
www.allitebooks.com

http://www.allitebooks.org


RestKit for iOS

Link your apps and web services using RestKit

Taras Kalapun

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


RestKit for iOS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded  
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy  
of the information presented. However, the information contained in this book  
is sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-78216-370-1

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Taras Kalapun

Reviewers
Angel Garcia Olloqui

Anthony Shoumikhin

Vladimir Pouzanov

Acquisition Editors
Usha Iyer

Julian Ursell

Commissioning Editor
Govindan K.

Technical Editors
Akashdeep Kundu

Krishnaveni Nair

Larissa Pinto

Project Coordinator
Joel Goveya

Proofreader
Jonathan Todd

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Production Coordinator 
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org


About the Author

Taras Kalapun has more than 10 years experience as a Software Developer and 
Consultant in Mobile and Web. His background spans numerous technologies, 
programming languages, and databases. He was involved in developing more 
than 100 iOS projects and web services, as well as project management activities. 
In addition, he managed teams of software developers who all wanted to kill 
him. Through his mentoring, tech leading, troubleshooting, and code reviewing, 
he discovered that teaching by example resulted in more effective software 
development. A method he supplemented with, "Stop trying to reinvent the 
wheel"—a favorite phrase he used to tell young software developers.

He has worked at a number of IT companies across Europe including Ukrtelecom, 
a national Ukrainian telecommunication company; Ciklum, a Dutch outstuffing 
company headquartered in Ukraine; and Xaton, an Amsterdam software 
development company, in addition to freelance projects.

Occasionally he publishes small how-to articles on solving development problems 
and impedances on his blog, http://kalapun.com, some of which progressed  
to the development of this book.

I would like to thank Mattt Thompson for creating the 
AFNetworking library and Blake Watters for writing the RestKit 
framework. Also, I would like to thank my friends and co-workers 
who helped me by reviewing the book.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Angel G. Olloqui is a computer engineer with a Master's degree in Web 
technologies. He specializes in mobile application development, with experience  
in using Agile methodologies, mainly SCRUM and some XP practices.

He started his career at Oracle but he quickly decided to start up his own company 
(Wixel Solutions). After a couple of years of entrepreneurship, when the first iOS SDK 
came live, he moved into the mobile sector by joining Mobivery. In Mobivery, he 
performed as the main developer and SCRUM master of the mobile team in Madrid.

By the end of 2011, after a short period of nine months in San Francisco (USA),  
he decided to continue his career back in Europe. Nowadays he lives in Amsterdam 
and works at Xaton as a senior iOS developer, participating in some of the  
best-known iOS apps in the Netherlands.

Vladimir Pouzanov is systems engineer and mobile development enthusiast.

He spent countless hours hacking on different mobile hardware, porting Linux 
to Palm® devices, and toying outside the iPhone sandbox. He has been doing 
professional iOS development and consultancy since the first Apple iPhones were 
available. Later on, he switched his professional interest to systems management and 
engineering, but he keeps a close eye on mobile and the embedded world of iPhones, 
Android devices, and Arduino-based gadgets.

Anthony Shoumikhin is one of those geeks who's jumped from low-level C++ 
system programming to a new and exciting world of mobile technologies, and has 
never regretted it.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers  
and more
You might want to visit www.PacktPub.com for support files and downloads related  
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and 
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch 
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up 
for a range of free newsletters and receive exclusive discounts and offers on Packt books 
and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Getting Started	 5

Simple usage example	 5
So what is RestKit?	 7
Why RestKit?	 8
RestKit components	 9
How it works?	 10
Adding RestKit and libraries	 11
MongoHQ – a MongoDB in clouds	 15
Trying basic stuff	 16
Object mapping fundamentals	 19
Data modeling	 20
Summary	 22

Chapter 2: Modeling and Loading Remote Objects	 23
Object Manager	 23
Sending requests with object manager	 28
Integrating with UI and DRYing the table view	 32
Requesting related objects	 36
RESTful object manipulation	 39
Routing inside out	 43
Entering data in forms	 46
Summary	 53

Chapter 3: Persistence with Core Data	 55
Setting up a database	 55

Database	 56
Collection	 56

Configuring	 57
Magical Record	 58

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Mogenerator	 60
Mapping	 62
Integrating with UI	 64
Database seeding	 66
Indexing and searching	 68
Summary	 71

Chapter 4: Advanced Stuff	 73
Reachability	 73
Logging	 75
Error mapping	 78
Metadata mapping	 79
Advanced object mapping techniques	 81
Batching operations	 82
Paginating results	 84
Authorization	 86

Basic	 86
Token-based	 86
OAuth 1.0	 87
OAuth 2.0	 88
SSL and certificates	 88

HTTP caching	 89
Background processing	 92
Custom HTTP client	 93
Summary	 94

Appendix A	 95
Appendix B	 97
Index	 101

www.allitebooks.com

http://www.allitebooks.org


Preface
You can ask yourself the question, "Why would I read the book about this library?" 
Of course, you can read the RestKit documentation. It's a perfect example of how  
to write down a good API reference for a framework. On the other hand, you can 
dive into researching the RestKit test cases, which is also nice and interesting,  
as the unit tests are covering almost all the functionalities of a framework. However,  
it won't make you happy.

While reading the API documentation is nice and it is full of simple examples for 
every class, it won't help you understand how to easily apply the framework in your 
daily jobs. Therefore, the key goal of this book is to provide guidance and real-life 
usage examples. We will start from a basic example of how to load a simple list  
of objects to creating a full-featured app, with advanced mapping techniques, Core 
Data integration, and so on.

What this book covers
Chapter 1, Getting Started, starts with the key concepts of RestKit, describes how  
to install it, and shows a short example of basic data loading.

Chapter 2, Modeling and Loading Remote Objects, describes how to configure RestKit 
and data mapping, how to use one-line methods to load objects and push them back 
to the server, and how to integrate the code with nice UI.

Chapter 3, Persistence with Core Data, describes how to make RestKit persist and 
synchronize data with Core Data databases.

Chapter 4, Advanced Stuff, covers some more advanced features of RestKit and 
AFNetworking libraries that developers might use in everyday app development 
and will help overcome potential bottlenecks.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 2 ]

Appendix A, Helpful Resources, lists links to nice guides that might be useful to  
a developer.

Appendix B, Helpful Libraries, lists links and describes some popular libraries that 
might be useful for developing iOS apps.

What you need for this book
A free Apple iOS Developer account with Xcode 4.5 running in OS X, and an Internet 
connection for downloading the RestKit and related libraries.

Who this book is for
iOS developers of all levels who are interested in boosting their productivity by 
using third-party libraries with a willingness to learn how to build RESTful apps 
using the RestKit framework. Basic knowledge of Objective-C is required and  
a simple understanding of how Core Data works.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"It heavily uses tables (such as UITableViewController) to present the loaded data 
(list of objects) to the user."

A block of code is set as follows:

// in MDatabase @implementation
- (NSString *)titleText
{
    return self.name;
}

- (NSString *)subtitleText
{
    return self.plan;
}



Preface

[ 3 ]

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

 [self setupObjectManager];

// Setup CoreData stack after Object Manager
[self setupCoreData];
[self setupMappings];

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "A Save 
button is added to the navigation controller, it triggers the saveAction method  
with the following code."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.



Preface

[ 4 ]

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com


Getting Started
RestKit is a well-known framework without much documentation. Even with its 
reference manual and accompanying blog posts, not much has been covered, especially 
in terms of practical usage. Not every developer has the time to indulge in figuring out 
RestKit on his own before starting a time-constrained project. Sounds familiar?

Learning a new framework comes with its required steps. Before jumping into 
RestKit libraries, object mapping fundamentals, and data modeling, we need to 
make the proper introductions. This chapter will start with a simple usage example 
to warm up the crowd, before elaborating on the whats, whys, and hows of 
RestKit, in addition to its components. This compact introduction will already have 
demonstrated how select real-life examples can provide the required insight into the 
world of RestKit.

As you know, nothing in this world is perfect, and so are REST APIs. Every single 
API I worked with has its own glitches and bottlenecks. So, we will discuss some  
of the possible bottlenecks with APIs, how to overcome them, and we will experience 
a few in the API that we will use in the example.

Simple usage example
We can show a simple example of using RestKit by loading this kind of JSON:

[
  {
    "hostname": "sandbox.mongohq.com",  
    "name": "Test",  
    "plan": "Sandbox",
    "port": 10097,
    "shared": true  
  },
  {
    "hostname": "second.mongohq.com",  



Getting Started

[ 6 ]

    "name": "Second",  
    "plan": "Second",
    "port": 10097,
    "shared": true  
  }
]

And mapping it to a list of database objects:

@interface MDatabase : NSObject
@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *plan;
@property (nonatomic, strong) NSString *hostname;
@property (nonatomic, strong) NSNumber *port;
@end

Would be just invoking this piece of code:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager getObjectsAtPath:@"/databases"  
               parameters:nil 
                  success:^(RKObjectRequestOperation *operation,  
RKMappingResult *mappingResult) 
{
    NSLog(@"Loaded databases: %@", [mappingResult array]);
} 
                failure:^(RKObjectRequestOperation *operation,  
                  NSError *error) 
{
    NSLog(@"Error on loading: %@", [error localizedDescription])
}];

As we see here, not much code. Of course, we will need some additional pre-setup  
to get this working, which we will cover later in this and the following chapter.



Chapter 1

[ 7 ]

So what is RestKit?
"I once told an Objective-C joke, but nobody got the message."

Many of us are being introduced with the concept of networking in iOS and Objective-C 
by playing with NSURLConnection. It's a base class for making any outgoing HTTP 
connection. However, after using it several times in a project, you may start building 
your personal networking library, of course, under the hood; it's still the same 
NSURLConnection, but most likely, you would write your own wrappers for it with 
additional bells and whistles. In addition, while using it, you may experience different 
bugs, glitches, and performance issues. Also, while using it in different projects, you 
will probably modify the code, find and fix bugs in it, but you will experience a lot of 
hassles in maintaining a "one codebase" of such a homegrown library.

So my personal opinion is "Don't re-invent the wheel. Don't re-invent a bicycle. 
Unless you really need a very custom one, with a big front wheel (as shown in  
the next figure), which might happen only in 1 percent of cases."

Try to keep things simple. In our case, the working bicycle can be a library  
called AFNetworking, which is a very useful networking library for iOS and OS X.  
The framework is built on top of Apple's Foundation technologies such  
as NSURLConnection, NSOperation, and others. It has a modular architecture and  
a well-designed API, which is quite easy to use. While being simple and easy-to-use, 
it also supports block-based programming, file uploads, reachability, and lots of other 
useful tasks that any developer might need. It is used by thousands of app developers 
and is highly maintained.



Getting Started

[ 8 ]

Now RestKit itself is a framework for implementing clients of RESTful web services, 
and feels like AFNetworking is on steroids. It provides a simple interface to build 
network communication while mapping HTTP requests and responses. Additionally, 
it has a powerful object-mapping engine that seamlessly integrates with the Core 
Data. It has an elegant, well-designed, fully documented, and fully tested set of APIs 
magically allowing easy accessing and modeling RESTful resources.

It greatly simplifies the application development by providing a solution by 
interconnecting your application's data model with JSON or XML documents, 
provided by a web service you are communicating with. It shifts a lot of logic for 
making requests and mapping the data to the library, thus giving a developer the 
ability to keep an application code simpler and less cluttered. It speeds up the 
development process by giving solutions and patterns for common problems that 
one can face, such as working with Core Data and doing network-related coding.

When thinking whether to use a RestKit library in your next project, consider  
a few things:

•	 Not every API will work with a RestKit library, especially the ones that 
follow the RPC (Remote Procedure Call) paradigm.

•	 Your backend web-service API is more or less RESTful. You can describe 
interactions with your web application with the CRUD (Create, Read, 
Update, and Delete) operations on resources.

•	 "Don't use a sledgehammer to crack a nut." If you just need a one-time 
request to a simple JSON in your app, reconsider using a RestKit library in 
favor of using something simple, such as AFNetworking.

•	 While developing a library, think if you can minimize a footprint of it and 
exclude dependencies on big third-party libraries, such as RestKit.

Why RestKit?
We can compare RestKit to some other popular or similar solutions:

•	 AFIncrementalStore (https://github.com/AFNetworking/
AFIncrementalStore): A new library from the creator of AFNetworking that 
works in a tight connection with Core Data. It is not yet very customizable, but 
still in its early development and has some possible bugs/performance issues.

•	 MagicalRecord mappers (https://github.com/magicalpanda/
MagicalRecord): It is still in development, not well-documented, and not 
actively used by developers.

•	 Parse (https://www.parse.com): Can be used only with their web services.



Chapter 1

[ 9 ]

•	 KeyValueObjectMapping (https://github.com/dchohfi/
KeyValueObjectMapping): It is a small new library that is not documented 
yet, not fully-tested, and possibly has some performance issues.

•	 SLRESTfulCoreData (https://github.com/OliverLetterer/
SLRESTfulCoreData): It is new and documentation is a bit confusing,  
and the code is not documented.

•	 Mantle (https://github.com/github/Mantle/): An interesting library 
from GitHub for creating a model layer. It is designed to be used more as 
in-memory storage, doesn't connect easily with Core Data, and needs some 
experience to set up and configure every model.

As we can see here, there are numerous libraries that do mapping of objects, or 
simplify the development by making hidden requests while fetching data from Core 
Data. Some of them are quite interesting to check and study—depending on a type 
of project one is doing. The downside of the earlier-mentioned libraries is that these 
solutions are relatively new, still in active development, or quite complex to set up.

RestKit components
RestKit ships as a single framework to the end user, but internally, it is composed by 
several interconnected components. We have described the parts of RestKit in the 
following list:

•	 Object manager: One of the main components of a RestKit library. It works 
as a bridge between it and other components, and provides one-line methods 
for "getting the work done".

•	 Object mapping: One of the main functional components of RestKit. The 
object mapping system enables a mechanism to express the transformation  
of objects between representations using KVC and the dynamic features  
of the Objective-C runtime.

•	 Networking: This feature integrates object mapping with the HTTP network 
layer provided by AFNetworking. It has the ability to make serialization and 
deserialization of JSON/XML objects, bind mapping descriptions with HTTP 
requests and responses, generate URLs from path patterns, route,  
and serialize local objects into HTTP parameters.

•	 Core Data: This component is responsible for the integration between 
the object mapping and networking components and Apple's Core Data 
framework. Mostly, it includes a special Core-Data-related implementation  
of some parts from the object mapping and networking layers, and also 
specific functionality for the relationship connection of managed objects.



Getting Started

[ 10 ]

•	 Search: Specific parts related to Core Data components that are responsible 
for indexing and searching of managed objects. It includes a tokenizer, 
indexer, and API for generating search predicates to be used while querying 
indexed objects.

•	 Testing: Helps developing unit tests with ease by providing helpers and 
mocking abilities for RestKit components. Also includes helpers to build  
and use test fixtures.

How it works?
We can describe how you interact with RestKit by looking at the following sample 
sequence diagram for getting data:

RestKit usage sequence diagram



Chapter 1

[ 11 ]

When you, as a Caller, wish to get data from a Remote web service, you ask for it  
on RestKit. It then decides on a strategy and gets the paths and mapping information 
by checking a configuration for the particular type of objects that you want. RestKit 
uses AFNetworking under the hood to do the actual data retrieving from the Remote 
and parsing in to NSDictionary or NSArray. AFNetworking itself checks with 
NSURLCache if it should make a request again, or use the cache. (We'll discuss this 
in detail in Chapter 4, Advanced Stuff in the HTTP Caching section). AFNetworking 
then gives back the response to a RestKit, along with all additional information, 
which were gathered during the "request-response-parse sequence".

If you're not using Core Data for this type of objects (we can call it "In-Memory 
object"), RestKit creates new instances of the object, and maps a response data to it.  
It then returns the object(s) back to the Caller.

Now if you are using Core Data, and the object is a Managed object, RestKit will 
first check with the Core Data if it already has an object with a similar ID. It will also 
check if the object in response has a deleted flag. It will then do the mapping and 
update/delete the particular object, and check how to deal with orphan objects. At 
the end, it will return the resultant objects to the user. Core Data itself will notify  
all its observers via Key Value Observing (KVO) about the changes.

Adding RestKit and libraries
It used to be quite hard to add third-party libraries to Mac or iOS projects. You 
would have to deal with all sorts of dependencies, configuring special behavior,  
and spend days on integrating big libraries to your project.

This was not an issue for some other platforms. C# with Visual Studio has had 
the NuGet package manager for quite a while. And Ruby has its RubyGems with 
Bundler. Recently, the situation has changed for iOS and Mac app developers. 
Highly inspired by Ruby's Bundler, a new package manager for us arrived—
CocoaPods. It is the best way to manage library discrepancies in Objective-C projects.

Now in comparison to RubyGems' Gemfile, CocoaPods uses a so-called Podfile, 
where a developer lists the names of a library he is willing to use and his version. 
By the way, it uses Podspec files to describe how a particular library should be 
integrated with your project. Actually, CocoaPods is using an Xcode Workspace  
for the integration between your project and a Pods project, which includes all  
third-party libraries.

www.allitebooks.com

http://www.allitebooks.org


Getting Started

[ 12 ]

If you have never installed a CocoaPods package manager before, let's do so! You 
start by executing the following commands:

$ [sudo] gem install cocoapods

$ pod setup

The pod is an executable package, which is installed with CocoaPods.

Next, we want to search the Spec repository using the following command to get, 
which version of RestKit is available as of today:

$ pod search RestKit

The result might look like this:

bash-3.2$ pod search RestKit

-> RestKit (0.20.3)
   RestKit is a framework for consuming and modeling RESTful web 
resources on iOS and OS X.
   pod 'RestKit', '~> 0.20.3'
   - Homepage: http://www.restkit.org
   - Source:   https://github.com/RestKit/RestKit.git
   - Versions: 0.20.3, 0.20.2, 0.20.1, 0.20.0, 0.20.0-rc1, 0.20.0- 
pre6, 0.20.0pre5, 0.20.0-pre4, 0.20.0-pre3, 0.20.0-pre2, 0.20.0-pre1,  
0.10.3, 0.10.2, 0.10.1, 0.10.0 [master repo]
   - Sub specs:
     - RestKit/Core (0.20.3)
     - RestKit/ObjectMapping (0.20.3)
     - RestKit/Network (0.20.3)
     - RestKit/CoreData (0.20.3)
     - RestKit/Testing (0.20.3)
     - RestKit/Search (0.20.3)
     - RestKit/Support (0.20.3) 

In addition, you can also hit your browser to view the official website of CocoaPods 
(http://CocoaPods.org), where you will be able to use the web-based search and 
get more info on the available packages and CocoaPods news.

Now change to the directory of your Xcode project, and create (or edit) your Podfile 
with your favorite text editor and add RestKit (or create it using Xcode if you like):

$ cd /path/to/MyProject
$ nano Podfile

# Platform - ios, mac



Chapter 1

[ 13 ]

platform :ios, '5.1'

# List of libraries to install
pod 'RestKit', '~> 0.20.3'

# Testing and Search are optional components
pod 'RestKit/Testing'
pod 'RestKit/Search'

By specifying the platform and its version we want to be sure that all libraries  
and dependencies we are using will smoothly run on the target.

Now with RestKit, ~> 0.20.3 in the previous command-line snippet, means we 
want to use at least Version 0.20.3 or advanced in the range of 0.20.X. If you skip 
specifying the version, CocoaPods will install the latest.

If you enter pod  'RestKit', :head, CocoaPods will 
install the library from the latest sources. Or you can provide 
your source path (if you forked it, for example) by entering 
the following line of code:

pod  'RestKit',  :git  =>   
  'https://github.com/RestKit/RestKit.git'

Now it's time to install it in your project. Just run the following command:

$ pod install

And you will probably see the following output:

bash-3.2$ pod install

Analyzing dependencies

Downloading dependencies

Installing AFNetworking (1.3.2)

Installing RestKit (0.20.3)

Installing SOCKit (1.1)

Installing TransitionKit (1.1.1)

Generating Pods project

Integrating client project 

CocoaPods downloads the third-party code and creates a new workspace—a file 
named YourProject.xcworkspace. From now on, you will use the .xcworkspace 
file to open your project in Xcode.



Getting Started

[ 14 ]

As you can also see, CocoaPods will install some libraries (such as SOCKit) that  
we did not ask for. They are dependencies of a RestKit library, and are specified  
in a RestKit's Podspec file.

Run pod update to fetch and install the latest versions of packages. 
In addition, running [sudo] gem update cocoapods will update 
the CocoaPods manager to the latest version.

Once again, do not forget that you need to use workspace from now on. So to open 
your project in Xcode, one can shoot the following command in the terminal:

$ open MyProject.xcworkspace

The following screenshot shows the sample project tree in the workspace after 
installing RestKit and few other libraries.

Project tree in Xcode after installing a few libraries using CocoaPods



Chapter 1

[ 15 ]

Add the following line to your .pch file (it is a precompiled header file, which is 
automatically included in all source files of your project) to be able to use all RestKit 
components through your code:

#import <RestKit/RestKit.h>

If you've worked previously with RestKit 0.10, you 
should know that with the release of Version 0.20, it had 
major API changes, which are backwards incompatible. 
Consider checking RestKit's Wiki article Upgrading from 
v0.10.x to v0.20.0 in the following link:

https://github.com/RestKit/RestKit/wiki/
Upgrading-from-v0.10.x-to-v0.20.0

Please note that if your installation fails, it may be because you are installing with  
a version of Git lower than what CocoaPods is expecting. Please ensure that you are 
running Git 1.8.0 or higher by executing git --version. You can get a full picture 
of the installation details by executing pod install --verbose.

If you want to install RestKit as a Git submodule or from a release package, the best 
way is to follow the instructions on RestKit's Wiki article Installing RestKit v0.20.x as a 
Git Submodule in the following link:

https://github.com/RestKit/RestKit/wiki/Installing-RestKit-v0.20.x-
as-a-Git-Submodule

MongoHQ – a MongoDB in clouds
"Three DBAs walk into a NoSQL bar. A little while later they walk out because 
they couldn't find a table."

For our examples in this book, we will use a service in a cloud called MongoHQ.  
It's the most powerful platform for MongoDB hosting. Apart from providing one  
of the best MongoDB hosting solutions, they recently released a beta REST API  
for accessing their services. This is quite interesting for using in mobile clients,  
as accessing directly a MongoDB server is not the easiest of tasks.

MongoDB (from "humongous") is an open source document 
database and the leading NoSQL database.

 http://en.wikipedia.org/wiki/MongoDB



Getting Started

[ 16 ]

MongoDB's main difference from "classical" relational databases is that instead of 
storing data in tables, MongoDB stores structured data as JSON-like documents with 
dynamic schemas (MongoDB calls the format BSON), making the integration of data 
in certain types of applications easier and faster.

The nice part about it is if you are not sure beforehand on what your data will look 
like, the document-type databases are a weapon of choice. You can change the 
structure with ease almost on the fly; you don't need to run any migration scripts. 
This greatly simplifies development in the early stages and/or the startup phase.

Trying basic stuff
For our basic example, we will check the status of MongoHQ servers. For  
showing statuses, MongoHQ uses the Stashboard web app, which you can  
access at http://status.mongohq.com.

The following screenshot (cropped) shows the status page of the MongoHQ servers:

An example of Stashboard App usage is Twilio, with the status page at  
http://status.twilio.com, and the Status API endpoint at http://status.
twilio.com/api/v1/.

The documentation for a Stashboard API can be found at https://stashboard.
readthedocs.org/en/latest/restapi.html.

To keep going, first let's define our StatusItem object, looking at a possible data  
we will need:

// StatusItem.h
@interface StatusItem : NSObject



Chapter 1

[ 17 ]

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *itemDescription;
@property (nonatomic, strong) NSDate *timestamp;
@property (nonatomic, strong) NSString *eventMessage;
@property (nonatomic, strong) NSString *statusName;
@property (nonatomic, strong) NSString *imageUrl;

@end

// StatusItem.m
@implementation StatusItem

// for better debug information output
- (NSString *)description
{
    return [NSString stringWithFormat:@"%@ - %@", 
         self.name, self.eventMessage];
}
@end

Now let's try and load the current statuses:

// Method to load the status items
- (void)refresh
{
    // Setup the object mapping
    RKObjectMapping *mapping = [RKObjectMapping 
mappingForClass:[StatusItem class]];
    // From JSON -> To property
    [mapping addAttributeMappingsFromDictionary:@{
     @"name"                       : @"name",
     @"description"                : @"itemDescription",
     @"current-event.status.name"  : @"statusName",
     @"current-event.status.image" : @"imageUrl",
     @"current-event.timestamp"    : @"timestamp",
     @"current-event.message"      : @"eventMessage",
     }];
    
    // Define the response mapping
    // Map response with any status code in 2xx
    NSIndexSet *statusCodes = RKStatusCodeIndexSetForClass(RKStatusCod
eClassSuccessful);
    



Getting Started

[ 18 ]

RKResponseDescriptor *responseDescriptor = [RKResponseDescriptor  
      responseDescriptorWithMapping:mapping
                             method:RKRequestMethodAny 
                        pathPattern:@"/api/v1/services" 
                            keyPath:@"services" 
                        statusCodes:statusCodes];
    
    // Prepare the request operation
    NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL 
URLWithString:@"http://status.twilio.com/api/v1/services"]];
    RKObjectRequestOperation *operation = [[RKObjectRequestOperation 
alloc] initWithRequest:request responseDescriptors:@
[responseDescriptor]];
    
    // Set on completion and on error blocks
    [operation 
      setCompletionBlockWithSuccess:^(RKObjectRequestOperation 
*operation, RKMappingResult *result) 
    {
        NSLog(@"Loaded items: %@", [result array]);
    } 
                           failure:^(RKObjectRequestOperation 
*operation, NSError *error) 
    {
        NSLog(@"Failed with error: %@", [error localizedDescription]);        
    }];

    [operation start]; //Fire the request
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at  http://www.packtpub.com . If you 
purchased this book elsewhere, you can visit  http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In this example, we are using a RKObjectRequestOperation object. It performs 
a base operation in all RestKit requests. Even for more high-end user-friendly 
methods, it will be run under the hood.

When we run the example, we see the debugger output:

Loaded items: (
    "Aaron - All systems operational.",
    "Alex - Alex is operational.",
    "Arrow - All databases accessible and operating normally."
)



Chapter 1

[ 19 ]

If we put it in a table view (we will discuss about integrating RestKit and user 
interface best practices in Chapter 2, Modeling and Loading Remote Objects), it will  
look like the next screenshot:

Status of DBs

Object mapping fundamentals
The object mapping engine of a RestKit is built on the KVC informal protocol, which 
is foundational to numerous Cocoa technologies, such as Key-Value observing, 
bindings, and Core Data. After the response body was parsed, RestKit relies on KVC 
to identify the content that can be mapped and dynamically updates the attributes and 
relationships of your local domain objects with the appropriate content. Before diving 
into the details of RestKit's object mapping system, be sure to get familiar with Apple's 
Key-Value Coding and go through its programming guide at the following link:

http://developer.apple.com/library/mac/#documentation/Cocoa/
Conceptual/KeyValueCoding/Articles/KeyValueCoding.html



Getting Started

[ 20 ]

Using a highly dynamic Objective-C runtime, RestKit examines the type of source 
and destination properties of object and performs appropriate type transformations. 
For example, when a JSON is parsed and a source key path created_at (with a 
string content) is configured to be mapped to a destination key path, creationDate 
(this is an NSDate property on a target object), RestKit will transform the date 
from a string into an NSDate property using an NSDateFormatter. The other 
transformations can be string to number and vice versa, or a developer can build his 
own transformation strategy, if needed.

The mapper also fully supports relationship mappings, where nested to-one  
or to-many child objects are mapped recursively.

Data modeling
Let's discuss our basic example. We were loading data from the Status API endpoint, 
http://status.twilio.com/api/v1/services. If we visit this URL with our web 
browser, we see a JSON output similar to the following code:

{
  "services": [
    {
      "current-event": {
        "informational": false,
        "message": "All systems operational.",
        "sid": "ag5tb25nb2hxLXN0YXR1c3INCxIFRXZlbnQYi-gUDA",
        "status": {
          "description": "The service is up",
          "id": "up",
          "image":  
            "http:\/\/status.mongohq.com\/images\/status\/tick- 
            circle.png",
          "level": "NORMAL",
          "name": "Up",
          "url":  
            "http:\/\/status.mongohq.com\/api\/v1\/statuses\/up"
        },
        "timestamp": "Wed, 13 Mar 2013 18:10:21 GMT",
        "url":  
          "http:\/\/status.mongohq.com\/api\/v1\/services\/aaron\ 
          /events\/ag5tb25nb2hxLXN0YXR1c3INCxIFRXZlbnQYi-gUDA"
      },
      "description": "MongoDB Server",
      "id": "aaron",
      "name": "Aaron",
      "url":  
        "http:\/\/status.mongohq.com\/api\/v1\/services\/aaron"



Chapter 1

[ 21 ]

    },
 {
      "current-event": {
        "informational": false,
        "message": "Alex is operational.",
        "sid": "ag5tb25nb2hxLXN0YXR1c3INCxIFRXZlbnQY0coWDA",
        "status": {
          "description": "The service is up",
          "id": "up",
          "image":  
            "http:\/\/status.mongohq.com\/images\/status\/tick- 
            circle.png",
          "level": "NORMAL",
          "name": "Up",
          "url":  
            "http:\/\/status.mongohq.com\/api\/v1\/statuses\/up"
        },
        "timestamp": "Sat, 20 Apr 2013 15:23:20 GMT",
        "url":  
          "http:\/\/status.mongohq.com\/api\/v1\/services\/alex\ 
          /events\/ag5tb25nb2hxLXN0YXR1c3INCxIFRXZlbnQY0coWDA"
      },
      "description": "A sandbox environment for MongoHQ.",
      "id": "alex",
      "name": "Alex",
      "url":  
        "http:\/\/status.mongohq.com\/api\/v1\/services\/alex"
    }
  ]
}

When RestKit loads this JSON, first of all it parses it to the NSDictionary or 
NSArray response object. Then, looking at the mapping we provided, it will make 
a KVC query on the response object. If the value is found, it will check its type as 
well as the type of our target property. If the types don't match, RestKit will try to 
transform it. If one of such transformations is a timestamp mapping, which in JSON  
is a string, and on the target property it is NSDate, RestKit will parse the JSON 
string in to NSDate with default (or custom provided) NSDate formatter(s). If the 
parsing is successful, it will update our destination property.

Let's check our mapping again line by line:

We create the mapping for the StatusItem class:

RKObjectMapping *mapping = [RKObjectMapping  
mappingForClass:[StatusItem class]];

www.allitebooks.com

http://www.allitebooks.org


Getting Started

[ 22 ]

We tell how to map JSON objects to properties by providing an NSDictionary to the 
addAttributeMappingsFromDictionary method:

[mapping addAttributeMappingsFromDictionary:@{

Map name from JSON to the property name:

@"name": @"name",

We can't use some names for properties, such as id or description. So, we named 
description from JSON as itemDescription property:

@"description": @"itemDescription",

Here, RestKit will use KVC to get the value (asking name from status from  
current-event):

@"current-event.status.name" : @"statusName",
@"current-event.status.image": @"imageUrl",

It will parse the timestamp string in JSON and store it as an NSDate property:

@"current-event.timestamp": @"timestamp",

And here again it will use KVC to get message and store it in the  
eventMessage property:

@"current-event.message": @"eventMessage",
}];

Now that wasn't hard, was it?

Summary
In this chapter, we discovered what is RestKit, its components, and why it's good 
to keep things simple. We discovered a CocoaPods library manager and installed 
RestKit through it. We covered basic data modeling techniques, and tried a simple 
example by sending a request to a status page and getting parsed and mapped 
objects in response.

The next chapter will cover more about how to configure the RestKit, do the RESTful 
object manipulation, and integrate the code with our user interface, in detail. So let's 
move on!



Modeling and Loading 
Remote Objects

We can use the RKObjectRequestOperation class for every single request, as seen in 
the basic example of the previous chapter. But such code blocks will tend to be pretty 
big, and against the Don't Repeat Yourself (DRY) principle.

The most preferable way would be to configure all the API endpoints and their 
mapping configuration in one place, and then just use one-line request methods.

This chapter will describe how to configure our project to leverage such an approach 
using RKObjectManager and configured object mapping. Apart from discussing how 
to load the remote objects, we will get some knowledge on pushing data and objects 
back to the server. Additionally, the chapter will describe how to make our lives 
easier by using routing and integrate the code with Apps UI.

Object manager
The RKObjectManager class provides a centralized interface to configure the object 
mapping for request and response operations and perform such operations. It also 
provides helpers for the creation of NSURLRequest and RKObjectRequestOperation 
objects, and one-line methods to enqueue object request operations for basic HTTP 
request methods (GET, POST, PUT, DELETE, and so on).

Each object manager is configured with a base URL. It defines the relative URL for 
all requests that will be sent through the manager. One way to set the base URL 
is via the managerWithBaseURL method. This will initialize a new instance of the 
RKObjectManager class. The other ways are by configuring an AFHTTPClient class 
or creating a custom subclass—from the AFNetworking library. In this case, the base 
URL will be inherited by the object manager from an HTTP client class. The base 
URL can point to a root URL, or it can contain a path.



Modeling and Loading Remote Objects

[ 24 ]

While performing a request operation, the object manager will use the base 
URL and the provided request path, to construct the NSURL object with [NSURL 
URLWithString:relativeToURL:]. The way this method evaluates the relativity of 
the URL can sometimes be confusing and surprising, and one can experience a lot of 
errors regarding this. For example, a small part of the AFNetworking documentation is 
provided, so one can better understand how the base URL and different paths interact.

Let's take a base URL:

NSURL *baseURL = [NSURL URLWithString:@"http://example.com/v1/"];

Now:

[NSURL URLWithString:@"foo" relativeToURL:baseURL]; 
// Will give us http://example.com/v1/foo

[NSURL URLWithString:@"foo?bar=baz" relativeToURL:baseURL]; 
// -> http://example.com/v1/foo?bar=baz

[NSURL URLWithString:@"/foo" relativeToURL:baseURL]; 
// -> http://example.com/foo

[NSURL URLWithString:@"foo/" relativeToURL:baseURL]; 
// -> http://example.com/v1/foo

[NSURL URLWithString:@"/foo/" relativeToURL:baseURL]; 
// -> http://example.com/foo/

[NSURL URLWithString:@"http://example2.com/" relativeToURL:baseURL];
// -> http://example2.com/

Having the knowledge of what an object manager is, let's try to apply it in  
a real-life example.

Before proceeding, it is highly recommend that we check the actual documentation 
on REST API of MongoHQ. The current one is at the following link:

http://support.mongohq.com/mongohq-api/introduction.html

As there are no strict rules on REST API, every API is different and does a number of 
things in its own way. MongoHQ API is not an exception. In addition, it is currently 
in "beta" stage.



Chapter 2

[ 25 ]

Some of the non-standard things one can find in it are as follows:

•	 The API key should be provided as a parameter with every request. There 
is an undocumented way of how to provide it in Headers, which is a more 
common approach. The way to deal with providing it with every single 
request is described in Chapter 4, Advanced Stuff in the Custom HTTP Client 
section.

•	 Sometimes, if you get an error with the status code returned as 200 (OK), 
which is not according to REST standards, the normal way would be to 
return something in 4xx, which is stated as a client error. 

•	 Sometimes, while the output of an error message is a JSON string, the HTTP 
response Content-type header is set as text/plain.

To use the API, one will need a valid API Key. You can easily get one for free 
following a simple guideline recommended by the MongoHQ team:

1.	 Sign up for an account at http://MongoHQ.com.
2.	 Once logged in, click on the My Account drop-down menu at the top-right 

corner and select Account Settings.
3.	 Look for the section labeled API Token. From there, take your token.
4.	 We will put the API key into the MongoHQ-API-Token HTTP header. The 

following screenshot shows where one can find the API token key:

API Token on Account Info page



Modeling and Loading Remote Objects

[ 26 ]

So let's set up our configuration using the following steps:

You can use the AppDelegate class for putting the 
code, while I recommend using a separate MongoHqApi 
class for such App/API logic separation.

First, let's set up our object manager with the following code:

- (void)setupObjectManager
{
    NSString *baseUrl = @"https://api.mongohq.com";
     
    AFHTTPClient *httpClient = [[AFHTTPClient alloc]  
      initWithBaseURL:[NSURL URLWithString:baseUrl]];

    NSString *apiKey = @"MY_API_KEY";
    [httpClient setDefaultHeader:@"MongoHQ-API-Token"  
      value:apiKey];
    
    RKObjectManager *manager = [[RKObjectManager alloc]  
      initWithHTTPClient:httpClient];

    [RKMIMETypeSerialization  
      registerClass:[RKNSJSONSerialization class]  
      forMIMEType:@"text/plain"];
 
    [manager.HTTPClient  
      registerHTTPOperationClass:[AFJSONRequestOperation  
      class]];
    
    [manager setAcceptHeaderWithMIMEType:RKMIMETypeJSON];
    manager.requestSerializationMIMEType = RKMIMETypeJSON;
    
    [RKObjectManager setSharedManager:manager];
}

1.	 Let's look at the code line by line and set the base URL. Remember not to put 
a slash (/) at the end, otherwise, you might have a problem with response 
mapping:
NSString *baseUrl = @"https://api.mongohq.com";

2.	 Initialize the HTTP client with baseUrl:
AFHTTPClient *httpClient = [[AFHTTPClient alloc]  
initWithBaseURL:[NSURL URLWithString:baseUrl]];



Chapter 2

[ 27 ]

3.	 Set a few properties for our HTTP client, such as the API key in the header:
NSString *apiKey = @"MY_API_KEY";
[httpClient setDefaultHeader:@"MongoHQ-API-Token"  
value:apiKey];

For the real-world app, one can show an Enter Api Key 
view controller to the user, and use a NSUserDefaults 
or a keychain to store and retrieve it.

4.	 And initialize the RKObjectManager with our HTTP client:
RKObjectManager *manager = [[RKObjectManager alloc]  
  initWithHTTPClient:httpClient];

5.	 MongoHQ APIs sometimes return errors in text/plain, thus we explicitly 
will add text/plain as a JSON content type to properly parse errors:
[RKMIMETypeSerialization  
registerClass:[RKNSJSONSerialization   class]  
forMIMEType:@"text/plain"];

6.	 Register JSONRequestOperation to parse JSON in requests:
[manager.HTTPClient  
registerHTTPOperationClass:[AFJSONRequestOperation class]];

7.	 State that we are accepting JSON content type:
[manager setAcceptHeaderWithMIMEType:RKMIMETypeJSON];

8.	 Configure so that we want the outgoing objects to be serialized into JSON:
manager.requestSerializationMIMEType = RKMIMETypeJSON;

9.	 Finally, set the shared instance of the object manager, so that we can easily 
re-use it later:

[RKObjectManager setSharedManager:manager];



Modeling and Loading Remote Objects

[ 28 ]

Sending requests with object manager
Next, we want to query our databases. Let's first see how a database request will 
show us the output in JSON. To check this, go to http://api.mongohq.com/
databases?_apikey=YOUR_API_KEY in your web browser YOUR_API_KEY. If a 
JSON-formatter extension (https://github.com/rfletcher/safari-json-
formatter) is installed in your Safari browser, you will probably see the output 
shown in the following screenshot.

JSON response from API

As we see, the JSON representation of one database is:

[
 {
"hostname": "sandbox.mongohq.com",  
"name":     "Test",  
"plan":     "Sandbox",  
"port":     10097,
"shared":   true  
  }
]

Therefore, our possible MDatabase class could look like:

@interface MDatabase : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *plan;
@property (nonatomic, strong) NSString *hostname;
@property (nonatomic, strong) NSNumber *port;

@end



Chapter 2

[ 29 ]

We can also modify the @implementation section to override the description 
method, which will help us while debugging the application and printing the object:

// in @implementation MDatabase
- (NSString *)description
{
    return [NSString stringWithFormat:@"%@ on %@ @ %@:%@",
            self.name, self.plan, self.hostname, self.port];
}

Now let's set up a mapping for it:

- (void)setupDatabaseMappings
{
    RKObjectManager *manager = [RKObjectManager sharedManager];
    Class itemClass = [MDatabase class];
    NSString *itemsPath = @"/databases";
    
    RKObjectMapping *mapping = [RKObjectMapping  
      mappingForClass:itemClass];
    
    [mapping addAttributeMappingsFromArray:@[@"name", @"plan",  
      @"hostname", @"port"]];
      
    NSString *keyPath = nil;
    NSIndexSet *statusCodes =  
      RKStatusCodeIndexSetForClass(RKStatusCodeClassSuccessful);
    
    RKResponseDescriptor *responseDescriptor =  
      [RKResponseDescriptor
    responseDescriptorWithMapping:mapping
                           method:RKRequestMethodGET
                      pathPattern:itemsPath
                          keyPath:keyPath
                      statusCodes:statusCodes];
    
    [manager addResponseDescriptor:responseDescriptor];
}

Let's look at the mapping setup line by line:

1.	 First, we define a class, which we will use to map to:
Class itemClass = [MDatabase class];

2.	 And the endpoint we plan to request for getting a list of objects:
NSString *itemsPath = @"/databases";



Modeling and Loading Remote Objects

[ 30 ]

3.	 Then we create the RKObjectMapping mapping for our object class:
RKObjectMapping *mapping = [RKObjectMapping  
mappingForClass:itemClass];

4.	 If the names of JSON fields and class properties are the same, we will  
use an addAttributeMappingsFromArray method and provide the array  
of properties:
[mapping addAttributeMappingsFromArray:@[@"name", @"plan",  
@"hostname", @"port"]];

5.	 The root JSON key path in our case is nil. It means that there won't be one.
NSString *keyPath = nil;

6.	 The mapping will be triggered if a response status code is anything in 2xx:
NSIndexSet *statusCodes =  
RKStatusCodeIndexSetForClass(RKStatusCodeClassSuccessful);

7.	 Putting it all together in response descriptor (for a GET request method):
RKResponseDescriptor *responseDescriptor =  
  [RKResponseDescriptor
    responseDescriptorWithMapping:mapping
                           method:RKRequestMethodGET
                      pathPattern:itemsPath
                         keyPath:keyPath
                      statusCodes:statusCodes];

8.	 Add response descriptor to our shared manager:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager addResponseDescriptor:responseDescriptor];

Sometimes, depending on the architectural decision, it's nicer to 
put the mapping definition as part of a model object, and later call 
it like [MDatabase mapping], but for the sake of simplicity, we 
will put the mapping in line with RestKit configuration.

The actual code that loads the database list will look like:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager getObjectsAtPath:@"/databases" 
               parameters:nil 
                  success:^(RKObjectRequestOperation *operation,  
                     RKMappingResult *mappingResult) 
{
    NSLog(@"Loaded databases: %@", [mappingResult array]);
} 



Chapter 2

[ 31 ]

                  failure:^(RKObjectRequestOperation *operation,  
                     NSError *error) 
{
    NSLog(@"Error: %@", [error localizedDescription])
}];

As you may have noticed, the method is quite simple to use and it uses block-based 
APIs for callbacks, which greatly improves the code readability, compared to using 
delegates, especially if there is more than one network request in a class. A possible 
implementation of a table view that loads and shows the list of databases will look 
like the following screenshot:

View of loaded Database items

www.allitebooks.com

http://www.allitebooks.org


Modeling and Loading Remote Objects

[ 32 ]

Integrating with UI and DRYing  
the table view
In this section, we will cover how RestKit might be integrated with our application 
User Interface.

The application we are building is a typical business app. It heavily uses tables (such 
as UITableViewController) to present the loaded data (list of objects) to the user. In 
our case, the types of data that are available from the web service for presentation to 
the user in a table view are:

•	 Databases
•	 Collections
•	 Documents
•	 Plans
•	 Indexes
•	 Invoices
•	 Deployments

Each of these table view controllers does basically the same thing, it loads a list of 
objects through a GET request on a specific path, and shows it to the user. It also 
provides the ability to edit the list with actions, such as delete an object, edit an 
object, and add a new object. So, for keeping our code clean and not repeating it, the 
advice is to create a generic table view controller, with properties and methods that 
our subclasses will define/override. Such an approach of creating generic controllers 
greatly speeds up a development cycle. You will always have a chance to  modify a 
specific controller for a custom interface or logic implementation.

So let's create GenericTableViewController with the following code:
@interface GenericTableViewController : UITableViewController

@property (nonatomic, strong) NSArray *items;
@property (nonatomic, strong) NSString *path;
@property (nonatomic, strong) NSDictionary *parameters;

// Methods to re-use / override
- (void)refresh;
- (void)willStartLoading;
- (void)finishedLoadingWithItems:(NSArray *)newItems;
- (void)finishedLoadingWithError:(NSError *)error;

- (void)configureCell:(UITableViewCell *)cell atIndexPath:(NSIndexPath 
*)indexPath;

@end



Chapter 2

[ 33 ]

A brief description of properties we are using:

Property name Type Description

items array Property to hold our loaded objects

path string Path to use for loading the remote objects

parameters dictionary Possible parameters for a request

The full code listing on the implementation part will not be provided here,  
only the interesting ones:

The initial setup is done in the viewDidLoad method:

// Pull to refresh control
self.refreshControl = [[UIRefreshControl alloc] init];
[self.refreshControl addTarget:self
                        action:@selector(refresh)
              forControlEvents:UIControlEventValueChanged];    

// Clear selection between presentations
self.clearsSelectionOnViewWillAppear = YES;
 
// Display an Edit button in the navigation bar
self.navigationItem.rightBarButtonItem = self.editButtonItem;

One can also use the ISRefreshControl library to 
simulate iOS 6 "Pull-to-Refresh" control in the apps 
that target iOS 5. Just put pod 'ISRefreshControl' 
in Podfile and fire pod install.

If there are no items loaded, the refresh should be fired in the viewWillAppear method:

// Reload items if they are not loaded yet
if (!self.items) [self refresh];

The refresh method will be triggered for refreshing the objects we are showing:

- (void)refresh
{         
    // If refreshed from editing mode, switch to normal
    [self setEditing:NO animated:NO];
    
    [self willStartLoading];
 



Modeling and Loading Remote Objects

[ 34 ]

    RKObjectManager *manager = [RKObjectManager sharedManager];        
    [manager getObjectsAtPath:self.path 
                   parameters:self.parameters 
                      success:^(RKObjectRequestOperation *operation, 
RKMappingResult *mappingResult) 
    {
        [self finishedLoadingWithItems:[mappingResult array]];
    } 
                     failure:^(RKObjectRequestOperation *operation, 
NSError *error) 
    {    
        [self finishedLoadingWithError:error];
    }];
}

The willStartLoading method will be triggered just before the start of the actual 
loading of objects. Mostly, the code it contains is related to showing the user a 
Loading indicator:

// Toggle "Pull to refresh" to show Activity indicator
[self.refreshControl beginRefreshing];
    
// Show a "Loading" HUD to the user
[SVProgressHUD showWithStatus:@"Loading"];

In addition, here are two methods to trigger when the loading is finished:

- (void)finishedLoadingWithItems:(NSArray *)newItems
{
    // Update the current items with new ones
    self.items = newItems;
    NSLog(@"Loaded items: %@", self.items);
    
    [self.tableView reloadData];
    
    // Hide loading indicators
    [self.refreshControl endRefreshing];
    [SVProgressHUD dismiss];
}

- (void)finishedLoadingWithError:(NSError *)error
{
    [SVProgressHUD dismiss];
    NSLog(@"Error on loading: %@", error);
    
    // Show some Alert with error description



Chapter 2

[ 35 ]

    UIAlertView *alert = [[UIAlertView alloc] 
      initWithTitle:@"Error" 
            message:[error localizedDescription] 
           delegate:nil 
  cancelButtonTitle:@"OK" 
  otherButtonTitles:nil];
    [alert show];
}

The finishedLoadingWithItems method updates the items array property with 
newly loaded items, reloads the table view, and hides the loading indicators.

The finishedLoadingWithError method is fired when an error occurs at the time of 
loading or processing the loaded data. It will hide the loading indicators and show 
the error to the user. As a message, [error localizedDescription] can be shown, 
which will contain the error message produced by RestKit. Alternatively, a custom 
one can be generated depending on an error type and other circumstances.

For a UITableView delegate method, tableView:cellForRowAtIndexPath, we 
will create a re-usable table cell, and trigger the configureCell:atIndexPath: 
method, which will actually configure the cell with a title, subtitle, and, if applicable, 
an image. Usage of separate configure method allows easier overriding of 
the implementation in subclasses, in case of Core Data manipulations, and in 
NSFetchedResults delegates:

 - (void)configureCell:(UITableViewCell *)cell 
atIndexPath:(NSIndexPath *)indexPath
{
    // Get our loaded item
    NSObject <MTableObject> *item = self.items[indexPath.row];
   
    cell.textLabel.text = item.titleText;
    cell.detailTextLabel.text = item.subtitleText;
}

Every item object conforms to a <MTableObject> protocol, which has a titleText 
and subtitleText getters. This gives us the ability to easily specify how every object 
should present itself in a model class.

To make this work for a database object, create a protocol definition called 
MTableObject with the following code:

// MTableObject.h
@protocol MTableObject <NSObject>

- (NSString *)titleText;
- (NSString *)subtitleText;

@end



Modeling and Loading Remote Objects

[ 36 ]

And add titleText and subtitleText methods to the MDatabase implementation:

// in MDatabase @implementation
- (NSString *)titleText
{
    return self.name;
}

- (NSString *)subtitleText
{
    return self.plan;
}

Now it is pretty easy to change the output information that is displayed to the user.

For loading images in a UITableViewCell, one can use 
a provided UIImageView+AFNetworking category from 
the AFNetworking library:

[cell.imageView setImageWithURL:imageURL  
placeholderImage:placeholderImage]

Now for our database list loading, create DatabasesViewController (you didn't 
forget to subclass it from GenericTableViewController, did you?) and just 
override the initialization point and set the path to be used:

- (id)init
{
    self = [super init];
    if (self) {
        // Configure the controller
        self.path  = @"/databases";
        self.title = @"Databases";
    }
    return self;
}

That's all you actually need to get started!

Requesting related objects
Every MongoDB database has a collection, which consists of documents. While we 
didn't get to the creating objects topic in our guide, to create a collection manually go 
to MongoHQ's web console, select a database, and click on the Add Collection button.



Chapter 2

[ 37 ]

You can then name your new collection and click on the Create collection button as 
shown in the following screenshot:

Creating a new Collection in a web interface

Checking the collection API documentation, we will see a request path  
/databases/:db/collections. The :db in this path is a parameter, and should be 
equal to a database name. I prefer calling it databaseID. Such a name reflects the 
true essence of a parameter as the database name is a database identifier here.

So to load our collections, we will use a path pattern, /databases/:databaseID/
collections. The mapping setup for collections looks quite similar to the  
database mapping:

- (void)setupCollectionMappings
{
    RKObjectManager *manager = [RKObjectManager sharedManager];

    Class itemClass = [MCollection class];
    NSString *itemsPath = @"/databases/:databaseID/collections";
    
    RKObjectMapping *mapping = [RKObjectMapping 
mappingForClass:itemClass];
    [mapping addAttributeMappingsFromArray:@[@"name", @"count", 
@"indexCount", @"storageSize"]];

    NSIndexSet *statusCodes = RKStatusCodeIndexSetForClass(RKStatusCod
eClassSuccessful);
    
    RKResponseDescriptor *responseDescriptor = [RKResponseDescriptor
    responseDescriptorWithMapping:mapping 



Modeling and Loading Remote Objects

[ 38 ]

                      pathPattern:itemsPath 
                           method:RKRequestMethodGET
                          keyPath:nil 
                      statusCodes:statusCodes];
    
    [manager addResponseDescriptor:responseDescriptor];    
}

As :databaseID is a parameter in our request URL, you need to substitute it with 
the real value. For such purposes, the RKPathFromPatternWithObject function 
exists:

// - (void)init method in CollectionsViewController
self.path =  
RKPathFromPatternWithObject(@"/databases/:databaseID/collections",  
self.database);

The self.database is pre-set upon opening the CollectionsViewController from 
the DatabasesViewController class:

- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NS
IndexPath *)indexPath
{
    MDatabase *db = self.items[indexPath.row];

    CollectionsViewController *vc = [[CollectionsViewController  
      alloc] init];
    vc.title = db.name;
    vc.database = db;

    [self.navigationController pushViewController:vc 
                          animated:YES];
}

When RKPathFromPatternWithObject starts matching the path pattern, it will use 
KVC to get the value for the databaseID key from the MDatabase object. In our case, 
we will define a "property getter" in the MDatabase class, which will only return the 
database name:

// @interface MDatabase
@property (nonatomic, readonly) NSString *databaseID;

// @implementation
- (NSString *)databaseID
{
    return self.name;
}



Chapter 2

[ 39 ]

Running the App with such code and selecting the Test2 database will load 
collections in that database. The sample UI might look like the following screenshot:

Loaded Collections

RESTful object manipulation
The power of RestKit comes when you want to manipulate remote objects. For the 
RestKit, all you need is to configure a response object mapping, set the request paths, 
and fire the appropriate method with the object.

In a RESTful web service, the CRUD operations are tightly related to the HTTP 
methods. Create, read, update, and delete operations map to the HTTP methods 
GET, PUT, POST, and DELETE respectively.

By the way, the HTTP 1.1 standard defines eight methods 
(or verbs): HEAD, GET, POST, PUT, DELETE, TRACE, 
OPTIONS, and CONNECT.



Modeling and Loading Remote Objects

[ 40 ]

We discussed the Read operations in the previous sections. So in this one, we'll start 
by talking about the Create operation.

For example, let's make a code to create the new collection. As we can see in the API 
documentation, to create a new collection you need to fire a POST HTTP method 
to /databases/:db/collections. As you can see, it's the same path pattern used 
in GET operations to get the list of collections. The other thing to notice is that the 
endpoint is expecting a JSON-encoded object. That's why in the beginning, when we 
were setting up our object manager, we entered  the following code snippet:

manager.requestSerializationMIMEType = RKMIMETypeJSON

This means any object that we will attach to the request (sending to the web service, 
in other words) will be serialized into a JSON string.

For the object manager to know which properties it should serialize while  
sending an object to a remote endpoint, we need to set up a request mapping  
and a request descriptor:

// in setupCollectionMappings

// The endpoint for manipulating with existing object
NSString *itemPath  =  
  @"/databases/:databaseID/collections/:collectionID";

// Create the request mapping
RKObjectMapping *requestMapping = [RKObjectMapping  
  requestMapping];

// "name" will be same in JSON and in a class
[requestMapping addAttributeMappingsFromArray:@[@"name"]];

// For any object of class MCollection, serialize into an  
  NSMutableDictionary using the given mapping
// If we will provide the rootKeyPath, serialization will nest  
  under the 'provided' key path

RKRequestDescriptor *requestDescriptor = [RKRequestDescriptor  
  requestDescriptorWithMapping:requestMapping 
                 objectClass:itemClass 
                 rootKeyPath:nil
                      method:RKRequestMethodAny];

[manager addRequestDescriptor:requestDescriptor];



Chapter 2

[ 41 ]

You can also provide how a local property will be serialized. For example, for 
creating a database object on a remote web service, a slug attribute in the JSON 
request needs to be provided, which is actually a plan property in a local object. 
Thus, we will code to map the plan property from its class to slug in serialized 
JSON, and that will look like:

NSDictionary *plan2slugMap = @{@"plan": @"slug"};
[requestMapping addAttributeMappingsFromDictionary:plan2slugMap];

So the simple example code to create a new collection would be:

NSString *path =  
  RKPathFromPatternWithObject(@"/databases/:databaseID/  
  collections", self.database);

MCollection *item = [[MCollection alloc] init];
item.name = @"some_collection";

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager postObject:item 
               path:path 
         parameters:nil 
            success:^(RKObjectRequestOperation *operation,  
                  RKMappingResult *mappingResult) 
{
    NSLog(@"Created!")
} 
            failure:^(RKObjectRequestOperation *operation, NSError  
              *error) 
{
    NSLog(@"Error: %@", error)
}];

Now, for deleting or editing the objects, constructing the URL from its path pattern 
would be a bit more difficult. If you will look into the needed path pattern— 
/databases/:databaseID/collections/:collectionID—you will notice that you 
need to provide a collectionID parameter, apart from databaseID. So, putting the 
MDatabase there is not appropriate any more. You can think about constructing a 
path as shown in the following code:

NSDictionary *params = @{
 @"databaseID"   : self.database.databaseID,
 @"collectionID" : self.collection.collectionID
};

path = RKPathFromPatternWithObject(@"/databases/:databaseID/
collections/: 
collectionID", params);

www.allitebooks.com

http://www.allitebooks.org


Modeling and Loading Remote Objects

[ 42 ]

Sometimes, it is worth doing it like this. While the nicer way would be to store the 
relation information in a MCollection object. To achieve this, edit the MCollection 
class and add:

@property (nonatomic, strong) NSString *databaseID;

And set it later in a code:

self.collection.databaseID = self.database.databaseID;

You can omit this presetting if you are going to use routing and metadata 
mapping, which we will discuss in detail in Chapter 4, Advanced Stuff in the 
Metadata mapping section.

When using Core Data, you don't really need 
to set it as it's mentioned before; the relation 
information can be handled by Core Data itself.

After setting the property, construct the path:

path =  
RKPathFromPatternWithObject(@"/databases/:databaseID/collections/: 
collectionID", self.collection);

Having the path constructed, and the self.collection object set, you can fire the 
Delete operation in the same way as a Create operation:

[manager deleteObject:self.collection 
                 path:path 
           parameters:nil 
              success:^(RKObjectRequestOperation *operation,  
RKMappingResult *mappingResult) 
{
}
              failure:^(RKObjectRequestOperation *operation,  
NSError *error) 
{
}];

The Edit operation is also quite similar. For example, we can change the collection 
name as follows:

self.collection.name = @"new_collection_name";
[manager putObject:self.collection 
              path:path 
        parameters:nil 



Chapter 2

[ 43 ]

           success:^(RKObjectRequestOperation *operation,  
             RKMappingResult *mappingResult) 
{
} 
           failure:^(RKObjectRequestOperation *operation, NSError 
*error) 
{
}];

But what if a collectionID (which in our case is a collection name) consists of special 
characters or spaces? We need a way to make percent escape on it before putting in  
a path. Of course you can wrap the output in a specially-provided function:

RKPercentEscapedQueryStringFromStringWithEncoding(self.collection. 
  collectionID, NSUTF8StringEncoding);

However, there's a much easier way in controlling these and other things, and that  
is called Routing.

Percent escape, or URL encode, will change all special non-ASCII 
characters to specific codes prefixed with a percent "%" character. For 
more information on this check the Percent-encoding article in Wikipedia 
at http://en.wikipedia.org/wiki/Percent-encoding

Routing inside out
One of the most useful powers of object manager is that it has a so-called Router. 
It simplifies the generation of request URLs and helps developers maintain the 
path patterns. Once the Router is configured, it gives the ability to stop worrying 
about what endpoint to be used to make the next request, as all the object manager 
request methods will use the power of the Router. Using a centralized knowledge, 
a Router will know how to generate an appropriate URL for specific objects, 
request methods, or names. This greatly simplifies the amount of code you write 
and improves readability.

URLs will be generated by the Router using three types of routes:

•	 Named routes: They are like a named symbolic link. This type of route is 
not related to any particular class. It represents a single path and an optional 
HTTP request method. As an example, one can define such a route with the 
name database_list, which will be a GET request to a list of databases with 
the path /databases.



Modeling and Loading Remote Objects

[ 44 ]

•	 Class routes: This is a very common route that is used for manipulating 
CRUD with a particular object. The router will identify the needed route by 
its object class and an appropriate HTTP request method. Once the router 
finds the appropriate route, it will interpolate the route's path pattern against 
the provided object and instantiate the NSURL object. For example, route for 
the MCollection class, /databases/:databaseID/collections path, and 
the POST request method can be used for creating a new collection object.

•	 Relationship routes: They are defined by their relationship to other objects. 
Such a route represents a path through which the relationship of a parent 
object can be manipulated. The example could be a relationship route for 
MDatabase collections with the name database_collections that will 
point to a path, /databases/:databaseID/collections and load the 
MCollection objects. Basically, this type of route is quite similar to and 
works like a normal named route.

The routes themselves are modeled using class methods of RKRoute, and should  
be added to the router's routeSet.

Keeping this information in mind, let us set some routes up for our collection object. 
Edit the setupCollectionMappings method and add the following routes:

// Route for loading a list of objects
RKRoute *itemsRoute = [RKRoute routeWithName:@"collections"  
  pathPattern:itemsPath method:RKRequestMethodGET];
itemsRoute.shouldEscapePath = YES;

// Route for creating a new object
RKRoute *newItemRoute  = [RKRoute routeWithClass:itemClass  
  pathPattern:itemsPath method:RKRequestMethodPOST];
newItemRoute.shouldEscapePath = YES;

// Route for manipulating with existing object
RKRoute *itemRoute  = [RKRoute routeWithClass:itemClass  
  pathPattern:itemPath method:RKRequestMethodAny];
itemsRoute.shouldEscapePath = YES;

Then add the defined routes to the object manager Router with this piece of code:

[manager.router.routeSet addRoutes:@[itemsRoute, newItemRoute,  
  itemRoute]];



Chapter 2

[ 45 ]

The shouldEscapePath property specifies if a provided parameter value for a path 
pattern should automatically be percent-escaped for proper URL handling. In the 
previous example, for defining the route for loading a list of objects we are using  
a named route, but you can use the relationship route for this case also. As mentioned 
in the beginning, there are tons of ways of how to write code, and you can't be sure 
that this architecture decision is the best one.

In our case, we have two routes for the same path. While making a POST request, the 
Router will first check if there's a route for this specific request method (POST), and 
only if none are found will it return the one that matches any request method.

Having all routes predefined greatly simplifies coding, as you don't need to use path 
patterns for every CRUD request you make. The Router will know which one to use 
in a particular case. So there's less chance of making a mistake.

Now, having defined routes for our collection object, how will one use them?

Object manager supports route requests in all its methods. If you supply the object 
and omit the path, the object manager will try searching for the appropriate route.

For a get request, we will need a route name and an object that has the relation 
information, if the route needs it. So, for getting the list of our collections, here's  
a snippet of code:

[manager getObjectsAtPathForRouteNamed:@"collections" 
                                object:self.database 
                            parameters:nil 
                               success:^(RKObjectRequestOperation 
*operation, RKMappingResult *mappingResult) 
{
    [self finishedLoadingWithItems:[mappingResult array]];
} 
                               failure:^(RKObjectRequestOperation 
*operation, NSError *error) 
{
    [self finishedLoadingWithError:error];
}];

As you see here, collections is a route name, and we provide the current database 
object to use its databaseID in constructing the request.

For using routes in other CRUD operations that involve manipulating with one 
particular object, the only change you need is just setting the path by omitting it.  
Also, you will need to be sure that the object has information about its parent relations.



Modeling and Loading Remote Objects

[ 46 ]

As a conclusion, for our generic table view controller, we can add the following 
properties:

@property (nonatomic, strong) NSString *routeName;
@property (nonatomic, strong) id routeObject;

A brief description of properties we added:

Property name Type Description
routeName string Name of route to be used for loading with routing 

enabled. If not defined, a path will be used.
routeObject id An object to be used for constructing the route path if 

routing is used.

You also need to implement the "routed" loading:

[manager getObjectsAtPathForRouteNamed:self.routeName 
                                object:self.routeObject 
                            parameters:self.parameters 
                               success:^(RKObjectRequestOperation 
*operation, RKMappingResult *mappingResult)
{
    [self finishedLoadingWithItems:[mappingResult array]];
}
                               failure:^(RKObjectRequestOperation 
*operation, NSError *error)
{ 
    [self finishedLoadingWithError:error];
}];

Entering data in forms
We already have our GenericTableViewController class for loading and showing 
objects; now let's see how we can make a kind-of-the-same controller for creating  
a new object or editing and delegating the existing objects.

You can create one from scratch using generic UIKit components, but we will do this 
with a library called QuickDialog. The example form created using this library is 
shown in the following screenshot:



Chapter 2

[ 47 ]

Editing a Collection

First of all, you need to install it to your project. To do so, add pod 'QuickDialog'  
to your Podfile, and run pod install from a command line in the root of a project.

Let's call out the new controller, GenericFormViewController:

@interface GenericFormViewController : QuickDialogController

@property (nonatomic, strong) NSString *path;
@property (nonatomic, strong) NSString *itemPath;
@property (nonatomic, assign) id item;
@property (nonatomic, assign) BOOL shouldCreateNewItem;

- (BOOL)validateItemPassed;

// Interface actions
- (void)saveAction;
- (void)deleteAction;

- (void)createItemRequest;
- (void)updateItemRequest;
- (void)deleteItemRequest;
@end



Modeling and Loading Remote Objects

[ 48 ]

A brief description of properties we are using:

Property name Type Description
path string Path for creating the item. If not set, use routes.
itemPath string Path for manipulating with one item. If not set, 

use routes.
item id The alias to the getter/setter of the object we 

are manipulating.
shouldCreateNewItem boolean Property that triggers if Create or Update 

action to be used.

Now let's see the request methods. createItemRequest method for creating items:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager postObject:self.item 
               path:self.path 
         parameters:nil 
            success:^(RKObjectRequestOperation *operation,  
              RKMappingResult *mappingResult)
{
    [self done];
} 
            failure:^(RKObjectRequestOperation *operation, NSError  
              *error)
{
    [self errorOnLoad:error];
}];

The updateItemRequest method for updating the item to a web service after  
editing it locally:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager putObject:self.item 
              path:self.itemPath 
        parameters:nil 
           success:^(RKObjectRequestOperation *operation,  
             RKMappingResult *mappingResult) 
{
    [self done];
} 
           failure:^(RKObjectRequestOperation *operation, NSError  
             *error) 
{
    [self errorOnLoad:error];
}];



Chapter 2

[ 49 ]

The deleteItemRequest method for deleting the item from remote:

RKObjectManager *manager = [RKObjectManager sharedManager];
[manager deleteObject:self.item 
                 path:self.itemPath 
           parameters:nil 
              success:^(RKObjectRequestOperation *operation,  
                RKMappingResult *mappingResult) 
{
    [self done];
} 
             failure:^(RKObjectRequestOperation *operation,  
               NSError *error) 
{
    [self errorOnLoad:error];
}];

That's all for RestKit-specific stuff. Now, if you're wondering about QuickDialog UI, 
here's what I do to create it:

The way to initialize it is via providing a QRootElement object in a method 
initWithRoot.

- (id)init
{
    QRootElement *root = [[self class] createRootElement];
    self = [super initWithRoot:root];
    return self;
}

+ (QRootElement *)createRootElement
{
    QRootElement *root = [[QRootElement alloc] init];
    root.grouped = YES;
    return root;
}

Additionally, a small hack is needed to Update the tableView object of QuickDialog:

- (void)updateQuickDialogView
{
    // self.root is a property from QuickDialogController
    self.quickDialogTableView.root = self.root;
}



Modeling and Loading Remote Objects

[ 50 ]

A Save button is added to the navigation controller; it triggers the saveAction 
method with the following code:

// Fetch the Entry element data to our object
[self.root fetchValueUsingBindingsIntoObject:self.item];
    
// Validate that entered data is correct
if (![self validateItemPassed]) {
    return;
}
    
[SVProgressHUD show]; // Show loading HUD
if (self.shouldCreateNewItem) {
    [self createItemRequest];
} else {
    [self updateItemRequest];
}

We also need a method to create a Delete button (we'll use it in this recipe):

- (QSection *)deleteButtonSection
{
    QButtonElement *btn = [[QButtonElement alloc] 
initWithTitle:@"Delete"];
    btn.onSelected = ^{
        [self deleteAction];
    };
    
    // Put in in a new section
    QSection *section = [[QSection alloc] initWithTitle:@""];
    [section addElement:btn];
    return section;
}

Now for our Collection, let's create a subclass of GenericFormViewController:

@interface CollectionFormViewController : GenericFormViewController

@property (nonatomic, strong) MDatabase *database;
@property (nonatomic, strong) MCollection *collection;

@end



Chapter 2

[ 51 ]

And specify how self.item should be aliased:

- (id)item
{
    return self.collection;
}

- (void)setItem:(id)item
{
    self.collection = item;
}

Now if we would use the old way of constructing the paths, we could put 
something like:

self.path =  
  RKPathFromPatternWithObject(@"/databases/:databaseID/ 
  collections",self.database);
if (self.collection) {
    NSDictionary *pathParams = @{
        @"databaseID"  : self.database.databaseID,
        @"collectionID":  
  RKPercentEscapedQueryStringFromStringWithEncoding(self. 
  collection.collectionID, NSUTF8StringEncoding)};

    self.itemPath =  
  RKPathFromPatternWithObject(@"/databases/:databaseID/ 
  collections/:collectionID", pathParams);
}

But if we choose to use the routes, it's simple:

// Create new collection, if it's a Create request
if (self.shouldCreateNewItem) {
    self.collection = [[MCollection alloc] init];
}

// Pre-set relation info for using it in Class Routes
self.collection.databaseID = self.database.databaseID;

The next thing is to create a form, where we will enter (or edit) the collection name:

QSection *section = [[QSection alloc] initWithTitle:self.title];

QEntryElement *nameEntry = [[QEntryElement alloc] 
  initWithTitle:@"Name" 
          Value:self.collection.name 

www.allitebooks.com

http://www.allitebooks.org


Modeling and Loading Remote Objects

[ 52 ]

    Placeholder:@"collection name"];

// QuickDialog way of binding...
nameEntry.bind = @"textValue:name";
[section addElement:nameEntry];
[self.root addSection:section];

// Add Delete button if it's existing object
if (!self.shouldCreateNewItem) {
    [self.root addSection:[self deleteButtonSection]];
}

// Update the QuickDialog
[self updateQuickDialogView];

You can read about using QuickDialog and check the demo and its capabilities by 
visiting their GitHub page at https://github.com/escoz/QuickDialog or blog 
post at http://escoz.com/open-source/quickdialog.

To open such a form dialog, I recommend presenting it modally:

- (void)presentCreateOrEditFormForObject:(id)item
{
    CollectionFormViewController *vc = [[CollectionFormViewController 
alloc] init];

    vc.delegate = self;
    vc.database = self.database;
    vc.collection = item;

    UINavigationController *nc = [[UINavigationController alloc]  
      initWithRootViewController:vc];
    [self.navigationController presentModalViewController:nc  
      animated:YES];
}

For creating a new one:

- (IBAction)createNewItem:(id)sender
{
    // Specify nil for showing the Create form
    [self presentCreateOrEditFormForObject:nil];
}



Chapter 2

[ 53 ]

And for editing the existing one:

- (void)editItemAtIndexPath:(NSIndexPath *)indexPath
{
    MCollection *item = self.items[indexPath.row];
    [self presentCreateOrEditFormForObject:item];
}

Summary
In this chapter, we learned how to set up the RestKit library to work for our web 
service, we talked about sending requests, getting responses, and how to do object 
manipulations. We also talked about simplifying the requests by introducing 
routing. In addition, we discussed how integration with UI can be done and 
created forms.

The next chapter will cover integrating RestKit and our web service with Core Data 
databases. We will also be given some additional information related to this topic. 
Stay tuned!





Persistence with Core Data
This chapter describes how to make an application use persistence data using Core 
Data. For our example, we will make Database and Collection elements to be backed 
by Core Data in our application. We will leave Documents out of Core Data, as they 
are more dynamic, and by this, we will see how to deal with a hybrid environment, 
where some objects are backed by Core Data, and some are not.
The idea is as follows—when an application is started, we will ask RestKit 
to refresh information about our database and collection objects. In this 
procedure, RestKit will determine the changes on a server in this data, and will 
sync our database to those changes. We assume that the information in the web 
service is the most correct and the latest.
Later on, we will use the cached information from our database, and we will refresh 
it manually or at the start of the next application, when the user will trigger the Pull 
to refresh action in table view. This will give us a faster response in our app by 
minimizing the time in making network requests and processing responses.

Setting up a database
Let's create entities as shown in the following image:

Core Data scheme

The attributes for each entity are shown in the following table.



Persistence with Core Data

[ 56 ]

Database
The following table holds information on databases that are associated without  
a MongoHQ account. The main properties are the names of the database and its plan.

Attribute Type Notes
databaseID String It is a transient property; in code we link it to a name
hostname String

name String It is an actual ID of a database
plan String

port Integer

Collection
Unlike SQL databases, document-based databases have collections. This table 
represents collections that are associated with specific databases. The attributes for 
collection are shown in the following table:

Attribute Type Notes
databaseID String It is the ID of a database for connecting relationships
collectionID String It is a transient property; in code we link it to name
name String It is an actual ID of a collection
count Integer

indexCount Integer

storageSize Integer

In addition, there is a relationship between database and collection—one-to-many type.

In the provided code that you will get with this book, you will see 
the usage of USE_COREDATA in macro. The macro is defined in the 
Defines.h file and helps distinguish the different code versions 
showing the difference of code while using Core Data and without.



Chapter 3

[ 57 ]

Configuring
Before using RestKit with Core Data, be sure to check that the Core Data library is 
linked to your project's target and you have added #import <CoreData/CoreData.
h> before importing RestKit; for example, in the application's Prefix.pch file:

#ifdef __OBJC__
    #import <UIKit/UIKit.h>
    #import <Foundation/Foundation.h>
    #import <SystemConfiguration/SystemConfiguration.h>
    #import <CoreData/CoreData.h>
    #import <RestKit/RestKit.h>
#endif

The configuration of RestKit to use Core Data is quite similar if you would use Core 
Data without it. Create the (void)setupCoreData method:

// Configure RestKit's Core Data stack
NSURL *modelURL = [NSURL fileURLWithPath:[[NSBundle mainBundle] 
pathForResource:@"MongoHq" ofType:@"momd"]];

// Due to an iOS 5 bug, the managed object model returned is 
immutable.
NSManagedObjectModel *managedObjectModel = [[[NSManagedObjectModel 
alloc] initWithContentsOfURL:modelURL] mutableCopy];
RKManagedObjectStore *managedObjectStore = [[RKManagedObjectStore 
alloc] initWithManagedObjectModel:managedObjectModel];

NSString *storePath = [RKApplicationDataDirectory() stringByAppendingP
athComponent:@"MongoHq.sqlite"];
NSError *error = nil;

[managedObjectStore addSQLitePersistentStoreAtPath:storePath 
                            fromSeedDatabaseAtPath:nil 
                                 withConfiguration:nil 
                                           options:nil 
                                             error:&error];

// Create default contexts
// For main thread and background processing
[managedObjectStore createManagedObjectContexts];

// Set the default store shared instance
[RKManagedObjectStore setDefaultStore:managedObjectStore];

// Assign Managed object store to Object manager
RKObjectManager *manager = [RKObjectManager sharedManager];
manager.managedObjectStore = managedObjectStore;



Persistence with Core Data

[ 58 ]

And put it just after setting the object manager, and before setting up the mapping:

 
[self setupObjectManager];

// Setup CoreData stack after Object Manager
[self setupCoreData];
[self setupMappings];

That's it. The only thing you will need to change is a mapping code for Core Data 
support. Before proceeding with that, let me give a hint on two side libraries. It's not 
mandatory to use them, but they can greatly improve your coding time.

Magical Record
Magical Record is a popular library for simplifying Core Data-related code. It was 
inspired by Ruby on Rails' ActiveRecord.

"Active record is an approach to accessing data in a database. A database table or 
view is wrapped into a class; thus an object instance is tied to a single row in the 
table. After creating of an object, a new row is added to the table after saving the 
table. Any object that is loaded gets its information from the database; when an 
object is updated, the corresponding row in the table is also updated. The wrapper 
class implements accessor methods or properties for each column in the table or 
view."

This is the definition given in http://en.wikipedia.org/wiki/Active_record_
pattern.

The goal of a library is:

•	 To clean up Core Data-related code
•	 Allow for clear, simple, and one-line fetches
•	 Allow the modification of the NSFetchRequest method when request 

optimizations are needed

The repository containing the source code of Magical Record and some 
documentation on using it is available at https://github.com/magicalpanda/
MagicalRecord. To install it via CocoaPods, just add the pod MagicalRecord in 
your Podfile and hit pod install.



Chapter 3

[ 59 ]

After installing the library, one will need to include its header in a project. One of the 
preferred ways is to include it in the project's Prefix.pch file:

#ifdef COCOAPODS_POD_AVAILABLE_MagicalRecord
#import "CoreData+MagicalRecord.h"
#endif

Adding #define MR_SHORTHAND before #import will add 
the ability to skip MR_ prefix in Magical Record methods.

Using Magical Record with a connection to RestKit requires a few tricks. As we 
know, RestKit is responsible for creating and managing Core Data's managed object 
model, store, and context. So we need to tell this information to a Magical Record. 
But the methods to set the default context and store coordinator are private. We will 
use the power of the Objective-C class extension (categories) to expose access to the 
private setters of Magical Record. Just be aware that as methods are private, the code 
can be broken in future versions of the library.

Add these lines before your implementation code:

#ifdef COCOAPODS_POD_AVAILABLE_MagicalRecord
// Use a class extension to expose access to MagicalRecord's private 
setter methods
@interface NSManagedObjectContext ()
+(void)MR_setRootSavingContext:(NSManagedObjectContext *)context;
+(void)MR_setDefaultContext:(NSManagedObjectContext *)moc;
@end
@interface NSPersistentStoreCoordinator ()
+(void)MR_setDefaultStoreCoordinator:(NSPersistentStoreCoordinator *)
coordinator;
@end
#endif

As we also can see here, we are using defines to use this code only if Magical Record 
is installed. The COCOAPODS_POD_AVAILABLE_MagicalRecord define is exposed by 
CocoaPods in Pods-environment.h when it installs the Magical Record library into 
your project. Bear in mind that you need to add Pods-environment.h to your .pch 
file to use this ability. Here's how to do it:

// in beginning of projects Prefix.pch file
#import "../Pods/Pods-environment.h"

Now you can rely on COCOAPODS_POD_AVAILABLE_POD_NAME to check on the 
compile time if a certain library with POD_NAME is installed. And if so, enable  
the code related to it.



Persistence with Core Data

[ 60 ]

Let's now change a bit in our RestKit's Core Data setup method and add these lines 
for configuring Magical Record:

// After
[managedObjectStore createManagedObjectContexts];

// Add
#ifdef COCOAPODS_POD_AVAILABLE_MagicalRecord
// Configure MagicalRecord to use RestKit's Core Data stack
[NSPersistentStoreCoordinator MR_setDefaultStoreCoordinator:managedObj
ectStore.persistentStoreCoordinator];
[NSManagedObjectContext MR_setRootSavingContext:managedObjectStore.
persistentStoreManagedObjectContext];
[NSManagedObjectContext MR_setDefaultContext:managedObjectStore.
mainQueueManagedObjectContext];
#endif

This will tell MagicalRecord to use RestKit's Core Data setup, and you can start 
using it in your code; for example, to create a MCollection entity, one will just use 
[MCollection MR_createEntity], or to create NSFetchedResultsController:

fetchedResultsController = [MCollection   
  MR_fetchAllSortedBy:@"name"
            ascending:YES
        withPredicate:fetchPredicate
              groupBy:@"databaseID" 
             delegate:self];

Mogenerator
mogenerator is a command-line tool that, given an .xcdatamodel file, will generate 
two classes per entity. The first class, _MyEntity, is intended solely for machine 
consumption and will be continuously overwritten to stay in sync with your data 
model. The second class, MyEntity, a subclass of _MyEntity, won't ever  
be overwritten and is a great place to put your custom logic.

Mostly, it is useful if a Core Data model is rapidly changing, and you have your own 
entity helper methods. In addition to speed up generation, you will just fire  
a mogenerator command, or even create a prebuild script.

To install mogenerator, one can use the Homebrew package manager (instructions 
on how to install it can be found on its home page available at http://mxcl.
github.io/homebrew/):

brew install --HEAD mogenerator

--HEAD here means that we want to install mogenerator from the latest source code. 
Omitting the --HEAD option will install the latest release version.



Chapter 3

[ 61 ]

A script that one can use to generate classes is quite simple:
#!/bin/sh -x
MODEL_NAME="MongoHq"
MODEL_DIR="Models"
/usr/local/bin/mogenerator --template-var arc=true \
  -m ${MODEL_DIR}/${MODEL_NAME}.xcdatamodeld/*.xcdatamodel \
  -M ${MODEL_DIR}/Machine/ \
  -H ${MODEL_DIR}/Human/ \
  --includeh=${MODEL_DIR}/models.h

Here, -m is the link to the xcdatamodel file, -M is where to output the  
machine-generated files (which will be regenerated next time), and -H is where 
to output the human-generated classes (they will be preserved the next time the 
generator will be run). Adding the --includeh option will generate one header  
file that imports all machine and human-generated files, so you can import only 
this one in your project for easiness.

--template-var specifies custom template variables. In our case, we ask 
mogenerator to use ARC-enabled templates.

Save it to an executable shell file (Ex: gen_mo.sh), run it (sh gen_mo.sh), and add 
the generated files (once) to the Xcode project. You might end up having the kind  
of project tree shown in the following screenshot:

A project tree with added generated files

mogenerator has a few predefined templates with various properties (such as ARC/
non-ARC and enabling modern syntax). You can also create your own template  
and ask mogenerator to use it.
For more information, consider visiting mogenerator's home page:  
http://rentzsch.github.io/mogenerator/.

www.allitebooks.com

http://www.allitebooks.org


Persistence with Core Data

[ 62 ]

Mapping
The configuration of mapping for Core Data objects is quite similar to normal 
mapping configuration, though there are a few differences. First, initializing  
of mapping is done differently. So if we had:

RKObjectMapping *mapping = [RKObjectMapping 
mappingForClass:itemClass];

We need to change it to:

// Get default managed object store
RKManagedObjectStore *managedObjectStore = [RKManagedObjectStore 
defaultStore];

// Create mapping for entity
RKEntityMapping *mapping = [RKEntityMapping 
    mappingForEntityForName:@"Database" 
       inManagedObjectStore:managedObjectStore];

Additionally, it's a good practice to tell RestKit how to distinguish the object's 
uniqueness by providing identification attributes:

// How to identify if the object we got is in database
// Here, we identify by name.
mapping.identificationAttributes = @[@"name"];

By default, if identificationAttributes are not 
set, RestKit tries to identify entities by entityClassID, 
entityClass_id, identifier, id, ID, URL, url.

If we have a relationship, like MCollection has, we will additionally provide 
information on relationship mapping:

[mapping addConnectionForRelationship:@"database" connectedBy:@
{@"databaseID": @"name"}];

Here, database is our relation, and @"databaseID": @"name" is the information 
on how to map it. The databaseID property is in the current object and name is the 
property in the database object.



Chapter 3

[ 63 ]

However, if we will look in the response JSON, there's no place where we can get 
the databaseID information. So how we can do this? If we are using routes, we are 
providing databaseID while constructing a path from it to get collections. RestKit 
saves this information into a request metadata, which we can use for our mapping. 
So in our case, the databaseID parameter that was used in constructing the request 
path can be found at @metadata.routing.parameters.databaseID. So the code  
to map our databaseID will be:

NSDictionary *dbIdMapping = @{@"@metadata.routing.parameters.
databaseID": @"databaseID"};
[mapping addAttributeMappingsFromDictionary:dbIdMapping];

More about metadata mapping we will be discussed in Chapter 4, Advanced stuff in 
the section Metadata mapping.

For using Core Data for remote object creation, we will need to be sure that our 
database is in sync with the remote one. If we will assume that the remote service has 
a more trusted data in the database, we need to be sure we don't have any temporary 
(orphaned) objects in our local one.

RestKit can deal with orphaned objects by checking the local database against 
received objects. If the objects in the local database do not exist in the response array, 
RestKit will purge the local ones.

To support such functionality, we need to tell RestKit how to look for objects in the 
local database on requesting a specific remote path. To do so:

// Deleting orphaned objects
// Define Fetch request to trigger on specific url

[manager addFetchRequestBlock:^NSFetchRequest *(NSURL *URL) {
    // Create a path matcher
    RKPathMatcher *pathMatcher = [RKPathMatcher pathMatcherWithPatter
n:itemsPath];
    
    // Dictionary to store request arguments
    // databaseID in our case is what we are looking for
    NSDictionary *argsDict = nil;
    
    // Match the URL with pathMatcher and retrieve arguments
    BOOL match = [pathMatcher matchesPath:[URL relativePath] 
                     tokenizeQueryStrings:NO 
                          parsedArguments:&argsDict];
    
    // If url matched, create NSFetchRequest
    if (match) {



Persistence with Core Data

[ 64 ]

        NSString *databaseID = [argsDict objectForKey:@"databaseID"];
        NSPredicate *predicate = [NSPredicate predicateWithFormat:@"da
tabaseID = %@", databaseID];
        
        NSFetchRequest *fetchRequest = [MCollection 
          MR_requestAllSortedBy:@"name"
                      ascending:YES 
                  withPredicate:predicate];
        return fetchRequest;
    }
    
    return nil;
}];

When RestKit will receive objects from remote, it will fire the fetch request to see 
what objects for specific databaseID we have in our database. If there are objects 
that do not match any of the received, they will be deleted.

Deletion of orphaned objects is turned off by default 
when making paginated requests.

For more in-depth knowledge on how mapping is done consider checking RestKit 
unit tests. You can find all kinds of usage scenarios there.

Integrating with UI
Previously, we used NSArray to store the response data and to show 
it in UITableView. With Core Data entities, the best approach is to use 
NSFetchedRequestController. The benefit of using it is its ability of lazy loading 
objects, as well as responding to Core Data changes on fetched objects.

Let's modify our GenericTableViewController to support Core Data in addition  
to in-memory objects. We will start by defining a few additional properties:

@property (nonatomic, assign) BOOL useCoreData;
@property (nonatomic, assign) Class objectClass;
@property (nonatomic, strong) NSString *sortBy;
@property (nonatomic, strong) NSString *groupBy;
@property (nonatomic, strong) NSPredicate *fetchPredicate;

@property (nonatomic, strong) NSFetchedResultsController 
*fetchedResultsController;



Chapter 3

[ 65 ]

A brief description of the properties we are using:

Property name Type Description
useCoreData boolean Assign YES to start using Core Data
objectClass class Class of objects that are shown in table 

will be of the NSManagedObject type
sortBy string How to sort objects
groupBy string How to group objects

fetchPredicate predicate Predicate for fetch (filtering)
fetchedResultsController fetched 

results 
controller

Fetched results controller to interact 
with data

Now we need to create the actual NSFetchedResultsController method. We will 
use Magical Record's one-line method for this:

if (!self.sortBy) {
    self.sortBy = @"name";
}

self.fetchedResultsController = [self.objectClass 
  MR_fetchAllSortedBy:self.sortBy 
            ascending:YES 
        withPredicate:self.fetchPredicate 
              groupBy:self.groupBy 
             delegate:self];

if (self.fetchedResultsController.fetchedObjects.count == 0) {
    [self refresh];
}

In our subclasses, the only change we need to make is to provide objectClass  
and (sometimes) fetchPredicate:

self.useCoreData = YES;
self.objectClass = [MCollection class];

// Specify predicate to filter collections
self.fetchPredicate = [NSPredicate predicateWithFormat:@"databaseID = 
%@", self.database.databaseID];



Persistence with Core Data

[ 66 ]

Also, check that you are using routing:

self.routeName   = @"collections";
self.routeObject = self.database;

If we are using Core Data and NSFetchedResultsController, we 
don't need to assign loaded objects to self.items and refresh the table. 
NSFetchedResultsController will notify us with its delegates about changes  
in Core Data. Therefore, the simplest delegate implementation could be:

- (void)controllerDidChangeContent:(NSFetchedResultsController *)
controller 
{
    [self.tableView reloadData];
}

You can check the steps to integrate NSFetchedResultsController in UITableView 
in the provided source code example.

For our form, in order for it to work with Core Data, the only change we need to 
make is on how a new object is created:

// Create new collection, if it's a Create request
if (self.shouldCreateNewItem) {
    if ([MCollection isSubclassOfClass:[NSManagedObject class]]) {
        self.collection = [MCollection MR_createEntity];
        self.collection.database = self.database;
    } else {
        self.collection = [MCollection new];
    }
    self.collection.databaseID = self.database.databaseID;
}

Here, we create the entity and insert it in the database (with the help of Magical 
Record) and assign a database relation and the databaseID property.

Database seeding
In the context of Core Data, seeding means shipping your application with a persistent 
store pre-populated with default data. There are two ways to seed a database:

•	 On the initial app start, copy the pre-populated database from the 
application's bundle

•	 Seed the newly created database with data from JSON, XML, or another source



Chapter 3

[ 67 ]

The second way is not the best, as seeding from a source will require parsing, 
mapping, and inserting operations that will slow down the application start, thus 
giving negative user experience. But this way can be used to create a seed database 
on the developer's machine.

You usually configure database seeding by copying an existing target to a new one 
that will be used to generate the seed database. The main differences between the 
targets are:

•	 GENERATE_SEED_DB is defined in the target's build section Preprocessor 
macros. This will trigger the seed database to be built.

•	 Seed source files are added to the target in order to be copied in the application 
bundle. So the database seeder can find them when running on a simulator.

The code for generating the seed database can look like:

#ifdef GENERATE_SEED_DB

NSError *error = nil;
BOOL success = RKEnsureDirectoryExistsAtPath(RKApplicationDataDirecto
ry(), &error);
if (!success) {
    RKLogError(@"Failed to create Application Data Directory at path 
'%@': %@", RKApplicationDataDirectory(), error);
}

NSString *seedStorePath = [RKApplicationDataDirectory() stringByAppend
ingPathComponent:@"MOSeedDatabase.sqlite"];
RKManagedObjectImporter *importer = [[RKManagedObjectImporter 
alloc] initWithManagedObjectModel:managedObjectModel 
storePath:seedStorePath];

// Define seedMapping for data.json
[importer importObjectsFromItemAtPath:[[NSBundle mainBundle] 
pathForResource:@"data" ofType:@"json"] withMapping:seedMapping 
keyPath:nil error:&error];
    
BOOL success = [importer finishImporting:&error];
if (success) {
    [importer logSeedingInfo];
} else {
    RKLogError(@"Failed to finish import and save seed database due to 
error: %@", error);
}



Persistence with Core Data

[ 68 ]

#else

...  

// Complete Core Data stack initialization
NSString *seedPath = [[NSBundle mainBundle] pathForResource:@"MOSeedDa
tabase" ofType:@"sqlite"];
NSPersistentStore *persistentStore = [managedObjectStore addSQLit
ePersistentStoreAtPath:storePath fromSeedDatabaseAtPath:seedPath 
withConfiguration:nil options:nil error:&error];

...

#endif

Indexing and searching
RestKit includes a component for easily indexing and searching Core Data entities. 
It can greatly help in implementing search functionality on a large database. This 
component is not included by default if RestKit is installed via CocoaPods. So in 
order to use it, you need to install it as a submodule. Add pod 'RestKit/Search'  
to the Podfile and hit pod install in a terminal.

Before using the indexer, it needs to be configured. You start by importing RestKit/
Search.h headers and adding search indexing for each entity you plan to search:

RKManagedObjectStore *managedObjectStore = [[RKManagedObjectStore 
alloc] initWithManagedObjectModel:managedObjectModel];

// Configure indexing for the Collection entity
NSArray *attributesToSearch = @[@"name"];
[managedObjectStore addSearchIndexingToEntityForName:@"Collection" onA
ttributes:attributesToSearch];

// some code
...

[managedObjectStore createManagedObjectContexts];

// Start indexing
[managedObjectStore startIndexingPersistentStoreManagedObjectContext];



Chapter 3

[ 69 ]

You may notice that we are adding indexing to the entity just after initializing 
managed object store, and we start the actual indexing after creating managed 
contexts. The reason for this is that RestKit, on search initialization adds new tables 
to the application's SQLite database to hold search indexes and relation to entities. 
Once indexing is configured, RKSearchIndexer will observe our database for save 
notifications. On saving, any managed objects whose entities were configured for 
indexing will have their searchable attributes tokenized and stored as a to-many 
relationship to the RKSearchWordEntity entity.

Use any SQLite viewer to see how the database looks after adding indexes.  
The following screenshot demonstrates how the database looks using Base app:

Database preview in the Base app

The search is performed by creating RKSearchPredicate and assigning it  
as a predicate property to NSFetchRequest:

// Construct the predicate.
// Supported predicate types are 
// NSNotPredicateType, NSAndPredicateType, and NSOrPredicateType

NSCompoundPredicateType type = NSAndPredicateType;
NSCompoundPredicate *searchPredicate = (id)[RKSearchPredicate searchPr
edicateWithText:textToSearch type:type];

NSFetchRequest *fetchRequest = [NSFetchRequest fetchRequestForEntityWi
thName:@"Collection"];
fetchRequest.predicate = searchPredicate;

NSError *error = nil;
NSArray *matches = [managedObjectStore.mainQueueManagedObjectContext 
executeFetchRequest:fetchRequest error:&error];

NSLog(@"Found matching objects: %@", matches);
    



Persistence with Core Data

[ 70 ]

In our application example, we can implement the search functionality for the 
Collection table. In our case, we are using NSFetchedResultsController for 
making a fetch, and additionally, the collection objects are filtered for a specific 
database. Thus, we will need to modify the predicate to include this filtering before 
firing the search. So the search action (which will be called from UISearchBar 
searchBarSearchButtonClicked delegates) will be:

- (void)searchWithText:(NSString *)textToSearch
{
#ifdef COCOAPODS_POD_AVAILABLE_RestKit_Search
    
    // The filtering predicate
    NSPredicate *parentPredicate = [NSPredicate predicateWithFormat:@"
databaseID = %@", self.database.databaseID];
    
    NSCompoundPredicateType type = NSAndPredicateType;
    NSCompoundPredicate *searchPredicate = (id)[RKSearchPredicate sear
chPredicateWithText:textToSearch type:type];
    
    // Create mutable copy of sub-predicates
    // To add our filtering predicate to it
    NSMutableArray *subpredicates = [searchPredicate.subpredicates 
mutableCopy];
    [subpredicates addObject:parentPredicate];
    
    // Assign it to our fetchPredicate, which is used by Fetched 
Results Controller
    self.fetchPredicate = [[NSCompoundPredicate alloc] 
initWithType:type subpredicates:subpredicates];
    
    // Reconstruct the Fetched Results Controller
    // Perform the fetch and reload the data in table
    [self constructFetchedResultsController];
    [self.tableView reloadData];
#endif
}



Chapter 3

[ 71 ]

After adding the code to your project and running it, you can see the result as shown 
in the following screenshot:

Local search on collections

For additional performance improvements, you can check RestKit's official 
documentation and wiki on creating RKEntityByAttributeCache for caching the 
search indexes, and how to create and use indexingContext for speeding uploading 
data that contains a large number of searchable entities.

Summary
In this chapter, we have seen how RestKit helps connecting your local Core Data 
database with the remote web services. We also discussed a few handy libraries  
that can help in developing Core Data apps and checking integration with UI  
as well as search helpers.

The next chapter will cover some advanced techniques that can be useful in your 
app development.





Advanced Stuff
After reading the information provided in the previous chapters, you should now 
have enough knowledge in making apps that make heavy usage of web services. 
However, often you will find yourself searching topics on how to perform and 
implement things that are more advanced. Such things can include advanced 
mapping techniques, monitoring the reachability status in your application, helping 
in debugging the app, optimizing it, or performing user authorization.

This chapter covers some of the more advanced features of RestKit and 
AFNetworking libraries that developers might use for everyday app development 
and will help in overcoming potential bottlenecks.

Reachability
It's nice to be aware of the current Internet reachability, especially reachability to 
your web service endpoint. Knowing this, you can skip showing an "infinite" loading 
indicator if there is no connection, and warn the user if he's on cellular and a large 
file needs to be downloaded.

The reachability functionality is provided in iOS by Apple, but to work with it 
requires some coding. Hopefully, there are shortcut methods for using it provided 
by the AFNetworking library. To use them, first you need to link against the 
SystemConfiguration framework. Add it in the active target's Link Binary with 
Library build phase and add the following line in your .pch file:

#import <SystemConfiguration/SystemConfiguration.h>



Advanced Stuff

[ 74 ]

For a global reachability test, you may use a setReachabilityStatusChangeBlock 
method from AFHTTPClient to show an alert message to the user. You need to 
provide a callback block object that will be executed when the network availability 
of the baseURL host will change. The status block argument represents the 
various reachability states between a client and a baseURL. The status can be 
one of [AFNetworkReachabilityStatus] Unknown, NotReachable (no internet), 
ReachableViaWWAN (cellular connection), ReachableViaWiFi (Wi-Fi connection).

For example, we can show the user the following message if there's no  
Internet connection:

[manager.HTTPClient setReachabilityStatusChangeBlock:^(AFNetworkReacha
bilityStatus status) {
    if (status == AFNetworkReachabilityStatusNotReachable) {
        UIAlertView *alert = [[UIAlertView alloc]
              initWithTitle:nil
                    message:@"There is no network connection!"
                   delegate:nil
          cancelButtonTitle:@"Dismiss"
          otherButtonTitles:nil];
        [alert show];
    }
}];

Sometimes, it's better to check if the user is on Wi-Fi before downloading the huge 
chunk of data, so that the network operator will not charge the user. To do so, we can 
use the AFHTTPClient's networkReachabilityStatus property as follows:

AFHTTPClient *client = [RKObjectManager sharedManager].HTTPClient;
if (client.networkReachabilityStatus != 
AFNetworkReachabilityStatusReachableViaWiFi) {
    UIAlertView *alert = [[UIAlertView alloc] 
      initWithTitle:@"Not a WiFi connection" 
            message:@"The data is available over cellular connection 
only. Additional charges may occur. Continue?" 
           delegate:self 
  cancelButtonTitle:@"Cancel" 
  otherButtonTitles:@"Yes", nil];
    [alert show];
}



Chapter 4

[ 75 ]

Here, we are checking if the user is on a Wi-Fi; and if he's not, we will show him a 
confirmation message as shown in the following screenshot:

Warning on cellular network reachability

Logging
Sometimes we might come across a situation where we don't understand how the 
request was made, or why the mapping failed, or if RestKit inserted that data in the 
Core Data or not. For such purposes, RestKit has powerful logging abilities, which 
are based on the LibComponentLogging framework. It supports six levels of logging 
(Off, Critical, Error, Warning, Info, Debug, Trace), which can be configured for every 
RestKit's component individually. You can turn these levels for such components  
as shown in the following table:

Component Note
App Logging for usage in your app
RestKit All the RestKit components
RestKit/Core Data Core Data logging



Advanced Stuff

[ 76 ]

Component Note
RestKit/Core Data/Cache Logging of cache usage in Core Data component
RestKit/Network Network logging of requests/responses
RestKit/Network/Core Data Logging when Core Data is involved in network requests
RestKit/ObjectMapping Logging of mapping operations
RestKit/Search Search component
RestKit/Support Miscellaneous logging that is not in other components
RestKit/Testing Logging of testing component, which provides a few 

helpers
RestKit/UI Currently, the UI part is extracted from a main Restkit 

distribution, but was presented mostly by a special 
TableViewController

So, for example, if you want to switch logging, use the RKLogConfigureByName 
method and provide the component and logging level for it, as given in the  
following code:

// Log debugging messages from the Network component
RKLogConfigureByName("RestKit/Network", RKLogLevelDebug);

// Log only critical messages from the Object Mapping component
RKLogConfigureByName("RestKit/ObjectMapping", RKLogLevelCritical);

In addition, it is possible to set logging as environmental flags:

Log level Environment variable value
0 or Default

RKLogLevelOff

RKLogLevelCritical 1 or Critical
RKLogLevelError 2 or Error
RKLogLevelWarning 3 or Warning
RKLogLevelInfo 4 or Info
RKLogLevelDebug 5 or Debug
RKLogLevelTrace 6 or Trace

To do so, place in the following code (preferably just before using RestKit) and 
configure RestKit logging from environment variables:

// MongoHqApi.m
// in - (id)init
RKLogConfigureFromEnvironment();



Chapter 4

[ 77 ]

Open the Scheme Editor (use Option + Command + R to set the environment  
variables prior to run) and click on the Arguments tab. Define an environment 
variable named RKLogLevel.RestKit.Network and set its value to Trace, as  
shown in the following screenshot:

Setting environment variables in Xcode

This will configure the logging to the equivalent of setting the following in code:

 RKLogConfigureByName("RestKit/Network", RKLogLevelTrace);

Bear in mind that using environmental variables for configuring the logging is useful 
only while debugging your app. For production release, set the logging via code  
to the minimum required.



Advanced Stuff

[ 78 ]

Error mapping
If the server is capable of returning proper error messages in response, we will  
be able to map them and output directly to the user. So, if the server is capable  
of returning error message in the JSON response as follows:

{
  "error": "No matching database associated with this account",
  "code": 1005
}

Then, we can use it to show to the user. To do so, create an error mapping for the 
RKErrorMessage class as follows:

// You can map errors to any class
// RKErrorMessage is included within RestKit
RKObjectMapping *errorMapping = [RKObjectMapping 
mappingForClass:[RKErrorMessage class]];

// Map error information to the errorMessage property in our class
[errorMapping addPropertyMapping:[RKAttributeMapping 
attributeMappingFromKeyPath:nil toKeyPath:@"errorMessage"]];

// Anything in 4xx (Client errors)
NSIndexSet *clientErrorStatusCodes = RKStatusCodeIndexSetForClass(RKSt
atusCodeClassClientError);

// Anything in 5xx (Server errors)
NSIndexSet *serverStatusCodes = RKStatusCodeIndexSetForClass(RKStatusC
odeClassServerError);

// Combine
NSMutableIndexSet *statusCodes = [[NSMutableIndexSet alloc] init];
[statusCodes addIndexes:clientErrorStatusCodes];
[statusCodes addIndexes:serverStatusCodes];

// Any response within provided status code range
// with an "error" key path
RKResponseDescriptor *errorDescriptor = [RKResponseDescriptor 
    responseDescriptorWithMapping:errorMapping
                           method:RKRequestMethodAny
                      pathPattern:nil
                          keyPath:@"error"
                      statusCodes:statusCodes];



Chapter 4

[ 79 ]

// Add it to default response mappers
RKObjectManager *manager = [RKObjectManager sharedManager];
[manager addResponseDescriptor:errorDescriptor];

Now outputting [error localizedDescription] will give us an error message 
from the server, as shown in the following screenshot:

Error as returned from a web service

Metadata mapping
The mapping operation provides support for mapping a dictionary of metadata 
in addition to the source object. This metadata is made available by mapping key 
paths nested under a specially designated parent key (@metadata) that cannot exist 
in a source representation. The metadata is also nested under subkeys to effectively 
namespace usage between components. An example of metadata mapping would be 
getting an object index from the collection it came from. To do so, we can write the 
following code:

 [mapping addAttributeMappingsFromDictionary:@{
  @"@metadata.mapping.collectionIndex": @"index"
}];



Advanced Stuff

[ 80 ]

The @metadata prefix indicates that the property is to be mapped from the metadata 
dictionary instead of from the source object representation. If any relationships 
were mapped, it would have access to this same metadata information as well. The 
possible metadata information that can be available for mapping is shown in the 
following table:

@metadata. suffixes Description
mapping.collectionIndex This is an NSNumber object specifying the index of  

the current object within a collection being mapped.  
It is available if the current representation exists within  
a collection.

mapping.rootKeyPath This is an NSString object specifying the root key path 
at which the current representation is nested within the 
source representation.

mapping.parentObject This is a direct parent object of the object that is currently 
being mapped. This key is only available for objects that 
are mapped as relationships of a parent object.

routing.parameters This is a dictionary of parameters and their values that 
were used in the path pattern of the RKRoute object to 
construct the request. It is available when routing will be 
used to construct the request URL.

routing.route This is the route object used to construct the  
request URL.

HTTP.request.URL This is an NSURL object identifying the URL of the 
request that loaded the response.

HTTP.request.method This is an NSString object specifying the HTTP method 
of the request.

HTTP.request.headers This is an NSDictionary object containing all  
HTTP headers and values for the request that loaded  
the response.

HTTP.response.URL This is an NSURL object identifying the URL of the 
response. It is often the same as in the request URL.

HTTP.response.headers This is an NSDictionary object containing all HTTP 
headers and values for the response.

There are two other keys in the mapping dictionary that are used for  
metadata retrieval:

•	 @parent: This key returns the direct parent node of sourceObject being 
mapped or nil if sourceObject is itself a root node. Parent access can be 
chained to traverse upward all the way to the root node of the representation.



Chapter 4

[ 81 ]

•	 @root: This key returns the root node of the representation being mapped. 
When a large JSON document is being mapped with RKMapperOperation, 
this will point to the parsed JSON document that was used to initialize  
the operation.

Advanced object mapping techniques
There might be cases when you need to make your own custom logic for a specific 
mapping. One of the possible ways of doing this is to define mapping to a setter, 
where you will process the response dictionary yourself.

For our example, as MongoDB saves the id of a document in its body. We will use  
such techniques to extract the id attribute from the body. First, let's look at the 
mapping configuration:

Class itemClass = [MDocument class];
RKObjectMapping *mapping = [RKObjectMapping 
    mappingForClass:itemClass];
[mapping addPropertyMapping:[RKAttributeMapping 
    attributeMappingFromKeyPath:nil 
                      toKeyPath:@"rootDocument"]
];

Now, rootDocument in our MDocument class is just a property with a custom setter 
(or you can create a custom setter method that accepts additional arguments, in case 
you consider that using properties for this is not the best practice):

// In @interface MDocument

// The fake setter
@property (nonatomic, assign) NSDictionary *rootDocument;

// The real property to hold the document body
@property (nonatomic, strong) NSDictionary *document;

// In @implementation

- (void)setRootDocument:(NSDictionary *)rootDocument {

    if (!rootDocument) return;
    
    // Extract document _id
    id idObj = rootDocument[@"_id"];



Advanced Stuff

[ 82 ]

    if ([idObj isKindOfClass:[NSString class]]) {
        self.documentID = idObj;
    }
    else if ([idObj isKindOfClass:[NSDictionary class]]) {
        static NSString *oidKey = @"$oid";
        NSDictionary *idObjDict = idObj;
        self.documentID = idObjDict[oidKey];
    }
    
    // Remove _id from document
    NSMutableDictionary *dict = [rootDocument mutableCopy];
    [dict removeObjectForKey:@"_id"];
    self.document = dict;
}

The other possible use of such techniques is to make a data validation.

Batching operations
Suppose we want to import and upload a CSV file in our remote database. An 
example can be IMDB (International Movie Database), the top 250 movies CSV 
table, each row containing title, rating, and the number of votes. We need to post 
every single movie as a document in our collection as follows:

...
241,8,Mystic River (2003),"234,310"
242,7.9,Manhattan (1979),"71,126"
243,7.9,The Untouchables (1987),"152,716"
244,7.9,"Spring, Summer, Fall, Winter... 38,532"
245,7.9,Nosferatu (1922),"49,200"
246,7.9,The Celebration (1998),"43,066"
247,7.9,Three Colors: Red (1994),"39,541"
248,7.9,Big Fish (2003),"263,070"
...

Luckily, RestKit has a batch operation method. So to enqueue a batch of object 
request operations, we would write the following code:

RKObjectManager *manager = [RKObjectManager sharedManager];

// A route to be used for every single upload operation
RKRoute *route = [manager.router.routeSet routeForClass:[MDocument 
class] method:RKRequestMethodPOST];

[manager enqueueBatchOfObjectRequestOperationsWithRoute:route 



Chapter 4

[ 83 ]

             objects:docs 
            progress:^(NSUInteger numberOfFinishedOperations, 
NSUInteger totalNumberOfOperations)
{
    NSLog(@"Finished %d operations", numberOfFinishedOperations);
    // Show some progress HUD
    CGFloat progress = ((CGFloat)numberOfFinishedOperations / 
(CGFloat)totalNumberOfOperations);
    [SVProgressHUD showProgress:progress];
} 
          completion:^(NSArray *operations)
{
    NSLog(@"All Documents Uploaded!");
}];

Here, docs is an array of the locally created MDocument objects. In our example, after 
parsing a CSV file and getting an array of rows in parsedData, we went through 
each and created the pre-filled document:

NSArray *headerNames = nil;
NSMutableDictionary *dict = nil;
BOOL first = YES;

for (NSArray *arr in parsedData) {
  
    // First row is a header, so extract it
    if (first) {
        headerNames = arr;
        dict = [[NSMutableDictionary alloc] 
initWithCapacity:headerNames.count];
        first = NO;
        continue;
    }

    // Fill the dict with information from CVS
    for (int i=0; i < headerNames.count; i++) {
        dict[headerNames[i]] = arr[i];
    }

    MDocument *doc = [[MDocument alloc] init];
    doc.databaseID = self.collection.databaseID;
    doc.collectionID = self.collection.collectionID;
  
    doc.document = [dict copy];



Advanced Stuff

[ 84 ]

    // add to array of documents to be uploaded
    [documents addObject:doc];

    // clear the dict for reuse
    [dict removeAllObjects];
}

Now, if we click on Import and select a CSV file, the import process will start,  
as shown in the following screenshot:

Uploading data from a CSV file

Paginating results
If our web service returns a collection of items and their number is quite high, it can 
be a good idea to paginate them showing a user no more than, let's say, 20 of them in 
a page. Of course to use this method, your server needs to support this functionality.

RestKit provides an RKPaginator class for such use cases. Currently, it supports 
only web servers that respond pagination information as part of JSON/XML of the 
content, for example:

{
  "pagination": { 
      "per_page": 10, 
      "total_pages": 25, 



Chapter 4

[ 85 ]

      "total_objects": 250 
  },
  "articles": [ 
    // Array of articles 
  ]
}

Instances of RKPaginator will start a HTTP GET request to remote the web 
service and retrieve paginated collections of mappable data. Paginators rely on 
RKObjectMappingProvider to decide on how object mapping will be made for 
the retrieved data; therefore, they must be configured with a paginationMapping 
property, where we will specify how information should be mapped.

Pattern URLs are used while building a complete final URL for loading a paginated 
resource collection. They will be evaluated against the paginator object. For example, 
a pattern URL is as follows:

/articles?per_page=:perPage&page_number=:currentPage

When evaluated against the state of the paginator (which is configured with 100 
objects per page and a current page number of 3), it will become:

/articles?per_page=100&page_number=3

For the preceding JSON example, mapping would be configured as follows:

RKObjectMapping *paginationMapping = [RKObjectMapping 
mappingForClass:[RKPaginator class]];
[paginationMapping addAttributeMappingsFromDictionary:@{
    @"pagination.per_page":      @"perPage",
    @"pagination.total_pages":   @"pageCount",
    @"pagination.total_objects": @"objectCount",
}];

We can also use RKObjectManager to help us in creating paginator, if the 
configuration is the same throughout the entire app:

// In configuration method
RKObjectManager *manager = [RKObjectManager sharedManager];
manager.paginationMapping = paginationMapping;

// In implementation

// Paginator path pattern
NSString *path = @"/articles?per_page=:perPage&page_
number=:currentPage";
RKPaginator *paginator = [manager paginatorWithPathPattern:path];
paginator.perPage = 20;



Advanced Stuff

[ 86 ]

// What to do on completion
[paginator setCompletionBlockWithSuccess:^(RKPaginator *paginator, 
NSArray *objects, NSUInteger page) {
    [self finishedLoadingWithItems:objects];
} failure:^(RKPaginator *paginator, NSError *error) {
    [self finishedLoadingWithError:error];
}];

// Load first page
[paginator loadPage:1];

// Load next page
[paginator loadNextPage];

Authorization
All authorizations are done through the AFNetworking library. The authorizations 
are mentioned in the following sections.

Basic
To authorize against the basic (or the simplest) authorization:

// client is instance of AFHTTPClient
[client setAuthorizationHeaderWithUsername:@"username" 
password:@"password"];

Token-based
The token-based authorization is mostly used with OAuth 1.0 / OAuth 2.0 
authorization schemes. After authorizing with them, you will get a token string, 
which you need to supply to your AFHTTPClient:

// client is instance of AFHTTPClient
NSString *token = @"1q2w3e4r";
[client setAuthorizationHeaderWithToken:token];

Here, the setAuthorizationHeaderWithToken method actually sets an HTTP 
header Authorization with the Token token=1q2w3e4r value. Sometimes, the web 
service you are using will require more custom HTTP headers to be set. For such 
cases, use setDefaultHeader:value: of AFHTTPClient:

[client setDefaultHeader:@"MongoHQ-API-Token" value:@"1q2w3e4r"];



Chapter 4

[ 87 ]

OAuth 1.0
"OAuth is an open standard for authorization. OAuth provides a method for 
clients to access server resources on behalf of a resource owner (such as a different 
client or an end-user). It also provides a process for end-users to authorize third-
party access to their server resources without sharing their credentials (typically, 
a username and password pair), using user-agent redirections." is the definition 
given in http://en.wikipedia.org/wiki/OAuth.

For authorization with OAuth 1.0, you can use the AFOAuth1Client library, which 
is an extension to AFNetworking. Check the https://github.com/AFNetworking/
AFOAuth1Client for documentation.

You can install it with CocoaPods by including pod 'AFOAuth1Client' in  
your Podfile.

For using it, register your application to launch from a custom URL scheme, and use 
that with the /success path as your callback URL:

AFOAuth1Client *oauthClient = [[AFOAuth1Client alloc] 
    initWithBaseURL:[NSURL URLWithString:@"https://twitter.com/
oauth/"] 
                key:@"APP_KEY" 
             secret:@"APP_SECRET"];

// Your application will be sent to the background
// When the user authenticates, the app will be brought back using the 
callback URL
[oauthClient 
  authorizeUsingOAuthWithRequestTokenPath:@"/request_token" 
  userAuthorizationPath:@"/authorize" 
  callbackURL:[NSURL URLWithString:@"com.mongohq.app://success"] 
  accessTokenPath:@"/access_token" 
  success:^(AFOAuth1Token *accessToken) {
    NSLog(@"Success: %@", accessToken);
} 
  failure:^(NSError *error) {
    NSLog(@"Error: %@", error);
}];



Advanced Stuff

[ 88 ]

OAuth 2.0
The AFOAuth2Client library is available as an extension for AFNetworking. It greatly 
simplifies the process of authenticating against an OAuth2 provider:

NSURL *url = [NSURL URLWithString:@"http://example.com/"];
AFOAuth2Client *oauthClient = [AFOAuth2Client clientWithBaseURL:url 
clientID:kClientID secret:kClientSecret];

[oauthClient authenticateUsingOAuthWithPath:@"/oauth/token"
                                   username:@"username"
                                   password:@"password"
                                      scope:@"email"
                                    success:^(AFOAuthCredential 
*credential)
{
    // A token is available in credential.accessToken variable

    // Store the credentials
    [AFOAuthCredential storeCredential:credential 
withIdentifier:oauthClient.serviceProviderIdentifier];
                                    
}                                    
                                    failure:^(NSError *error)
{
    NSLog(@"Error: %@", error);                                    
}];

The documentation can be found on a project's website at https://github.com/
AFNetworking/AFOAuth2Client.

For installing with CocoaPods, use pod 'AFOAuth2Client'.

SSL and certificates
If you are connecting to the HTTPS web service and you want to use a custom 
SSL certificate (for example, bundled with your application) for such a connection, 
AFNetworking can help you with this. Just include the .cer files with your 
app bundle, and AFNetworking will automatically fetch and use them while 
communicating with your web service.

To use this mechanism, which is called SSL Pinning, you must enable it by 
inserting the following code in your Prefix.pch file and check whether the security 
framework is linked with the app binary:

#define _AFNETWORKING_PIN_SSL_CERTIFICATES_



Chapter 4

[ 89 ]

SSL certificate pinning provides an increased level of security, by checking the server 
certificate validity against those specified in the app bundle.

Sometimes for testing and developing purposes, you can target an HTTPS web 
service, which uses self-signed server certificate. AFNetworking will disallow such  
a connection, as they are not secure. Whether the connection should accept an invalid 
SSL certificate, you need to enable in your request operation as follows:

// operation is a subclass of AFURLConnectionOperation
openration.allowsInvalidSSLCertificate = YES;

HTTP caching
There are three mechanisms to control a cache defined in HTTP standard, which  
are as follows:

•	 Freshness: This mechanism will allow the user to use a response without 
rechecking it on the original server. It can be controlled by both the server and 
the client. For example, the Expires response header will give a date when 
the document becomes stale, and Cache-Control (the max-age directive) will 
inform the cache how many seconds the response is fresh (valid) for.

•	 Validation: This mechanism may be used for checking whether a cached 
response is still good after it becomes stale. For example, if a Last-Modified 
header is in response, a cache can make a next request using the If-
Modified-Since header and check if it has changed. The ETag (entity tag) 
mechanism also allows for both strong and weak validation.

•	 Invalidation: This mechanism mostly is a side effect when another request 
passes through the cache. So, if a URL related with a cached response later on 
gets a POST, PUT, or DELETE request, the cached response will be invalidated.

Instances of RKObjectRequestOperation support the entire HTTP caching facilities 
available in the NSURLConnection APIs. For caching to be enabled, the remote  
web server that the application is communicating with must emit the appropriate  
Cache-Control, Expires, and/or ETag headers. When the response headers include 
the appropriate caching information, the shared NSURLCache instance will manage 
responses and transparently add conditional GET support to cachable requests.

Read more in detail about HTTP caching on Wikipedia at, 
http://en.wikipedia.org/wiki/Web_cache, and 
about RFC 2616 at http://www.w3.org/Protocols/
rfc2616/rfc2616-sec13.html.



Advanced Stuff

[ 90 ]

This allows network operations to be very lightweight. In the event, a managed 
object request operation loads a 304 'Not Modified' response for an HTTP request, 
it will use a cache for retrieving requested resources. It is even faster if Core Data  
is used, as no object mapping is performed assuming that Core Data contains  
a managed object representation of the resource requested.

An example of Ruby on Rails code that outputs ETag and Cache-Control information 
while returning a collection might be as follows:

def index
  @acts = parent.acts

  # Check ETag from request
  # Output 304 if not modified
  if stale?(:etag => @acts, :public => true)
    # if modified:    

    # Output the collection
    index!

    # Append Cache-Control
    expires_in 5.minutes
  end
end

When setting NSURLRequestUseProtocolCachePolicy as a cache policy for 
NSURLConnection, the connection will start to support the conditional GET requests. 
This would result that NSHTTPURLResponse from loading the data and will not 
always have a 304 status code (Not Modified). So, if the response that we got from 
NSURLCache actually had a 304 status code, the object request operation will perform 
the following steps:

1.	 While loading the HTTP request, a reference to any existing 
NSCachedURLResponse is received.

2.	 After the response is loaded, if its HTTP request method is and the status 
code is one of 200, 304, 203, 300, 301, 302, 307, or 410, then the request  
is to be considered as cacheable.

3.	 In the previous step, where a request is examined as being cacheable,  
the Etag information of the current response is checked against the existing 
cache entry that was referenced before loading the request.

4.	 The data of the loaded response is matched against the data in cache if  
the Etag information will match.



Chapter 4

[ 91 ]

5.	 On positive match, the userInfo dictionary from the cache entry is checked. 
If it has a RKResponseHasBeenMappedCacheUserInfoKey key and its 
Boolean value is YES, it indicates that the response was previously mapped.

6.	 If the preceding steps are positive, it will mean that a response is loaded 
from the cache and mapping or managed object deletion cleanup is skipped. 
Optimizations like this, where HTTP caching is used, are made to greatly 
improve the application responsiveness on network connections.

To see and debug how a web service returns responses on an HTTP request, different 
tools can be used. The most powerful one is a Wireshark (http://www.wireshark.
org), which is a full featured network analysis tool, or a Charles (http://www.
charlesproxy.com), which is a simpler HTTP/HTTPS analysis tool with a nice and 
clean interface and great usability features as shown in the following screenshot:

Showing detailed information about the request



Advanced Stuff

[ 92 ]

Background processing
Sometimes we need to download large amount of data, or process a long operation. 
However, when the user clicks on the Home button on his iOS device, the iOS 
operating system will move the application from the active state to the inactive 
state. This can also occur for certain types of temporary interruptions, such as an 
incoming phone call or an SMS. The OS will notice the AppDelegate application's 
applicationWillResignActive: method before it begins to transition the 
application to the background state. Use this method to pause ongoing tasks, disable 
timers, and throttle down OpenGL ES frame rates. Games should use this method  
to pause the game.

AFURLConnectionOperation and its subclasses have the pause method, which will 
pause the operation, and resume, which will resume the operation. Depending on 
an operation class, the pause/resume method can be overridden and can be made 
to work differently. For example, in AFURLConnectionOperation, the resume 
method will restart the original request, while in AFHTTPRequestOperation (and its 
subclasses), since HTTP defines a specification for how to request a specific content 
range, this method will resume the request from where it left off.

For our situation, we could pause the downloading/uploading operation, and then 
resume it in the AppDelegate application's applicationWillEnterForeground: 
method, which is called as a part of the transition from the background 
state to the inactive state. AFNetworking provides a nice method, 
setShouldExecuteAsBackgroundTaskWithExpirationHandler:, for every request, 
which specifies that the operation should continue its execution after the app has 
entered the background state, and clean up on expiration handler. A handler will  
be called shortly before the application's remaining background time reaches 0.

- (void)applicationWillResignActive:(UIApplication *)application
{
  // operation is a subclass of AFHTTPRequestOperation
  [self.operation 
setShouldExecuteAsBackgroundTaskWithExpirationHandler:^{   
    // handler is called synchronously on the main thread
    // will block application's suspension momentarily while the 
application is notified

    // Clean up anything that needs to be handled if the request times 
out
    [self.operation pause];
  }];
}



Chapter 4

[ 93 ]

- (void)applicationWillEnterForeground:(UIApplication *)application
{
  [self.operation resume];
  
  // or create a custom resume
  // with NSOutputStream writing to file
}

You might also want to check AFDownloadRequestOperation 
(https://github.com/steipete/
AFDownloadRequestOperation), which is a progressive 
download operation that has additional support to resume a 
partial download, to use a temporary directory, and has a special 
block that helps in calculating the correct download progress.

Custom HTTP client
Usually, you will use AFHTTPClient for most of the cases. However, sometimes you 
will need a custom one. For example, if you need to provide apikey in every request. 
One way would be to append it to each request just before dispatching it, but to 
support the DRY philosophy, we'll rewrite each request URL in a custom HTTP 
client class. To do so, create a subclass of AFHTTPClient as follows:

@interface MongoHqHTTPClient : AFHTTPClient
@end

@implementation MongoHqHTTPClient

- (NSMutableURLRequest *)requestWithMethod:(NSString *)method
                                      path:(NSString *)path
                                parameters:(NSDictionary *)parameters
{
    // Consider moving API key to a more secure place
    NSString *apiKey = @"PUT_YOUR_API_KEY_HERE";
    path = [path stringByAppendingFormat:@"?_apikey=%@", apiKey];
    
    return [super requestWithMethod:method 
                               path:path 
                         parameters:parameters];
}

@end



Advanced Stuff

[ 94 ]

Then initialize it by using it in your app by modifying the beginning of the 
setupObjectManager method as follows:

// Set the base Url
NSString *baseUrl = @"https://api.mongohq.com";
    
// Initialize our custom HTTP
MongoHqHTTPClient *httpClient = [[MongoHqHTTPClient alloc] 
initWithBaseURL:[NSURL URLWithString:baseUrl]];
    
// Init with custom HTTPClient
RKObjectManager *manager = [[RKObjectManager alloc] 
initWithHTTPClient:httpClient];

The rest of the code in the setupObjectManager method is same.

Summary
In this chapter, we have discussed the different advanced techniques that might 
be helpful to you while developing apps and working with different web services. 
We covered topics such as reachability, error mapping and logging, meta mapping, 
authorization, and a few others.

You will find the list of helpful resources, libraries, and links to check out for 
additional information, tips, and tricks in the Appendix of the book.



Helpful Resources
The following is a list of links to guides that might be useful for a developer to know 
more about RestKit and overall iOS development:

Home pages
•	 RestKit home page: http://restkit.org
•	 AFNetworking home page: http://afnetworking.com
•	 CocoaPods library manager home page: http://cocoapods.org—where 

you can search for available libraries
•	 A popular aggregator of custom controls for iOS and OS X: http://

cocoacontrols.com

•	 https://developer.apple.com/ios: Apple Developer website for iOS 
with a lot of guides and latest iOS reference guides, as well as official 
developer forum

Where to get answers
•	 RestKit's Wiki: https://github.com/RestKit/RestKit/wiki—a web page 

with several useful guides
•	 RestKit Tag on StackOverflow: http://stackoverflow.com/questions/

tagged/restkit—a place to ask specific questions and get relevant answers
•	 RestKit's Google Group: https://groups.google.com/forum/#!forum/

restkit—where people have a general discussion about RestKit and its 
features

•	 A big FAQ about AFNetworking can be found on its Wiki: https://github.
com/AFNetworking/AFNetworking/wiki/AFNetworking-FAQ



Appendix A

[ 96 ]

Guides and blogs
•	 And a few guides related to CocoaPods: http://docs.cocoapods.org/

guides/

•	 A periodical about the best practices and advanced techniques in 
Objective-C: http://www.objc.io

•	 Cocoa Is My Girlfriend: http://www.cimgf.com—a popular blog about 
general iOS developing techniques

•	 Cocoa with Love: http://www.cocoawithlove.com—another lovely blog 
about Cocoa development

•	 NSBlog: http://www.mikeash.com/pyblog/—a blog by Mike Ash covering 
more in-depth topics of Objective-C

•	 Deallocated Objects: - http://deallocatedobjects.com—another 
interesting blog relating to software development

•	 http://www.angelolloqui.com/blog—a blog by Angel G. Olloqui 
covering some techniques on iOS development

•	 http://kalapun.com/blog—a blog by some person named Taras Kalapun, 
where he occasionally writes about iOS, Ruby, and some other stuff

•	 http://www.idev101.com—a website with structured tips and tricks for 
iOS developers

•	 http://theonlylars.com—another iOS-friendly blog with a lot of  
small guides

•	 http://www.raywenderlich.com—lots of iOS-related tutorials
•	 Cocoa Samurai: http://cocoasamurai.blogspot.com—a blog by Colin 

Wheeler
•	 Learn Cocoa—http://cocoadevcentral.com



Helpful Libraries
This chapter describes some popular libraries that might be useful for developing 
iOS apps. Most of them can be installed by CocoaPods, just add pod 'NAME_
OF_LIBRARY' to your Podfile and hit pod install in a command line. The 
descriptions of libraries are taken from their authors. It's up to the reader to decide  
if the usage of a particular library is needed.

Core libraries
The following is a list of core libraries:

•	 RestKit: It is a framework for consuming and modeling RESTful web 
resources on iOS and OS X.

•	 AFNetworking: It is a delightful iOS and OS X networking framework.
•	 MagicalRecord: It is a super-awesome, easy-fetching framework for  

Core Data.
•	 Injective: It is the Cocoa/Cocoa Touch Dependency Injection framework 

with features for simpler TDD.
•	 AGi18n: It easily localizes your iOS apps by automatically extracting texts 

from code and XIB files into localizable strings.
•	 SDWebImage: It is an asynchronous image downloader with cache 

support with an UIImageView category (for ones not satisfied with 
UIImageView+AFNetworking functionality).

•	 SSKeychain: It is a simple Cocoa wrapper for the keychain that works on 
Mac and iOS.

•	 LUKeychainAccess: It is a wrapper for iOS keychain services that behaves 
just like NSUserDefaults.



Helpful Libraries

[ 98 ]

•	 FileMD5Hash: It is a library for computing MD5 hashes of files with small 
memory usage.

•	 ISO8601DateFormatter: It is a Cocoa NSFormatter subclass to convert dates 
to and from ISO-8601-formatted strings. It supports calendar, week, and 
ordinal formats.

•	 NSData+Base64: It is Base64 for NSData.
•	 TransitionKit: It is a block-based State Machine API for Objective-C.
•	 NSXtensions: It is a collection of useful categories for standard Cocoa classes.
•	 BlockKit: It is a framework that block-ifies pieces of foundation and UIKit 

that are in desperate need.
•	 Libextobjc: The extended Objective-C library extends the dynamism of the 

Objective-C programming language to support additional patterns present 
in other programming languages (including those that are not necessarily 
object-oriented).

Debugging and logging
•	 TestFlightSDK: It is a TestFlight SDK for over-the-air beta testing and crash 

reporting.
•	 Reveal-iOS-SDK: See your application's view hierarchy at runtime with 

advanced 2D and 3D visualizations.
•	 PonyDebugger: It is a client library and a gateway server combination that 

uses chrome developer tools on your browser to debug your application's 
network traffic and managed object contexts.

•	 CocoaLumberjack: It is a fast and simple, yet powerful and flexible logging 
framework for Mac and iOS.

•	 LibComponentLogging-Core: It is a logging library that provides log levels, 
log components, and pluggable logging backends.

•	 LibComponentLogging-NSLog: The LibComponentLogging logging backend 
redirects logging to NSLog.

•	 CBIntrospect: Introspect is a tool for iOS that aids in debugging user 
interfaces built with UIKit. It communicates with a view introspector,  
a desktop app.



Appendix B

[ 99 ]

Unit testing
•	 Kiwi: It is a Behavior-Driven Development library for iOS development.
•	 TKSenTestAsync: It is a SenTest category with asynchronous support.
•	 Expecta: It is a matcher framework for Objective-C and Cocoa.
•	 Nocilla: It is a stunning HTTP stubbing for iOS. Testing HTTP requests  

has never been easier.
•	 OCMock: It is an Objective-C implementation of mock objects.
•	 Calabash: It is an automated testing technology for Android and iOS native 

and hybrid applications. The home page is available at http://calaba.sh.
•	 Frank: It is automated acceptance tests for native iOS apps. The home page  

is available at http://www.testingwithfrank.com.

User interface
•	 UI7Kit: It is a GUI toolkit to implement iOS7 look-and-feel UIKit under 

iOS5/iOS6. It is also supported for patching UIKit to UI7Kit in runtime.
•	 SVProgressHUD: It is a clean and lightweight progress HUD for your iOS app.
•	 SIAlertView: It is a UIAlertView replacement with block syntax and fancy 

transition styles.
•	 PSTCollectionView: It is open source and a 100 percent API-compatible 

replacement of UICollectionView for iOS4+.
•	 QuickDialog: It is a quick and easy dialog screen for iOS.
•	 ISRefreshControl: It is an iOS4-compatible UIRefreshControl.
•	 ViewDeck: It is an implementation of the sliding functionality found  

in the Path 2.0 or Facebook iOS apps.
•	 BCGenieEffect: It is an OSX-style genie effect inside your iOS app.
•	 JSMessagesViewController: It is a message's UI for iPhone and iPad.
•	 CorePlot: It is a Cocoa plotting framework for Mac OS X and iOS.
•	 DDPageControl: It is an easily customizable alternative to UIKit's 

UIPageControl.
•	 MTStatusBarOverlay: It is a custom iOS status bar overlay seen in apps, 

such as Reeder, Evernote, and Google Mobile App.
•	 FontasticIcons: It is an Objective-C wrapper for iconic fonts.



Helpful Libraries

[ 100 ]

Other
•	 ZBarSDK: It is a QR and barcode scan library
•	 ObjQREncoder: It is an Objective-C QR encoder
•	 CardIO: It is an easy-to-use credit card scanning tool
•	 CHCSVParser: It is a proper CSV parser for Objective-C



Index
Symbols
--HEAD option  60
--includeh option  61
@metadata. suffixes

HTTP.request.headers  80
HTTP.request.method  80
HTTP.request.URL  80
HTTP.response.headers  80
HTTP.response.URL  80
mapping.collectionIndex  80
mapping.parentObject  80
mapping.rootKeyPath  80
routing.parameters  80
routing.route  80

<MTableObject> protocol  35
@parent key  80
.pch file  15
@root key  81
--template-var option  61

A
Add Collection button  36
AFDownloadRequestOperation

URL  93
AFIncrementalStore

URL  8
AFNetworking  

about  7, 8, 97
FAQ, URL  95

AFNetworking home page
URL  95

AFNetworking library  23
AFURLConnectionOperation  92
AGi18n  97

API Key
getting  25

App component  75
Apple Developer website

for iOS, URL  95
applicationWillEnterForeground:  

method  92
applicationWillResignActive: method  92
authorization

about  86
basic  86
OAuth 1.0  87
OAuth 2.0  88
SSL and certificates  88, 89
token-based  86

B
batching

operations  82-84
BCGenieEffect  99
BlockKit  98
blog

by Angel G. Olloqui, URL  96
by Taras Kalapun, URL  96
iOS-friendly blog, URL  96

blogs. See  guides and blogs
BSON  16

C
Calabash  99
Caller  11
CardIO  100
CBIntrospect  98
Charles

URL  91



[ 102 ]

CHCSVParse  100
class routes  44
client error  25
Cocoa

URL  96
cocoacontrols

URL  95
COCOA IS MY GIRLFRIEND

URL  96
CocoaLumberjack  98
CocoaPods  11

about  14
guides, URL  96
URL  12

CocoaPods library manager home page
URL  95

COCOA SAMURAI
URL  96

Cocoa with Love
URL  96

collection API documentation  37
collection, attributes

collectionID  56
count  56
databaseID  56
indexCount  56
name  56
storageSize  56

collectionID attribute  56
collectionID parameter  41
components, RestKit

core data  9
networking  9
object manager  9
object mapping  9
search  10
testing  10

Core Data
about  55
entities, indexing  68, 69
entities, searching  68-71
mapping, configuration  62
prerequisites, for using with RestKit  57, 58

core data component  9
core libraries

AFNetworking  97

AGi18n  97
BlockKit  98
FileMD5Hash  98
Injective  97
ISO8601DateFormatter  98
Libextobjc  98
LUKeychainAccess  97
MagicalRecord  97
NSData+Base64  98
NSXtensions  98
RestKit  97
SDWebImage  97
SSKeychain  97
TransitionKit  98

CorePlot  99
count attribute  56
Create collection button  37

D
data

entering, in forms  46-52
loading, from Status API endpoint  20-22

database
seeding  66
setting up  55

database, attributes
databaseID  56
hostname  56
name  56
plan  56
port  56

databaseID attribute  56
databaseID parameter  63
databaseID property  62
DDPageControl  99
Deallocated Objects

URL  96
debugging and logging

CBIntrospect  98
CocoaLumberjack  98
LibComponentLogging-Core  98
LibComponentLogging-NSLog  98
PonyDebugger  98
Reveal-iOS-SDK  98
TestFlightSDK  98

Defines.h file  56



[ 103 ]

Delete button
creating  50

deleteItemRequest method  49

E
environmental flags

logging, setting as  76
error mapping

about  78
creating, for RKErrorMessage class  78, 79

Expecta  99

F
fetch request  64
FileMD5Hash  98
finishedLoadingWithError method  35
finishedLoadingWithItems method  35
FontasticIcons  99
forms

data, entering  46-52
Frank  99

G
GENERATE_SEED_DB  67
GenericTableViewController

creating  32
GenericTableViewController class  46
guides and blogs  96

H
home page

AFNetworking home page, URL  95
cocoacontrols, URL  95
CocoaPods library manager home page, 

URL  95
RestKit home page, URL  95

hostname attribute  56
HTTP caching

about  89, 90
freshness  89
invalidation  89
validation  89

HTTP client
custom  93, 94

HTTP.request.headers  80
HTTP.request.method  80
HTTP.request.URL  80
HTTP.response.headers  80
HTTP.response.URL  80

I
IMDB (International Movie Database  82
implementation section  29
indexCount attribute  56
indexingContext  71
In-Memory object  11
iOS developers

tips and tricks, URL  96
iOS-related tutorials

URL  96
ISO8601DateFormatter  98
ISRefreshControl  99
itemPath property  48
item property  48
items property  33

J
JSMessagesViewController  99

K
KeyValueObjectMapping

URL  9
Key Value Observing. See  KVO
Kiwi  99
KVO  11

L
LibComponentLogging-Core  98
LibComponentLogging framework  75
LibComponentLogging-NSLog  98
Libextobjc  98
logging

about  75
setting, as environment flags  76

log levels  76
LUKeychainAccess  97



[ 104 ]

M
Magical Record

about  58-60
source code, URL  58

MagicalRecord  97
MagicalRecord mappers

URL  8
managerWithBaseURL method  23
Mantle

URL  9
mapping

configuring, for Core Data  62-64
setup  29, 30

mapping.collectionIndex  80
mapping.parentObject  80
mapping.rootKeyPath  80
MCollection entity  60
MCollection object  42
MDatabase object  38
MDocument objects  83
metadata mapping

@parent key  80
@root key  81
about  79

Mogenerator
--HEAD option  60
--includeh option  61
--template-var option  61
about  60
homepage, URL  61
installing  60

mogenerator command  60
MongoDB

about  15
differentiating, from classical relational 

database  16
MongoHQ

about  15
server status, checking  16

MTableObject
creating  35

MTStatusBarOverlay  99

N
name attribute  56
named routes  43

networking component  9
networkReachabilityStatus property  74
Nocilla  99
NSBlog

URL  96
NSData+Base64  98
NSDateFormatter  20
NSDate property  20
NSFetchedResultsController  66, 70
NSURLConnection  7
NSURLRequest object  23
NSXtensions  98

O
OAuth 1.0  87
OAuth 2.0  88
Objective-C

best practices, URL  96
object manager

requests, sending with  28-31
setting up  26, 27

object manager component  9
object mapping

about  9
advanced techniques  81, 82
fundamentals  19, 20

objects
related objects, requesting  36-38

ObjQREncoder  100
OCMock  99

P
paginating results  84, 85
paginationMapping property  85
parameters property  33
Parse

URL  8
path property  33, 48
plan attribute  56
Podfile  11
Podspec files  11
pod update

running  14
PonyDebugger  98
port attribute  56
PSTCollectionView  99



[ 105 ]

Q
QRootElement  49
QuickDialog  46, 99

R
reachability  73, 74
refresh method  33
relationship routes  44
Remote web service  11
requests

sending, with object manager  28-31
REST API

documentation  24
RESTful object

manipulating  40-43
RestKit  

about  5-8, 97
adding  11
comparing, to other solutions  8
components  9
configuring, to use Core Data  57, 58
example  5, 6
integrating, with UI  32-36
libraries, adding  11-15
using with Core Data, prerequisites  57, 58
working  10, 11

RestKit component  75
RestKit/Core Data/Cache component  76
RestKit/Core Data component  75
RestKit home page

URL  95
RestKit/Network component  76
RestKit/Network/Core Data component  76
RestKit/ObjectMapping component  76
RestKit/Search component  76
RestKit's Google Group

URL  95
RestKit/Support component  76
RestKit's Wiki

URL  95
RestKit Tag on StackOverflow

URL  95
RestKit/Testing component  76
RestKit/UI component  76
Reveal-iOS-SDK  98

RKEntityByAttributeCache  71
RKErrorMessage class  78
RKLogLevel.RestKit.Network  77
RKObjectManager class  23
RKObjectRequestOperation class  23
RKObjectRequestOperation object  18, 23
RKPaginator class  84
RKPathFromPatternWithObject function  38
RKSearchWordEntity entity  69
routeName property  46
routeObject property  46
router

about  43
class routes  44
name  45
named routes  43
relationship routes  44

routing.parameters  80
routing.route  80

S
saveAction method   50
SDWebImage  97
search component  10
setReachabilityStatusChangeBlock  

method  74
shouldCreateNewItem property  48
shouldEscapePath  45
SIAlertView  99
SLRESTfulCoreData

URL  9
slug attribute  41
SSKeychain  97
SSL certificate  89
SSL Pinning  88
Stashboard API

documentation, URL  16
Status API endpoint

data, loading from  20-22
URL  16

StatusItem object  16
storageSize attribute  56
subtitleText method  36
SVProgressHUD  99
SystemConfiguration framework  73



[ 106 ]

T
TestFlightSDK  98
testing component  10
titleText method  36
TKSenTestAsync  99
token-based authorization  86
TransitionKit  98
Twilio

URL  16

U
UI

integrating with  64-66
UI7Kit  99
UIKit component  46
UITableView delegate method  35
unit testing

Calabash  99
Expecta  99
Frank  99
Kiwi  99
Nocilla  99
OCMock  99

TKSenTestAsync  99
updateItemRequest method  48
user interface

BCGenieEffect  99
CorePlot  99
DDPageControl  99
FontasticIcons  99
ISRefreshControl  99
JSMessagesViewController  99
MTStatusBarOverlay  99
PSTCollectionView  99
QuickDialog  99
SIAlertView  99
SVProgressHUD  99
UI7Kit  99
ViewDeck  99

V
ViewDeck  99
viewWillAppear method  33

W
willStartLoading method  34

Z
ZBarSDK  100



Thank you for buying  
RestKit for iOS 

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Flash iOS Apps Cookbook 
ISBN: 978-1-84969-138-3             Paperback: 420 pages

100 practical recipes for developing iOS apps with 
Flash Professional and Adobe AIR

1.	 Build your own apps, port existing projects, 
and learn the best practices for targeting iOS 
devices using Flash.

2.	 How to compile a native iOS app directly  
from Flash and deploy it to the iPhone,  
iPad or iPod touch.

3.	 Full of practical recipes and step-by-step 
instructions for developing iOS apps with  
Flash Professional.

 

iOS Development Using 
MonoTouch Cookbook
ISBN: 978-1-84969-146-8            Paperback: 384 pages

109 simple but incredably effective recipes for 
developing and deploying applications for iOS using 
C# and .NET

1.	 Detailed examples covering every aspect of iOS 
development using MonoTouch and C#/.NET 

2.	 Create fully working MonoTouch projects 
using step-by-step instructions.

3.	 Recipes for creating iOS applications meeting 
Apple's guidelines. 

Please check www.PacktPub.com for information on our titles



RubyMotion iOS Development 
Essentials
ISBN: 978-1-84969-522-0            Paperback: 262 pages

Create apps that utilize iOS device capabilites 
without learning Objective-C

1.	 Get your iOS apps ready faster with 
RubyMotion

2.	 Use iOS device capabilities such as GPS, 
camera, multitouch, and many more  
in your apps

3.	 Learn how to test your apps and launch  
them on the AppStore 

4.	 Use Xcode with RubyMotion and extend  
your RubyMotion apps with Gems

Unity iOS Game Development 
Beginners Guide
ISBN: 978-1-84969-040-9            Paperback: 314 pages

Develop iOS games from concept to cash flow  
using Unity

1.	 Dive straight into game development with  
no previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing 
games for iOS

4.	 Add multiplayer, input controls, debugging,  
in app and micro payments to your game

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Simple usage example
	So what is RestKit?
	Why RestKit?
	RestKit components
	How it works?
	Adding RestKit and libraries
	MongoHQ – a MongoDB in clouds
	Trying basic stuff
	Object mapping fundamentals
	Data modeling
	Summary

	Chapter 2: Modeling and Loading Remote Objects
	Object Manager
	Sending requests with object manager
	Integrating with UI and DRYing 
the table view
	Requesting related objects
	RESTful object manipulation
	Routing inside out
	Entering data in forms
	Summary

	Chapter 3: Persistence with Core Data
	Setting up a database
	Database
	Collection

	Configuring
	Magical Record
	Mogenerator
	Mapping
	Integrating with UI
	Database seeding
	Indexing and searching
	Summary

	Chapter 4: Advanced Stuff
	Reachability
	Logging
	Error mapping
	Metadata mapping
	Advanced object mapping techniques
	Batching operations
	Paginating results
	Authorization
	Basic
	Token-based
	OAuth 1.0
	OAuth 2.0
	SSL and certificates

	HTTP caching
	Background processing
	Custom HTTP client
	Summary

	Appendix A: Helpful Resources
	Appendix B: Helpful Libraries
	Index

