structured” data is typically used to refer to data in
traditional records with fields containing primitive values. Data with
substantial free-form components such as text is often called “un‐
structured.” The term “semistructured” refers to data that has records
with fields but where different records may have different collections
of fields, and the contents of the fields may contain sub-fields or lists
of record-like objects.

Semistructured data is more expressive than structured data, but it
cannot easily be manipulated by traditional query languages like SQL.
The expressivity of semistructured data can be a particular advantage
in big data systems because it allows data to be denormalized. De‐
normalization can involve the inclusion of redundant data. For ex‐
ample, more data may be stored inline, which in turn decreases the
degree to which other data sources must be referenced in order to
understand the data. The advantages of denormalization can include
improved read performance, plus it can allow storing data in its natural
state, thus preserving potentially useful information. This is particu‐
larly important with flat files and with NoSQL databases, not only
because it makes data easier to understand, but also precisely because
flat files and NoSQL databases typically lack the strong ability of re‐
lational databases for records to have references to other records.

To succeed in big data, it is very important to come to understand
both the advantages and the problems of semistructured data.

The use cases in this book will highlight many of the ways that semi‐
structured data can be used for big-data applications.

Data Ingest
Storing data is useful, but unless the data is manufactured from noth‐
ing, you have to get it into your cluster from somewhere else. Exactly
how you get it in depends on where the data is coming from and how
you need to use it.

Data Ingest | 15



As shown in Table 2-1, the best choice of ingest method depends in
part on whether you are dealing with batch, ad hoc, or streaming and
realtime processes. There are several tools that have been developed
specifically for ingesting data into Hadoop, but these Hadoop-specific
tools were built with the assumption of batch programming that can
limit their utility if you need realtime ingestion. In addition to speci‐
alized tools for data ingestion, some Hadoop distributions offer NFS
access to the cluster. This can be a good way to get realtime ingestion
using standard file-oriented Linux tools, but only if the underlying
distributed file system is a realtime file system. For the Hadoop-in-
production stories discussed in this book, we’ve drawn from the ex‐
perience of companies who use the MapR distribution for Hadoop and
are therefore using a realtime distributed file system in the form of
MapR-FS.

A function that is needed in the case of streaming data ingestion (or
export from a realtime analytics application) is to provide a queuing
layer. The benefits of queuing are described in more detail in the tips
presented in Chapter 4. Two of the tools listed here, Apache Kafka and
Apache Flume, are useful to provide a queue.

Some of the widely used tools for data ingestion in Hadoop are de‐
scribed in detail in the sections that follow.

Apache Kafka
Kafka is a robust pub-sub (publish, subscribe) framework that allows
highly available, dependable message streaming. It is a paradox that a
key feature of Kakfa is its small number of features. It has far fewer
features and is much less configurable than Flume, which is described
later. All Kafka does is store messages relatively reliably and at high
volumes and rates. All computational considerations are outside of
Kafka’s scope. Such computation can be implemented using a variety
of computational frameworks such as Spark Streaming, Apache
Storm, or Apache Samza. This simplicity and focus of Kafka have hel‐
ped make it very good at what it does.

There are a variety of programs in the Kafka ecosystem that support
copying messages to a Hadoop cluster, but this is also commonly done
as a side effect of processing messages.

16 | Chapter 2: What the Hadoop Ecosystem Offers

www.allitebooks.com

http://www.allitebooks.org


Apache Sqoop
Sqoop is a batch-oriented program to import data from a database or
export data back to a database. Sqoop can create files in a variety of
formats in a Hadoop cluster. Sqoop is a very useful tool due to the wide
range of databases that it supports, but Sqoop is, by design, entirely
batch-oriented.

An interesting alternative to using Sqoop is to use database-specific
export commands to export tables directly to a cluster or import them
from the cluster using NFS. A virtue of this alternative approach is that
it can be very high performance since databases generally have highly
optimized table export/bulk import utilities. Using database export/
import utilities will not, however, provide you with the native ability
to store the resulting data in an advanced format such as Parquet.

Apache Flume
Flume is a complex tool that allows processing units to be strung to‐
gether to transport data, typically with the aim of doing minimal ETL
on the fly and then storing in HDFS files. Flume is nominally stream
based, but a de facto batch orientation is often imposed by storing data
in HDFS files. If data is pushed instead into a pub-sub framework like
Kafka, then true streaming operation can be achieved. Flume has
limited and complex provisions for high availability and guaranteed
delivery. Flume was originally limited to processing textual data ar‐
ranged one record per line as is normally done in log files, and there
are still echoes of this limitation in various parts of the framework. In
general, the complexity of Flume makes the use of Kafka plus either
Storm or Spark Streaming a preferable option.

Data Extraction from Hadoop
Data can be extracted from a Hadoop cluster using Sqoop to move
data into a database. NFS access is another good way to get data out
of a Hadoop cluster if you are using MapR. To export file data on other
systems, you can use the command line tools that come with Hadoop
distributions to copy individual files or directories of files.

Since the data being extracted from a cluster is typically much smaller
than the data ingested into a cluster, the actual moving of the data out
of the cluster is not usually a major concern. Getting the data into a
file format that is accepted by other systems is typically a more im‐

Data Extraction from Hadoop | 17



portant concern, but format conversion is relatively easy using systems
like Apache Pig, Apache Drill, or Apache Hive.

Processing, Transforming, Querying
Processing of data in a Hadoop cluster can be done in a variety of ways
including streaming, micro-batched, batch mode, and by issuing in‐
teractive queries. The boundaries between these ways of processing
data are not always completely sharp, but the basic distinctions are
important to keep in mind. We mention a variety of tools to support
each of these functions, and we call out several of the SQL-on-Hadoop
query engines (Apache Drill, Apache Spark, and Impala) in more de‐
tail at the end of this section.

Streaming
In streaming processing, data is processed one record at a time. This
is appropriate for simple enrichment, parsing or extraction, and sim‐
ple aggregation, but many kinds of processing are not suitable for this
style. It can also be difficult to make true streaming programs both
efficient and restartable without losing data. Streaming processing of
data does give the lowest latencies, however, so when latencies really
need to be less than a second or so, streaming may be the best option.
Currently Apache Storm is the de facto standard for true streaming
processing, while Spark Streaming is probably the most common
micro-batching environment, as described next.

Micro-batching
Micro-batching involves processing all the records from a short time
period (typically seconds to minutes) in a batch. Micro-batching usu‐
ally has real problems providing very low latency, but it does provide
a much simpler environment than streaming, especially when high
availability is required. If your use case allows for tens of seconds of
latency, then micro-batching with a tool such as Spark Streaming can
be ideal.

Batch Processing
True batch processing is typically used for computing complex aggre‐
gates or when training models. Batch processing is typically initiated
every hour, day, week, or month and computes summaries of large

18 | Chapter 2: What the Hadoop Ecosystem Offers



amounts of data accumulated over long time periods. Batch processing
is often combined with stream processing or micro-batching in what
is known as the lambda architecture to allow small errors in the
streaming computation to be corrected. These errors are often due to
delays in receiving incoming data or failover or upgrade of some com‐
ponent of the cluster supporting the streaming computation. By al‐
lowing small errors to be corrected by a batch process, the system
doing the streaming processing can often be made much simpler.
Batch processing is most commonly implemented using Apache Hive,
Apache Spark, or Apache Pig.

Interactive Query
In some cases, users require the ability to perform bespoke aggregation
operations on data according to whatever analysis they are working
on at the moment. In such cases, neither batch nor streaming models
are particularly appropriate. Instead, an interactive compute model is
required with quick response. This is a change from streaming and
micro-batching models that makes results available shortly after the
data arrives, but where the programs are provided long in advance.
Instead, interactive computing provides results shortly after the query
arrives and assumes that the data is already in place. Interactive queries
are commonly custom aggregations and are often generated by visu‐
alization tools. The most common systems for interactive querying
are Impala, Apache Spark, and Apache Drill.

Impala
Impala is a system that is designed to scan flat files at a very high rate
to compute the result of aggregation queries written in SQL. The pre‐
ferred format for data to be queried by Impala is Parquet, and Impala
is able to use the features of Parquet to great advantage to accelerate
the scanning of large files. For the most part, Impala uses the table
management capabilities of Hive to define tables and their schema.
The data model used by Impala is currently very similar to the model
used by relational systems, but extension beyond the relational model,
including nested data, is planned.

Apache Drill
Apache Drill is a newly graduated top-level Apache project that offers
the user an unusual level of flexibility. It provides standard SQL (not
SQL-like) query capabilities that can access a surprisingly diverse

Processing, Transforming, Querying | 19



range of data sources and formats, including nested formats such as
Parquet and JSON. Furthermore, Drill queries can be schema-less,
allowing flexibility in data exploration. The Drill optimizer is a so‐
phisticated cost-based optimizer that can radically restructure queries
based on characteristics of the input files, and it is being extended to
understand more about distributed query computation as the software
grows further into maturity. Drill also offers useful extensibility, so it
is a useful tool for business analysts as well as for developers. Like
Impala, a key focus with Drill is to make the minimum response time
very short so that it can be used for interactive purposes.

Apache Spark
Spark is an ambitious project that has defined an entire new compu‐
tational framework for running programs in parallel. The key techni‐
cal innovation in Spark is that it allows parallel datasets to be check-
pointed implicitly by remembering how they were computed. In most
cases, this avoids the need to write intermediate datasets to persistent
storage such as disks, thus avoiding one of the traditional bottlenecks
of Hadoop’s MapReduce execution model. On top of the basic machi‐
nery of distributed in-memory datasets (known as RDDs for resilient
distributed datasets) and a fast distributed execution engine, Spark has
a large number of subprojects. One key subproject is SparkStreaming.
SparkStreaming extends the concept of RDDs by defining D-streams
as a sequence of RDDs. Each RDD in a D-stream can be acted on by
a parallel program that allows computation to proceed as a series of
very quick batch programs, or micro-batches.

Together this collection of query tools provides some attractive op‐
tions. Impala and Drill allow SQL queries, while Spark allows queries
to be written in the Scala programming language or in SQL. Spark and
Drill can also be tightly integrated to get the best of both. Spark queries
can be executed in micro-batched or interactive fashion. Together,
these tools provide some very interesting possibilities.

Search Abuse—Using Search and Indexing for
Interactive Query
Search engines are not normally considered as processing elements,
but they can actually be used very nicely for many forms of interactive
queries. Especially recently, both Apache Solr and ElasticSearch have
added a variety of aggregation capabilities that can allow either system
to be used to do simple aggregation queries.

20 | Chapter 2: What the Hadoop Ecosystem Offers



These queries can be reported in the form of a graphical interface such
as that provided by Kibana to produce very nice dashboard systems.
These systems can also provide limited kinds of drill-down visualiza‐
tions that can be very handy in situations where you are trying to zero
in on the cause of some sort of anomaly.

Visualization Tools
One tool that blurs the batch/interactive boundary a bit is Datameer.
Datameer provides an interactive approximation of large-scale com‐
putations combined with a suite of visualization tools. Designed for
analysts who are most comfortable with advanced GUI tooling rather
than programming, the Datameer system allows analysts who would
otherwise be uncomfortable to build and run jobs either in batch mode
or interactively.

Tableau is a widely used visualization product suite that provides in‐
teractive visualization tools that have previously been targeted at the
analysis of data in data warehouses. With the emergence of interactive
SQL query tools like Impala and Apache Drill that are accessible via
ODBC, Tableau’s tools can now analyze and visualize data on Hadoop
clusters as well.

Integration via ODBC and JDBC
Apache Drill and Impala provide access to data on Hadoop clusters
via the standard database access protocols ODBC or JDBC. Hive also
provides limited access using these interfaces as well. ODBC was orig‐
inally developed by Microsoft in the early ’90s, but it is now widely
used on other platforms as well. JDBC was created by Sun in the
late ’90s to provide a Java equivalent to ODBC. These protocols allow
a wide range of standard tools that generate SQL queries to work with
Hadoop. These include Tableau (mentioned above), Excel, Sqirrl,
Toad, and many others. There are some speed bumps to keep in mind,
however. By the nature of these interfaces, they cannot move very large
amounts of data out of the cluster, but instead are more suited to in‐
voking large-scale aggregations that return relatively small summaries
of larger datasets. This limitation applies to any tool using ODBC or
JDBC, of course, but the issue becomes more apparent when you are
querying very large datasets, as is common with Hadoop clusters.

Accessing Hive (in particular via ODBC or JDBC) can be very frus‐
trating since the number of simultaneous queries is severely limited

Integration via ODBC and JDBC | 21



by the way that queries are funneled through the HiveServer. Impala
and Drill are much less subject to these limitations than Hive.

In general, the advantages of using ODBC and JDBC to connect a wide
range of tools are substantial enough that these issues are likely to be
addressed by vendors and the open source community before long.

22 | Chapter 2: What the Hadoop Ecosystem Offers



CHAPTER 3

Understanding the MapR
Distribution for Apache Hadoop

The Hadoop distribution provided by MapR Technologies contains
Apache Hadoop and more. We’re not just talking about the Hadoop
ecosystem tools that ship with MapR—there are many, including al‐
most all of those described in Chapter 2—but rather some special ca‐
pabilities of MapR itself. These MapR-specific characteristics are the
topic of this chapter because the real-world stories in this book are
based on how MapR customers are using Apache Hadoop and the
MapR NoSQL database, MapR-DB, to meet their large-scale comput‐
ing needs in a variety of projects. The goal is to show you the benefits
of Hadoop when used for the right jobs.

To make sure that you get the most out of this book, regardless of what
kind of Hadoop distribution you use, we alert you to any aspects of
the use cases we describe here that are not directly generalizable be‐
cause of extra features of MapR not included in other distributions.
For example, MapR is API-compatible with Hadoop, so applications
written to run on Hadoop will run on MapR, but, in addition, non-
Hadoop applications will also run on MapR, and that’s unusual. We
will describe how you might work around these issues if you are not
using MapR.

Use of Existing Non-Hadoop Applications
One of the key distinctions with MapR is that it has a realtime, fully
read-write filesystem. This means that you not only can interact with
data stored on the cluster via Hadoop commands and applications,

23



but you also can access data via traditional routes. Any program in any
language that can access files on a Linux or Windows system can also
access files in the MapR cluster using the same traditional mecha‐
nisms. This compatibility is made possible primarily because the
MapR file system (MapR-FS) allows access to files via NFS. This is very
different from HDFS, the file system that other major Hadoop distri‐
butions use for distributed data storage.

What are the implications of MapR-FS being a read/write POSIX file
system accessible via NFS or Hadoop commands? One effect is that
existing applications can be used directly, without needing to rewrite
them as Hadoop applications. In contrast, when using with other Ha‐
doop distributions, the workflow generally includes steps in which
data is copied out of the Hadoop file system to local files to be available
for traditional tools and applications. The output of these applications
is then copied back into the HDFS cluster. This doesn’t mean the use
cases described in this book are only for MapR, but some of the details
of the workflow may be somewhat different with other Hadoop dis‐
tributions. For instance the workflow would need to include time to
write Hadoop-specific code to access data and run applications, and
the team doing so would need to be well versed in how HDFS file APIs
differ from more traditional file APIs.

In case you are curious about the reason for this difference in MapR’s
ability to use traditional code, as well as some of MapR’s other specific
capabilities, here’s a brief technical explanation. One key difference
lies in the size of the units used to manipulate and track files in a MapR
cluster as compared with HDFS. As illustrated in Figure 3-1, files in
HDFS files are broken into blocks of a fixed size. The default value for
these blocks is 128 megabytes. The value can be changed, but it still
applies across all files in the cluster. The block size is fundamental to
how HDFS tracks files in a central system called the name node. Every
change in the size or other properties of the file aside from the content
of the file itself must be sent to the name node in order to keep track
of all pieces of all the files in the cluster. HDFS blocks are the unit of
allocation, and once written, they are never updated. This has several
logical consequences, including:

1. Realtime use of HDFS is difficult or impossible. This happens be‐
cause every write to a file extends the length of the file when the
write is committed. That means every such change requires talk‐
ing to the name node, so programs try to avoid committing writes

24 | Chapter 3: Understanding the MapR Distribution for Apache Hadoop



too often. In fact, it is common for multiple blocks to be flushed
at once.

2. The consistency model of HDFS is such that readers cannot be
allowed to read files while a writer still has them open for writing.

3. Out-of-order writes cannot be allowed because they would con‐
stitute updates to the file.

4. A name node has to keep track of all of the blocks of all of the files,
and because this information can churn rapidly while programs
are running, this information has to be kept in memory. This
means the name node’s memory size is proportional to the num‐
ber of blocks that can be tracked. That number times the block
size is the scalability limit of an HDFS file system.

These consequences made HDFS much easier to implement originally,
but they make it much harder for it to work in real time (which implies
readers can see data instantly and writers can flush often), to scale to
very large sizes (because of the limited number of blocks), or to support
first-class access via NFS (because NFS inherently reorders writes and
has no concept of an open file).

Figure 3-1. The MapR distribution for Apache Hadoop has a fully
read/write realtime file system (MapR-FS). The MapR file system uses
units of multiple sizes to organize its contents ranging from small
(blocks of 8 kB) to very large (containers of 30 GB). Intermediate-

Use of Existing Non-Hadoop Applications | 25



sized units (called chunks at 256 MB) are by default roughly compa‐
rable to HDFS blocks.

In contrast, MapR has no name node at all. Metadata for files and
directories is spread across the entire cluster. MapR also has several
kinds of data structures that operate at different sizes, with the largest
unit being a huge data structure known as a container (30 GB), as
depicted in Figure 3-1. There is no equivalent to the container in
HDFS. In MapR-FS, the fundamental unit in which files are striped
across the cluster is a chunk of configurable size, set by default at 256
MB. The smallest size that can be changed is quite small, 8 kB. The
design decision to make blocks small not only enables MapR-FS to
allow random updates to files, it also allows MapR-FS to function as a
realtime file system, as we discuss in the next section.

All changes to files are reported back to containers, not a name node,
and there are containers all over the cluster. This means that meta-
data updates are fast, and consequently writers can commit file writes
very often and readers can see these updates almost instantly. By split‐
ting the single HDFS design parameter of block size into three different
design parameters of container, chunk, and block sizes that range over
nine orders of magnitude, MapR-FS is able to do different things than
HDFS can do.

Making Use of a Realtime Distributed
File System
Among the prototypical use cases in Chapter 5, we discuss the need
for realtime analytics running in a Hadoop-based system. Historically,
Hadoop supported parallel computation via a batch compute model
known as MapReduce. HDFS, the original Hadoop file system, is well
suited to the loads that MapReduce imposes. HDFS, however, is not
particularly well suited to direct use by realtime operations. To get
around this, data is often stored in memory until a large amount can
be flushed at once. This is how HBase works, for instance. Such ap‐
plications must checkpoint their work rather often, however, to make
sure that they can be restarted without data loss.

The point to be made here is that the realtime nature of the MapR file
system with its NoSQL database, MapR-DB, changes the response-
time parameters that are reasonable goals for projects employing re‐
altime processing applications. As with any Hadoop distribution, it’s

26 | Chapter 3: Understanding the MapR Distribution for Apache Hadoop

www.allitebooks.com

http://www.allitebooks.org


important to use Hadoop or NoSQL for the right jobs, but with MapR,
subsecond response times without complex workarounds are very
much within reach.

Meeting SLAs
When you make guarantees in the form of SLAs for uninterrupted
performance, high availability, or fast response times, it is important
to make sure that your Hadoop system is well suited for the require‐
ments of the jobs for which you plan to use it. In other words, make
sure you are planning to use it for jobs it can do well.

As an example, some MapR customers such as the Aadhaar project
mentioned in Chapter 1 are using MapR-DB to store and access data
in delay-critical applications. The applications involved often have
stringent response time limits. MapR-DB has very tightly constrained
response times with no compaction delays. These characteristics make
meeting response time SLAs much easier. Systems like HBase are
much more difficult to use in these situations because HBase has had
to be designed with HDFS limitations in mind and therefore does
things like write data in large increments. This can occasionally lead
to very long response times. In such situations, the use cases are to
some extent MapR specific, not because of any specific feature, but due
to predictability. Whatever Hadoop system you are running, you
should match its capabilities well to requirements of the particular job
of interest in a realistic way in order to be successful.

Deploying Data at Scale to Remote Locations
There are two major reasons to deploy data to remote sites in large-
scale systems. One is to make identical data available at multiple pro‐
cessing centers or divisions of a company in different locales. Another
purpose is to provide a secondary data center that serves as an off-site
duplication of critical data in case of disaster. Both of these needs can
be met using MapR’s mirroring feature, unique among Hadoop dis‐
tributions. MapR mirrors are fully consistent incremental copies of
data that appear at remote locations atomically. During mirroring, the
changes in the data are sent from a source cluster to mirror volumes
on the destination cluster. As they arrive, the changes are applied to a
snapshot copy of the destination, and when they complete, the snap‐
shot is exposed.

Meeting SLAs | 27



Use cases that depend on mirroring may be possible to implement with
HDFS-based Hadoop distributions by simply copying all of the data
to the destination machines. If new data can be segregated from old
data in specific directories, then this copying can sometimes be set up
to avoid excessive data motion. Application cooperation can make
sure that partial copies are not processed before they have safely ar‐
rived. If this level of management and careful design is an option, then
you may be able to achieve similar results without mirroring.

Consistent Data Versioning
MapR’s fully consistent snapshots are a specialized feature that makes
it possible to have an accurate view of data from an exact point in time.
Not only can they be used as a protection against data loss from human
error (fat finger syndrome) or software bugs, but consistent snapshots
also serve as a means for data versioning. The latter can be particularly
useful for preserving an unchanging version of training data for ma‐
chine learning models or for forensic analysis, in which it is important
to be able to demonstrate exactly what was known and when.

HDFS supports a feature called snapshots, but these snapshots are not
consistent, nor are they precise. Files that are being updated when a
snapshot is made can continue to change after the snapshot is com‐
pleted. If, however, you arrange to only snapshot directories that have
no files being actively changed, then you may be able to use HDFS
snapshots (sometimes called fuzzy snapshots) for the same purposes
as the atomic and consistent snapshots such as those available with
MapR.

Finding the Keys to Success
Now that you have a grounding in how Hadoop works and in the
special additional options you may encounter in MapR use cases, let’s
address the question, “What decisions drive successful Hadoop
projects?” In the next chapter we provide a collection of tips drawn
from the decisions that have helped to drive success in existing Hadoop
and NoSQL projects. Whether you are new to Hadoop or one of the
Hadoop pioneers yourself, you may find the advice offered in Chap‐
ter 4 is helpful in planning your next step with Hadoop.

28 | Chapter 3: Understanding the MapR Distribution for Apache Hadoop



CHAPTER 4

Decisions That Drive Successful
Hadoop Projects

What are the decisions that drive successful Hadoop projects? The
answer lies in part in decisions you make as you plan what project to
tackle, the way you design your workflow, and how you’ve set up your
cluster to begin with. Apache Hadoop is a powerful technology that
has enormous potential, and the ways in which it can and will be used
are still being discovered. Whether you are a seasoned Hadoop user
or a newcomer to the technology, there are some key decisions and
strategic approaches to using Hadoop for big data systems that can
help ensure your own success with Hadoop and related tools, and we
offer some suggestions here that may help with your choices.

The following list is not a comprehensive “how-to” guide, nor is it
detailed documentation about Hadoop. Instead, it’s eclectic. We pro‐
vide technical and strategic tips—some major and some relatively mi‐
nor or specialized—that are based on what has helped other Hadoop
users succeed. Some of these tips will be helpful before you start using
Hadoop, and others are intended for more seasoned users, to guide
choices as you put Hadoop to work in development and production
settings.

Note that the first three tips are particularly important if you are new
to Hadoop and NoSQL databases such as HBase or MapR-DB.

29



Tip #1: Pick One Thing to Do First
If you work with large volumes of data and need scalability and flex‐
ibility, you can use Hadoop in a wide variety of ways to reduce costs,
increase revenues, advance your research, and keep you competitive.
Adopting Hadoop as your big data platform is a big change from con‐
ventional computing, and if you want to be successful quickly, it helps
to focus initially on one specific use for this new technology.

Don’t expect that from the start you can come up with all the different
ways that you might eventually want to use Hadoop. Instead, examine
your own needs (immediate or long-term goals), pick one need for
which Hadoop offers a near-term advantage, and begin planning your
initial project. As your team becomes familiar with Hadoop and with
the ecosystem tools required for your specific goal, you’ll be well posi‐
tioned to try other things as you see new ways in which Hadoop may
be useful to you.

There’s no single starting point that’s best for everyone. In Chapter 5,
we describe some common use cases that fit Hadoop well. Many of
those use cases would make reasonable first projects. As you consider
what to focus on first, whether it comes from our list or not, make a
primary consideration that there is a good match between what you
need done and what Hadoop does well. For your first project, don’t
think about picking the right tool for the job—be a bit opportunistic
and pick the right job for the tool.

By focusing on one specific goal to start with, the learning curve for
Hadoop and other tools from the ecosystem can be a little less steep.
For example, for your first Hadoop project, you might want to pick
one with a fairly short development horizon. You can more quickly
see whether or not your planning is correct, determine if your archi‐
tectural flow is effective, and begin to gain familiarity with what Ha‐
doop can do for you. This approach can also get you up and running
quickly and let you develop the expertise needed to handle the later,
larger, and likely more critical projects.

Many if not most of the successful and large-scale Hadoop users today
started with a single highly focused project. That first project led in a
natural way to the next project and the next one after that. There is a
lot of truth in the saying that big data doesn’t cause Hadoop to be
installed, but that instead installing Hadoop creates big data. As soon
as there is a cluster available, you begin to see the possibilities of work‐

30 | Chapter 4: Decisions That Drive Successful Hadoop Projects



ing with much larger (and new) datasets. It is amazing to find out how
many people had big data projects in their hip pocket and how much
value can be gained from bringing them to life.

Tip #2: Shift Your Thinking
Think in a different way so that you change the way that you design
systems. This idea of changing how you think may be one of the most
important bits of advice we can offer to someone moving from a tra‐
ditional computing environment into the world of Hadoop. To make
this transition of mind may sound trivial, but it actually matters a lot
if you are to take full advantage of the potential that Hadoop offers.
Here’s why.

What we mean by a shift in thinking is that methods and patterns that
succeed for large-scale computing are very different from methods
and patterns that work in more traditional environments, especially
those that involve relational databases and data warehouses. A large-
scale shift in thinking is required for the operations, analytics, and
applications development teams. This change is what will let you build
systems that make use of what Hadoop does well. It is undeniably very
hard to change the assumptions that are deeply ingrained by years of
experience working with traditional systems. The flexibility and in‐
novation of Hadoop systems is a great advantage, but to be fully real‐
ized, they must be paired with your own willingness to think in new
ways.

Here are a couple of specific examples of how to do this:

• Learn to delay decisions. This advice likely feels counterintuitive.
We’re not advocating procrastination in general—we don’t want
to encourage bad habits—but it is important to shift your thinking
away from the standard idea that you have to design and structure
how you will format, transform, and analyze data from the start,
before you ingest, store, or analyze any of it.
This change in thinking is particularly hard to do if you’re used
to using relational databases, where the application lifecycle of
planning, specifying, designing, and implementing can be fairly
important and strict. In traditional systems, just how you prepare
data (i.e., do ETL) is critically important; you need to choose well
before you load, because changing your mind late in the process
with a traditional system can be disastrous. That means that with

Tip #2: Shift Your Thinking | 31



traditional systems such as relational databases, your early deci‐
sions really need to be fully and carefully thought through and
locked down.
With Hadoop, you don’t need to be locked into your first decisions.
It’s not only unnecessary to narrow your options from the start,
it’s also not advised. To do so limits too greatly the valuable insights
you can unlock through various means of data exploration.
It’s not that with Hadoop you should store data without any regard
at all for how you plan to use it. Instead, the new idea here is that
with Hadoop, the massively lower cost of large-scale data storage
and the ability to use a wider variety of data formats means that
you can load and use data in relatively raw form, including un‐
structured or semistructured. In fact, it can be useful to do so
because it leaves you open to use it for a known project but also
to decide later how else you may want to use the same data. This
flexibility is particularly useful since you may use the data for a
variety of different projects, some of which you’ve not yet con‐
ceived at the time of data ingestion. The big news is, you’re not
stuck with your first decisions.

• Save more data. If you come from a traditional data storage back‐
ground, you’re probably used to automatically thinking in terms
of extracting, transforming, summarizing, and then discarding
the raw data. Even where you run analytics on all incoming data
for a particular project, you likely do not save more than a few
weeks or months of data because the costs of doing so would
quickly become prohibitive.
With Hadoop, that changes dramatically. You can benefit by shift‐
ing your thinking to consider saving much longer time spans of
your data because data storage can be orders of magnitude less
expensive than before. These longer histories can prove valuable
to give you a finer-grained view of operations or for retrospective
studies such as forensics. Predictive analytics on larger data sam‐
ples tends to give you a more accurate result. You don’t always
know what will be of importance in data at the time it is ingested,
and the insights that can be gained from a later perspective will
not be possible if the pertinent data has already been discarded.
“Save more data” means saving data for longer time spans, from
larger-scale systems, and also from new data sources. Saving data
from more sources also opens the way to data exploration—ex‐
perimental analysis of data alongside your mainstream needs that

32 | Chapter 4: Decisions That Drive Successful Hadoop Projects



may unlock surprising new insights. This data exploration is also
a reason for delaying decisions about how to process or down‐
sample data when it is first collected.
Saving data longer can even simplify the basic architecture of sys‐
tem components such as message-queuing systems. Traditional
queuing systems worry about deleting messages as soon as the last
consumer has acknowledged receipt, but new systems keep mes‐
sages for a fixed and long time period. If messages that should be
processed in seconds will actually persist for a week, the need for
fancy acknowledgement mechanisms vanishes. Your architecture
may have similar assumptions and similar opportunities.

Tip #3: Start Conservatively But Plan
to Expand
A good guideline for your initial purchase of a Hadoop cluster is to
start conservatively and then plan to expand at a later date. Don’t try
to commit to finalizing your cluster size from the start—you’ll know
more six months down the line about how you want to use Hadoop
and therefore what size cluster makes sense than you will when you
begin for the first time. Some very rough planning can be helpful just
to budget the overall costs of seeing your Hadoop project through to
production, but you can make these estimates much better after a bit
of experience. Remember, it is fairly easy to expand an initial Hadoop
cluster, even by very large factors. To help with that, we provide some
tips for successful cluster expansion further along in this list.

That said, make sure to provide yourself with a reasonably sized cluster
for your initial development projects. You need to have sufficient
computing power and storage capacity to make your first Hadoop
project a success, so give it adequate resources. Remember that extra
uses for your cluster will pop out of the woodwork almost as soon you
get it running. When ideas for new uses arise, be sure to consider
whether your initial cluster can handle them or whether it’s time to
expand. Capacity planning is a key to success.

A common initial cluster configuration as of the writing of this book
is 6–12 machines, each with 12–24 disks and 128–192 GB of RAM. If
you need to slim this down initially, go for fewer nodes with good specs
rather than having more nodes that give very poor performance. If
you can swing it, go for 10Gb/s networking.

Tip #3: Start Conservatively But Plan to Expand | 33



Tip #4: Be Honest with Yourself
Hadoop offers huge potential cost savings, especially as you scale out
wider, because it uses commodity hardware. But it isn’t magic. If you
set a bad foundation, Hadoop cannot make up for inadequate hard‐
ware and setup. If you try to run Hadoop on a couple of poor-quality
machines with a few disks and shaky network connections, you won’t
see very impressive results.

Be honest with yourself about the quality of your hardware and your
network connections. Is the disk storage sufficient? Do you have a
reasonable balance of cores to disk? Do you have a reasonable balance
of CPU and disk capacity for the scale of data storage and analysis you
plan to do? And perhaps most important of all, how good are your
network connections?

A smoothly running Hadoop cluster will put serious pressure on the
disks and network—it’s supposed to do so. Make sure each machine
can communicate with each other machine at the full bandwidth for
your network. Get good-quality switches and be certain that the sys‐
tem is connected properly.

In order to do this, plan time to test your hardware and network con‐
nections before you install Hadoop, even if you think that the systems
are working fine. That helps you avoid problems or makes it easier to
isolate the source of problems if they do arise. If you do not take these
preparatory steps and a problem occurs, you won’t know if it is hard‐
ware or a Hadoop issue that’s at fault. Lots of people waste lots of time
doing this. In fact, trying to build a high-performance cluster with
misconfigured network or disk controllers or memory is common
enough that we considered putting it into the chapter on use cases.

The good news is that we have some pointers to good resources for
how to test machines for performance. See Appendix A at the end of
this book for details.

Tip #5: Plan Ahead for Maintenance
This tip is especially aimed at larger-scale Hadoop users who have
expanded to clusters with many machines. Lots of machines in a clus‐
ter give you a big boost in computing power, but it also means that in
any calendar period, you should expect more maintenance. Many ma‐
chines means many disks; it’s natural that in any few months, some

34 | Chapter 4: Decisions That Drive Successful Hadoop Projects



number of them will fail (typical estimates are about 5–8% per year).
This is a normal part of the world of large-scale computing (unless
you rely solely on cloud computing). It’s not a problem, but to have a
smoothly running operation, you should build in disk replacement as
a regular part of your schedule.

Tip #6: Think Big: Don’t Underestimate What
You Can (and Will) Want to Do
Hadoop provides some excellent ways to meet some familiar goals,
and one of these may be the target of your initial projects when you
begin using Hadoop and HBase. In other words, an initial reason to
adopt Hadoop is that often it can provide a way to do what you already
need to do but in a way that scales better at lower cost. This is a great
way to start. It’s also likely that as you become familiar with how Ha‐
doop works, you will notice other ways in which it can pay off for you.
Some of the ways you choose to expand your use of a Hadoop data
system may be new—that’s one of the strengths of Hadoop. It not only
helps you do familiar things at lower cost, it also unlocks the door to
new opportunities.

Stay open to these new possibilities as you go forward; the rewards can
surprise you. We see this pattern with people already using Hadoop.
A large majority of MapR customers double the size of their clusters
in the first year due to increased scope of requirements. What happens
is that it quickly becomes apparent that there so many targets of op‐
portunity—unforeseen applications that solve important problems—
that additional workload on the clusters quickly justifies additional
hardware. It is likely that your experience will be like theirs; your first
goals will be fairly straightforward and possibly familiar, but other
opportunities will appear quickly. So start relatively small in cluster
size, but whatever you do, try not to commit to an absolute upper
bound on your final cluster size until you’ve had a chance to see how
Hadoop best fits your needs.

Tip #7: Explore New Data Formats
Some of the most successful decisions we have seen involving Hadoop
projects have been to make use of new data formats, including semi-
structured or unstructured data. These formats may be unfamiliar to
you if you’ve worked mainly with traditional databases. Some useful

Tip #6: Think Big: Don’t Underestimate What You Can (and Will) Want to Do | 35



new formats such as Parquet or well-known workhorses like JSON
allow nested data with very flexible structure. Parquet is a binary data
form that allows efficient columnar access, and JSON allows the con‐
venience of a human readable form of data, as displayed in
Example 4-1.

Example 4-1. Hadoop enables you to take advantage of nested data
formats such as JSON (shown here), thus expanding the number of
data sources you can use to gain new insights. Social media sources
and web-oriented APIs such as Twitter streams often use JSON. The
new open source SQL-on-Hadoop query engine Apache Drill is able to
query nested data structures in either JSON or Parquet. See Ford VIN
Decoder for more information.
{
    "VIN":"3FAFW33407M000098",
    "manufacturer":"Ford",
    "model": {
      "base": "Ford F-Series, F-350",
      "options": [
        "Crew Cab", "4WD", "Dual Rear Wheels"
      ]
    },
    "engine":{
      "class": "V6,Essex",
      "displacement": "3.8 L",
      "misc": ["EFI","Gasoline","190hp"]
    },
    "year":2007
}

Nested data provides you with some interesting new options. Think
of it as you would this book—the book is an analogy for nested data.
It’s one thing, but it contains subsets of content at different levels, such
as chapters, figure legends, and individual sentences. Nested data can
be treated as a unit, but with the right access, the data at each internal
layer can be used.

Nested data formats such as Parquet combine flexibility with perfor‐
mance. A key benefit of this flexibility is that it allows you to “future-
proof ” your applications. Old applications will silently ignore new data
fields, and new applications can still read old data. Combined with a
little bit of discipline, these methods lead to very flexible interfaces.
This style of data structure migration was pioneered by Google and
has proved very successful in a wide range of companies.

36 | Chapter 4: Decisions That Drive Successful Hadoop Projects

www.allitebooks.com

http://www.fleet.ford.com/maintenance/vin-decoder/
http://www.fleet.ford.com/maintenance/vin-decoder/
http://www.allitebooks.org


Besides future-proofing, nested data formats let you encapsulate struc‐
tures. Just as with programming languages, encapsulation allows data
to be more understandable and allows you to hide irrelevant details.

These new formats seem very strange at first if you come from a rela‐
tional data background, but they quickly become second nature if you
give them a try. One of your challenges for success is to encourage
your teams to begin to consider unstructured and semistructured data
among their options. What all this means from a business perspective
is that access to semistructured, unstructured, and nested data formats
greatly expand your chances to reap the benefits of analyzing social
data, of combining insights from diverse sources, and reducing de‐
velopment time through more efficient workflows for some projects.

Tip #8: Consider Data Placement When You
Expand a Cluster
Having just recommended (in “Tip #3: Start Conservatively But Plan
to Expand” on page 33) that you start small and expand your cluster
as you understand your workload, we should also suggest that some
care is in order when you do expand a cluster, especially if you expand
a heavily loaded cluster just by a small amount. This situation is a very
common use case because it often happens that usage of a new cluster
expands far more quickly than planned, and people may initially
choose to upgrade by adding only a few additional nodes. The chal‐
lenge can arise because new data will tend to be loaded onto the newly
available and more empty new nodes unless you take measures to reg‐
ulate what happens. Figure 4-1 shows what can happen if you start
with five very full nodes and add two new ones.

Tip #8: Consider Data Placement When You Expand a Cluster | 37



Figure 4-1. An odd effect that is sometimes observed when adding a
few nodes to a nearly full cluster. New data (shown here in red) can
become unevenly distributed across the cluster. If new data is hotter
than old data, this focus on new data on new nodes will make them
hotter as well—it’s as though for a subset of operations, the cluster has
the appearance of being smaller than before. In that case, adding just
a few new machines to the cluster can inadvertently decrease current
cluster throughput.

Tip #9: Plot Your Expansion
The advice here is really simple: Don’t wait until your cluster is almost
full before you decide to expand, particularly if you are not working
in the cloud. Instead, plan ahead to include sufficient time for ordering
new hardware and getting it delivered, set up, and pretested before
you install your Hadoop software and begin to ingest data.

To do this capacity planning well, you will need to estimate not only
how long it will take from decision to order to having up-and-running
machines, you also will need to estimate growth rates for your system
and set a target threshold (e.g., 70% of capacity used) as the alert to
start the expansion process. You can measure and record machine
loads, probably using a time series database, and plot your rate of de‐
crease in available space. That lets you more easily incorporate an ap‐
propriate lead time when you order new hardware in order to avoid
crunches.

38 | Chapter 4: Decisions That Drive Successful Hadoop Projects



Tip #10: Form a Queue to the Right, Please
When you are dealing with streaming data, it makes good sense to
plan a queuing step as part of data ingestion to the Hadoop cluster or
for the output of a realtime analytics application in your project ar‐
chitecture. If there is any interruption of the processing of streaming
data due to application error, software upgrades, traffic problems, or
cosmic rays, losing data is usually less acceptable than delayed pro‐
cessing. A queuing layer lets you go back and pick up where your
process left off once the data processing can resume. Some data sources
inherently incorporate replayable queues, but many do not. Especially
for data sources that are non-local, queuing is just a very good idea.

As mentioned in our overview of the Hadoop ecosystem presented in
Chapter 2, there are several useful tools for providing the safety of a
queue for streaming data. Apache Kafka is particularly useful for this
purpose.

Tip #11: Provide Reliable Primary Persistence
When Using Search Tools
As powerful and useful as they are, search tools are not suitable as
primary data stores, although it may be tempting to think of them that
way when you are storing data in them. Successful projects are planned
with built-in protections, and one aspect of that planning is to respect
search technologies such as ElasticSearch for what they do well but
not to assume that they provide a dependable primary data store. They
were not designed to do so, and trying use them for that purpose can
result in data loss or substantial performance loss.

The alternative is safe and easy: archive data in your Hadoop system
as the primary store rather than relying on what is stored in the search
tool. With the low cost of data storage in Hadoop systems, there isn’t
a big penalty for persisting data for primary storage in Hadoop rather
than relying on your search engine. In terms of protecting data, there
are big benefits for doing so.

Tip #10: Form a Queue to the Right, Please | 39



Tip #12: Establish Remote Clusters for
Disaster Recovery
Your initial Hadoop project may not be business critical, but there is
a good chance that a business-critical application will be on your clus‐
ter by at least the end of the first year of production. Even if the pro‐
cessing isn’t business critical, data retention may well be. Before that
happens, you will need to think through how to deal with the unlikely
but potentially devastating effects of a disaster. For small startups, the
answer might be that it is better to roll the dice to avoid the distraction
and cost of a second data center, but that is rarely an option with an
established business.

If you have data of significant value and applications that run in
critical-path operations for your organization, it makes sense to plan
ahead for data protection and recovery in case of a disaster such as
fire, flood, or network access failure in a data center. The remote mir‐
roring capabilities of MapR make it possible to do this preparation for
disaster recovery (DR) even for very large-scale systems in a reliable,
fast, and convenient way using remote mirroring.

Chapter 3 explains more about how MapR mirroring works. Keep in
mind that once remote mirroring is established, only the incremental
differences in data files are transmitted, rather than complete new
copies. Compression of this data differential for transfer to the remote
cluster makes the process fast and keeps bandwidth costs down. There
is no observable performance penalty and each completed mirror will
atomically advance to a consistent state of the mirror source.

Mirrors like this are a MapR-specific feature. What are your options
for DR in other Hadoop distributions? On HDFS-based systems, you
can use the built-in distributed copy (distcp) utility to copy entire
directory trees between clusters. This utility can make copies appear
nearly atomically, but it doesn’t have any way to do a true incremental
copy. When distcp is used in production, it is common for it to be
combined with conventions so that files that are currently being modi‐
fied are segregated into a separate directory tree. Once no more mod‐
ifications are being made to this directory tree and a new live tree is
created, the copy to the remote cluster can be initiated.

One thing to keep in mind is that a DR cluster is not entirely a waste
of resources in the absence of a disaster. Such a backup cluster can be
used as a development sandbox or staging environment. If you have

40 | Chapter 4: Decisions That Drive Successful Hadoop Projects



frequent data synchronization and can protect the backup data from
inadvertent modification, this can be a very fruitful strategy.

Tip #13: Take a Complete View of Performance
Performance is not only about who wins a sprint. Sometimes the race
is a marathon. Or the goal is to throw a javelin. The key is to know
which event you are competing in. The same is true with Hadoop
clusters.

Too often, an organization assesses which tool they want to adopt just
by comparing how fast each one completes running a single specific
job or query. Speed is important, and benchmark speeds like this can
be informative, but the speed on a small set of queries is only a small
part of the picture in terms of what may matter most to success in your
particular project. Another consideration is long-term throughput:
which tool has stayed up and running and therefore supported the
most work two weeks or two months later?

Performance quality should also be judged relative to the needs of the
particular project. As mentioned briefly in Chapter 2, what’s most
commonly important as a figure of merit in streaming and realtime
analytics is latency (the time from arrival of a record to completion of
the processing for that record). In contrast, for interactive processing,
the data remains fixed and the time of interest is the time that elapses
between presenting a query and getting a result—in other words, the
response time.

In each of these situations, a measure of performance can be helpful
in picking the right tool and the right workflow for the job, but you
must be careful that you’re measuring the right form of performance.

Once you have picked key performance indicators for the applications
you are running, it is just as important to actually measure these in‐
dicators continuously and record the results. Having a history of how
a particular job has run over time is an excellent diagnostic for deter‐
mining if there are issues with the cluster, possibly due to hardware
problems, overloading from rogue processes, or other issues.

Another very useful trick is to define special “canary” jobs that have
constant inputs and that run the same way each time. Since their inputs
are constant and since they are run with the same resources each time
they are run, their performance should be comparable each time they
are run. If their performance changes, something may have happened

Tip #13: Take a Complete View of Performance | 41



to the cluster. With streaming environments, such tests are usually
conducted by putting special records known as “tracer bullets” into
the system. The processing of tracers triggers additional logging and
diagnostics, and the results are used very much like the performance
of canary jobs.

Tip #14: Read Our Other Books (Really!)
We’ve written several short books published by O’Reilly that provide
pointers to handy ways to build Hadoop applications for practical
machine learning, such as how to do more effective anomaly detection
(Practical Machine Learning: A New Look at Anomaly Detection), how
to build a simple but very powerful recommendation engine (Practical
Machine Learning: Innovations in Recommendation), and how to
build high-performance time series databases (Time Series Databases:
New Ways to Store and Access Data). Each of these short books takes
on a single use case and elaborates on the most important aspects of
that use case in an approachable way. In our current book, we are doing
the opposite, treating many use cases at a considerably lower level of
detail. Both approaches are useful.

So check those other books out—you may find lots of good tips that
fit your project.

Tip # 15: Just Do It
Hadoop offers practical, cost-effective benefits right now, but it’s also
about innovation and preparing for the future. One decision with large
potential payoffs is to get up to speed now with new technologies be‐
fore the need for them is absolutely critical. This gives you time to gain
familiarity, to fit the way a tool is used to your own specific needs, and
to build your organization’s foundation of expertise with new ap‐
proaches before you are pressed against an extreme deadline.

The only way to gain this familiarity is to pick a project and just do it!

42 | Chapter 4: Decisions That Drive Successful Hadoop Projects

http://bit.ly/anomaly_detection
http://oreil.ly/1qt7riC
http://oreil.ly/1qt7riC
http://oreil.ly/1ulZnOf
http://oreil.ly/1ulZnOf


CHAPTER 5

Prototypical Hadoop Use Cases

In this chapter, we present a collection of some of the most appealing
use cases when considering what Hadoop might do for you. These are
prototypical use cases—isolated goals and the Hadoop-based solu‐
tions that address them. They are not theoretical. They come from
observations of some of the most common and most rewarding ways
in which Hadoop is being used, including showing its value in large-
scale production systems. We identify each use case by the major intent
of its design, to make it easier for you to extrapolate to your own needs.
Then, in Chapter 6, we will tell some real-world stories about how
MapR customers have combined these use cases to put Hadoop to
work.

Data Warehouse Optimization
One of the most straightforward ways to use Hadoop to immediate
advantage is to employ it for optimization of your use of a costly data
warehouse. The goal of data warehouse (DW) optimization is to make
the best use of your data warehouse (or relational database) resources
in order to lower costs and keep your data warehouse working effi‐
ciently as your data scales up. One way to do this that offers a big
payback is to move early ETL processing and staging tables off of the
data warehouse onto a Hadoop cluster for processing. This approach
is advantageous because these ETL steps often consume the majority
of the processing power of the data warehouse, but they only constitute
a much smaller fraction of the total lines of code. Moreover, the staging
tables that are inputs to these ETL steps are typically much larger than
subsequent tables, so moving these tables to Hadoop can result in

43



substantial space savings. You gain an advantage by relieving strain on
the data warehouse at your current data volumes, plus you’ll have set
up a highly scalable system that will continue to work in a cost-effective
way even as data volumes grow enormously. It makes sense to move
each part of the process to the platform on which it works most effi‐
ciently. Often initial data ingestion and ETL makes sense on Hadoop,
while it may make sense to keep critical-path traditional processes on
the data warehouse as before.

Figure 5-1 shows the evolution of a data warehouse system as data
warehouse optimization proceeds. Initially, in the top panel, we see
the traditional view of the process. Data is ingested by copying it into
a shared storage device such as a network attached storage system
(NAS). This data is then imported into the staging tables on the actual
data warehouse, and important data is extracted and transformed be‐
fore loading (ETL) and final processing. This use of staging tables is
broadly like what we have seen in actual customer installations. Sig‐
nificantly, the majority of computational resources are typically con‐
sumed in the ETL processing, but only a small minority of the code
complexity is in this phase.

This process can be changed by using your Hadoop platform to opti‐
mize the system, as shown in the bottom two panels of Figure 5-1. In
the middle panel of the figure, we see how this optimization works on
the Hadoop platform from MapR. Here, data is copied from the orig‐
inal source to an NFS-mounted file system exactly as before, but now
the NAS has been replaced by a MapR cluster that holds the staging
tables. All or some of the ETL process is run on the Hadoop cluster
instead of the data warehouse, and then the work product of the ETL
process is bulk loaded into the data warehouse using standard bulk
import tools via another NFS mount of the Hadoop cluster.

The lower panel of Figure 5-1 shows an alternative design for non-
MapR Hadoop platforms. The goal is the same, but there are some
variations in how the data is ingested for ETL and how the refined data
is exported to the data warehouse. The biggest difference is the use of
specialized connectors to work around the lack of high-performance
NFS access to the HDFS cluster.

Exactly how much of the ETL process is moved to the Hadoop cluster
depends on the exact trade-off of code size, performance, and natural
modularity in the code on the data warehouse. Typically, true extract
and transform code runs much more efficiently on a Hadoop cluster

44 | Chapter 5: Prototypical Hadoop Use Cases



than a data warehouse, while advanced reporting code may run faster
on the data warehouse. These speed trade-offs have to be measured
empirically by converting sample queries, and the benefits of conver‐
sion then have to be balanced against fixed conversion costs and the
variable costs of running the process on the Hadoop cluster. The final
reporting code on the data warehouse is often large enough, complex
enough, and difficult enough to test that the trade-off is clearly on the
side of leaving it in place, at least initially.

Figure 5-1. Data warehouse optimization works by moving staging
tables and ETL processing to a Hadoop cluster, as shown in panels B
and C. This change eliminates the need for a storage appliance to fa‐
cilitate the transfer and removes considerable processing and storage
load from the data warehouse.

Data Warehouse Optimization | 45



Optimization can be done with any kind of Hadoop cluster by using
special-purpose connectors as shown in the bottom panel (c) of
Figure 5-1. With a MapR cluster (b), the need for connectors is avoided
by using standard bulk export and bulk import utilities on the data
source and data warehouse systems respectively together with NFS
access to the MapR cluster.

The savings in using a Hadoop platform for DW optimization come
from the displacement of the external storage and the substantial de‐
crease in table space and ETL processing required on the data ware‐
house. This is offset slightly by the cost of the Hadoop cluster, but the
net result is usually a substantial savings. In some cases, these savings
are realized by the need for a smaller data warehouse, in others by a
delay in having to upgrade or expand an existing data warehouse. In
addition to a cost advantage, this style of Hadoop-based DW optimi‐
zation keeps all parts of the process running efficiently as your system
grows. The move to Hadoop therefore future-proofs your architec‐
ture.

Data Hub
A significant fraction of MapR customers name the centralization of
data—sometimes called a data hub or data lake—as one of the most
important Hadoop use cases. The terms are loosely defined, but the
centralization concept is fairly simple and very powerful: by bringing
together data from a variety of sources and data types (structured,
unstructured, or semistructured, including nested data) into a cen‐
tralized storage accessible by many different groups for various types
of analysis or export to other systems, you widen the possibilities for
what insights you can harvest.

The concept of an enterprise data hub illustrates some key emerging
trends for Hadoop clusters. The most important such trend is that
Hadoop clusters are becoming less and less specialized and more and
more a company-wide resource. This is particularly good because it
means the potential peak computing capacity an application can access
is larger than would be possible with isolated clusters. In addition, the
centralization of data helps break down unwanted data silos. Some
forms of analysis, including some valuable approaches to machine
learning, are greatly improved by being able to combine insights from
more than one data source.

46 | Chapter 5: Prototypical Hadoop Use Cases

www.allitebooks.com

http://www.allitebooks.org


The data hub is a natural evolution from the data warehouse optimi‐
zation use case as well. Because the early stages of ETL bring in and
persist raw data onto the Hadoop cluster, that same data can be ac‐
cessed for other purposes, which can lead organically to the construc‐
tion of a data hub. The relatively low cost of large-scale storage on
Hadoop makes this particularly attractive. Remember “Tip #2: Shift
Your Thinking” on page 31 in Chapter 4 that referred to the benefit of
delaying some decisions about how you want to process and use data?
The data hub fits that idea by building a central source in which data
can be used in a variety of ways for many different internal customers,
some currently of interest, others to be discovered in the future, as
depicted in Figure 5-2.

Figure 5-2. A data hub centralizes data from many sources and pro‐
vides access to many users, such as different groups of developers, data
scientists, and business analysts. Here the reference database would
be NoSQL HBase or MapR-DB. Having easy access to widely varied
data makes new ideas and applications inevitable.

A data hub on a Hadoop cluster may support development of a cus‐
tomer 360 database, as described in the next section, along with ETL
for data warehouse optimization, analysis of log data, processing of
streaming data to be visualized on a dashboard, complex anomaly de‐
tection, other machine learning projects, and more. The common

Data Hub | 47



theme is that these clusters have a lot going on on them in all kinds of
ways.

Customer 360
The goal of a customer 360 system is to establish a high-performance,
consolidated store of complete histories for every customer. When this
is done and the entire history for a single customer is viewed as a single
consistent list of events, many kinds of processing become enormously
simpler. The basic idea is that the non-relational, highly flexible nature
of state-of-the-art big data allows dramatically simpler interpretation
of the data without having to join hundreds of tables from incompat‐
ible snowflake schemas together.

The idealized view of one data store to rule them all often gives way a
bit to a structure more like the one shown in Figure 5-3. Here, as in
the idealized view, many data sources are concentrated into a central
store. These streams are accumulated in a reference database that is
keyed by a common customer identifier. The records in these streams
are nearly or fully denormalized so that they can cross from one ma‐
chine to another, maintaining their internal consistency and integrity.

This reference database is stored in a NoSQL database such as HBase
or MapR-DB. The key advantage that these databases offer for an ap‐
plication like this is that good key design will allow all of the records
for any single customer to be stored nearly contiguously on disk. This
means that a single customer’s data can be read very quickly—so fast,
indeed, that the inherent expansion in the data caused by denormali‐
zation can often be more than compensated by the speed advantage
of contiguous reads.

48 | Chapter 5: Prototypical Hadoop Use Cases



Figure 5-3. In a customer 360 system, all kinds of information for a
single customer is collected into a reference database and kept in a
way so that customer histories can be accessed very quickly and with
comprehensive retrieval of all desired data. In practice, internal cus‐
tomers of the data have specialized enough needs that it pays to ex‐
tract views of the reference database into smaller, special-purpose
sub-databases.

When building a customer 360 database like this, it is likely that you
will quickly find that your internal customers of this data will need
specialized access to the data. For instance, one common requirement
is to be able to search for patterns in the customer histories using a
search engine. Search engines like ElasticSearch fill the requirement
for search, but they are not rated for use as a primary data store, as we
mentioned in “Tip #11: Provide Reliable Primary Persistence When
Using Search Tools” on page 39 in Chapter 4. The easy middle ground
is to replicate a filtered extract of the updates to the main database to
the search engine in near-real time. This near-real time replication can
be easily implemented in both MapR-DB and in HBase. Forthcoming
releases of MapR-DB will have a specialized asynchronous mirroring
capability that will make this operation even easier.

Another important consumer of customer 360 data might be a team
of machine learning experts building a predictive model. These teams
typically prefer no database at all, but rather prefer to get data in flat
files. A common way to deal with this requirement is to run periodic
extracts from the main database to get the record set that the team
needs into a flat file and then, on a MapR system, to use mirroring to

Customer 360 | 49



deploy the file or files to the cluster the machine learning team is using.
This method isolates the unpredictable machine load of the machine
learning software from the production environment for the reference
database. The use of programs like rsync to update the actual mirrored
data on the master machine can allow the mirroring update to move
far less data than a full copy.

Transactionally correct mirroring is not available on HDFS-based
versions of Hadoop, however, so a workaround is required on these
other Hadoop systems to allow this type of data delivery. The typical
approach used on non-MapR systems is to invoke a MapReduce pro‐
gram called distcp to copy the files to the development cluster. Careful
management is required to avoid changing the files and directories
being copied during the copy, but this alternative approach can make
the customer 360 use case work on these other Hadoop systems, too.

Another common reason for custom extracts is to comply with secu‐
rity standards. The reference database typically contains sensitive in‐
formation, possibly in encrypted or masked form. Permission schemes
on columns in the reference database are used to enforce role-based
limitations on who can access data in the database. Different versions
of sensitive information are likely stored in different columns to give
flexibility in terms of what data people can see. In order to secure the
sensitive information in the reference database even more stringently,
it is common to produce special versions of the reference database
with all sensitive data masked or even omitted. Such an extract can be
manipulated much more freely than the original and can be hosted on
machines with lower security profiles, making management and ac‐
cess easier. Security-cleared extracts like this may be more useful even
than the original data for many applications.

Recommendation Engine
The motivation for building a recommendation engine generally is to
improve customer experience by better understanding what will ap‐
peal to particular customers based on the preferences communicated
through their actions. This improved experience can result in in‐
creased sales, longer retention for services, stickier websites, or higher
efficiency for marketing spend. In short, happier customers generally
result in improved business.

Hadoop provides an excellent platform for building and deploying a
recommendation system, particularly because good recommendation

50 | Chapter 5: Prototypical Hadoop Use Cases



requires very large datasets to train a model. A simple but very pow‐
erful recommender can be built and deployed easily by exploiting
search technology running on a Hadoop platform. Let’s take a look at
how that works.

The goal of a recommendation engine is to present customers with
opportunities that they might not otherwise find by normal browsing
and searching. This is done by using historical user behavior for the
entire population of users to find patterns that are then cross-
referenced to the recent behavior of a specific user. Recommendations
can be presented to users explicitly in the form of a list of recom‐
mended items or offers, but can also be used more subtly to make a
user’s overall experience more relevant to what they want to do. As an
example, a “What’s new” page could literally just show new items in
reverse chronological order of introduction, or it could show all items
introduced recently ordered by a recommendation engine. The latter
approach tends to engage users more strongly.

Recommendation systems work by reading large amounts of historical
data and doing a large analysis. This analysis is typically run as a batch
or offline process since it may take tens of minutes to hours to run.
The output of the analysis consists of so-called recommendation in‐
dicators and is transferred to a system that can match these indicators
to recent behavior of a specific user to make recommendations in real
time as soon as new behavior is observed. The system that makes these
realtime recommendations can be implemented using a search engine.
This implementation choice is very convenient since search engines
are often already being used. Another advantage of this design for
recommendation is that the more computationally expensive and
time-consuming part of the project, building and training the recom‐
mendation model, is done offline, ahead of time, allowing recom‐
mendations to be made for users in real time, online, as outlined in
Figure 5-4.

Recommendation Engine | 51



Figure 5-4. The beauty of this two-part design for a recommendation
engine is that by dividing the computation of recommendations into
two parts, most of the computation can be done offline. That offline
computation prepares information called indicators that a standard
search engine can use to deliver customized recommendations in real
time.

The offline part of the computation is shown in Figure 5-5. User be‐
havioral history is analyzed both for co-occurrence of behavior and for
cross-occurrence. In co-occurrence, behaviors are compared like-to-
like. An example might be that if you want to recommend songs to a
listener, you would analyze previous song-listening behavior. To rec‐
ommend books for purchase, you would analyze previous book pur‐
chases. With cross-occurrence, in contrast, you would analyze past
behavior of one type to make recommendations of a different type. An
example would be using past behavior consisting of reading reviews
for a product to recommend purchase of that item or others. Using
multiple cross-occurrences together with co-occurrence is a valuable
way to improve recommender performance.

52 | Chapter 5: Prototypical Hadoop Use Cases



Figure 5-5. This figure shows a rough structure for the offline portion
of a recommendation analysis system. Historical behavior is recorded
in user behavior logs. These logs are examined to generate recommen‐
dation indicators by doing co-occurrence and cross-occurrence analy‐
sis. These indicators are inserted into a search engine together with
conventional item metadata that would normally have been in the
search engine.

You can find more information on how recommendation engines are
built in our previous book, Practical Machine Learning: Innovations
in Recommendation. The book provides a very short introduction into
how to build a recommendation engine and describes the theory and
basic practice.

Marketing Optimization
The goal of marketing optimization is to understand what causes cus‐
tomers to ultimately buy products across both marketing and sales
cycles. In very few businesses, the things that get customers to engage
with a company and the sales process that ensues are relatively simple.
An example might be a web-only company that has only a few online
marketing programs. In contrast, many businesses are at the other
extreme and have a large number of marketing contacts with custom‐
ers, and the sales process consists of many interactions as well. For
businesses with anything but the simplest sales cycles, determining
which actions actually help sell things to customers and which things
either don’t help or even impede sales is both hard and very important.
In some cases, a company has enough products that just deciding
which products to talk about at which times can make a significant
difference to the business.

Marketing Optimization | 53

http://oreil.ly/1qt7riC
http://oreil.ly/1qt7riC


The best practice for this problem is to first establish as complete a
history of interactions with customers as possible. Typically, this takes
the form of some kind of customer 360 database. The simplest mar‐
keting optimization system and usually the first one implemented is a
recommendation system of some kind. The goal here is to recognize
which customers are likely to be in a position where offering a par‐
ticular product to them is likely to result in a sale or other desired
response.

Recommendation systems are very common in online business, but it
is unusual to integrate online and offline experiences as inputs to a
recommender, and it is unusual to drive recommendations uniformly
to both online and offline customer interactions.

The next step in complexity beyond an indicator-based recommen‐
dation system is to build per-product sales models. These models can
use behavioral features, including recommendation indicators and
detailed timing of past transactions and marketing efforts, to attempt
to guide the direct sales process by determining which products have
the highest propensity to sell if pitched. These models are more com‐
plex than the models implicit in a normal recommender, and building
them is likely to take a considerable amount of computation, but for
complex sales cycles, the results can be very significant. The level of
effort to build these models, however, is substantial and should only
be undertaken if the product line and sales cycle justify the additional
complexity. Simpler search engine–based recommenders are much
more appropriate for many companies, including most business-to-
consumer companies, both because the sales cycle tends to be simpler,
but also because spending time on complex machine learning devel‐
opment is probably only worth it if there is sufficient leverage to re‐
ward the development. Extreme sales volume is one way to provide
this leverage; high per-unit net profit is another way. For companies
that don’t have these factors, it is often much more valuable to spend
time adding more logging to user interactions and tuning the user
experience to better incorporate recommendations from simpler rec‐
ommendation systems instead.

Large Object Store
The goal of a large object store is to store a large number of data objects
that need to be accessed individually, often by name, but that are not
necessarily of interest for wholesale analysis. In terms of how the ob‐

54 | Chapter 5: Prototypical Hadoop Use Cases



jects in an object store are thought of, a large object store would be
very nicely persisted in individual flat files, one per object, rather than
a database. This is particularly true because the objects are often rel‐
atively large, often over a megabyte on average. Often the underlying
purpose for a large object store is to provide access to media such as
videos or audio recordings; sometimes the objects have to do with
messaging systems or systems data. Typically, the number of objects
is in the tens of millions to tens of billions, and the sizes of the objects
involved range from tens of kilobytes to hundreds of megabytes. One
common requirement is that objects be accessible on the web. Down‐
time is typically unacceptable in these systems, and 99.9th percentile
response, exclusive of transmission time, must typically be in the tens
of milliseconds.

Objects in systems like this often come from a very large number of
Internet-connected devices. These devices are often the primary con‐
sumer of these objects, but large scans of objects are common re‐
quirements as well. For instance, if you are building a video serving
site on a large object store, it will occasionally be necessary to transcode
files into new formats or to extract thumbnail images or run image
classifiers. In media systems, the total number of files is typically much
larger than the number of individual videos being served because of
the requirement to have multiple encoding formats at multiple bit rates
along with additional media assets like thumbnail images and preview
clips. A good rule of thumb is to expect roughly 100 times more files
than you have conceptual objects such as a video.

Traditionally, large object stores have been built on top of special stor‐
age hardware at very high cost, or purpose built using a combination
of databases (to store object locations) and conventional file systems
at very high cost in operational complexity.

Hadoop systems can be used to build large object stores very nicely.
With a MapR system, you can simply use the system as a very large file
system since the very large number of files and their large size are not
a problem for MapR-FS. Using NFS to allow direct access by conven‐
tional web services also works well with such a solution.

With an HDFS-based system, a completely file-oriented implementa‐
tion will only work at moderate to small scale due to the file count limit
that comes from the basic architecture of HDFS. Depending on the
file size distribution, you may be able to use a combination of HBase
to store smaller files and HDFS to store larger files. All of the HDFS-

Large Object Store | 55



based solutions require special software to translate requests into the
HDFS API.

Log Processing
Large computing systems are composed of processes that transform
data (as in ETL processes) or respond to queries (as with databases or
web servers), but all of these programs typically annotate the actions
they take or the anomalous conditions they encounter as so-called log
events, which are stored in log files. There’s a wealth of insights to be
drawn from log file data, but up until recently, much of it has been
overlooked and discarded. Logs can be used to trigger alerts, monitor
the current state of your machines, or to diagnose a problem shortly
after it happens, but traditionally, the data has not been saved for more
than a short period of time.

These log events often record a huge range of observations, such as
records of performance or breakage. These records can capture the
footprints of intruders or provide a detailed view of a customer’s online
behavior. Yet when system diagrams are drawn, these logs are rarely
shown. In fact, some people refer to log files as “data exhaust” as though
they are just expendable and unwanted pollution. Traditionally, logs
were deleted shortly after being recorded, but even if retained, they
were difficult to process due to their size. That is changing. Hadoop
makes it possible to store and process log data because it allows cheap
and scalable data storage and the ability to process large amounts of
data.

Traditionally, log processing has been done by arranging an intricate
dance between the producers of these logs and the programs that an‐
alyze the logs. On the producer side, the tradition has been to “roll”
the logs by closing one log file when it reaches an age or size constraint,
then start writing to another. As log files are closed, they become
available for transport to the analysis program. On the receiving side,
this dance was mirrored by methods for signaling exactly which files
were to be processed and when programs were to run. Moreover, the
output of one process typically was input to another, so this signaling
dance cascaded.

This sort of processing can work well enough when all is well, but
havoc reigns when something breaks or even when something is sub‐
stantially delayed. Questions about whether old results had to be re‐

56 | Chapter 5: Prototypical Hadoop Use Cases

www.allitebooks.com

http://www.allitebooks.org


computed and which programs needed to be run late or run again were
very difficult to answer.

In order to fill the need to control these log processing programs, some
intricate frameworks have been developed. In the Hadoop world, these
include Apache Flume and Apache Oozie. Unfortunately, the goal of
these frameworks is to manage the complexity of log processing, not
to radically simplify it.

More recently, a new pattern has emerged in which log processing is
unified around a queuing system. The use of a message-queuing style
dramatically simplifies the issues of what to do when and how to redo
work that is affected by late-arriving data or system failures. This new
pattern of processing has proven dramatically better than the old file-
shipping style of log analysis and is the primary topic of the next sec‐
tion on realtime analytics. For log analytics, we recommend that you
use Hadoop and that you jump into the new style with both feet.

Realtime Analytics
The goal of realtime analytics is to analyze a sequence of records in
near-real time, allowing models to produce alerts or update status dis‐
plays soon after data arrives. This can be used for log processing, but
also for processing many other kinds of streams of records. The busi‐
ness goal of such processing is primarily to react to events quickly, but
a major secondary benefit is to establish uniformity in how records
are processed to lower the cost of developing analytics programs. This
style of processing can be used for the analysis of very general kinds
of transactions, but it has been especially popular in the analysis of
system logs, particularly those that have to do with security. That is
not to say that the use case described here is intended to replace ex‐
isting security analytics tools. Instead, the log analytics techniques
described here complement these other tools by allowing more variety
in the logs being analyzed and the retention of logs for analysis over
much longer time periods.

Of particular interest in the context of this book is that Hadoop pro‐
vides an excellent foundation for this style of processing. To under‐
stand why and how the current best practice architectures for real-
time analytics have come about, especially analytics based on log
events, it helps a bit to look back to where log analytics came from.
Not all that long ago, a lot of systems looked roughly like the diagram
shown in Figure 5-6. Typically starting with a single server, log files

Realtime Analytics | 57



were accumulated to get very rough estimates of daily traffic. There
was no question about which format the servers used to log events,
and there was no question about what format the accumulation pro‐
gram used. They both used the format.

Figure 5-6. Not so very long ago, log analytics worked a lot like this.
Web servers recorded events in logs and very simple aggregation pro‐
grams totaled these events up each day.

This somewhat exaggerated halcyon period of simplicity quickly gave
way to a cacophony of different systems recording new kinds of data
in new formats that had to be analyzed more quickly and in more ways
than before. Moving logs from each source to each analysis became
very complex and the analysis programs outgrew the available re‐
sources. Figure 5-7 shows how complexity creeps into this. Solutions
to the problems that arose were often patchwork solutions produced
ad hoc as the problems were recognized.

Figure 5-7. The problem: the simplicity of systems such as the one
shown in Figure 5-6 quickly gave way to increased numbers of data
sources, an explosion in data formats, and a multiplicity of new anal‐
ysis requirements. A better approach that unifies processing is needed.

58 | Chapter 5: Prototypical Hadoop Use Cases



In a modern analytics workflow, things have become a bit simpler
again. The reason for this simplification is the insertion of a message-
queuing system into the heart of the system that is charged with mov‐
ing all of the log-like information from producers to consumers of the
information. Some systems are sources of data and some are sinks.
Others consume data only to transform it and inject it back into the
queuing system. Some data streams have many consumers. Others
only one (or even none). The point of the architecture is that data flows
in relatively uniform formats through a uniform interface. The queu‐
ing system acts as a sort of a post office where anyone needing access
to live data can go to fetch the data. Having a consistent and universal
method of moving log-like data makes the overall system vastly sim‐
pler to reason about and to build.

Apache Kafka is one of the popular choices for such a queuing system,
largely because it provides an extremely simple model of operation
that in turn enables very reliable operation at very high throughputs.
In such a system, log files are ingested in a data stream known as a
topic. Extraction or transformation programs can read messages from
a topic and send the results to other topics. Archive programs can read
from any topic and store a history of the messages found under that
topic to flat files or databases for later interactive analysis. Other pro‐
grams can read messages in topics and do realtime analysis on them,
putting the results of the analysis into a result database or back into
yet another queue. An overall architecture of such a system is shown
in Figure 5-8.

Realtime Analytics | 59



Figure 5-8. A queuing system adds a key function to a Hadoop cluster
to provide reliable message streaming from component to component
in the realtime analytics system. Programs can process records and
then save the results to the distributed file system in the cluster or
send the results back into another message stream. Realtime analysis
is possible and can be combined with batch or interactive analysis rel‐
atively easily. In this diagram, the shaded blocks are the realtime
path, while unshaded blocks run as batch. Blocks inside the dashed
lines can be implemented on a MapR cluster. For an HDFS-based
cluster, the queue can be implemented using Kafka.

Most or all of the components in such a realtime analysis network will
not only produce results, but they also throw off a considerable
amount of diagnostic information about what they are doing and how
they are functioning. This diagnostic information can be in the form
of log events that can be analyzed in real time by the same realtime log
analysis system or as time series data to be inserted into a time series
database.

60 | Chapter 5: Prototypical Hadoop Use Cases



The use of batch reconciliation programs that run periodically and
overwrite the results of the realtime components of a system is also a
common pattern. The idea is that it is very difficult to make the real‐
time components of the system (a) reliable in the face of potentially
bizarre malfunctions, (b) absolutely correct in all their outputs, and
(c) very fast. At large scale, allowing scalability, performance, reliabil‐
ity, and/or availability of the system to trump considerations of abso‐
lute accuracy in the short term can be a very valuable strategy. In such
cases, it is often relatively easy to build batch programs that reprocess
the archived data in order to ensure that correctness is eventually
added to the qualities of the system. The use of a reconciliation process
in this way is the primary feature of what is known as the lambda
architecture, as mentioned previously.

It should be noted that while this design involves message passing as
the dominant form of data transfer, there is a world of difference from
what is normally called message bus architecture or enterprise service
bus. The difference stems from the fact that Kafka-like systems do not
remember whether messages have been delivered or not. There is no
effort on the part of Kafka to ensure delivery of every message exactly
once to every consumer of the message. Instead, what Kafka does is
ride the wave of massively lower storage costs by simply keeping mes‐
sages for a much longer period of time than is expected for the pro‐
cessing of the messages. Messages that are typically processed in sec‐
onds might be kept for days. The proximate effect of this retention is
that if processing of a message fails to happen, the message can almost
certainly be re-read after the condition that caused the failure has been
repaired. This fact, in turn, allows Kafka clients to take control over
deciding which messages have been read and processed, and that al‐
lows Kafka to be vastly simpler and much faster.

The results in companies that we have seen using Kafka as a nearly
universal means of transporting stream-oriented data have been uni‐
formly good. As such, we recommend that this style be the way that
streaming data or log files be processed if possible.

Time Series Database
Interest in time series data is becoming much more widespread as
people increasingly see the value in collecting and analyzing machine
data from servers and from a wide variety of sensors such as those
involved in the Internet of Things. As a result, it’s important to have a

Time Series Database | 61



way to build a reliable, high-performance time series database. A
Hadoop-based NoSQL solution such as Apache HBase or MapR-DB
is a great way to do this.

The goal of a time series database is to store a large mass of historical
measurements from many sensors, each associated with the time that
the measurement was made and to allow rapid retrieval from such a
database. These sensors may actually be implemented in software to
make measurements such as how long it takes to process a single re‐
cord or how much data is stored on a disk, but they are also commonly
real sensors making measurements of tangible, physical phenomena
such as temperatures, flow rates, or vibration.

Time series data can be stored in a conventional database, but as the
volume of measurement gets larger, the aggregate number of meas‐
urements per second gets higher and the required retrieval rates in‐
crease, a conventional database will break down. As a result, only a
short time frame of data can be saved, and even this is not optimal on
a relational database. The problem is that for this particular restricted
application, conventional databases provide more capabilities than are
required, and those additional capabilities are costly even if not used.

NoSQL databases such as MapR-DB or HBase, when paired with ap‐
propriate time series software, can store and retrieve time series data
at much higher rates than a conventional database, and the rate at
which they can process data can be scaled up or down easily by adding
or removing computers for the task. Figure 5-9 shows schematically
how data sources feed a time series database and how the contents of
the database are viewed and analyzed.

62 | Chapter 5: Prototypical Hadoop Use Cases



Figure 5-9. Collector programs read data from sensors, either virtual
or physical, and the measurements to the time series database that
stores the data in MapR-DB or HBase. The data in the database is ar‐
ranged so that it can be read back quickly in large volumes for visuali‐
zation or read point-by-point by a realtime monitoring system to look
for anomalies as they occur.

You can find more detailed information about building a high-
performance time series database on a NoSQL database in our book,
Time Series Databases: New Ways to Store and Access Data. In that
book, we describe general techniques for storing time series data in a
NoSQL database like HBase or MapR-DB and give a specific descrip‐
tion of how we modified the open source time series database known
as Open TSDB to get much higher ingest rates.

Time Series Database | 63

http://oreil.ly/1ulZnOf




CHAPTER 6

Customer Stories

Who is using Hadoop and what are they using it to do?

This chapter is a sampling of some of the ways in which MapR cus‐
tomers are using Hadoop and the NoSQL databases MapR-DB or
HBase in real-world settings. Some customers are exploring these new
technologies to see how they might want to incorporate them into their
organizations. Others have come to Hadoop to find a solution that
addresses specific problems they face in dealing with projects at large
scale, such as was the case with India’s society-changing Aadhaar
project. Either way, people are looking for cost-effective and powerful
approaches that enable them to reach their goals and, in the case of
business enterprises, that help them keep their competitive edge. Ha‐
doop and NoSQL databases are excellent tools to do this.

In this chapter, we provide customer stories so that you can see how
some of the prototypical Hadoop use cases we described in Chap‐
ter 5 are put into action, often in combination. Many customers em‐
ploy Hadoop in multiple ways, sometimes starting with a single goal
and then expanding how they want to incorporate Hadoop solutions
throughout different divisions or projects within their organization.
You’ll also notice overlap between sectors—some widely different
types of organizations share the same underlying technical challenges
and so can benefit from the same design patterns in building their
solutions. Throughout this chapter, we hope you recognize similarities
to your own situation so that you can see what Hadoop might do for
you.

65



Telecoms
Rapid expansion of mobile phone usage worldwide presents telecom‐
munication companies with a variety of challenges in handling enor‐
mous amounts of data often arriving at high velocity. These companies
must deal with hardware and data issues, as well as direct customer
relations. For example, each cell phone tower is constantly commu‐
nicating with all the mobile phones in its area. Imagine the level of
data exchange that is taking place for the billions of phones that exist.
People use their phones for all sorts of things: communication with
other people through texting, voice, and social media; connection to
the Internet; photos; and even financial transactions. Cellular net‐
works are being employed to carry data from machines as well. Usage
levels also vary a lot at different times of the day, in different locations,
and in response to different events. Imagine the spike in phone usage
in an area where there has been a substantial earthquake (assuming
the cell towers are still operating).

Telecoms deal with high-velocity and very large-scale data combined
with a complicated range of business goals, so their situations are ideal
for benefiting from Hadoop. They keep logs of billions of customer
transactions and make use of sophisticated machine learning appli‐
cations such as anomaly detection to monitor and adjust their net‐
works. But in addition to dealing with electronic equipment and acts
of nature, telecoms also face all the typical aspects of less-complicated
businesses such as marketing, customer relations, and billing. The
critical-path reporting that is necessary for billing must handle huge
amounts of data, and if this process cannot keep up with the scale of
the business, the company will miss out on revenues. This aspect of
their business—collecting customer detail call records and analyzing
this information as part of the billing cycle—has traditionally been
done on electronic data warehouses. The problem is, increasing data
volumes are putting a strain on the data warehouses. These data ware‐
houses do not scale as well as needed, and while very good at what they
do, they are expensive. We’ve chosen this story to show you one of the
more mainstream but absolutely critical functions for which Hadoop
can be useful: data warehouse optimization.

Better use of the data warehouse was the first prototypical use case we
discussed in Chapter 5, and telecoms are among many companies that
use the MapR distribution for Hadoop to do just that. By collecting
customer call records (CDR) on the Hadoop cluster initially, telecoms

66 | Chapter 6: Customer Stories



are able to move the ETL process there as well, thus relieving the data
warehouse of this burdensome and expensive task. In some cases, by
moving less than 10% of the code associated with the DW billing
project to the Hadoop cluster, it’s possible to free up a large percentage
(commonly as much as 70%) of the load on the DW resource for this
process.

Telecommunications reporting and billing is complicated, so it makes
sense to continue to use the sophisticated DW resource for the final
stages in the process. The enormous initial data volume for CDR data
is reduced on the Hadoop platform during the extraction and trans‐
formation process. The output is then exported to the data warehouse
for the rest of the analysis needed for billing. The data warehouse can
more easily handle the much smaller volume of the now-refined data
than it could the original call records. Each tool—Hadoop platform
and data warehouse—is now being used for what it does best. The
result is a system that handles current process loads at a fraction of the
original cost and that is positioned to be able to scale as the usage levels
grow.

Now comes the part of the story where we see how one Hadoop use
case can lead to another. Telecoms have a variety of needs for data
exploration and analysis, from machine learning for anomaly detec‐
tion to analyzing customer relations for better customer satisfaction.
Having the initial call record data on the Hadoop cluster provides
added value to the DW optimization in that this data becomes available
at reasonable cost for these additional uses.

What Customers Want
Figuring out what customers want is a fairly obvious and widespread
goal in business, as is the intent of influencing what they want through
advertising and product placement. These goals may be obvious, but
taking effective action to meet them is not always easy. This task is
complicated further by the fact that modern businesses often handle
huge numbers of products or offer their services to millions of people
globally. The good news is that thanks to the ability to track transac‐
tions, to log user behavior on websites, to pay attention to what is being
said or photographed via social media, and to track inventory, there’s
a lot of data to help inform a business about what its potential cus‐
tomers want and how effectively its marketing efforts are in driving
those preferences. The quantity and variety of data to do this, however,

What Customers Want | 67



can be daunting, but not so for companies who have adopted a Hadoop
data platform.

A wide range of MapR customers are involved in some aspect of mar‐
keting optimization, either for themselves to improve customer
awareness and satisfaction with their own products and services or as
a marketing service or tool sold to clients to help them with their
marketing needs. Some marketing service companies provide infor‐
mation about what is being said regarding a client’s offerings based on
sentiment analysis applications that make use of social and traditional
media. Other companies in this sector optimize advertising placement
or auctions or evaluate the effectiveness of the advertising budget of
their clients.

Whether a company is concerned with providing marketing optimi‐
zation as a product/service or with improving their own marketing,
there are some commonalities in how they employ Hadoop and
NoSQL solutions. Some of these were described in the general use case
for marketing optimization in Chapter 5. Collecting data about cus‐
tomer behavior from a wide range of sources and storing this data in
a centralized hub is a key architectural pattern for marketing optimi‐
zation activities. The ability of Hadoop to handle large-scale data in a
cost-effective way is a big part of why this is such a widespread use
case.

Machine learning models can be used to build recommendations that
help make marketing more efficient. One MapR customer used the
trick of exploiting search technology to implement and deploy an ef‐
fective recommender that they built and put into production in just a
few months, a very short time-to-value. Companies ranging from on‐
line retail to high-tech manufacturers rely on Hadoop to support var‐
ious aspects of their marketing efforts. It’s neither the size of the com‐
pany nor the product or service they offer that attracts them to Hadoop
for this use case, but rather the flexibility and cost-effective scalability
of this technology.

68 | Chapter 6: Customer Stories



DataSong
This rapidly growing company provides retailers with a marketing
analytics service. They use MapR for their Hadoop platform to serve
as a central data hub. Their CEO, John Wallace, talked about this in
an interview with Peter McGowan for a Data Informed article.

DataSong’s analytics software is used to analyze a wide variety of cus‐
tomers’ data to determine the effectiveness of their marketing spend.
The analysis even seeks to attribute purchases at the level of the in‐
dividual shopper. The data includes observations of user behavior on
websites via clickstream logs, advertising impression logs, direct mail
logs, and more, plus financial transaction data. All this data is loaded
onto the Hadoop cluster, processed, and analyzed to provide the client
with a weekly report showing the incremental impact of their mar‐
keting spend.

Why is Hadoop needed? The more sources of data and the longer the
time span loaded on for analysis—say, a year’s worth of customer data
rather than a month—the more accurate the results will be. Hadoop
makes it possible for the customer to have a more accurate report.

The direct advantage for DataSong for using MapR’s distribution for
Hadoop is the scalability and huge cost savings, including the use of
commodity machines instead of expensive big storage hardware. As
of June 2014, DataSong was achieving these results with a data hub
running on 15 nodes of commodity machines running Linux. This
setup handles almost a petabyte of data. The Hadoop platform’s low
cost of storage, scalability, and ability to handle a wide range of data
sources provides DataSong with a lot of flexibility in their choice
about the size of retail client they can take on.

Essential to DataSong’s growth and success has been the opportunity
to focus their efforts and resources on developing their sophisticated
analytics applications. In the interview, Wallace attributes this to hav‐
ing “…confidence that with Hadoop and MapR, we had the scalability
and cost effectiveness we needed to grow our business.”

Reference: “DataSong’s Hadoop Bet Paying Off ” in Data Informed,
June 2014, by Peter McGowan.

What Customers Want | 69

http://data-informed.com/datasongs-hadoop-bet-paying/


Rubicon Project
Rubicon Project is a trading platform for realtime online ad auctions.
Advertisers get to review website visitor data before they bid on ad‐
vertising in order to improve the chances of their ads being placed
with interested parties. The huge volume of data this business must
handle was a good reason to turn to Hadoop, and Rubicon selected
MapR’s distribution.

The auctions Rubicon conducts occur in strict realtime, so they made
use of Hadoop ecosystem tool Apache Storm to collect the data and
analyze it in connection with bidding and then store it on the Hadoop
cluster. This architecture can handle the large data scale while keeping
fast response times, as is needed for a realtime auction. Additional
data transformation is carried out on the cluster as a preparatory step
to ready it for use with traditional applications. This setup is a good
fit for Hadoop.

Reference: “Hadoop too slow for real-time analysis applications?” in
TechTarget’s Search Business Analytics, December 2013, by Ed Burns.

Working with Money
Financial institutions are like many businesses in that they do mar‐
keting to prospective clients, track operations, sell and deliver services
via a website, and collect and analyze data and process it for billing
reports. Hadoop provides a good scalable foundation for many of these
goals, as we’ve discussed. But in addition to these common business
activities, banks and other financial firms also handle money—a lot of
money—and this responsibility for a huge quantity of funds makes
them a natural target for criminals wanting to commit fraud and se‐
curity attacks. A bank’s funds and its customer data are both of suffi‐
cient value to tempt thieves, so it’s also natural that financial institu‐
tions seek effective ways to reduce risk, including fraud detection for
credit card transactions (see Figure 6-1) and anomaly detection to
thwart security attacks. To meet these needs, financial institutions re‐
quire serious scalability and reliability. Many use MapR’s distribution
for Hadoop.

70 | Chapter 6: Customer Stories

http://bit.ly/1KIe48E


Figure 6-1. Because financial institutions generally must deal with
very large-volume and sometimes high-velocity data that needs to be
stored reliably and analyzed in a variety of ways, many are among
the pioneering users of Hadoop. They also like MapR’s ability to use
legacy applications along with Hadoop applications.

Risk-reduction activities include some applications to identify known
suspicious patterns of behavior in transaction records and website
logs. But criminals keep changing how they attempt to steal credit card
information or attack a secure site, so financial institutions get help
from machine learning models to discover these new patterns of
anomalous behavior.

One of the key use cases for financial institutions is security log anal‐
ysis. In fact, this is just a special case of log analysis, but one that is
targeted toward looking at log events that might have some security
implications. For the mechanics of security log analysis, you can check
out the use case information on realtime log analysis described in
Chapter 5. Realtime analysis of security is commonly a requirement

Working with Money | 71



if you have automated alerts. Whether or not you strictly need realtime
analysis, it is not a bad idea to use a streaming architecture for the
analysis. There are no significant advantages for a non-realtime ar‐
chitecture versus a micro-batching architecture, and a streaming ar‐
chitecture always has the option for adding realtime alerts.

Another way that financial customers can reduce risk is by having a
good disaster-recovery mechanism. One large financial firm using
Hadoop wanted to set up a second production data center at a distant
site in order to protect a very large amount of critical data. Of course,
the first time data is moved to such a secondary center, it is a much
bigger project than just updating it. This company set aside two weeks
for the initial load of their secondary data center, so they were sur‐
prised when the data transfer took less than a day thanks to MapR’s
mirroring capabilities and a large amount of temporarily provisioned
network bandwidth. Subsequent incremental updates to the DR center
were extremely fast. (We described MapR-specific mirroring in Chap‐
ter 3.)

With a non-MapR Hadoop distribution, the methods for setting up a
secondary center for disaster recovery require a bit more effort, but it
is an important step to take for critical data. Even without the conve‐
nience of MapR mirroring, however, it is still much easier to use Ha‐
doop to set up the secondary cluster than it would be with non-
Hadoop systems.

Of course, financial institutions are not the only businesses to focus
on risk reduction via security measures, anomaly detection, and
disaster-recovery planning. These techniques are useful for those in
other sectors as well.

72 | Chapter 6: Customer Stories



Zions Bank
The difficult detective work of spotting anomalous data against the
background noise of normal patterns is an essential effort for Zions
Bank, a Utah-based financial company. Zions Bank is a MapR cus‐
tomer that relies on storing over 1.2 petabytes of data on their
Hadoop-based platform in order to carry out a wide range of critical
functions that include the detection of fraud attempts or other crim‐
inal attacks.

They need Hadoop and NoSQL database technology because of the
scale of data and range of data sources they must handle. One of their
main challenges in getting valuable insights from their large-scale
analytics is the problem of spotting the meaningful signals against a
high background of noisy data. They have built a specialized security
analytics team to work with traditional and nontraditional data sour‐
ces including transactions and logs. One of their approaches for best
practice is to do a lot of testing, especially of new technologies as they
become available.

What do they store in their Hadoop-based MapR data platform? They
use both structured and unstructured data, which along with afford‐
able scalability is part of why Hadoop and NoSQL are useful to them.
Data includes transaction information for online banking and wire
transfers, customer databases, and log files from antivirus and firewall
systems as well as server logs.

It takes a powerful, flexible, and cost-effective foundation on which
to carry out their hunt for the outliers in this morass of data that signal
potential fraud or theft.

Reference: “It Takes More Than Technology to Achieve Big Data Suc‐
cess” in TechTarget’s SearchData Management, August 2013, by Mark
Brunelli.

Working with Money | 73

http://bit.ly/14F1Ooj
http://bit.ly/14F1Ooj


Solutionary
Solutionary is a leader in delivering managed security services to keep
mid-sized organizations and global enterprises safe. Solutionary’s pa‐
tented security analytics technology reduces risk and protects clients’
data. To do this, Solutionary runs MapR’s distribution for Hadoop on
Cisco’s Unified Computing System (CUS) to support high-
performance analytics.

According to Solutionary president and CTO Mike Hrabik, quoted
in a 2014 Datamation article by Jeff Vance, it’s important to be able
to tell “…what happened in the moments leading up a to security
event.” That’s how you identify patterns of suspicious activity. In the
past, it was difficult to do this, particularly to do it quickly. Using
Hadoop has changed that with a completely new way to deal with
large-scale data. Hadoop handles massive amounts of data and can
be scaled horizontally as demands grow. Solutionary also requires
speed to deal with sophisticated threats. Using Hadoop, Solutionary
is able to detect and analyze a suspected security threat across all their
clients in milliseconds as compared to as much as 20 minutes with
previous solutions.

Solutionary carries out realtime analytics on huge volumes of event
and user activity data. Hadoop provides an enormous advantage here:
it makes it possible to pull in both structured and unstructured data
that can be analyzed on the same infrastructure, something that was
not possible with traditional systems. Being able to use a larger range
of data formats and larger data volumes while maintaining high per‐
formance enables Solutionary to get a much finer-grained view of
client traffic, which in turn improves the accuracy of their security
analytics.

References: “Is There A Big Data Bubble?” in Datamation, February
2014, by Jeff Vance.

“Solutionary Boosts Security with Cisco and MapR Technologies’.
Cisco external Customer Case Study, 2013.

74 | Chapter 6: Customer Stories

http://bit.ly/1Irz29R
http://bit.ly/1DDFUkA


Sensor Data, Predictive Maintenance, and a
“Time Machine”
Big data is also having a big impact in the real world of machines. In
industrial settings, the idea of smart parts is becoming a very impor‐
tant concept. The idea behind smart parts is that complex components
such as turbines or generators have a significantly higher value to those
who buy them if the components come with a service to monitor and
analyze operational data measured inside the component.

The reason for this higher value is simply that the intelligent analysis
of these measurements makes it possible to understand what is going
on in the system and that, in turn, allows much lower failure rates while
also having lower maintenance costs. Consumers are willing to not
only pass some of these savings back to the service provider, but they
also value lower variability in the operation of the equipment. This
trend toward smart is not isolated to vendors who offer this service.
A company that retains and analyzes sensor data themselves can get a
payoff in big ways.

One payoff is the ability to do predictive maintenance. This is a rela‐
tively new and attractive concept that is quickly spreading as sensors
become more widespread and companies employ scalable solutions
such as Hadoop and NoSQL to handle the large data load needed to
do this. This topic may be unfamiliar to you, so we describe it here in
a bit more detail than familiar use cases. The basic idea is that the
companies that operate industrial systems typically have extensive
histories on every significant component in their enterprise resource
planning systems (ERP) and also have extensive sensor data from the
components themselves stored in plant historian software. The ERP
histories record where the component was installed and when it was
maintained or refurbished. The ERP histories also record information
about failures or unscheduled maintenance windows. The sensor data
complements the ERP histories by providing detailed information on
how the components were actually operated and under what circum‐
stances.

Sensor Data, Predictive Maintenance, and a “Time Machine” | 75



Combining historical information from the ERP with realtime sensor
data from the plant historians allows machine learning to be applied
to the problem of building models that explain the causal chain of
events and conditions that leads to outages and failures. With these
models in hand, companies can do predictive maintenance so they can
deal with problems before the problems actually manifest as failures.
Indeed, maintenance actions can be scheduled intelligently based on
knowledge of what is actually happening inside the components in
question. Unnecessary and possibly damaging maintenance can be
deferred and important maintenance actions can be moved earlier to
coincide with scheduled maintenance windows. These simple sched‐
uling adjustments can decrease maintenance costs significantly, but
just as importantly, they generally help make things run more smooth‐
ly, saving money and avoiding problems in the process.

A Time Machine
The idea of building models to predict maintenance requirements is
a powerful one and has very significant operational impacts, but if you
use the capabilities of big data systems to store more information, you
can do even more. It is common to retain the realtime measurements
from industrial systems for no more than a few weeks, and often much
less. With Hadoop, the prior limitations on system scalability and
storage size become essentially irrelevant, and it becomes very prac‐
tical to store years of realtime measurement data. These longer his‐
tories allow a categorical change in the analysis for predictive main‐
tenance. Essentially what these histories provide is a time machine.
They allow us to look back before a problem manifested, before dam‐
age to a component was found, as suggested by the illustration in
Figure 6-2.

76 | Chapter 6: Customer Stories



Figure 6-2. Looking for what was happening just before a failure oc‐
curred provides valuable insight into what might be the cause as well
as suggesting an anomalous pattern that might serve as a flag for po‐
tential problems. (Image courtesy of MTell.)

When we look back before these problems, it is fairly common that
these learning systems can see into the causes of the problems. In
Figure 6-3, we show a conceptual example of this technique. Suppose
in this system that wet gas is first cooled to encourage condensation,
liquid is removed in a separator, and then dry gas is compressed before
sending it down a pipeline.

Sensor Data, Predictive Maintenance, and a “Time Machine” | 77



Figure 6-3. In this hypothetical system, a vibration is noted in the
bearings of the compressor, leading to substantial maintenance repair
action (actually a complete overhaul), but what caused the vibration?
We perhaps could have discovered the vibration earlier using anom‐
aly detection, to prevent a catastrophic failure. Even better would be
to use enough data and sophisticated analytics to discover that the
cause of the pump problems actually was upstream, in the form of
degradation in the operation of the cooler.

During operations, vibration is noted to be increasing slowly in the
compressor. This is not normal and can result from imbalance in the
compressor itself, which if not rectified could lead to catastrophic fail‐
ure of the compressor bearings, which in very high-speed compressors
could cause as much damage as if an explosive had been detonated in
the system. Catching the vibration early can help avoid total failure of
the system. The problem, however, is that by the time the vibration is
detectable, the damage to bearings and compressor blades is already
extensive enough that a complete overhaul is probably necessary.

If we keep longer sensor histories, however, and use good machine
learning methods, we might be able to discover that the failure (or
failures, if we look across a wide array of similar installations) was
preceded by degradation of the upstream chiller. Physically speaking,
what this does is increase the temperature, and thus volume of the gas
exiting the cooler, which in turn increases the gas velocity in the sep‐

78 | Chapter 6: Customer Stories



arator. Increased velocity, in turn, causes entrainment of liquid drops
into the gas stream as it enters the compressor. It is these drops that
cause erosion of the compressor fan and eventual failure. With a good
model produced from longer histories, we might fix the cooler early
on, which would avoid the later erosion of the pump entirely. Without
long sensor histories, the connection between the cooler malfunction
and the ultimate failure would likely remain obscure.

This example shows how retrospective analysis with knowledge from
the ERP about component failures and previous maintenance actions
can do much more than techniques such as anomaly detection on their
own. As noted in Figure 6-4, observing the degradations in operation
that are the incipient causes of failures can prevent system damage and
save enormous amounts of time and money.

Figure 6-4. Early detection of the causes of failure can allow predictive
alerts to be issued before real damage is done. (Image courtesy of
MTell.)

It is very important to note that this idea of applying predictive ana‐
lytics to data from multiple databases to understand how things work
and how they break employs general techniques that have wider ap‐
plicability than just in the operation of physical things. These techni‐

Sensor Data, Predictive Maintenance, and a “Time Machine” | 79



ques, for instance, are directly applicable to software artifacts or phys‐
ical things that are largely software driven and that emit diagnostic
logs. How software breaks is very different, of course, from the way a
ball bearing or turbine blade breaks, and the causal changes that cause
these failures are very different as well. Wear is a physical phenomenon
while version numbers are a software phenomenon. Physical meas‐
urements tend to be continuous values while software often has dis‐
crete events embedded in time. The specific algorithms for the ma‐
chine learning will be somewhat different as well. Nevertheless, the
idea of finding hints about causes of failure in historical measurements
or events still applies.

The general ideas described here also have some similarities to the
approaches taken in security analytics in the financial industry, as
mentioned previously in this chapter, with the difference being that
security analytics often has much more of a focus on forensics and
anomaly detection. This difference in focus comes not only because
the data is different, but also because there are (hopefully) fewer se‐
curity failures to learn from.

MTell
MTell is a MapR partner who provides a product that is an ideal ex‐
ample of how to do predictive maintenance. MTell’s equipment mon‐
itoring and failure detection software incorporates advanced machine
learning to correlate the management, reliability, and process history
of equipment against sensor readings from the equipment.

The software that MTell has developed is able to recognize multi-
dimensional and temporal motifs that represent precursors of defects
or failures. In addition to recognizing the faults, the MTell software
is even able to enter job tickets to schedule critical work when faults
are found or predicted with high enough probability, as suggested by
Figure 6-3.

The primary customers for MTell’s products are companies for which
equipment failure would cause serious loss. Not only can these com‐
panies benefit from the software, but the potential for loss also means
that these companies are likely to keep good records of maintenance.
That makes it possible to get training data for the machine learning
systems. The primary industries that MTell serves are oil and gas,
mining, and pharmaceuticals, all examples of industries with the po‐
tential for very high costs for equipment failure.

80 | Chapter 6: Customer Stories



In addition, MTell’s software is able to learn about equipment char‐
acteristics and failure modes across an entire industry, subject to
company-specific confidentiality requirements. This means that the
MTell can help diagnose faults for customers who may have never
before seen the problem being diagnosed. This crowdsourcing of re‐
liability information and failure signatures provides substantial ad‐
vantages over systems that work in isolation.

Manufacturing
Manufacturing is an industry where Hadoop has huge potential in
many areas. Such companies engage in a complex business that in‐
volves physical inventory, purchase of raw materials, quality assurance
in the manufacturing process itself, logistics of delivery, marketing and
sales, customer relations, security requirements, and more. After
building the product, the sales process can be nearly as complicated
as making the product in the first place. As with other sectors, man‐
ufacturers often start their Hadoop experience with a data warehouse–
optimization project. Consider, for example, the issues faced by man‐
ufacturers of electronic equipment, several of whom are MapR cus‐
tomers. They all share the common trait of depending on large data
warehouses for important aspects of their business, and Hadoop offers
considerable savings.

After initial data warehouse optimization projects, companies have
differed somewhat in their follow-on projects. The most common
follow-ons include recommendation engines both for products and
for textual information, analysis of device telemetry for extended
after-purchase QA, and the construction of customer 360 systems that
include data for both web-based and in-person interactions.

One surprising common characteristic of these companies is that they
have very large websites. For example, one manufacturer’s website has
more than 10 million pages This is not all that far off from the size of
the entire web when Google’s search engine was first introduced. In‐
ternally, these companies often have millions of pages of documenta‐
tion as well, some suitable for public use, some for internal purposes.
Organizing this content base manually in a comprehensive way is
simply infeasible. Organizing automatically by content is also infea‐
sible since there are often secondary, largely social, characteristics that
are critical. For instance, the content itself often doesn’t provide au‐
thoritative cues about which of 40 nearly identical copies of a docu‐

Manufacturing | 81



ment is the one most commonly read or cited. Such a mass of infor‐
mation can be understood, however, if you can combine content
search with recommendation technology to improve the user experi‐
ence around this sort of textual information.

These companies also have complex product lines that have a large
number of products, each of which is complicated in its own right.
This overall complexity produces inherent challenges in the sales pro‐
cess for these companies, and that complexity is exacerbated by the
fact that a large customer often has hundreds of contact points that
must be managed.

A Hadoop system can help manage this complexity by allowing the
creation of a customer 360 use case in which all interactions with cus‐
tomers are recorded and organized. This record can then be used to
build models of the sales process and its timing that, in turn, can be
used to provide guidance to the sales team. Recommendation tech‐
nology can be used to build a first cut for these models, but there is a
high likelihood that more complex models will be needed to model
the complexity of all of the interactions between different sales and
marketing contacts with a customer.

Extending Quality Assurance
One very interesting characteristic of large electronic manufacturers
is the analysis of telemetry data from the products they have sold. The
quantity of data produced and the need for long-term storage to sup‐
port analytics makes this an excellent use case for Hadoop. Here’s the
situation. Products that these manufacturers build and sell will often
“phone home” with diagnostic information about feature usage, phys‐
ical wear measurements, and any recent malfunctions. These status
updates typically arrive at highly variable rates and are difficult to
process well without tools that support complex, semi-structured data.
In a sense, these phone-home products extend the period for quality
assurance beyond the manufacturing process all the way to the end of
the product life. Using telemetry data well can dramatically improve
the way that products are designed since real effects of design and
process changes can be observed directly. It has even been reported
that telemetry data can be used to find or prevent warranty fraud since
direct and objective evidence is available about how the equipment is
working.

82 | Chapter 6: Customer Stories



Cisco Systems
Cisco Systems provides a classic story of the evolution of Hadoop use.
Today, this huge corporation uses MapR’s distribution for Hadoop in
many different divisions and projects, including Cisco-IT and Cisco’s
Global Security Intelligence Operations (SIO), but they started with
Hadoop in a simple way. Like many others, Cisco’s first Hadoop
project was data warehouse offload. Moving some of the processing
to Hadoop let them do it with one-tenth the cost of the traditional
system. That was just the start.

Seeing Hadoop in the big picture of an organization helps you plan
for the future. By making Hadoop part of their comprehensive in‐
formation plan, Cisco was well positioned to try use cases beyond the
original project. It’s also important when moving to production to
consider how Hadoop fits in with existing operations. You should
evaluate your combination of tools for appropriate levels of perfor‐
mance and availability to be able to meet SLAs. Keep in mind that in
many situations, Hadoop complements rather than replaces tradi‐
tional data processing tools but opens the way to using unstructured
data and to handling very large datasets at much lower cost than a
traditional-only system.

Now Cisco has Hadoop integrated throughout their organization. For
example, they have put Hadoop to use with their marketing solutions,
working with both online and offline customer settings. Cisco-IT
found that in some use cases they could analyze 25% more data in
10% of the time needed with traditional tools, which let them improve
the frequency of their reporting.

One of the most important ways in which Cisco uses Hadoop is to
support their SIO. For example, this group has ingested 20 terabytes
per day of raw data onto a 60-node MapR cluster in Silicon Valley
from global data centers. They need to be able to collect up to a million
events per second from tens of thousands of sensors. Their security
analytics include stream processing for realtime detection, using Ha‐
doop ecosystem tools such as Apache Storm, Apache Spark Stream‐
ing, and Truviso. Cisco’s engineers also do SQL-on-Hadoop queries
on customers’ log data and use batch processing to build machine
learning models. From a simple first project to integration into wide‐
spread architecture, Hadoop is providing Cisco with some excellent
scalable solutions.

References: “Seeking Hadoop Best Practices for Production” in Tech‐
Target, March 2014, by Jack Vaughn.

Manufacturing | 83

http://bit.ly/1yd4hCy


“A Peek Inside Cisco’s Security Machine” in Datanami, February 2014,
by Alex Woodie.

“How Cisco IT Built Big Data Platform to Transform Data Manage‐
ment”, Cisco IT Case Study, August 2013.

84 | Chapter 6: Customer Stories

http://bit.ly/1z8U0s
http://bit.ly/1u52kCC
http://bit.ly/1u52kCC


CHAPTER 7

What’s Next?

We’re enthusiastic about Hadoop and NoSQL technologies as power‐
ful and disruptive solutions to address existing and emerging chal‐
lenges, and it’s no secret that we like the capabilities that the MapR
distribution offers. Furthermore, we’ve based the customer stories we
describe here on what MapR customers are doing with Hadoop, so it’s
not surprising if this book feels a bit MapR-centric. The main message
we want to convey, however, is about the stunning potential of Hadoop
and its associated tools.

Seeing Hadoop in the real world shows that it has moved beyond being
an interesting experimental technology that shows promise—it is liv‐
ing up to that promise. Regardless of which Hadoop distribution you
may use, your computing horizons are wider because of it. Big data
isn’t just big volume—it also changes the insights you can gain. Having
a low-cost way to collect, store, and analyze very big datasets and new
data formats has the potential to help you do more accurate analytics
and machine learning. While Hadoop and NoSQL databases are not
the only way to deal with data at this scale, they are an attractive option
whose user base is growing rapidly.

As you read the use cases and tips in this book, you should recognize
basic patterns of how you can use Hadoop to your advantage, both on
its own and as a companion to traditional data warehouses and data‐
bases.

Those who are new to Hadoop should find that you have a better un‐
derstanding of what Hadoop does well. This insight lets you think
about what you’d like to be able to do (what’s on your wish list) and
understand whether or not Hadoop is a good match. One of the most

85



important suggestions is to initially pick one thing you want to do and
try it. Another key suggestion is to learn to think differently about data
—for example, to move away from the traditional idea of downsam‐
pling, analyzing, and discarding data to a new view of saving larger
amounts of data from more sources for longer periods of time. In any
case, the sooner you start your first project, the sooner you build a
Hadoop experience on your big data team.

If you are already an experienced Hadoop user, we hope you will ben‐
efit from some of the tips we have provided, such as how to think about
data balance when you expand a cluster or find it useful to exploit
search technology to quickly build a powerful recommendation en‐
gine. The collection of prototypical use cases (Chapter 5) and customer
stories (Chapter 6) may also inspire you to think about how you want
to expand the ways in which you use Hadoop. Hadoop best practices
change quickly, and looking at others’ experiences is always valuable.

Looking forward, we think that using Hadoop (any of the options) will
get easier, in terms of refinement of the technology itself but also
through having a larger pool of Hadoop-experienced talent from
which to build your big data teams. As more organizations try out
Hadoop, you’ll also hear about new ways to put it to work. And we
think in the near future there will be a lot more Hadoop applications
from which to choose.

We also think there will be changes and improvements in some of the
resource-management options for Hadoop systems, as well as new
open source and enterprise tools and services for analytics. But as you
move forward, don’t get distracted by details—keep the goals in sight:
to put the scalability and flexibility of Hadoop and NoSQL databases
to work as an integral part of your overall organizational plans.

So the best answer to the question, “What’s next?,” is up to you. How
will you use Hadoop in the real world?

86 | Chapter 7: What’s Next?



APPENDIX A

Additional Resources

The following open source Apache Foundation projects are the inspi‐
ration for the revolution described in this book.
Apache Hadoop

A distributed computing system for large-scale data

Apache HBase
A non-relational NoSQL database that runs on Hadoop

The following projects provide core tools among those described in
this book.
Apache Drill

A flexible, ad hoc SQL-on-Hadoop query engine that can use nes‐
ted data

Apache Hive
A SQL-like query engine, the first to provide this type of approach
for Hadoop

Apache Spark
An in-memory query processing tool that includes a realtime
processing component

Apache Storm
Realtime stream processing tool

Apache Kafka
Message-queuing system

Apache Solr
Search technology based on Apache Lucene

87

http://hadoop.apache.org
http://hbase.apache.org
http://drill.apache.org
https://hive.apache.org
https://spark.apache.org
https://storm.apache.org
http://kafka.apache.org
http://lucene.apache.org/solr/


ElasticSearch
Search technology based on Apache Lucene

The use cases described in this book are based on the Hadoop distri‐
bution from MapR Technologies.

For cluster validation, there is a github repository that contains a va‐
riety of preinstallation tests that are used by MapR to verify correct
hardware operation. Since these are preinstallation tests, they can be
used to validate clusters before installing other Hadoop distributions
as well.

Additional Publications
The authors have also written these short books published by O’Reilly
that provide additional detail about some of the techniques mentioned
in the Hadoop and NoSQL use cases covered in this book.

• Practical Machine Learning: Innovations in Recommendation
(February 2014)

• Practical Machine Learning: A New Look at Anomaly Detection
(June 2014)

• Time Series Databases: New Ways to Store and Access Data (Oc‐
tober 2014)

88 | Appendix A: Additional Resources

http://www.elasticsearch.org
https://www.mapr.com
https://www.mapr.com
https://github.com/MapRPS/cluster-validation
http://oreil.ly/1qt7riC
http://bit.ly/anomaly_detection
http://oreil.ly/1ulZnOf


About the Authors
Ted Dunning is Chief Applications Architect at MapR Technologies
and active in the open source community, being a committer and PMC
member of the Apache Mahout, Apache ZooKeeper, and Apache Drill
projects, and serving as a mentor for the Storm, Flink, Optiq, and
Datafu Apache incubator projects. He has contributed to Mahout
clustering, classification, matrix decomposition algorithms, and the
new Mahout Math library, and recently designed the t-digest algo‐
rithm used in several open source projects.

Ted was the chief architect behind the MusicMatch (now Yahoo Music)
and Veoh recommendation systems, built fraud-detection systems for
ID Analytics (LifeLock), and has 24 issued patents to date. Ted has a
PhD in computing science from University of Sheffield. When he’s not
doing data science, he plays guitar and mandolin. Ted is on Twitter at
@ted_dunning.

Ellen Friedman is a solutions consultant and well-known speaker and
author, currently writing mainly about big data topics. She is a com‐
mitter for the Apache Mahout project and a contributor to the Apache
Drill project. With a PhD in Biochemistry from Rice University, she
has years of experience as a research scientist and has written about a
variety of technical topics including molecular biology, nontraditional
inheritance, oceanography, and large-scale computing. Ellen is also
co-author of a book of magic-themed cartoons, A Rabbit Under the
Hat. Ellen is on Twitter at @Ellen_Friedman.

Colophon
The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.



Make Data Work
strataconf.com

Presented by O’Reilly and Cloudera, 
Strata + Hadoop World is where 
cutting-edge data science and new 
business fundamentals intersect—
and merge.

n Learn business applications of  
data technologies

n Develop new skills through 
trainings and in-depth tutorials

n Connect with an international 
community of thousands who 
work with data

Job # 141349


	Copyright
	Table of Contents
	Preface
	How to Use This Book

	Chapter 1. Turning to Apache Hadoop and NoSQL Solutions
	A Day in the Life of a Big Data Project
	From Aadhaar to Your Own Big Data Project
	What Hadoop and NoSQL Do
	When Are Hadoop and NoSQL the Right Choice?

	Chapter 2. What the Hadoop Ecosystem Offers
	Typical Functions
	Data Storage and Persistence
	Data Ingest
	Apache Kafka
	Apache Sqoop
	Apache Flume

	Data Extraction from Hadoop
	Processing, Transforming, Querying
	Streaming
	Micro-batching
	Batch Processing
	Interactive Query
	Search Abuse—Using Search and Indexing for Interactive Query
	Visualization Tools

	Integration via ODBC and JDBC

	Chapter 3. Understanding the MapR Distribution for Apache Hadoop
	Use of Existing Non-Hadoop Applications
	Making Use of a Realtime Distributed File System
	Meeting SLAs
	Deploying Data at Scale to Remote Locations
	Consistent Data Versioning
	Finding the Keys to Success

	Chapter 4. Decisions That Drive Successful Hadoop Projects
	Tip #1: Pick One Thing to Do First
	Tip #2: Shift Your Thinking
	Tip #3: Start Conservatively But Plan to Expand
	Tip #4: Be Honest with Yourself
	Tip #5: Plan Ahead for Maintenance
	Tip #6: Think Big: Don’t Underestimate What You Can (and Will) Want to Do
	Tip #7:  Explore New Data Formats
	Tip #8: Consider Data Placement When You Expand a Cluster
	Tip #9: Plot Your Expansion
	Tip #10: Form a Queue to the Right, Please
	Tip #11: Provide Reliable Primary Persistence When Using Search Tools
	Tip #12: Establish Remote Clusters for Disaster Recovery
	Tip #13: Take a Complete View of Performance
	Tip #14: Read Our Other Books (Really!)
	Tip # 15: Just Do It

	Chapter 5. Prototypical Hadoop Use Cases
	Data Warehouse Optimization
	Data Hub
	Customer 360
	Recommendation Engine
	Marketing Optimization
	Large Object Store
	Log Processing
	Realtime Analytics
	Time Series Database

	Chapter 6. Customer Stories
	Telecoms
	What Customers Want
	Working with Money
	Sensor Data, Predictive Maintenance, and a “Time Machine”
	A Time Machine

	Manufacturing
	Extending Quality Assurance


	Chapter 7. What’s Next?
	Appendix A. Additional Resources
	Additional Publications

	About the Authors

