O'REILLY"

Cookbook

RECIPES FOR OBJECT-ORIENTED SCRIPTING

Lucas Carlson
& Leonard Richardson

vww allitebooks.cond

http://www.allitebooks.org

OREILLY"

Ruby Cookbook

Why spend time on coding problems that others have already solved when “Programmers don't

you could be making real progress on your Ruby project? This updated
cookbook provides more than 350 recipes for solving common problems,
on topics ranging from basic data structures, classes, and objects, to web

live by language syn-
tax alone, but by every

development, distributed programming, and multithreading. line of concrete code
Revised for Ruby 2.1, each recipe includes a discussion on why and how they write. To that end,

the

Ruby newbies to experts who need an occasional reference. With Ruby
Cookbook, you'll not only save time, but keep your brain percolating with
new ideas as well.

solution works. You'll find recipes suitable for all skill levels, from this book is filled with
practical recipes, tips,
knowledge, and wisdom.
[hope it leads readers

Recipes cover: to the next step of Ruby

Data structures including strings, numbers, date and time, programming.”

arrays, hashes, files, and directories —Yukihiro (Matz) Matsumoto

m Using Ruby’s code blocks, also known as closures Creator of Ruby

m OOP features such as classes, methods, objects, and modules

XML and HTML, databases and persistence, and graphics and
other formats

Web development with Rails and Sinatra
Internet services, web services, and distributed programming
Software testing, debugging, packaging, and distributing

Multitasking, multithreading, and extending Ruby with other
languages

Lucas Carlson founded AppFog, a PaaS that leverages the open source Cloud
Foundry project. A professional developer for 20 years, he specializes in Ruby on
Rails development. Lucas has written Programming for PaaS and Ruby Cookbook,
First Edition (both O'Reilly). He maintains a website at http.//www.lucascarlson.net/.

Leonard Richardson has been programming since he was eight years old.
Recently, the quality of his code has improved somewhat. He is responsible for
programming language libraries, including Rubyful Soup. He maintains a website
at http://www.crummy.comy.

PROGRAMMING LANGUAGES/RUBY

US $49.99 CAN $57.99
ISBN: 978-1-449-37371-9

781449

Twitter: @oreillymedia
facebook.com/oreilly

373719

i

vww allitebooks.cond

http://www.allitebooks.org

SECOND EDITION

Ruby Cookbook

Lucas Carlson and Leonard Richardson

Beijing + Cambridge + Farnham - Kaln « Sebastopol - Tokyo [KOAR{S|HNES

vww allitebooks.cond

http://www.allitebooks.org

Ruby Cookbook

by Lucas Carlson and Leonard Richardson

Copyright © 2015 Lucas Carlson and Leonard Richardson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Allyson MacDonald Interior Designer: David Futato
Production Editor: Matthew Hacker Cover Designer: Ellie Volckhausen
Proofreader: Rachel Monaghan lllustrator: Rebecca Demarest

Indexer: Angela Howard

July 2006: First Edition
March 2015: Second Edition

Revision History for the Second Edition
2015-03-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449373719 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ruby Cookbook, the cover image of a
side-striped jackal, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-449-37371-9
(M]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449373719
http://www.allitebooks.org

For Yoscelina, my muse and inspiration for everything great I have ever accomplished.
For Hugh and Valentina, the most incredible miracles ever.
For Tess, who sat by me the whole time.
—Lucas Carlson
For Sumana.

—Leonard Richardson

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface. ..o Xvii
1 RUDY 2. 1
1.1 What’s Different Between Ruby 1.8 and 2.1? 2
1.2 YARV (Yet Another Ruby VM) Bytecode Interpreter 9
1.3 Syntax Changes 11
1.4 Keyword Arguments 14
1.5 Performance Enhancements 15
1.6 Refinements 16
1.7 Debugging with DTrace and TracePoint 17
1.8 Module Prepending 19
1.9 New Methods 21
1.10 New Classes 23
1.11 New Standard Libraries 26
1.12 What's Next? 27
2] {11 3 29
2.1 Building a String from Parts 33
2.2 Substituting Variables into Strings 35
2.3 Substituting Variables into an Existing String 37
2.4 Reversing a String by Words or Characters 39
2.5 Representing Unprintable Characters 40
2.6 Converting Between Characters and Values 43
2.7 Converting Between Strings and Symbols 44
2.8 Processing a String One Character at a Time 45
2.9 Processing a String One Word at a Time 47
2.10 Changing the Case of a String 49
2.11 Managing Whitespace 50

vww allitebooks.cond

http://www.allitebooks.org

2.12 Testing Whether an Object Is String-Like 52

2.13 Getting the Parts of a String You Want 53
2.14 Word-Wrapping Lines of Text 54
2.15 Generating a Succession of Strings 56
2.16 Matching Strings with Regular Expressions 59
2.17 Replacing Multiple Patterns in a Single Pass 61
2.18 Validating an Email Address 63
2.19 Classifying Text with a Bayesian Analyzer 66
3. NUMDEIS. .. 69
3.1 Parsing a Number from a String 70
3.2 Comparing Floating-Point Numbers 73
3.3 Representing Numbers to Arbitrary Precision 76
3.4 Representing Rational Numbers 79
3.5 Generating Random Numbers 80
3.6 Converting Between Numeric Bases 82
3.7 Taking Logarithms 83
3.8 Finding Mean, Median, and Mode 86
3.9 Converting Between Degrees and Radians 89
3.10 Multiplying Matrices 90
3.11 Solving a System of Linear Equations 94
3.12 Using Complex Numbers 97
3.13 Simulating a Subclass of Fixnum 99
3.14 Doing Math with Roman Numbers 103
3.15 Generating a Sequence of Numbers 109
3.16 Generating Prime Numbers 112
3.17 Checking a Credit Card Checksum 116
4. DateandTime........ooiiiiiiiiniiii i 119
4.1 Finding Today’s Date 122
4.2 Parsing Dates, Precisely or Fuzzily 126
4.3 Printing a Date 129
4.4 Tterating Over Dates 134
4.5 Doing Date Arithmetic 135
4.6 Counting the Days Since an Arbitrary Date 138
4.7 Converting Between Time Zones 140
4.8 Checking Whether Daylight Saving Time Is in Effect 142
4.9 Converting Between Time and DateTime Objects 144
4.10 Finding the Day of the Week 147
4.11 Handling Commercial Dates 149
4.12 Running a Code Block Periodically 150
4.13 Waiting a Certain Amount of Time 152
vi | Tableof Contents

vww allitebooks.cond

http://www.allitebooks.org

4.14 Adding a Timeout to a Long-Running Operation 155

B 1 33 157
5.1 Iterating Over an Array 159
5.2 Rearranging Values Without Using Temporary Variables 163
5.3 Stripping Duplicate Elements from an Array 165
5.4 Reversing an Array 166
5.5 Sorting an Array 167
5.6 Ignoring Case When Sorting Strings 169
5.7 Making Sure a Sorted Array Stays Sorted 170
5.8 Summing the Items of an Array 175
5.9 Sorting an Array by Frequency of Appearance 177
5.10 Shuffling an Array 179
5.11 Getting the N Smallest Items of an Array 180
5.12 Building a Hash from an Array 183
5.13 Extracting Portions of Arrays 185
5.14 Computing Set Operations on Arrays 188
5.15 Partitioning or Classifying a Set 191

Hashes. ... 197
6.1 Using Symbols as Hash Keys 200
6.2 Creating a Hash with a Default Value 201
6.3 Adding Elements to a Hash 203
6.4 Removing Elements from a Hash 205
6.5 Using an Array or Other Modifiable Object as a Hash Key 206
6.6 Keeping Multiple Values for the Same Hash Key 209
6.7 Iterating Over a Hash 210
6.8 Iterating Over a Hash in Insertion Order 213
6.9 Printing a Hash 214
6.10 Inverting a Hash 216
6.11 Choosing Randomly from a Weighted List 217
6.12 Building a Histogram 220
6.13 Remapping the Keys and Values of a Hash 222
6.14 Extracting Portions of Hashes 223
6.15 Searching a Hash with Regular Expressions 224

. Filesand Directories............coovvviiiiiiiiiiiiiii 227
7.1 Checking to See If a File Exists 230
7.2 Checking Your Access to a File 232
7.3 Changing the Permissions on a File 234
7.4 Seeing When a File Was Last Used 237
7.5 Listing a Directory 239

Table of Contents | vii

vww allitebooks.cond

http://www.allitebooks.org

7.6 Reading the Contents of a File

7.7 Writing to a File

7.8 Writing to a Temporary File

7.9 Picking a Random Line from a File

7.10 Comparing Two Files

7.11 Performing Random Access on “Read-Once” Input Streams
7.12 Walking a Directory Tree

7.13 Locking a File

7.14 Backing Up to Versioned Filenames

7.15 Pretending a String Is a File

7.16 Redirecting Standard Input or Output

7.17 Processing a Binary File

7.18 Deleting a File

7.19 Truncating a File

7.20 Finding the Files You Want

7.21 Finding and Changing the Current Working Directory

. CodeBlocks and Iteration.vvvrvirvriiririneneeienenreneneenenenns

8.1 Creating and Invoking a Block

8.2 Writing a Method That Accepts a Block

8.3 Binding a Block Argument to a Variable

8.4 Blocks as Closures: Using Outside Variables Within a Code Block
8.5 Writing an Iterator Over a Data Structure

8.6 Changing the Way an Object Iterates

8.7 Writing Block Methods That Classify or Collect
8.8 Stopping an Iteration

8.9 Looping Through Multiple Iterables in Parallel
8.10 Hiding Setup and Cleanup in a Block Method
8.11 Coupling Systems Loosely with Callbacks

. Objectsand Classes.oveuieenneeinereieeieeiiereeeenaeennennns

9.1 Managing Instance Data

9.2 Managing Class Data

9.3 Checking Class or Module Membership

9.4 Writing an Inherited Class

9.5 Overloading Methods

9.6 Validating and Modifying Attribute Values

9.7 Defining a Virtual Attribute

9.8 Delegating Method Calls to Another Object

9.9 Converting and Coercing Objects to Different Types
9.10 Getting a Human-Readable Printout of Any Object
9.11 Accepting or Passing a Variable Number of Arguments

242
246
247
249
250
254
256
259
262
265
268
270
274
275
277
279

281
284
286
289
291
293
296
298
300
302
306
308

313
316
318
321
323
326
328
330
331
334
339
341

viii

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

10.

1.

12.

9.12 Using Keyword Arguments

9.13 Calling a Superclass’s Method

9.14 Creating an Abstract Method

9.15 Freezing an Object to Prevent Changes

9.16 Making a Copy of an Object

9.17 Declaring Constants

9.18 Implementing Class and Singleton Methods
9.19 Controlling Access by Making Methods Private

Modules and Namespaces.ovviineiieiieeeenerneernerneeneeneennnns
10.1 Simulating Multiple Inheritance with Mixins

10.2 Extending Specific Objects with Modules

10.3 Mixing in Class Methods

10.4 Implementing Enumerable: Write One Method, Get 48 Free
10.5 Avoiding Naming Collisions with Namespaces

10.6 Automatically Loading Libraries as Needed

10.7 Including Namespaces

10.8 Initializing Instance Variables Defined by a Module

10.9 Automatically Initializing Mixed-in Modules

10.10 Prepending Modules

Reflection and Metaprogramming.cccovviiiiiiiiiiinieninniennns.
11.1 Finding an Object’s Class and Superclass

11.2 Listing an Object’s Methods

11.3 Listing Methods Unique to an Object

11.4 Getting a Reference to a Method

11.5 Fixing Bugs in Someone Else’s Class

11.6 Listening for Changes to a Class

11.7 Checking Whether an Object Has Necessary Attributes
11.8 Responding to Calls to Undefined Methods

11.9 Automatically Initializing Instance Variables

11.10 Avoiding Boilerplate Code with Metaprogramming
11.11 Metaprogramming with String Evaluations

11.12 Evaluating Code in an Earlier Context

11.13 Undefining a Method

11.14 Aliasing Methods

11.15 Doing Aspect-Oriented Programming

11.16 Enforcing Software Contracts

XMLand HTML. ..o e
12.1 Checking That XML Is Well Formed
12.2 Extracting Data from a Document’s Tree Structure

343
345
347
350
353
356
358
360

365
366
370
372
373
377
378
380
382
383
386

389
390
391
394
396
398
400
403
404
409
410
413
415
417
420
423
425

431
432
434

Table of Contents

13. Graphics and Other File Formats

14.

12.3 Extracting Data While Parsing a Document

12.4 Navigating a Document with XPath

12.5 Converting an XML Document into a Hash

12.6 Validating an XML Document

12.7 Substituting XML Entities

12.8 Creating and Modifying XML Documents

12.9 Compressing Whitespace in an XML Document
12.10 Guessing a Document’s Encoding

12.11 Converting from One Encoding to Another
12.12 Extracting All the URLs from an HTML Document
12.13 Transforming Plain Text to HTML

12.14 Converting HTML Documents from the Web into Text

12.15 Creating a Simple Feed Aggregator

13.1 Thumbnailing Images

13.2 Adding Text to an Image

13.3 Converting One Image Format to Another
13.4 Graphing Data

13.5 Adding Graphical Context with Sparklines
13.6 Symmetrically Encrypting Data

13.7 Parsing Comma-Separated Data

13.8 Parsing Not-Quite-Comma-Separated Data
13.9 Generating and Parsing Excel Spreadsheets
13.10 Compressing and Archiving Files with Gzip and Tar
13.11 Reading and Writing ZIP Files

13.12 Reading and Writing Configuration Files
13.13 Generating PDF Files

13.14 Representing Data as MIDI Music

Databases and Persistence.ovvvvniiriinii i iinininenenes

14.1 Serializing Data with YAML

14.2 Serializing Data with Marshal

14.3 Persisting Objects with Madeleine

14.4 Indexing Unstructured Text with SimpleSearch
14.5 Indexing Structured Text with Ferret

14.6 Using Berkeley DB Databases

14.7 Controlling MySQL on Unix

14.8 Finding the Number of Rows Returned by a Query
14.9 Talking Directly to a MySQL Database

14.10 Talking Directly to a PostgreSQL Database

14.11 Using Object Relational Mapping with ActiveRecord

436
438
441
444
445
448
452
453
454
456
459
460
463

469
470
473
476
479
482
485
487
489
490
492
495
497
499
503

507
511
514
515
518
520
524
525
526
528
531
534

X

Table of Contents

14.12 Building Queries Programmatically 538

14.13 Validating Data with ActiveRecord 542
14.14 Preventing SQL Injection Attacks 544
14.15 Using Transactions in ActiveRecord 547
14.16 Adding Hooks to Table Events 549
14.17 Adding Taggability with a Database Mixin 551
15, InternetServices.o.vveeeeiiiiiiiiiiiiii i 555
15.1 Grabbing the Contents of a Web Page 556
15.2 Making an HTTPS Web Request 559
15.3 Customizing HTTP Request Headers 561
15.4 Performing DNS Queries 563
15.5 Sending Mail 565
15.6 Reading Mail with IMAP 569
15.7 Reading Mail with POP3 574
15.8 Being an FTP Client 577
15.9 Being a Telnet Client 579
15.10 Being an SSH Client 583
15.11 Copying a File to Another Machine 585
15.12 Being a BitTorrent Client 587
15.13 Pinging a Machine 588
15.14 Writing an Internet Server 589
15.15 Parsing URLs 592
15.16 Writing a CGI Script 595
15.17 Setting Cookies and Other HTTP Response Headers 598
15.18 Handling File Uploads via CGI 600
15.19 Running Servlets with WEBrick 603
15.20 Creating a Real-World HTTP Client 609
16. Web Development: RubyonRails.............ccovvviiiiiiiiiiiiiiiiiininne, 613
16.1 Writing a Simple Rails Application to Show System Status 616
16.2 Passing Data from the Controller to the View 619
16.3 Creating a Layout for Your Header and Footer 621
16.4 Redirecting to a Different Location 624
16.5 Displaying Templates with Render 626
16.6 Integrating a Database with Your Rails Application 629
16.7 Understanding Pluralization Rules 633
16.8 Creating a Login System 636
16.9 Storing Hashed User Passwords in the Database 640
16.10 Escaping HTML and JavaScript for Display 642
16.11 Setting and Retrieving Session Information 643
16.12 Setting and Retrieving Cookies 645

Table of Contents | xi

17. Web Development: Sinatra

18. Web Services and Distributed Programming

16.13 Extracting Code into Helper Functions

16.14 Refactoring the View into Partial Snippets of Views
16.15 Adding Dynamic Effects with script.aculo.us

16.16 Generating Forms for Manipulating Model Objects
16.17 Creating an Ajax Form

16.18 Exposing Web Services on Your Website

16.19 Sending Mail with Rails

16.20 Automatically Sending Error Messages to Your Email
16.21 Documenting Your Website

16.22 Unit-Testing Your Website

16.23 Using breakpoint in Your Web Application

17.1 Developing a Minimalistic Web-Services-Based Application
17.2 Writing a Simple Sinatra Application to Show System Status
17.3 Creating a Layout for Your Header and Footer

17.4 Passing Data from the Controller to the View

17.5 Redirecting to a Different Location

17.6 Integrating a Database with Your Sinatra Application

17.7 Setting Status Codes and Headers

17.8 Setting and Retrieving Session Information

17.9 Setting and Retrieving Cookies

17.10 Sending Mail with Sinatra

17.11 Building RESTful Web Services on Your Website

17.12 Creating RESTful JavaScript Clients for Your Web Services

18.1 Searching for Books on Amazon

18.2 Finding Photos on Flickr

18.3 Writing an XML-RPC Client

18.4 Writing a SOAP Client

18.5 Writing a SOAP Server

18.6 Charging a Credit Card

18.7 Finding the Cost to Ship Packages via UPS or FedEx
18.8 Sharing a Hash Between Any Number of Computers
18.9 Implementing a Distributed Queue

18.10 Creating a Shared “Whiteboard”

18.11 Securing DRb Services with Access Control Lists
18.12 Automatically Discovering DRb Services with Rinda
18.13 Proxying Objects That Can’t Be Distributed

18.14 Storing Data on Distributed RAM with MemCached
18.15 Caching Expensive Results with MemCached

647
649
653
655
660
664
666
669
671
672
676

679
680
681
682
683
685
686
688
688
690
691
692
695

697
699
702
705
707
709
710
712
713
717
719
722
724
726
729
731

Xii

| Table of Contents

19.

20.

21.

22,

18.16 A Remote-Controlled Jukebox 734
Testing, Debugging, Optimizing, and Documenting..................cooeennnt, 741
19.1 Running Code Only in Debug Mode 742
19.2 Raising an Exception 744
19.3 Handling an Exception 746
19.4 Retrying After an Exception 748
19.5 Adding Logging to Your Application 750
19.6 Creating and Understanding Tracebacks 752
19.7 Writing Unit Tests 755
19.8 Running Unit Tests 758
19.9 Testing Code That Uses External Resources 761
19.10 Using debug to Inspect and Change the State of Your Application 765
19.11 Documenting Your Application 768
19.12 Profiling Your Application 772
19.13 Benchmarking Competing Solutions 775
19.14 Running Multiple Analysis Tools at Once 777
Packaging and Distributing Software...............coiiiiiiiiiii i, 781
20.1 Finding Libraries by Querying Gem Respositories 782
20.2 Installing and Using a Gem 785
20.3 Requiring a Specific Version of a Gem 787
20.4 Uninstalling a Gem 790
20.5 Reading Documentation for Installed Gems 791
20.6 Packaging Your Code as a Gem 792
20.7 Distributing Your Gems 795
20.8 Installing and Creating Standalone Packages with setup.rb 796
Automating Tasks with Rake.ccoveviiiiiiiiiiiiii i, 801
21.1 Automatically Running Unit Tests 803
21.2 Automatically Generating Documentation 805
21.3 Cleaning Up Generated Files 808
21.4 Automatically Building a Gem 809
21.5 Gathering Statistics About Your Code 811
21.6 Publishing Your Documentation 814
21.7 Running Multiple Tasks in Parallel 816
21.8 Creating a Generic Project Rakefile 817
Multitasking and Multithreading.c.coiiiiiiiiiiiiii i 825
22.1 Running a Daemon Process on Unix 826
22.2 Creating a Windows Service 829
22.3 Doing Two Things at Once with Threads 833

Table of Contents

| xiii

23.

24,

25.

22.4 Synchronizing Access to an Object

22.5 Terminating a Thread

22.6 Running a Code Block on Many Objects Simultaneously

22.7 Limiting Multithreading with a Thread Pool

22.8 Driving an External Process with popen

22.9 Capturing the Output and Error Streams from a Unix Shell Command
22.10 Controlling a Process on Another Machine

22.11 Avoiding Deadlock

1YY 1Y (=] § - N

23.1 Resources

23.2 Getting Input One Line at a Time

23.3 Getting Input One Character at a Time

23.4 Parsing Command-Line Arguments

23.5 Testing Whether a Program Is Running Interactively
23.6 Setting Up and Tearing Down a Curses Program
23.7 Clearing the Screen

23.8 Determining Terminal Size

23.9 Changing Text Color

23.10 Reading a Password

23.11 Allowing Input Editing with Readline

23.12 Making Your Keyboard Lights Blink

23.13 Creating a GUT Application with Tk

23.14 Creating a GUI Application with wxRuby
23.15 Creating a GUI Application with Ruby/GTK
23.16 Using AppleScript to Get User Input

Extending Ruby with Other Languages.............covveiiiiiiiiiiiiinnnenns,

24.1 Writing a C Extension for Ruby
24.2 Using a C Library from Ruby

24.3 Calling a C Library Through SWIG
24.4 Writing Inline C in Your Ruby Code
24.5 Using Java Libraries with JRuby

System Administration.coeiiiiiiiiiiiii it i,

25.1 Scripting an External Program

25.2 Managing Windows Services

25.3 Running Code as Another User

25.4 Running Periodic Tasks Without cron or at
25.5 Deleting Files That Match a Regular Expression
25.6 Renaming Files in Bulk

25.7 Finding Duplicate Files

835
838
840
843
846
848
849
851

855
856
857
859
861
864
865
866
868
870
871
872
874
876
880
884
888

891
892
896
899
902
904

909
910
912
913
915
916
919
922

Xiv

| Table of Contents

25.8 Automating Backups 925
25.9 Normalizing Ownership and Permissions in User Directories 926
25.10 Killing All Processes for a Given User 930
25.11 Using Puppet for DevOps System Administration 932
INAEX. ..ttt 935
Table of Contents | xv

Preface

Life Is Short

This is a book of recipes: solutions to common problems, copy-and-paste code snip-
pets, explanations, examples, and short tutorials.

This book is meant to save you time. Time, as they say, is money, but a span of time is
also a piece of your life. Our lives are better spent creating new things than fighting
our own errors, or trying to solve problems that have already been solved. We present
this book in the hope that the time it saves, distributed across all its readers, will
greatly outweigh the time we spent creating it.

The Ruby programming language is itself a wonderful time-saving tool. It makes you
more productive than other programming languages because you spend more time
making the computer do what you want, and less wrestling with the language. But
there are many ways for a Ruby programmer to spend time without accomplishing
anything, and we've encountered them all:

o Time spent writing Ruby implementations of common algorithms.
o Time spent debugging Ruby implementations of common algorithms.

o Time spent discovering and working around Ruby-specific pitfalls.

» Time spent on repetitive tasks (including repetitive programming tasks!) that
could be automated.

o Time spent duplicating work that someone else has already made publicly
available.

o Time spent searching for a library that does x.
o Time spent evaluating and deciding between the many libraries that do x.

o Time spent learning how to use a library because of poor or outdated
documentation.

Xvii

o Time lost staying away from a useful technology because it seems intimidating.

We, and the many contributors to this book, recall vividly our own wasted hours and
days. We've distilled our experiences into this book so that you don’t waste your time
—or at least so you waste it enjoyably on more interesting problems.

Our other goal is to expand your interests. If you come to this book wanting to gener-
ate algorithmic music with Ruby then, yes, Recipe 13.14 will save you time over start-
ing from scratch. It’s more likely that youd never considered the possibility until now.
Every recipe in this book was developed and written with these two goals in mind: to
save you time, and to keep your brain active with new ideas.

Audience

This cookbook is aimed at people who know at least a little bit of Ruby, or who know
a fair amount about programming in general. This isn't a Ruby tutorial (see “Other
Resources” on page xxv below for some real tutorials), but if youre already familiar
with a few other programming languages, you should be able to pick up Ruby by
reading through the first 10 chapters of this book and typing in the code listings as
you go.

We've included recipes suitable for all skill levels, from those who are just starting out
with Ruby, to experts who need an occasional reference. We focus mainly on generic

programming techniques, but we also cover specific application frameworks (like
Ruby on Rails and GUI libraries) and best practices (like unit testing).

Even if you just plan to use this book as a reference, we recommend that you skim
through it once to get a picture of the problems we solve. This is a big book, but it
doesn’t solve every problem. If you pick it up and you can’t find a solution to your
problem, or one that nudges you in the right direction, then you’ve lost time.

If you skim through this book once beforehand, you’ll get a fair idea of the problems
we cover in this book, and you’ll get a better hit rate. You'll know when this book can
help you, and when you should consult other books, do a web search, ask a friend, or
get help some other way.

The Structure of This Book

Each of this book’s chapters focuses on a kind of programming or a particular data
type. This overview of the chapters should give you a picture of how we divided up
the recipes. Each chapter also has its own, somewhat lengthier introduction, which
gives a more detailed view of its recipes. At the very least, we recommend you skim
the chapter introductions and the table of contents.

xviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

A brand new chapter covers what has changed since Ruby 1.8 when the first version
of this book was released:

Chapter 1, Ruby 2.1, covers what is new in Ruby 2.1.

The next six chapters cover Ruby’s built-in data structures:

Chapter 2, Strings, contains recipes for building, processing, and manipulating
strings of text. We devote a few recipes specifically to regular expressions (Recipe
2.16 through Recipe 2.18), but our focus is on Ruby-specific issues, and regular
expressions are a very general tool. If you haven’t encountered them yet, or just
find them intimidating, we recommend you go through an online tutorial or
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

Chapter 3, Numbers, covers the representation of different types of numbers: real
numbers, complex numbers, arbitrary-precision decimals, and so on. It also
includes Ruby implementations of common mathematical and statistical algo-
rithms, and explains some Ruby quirks you’ll run into if you create your own
numeric types (Recipe 3.13 and Recipe 3.14).

Chapter 4, Date and Time, covers Ruby’s two interfaces for dealing with time: the
one based on the C time library, which may be familiar to you from other pro-
gramming languages, and the one implemented in pure Ruby, which is more
idiomatic.

Chapter 5, Arrays, introduces the array, Ruby’s simplest compound data type.
Many of an array’s methods are actually methods of the Enumerable mixin; this
means you can apply many of these recipes to hashes and other data types. Some
features of Enumerable are covered in this chapter (Recipe 5.4 and Recipe 5.6),
and some are covered in Chapter 8.

Chapter 6, Hashes, covers the hash, Ruby’s other basic compound data type.
Hashes make it easy to associate objects with names and find them later (hashes
are sometimes called lookup tables or dictionaries, two telling names). It’s easy to
use hashes along with arrays to build deep and complex data structures.

Chapter 7, Files and Directories, covers techniques for reading, writing, and
manipulating files. Ruby’s file access interface is based on the standard C file
libraries, so it may look familiar to you. This chapter also covers Ruby’s standard
libraries for searching and manipulating the filesystem; many of these recipes
show up again in Chapter 25.

The first six chapters deal with specific algorithmic problems. The next four are more
abstract: they’re about Ruby idiom and philosophy. If you can’t get the Ruby language
itself to do what you want, or you're having trouble writing Ruby code that looks the
way Ruby “should” look, the recipes in these chapters may help:

Preface | xix

http://shop.oreilly.com/product/9780596528126.do

Chapter 8, Code Blocks and Iteration, contains recipes that explore the possibili-
ties of Ruby’s code blocks (also known as closures).

Chapter 9, Objects and Classes, covers Ruby’s take on object-oriented program-
ming. It contains recipes for writing different types of classes and methods, and a
few recipes that demonstrate capabilities of all Ruby objects (such as freezing and
cloning).

Chapter 10, Modules and Namespaces, covers Ruby’s modules. These constructs
are used to “mix” new behavior into existing classes and to segregate functional-
ity into different namespaces.

Chapter 11, Reflection and Metaprogramming, covers techniques for programati-
cally exploring and modifying Ruby class definitions.

Chapter 7 covers basic file access, but doesn’t touch much on specific file formats. We
devote three chapters to popular ways of storing data:

o Chapter 12, XML and HTML, shows how to handle the most popular data inter-

change formats. The chapter deals mostly with parsing other people’s XML docu-
ments and web pages (but see Recipe 12.8).

Chapter 13, Graphics and Other File Formats, covers data interchange formats
other than XML and HTML, with a special focus on generating and manipulat-
ing graphics.

Chapter 14, Databases and Persistence, covers the best Ruby interfaces to data
storage formats, whether you're serializing Ruby objects to disk, or storing struc-
tured data in a database. This chapter demonstrates everything from different
ways of serializing data and indexing text, to the Ruby client libraries for popular
SQL databases, to full-blown abstraction layers like ActiveRecord that save you
from having to write SQL at all.

Currently the most popular use of Ruby is in network applications (mostly through
Ruby on Rails). We devote three chapters to different types of applications:

Chapter 15, Internet Services, kicks off our networking coverage by illustrating a
wide variety of clients and servers written with Ruby libraries.

Chapter 16, Web Development: Ruby on Rails, covers the web application frame-
work that’s been driving so much of Ruby’s recent popularity.

Chapter 17, Web Development: Sinatra, covers a popular micro-web framework.

Chapter 18, Web Services and Distributed Programming, covers two techniques
for sharing information between computers during a Ruby program. In order to
use a web service, you make an HTTP request of a program on some other com-
puter, usually one you don't control. Ruby’s DRb library lets you share Ruby data

XX

Preface

structures between programs running on a set of computers, all of which you
control.

We then have three chapters on the auxilliary tasks that surround the main program-
ming work of a project:

Chapter 19, Testing, Debugging, Optimizing, and Documenting, focuses mainly on
handling exception conditions and creating unit tests for your code. There are
also several recipes on the processes of debugging and optimization.

Chapter 20, Packaging and Distributing Software, mainly deals with Ruby’s Gem
packaging system and the RubyForge server that hosts many gem files. Many rec-
ipes in other chapters require that you install a particular gem, so if youre not
familiar with gems, we recommend you read Recipe 20.2 in particular. The chap-
ter also shows you how to create and distribute gems for your own projects.

Chapter 21, Automating Tasks with Rake, covers the most popular Ruby build
tool. With Rake, you can script common tasks like running unit tests or packag-
ing your code as a gem. Though it's usually used in Ruby projects, Rake is a
general-purpose build language that you can use wherever you might use Make.

We close the book with four chapters on miscellaneous topics:

Chapter 22, Multitasking and Multithreading, shows how to use threads to do
more than one thing at once, and how to use Unix subprocesses to run external
commands.

Chapter 23, User Interface, covers user interfaces (apart from the web interface,
which was covered in Chapter 16). We discuss the command-line interface,
character-based GUIs with Curses and HighLine, GUI toolkits for various plat-
forms, and more obscure kinds of user interface (Recipe 23.11).

Chapter 24, Extending Ruby with Other Languages, focuses on hooking up Ruby
to other languages, either for performance or to get access to more libraries. Most
of the chapter focuses on getting access to C libraries, but there is one recipe
about JRuby, the Ruby implementation that runs on the Java Virtual Machine
(Recipe 24.5).

Chapter 25, System Administration is full of self-contained programs for doing
administrative tasks, usually using techniques from other chapters. The recipes
have a heavy focus on Unix administration, but there are some resources for
Windows users (including Recipe 25.2), and some cross-platform scripts.

Preface | xxi

How the Code Listings Work

Learning from a cookbook means performing the recipes. Some of our recipes define
big chunks of Ruby code that you can simply plop into your program and use without
really understanding them (Recipe 21.8 is a good example). But most of the recipes
demonstrate techniques, and the best way to learn a technique is to practice it.

We wrote the recipes, and their code listings, with this in mind. Most of our listings
act like unit tests for the concepts described in the recipe: they poke at objects and
show you the results.

Now, a Ruby installation comes with an interactive interpreter called irb. Within an
irb session, you can type in lines of Ruby code and see the output immediately. You
don’t have to create a Ruby program file and run it through the interpreter.

Most of our recipes are presented in a form that you can type or copy/paste directly
into an irb session. To study a recipe in depth, we recommend that you start an irb
session and run through the code listings as you read it. You’ll have a deeper under-
standing of the concept if you do it yourself than if you just read about it. Once you're
done, you can experiment further with the objects you defined while running the
code listings.

Sometimes we want to draw your attention to the expected result of a Ruby expres-
sion. We do this with a Ruby comment containing an ASCII arrow that points to the
expected value of the expression. This is the same arrow irb uses to tell you the value
of every expression you type.

We also use textual comments to explain some pieces of code. Here’s a fragment of
Ruby code that we've formatted with comments as we would in a recipe:

1+ 2 # => 3

On a long line, the expected value goes on a new line:
Math.sqrt(1 + 2 + 3 + 4+ 5+ 6 +7 + 8+ 9 + 10)
=> 7.41619848709566

To display the expected output of a Ruby expression, we use a comment that has no
ASCII arrow, and that always goes on a new line:

puts "This string is self-referential."
This string is self-referential.

If you type these two snippets of code into irb, ignoring the comments, you can
check back against the text and verify that you got the same results we did:

$irb

irb(main):001:0> 1 + 2

= 3

irb(main):002:0> Math.sqrt(1 + 2 + 3 + 4 + 5+ 6 + 7 + 8 + 9 + 10)
=> 7.41619848709566

xxii | Preface

irb(main):003:0> puts "This string is self-referential.”

This string is self-referential.

=> nil
If youre reading this book in electronic form, you can copy and paste the code frag-
ments into irb. The Ruby interpreter will ignore the comments, but you can use them
to make sure your answers match ours, without having to look back at the text (but
you should know that typing in the code yourself, at least the first time, is better for
comprehension):

$irb

irb(main):001:0> 1 + 2 # => 3

=> 3

irb(main):002:0>

irb(main):003:0* # On a long line, the expected value goes on a new line:

irb(main):004:0* Math.sqrt(1 + 2 + 3 + 4 + 5+ 6 + 7 + 8 + 9 + 10)

=> 7.41619848709566

irb(main):005:0> # => 7.41619848709566

irb(main):006:0*

irb(main):007:0* puts "This string is self-referential.”

This string is self-referential.

=> nil

irb(main):008:0> # This string is self-referential.
We don't cut corners. Most of our recipes demonstrate a complete irb session from
start to finish, and they include any imports or initialization necessary to illustrate the
point were trying to make. If you run the code exactly as it is in the recipe, you
should get the same results we did.! This fits in with our philosophy that code sam-
ples should be unit tests for the underlying concepts. In fact, we tested our code sam-
ples like unit tests, with a Ruby script that parses recipe texts and runs the code list-
ings.

The irb session technique doesn’t always work. Rails recipes have to run within Rails.
Curses recipes take over the screen and don’t play well with irb. So sometimes we
show you standalone files. We present them in the following format:

#!/usr/bin/ruby -w
sample_ruby _file.rb: A sample file

1+2
Math.sqrt(1 + 2 + 3 + 4+ 5+ 6 +7 + 8+ 9 + 10)
puts "This string is self-referential."

Whenever possible, we'll also show what you’ll get when you run this program; for
example, we might show a screenshot of a GUI program, or a record of the program’s
output when run from the Unix command line:

1 When a program’s behavior depends on the current time, the random number generator, or the presence of
certain files on disk, you might not get the exact same results we did, but they should be similar.

Preface | xxiii

$ ruby sample_ruby_file.rb

This string is self-referential.
Note that the output of sample_ruby_file.rb looks different from the same code
entered into irb. Here, there’s no trace of the addition and the square root operations,
because they produce no output.

Installing the Software

Ruby comes preinstalled on Mac OS X and most Linux installations. Windows
doesn’t come with Ruby, but it’s easy to get it with the One-Click Installer.

If youre on a Unix/Linux system and you don’t have Ruby installed (or you want to
upgrade), your distribution’s package system may make a Ruby package available. On
Debian GNU/Linux, it's available as the package ruby-[version]: for instance,
ruby-1.8 or ruby-1.9. Red Hat Linux calls it ruby; so does the DarwinParts system
on Mac OS X.

If all else fails, download the Ruby source code and compile it yourself. You can get
the Ruby source code through FTP or HTTP by visiting http://www.ruby-lang.org/.

Many of the recipes in this book require that you install third-party libraries in the
form of Ruby gems. In general, we prefer standalone solutions (using only the Ruby
standard library) to solutions that use gems, and gem-based solutions to ones that
require other kinds of third-party software.

If youre not familiar with gems, consult Chapter 20 as needed. With RubyGems built
in, it’s easy to install many other pieces of Ruby code. When a recipe says something
like “Ruby on Rails is available as the rails gem,” you can issue the following com-
mand from the command line (again, as the superuser):

$ gem install rails

The RubyGems library will download the rails gem (and any other gems on which it
depends) and automatically install them. You should then be able to run the code in
the recipe, exactly as it appears.

The three most useful gems for new Ruby installations are rails (if you intend to
create Rails applications) and the two gems provided by the Ruby Facets project: fac
ets_core and facets_more. The Facets Core library extends the classes of the Ruby
standard library with generally useful methods. The Facets More library adds entirely
new classes and modules. The Ruby Facets home page has a complete reference.

Some Ruby libraries (especially older ones) are not packaged as gems. In most cases
you can download a tarball or ZIP file from the RAA, and install it with the technique
described in Recipe 20.8.

xxiv | Preface

http://rubyinstaller.org/
http://www.ruby-lang.org/
https://github.com/rubyworks/facets

Platform Differences, Version Differences, and Other
Headaches

Except where noted, the recipes describe cross-platform concepts, and the code itself
should run the same way on Windows, Linux, and Mac OS X. Most of the platform
differences and platform-specific recipes show up in the final chapters: Chapters 22,
23, and 25 (but see the introduction to Chapter 7 for a note about Windows
filenames).

We wrote and tested the recipes using Ruby version 1.8.4 and Rails version 1.1.2, the
latest stable versions as of the time of writing. In a couple of places we mention code
changes you should make if you're running Ruby 1.9 (the latest unstable version as of
the time of writing) or 2.0.

Despite our best efforts, this book may contain unflagged platform-specific code, not
to mention plain old bugs. We apologize for these in advance of their discovery. If
you have problems with a recipe, check out the errata for this book (see the section
“Comments and Questions” on page xxvii below).

In several recipes in this book, we modify standard Ruby classes like Array to add
new methods (see, for instance, Recipe 2.10, which defines a new method called
String#capitalize_first_letter). These methods are then available to every
instance of that class in your program. This is a fairly common technique in Ruby:
both Rails and the aforementioned Facets Core library do it. It's somewhat controver-
sial, though, and it can cause problems (see Recipe 9.4 for an in-depth discussion), so
we felt we should mention it here in the Preface, even though it might be too techni-
cal for people who are new to Ruby.

If you don’t want to modify the standard classes, you can put the methods we demon-
strate into a subclass, or define them in the Kernel namespace: that is, define capital
ize_first_letter_of_string instead of reopening String and defining capital
ize_first_letter inside it.

Other Resources

If you need to learn Ruby, the standard reference is Programming Ruby: The Prag-
matic Programmer’s Guide by Dave Thomas, Chad Fowler, and Andy Hunt (Prag-
matic Programmers). The first edition is available online in HTML format, but it’s out
of date. The second edition is much better and is available as a printed book or as
PDF. It’s a much better idea to buy the second edition.

For Rails, the standard book is Agile Web Development with Rails by Dave Thomas,
David Hansson, Leon Breedt, and Mike Clark (Pragmatic Programmers). There are

Preface | xxv

http://ruby-doc.com/docs/ProgrammingRuby/
http://www.pragmaticprogrammer.com/titles/ruby/
http://www.pragmaticprogrammer.com/titles/ruby/

also two books like this one that focus exclusively on Rails: Rails Cookbook by Rob
Orsini (O’Reilly) and Rails Recipes by Chad Fowler (Pragmatic Programmers).

Many people come to Ruby already knowing one or more programming languages.
You might find it frustrating to learn Ruby with a big book that thinks it has to teach
you programming and Ruby. For such people, we recommend “Ruby User’s Guide”
by Ruby creator Yukihiro Matsumoto. It’s a short read, and it focuses on what makes
Ruby different from other programming languages. Its terminology is a little out of
date, and it presents its code samples through the obsolete eval.rb program (use irb
instead), but it’s the best short introduction we know of.

If you are a Java programmer who wants to learn Ruby, check out the blog entry
“Coming to Ruby from Java” by Francis Hwang. C++ programmers will also benefit
from much of what’s in here.

Finally, Ruby’s built-in modules, classes, and methods come with excellent documen-
tation (much of it originally written for Programming Ruby). You can read this docu-
mentation online at http://www.ruby-doc.org/core/ and http://www.ruby-doc.org/
stdlib/. You can also look it up on your own Ruby installation by using the ri com-
mand. Pass in the name of a class or method, and ri will give you the corresponding
documentation. Here are a few examples:

$ ri Array # A class
$ ri Array.new # A class method
$ ri Array#compact # An instance method

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, programs, libra-
ries, filenames, pathnames, directories, the contents of files, or the output from
commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xxvi | Preface

http://shop.oreilly.com/product/9780596527310.do
http://www.rubyist.net/~slagell/ruby/
http://fhwang.net/blog/40.html
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/

Constant width italic
Shows text that should be replaced with user-supplied values.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ruby Cookbook, Second Edition, by
Lucas Carlson and Leonard Richardson. Copyright 2015 Lucas Carlson and Leonard
Richardson, 978-1-449-37371-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ruby_cookbook_2e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at http://www.oreilly.com.

Preface | xxvii

mailto:permissions@oreilly.com
http://bit.ly/ruby_cookbook_2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Acknowledgments

First wed like to thank our editor, Michael Loukides, for his help and for acquiescing
to our use of his name in recipe code samples, even when we turned him into a talk-
ing frog. The production editor, Colleen Gorman, was also very helpful.

This book would have taken longer to write and been less interesting without our
contributing authors, who, collectively, wrote over 60 of these recipes. The roll of
names includes: Steve Arniel, Ben Bleything, Antonio Cangiano, Mauro Cicio, Maur-
ice Codik, Thomas Enebo, Pat Eyler, Bill Froelich, Rod Gaither, Ben Giddings,
Michael Granger, James Edward Gray II, Stefan Lang, Kevin Marshall, Matthew
Palmer Chetan Patil, Alun ap Rhisiart, Garrett Rooney, John-Mason Shackelford, Phil
Tomson, and John Wells. They saved us time by lending their knowledge of various
Ruby topics, and they enriched the book with their ideas.

This book would be of appallingly low quality were it not for our technical reviewers,
who spotted dozens of bugs, platform-specific problems, and conceptual errors: John
N. Alegre, Dave Burt, Bill Dolinar, Simen Edvardsen, Shane Emmons, Edward Faulk-
ner, Dan Fitzpatrick, Bill Guindon, Stephen Hildrey, Meador Inge, Eric Jacoboni,
Julian I. Kamil, Randy Kramer, Alex LeDonne, Steven Lumos, Keith Rosenblatt, Gene
Tani, and R Vrajmohan.

Finally, thanks to the programmers and writers of the Ruby community—from the
celebrities like Yukihiro Matsumoto, Dave Thomas, Chad Fowler, and “why” to the
hundreds of unsung heroes whose work went into the libraries we demonstrate
throughout the book, and whose skill and patience bring more people into the Ruby
community all the time.

xxviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1
Ruby 2.1

When the first edition of Ruby Cookbook was published in 2006, Ruby 1.8.4 was the
state of the art and Rails had just reached 1.0. Eight years and more than 100 stable
releases later, the latest version is now Ruby 2.1.1 and Rails has just reached 4.1.0.
Over the last eight years, a lot has changed, both big and small:

A bytecode interpreter replaced the old Ruby MRI.

o RubyGems and Rake became part of the standard library.

o SOAP and Curses have moved out of the standard library into RubyGems.
o New syntax primitives have been added for hashes, procs, and more.

o New methods like Object#tap and String#prepend have been added.

o New classes like BasicObject, Fiber, and TracePoint have been added.

o The MD5 standard library was renamed Digest: :MD5.

o And much more...

The end result is a cleaner language that runs faster and more efficiently than ever
before. For example, a simple Rails application is 167-200% faster in Ruby 2.1
than 1.8.

For all that has changed, there is thankfully very little that has been broken in terms
of backward compatibility. The vast majority of code written for Ruby 1.8 will work
in Ruby 2.1 without any modifications. However, and somewhat obviously, if you
write code for Ruby 2.1, it will likely not work in Ruby 1.8 with some of the syntax
changes introduced.

In between Ruby 1.8 and 2.1 were two other major releases: 1.9 and 2.0. In this chap-
ter, we will group all the changes from versions 1.9 through 2.1 together instead of

pointing out the specific dot release in which a feature was added or modified. For
example, the YARV bytecode interpreter was added only in Ruby 1.9.4, but we will
talk about it as just one of the many differences between Ruby 1.8 and 2.1.

1.1 What’s Different Between Ruby 1.8 and 2.1?

Problem

You want to know the major differences between Ruby 1.8 and 2.1.

Solution

Table 1-1 shows the major changes between Ruby 1.8 and 2.1.

Table 1-1. Major changes by type between Ruby 1.8 and 2.1

Type

New syntax

New syntax

New syntax

New class

New syntax

New syntax

New class
New class
New class
New class
New class

New class

About

>

Array

def

BasicObject

Hash

GC::Profiler

Encoding

Enumerator::Lazy

Fiber

Gem

Random

Note

The - operator can replace Tambda for brevity.

You can use %1(foo bar baz) to specify
[:foo, :bar, :baz] forbrevity.

You can define methods like def foo(x: 1);
puts x; end.

New root in class hierarchy.

Youcanuse {a: 1, b: 2}, whichislike {:a =>
1, :b => 23, forbrevity.

You can apply the r suffix to numbers to specify rationals
like 1.2r.

Profiles the garbage collector.

Represents a character encoding.

Delays running enumerations until absolutely necessary.
Lightweight processes.

RubyGems.

Pseudorandom number generator.

2 | Chapter1:Ruby2.1

Type

New class

New class

New class

New method
New method
New method
New method
New method
New method
New method
New method
New method

New method

New method

New method

New method
New method
New method

New method

New method

About

RubyVvM

Socket::Ifaddr

TracePoint

Array.try_convert

Array#rotate

Array#tkeep_if

Array#sample

Array#repeated_permutation

Array#repeated_combination

Hash#to_h

Hash#default_proc=

Hash#tkey

Hash#keep_1if

Hash#assoc

Hash#rassoc

Hash#flatten

Hash#compare_by_1identity

Enumerable#to_h

Enumerable#flat_map

Enumerable#each_entry

Note

The Ruby interpreter.

Interface address class.

DTrace-like inspection class.

Tries to convert obj into an array.

(reates a new array by rotating the existing array.
Deletes every element where the block evaluates to false.
Chooses a random element.

All repeated permutations.

All repeated combinations.

Ubiquitous hash conversion.

You can now set the default proc after initialization.
An inverted hash lookup.

Deletes every key-value pair where the block evaluates to
false.

Searches through the hash comparing ob j with the key
using ==.

Searches through the hash comparing obj with the
value using ==.

A one-dimensional flattening of this hash.
Compares hashes by their identity.
Ubiquitous hash conversion.

(reates array with the concatenated results of running
block once for every element in enum.

(alls block once for each element in se'Lf, passing that
element as a parameter, converting multiple values from
yield to an array.

1.1 What's Different Between Ruby 1.8and 2.17 |

3

Type About

New method Enumerable#teach_with_object
New method Enumerable#chunk

New method Enumerable#slice_before

New method Enumerable#lazy

New method Exception#cause

New method GC.stat

New method Kernel#dir

New method Kernel#callee

New method Kernel#caller_locations
New method Kernel#spawn

New method Kernel#require_relative
New method Kernel#Hash

New method Kernel#Rational

New method Kernel#Complex

New method Module#class_variable_get
New method Module#class_variable_set
New method Module#remove_class_variable
New method Module#public_constant
New method Module#private_constant
New method Module#singleton_class?

Note

Iterates the given block for each element with an
arhitrary object, and returns the initially given object.

Enumerates over the items, chunking them together
based on the return value of the block.

(reates an enumerator for each chunked element.
Delays running enumerations until absolutely necessary.
Keeps track of the root cause of raised errors.

Inspects the garbage collector.

Director name of FILE.

(alled name of the current method as a symbol.

Array of backtrace location objects.

Similar to Kernel. system but doesn’t wait for the
command to finish

Tries to load the library named string relative to the
requiring file’s path.

Ubiquitous hash instantiator.

Ubiquitous rational instantiator.
Ubiquitous complex instantiator.

Gets class variable.

Sets class variable.

Removes class variable.

Makes a list of existing constants public.
Makes a list of existing constants private.

Is it a singleton?

4 | Chapter1:Ruby2.1

Type

New method

New method
New method
New method
New method

New method

New method
New method
New method
New method

New method

New method
New method
New method
New method

New method

New method
New method
New method
New method

New method

About

Module#prepend

Module#public_1instance_method

Module#refine

Module#using

I0#wait_writable

Object#!~

Object#singleton_class

Object#untrust

Object#untrusted?

Object#trust

Object#remove_1instance_vari
able

Object#public_send

Object#public_method

Object#singleton_methods

Object#define_singleton_method

Object#tap

Range#bsearch

Range#cover?

Socket.getifaddrs

String#ascii_only?

String#clear

Note

An alternative to Module#include that appends
(overwrites) class methods.

Public instance methods.

Allows you to refine an existing class.

Allows you to apply monkey patches in a scoped way.
Waits until a file becomes writable.

Returns true if two objects do not match (using the =~
method).

Returns the singleton class of obj.
Marks ob3j as untrusted.

Returns true if the object is untrusted.
Removes the untrusted mark from obj.

Removes the named instance variable from ob 3.

Unlike Object#send, this calls public methods only.
Similar to method, this searches public method only.
Lists one-off methods.

(reates a one-off method.

Taps into a method chain to perform operations on
intermediate results.

Binary search available in arrays.

Is obj between the begin and end of the range?
Accesses network interfaces.

Returns true for a string that has only ASCII characters.

Makes a string empty.

1.1 What's Different Between Ruby 1.8and 2.17 |

5

Type About

Note

New method String#chr A one-character string at the beginning of the string.
New method String#encode Encodes a string with an encoding.
New method String#getbyte Returns a byte as an integer.
New method String#setbyte Modifies a byte as integer.
New method String#byteslice A substring of one byte at a position.
New method String#scrub Removes garbage bytes from strings.
New method String#codepoints Integer ordinals of the characters in str.
New method String#prepend Prepends a given string.
New method String#ord Returns the integer ordinal of a one-character string.
New method String#each_codepoint Enumerates the integerized values of the string.
New method String#encoding An encoding object that represents the encoding of the
string.
New method String#force_encoding Forces an encoding.
New method String#b A copied string whose encoding is ASCII-8BIT.
New method String#valid_encoding? True for a string that is encoded correctly.
New method String#to_r Returns rational number.
New method String#to_c Returns complex number.
Removed Array#nitems Removed.
method
Removed Array#indexes Removed in favor of Array#values_at.
method
Removed Array#indeces Removed in favor of Array#values_at.
method
Removed Hash#indexes Removed in favor of Hash#select.
method
6 | Chapter1:Ruby2.1

Type

Removed
method

Removed
method

Removed
method

Removed
method

Removed
method

Removed
method

Removed
method

Removed
method

New standard
library

New standard
library

New standard
library

New standard
library

New standard
library

New standard
library

New standard
library

About

Hash#indeces

Object#id

Object#type

Object#to_a

String#each

Enumerable#enum_slice

Enumerable#tenum_cons

Enumerable#enum_with_1index

rake

json

psych

securerandom

io/console

io/nonblock

cmath

Note

Removed in favor of Hash#select.

Removed in favor of Object#object_id.

Removed in favor of Object#class.

Removed in favor of Kernel#Array.

Removed in favor of String#each_byte and

String#each_char.

Removed in favor of Enumerable#each_slice.

Removed in favor of Enumerable#each_cons.

Removed in favor of Enumera

ble#teach_with_index.

No longer an external library.

No longer an external library.

A YAML parser and emitter that leverages libyaml.

Pseudosecure random number generator.

Add console capabilities to 0.

Add nonblock capabilities to 10.

Trigonometric and transcendental functions for complex
numbers.

1.1 What's Different Between Ruby 1.8and 2.17 |

7

Type About

New standard debug
library

New standard e2mmap
library

New standard fiddle
library

New standard minitest
library

New standard objspace
library

New standard prime
library

New standard ripper
library

New standard shellwords
library

Moved to core rubygems

Moved to core complex
Moved to core enumerator
Moved to core rational

Moved to core thread

Moved to soap
RubyGems

Moved to curses
RubyGems

Moved to iconv
RubyGems

Moved to parsedate
RubyGems

Note

Provides debugger and breakpoints.

Exceptions to messages map.

A libffi wrapper.

Drop-in replacement for test unit.

Object allocation tracing profiling tool.

The set of all prime numbers.

Parses your Ruby code into a symbolic expression tree.

Manipulates strings according to the word parsing rules

of bash.

No longer an external library and no need to require

rubygems

Now part of core; no need to require.

Now part of core; no need to require.

Now part of core; no need to require.

Now part of core; no need to require.

You can use gem

You can use gem

You can use gem

You can use gem

install

install

install

install

soap.

curses.

iconv.

rubysl-parsedate.

8 | Chapter1:Ruby2.1

Type About Note

Moved to rinda You can use gem install rubysl-rinda.
RubyGems

Removed library ~ finalize Replaced by objspace.

Removed library jcode UTF-8 support is now default; $KCODE is not necessary.
Removed library wsdl No longer a standard library.

Removed library ftools Merged into fileutils.

Removed library generator No longer a standard library.

Removed library ~ importenv No longer a standard library.

Removed library mailread No longer a standard library.

Removed library ping No longer a standard library.

Removed library ~ runit No longer a standard library.

Removed library tcltklib No longer a standard library.

Removed library Win32API No longer a standard library.

Removed library xsd No longer a standard library.

1.2 YARV (Yet Another Ruby VM) Bytecode Interpreter

Problem

You want to understand more about the Ruby interpreter changes between Ruby 1.8
and 2.1.

Solution

Since Ruby started in 1995, it originally used the MRI (Matz’s Ruby Interpreter) to
interpret Ruby code. Written in C, the MRI (also known as CRuby) was the de facto
reference implementation of the Ruby spec until Ruby 1.9.0 was released in 2007.
With Ruby 1.9.0, the interpreter was changed from MRI to YARV (Yet Another
Ruby VM).

One of the biggest differences between MRI and YARV was the introduction of a
bytecode interpreter. With any programming language, the first step to running your

1.2 YARV (Yet Another Ruby VM) Bytecode Interpreter | 9

code is to tokenize and parse its syntax. The MRI would mix parsing syntax with exe-
cuting your code, which ended up being prone to memory leaks and slow execution
times. The YARV interpreter separates parsing from the running of your code.

The bytecode interpreter takes the syntax tree and passes it to a virtual machine emu-
lator that knows how to translate the bytecode into machine code. The emulator is
tuned and optimized for the underlying hardware and knows how to translate
instructions to PowerPC or x86 instructions. The result in more efficient execution,
less memory usage, and a faster language.

Discussion

To understand bytecode interpreters better, let'’s examine a simple Ruby syntax tree
(also known as S-expressions):

require 'ripper'
Ripper.sexp("1+1")
=> [:program, [[:binary, [:@int, "1", [1, 0]], :+, [:@int, "1", [1, 2]]]]]

If you have any familiarity with Lisp, you may notice some similarities between a syn-
tax tree and any Lisp dialect. For example, let’s replace the brackets with parentheses
and see if the code looks any more familiar:

(program
(binary
(int 1 (1 0))
+
(int 1 (1 2))

)

The reason that S-expressions look like Lisp is because essentially Lisp is a program-
ming language built directly with S-expressions.

The YARV RubyVM takes these S-expressions and turns them into bytecode. To see
what Ruby bytecode looks like, you can use the RubyVM class:

require 'pp'
pp RubyVM::InstructionSequence.compile('1+1').to_a
["YARVInstructionSequence/SimpleDataFormat",

{:arg_size=>0, :local_size=>1, :stack_max=>2},
"<compiled>",

"<compiled>",

nil,

1,

:top,

[1,

0’

TR O R OH R OR W™ R W™ W

10 | Chapter1:Ruby2.1

vww allitebooks.cond

http://www.allitebooks.org

[7,

[1,

[:trace, 1],

[:putobject OP_INT2FIX_ 0_1_C],

[:putobject_OP_INT2FIX 0_1 C_],

[:opt_plus, {:mid=>:+, :flag=>256, :orig_argc=>1, :blockptr=>nil}],
[:leave]]]

Bytecode is not nearly as easy to read as S-expressions because the bytecode is the
actual instructions sent to the VM, which turn into processor instructions.

oW W W W W R

The YARV bytecode interpreter is not the only interpreter available to Ruby develop-
ers. There is JRuby, Rubinius, MagLev, MacRuby, IronRuby, and Ruby Enterprise Edi-
tion (aka REE). Each one is built for a different purpose. For example, JRuby takes
pure Ruby syntax and compiles it into Java bytecode instead of YARV bytecode. This
allows you to run nearly any Ruby code on any machine running Java.

See Also

o The YARV home page

o The JRuby home page

« “How Ruby Executes Your Code”
o The RubyVM documentation

1.3 Syntax Changes

Problem

You want to know the syntax changes between Ruby 1.8 and 2.1.

Solution
There were three major and two minor syntax additions to Ruby between 1.8 and 2.1.

The three major additions were defining hashes, defining methods, and defining
procs.

The two minor additions were in arrays of symbols and defining rationals.

The most obvious syntax addition is for defining hashes. Here is the new way you can
doit:

old_way = {:foo => "bar", :one => 1}
new_way = {foo: "bar", one: 1}

You can also apply the same hash syntax when calling methods that take hashes:

1.3 Syntax Changes | 11

http://atdot.net/yarv/
http://jruby.org
http://patshaughnessy.net/2012/6/29/how-ruby-executes-your-code
http://www.ruby-doc.org/core-2.1.1/RubyVM/InstructionSequence.html

def some_method(hash = {})
do stuff
end

some_method(:foo => "bar")
some_method(foo: "bar")

You can visually see how this can save you 25% of your keystrokes. Fewer keystrokes
leads to fewer typos and bugs. Therefore, this new way of specifying hashes is being
quickly adopted and you will see it throughout this book. The old way still works and
is not deprecated, but the new way will save you a lot of time over your career with
Ruby.

This new syntax for defining hashes has also inspired new keyword arguments for
method definitions:

OLD

def old_way(options={})
return options[:foo]

end

=> nil

old_way(:foo => "bar")
=> "bar"

old_way
=> nil

NEW UNNAMED KEYWORD ARGUMENTS
def new_way(**options)
return options[:foo]
end
=> :new_way

new_way(foo: "bar")
=> "bar"

new_way
=> nil

NEW NAMED KEYWORD ARGUMENTS
def new_way(foo:)
return foo
end
=> :new_way

new_way(foo: "bar")
=> "bar"

12 | Chapter1:Ruby2.1

new_way
ArgumentError: missing keyword: foo
It is interesting to note that def now returns the symbolic name of the method
instead of nil. This allows you to string together private and public calls when
defining your classes:
class Foo
private def baz

return "yay"
end

def bar
baz
end
end

Foo.new.baz
NoMethodError: private method “bar' called for #<Foo:0x007f6b4abbbc98>

Foo.new.bar
=> "yay"

The last big syntax addition is a new way to define procs:

old_way = Proc.new { |a, b] a + b }
old_way.call(1, 2)
#=>3

new_way = ->(a, b) { a + b}
new_way.call(1l, 2)
=>3

This is not only shorter to implement (fewer characters), but it is also consistent with
the def method of listing arguments (i.e., it uses parentheses instead of pipes).

The first smaller addition to Ruby syntax is specifying arrays of symbols:

old_way = [:foo, :bar, :baz]
new_way = %i1(foo bar baz)

The second smaller addition to Ruby syntax is a shortcut for defining Rational
numbers:

old_way = Rational(6, 5)
new_way = 1.2r

All of the syntax additions share the same goal: brevity in keystrokes.

See Also

« Recipe 1.4, “Keyword Arguments”

1.3 Syntax Changes | 13

1.4 Keyword Arguments

Problem

You want to know how to specify keyword arguments when defining a method.

Solution

As of Ruby 2.0, you can define Ruby methods in new ways thanks to the idea of key-
word arguments. Here is an example of the most complicated method definition you
can possibly do now that has every permutation in it:

def foo(a, b="b_default", *c, d:, e: "e_default", **f, &g)
do stuff
end

o a: Required positional argument

o b: Optional positional argument with a default value

o c: Splat positional arguments that lack default values

o d: Declared keyword argument

o e: Declared keyword argument with a default value

o f: Double splat keyword arguments that lack default values

o g: Block argument

Discussion

In Ruby 2.1, hashes were upgraded in many ways. For example, the old trick of using
def foo(bar={}) to accept keyword arguments was made into a first-class citizen
with the double-splat (**) syntax.

Another way in which hashes were improved was that they preserved their internal
order. In Ruby 1.8, the order in which you inserted items into a hash would have no
correlation to the order in which they were stored, and when you iterated over a hash,
the results could appear totally random. Now hashes preserve the order of insertion,
which is clearly useful when you are using them for keyword arguments in method
definitions.

The new keyword arguments are a great way to save time while coding. Even a few
keystrokes per method can add up quickly.

14 | Chapter1:Ruby 2.1

1.5 Performance Enhancements

Problem

You want to know in which areas there are significant performance enhancements in
Ruby 2.1 over Ruby 1.8.

Solution

There are few places that havent been internally improved over the last eight years:
however, we will touch on a few major areas of enhancements.

The biggest performance enhancements came from the new YARV interpreter, which
was discussed in Recipe 1.2.

One of the other large performance-enhancing features of Ruby has been the addition
of the lazy method to many basic classes, like Array and Hash, through the Enumera
tor class:

array = [1,2,3].lazy.map { [x| x * 10 }.select { [x| x > 10 }
=> #<Enumerator::Lazy>

No calculations are performed until a method is called to the array object

array.to_a

=> [20, 30]
For small arrays like this, the benefit is not clear. However, as you deal with large data
and start chaining multiple enumeration methods together, the use of lazy evaluation
prevents you from using unnecessary amounts of memory in temporary variables.
Here is an example:

def search_file(file_name, term)
File.open(file_name) do |file]
file.each.flat_map(&:split).grep(term)
end
end

The flat_map implementation internally uses lazy enumeration automatically. This
means that you are going to iterate over the array only once, instead of twice as you
might expect since you run two chained enumeration methods.

Another area where lazy evaluation has had a dramatic effect is in increasing perfor-
mance with the Ruby garbage collector, since fewer objects are created to clean up in
the first place. A lot more has also changed in GC between Ruby 1.8 and 2.1, including
a new algorithm for garbage collection called Bitmap Marking. The new algorithm
implements a “lazy sweep,” which dramatically reduces overall memory consumption
by all Ruby processes.

1.5 Performance Enhancements | 15

Another area of improvement is in the require method and File and Pathname
classes. They were refactored, which helps considerably for the initial loading times
to start complicated frameworks like Rails. One example of the refactoring was that
Ruby 1.8 rechecked the $LOAD_PATH to make sure it is all expanded on every require.
This change led to a 35% reduction in initial loading time for a simple Rails app.

Stack tracing performance has improved up to 100x between Ruby 1.8 and 2.1 by
allowing you to limit the number of frames requested.

The test/untit library was updated to be able to run in parallel, which speeds up unit
testing.

There have been many more areas of performance improvements, but these contrib-
ute most to the nearly 2x better performance of Ruby 2.1 over Ruby 1.8.

See Also

o Read more about YARV in Recipe 1.2
» Read more about the new GC algorithm at http://bit.ly/ruby_2_0_gc
o Watch a presentation about the Ruby 2.1 GC at http://bit.ly/ruby 2 1 gc

1.6 Refinements

Problem

You want to monkey-patch some code, but do not want your monkey patches to
affect other code.

Solution

As of Ruby 2.0, you can use the refine and using methods to monkey-patch safely
within a given context. Here is an example:

module MyMonkeyPatches
refine String do
def length
30
end
end
end

class TestMyMonkey
using MyMonkeyPatches

def string_length(string)
string.length

16 | Chapter1:Ruby2.1

http://bit.ly/ruby_2_0_gc
http://bit.ly/ruby_2_1_gc

end
end

string = "foobar"

string.length
#=>6

TestMyMonkey.new.string_length(string)
=> 30

string.length
#=>6

Notice that the entire scope of your monkey-patching stays within your class.

Discussion

Refinements were an experimental feature until Ruby 2.1, but are now mainstream.
The ability to dynamically add and modify functionality of classes at any time is both
powerful and dangerous. If you don't like the way something works in Ruby, you can
always monkey-patch it. However, the dangerous part is the side effects that you do
not anticipate.

In the example within this recipe, you can clearly see that changing the way
String#length works to be static can be a bad idea. However, when it is scoped to a
special module to encapsulate the refinement, the potential damage is strictly limited.

1.7 Debugging with DTrace and TracePoint

Problem

You want to debug your Ruby app in real time.

Solution

Ruby 2.1 gives you two new and powerful ways to debug your Ruby application:
DTrace and TracePoint.

With DTrace, you use the D language for making queries about a running process.
Here is the basic syntax for the D language:

probe /test/ { action }
A probe runs the test and if it passes, runs the action. A probe looks like this:

provider:module:function:name

1.7 Debugging with DTrace and TracePoint | 17

Modules and functions are optional. There are a number of different probe names
available within Ruby, but for this example, we will just use the method-entry probe:

$ sudo dtrace -q -n 'ruby*:::method-entry \
{ printf("%s\n", copyinstr(arg0)) }' -c "rake environment"
rake aborted!
No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb, Rakefile.rb)

(See full trace by running task with --trace)
RbConfig
RbConfig
RbConfig
RbConfig
RbConfig
RbConfig

$ sudo dtrace -q -n 'ruby*:::method-entry \

{ @[copyinstr(arg0), copyinstr(argl)] = count(); }' -c "rake environment"
rake aborted!
No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb, Rakefile.rb)

(See full trace by running task with --trace)

FileUtils commands 1
Gem clear_paths 1
Gem default_path 1
Gem detect_gemdeps 1
Gem find_home 1
Gem marshal_version 1

DTrace is very powerful, but you need to learn the D language to use it effectively.
Alternatively, you can use TracePoint, which is built in to Ruby 2.1 as part of the core
library. Here is an example of how to use TracePoint:

trace = TracePoint.new(:raise) do |t]|
puts t.inspect
end

trace.enable

require 'doesnt_exit'

=> #<TracePoint:raise@/...]/kernel_require.rb:55>
=> #<TracePoint:raise@[...J/kernel_require.rb:141>
=> #<TracePoint:raise@/...]/workspace.rb:86>

=> LoadError: cannot load such file -- doesnt_exit

18

| Chapter 1: Ruby 2.1

Discussion

DTrace is a dynamic tracing framework created by Sun originally to debug both ker-
nel and app code in real time. It is a very sophisticated and flexible tool, but the learn-
ing curve is steep because you have to become familiar with a new system.

TracePoint is part of core Ruby and available in every Ruby 2.1 environment. Its wide
availability combined with the fact that it is written in Ruby make it an easy way for
any Ruby developer to debug his or her application.

If you want to debug your application such that any raised error will dump you into
an interactive Ruby environment automatically, you can combine TracePoint with the
debug library by adding this simple code to your app:

fun_with_debug.rb

trace = TracePoint.new(:raise) do |t]
require 'debug'

end

trace.enable
require 'doesnt_exit'
And then you can see the code in action by just running it:

$ ruby fun_with_debug.rb
Debug.rb
Emacs support available.

[...]/kernel_require.rb:57: RUBYGEMS_ACTIVATION_MONITOR.enter
(rdb:1)

See Also

o The Ruby DTrace probe names

o The DTrace wikipedia

 Recipe 16.23, “Using breakpoint in Your Web Application”

« Recipe 19.10, “Using debug to Inspect and Change the State of Your Application”

1.8 Module Prepending

Problem

You want to allow modifications to class methods while retaining setup and teardown
logic for those methods. For example:

1.8 Module Prepending | 19

https://bugs.ruby-lang.org/projects/ruby/wiki/DTraceProbes
http://en.wikipedia.org/wiki/DTrace

module MyHelper
def save
puts "before'
super
puts "after"
end
end

class MyBadClass
include MyHelper

def save
puts "my code"
end
end

MyBadClass.new.save
=> my code

Notice that you were hoping that the before and after text showed up.

Solution

Ruby 2.1 has a new alternative to include called prepend:

module MyHelper
def save
puts "before"
super
puts "after"
end
end

class MyGoodClass
prepend MyHelper

def save
puts "my code
end
end

MyGoodClass.new.save
=> before

=> my code

=> after

Discussion

The way that prepend works is pretty simple when you inspect the class hierarchy:

def parents(obj)
((obj.superclass ? parents(obj.superclass) : []) << obj).reverse

20 | Chapter1:Ruby2.1

vww allitebooks.cond

http://www.allitebooks.org

end

parents(MyGoodClass)
=> [Class, Object, BasicObject, Module]

parents(MyBadClass)

=> [MyBadClass, BasicObject, Object]
prepend puts the MyHelper module at the top of the class hierarchy, before the defini-
tions in the class itself. include puts the MyHelper at the very bottom of the class
hierarchy so it is overwritten when the class is defined.

See Also

o Recipe 11.1, “Finding an Object’s Class and Superclass”

1.9 New Methods

Problem

You want to know about some of the most useful new methods in Ruby 2.1 since
Ruby 1.8.

Solution

With over 70 new methods since Ruby 1.8, it can be hard to figure out which ones
merit particular attention. This chapter has already covered some good ones like Enu
merable#lazy, Module#refine, and Module#using. However, there are a few more
examples of some useful methods you may not have used yet.

People who love O(log n) Array searching will really enjoy Range#tbsearch:

ary = [0, 4, 7, 10, 12]

(0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1
(0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2
(0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3
(0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil

The Exception#cause method keeps track of the root cause of your errors. This is
very handy when your rescue code has a bug in it. In Ruby 1.8, the following code
would have raised a “method doesn'’t exist” error:

begin
require 'does_not_exist'
rescue
nil.some_method
end
LoadError: cannot load such file -- does_not_exist

1.9 New Methods | 21

Gaining insight into the garbage collector is one of the nice capabilities Ruby 2.1

provides:
require 'pp'

pp GC.stat

{:count=>5,

sheap_used=>138,
:heap_length=>138,
:heap_increment=>0,
sheap_live_num=>28500,
rheap_free_num=>42165,
sheap_final_num=>0,
:total_allocated _object=>105777,
:total_freed object=>77277}

H*

TR OH R R R R

One little helper method that is handy is Kernel#dir instead of just Kernel#FILE:

puts _ dir__
/home/user/ruby_app/

Another little helper that is useful is Kernel#require_relative, which allows you to

require a local Ruby file:

old way
require File.expand_path(
File.join(File.dirname(__FILE__), "..", "lib", "mylib")

)

new way with __dir__

require File.expand_path(
File.join(__dir__, "..", "1ib", "mylib")

)

new way with require_relative
require_relative File.join("..", "lib", "mylib")

For sysadmins who need network information, Socket.getifaddrs is your new best

friend:

require 'socket'
require 'pp'

pp Socket.getifaddrs
=> [#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,Ox10000
PACKET[protocol=0 lo hatype=772 HOST hwaddr=00:00:00:00:00:00]>,
#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,Ox10000
127.0.0.1 netmask=255.0.0.0>,
#

An interesting new method is Enumerable#chunk, which will create subarrays based
on repeated information. The next example shows how to use Enumerable#chunk to

22 | Chapter1:Ruby2.1

separate the vowels from the consonants in a sentence. The chunk method is lazy, so
no interstitial objects are created in the process of iteration:

"the quick brown fox".each_char.chunk do |letter|
%w{a e 1 o u}.include?(letter) ? "vowel" : "consonant"

end.each do |type, letters|
puts "#{type}: #{letters.join}"

end

consonant: th

vowel: e

consonant: q

vowel: ui

consonant: ck br

vowel: o

consonant: wn f

vowel: o

consonant: x

oW W W W W R KRR

And finally, a simple string method, String#prepend, might just make your life a lit-
tle life easier:

"world".prepend("hello ")
=> "hello world"

See Also

o The Range#bsearch documentation

o The Exception#cause documentation
o The Kernel documentation

o The Module documentation

o The String#prepend documentation

1.10 New Classes

Problem

You want to know about some of the most useful new classes in Ruby 2.1 since
Ruby 1.8.

Solution

With over nine new classes since Ruby 1.8, it can be hard to figure out which ones
merit particular attention. This chapter has already covered some good ones like
TracePoint, RubyVM, and Enumerator::Lazy. However, there are a few more exam-
ples of some useful classes you may not have used yet.

1.10New Classes | 23

http://bit.ly/range_bsearch
http://bit.ly/exception_cause
http://www.ruby-doc.org/core-2.1.1/Kernel.html
http://www.ruby-doc.org/core-2.1.1/Module.html
http://bit.ly/string_prepend

The Fiber class is an interesting alternative to threads. The biggest difference is that
fibers are never preempted and scheduling must be done by the programmer, not the
VM. Here is what we mean:

thread = Thread.new do
puts "Hello world!"

end

Hello world!

fiber = Fiber.new do
puts "Hello world!"
end

fiber.resume
Hello World!

So you can see that Fiber is more in your control than threads, because threads run
instantly. However, you can do more with Fiber too:

fiber = Fiber.new do |multiply|
Fiber.yield multiply * 10
Fiber.yield multiply * 10_000_000
"done"

end

fiber.resume(2)
=> 20

fiber.resume(2)
=> 20000000

fiber.resume(2)
=> "done"

fiber.resume(2)
FiberError: dead fiber called

The Encoding class shows how much Ruby has progressed in terms of character
encodings since 1.8. The old hacks are gone, and UTF-8 is now standard with great
and simple ways to convert strings natively built into the language:

require 'pp'

pp Encoding.list

[#<Encoding:ASCII-8BIT>,

#<Encoding:UTF-8>,

#<Encoding:US-ASCII>,

#<Encoding:UTF-16BE (autoload)>,
#<Encoding:UTF-16LE (autoload)>,
#<Encoding:UTF-32BE (autoload)>,
#<Encoding:UTF-32LE (autoload)>,

24 | Chapter1:Ruby2.1

string = "some string \u2764" # <-- this will output a heart

string.encoding
=> #<Encoding:UTF-8>

string = string.encode(Encoding::IS0_8859_1)
Encoding: :UndefinedConversionError: U+2764 from UTF-8 to IS0-8859-1

string = string.force_encoding(Encoding::IS0_8859 1)
=> "some string \xE2\x9D|xA4"

string.encoding
=> #<Encoding:IS0-8859-1>
The Random class gives you more control over generating random numbers than the
simple Kernel#rand method. In fact, the Random.rand method provides the base
functionality of Kernel#rand along with better handling of floating-point values:

Random.rand
=> 0.8929923189358412

seed = 1234

random_generator = Random.new(seed)
random_generator.rand

=> 0.1915194503788923
random_generator.rand

=> 0.6221087710398319

random_generator2 = Random.new(seed)
random_generator2.rand

=> 0.1915194503788923
random_generator2.rand

=> 0.6221087710398319

random_generator2.seed
=> 1234

You can see that the Random class allows you to create various generators with arbi-
trary seeds. In real life, you will want to pick a seed that is as random as possible. You
can use Random.new_seed to generate one, but Random.new without any arguments
will use Random. new_seed automatically.

See Also

o The Fiber documentation

o The Encoding documentation

1.10New Classes | 25

http://www.ruby-doc.org/core-2.1.1/Fiber.html
http://www.ruby-doc.org/core-2.1.1/Encoding.html

o The Random documentation

1.11 New Standard Libraries

Problem
You want to know the differences between Ruby 1.8 and 2.1.

Solution

With over 16 new standard libraries since Ruby 1.8, it can be hard to figure out which
ones merit particular attention. This chapter has already covered some good ones like
debug and ripper. However, there are a few more examples of some useful classes
you may not have used yet.

The objspace library is an object allocation tracing profiling tool that can be very
useful for tracking down memory leaks:

require 'objspace'

require 'pp'

objects = Hash.new(0)
ObjectSpace.each_object{|obj| objects[obj.class] += 1 }
pp objects.sort_by{|k,v| -v}

[[String, 24389],

[Array, 5097],
[RubyVM: : InstructionSequence, 1027],
[Class, 449],

[Gem: :Version, 327],

[Gem: :Requirement, 292],

[MatchData, 203],

H*®

TR OWH R R R R

The prime library has the set of all prime numbers and is lazily enumeratable:
require 'prime'

Prime.each(100) do |prime]
p prime
end
#=>2, 3, 5, 7, 11,, 97

Prime.prime?(1)
=> false

Prime.prime?(2)
=> true

Here is a quick example of cmath for trigonometric and transcendental functions for
complex numbers:

26 | Chapter1:Ruby2.1

http://www.ruby-doc.org/core-2.1.1/Random.html

require 'cmath'

CMath.sqrt(-9)
=> 0+3.01

The shellwords library manipulates strings according to the word parsing rules of
bash. This is especially helpful for escaping user content for system commands:

require 'shellwords'

argv = Shellwords.split('ls -la')
= ["ls", "-1a"]

argv << Shellwords.escape("special's.txt")
=> ["ls", "-la", "speciall||'s.txt"]

command_to_exec = argv.join(" ")

system(command_to_exec)

See Also

o The ObjectSpace documentation
o The Prime documentation
o The CMath documentation

o The Shellwords documentation

1.12 What's Next?

Problem
You want to know what is in store for Ruby 2.2 through Ruby 3.0 and beyond.

Solution

The changes from Ruby 1.8 through Ruby 2.1 have had an intense focus on backward
compatibility. Very little has changed to make Ruby 1.8 code not compatible. A few
rarely used libraries were removed and a few functions were renamed, but on the
whole the focus was compatibility.

One of the big trends that we will continue to see as Ruby evolves is more and more
standard libraries moving into gems. The decision to incorporate RubyGems into
Core was made to slim down the standard libraries. Between Ruby 1.8 and Ruby 2.1,
we saw 17 of 107 (16%) of the standard libraries either moved into RubyGems or
removed completely. In the same amount of time, 17 new standard libraries were

1.12What's Next? | 27

http://www.ruby-doc.org/core-2.1.1/ObjectSpace.html
http://bit.ly/prime_docs
http://bit.ly/cmath_docs
http://bit.ly/shellwords

added, so it ended up as a wash. However, as Ruby development progresses, we will
continue to see more library movement into RubyGems.

Another big trend that you can expect to continue to see is new syntax that reduces
the number of keystrokes you have to type. The philosophy is that the more you have
to type, the more opportunity you have to introduce bugs into your code. All five of
the new syntax types added so far accomplished the goal of fewer keystrokes, and we
might see more shortening syntax in the future.

There has been a lot of work done on the Ruby garbage collector alogorithms, includ-
ing two overhauls. We will likely see more work to improve the garbage collection
system in the future. We will also see more work on the YARV bytcode interpreter.
One speculation is that you may in the future be able to compile your Ruby code into
Ruby bytecode files that can be distributed as freely as Ruby source code (like Java
bytecode files).

Matz has made it clear that throughout Ruby 2, backward compatibility is key. This
has meant that anything that breaks backward compatibility is being explored with in
Ruby 3. The roadmap and timeline for Ruby 3 is not clear yet, but you are not likely
to see any dramatic changes to Ruby until that time.

See Also

o The Ruby roadmap

28 | Chapter1:Ruby2.1

https://bugs.ruby-lang.org/projects/ruby-trunk/roadmap

CHAPTER 2
Strings

Ruby is a programmer-friendly language. If you are already familiar with object ori-
ented programming, Ruby should quickly become second nature. If you've struggled
with learning object-oriented programming or are not familiar with it, Ruby should
make more sense to you than other object-oriented languages because Ruby’s meth-
ods are consistently named, concise, and generally predictable in their behavior.

Throughout this book, we demonstrate concepts through interactive Ruby sessions.
Strings are a good place to start because not only are they a useful data type, theyre
also easy to create and use. They provide a simple introduction to Ruby, a point of
comparison between Ruby and other languages you might know, and an approacha-
ble way to introduce important Ruby concepts like duck typing (see Recipe 2.12),
open classes (demonstrated in Recipe 2.10), and symbols (Recipe 2.7).

If you use Mac OS X or a Unix environment with Ruby installed, go to your com-
mand line right now and type irb. If you're using Windows, you can download and
install the One-Click Installer from http://rubyinstaller.org, and do the same from a
command prompt (you can also run the fxri program, if that's more comfortable for
you). You've now entered an interactive Ruby shell, and you can follow along with the
code samples in most of this booK’s recipes.

Strings in Ruby are much like strings in other dynamic languages like Perl, Python,
and PHP. They’re not too much different from strings in Java and C. Ruby strings are
dynamic, mutable, and flexible. Get started with strings by typing this line into your
interactive Ruby session:

string = "My first string”
You should see some output that looks like this:

=> "My first string"

29

http://rubyinstaller.org

You typed in a Ruby expression that created a string, "My first string", and
assigned it to the variable string. The value of that expression is just the new value of
string, which is what your interactive Ruby session printed out on the right side of
the arrow. Throughout this book, this is how we show output:!

string = "My first string" # => "My first string”

In Ruby, everything that can be assigned to a variable is an object. Here, the variable
string points to an object of class String. That class defines over a hundred built-in
methods: named pieces of code that examine and manipulate the string. We'll explore
some of these throughout the chapter, and indeed the entire book. Lets try out one
now, String#length, which returns the number of bytes in a string. Here’s a Ruby
method call:

string.length # => 15
Many programming languages make you put parentheses after a method call:
string.length() # => 15

In Ruby, parentheses are almost always optional. They’re especially optional in this
case, since were not passing any arguments into String#length. If youre passing
arguments into a method, its often more readable to enclose the argument list in
parentheses:

string.count 'i' # => 2 # "1" occurs twice.
string.count('il") #=>2

The return value of a method call is itself an object. In the case of String#length, the
return value is the number 15, an instance of the Fixnum class. We can call a method
on this object as well:

string.length.next # => 16

Let’s take a more complicated case: a string that contains non-ASCII characters. This
string contains the French phrase il était une fois, encoded as UTF-8:*

french_string = "1l \xc3\xa9tait une foils" # => "il |303|\251tait une fois"

1 Yes, this was covered in the Preface, but not everyone reads the Preface.

2 \xc3\xa9 is a Ruby string representation of the UTF-8 encoding of the Unicode character é.

30 | Chapter2:Strings

vww allitebooks.cond

http://www.allitebooks.org

Many programming languages (notably Java) treat a string as a series of characters.
Ruby treats a string as a series of bytes.

New in Ruby 2.1

Since Ruby 1.9, the default way string length is handled has changed for international
characters. In Ruby 1.8, international characters showed up as mulitple bytes (which
can be confusing if you are looking at string length) unless you used some flags to
help Ruby recognize international characters better. In Ruby 2.1 (and since Ruby 1.9),
international characters work the way you expect by default and show up as a single
character in string length and other methods.

In Ruby 1.8, the French string contains 14 letters and 3 spaces, so you might think
Ruby would say the length of the string is 17. But one of the letters (the e with an
acute accent) is represented as two bytes, and that’s what Ruby counts:

french_string.length # => 18 in Ruby 1.8, 17 in Ruby 2.1

You can represent special characters in strings (like the binary data in the French
string) with string escaping. Ruby does different types of string escaping depending
on how you create the string. When you enclose a string in double quotes, you can
encode binary data into the string (as in the preceding French example), and you can
encode newlines with the code \n, as in other programming languages:

puts "This string\ncontains a newline"

This string

contains a newline
When you enclose a string in single quotes, the only special codes you can use are \'
to get a literal single quote, and \\ to get a literal backslash:

puts 'it may look like this string contains a newline\nbut it doesn\'t'
it may look like this string contains a newline\nbut it doesn't

puts 'Here is a backslash: \\'
Here is a backslash: |

This is covered in more detail in Recipe 2.5. Also see Recipes 2.2 and 2.3 for more
examples of the more spectacular substitutions double-quoted strings can do.

Another useful way to initialize strings is with the “here documents” style:

long_string = <<EOF

Here is a long string

With many paragraphs

EOF

=> "Here is a long string\nWith many paragraphs\n"

puts long_string

Strings | 31

Here is a long string

With many paragraphs
Like most of Ruby’s built-in classes, Ruby’s strings define the same functionality in
several different ways, so that you can use the idiom you prefer. Say you want to get a
substring of a larger string (as in Recipe 2.13). If you're an object-oriented program-
ming purist, you can use the String#slice method:

string # => "My first string”

string.slice(3, 5) # => "first"
But if youre coming from C, and you think of a string as an array of bytes, Ruby can
accommodate you. Selecting a single byte from a string returns that byte as a number:

string.byteslice(3) + string.byteslice(4) + string.byteslice(5)

+ string.byteslice(6) + string.byteslice(7)

=> "first"
And if you come from Python, and you like that language’s slice notation, you can
just as easily chop up the string that way:

string[3, 5] # => "first"

Unlike in most programming languages, Ruby strings are mutable: you can change
them after they are declared. Here we see the difference between the methods
String#upcase and String#upcase!:

string.upcase # => "MY FIRST STRING"
string # => "My first string"
string.upcase! # => "MY FIRST STRING"
string => "MY FIRST STRING"

R

This is one of Ruby’s syntactical conventions. “Dangerous” methods (generally those
that modify their object in place) usually have an exclamation mark at the end of
their name. Another syntactical convention is that predicates, methods that return a
true/false value, have a question mark at the end of their name (as in some varieties of
Lisp):

string.empty? # => false

string.include? 'MY' # => true
This use of English punctuation to provide the programmer with information is an
example of Matz’s design philosophy: that Ruby is a language primarily for humans to
read and write, and secondarily for computers to interpret.

An interactive Ruby session is an indispensable tool for learning and experimenting
with these methods. Again, we encourage you to type the sample code shown in these
recipes into an irb or fxri session, and try to build upon the examples as your
knowledge of Ruby grows.

Here are some extra resources for using strings in Ruby:

32 | Chapter2:Strings

 You can get information about any built-in Ruby method with the ri command;
for instance, to see more about the String#upcase! method, issue the command
ri "String#upcase!" from the command line.

o Codecademy has a great interactive web introduction to Ruby.
« TryRuby also has a great interactive web introduction to Ruby.

« For more information about the design philosophy behind Ruby, read an inter-
view with Yukihiro “Matz” Matsumoto, creator of Ruby.

2.1 Building a String from Parts

Problem

You want to iterate over a data structure, and build a string from the data at the
same time.

Solution

There are two efficient solutions. The simplest solution is to start with an empty
string, and repeatedly append substrings onto it with the << operator:

hash = { key1l: "vall", key2: "val2" }

string = ""

hash.each { |k,v| string << "#{k} is #{v}\n" }

puts string

keyl is vali
key2 is val2

This variant of the simple solution is slightly more efficient, but harder to read:

string =

hash.each { |k,v| string << k.to_s << " is " << v << "\n" }
If your data structure is an array, or easily transformed into an array, it’s usually more
efficient to use Array#join:

puts hash.keys.join("\n") + "\n"

keyl
key2

Discussion

In languages like Python and Java, its very inefficient to build a string by starting
with an empty string and adding each substring onto the end. In those languages,
strings are immutable, so adding one string to another builds an entirely new string.

2.1Building a String from Parts | 33

http://www.codecademy.com/tracks/ruby
http://tryruby.org/levels/1/challenges/0
http://www.artima.com/intv/ruby.html
http://www.artima.com/intv/ruby.html

Doing this multiple times creates a huge number of intermediary strings, each of
which is used only as a stepping stone to the next. This wastes time and memory.

In those languages, the most efficient way to build a string is always to put the sub-
strings into an array or another mutable data structure, one that expands dynamically
rather than by implicitly creating entirely new objects. Once you’re done processing
the substrings, you get a single string with the equivalent of Ruby’s Array#join. In
Java, this is the purpose of the StringBuffer class.

In Ruby, though, strings are just as mutable as arrays. Just like arrays, they can expand
as needed, without using much time or memory. The fastest solution to this problem
in Ruby is usually to forgo a holding array and tack the substrings directly onto a base
string. Sometimes using Array#join is faster, but it’s usually pretty close, and the <<
construction is generally easier to understand.

If efficiency is important to you, don’t build a new string when you can append items
onto an existing string. Constructs like str << 'a' + 'b' or str << "#{var1}
#{var2}" create new strings that are immediately subsumed into the larger string.
This is exactly what you're trying to avoid. Use str << varl <<''<< var2 instead.

On the other hand, you shouldn’t modify strings that aren’t yours. Sometimes safety
requires that you create a new string. When you define a method that takes a string as
an argument, you shouldn’t modify that string by appending other strings onto it,
unless that’s really the point of the method (and unless the method’s name ends in an
exclamation point, so that callers know it modifies objects in place).

Another caveat: Array#join does not work precisely the same way as repeated
appends to a string. Array#join accepts a separator string that it inserts between
every two elements of the array. Unlike a simple string-building iteration over an
array, it will not insert the separator string after the last element in the array. This
example illustrates the difference:

data = ['1', '2', '3"]

S = L)

data.each { |x| s << x << ' and a '}

s # =>"1and a 2 and a 3 and a "
data.join(' and a ') # =>"1and a 2 and a 3"

To simulate the behavior of Array#join across an iteration, you can use Enumera

ble#teach_with_index and omit the separator on the last index. This only works if
you know how long the Enumerable is going to be:

S =
data.each_with_index { |x, 1| s << x; s << "|" i1f {1 < data.length-1 }
S # => "1[2]3"

34 | Chapter2:Strings

2.2 Substituting Variables into Strings

Problem

You want to create a string that contains a representation of a Ruby variable or
expression.

Solution

Within the string, enclose the variable or expression in curly brackets and prefix it
with a hash character:

number = 5
"The number is #{number}." # => "The number is 5."
"The number is #{5}." # => "The number is 5."

"The number after #{number} is #{number.next}."

=> "The number after 5 is 6."

"The number prior to #{number} is #{number-1}."

=> "The number prior to 5 is 4."

"We're ##{number}!" # => "We're #5!"

Discussion

When you define a string by putting it in double quotes, Ruby scans it for special sub-
stitution codes. The most common case, so common that you might not even think
about it, is that Ruby substitutes a single newline character every time a string con-
tains a slash followed by the letter n (\n).

Ruby supports more complex string substitutions as well. Any text kept within the
brackets of the special marker {} (that is, {text in here}) is interpreted as a Ruby
expression. The result of that expression is substituted into the string that gets cre-
ated. If the result of the expression is not a string, Ruby calls its to_s method and uses
that instead.

Once such a string is created, it is indistinguishable from a string created without the
string interpolation feature:

"#{number}" == '5' # => true

You can use string interpolation to run even large chunks of Ruby code inside a
string. This extreme example defines a class within a string; its result is the return
value of a method defined in the class. You should never have any reason to do this,
but it shows the power of this feature:

%{Here is #{class InstantClass
def bar
"some text"
end
end

2.2 Substituting Variables into Strings | 35

InstantClass.new.bar

1}

=> "Here is some text."
The code run in string interpolations runs in the same context as any other Ruby
code in the same location. To take the preceding example, the InstantClass class has
now been defined like any other class, and can be used outside the string that
defines it.

If a string interpolation calls a method that has side effects, the side effects are trig-
gered. If a string definition sets a variable, that variable is accessible afterward. It's bad
form to rely on this behavior, but you should be aware of it:

"I've set x to #{x = 5; x += 1}." # => "IT've set x to 6."

X #=>6
To avoid triggering string interpolation, escape the hash characters or put the string
in single quotes:

"\#{foo}" # => "\#{foo}"

'#{foo}' # => "\#{foo}"
The “here document” construct is an alternative to the #{} construct, and is some-

times more readable. It lets you define a multiline string that ends only when the
Ruby parser encounters a certain string on a line by iteself:

name = "Mr. Lorum"
email = <<END
Dear #{name},

Unfortunately we cannot process your insurance claim at this
time. This is because we are a bakery, not an insurance company.

Signed,

Nil, Null, and None

Bakers to Her Majesty the Singleton
END

Ruby is pretty flexible about the string you can use to end the here document:

<<end_of_poem

There once was a man from Peru

Whose limericks stopped on line two

end_of_poem

=> "There once was a man from Peru\nWhose limericks stopped on line two\n"

See Also

« You can use the technique described in Recipe 2.3, “Substituting Variables into an
Existing String,” to define a template string or object, and substitute in variables
later

36 | Chapter2:Strings

2.3 Substituting Variables into an Existing String

Problem

You want to create a string that contains Ruby expressions or variable substitutions,
without actually performing the substitutions. You plan to substitute values into the
string later, possibly multiple times with different values each time.

Solution

There are two good solutions: printf-style strings, and ERB (meaning “embedded
Ruby”) templates.

Ruby supports a printf-style string format like C’s and Python’s. Put printf direc-
tives into a string and it becomes a template. You can interpolate values into it later
using the modulus operator:

template = 'Oceania has always been at war with %s.'
template % 'Eurasia' # => "Oceania has always been at war with Eurasia."
template % 'Eastasia' # => "Oceania has always been at war with Eastasia."”

'To 2 decimal places: %.2f' % Math::PI # => "To 2 decimal places: 3.14"
'Zero-padded: %.5d' % Math::PI # => "Zero-padded: 00003"

An ERB template looks something like JSP or PHP code. Most of it is treated as a nor-
mal string, but certain control sequences are executed as Ruby code. The control
sequence is replaced with either the output of the Ruby code, or the value of its last
expression:

require 'erb'

template = ERB.new %q{Chunky <%= food %>!}

food = "bacon"

template.result(binding) # => "Chunky bacon!"

food = "peanut butter"

template.result(binding) # => "Chunky peanut butter!"

You can omit the call to Kernel#binding if youre not in an irb session:

puts template.result
Chunky peanut butter!

You may recognize this format from the .html.erb files used by Rails views: they use
ERB behind the scenes.

2.3 Substituting Variables into an Existing String | 37

Discussion

An ERB template can reference variables like food before theyre defined. When you
call ERB#result, or ERB#run, the template is executed according to the current values

of those variables.

Like JSP and PHP code, ERB templates can contain loops and conditionals. Here’s a

more sophisticated template:

template = %q{
<% if problems.empty? %>
Looks like your code is clean!
<% else %>
I found the following possible problems with your code:
<% problems.each do |problem, line| %>
* <%= problem %> on line <%= line %>
<% end %>
<% end %>}.gsub(/"\s+/, '")
template = ERB.new(template, nil, '<>")

problems = [["Use of i1s_a? instead of duck typing", 23],
["eval() is usually dangerous", 44]]

template.run(binding)

I found the following possible problems with your code:

* Use of 1s_a? instead of duck typing on line 23

* eval() is usually dangerous on line 44

problems = []
template.run(binding)
Looks like your code is clean!

ERB is sophisticated, but neither it nor the printf-style strings look like the simple
Ruby string substitutions described in Recipe 2.2. Theres an alternative. If you use
single quotes instead of double quotes to define a string with substitutions, the substi-

tutions won't be activated. You can then use this string as a template with eval:

class String
def substitute(binding=TOPLEVEL_BINDING)
eval(%{"#{self}"}, binding)
end
end

template = %q{Chunky #{food}!'} # => "Chunky \#{food}!"

food = 'bacon'

template.substitute(binding) # => "Chunky bacon!"
food = 'peanut butter'
template.substitute(binding) # => "Chunky peanut butter!"

You must be very careful when using eval: if you use a variable in the wrong way, you
could give an attacker the ability to run arbitrary Ruby code in your eval statement.

38 | Chapter2:Strings

That won’t happen in this example since any possible value of food gets stuck into a
string definition before it’s interpolated:

food = '#{system("dir")}'

puts template.substitute(binding)
Chunky #{system("dir")}!

See Also

o This recipe gives basic examples of ERB templates; for more complex examples,
see the documentation of the ERB class

o Recipe 2.2, “Substituting Variables into Strings”

o Recipe 11.12, “Evaluating Code in an Earlier Context,” has more about Binding
objects

2.4 Reversing a String by Words or Characters

Problem

The letters (or words) of your string are in the wrong order.

Solution

To create a new string that contains a reversed version of your original string, use the
reverse method. To reverse a string in place, use the reverse! method:

s = ".sdrawkcab si gnirts sihT"

s.reverse # => "This string is backwards."
s # => ".sdrawkcab si gnirts sihT"
s.reverse! # => "This string is backwards."
s # => "This string is backwards."

To the order of the words in a string, split the string into a list of whitespaceseparated
words, then join the list back into a string:

s = "order. wrong the in are words These"

s.split(/(\s+)/).reverse!.join('') # => "These words are in the wrong order."

s.split(/\b/).reverse!.join('") # => "These words are in the wrong. order"
Discussion

The String#split method takes a regular expression to use as a separator. Each time
the separator matches part of the string, the portion of the string before the separator
goes into a list. split then resumes scanning the rest of the string. The result is a list
of strings found between instances of the separator. The regular expression /(\s+)/

2.4 Reversing a String by Words or Characters | 39

http://bit.ly/erb_class

matches one or more whitespace characters; this splits the string on word boundaries,
which works for us because we want to reverse the order of the words.

The regular expression \b matches a word boundary. This is not the same as match-
ing whitespace, because it also matches punctuation. Note the difference in punctua-
tion between the two final examples in the Solution.

Because the regular expression /(\s+)/ includes a set of parentheses, the separator
strings themselves are included in the returned list. Therefore, when we join the
strings back together, we've preserved whitespace. This example shows the difference
between including the parentheses and omitting them:

"Three 1little words".split(/\s+/) # => ["Three"”, "little", "words"]
"Three little words".split(/(\s+)/)
=> ["Three", " ", "little", " ", "words"]

See Also

o Recipe 2.9, “Processing a String One Word at a Time,” has some regular expres-
sions for alternative definitions of word

o Recipe 2.11, “Managing Whitespace”

o Recipe 2.15, “Generating a Succession of Strings”

2.5 Representing Unprintable Characters

Problem

You need to make reference to a control character, a strange UTF-8 character, or
some other character that’s not on your keyboard.

Solution

Ruby gives you a number of escaping mechanisms to refer to unprintable characters.
By using one of these mechanisms within a double-quoted string, you can put any
binary character into the string.

You can reference any binary character by encoding its octal representation into the
format "\000", or its hexadecimal representation into the format "\x00":

octal = "\000\001\010\020"
octal.each_byte { |x| puts x }
0

1

8

16

40 | Chapter2:Strings

vww allitebooks.cond

http://www.allitebooks.org

hexadecimal = "\x00\x01\x10\x20"
hexadecimal.each_byte { |x| puts x }
0

1

16

32

This makes it possible to represent UTF-8 characters even when you can't type them
or display them in your terminal. Try running this program, and then opening the
generated file smiley.html in your web browser:
open('smiley.html', 'wb') do |f]
f << '<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">"
f << "\xe2\x98\xBA"
end
The most common unprintable characters (such as newline) have special mneumonic
aliases consisting of a backslash and a letter:

"\a" == "\x07" # => true # ASCII 0x07 = BEL (Sound system bell)

"\b" == "\x08" # => true # ASCII 0x08 = BS (Backspace)

"\e" == "\x1b" # => true # ASCII 0x1B = ESC (Escape)

"\f" == "\x0c" # => true # ASCII 0x0C = FF (Form feed)

"\n" == "\x0a" # => true # ASCII Ox0A = LF (Newline/line feed)

"\r" == "\x0d" # => true # ASCII 0x0D = CR (Carriage return)

"\t" == "\x09" # => true # ASCII 0x09 = HT (Tab/horizontal tab)

"\v" == "\x0b" # => true # ASCII 0x0B = VT (Vertical tab)
Discussion

Ruby stores a string as a sequence of bytes. It makes no difference whether those
bytes are printable ASCII characters, binary characters, or a mix of the two.

When Ruby prints out a human-readable string representation of a binary character,
it uses the character’s \xxx octal representation. Characters with special \x mneu-
monics are printed as the mneumonic. Printable characters are output as their print-
able representation, even if another representation was used to create the string:

"\x10\x11\xfe\xff" # => "|ud010\uOO11\xFE\xFF"
"\x48\145\x6c\x6c\157\x0a" # => "Hello|n"
To avoid confusion with the mneumonic characters, a literal backslash in a string is
represented by two backslashes. For instance, the two-character string consisting of a
backslash and the 14th letter of the alphabet is represented as "\\n":

"\\".size #=>1
"\\" == "\x5c" # => true
"\\n"[0] == ?2\\ # => true
"\\n"[1] == ?n # => true
"\\n" =~ /\n/ #=> nil

2.5 Representing Unprintable Characters | 41

Ruby also provides special shortcuts for representing keyboard sequences like
Control-C. "\C-x" represents the sequence you get by holding down the Control key
and pressing the x key, and "\M-x" represents the sequence you get by holding down
the Alt (or Meta) key and pressing the x key:

"\C-a\C-b\C-c" # => "|u0001|ud062\u0003"
"\M-a\M-b\M-c" # => "|xE1\xE2\xE3"

Shorthand representations of binary characters can be used whenever Ruby expects a
character. For instance, you can get the decimal byte number of a special character by
prefixing it with ?, and you can use shorthand representations in regular expression
character ranges:

?\C-a # => "|\u0eo1"
?2\M-z # => "|xFA"

contains_control_chars = /[\C-a-\C-~]/
'Foobar' =~ contains_control_chars # => nil
"Foo\C-zbar" =~ contains_control_chars # => 3

Here’s a sinister application that scans logged keystrokes for special characters:

def snoop_on_keylog(input)
input.each_char do |b]|
case b
when ?\C-c; puts 'Control-C: stopped a process?'
when ?\C-z; puts 'Control-Z: suspended a process?'
when ?\n; puts 'Newline.'
when ?\M-x; puts 'Meta-x: using Emacs?'
end
end
end

snoop_on_keylog("ls -1tR\003emacsHello\012\370rot13-other-window\012\032")
Control-C: stopped a process?

Newline.

Meta-x: using Emacs?

Newline.

Control-Z: suspended a process?

Special characters are interpreted only in strings delimited by double quotes, or
strings created with %{} or %Q{}. They are not interpreted in strings delimited by sin-
gle quotes, or strings created with %q{}. You can take advantage of this feature when
you need to display special characters to the end user, or create a string containing a
lot of backslashes:

puts "foo\tbar"
foo bar
puts %{foo\tbar}
foo bar
puts %Q{foo\tbar}
foo bar

42 | Chapter2:Strings

puts 'foo\tbar'

foo|tbar

puts %q{foo\tbar}

foo|tbar
If you come to Ruby from Python, this feature can take advantage of you, making you
wonder why the special characters in your single-quoted strings aren’t treated as spe-
cial. If you need to create a string with special characters and a lot of embedded dou-
ble quotes, use the %{} construct.

2.6 Converting Between Characters and Values

Problem

You want to see the ASCII code for a character, or transform an ASCII code into a
string.
Solution

To see the ASCII code for a specific character as an integer, use the String#ord
method:

"a".ord # => 97
"1" . ord # => 33
"\n".ord # => 10

To see an individual character of a particular string, access it as though it were an ele-
ment of an array:

|al[0] # => HaH
'bad sound'[1] # => "q"
'a'[0].ord # => 97
'bad sound'[1].ord # => 97

To see the ASCII character corresponding to a given number, call its #chr method.
This returns a string containing only one character:

"o

97.chr # =>"a

33.chr #=>"1"

10.chr #=>"|n"

0.chr # => "|x00"

256.chr # RangeError: 256 out of char range
Discussion

Though not technically an array, a string can act like an array of individual charac-
ters: one character for each byte in the string. Accessing a single element of the

2.6 Converting Between Characters and Values | 43

“array” vyields a single character string for the corresponding byte. Calling
String#each_byte lets you iterate over the Fixnum objects that make up a string.

See Also

o Recipe 2.8, “Processing a String One Character at a Time”

2.7 Converting Between Strings and Symbols

Problem

You want to get a string containing the label of a Ruby symbol, or get the Ruby sym-
bol that corresponds to a given string.

Solution

To turn a symbol into a string, use Symbol#to_s, or Symbol#id2name, for which to_s
is an alias:

:a_symbol.to_s # => "a_symbol"
:AnotherSymbol.1d2name # => "AnotherSymbol"
:"Yet another symbol!".to_s # => "Yet another symbol!"

You usually reference a symbol by just typing its name. If you're given a string in code
and need to get the corresponding symbol, you can use String.intern:

:dodecahedron.object_id # => 516488

symbol_name = "dodecahedron"

symbol_name.intern # => :dodecahedron

symbol_name.1intern.object_1id # => 516488
Discussion

A Symbol is about the most basic Ruby object you can create. It’s just a name and an
internal ID. Symbols are useful because a given symbol name refers to the same object
throughout a Ruby program.

Symbols are often more efficient than strings. Two strings with the same contents are
two different objects (one of the strings might be modified later on, and become dif-
ferent), but for any given name there is only one Symbol object. This can save both
time and memory:

"string".object_id # => 70309575257960
"string".object_id # => 70309575221880
:symbol.object_1id # => 382408
:symbol.object_1id # => 382408

44 | Chapter2: Strings

If you have n references to a name, you can keep all those references with only one
symbol, using only one object’s worth of memory. With strings, the same code would
use n different objects, all containing the same data. It’s also faster to compare two
symbols than to compare two strings, because Ruby only has to check the object IDs:

"stringl" == "string2" # => false
:symboll == :symbol2 # => false

Finally, to quote Ruby hacker Jim Weirich on when to use a string versus a symbol:
o If the contents (the sequence of characters) of the object are important, use a
string.

o If the identity of the object is important, use a symbol.

See Also

o See Recipe 6.1, “Using Symbols as Hash Keys” for one use of symbols
o Recipe 9.12, “Using Keyword Arguments,” has another

o Chapter 11, especially Recipe 11.4, “Getting a Reference to a Method” and Recipe
11.10, “Avoiding Boilerplate Code with Metaprogramming”

o See http://bit.ly/ruby_symbols for a symbol primer

2.8 Processing a String One Character at a Time

Problem

You want to process each character of a string individually.

Solution

If youre processing an ASCII document, then each byte corresponds to one charac-
ter. Use String#each_byte to yield each byte of a string as a number, which you can
turn into a one-character string:

'foobar'.each_byte { |x| puts "#{x} = #{x.chr}" }

102 = f
111 = o
111 = o
98 = b
97 = a
114 = r

Use String#scan to yield each character of a string as a new one-character string:

2.8 Processing a String One CharacterataTime | 45

http://bit.ly/ruby_symbols

'foobar'.scan(/./) { |c| puts c }
#f
o0
o0
#b
a
#r

Discussion

Since a string is a sequence of bytes, you might think that the String#each method
would iterate over the sequence, the way Array#each does. In reality, there is no
String#each method in Ruby 2.1.

In Ruby 1.8, String#each was actually used to split a string on a given record separa-
tor (by default, the newline). However, this discrepency in expectations for
String#each led to its renaming into the String#each_line method in Ruby 2.1 to
make its purpose more explicit.

The string equivalent of Array#each method is actually each_byte. A string stores its
characters as a sequence of Fixnum objects, and each_bytes yields that sequence.

String#each_byte is faster than String#scan, so if youre processing an ASCII file,
you might want to use String#each_byte and convert to a string every number
passed into the code block (as seen in the Solution).

String#scan works by applying a given regular expression to a string, and yielding
each match to the code block you provide. The regular expression /./ matches every
character in the string, in turn.

Here’s a Ruby string containing the UTF-8 encoding of the French phrase ¢a va:

french = "\xc3\xa7a va"

french.scan(/./) { |c| puts c }

#¢

#a

#

#v

#a
Once Ruby knows to treat strings as UTF-8 instead of ASCII, it starts treating the two
bytes representing the ¢ as a single character. Even if you can’t see UTF-8, you can
write programs that handle it correctly.

See Also

o Recipe 12.11, “Converting from One Encoding to Another”

46 | Chapter2:Strings

2.9 Processing a String One Word at a Time

Problem

You want to split a piece of text into words, and operate on each word.

Solution

First decide what you mean by word. What separates one word from another? Only
whitespace? Whitespace or punctuation? Is johnny-come-lately one word or three?
Build a regular expression that matches a single word according to whatever defini-
tion you need (there are some samples are in the Discussion).

Then pass that regular expression into String#scan. Every word it finds, it will yield
to a code block. The word_count method defined next takes a piece of text and creates
a histogram of word frequencies. Its regular expression considers a word to be a string
of Ruby identifier characters: letters, numbers, and underscores:

class String
def word_count
frequencies = Hash.new(0)
downcase.scan(/\w+/) { |word| frequencies[word] += 1 }
return frequencies
end
end

%{Dogs dogs dog dog dogs.}.word_count

=> {"dogs"=>3, "dog"=>2}

%{"I have no shame," I said.}.word_count

=> {"i"=>2, "have"=>1, "no"=>1, "shame"=>1, "said"=>1}

Discussion

The regular expression /\w+/ is nice and simple, but you can probably do better for
your application’s definition of word. You probably don’t consider two words separa-
ted by an underscore to be a single word. Some English words, like pan-fried and
fotsle, contain embedded punctuation. Here are a few more definitions of word in
regular expression form:

Just like /\w+/, but doesn't consider underscore part of a word.
/[0-9A-Za-z]/

Anything that's not whitespace is a word.

[IN\S]+/

Accept dashes and apostrophes as parts of words.

/T-"\wl+/

2.9 Processing a String One Word ata Time | 47

A pretty good heuristic for matching English words.

[QL= T\w)*) /
The last one deserves some explanation. It matches embedded punctuation within a
word, but not at the edges. Work-in-progress is recognized as a single word, and —-
never—- is recognized as the word never surrounded by punctuation. This regular
expression can even pick out abbreviations and acronyms such as Ph.D and
U.N.C.L.E., though it can’t distinguish between the final period of an acronym and the
period that ends a sentence. This means that E.EE will be recognized as the word
E.EF and then a nonword period.

Let’s rewrite our word_count method to use that regular expression. We can’t use the
original implementation, because its code block takes only one argument.
String#scan passes its code block one argument for each match group in the regular
expression, and our improved regular expression has two match groups. The first
match group is the one that actually contains the word. So we must rewrite
word_count so that its code block takes two arguments, and ignores the second one:

class String
def word_count
frequencies = Hash.new(0)
self.downcase.scan(/(\w+([-".]\w+)*)/) do |word, ignore]|
frequencies[word] += 1
end
return frequencies
end
end

%{"The F.B.I. fella--he's quite the man-about-town."}.word_count
=> {"f.b.1"=>1, "fella"=>1, "he's"=>1,
"quite"=>1, "the"=>2, "man-about-town"=>1}

The regular expression group \b matches a word boundary: that is, the last part of a
word before a piece of whitespace or punctuation. This is useful for String#split
(see Recipe 2.4), but not so useful for String#scan.

See Also

« Recipe 2.4, “Reversing a String by Words or Characters”

o The Facets Core library defines a String#each_word method, using the regular

expression /(\[-"'\w\]+)/

48 | Chapter2:Strings

2.10 Changing the Case of a String

Problem

Your string is in the wrong case, or no particular case at all.

Solution

The String class provides a variety of case-shifting methods:

= 'HELLO, I am not here. I WENT to tHe MaRKEt.'

s
S.upcase # => "HELLO, I AM NOT HERE. I WENT TO THE MARKET."
s.downcase # => "hello, 1 am not here. i1 went to the market."
S.swapcase # => "hello, 1 AM NOT HERE. 1 went TO ThE mArkeT."
s.capitalize # => "Hello, 1 am not here. 1 went to the market."

Discussion

The upcase and downcase methods force all letters in the string to upper or lower-
case, respectively. The swapcase method transforms uppercase letters into lowercase
letters and vice versa. The capitalize method makes the first character of the string
uppercase, if it’s a letter, and makes all other letters in the string lowercase.

All four methods have corresponding methods that modify a string in place rather
than creating a new one: upcase!, downcase!, swapcase!, and capitalize!. Assum-
ing you don’t need the original string, these methods will save memory, especially if
the string is large:

un_banged = 'Hello world.'
un_banged.upcase # => "HELLO WORLD."
un_banged # => "Hello world."

banged = 'Hello world.'
banged.upcase! # => "HELLO WORLD."
banged # => "HELLO WORLD."

To capitalize a string without lowercasing the rest of the string (for instance, because
the string contains proper nouns), you can modify the first character of the string in
place. This corresponds to the capitalize! method. If you want something more like
capitalize, you can create a new string out of the old one:

class String
def capitalize_first_letter
self[0].capitalize + self[1, size]
end

def capitalize_first_letter!
unless self[0] == (c = self[0,1].upcase[0])
self[0] = ¢

2.10 Changing the Case of aString | 49

self
end
Return nil if no change was made, like upcase! et al.
end
end

= '{1 told Alice. She remembers now.'

.capitalize_first_letter # => "I told Alice. She remembers now."
=> "1 told Alice. She remembers now."

.capitalize_first_letter!

n n n n n

=> "I told Alice. She remembers now."

To change the case of specific letters while leaving the rest alone, you can use the tr
or tr! methods, which translate one character into another:

'LOWERCASE ALL VOWELS'.tr('AEIOU', 'aeiou')
=> "LoWeRCaSe alLl VoWelLS"

'Swap case of ALL VOWELS'.tr('AEIOUaeiou', 'aeiouAEIOU')
=> "SwAp cASE Of alLlL VoWelS"

See Also

o Recipe 2.16, “Matching Strings with Regular Expressions”

o The Facets Core library adds a String#camelcase method; it also defines the
case predicates String#lowercase? and String#uppercase?

2.11 Managing Whitespace

Problem

Your string contains too much whitespace, not enough whitespace, or the wrong kind
of whitespace.

Solution

Use strip to remove whitespace from the beginning and end of a string:

" \tWhitespace at beginning and end. \t\n\n".strip
=> "Whitespace at beginning and end."

Add whitespace to one or both ends of a string with 1just, rjust, and center:

s = "Some text."
s.center(15)
" Some text.

= "

wn

.Ljust(15)
=> "Some text.

50 | Chapter2:Strings

s.rjust(15)
#=>" Some text."

Use the gsub method with a string or regular expression to make more complex
changes, such as to replace one type of whitespace with another:

normalize Ruby source code by replacing tabs with spaces
"Line one\tLine two".gsub("\t", " ")
=> "Line one Line two"

transform Windows-style newlines to Unix-style newlines
"Line one\n\rLine two\n\r".gsub("\n\r", "\n")
=> "Line one|nLine two|n"

transform all runs of whitespace into a single space character
"\n\rThis string\t\t\tuses\n all\tsorts\nof whitespace.".gsub(/\s+/," ")
=> " This string uses all sorts of whitespace."

Discussion

What counts as whitespace? Any of these five characters: space, tab (\t), newline
(\n), linefeed (\r), and form feed (\f). The regular expression /\s/ matches any one
character from that set. The strip method strips any combination of those characters
from the beginning or end of a string.

In rare cases you may need to handle oddball “space” characters like backspace (\b or
\010) and vertical tab (\v or \012). These are not part of the \s character group in a
regular expression, so use a custom character group to catch these characters:

" \bIt's whitespace, Jim,\vbut not as we know it.\n".gsub(/[\s\b\v]+/, " ")

=> "It's whitespace, Jim, but not as we know it."

To remove whitespace from only one end of a string, use the lstrip or rstrip
method:

s = Whitespace madness! "

s.lstrip
=> "Whitespace madness! "

s.rstrip
=> " Whitespace madness!"

The methods for adding whitespace to a string (center, 1just, and rjust) take a sin-
gle argument: the total length of the string they should return, counting the original
string and any added whitespace. If center can't center a string perfectly, it'll put one
extra space on the right:

"four".center(5)
=> "four "

2.11 Managing Whitespace | 51

"four".center(6)
#=>" four "

Like most string-modifying methods, strip, gsub, lstrip, and rstrip have counter-
parts strip!, gsub!, lstrip!, and rstrip!, which modify the string in place.

2.12 Testing Whether an Object Is String-Like

Problem

You want to see whether you can treat an object as a string.

Solution

Check whether the object defines the to_str method:
'A string'.respond_to? :to_str # => true
Exception.new.respond_to? :to_str # => true
4.respond_to? :to_str # => false

More generally, check whether the object defines the specific method of String
you're thinking about calling. If the object defines that method, the right thing to do
is usually to go ahead and call the method. This will make your code work in more
places:

def join_to_successor(s)
raise ArgumentError, 'No successor method!' unless s.respond_to? :succ
return "#{s}#{s.succ}"

end
join_to_successor('a') # => "ab"
join_to_successor(4) # => "45"

join_to_successor(4.01)

ArgumentError: No successor method!
If wed checked s.is_a? String instead of s.respond_to? :succ, then we wouldn’t
have been able to call join_to_successor on an integer.

Discussion

This is the simplest example of Ruby’s philosophy of duck typing: if an object quacks
like a duck (or acts like a string), just go ahead and treat it as a duck (or a string).
Whenever possible, you should treat objects according to the methods they define
rather than the classes from which they inherit or the modules they include.

Calling obj.is_a? String will tell you whether an object derives from the String
class, but it will overlook objects that, though intended to be used as strings, don't
inherit from String.

52 | Chapter2:Strings

Exceptions, for instance, are essentially strings that have extra information associated
with them. But they dont subclass class name "String". Code that uses is_a?
String to check for stringness will overlook the essential stringness of Exceptions.
Many add-on Ruby modules define other classes that can act as strings: code that calls
is_a? String will break when given an instance of one of those classes.

The idea to take to heart here is the general rule of duck typing: to see whether pro-
vided data implements a certain method, use respond_to? instead of checking the
class. This lets a future user (possibly yourself!) create new classes that offer the same
capability, without being tied down to the preexisting class structure. All you have to
do is make the method names match up.

See Also

o Chapter 9, especially the chapter introduction, and Recipe 9.3, “Checking Class
or Module Membership”

2.13 Getting the Parts of a String You Want

Problem

You want only certain pieces of a string.

Solution

To get a substring of a string, call its slice method, or use the array index operator
(that is, call the [] method). Either method accepts a Range describing which charac-
ters to retrieve, or two Fixnum arguments: the index at which to start, and the length
of the substring to be extracted:

s = 'My kingdom for a string!'

s.slice(3,7) # => "kingdom"
s[3,7] # => "kingdom"
s[0,3] #=> "My "

s[11, 5] # => "for a"

s[11, 17] # => "for a string!"

To get the first portion of a string that matches a regular expression, pass the regular
expression into slice or []:

s[/.ing/] # => "king"
s[/str.*/] # => "string!"

2.13 Getting the Parts of a String You Want | 53

Discussion

To access a specific byte of a string as a Fixnum, pass only one argument (the zero-
based index of the character) into String#slice or the [] method and use the
String#ord method. To access a specific byte as a single-character string, pass in its
index and the number 1:

s.slice(3).ord # => 107
s[3].ord # => 107
107.chr # => "k"
s.slice(3,1) # => "k"
s[3,1] # => "k"

To count from the end of the string instead of the beginning, use negative indexes:

s.slice(-7,3) # => "str"
s[-7,6] # => "string"

If the length of your proposed substring exceeds the length of the string, slice or []
will return the entire string after that point. This leads to a simple shortcut for getting
the rightmost portion of a string:

s[15...s.length] # => "a string!"”

See Also

« Recipe 2.9, “Processing a String One Word at a Time”

o Recipe 2.15, “Generating a Succession of Strings”

2.14 Word-Wrapping Lines of Text

Problem

You want to turn a string full of miscellaneous whitespace into a string formatted
with linebreaks at appropriate intervals, so that the text can be displayed in a window
or sent as an email.

Solution

The simplest way to add newlines to a piece of text is to use a regular expression like
the following:

def wrap(s, width=78)
s.gsub(/(. {1,#{width}})(\s+|\Z)/, "\\1\n")

end

wrap("This text is too short to be wrapped.")
=> "This text is too short to be wrapped.\n"

54 | Chapter2:Strings

puts wrap("This text is not too short to be wrapped.", 20)
This text is not too
short to be wrapped.

puts wrap("These ten-character columns are stifling my creativity!", 10)
These

ten-character

columns

are

stifling

ny

creativity!

TR W R W™ R R

Discussion

The code given in the Solution preserves the original formatting of the string, insert-
ing additional line breaks where necessary. This works well when you want to pre-
serve the existing formatting while squishing everything into a smaller space:

poetry = %q{It is an ancient Mariner,
And he stoppeth one of three.

"By thy long beard and glittering eye,
Now wherefore stopp'st thou me?}

puts wrap(poetry, 20)
It is an ancient

Mariner,

And he stoppeth one
of three.

"By thy long beard
and glittering eye,
Now wherefore

stopp'st thou me?

But sometimes the existing whitespace isn’t important, and preserving it makes the
result look bad:

prose = %q{I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it been
raining? The newspapers now print the total, but no one reads them
anymore. }

puts wrap(prose, 60)

I find myself alone these days, more often than not,

watching the rain run down nearby windows. How long has it
been

raining? The newspapers now print the total, but no one

reads them

anymore.

2.14 Word-Wrapping Lines of Text | 55

Looks pretty ragged. In this case, we want to replace the original newlines with new
ones. The simplest way to do this is to preprocess the string with another regular
expression:

def reformat_wrapped(s, width=78)
s.gsub(/\s+/, " ").gsub(/(.{1,#{width}})([\Z)/, "\\1\n")

end

But regular expressions are relatively slow; it's much more efficient to tear the string
apart into words and rebuild it:

def reformat_wrapped(s, width=78)
lines = []
line = ""
s.split(/\s+/).each do |word]|
if line.size + word.size >= width
lines << line
line = word
elsif line.empty?
line = word
else
line <<

<< word
end
end
lines << line if line
return lines.join("\n")
end

puts reformat_wrapped(prose, 60)
I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it

been raining? The newspapers now print the total, but no one
reads them anymore.

See Also

o The Facets Core library defines String#word_wrap and String#word_wrap!
methods

2.15 Generating a Succession of Strings

Problem

You want to iterate over a series of alphabetically increasing strings as you would over
a series of numbers.

56 | Chapter2:Strings

Solution

If you know both the start and end points of your succession, you can simply create a
range and use Range#each, as you would for numbers:

aa'..'ag').each { |x| puts x }

HHERIERRER
Q
Q.

ag

The method that generates the successor of a given string is String#succ. If you don’t
know the end point of your succession, you can define a generator that uses succ, and
break from the generator when you’re done:

def endless_string_succession(start)
while true
yield start
start = start.succ
end
end

This code iterates over an endless succession of strings, stopping when the last two
letters are the same:

endless_string_succession('fol') do |x|
puts x
break if x[-1] == x[-2]

end

fol

fom

fon

foo

Discussion

Imagine a string as an odometer. Each character position of the string has a separate
dial, and the current odometer reading is your string. Each dial always shows the
same kind of character. A dial that starts out showing a number will always show a
number. A character that starts out showing an uppercase letter will always show an
uppercase letter.

The string succession operation increments the odometer. It moves the rightmost dial
forward one space. This might make the rightmost dial wrap around to the begin-
ning: if that happens, the dial directly to its left is also moved forward one space. This
might make that dial wrap around to the beginning, and so on:

2.15 Generating a Succession of Strings | 57

'89999'.succ # => "90000"
'nzzzz'.succ # => "oaaaa"

When the leftmost dial wraps around, a new dial is added to the left of the odometer.
The new dial is always of the same type as the old leftmost dial. If the old leftmost dial
showed capital letters, then so will the new leftmost dial:

'Zzz"' .succ # => "AAaa"

Lowercase letters wrap around from z to a. If the first character is a lowercase letter,
then when it wraps around, an a is added onto the beginning of the string:

'z'.succ # => "aa"
'aa'.succ # => "ab"
'zz"'.succ # => "aaa"

Uppercase letters work in the same way: Z becomes A. Lowercase and uppercase let-
ters never mix:

'AA" . succ # => "AB"

'AZ"' .succ # => "BA"
'77" .succ # => "AAA"

'aZ'.succ # => "bA"
'Zz'.succ # => "AAa"

Digits in a string are treated as numbers, and wrap around from 9 to 0, just like a car
odometer:

'fo019'.succ # => "foo20"
'f0099".succ # => "fopoo"
'99"' .succ # => "100"

'9799'.succ # => "10A00"

Characters other than alphanumerics are not incremented unless they are the only
characters in the string. They are simply ignored when calculating the succession, and
reproduced in the same positions in the new string. This lets you build formatting
into the strings you want to increment:

'10-99'.succ # => "11-00"

When nonalphanumerics are the only characters in the string, they are incremented
according to ASCII order. Eventually an alphanumeric will show up, and the rules for
strings containing alphanumerics will take over:

'a-a'.succ # => "a-b"
'z-z"'.succ # => "aa-a"
'Hello!'.succ # => "Hellp!"
%q{'zz"'}.succ # => "'aaa'"
%q{z'zz'}.succ # => "aa'aa'"
'$8SS " .succ # => "S$S%"
s = "!1@-"'
13.times { puts s = s.succ }

1@.

16/

58 | Chapter2: Strings

!@o
!@1
!@2
!@8
1@9
!@10

TR W R W™ R R

There’s no reverse version of String#succ. Matz, and the community as a whole,
thinks there’s not enough demand for such a method to justify the work necessary to
handle all the edge cases. If you need to iterate over a succession of strings in reverse,
your best bet is to transform the range into an array and iterate over that in reverse:

("a".."e").to_a.reverse_each { |x| puts x }
e
#d
#C
b
a

See Also

o Recipe 3.15, “Generating a Sequence of Numbers”

o Recipe 4.4, “Iterating Over Dates”

2.16 Matching Strings with Reqular Expressions

Problem

You want to know whether or not a string matches a certain pattern.

Solution

You can usually describe the pattern as a regular expression. The =~ operator tests a
string against a regular expression:

string = 'This is a 30-character string.'

if string =~ /([0-9]+)-character/ && $1.to_1i == string.length
"Yes, there are #$1 characters in that string."

end

=> "Yes, there are 30 characters in that string."

You can also use Regexp#match:

match = Regexp.compile('([0-9]+)-character').match(string)
if match && match[1].to_1i == string.length
"Yes, there are #{match[1]} characters in that string."

2.16 Matching Strings with Regular Expressions | 59

end
=> "Yes, there are 30 characters in that string."

You can check a string against a series of regular expressions with a case statement:

string = "123"

case string

when /*[a-zA-Z]+$/
"Letters"

when /7[0-9]+$/
"Numbers"

else
"Mixed"

end

=> "Numbers"

Discussion

Regular expressions are a cryptic but powerful minilanguage for string matching and
substring extraction. They've been around for a long time in Unix utilities like sed,
but Perl was the first general-purpose programming language to include them. Now
almost all modern languages have support for Perl-style regular expression.

Ruby provides several ways of initializing regular expressions. The following are all
equivalent and create equivalent Regexp objects:

/something/
Regexp.new("something")
Regexp.compile("something")
%r{something}

The following modifiers are also of note:

Regexp: : IGNORE 1 Makes matches case-insensitive.
CASE

Regexp::MULTILINE m Normally, a regexp matches against a single line of a string. This will cause a regexp to treat
line breaks like any other character.

Regexp::EXTENDED x This modifier lets you space out your regular expressions with whitespace and comments,
making them more legible.

Here’s how to use these modifiers to create regular expressions:

/something/mix
Regexp.new('something',

Regexp: :EXTENDED + Regexp::IGNORECASE + Regexp::MULTILINE)
%r{something}mix

60 | Chapter2:Strings

Here’s how the modifiers work:
case_1insensitive = /mangy/i

case_insensitive =~ "I'm mangy!" # =>4
case_insensitive =~ "Mangy Jones, at your service." # => 0

multiline = /a.b/m

multiline =~ "banana\nbanana" #=>5
/a.b/ =~ "banana\nbanana" # => nil
But note:
/a\nb/ =~ "banana\nbanana" #=>5
extended = %r{ \ was # Match " was"

\s # Match one whitespace character

a # Match "a" }Ixi
extended =~ "What was Alfred doing here?" # => 4
extended =~ "My, that was a yummy mango." # => 8
extended =~ "It was\n\n\na fool's errand" # => nil

See Also

o Mastering Regular Expressions by Jeffrey Friedl (O'Reilly) gives a concise intro-
duction to regular expressions, with many real-world examples

o RegExLib.com provides a searchable database of regular expressions
o A Ruby-centric regular expression tutorial
e ri Regexp

o Recipe 2.17, “Replacing Multiple Patterns in a Single Pass”

2.17 Replacing Multiple Patterns in a Single Pass

Problem

You want to perform multiple, simultaneous search-and-replace operations on a
string.

Solution

Use the Regexp.union method to aggregate the regular expressions you want to
match into one big regular expression that matches any of them. Pass the big regular
expression into String#gsub, along with a code block that takes a MatchData object.
You can detect which of your search terms actually triggered the regexp match, and
choose the appropriate replacement term:

class String
def mgsub(key_value_pairs=[].freeze)

2.17 Replacing Multiple Patternsin aSingle Pass | 61

http://shop.oreilly.com/product/9780596528126.do
http://regexlib.com/default.aspx
http://www.regular-expressions.info/ruby.html

regexp_fragments = key_value_pairs.collect { |k,v| k }
gsub(Regexp.union(*regexp_fragments)) do |match|
key_value_pairs.detect{|k,v| k =~ match}[1]
end
end
end

Here’s a simple example:

"GO HOME!".mgsub([[/.*GO/i, 'Home'], [/home/i, 'is where the heart is']])

=> "Home is where the heart is!"
This example replaces all letters with hash characters, and all hash characters with the
letter P:

"Here is number #123".mgsub([[/[a-z]/1, '#'], [/#/, 'P'1])
o=> HHHE #E #paand P123"

Discussion

The naive solution is to simply string together multiple gsub calls. The following
examples, copied from the Solution, show why this is often a bad idea:

"GO HOME!".gsub(/.*GO/1, 'Home').gsub(/home/i, 'is where the heart is')
=> "is where the heart is i1s where the heart is!"

"Here is number #123".gsub(/[a-z]/i1, "#").gsub(/#/, "P")

=> "PPPP PP PPPPPP P123"
In both cases, our replacement strings turned out to match the search term of a later
gsub call. Our replacement strings were themselves subject to search-and-replace. In
the first example, we can fix the conflict by reversing the order of the substitutions.
The second example shows a case where reversing the order won't help. You need to
do all your replacements in a single pass over the string.

The mgsub method will take a hash, but it’s safer to pass in an array of key-value pairs.
This is because elements in a hash come out in no particular order, so you can’t con-
trol the order of substution. Here’s a demonstration of the problem:

"between".mgsub(/ee/ => 'AA', /e/ => 'E') # Bad code
=> "bEtwEEn"

"between".mgsub([[/ee/, 'AA'], [/e/, "E']]) # Good code

=> "bEtwAAn"
In the second example, the first substitution runs first. In the first example, it runs
second (and doesn’t find anything to replace) because of a quirk of Ruby’s Hash
implementation.

If performance is important, you may want to rethink how you implement mgsub.
The more search-and-replace terms you add to the array of key-value pairs, the

62 | Chapter2:Strings

longer it will take, because the detect method performs a set of regular expression
checks for every match found in the string.

See Also

o Recipe 2.15, “Generating a Succession of Strings”

o Confused by the *regexp_fragments syntax in the call to Regexp.union? Take a
look at Recipe 9.11, “Accepting or Passing a Variable Number of Arguments”

2.18 Validating an Email Address

Problem

You need to see whether an email address is valid.

Solution
Here’s a sampling of valid email addresses you might encounter:

test_addresses = [#The following are valid addresses according to RFC822.
'joe@example.com', 'joe.bloggs@mail.example.com',
'joe+ruby-mail@example.com', 'joe(and-mary)@example.museum',
'joe@localhost',

Here are some invalid email addresses you might encounter:
Complete the list with some invalid addresses
'joe', 'joe@', '@example.com',
' joe@example@example.com',

'joe and mary@example.com']

And here are some regular expressions that do an okay job of filtering out bad email
addresses. The first one does very basic checking for ill-formed addresses:

valid = '[~ @]+' # Exclude characters always invalid in email addresses
username_and_machine = /*#{valid}@#{valid}s/

test_addresses.collect { |i| 1 =~ username_and_machine }
=> [0, 0, 0, 0, 0, nil, nil, nil, nil, nil]

The second one prohibits the use of local-network addresses like joe@localhost. Most
applications should prohibit such addresses:

username_and_machine_with_tld = /*#{valid}@#{valid}\.#{valid}s/

test_addresses.collect { |i| 1 =~ username_and_machine_with_tld }
=> [0, 0, 0, 0, nil, nil, nil, nil, nil, nil]

However, the odds are good that you're solving the wrong problem.

2.18 Validating an Email Address | 63

Discussion

Most email address validation is done with naive regular expressions like the ones
just given. Unfortunately, these regular expressions are usually written too strictly,
and reject many email addresses. This is a common source of frustration for people
with unusual email addresses like joe(and-mary)@example.museum, or people taking
advantage of special features of email, as in joe+ruby-mail@example.com. The regular
expressions previously given err on the opposite side: they’ll accept some syntactically
invalid email addresses, but they won't reject valid addresses.

Why not give a simple regular expression that always works? Because there’s no such
thing. The definition of the syntax is anything but simple. Perl hacker Paul Warren
defined a 6,343-character regular expression for Perl’s Mail::RFC822::Address mod-
ule, and even it needs some preprocessing to accept absolutely every allowable email
address. Warren’s regular expression will work unaltered in Ruby, but if you really
want it, you should go online and find it, because it would be foolish to try to type
it in.

Check validity, not correctness

Even given a regular expression or other tool that infallibly separates the RFC822-
compliant email addresses from the others, you can’t check the validity of an email
address just by looking at it; you can only check its syntactic correctness.

It’s easy to mistype your username or domain name, giving out a perfectly valid email
address that belongs to someone else. Its trivial for a malicious user to make up a
valid email address that doesn’'t work at all—I did it earlier with the joe@example.com
nonsense. /@ is a valid email address according to the regexp test, but no one in this
universe uses it. You can’t even compare the top-level domain of an address against a
static list, because new top-level domains are always being added. Syntactic validation
of email addresses is an enormous amount of work that solves only a small portion of
the problem.

The only way to be certain that an email address is valid is to successfully send email
to it. The only way to be certain that an email address is the right one is to send email
to it and get the recipient to respond. You need to weigh this additional work (yours
and the user’s) against the real value of a verified email address.

It used to be that a user’s email address was closely associated with his or her online
identity: most people had only the email address their ISP gave them. Thanks to
today’s free web-based email, that’s no longer true. Email verification no longer works
to prevent duplicate accounts or to stop antisocial behavior online—if it ever did.

This is not to say that it’s never useful to have a user’s working email address, or that
there’s no problem if people mistype their email addresses. To improve the quality of

64 | Chapter2:Strings

the addresses your users enter, without rejecting valid addresses, you can do three
things beyond verifying with the permissive regular expressions given previously:

1. Use a second naive regular expression, more restrictive than the ones given ear-
lier, but don’t prohibit addresses that don’t match. Only use the second regular
expression to advise the user that he or she may have mistyped the email address.
This is not as useful as it seems, because most typos involve changing one letter
for another, rather than introducing nonalphanumerics where they don't belong:

def probably valid?(email)

valid = '[A-Za-z\d.+-]+' #Commonly encountered email address characters
(emaill =~ /#{valid}@#{valid}\.#{valid}/) ==
end

#These give the correct result.

probably_valid? 'joe@example.com' # => true
probably_valid? 'joe+ruby-mail@example.com' # => true
probably_valid? 'joe.bloggs@mail.example.com' # => true
probably_valid? 'joe@examplecom' # => false
probably_valid? 'joe+ruby-mail@example.com' # => true
probably_valid? 'joe@localhost' # => false

This address is valid, but probably valid thinks it's not.
probably_valid? 'joe(and-mary)@example.museum' # => false

This address is valid, but certainly wrong.
probably_valid? 'joe@example.cpm' # => true

2. Extract from the alleged email address the hostname (the example.com of
joe@example.com), and do a DNS lookup to see if that hostname accepts email. A
hostname that has an MX DNS record is set up to receive mail. The following
code will catch most domain name misspellings, but it won’t catch any username
misspellings. It's also not guaranteed to parse the hostname correctly, again
because of the complexity of RFC822:

require 'resolv'
def valid_email_host?(email)
hostname = email[(email =~ /@/)+1..email.length]
valid = true
begin
Resolv::DNS.new.getresource(hostname, Resolv::DNS::Resource::IN::MX)
rescue Resolv::ResolvError
valid = false
end
return valid
end

example.com is a real domain, but it won't accept mail
valid_emaill_host?(' joe@example.com") # => false

2.18 Validating an Email Address | 65

lcgkxjvoem.mil is not a real domain.
valid_email_host?('joe@lcgkxjvoem.mil") # => false

oreilly.com exists and accepts mail,
though there might not be a 'joe' there.
valid_email_host?('joe@oreilly.com") # => true
3. Send email to the address the user input, and ask the user to verify receipt. For
instance, the email might contain a verification URL for the user to click on. This
is the only way to guarantee that the user entered a valid email address that he or
she controls. See Recipes 15.5 and 16.19 for this.

This is overkill much of the time. It requires that you add special workflow to your
application, it significantly raises the barriers to use of your application, and it won’t
always work. Some users have spam filters that will treat your test mail as junk, or
whitelist email systems that reject all email from unknown sources. Unless you really
need a user’s working email address for your application to work, very simple email
validation should suffice.

See Also

o Recipe 15.5, “Sending Mail”
 Recipe 16.19, “Sending Mail with Rails”

o See the amazing colossal regular expression for email addresses at http://bit.ly/
1fc822_validation

2.19 (lassifying Text with a Bayesian Analyzer

Problem

You want to classify chunks of text by example: an email message is either spam or
not spam, a joke is either funny or not funny, and so on.

Solution

Use Lucas Carlson’s Classifier library, available as the classifier gem. It provides a
naive Bayesian classifier, and one that implements Latent Semantic Indexing, a more
advanced technique.

The interface for the naive Bayesian classifier is very straightforward. You create a
Classifier::Bayes object with some classifications, and train it on text chunks
whose classification is known:

66 | Chapter2:Strings

http://bit.ly/rfc822_validation
http://bit.ly/rfc822_validation

gem 'classifier'
require 'classifier'

classifier = Classifier::Bayes.new('Spam', 'Not spam')

classifier.train_spam 'are you in the market for viagra? we sell viagra'
classifier.train_not_spam 'hi there, are we still on for lunch?'
You can then feed the classifier text chunks whose classification is unknown, and have
it guess:
classifier.classify "we sell the cheapest viagra on the market"
=> "Spam"

classifier.classify "lunch sounds great"
=> "Not spam"

Discussion

Bayesian analysis is based on probabilities. When you train the classifier, you are giv-
ing it a set of words and the classifier keeps track of how often the words show up in
each category. In the simple spam filter built in the Solution, the frequency hash looks
like the following @categories variable:

classifier

=> #<Classifier::Bayes:0xb7cec7c8

@categories={:"Not spam"=>

{ :lunch=>1, :for=>1, :there=>1,

2"2"=>1, :still=>1, :","=>1 },

:Spam=>

{ :market=>1, :for=>1, :viagra=>2, :"?"=>1, :sell=>1 }
7

@total_words=12>

These hashes are used to build probability calculations. Note that since we mentioned
the word viagra twice in spam messages, there is a 2 in the Spam frequency hash for
that word. That makes it more spam-like than other words like for (which also shows
up in nonspam) or sell (which shows up only once in spam). The classifier can apply
these probabilities to previously unseen text and guess at a classification for it.

The more text you use to train the classifier, the better it becomes at guessing. If you
can verify the classifier’s guesses (for instance, by asking the user whether a message
really was spam), you should use that information to train the classifier with new data
as it comes in.

To save the state of the classifier for later use, you can use Madeleine persistence
(Recipe 14.3), which writes the state of your classifier to your hard drive.

A few more notes about this type of classifier. A Bayesian classifier supports as many
categories as you want. “Spam” and “Not spam” are the most common, but you are
not limited to two. You can also use the generic train method instead of calling

2.19 Classifying Text with a Bayesian Analyzer | 67

train_[category_name]. Heres a classifier that has three categories and uses the
generic train method:

classifier = Classifier::Bayes.new('Interesting', 'Funny', 'Dramatic')

classifier.train 'Interesting', "Leaving reminds us of what we can part
with and what we can't, then offers us something new to look forward
to, to dream about."

classifier.train 'Funny', "Knock knock. Who's there? Boo boo. Boo boo
who? Don't cry, it is only a joke."

classifier.train 'Dramatic', 'I love you! I hate you! Get out right
now. '

classifier.classify 'what!'

=> "Dramatic"

classifier.classify "who's on first?"

=> "Funny"

classifier.classify 'perchance to dream'
=> "Interesting”

It’s also possible to “untrain” a category if you make a mistake or change your mind
later:

classifier.untrain_funny "boo"
classifier.untrain "Dramatic",

See Also

o Recipe 14.3, “Persisting Objects with Madeleine”

o The README file for the Classifier library has an example of an LSI classifier
o Stuff Classifier is another Bayesian classifier

o http://en.wikipedia.org/wiki/Naive_Bayes_classifier

o http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

68 | Chapter2:Strings

https://github.com/alexandru/stuff-classifier
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

CHAPTER 3
Numbers

Numbers are as fundamental to computing as breath is to human life. Even programs
that have nothing to do with math need to count the items in a data structure, display
average running times, or use numbers as a source of randomness. Ruby makes it
easy to represent numbers, letting you breathe easy and tackle the harder problems of
programming.

An issue that comes up when youre programming with numbers is that there are sev-
eral different implementations of “number;” optimized for different purposes: 32bit
integers, floating-point numbers, and so on. Ruby tries to hide these details from you,
but it’s important to know about them because they often manifest as mysteriously
incorrect calculations.

The first distinction is between small numbers and large ones. If you've used other
programming languages, you probably know that you must use different data types to
hold small numbers and large numbers (assuming that the language supports large
numbers at all). Ruby has different classes for small numbers (Fixnum) and large
numbers (Bignum), but you don’t usually have to worry about the difference. When
you type in a number, Ruby sees how big it is and creates an object of the appropriate
class:

1000.class # => Fixnum
100000000000000000000000000000.class # => Bignum
(2%#*30 - 1).class # => Fixnum
(2**100).class # => Bignum

1 See, for instance, Recipe 3.11’s Discussion, where it’s revealed that Matrix#inverse doesn’t work correctly on
a matrix full of integers. This is because Matrix#inverse uses division, and integer division works differently
from floating-point division.

69

When you perform arithmetic, Ruby automatically does any needed conversions. You
don’t have to worry about the difference between small and large numbers:!

small = 1000

big = small ** 50

big.class # => Bignum
smaller = big / big #=>1
smaller.class # => Fixnum

The other major distinction is between whole numbers (integers) and fractional
numbers. Like all modern programming languages, Ruby implements the IEEE
floating-point standard for representing fractional numbers. If you type a number
that includes a decimal point, Ruby creates a Float object instead of a Fixnum or
Bignum:

0.01.class # => Float
1.0.class # => Float
10000000000.00000000001.class # => Float

But floating-point numbers are imprecise (see Recipe 3.2), and they have their own
size limits, so Ruby also provides a class that can represent any number with a finite
decimal expansion (Recipe 3.3). There’s also a class for numbers like two-thirds,
which have an infinite decimal expansion (Recipe 3.4), and a class for complex or
“irrational” numbers (Recipe 3.12).

Every kind of number in Ruby has its own class (Integer, Bignum, Complex, and so
on), which inherits from the Numeric class. All these classes implement the basic
arithmetic operations, and in most cases you can mix and match numbers of different
types (see Recipe 9.9 for more on how this works). You can reopen these classes to
add new capabilities to numbers (see, for instance, Recipe 3.17), but you can’t usefully
subclass them.

Ruby provides simple ways of generating random numbers (Recipe 3.5) and sequen-
ces of numbers (Recipe 3.15). This chapter also covers some simple mathematical
algorithms (Recipe 3.7 and Recipe 3.11) and statistics (Recipe 3.8).

3.1 Parsing a Number from a String

Problem

Given a string that contains some representation of a number, you want to get the
corresponding integer or floating-point value.

1 Python also has this feature.

70 | Chapter3: Numbers

Solution

Use String#to_1i to turn a string into an integer. Use String#to_f to turn a string
into a floating-point number:

400" .to_1 # => 400

'3.14" .to_f # => 3.14

‘1.602e—19‘.t0_f # => 1.602e-19
Discussion

Unlike Per]l and PHP, Ruby does not automatically make a number out of a string that
contains a number. You must explicitly call a conversion method that tells Ruby how
you want the string to be converted.

Along with to_i and to_f, there are other ways to convert strings into numbers. If
you have a string that represents a hex or octal string, you can call String#hex or
String#oct to get the decimal equivalent. This is the same as passing the base of the
number into to_1i:

'405" .oct # => 261
405" .to_1(8) # => 261
'405"' .hex # => 1029
405" .to_1(16) # => 1029
'fed'.hex # => 4077
"fed'.to_i(16) # => 4077

If to_i, to_f, hex, or oct find a character that can’t be part of the kind of number
they’re looking for, they stop processing the string at that character and return the
number so far. If the string’s first character is unusable, the result is zero:

= 13
=> 1001
= @
=> 60.5
=> 0.0

"13: a baker's dozen".to_1i

'1001 Nights'.to_1

'The 1000 Nights and a Night'.to_1i

'60.50 Misc. Agricultural Equipment'.to_f
'$60.50" . to_f

TR O R ORH WK W™ R W™ W
1
\

'Feed the monster!'.hex 65261
'I fed the monster at Canoga Park Waterslides'.hex # => 0@
'OxA2Z" .hex => 162
'-10".oct => -8
'-109'.oct = -8
'3.14" .to_1 => 3

Note especially that last example: the decimal point is just one more character that
stops processing of a string representing an integer.

If you want an exception when a string can’t be completely parsed as a number, use
Integer() or Float():

Integer('1001') # => 1001
Integer('1001 nights')

3.1ParsingaNumberfromaString | 71

ArgumentError: invalid value for Integer: "1001 nights"

Float('99.44") # => 99.44
Float('99.44% pure')
ArgumentError: invalid value for Float(): "99.44% pure"

To extract a number from within a larger string, use a regular expression. The Number
Parser class contains regular expressions for extracting floating-point strings, as well
as decimal, octal, and hexadecimal numbers. Its extract_numbers method uses
String#scan to find all the numbers of a certain type in a string:

class NumberParser
@@number_regexps = {

ito_i => /([+-]2[0-9]+)/,
tto_f => /([+-12([0-9]*\.)?2[0-9]+(e[+-]?2[0-9]+)?)/1,
roct => /([+-]?[0-7]+)/,
chex => /\b([+-]12(0x)?[0-9a-f]+)\b/1
#The |b characters prevent every letter A-F in a word from being
#considered a hexadecimal number.

}

def NumberParser.re(parsing_method=:to_ 1)
re = @@number_regexps[parsing_method]
raise ArgumentError, "No regexp for #{parsing_method.inspect}!" unless re
return re

end

def extract(s, parsing_method=:to 1)
numbers = []
s.scan(NumberParser.re(parsing_method)) do |match|
numbers << match[0].send(parsing_method)

end
numbers

end

end

Here it is in action:

p = NumberParser.new

pw = "Today's numbers are 104 and 391."

NumberParser.re(:to_i).match(pw).captures # => ["104"]
p.extract(pw, :to_i) # => [104, 391]
p.extract('The 1000 nights and a night') # => [1000]
p.extract('$60.50"', :to f) # => [60.5]
p.extract('I fed the monster at Canoga Park Waterslides', :hex)

=> [4077]

p.extract('In octal, fifteen is 017.', :oct) # => [15]
p.extract('From 0 to 10e60 in -2.4 seconds', :to_f)

=>[0.0, 1.0e+61, -2.4]

72 | Chapter3: Numbers

p.extract('From 0 to 10e60 in -2.4 seconds')
=> [0, 10, 60, -2, 4]

If you want to extract more than one kind of number from a string, the most reliable
strategy is to stop using regular expressions and start using the scanf module, a free
third-party module that provides a parser similar to C’s scanf function:

require 'scanf'
s = '0x10 4.44 10'.scanf('%x %f %d') # => [16, 4.44, 10]

See Also

« Recipe 3.6, “Converting Between Numeric Bases”
o Recipe 9.9, “Converting and Coercing Objects to Different Types”

o The scanf module

3.2 Comparing Floating-Point Numbers

Problem

Floating-point numbers are not suitable for exact comparison. Often, two numbers
that should be equal are actually slightly different. The Ruby interpreter can make
seemingly nonsensical assertions when floating-point numbers are involved:

1.8 + 0.1 # => 1.9000000000000001
1.8+ 0.1 ==1.9 # => false
1.8 + 0.1 > 1.9 # => true

You want to do comparison operations approximately, so that floating-point numbers
infinitesimally close together can be treated equally.

Solution

You can avoid this problem altogether by using BigDecimal numbers instead of floats
(see Recipe 3.3). BigDecimal numbers are completely precise, and work as well as
floats for representing numbers that are relatively small and have few decimal places:
everyday numbers like the prices of fruits. But math on BigDecimal numbers is much
slower than math on floats. Databases have native support for floating-point num-
bers, but not for BigDecimals. And floating-point numbers are simpler to create
(simply type 10.2 in an interactive Ruby shell to get a Float object). BigDecimals
can’t totally replace floats, and when you use floats it would be nice not to have to
worry about tiny differences between numbers when doing comparisons.

But how tiny is “tiny”? How large can the difference be between two numbers before
they should stop being considered equal? As numbers get larger, so does the range of

3.2 Comparing Floating-Point Numbers | 73

http://bit.ly/scanf_module

floating-point values that can reasonably be expected to model that number; 1.1 is
probably not “approximately equal” to 1.2, but 10*° + 0.1 is probably “approximately
equal” to 10 + 0.2.

The best solution is probably to compare the relative magnitudes of large numbers,
and the absolute magnitudes of small numbers. The following code accepts both
thresholds: a relative threshold and an absolute threshold. Both default to
Float::EPSILON, the smallest possible difference between two Float objects. Two
floats are considered approximately equal if they are within absolute_epsilon of
each other, or if the difference between them is relative_epsilon times the magni-
tude of the larger one:

class Float
def approx(other, relative_epsilon=Float::EPSILON, epsilon=Float::EPSILON)
difference = other - self
return true if difference.abs <= epsilon
relative_error = (difference / (self > other ? self : other)).abs
return relative_error <= relative_epsilon

end
end
100.2.approx(100.1 + 0.1) # => true
10e10.approx(10el0+le-5) # => true
100.0.approx(100+1e-5) # => false
Discussion

Floating-point math is very precise but, due to the underlying storage mechanism for
Float objects, not very accurate. Many real numbers (such as 1.9) can’t be repre-
sented by the floating-point standard. Any attempt to represent such a number will
end up using one of the nearby numbers that does have a floating-point
representation.

You dont normally see the difference between 1.9 and 1.8 + 0.1, because
Float#to_s rounds them both off to 1.9. You can see the difference by using Ker
nel#printf to display the two expressions to many decimal places:

printf("%.55f", 1.9)

1.8999999999999999111821580299874767661094665527343750000

printf("%.55f", 1.8 + 0.1)

1.9000000000000001332267629550187848508358001708984375000
Both numbers straddle 1.9 from opposite ends, unable to accurately represent the
number they should both equal. Note that the difference between the two numbers is
precisely Float: : EPSILON:

Float::EPSILON # => 2.22044604925031e-16
(1.8 + 0.1) - 1.9 # => 2.22044604925031e-16

74 | Chapter3: Numbers

This EPSILON’s worth of inaccuracy is often too small to matter, but it does when
you’re doing comparisons. 1.9+Float: :EPSILON is not equal to 1.9-Float: :EPSILON,
even if (in this case) both are attempts to represent the same number. This is why
most floating-point numbers are compared in relative terms.

The most efficient way to do a relative comparison is to see whether the two numbers
differ by more than a specified error range, using code like this:

class Float
def absolute_approx(other, epsilon=Float::EPSILON)
return (other-self).abs <= epsilon
end
end

(1.8 + 0.1).absolute_approx(1.9) # => true

10e10.absolute_approx(10e10+le-5) # => false
The default value of epsilon works well for numbers close to 0, but for larger num-
bers the default value of epsilon will be too small. Any other value of epsilon you
might specify will work well only within a certain range.

Thus, Float#approx, the recommended solution, compares both absolute and rela-
tive magnitude. As numbers get bigger, so does the allowable margin of error for two
numbers to be considered ‘equal” Its default relative_epsilon allows numbers
between 2 and 3 to differ by twice the value of Float: : EPSILON. Numbers between 3
and 4 can differ by three times the value of Float: : EPSILON, and so on.

A very small value of relative_epsilon is good for mathematical operations, but if
your data comes from a real-world source like a scientific instrument, you can
increase it. For instance, a Ruby script may track changes in temperature read from a
thermometer that’s only 99.9% accurate. In this case, relative_epsilon can be set to
0.001, and everything beyond that point discarded as noise:

98.6.approx(98.66) # => false
98.6.approx(98.66, 0.001) # => true
See Also

o Recipe 3.3, “Representing Numbers to Arbitrary Precision,” has more informa-
tion on BigDecimal numbers

o If you need to represent a fraction with an infinite decimal expansion, use a
Rational number (see Recipe 3.4, “Representing Rational Numbers”)

o “Comparing floating-point numbers” by Bruce Dawson has an excellent (albeit
C-centric) overview of the tradeoffs involved in different ways of doing floating-
point comparisons

3.2 Comparing Floating-Point Numbers | 75

http://bit.ly/comparing_floating_pt_nums

3.3 Representing Numbers to Arbitrary Precision

Problem

Youre doing high-precision arithmetic, and floating-point numbers are not precise
enough.

Solution

A BigDecimal number can represent a real number to an arbitrary number of deci-
mal places:

require 'bigdecimal'

BigDecimal("10").to_s # => "0.1E2"
BigDecimal("1000").to_s # => "0.1E4"
BigDecimal("1000").to_s("F") # => "1000.0"
BigDecimal("0.123456789").to_s # => "0.123456789E0"

Compare how Float and BigDecimal store the same high-precision number:

nm = "0.123456789012345678901234567890123456789"
nm.to_f # => 0.123456789012346
BigDecimal(nm).to_s

=> "0.123456789012345678901234567890123456789E0 "

Discussion

BigDecimal numbers store numbers in scientific notation format. A BigDecimal con-
sists of a sign (positive or negative), an arbitrarily large decimal fraction, and an arbi-
trarily large exponent. This is similar to the way floating-point numbers are stored,
but a double-precision floating-point implementation like Ruby’s cannot represent an
exponent less than Float: :MIN_EXP (-1,021) or greater than Float: :MAX_EXP (1,024).
Float objects also can’t represent numbers at a greater precision than Float::EPSI
LON, or about 2.2*¥107*¢.

You can use BigDecimal#split to split a BigDecimal object into the parts of its
scientific-notation representation. It returns an array of four numbers: the sign (1 for
positive numbers, -1 for negative numbers), the fraction (as a string), the base of the
exponent (which is always 10), and the exponent itself:

BigDecimal("105000").split
=> [1, "105", 10, 6]
That is, 0.105%(10%*6)

BigDecimal("-0.005").split
#=>[-1, "5", 10, -2]
That is, -1 * (0.5%(10%*-2))

76 | Chapter3: Numbers

A good way to test different precision settings is to create an infinitely repeating deci-
mal like 2/3, and see how much of it gets stored. By default, BigDecimals give 16 dig-
its of precision, roughly comparable to what a Float can give:

(BigDecimal("2") / BigDecimal("3")).to_s
=> "0.666666666666666667EQ"

2.0/3
=> 0.6666666666666666

Not all of a number’s significant digits may be used. For instance, Ruby considers Big

Decimal("2") and BigDecimal("2.000000000000") to be equal, even though the lat-
ter has many more significant digits.

You can inspect the precision of a number with BigDecimal#precs. This method
returns an array of two elements: the number of significant digits actually being used,
and the toal number of significant digits. Again, since significant digits are allocated
in blocks of nine, both of these numbers will be multiples of nine:

BigDecimal("2").precs # =>[9, 18]
BigDecimal("2.000000000000").precs # =>[9, 27]
BigDecimal("2.000000000001").precs # => [27, 27]

If you use the standard arithmetic operators on BigDecimals, the result is a BigDeci
mal accurate to the largest possible number of digits. Dividing or multiplying one Big
Decimal by another yields a BigDecimal with more digits of precision than either of
its parents, just as would happen on a pocket calculator:

(a = BigDecimal("2.01")).precs # => [18, 18]
(b = BigDecimal("3.01")).precs # => 18, 18]

(product = a * b).to_s("F") # => "6.0501"
product.precs # => [18, 45]

To specify the number of significant digits that should be retained in an arithmetic
operation, you can use the methods add, sub, mul, and div instead of the arithmetic
operators:

two_thirds = (BigDecimal("2", 13) / 3)

two_thirds.to_s # => "0.666666666666666667EQ"
(two_thirds + 1).to_s # => "0.1666666666666666667E1"
two_thirds.add(1, 1).to_s # => "0.2E1"

two_thirds.add(1, 4).to_s # => "0.1667E1"

Either way, BigDecimal math is significantly slower than floating-point math. Not
only are BigDecimals allowed to have more significant digits than Floats, but BigDec
imals are stored as an array of decimal digits, while Floats are stored in a binary
encoding and manipulated with binary arithmetic.

3.3 Representing Numbers to Arbitrary Precision | 77

The BigMath module in the Ruby standard library defines methods for performing
arbitrary-precision mathematical operations on BigDecimal objects. It defines power-
related methods like sqrt, log, and exp, and trigonometric methods like sin, cos,
and atan.

All of these methods take as an argument a number prec indicating how many digits
of precision to retain. They may return a BigDecimal with more than prec significant
digits, but only prec of those digits are guaranteed to be accurate:

require 'bigdecimal/math'

include BigMath

two = BigDecimal("2")

BigMath::sqrt(two, 10).to_s("F") # => "1.414213562373095048666666667"
That code gives 29 decimal places, but only 10 are guaranteed accurate (because we
passed in an n of 10), and only 24 are actually accurate. The square root of 2 to 28
decimal places is actually 1.4142135623730950488016887242. We can get rid of the
inaccurate digits with BigDecimal#round:

BigMath::sqrt(two, 10).round(10).to_s("F") # => "1.4142135624"
We can also get a more precise number by increasing n:

BigMath::sqrt(two, 28).round(28).to_s("F")
=> "1.4142135623730950488016887242"

See Also

o Fixed in Ruby 2.1, but in Ruby 1.8, BigMath: : log was very slow for BigDecimals
larger than about 10; see Recipe 3.7, “Taking Logarithms,” for a much faster
implementation

o See Recipe 3.4, “Representing Rational Numbers”, if you need to exactly repre-
sent a rational number with an infinite decimal expansion, like 2/3

o The BigDecimal library reference is extremely useful; if you look at the generated
RDoc for the Ruby standard library, BigDecimal looks almost undocumented,
but it actually has a comprehensive reference file (in English and Japanese): it’s
just not in RDoc format, so it doesn't get picked up; this document is available in
the Ruby source package, or do a web search for “BigDecimal: An extension
library for Ruby”

78 | Chapter3: Numbers

3.4 Representing Rational Numbers

Problem

You want to precisely represent a rational number like 2/3, one that has no finite deci-
mal expansion.

Solution

Use a Rational object; it represents a rational number as an integer numerator and
denominator:

float = 2.0/3.0 # => 0.6666666666666666
float * 100 # => 66.66666666666666
float * 100 / 42 # => 1.587301587301587

require 'rational'

rational = Rational(2, 3) #=>(2/3)
rational.to_f # => 0.6666666666666666
rational * 100 # => (200/3)

rational * 100 / 42 # => (100/63)

Discussion

Rational objects can store numbers that can't be represented in any other form, and
arithmetic on Rational objects is completely precise.

Since the numerator and denominator of a Rational can be Bignums, a Rational
object can also represent numbers larger and smaller than those you can represent in
floating-point. But math on BigDecimal objects is faster than on Rationals. BigDect
mal objects are also usually easier to work with than Rationals, because most of us
think of numbers in terms of their decimal expansions.

You should use Rational objects only when you need to represent rational numbers
with perfect accuracy. When you do, be sure to use only Rationals, Fixnums, and
Bignums in your calculations. Don’t use any BigDecimals or floating-point numbers:
arithmetic operations between a Rational and those types will return floating-point
numbers, and you’ll have lost precision forever:

10 + Rational(2,3) # => (32/3)

require 'bigdecimal'

BigDecimal('10') + Rational(2,3)

=> #<BigDecimal:7fb92aeaf520, '0.1066666666 6E2',18(27)>
The methods in Ruby’s Math module implement operations like square root, which
usually give irrational results. When you pass a Rational number into one of the
methods in the Math module, you get a floating-point number back:

3.4 Representing Rational Numbers | 79

Math::sqrt(Rational(2,3)) # => 0.816496580927726

Math::sqrt(Rational(25,1)) #=>5.0

Math::log10(Rational(100, 1)) #=> 2.0
The mathn library adds miscellaneous functionality to Ruby’s math functions. Among
other things, it modifies the Math: :sqrt method so that if you pass in a square num-
ber, you get a Fixnum back instead of a Float. This preserves precision whenever
possible:

require 'mathn’

Math::sqrt(Rational(2,3)) # => 0.8164965809277261
Math::sqrt(Rational(25,1)) #=>5

Math::sqrt(25) #=>5
Math::sqrt(25.0) # => 5.0

See Also
o The rfloat third-party library lets you use a Float-like interface thats actually
backed by Rational

o RCR 320 proposes better interoperability between Rationals and floating-point
numbers, including a Rational#approximate method that will let you convert
the floating-point number 0.1 into Rational(1l, 10)

3.5 Generating Random Numbers

Problem

You want to generate pseudorandom numbers, select items from a data structure at
random, or repeatedly generate the same “random” numbers for testing purposes.

Solution

Use the Kernel#rand function with no arguments to select a psuedorandom floating-
point number from a uniform distribution between 0 and I:

rand # => 0.517297883846589
rand # => 0.946962603814814

Pass in a single integer argument # to Kernel#rand, and it returns an integer between
0 and n-1:

rand(5) #=>0
rand(5) # =>4
rand(5) # => 3
rand(1000) # => 39

80 | Chapter3: Numbers

http://bit.ly/rfloat_lib
http://bit.ly/rcr_320

Discussion

You can use the single-argument form of Kernel#rand to build many common tasks
based on randomness. For instance, this code selects a random item from an array:

a=['iteml', 'item2', 'item3']
a[rand(a.size)] # => "item3"

To select a random key or value from a hash, turn the keys or values into an array and
select one at random:

m = { keyl: 'valuel',
key2: 'value2',
key3: 'value3' }
values = m.values
values[rand(values.size)] # => "valuel"

This code generates pronounceable nonsense words:

def random_word
letters = { ?v => 'aelou',
?c => 'bcdfghjklmnprstvwyz' }
word = "'
'cvevevce'.each_byte do |x|
source = letters[x.chr]

word << source[rand(source.length)].chr

end

return word
end

random_word # => "josuyip"
random_word # => "haramic"”

The Ruby interpreter initializes its random number generator on startup, using a seed
derived from the current time and the process number. To reliably generate the same
random numbers over and over again, you can set the random number seed man-
ually by calling the Kernel#srand function with the integer argument of your choice.
This is useful when you’re writing automated tests of “random” functionality:

#Some random numbers based on process number and current time

rand(1000) # => 187
rand(1000) # => 551
rand(1000) # => 911

#Start the seed with the number 1

srand 1

rand(1000) # => 37
rand(1000) # => 235
rand(1000) # => 908

#Reset the seed to its previous state
srand 1
rand(1000) # => 37

3.5 Generating Random Numbers | 81

rand(1000) # => 235
rand(1000) # => 908

See Also

o Recipe 5.10, “Shuffling an Array”
 Recipe 6.11, “Choosing Randomly from a Weighted List”
o Recipe 7.9, “Picking a Random Line from a File”

o The Facets library implements many methods for making random selections
from data structures: Array#pick, Array#rand_subset, Hash#rand_pair, and so
on; it also defines String.random for generating random strings

o Christian Neukirchens rand.rb also implements many random selection
methods

3.6 Converting Between Numeric Bases

Problem

You want to convert numbers from one base to another.

Solution

You can convert specific binary, octal, or hexadecimal numbers to decimal by repre-
senting them with the @b, @o, or 0x prefixes:

0b100 # =>4
00100 # => 64
0x100 # => 256

You can also convert between decimal numbers and string representations of those
numbers in any base from 2 to 36. Simply pass the base into String#to_i or
Integer#to_s.

Here are some conversions between string representations of numbers in various
bases, and the corresponding decimal numbers:

"1045" . to_1(10) # => 1045
"-1001001".to_1(2) # => -73
"abc".to_1(16) # => 2748
"abc".to_1(20) # => 4232
"number".to_1(36) # => 1442151747
"zz1z".to_1(36) # => 1678391
"abcdef".to_1(16) # => 11259375
"AbCdEf".to_1(16) # => 11259375

82 | Chapter3: Numbers

http://chneukirchen.org/blog/static/projects/rand.html

Here are some reverse conversions of decimal numbers to the strings that represent
those numbers in various bases:

42.to_s(10) # => "42"
-100.to_s(2) # => "-1100100"
255.to_s(16) # => "ff"
1442151747 .to_s(36) # => "number"
Some invalid conversions:
"6".to_1(2) #=>0
"0".to_1(1) # ArgumentError: illegal radix 1
40.to_s(37) # ArgumentError: illegal radix 37

Discussion

String#to_1i can parse and Integer#to_s can create a string representation in every
common integer base: from binary (the familiar base 2, which uses only the digits 0
and 1) to hexatridecimal (base 36). Hexatridecimal uses the digits 0-9 and the letters
a-z; it’s sometimes used to generate alphanumeric mneumonics for long numbers.

The only commonly used counting systems with bases higher than 36 are the variants
of base-64 encoding used in applications like MIME mail attachments. These usually
encode strings, not numbers; to encode a string in MIME-style base-64, use the
base64 library.

See Also

o Recipe 13.5, “Adding Graphical Context with Sparklines,” and Recipe 15.5, “Send-
ing Mail,” show how to use the base64 library

3.7 Taking Logarithms

Problem

You want to take the logarithm of a number, possibly a huge one.

Solution

Math.log calculates the natural log of a number: that is, the log base e:
Math.log(1) = 0.0
Math.log(Math::E) => 1.0

> 2.302585092994046

Math.log(10) =
=> 24.99999999999999

Math::E ** Math.log(25)

Math.log10 calculates the log base 10 of a number:

3.7 Taking Logarithms | 83

Math.log10(1) # => 0.0
Math.log10(10) #=>1.0
Math.log10(10.1) # => 1.00432137378264
Math.log10(1000) # => 3.0
10 ** Math.log10(25) # => 25.0

To calculate a logarithm in some other base, use the fact that, for any bases b, and b,,
logb,(x) = logb,(x) / logb,(k).
module Math
def Math.logb(num, base)
Tlog(num) / log(base)

end
end

Discussion

A logarithm function inverts an exponentiation function. The log base k of x, or
logk(*), is the number that gives x when raised to the k power. That is, Math.
10g10(1000)==3.0 because 10 cubed is 1000.Math.log(Math: :E)==1 because e to the
first power is e.

The logarithm functions for all numeric bases are related (you can get from one base
to another by dividing by a constant factor), but theyre used for different purposes.

Scientific applications often use the natural log: this is the fastest log implementation
in Ruby. The log base 10 is often used to visualize datasets that span many orders of
magnitude, such as the pH scale for acidity and the Richter scale for earthquake
intensity. Analyses of algorithms often use the log base 2, or binary logarithm.

If you intend to do a lot of algorithms in a base that Ruby doesn’t support natively,
you can speed up the calculation by precalculating the dividend:

dividend = Math.log(2)

(1..6).collect { |x| Math.log(x) / dividend }

#=>[0.0, 1.0, 1.5849625007211563, 2.0, 2.321928094887362, 2.584962500721156]
The logarithm functions in Math will only accept integers or floating-point numbers,
not BigDecimal or Bignum objects. This is inconvenient since logarithms are often
used to make extremely large numbers manageable. The BigMath module has a func-
tion to take the natural logarithm of a BigDecimal number, but in Ruby 1.8 it is very
slow.

In Ruby 2.1 this has been fixed, but in Ruby 1.8, here’s a fast drop-in replacement for
BigMath: :log that exploits the logarithmic identity log(x*y)==1log(x) +log(y). It
decomposes a BigDecimal into three much smaller numbers, and operates on those
numbers. This avoids the cases that give BigMath: : log such poor performance:

require 'bigdecimal’
require 'bigdecimal/math'

84 | (Chapter3: Numbers

require 'bigdecimal/util'

module BigMath
alias :log_slow :log
def log(x, prec)

if x <= 0 || prec <= 0

raise ArgumentError, "Zero or negative argument for log"
end
return x if x.infinite? || x.nan?

sign, fraction, power, exponent = x.split
fraction = BigDecimal(".#{fraction}")
power = power.to_s.to_d
log_slow(fraction, prec) + (log_slow(power, prec) * exponent)
end
end

Like BigMath: :log, this implementation returns a BigMath accurate to at least prec
digits, but containing some additional digits that might not be accurate. To avoid giv-
ing the impression that the result is more accurate than it is, you can round the num-
ber to prec digits with BigDecimal#round:

include BigMath

number = BigDecimal("1234.5678")
Math.log(number) # => 7.11847622829779

prec = 50
BigMath.log_slow(number, prec).round(prec).to_s("F")
=> "7.11847622829778629250879253638708184134073214145175"

BigMath.log(number, prec).round(prec).to_s("F")

=> "7.11847622829778629250879253638708184134073214145175"
BigMath.log(number ** 1000, prec).round(prec).to_s("F")

=> "7118.47622829778629250879253638708184134073214145175161"

As before, calculate a log other than the natural log by dividing by Big
Math.log(base) or BigMath.log_slow(base):

huge_number = BigDecimal("1000") ** 1000

base = BigDecimal("10")

BigMath.log(huge_number, 100) / BigMath.log(base, 100)

=> #<BigDecimal:7fb92b0f9a38, '0.3E4"',9(171)>
How does it work? The internal representation of a BigDecimal is as a number in sci-
entific notation: fraction*10**power. Because log(x*y)=log(x) + log(y), the log
of such a number is log(fraction) + log(10**power):

10*power is just 10 multiplied by itself power times (that is, 10*10*10*..*10). Again,
log(x*y)=log(x) + log(y), so 1log(10*10*10*.*10)=1og(10)+log(10) +
1og(10)+..+10g(10),0r log(10)**power. This means we can take the logarithm of a

3.7 Taking Logarithms | 85

huge BigDecimal by taking the logarithm of its (very small) fractional portion and
the logarithm of 10.

See Also

o Mathematicians used to spend years constructing tables of logarithms for scien-
tific and engineering applications; so if you find yourself doing a boring job, be
glad you don't have to do that

3.8 Finding Mean, Median, and Mode

Problem

You want to find the average of an array of numbers: its mean, median, or mode.

Solution

Usually when people speak of the “average” of a set of numbers they're referring to its
mean, or arithmetic mean. The mean is the sum of the elements divided by the num-
ber of elements:

def mean(array)
array.inject(array.inject(0) { |sum, x| sum += x } / array.size.to_f)

end

mean([1,2,3,4]) #=>2.5
mean([100,100,100,100.1]) # => 100.025
mean([-100, 100]) # => 0.0
mean([3,3,3,3]) # => 3.00

The median is the item x such that half the items in the array are greater than x and
the other half are less than x. Consider a sorted array: if it contains an odd number of
elements, the median is the one in the middle. If the array contains an even number
of elements, the median is defined as the mean of the two middle elements:

def median(array, already_sorted=false)
return nil if array.empty?
array = array.sort unless already_sorted
m_pos = array.size / 2
return array.size % 2 == 1 ? array[m_pos] : mean(array[m_pos-1..m_pos])

end

median([1,2,3,4,5]) # =>3
median([5,3,2,1,4]) # =>3
median([1,2,3,4]) #=>2.5
median([1,1,2,3,4]) # => 2

86 | Chapter3: Numbers

http://bit.ly/log_tables

median([2,3,-100,1007) #=>2.5

median([1, 1, 10, 100, 1000]) # => 10
The mode is the single most popular item in the array. If a list contains no repeated
items, it is not considered to have a mode. If an array contains multiple items at the
maximum frequency, it is “multimodal” Depending on your application, you might
handle each mode separately, or you might just pick one arbitrarily:

def modes(array, find_all=true)
histogram = array.inject(Hash.new(0)) { |h, n| h[n] += 1; h }
modes = nil
histogram.each_pair do |item, times|

modes << item if modes && times == modes[0] and find_all
modes = [times, item] if (!modes && times>1) or (modes && times>modes[0])
end
return modes ? modes[1.modes.size] : modes
end
modes([1,2,3,4]) # => nil
modes([1,1,2,3,4]) #=> [1]
modes([1,1,2,2,3,4]) #=>[1, 2]
modes([1,1,2,2,3,4,4]) #=>[1, 2, 4]
modes([1,1,2,2,3,4,4], false) #=> [1]
modes([1,1,2,2,3,4,4,4,4,4]) # => [4]

Discussion

The mean is the most popular type of average. It’s simple to calculate and to under-
stand. The implementation of mean just given always returns a floating-point number
object. It’s a good general-purpose implementation because it lets you pass in an array
of Fixnums and get a fractional average, instead of one rounded to the nearest integer.
If you want to find the mean of an array of BigDecimal or Rational objects, you
should use an implementation of mean that omits the final to_f call:

def mean_without_float_conversion(array)
array.inject(0) { |x, sum| sum += x } / array.size

end

require 'rational’

numbers = [Rational(2,3), Rational(3,4), Rational(6,7)]

mean(numbers)

=> 0.757936507936508

mean_without_float_conversion(numbers)

=> (191/252)

The median is mainly useful when a small proportion of outliers in the dataset would
make the mean misleading. For instance, government statistics usually show “median
household income” instead of “mean household income” Otherwise, a few super-
wealthy households would make everyone else look much richer than they are. The
following example demonstrates how the mean can be skewed by a few very high or
very low outliers:

3.8 Finding Mean, Median, and Mode | 87

mean([1, 100, 1000007]) # => 33367.0

median([1, 100, 1000007]) # => 100
mean([1, 100, -10000007) # => -333299.666666667
median([1, 100, -1000000]) #=> 1

The mode is the only definition of “average” that can be applied to arrays of arbitrary
objects. Since the mean is calculated using arithmetic, an array can be said to have a
mean only if all of its members are numeric. The median involves only comparisons,
except when the array contains an even number of elements; in that case, calculating
the median requires that you calculate the mean.

If you defined some other way to take the median of an array with an even number of
elements, you could take the median of Arrays of strings:

median(["a", "z", "b", "1", "m", "§", "b"])

PR

median(["a", "b", "c", "d"])

TypeError: String can't be coerced into Fixnum

The standard deviation

A concept related to the mean is the standard deviation, a quantity that measures how
close the dataset as a whole is to the mean. When a mean is distorted by high or low
outliers, the corresponding standard deviation is high. When the numbers in a data-
set cluster closely around the mean, the standard deviation is low. You won’t be fooled
by a misleading mean if you also look at the standard deviation:

def mean_and_standard_deviation(array)
m = mean(array)
variance = array.inject(0) { |variance, x| variance += (x - m) ** 2 }
return m, Math.sqrt(variance/(array.size-1))

end

#ALl the items in the list are close to the mean, so the standard
#deviation is low.

mean_and_standard_deviation([1,2,3,1,1,2,1])

=> [1.57142857142857, 0.786795792469443]

#The outlier increases the mean, but also increases the standard deviation.
mean_and_standard_deviation([1,2,3,1,1,2,1000])

=> [144.285714285714, 377.33526837801]

A good rule of thumb is that two-thirds (about 68 percent) of the items in a dataset
are within one standard deviation of the mean, and almost all (about 95 percent) of
the items are within two standard deviations of the mean.

See Also

+ “Programmers Need to Learn Statistics or I Will Kill Them All” by Zed Shaw

88 | Chapter3: Numbers

http://bit.ly/learn_stats_or

« More Ruby implementations of simple statistical measures

» To do more complex statistical analysis in Ruby, try the Ruby bindings to the
GNU Scientific Library

o The Stats class in the Mongrel web server implements other algorithms for cal-
culating mean and standard deviation, which are faster if you need to repeatedly
calculate the mean of a growing series

3.9 Converting Between Degrees and Radians

Problem

The trigonometry functions in Ruby’s Math library take input in radians (2n radians
in a circle). Most real-world applications measure angles in degrees (360 degrees in a
circle). You want an easy way to do trigonometry with degrees.

Solution

The simplest solution is to define a conversion method in Numeric that will convert a
number of degrees into radians:

class Numeric
def degrees
self * Math::PI / 180
end
end

You can then treat any numeric object as a number of degrees and convert it into the
corresponding number of radians, by calling its degrees method. Trigonometry on
the result will work as youd expect:

=> 1.5707963267948966

=> 0.9999999999999999
6.123233995736766e-17
=> 1.0

=> 0.9999984769132877

90.degrees
Math::tan(45.degrees)
Math::cos(90.degrees)
Math::sin(90.degrees)
Math::sin(89.9.degrees)

HoW oW OW W
I
v

Math::sin(45.degrees) # => 0.7071067811865475
Math::cos(45.degrees) # => 0.7071067811865476
Discussion

I named the conversion method degrees by analogy to the methods like hours
defined by Rails. This makes the code easy to read, but if you look at the actual
numbers, it'’s not obvious why 45.degrees should equal the floating-point number
0.785398163397448.

3.9 Converting Between Degrees and Radians | 89

http://dada.perl.it/shootout/moments.ruby.html
https://github.com/SciRuby/rb-gsl
https://github.com/SciRuby/rb-gsl
http://bit.ly/stats_class

If this troubles you, you could name the method something like
degrees_to_radians.

See Also

 Recipe 9.9, “Converting and Coercing Objects to Different Types”

o The Facets library also has a Units module

3.10 Multiplying Matrices

Problem

You want to turn arrays of arrays of numbers into mathematical matrices, and multi-
ply the matrices together.

Solution

You can create Matrix objects from arrays of arrays, and multiply them together with
the * operator:

require 'mathn'

al = [[1, 1, 0, 1],
[2, 0, 1, 2],
[3, 1, 1, 2]]
ml = Matrix[*al]
=> Matrix[[1, 1, 0, 1], [2, 0, 1, 2], [3, 1, 1, 2]]

a2 = [[1, o],
[3, 11,
[1J 0]’
[2, 2.5]]
m2 = Matrix[*a2]
=> Matrix[[1, 0], [3, 1], [1, 0], [2, 2.5]]

ml * m2
=> Matrix[[6, 3.5], [7, 5.0], [11, 6.0]]

Note the unusual syntax for creating a Matrix object: you pass the rows of the matrix
into the array indexing operator, not into Matrix.new (which is private).

Discussion

Ruby’s Matrix class overloads the arithmetic operators to support all the basic matrix
arithmetic operations, including multiplication, between matrices of compatible

90 | Chapter3: Numbers

https://github.com/rubyworks/facets

dimension. If you perform an arithmetic operation on incompatible matrices, you'll
get an ExceptionForMatrix: :ErrDimensionMismatch.

Multiplying one matrix by another is simple enough, but multiplying a chain of
matrices together can be faster or slower depending on the order in which you do the
multiplications. This follows from the fact that multiplying a matrix with dimensions
K* M, by a matrix with dimensions M * N, requires K* M * N operations and gives a
matrix with dimension K * N. If K is large for some matrix, you can save time by
waiting until the end before doing multiplications involving that matrix.

Consider three matrices A, B, and C, that you want to multiply together. Matrix A has
100 rows and 20 columns. B has 20 rows and 10 columns. C has 10 rows and one
column.

Since matrix multiplication is associative, you'll get the same results whether you
multiply A by B and then the result by C, or multiply B by C and then the result by A.
But multiplying A by B requires 20,000 operations (100 * 20 * 10), and multiplying
(AB) by C requires another 1,000 (100 * 10 * 1). Multiplying B by C only requires 200
operations (20 * 10 * 1), and multiplying the result by A requires 2,000 more (100 *
20 * 1). It's almost 10 times faster to multiply A(BC) instead of the naive order of
(AB)C.

That kind of potential savings justifies doing some up-front work to find the best
order for the multiplication. Here is a method that recursively figures out the most
efficient multiplication order for a list of Matrix objects, and another method that
actually carries out the multiplications. They share an array containing information
about where to divide up the list of matrices—where to place the parentheses, if you
will:
class Matrix
def self.multiply(*matrices)

cache = []

matrices.size.times { cache << [nil] * matrices.size }

best_split(cache, 0, matrices.size-1, *matrices)

multiply_following_cache(cache, 0, matrices.size-1, *matrices)

end

Because the methods that do the actual work pass around recursion arguments
that the end user doesn’t care about, we've created Matrix.multiply, a wrapper
method for the methods that do the real work. These methods are
defined next (Matrix.best_split and Matrix.multiply_following_cache).
Matrix.multiply_following_cache assumes that the optimal way to multiply that
list of Matrix objects has already been found and encoded in a variable cache. It
recursively performs the matrix multiplications in the optimal order, as determined
by the cache:

3.10 Multiplying Matrices | 91

:private
def self.multiply_following_cache(cache, chunk_start, chunk_end, *matrices)
if chunk_end == chunk_start
There's only one matrix in the list; no need to multiply.
return matrices[chunk_start]
elsif chunk_end-chunk_start ==
There are only two matrices in the list; just multiply them together.
lhs, rhs = matrices[chunk_start..chunk_end]
else
There are more than two matrices in the list. Look in the
cache to see where the optimal split is located. Multiply
together all matrices to the left of the split (recursively,
in the optimal order) to get our equation's left-hand
side. Similarly for all matrices to the right of the split, to
get our right-hand side.
split_after = cache[chunk_start][chunk_end][1]
lhs = multiply_following_cache(cache, chunk_start, split_after, *
matrices)
rhs = multiply_following_cache(cache, split_after+1, chunk_end, *
matrices)
end

Begin debug code: this illustrates the order of multiplication,
showing the matrices in terms of their dimensions rather than their
(possibly enormous) contents.

if SDEBUG
lhs_dim = "#{lhs.row_size}x#{lhs.column_size}"
rhs_dim = "#{rhs.row_size}x#{rhs.column_size}"

cost = lhs.row_size * lhs.column_size * rhs.column_size
puts "Multiplying #{lhs_dim} by #{rhs_dim}: cost #{cost}"
end

Do a matrix multiplication of the two matrices, whether they are
the only two matrices in the list or whether they were obtained
through two recursive calls.
return lhs * rhs

end

Finally, here’s the method that actually figures out the best way of splitting up the
multiplcations. It builds the cache used by the multiply_following_cache method
previously defined. It also uses the cache as it builds it, so that it doesn’t solve the
same subproblems over and over again:

def self.best_split(cache, chunk_start, chunk_end, *matrices)
if chunk_end == chunk_start
cache[chunk_start][chunk_end] = [0, nil]
end
return cache[chunk_start][chunk_end] if cache[chunk_start][chunk_end]

#Try splitting the chunk at each possible location and find the
#minimum cost of doing the split there. Then pick the smallest of
#the minimum costs: that's where the split should actually happen.

92 | Chapter3: Numbers

minimum_costs = []

chunk_start.upto(chunk_end-1) do |split_after|
lhs_cost = best_split(cache, chunk_start, split_after, *matrices)[0]
rhs_cost = best_split(cache, split_after+1, chunk_end, *matrices)[0]

lhs_rows = matrices[chunk_start].row_size
rhs_rows = matrices[split_after+1].row_size
rhs_cols = matrices[chunk_end].column_size
merge_cost = lhs_rows * rhs_rows * rhs_cols
cost = lhs_cost + rhs_cost + merge_cost
minimum_costs << cost
end
minimum = minimum_costs.min
minimum_index = chunk_start + minimum_costs.index(minimum)
return cache[chunk_start][chunk_end] = [minimum, minimum_1index]
end
end

A simple test confirms the example set of matrices spelled out earlier. Remember that
we had a 100 * 20 matrix (A), a 20 * 10 matrix (B), and a 20 * 1 matrix (C). Our
method should be able to figure out that it’s faster to multiply A(BC) than the naive
multiplication (AB)C. Since we don’t care about the contents of the matrices, just the
dimensions, we'll first define some helper methods that make it easy to generate
matrices with specific dimensions but random contents:

class Matrix
Creates a randomly populated matrix with the given dimensions.
def self.with_dimensions(rows, cols)
a =[]
rows.times { a << []; cols.times { a[-1] << rand(10) } }
return Matrix[*a]
end

Creates an array of
matrices that can be multiplied together
def self.multipliable_chain(*rows)
matrices = []
0.upto(rows.size-2) do |i|
matrices << Matrix.with_dimensions(rows[i], rows[i+1])
end
return matrices
end
end

After all that, the test is kind of anticlimactic:

Create an array of matrices 100x20, 20x10, 10x1.
chain = Matrix.multipliable_chain(100, 20, 10, 1)

Multiply those matrices two different ways, giving the same result.
Matrix.multiply(*chain) == (chain[0] * chain[1] * chain[2])
Multiplying 20x10 by 10x1: cost 200

3.10 Multiplying Matrices | 93

Multiplying 100x20 by 20x1: cost 2000
=> true

We can use the Benchmark library to verify that matrix multiplication goes much
faster when we do the multiplications in the right order:

We'll generate the dimensions and contents of the matrices randomly,
so no one can accuse us of cheating.

dimensions = []

10.times { dimensions << rand(90)+10 }

chain = Matrix.multipliable_chain(*dimensions)

require 'benchmark'
result_1 = nil
result_2 = nil
Benchmark.bm(11) do |b|
b.report("Unoptimized") do
result_1 = chain[0]
chain[1..chain.size].each { |c| result_1 *= c }

end
b.report("Optimized") { result_2 = Matrix.multiply(*chain) }
end
user system total real

Unoptimized 0.230000 0.000000 0.230000 (0.227507)
Optimized 0.090000 0.000000 0.090000 (0.085654)

Both multiplications give the same result.
result_1 == result_2 # => true

See Also
o Recipe 3.11, “Solving a System of Linear Equations” uses matrices to solve linear
equations

o For more on benchmarking, see Recipe 19.13, “Benchmarking Competing Solu-
tions”

3.11 Solving a System of Linear Equations

Problem

You have a number of linear equations (that is, equations that look like “2x + 10y + 8z
= 547), and you want to figure out the solution: the values of x, y, and z. You have as
many equations as you have variables, so you can be certain of a unique solution.

94 | Chapter3: Numbers

Solution

Create two Matrix objects. The first Matrix should contain the coefficients of your
equations (the 2, 10, and 8 of “2x + 10y + 8z = 54”), and the second should contain
the constant results (the 54 of the same equation). The numbers in both matrices
should be represented as floating-point numbers, rational numbers, or BigDecimal
objects: anything other than plain Ruby integers.

Then invert the coefficient matrix with Matrix#inverse, and multiply the result by
the matrix full of constants. The result will be a third Matrix containing the solutions
to your equations.

For instance, consider these three linear equations in three variables:

2x + 10y + 8z = 54
7y + 4z = 30
5x + 5y + 5z = 35

To solve these equations, create the two matrices:

require 'matrix’

require 'rational'

coefficients = [[2, 10, 8], [0, 7, 4], [5, 5, 5]].map do |row|
row.map { |x| Rattonal(x) }

end

coefficients = Matrix[*coefficients]

=> Matrix[[2, 10, 8], [0, 7, 4], [5, 5, 5]]

constants = Matrix[[Rational(54)], [Rational(30)], [Rational(35)]]

Take the inverse of the coefficient matrix, and multiply it by the results matrix. The
result will be a matrix containing the values for your variables:

solutions = coefficients.inverse * constants

=> Matrix[[1], [2], [4]]

This means that, in terms of the original equations, x =1, y=2,and z = 4.

Discussion

This may seem like magic, but it’s analagous to how you might use algebra to solve a

single equation in a single variable. Such an equation looks something like Ax = B: for
instance, 6x = 18. To solve for x, you divide both sides by the coefficient: %x = %.
The sixes on the left side of the equation cancel out, and you can show that x is 18/6,

or 3.

In that case there’s only one coefficient and one constant. With n equations in n vari-
ables, you have n? coefficients and n constants, but by packing them into matrices you
can solve the problem in the same way.

3.11 Solving a System of Linear Equations | 95

Here’s a side-by-side comparision of the set of equations from the Solution, and the
corresponding matrices created in order to solve the system of equations:
2x + 10y + 8z =54 | [2
X + 7y + 4z = 31 | [1
5X + 5y + 52=35 | [5

10 8] [x] [54]

7 4] [yl = [31]

5 5] [z] [35]

If you think of each matrix as a single value, this looks exactly like an equation in a
single variable. It's Ax = B, only this time A, x, and B are matrices. Again you can
solve the problem by dividing both sides by A: x = B/A. This time, you’ll use matrix
division instead of scalar division, and your result will be a matrix of solutions
instead of a single solution.

For numbers, dividing B by A is equivalent to multiplying B by the inverse of A. For
instance, 9/3 equals 9 * 1/3. The same is true of matrices. To divide a matrix B by
another matrix A, you multiply B by the inverse of A.

The Matrix class overloads the division operator to do multiplication by the inverse,
so you might wonder why we don’t just use that. The problem is that Matrix#/ calcu-
lates B/A as B*A.1inverse, and what we want is A. inverse*B. Matrix multiplication
isn’t commutative, and so neither is division. The developers of the Matrix class had
to pick an order to do the multiplication, and they chose the one that won't work for
solving a system of equations.

In Ruby 2.1, Fixnums are converted to Rational for you automatically, so the results
are always what you expect them to be.

In Ruby 1.8, for the most accurate results, you should use Rational or BigDecimal
numbers to represent your coefficients and values. You should never use integers.
Calling Matrix#inverse on a matrix full of integers will do the inversion using inte-
ger division. The result will be totally inaccurate, and you won't get the right solutions
to your equations.

In Ruby 1.8, inverting a matrix that contains floating-point numbers is a lesser mis-
take: Matrix#inverse tends to magnify the inevitable floating-point rounding errors.
Multiplying a matrix full of floating-point numbers by its inverse will get you a matrix
that’s almost, but not quite, an identity matrix.

In Ruby 2.1, the result looks exactly like it should:

float_matrix = Matrix[[1.0, 2.0], [2.0, 1.0]]
float_matrix.inverse

=> Matrix[[-0.3333333333333333, 0.6666666666666666],
=> [0.6666666666666666, -0.3333333333333333]]

float_matrix * float_matrix.inverse
=> Matrix[[1.0, 0.0],
=> [0.0, 1.0]]

96 | Chapter3: Numbers

See Also

« Recipe 3.10, “Multiplying Matrices”

« Another way of solving systems of linear equations is with Gauss-Jordan elimina-
tion; Shin-ichiro Hara has written an algebra library for Ruby, which includes a
module for doing Gaussian elimination, along with lots of other linear algebra
libraries

o There is also a package, called linalg, that provides Ruby bindings to the C/
Fortran LAPACK library for linear algebra

3.12 Using Complex Numbers

Problem

You want to represent complex (“imaginary”) numbers and perform math on them.

Solution

Use the Complex class, defined in the complex library. All mathematical and trigono-
metric operations are supported:

require 'complex'

Complex::I # => (0+11)

a = Complex(1l, 4) # => (1+41)

a.real #=>1

a.image # =>4

b = Complex(1.5, 4.25) # => (1.5+4.251)
b+ 1.5 # => (3.0+4.251)

b + 1.5*%Complex::I # => (1.5+5.751)
a-b # => (-0.5-0.251)
a*b # => (-15.5+10.251)
b.conjugate # => (1.5-4.251)
Math::sin(b) # => (34.97201292572155+2.47902583958723581)

Discussion

You can use two floating-point numbers to keep track of the real and complex parts
of a complex number, but that makes it complicated to do mathematical operations
such as multiplication. If you were to write functions to do these operations, youd
have more or less reimplemented the Complex class. Complex simply keeps two
instances of Numeric, and implements the basic math operations on them, keeping

3.12 Using Complex Numbers | 97

http://bit.ly/algebra_lib
https://github.com/quix/linalg

them together as a complex number. It also implements the complex-specific mathe-
matical operation Complex#conjugate.

Complex numbers have many uses in scientific applications, but probably their cool-
est application is in drawing certain kinds of fractals. Here’s a class that uses complex
numbers to calculate and draw a character-based representation of the Mandelbrot
set, scaled to whatever size your screen can handle:

class Mandelbrot

Set up the Mandelbrot generator with the basic parameters for
deciding whether or not a point is in the set.

def initialize(bailout=10, iterations=100)
@bailout, @iterations = bailout, iterations
end

A point (x,y) on the complex plane is in the Mandelbrot set unless a certain iterative
calculation tends to infinity. We can't calculate “tends toward infinity” exactly, but we

can iterate the calculation a certain number of times waiting for the result to exceed
some “bail-out” value.

If the result ever exceeds the bail-out value, Mandelbrot assumes the calculation goes
all the way to infinity, which takes it out of the Mandelbrot set. Otherwise, the itera-
tion will run through without exceeding the bail-out value. If that happens, Mandel
brot makes the opposite assumption: the calculation for that point will never go to
infinity, which puts it in the Mandelbrot set.

The default values for bailout and iterations are precise enough for small, chunky
ASCII renderings. If you want to make big posters of the Mandelbrot set, you should
increase these numbers.

Next, let’s define a method that uses bailout and iterations to guess whether a spe-
cific point on the complex plane belongs to the Mandelbrot set. The variable x is a
position on the real axis of the complex plane, and y is a position on the imaginary
axis:

Performs the Mandelbrot operation @iterations times. If the
result exceeds @bailout, assume this point goes to infinity and
is not in the set. Otherwise, assume it is in the set.
def mandelbrot(x, y)
c = Complex(x, y)

z =0
@iterations.times do ||
Z = z*¥*) + ¢ # This is the Mandelbrot operation.
return false if z > @bailout
end
return true
end

98 | Chapter3: Numbers

The most interesting part of the Mandelbrot set lives between -2 and 1 on the real
axis of the complex plane, and between -1 and 1 on the complex axis. The final
method in Mandelbrot produces an ASCII map of that portion of the complex plane.
It maps each point on an ASCII grid to a point on or near the Mandelbrot set. If
Mandelbrot estimates that point to be in the Mandelbrot set, it puts an asterisk in that
part of the grid. Otherwise, it puts a space there. The larger the grid, the more points
are sampled and the more precise the map:

def render(x_size=80, y_size=24, inside_set="*", outside_set=" ")
0.upto(y_size) do |y|
0.upto(x_size) do |x|
scaled_x = -2 + (3 * x / x_size.to_f)
scaled .y =1 + (-2 *y / y_size.to_f)
print mandelbrot(scaled_x, scaled_y) ? inside_set : outside_set
end
puts
end
end
end

Even at very small scales, the distinctive shape of the Mandelbrot set is visible:

Mandelbrot.new.render(25, 10)
*%

*k*k%
kkkkkkkx
*k*k kkkkkkkkk
kkkkhkkkhhkhkhhkhhhkkx
*k*k kkkkkkkkk
kkkkkhkkx
*k*k%

* %k

oW W W W W KRR

See Also

o The scaling equation, used to map the complex plane onto the terminal screen, is
similar to the equations used to scale data in Recipe 13.5, “Adding Graphical
Context with Sparklines,” and Recipe 13.14, “Representing Data as MIDI Music”

3.13 Simulating a Subclass of Fixnum

Problem

You want to create a class that acts like a subclass of Fixnum, Float, or one of Ruby’s
other built-in numeric classes. This wondrous class can be used in arithmetic along
with real Integer or Float objects, and it will usually act like one of those objects,
but it will have a different representation or implement extra functionality.

3.13 Simulating a Subclass of Fixnum | 99

Solution

Suppose you wanted to create a class that acts just like Integer, except its string rep-
resentation is a hexadecimal string beginning with 6x. Where a Fixnum’s string repre-
sentation might be 208, this class would represent 208 as 0xc8.

You could modify Integer#to_s to output a hexadecimal string. This would proba-
bly drive you insane because it would change the behavior for all Integer objects.
From that point on, nearly all the numbers you use would have hexadecimal string
representations. You probably want hexadecimal string representations only for a few
of your numbers.

This is a job for a subclass, but you can’t usefully subclass Fixnum (the Discussion
explains why this is so). The only alternative is delegation. You need to create a class
that contains an instance of Fixnum, and almost always delegates method calls to that
instance. The only method calls it doesn’t delegate should be the ones that it wants to
override.

The simplest way to do this is to create a custom delegator class with the delegate
library. A class created with DelegateClass accepts another object in its constructor,
and delegates all methods to the corresponding methods of that object:

require 'delegate'
class HexNumber < DelegateClass(Fixnum)
The string representations of this class are hexadecimal numbers
def to_s
sign = self <0 2 "-" :
hex = abs.to_s(16)
"#{sign}ox#{hex}"
end

def inspect

to_s
end
end
HexNumber.new(10) # => 0xa
HexNumber .new(-10) # => -0Oxa
HexNumber.new(1000000) # => 0xf4240
HexNumber.new(1024 ** 10) # => Ox100000000000000000006000000
HexNumber.new(10).succ # => 11
HexNumber.new(10) * 2 # => 20
Discussion

Some object-oriented languages won't let you subclass the “basic” data types like inte-
gers. Other languages implement those data types as classes, so you can subclass
them, no questions asked. Ruby implements numbers as classes (Integer, with its

100 | Chapter3: Numbers

concrete subclasses Fixnum and Bignum), and you can subclass those classes. If you
try, though, you’ll quickly discover that your subclasses are useless: they don’t have
constructors.

Ruby jealously guards the creation of new Integer objects. This way it ensures that,
for instance, there can be only one Fixnum instance for a given number:

100.0bject_1id # => 201

(10 * 10).object_id # => 201

Fixnum.new(160)
NoMethodError: undefined method ‘new' for Fixnum:Class

You can have more than one Bignum object for a given number, but you can only cre-
ate them by exceeding the bounds of Fixnum. There’s no Bignum constructor, either.
The same is true for Float:

(10 ** 20).object_id # => 70225156919020

((10 ** 19) * 10).object_id # => 70225156960980

Bignum.new(10 ** 20)

NoMethodError: undefined method ‘“new' for Bignum:Class
If you subclass Integer or one of its subclasses, you won't be able to create any
instances of your class—not because those classes aren’t “real” classes, but because
they don’t really have constructors. You might as well not bother.

So how can you create a custom number-like class without redefining all the methods
of Fixnum? You can't, really. The good news is that in Ruby, there’s nothing painful
about redefining all the methods of Fixnum. The delegate library takes care of it for
you. You can use this library to generate a class that responds to all the same method
calls as Fixnum. It does this by delegating all those method calls to a Fixnum object it
holds as a member. You can then override those classes at your leisure, customizing
behavior.

Since most methods are delegated to the member Fixnum, you can perform math on
HexNumber objects, use succ and upto, create ranges, and do almost anything else you
can do with a Fixnum. Calling HexNumber#is_a?(Fixnum) will return false, but you
can change even that by manually overriding is_a?.

Alas, the illusion is spoiled somewhat by the fact that when you perform math on
HexNumber objects, you get Fixnum objects back:

HexNumber.new(10) * 2 # => 20

HexNumber.new(10) + HexNumber.new(200) # => 210
Is there a way to do math with HexNumber objects and get HexNumber objects as
results? There is, but it requires moving a little bit beyond the comfort of the dele

gate library. Instead of simply delegating all our method calls to an Integer object,
we want to delegate the method calls, then intercept and modify the return values. If a

3.13 Simulating a Subclass of Fixnum | 101

method call on the underlying Integer object returns an Integer or a collection of
Integers, we want to convert it into a HexNumber object or a collection of HexNumbers.

The easiest way to delegate all methods is to create a class that’s nearly empty and
define a method_missing method. Here’s a second HexNumber class that silently con-
verts the results of mathematical operations (and any other Integer result from a
method of Integer) into HexNumber objects. It uses the BasicObject class (new to
Ruby 2.1), a class that defines almost no methods at all. This lets us delegate almost
everything to Integer:

class BetterHexNumber < BasicObject
def initialize(integer)
@value = integer
end

Delegate all methods to the stored integer value. If the result is a
Integer, transform it into a BetterHexNumber object. If it's an

enumerable containing Integers, transform it into an enumerable

containing BetterHexNumber objects

def method_missing(m, *args)
super unless @value.respond_to?(m)
hex_args = args.collect do |arg|
arg.kind_of?(::BetterHexNumber) ? arg.to_int : arg

end
result = @value.send(m, *hex_args)
return result if m == :coerce

case result
when ::Integer
: :BetterHexNumber.new(result)
when ::Array
result.collect do |element|
element.kind_of?(::Integer) ? ::BetterHexNumber.new(element) : element
end
else
result
end
end

We don't actually define any of theFixnum methods in this class,
but from the perspective of an outside object we do respond to

them. What outside objects don't know won't hurt them, so we'll

claim that we actually implement the same methods as our delegate
object. Unless this method is defined, features like ranges won't

work.
def respond_to?(method_name)

super || @value.respond_to?(method_name)
end

Convert the number to a hex string, ignoring any other base
that might have been passed 1in.

102 | Chapter 3: Numbers

def to_s(*args)
hex = @value.abs.to_s(16)
sign = self <0 2 "-" ¢ ""
"#{sign}ox#{hex}"

end

def inspect
to_s
end
end

Now we can do arithmetic with BetterHexNumber objects, and get BetterHexNumber
object back:

hundred = BetterHexNumber.new(100) # => 0x64

hundred + 5 # => 0x69

hundred + BetterHexNumber.new(5) # => 0x69

hundred. succ # => 0x65

hundred / 5 # => 0x14

hundred * -10 # => -0x3e8

hundred.divmod(3) # => [0x21, 0x1]

(hundred. . .hundred+3).collect # => #<Enumerator: 0x64...0x67:collect>

A BetterHexNumber even claims to be a Fixnum, and to respond to all the methods of
Fixnum!

hundred.class # => Fixnum

hundred.respond_to?(:succ) # => true

hundred.is_a?(Fixnum) # => true
See Also

« Recipe 3.6, “Converting Between Numeric Bases”

o Recipe 3.14, “Doing Math with Roman Numbers”
 Recipe 9.8, “Delegating Method Calls to Another Object”
« Recipe 11.8, “Responding to Calls to Undefined Methods”

3.14 Doing Math with Roman Numbers

Problem

You want to convert between Arabic and Roman numbers, or do arithmetic with
Roman numbers and get Roman numbers as your result.

3.14 Doing Math with Roman Numbers | 103

Solution

The simplest way to define a Roman class that acts like Fixnum is to have its instances
delegate most of their method calls to a real Fixnum (as seen in Recipe 3.13). First
we'll implement a container for the Fixnum delegate, and methods to convert between
Roman and Arabic numbers:

class Roman

These arrays map all distinct substrings of Roman numbers

to their Arabic equivalents, and vice versa.

@@roman_to_arabic = [['M', 1000], ['CM", 900], ['D', 500], ['CD', 400],
['c', 100], ['XC', 90], ['L', 50], ['XL', 401, ['X', 10], ['IX', 9],
['v', s1, ['wv', 4], ['T', 11]

@@arabic_to_roman = @@roman_to_arabic.collect { |x| x.reverse }.reverse

The Roman symbol for 5000 (a V with a bar over it) is not in
ASCII nor Unicode, so we won't represent numbers larger than 3999.
MAX = 3999

def initialize(number)
if number.respond_to? :to_str
@value = Roman.to_arabic(number)
else
Roman.assert_within_range(number)
@value = number
end
end

Raise an exception i1f a number is too large or small to be represented
as aRoman number.
def Roman.assert_within_range(number)

unless number.between?(1, MAX)

msg = "#{number} can't be represented as a Roman number."
raise RangeError.new(msg)
end

end

Find the Fixnum value of a string containing a Roman number.
def Roman.to_arabic(s)
value = s
if s.respond_to?(:to_str)
c = s.dup
value = 0
invalid = ArgumentError.new("Invalid Roman number: #{s}")
value_of_previous_number = MAX+1
value_from_previous_number = 0
@@roman_to_arabic.each_with_index do |(roman, arabic), 1i]|
value_from_this_number = 0
while c.index(roman) ==
value_from_this_number += arabic
if value_from_this_number >= value_of_previous_number
raise invalid

104 | Chapter 3: Numbers

end
c = c[roman.size..s.size]
end

#This one's a little tricky. We reject numbers like "IVI" and
#"IXV", because they use the subtractive notation and then
#tack on a number that makes the total overshoot the number
#they'd have gotten without using the subtractive
#notation. Those numbers should be V and XIV, respectively.
if 1 > 2 and @@roman_to_arabic[1-1][0].size > 1 and
value_from_this_number + value_from_previous_number >=
@@roman_to_arabic[1-2][1]
raise invalid
end

value += value_from_this_number
value_from_previous_number = value_from_this_number
value_of_previous_number = arabic

break if c.size ==

end

raise invalid if c.size > 0
end
return value

end

def to_arabic
@value
end
#Render a Fixnum as a string depiction of a Roman number
def to_roman
value = to_arabic
Roman.assert_within_range(value)
repr = ""
@@arabic_to_roman.reverse_each do |arabic, roman
num, value = value.divmod(arabic)
repr << roman * num
end
repr
end

Next, we'll make the class respond to all of Fixnums methods by implementing a
method_missing that delegates to our internal Fixnum object. This is substantially the
same method_missing as in Recipe 3.13 Whenever possible, we'll transform the
results of a delegated method into Roman objects, so that operations on Roman objects
will yield other Roman objects:

Delegate all methods to the stored integer value. If the result is
a Integer, transform it into a Roman object. If it's an array
containing Integers, transform it into an array containing Roman
objects.
def method_missing(m, *args)

super unless @value.respond_to?(m)

3.14 Doing Math with Roman Numbers | 105

hex_args = args.collect do |arg|
arg.kind_of?(Roman) ? arg.to_int : arg

end

result = @value.send(m, *hex_args)
return result if m == :coerce
begin

case result
when Integer
Roman.new(result)
when Array
result.collect do |element|
element.kind_of?(Integer) ? Roman.new(element) : element
end
else
result
end
rescue RangeError
Too big or small to fit in a Roman number. Use the original number
result
end
end

The only methods that won't trigger method_missing are methods like to_s, which
were going to override with our own implementations:

def respond_to?(method_name)
super || @value.respond_to?(method_name)
end

def to_s
to_roman
end

def inspect
to_s
end
end

We'll also add methods to Fixnum and String that make it easy to create Roman
objects:

class Fixnum
def to_roman
Roman.new(self).to_s
end
end

class String
def to_roman
Roman.new(self).to_s
end
end

106 | Chapter3: Numbers

Now we're ready to put the Roman class through its paces:

72.to_roman # => LXXII

444, to_roman # => CDXLIV

1979.to_roman # => MCMLXXIX
'"MCMXLVIII'.to_roman # => MCMXLVIII
Roman.to_arabic('MCMLXXIX") # => 1979
'"MMI'.to_roman.to_arabic # => 2001

'"MMI'.to_roman + 3 # => MMIV
'"MCMXLVIII'.to_roman # => MCMXLVIII
612.to_roman * 3.to_roman # => MDCCCXXXVI
(612.to_roman * 3).divmod('VII'.to_roman) # => [CCLXII, II]
612.to_roman * 10000 # => 6120000 # Too big
612.to_roman * 0 #=>0 # Too small
"MCMXCIX'.to_roman.succ # => MM

('I'.to_roman..'X'.to_roman).collect
#=>[I, II, III, IV, V, VI, VII, VIII, IX, X]

Here are some invalid Roman numbers that the Roman class rejects:

'"IIII'.to_roman

ArgumentError: Invalid Roman number: IIII
'"IVI'.to_roman

ArgumentError: Invalid Roman number: IVI

"IXV'.to_roman

ArgumentError: Invalid Roman number: IXV
'"MCMM' . to_roman

ArgumentError: Invalid Roman number: MCMM
'"CIVVM'.to_roman

ArgumentError: Invalid Roman number: CIVVM
-10.to_roman

RangeError: -10 can't be represented as a Roman number.
50000.to_roman

RangeError: 50000 can't be represented as a Roman number.

Discussion

The rules for constructing Roman numbers are more complex than those for con-
structing positional numbers such as the Arabic numbers we use. An algorithm for
parsing an Arabic number can scan from the left, looking at each character in isola-
tion. If you were to scan a Roman number from the left one character at a time, youd
often find yourself having to backtrack, because what you thought was XI (11) would
frequently turn out to be XIV (14).

The simplest way to parse a Roman number is to adapt the algorithm so that (for
instance) IV as treated as its own “character;” distinct from I and V. If you have a list
of all these “characters” and their Arabic values, you can scan a Roman number from

3.14 Doing Math with Roman Numbers | 107

left to right with a greedy algorithm that keeps a running total. Since there are few of
these “characters” (only 13 of them, for numbers up to 3,999), and none of them are
longer than 2 letters, this algorithm is workable. To generate a Roman number from
an Arabic number, you can reverse the process.

The Roman class given in the Solution works like Fixnum, thanks to the method_miss
ing strategy first explained in Recipe 3.13. This lets you do math entirely in Roman
numbers, except when a result is out of the supported range of the Roman class.

Since this Roman implementation supports only 3,999 distinct numbers, you could
make the implementation more efficient by pregenerating all of them and retrieving
them from a cache as needed. The given implementation lets you extend the imple-
mentation to handle larger numbers: you just need to decide on a representation for
the larger Roman characters that will work for your encoding.

The Roman numeral for 5,000 (a V with a bar over it) isn’'t present in ASCII, but there
are Unicode characters U+2181 (the Roman numeral 5,000) and U+2182 (the Roman
numeral 10,000), so that’s the obvious choice for representing Roman numbers up to
39,999. If you're outputting to HTML, you can use a CSS style to put a bar above V, X,
and so on. If you're stuck with ASCII, you might choose _V to represent 5,000, _X to
represent 10,000, and so on. Whatever you chose, youd add the appropriate “charac-
ters” to the roman_to_arabic array (remembering to add M_V and _V_X as well as
_V and _X), increment MAX, and suddenly be able to instantiate Roman objects for
large numbers.

The Roman#to_arabic method implements the “new” rules for Roman numbers: that
is, the ones standardized in the Middle Ages. It rejects certain number representa-
tions, like IIII, used by the Romans themselves.

Roman numbers are common as toy or contest problems, but it’s rare that a program-
mer will have to treat a Roman number as a number, as opposed to a funny-looking
string. In parts of Europe, centuries and the month section of dates are written using
Roman numbers. Apart from that, outline generation is probably the only real-world
application where a programmer needs to treat a Roman number as a number. Out-
lines need several visually distinct ways to represent the counting numbers, and
Roman numbers (upper- and lowercase) provide two of them.

If youre generating an outline in plain text, you can use Roman#succ to generate a
succession of Roman numbers. If your outline is in HTML format, though, you don’t
need to know anything about Roman numbers at all. Just give an tag a CSS style
of list-style-type:lower-roman or list-style-type:upper-roman. Output the
elements of your outline as <1i> tags inside the tag. All modern browsers will do
the right thing:

<ol style="list-style-type:lower-roman">
Primus</1i>

108 | Chapter3: Numbers

Secundis</1i>
Tertius

See Also

o Recipe 3.13, “Simulating a Subclass of Fixnum”

o An episode of the Ruby Quiz focused on algorithms for converting between
Roman and Arabic numbers, and one solution uses an elegant technique to make
it easier to create Roman numbers from within Ruby: it overrides
Object#const_missing to convert any undefined constant into a Roman num-
ber; this lets you issue a statement like XI + IX, and get XX as the result

3.15 Generating a Sequence of Numbers

Problem

You want to iterate over a (possibly infinite) sequence of numbers the way you can
iterate over an array or a range.

Solution
Write a generator function that yields each number in the sequence:

def fibonacci(limit = nil)
seedl = 0
seed2 = 1
while not limit or seed2 <= limit
yield seed?
seedl, seed?2 = seed2, seedl + seed2
end
end

fibonacci(3) { |x| puts x }
1
1
2
3

fibonacci(1l) { |x| puts x }
1
1

fibonacci { |x| break if x > 20; puts x }
1
1
2

3.15 Generating a Sequence of Numbers | 109

http://www.rubyquiz.com/quiz22.html

3
#5
#8
13

Discussion

A generator for a sequence of numbers works just like one that iterates over an array
or other data structure. The main difference is that iterations over a data structure
usually have a natural stopping point, whereas most common number sequences are
infinite.

One strategy is to implement a method called each that yields the entire sequence.
This works especially well if the sequence is finite. If not, it’s the responsibility of the
code block that consumes the sequence to stop the iteration with the break keyword.

Range#teach is an example of an iterator over a finite sequence, while Prime#each
enumerates the infinite set of prime numbers. Range#each is implemented in C, but
here’s a (much slower) pure Ruby implementation for study. This code uses
self.begin and self.end to call Range#tbegin and Range#end, because begin and
end are reserved words in Ruby:

class Range
def each_slow
x = self.begin
while x <= self.end

yield x
X = X.succ
end
end
end

(1..3).each_slow {|x| puts x}
1
2
3

The other kind of sequence generator iterates over a finite portion of an infinite
sequence. These are methods like Fixnum#upto and Fixnum#step: they take a start
and/or an end point as input, and generate a finite sequence within those boundaries:

class Fixnum
def double_upto(stop)
x = self
until x > stop
yield x
X =X *2
end
end
end

110 | Chapter3: Numbers

10.double_upto(50) { [x| puts x }
10
20
40

Most sequences move monotonically up or down, but it doesn’t have to be that way:

def oscillator
x =1
while true
yield x
X *= -2
end
end
oscillator { |x| puts x; break if x.abs > 50; }
1
-2
4
-8
16
-32
64

O W R R

Though integer sequences are the most common, any type of number can be used in
a sequence. For instance, Float#step works just like Integer#step:

1.5.step(2.0, 0.25) { |x| puts x }
= 1.5

= 1.75

= 2.0

H oW R

Float objects don’t have the resolution to represent every real number. Very small
differences between numbers are lost. This means that some Float sequences you
might think would go on forever will eventually end:

def zeno(start, stop)
distance = stop - start
travelled = start
while travelled < stop and distance > 0
yield travelled
distance = distance / 2.0
travelled += distance
end
end

steps = 0

zeno(0, 1) { steps += 1 }
steps # => 54

See Also

« Recipe 2.15, “Generating a Succession of Strings”

3.15 Generating a Sequence of Numbers | 111

« Recipe 3.16, “Generating Prime Numbers,” shows optimizations for generating a
very well-studied number sequence

o Recipe 5.1, “Iterating Over an Array”

o Chapter 8 has more on this kind of generator method

3.16 Generating Prime Numbers

Problem

You want to generate a sequence of prime numbers, or find all prime numbers below
a certain threshold.

Solution

Ruby 2.1 has changed the way you generate prime numbers slightly since Ruby 1.8.
Instead of intializing an instance of the Prime class with Prime.new, you grab an
instance of the Prime class:

require 'mathn'
primes = Prime.instance

Use Primet#teach to iterate over the prime numbers:

primes.each { |x| puts x; break if x > 15; }
#5
#7
11
13
17

The Prime class is enumerable:
Prime.first(10) # => [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
And you can check for the primeness of any given number:
Prime.prime?(2) # => true

Prime.prime?(4) # => false

Discussion

Because prime numbers are both mathematically interesting and useful in crypto-
graphic applications, a lot of study has been lavished on them. Many algorithms have
been devised for generating prime numbers and determining whether a number is
prime. The code in this recipe walks a line between efficiency and ease of
implementation.

112 | Chapter3: Numbers

The best-known prime number algorithm is the Sieve of Eratosthenes, which finds all
primes in a certain range by iterating over that range multiple times. On the first pass,
it eliminates every even number greater than 2, on the second pass every third num-
ber after 3, on the third pass every fifth number after 5, and so on. This implementa-
tion of the Sieve is based on a sample program packaged with the Ruby distribution:

def sieve(max=100)
sieve = []
(2..max).each { |i| sieve[i] =1 }
(2..Math.sqrt(max)).each do |1i]
(i*1).step(max, 1) { |j| sieve[j] = nil } if sieve[i]
end
sieve.compact
end

sieve(10)

#=>[2,3,5, 7]

sieve(100000).size

=> 9592
The sieve method is a fast way to find the primes smaller than a certain number, but
its memory-inefficient and unsuitable for generating an infinite sequence of prime
numbers. It’s also not very compatible with the Ruby idiom of generator methods.
This is where the Prime class comes in.

A Prime object stores the current state of one iteration over the set of primes. It con-
tains all the information necessary to calculate the next prime number in the
sequence. Prime#each repeatedly calls Prime#succ and yields it up to whatever code
block was passed in.

The Ruby 2.1 implementation of Prime#each has improved a lot, but the Ruby 1.8
implementation is very slow. The following code is based on the 2.0 implementation,
and it illustrates many of the simple tricks that drastically speed up algorithms that
find or use primes. You can use this code, or just paste the code from Ruby 2.1’
mathn.rb into your 1.8 program.

The first trick is to share a single list of primes between all Prime objects by making it
a class variable. This makes it much faster to iterate over multiple Prime instances,
but it also uses more memory because the list of primes will never be garbage-
collected.

We initialize the list with the first few prime numbers. This helps early performance a
little bit, but it's mainly to get rid of edge cases. The class variable @@check_next
tracks the next number we think might be prime:

require 'mathn'

class Prime
@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

3.16 Generating Prime Numbers | 113

61, 67, 71, 73, 79, 83, 89, 97, 101]
@@check_next = 103
end

A number is prime if it has no factors: more precisely, if it has no prime factors
between 2 and its square root. This code uses the list of prime numbers not only as a
cache, but also as a data structure to help find larger prime numbers. Instead of
checking all the possible factors of a number, we only need to check some of the
prime factors.

To avoid calculating square roots, we have @@limit track the largest prime number
less than the square root of @acheck_next. We can decide when to increment it by
calculating squares instead of square roots:

class Prime
@@primes[3] < sqrt(@@check_next) < @@primes[4]
@@limit = 3

sqrt(121) == @@primes[4]
@@increment_limit_at = 121
end

Now we need a new implementation of Prime#succ. Starting from @@check_next, the
new implementation iterates over numbers until it finds one that’s prime, then
returns the prime number. But it doesn't iterate over the numbers one at a time: we
can do better than that. It skips even numbers and numbers divisible by three, which
are obviously not prime:

class Prime
def succ
@index += 1
while @index >= @@primes.length
if @@check_next + 4 > @@increment_limit_at
@@limit += 1
@@increment_limit_at = @@primes[@Q@limit + 1] ** 2
end
add_if_prime
@Qcheck_next += 4
add_if_prime
@Qcheck_next += 2
end
return @@primes[@index]
end
end

How does it do this? Well, consider a more formal definition of “even” and “divisible
by three” If x is congruent to 2 or 4, mod 6 (that is, if x % 6 is 2 or 4), then x is even

and not prime. If x is congruent to 3, mod 6, then x is divisible by 3 and not prime. If
x is congruent to 1 or 5, mod 6, then x might be prime.

114 | Chapter3: Numbers

Our starting point is @@check_next, which starts out at 103. Because 103 is congruent
to 1, mod 6, it might be prime. Adding 4 gives us 107, a number congruent to 5, mod
6. We skipped two even numbers (104 and 106) and a number divisible by 3 (105).
Adding 2 to 107 skips another even number and gives us 109. Like 103, 109 is con-
gruent to 1, mod 6. We can add 4 and 2 again to get two more numbers that might be
prime. By continually adding 4 and then 2 to @@check_next, we can skip over the
numbers that are obviously not prime.

Although all Prime objects share a list of primes, each object should start yielding
primes from the beginning of the list:

class Prime
def initialize
@index = -1
end
end

Finally, here’s the method that actually checks @@check_next for primality, by looking
for a prime factor of that number between 5 and @@limit. We don’t have to check 2
and 3 because succ skips numbers divisible by 2 and 3. If no prime factor is found,
the number is prime: we add it to the classwide list of primes, where it can be
returned by succ or yielded to a code block by each:

class Prime
private
def add_if_prime
factor = @@primes[2..@@limit].find { |prime| @@check_next % prime == 0 }
@@primes << @Q@check_next unless factor
end
end
end

Here’s the new Prime class in action, finding the ten-thousandth prime:

primes = Prime.new

p = nil
10000.times { p = primes.succ }
p # => 104729

Checking primality
Ruby 2.1 has a Prime.prime? method already:

Prime.prime?(2) # => true

Prime.prime?(4) # => false
But in Ruby 1.8, the simplest way to check whether a particular number is prime is to
generate all the primes up to that number and see whether the number itself is gener-
ated as a prime:

3.16 Generating Prime Numbers | 115

class Prime
def prime?(n)
succ() while @seed < n
return @primes.member?(n)
end
end
If all of this is too complicated for you, there’s a very simple constant-time probabilis-
tic test for primality that works more than half the time:
def probably_prime?(x)

X < 8
end

probably_prime? 2 # => true
probably prime? 5 # => true

probably_
prime? 6 # => true
probably_
prime? 7 # => true
probably_
prime? 8 # => false
probably_
prime? 100000 # => false

See Also

o Recipe 3.15, “Generating a Sequence of Numbers”

» K. Kodama has written a number of simple and advanced primality tests in Ruby

3.17 Checking a Credit Card Checksum

Problem

You want to know whether a credit card number was entered correctly.

Solution

The last digit of every credit card is a checksum digit. You can compare the other dig-
its against the checksum to catch mistakes someone might make when typing the
credit card number.

Lucas Carlson’s CreditCard library, available as the creditcard gem, contains Ruby
implementations of the checksum algorithms. It adds methods to the String and
Integer classes to check the internal consistency of a credit card number:

116 | Chapter3: Numbers

http://bit.ly/primality_tests

gem 'creditcard’
require 'creditcard'

'5276 4400 6542 1319'.creditcard? # => true
'5276440065421313" .creditcard? # => false
1276440065421319.creditcard? # => false

CreditCard can also determine which brand of credit card a certain number is for:

5276440065421313.creditcard_type # => "mastercard"

Discussion

The CreditCard library uses a well-known algorithm for finding the checksum digit
of a credit card. If you can’t or don’t want to install the creditcard gem, you can just
implement the algorithm yourself:

module CreditCard
def creditcard?
numbers = self.to_s.gsub(/["\d]+/, '").split(//)

checksum = 0
0.upto numbers.length do |i]
weight = numbers[-1*(1+2)].to_1 * (2 - (i%2))

checksum += weight % 9
end

return numbers[-1].to_1 == 10 - checksum % 10
end
end

class String
include CreditCard
end

class Integer
include CreditCard
end

'5276 4400 6542 1319'.creditcard? # => true

How does it work? First, it converts the object to an array of numbers:
numbers = '5276 4400 6542 1319'.gsub(/[*\d]+/, '').split(//)
#=> ['5", mpn ngn ngn ugn ngn wgu ngn
=> ”6”’ ”5”, H4H, 77277) I71 H, N3IV’ Il1 H, Ngll]

It then calculates a weight for each number based on its position, and adds that
weight to a running checksum:

checksum = 0
0.upto numbers.length do |i]

3.17 Checking a Credit Card Checksum | 117

weight = numbers[-1*(i+2)].to_1 * (2 - (i%2))
checksum += weight % 9
end
checksum # => 51
If the last number of the card is equal to 10 minus the last digit of the checksum, the
number is self-consistent:

numbers[-1].to_1 == 10 - checksum % 10 # => true

A self-consistent credit card number is just a number with a certain mathematical
property. It can catch typos, but there’s no guarantee that a real credit card exists with
that number. To check that, you need to use a payment gateway like Authorize.net,
and a gateway library like Payment: : AuthorizeNet.

See Also

o Recipe 18.6, “Charging a Credit Card”

118 | Chapter3: Numbers

CHAPTER 4
Date and Time

With no concept of time, our lives would be a mess. Without software programs to
constantly manage and record this bizarre aspect of our universe...well, we might
actually be better off. But why take the risk?

Some programs manage real-world time on behalf of the people whod otherwise have
to do it themselves: calendars, schedules, and data gatherers for scientific experi-
ments. Other programs use the human concept of time for their own purposes: they
may run experiments of their own, making decisions based on microsecond varia-
tions. Objects that have nothing to do with time are sometimes given timestamps
recording when they were created or last modified. Of the basic data types, a time is
the only one that directly corresponds to something in the real world.

Ruby supports the date and time interfaces you might be used to from other pro-
gramming languages, but on top of them are Ruby-specific idioms that make pro-
gramming easier. In this chapter, we’ll show you how to use those interfaces and idi-
oms, and how to fill in the gaps left by the language as it comes out of the box.

Ruby actually has two different time implementations. There’s a set of time libraries
written in C that have been around for decades. Like most modern programming lan-
guages, Ruby provides a native interface to these C libraries. The libraries are power-
ful, useful, and reliable, but they also have some significant shortcomings, so Ruby
compensates with a second time library written in pure Ruby. The pure Ruby library
isn’t used for everything because it’s slower than the C interface, and it lacks some of
the features buried deep in the C library, such as the management of Daylight Saving
Time.

The Time class contains Ruby’s interface to the C libraries, and it’s all you need for
most applications. The Time class has a lot of Ruby idioms attached to it, but most of
its methods have strange un-Ruby-like names, such as strftime and strptime. This

119

is for the benefit of people who are already used to the C library, or one of its other
interfaces (like Perl’s or Pythons).

The internal representation of a Time object is a number of seconds before or since
“time zero.” Time zero for Ruby is the Unix epoch: the first second GMT of January 1,
1970. You can get the current local time with Time.now, or create a Time object from
seconds-since-epoch with Time.at:

Time.now # => 2013-10-03 15:13:50 -0700

Time.at(0) # => 1969-12-31 16:00:00 -0800
This numeric internal representation of the time isn’t very useful as a human-readable
representation. You can get a string representation of a Time, as just shown, or call

accessor methods to split up an instant of time according to how humans reckon
time:

t = Time.at(0)

t.sec #=>0

t.min # =>0

t.hour # => 19

t.day # => 31

t.month # => 12

t.year # => 1969

t.wday # => 3 # Numeric day of week; Sunday

is 0

t.yday # => 365 # Numeric day of year

t.isdst # => false # Is Daylight Saving Time in
effect?

t.zone # => "EST" # Time zone

See Recipe 4.3 for more human-readable ways of slicing and dicing Time objects.

In Ruby 2.1, the Time implementation uses a signed 63-bit integer, Bignum or
Rational. The integer is a number of nanoseconds since the epoch, which can repre-
sent 1823-11-12 to 2116-02-20. When Bignum or Rational is used (before 1823, after
2116, under a nanosecond), Time works slower than when Integer is used.

In Ruby 1.8, apart from the awkward method and member names, the biggest short-
coming of the Time class is that on a 32-bit system, its underlying implementation
can’t handle dates before December 1901 or after January 2037. To represent those
times, you'll need to turn to Ruby’s other time implementation: the Date and Date
Time classes. You can probably use DateTime for everything, and not use Date at all:
require 'date'
DateTime.new(1865, 4, 9).to_s # => "1865-04-09T00:00:00Z"
DateTime.new(2100, 1, 1).to_s # => "2100-01-01T00:00:00Z"
Recall that a Time object is stored as a fractional number of seconds since “time zero”
in 1970. The internal representation of a Date or DateTime object is an astronomical

120 | Chapter4:Date and Time

Julian date: a fractional number of days since a “time zero” in 4712 BCE, over 6,000
years ago:

Time zero for the date library:
DateTime.new.to_s # => "-4712-01-01T00:00:00Z2"

The current date and time:

DateTime: :now.to_s # => "2006-03-18T14:53:18-0500"
A DateTime object can precisely represent a time further in the past than the universe
is old, or further in the future than the predicted lifetime of the universe. When Date
Time handles historical dates, it needs to take into account the calendar reform move-
ments that swept the Western world throughout the last 500 years. See Recipe 4.1 for
more information on creating Date and DateTime objects.

Clearly DateTime is superior to Time for astronomical and historical applications, but
you can use Time for most everyday programs. Table 4-1 should give you a picture of
the relative advantages of Time objects and DateTime objects.

Table 4-1. Comparison of the Time and DateTime objects

Date range 1901-2037 on 32-bit systems Effectively infinite

Handles Daylight Saving Time Yes No

Handles calendar reform No Yes

Time zone conversion Easy with the tz gem Difficult unless you work only with time zone offsets
Common time formats like RFC822 Built-in Write them yourself

Speed Faster Slower

Both Time and DateTime objects support niceties like iteration and date arithmetic:
you can basically treat them like numbers, because they’re stored as numbers inter-
nally. But recall that a Time object is stored as a number of seconds, while a DateTime
object is stored as a number of days, so the same operations will operate on different
time scales on Time and DateTime objects. See Recipes 4.4 and 4.5 for more on this.

So far, we've talked about writing code to manage specific moments in time: a
moment in the past or future, or right now. The other use of time is duration, the rela-
tionship between two times: “start” and “end,” “before” and “after” You can measure
duration by subtracting one DateTime object from another, or one Time object from
another: you’ll get a result measured in days or seconds (see Recipe 4.5). If you want
your program to actually experience duration (the difference between now and a time

Dateand Time | 121

in the future), you can put a thread to sleep for a certain amount of time: see Recipes
4.12 and 4.13.

You'll need duration most often, perhaps, during development. Benchmarking and
profiling can measure how long your program took to run, and which parts of it took
the longest. These topics are covered in Recipe 19.12 and Recipe 19.13.

4.1 Finding Today’s Date

Problem

You need to create an object that represents the current date and time, or a time in the
future or past.

Solution

The factory method Time.now creates a Time object containing the current local time.
If you want, you can then convert it to GMT time by calling Time#gmtime. The
gmtime method actually modifies the underlying time object, though it doesn’t follow
the Ruby naming conventions for such methods (it should be called something like
gmtime!):

now =Time.now # => 2013-10-03 15:21:59 -0700
now.gmtime # => 2013-10-03 22:21:59 UTC

#The original object was affected by the time zone conversion.
now # => 2013-10-03 22:21:59 UTC

To create a DateTime object for the current local time, use the factory method Date
Time.now. Convert a DateTime object to GMT by calling DateTime#new_offset with
no argument. Unlike Time#gmtime, this method returns a second DateTime object
instead of modifying the original in place:

require 'date'

now = DateTime.now

=> #<DateTime: 2013-10-03T15:20:35-07:00>

now.to_s # => "2013-10-03T15:20:35-07:00"
now.new_offset.to_s # => "2013-10-03T22:20:35+00:00"

#The original object was not affected by the time zone conversion.
now.to_s # => "2013-10-03T15:20:35-07:00"

Discussion

Both the Time and DateTime objects provide accessor methods for the basic ways in
which the Western calendar and clock divide a moment in time. Both classes provide
year, month, day, hour (in 24-hour format), min, sec, and zone accessors. Time#isdst

122 | Chapter4:Date and Time

lets you know if the underlying time of a Time object has been modified by Daylight
Saving Time in its time zone. DateTime pretends Daylight Saving Time doesn’t exist:

now_time = Time.new
now_datetime = DateTime.now

now_time.year # => 2013
now_datetime.year # => 2013
now_time.hour # => 18
now_datetime.hour # => 22
now_time.zone # => "PDT"
now_datetime.zone # => "-07:00"
now_time.1isdst # => true

You can see that Time#zone and DateTime#zone are a little different. Time#zone
returns a time zone name or abbreviation, and DateTime#zone returns a numeric off-
set from GMT in string form. You can call DateTime#offset to get the GMT offset as
a number: a fraction of a day:

now_datetime.offset # => (-7/24)

Both classes can also represent fractions of a second, accessible with Time#usec (that
is, pusec or microseconds) and DateTime#sec_fraction. In the preceding example,
the DateTime object was created after the Time object, so the numbers are different
even though both objects were created within the same second:

now_time.usec # => 180167
That is, 180167 microseconds
now_datetime.sec_fraction # => (2057/125600)

The date library provides a Date class that is like a DateTime, without the time. To
create a Date object containing the current date, the best strategy is to create a Date
Time object and use the result in a call to a Date factory method. DateTime is actually
a subclass of Date, so you need to do this only if you want to strip time data to make
sure it doesn’t get used:

class Date
def Date.now
return Date.jd(DateTime.now. jd)
end
end
puts Date.now
2013-10-03

In addition to creating a time object for this very moment, you can create one from a
string (see Recipe 4.2) or from another time object (see Recipe 4.5). You can also use
factory methods to create a time object from its calendar and clock parts: the year,
month, day, and so on.

4.1Finding Today’s Date | 123

The factory methods Time.local and Time.gm take arguments Time object for that
time. For local time, use Time.local; for GMT, use Time.gm. All arguments after the
year are optional and default to zero:

Time.local(1999, 12, 31, 23, 21, 5, 1044)
=> 1999-12-31 23:21:05 -0800

Time.gm(1999, 12, 31, 23, 21, 5, 22, 1044)
=> 1999-12-31 23:21:05 UTC

Time.local(1991, 10, 1)
=> 1991-10-01 00:00:00 -0700

Time.gm(2000)
=> 2000-01-01 00:00:00 UTC

The DateTime equivalent of Time.local is the civil factory method. It takes almost,
but not quite, the same arguments as Time.local:

[year, month, day, hour, minute, second,
timezone_offset, date_of_calendar_reform].

The main differences from Time.local and Time.gmt are:

o There’s no separate usec argument for fractions of a second. You can represent
fractions of a second by passing in a rational number for second.

o All the arguments are optional. However, the default year is 4712 BCE, which is
probably not useful to you.

o Rather than providing different methods for different time zones, you must pass
in an offset from GMT as a fraction of a day. The default is zero, which means
that calling DateTime.civil with no time zone will give you a time in GMT.

DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000)).to_s
=> "1999-12-31T23:21:00+00:00"

DateTime.civil(1991, 10, 1).to_s
=> "1991-10-01T00:00:00+00:00"

DateTime.civil(2000).to_s
=> "2000-01-01T00:00:00+00:00"

The simplest way to get the GMT offset for your local time zone is to call offset on
the result of DateTime.now. Then you can pass the offset into DateTime.civil:

my_offset = DateTime.now.offset # => (-7/24)

DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000), my_offset).to_s
=> "1999-12-31T23:21:00-07:00"

124 | Chapter4:Date and Time

Oh, and there’s the calendar reform thing, too. If you're using old dates, you may run
into a gap caused by a switch from the Julian calendar (which made every fourth year
a leap year) to the more accurate Gregorian calendar (which occasionally skips leap
years).

This switch happened at different times in different countries, creating differently
sized gaps as the local calendar absorbed the extra leap days caused by using the
Julian reckoning for so many centuries. Dates created within a particular country’s
gap are invalid for that country.

By default, Ruby assumes that Date objects you create are relative to the Italian calen-
dar, which switched to Gregorian reckoning in 1582. For American and Common-
wealth users, Ruby has provided a constant Date: : ENGLAND, which corresponds to the
date that England and its colonies adopted the Gregorian calendar. DateTime’s con-
structors and factory methods will accept Date: : ENGLAND or Date: :ITALY as an extra
argument denoting when calendar reform started in that country. The calendar
reform argument can also be any Julian day, letting you handle old dates from any
country:

#In Italy, 4 Oct 1582 was immediately followed by 15 Oct 1582.
#

Date.new(1582, 10, 4).to_s

=> "1582-10-04"

Date.new(1582, 10, 5).to_s

ArgumentError: invalid date

Date.new(1582, 10, 4).succ.to_s

=> "1582-10-15"

#In England, 2 Sep 1752 was immediately followed by 14 Sep 1752.
#

Date.new(1752, 9, 2, Date::ENGLAND).to_s

=> "1752-09-02"

Date.new(1752, 9, 3, Date::ENGLAND).to_s

ArgumentError: invalid date

Date.new(1752, 9, 2, DateTime::ENGLAND).succ.to_s

=> "1752-09-14"

Date.new(1582, 10, 5, Date::ENGLAND).to_s

=> "1582-10-05"

You probably won't need to use Ruby’s Gregorian conversion features: it's uncommon
that computer applications need to deal with old dates that are both known with pre-
cision and associated with a particular locale.

See Also

o A list of the dates of Gregorian conversion for various countries

o Recipe 4.7, “Converting Between Time Zones”

4.1Finding Today’s Date | 125

http://en.wikipedia.org/wiki/Gregorian_calendar

« Recipe 4.8, “Checking Whether Daylight Saving Time Is in Effect”

4.2 Parsing Dates, Precisely or Fuzzily

Problem

You want to transform a string describing a date or date/time into a Date object. You
might not know the format of the string ahead of time.

Solution

The best solution is to pass the date string into Date.parse or DateTime.parse.
These methods use heuristics to guess at the format of the string, and they do a pretty

good job:
require 'date'

Date.parse('2/9/2007"').to_s

=> "2007-02-09"

DateTime.parse('02-09-2007 12:30:44 AM').to_s
=> "2007-09-02T00:30:44+00:00"

DateTime.parse('02-09-2007 12:30:44 PM EST').to_s
=> "2007-09-02T12:30:44-0500"
Date.parse('Wednesday, January 10, 2001').to_s

=> "2001-01-10"

Discussion

The parse methods can save you a lot of the drudgework associated with parsing
times in other programming languages, but they don’t always give you the results you
want. Notice in the first example how Date.parse assumed that 2/9/2007 was a
month-first date instead of a day-first date. Date.parse also tends to misinterpret
two-digit years:

Date.parse('2/9/07").to_s # => "2002-09-07"

Let’s say that Date.parse doesn’t work for you, but you know that all the dates you're
processing will be formatted a certain way. You can create a format string using the
standard strftime directives, and pass it along with a date string into Date
Time.strptime or Date.strptime. If the date string matches up with the format
string, you’ll get a Date or DateTime object back. You may already be familiar with
this technique, since date formatting is done similarly in many programming lan-
guages, as well as the Unix date command.

Some common date and time formats include:

126 | Chapter4:Date and Time

american_date = '%m/%d/%y"
Date.strptime('2/9/07', american_date).to_s # =>
DateTime.strptime('2/9/05', american_date).to_s

=> "2005-02-09T00:
Date.strptime('2/9/68', american_date).to_s # =>
Date.strptime('2/9/69', american_date).to_s # =>

european_date = '%d/%m/%y'

Date.strptime('2/9/07', european_date).to_s # =>
Date.strptime('02/09/68', european_date).to_s # =>
Date.strptime('2/9/69', european_date).to_s # =>

four_digit_year_date = '%m/%d/%Y'

Date.strptime('2/9/2007', four_digit_year_date).to_s # =>
Date.strptime('02/09/1968"', four_digit_year_date).to_s # =>
Date.strptime('2/9/69', four_digit_year_date).to_s # =>

date_and_time = '"%m-%d-%Y %H:%M:%S %Z'
DateTime.strptime('02-09-2007 12:30:44 EST', date_and_time).
=> "2007-02-09T12:30:44-05:00"
DateTime.strptime('02-09-2007 12:30:44 PST', date_and_time).
=> "2007-02-09T12:30:44-08:00"
DateTime.strptime('02-09-2007 12:30:44 GMT', date_and_time).
=> "2007-02-09T12:30:44+00:00"

twelve_hour_clock_time = '%m-%d-%Y %I:%M:%S %p'
DateTime.strptime('02-09-2007 12:30:44 AM', twelve_hour_cloc
=> "2007-02-09T00:30:44+00:00"
DateTime.strptime('02-09-2007 12:30:44 PM', twelve_hour_cloc
=> "2007-02-09T12:30:44+00:00"

word_date = '%A, %B %d, %Y'
Date.strptime('Wednesday, January 10, 2001', word_date).to_s
=> "2001-01-10"

"2007-02-09"
00:00+00:00"

"2068-02-09"
"1969-02-09"

"2007-09-02"
"2068-09-02"
"1969-09-02"

"2007-02-09"
"1968-02-09"
"0069-02-09"
to_s
to_s

to_s

k_time).to_s

k_time).to_s

If your date strings might be in one of a limited number of formats, try iterating over
a list of format strings and attempting to parse the date string with each one in turn.
This gives you some of the flexibility of Date.parse while letting you override the
assumptions it makes. Date. parse is still faster, so if it'll work, use that:

Date.parse('1/10/07').to_s # =>
Date.parse('2007 1 10').to_s
ArgumentError: invalid date

TRY_FORMATS = ['%d/%m/%y', '%Y %m %d']
def try_to_parse(s)
parsed = nil
TRY_FORMATS.each do |[format|
begin
parsed = Date.strptime(s, format)
break
rescue ArgumentError

"0007-01-10"

4.2 Parsing Dates, Precisely or Fuzzily

127

end

end

return parsed
end
try_to_parse('1/10/07').to_s # => "2007-10-01"
try_to_parse('2007 1 10').to_s # => "2007-01-10"

Several common date formats cannot be reliably represented by strptime format
strings. Ruby defines class methods of Time for parsing these date strings, so you
don’t have to write the code yourself. Each of the following methods returns a Time
object.

Time.rfc822 parses a date string in the format of RFC822/RFC2822, the Internet
email standard. In an RFC2822 date, the month and the day of the week are always in
English (for instance, Tue and Jul), even if the locale is some other language:

require 'time'

mail_received = 'Tue, 1 Jul 2003 10:52:37 +0200'

Time.rfc822(maill_received)

=> 2003-07-01 01:52:37 -0700
To parse a date in the format of RFC2616, the HTTP standard, use Time.httpdate.
An RFC2616 date is the kind of date you see in HTTP headers like Last-Modified.
As with RFC2822, the month and day abbreviations are always in English:

last_modified = 'Tue, 05 Sep 2006 16:05:51 GMT'

Time.httpdate(last_modified)
=> 2006-09-05 09:05:51 -0700

To parse a date in the format of ISO 8601 or XML Schema, use Time.1s08601 or
Time.xmlschema:

timestamp = '2001-04-17T19:23:17.201Z"'

t = Time.1s08601(timestamp) # => 2001-04-17 19:23:17 UTC
t.sec #=> 17

t.tv_usec # => 201000

Don’t confuse these class methods of Time with the instance methods of the same
names. The class methods create Time objects from strings. The instance methods go
the other way, formatting an existing Time object as a string:

t = Time.at(1000000000) # => 2001-09-08 18:46:40 -0700
t.rfc822 # => "Sat, 08 Sep 2001 18:46:40 -0700"
t.httpdate # => "Sun, 09 Sep 2001 01:46:40 GMT"
t.1s08601 # => "2001-09-08T18:46:40-07:00"

128 | Chapter4: Date and Time

See Also

o The RDoc for the Time#tstrftime method lists most of the supported strftime
directives (ri Time#strftime); for a more detailed and complete list, see the
table in Recipe 4.3, “Printing a Date”

4.3 Printing a Date

Problem

You want to print a date object as a string.

Solution

If you just want to look at a date, you can call Time#to_s or Date#to_s and not
bother with fancy formatting:

require 'date'

Time.now.to_s # => "2013-10-04 14:44:17 -0700"

DateTime.now.to_s # => "2013-10-04T14:44:24-07:00"
If you need the date in a specific format, you'll need to define that format as a string
containing time-format directives. Pass the format string into Time#strftime or
Date#tstrftime. Youll get back a string in which the formatting directives have been
replaced by the corresponding parts of the Time or DateTime object.

A formatting directive looks like a percent sign and a letter: %x. Everything in a for-
mat string that’s not a formatting directive is treated as a literal:

Time.gm(2013).strftime('The year is %Y!') # => "The year is 2013!"

The Discussion lists all the time formatting directives defined by Time#strftime and
Date#strftime. Here are some common time-formatting strings, shown against a
sample date of about 1:30 in the afternoon, GMT, on the last day of 2013:

time = Time.gm(2013, 12, 31, 13, 22, 33)

american_date = '%D'

time.strftime(american_date) # => "12/31/13"

european_date = '%d/%m/%y"'

time.strftime(european_date) # => "31/12/13"
four_digit_year_date = '%m/%d/%Y'

time.strftime(four_digit_year_date) # => "12/31/2013"
date_and_time = '%m-%d-%Y %H:%M:%S %Z'

time.strftime(date_and_time) # => "12-31-2013 13:22:33 UTC"
twelve_hour_clock_time = '"%m-%d-%Y %I:%M:%S %p'
time.strftime(twelve_hour_clock_time) # => "12-31-2013 01:22:33 PM"
word_date = '%A, %B %d, %Y'

time.strftime(word_date) # => "Saturday, December 31, 2013"

43PrintingaDate | 129

Discussion

Printed forms, parsers, and people can all be very picky about the formatting of dates.
Having a date in a standard format makes dates easier to read and scan for errors.
Agreeing on a format also prevents ambiguities: is 4/12 the fourth of December, or
the twelfth of April?

If you require time, your Time objects will sprout special-purpose formatting meth-
ods for common date representation standards: Time#rfc822, Time#httpdate, and

Time#1s08601. These make it easy for you to print dates in formats compliant with
email, HTTP, and XML standards:

require 'time'
time = Time.gm(2013, 12, 31, 13, 22, 33)

time.rfc822 # => "Tue, 31 Dec 2013 13:22:33 -0000"
time.httpdate # => "Sat, 31 Dec 2013 13:22:33 GMT"
time.1s08601 # => "2013-12-31T13:22:33Z"

DateTime provides only one of these three formats. ISO8601 is the default string rep-
resentation of a DateTime object (the one you get by calling #to_s). This means you
can easily print DateTime objects into XML documents without having to convert
them into Time objects.

For the other two formats, your best strategy is to convert the DateTime into a Time
object (see Recipe 4.9 for details). Even on a system with a 32-bit time counter, your
DateTime objects will probably fit into the 1901-2037 year range supported by Time,
since RFC822 and HTTP dates are almost always used with dates in the recent past or
near future.

Sometimes you need to define a custom date format. Time#strftime and
Date#strftime define many directives for use in format strings. Table 4-2 says what
they do. You can combine these in any way within a formatting string.

Some of these may be familiar to you from other programming languages; virtually
all languages since C have included a strftime implementation that uses some of
these directives. Some of the directives are unique to Ruby.

Table 4-2. Date/time formatting directives

Formatting What it does Example for

directive 13:22:33 on
December 31,
2005

%A English day of the week. Saturday

%a Abbreviated English day of the week. Sat

130 | Chapter4:Date and Time

Formatting
directive

%B
%b
%C

%C

%L
%M

%m

What it does

English month of the year.
Abbreviated English month of the year.
The century part of the year, zero-padded if necessary.

This prints the date and time in a way that looks like the default string representation
of Time, but without the time zone. Equivalent to %a %b %e %H:%M:%S %Y

American-style short date format with two-digit year. Equivalent to %m/%d/%y
Day of the month, zero-padded.

Day of the month, not zero-padded.

Short date format with four-digit year.; equivalent to %Y-%m-%d

Commercial year with century, zero-padded to a minimum of four digits and with a
minus sign prepended for dates BCE. (See Recipe 4.11. For the calendar year, use %Y.)

Year without century, zero-padded to two digits.

Hour of the day, 24-hour clock, zero-padded to two digits.

Abbreviated month of the year; the same as %b.

Hour of the day, 12-hour clock, zero-padded to two digits.

Julian day of the year, padded to three digits (from 001 to 366).

Hour of the day, 24-hour clock, not zero-padded; like %H but with no padding.
Hour of the day, 12-hour clock, not zero-padded; like %I but with no padding.
Minute of the hour, padded to two digits.

Month of the year, padded to two digits.

A newline. Don't use this; just put a newline in the formatting string.

Lowercase meridian indicator (am or pm).

Example for
13:22:33 on

December 31,
2005

December

Dec

20

Sat Dec 31
13:22:33 2005.

12/31/05

31

31

2005-12-31

2005

05

Dec

01

365

22

\n

pm

43PrintingaDate | 131

Formatting What it does Example for
directive 13:22:33 on

December 31,
2005

%p Uppercase meridian indicator. Like %P, except gives AM or PM; note, the uppercase P PM
gives the lowercase meridian, and vice versa.

%R Short 24-hour time format; equivalent to %H:%M. 13:22

%r Long 12-hour time format; equivalent to %I:%M:%S %p. 01:22:33 PM
%S Second of the minute, zero-padded to two digits. 3

%s Seconds since the Unix epoch. 1136053353
%T Long 24-hour time format; equivalent to %H:%M:%S. 13:22:33

%t A tab. Don't use this; just put a tab in the formatting string. \t

%U Calendar week number of the year. Assumes that the first week of the year starts on 52

the first Sunday; if a date comes before the first Sunday of the year, it's counted as part
of “week zero” and “00” is returned.

%u Commercial weekday of the year, from 1 to 7, with Monday being day 1. 6
%V Commercial week number of the year (see Recipe 4.11). 52
%W The same as %V, but if a date is before the first Monday of the year, it's counted as part 52

of “week zero” and “00” is returned

%w (alendar day of the week, from 0 to 6, with Sunday being day 0. 6

%X Preferred representation for the time; equivalent to %H:%M:%S. 13:22:33

%x Preferred representation for the date; equivalent to %m/%d/%y. 12/31/05

%Y Year with century, zero-padded to four digits and with a minus sign prepended for 2005
dates BCE.

%y Year without century, zero-padded to two digits. 05

%Z The time zone abbreviation (Time) or GMT offset (Date). Date will use Z instead of ~ GMT for Time, Z
"+0000" if a time is in GMT. for Date

%z The time zone as a GMT offset. +0000

132 | Chapter4:Date and Time

Formatting What it does Example for

directive 13:22:33 on
December 31,
2005

%% Aliteral percent sign. %

%V European-style date format with month abbreviation; equivalent to %e-%b-%Y. 31-Dec-2005

% Prints a Date object as though it were a Time object converted to a string. Like %c, Sat Dec 31

but includes the time zone information; equivalent to %a %b %e %H:%M:%S %Z %Y. 13:22:33 Z 2005

Date defines two formatting directives that won't work at all in Time#strftime. Both
are shortcuts for formatting strings that you could create manually.

If you need a date format for which there’s no formatting directive, you should be able
to compensate by writing Ruby code. For instance, suppose you want to format our
example date as “The 31st of December”. There’s no special formatting directive to
print the day as an ordinal number, but you can use Ruby code to build a formatting
string that gives the right answer:

class Time
def day_ordinal_suffix
if day == 11 or day == 12
return "th"

else
case day % 10
when 1 then return "st"
when 2 then return "nd"
when 3 then return "rd"
else return "th"
end

end

end
end

time.strftime("The %e#{time.day_ordinal_suffix} of %B") # => "The 31st of December"

The actual formatting string differs depending on the date. In this case, it ends up
"The %est of %B", but for other dates it will be "The %end of %B", "The %erd of
%B", or "The %eth of %B".

See Also

o Time objects can parse common date formats as well as print them out; see
Recipe 4.2, “Parsing Dates, Precisely or Fuzzily,” to see how to parse the output of
strftime, rfc822, httpdate, and 1s08661

43PrintingaDate | 133

o Recipe 4.11, “Handling Commercial Dates”

4.4 Iterating Over Dates

Problem

Starting at a certain arbitrary date, you want to generate a series of sequential dates.

Solution

All of Ruby’s Time objects can be used in ranges as though they were numbers. Date
and DateTime objects iterate in increments of one day.

In Ruby 1.8, Time objects iterate in increments of one second.
In Ruby 2.1, Time objects no longer iterate in a range:

require 'date'

(Date.new(1776, 7, 2)..Date.new(1776, 7, 4)).each { |x| puts x }
1776-07-02

1776-07-03

1776-07-04

span = DateTime.new(1776, 7, 2, 1, 30, 15)..DateTime.new(1776, 7, 4, 7, 0, 0)
span.each { |x| puts x }

1776-07-02T01:30:15+00:00

1776-07-03T01:30:15+00:00

1776-07-04T01:30:15+00:00

Ruby’s Date class defines step and upto, the same convenient iterator methods used
by numbers:

the_first = Date.new(2004, 1, 1)
the_fifth = Date.new(2004, 1, 5)

the_first.upto(the_fifth) { |x| puts x }
2004-01-01
2004-01-02
2004-01-03
2004-01-04
2004-01-05

Discussion

Ruby Date objects are stored internally as numbers, and a range of those objects is
treated like a range of numbers. For Date and DateTime objects, the internal represen-
tation is the Julian day: iterating over a range of those objects adds one day at a time.

134 | Chapter4:Date and Time

For Time objects, the internal representation is the number of seconds since the Unix
epoch: iterating over a range of Time objects adds one second at a time.

Time doesn’t define the step and upto method, but it’s simple to add them:

class Time
def step(other_time, increment)
raise ArgumentError, "step can't be 0" if increment ==
increasing = self < other_time
if (increasing && increment < 0) || (!increasing && increment > 0)
yield self
return
end
d = self
begin
yield d
d += increment
end while (increasing ? d <= other_time : d >= other_time)
end

def upto(other_time)
step(other_time, 1) { |x| yield x }
end
end

the_first = Time.local(2004, 1, 1)

the_second = Time.local(2004, 1, 2)
the_first.step(the_second, 60 * 60 * 6) { |x| puts x }
Thu Jan 01 00:00:00 EST 2004

Thu Jan 01 06:00:00 EST 2004

Thu Jan 01 12:00:00 EST 2004

Thu Jan 01 18:00:00 EST 2004

Fri Jan 02 00:00:00 EST 2004

the_first.upto(the_first) { |x| puts x }
Thu Jan 01 00:00:00 EST 2004

See Also

o Recipe 3.15, “Generating a Sequence of Numbers”

4.5 Doing Date Arithmetic

Problem

You want to find how much time has elapsed between two dates, or add a number to a
date to get an earlier or later date.

4.5 Doing Date Arithmetic | 135

Solution

Adding or subtracting a Time object and a number adds or subtracts that number of
seconds. Adding or subtracting a Date object and a number adds or subtracts that
number of days:

require 'date'

y2k = Time.gm(2000, 1, 1) # => 2000-01-01 00:00:00 UTC
y2k + 1 # => 2000-01-01 00:00:01 UTC
y2k - 1 # => 1999-12-31 23:59:59 UTC
y2k + (60 * 60 * 24 * 365) # => 2000-12-31 00:00:00 UTC
y2k_dt = DateTime.new(2000, 1, 1)

(y2k_dt + 1).to_s # => "2000-01-02T00:00:00+00:00"
(y2k_dt - 1).to_s # => "1999-12-31T00:00:00+00:00"
(y2k_dt + 0.5).to_s # => "2000-01-01T12:00:00+00:00"
(y2k_dt + 365).to_s # => "2000-12-31T00:00:00+00:00"

Subtracting one Time from another gives the interval between the dates, in seconds.
Subtracting one Date from another gives the interval in days:

day_one = Time.gm(1999, 12, 31)

day_two = Time.gm(2000, 1, 1)

day_two - day_one # => 86400.0
day_one - day_two # => -86400.0

day_one = DateTime.new(1999, 12, 31)

day_two = DateTime.new(2000, 1, 1)

day_two - day_one #=>(1/1)
day_one - day_two #=>(-1/1)

Compare times from now and 10 seconds in the future.
before_time = Time.now
before_datetime = DateTime.now

sleep(10)
Time.now - before_time # => 10.003414
DateTime.now - before_datetime # => (10005241/86400000000)

The activesupport gem, a prerequisite of Ruby on Rails, defines many useful func-
tions on Numeric and Time for navigating through time:'

gem 'activesupport'
require 'active_support/all'

10.days.ago # => 2013-09-24 15:00:33 -0700
1.month.from_now # => 2013-11-04 15:00:47 -0800
2 .weeks.since(Time.local(2006, 1, 1)) # => 2006-01-15 00:00:00 -0800
y2k - 1.day # => 1999-12-31 00:00:00 UTC

1 So does the Facets library.

136

| Chapter4: Date and Time

y2k + 6.years # => 2006-01-01 00:00:00 UTC
6.years.since y2k # => 2006-01-01 00:00:00 UTC

Discussion

Ruby’s date arithmetic takes advantage of the fact that Ruby’s Time objects are stored
internally as numbers. Additions to dates and differences between dates are handled
by adding to and subtracting the underlying numbers. This is why adding 1 to a Time
object adds one second and adding 1 to a DateTime object adds one day: a Time object
is stored as a number of seconds since a time zero, and a Date or DateTime object is
stored as a number of days since a (different) time zero.

Not every arithmetic operation makes sense for dates: you could “multiply two dates”
by multiplying the underlying numbers, but that would have no meaning in terms of
real time, so Ruby doesn’t define those operators. Once a number takes on aspects of
the real world, there are limitations to what you can legitimately do to that number.

Here’s a shortcut for adding or subtracting big chunks of time: using the right-or left-
shift operators on a Date or DateTime object will add or subtract a certain number of
months from the date:

(y2k_dt >> 1).to_s # => "2000-02-01T00:00:00+00:00"
(y2k_dt << 1).to_s # => "1999-12-01T00:00:00+00:00"

You can get similar behavior with activesupport’s Numeric#month method, but that
method assumes that a “month” is 30 days long, instead of dealing with the lengths of
specific months:

y2k + 1.month # => 2000-02-01 00:00:00 UTC
y2k - 1.month # => 1999-12-01 00:00:00 UTC
By contrast, if you end up in a month that doesn’t have enough days (for instance, you

start on the 31st and then shift to a month that only has 30 days), the standard library
will use the last day of the new month:

Thirty days hath September..
halloween = Date.new(2000, 10, 31)
(halloween << 1).to_s # => "2000-09-30"

(halloween >> 1).to_s # => "2000-11-30"
(halloween >> 2).to_s # => "2000-12-31"
leap_year_day = Date.new(1996, 2, 29)

(leap_year_day << 1).to_s # => "1996-01-29"
(leap_year_day >> 1).to_s # => "1996-03-29"
(leap_year_day >> 12).to_s # => "1997-02-28"
(leap_year_day << 12 * 4).to_s # => "1992-02-29"

4.5 Doing Date Arithmetic | 137

See Also

o Recipe 4.4, “Iterating Over Dates”
o Recipe 4.6, “Counting the Days Since an Arbitrary Date”

o The RDoc for Rails’ ActiveSupport::CoreExtensions: :Numeric::Time module

4.6 Counting the Days Since an Arbitrary Date

Problem

You want to see how many days have elapsed since a particular date, or how many
remain until a date in the future.

Solution

Subtract the earlier date from the later one. If youre using Time objects, the result will
be a floating-point number of seconds, so divide by the number of seconds in a day:

def last_modified(file)

t1 = File.stat(file).ctime

t2 = Time.now

elapsed = (t2-t1)/(60*60%24)

puts "#{file} was last modified #{elapsed} days ago."
end

last_modified("/etc/passwd")

/etc/passwd was last modified 135.61505719175926 days ago.
last_modified("/Users/lucas/")

/Users/lucas/ was last modified 6.394927884837963 days ago.

If you're using DateTime objects, the result will be a rational number. You’ll probably
want to convert it to an integer or floating-point number for display:

require 'date'
def advent_calendar(date=DateTime.now)
christmas = DateTime.new(date.year, 12, 25)
christmas = DateTime.new(date.year+1, 12, 25) if date > christmas
difference = (christmas-date).to_1
if difference == 0
puts "Today is Christmas."
else
puts "Only #{difference} day#{"s" unless difference==1} until Christmas.'
end
end

advent_calendar(DateTime.new(2006, 12, 24))
Only 1 day until Christmas.
advent_calendar(DateTime.new(2006, 12, 25))

138 | Chapter4:Date and Time

http://bit.ly/numeric_time

Today is Christmas.
advent_calendar(DateTime.new(2006, 12, 26))
Only 364 days until Christmas.

Discussion

Since times are stored internally as numbers, subtracting one from another will give
you a number. Since both numbers measure the same thing (time elapsed since some
“time zero”), that number will actually mean something: it'll be the number of sec-
onds or days that separate the two times on the timeline.

Of course, this works with other time intervals as well. To display a difference in
hours, for Time objects divide the difference by the number of seconds in an hour
(3,600, or 1.hour if you're using Rails). For DateTime objects, divide by the number of
days in an hour (that is, multiply the difference by 24):

sent = DateTime.new(2006, 10, 4, 3, 15)

received = DateTime.new(2006, 10, 5, 16, 33)

elapsed = (received-sent) * 24

puts "You responded to my email #{elapsed.to_f} hours after I sent it."
You responded to my email 37.3 hours after I sent 1it.

You can even use divmod on a time interval to hack it down into smaller and smaller
pieces. Once when I was in college, I wrote a script that displayed how much time
remained until the finals I should have been studying for. This method gives you a
countdown of the days, hours, minutes, and seconds until some scheduled event:

require 'date'
def remaining(date, event)
intervals = [["day", 1], ["hour", 24], ["minute", 60], ["second", 60]]
elapsed = DateTime.now - date
tense = elapsed > 0 ? "since" : "until"
interval = 1.0
parts = intervals.collect do |name, new_interval|
interval /= new_interval
number, elapsed = elapsed.abs.divmod(interval)

"#{number.to_1i} #{name}#{"s" unless number == 1}"
end
puts "#{parts.join(", ")} #{tense} #{event}."

end

remaining(DateTime.new(2006, 4, 15, 0, 0, 0, DateTime.now.offset),
"the book deadline")
27 days, 4 hours, 16 minutes, 9 seconds until the book deadline.
remaining(DateTime.new(1999, 4, 23, 8, 0, 0, DateTime.now.offset),
"the Math 114A final")
2521 days, 11 hours, 43 minutes, 50 seconds since the Math 114A final.

4.6 Counting the Days Since an Arbitrary Date | 139

See Also

« Recipe 4.5, “Doing Date Arithmetic”

4.7 Converting Between Time Zones

Problem

You want to change a Time object so that it represents the same moment of time in
some other time zone.

Solution

The most common time zone conversions are the conversion of system local time to
UTC, and the conversion of UTC to local time. These conversions are easy for both
Time and DateTime objects.

The Time#gmtime method modifies a Time object in place, converting it to UTC. The
Time#localtime method converts in the opposite direction:

now = Time.now # => 2013-10-10 08:36:41 -0700
now = now.gmtime # => 2013-10-10 15:36:41 UTC
now = now.localtime # => 2013-10-10 08:36:41 -0700

The DateTime#new_offset method converts a DateTime object from one time zone to
another. You must pass in the dstination time zone’s offset from UTC; to convert local
time to UTC, pass in zero. Since DateTime objects are immutable, this method creates
a new object identical to the old DateTime object, except for the time zone offset:

require 'date'
local = DateTime.now

local.to_s # => "2013-10-10T08:37:22-07:00"
utc = local.new_offset(0)
utc.to_s # => "2013-10-10T15:37:22+00:00"

To convert a UTC DateTime object to local time, youll need to call
DateTime#new_offset and pass in the numeric offset for your local time zone. The
easiest way to get this offset is to call offset on a DateTime object known to be in
local time. The offset will usually be a rational number with a denominator of 24:

local = DateTime.now
utc = local.new_offset

local.offset #=> (-7/24)

local_from_utc = utc.new_offset(local.offset)
local_from_utc.to_s # => "2013-10-10T08:37:55-07:00"
local == local_from_utc # => true

140 | Chapter4: Date and Time

Discussion

Time objects created with Time.at, Time.local, Time.mktime, Time.new, and
Time.now are created using the current system time zone. Time objects created with
Time.gm and Time.utc are created using the UTC time zone. Time objects can repre-
sent any time zone, but it’s difficult to use a time zone with Time other than local time
or UTC.

Suppose you need to convert local time to some time zone other than UTC. If you
know the UTC offset for the destination time zone, you can represent it as a fraction
of a day and pass it into DateTime#new_offset:

Convert local (Pacific) time to Eastern time
pacific = DateTime.now
pacific.to_s # => "2013-10-10T08:39:04-07:00"

eastern_offset = Rational(-5, 24)
eastern = pacific.new_offset(eastern_offset)
eastern.to_s # => "2013-10-10T10:39:04-05:00"

DateTime#new_offset can convert between arbitrary time zone offsets, so for time
zone conversions, it’s easiest to use DateTime objects and convert back to Time objects
if necessary. But DateTime objects only understand time zones in terms of numeric
UTC offsets. How can you convert a date and time to UTC when all you know is that
the time zone is called WET, Zulu, or Asia/Taskent?

On Unix systems, you can temporarily change the “system” time zone for the current
process. The C library underlying the Time class knows about an enormous number
of time zones (this “zoneinfo” database is usually located in /usr/share/zoneinfo/,
if you want to look at the available time zones). You can tap this knowledge by setting
the environment variable TZ to an appropriate value, forcing the Time class to act as
though your computer were in some other time zone. Here’s a method that uses this
trick to convert a Time object to any time zone supported by the underlying C library:

class Time
def convert_zone(to_zone)
original_zone = ENV["TZ"]
utc_time = dup.gmtime
ENV["TZ"] = to_zone
to_zone_time = utc_time.localtime
ENV["TZ"] = original_zone
return to_zone_time
end
end

Let’s do a number of conversions of a local (Eastern) time to other time zones across
the world:

4.7 Converting Between Time Zones | 141

t = Time.at(1000000000) # => 2001-09-08 18:46:40 -0700

t.convert_zone("US/Eastern") # => 2001-09-08 21:46:40 -0400
t.convert_zone("US/Alaska") # => 2001-09-08 17:46:40 -0800
t.convert_zone("UTC") # => 2001-09-09 01:46:40 +0000
t.convert_zone("Turkey") # => 2001-09-09 04:46:40 +0300

Note that some time zones, like India’s, are half an hour offset from most others:
t.convert_zone("Asia/Calcutta") # => 2001-09-09 07:16:40 +0530

By setting the TZ environment variable before creating a Time object, you can repre-
sent the time in any time zone. The following code converts Lagos time to Singapore
time, regardless of the “real” underlying time zone:

ENV["TZ"] = "Africa/Lagos"

t = Time.at(1000000000) # => 2001-09-09 02:46:40 +0100
ENV["TZ"] = nil

t.convert_zone("Singapore") # => 2001-09-09 09:46:40 +0800

Just to prove it's the same time as before:
t.convert_zone("US/Eastern") # => 2001-09-08 21:46:40 -0400

Since the TZ environment variable is global to a process, you'll run into problems if
you have multiple threads trying to convert time zones at once.

See Also

o Recipe 4.9, “Converting Between Time and DateTime Objects”
o Recipe 4.8, “Checking Whether Daylight Saving Time Is in Effect”

o Information on the “zoneinfo” database

4.8 Checking Whether Daylight Saving Time Is in Effect

Problem

You want to see whether the current time in your locale is normal time or Daylight
Saving/Summer Time.

Solution

Create a Time object and check its isdst method:
Time.local(2006, 1, 1) # => Sun Jan 01 00:00:00 EST 2006
Time.local(2006, 1, 1).isdst # => false

142 | Chapter4:Date and Time

http://www.twinsun.com/tz/tz-link.htm

Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
Time.local(2006, 10, 1).isdst # => true

Discussion

Time objects representing UTC times will always return false when isdst is called,
because UTC is the same year-round. Other Time objects will consult the Daylight
Saving Time rules for the time locale used to create the Time object. This is usually the
system locale on the computer you used to create it: see Recipe 4.7 for information on
changing it. The following code demonstrates some of the rules pertaining to Day-
light Saving Time across the United States:

eastern = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
eastern.isdst # => true

ENV['TZ'] = 'US/Pacific'

pacific = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 PDT 2006
pacific.isdst # => true

Except for the Navajo Nation, Arizona doesn't use Daylight Saving Time.
ENV['TZ'] = 'America/Phoenix'

arizona = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 MST 2006
arizona.isdst # => false

Finally, restore the original time zone.

ENV['TZ'] = nil
The C library on which Ruby’s Time class is based handles the complex rules for Day-
light Saving Time across the history of a particular time zone or locale.

Daylight Saving Time was mandated across the U.S. in 1918, but abandoned in most
locales shortly afterward. The “zoneinfo” file used by the C library contains this infor-
mation, along with many other rules:

Daylight saving first took effect on March 31, 1918.

Time.local(1918, 3, 31).isdst # => false
Time.local(1918, 4, 1).1sdst # => true
Time.local(1919, 4, 1).isdst # => true

The federal law was repealed later in 1919, but some places

continued to use Daylight Saving Time.

ENV['TZ'] = 'US/Pacific'

Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 PST 1920

ENV['TZ'] = nil
Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 EDT 1920

Daylight Saving Time was reintroduced during the Second World War.
Time.local(1942,2,9) # => Mon Feb 09 00:00:00 EST 1942
Time.local(1942,2,10) # => Tue Feb 10 00:00:00 EWT 1942
EWT stands for "Eastern War Time"

4.8 Checking Whether Daylight Saving Time Isin Effect | 143

A US. law passed in 2005 expanded Daylight Saving Time into March and November,
beginning in 2007. Depending on how old your zoneinfo file is, Time objects you cre-
ate for dates in 2007 and beyond might or might not reflect the new law:

Time.local(2007, 3, 13) # => Tue Mar 13 00:00:00 EDT 2007
Your computer may incorrectly claim this time is EST

This illustrates a general point. There’s nothing your elected officials love more than
passing laws, so you shouldn’t rely on isdst to be accurate for any Time objects that
represent times a year or more into the future. When that time actually comes
around, Daylight Saving Time might obey different rules in your locale.

The Date class isn't based on the C library, and knows nothing about time zones or
locales, so it also knows nothing about Daylight Saving Time.

See Also

o Recipe 4.7, “Converting Between Time Zones”

o Information on the “zoneinfo” database

4.9 Converting Between Time and DateTime Objects

Problem

Youre working with both DateTime and Time objects, created from Ruby’s two stan-
dard date/time libraries. You can't mix these objects in comparisons, iterations, or
date arithmetic because theyre incompatible. You want to convert all the objects into
one form or another so that you can treat them all the same way.

Solution

To convert a Time object to a DateTime, you can use built-in methods.

New in Ruby 2.1

Starting in Ruby 1.9, Ruby added interconversion methods to the Time, Date, and
DateTime objects. In Ruby 1.8, these methods did not exist so you had to write them
yourself.

If you are using Ruby 1.8, you need to add your own methods for conversion:

require 'date'
class Time
def to_datetime

144 | Chapter 4: Date and Time

http://www.twinsun.com/tz/tz-link.htm

Convert seconds + microseconds into a fractional number of seconds
seconds = sec + Rational(usec, 10**6)

Convert a UTC offset measured in minutes to one measured in a
fraction of a day.
offset = Rational(utc_offset, 60 * 60 * 24)
DateTime.new(year, month, day, hour, min, seconds, offset)
end
end

Then you con convert from Time to DateTime via the Time#to_datetime method:

time = Time.gm(2000, 6, 4, 10, 30, 22, 4010)
=> Sun Jun 04 10:30:22 UTC 2000
time.to_datetime.to_s

=> "2000-06-04T10:30:22Z2"

Converting a DateTime to a Time is similar; you just need to decide whether you want
the Time object to use local time or GMT. This code adds the conversion method to
Date, the superclass of DateTime, so it will work on both Date and DateTime objects:

require 'date'

(datetime = DateTime.new(1990, 10, 1, 22, 16, Rational(41,2))).to_s
=> "1990-10-01T722:16:20Z"

datetime.to_time

=> 1990-10-01 15:16:20 -0700

Discussion

In Ruby 1.8, Ruby’s two ways of representing dates and times didn’t coexist very well.
But since neither can be a total substitute for the other, you'll probably use them both
during your Ruby career.

Since Ruby 2.1, the conversion methods let you get around incompatibilities by sim-
ply converting one type to the other:

time < datetime

ArgumentError: comparison of Time with DateTime failed
time.to_datetime < datetime

=> false

time < datetime.to_gm_time

=> false

time - datetime
TypeError: can't convert DateTime into Float
(time.to_datetime - datetime).to_f

=> 3533.50973962975 # Measured in days
time - datetime.to_gm_time
=> 305295241.50401 # Measured in seconds

The methods just defined are reversible: you can convert back and forth between
Date and DateTime objects without losing accuracy:

4.9 Converting Between Time and DateTime Objects | 145

time # => 2000-06-04 10:30:22 UTC

time.usec # => 4010
time.to_datetime.to_time # => 2000-06-04 03:30:22 -0700
time.to_datetime.to_time.usec # => 4010

datetime.to_s # => "1990-10-01T22:16:20+00:00"
datetime.to_time.to_datetime.to_s # => "1990-10-01T15:16:20-07:00"

Once you can convert between Time and DateTime objects, it'’s simple to write code
that normalizes a mixed array, so that all its elements end up being of the same type.
This method tries to turn a mixed array into an array containing only Time objects. If
it encounters a date that won't fit within the constraints of the Time class, it starts over
and converts the array into an array of DateTime objects instead (thus losing any

information about Daylight Saving Time):

require 'date'
def normalize_time_types(array)

Don't do anything if all the objects are already of the same type.

first_class = array[0].class
first_class = first_class.super if first_class == DateTime
return unless array.detect { |x| !x.is_a?(first_class) }

normalized = array.collect do |t]|
if t.is_a?(Date)
begin
t.to_time

rescue ArgumentError # Time out of range; convert to DateTimes instead.

convert_to = DateTime
break
end
else
t
end
end

unless normalized
normalized = array.collect { |t| t.is_a?(Time) ? t.to_datetime
end
return normalized
end

When all objects in a mixed array can be represented as either Time or DateTime

objects, this method makes them all Time objects:

mixed_array = [Time.now, DateTime.now]

=> [2013-10-10 09:27:10 -0700,

#<DateTime: 23556610914534571/9600000000, -5/24,2299161>]
normalize_time_types(mixed_array)

=> [2013-10-10 09:27:10 -0700, 2013-10-10 09:27:10 -0700]

ct}

146 | Chapter4: Date and Time

If one of the DateTime objects can’'t be represented as a Time, normalize_time_types
turns all the objects into DateTime instances. This code is run on a system with a 32-
bit time counter:

mixed_array << DateTime.civil(1776, 7, 4)
normalize_time_types(mixed_array).collect { |x| x.to_s }

=> ["2013-10-10 09:27:10 -0700", "2013-10-10 09:27:10 -0700",
=> "1776-07-03 16:00:00 -0800"]

See Also

o Recipe 4.1, “Finding Today’s Date”

4.10 Finding the Day of the Week

Problem

You want to find the day of the week for a certain date.

Solution

Use the wday method (supported by both Time and DateTime) to find the day of the
week as a number between 0 and 6. Sunday is day zero.

The following code yields to a code block the date of every Sunday between two dates.
It uses wday to find the first Sunday following the start date (keeping in mind that the
first date may itself be a Sunday). Then it adds seven days at a time to get subsequent
Sundays:

def every_sunday(di, d2)
You can use 1.day instead of 60*60*24 if you're using Rails.
one_day = d1.is_a?(Time) ? 60*60%24 : 1
sunday = d1 + ((7-dl.wday) % 7) * one_day
while sunday < d2
yield sunday
sunday += one_day * 7
end
end

def print_every_sunday(d1l, d2)
every_sunday(dl, d2) { |sunday| puts sunday.strftime("%x")}
end

print_every_sunday(Time.local(2006, 1, 1), Time.local(2006, 2, 4))
01/01/06
01/08/06
01/15/06

4.10 Finding the Day of the Week | 147

01/22/06
01/29/06

Discussion

The most commonly used parts of a time are its calendar and clock readings: year,
day, hour, and so on. Time and DateTime let you access these, but they also give you
access to a few other aspects of a time: the Julian day of the year (yday) and, more
usefully, the day of the week (wday).

The every_sunday method will accept either two Time objects or two DateTime
objects. The only difference is the number you need to add to an object to increment
it by one day. If you're only going to be using one kind of object, you can simplify the
code a little.

To get the day of the week as an English string, use the strftime directives %A and %a:

t = Time.local(2006, 1, 1)
t.strftime("%A %A %A!") # => "Sunday Sunday Sunday!"
t.strftime("%a %a %a!") # => "Sun Sun Sun!"

You can find the day of the week and the day of the year, but Ruby has no built-in
method for finding the week of the year (there is a method to find the commercial
week of the year; see Recipe 4.11). If you need such a method, it’s not hard to create
one using the day of the year and the day of the week. This code defines a week
method in a module, which it mixes in to both Date and Time:

require 'date'
module Week
def week
(yday + 7 - wday) / 7
end
end

class Date
include Week
end

class Time
include Week

end

saturday = DateTime.new(2005, 1, 1)

saturday.week #=>0

(saturday+1).week # => 1 #Sunday, January 2

(saturday-1).week # => 52 #Friday, December 31
See Also

2

o Recipe 4.3, “Printing a Date

148 | Chapter4: Date and Time

o Recipe 4.5, “Doing Date Arithmetic”
« Recipe 4.11, “Handling Commercial Dates”

4.11 Handling Commercial Dates

Problem

When writing a business or financial application, you need to deal with commercial
dates instead of civil or calendar dates.

Solution

DateTime offers some methods for working with commercial dates. Date#cwday gives
the commercial day of the week, Date#cweek gives the commercial week of the year,
and Date#cwyear gives the commercial year.

Consider January 1, 2006. This was the first day of calendar 2006, but since it was a
Sunday, it was the last day of commercial 2005:

require 'date'
sunday = DateTime.new(2006, 1, 1)

sunday.year # => 2006
sunday.cwyear # => 2005
sunday . cweek # => 52
sunday.wday #=>0
sunday.cwday #=>7

Commercial 2006 started on the first weekday in 2006:

monday = sunday + 1

monday.cwyear # => 2006
monday . cweek #=>1
Discussion

Unless you're writing an application that needs to use commercial dates, you probably
don’t care about this, but it’s kind of interesting (if you think dates are interesting).
The commercial week starts on Monday, not Sunday, because Sunday’s part of the
weekend. DateTime#cwday is just like DateTime#wday, except it gives Sunday a value
of seven instead of zero.

This means that DateTime#cwday has a range from one to seven instead of from zero
to six:

(sunday...sunday+7).each do |d|
puts "#{d.strftime("%a")} #{d.wday} #{d.cwday}"
end

4.11 Handling Commercial Dates | 149

Sun 0 7
Mon 1 1
Tue 2 2
Wed 3 3
Thu 4 4
Fri 55
Sat 6 6

The cweek and cwyear methods have to do with the commercial year, which starts on
the first Monday of a year. Any days before the first Monday are considered part of
the previous commercial year. The example given in the Solution demonstrates this:
January 1, 2006 was a Sunday, so by the commercial reckoning it was part of the last

week of 2005.

See Also

o See Recipe 4.3, “Printing a Date,” for the strftime directives used to print parts

of commercial dates

4.12 Running a Code Block Periodically

Problem

You want to run some Ruby code (such as a call to a shell command) repeatedly at a

certain interval.

Create a method that runs a code block, then sleeps until it’s time to run the block

Solution
again:
def every_n_seconds(n)
loop do
before = Time.now
yield

interval = n-(Time.now-before)
sleep(interval) if interval > 0
end
end
every_n_seconds(5) do

puts "At the beep, the time will be #{Time.now.strftime("%X")}...

end

At the beep, the time will be 12:21:28...
At the beep, the time will be 12:21:33...
At the beep, the time will be 12:21:38...

..

beep!
beep!
beep!

beep!"

150 | Chapter4: Date and Time

Discussion

There are two main times when youd want to run some code periodically. The first is
when you actually want something to happen at a particular interval: say you're
appending your status to a logfile every 10 seconds. The other is when you would
prefer for something to happen continuously, but putting it in a tight loop would be
bad for system performance. In this case, you compromise by putting some slack
time in the loop so that your code isn’t always running.

The implementation of every_n_seconds deducts from the sleep time the time spent
running the code block. This ensures that calls to the code block are spaced evenly
apart, as close to the desired interval as possible. If you tell every_n_seconds to call a
code block every five seconds, but the code block takes four seconds to run,
every_n_seconds only sleeps for one second. If the code block takes six seconds to
run, every_n_seconds won't sleep at all: it'll come back from a call to the code block,
and immediately yield to the block again.

If you always want to sleep for a certain interval, no matter how long the code block
takes to run, you can simplify the code:

def every_n_seconds(n)
loop do
yield
sleep(n)
end
end

In most cases, you don't want every_n_seconds to take over the main loop of your
program. Here’s a version of every_n_seconds that spawns a separate thread to run
your task. If your code block stops the loop with the break keyword, the thread stops
running:

def every_n_seconds(n)
thread = Thread.new do
while true
before = Time.now
yield
interval = n-(Time.now-before)
sleep(interval) if interval > 0
end
end
return thread
end

In this snippet, we use every_n_seconds to spy on a file, waiting for people to
moditfy it:

def monitor_changes(file, resolution=1)
last_change = Time.now
every_n_seconds(resolution) do

4.12 Running a Code Block Periodically | 151

check = File.stat(file).ctime

if check > last_change
yield file
last_change = check

elsif Time.now - last_change > 60
puts "Nothing's happened for a minute, I'm bored."
break

end

end
end

That example might give output like this, if someone on the system is working on the
file /tmp/foo:

thread = monitor_changes("/tmp/foo") { [file| puts "Someone changed #{file}'" }
"Someone changed /tmp/foo!"

"Someone changed /tmp/foo!"

"Nothing's happened for a minute; I'm bored."

thread.status # => false

See Also

o Recipe 4.13, “Waiting a Certain Amount of Time”
o Recipe 25.4, “Running Periodic Tasks Without cron or at”

4.13 Waiting a Certain Amount of Time

Problem

You want to pause your program, or a single thread of it, for a specific amount of
time.

Solution

The Kernel#sleep method takes a floating-point number and puts the current thread
to sleep for some (possibly fractional) number of seconds:

3.downto(1) { |i| puts "#{i}..."; sleep(1) }; puts "Go!"
3...
#2...
#1...
Go!

Time.new # => Sat Mar 18 21:17:58 EST 2013
sleep(10)
Time.new # => Sat Mar 18 21:18:08 EST 2013
sleep(1)
Time.new # => Sat Mar 18 21:18:09 EST 2013

152 | Chapter4: Date and Time

Sleep for less then a second.

Time.new.usec # => 377185

sleep(0.1)

Time.new.usec # => 479230
Discussion

Timers are often used when a program needs to interact with a source much slower
than a computer’s CPU: a network pipe, or human eyes and hands. Rather than con-
stantly poll for new data, a Ruby program can sleep for a fraction of a second between
each poll, giving other programs on the CPU a chance to run. That’s not much time
by human standards, but sleeping for a fraction of a second at a time can greatly
improve a system’s overall performance.

You can pass any floating-point number to sleep, but that gives an exaggerated pic-
ture of how finely you can control a thread’s sleeping time. For instance, you can’t
sleep for 107" seconds, because it’s physically impossible (thats less than the Planck
time). You can't sleep for Float: :EPSILON seconds, because that’s almost certainly less
than the resolution of your computer’s timer.

You probably can’t even reliably sleep for a microsecond, even though most modern
computer clocks have microsecond precision. By the time your sleep command is
processed by the Ruby interpreter and the thread actually starts waiting for its timer
to go off, some small amount of time has already elapsed. At very small intervals, this
time can be greater than the time you asked Ruby to sleep in the first place.

Here’s a simple benchmark that shows how long sleep on your system will actually
make a thread sleep. It starts with a sleep interval of one second, which is fairly accu-
rate. It then sleeps for shorter and shorter intervals, with lessening accuracy each
time:

interval = 1.0

10.times do |x|
tl = Time.new
sleep(interval)
actual = Time.new - t1

difference = (actual-interval).abs

percent_difference = difference / interval * 100

printf("Expected: %.9f Actual: %.6f Difference: %.6f (%.2f%%)\n",
interval, actual, difference, percent_difference)

interval /= 10
end
Expected: 1.000000000 Actual: 0.999420 Difference: 0.000580 (0.06%)
Expected: 0.100000000 Actual: 0.099824 Difference: 0.000176 (0.18%)
Expected: 0.010000000 Actual: 0.009912 Difference: 0.000088 (0.88%)
Expected: 0.001000000 Actual: 0.001026 Difference: 0.000026 (2.60%)
Expected: 0.000100000 Actual: 0.000913 Difference: 0.000813 (813.00%)

4.13 Waiting a Certain Amount of Time | 153

Expected: 0.000010000 Actual: 0.000971 Difference: 0.000961 (9610.00%)
Expected: 0.000001000 Actual: 0.000975 Difference: 0.000974 (97400.00%)
Expected: 0.000000100 Actual: 0.000015 Difference: 0.000015 (14900.00%)
Expected: 0.000000010 Actual: 0.000024 Difference: 0.000024 (239900.00%)
Expected: 0.000000001 Actual: 0.000016 Difference: 0.000016 (1599900.00%)

A small amount of the reported time comes from the overhead caused by creating the
second Time object, but not enough to affect these results. On my system, if I tell
Ruby to sleep for a millisecond, the time spent running the sleep call greatly exceeds
the time I wanted to sleep in the first place! According to this benchmark, the short-

est length of time for which I can expect sleep to accurately sleep is about 1/100 of a
second.

You might think to get better sleep resolution by putting the CPU into a tight loop
with a certain number of repetitions. Apart from the obvious problems (this hurts
system performance, and the same loop will run faster over time since computers are
always getting faster), this isn't even reliable.

The operating system doesn’t know you're trying to run a timing loop: it just sees you
using the CPU, and it can interrupt your loop at any time, for any length of time, to
let some other process use the CPU. Unless youre on an embedded operating system
where you can control exactly what the CPU does, the only reliable way to wait for a
specific period of time is with sleep.

Waking up early

The sleep method will end early if the thread that calls it has its run method called. If
you want a thread to sleep until another thread wakes it up, use Thread. stop:

alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }

puts "Going to sleep for 1000 seconds at #{Time.new}..."
sleep(10000); puts "Woke up at #{Time.new}!"

Going to sleep for 1000 seconds at Thu Oct 27 14:45:14 PDT 2005...
Woke up at Thu Oct 27 14:45:19 PDT 2005!

alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }
puts "Goodbye, cruel world!";

Thread.stop;

puts "I'm back; how'd that happen?"

Goodbye, cruel world!

I'm back; how'd that happen?

See Also

o Recipe 4.12, “Running a Code Block Periodically”
o Chapter 22

154 | Chapter4: Date and Time

o The Morse Code example in Recipe 23.11, “Allowing Input Editing with Read-
line;” displays an interesting use of sleep

4.14 Adding a Timeout to a Long-Running Operation

Problem

Youre running some code that might take a long time to complete, or might never
complete at all. You want to interrupt the code if it takes too long.

Solution

Use the built-in timeout library. The Timeout.timeout method takes a code block
and a deadline (in seconds). If the code block finishes running in time, it returns true.
If the deadline passes and the code block is still running, Timeout.timeout termi-
nates the code block and raises an exception.

The following code would never finish running were it not for the timeout call. But
after five seconds, timeout raises a Timeout: :Error and execution halts:

This code will sleep forever... OR WILL IT?
require 'timeout'’
before = Time.now
begin
status = Timeout.timeout(5) { sleep }
rescue Timeout::Error
puts "I only slept for #{Time.now-before} seconds."
end
I only slept for 5.035492 seconds.

Discussion

Sometimes you must make a network connection or take some other action that
might be incredibly slow, or that might never complete at all. With a timeout, you can
impose an upper limit on how long that operation can take. If it fails, you can try it
again later, or forge ahead without the information you were trying to get. Even when
you can't recover, you can report your failure and gracefully exit the program, rather
than sitting around forever waiting for the operation to complete.

By default, Timeout.timeout raises a Timeout::Error. You can pass in a custom
exception class as the second argument to Timeout. timeout; this saves you from hav-
ing to rescue the Timeout:Error just so you can raise some other error that your
application knows how to handle.

If the code block had side effects, they will still be visible after the timeout kills the
code block:

4.14 Adding a Timeout to a Long-Running Operation | 155

def count_for_five_seconds
Scounter = 0
begin
Timeout::timeout(5) { loop { Scounter += 1 } }
rescue Timeout::Error
puts "I can count to #{$counter} in 5 seconds."
end
end

count_for_five_seconds
I can count to 2532825 in 5 seconds.
Scounter # => 2532825

This may mean that your dataset is now in an inconsistent state.

See Also

e ri Timeout
o Recipe 4.13, “Waiting a Certain Amount of Time”

« Recipe 15.1, “Grabbing the Contents of a Web Page”

156 | Chapter4: Date and Time

CHAPTER 5
Arrays

Like all high-level languages, Ruby has built-in support for arrays, objects that con-
tain ordered lists of other objects. You can use arrays (often in conjunction with
hashes) to build and use complex data structures without having to define any cus-
tom classes.

An array in Ruby is an ordered list of elements. Each element is a reference to some
object, the way a Ruby variable is a reference to some object. For convenience,
throughout this book we usually talk about arrays as though the array elements were
the actual objects, not references to the objects. Since Ruby (unlike languages such as
C) gives no way of manipulating object references directly, the distinction rarely
matters.

The simplest way to create a new array is to put a comma-separated list of object ref-
erences between square brackets. The object references can be predefined variables
(my_var), anonymous objects created on the spot (my string, 4.7, or MyClass.new),
or expressions (a+b, object.method). A single array can contain references to
objects of many different types:

a1l = [] #=>[]

a2 = [1, 2, 3] #=>[1, 2, 3]

a3 = [1, 2, 3, 'a', 'b', 'c', nil] #=>[1, 2, 3, "a", "b", "c", nil]
nl =14

n2 =6

sum_and_difference = [n1, n2, nl+n2, nl1-n2]

#=>[4, 6, 10, -2]
If your array contains only strings, you may find it simpler to build your array by
enclosing the strings in the w{} syntax, separated by whitespace. This saves you from
having to write all those quotes and commas:

157

%W{l 2 3} # => [171771 77217’ IV3H]
%w{The rat sat

on the mat}
=> ["The", "rat”, "sat", "on", "the", "mat"]

The << operator is the simplest way to add a value to an array. Ruby dynamically resi-
zes arrays as elements are added and removed:

a=[1, 2, 3] #=>[1, 2, 3]
a << 4.0 #=>[1, 2, 3, 4.0]
a << 'five' #=>[1, 2, 3, 4.0, "five"

An array element can be any object reference, including a reference to another array.
An array can even contain a reference to itself, though this is usually a bad idea, since
it can send your code into infinite loops:

a=1[1,2,3] #=>[1, 2, 3]
a << [4, 5, 6] #=>[1, 2, 3, [4, 5, 6]]
a<<a #=>1[1, 2, 3, [4, 5, 6], [.]]

As in most other programming languages, in Ruby the elements of an array are num-
bered with indexes starting from zero. You can look up an array element by passing its
index into the array index operator []. The first element of an array can be accessed
with a[0], the second with a[1], and so on.

Negative indexes count from the end of the array: the last element of an array can be
accessed with a[-1], the second-to-last with a[-2], and so on. See Recipe 5.13 for
more ways of using the array indexing operator.

The size of an array is available through the Array#size method. Because the index
numbering starts from zero, the index of the last element of an array is the size of the
array, minus one:

a = [1: 2’ 3: [4: 5’ 6]]

a.size # =>4

a << a4 #=>[1, 2, 3, [4, 5, 6], [.]]
a.size #=>5

alo] #=>1

a[3] #=>[4, 5 6]

a[3][e] # =>4

a[3].size #=>3

al-2] #=>[4, 5 6]

a['l] # => [11 2) 3) [41 5’ 6]1 []]
ala.size-1] #=>[1, 2, 3, [4, 5, 6], [.]]
a['l]['l] # => [1) 2’ 3: [4’ 5: 6]’ []]
a[-1][-1][-1] #=>1[1, 2, 3, [4, 5, 6], [.]]

All languages with arrays have constructs for iterating over them (even if it’s just a
for loop). Languages like Java and Python have general iterator methods similar to

158 | Chapter5: Arrays

Ruby’s, but they’re usually used for iterating over arrays. In Ruby, iterators are the
standard way of traversing all data structures: array iterators are just their simplest
manifestation.

Ruby’s array iterators deserve special study because they’re Ruby’s simplest and most
accessible iterator methods. If you come to Ruby from another language, you’ll prob-
ably start off thinking of iterator methods as letting you treat aspects of a data struc-
ture “like an array” Recipe 5.1 covers the basic array iterator methods, including ones
in the Enumerable module that you’ll encounter over and over again in different con-
texts.

The Set class, included in Ruby’s standard library, is a useful alternative to the Array
class for many basic algorithms. A Ruby set models a mathematical set: sets are not
ordered, and cannot contain more than one reference to the same object. For more
about sets, see Recipes 5.14 and 5.15.

5.1 Iterating Over an Array

Problem

You want to perform some operation on each item in an array.

Solution

Iterate over the array with Enumerable#each. Put into a block the code you want to
execute for each item in the array:

[1, 2, 3, 4].each { |x| puts x }

#1

#2

#3

4
If you want to produce a new array based on a transformation of some other array,
use Enumerable#collect along with a block that takes one element and transforms it:

[1, 2, 3, 4].collect { |x| x ** 2 } #=>[1, 4, 9, 16]

Discussion

Ruby supports for loops and the other iteration constructs found in most modern
programming languages, but its preferred idiom is a code block fed to a method like
each or collect.

Methods like each and collect are called generators or iterators: they iterate over a
data structure, yielding one element at a time to whatever code block you've attached.
Once your code block completes, they continue the iteration and yield the next item

5.1Iterating Overan Array | 159

in the data structure (according to whatever definition of “next” the generator sup-
ports). These methods are covered in detail in Chapter 8.

In a method like each, the return value of the code block, if any, is ignored. Methods
like collect take a more active role. After they yield an element of a data structure
to a code block, they use the return value in some way. The collect method uses the
return value of its attached block as an element in a new array.

Although commonly used in arrays, the collect method is actually defined in the
Enumerable module, which the Array class includes. Many other Ruby classes (Hash
and Range are just two) include the Enumerable methods; it’s a sort of baseline for
Ruby objects that provide iterators. Though Enumerable does not define the each
method, it must be defined by any class that includes Enumerable, so you'll see that
method a lot, too. This is covered in Recipe 10.4.

If you need to have the array indexed along with the array elements, use Enumera
ble#teach_with_index:

'a', 'b', 'c'].each_with_index do |item, index|
puts "At position #{index}: #{item}"

end

At position 0: a

At position 1: b

At position 2: c

Ruby’s Array class also defines several generators not seen in Enumerable. For
instance, to iterate over a list in reverse order, use the reverse_each method:

[1, 2, 3, 4].reverse_each { |x| puts x }

4

3

2
1

Enumerable#collect has a destructive equivalent: Array#collect!, also known as
Array#map! (a helpful alias for Python or Perl programmers). This method acts just
like collect, but instead of creating a new array to hold the return values of its calls
to the code block, it replaces each item in the old array with the corresponding value
from the code block. This saves memory and time, but it destroys the old array:

array = ['a"', 'b', 'c']

array.collect! { |x| x.upcase }

array # => [”A”, NBN’ Hcﬂ]
array.map! { |x| x.downcase }
array # => [HaH, NbN’ HCH]

If you need to skip certain elements of an array, you can use the iterator methods
Range#step and Integer#upto instead of Array#each. These methods generate a
sequence of numbers that you can use as successive indexes into an array:

160 | Chapter5: Arrays

array = ['junk', 'junk', 'junk', 'valil', 'val2']
3.upto(array.length-1) { |i| puts "Value #{array[i]}" }
Value vali

Value val2

array = ['1', 'a', '2', 'b'", '3', 'c']
(0..array.length-1).step(2) do |1i]

puts "Letter #{array[i]} is #{array[i+1]}"
end
Letter 1 is a
Letter 2 is b
Letter 3 is c

Like most other programming languages, Ruby lets you define for, while, and until
loops—but you shouldn’t need them very often. The for construct is equivalent to
each, whether it’s applied to an array or a range:

for element in ['a', 'b', 'c']
puts element

end

#a

#b

#c

for element in (1..3)
puts element

end

1

2

3

The while and until constructs take a Boolean expression and execute the loop
while the expression is true (while) or until it becomes true (until). All three of the
following code snippets generate the same output:

array = ['cherry', 'strawberry', 'orange']

for index in (0...array.length)
puts "At position #{index}: #{array[index]}"
end

index = 0
while index < array.length
puts "At position #{index}: #{array[index]}"

index += 1
end
index = 0

until index == array.length
puts "At position #{index}: #{array[index]}"
index += 1

end

5.1Iterating Overan Array | 161

At position 0: cherry
At position 1: strawberry
At position 2: orange

These constructs don’t make for very idiomatic Ruby. You should only need to use
them when you'’re iterating over a data structure in a way that doesn’t already have an
iterator method (for instance, if you're traversing a custom tree structure). Even then,
it’s more idiomatic if you use them only to define your own iterator methods.

The following code is a hybrid of each and each_reverse. It switches back and forth
between iterating from the beginning of an array and iterating from its end:

array = [1,2,3,4,5]
new_array = []
front_index = 0

back_index = array.length-1
while front_index <= back_index
new_array << array[front_index]
front_index += 1
if front_index <= back_index
new_array << array[back_index]
back_index -= 1
end
end
new_array #=>[1, 5 2, 4, 3]

That code works, but it becomes reusable when defined as an iterator. Put it into the
Array class, and it becomes a universally accessible way of doing iteration, the
colleague of each and reverse_each:

class Array
def each_from_both_sides
front_index = 0
back_index = self.length-1
while front_index <= back_index
yield self[front_index]
front_index += 1
if front_index <= back_index
yield self[back_1index]
back_index -= 1
end
end
end
end

new_array = []
[1,2,3,4,5].each_from_both_sides { |x| new_array << x }
new_array #=>[1, 5 2, 4, 3]

162

| Chapter5: Arrays

This “burning the candle at both ends” behavior can also be defined as a collect type
method: one that constructs a new array out of multiple calls to the attached code
block. The following implementation delegates the actual iteration to the
each_from_both_sides method previously defined:
class Array
def collect_from_both_sides

new_array = []

each_from_both_sides { |x| new_array << yield(x) }

return new_array

end
end

["ham", "eggs", "and"].collect_from_both_sides { |x| x.capitalize }
=> ["Han", "And", "Eggs"]

See Also

o Chapter 8, especially Recipe 8.5, “Writing an Iterator Over a Data Structure,” and
Recipe 8.9, “Looping Through Multiple Iterables in Parallel”

5.2 Rearranging Values Without Using Temporary
Variables

Problem

You want to rearrange a number of variables, or assign the elements of an array to
individual variables.

Solution

Use a single assignment statement. Put the destination variables on the lefthand side,
and line each one up with a variable (or expression) on the righthand side.

A simple swap:

a=1
=2
,b="b, a
#=> 2
b #=>1
A more complex rearrangement:
a, b, c = :red, :green, :blue
c,a, b=a, b, c
a # => :green

5.2 Rearranging Values Without Using Temporary Variables | 163

b # => :blue
d # => :red

You can split out an array into its components:

array = [:red, :green, :blue]
c, a, b = array

a # => :green
b # => :blue
d # => :red

You can even use the splat operator to extract items from the front of the array:

a, b, *c =1[12, 14, 178, 89, 90]

a # => 12

b #=> 14

c # => [178, 89, 90]
Discussion

Ruby assignment statements are very versatile. When you put a comma-separated list
of variables on the lefthand side of an assignment statement, it'’s equivalent to assign-
ing each variable in the list the corresponding righthand value. Not only does this
make your code more compact and readable, but it also frees you from having to keep
track of temporary variables when you swap variables.

Ruby works behind the scenes to allocate temporary storage space for variables that
would otherwise be overwritten, so you don't have to do it yourself. You don’t have to
write this kind of code in Ruby:

o o X o
n o
xX o

The righthand side of the assignment statement can get almost arbitrarily
complicated:

a, b=25, 10

a, b =b/a, a-1 #=>[2, 4]

a, b, c="'a", 'B', 'C’

a, b, c=1[a, b], {b=>c}, a

a #=>["A", "B"]
b # => {"B"=>"C"}
C #=>"A"

If there are more variables on the left side of the equals sign than on the right side, the
extra variables on the left side get assigned nil. This is usually an unwanted side
effect:

a, b =
a, b=>b

=
-
N

164 | Chapter5: Arrays

a #=>2

b # => nil
There’s one final nugget of code that is interesting enough to mention even though it
has no legitimate use in Ruby: it doesn’t save enough memory to be useful, and its
slower than doing a swap with an assignment. It's possible to swap two integer vari-
ables using bitwise XOR, without using any additional storage space at all (not even
implicitly):

a, b = rand(1000), rand(1000) # => [595, 742]
a=a”’b # => 181
b=b"a # => 595
a=a”b # => 742
[a, b] # => [742, 595]

In terms of the cookbook metaphor, this final snippet is a dessert—no nutritional
value, but it sure is tasty.

5.3 Stripping Duplicate Elements from an Array

Problem

You want to strip all duplicate elements from an array, or prevent duplicate elements
from being added in the first place.

Solution

Use Array#uniq to create a new array, based on an existing array but with no dupli-
cate elements. Array#uniq! strips duplicate elements from an existing array:

survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]

distinct_answers = survey_results.uniq #=>[1, 2, 7, 5]
survey_results.uniq!
survey_results #=>[1, 2, 7, 5]

To ensure that duplicate values never get into your list, use a Set instead of an array.
If you try to add a duplicate element to a Set, nothing will happen:

require 'set'

survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]
distinct_answers = survey results.to_set

=> #<Set: {1, 2, 7, 5}>

games = [["Alice", "Bob"], ["Carol", "Ted"],

["Alice", "Mallory"], ["Ted", "Bob"]]
players = games.inject(Set.new) { |set, game| game.each { |p| set << p }; set }
=> #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

5.3 Stripping Duplicate Elements froman Array | 165

players << "Ted"
=> #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

Discussion

The common element between these two solutions is the hash (see Chapter 6).
Array#uniq iterates over an array, using each element as a key in a hash that it always
checks to see if it encountered an element earlier in the iteration. A Set keeps the
same kind of hash from the beginning, and rejects elements already in the hash. You
see something that acts like an array, but it won’t accept duplicates. In either case, two
objects are considered “duplicates” if they have the same result for ==.

The return value of Array#uniq is itself an array, and nothing prevents you from
adding duplicate elements to it later on. If you want to start enforcing uniqueness in
perpetuity, you should turn the array into a Set instead of calling uniq. Requiring the
set library will define a new method, Enumerable#to_set, which does this.

Needing to strip all instances of a particular value from an array is a problem that
often comes up. Ruby provides Array#delete for this task, and Array#compact for
the special case of removing nil values:

a=[1, 2, nil, 3, 3, nil, nil, nil, 5]
a.compact #=>[1, 2, 3, 3, 5]

a.delete(3)
a # =>[1, 2, nil, nil, nil, nil, 5]

5.4 Reversing an Array

Problem

Your array is the wrong way around: the last item should be first and the first should
be last.

Solution

Use reverse to create a new array with the items reversed. Internal subarrays will not
themselves be reversed:

[1,2,3].reverse #=>[3, 2, 1]
[1,[2,3,4],5].reverse #=>[5 [2, 3, 4], 1]
Discussion

Like many operations on basic Ruby types, reverse has a corresponding method,
reverse!, which reverses an array in place:

166 | Chapter5: Arrays

a=1[1,2,3]
a.reverse!
a #=>[3, 2, 1]

Don't reverse an array if you just need to iterate over it backward. Don’t use a for
loop either; the reverse_each iterator is more idiomatic.

See Also

« Recipe 2.4, “Reversing a String by Words or Characters”

o Recipe 5.1, “Iterating Over an Array, talks about using Array#reverse_each to
iterate over an array in reverse order

o Recipe 5.2, “Rearranging Values Without Using Temporary Variables”

5.5 Sorting an Array

Problem

You want to sort an array of objects, possibly according to some custom notion of
what “sorting” means.

Solution

You can sort homogeneous arrays of common data types, like strings or numbers,
“naturally” by just calling Array#sort:

[5.01, -5, 0, 5].sort #=>[-5 0,5, 5.01]

["Utahraptor", "Ankylosaur", "Matiasaur"].sort

=> ["Ankylosaur", "Maiasaur", "Utahraptor"]
To sort objects based on one of their data members, or by the results of a method call,
use Array#sort_by. This code sorts an array of arrays by size, regardless of their
contents:

arrays = [[1,2,3], [100], [10,20]]

arrays.sort_by { |x| x.size } # => [[100], [10, 20], [1, 2, 3]]
To do a more general sort, create a code block that compares the relevant aspect of
any two given objects. Pass this block into the sort method of the array you want to
sort.

This code sorts an array of numbers in ascending numeric order, except that the
number 42 will always be at the end of the list:

[1, 100, 42, 23, 26, 10000].sort do [x, y|
X ==42 71 : X <=>Yy

5.5SortinganArray | 167

end
=>[1, 23, 26, 100, 10000, 42]

Discussion

If there is one “canonical” way to sort a particular class of object, then you can have
that class implement the <=> comparison operator. This is how Ruby automatically
knows how to sort numbers in ascending order and strings in ascending ASCII order:
Numeric and String both implement the comparison operator.

The sort_by method sorts an array using a Schwartzian transform (see Recipe 5.6 for
an in-depth discussion). This is the most useful customized sort, because it’s fast and
easy to define. In this example, we use sort_by to sort on any one of an object’s fields:

class Animal
attr_reader :name, :eyes, :appendages

def initialize(name, eyes, appendages)
@name, @eyes, @appendages = name, eyes, appendages
end

def inspect
@name

end

end

animals = [Animal.new("octopus", 2, 8),
Animal.new("spider", 6, 8),
Animal.new('"bee", 5, 6),
Animal.new("elephant", 2, 4),
Animal.new('"crab", 2, 10)]

animals.sort_by { [x| x.eyes }
=> [octopus, elephant, crab, bee, spider]

animals.sort_by { [x| x.appendages }

=> [elephant, bee, octopus, spider, crab]
If you pass a block into sort, Ruby calls the block to make comparisons instead of
using the comparison operator. This is the most general possible sort, and it’s useful
for cases where sort_by won’t work.

The comparison operator and a sort code block both take one argument: an object
against which to compare self. A call to <=> (or a sort code block) should return 1 if
self is “less than” the given object (and should therefore show up before it in a sorted
list). It should return 1 if self is “greater than” the given object (and should show up
after it in a sorted list), and 0 if the objects are “equal” (and it doesn’t matter which
one shows up first). You can usually avoid remembering this by delegating the return
value to some other object’s <=> implementation.

168 | Chapter5: Arrays

See Also

 Recipe 5.6, “Ignoring Case When Sorting Strings,” covers the workings of the
Schwartzian Transform

« Recipe 5.7, “Making Sure a Sorted Array Stays Sorted”
o Recipe 5.10, “Shuffling an Array”

« If you need to find the minimum or maximum item in a list according to some
criteria, don't sort it just to save writing some code; see Recipe 5.11, “Getting the
N Smallest Items of an Array,” for other options

5.6 Ignoring Case When Sorting Strings

Problem

When you sort a list of strings, the strings beginning with uppercase letters sort
before the strings beginning with lowercase letters:
1list = ["Albania", "anteater", "zorilla", "Zaire"]

list.sort
=> ["Albania", "Zaire", "anteater", "zorilla"]

You want an alphabetical sort, regardless of case.

Solution
Use Array#sort_by. This is both the fastest and the shortest solution:

list.sort_by { |x| x.downcase }
=> ["Albania", "anteater", "Zaire", "zorilla"]

Discussion

The Array#sort_by method was introduced in Recipe 5.5, but it’s worth discussing in
detail because it’s so useful. It uses a technique called a Schwartzian Transform. This
common technique is like writing the following Ruby code (but it's a lot faster,
because it’s implemented in C):

list.collect { |s| [s.downcase, s] }.sort.collect { |subarray| subarray[1] }

It works like this: Ruby creates a new array containing two-element subarrays. Each
subarray contains a value of String#downcase, along with the original string. This
new array is sorted, and then the original strings (now sorted by their values for
String#downcase) are recovered from the subarrays. String#downcase is called only
once for each string.

5.6 Ignoring Case When Sorting Strings | 169

A sort is the most common occurrence of this pattern, but it shows up whenever an
algorithm calls a particular method on the same objects over and over again. If youre
not sorting, you can’t use Ruby’s internal Schwartzian Transform, but you can save
time by caching, or memoizing, the results of each distinct method call.

If you need to implement a Schwartzian Transform in Ruby, it’s faster to use a hash
than an array:

m={}

list.sort { [x,y| (m[x] ||= x.downcase) <=> (m[y] ||= y.downcase) }

This technique is especially important if the method you need to call has side effects.
You certainly don’t want to call such methods more than once!

See Also

o The Ruby FAQ, question 9.15
o Recipe 5.5, “Sorting an Array”

5.7 Making Sure a Sorted Array Stays Sorted

Problem

You want to make sure an array stays sorted, even as you replace its elements or add
new elements to it.

Solution

Subclass Array and override the methods that add items to the array. The new imple-
mentations add every new item to a position that maintains the sortedness of the
array.

As you can see here, there are a lot of these methods. If you can guarantee that a par-
ticular method will never be called, you can get away with not overriding it:

class SortedArray < Array

def initialize(*args, &sort_by)
@sort_by = sort_by || Proc.new { |x,y| x <=>y }
super(*args)
sort! &sort_by

end

def insert(i, v)
The next line could be further optimized to perform a
binary search.
insert_before = index(find { [x| @sort_by.call(x, v) == 1 })

170 | Chapter5: Arrays

super(insert_before ? insert_before : -1, v)
end

def <<(v)
insert(0, v)
end

alias push <<
alias unshift <<

Some methods, like collect!, can modify the items in an array, taking them out of
sort order. Some methods, like flatten!, can add new elements to strange places in
an array. Rather than figuring out how to implement these methods in a way that pre-
serves the sortedness of the array, we'll just let them run and then re-sort the array:!

["collect!", "flatten!", "[]="].each do |method_name|
module_eval %{
def #{method_name}(*args)

super
sort! &@sort_by
end
}
end

def reverse!
#Do nothing; reversing the array would disorder it
end
end

A SortedArray created from an unsorted array will end up sorted:

a = SortedArray.new([3,2,1]) #=>[1, 2, 3]

Discussion

Many methods of Array are much faster on sorted arrays, so it’s often useful to
expend some overhead on keeping an array sorted over time. Removing items from a
sorted array won't unsort it, but adding or modifying items can. Keeping a sorted
array sorted means intercepting and reimplementing every sneaky way of putting
objects into the array.

The SortedArray constructor accepts any code block you can pass into Array#sort,
and keeps the array sorted according to that code block. The default code block uses
the comparison operator (<=>) used by sort:

1 We can’t use define_method to define these methods because in Ruby 1.8 you can’t use define_method to cre-
ate a method that takes a block argument. See Chapter 11 for more on this.

5.7 Making Sure a Sorted Array Stays Sorted | 171

n n nan
s

unsorted= ["b", "aa a", "cccc", "1", "zzzzz", "kK", "z"]

strings_by_alpha = SortedArray.new(unsorted)

=> [771 H’ Haﬂ) NaaN’ Hb”, ”CCCC”’ Hk”) ”Z”, HZZZZZN

strings_by _length = SortedArray.new(unsorted) do |x,y]|

x.length <=> y.length

end

=> [Nb!l’ HZN) NaH, Hk”) 171 H, Haaﬂ, ”CCCC”, HZZZZZN
The methods that add elements to an array specify where in the array they operate:
push operates on the end of the array, and insert operates on a specified spot. Sorte
dArray responds to these methods, but it ignores the caller’s request to put elements
in a certain place. Every new element is inserted into a position that keeps the array
sorted:

a << -1 #=>[-1, 1, 2, 3]

a << 1.5 #=>[-1, 1, 1.5, 2, 3]
a.push(2.5) #=>[-1, 1, 1.5, 2, 2.5, 3]
a.unshift(1.6) #=>[-1, 1, 1.5, 1.6, 2, 2.5, 3]

For methods like collect! and array assignment ([]=) that allow complex changes to
an array, the simplest solution is to allow the changes to go through and then re-sort:

a = SortedArray.new([10, 6, 4, -4, 200, 100])
#=>[-4, 4, 6, 10, 100, 200]
a.collect! { |x| x * -1} # => [-200, -100, -10, -6, -4, 4]

a[3] = 25
a # => [-200, -100, -10, -4, 4, 25]
That is, -6 has been replaced by 25 and the array has been re-sorted.

a[1..2] = [6000, 10, 600, 6]

a # => [-200, -4, 4, 6, 10, 25, 600, 6000]
That is, -100 and -10 have been replaced by 6000, 10, 600, and 6,

and the array has been re-sorted.

But with a little more work, we can write a more efficient implementation of array
assignment that gives the same behavior. What happens when you run a command
like a[0]=106 on a SortedArray? The first element in the SortedArray is replaced by
10, and the SortedArray is re-sorted. This is equivalent to removing the first element
in the array, then adding the value 10 to a place in the array that keeps it sorted.

Array#[]= implements three different types of array assignment, but all three can be
modeled as a series of removals followed by a series of insertions. We can use this fact
to implement a more efficient version of SortedArray#[]=:

class SortedArray
def []=(*args)
if args.size == 3
#e.g. "a[6,3] = [1,2,3]"
start, length, value = args
slice! Range.new(start, start+length, true)

172 | Chapter5: Arrays

(value.respond_to? :each) ? value.each { |x| self << x } : self << value
elsif args.size ==
index, value = args
if index.is_a? Numeric
#e.g. "a[0] = 10" (the most common form of array assignment)
delete_at(index)
self << value
elsif index.is_a? Range
#e.g. "a[0..3] = [1,2,3]"
slice! index
(value.respond_to? :each) ? value.each { [x| self << x } : self << value
else
#Not supported. Delegate to superclass; will probably give an error.
super
sort!(&sort_by)
end
else
#Not supported. Delegate to superclass; will probably give an error.
super
sort!(&sort_by)
end
end
end

Just as before, the sort will be maintained even when you use array assignment to
replace some of a SortedArray’s elements with other objects. But this implementation
doesn’t have to re-sort the array every time:

a = SortedArray.new([1,2,3,4,5,6])

a[0] = 10
a #=>[2, 3,4, 5, 6, 10]

alo, 2] = [100, 200]

a # => [4, 5, 6, 10, 100, 200]
a[1..2] = [-4, 6]
a # => [-4, 4, 6, 10, 100, 200]

It’s possible to subvert the sortedness of a SortedArray by modifying an object in
place in a way that changes its sort order. Since the SortedArray never hears about
the change to this object, it has no way of updating itself to move that object to its
new sort position:!

stripes =

SortedArray.new(["aardwolf", "zebrafish"])
stripes[1].upcase!

1 One alternative is to modify SortedArray[] so that when you look up an element of the array, you actually get
a delegate object that intercepts all of the element’s method calls, and re-sorts the array whenever the user calls
a method that modifies the element in place. This is probably overkill.

5.7 Making Sure a Sorted Array Stays Sorted | 173

stripes # => ["aardwolf", "ZEBRAFISH"]
stripes.sort! # => ["ZEBRAFISH", "aardwolf"]

If this bothers you, you can make a SortedArray keep frozen copies of objects instead
of the objects themselves. This solution hurts performance and uses more memory,
but it will also prevent objects from being modified after they’re put into the Sorte
dArray. This code adds a convenience method to Object that makes a frozen copy of
the object:

class Object
def to_frozen
f = self
unless frozen?
begin
f = dup.freeze
rescue TypeError
#This object can't be duped (e.g. Fixnum); fortunately,
#1t usually can't be modified either
end
end
return f
end
end

The FrozenCopySortedArray stores frozen copies of objects instead of the objects
themselves:

class FrozenCopySortedArray < SortedArray
def insert(i, v)
insert_before = index(find { x| x > v })
super(insert_before ? insert_before : -1, v.to_frozen)
end

["initialize", "collect!", "flatten!"].each do |method_name|
define_method(method_name) do
super
each_with_index { |x, i| self[i] = x.to_frozen }
No need to sort; by doing an assignment to every element
in the array, we've made #insert keep the array sorted.
end
end
end

stripes = SortedArray.new(["aardwolf", "zebrafish"])

stripes[1].upcase!

TypeError: can't modify frozen string
Unlike a regular array, which can have elements of arbitrarily different data classes, all
the elements of a SortedArray must be mutually comparable. For instance, you can
mix integers and floating-point numbers within a SortedArray, but you can’t mix

174 | Chapter5: Arrays

integers and strings. Any dataset that would cause Array# sort to fail makes an inva-
lid SortedArray:

[1, "string"].sort
ArgumentError: comparison of Fixnum with String failed

a = SortedArray.new([1])

a << "string"

ArgumentError: comparison of Fixnum with String failed
One other pitfall: operations that create a new object—such as |=, +=, and to_a—will
turn a SortedArray into a (possibly unsorted) array:

a = SortedArray.new([3, 2, 1]) #=>[1, 2, 3]
a += [1, -10] #=>[1, 2, 3, 1, -10]
a.class # => Array

The simplest way to avoid this is to override these methods to transform the resulting
array back into a SortedArray:

class SortedArray
def + (other_array)
SortedArray.new(super)
end
end

See Also

« Recipe 5.11, “Getting the N Smallest Items of an Array; uses a SortedArray

5.8 Summing the Items of an Array

Problem

You want to add together many objects in an array.

Solution

There are two good ways to accomplish this in Ruby. Plain vanilla iteration is a simple
way to approach the problem:

collection = [1, 2, 3, 4, 5]

sum = 0
collection.each {|i| sum += i}
sum # => 15

However, this is such a common action that Ruby has a special iterator method called
inject, which saves a little code:

5.8 Summing the ltemsof an Array | 175

collection = [1, 2, 3, 4, 5]
collection.inject(0) {|sum, 1| sum + i} # => 15

Discussion

Notice that in the inject solution, we didn’t need to define the variable total
because it is outside the scope of iteration. Instead, its scope moved into the iteration.
In the preceding example, the initial value for total is the first argument to inject.
We changed the += to + because the block given to inject is evaluated on each value
of the collection, and the total variable is set to its output every time.

You can think of the inject example as equivalent to the following code:

collection = [1, 2, 3, 4, 5]

sum = 0

sum = sum + 1
sum = sum + 2
sum = sum + 3
sum = sum + 4
sum = sum + 5

Although inject is the preferred way of summing over a collection, it is generally a
few times slower than each. The speed difference does not grow exponentially, so you
don’t need to always be worrying about it as you write code. But after the fact, its a
good idea to look for inject calls in crucial spots that you can change to use faster
iteration methods like each.

Nothing stops you from using other kinds of operators in your inject code blocks.
For example, you could multiply:

collection = [1, 2, 3, 4, 5]
collection.inject(1) {|total, i| total * i} # => 120

Note that you do not need to define total before using it here because it is temporal
and the value will be returned by the function call itself.

Many of the other recipes in this book use inject to build data structures or run cal-

culations on them.

See Also

o Recipe 3.8, “Finding Mean, Median, and Mode”
o Recipe 5.12, “Building a Hash from an Array”
+ Recipe 6.12, “Building a Histogram”

176 | Chapter5: Arrays

5.9 Sorting an Array by Frequency of Appearance

Problem

You want to sort an array so that the items that appear least frequently come first.

Solution

Build a histogram of the frequencies of the objects in the array, then use it as a lookup
table in conjunction with the sort_by method.

The following method puts the least frequent objects first. Objects that have the same
frequency are sorted normally, with the comparison operator:

module Enumerable
def sort_by_frequency
histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
sort_by { |x| [histogram[x], x] }
end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency
#=>[3,8, 9, 16, 2, 2, 1, 1, 1, 4, 4, 4]

Discussion

The sort_by_frequency method uses sort_by, a method introduced in Recipe 5.5
and described in detail in Recipe 5.6. The technique here is a little different from
other uses of sort_by, because it sorts by two different criteria. We want to first com-
pare the relative frequencies of two items. If the relative frequencies are equal, we
want to compare the items themselves. That way, all the instances of a given item will
show up together in the sorted list.

The block you pass to Enumerable#sort_by can return only a single sort key for each
object, but that sort key can be an array. Ruby compares two arrays by comparing
their corresponding elements, one at a time. As soon as an element of one array is
different from an element of another, the comparison stops, returning the compari-
son of the two different elements. If one of the arrays runs out of elements, the longer
one sorts first. Here are some quick examples:

[1’2] <=> [012] #=>1
[1,2] <=> [1,2] #=>0
[1,2] <=> [2,2] # => -1
[1,2] <=> [1,1] #=>1
[1,2] <=> [1,3] # => -1
[1,2] <=> [1] # => 1
[1,2] <=> [3] # => -1

5.9 Sorting an Array by Frequency of Appearance | 177

[1,2] <=> [0,1,2] #=>1

[1,2] <=>[] # => 1
In our case, all the arrays contain two elements: the relative frequency of an object in
the array, and the object itself. If two objects have different frequencies, the first ele-
ments of their arrays will differ, and the items will be sorted based on their frequen-
cies. If two items have the same frequency, the first element of each array will be the
same. The comparison method will move on to the second array element, which
means the two objects will be sorted based on their values.

If you don't mind elements with the same frequency showing up in an unsorted
order, you can speed up the sort a little by comparing only the histogram frequencies:

module Enumerable
def sort_by frequency_faster
histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
sort_by { |x| histogram[x] }
end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_faster
#=>[16, 8, 3, 9, 2, 2, 4, 1, 1, 4, 4, 1]

To sort the list so that the most frequent items show up first, either invert the result of
sort_by_frequency, or multiply the histogram values by 1 when passing them into
sort_by:

module Enumerable
def sort_by_frequency_descending
histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
sort_by { |x| [histogram[x] * -1, x]}
end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_descending
#=>1[1, 1, 1, 4, 4, 4, 2, 2, 3, 8, 9, 16]

If you want to sort a list by the frequency of its elements, but not have repeated ele-
ments actually show up in the sorted list, you can run the list through Array#uniq

after sorting it. However, since the keys of the histogram are just the distinct elements
of the array, it’s more efficient to sort the keys of the histogram and return those:

module Enumerable
def sort_distinct_by_frequency
histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash }
histogram.keys.sort_by { [x| [histogram[x], x] }
end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_distinct_by_frequency
#=>[3,8,09, 16, 2, 1, 4]

178 | Chapter5: Arrays

See Also

o Recipe 5.5, “Sorting an Array”
o Recipe 6.12, “Building a Histogram”

5.10 Shuffling an Array

Problem

You want to put the elements of an array in random order.

Solution
The simplest way to shuffle an array (in Ruby 1.8 and above) is to sort it randomly:
[1,2,3].sort_by { rand } # => [1, 3, 2]

This is not the fastest way, though.

Discussion

It's hard to beat a random sort for brevity of code, but it does a lot of extra work. Like
any general sort, a random sort will do about n log n variable swaps. But to shuffle a
list, it suffices to put a randomly selected element in each position of the list. This can
be done with only n variable swaps.

New in Ruby 2.1

As of Ruby 1.9, Array#shuffle and Array#shuffle! already exist. In Ruby 1.8, you
need to write them yourself.

class Array
def shuffle!
each_1index do |1i]
j = rand(length-i1) + i
self[j], self[i] = self[i], self[j]
end
end

def shuffle
dup.shuffle!
end
end

5.10Shufflingan Array | 179

If you're shuffling a very large list, either Array#shuffle or Array#shuffle! will be
significantly faster than a random sort. Here’s a real-world example of shuffling using
Array#shuffle:

class Card
def initialize(suit, rank)
@suit = suit
@rank = rank
end

def to_s
"#{@suit} of #{@rank}"
end
end

class Deck < Array
attr_reader :cards
@@suits = %w{Spades Hearts Clubs Diamonds}
@@ranks = %w{Ace 2 3 456 7 8 9 10 Jack Queen King}

def initialize
@@suits.each { |suit| @@ranks.each { |rank| self << Card.new(rank, suit) } }
end
end

deck = Deck.new

deck.collect { |card| card.to_s }

=> ["Ace of Spades", "2 of Spades", "3 of Spades", "4 of Spades", ...]
deck.shuffle!

deck.collect { |card| card.to_s }
=> ["6 of Clubs", "8 of Diamonds", "2 of Hearts", "5 of Clubs", ...]

See Also

o Recipe 3.5, “Generating Random Numbers”

5.11 Getting the N Smallest Items of an Array

Problem

You want to find the smallest few items in an array, or the largest, or the most
extreme according to some other measure.

180 | Chapter5: Arrays

Solution

If you only need to find the single smallest item according to some measure, use Enu
merable#min. By default, it uses the <=> method to see whether one item is “smaller”
than another, but you can override this by passing in a code block:

[3, 5, 11, 16].min

=>3

["three", "five", "eleven", "sixteen"].min

=> "eleven"

["three", "five", "eleven", "sixteen"].min { |x,y| x.size <=> y.size }
=> "five"

Similarly, if you need to find the single largest item, use Enumerable#max:

[3, 5, 11, 16].max
=> 16
["three", "five", "eleven", "sixteen"].max

=> "three"

["three", "five", "eleven", "sixteen"].max { |x,y| x.size <=> y.size }

=> "sixteen"

By default, arrays are sorted by their natural order: numbers are sorted by value, and
strings by their position in the ASCII collating sequence (basically alphabetical order,
but all lowercase characters precede all uppercase characters). Hence, in the previous

examples, "three" is the largest string, and "eleven"” the smallest.

It gets more complicated when you need to get a number of the smallest or largest
elements according to some measurement—say, the top 5 or the bottom 10. The sim-
plest solution is to sort the list and skim the items you want off of the top or bottom:

1=1[1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]
sorted = l.sort

#The top 5
sorted[-5...sorted.size]
=> [60, 66, 85, 91, 100]

#The bottom 5

sorted[0...5]

#=>[-5 1, 4, 20, 21]
Despite the simplicity of this technique, it’s inefficient to sort the entire list unless the
number of items you want to extract approaches the size of the list.

Discussion

The min and max methods work by picking the first element of the array as a “cham-
pion,” then iterating over the rest of the list trying to find an element that can beat the
current champion on the appropriate metric. When it finds one, that element
becomes the new champion. An element that can beat the old champion can also beat

5.11 Getting the N Smallest [tems of an Array | 181

any of the other contenders seen up to that point, so one run through the list suffices
to find the maximum or minimum.

The naive solution to finding more than one smallest item is to repeat this process
multiple times. Iterate over the Array once to find the smallest item, then iterate over
it again to find the next-smallest item, and so on. This is naive for the same reason a
bubble sort is naive: youre repeating many of your comparisons more times than
necessary. Indeed, if you run this algorithm once for every item in the array (trying to
find the #n smallest items in an array of » items), you get a bubble sort.

Sorting the list beforehand is better when you need to find more than a small fraction
of the items in the list, but it’s possible to do better. After all, you don't really want to
sort the whole list: you just want to sort the bottom of the list to find the smallest
items. You don't care if the other elements are unsorted because you’re not interested
in those elements anyway.

To sort only the smallest elements, you can keep a sorted “stable” of champions, and
kick the largest champion out of the stable whenever you find an element thats
smaller. If you encounter a number that’s too large to enter the stable, you can ignore
it from that point on. This process rapidly cuts down on the number of elements you
must consider, making this approach faster than doing a sort.

The SortedArray class from Recipe 5.7 is useful for this task. The following min_n
method creates a SortedArray stable that keeps its elements sorted based on the same
block being used to find the minimum. It keeps the stable at a certain size by kicking
out the largest item in the stable whenever a smaller item is found. The max_n method
works similarly, but the comparisons are reversed, and the smallest element in the
stable is kicked out when a larger element is found:

module Enumerable
def min_n(n, &block)
block = Proc.new { |x,y| x <=>y } if block == nil
stable = SortedArray.new(&block)
each do |x|
stable << x if stable.size < n or block.call(x, stable[-1]) == -1
stable.pop until stable.size <= n
end
return stable
end

def max_n(n, &block)
block = Proc.new { |x,y| x <=>y } if block == nil
stable = SortedArray.new(&block)
each do |x|
stable << x if stable.size < n or block.call(x, stable[0]) == 1
stable.shift until stable.size <= n
end
return stable
end

182 | Chapter5: Arrays

end

1=1[1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]

1.max_n(5)

=> [60, 66, 85, 91, 100]
1.min_n(5)

=> [-5, 1, 4, 20, 21]

—

.min_n(5) { |x,y| x.abs <=> y.abs }
#=>[1, 4, -5, 20, 21]

See Also

o Recipe 5.7, “Making Sure a Sorted Array Stays Sorted”

5.12 Building a Hash from an Array

Problem

You want to create a hash from the values in an array.

Solution

As seen in Recipe 5.8, the most straightforward way to solve this kind of problem is to
use Enumerable#inject. The inject method takes one parameter (the object to build
up, in this case a hash), and a block specifying the action to take on each item. The
block takes two parameters: the object being built up (the hash), and one of the items
from the array.

Here’s a straightforward use of inject to build a hash out of an array of key-value
pairs:

collection = [[1, 'one'], [2, 'two'], [3, 'three'],
[4, 'four'], [5, 'five']
]

collection.inject({}) do |hash, value|
hash[value.first] = value.last
hash
end
=> {1=>"one", 2=>"two", 3=>"three", 4=>"four", 5=>"five"}

New in Ruby 2.1

The way that hashes are ordered has changed between Ruby 1.8 and Ruby 1.9. Ever
since Ruby 1.9, hashes enumerate their values in the order that the corresponding

5.12 Building a Hash froman Array | 183

keys were inserted. In Ruby 1.8, hashes enumerate in an arbitrary order, irrespective
of how they were inserted into the hash.

Discussion

Why is there that somewhat incongrous expression hash at the end of the preceding
inject block? Because the next time it calls the block, inject uses the value it got
from the block the last time it called the block. When youre using inject to build a
data structure, the last line of code in the block should evaluate to the object youre
building up—in this case, our hash.

This is probably the most common inject-related gotcha. Here’s some code that
doesn't work:

collection.dup.inject({}) { |hash, value| hash[value.first] = value.last }
IndexError: index 3 out of string

Why doesn’t this work? Because hash assignment returns the assigned value, not the
hash:

Hash.new["key"] = "some value" # => "some value"

In the preceding broken example, when inject calls the code block for the second
and subsequent times, it does not pass the hash as the code blocKs first argument. It
passes in the last value to be assigned to the hash. In this case, that’s a string (maybe
"one" or "four"). The hash has been lost forever, and the inject block crashes when
it tries to treat a string as a hash.

Hash#update can be used like hash assignment, except it returns the hash instead of
the assigned value (and it’s slower). So this code will work:

collection.inject({}) do |hash, value|
hash.update value.first => value.last
end
=> {1=>"one", 2=>"two", 3=>"three", 4=>"four", 5=>"five"}

Ryan Carver came up with a more sophisticated way of building a hash out of an
array: define a general method for all arrays called to_h:
class Array
def to_h(default=nil)
Hash[*inject([]) { |a, value| a.push value, default || yield(value) }]
end
end
The magic of this method is that you can provide a code block to customize how keys
in the array are mapped to values:

a=1[1, 2, 3]

184 | Chapter5: Arrays

.to_h(true)
=> {1=>true, 2=>true, 3=>true}

[+7]

a.to_h { |value| [value * -1, value * 2] }
=> {1:>['11 2]) 2:>['2) 4]: 3:>[‘3, 6]}

References

o Recipe 6.3, “Adding Elements to a Hash”
« Recipe 6.12, “Building a Histogram”

5.13 Extracting Portions of Arrays

Problem

Given an array, you want to retrieve the elements of the array that occupy certain
positions or have certain properties. You want to do this in a way that removes the
matching elements from the original array.

Solution

To gather a chunk of an array without modifying it, use the array retrieval operator
Array#[], or its alias Array#slice.

The array retrieval operator has three forms, which are the same as the corresponding
forms for substring accesses. The simplest and most common form is array[index].
It takes a number as input, treats it as an index into the array, and returns the element
at that index. If the input is negative, it counts from the end of the array. If the array is
smaller than the index, it returns nil. If performance is a big consideration for you,
Array#at will do the same thing, and it’s a little faster than Array#[]:

a=("a".."h").to_a #=> ["a", "b", "c", "d", "e", "f", "g", "h"]
a[o] # = "
a[1] #=>"b"
a.at(1) # =>"b"
a.slice(1) # =>"b"
a[-1] #=>"h"
a[-2] # => "g"
a[1000] # => nil
a[-1000] # => nil

The second form is array[range]. This form retrieves every element identified by an
index in the given range, and returns those elements as a new array.

5.13 Extracting Portions of Arrays | 185

A range in which both numbers are negative will retrieve elements counting from the
end of the array. You can mix positive and negative indices where that makes sense:

3[25] # => [”C”, "d", e, an]
a[2...5] #=> ["c", "d", "e"]
3[00] # => [nan]

al1..-4] # == ["b", "c", "d", "e"]
a[5..1000] # => ["f", "g", "h"]
al2..0] # =[]

al0...0] #=>[]

al-3..2] # =[]

The third form 1is array[start_index, 1length]. This is equivalent to
array[range.new(start_index..start_index+length)]:

a[z‘Y 4] # => [”C”, ”d”, ”e”, nfn]
3[2, 3] # => [”C”, ”d”: Neu]
a[o, 1] # => [nan]

3[1, 2] # => [”b”, uCu]

a[_4, 2] # => [nen) an]

a[5, 1000] #=>["F", "g", "h"]

To remove a slice from the array, use Array#slicel. This method takes the same
arguments and returns the same results as Array#slice, but as a side effect, the
objects it retrieves are removed from the array:

a.slice!(2..5) #=> ["c", "d", "e", "f"]
a # => ["a", "b", "g", "h"]
a.slice!(0) # => "q"
ad # => [”b”, ng’ uhn]
a.slice!(1,2) #=>["g", "h"]
a # => [nbn]

Discussion

The Array methods [], slice, and slice! work well if you need to extract one partic-
ular elements, or a set of adjacent element. There are two other main possibilities: you
might need to retrieve the elements at an arbitrary set of indexes, or (a catch-all) you
might need to retrieve all elements with a certain property that can be determined
with a code block.

To nondestructively gather the elements at particular indexes in an array, pass in any
number of indices to Array#values_at. Results will be returned in a new array, in the
same order they were requested:
a - (llaﬂ‘.ﬂhll)‘to_a # => [Naﬂ) HbH, ”C”’ HdH, NeH’ IIfN’ Ngll’ Hh”]
a.values_at(0) # => ["a"]

186 | Chapter5: Arrays

a.values_at(1, 0, -2) # =>["b", "a", "g"]
a.values at(4, 6, 6, 7, 4, 0, 3)# = ["e", "g", "g", "h", "e", "a", "d"]

Enumerable#find_all finds all elements in an array (or other class with Enumerable

mixed in) for which the specified code block returns true. Enumerable#reject will
find all elements for which the specified code block returns false:

a.find_all { |x| x < "e" } # => ["a", "b", "c", "d"]
a.reject { |x| x < "e" } # => ["e", "f", "g", "h"]

To find all elements in an array that match a regular expression, you can use Enumera
ble#grep instead of defining a block that does the regular expression match:

a.grep /[aetlou]/ # => ["a", "e"]

a.grep /["g]/ #=>["a", "b", "c", "d", "e", "f", "h"]
Its a little tricky to implement a destructive version of Array#values_at, because
removing one element from an array changes the indexes of all subsequent elements.
We can let Ruby do the work, though, by replacing each element we want to remove
with a dummy object that we know cannot already be present in the array. We can
then use the C-backed method Array#delete to remove all instances of the dummy
object from the array. This is much faster than using Array#slice! to remove ele-
ments one at a time, because each call to Array#slice! forces Ruby to rearrange the
array to be contiguous.

If you know that your array contains no nil values, you can set your undesired values
to nil, then use use Array#compress! to remove them. The following solution is
more general:

class Array
def strip_values_at!(*args)
#For each mentioned index, replace its value with a dummy object.
values = []
dummy = Object.new
args.each do |i]
if 1 < size
values << self[i]
self[i1] = dummy
end
#Strip out the dummy object.
delete(dummy)
return values
end
end
end

a=("a".."h").to_a
a.strip_values_at!(1, 0, -2) #=>["b"]
a # => [Ila H, HC H’ IIdH) Ne Il’ Hf”, Ngll’ Hh N]

5.13 Extracting Portions of Arrays | 187

a.strip_values_at!(1000) #=>[]

3 # o> [TCh, ndn, en Fr pn
Array#reject! removes all items from an array that match a code block, but it doesn’t
return the removed items, so it won't do for a destructive equivalent of Enumera

ble#find_all. This implementation of a method called extract! picks up where
Array#reject! leaves off:

class Array
def extract!
ary = self.dup
self.reject! { |x| yield x }
ary - self
end
end

a=("a".."h").to_a
a.extract! { x| x < "e" & x != "b" } # => ["a", "c", "d"]

a # => [Nb!l, HeN, Nf”, Hgﬂ) Hh H]
Finally, a convenience method called grep_extract! provides a method that destruc-
tively approximates the behavior of Enumerable#grep:
class Array
def grep_extract!(re)
extract! { |x| re.match(x) }

end
end

a=("a".."h").to_a

a.grep_extract!(/[aetiou]/) #=>["a", "e"]
a #=> ["b", "c", "d", "F", "g", "h"]
See Also

o Strings support the array lookup operator, slice, slice!, and all the methods of
Enumerable, so you can treat them like arrays in many respects; see Recipe 2.13,
“Getting the Parts of a String You Want”

5.14 Computing Set Operations on Arrays

Problem

You want to find the union, intersection, difference, or Cartesian product of two
arrays, or the complement of a single array with respect to some universe.

188 | Chapter5: Arrays

Solution

Array objects have overloaded arithmetic and logical operators to provide the three
simplest set operations:

#Union

[1,2,3] | [1,4,5] #=>[1, 2, 3, 4, 5]
#Intersection

[1,2,3] & [1,4,5] # => [1]
#Difference

[1’2;3] - [1:415] # => [21 3]

Set objects overload the same operators, as well as the exclusive-or operator (#). If
you already have Arrays, though, it's more efficient to deconstruct the XOR operation
into its three component operations:

require 'set'

a=1[1,2,3]

b =[3,4,5]

a.to_set " b.to_set # => #<Set: {5, 1, 2, 4}>

(a | b) - (a&b) #=>[1, 2, 4, 5]
Discussion

Set objects are intended to model mathematical sets: where arrays are ordered and
can contain duplicate entries, Sets model an unordered collection of unique items.
Set not only overrides operators for set operations, it provides English-language
aliases for the three most common operators: Set#union, Set#intersection, and
Set#difference. An array can only perform a set operation on another array, but a
Set can perform a set operation on any Enumerable:

array = [1,2,3]

set = [3,4,5].to_s

array & set # => TypeError: can't convert Set into Array

set & array # => #<Set: {3}>
You might think that Set objects would be optimized for set operations, but they’re
actually optimized for constant-time membership checks (internally, a Set is based
on a hash). Set union is faster when the lefthand object is a Set object, but intersec-
tion and difference are significantly faster when both objects are arrays. It’s not worth
it to convert arrays into Sets just so you can say you performed set operations on Set
objects.

The union and intersection set operations remove duplicate entries from arrays. The
difference operation does not remove duplicate entries from an array except as part of
a subtraction:

5.14 Computing Set Operations on Arrays | 189

[3,3] & [3,3] # => [3]

[3:3] | [3:3] # => [3]
[1,2,3,3] - [1] #=>[2, 3, 3]
[1,2,3,3] - [3] #=>[1, 2]
[1,2,3,3] - [2,2,3] #=> [1]

Complement

If you want the complement of an array with respect to some small universe, create
that universe and use the difference operation:

u = [:red, :orange, :yellow, :green, :blue, :indigo, :violet]
a = [:red, :blue]
u-a # => [:orange, :yellow, :green, :indigo, :violet]

More often, the relevant universe is infinite (the set of natural numbers)or extremely
large (the set of three-letter strings). The best strategy here is to define a generator
and use it to iterate through the complement. Be sure to break when you're done; you
don’t want to iterate over an infinite set:

def natural_numbers_except(exclude)
exclude_map = {}
exclude.each { |x| exclude_map[x] = true }
x =1
while true
yield x unless exclude_map[x]
X = X.succ
end
end

natural_numbers_except([2,3,6,7]) do |x]|
break if x > 10
puts X

end

1

4

#5

8

#9

10

Cartesian product

To get the Cartesian product of two arrays, write a nested iteration over both lists and
append each pair of items to a new array. This code is attached to Enumerable so you
can also use it with Sets or any other Enumerable:

module Enumberable
def cartesian(other)
res = []
each { |x| other.each { |y| res << [x, y] } }
return res

190 | Chapter5: Arrays

end
end

[1,2,3].cartestan(["a",5,6])

#=>[[1, "a"], [1, 5], [1, 6],

[2, "a"], [2, 5], [2, 6],

[3, "a"], [3, 5], [3, 6]
This version uses Enumerable#inject to make the code more concise; however, the
original version is more efficient:

module Enumerable

def cartesian(other)
inject([]) { |res, x| other.inject(res) { |res, y| res << [x,y] } }

end
end

See Also

« See Recipe 3.5, “Generating Random Numbers,” for an example (constructing a
deck of cards from suits and ranks) that could benefit from a function to calcu-
late the Cartesian product

o Recipe 3.10, “Multiplying Matrices”

5.15 Partitioning or Classifying a Set

Problem

You want to partition a Set or array based on some attribute of its elements. All ele-
ments that go “together” in some code-specific sense should be grouped together in
distinct data structures. For instance, if youre partitioning by color, all the green
objects in a Set should be grouped together, separate from the group of all the red
objects in the Set.

Solution

Use Set#divide, passing in a code block that returns the partition of the object it’s
passed. The result will be a new Set containing a number of partitioned subsets of
your original Set.

5.15 Partitioning or ClassifyingaSet | 191

The code block can accept either a single argument or two arguments.' The single-
argument version examines each object to see which subset it should go into:
require 'set'

s = Set.new((1..10).collect)
=> #<Set: {5, 6, 1, 7, 2, 8, 3, 9, 4, 10}>

Divide the set into the "true" subset and the "false" subset: that
is, the "less than 5" subset and the "not less than 5" subset.
s.divide { |x| x < 5}

=> #<Set: {#<Set: {5, 6, 7, 8, 9, 10}>, #<Set: {1, 2, 3, 4}>}>

Divide the set into the "0" subset and the "1" subset: that is, the
"even" subset and the "odd" subset.

s.divide { |x| x % 2 }

=> #<Set: {#<Set: {6, 2, 8, 4, 10}>, #<Set: {5, 1, 7, 3, 9}>}>

s = Set.new([1, 2, 3, 'a', 'b', 'c', -1.0, -2.0, -3.0])

Divide the set into the "String subset, the "Fixnum" subset, and the
"Float" subset.

s.divide { |x| x.class }

=> #<Set: {#<Set: {"a", "b", "c"}>,

=> #<Set: {1, 2, 3}>,

=> #<Set: {-1.0, -3.0, -2.0}>}>

For the two-argument code block version of Set#divide, the code block should
return true if both the arguments it has been passed should be put into the same
subset:

s =[1, 2, 3, -1, -2, -4].to_set

Divide the set into sets of numbers with the same absolute value.
s.divide { |x,y| x.abs == y.abs }

=> #<Set: {#<Set: {-1, 1}>,

=> #<Set: {2, -2}>,

=> #<Set: {-4}>,

=> #<Set: {3}>}>

Divide the set into sets of adjacent numbers
.divide { [x,y| (x-y).abs == 1}

=> #<Set: {#<Set: {1, 2, 3}>,

=> #<Set: {-1}>,

= #<Set: {-4, -3}>}>

H R R R

If you want to classify the subsets by the values they have in common, use Set#clas
sify instead of Set#divide. It works like Set#divide, but it returns a hash that maps
the names of the subsets to the subsets themselves:

1 This is analogous to the one-argument code block passed into Enumerable#sort_by and the two-argument
code block passed into Array#sort.

192 | Chapter5: Arrays

s.classify { |x| x.class }

=> {String=>#<Set: {"a", "b", "c"}>,

=> Fixnum=>#<Set: {1, 2, 3}>,

=> Float=>#<Set: {-1.0, -3.0, -2.0}>}
Discussion

The version of Set#divide that takes a two-argument code block uses the tsort
library to turn the Set into a directed graph. The nodes in the graph are the items in
the Set. Two nodes x and y in the graph are connected with a vertex (one-way arrow)
if the code block returns true when passed |x,y|. For the Set and the two-argument
code block given in the preceding example, the graph looks like Figure 5-1.

Figure 5-1. The set {1, 2, 3, -1, -2, -4} graphed according to the code block that checks
adjacency

The Set partitions returned by Set#divide are the strongly connected components of
this graph, obtained by iterating over TSort#each_strongly_connected_component.
A strongly connected component is a set of nodes such that, starting from any node
in the component, you can follow the one-way arrows and get to any other node in
the component.

Visually speaking, the strongly connected components are the “clumps” in the graph.
1 and 3 are in the same strongly connected component as 2, because starting from 3
you can follow one-way arrows through 2 and get to 1. Starting from 1, you can fol-
low one-way arrows through 2 and get to 3. This makes 1, 2, and 3 part of the same
Set partition, even though there are no direct connections between 1 and 3.

In most real-world scenarios (including all the preceding examples), the one-way
arrows will be symmetrical: if the code returns true for |x,y|, it will also return true
for |y,x|. Set#divide will work even if this isn’t true. Consider a Set and a divide
code block like the following:

connections = { 1 =>2, 2 =>3, 3 =>1, 4=>11}

[1,2,3,4].to_set.divide { |x,y| connections[x] ==y }
=> #<Set: {#<Set: {1, 2, 3}>, #<Set: {4}>}>

The corresponding graph looks like Figure 5-2.

5.15 Partitioning or ClassifyingaSet | 193

Figure 5-2. The set {1,2,3,4} graphed according to the connection hash

You can get to any other node from 4 by following one-way arrows, but you can't get
to 4 from any of the other nodes. This puts 4 is in a strongly connected component—
and a Set partition—all by itself. 1, 2, and 3 form a second strongly connected com-
ponent—and a second Set partition—because you can get from any of them to any of
them by following one-way arrows.

Implementation for arrays

If you're starting with an array instead of a Set, it’s easy to simulate Set#classify
(and the single-argument block form of Set#divide) with a hash. In fact, the follow-
ing code is almost identical to the current Ruby implementation of Set#classify:

class Array
def classify
require 'set'
h={}
each do |1
x = yteld(i)
(h[x] ||= self.class.new) << i1
end
h
end

def divide(&block)
Set.new(classify(&block).values)
end
end

[1,1,2,6,6,7,101].divide { |x| x % 2 }

=> #<Set: {[2, 6, 6], [1, 1, 7, 101]}>
There’s no simple way to implement a version of Array#divide that takes a two-
argument block. The TSort class is Set-like in that it won't create two different nodes
for the same object. The simplest solution is to convert the array into a Set to remove
any duplicate values, divide the Set normally, then convert the partitioned subsets
into arrays, adding back the duplicate values as you go:

class Array

def divide(&block)
if block.arity ==

194 | Chapter5: Arrays

counts = inject({}) { |h, x| h[x] ||= 0; h[x] += 1; h}

to_set.divide(&block).inject([]) do |divided, set|
divided << set.inject([]) do |partition, e|
counts[e].times { partition << e }
partition
end
end
else
Set.new(classify(&block).values)
end
end
end

[1,1,2,6,6,7,101].divide { |x,y| (x-y).abs == 1}
=>[[101], [1, 1, 2], [6, 6, 7]]

Is it worth it? You decide.

5.15 Partitioning or Classifying a Set

195

CHAPTER 6
Hashes

Hashes and arrays are the two basic “aggregate” data types supported by most modern
programming lagnguages. The basic interface of a hash is similar to that of an array.
The difference is that while an array stores items according to a numeric index, the
index of a hash can be any object at all.

Arrays and strings have been built into programming languages for decades, but
built-in hashes are a relatively recent development. Now that they’re around, it’s hard
to live without them: they're at least as useful as arrays.

You can create a hash by calling Hash.new or by using one of the special syntaxes
Hash[] or {}. With the Hash[] syntax, you pass in the initial elements as comma-
separated object references. With the {} syntax, you pass in the initial contents as
comma-separated key-value pairs:

empty = Hash.new

empty ={}

numbers = { :two => 2, :eight => 8}
numbers = Hash[:two, 2, :eight, 8]

= {}
=> {}
=> {:two=>2, :eight=>8}
=> {:two=>2, :eight=>8}

IR W R

In Ruby 2.1, a new syntax was introduced for declaring hashes that saves you a few
characters:

numbers = { two: 2, eight: 8 } # => {:two=>2, :eight=>8}

Once the hash is created, you can do hash lookups and element assignments using the
same syntax you would use to view and modify array elements:

numbers|[:two] # => 2
numbers[:ten] = 10 # => 10
numbers # => {:two=>2, :eight=>8, :ten=>10}

You can get an array containing the keys or values of a hash with Hash#keys or
Hash#values. You can get the entire hash as an array with Hash#to_a:

197

numbers.keys # => [:two, :eight, :ten]

numbers.values #=>[2, 8 10]

numbers.to_a # => [[:two, 2], [:eight, 8], [:ten, 10]]
Like an array, a hash contains references to objects, not copies of them. Modifications
to the original objects will affect all references to them:

motto = "Don't tread on me"
flag = { :motto => motto,
:picture => "rattlesnake.png"}
motto.upcase!
flag[:motto] # => "DON'T TREAD ON ME"

The defining feature of an array is its ordering. Each element of an array is assigned a
Fixnum object as its key. The keys start from zero and there can never be gaps. In con-
trast, a hash has no natural ordering, since its keys can be any objects at all. This fea-
ture make hashes useful for storing lightly structured data or key-value pairs.

Consider some simple data for a person in an address book. For a side-by-side com-
parison I'll represent identical data as an array, then as a hash:

a = ["Maury", "Momento", "123 Elm St.", "West Covina", "CA"]
h = { :first_name => "Maury",
:last_name => "Momento",
:address => "123 Elm St."
:city => "West Covina",
:state => "CA" }
The array version is more concise, and if you know the numeric index, you can
retrieve any element from it in constant time. The problem is knowing the index, and
knowing what it means. Other than inspecting the records, there’s no way to know
whether the element at index 1 is a last name or a first name. Worse, if the array for-
mat changes to add an apartment number between the street address and city, all
code that uses a[3] or a[4] will need to have its index changed.

The hash version doesnt have these problems. The last name will always be
at :last_name, and it’s easy (for a human, anyway) to know what : last_name means.
Most of the time, hash lookups take no longer than array lookups.

The main advantage of a hash is that it’s often easier to find what youre looking for.
Checking whether an array contains a certain value might require scanning the entire
array. To see whether a hash contains a value for a certain key, you only need to look
up that key. The set library (as seen in the previous chapter) exploits this behavior to
implement a class that looks like an array, but has the performance characteristics of a
hash.

In Ruby 1.8, a downside of using a hash was that it had no natural ordering, so you
couldn’t sort it except by turning it into an array first. There was also no guarantee of
order when you iterated over a hash.

198 | Chapter 6: Hashes

However, in Ruby 2.1, the internal structure of the hash changed to preserve the nat-
ural ordering. Here is an example:

h = { one_squared: 1, two_squared: 4, three_squared: 9,
four_squared: 16 }

puts h
{:one_squared=>1, :two_squared=>4,
:three_squared=>9, :four_squared=>16}
In this case, there’s a numeric order to the entries, and giving them additional labels
distracts more than it helps.

A hash in Ruby is actually implemented as an array. When you look up a key in a
hash (either to see what’s associated with that key, or to associate a value with the
key), Ruby calculates the hash code of the key by calling its Object#hash method. The
result is used as a numeric index in the array. Recipe 6.5 will help you with the most
common problem related to hash codes.

The performance of a hash depends a lot on the fact that it’s very rare for two objects
to have the same hash code. If all objects in a hash had the same hash code, a hash
would be much slower than an array. Code like this would be a very bad idea:

class BadIdea
def hash
100
end
end

Except for strings and other built-in objects, most objects have a hash code equivalent
to their internal object ID. As just shown, you can override Object#hash to change
this, but the only time you should need to do this is if your class also overrides
Object#==. If two objects are considered equal, they should also have the same hash
code; otherwise, they will behave strangely when you put them into hashes. Code like
this fragment is a very good idea:

class StringHolder
attr_reader :string
def initialize(s)
@string = s
end

def ==(other)
@string == other.string
end

def hash
@string.hash
end
end
a = StringHolder.new("The same string.")

Hashes | 199

b = StringHolder.new("The same string.")

a == # => true

a.hash # => -1007666862
b.hash # => -1007666862

6.1 Using Symbols as Hash Keys

Credit: Ben Giddings

Problem

When using a hash, you want the slight optimization you can get by using symbols as
keys instead of strings.

Solution

Whenever you would otherwise use a quoted string, use a symbol instead. You can
create a symbol either by using a colon in front of a word, like :keyname, or by trans-
forming a string to a symbol using String#intern:

people = Hash.new

people[:nickname] = 'Matz'

people[:language] = 'Japanese'

people['last name'.intern] = 'Matsumoto'

people[:nickname] # => "Matz"

people['nickname'.intern] # => "Matz"
Discussion

While name and name appear identical, they’re actually different. Each time you create
a quoted string in Ruby, you create a unique object. You can see this by looking at the
object_id method:

'name'.object_1id # => 70179325243260
'name'.object_1id # => 70179325254100
'name'.object_1id # => 70179325248540

By comparison, each instance of a symbol refers to a single object:

:name.object_1id # => 67368
:name.object_1id # => 67368
'name’'.intern.object_id # => 67368
'name'.intern.object_id # => 67368

Using symbols instead of strings saves memory and time. It saves memory because
there’s only one symbol instance, instead of many string instances. If you have many
hashes that contain the same keys, the memory savings add up.

200 | Chapter6: Hashes

Using symbols as hash keys is faster because the hash value of a symbol is simply its
object ID. If you use strings in a hash, Ruby must calculate the hash value of a string
each time it’s used as a hash key.

See Also

o Recipe 2.7, “Converting Between Strings and Symbols”

6.2 Creating a Hash with a Default Value

Credit: Ben Giddings

Problem

You're using a hash, and you don’t want to get nil as a value when you look up a key
that isn’t present in the hash. You want to get some more convenient value instead,
possibly one calculated dynamically.

Solution
A normal hash has a default value of nil:

h = Hash.new

h[1] # => nil

h['do you have this string?'] # => nil
There are two ways of creating default values for hashes. If you want the default value
to be the same object for every hash key, pass that value into the Hash constructor:

h = Hash.new("nope")

h[1] # => "nope"”

h['do you have this string?'] # => "nope"
If you want the default value for a missing key to depend on the key or the current
state of the hash, pass a code block into the hash constructor. The block will be called
each time someone requests a missing key:

h = Hash.new { |hash, key| (key.respond_to? :to_str) ? "nope" : nil }

h[1] # => nil
h['do you have this string'] # => "nope"
Discussion

The first type of custom default value is most useful when you want a default value of
zero. For example, this form can be used to calculate the frequency of certain words
in a paragraph of text:

6.2 Creating a Hash with a Default Value | 201

text = 'The rain in Spain falls mainly in the plain.'

word_count_hash = Hash.new 0 #=> {}

text.split(/W+/).each { |word| word_count_hash[word.downcase] += 1 }

word_count_hash

=> {"the"=>2, "rain"=>1, "in"=>2, "spain"=>1,

"falls"=>1, "mainly"=>1, "plain"=>1}

What if you wanted to make lists of the words starting with a given character? Your
first attempt might look like this:

first_letter_hash = Hash.new []
text.split(/W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }
first_letter_hash
= {}
first_letter_hash["m"]
=> ["The", "rain", "in", "Spain", "falls", "mainly", "in", "the", "plain"]

What’s going on here? All those words don’t start with m. ...

What happened is that the array you passed into the Hash constructor is being used
for every default value. first_letter_hash["m"] is now a reference to that array, as
is first_letter_hash["f"] and even first_letter_hash[1006].

This is a case where you need to pass in a block to the Hash constructor. The block is
run every time the Hash can’t find a key. This way, you can create a different array
each time:

first_letter_hash = Hash.new { |hash, key| hash[key] = [] }

text.split(/\W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }

first_letter_hash

=> {"t"=>["The", "the"], "r"=s["rain"], "i"=>["in", "in"],

IVSII:>[IISpa.‘Lr]VI]J IIfH:>[Hfa'L'LSH]’ HmII:>[IVma.'Ln'LyH]’ HpII:>[IVp'La.'LnII]}

first_letter_hash["m"]

=> ["mainly"]
When a letter can’t be found in the hash, Ruby calls the block passed into the Hash
constructor. That block puts a new array into the hash, using the missing letter as the
key. Now the letter is bound to a unique array, and words can be added to that array
normally.

Note that if you want to add the array to the hash so it can be used later, you must
assign it within the block of the Hash constructor. Otherwise, you'll get a new, empty
array every time you access first_letter_hash["m"]. The words you want to
append to the array will be lost.

See Also

o This technique is used in recipes like Recipe 6.6, “Keeping Multiple Values for the
Same Hash Key,” and Recipe 6.12, “Building a Histogram”

202 | Chapter6: Hashes

6.3 Adding Elements to a Hash

Problem

You have some items, loose or in some other data structure, that you want to put into
an existing hash.

Solution

To add a single key-value pair, assign the value to the element lookup expression for
the key; that is, call hash[key]=value. Assignment will override any previous value
for that key:

h={}

h["Greensleeves"] = "all my joy"

h # => {"Greensleeves"=>"all my joy"}

h["Greensleeves"] = "my delight"
h # => {"Greensleeves"=>"my delight"}

Discussion

When you use a string as a hash key, the string is transparently copied and the copy is
frozen. This is to avoid confusion should you modify the string in place, then try to
use its original form to do a hash lookup:

key = "Modify me if you can"
h={key =>11}

key.upcase! # => "MODIFY ME IF YOU CAN"
h[key] # => nil

h["Modify me if you can"] #=>1

h.keys # => ["Modify me if you can"]

h.keys[0].upcase!
RuntimeError: can't modify frozen String

To add an array of key-value pairs to a hash, either iterate over the array with
Array#each, or pass the hash into Array#inject. Using inject is slower, but the code
is more concise:

squares = [[1,1], [2,4], [3,9]]

results = {}
squares.each { |k,v| results[k] = v }
results # => {1=>1, 2=>4, 3=>9}

squares.inject({}) { |h, kv| h[kv[0]] = kv[1]; h }
=> {1=>1, 2=>4, 3=>9}

To turn a flat array into the key-value pairs of a hash, iterate over the array elements
two at a time:

6.3 Adding ElementstoaHash | 203

class Array
def into_hash(h)

unless size % 2 == 0
raise StandardError, "Expected array with even number of elements"
end
0.step(size-1, 2) { |x| h[self[x]] = self[x+1] }
h
end

end

squares = [1,1,2,3,4,9]
results = {}
squares.into_hash(results) # => {1=>1, 2=>3, 4=>9}

[1,1,2].into_hash(results)

StandardError: Expected array with even number of elements
To insert into a hash every key-value pair from another hash, use Hash#merge!. If a
key is present in both hashes when a.merge! (b) is called, the value in b takes prece-
dence over the value in a:

squares = { 1 => 1, 2 => 4, 3 => 9}

cubes = { 3 => 27, 4 => 256, 5 => 3125}

squares.merge! (cubes)

squares # =>{1=>1, 2=>4, 3=>27, 4=>256, 5=>3125}

cubes # =>{3=>27, 4=>256, 5=>3125}
Hash#merge! also has a nondestructive version, Hash#merge, which creates a new
Hash with elements from both parent hashes. Again, the hash passed in as an argu-
ment takes precedence.

To completely replace the entire contents of one hash with the contents of another,
use Hash#replace:

squares = { 1 => 1, 2 => 4, 3 => 9}

cubes = {1 =>1, 2 =>8, 3 => 27}

squares.replace(cubes)

squares # => {1=>1, 2=>8, 3=>27}
This is different from simply assigning the cubes hash to the squares variable name,
because cubes and squares are still separate hashes; they just happen to contain the
same elements right now. Changing cubes won't affect squares:

cubes[4] = 64
squares # => {1=>1, 2=>8, 3=>27}

See Also

o Recipe 5.12, “Building a Hash from an Array, has more about the inject
method

204 | Chapter6: Hashes

o Recipe 6.1, “Using Symbols as Hash Keys,” for a way to save memory when con-
structing certain types of hashes

 Recipe 6.5, “Using an Array or Other Modifiable Object as a Hash Key, talks

about how to avoid another common case of confusion when a hash key is
modified

6.4 Removing Elements from a Hash

Problem

Certain elements of your hash have got to go!

Solution

Most of the time you want to remove a specific element of a hash. To do that, pass the
key into Hash#delete:

h={}

h[1] = 10

h # => {1=>10}

h.delete(1)

h # => {}

Discussion

Don't try to delete an element from a hash by mapping it to nil. It’s true that, by
default, you get nil when you look up a key that’s not in the hash, but there’s a differ-
ence between a key that’s missing from the hash and a key that’s present but mapped
to nil. Hash#has_key? will see a key mapped to nil, as will Hash#each and all other
methods except for a simple fetch:

h = {}

h[5] # => nil
h[5] = 10

h[5] # => 10
h[5] = nil

h[5] # => nil
h.keys # => [5]
h.delete(5)

h.keys #=>[]

Hash#delete works well when you need to remove elements on an ad hoc basis, but
sometimes you need to go through the whole hash looking for things to remove. Use
the Hash#delete_if iterator to delete key-value pairs for which a certain code block
returns true (Hash#reject works the same way, but it works on a copy of the Hash).
The following code deletes all key-value pairs with a certain value:

6.4 Removing ElementsfromaHash | 205

class Hash
def delete_value(value)
delete_if { |k,v| v == value }

end
end
h = {'apple' => 'green', 'potato' => 'red', 'sun' => 'yellow',
'katydid' => 'green' }
h.delete_value('green')
h # => {"sun"=>"yellow", "potato"=>"red"}

This code implements the opposite of Hash#merge; it extracts one hash from another:

class Hash
def remove_hash(other_hash)
delete_if { |k,v| other_hash[k] == v }
end
end

squares = { 1 =>1, 2 =>4, 3 =>9 }

doubles = { 1 =>2, 2 =>4, 3 => 6 }
squares.remove_hash(doubles)

squares # => {1=>1, 3=>9}

Finally, to wipe out the entire contents of a Hash, use Hash#clear:

h = {}

1.upto(1000) { |x| h[x] = x }

h.keys.size # => 1000
h.clear

h #=> {}
See Also

o Recipe 6.3, “Adding Elements to a Hash”
 Recipe 6.7, “Iterating Over a Hash”

6.5 Using an Array or Other Modifiable Object as a Hash
Key

Problem

You want to use a modifiable built-in object (an array or a hash, but not a string) as a
key in a hash, even while you modify the object in place. A naive solution tends to
lose hash values once the keys are modified:

coordinates = [10, 5]
treasure_map = { coordinates => 'jewels' }
treasure_map[coordinates] # => "jewels"

206 | Chapter6: Hashes

Add a z-coordinate to indicate how deep the treasure is buried.
coordinates << -5

coordinates # => [10, 5, -5]
treasure_map[coordinates] # => nil
0h no!
Solution

The easiest solution is to call the Hash#rehash method every time you modify one of
the hash’s keys. Hash#rehash will repair the broken treasure map just defined:

treasure_map.rehash

treasure_map[coordinates] # => "jewels"
If this is too much code, you might consider changing the definition of the object you
use as a hash key, so that modifications don’t affect the way the hash treats it.

Suppose you want a reliably hashable Array class. If you want this behavior univer-
sally, you can reopen the Array class and redefine hash to give you the new behavior.
But it’s safer to define a subclass of Array that implements a reliable-hashing mixin,
and to use that subclass only for the Arrays you want to use as hash keys:

module ReliablyHashable
def hash
return object_id
end
end

class ReliablyHashableArray < Array
include ReliablyHashable
end

It's now possible to keep track of the jewels:

coordinates = ReliablyHashableArray.new([10,5])
treasure_map = { coordinates => 'jewels' }
treasure_map[coordinates] # => "jewels"

Add a z-coordinate to indicate how deep the treasure is buried.
coordinates.push(-5)

treasure_map[coordinates] # => "jewels"

Discussion

Ruby performs hash lookups using not the key object itself but the object’s hash code
(an integer obtained from the key by calling its hash method). The default implemen-
tation of hash, in Object, uses an object’s internal ID as its hash code. Array, Hash,
and String override this method to provide different behavior.

6.5 Using an Array or Other Modifiable ObjectasaHash Key | 207

In the initial example, the hash code of [10,5] is 41 and the hash code of [10,5,-5]
is 83. The mapping of the coordinate list to jewels is still present (it’ll still show up in
an iteration over each_pair), but once you change the coordinate list, you can no
longer use that variable as a key.

You may also run into this problem when you use a hash or a string as a hash key, and
then modify the key in place. This happens because the hash implementations of
many built-in classes try to make sure that two objects that are “the same” (for
instance, two distinct arrays with the same contents, or two distinct but identical
strings) get the same hash value. When coordinates is [10,5], it has a hash code of
41, like any other Array containing [10,5]. When coordinates is [10,5,-5] it has a
hash code of 83, like any other Array with those contents.

Because of the potential for confusion, some languages don't let you use arrays or
hashes as hash keys at all. Ruby lets you do it, but you have to face the consequences if
the key changes. Fortunately, you can dodge the consequences by overriding hash to
work the way you want.

Since an object’s internal ID never changes, the Object implementation is what you
want to get reliable hashing. To get it back, you’ll have to override or subclass the
hash method of Array or Hash (depending on what type of key youre having trouble
with).

The implementations of hash given in the Solution violate the principle that different
representations of the same data should have the same hash code. This means that
two ReliablyHashableArray objects will have different hash codes even if they have
the same contents. For instance:

[1,2]

a.clone

.hash #=> 11
.hash #=> 11

= a.clone
hash # => -606031406

a
b

a

b

a

ReliablyHashableArray.new([1,2])

b

a.

b.hash # => -606034266

If you want a particular value in a hash to be accessible by two different arrays with
the same contents, then you must key it to a regular array instead of a ReliablyHasha
bleArray. You can’t have it both ways. If an object is to have the same hash key as its
earlier self, it can’t also have the same hash key as another representation of its cur-
rent state.

Another solution is to freeze your hash keys. Any frozen object can be reliably used as
a hash key, since you can’t do anything to a frozen object that would cause its hash

208 | Chapter6: Hashes

code to change. Ruby uses this solution: when you use a string as a hash key, Ruby
copies the string, freezes the copy, and uses that as the actual hash key.

See Also

o Recipe 9.15, “Freezing an Object to Prevent Changes”

6.6 Keeping Multiple Values for the Same Hash Key

Problem

You want to build a hash that might have duplicate values for some keys.

Solution

The simplest way is to create a hash that initializes missing values to empty arrays.
You can then append items onto the automatically created arrays:

hash = Hash.new { |hash, key| hash[key] = [] }

raw_data = [[1, 'a'], [1, 'b'], [1, 'c'],
[2, 'a'], [2, ['b", 'c'1],
[3, '¢'11]
raw_data.each { |x,y| hash[x] <<y }
hash
=> {1=>["a’, "b", 'c'], 2=>["a", ['b", "c"]], 3=>['c"]}

Discussion

A hash maps any given key to only one value, but that value can be an array. This is a
common phenomenon when Ruby is reading data structures from the outside world.
For instance, a list of tasks with associated priorities may contain multiple items with
the same priority. Simply reading the tasks into a hash keyed on priority would create
key collisions, and obliterate all but one task with any given priority.

It’s possible to subclass Hash to act like a normal hash until a key collision occurs, and
then start keeping an array of values for the key that suffered the collision:

class MultiValuedHash < Hash
def []=(key, value)
if has_key?(key)
super(key, [value, self[key]].flatten)
else
super
end
end
end

6.6 Keeping Multiple Values for the Same Hash Key | 209

hash = MultiValuedHash.new

raw_data.each { |x,y| hash[x] =y }

hash

=> {1:>[”C IV’ Ilb N’ Na H]) 2:>[Nb VI) HC N, Na H]’ 3:> Hc N]
This saves a little bit of memory, but it’s harder to write code for this class than for
one that always keeps values in an array. There’s also no way of knowing whether a
value [1,2,3] is a single array value or three numeric values.

See Also

 Recipe 6.2, “Creating a Hash with a Default Value,” explains the technique of the
dynamic default value in more detail, and explains why you must initalize the
empty list within a code block—never within the arguments to Hash.new

6.7 Iterating Over a Hash

Problem

You want to iterate over a hash’s key-value pairs as though it were an array.

Solution

Most likely, the iterator you want is Hash#each_pair or Hash#each. These methods
yield every key-value pair in the hash:

hash = { 1 => 'one', [1,2] => 'two', 'three' => 'three' }

hash.each_pair { |key, value| puts "#{key} maps to #{value}"}

[1, 2] maps to two

"three" maps to three

1 maps to one
Note that each and each_patir return the key-value pairs in an apparently random
order.

Discussion

Hash#each_pair and Hash#each let you iterate over a hash as though it were an array
full of key-value pairs. Hash#each_pair is more commonly used and slightly more
efficient, but Hash#each is more array-like. Hash also provides several other iteration
methods that can be more efficient than each.

210 | Chapter6: Hashes

Use Hash#each_key if you need only the keys of a hash. In this example, a list has
been stored as a hash to allow for quick lookups (this is how the Set class works). The
values are irrelevant, but each_key can be used to iterate over the keys:

active_toggles = { 'super' => true, 'meta' => true, 'hyper' => true }

active_toggles.each_key { |active| puts active }

hyper

meta
super

Use Hash#each_value if you need only the values of a hash. In this example,
each_value is used to summarize the results of a survey. Here it’s the keys that are
irrelevant:

favorite_colors = { 'Alice' => :red, 'Bob' => :violet, 'Mallory' => :blue,
'Carol' => :blue, 'Dave' => :violet }

summary = Hash.new 0

favorite_colors.each_value { [x| summary[x] += 1 }
summary

=> {:red=>1, :violet=>2, :blue=>2}

Don't iterate over Hash#each_value looking for a particular value: it’s simpler and
faster to use has_value? instead:

hash = {}

1.upto(10) { |x| hash[x] = x * x }
hash.has_value? 49 # => true
hash.has_value? 81 # => true
hash.has_value? 50 # => false

Removing unprocessed elements from a hash during an iteration prevents those
items from being part of the iteration. However, adding elements to a hash during an
iteration will not make them part of the iteration.

In Ruby 1.8, you can’t modify the keyset of a hash during an iteration, or you’ll get
undefined results and possibly a RuntimeError:

1.upto(100) { |x| hash[x] = true }
hash.keys { |k| hash[k * 2] = true }
RuntimeError: hash modified during iteration

But in Ruby 2.1, modifying hashes during iteration is perfectly acceptable.

Using an array as intermediary

An alternative to using the hash iterators is to get an array of the keys, values, or key-
value pairs in the hash, and then work on the array. You can do this with the keys,
values, and to_a methods, respectively:

hash = {1 => 2, 2 => 2, 3 => 10}
hash.keys #=>[1, 2, 3]

6.7 Iterating OveraHash | 211

hash.values #=>[2, 2, 10]
hash.to_a #=>[[1, 2], [2, 2], [3, 10]]

The most common use of keys and values is to iterate over a hash in a specific order.
All of Hash’s iterators return items in a seemingly random order. If you want to iterate
over a hash in a certain order, the best strategy is usually to create an array from some
portion of the hash, sort the array, then iterate over it.

The most common case is to iterate over a hash according to some property of the
keys. To do this, sort the result of Hash#keys. Use the original hash to look up the
value for a key, if necessary:

extensions = { 'Alice' => '104', 'Carol' => '210', 'Bob' => '110' }
extensions.keys.sort.each do |k|
puts "#{k} can be reached at extension ##{extensions[k]}"
end
Alice can be reached at extension #104
Bob can be reached at extension #1160
Carol can be reached at extension #210

Hash#values gives you the values of a hash, but that’s not useful for iterating because
it’s so expensive to find the key for a corresponding value (and if you only wanted the
values, youd use each_value).

Hash#sort and Hash#sort_by turn a hash into an array of two-element subarrays
(one for each key-value pair), then sort the array of arrays however you like. Your
custom sort method can sort on the values, on the values and the keys, or on some
relationship between key and value. You can then iterate over the sorted array the
same as you would with the Hash.each iterator.

This code sorts a to-do list by priority, then alphabetically:

to_do = { 'Clean car' => 5, 'Take kangaroo to vet' => 3,
'Realign plasma conduit' => 3 }
to_do.sort_by { |task, priority| [priority, task] }.each { |k,v| puts k }
Realign plasma conduit
Take kangaroo to vet
Clean car

This code sorts a hash full of number pairs according to the magnitude of the differ-
ence between the key and the value:

transform_results = { 4 => 8, 9 => 9, 10 => 6, 2 => 7, 6 => 5 }

by _size_of_difference = transform_results.sort_by { |x, y| (x-y).abs }
by_size_of_difference.each { |x, y| puts "f(#{x})=#{y}: difference #{y-x}" }
f(9)=9: difference 0

f(6)=5: difference -1

f(10)=6: difference -4

f(4)=8: difference 4

f(2)=7: difference 5

212 | Chapter6: Hashes

See Also

o See Recipe 6.8, “Iterating Over a Hash in Insertion Order,” for a more complex
iterator

o Recipe 6.12, “Building a Histogram”
« Recipe 6.13, “Remapping the Keys and Values of a Hash”

6.8 Iterating Over a Hash in Insertion Order

Problem

In Ruby 1.8, iterations over a hash happen in a seemingly random order. Sorting the
keys or values works only if the keys or values are all mutually comparable. Youd like
to iterate over a hash in the order in which the elements were added to the hash.

Solution

The simplest solution is to upgrade to a Ruby that is newer than 1.9 (when Ruby
started preserving the order of hashes). However, sometimes that is not possible.
Luckily, you can use an orderedhash library (see the next snippet for how to get it).
Its OrderedHash class acts like a hash, but it keeps the elements of the hash in inser-
tion order:

gem 'activesupport'
require 'active_support'
h = ActiveSupport::0OrderedHash.new

h[1] =1

h["second"] = 2

h[:third] = 3

h.keys # => [1, "second", :third]
h.values #=>[1, 2, 3]

h.each { |k,v| puts "The #{k} counting number is #{v}" }
The 1 counting number is 1

The second counting number is 2

The third counting number is 3

Discussion

OrderedHash is a subclass of Hash that also keeps an array of the keys in insertion
order. When you add a key-value pair to the hash, OrderedHash modifies both the
underlying hash and the array. When you ask for a specific hash element, you're using
the hash. When you ask for the keys or the values, the data comes from the array,
and you get it in insertion order.

6.8 Iterating Over a Hash in Insertion Order | 213

Since OrderedHash is a real hash, it supports all the normal hash operations. But any
operation that modifies an OrderedHash may also modify the internal array, so it’s
slower than just using a hash. OrderedHash#delete is especially slow, since it must
perform a linear search of the internal array to find the key being deleted.
Hash#delete runs in constant time, but OrderedHash#delete takes time proportion-
ate to the size of the hash.

See Also

o You can get ActiveSupport::0OrderedHash from GitHub; it’s also available as a
activesupport

6.9 Printing a Hash

Credit: Ben Giddings

Problem

You want to print out the contents of a hash, but Kernel#puts doesn't give very useful
results:

h = {}

h[:name] = "Robert"
h[:nickname] = "Bob"
h[:age] = 43

h[:email_addresses] = {:home => "bob@example.com",
:work => "robert@example.com"}

h

=> {:email_addresses=>["bob@example.com", "robert@example.com"],
:nickname=>"Bob", :name=>"Robert", :age=>43}

puts h

{:name=>"Robert", :nickname=>"Bob", :age=>43,
:emaill_addresses=>{:home=>"bob@example.com", :work=>"robert@example.com"}}

puts h[:email_addresses]

homebob@example.comworkrobert@example.com

Solution

When the hash you're trying to print is too large, the pp (“pretty-print”) module pro-
duces very readable results:
require 'pp'

pp h[:email_addresses]
{:home=>"bob@example.com", :work=>"robert@example.com"}

pp h
{:email_addresses=>{:home=>"bob@example.com", :work=>"robert@example.com"}

214 | Chapter6: Hashes

https://github.com/rails/rails/tree/master/activesupport

:nickname=>"Bob",
:name=>"Robert",
:age=>43}

Discussion

There are a number of ways of printing hash contents. The solution you choose
depends on the complexity of the hash you’re trying to print, where you're trying to
print the hash, and your personal preferences. The best general-purpose solution is
the pp library.

When a given hash element is too big to fit on one line, pp knows to put it on multi-
ple lines. Not only that, but (as with Hash#inspect), the output is valid Ruby syntax
for creating the hash: you can copy and paste it directly into a Ruby program to recre-
ate the hash.

The pp library can also pretty-print to I/O streams besides standard output, and can
print to shorter lines (the default line length is 79). This example prints the hash to
$stderr and wraps at column 50:

PP::pp(h, S$Sstderr, 50)

{:nickname=>"Bob",

:email_addresses=>

{:home=>"bob@example.com",

:work=>"robert@example.com"},
:age=>43,

:name=>"Robert"}

=> #<I0:0x2c8cc>

You can also print hashes by converting them into YAML with the yaml library.
YAML is a human-readable markup language for describing data structures:

require 'yaml'

puts h.to_yaml

#? --

:nickname: Bob

:age: 43

:name: Robert

:email_addresses:

:home: bob@example.com

:work: robert@example.com

If none of these options is suitable, you can print the hash out yourself by using
Hash#each_pair to iterate over the hash elements:

h[:email_addresses].each_pair do |key, val|
puts "#{key} => #{val}"

end

home => bob@example.com

work => robert@example.com

6.9 PrintingaHash | 215

See Also

 Recipe 9.10, “Getting a Human-Readable Printout of Any Object,” covers the
general case of this problem

o Recipe 14.1, “Serializing Data with YAML”

6.10 Inverting a Hash

Problem

Given a hash, you want to switch the keys and values; that is, you want to create a
new hash whose keys are the values of the old hash, and whose values are the keys of
the old hash. If the old hash mapped "human" to "wolf", you want the new hash to
map "wolf" to "human".

Solution

The simplest technique is to use the Hash#invert method:

phone_directory = { 'Alice' => '555-1212',

'Bob' => '555-1313',

'Mallory' => '111-1111' }
phone_directory.invert
=> {"555-1212"=>"Alice", "555-1313"=>"Bob", "111-1111"=>"Mallory"}

Discussion

Hash#invert probably won't do what you want if your hash maps more than one key
to the same value. Only one of the keys for that value will show up as a value in the
inverted hash:

phone_directory = { '"Alice' => '555-1212',
'Bob' => '555-1313',
'Carol' => '555-1313"',
'Mallory' => '111-1111"',
'Ted' => '555-1212' }
phone_directory.invert
=> {"555-1212"=>"Ted", "555-1313"=>"Carol", "111-1111"=>"Mallory"}

To preserve all the data from the original hash, borrow the idea behind Recipe 6.6,
and write a version of invert that keeps an array of values for each key. The following
is based on code by Tilo Sloboda:

class Hash
def safe_invert
new_hash = {}

self.each do |k,v|

216 | Chapter6: Hashes

if v.is_a? Array
v.each { |x| new_hash.add_or_append(x, k) }
else
new_hash.add_or_append(v, k)
end
end
return new_hash
end

The add_or_append method acts a lot like the method MultivaluedHash#[]= defined
in Recipe 6.6:
def add_or_append(key, value)
if has_key?(key)
self[key] = [value, self[key]].flatten
else
self[key] = value
end

end
end

Here’s safe_invert in action:
phone_directory.safe_invert

=> {"555-1212"=>["Ted", "Alice"],
"555-1313"=>["Carol", "Bob"], "111-1111"=>"Mallory"}

phone_directory.safe_invert.safe_invert
=> {"Ted"=>"555-1212", "Alice"=>"555-1212",
"Carol"=>"555-1313", "Bob"=>"555-1313", "Mallory"=>"111-1111"}

Ideally, if you called an inversion method twice youd always get the same data you
started with. The safe_invert method does better than invert on this score, but it’s
not perfect. If your original hash used arrays as hash keys, safe_invert will act as if
youd individually mapped each element in the array to the same value. Call
safe_invert twice, and the arrays will be gone.

See Also

« Recipe 6.5, “Using an Array or Other Modifiable Object as a Hash Key”

o The Facets library defines a Hash#inverse method much like safe_invert

6.11 Choosing Randomly from a Weighted List

Problem

You want to pick a random element from a collection, where each element in the col-
lection has a different probability of being chosen.

6.11 Choosing Randomly from a Weighted List | 217

Solution

Store the elements in a hash, mapped to their relative probabilities. The following
code will work with a hash whose keys are mapped to relative integer probabilities:

def choose_weighted(weighted)
sum = weighted.inject(0) do |sum, item_and_weight]|
sum += item_and_weight[1]
end
target = rand(sum)
weighted.each do |item, weight|
return item if target <= weight
target -= weight
end
end

For instance, if all the keys in the hash map to 1, the keys will be chosen with equal
probability. If all the keys map to 1, except for one that maps to 10, that key will be
picked 10 times more often than any single other key. This algorithm lets you simu-
late those probability problems that begin like, “You have a box containing 51 black
marbles and 17 white marbles...”:

marbles = { :black => 51, :white => 17 }
3.times { puts choose_weighted(marbles) }
black
white
black

We use it to simulate a lottery in which the results have different probabilities of
showing up:

lottery_probabilities = { "You've wasted your money!" => 1000,
"You've won back the cost of your ticket!" => 50,
"You've won two shiny zorkmids!" => 20,
"You've won five zorkmids!" => 10,
"You've won ten zorkmids!" => 5,
"You've won a hundred zorkmids!" => 1 }

Let's buy some lottery tickets.

5.times { puts choose_weighted(lottery_probabilities) }
You've wasted your money!

You've wasted your money!

You've wasted your money!

You've wasted your money!

You've won five zorkmids!

Discussion

An extremely naive solution would put the elements in a list and choose one at ran-
dom. This doesn’t solve the problem because it ignores weights altogether: low-weight
elements will show up exactly as often as high-weight ones. A less naive solution

218 | Chapter6: Hashes

would be to repeat each element in the list a number of times proportional to its
weight. Under this implementation, our simulation of the marble box would con-
tain :black 51 times and :white 17 times, just like a real marble box. This is a com-
mon quick-and-dirty solution, but it’s hard to maintain, and it uses lots of memory.

The algorithm just given actually works the same way as the less naive solution: the
numeric weights stand in for multiple copies of the same object. Instead of picking
one of the 68 marbles, we pick a number between 0 and 67 inclusive. Since we know
there are 51 black marbles, we simply decide that the numbers from 0 to 50 will rep-
resent black marbles.

For the preceding implementation to work, all the weights in the hash must be inte-
gers. This isn't a big problem the first time you create a hash, but suppose that after
the lottery has been running for a while, you decide to add a new jackpot that’s 10
times less common than the 100-zorkmid jackpot. Youd like to give this new possibil-
ity a weight of 0.1, but that won't work with the choose_ weighted implementation.
You'll need to give it a weight of 1, and multiply all the existing weights by 10.

There is an alternative, though: normalize the weights so that they add up to 1. You
can then generate a random floating-point number between 0 and 1, and use a similar
algorithm to the preceding one. This approach lets you weight the hash keys using
any numeric objects you like, since normalization turns them all into small floating-
point numbers anyway:

def normalize!(weighted)
sum = weighted.inject(0) do |sum, item_and_weight|
sum += item_and_weight[1]
end
sum = sum.to_f
weighted.each { |item, weight| weighted[item] = weight/sum }
end

lottery_probabilities["You've won five hundred zorkmids!"] = 0.1
normalize!(lottery_probabilities)
=> { "You've wasted your money!" => 0.920725531718995,

"You've won back the cost of your ticket!" => 0.0460362765859497,
"You've won two shiny zorkmids!" => 0.0184145106343799,

"You've won five zorkmids!" => 0.00920725531718995,

"You've won ten zorkmids!" => 0.00460362765859497,

"You've won a hundred zorkmids!" => 0.000920725531718995,

"You've won five hundred zorkmids!" => 9.20725531718995e-05 }

Once the weights have been normalized, we know that they sum to one (within the
limits of floating-point arithmetic). This simplifies the code that picks an element at
random, since we don't have to sum up the weights every time:

def choose_weighted_assuming_unity(weighted)
target =
rand

6.11 Choosing Randomly from a Weighted List | 219

weighted.each do |item, weight|
return item if target <= weight
target -= weight
end
end

.times { puts choose_weighted_assuming_unity(lottery_probabilities) }
You've wasted your money!

You've wasted your money!

You've wasted your money!

You've wasted your money!

You've won back the cost of your ticket!

H R R KR ROU

See Also

o Recipe 3.5, “Generating Random Numbers”

 Recipe 7.9, “Picking a Random Line from a File”

6.12 Building a Histogram

Problem

You have an array that contains a lot of references to relatively few objects. You want
to create a histogram, or frequency map—something you can use to see how often a
given object shows up in the array.

Solution

Build the histogram in a hash, mapping each object found to the number of times it
appears:

module Enumerable
def to_histogram
inject(Hash.new(0)) { |h, x| h[x] += 1; h}
end
end

[1, 2, 2, 2, 3, 3].to_histogram
=> {1=>1, 2=>3, 3=>2}

["a", "b", nil, "c", "b", nil, "a"].to_histogram
=> {"a"=>2, "b"=>2, nil=>2, "c"=>1}

"Aye\nNay\nNay\nAbstaining\nAye\nNay\nNot Present\n".split.to_histogram
=> {"Aye"=>2, "Nay"=>3, "Abstaining"=>1, "Not"=>1, "Present"=>1}

survey_results = { "Alice" => :red, "Bob" => :green, "Carol" => :green,
"Mallory" => :blue }

220 | Chapter6: Hashes

survey_results.values.to_histogram
=> {:red=>1, :green=>2, :blue=>1}

Discussion

Making a histogram is an easy and fast (linear time) way to summarize a dataset. His-
tograms expose the relative popularity of the items in a dataset, so theyre useful for
visualizing optimization problems and dividing the “head” from the “long tail”

Once you have a histogram, you can find the most or least common elements in the
list, sort the list by frequency of appearance, or see whether the distribution of items
matches your expectations. Many of the other recipes in this book build a histogram
as a first step toward a more complex algorithm.

Here’s a quick way of visualizing a histogram as an ASCII chart. First, we convert the
histogram keys to their string representations so they can be sorted and printed. We
also store the histogram value for the key, since we can’t do a histogram lookup later
based on the string value we'll be using:

def draw_graph(histogram, char="#")
pairs = histogram.keys.collect { |x| [x.to_s, histogram[x]] }.sort

Then we find the key with the longest string representation. We'll pad the rest of the
histogram rows to this length, so that the graph bars will line up correctly:

largest_key _size = pairs.max { |x,y| x[0].size <=> y[0].size }[0].size
Then we print each key-value pair, padding with spaces as necessary:

pairs.inject("") do |s,kv|
s << "#{kv[0].ljust(largest_key_size)} |#{char*kv[1]}\n"
end
end

Here’s a histogram of the color survey results from the Solution:

puts draw_graph(survey_results.values.to_histogram)
blue [#
green |[##
red |#

This code generates a bunch of random numbers, then graphs the random
distribution:

random = []

100.times { random << rand(10) }
puts draw_graph(random.to_histogram)
O |#aHBHBHRARHT

1 |#ansniis

2 |nunnknk

3 |#ausinin

4 | #ans R

5 |#annnsininini

6.12 Building a Histogram | 221

6 |HAHHBAARHAG Y
7 |HaHnihn

8 |#anunsh

9 |HuHniHniHsY

See Also

o Recipe 3.8, “Finding Mean, Median, and Mode”
 Recipe 5.9, “Sorting an Array by Frequency of Appearance”

6.13 Remapping the Keys and Values of a Hash

Problem

You have two hashes with common keys but differing values. You want to create a
new hash that maps the values of one hash to the values of another.

Solution

class Hash
def tied_with(hash)
remap do |h,key,value|
h[hash[key]] = value
end.delete_if { |key,value| key.nil? || value.nil? }
end

Here is the Hash#remap method:

def remap(hash={})
each { |k,v| yield hash, k, v }
hash
end
end

Here’s how to use Hash#tied_with to merge two hashes:

a={1=>2, 3 =>4}

b ={1=> "foo', 3 => 'bar'}

a.tied_with(b) # => {"foo"=>2, "bar"=>4}

b.tied_with(a) # => {2=>"foo", 4=>"bar"}
Discussion

This remap method can be handy when you want to make a similar change to every
item in a hash. It is also a good example of using the yield method.

Hash#remap is conceptually similar to Hash#collect, but Hash#collect builds up a
nested array of key-value pairs, not a new hash.

222 | Chapter6: Hashes

See Also

o The Facets library defines the methods Hash#update_each and
Hash#replace_each! for remapping the keys and values of a hash

6.14 Extracting Portions of Hashes

Problem

You have a hash that contains a lot of values, but only a few of them are interesting.
You want to select the interesting values and ignore the rest.

Solution

You can use the Hash#select method to extract part of a hash that follows a certain
rule. Suppose you have a hash where the keys are Time objects representing a certain
date, and the values are the number of website clicks for that given day. We'll simulate
such a hash with random data:

require 'time'

click_counts = {}

1.upto(30) { |i] click_counts[Time.parse("2006-09-#{1}")] = 400 + rand(700) }

p click_counts

{2006-09-01 00:00:00 +0000=>506, 2006-09-02 00:00:00 +0000=>507,

2006-09-03 00:00:00 +0000=>508, 2006-09-04 00:00:00 +0000=>752..

You might want to know the days when your click counts were low, to see if you could
spot a trend. Hash#select can do that for you:

low_click_days = click_counts.select {|key, value| value < 500 }
{2006-09-06 00:00:00 +0000=>473}

Discussion

In Ruby 1.8, the Hash#select method would return an array that contains a number
of key-value pairs as two-element arrays. This changed in Ruby 2.1, where
Hash#select now returns a hash. The Ruby 2.1 return type makes more intuitive
sense, but if you are upgrading your code to work from Ruby 1.8 to Ruby 2.1, this is
one area where you will want to make sure you check your assumptions.

In Ruby 1.8, if you want another hash instead of an array of key-value pairs, you can
use Hash#inject instead of Hash#select. In the following code, kv is a two-element
array containing a key-value pair. kv[0] is a key from click_counts, and kv[1] is the
corresponding value.

6.14 Extracting Portions of Hashes | 223

low_click_days_hash = click_counts.inject({}) do |h, kv|

k, v = kv
h[k] = v if v < 450
h
end
=> {Mon Sep 25 00:00:00 EDT 2006=>403,
Wed Sep 06 00:00:00 EDT 2006=>443,
Thu Sep 28 00:00:00 EDT 2006=>419}

You can also use the Hash.[] constructor to create a hash from the array result of
Hash#select:

low_click_days_hash = Hash[*Llow_click_days.flatten]

=> {Thu Sep 14 00:00:00 EDT 2006=>449, Mon Sep 11 00:00:00 EDT 2006=>406,

Sat Sep 02 00:00:00 EDT 2006=>440, Mon Sep 04 00:00:00 EDT 2006=>431,
#

See Also

o Recipe 5.13, “Extracting Portions of Arrays”

6.15 Searching a Hash with Reqular Expressions
Credit: Ben Giddings

Problem

You want to grep a hash: that is, find all keys and/or values in the hash that match a
regular expression.

Solution
The fastest way to grep the keys of a hash is to get the keys as an array, and grep that:

h = { "apple tree" => "plant", "ficus" => "plant",
"shrew" => "animal", "plesiosaur" => "animal" }
h.keys.grep /p/

=> ["apple tree", "plesiosaur"]
The solution for grepping the values of a hash is similar (substitute Hash#values for
Hash#keys), unless you need to map the values back to the keys of the hash. If that’s
what you need, the fastest way is to use Hash#each to get key-value pairs, and match
the regular expression against each value:

h.inject([]) { Ires, kv| res << kv if kv[1] =~ /p/; res }
=> [["apple tree", "plant"], ["ficus", "plant"]]

224 | Chapter6: Hashes

Discussion

Hash defines its own grep method, but it will never give you any results. Hash#grep is
inherited from Enumerable#grep, which tries to match the output of each against the
given regular expression. Hash#each returns a series of two-item arrays containing
key-value pairs, and an array will never match a regular expression. The preceding
Hash#grep implementation is more useful.

Hash#keys.grep and Hash#values.grep are more efficient than matching a regular
expression against each key or value in a Hash, but those methods create a new array
containing all the keys in the hash. If memory usage is your primary concern, iterate
over each_key or each_value instead:

res = []
h.each_key { |k| res << k if k =~ /p/ }
res # => ["apple tree", "plesiosaur"]

6.15 Searching a Hash with Regular Expressions | 225

CHAPTER 7
Files and Directories

As programming languages increase in power, we programmers get further and fur-
ther from the details of the underlying machine language. When it comes to the oper-
ating system, though, even the most modern programming languages live on a level
of abstraction that looks a lot like the C and Unix libraries that have been around for
decades.

We covered this kind of situation in Chapter 4 with Ruby’s Time objects, but the issue
really shows up when you start to work with files. Ruby provides an elegant object-
oriented interface that lets you do basic file access, but the more advanced file libra-
ries tend to look like the C libraries theyre based on. To lock a file, change its Unix
permissions, or read its metadata, you’ll need to remember method names like mtime,
and the meaning of obscure constants like File: : LOCK_EX and 0644. This chapter will
show you how to use the simple interfaces, and how to make the more obscure inter-
faces easier to use.

Looking at Ruby’s support for file and directory operations, you’ll see four distinct
tiers of support. The most common operations tend to show up on the lower-
numbered tiers:

1. File objects to read and write the contents of files, and Dir objects to list the
contents of directories—for examples, see Recipes 7.5, 7.7, and 7.17. Also see
Recipe 7.13 for a Ruby-idiomatic approach.

2. Class methods of File to manipulate files without opening them. For instance, to
delete a file, examine its metadata, or change its permissions. For examples, see
Recipes 7.1, 7.3, and 7 4.

3. Standard libraries, such as find to walk directory trees, and fileutils to per-
form common filesystem operations like copying files and creating directories.
For examples, see Recipes 7.8, 7.12, and 7.20.

227

4. Gems like file-tail, lockfile, and rubyzip, which fill in the gaps left by the
standard library. Most of the file-related gems covered in this book deal with spe-
cific file formats, and are covered in Chapter 13.

Kernel#open is the simplest way to open a file. It returns a File object that you can
read from or write to, depending on the “mode” constant you pass in. We'll introduce
read mode and write mode here; there are several others, but we'll talk about most of
those as they come up in recipes.

To write data to a file, pass a mode of w to open. You can then write lines to the file
with File#puts, just like printing to standard output with Kernel#puts. For more
possibilities, see Recipe 7.7:

open('beans.txt', "w") do |file]
file.puts('lima beans')
file.puts('pinto beans')
file.puts('human beans')

end

To read data from a file, open it for read access by specifying a mode of r, or just
omitting the mode. You can slurp the entire contents into a string with File#read, or
process the file line-by-line with File#each. For more details, see Recipe 7.6:

open('beans.txt') do |file|
file.each { |1] puts "A line from the file: #{1}" }
end
A line from the file: lima beans
A line from the file: pinto beans
A line from the file: human beans

As seen in these examples, the best way to use the open method is with a code block.
The open method creates a new File object, passes it to your code block, and closes
the file automatically after your code block runs—even if your code throws an excep-
tion. This saves you from having to remember to close the file after youre done with
it. You could rely on the Ruby interpreter’s garbage collection to close the file once it’s
no longer being used, but Ruby makes it easy to do things the right way.

To find a file in the first place, you need to specify its disk path. You may specify an
absolute path, or one relative to the current directory of your Ruby process (see
Recipe 7.21). Relative paths are usually better, because they’re more portable across
platforms. Relative paths like beans. txt or subdir/beans. txt will work on any plat-
form, but absolute Unix paths look different from absolute Windows paths:

A stereotypical Unix path.
open('/etc/passwd')

A stereotypical Windows path; note the drive letter.
open('c:/windows/Documents and Settings/User1/My Documents/ruby.doc')

228 | Chapter7:Files and Directories

Windows paths in Ruby use forward slashes to separate the parts of a path, even
though Windows itself uses backslashes. Ruby will also accept backslashes in a Win-
dows path, so long as you escape them:

open('c:\\windows\\Documents and Settings\\User1\\My Documents\\ruby.doc")

Although this chapter focuses mainly on disk files, most of the methods of File are
actually methods of its superclass, I0. You'll encounter many other classes that are
also subclasses of I0, or just respond to the same methods. This means that most of
the tricks described in this chapter are applicable to classes like the Socket class for
Internet sockets and the infinitely useful StringIO (see Recipe 7.15).

Your Ruby program’s standard input, output, and error ($stdin, $stdout, and
$stderr) are also I0 objects, which means you can treat them like files. This one-line
program echoes its input to its output:

$stdin.each { |1| puts 1 }

The Kernel#puts command just calls $stdout. puts, so that one-liner is equivalent to
this one:

$stdin.each { |1| $stdout.puts 1 }

Not all file-like objects support all the methods of I0. See Recipe 7.11 for ways to get
around the most common problem with unsupported methods. Also see Recipe 7.16
for more on the default I0 objects.

Several of the recipes in this chapter (such as Recipes 7.12 and 7.20) create specific
directory structures to demonstrate different concepts. Rather than bore you by fill-
ing up recipes with the Ruby code to create a certain directory structure, we've writ-
ten a method that takes a short description of a directory structure, and creates the
appropriate files and subdirectories:

create_tree.rb
def create_tree(directories, parent=".")
directories.each_pair do |dir, files|
path = File.join(parent, dir)
Dir.mkdir path unless File.exists? path
files.each do |filename, contents|
if filename.respond_to? :each_pair # It's a subdirectory
create_tree filename, path
else # It's a file
open(File.join(path, filename), 'w') { [f| f << contents || "" }
end
end
end
end

Now we can present the directory structure as a data structure and you can create it
with a single method call:

Files and Directories | 229

require 'create_tree'
create_tree 'test' =>
['"An empty file',
['A file with contents', 'Contents of file'],
{ 'Subdirectory' => ['Empty file in subdirectory',
['File in subdirectory', 'Contents of file']] },
{ 'Empty subdirectory' => [] }
1
require 'find'
Find.find('test') { |f| puts f }
test
test/Empty subdirectory
test/Subdirectory
test/Subdirectory/File in subdirectory
test/Subdirectory/Empty file in subdirectory
test/A file with contents
test/An empty file

oW W W W W R

File.read('test/Subdirectory/File in subdirectory')
=> "Contents of file"

7.1 Checking to See If a File Exists

Problem

Given a filename, you want to see whether the corresponding file exists and is the
right kind for your purposes.

Solution

Most of the time you’ll use the File.file? predicate, which returns true only if the
file is an existing regular file (that is, not a directory, a socket, or some other special
file):

filename = 'a_file.txt'
File.file? filename # => false

require 'fileutils'
FileUtils.touch(filename)
File.file? filename # => true

Use the File.exists? predicate instead if the file might legitimately be a directory or
other special file, or if you plan to create a file by that name if it doesnt exist.

File.exists? will return true if a file of the given name exists, no matter what kind
of file it is:

directory_name = 'a_directory'
FileUtils.mkdir(directory_name)

File.file? directory_name # => false
File.exists? directory_name # => true

230 | Chapter7:Files and Directories

Discussion

A true response from File.exists? means that the file is present on the filesystem,
but says nothing about what type of file it is. If you open up a directory thinking it’s a
regular file, youre in for an unpleasant surprise. This is why File.file? is usually
more useful than File.exists?.

Ruby provides several other predicates for checking the type of a file: the other com-
monly useful one is File.directory?:

File.directory? directory_name # => true

File.directory? filename # => false
The rest of the predicates are designed to work on Unix systems. File.blockdev?
tests for block-device files (such as hard-drive partitions), File.chardev? tests for
character-device files (such as TTYs), File.socket? tests for socket files, and
File.pipe? tests for named pipes:

File.blockdev? '/dev/hdal' # => true

File.chardev? '/dev/tty1l' # => true

File.socket? '/var/run/mysqld/mysqld.sock' # => true

system('mkfifo named_pipe')

File.pipe? 'named_pipe' # => true
File.symlink? tests whether a file is a symbolic link to another file, but you only
need to use it when you want to treat symlinks differently from other files. A symlink
to a regular file will satisfy File.file?, and can be opened and used just like a regular
file. In most cases, you don't even have to know it’s a symlink. The same goes for sym-
links to directories and to other types of files:

new_filename = "#{filename}2"
File.symlink(filename, new_filename)

File.symlink? new_filename # => true
File.file? new_filename # => true

All of Ruby’s file predicates return false if the file doesn’t exist at all. This means you
can test “exists and is a directory” by just testing directory?; it's the same for the
other predicates.

See Also

o Recipe 7.8, “Writing to a Temporary File,” and Recipe 7.14, “Backing Up to Ver-
sioned Filenames,” deal with writing to files that don’t currently exist

7.1 Checking to See If a File Exists | 231

7.2 Checking Your Access to a File

Problem

You want to see what you can do with a file—that is, whether you have read, write, or
(on Unix systems) execute permission on it.

Solution

Use the class methods File.readable?, File.writeable?, and File.executable?:

File.readable?('/bin/1s") # => true
File.readable?('/etc/passwd-') # => false

filename = 'test_file'
File.open(filename, 'w') {}

File.writable?(filename) # => true

File.writable?('/bin/ls") # => false
File.executable?('/bin/1ls') # => true
File.executable?(filename) # => false

Discussion

Rubys file permission tests are Unix-centric, but readable? and writable? work on
any platform; the rest fail gracefully when the OS doesn't support them. For instance,
Windows doesn’t have the Unix notion of execute permission, so File.executable?
always returns true on Windows.

The return value of a Unix permission test depends in part on whether your user
owns the file in question, or whether you belong to the Unix group that owns it. Ruby
provides convenience tests File.owned? and File.grpowned? to check this:

File.owned? 'test_file' # => true
File.grpowned? 'test_file' # => true
File.owned? '/bin/ls' # => false

On Windows, File.owned? always returns true (even for a file that belongs to another
user) and File.grpowned? always returns false.

The File methods just described should be enough to answer most permission ques-
tions about a file, but you can also see a file’s Unix permissions in their native form by
looking at the file’s mode. The mode is a number, each bit of which has a different
meaning within the Unix permission system." You can view a file’s mode with
File::Lstat#mode.

1 If you're not familiar with this, Recipe 7.3 describes the significance of the permission bits in a file’s mode.

232 | Chapter7:Files and Directories

The result of mode contains some extra bits describing things like the type of a file.
You probably want to strip that information out by masking those bits. This example
demonstrates that the file originally created in the solution has a Unix permission
mask of 0644:

File.lstat('test_file').mode & 0777 # Keep only the permission bits.
=> 420 # That is, 0644 octal.

setuid and setgid Scripts

readable?, writable?, and executable? return answers that depend on the effective
user and group ID you are using to run the Ruby interpreter. This may not be your
actual user or group ID: the Ruby interpreter might be running setuid or setgid, or
you might have changed their effective ID with Process.euid= or Process.egid=.

Each of the permission checks has a corresponding method that returns answers
from the perspective of the process’s real user and real group IDs: executable_real?,
readable_real?, and writable_real?. If youre running the Ruby interpreter setuid,
then readable_real? (for instance) will give different answers from readable?. You
can use this to disallow users from reading or modifying certain files unless they
actually are the root user, not just taking on the root users’ privileges through setuid.

For instance, consider the following code, which prints our real and effective user and
group IDs, then checks to see what it can do to a system file:

def what_can_1i_do?
sys = Process::Sys
puts "UID=#{sys.getuid}, GID=#{sys.getgid}"
puts "Effective UID=#{sys.geteuid}, Effective GID=#{sys.getegid}"

file = '/bin/ls'
can_do = [:readable?,
:writable?,
:executable?
1.inject([]) do |arr,
method|
arr << method, file); arr
end
puts "To you, #{file} is: #{can_do.join(', "')}"
end

If you run this code as root, you can call this method and get one set of answers, then
take on the guise of a less privileged user and get another set of answers:
what_can_1i_do?
UID=0, GID=0

Effective UID=0, Effective GID=0
To you, /bin/ls is: readable?, writable?, executable?

Process.uid = 1000

7.2 Checking Your AccesstoaFile | 233

what_can_1_do?

UID=0, GID=0

Effective UID=1000, Effective GID=0

To you, /bin/ls is: readable?, executable?

See Also

o Recipe 7.3, “Changing the Permissions on a File”

 Recipe 25.3, “Running Code as Another User;” has more on setting the effective
user ID

7.3 Changing the Permissions on a File

Problem

You want to control access to a file by modifying its Unix permissions. For instance,
you want to make it so that everyone on your system can read a file, but only you can
write to it.

Solution

Unless you've got a lot of Unix experience, it’s hard to remember the numeric codes
for the nine Unix permission bits. Probably the first thing you should do is define
constants for them. Here’s one constant for every one of the permission bits. If these
names are too concise for you, you can name them USER_READ, GROUP_WRITE, OTHER_
EXECUTE, and so on:

class File
U_R = 0400
= 0200
= 0100
= 0040
= 0020
= 0010
= 0004
= 0002
= 0001

|
X = 0V X = W X =

a oo o0ooo o0 cCcc

m
2

You might also want to define these three special constants, which you can use to set
the user, group, and world permissions all at once:

class File
AR = 0444
AW = 0222
AX = 0111
end

234 | Chapter7:Files and Directories

Now you're ready to actually change a file’s permissions. Every Unix file has a permis-
sion bitmap, or mode, which you can change (assuming you have the permissions!)
by calling File.chmod. You can manipulate the constants we just defined to get a new
mode, then pass it in along with the filename to File.chmod.

The following three chmod calls are equivalent: for the file my_file, they give read-
write access to the user who owns the file, and restrict everyone else to read-only
access. This is equivalent to the permission bitmap 11001001, the octal number 0644,
or the decimal number 420:

open("my_file", "w") {}

File.chmod(File::U_R | File::U_W | File::G_R | File::0_R, "my_file")
File.chmod(File::A_R | File::U_W, "my_file")

File.chmod(0644, "my file") # Bitmap: 110001001

File::U_R | File::U_W | File::G_R | File::0_R # => 420

File::A_R | File::U_W # => 420
0644 # => 420
File.lstat("my_file").mode & 0777 # => 420

Note how we build a full permission bitmap by combining the permission constants
with the OR operator (|).

Discussion

A Unix file has nine associated permission bits that are consulted whenever anyone
tries to access the file. Theyre divided into three sets of three bits. There’s one set for
the user who owns the file, one set for the user group who owns the file, and one set
for everyone else.

Each set contains one bit for each of the three basic things you might do to a file in
Unix: read it, write it, or execute it as a program. If the appropriate bit is set for you,
you can carry out the operation; if not, you're denied access.

When you put these nine bits side by side into a bitmap, they form a number that you
can pass into File.chmod. These numbers are difficult to construct and read without
a lot of practice, which is why we recommend you use the constants defined earlier.
It'll make your code less buggy and more readable.!

File.chmod completely overwrites the file’s current permission bitmap with a new
one. Usually you just want to change one or two permissions—to make sure the file
isn’'t world-writable, for instance. The simplest way to do this is to use

1 Its true that it's more macho to use the numbers, but if you really wanted to be macho youd be writing a shell
script, not a Ruby program.

7.3 Changing the PermissionsonaFile | 235

File.lstat#mode to get the file’s current permission bitmap, then modify it with bit
operators to add or remove permissions. You can pass the result into File.chmod.

Use the XOR operator () to remove permissions from a bitmap, and the OR opera-
tor, as seen previously, to add permissions:

Take away the world's read access.
new_permission = File.lstat("my_file").mode ~ File::0_R
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 416 # 0640 octal

Give everyone access to everything
new_permission = File.lstat("my_file").mode | File::A R | File::A W | File::A_X
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

Take away the world's write and execute access
new_permission = File.lstat("my_file").mode ~ (File::0_W | File::0_X)
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

If doing bitwise math with the permission constants is also too complicated for you,
you can use code like this to parse a permission string like the one accepted by the
Unix chmod command:

class File
def File.fancy_chmod(permission_string, file)
mode = File.lstat(file).mode
permission_string.scan(/[ugoa][+-=][rwx]+/) do |setting]|
who = setting[0..0]
setting[2..setting.size].each_byte do |perm|
perm = perm.chr.upcase
mask = eval("File::#{who.upcase} #{perm}")

(setting[1] == ?+) ? mode |= mask : mode ”= mask
end
end
File.chmod(mode, file)
end
end

Give the owning user write access
File.fancy_chmod("u+w", "my_file")

File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

Take away the owning group's execute access
File.fancy_chmod("g-x", "my_file")

File.lstat("my_file").mode & 0777 # => 500 # 0764 octal
Give everyone access to everything

236 | Chapter7:Files and Directories

File.fancy_chmod("a+rwx", "my_file")
File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

Give the owning user access to everything. Then take away the

execute access for users who aren't the owning user and aren't in

the owning group.

File.fancy_chmod("u+rwxo-x", "my file")

File.lstat("my_file").mode & 0777 # => 510 # 0774 octal

Unix-like systems such as Linux and Mac OS X support the full range of Unix per-
missions. On Windows systems, the only one of these operations that makes sense is
adding or subtracting the U_W bit of a file—making a file read-only or not. You can
use File.chmod on Windows, but the only bit you'll be able to change is the user
write bit.

See Also

« Recipe 7.2, “Checking Your Access to a File”

o Recipe 25.9, “Normalizing Ownership and Permissions in User Directories”

7.4 Seeing When a File Was Last Used

Problem

You want to see when a file was last accessed or modified.

Solution

The result of File.stat contains a treasure trove of metadata about a file. Perhaps
the most useful of its methods are the two time methods mtime (the last time anyone
wrote to the file), and atime (the last time anyone read from the file):

open("output", "w") { [f| f << "Here's some output.\n" }
stat =File.stat("output")

stat.mtime # => 2013-10-21 15:44:17 -0700
stat.atime # => 2013-10-21 15:44:17 -0700
sleep(2)

open("output", "a") { |[f| f << "Here's some more output.\n" }
stat = File.stat("output")

stat.mtime # => 2013-10-21 15:44:19 -0700
stat.atime # => 2013-10-21 15:44:17 -0700
sleep(2)

open("output") { |f| contents = f.read }

7.4 Seeing When a File Was Last Used | 237

stat = File.stat("output")

stat.mtime # => 2013-10-21 15:44:19 -0700
stat.atime # => 2013-10-21 15:44:21 -0700
Discussion

A file’s atime changes whenever data is read from the file, and its mtime changes
whenever data is written to the file.

There’s also a ctime method, but it's not as useful as the other two. Contrary to semi-
popular belief, ctime does not track the creation time of the file (there’s no way to
track this in Unix). A file’s ctime is basically a more inclusive version of its mtime. The
ctime changes not only when someone modifies the contents of a file, but when
someone changes its permissions or its other metadata.

All three methods are useful for separating the files that actually get used from the
ones that just sit there on disk. They can also be used in sanity checks.

Here’s code for the part of a game that saves and loads the game state to a file. As a
deterrent against cheating, when the game loads a save file it performs a simple check
against the file’s modification time. If it differs from the timestamp recorded inside
the file, the game refuses to load the save file.

The save_game method is responsible for recording the timestamp:

def save_game(file)
score = 1000
open(file, "w") do |f]|
f.puts(score)
f.puts(Time.new.to_1)
end
end

The load_game method is responsible for comparing the timestamp within the file to
the time the filesystem has associated with the file:

def load_game(file)
open(file) do |f|
score = f.readline.to_1
time = Time.at(f.readline.to_1i)
difference = (File.stat(file).mtime - time).abs
raise "I suspect you of cheating." if difference > 1
"Your saved score is #{score}."
end
end

238 | (Chapter7:Files and Directories

This mechanism can detect simple forms of cheating:

save_game("game.sav")

sleep(2)

load_game("game.sav")

=> "Your saved score is 1000."

Now let's cheat by increasing our score to 9000
open("game.sav", "r+b") { [f| f.write("9") }

load_game("game.sav")
RuntimeError: I suspect you of cheating.

Since it’s possible to modify a file’s times with tools like the Unix touch command,
you shouldn’t depend on these methods to defend you against a skilled attacker
actively trying to fool your program.

See Also

« An example in Recipe 4.12, “Running a Code Block Periodically,” monitors a file
for changes by checking its mtime periodically

o Recipe 7.20, “Finding the Files You Want,” shows examples of filesystem searches
that make comparisons between the file times

7.5 Listing a Directory

Problem

You want to list or process the files or subdirectories within a directory.

Solution

If you're starting from a directory name, you can use Dir.entries to get an array of
the items in the directory, or Dir.foreach to iterate over the items. Here’s an example
of each run on a sample directory:

See the chapter intro to get the create_tree library

require 'create_tree'

create_tree 'mydir' =>
[{'subdirectory' => [['file_in_subdirectory', 'Just a simple file.']] },
'.hidden_file', 'ruby_script.rb', 'text_file']Dir.entries('mydir')

#=>[".", "..", ".hidden_file", "ruby script.rb", "subdirectory",
"text_file"]
Dir.foreach('mydir') { |x| puts x if x != "." && x != ".."}

.hidden_file

7.5 Listing a Directory | 239

ruby_script.rb
subdirectory
text_file

You can also use Dir[] to pick up all files matching a certain pattern, using a format
similar to the bash shell’s glob format (and somewhat less similar to the wildcard for-
mat used by the Windows command-line shell):

Find all the "regular" files and subdirectories in mydir. This excludes
hidden files, and the special directories . and ..

Dir["mydir/*"]

=> ["mydir/ruby_script.rb", "mydir/subdirectory”, "mydir/text_file"]

Find all the .rb files in mydir

Dir["mydir/*.rb"] # => ["mydir/ruby_script.rb"]
You can also open a directory handle with Dir#open, and treat it like any other Enu
merable. Methods like each, each_with_index, grep, and reject will all work (but
see the next example if you want to call them more than once). As with File#open,
you should do your directory processing in a code block so that the directory handle
will get closed once you're done with it:

Dir.open('mydir') { |d| d.grep /file/ }
=> [".hidden_file", "text_file"]

Dir.open('mydir') { |d| d.each { |x| puts x } }
.

..

.hidden_file

ruby _script.rb

subdirectory

text_file

Discussion

Reading entries from a Dir object is more like reading data from a file than iterating
over an array. If you call one of the Dir instance methods and then want to call
another one on the same Dir object, you'll need to call Dir#rewind first to go back to
the beginning of the directory listing:

#Get all contents other than ".", "..", and hidden files.

d = Dir.open('mydir')

d.reject { |f| f[0] == "." }

=> ["subdirectory", "ruby_script.rb", "text_file"]
#Now the Dir object is useless until we call Dir#rewind.

d.entries.size #=>0
d.rewind
d.entries.size #=>6

#Get the names of all files in the directory.

240 | Chapter7:Files and Directories

d.rewind
d.reject { |f| !File.file? File.join(d.path, f) }
=> [".hidden_file", "ruby_script.rb", "text_file"]

d.close

Methods for listing directories and looking for files return string pathnames instead
of File and Dir objects. This is partly for efficiency, and partly because creating a
File or Dir actually opens up a file handle on that file or directory.

Even so, it's annoying to have to take the output of these methods and patch together
real File or Dir objects on which you can operate. Here’s a simple method that will
build a File or Dir, given a filename and the name or Dir of the parent directory:

def File.from_dir(dir, name)

dir = dir.path if dir.is_a? Dir

path = File.join(dir, name)

(File.directory?(path) ? Dir : File).open(path) { |f| yield f }
end

As with File#topen and Dir#open, the actual processing happens within a code block:

File.from_dir("mydir", "subdirectory") do |subdir]|
File.from_dir(subdir, "file_in_subdirectory") do |file]|
puts %{My path is #{file.path} and my contents are "#{file.read}".}
end
end
My path is mydir/subdirectory/file_in_subdirectory and my contents are
"Just a simple file".

Globs make excellent shortcuts for finding files in a directory or a directory tree.
Especially useful is the ** glob, which matches any number of directories. A glob is
the easiest and fastest way to recursively process every file in a directory tree,
although it loads all the filenames into an array in memory. For a less memory inten-
sive solution, see the find library, described in Recipe 7.12:

Dir["mydir/#**/*"]

=> ["mydir/ruby_script.rb", "mydir/subdirectory"”, "mydir/text_file",

"mydir/subdirectory/file_in_subdirectory"]

Dir["mydir/**/*file*"]
=> ["mydir/text_file", "mydir/subdirectory/file_in_subdirectory"]
A brief tour of the other features of globs:

#Regex-style character classes
Dir["mydir/[rs]*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]
Dir["mydir/[7s]*"] # => ["mydir/ruby_script.rb", "mydir/text_file"]

Match any of the given strings
Dir["mydir/{text,ruby}*"] # => ["mydir/text_file", "mydir/ruby_script.rb"]

7.5Listing a Directory | 241

Single-character wildcards
Dir["mydir/?ub*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]

Globs will not pick up files or directories whose names start with periods, unless you
match them explicitly:

Dir["mydir/.*"] # => ["mydir/.", "mydir/..", "mydir/.hidden_file"]

See Also

o Recipe 7.12, “Walking a Directory Tree”
o Recipe 7.20, “Finding the Files You Want”

7.6 Reading the Contents of a File

Problem

You want to read some or all of a file into memory.

Solution

Open the file with Kernel#open, and pass in a code block that does the actual reading.
To read the entire file into a single string, use I0#read:

#Put some stuff into a file.
open('sample_file', 'w') do |f]|

f.write("This is line one.\nThis is line two.")
end

Then read it back out.
open('sample_file') { [f| f.read }
=> "This is line one.|\nThis is line two."

To read the file as an array of lines, use I0#readlines:

open('sample_file') { |f| f.readlines }

=> ["This is line one.|\n", "This is line two."]
To iterate over each line in the file, use I0#each. This technique loads only one line
into memory at a time:

open('sample_file').each { |x| p x }

"This is line one.|n"
"This is line two."

242 | Chapter7:Files and Directories

Discussion

How much of the file do you want to read into memory at once? Reading the entire
file in one gulp uses memory equal to the size of the file, but you end up with a string,
and you can use any of Ruby’s string processing techniques on it.

The alternative is to process the file one chunk at a time. This uses only the memory
needed to store one chunk, but it can be more difficult to work with, because any
given chunk may be incomplete. To process a chunk, you may end up reading the
next chunk, and the next. This code reads the first 50-byte chunk from a file, but it
turns out not to be enough:

puts open('conclusion') { |f| f.read(50) }
"I know who killed Mr. Lambert," said Joe. "It was

If a certain string always marks the end of a chunk, you can pass that string into
I0#each to get one chunk at a time, as a series of strings. This lets you process each
full chunk as a string, and it uses less memory than reading the entire file:

Create a file..
open('end_separated_records', 'w') do |f]|
f << %{This is record one.
It spans multiple lines.ENDThis is record two.END}
end

And read it back 1in.

open('end_separated_records') { |f| f.each('END') { |record| p record } }
"This is record one.\nIt spans multiple lines.END"

"This 1s record two.END"

You can also pass a delimiter string into I0#readlines to get the entire file split into
an array by the delimiter string:

Create a file..
open('pipe_separated_records', 'w') do |f]|

f << "This is record one.|This is record two.|This is record three."
end

And read it back 1in.

open('pipe_separated_records') { |f| f.readlines('|") }
=> ["This is record one.[", "This is record two. /",

"This is record three."]

The newline character usually makes a good delimiter (many scripts process a file one
line at a time), so by default, I0#each and I0#readlines split the file by line:
open('newline_separated_records', 'w') do |f]
f.puts 'This is record one. It cannot span multiple lines.'

f.puts 'This is record two.'
end

open('newline_separated_records') { |f| f.each { x| px } }

7.6 Reading the ContentsofaFile | 243

"This is record one. It cannot span multiple lines.|n"

"This is record two.|\n"
The trouble with newlines is that different operating systems have different newline
formats. Unix newlines look like \n, while Windows newlines look like \r\n, and the
newlines for old (pre-OS X) Macintosh files look like \r. A file uploaded to a web
application might come from any of those systems, but I0#each and IO#readlines
split files into lines depending on the newline character of the OS that’s running the
Ruby script (this is kept in the special variable $/). What to do?

By passing \n into IO#each or IO#readlines, you can handle the newlines of files
created on any recent operating system. If you need to handle all three types of new-
lines, the easiest way is to read the entire file at once and then split it up with a regular
expression.

open('file_from_unknown_os') { |f| f.read.split(/\r?2\n|\r(?2!\n)/) }

I0#each and IO#readlines don't strip the delimiter strings from the end of the lines.
Assuming the delimiter strings aren’t useful to you, you’ll have to strip them man-
ually.

To strip delimiter characters from the end of a line, use the String#chomp or
String#chomp! methods. By default, these methods will remove the last character or
set of characters that can be construed as a newline. However, they can be made to
strip any other delimiter string from the end of a line:

"This line has a Unix/Mac 0S X newline.\n".chomp
=> "This line has a Unix/Mac 0S X newline."

"This line has a Windows newline.\r\n".chomp
=> "This line has a Windows newline."

"This line has an old-style Macintosh newline.\r".chomp
=> "This line has an old-style Macintosh newline."

"This string contains two newlines.\n\n".chomp
"This string contains two newlines.|n"

'This is record two.END'.chomp('END")
=> "This is record two."

'This string contains no newline.'.chomp
=> "This string contains no newline."

You can chomp the delimiters as I0#each yields each record, or you can chomp each
line returned by I0#readlines:
open('pipe_separated_records') do |f]|
f.each('|"') { |1] puts Ll.chomp('|"') }

end
This is record one.

244 | Chapter7:Files and Directories

This 1s record two.
This is record three.

lines = open('pipe_separated_records') { |f| f.readlines('|") }

=> ["This is record one.|", "This is record two. /",

"This is record three."]

lines.each { |1| l.chomp!('|') }

=> ["This 1s record one.", "This is record two.", "This is record three."]

You've got a problem if a file is too big to fit into memory, and there are no known
delimiters, or if the records between the delimiters are themselves too big to fit in

memory. You've got no choice but to read from the file in chunks of a certain number
of bytes. This is also the best way to read binary files; see Recipe 7.17 for more.

Use I0#read to read a certain number of bytes, or I0#each_byte to iterate over the
File one byte at a time. The following code uses I0#read to continuously read uni-
formly sized chunks until it reaches end-of-file:

class File
def each_chunk(chunk_size=1024)
yield read(chunk_size) until eof?
end

end

open("pipe_separated_records") do |f|
f.each_chunk(15) { |chunk| puts chunk }

end

This is record

one. [This is re

cord two. [This

1s record three

.

All of these methods are made available by the I0 class, the superclass of File. You
can use the same methods on Socket objects. You can also use each and each_byte
on String objects, which in some cases can save you from having to create a
StringIO object (see Recipe 7.15 for more on those beasts).

See Also

o Recipe 7.11, “Performing Random Access on ‘Read-Once’ Input Streams”

o Recipe 7.17, “Processing a Binary File,” goes into more depth about reading files
as chunks of bytes

o Recipe 7.15, “Pretending a String Is a File”

7.6 Reading the ContentsofaFile | 245

7.7 Writing to a File

Problem

You want to write some text or Ruby data structures to a file. The file might or might
not exist. If it does exist, you might want to overwrite the old contents, or just append
new data to the end of the file.

Solution

Open the file in write mode (w). The file will be created if it doesn’t exist, and trunca-
ted to zero bytes if it does exist. You can then use I0#write or the << operator to write
strings to the file, as though the file itself were a string and you were appending to it.

You can also use IO#puts or I0#p to write lines to the file, the same way you can use
Kernel#puts or Kernel#p to write lines to standard output.

Both of the following chunks of code destroy the previous contents of the file output,
then write a new string to the file:

open('output', 'w') { |[f| f << "This file contains great truths.\n" }
open('output', 'w') do |f]|

f.puts 'The great truths have been overwritten with an advertisement.'
end

open('output') { |f| f.read }

=> "The great truths have been overwritten with an advertisement.|n"
To append to a file without overwriting its old contents, open the file in append mode
(a) instead of write mode:

open('output', "a") { |f| f.puts 'Buy Ruby(TM) brand soy sauce!' }

open('output') { |f| puts f.read }
The great truths have been overwritten with an advertisement.
Buy Ruby(TM) brand soy sauce!

Discussion

Sometimes you'll only need to write a single (possibly very large) string to a file. Usu-
ally, though, you’ll be getting your strings one at a time from a data structure or some
other source, and you’ll call puts or the append operator within some kind of loop:

open('output', 'w') do |f]|
[1,2,3].each { |i] f << 1 << ' and a '}
end
open('output') { |f| f.read } # =>"1and a 2 and a 3 and a "

246 | Chapter7:Files and Directories

Since the << operator returns the file handle it wrote to, you can chain calls to it. As
you've just seen, this feature lets you write multiple strings to a file in a single line of
Ruby code.

Because opening a file in write mode destroys the file’s existing contents, you should
use it only when you don’t care about the old contents, or after you've read them into
memory for later use. Append mode is nondestructive, making it useful for files like
logfiles, which need to be updated periodically without their old contents being
destroyed.

Buffered 1/0

There’s no guarantee that data will be written to your file as soon as you call << or
puts. Since disk writes are expensive, Ruby lets changes to a file pile up in a buffer. It
occasionally flushes the buffer, sending the data to the operating system so it can be
written to disk.

You can manually flush Ruby’s buffer for a particular file by calling its I0#flush
method. You can turn off Ruby’s buffering altogether by setting I0.sync to false.
However, your operating system probably does some disk buffering of its own, so
doing these things won’t neccessarily write your changes directly to disk:
open('output', 'w') do |f]|
f << 'This is going into the Ruby buffer.'

f.flush # Now it's going into the 0S buffer.
end

I0.sync = false
open('output', 'w') { |[f| f << 'This is going straight into the 0S buffer.' }

See Also

« Recipe 2.1, “Building a String from Parts”
« Recipe 7.6, “Reading the Contents of a File”
o Recipe 7.19, “Truncating a File”

7.8 Writing to a Temporary File

Problem

You want to write data to a secure temporary file with a unique name.

7.8 Writing to a Temporary File | 247

Solution

Create a Tempfile object. It has all the methods of a File object, and it will be in a
location on disk guaranteed to be unique:

require 'tempfile'

out = Tempfile.new("tempfile")

out.path # => "/tmp/tempfile23786.0"
A Tempfile object is opened for read-write access (mode w), so you can write to it
and then read from it without having to close and reopen it:

out << "Some text."
out.rewind

out.read # => "Some text."
out.close

Note that you can’t pass a code block into the Tempfile constructor: you have to
assign the temp file to an object, and call Tempfile#close when you're done.

Discussion

To avoid security problems, use the Tempfile class to generate temp file names,
instead of writing the code yourself. The Tempfile class creates a file on disk guaran-
teed not to be in use by any other thread or process, and sets that file’s permissions so
that only you can read or write to it. This eliminates any possibility that a hostile pro-
cess might inject fake data into the temp file, or read what you write.!

The name of a temporary file incorporates the string you pass into the Tempfile con-
structor, the process ID of the current process ($$, or $PID if you've done an include
English), and a unique number. By default, temporary files are created in
Dir::tmpdir (usually /tmp), but you can pass in a different directory name:

out = Tempfile.new("myhome_tempfile", "/home/leonardr/temp/")

No matter where you create your temporary files, when your process exits, all of its
temporary files are automatically destroyed. If you want the data you wrote to tempo-
rary files to live longer than your process, you should copy or move the temporary
files to “real” files:

require 'fileutils'

FileUtils.mv(out.path, "/home/leonardr/old_tempfile")
The tempfile assumes that the operating system can atomically open a file and get an
exclusive lock on it. This doesn’t work on all filesystems. Ara Howard’s lockfile

1 Unless the hostile process is running as you or as the root user, but then you’ve got bigger problems.

248 | Chapter7:Files and Directories

library (available as a gem of the same name) uses linking, which is atomic
everywhere.

7.9 Picking a Random Line from a File

Problem

You want to choose a random line from a file, without loading the entire file into
memory.

Solution
Iterate over the file, giving each line a chance to be the randomly selected one:

module Enumerable
def random_line
selected = nil
each_with_index { |line, lineno| selected = line if rand < 1.0/lineno }
return selected.chomp if selected
end
end

#Create a file with 1000 lines
open('random_line_test', 'w') do |f|

1000.times { |i| f.puts "Line #{i}" }
end

Pick random lines from the file.
= open('random_line_test')
.random_line # => "Line 520"
.random_line # => nil

.rewind

.random_line # => "Line 727"

- —h —h —h —h W

Discussion
The obvious solution reads the entire file into memory:

File.open('random_line_test') do |f|

1 = f.readlines

1[rand(l.size)].chomp

end

=> "Line 708"
The recommended solution is just as fast, and reads only one line at a time into mem-
ory. However, once it’s done, the file pointer has been set to the end of the file and you
can’t access the file anymore without calling File#rewind. If you want to pick a lot of
random lines from a file, reading the entire file into memory might be preferable to
iterating over it multiple times.

7.9 Picking a Random Line fromaFile | 249

This recipe makes for a good command-line tool. The following code uses the special
variable $., which holds the number of the line most recently read from a file:

$ ruby -e 'rand < 1.0/$. and line = $_ while gets; puts line.chomp if line'

The algorithm works because, although lines that come earlier in the file have a better
chance of being selected initially, they also have more chances to be replaced by a
later line. A proof by induction demonstrates that the algorithm gives equal weight to
each line in the file.

The base case is a file of a single line, where it will obviously work: any value of Ker
nel#rand will be less than 1, so the first line will always be chosen.

Now for the inductive step. Assume that the algorithm works for a file of # lines; that
is, each of the first # lines has a 1/n chance of being chosen. Then, add another line to
the file and process the new line. The chance that line #n+1 will become the randomly
chosen line is 1/(n+1). The remaining probability, n/n+1, is the chance that one of the
other 7 lines is the randomly chosen one.

Our inductive assumption was that each of the # original lines had an equal chance of
being chosen, so this remaining n/n+1 probability must be distributed evenly across
the n original lines. Given a line in the first n, what’s its chance of being the chosen
one? It’s just n/n+1 divided by #n, or 1/n+1. Line n+1 and all earlier lines have a 1/n+1
chance of being chosen, so the choice is truly random.

See Also

o Recipe 3.5, “Generating Random Numbers”
o Recipe 5.10, “Shuffling an Array”
o Recipe 6.11, “Choosing Randomly from a Weighted List”

7.10 Comparing Two Files

Problem

You want to see if two files contain the same data. If they differ, you might want to
represent the differences between them as a string: a patch from one to the other.

Solution

If two files differ, it’s likely that their sizes also differ, so you can often solve the prob-
lem quickly by comparing sizes. If both files are regular files with the same size, you'll
need to look at their contents.

250 | Chapter7:Files and Directories

This code does the cheap checks first:

o If one file exists and the other does not, they’re not the same.
o If neither file exists, say they’re the same.
o If the files are the same file, they’re the same.

o If the files are of different types or sizes, they’re not the same.

class File
def File.same_contents(pl, p2)
return false if File.exists?(pl) != File.exists?(p2)
return true if !File.exists?(p1)
return true if File.expand_path(pl) == File.expand_path(p2)
return false if File.ftype(pl) != File.ftype(p2) ||
File.size(pl) != File.size(p2)

Otherwise, it compares the files’ contents, a block at a time:

open(pl) do |f1]|
open(p2) do |[f2|
blocksize = f1.lstat.blksize
same = true
while same && !fl.eof? && !f2.eof?

same = fl.read(blocksize) == f2.read(blocksize)
end
return same
end
end
end

end

To illustrate, we'll create two identical files and compare them. We'll then make them
slightly different, and compare them again:

1.upto(2) do |1i]

open("output#{i}", 'w') { |f| f << 'x' * 10000 }

end

File.same_contents('outputl', 'output2') # => true

open("outputl", 'a') { |f] f << 'x' }

open("output2", 'a') { |f| f << 'y' }

File.same_contents('outputl', 'output2') # => false

File.same_contents('nosuchfile', 'outputl') # => false
File.same_contents('nosuchfilel', 'nosuchfile2') # => true

Discussion

The code in the Solution works well if you only need to determine whether two files
are identical. If you need to see the differences between two files, the most useful tool
is Austin Ziegler’s D1ff::LCS library, available as the diff-1lcs gem. It implements a
sophisticated diff algorithm that can find the differences between any two

7.10 Comparing Two Files | 251

enumerable objects, not just strings. You can use its LCS module to represent the dif-
ferences between two nested arrays or other complex data structures.

The downside of such flexibility is a poor interface when you just want to diff two
files or strings. A diff is represented by an array of Change objects, and though you
can traverse this array in helpful ways, there’s no simple way to just turn it into a
string representation of the sort you might get by running the Unix command diff.

Fortunately, the lcs-diff gem comes with the command-line diff programs 1diff
and htmldiff. If you need to perform a textual diff from within Ruby code, you can
do one of the following:

o Call out to one of those programs: assuming the gem is installed, this is more
portable than relying on the Unix diff command.

o Import the program’s underlying library, and fake a command-line call to it.
You'll have to modify your own program’s ARGV, at least temporarily.

o Write Ruby code that copies one of the underlying implementations to do what
you want.

Here’s some code, adapted from the 1diff command-line program, that builds a
string representation of the differences between two strings. The result is something
you might see by running 1diff, or the Unix command diff. The most common diff
formats are :unified and :context:

require 'diff/lcs/hunk’

def diff_as_string(data_old, data_new, format=:unified, context_lines=3)
First we massage the data into shape for the diff algorithm:

data_old = data_old.split(/\n/).map! { |e| e.chomp }
data_new = data_new.split(/\n/).map! { |e| e.chomp }

Then we perform the diff, and transform each “hunk” of it into a string:

output =
diffs =
Diff::LCS.diff(data_old, data_new)
return output if diffs.empty?
oldhunk = hunk = nil
file_length_difference = 0
diffs.each do |piece|
begin
hunk = Diff::LCS::Hunk.new(data_old, data_new, piece, context_lines,
file_length_difference)
file_length_difference = hunk.file_length_difference
next unless oldhunk

Hunks may overlap, which is why we need to be careful when our

252 | Chapter7:Files and Directories

diff includes lines of context. Otherwise, we might print
redundant lines.
if (context_lines > 0) and hunk.overlaps?(oldhunk)
hunk.unshift(oldhunk)
else
output << oldhunk.diff(format)

end

ensure
oldhunk = hunk
output << "\n"

end

end

#Handle the last remaining hunk
output << oldhunk.diff(format) << "\n"
end

Here it is in action:

s1 = "This is line one.\nThis is line two.\nThis is line three.\n

s2 = "This is line 1.\nThis is line two.\nThis is line three.\n" +
"This is line 4.\n"

puts diff_as_string(s1, s2)

@0 -1,4 +1,5 @@

-This is line one.

+This is line 1.

This is line two.

This is line three.

+This is line 4.

B OH R

With all that code, on a Unix system you could be forgiven for just calling out to the
Unix diff program:

open('old_file', 'w')
open('new_file', 'w')

{If] f<<s1}
{1

fl f <<s2}

puts %x{diff old_file new_file}
1c1

< This is line one.

-

> This is line 1.

3a4

> This is line 4.

See Also

o The algorithm-diff gem is another implementation of a general diff algorithm,
and while its API is a little simpler than diff-lcs, it has the same basic structure;
both gems are descended from Perl’s Algorithm: :Diff module

o While the MD5 checksum is often used in file comparisons, we didn’t use it in
this recipe because when youre comparing only two files, it’s faster to compare

7.10 Comparing Two Files | 253

their contents; in Recipe 25.7, “Finding Duplicate Files,” though, the MD5 check-
sum is used as a convenient shorthand for the contents of many files

7.11 Performing Random Access on “Read-Once” Input
Streams

Problem

You have an IO object, probably a socket, that doesn’'t support random-access meth-
ods like seek, pos=, and rewind. You want to treat this object like a file on disk, where
you can jump around and reread parts of the file.

Solution

The simplest solution is to read the entire contents of the socket (or as much as you're
going to need) and put it into a StringIO object. You can then treat the StringIO
object exactly like a file:

require 'socket'
require 'stringio'

sock = TCPSocket.open("www.example.com", 80)
sock.write("GET /\n")

file = StringIO.new(sock.read)

file.read(10) # => "<HTML>\r|n<H"

file.rewind

file.read(10) # => "<HTML>\r|n<H"

file.pos = 90

file.read(15) # => " this web page "
Discussion

A socket is supposed to work just like a file, but sometimes the illusion breaks down.
Since the data is coming from another computer over which you have no control, you
can’t just go back and reread data you've already read. That data has already been sent
over the pipe, and the server doesn’t care if you lost it or need to process it again.

If you have enough memory to read the entire contents of a socket, it’s easy to put the
results into a form that more closely simulates a file on disk. But you might not want
to read the entire socket, or the socket may be one that keeps sending data until you
close it. In that case you’ll need to buffer the data as you read it. Instead of using
memory for the entire contents of the socket (which may be infinite), you’ll only use
memory for the data you've actually read.

254 | Chapter7:Files and Directories

This code defines a BufferedIO class that adds data to an internal StringIO as it’s
read from its source:

class BufferedIO
def initialize(io)
@buff = StringIO.new
@source = io
@pos = 0
end

def read(x=nil)
to_read = x ? to_read = x+@buff.pos-@buff.size : nil
_append(@source.read(to_read)) if !to_read or to_read > 0
@buff.read(x)

end

def pos=(x)
read(x-@buff.pos) if x > @buff.size
@buff.pos = x

end

def seek(x, whence=I0::SEEK_SET)
case whence
when I0::SEEK_SET then self.pos=(x)
when I0::SEEK_CUR then self.pos=(@buff.pos+x)
when I0::SEEK_END then read; self.pos=(@buff.size-x)
Note: SEEK END reads all the socket data.
end
pos
end

Some methods can simply be delegated to the buffer.
["pos", "rewind", "tell"].each do |m]|

module_eval "def #{m}\n@buff.#{m}\nend"
end

private

def _append(s)
@buff << s
@buff.pos -= s.size
end
end

Now you can seek, rewind, and generally move around in an input socket as if it
were a disk file. You only have to read as much data as you need:

sock = TCPSocket.open("www.example.com", 80)
sock.write("GET /\n")
file = BufferedIO.new(sock)

file.read(10) # => "<HTML>\r\n<H"
file.rewind #=>0

7.11 Performing Random Access on “Read-Once” Input Streams | 255

file.read(10) # => "<HTML>\r\n<H"
file.pos = 90 # => 90

file.read(15) # => " this web page "
file.seek(-10, I0::SEEK_CUR) # => 95

file.read(10) # => " web page "

BufferedIO doesn’t implement all the methods of I0, only the ones not implemented
by socket-type I0 objects. If you need the other methods, you should be able to
implement the ones you need using the existing methods as guidelines. For instance,
you could implement readline like this:

class BufferedIO
def readline
oldpos = @buff.pos
line = @buff.readline unless @buff.eof?
if !line or line[-1] != ?\n
_append(@source.readline) # Finish the line
@buff.pos = oldpos # Go back to where we were
line = @buff.readline # Read the line again
end
line
end
end

file.readline # => "by typing "example.com",\r\n"

See Also

 Recipe 7.17, “Processing a Binary File,” for more information on I0#seek

7.12 Walking a Directory Tree

Problem

You want to recursively process every subdirectory and file within a certain directory.

Solution

Suppose that the directory tree you want to walk looks like this (see this chapter’s
introduction section for the create_tree library that can build this directory tree
automatically):

require 'create_tree'
create_tree './' # =>
['file1l',
'file2',
{ 'subdir1l/' => ['file1']},
{ 'subdir2/' => ['file1l',

256 | Chapter7:Files and Directories

'file2',
{ 'subsubdir/' => ['file1'] }
1
}
1

The simplest solution is to load all the files and directories into memory with a big
recursive file glob, and iterate over the resulting array. This uses a lot of memory
because all the filenames are loaded into memory at once:

D-'Lr['**/**‘]

=> ["file1", "file2", "subdir1", "subdir2", "subdiri/file1",
"subdir2/file1", "subdir2/file2", "subdir2/subsubdir”,

"subdir2/subsubdir/file1"]

A more elegant solution is to use the find method in the Find module. It performs a
depth-first traversal of a directory tree, and calls the given code block on each direc-
tory and file. The code block should take as an argument the full path to a directory
or file.

This snippet calls Find.find with a code block that simply prints out each path it
receives. This demonstrates how Ruby performs the traversal:

require 'find'
Find.find('./') { |path| puts path }
./

./subdir2
./subdir2/subsubdir
./subdir2/subsubdir/file1
./subdir2/file2
./subdir2/file1

./subdirl

./subdir1/file1

./file2

./file1

O OR W W R R R R R

Discussion

Even if youre not a system administrator, the demands of keeping your own files
organized will frequently call for you to process every file in a directory tree. You may
want to back up, modify, or delete each file in the directory structure, or you may just
want to see what’s there.

Normally you’ll want to at least look at every file in the tree, but sometimes you'll
want to skip certain directories. For instance, you might know that a certain directory
is full of a lot of large files you don’t want to process. When your block is passed a
path to a directory, you can prevent Find.find from recursing into a directory by
calling Find.prune. In this example, I'll prevent Find.find from processing the files
in the subdir2 directory:

7.12 Walking a Directory Tree | 257

Find.find('./') do |path]|

Find.prune if File.basename(path) == 'subdir2'
puts path

end

-/

./subdir1

./subdiri/filel

./file2

./filel

Calling Find.prune when your block has been passed a file will only prevent
Find.find from processing that one file. It won’t halt the processing of the rest of the
files in that directory:

HOR OB R R

Find.find('./') do |path]|

if File.basename(path) =~ /file2s/

puts "PRUNED #{path}"
Find.prune

end

puts path
end
./
./subdir2
./subdir2/subsubdir
./subdir2/subsubdir/file1
PRUNED . /subdir2/file2
./subdir2/filel
./subdir1
./subdir1/filel
PRUNED ./file2
./file1
Find.find works by keeping a queue of files to process. When it finds a directory, it
inserts that directory’s files at the beginning of the queue. This gives it the characteris-
tics of a depth-first traversal. Note how all the files in the top-level directory are pro-
cessed after the subdirectories. The alternative would be a breadth-first traversal,
which would process the files in a directory before even touching the subdirectories.

O OH K R KRR R R

H*

If you want to do a breadth-first traversal instead of a depth-first one, the simplest
solution is to use a glob and sort the resulting array. Pathnames sort naturally in a
way that simulates a breadth-first traversal:

Dir["#*/**"] sort.each { [x| puts x }
filel

file2

subdiri

subdiri/file1

subdir2

subdir2/file1

subdir2/file2

subdir2/subsubdir
subdir2/subsubdir/filel

O OH K R R

258 | Chapter7:Files and Directories

See Also

o Recipe 7.20, “Finding the Files You Want”
o Recipe 25.7, “Finding Duplicate Files”

7.13 Locking a File

Problem

You want to prevent other threads or processes from modifying a file that youre
working on.

Solution

Open the file, then lock it with File#flock. There are two kinds of lock; pass in the
File constant for the kind you want:

o File::LOCK_EX gives you an exclusive lock, or write lock. If your thread has an
exclusive lock on a file, no other thread or process can get a lock on that file. Use
this when you want to write to a file without anyone else being able to write to it.

o File::LOCK_SH will give you a shared lock, or read lock. Other threads and pro-
cesses can get their own shared locks on the file, but no one can get an exclusive
lock. Use this when you want to read a file and know that it won’t change while
you're reading it.

Once youre done using the file, you need to unlock it. Call File#flock again, and
pass in File: :LOCK_UN as the lock type. You can skip this step if youre running on
Windows.

The best way to handle all this is to enclose the locking and unlocking in a method
that takes a block, the way open does:

def flock(file, mode)
success = file.flock(mode)
if success
begin
yield file
ensure
file.flock(File::LOCK_UN)
end
end
return success
end

7.13 LockingaFile | 259

This makes it possible to lock a file without having to worry about unlocking it later.
Even if your block raises an exception, the file will be unlocked and another thread
can use it:
open('output', 'w') do |f]|
flock(f, File::LOCK_EX) do |f|
f << "Kiss me, I've got a write lock on a file!"

end
end

Discussion

Different operating systems support different ways of locking files. Ruby’s flock
implementation tries to hide the differences behind a common interface that looks
like Unix’s file locking interface. In general, you can use flock as though you were on
Unix, and your scripts will work across platforms.

On Unix, both exclusive and shared locks work only if all threads and processes play
by the rules. If one thread has an exclusive lock on a file, another thread can still open
the file without locking it and wreak havoc by overwriting its contents. That’s why it’s
important to get a lock on any file that might conceivably be used by another thread
or another process on the system.

Ruby’s block-oriented coding style makes it easy to do the right thing with locking.
The following shortcut method works with the flock method previously defined. It
takes care of opening, locking, unlocking, and closing a file, letting you focus on
whatever you want to do with the file’s contents:

def open_lock(filename, openmode="r", lockmode=nil)

if openmode == 'r' || openmode == 'rb'
lockmode ||= File::LOCK_SH

else
lockmode ||= File::LOCK_EX

end

value = nil
open(filename, openmode) do |f]|
flock(f, lockmode) do
begin
value = yield f
ensure
f.flock(File::LOCK_UN) # Comment this line out on Windows.
end
end
return value
end
end

This code creates two threads, each of which wants to access the same file. Thanks to
locks, we can guarantee that only one thread is accessing the file at a time (see Chap-
ter 22 if you're not comfortable with threads):

260 | Chapter7:Files and Directories

tl = Thread.new do
puts 'Thread 1 is requesting a lock.'
open_Llock('output', 'w') do |f]|
puts 'Thread 1 has acquired a lock.'
f << "At last we're alone!"
sleep(5)
end

puts 'Thread 1 has released its lock.'
end

t2 = Thread.new do
puts 'Thread 2 is requesting a lock.'
open_lock('output', 'r') do |f|
puts 'Thread 2 has acquired a lock.'
puts "File contents: #{f.read}"
end
puts 'Thread 2 has released its lock.'
end
tl.join
t2.join
Thread 1 is requesting a lock.
Thread 1 has acquired a lock.
Thread 2 is requesting a lock.
Thread 1 has released its lock.
Thread 2 has acquired a lock.
File contents: At last we're alone!
Thread 2 has released its lock.

R OH R R W™ R

Nonblocking Locks

If you try to get an exclusive or shared lock on a file, your thread will block until
Ruby can lock the file. But you might be left waiting a long time, perhaps forever. The
code that has the file locked may be buggy and in an infinite loop; or it may itself be
blocking, waiting to lock a file that you have locked.

You can avoid deadlock and similar problems by asking for a nonblocking lock.
When you do, if Ruby can’t lock the file for you, File#flock returns false, rather than
waiting (possibly forever) for another thread or process to release its lock. If you don’t
get a lock, you can wait awhile and try again, or you can raise an exception and let the
user deal with it.

To make a lock into a nonblocking lock, use the OR operator (|) to combine
File: :LOCK_NB with either File::LOCK_EX or File: :LOCK_SH.

The following code will print I°ve got a lock! if it can get an exclusive lock on the
file “output”; otherwise, it will print I couldn’t get a lock. and continue:

def try_lock
puts "I couldn't get a lock." unless

7.13 LockingaFile | 261

open_lock('contested', 'w', File::LOCK_EX | File::LOCK_NB) do
puts "I've got a lock!"
true
end
end

try_lock
I've got a lock!

open('contested', 'w').flock(File::LOCK_EX) # Get a lock, hold it forever.
try_lock
I couldn't get a lock.

See Also

o Chapter 22, especially Recipe 22.11, “Avoiding Deadlock,” which covers other
types of deadlock problems in a multithreaded environment

7.14 Backing Up to Versioned Filenames

Problem

You want to copy a file to a numbered backup before overwriting the original file.
More generally: rather than overwriting an existing file, you want to use a new file
whose name is based on the original filename.

Solution

Use String#succ to generate versioned suffixes for a filename until you find one that
doesn’t already exist:

class File
def File.versioned_filename(base, first_suffix='.0")
suffix = nil
filename = base
while File.exists?(filename)
suffix = (suffix ? suffix.succ : first_suffix)
filename = base + suffix
end
return filename
end
end

5.times do |1
name = File.versioned_filename('filename.txt")
open(name, 'w') { |f|] f << "Contents for run #{i}" }
puts "Created #{name}"

end

262 | Chapter7:Files and Directories

Created filename.txt

Created filename.txt.0

Created filename.txt.1

Created filename.txt.2

Created filename.txt.3
If you want to copy or move the original file to the versioned filename as a prelude to
writing to the original file, include the fileutils library to add the class methods
FileUtils.copy and FileUtils.move. Then call versioned_filename and use FileU
tils.copy or FileUtils.move to put the old file in its new place:

New in Ruby 2.1

In the previous edition of this book, ftools was used instead of fileutils. The
ftools library in Ruby 1.8 has been removed in Ruby 2.1. The functionality of ftools
can be found in the fileutils standard library now.

require 'fileutils'
class File
def File.to_backup(filename, move=false)
new_filename = nil
if File.exists? filename
new_filename = File.
versioned_filename(filename)
FileUtils.send(move ? :move : :copy, filename, new_filename)
end
return new_filename
end
end

Let’s back up filename.txt a couple of times. Recall from earlier that the files file
name.txt.[0-3] already exist:

File.to_backup('filename.txt") # => "filename. txt.4"
File.to_backup('filename.txt") # => "filename. txt.5"

Now let’s do a destructive backup:

File.to_backup('filename.txt', true) # => "filename.txt.6"
File.exists? 'filename.txt' # => false

You can’t back up what doesn't exist:

File.to_backup('filename.txt") # => nil

7.14 Backing Up to Versioned Filenames | 263

Discussion

If you anticipate more than 10 versions of a file, you should add more zeros to the
initial suffix. Otherwise, filename.txt.10 will sort before filename.txt.2 in a
directory listing. A commonly used suffix is . 000:

200.times do |1i]
name = File.versioned_filename('many_versions.txt', '.000')
open(name, 'w') { |f| f << "Contents for run #{i}" }
puts "Created #{name}"

end

Created many_versions.txt

Created many_versions.txt.000

Created many_versions.txt.001

..

Created many_versions.txt.197

Created many_versions.txt.198

The result of versioned_filename won't be trustworthy if other threads or processes
on your machine might be trying to write the same file. If this is a concern for you,
you shouldn’t be satisfied with a negative result from File.exists?. In the time it
takes to open that file, some other process or thread might open it before you. Once
you find a file that doesn't exist, you must get an exclusive lock on the file before you
can be totally certain it’s okay to use.

Here’s how such an implementation might look on a Unix system. The
versioned_filename methods return the name of a file, but this implementation
needs to return the actual file, opened and locked. This is the only way to avoid a race

condition between the time the method returns a filename, and the time you open
and lock the file:

class File
def File.versioned_file(base, first_suffix='.0', access_mode='w')
suffix = file = locked = nil
filename = base
begin
suffix = (suffix ? suffix.succ : first_suffix)
filename = base + suffix
unless File.exists? filename
file = open(filename, access_mode)
locked = file.flock(File::LOCK_EX | File::LOCK_NB)
file.close unless locked
end
end until locked
return file
end
end

File.versioned_file('contested_file') # => #<File:contested file.0>

264 | Chapter7:Files and Directories

File.versioned_file('contested_file') # => #<File:contested file.1>
File.versioned_file('contested file') # => #<File:contested file.2>

The construct begin .. end until locked creates a loop that runs at least once, and
continues to run until the variable locked becomes true, indicating that a file has been
opened and successfully locked.

See Also

o Recipe 7.13, “Locking a File”

7.15 Pretending a String s a File

Problem

You want to call code that expects to read from an open file object, but your source is
a string in memory. Alternatively, you want to call code that writes its output to a file,
but have it actually write to a string.

Solution

The StringIO class wraps a string in the interface of the I0 class. You can treat it like
a file, then get everything that’s been “written” to it by calling its string method.

Here’s a StringIO used as an input source:

require 'stringio'
s = StringIO.new %{I am the very model of a modern major general.
I've information vegetable, animal, and mineral.}

.grep /general/
=> ["T am the very model of a modern major general.\n"]

S.pos #=>0
s.each_line { |x| puts x }

I am the very model of a modern major general.
I've information vegetable, animal, and mineral.
s.eof? # => true
S.pos # => 95
s.rewind

S.pos #=>0

s

#

Here are StringIO objects used as output sinks:

s = StringIO.new

s.write('Treat it like a file.")

s.rewind

s.write("Act like it's")

s.string # => "Act like it's a file."

7.15 Pretending a StringIsaFile | 265

require 'yaml'

s = StringIO.new

YAML.dump(['A list of', 3, :items], s)
puts s.string

#o---
- A list of
- 3
- :items
Discussion

The Adapter is a common design pattern: to make an object acceptable as input to a
method, it’s wrapped in another object that presents the appropriate interface. The
StringIO class is an Adapter between String and File (or I0), designed for use with
methods that work on File or IO instances. With a StringIO, you can disguise a
string as a file and use those methods without them ever knowing they haven't really
been given a file.

For instance, if you want to write unit tests for a library that reads from a file, the
simplest way is to pass in predefined StringIO objects that simulate files with various
contents. If you need to modify the output of a method that writes to a file, a
StringIO can capture the output, making it easy to modify and send on to its final
destination.

StringIO-type functionality is less necessary in Ruby than in languages like Python,
because in Ruby, strings and files implement a lot of the same methods to begin with.
Often you can get away with simply using these common methods. For instance, if all
youre doing is writing to an output sink, you don’t need a StringIO object, because
String#<< and File#<< work the same way:

def make_more_1interesting(io)
10 << ".. OF DOOM!"
end

make_more_interesting("Cherry pie") # => "Cherry pie.. OF DOOM!"

open('interesting_things', 'w') do |f]|
f.write("Nightstand")
make_more_interesting(f)
end
open('interesting_things') { |f| f.read } # => "Nightstand.. OF DOOM!"

Similarly, File and String both include the Enumerable mixin, so in a lot of cases
you can read from an object without caring what type it is. This is a good example of
Ruby’s duck typing.

Here’s a string:

266 | Chapter7:Files and Directories

poem = %{The boy stood on the burning deck
Whence all but he had fled

He'd stayed above to wash his neck

Before he went to bed}

and a file containing that string:

output = open("poem", "w")
output.write(poem)
output.close

input = open("poem")

will give the same result when you call an Enumerable method:

poem.grep /ed$/
=> ["Whence all but he had fled\n", "Before he went to bed"]
input.grep /eds$/
=> ["Whence all but he had fled\n", "Before he went to bed"]

Just remember that, unlike with a string, you can’t iterate over a file multiple times
without calling rewind:

input.grep /ed$/ #=>[]

input.rewind

input.grep /edS$/

=> ["Whence all but he had fled\n", "Before he went to bed"]
StringIO comes in when the Enumerable methods and << aren’t enough. If a method
youre writing needs to use methods specific to I0, you can accept a string as input
and wrap it in a StringIO. The class also comes in handy when you need to call a
method someone else wrote, not anticipating that anyone would ever need to call it
with anything other than a file:

def fifth_byte(file)

file.seek(5)

file.read(1)
end

fifth_byte("123456")
NoMethodError: undefined method ‘seek' for "123456":String
fifth_byte(StringIO.new("123456")) # => "6"

When you write a method that accepts a file as an argument, you can silently accom-
modate callers who pass in strings by wrapping in a StringIO any string that gets
passed in:
def file_operation(io)
io =
StringIO(io) if io.respond_to? :to_str && !1o.is_a? StringIO

#Do the file operation..
end

A StringIO object is always open for both reading and writing:

7.15 Pretending a String IsaFile | 267

s = StringIO.new

s << "A string"

s.read #=>""

s << ", and more."

s.rewind

s.read # => "A string, and more."

Memory access is faster than disk access, but for large amounts of data (more than
about 10 kilobytes), StringI0 objects are slower than disk files. If speed is your aim,
your best bet is to write to and read from temp files using the tempfile module. Or
you can do what the open-urti library does: start off by writing to a StringIO0 and, if it
gets too big, switch to using a temp file.

See Also

o Recipe 7.8, “Writing to a Temporary File”

o Recipe 7.11, “Performing Random Access on ‘Read-Once’ Input Streams”

7.16 Redirecting Standard Input or Qutput

Problem

You don’t want the standard input, output, or error of your process to go to the
default I0 objects set up by the Ruby interpreter. You want them to go to other file-
type objects of your own choosing.

Solution

You can assign any I0 object (a File, a Socket, or what have you) to the global vari-
ables $stdin, $stdout, or $stderr. You can then read from or write to those objects
as though they were the originals.

This short Ruby program demonstrates how to redirect the Kernel methods that
print to standard output. To avoid confusion, 'm presenting it as a standalone Ruby
program rather than an interactive irb session:'

#!/usr/bin/ruby -w

./redirect_stdout.rb

require 'stringio'

new_stdout = StringIO.new

$stdout = new_stdout

1 irb prints the result of each Ruby expression to $stdout, which tends to clutter the results in this case.

268 | Chapter7:Files and Directories

puts "Hello, hello."
puts "I'm writing to standard output."

S$stderr.puts "#{new_stdout.size} bytes written to standard ouput so far."
$stderr.puts "You haven't seen anything on the screen yet, but you soon will:"
$stderr.puts new_stdout.string

Run this program, and you’ll see the following:

$ ruby redirect_stdout.rb

46 bytes written to standard output so far.

You haven't seen anything on the screen yet, but you soon will:
Hello, hello.

I'm writing to standard output.

Discussion

If you have any Unix experience, you know that when you run a Ruby script from the
command line, you can make the shell redirect its standard input, output, and error
streams to files or other programs. This technique lets you do the same thing from
within a Ruby script.

You can use this as a quick and dirty way to write errors to a file, write output to a
StringIO object (as just shown), or even read input from a socket. Within a script,
you can programatically decide where to send your output, or receive standard input
from multiple sources. These things are generally not possible from the command
line without a lot of fancy shell scripting.

The redirection technique is especially useful when you’ve written or inherited a
script that prints text to standard output, and you need to make it capable of printing
to any file-like object. Rather than changing almost every line of your code, you can
just set $stdout at the start of your program, and let it run as is. This isn’t a perfect
solution, but it’s often good enough.

The original input and output streams for a process are always available as the con-
stants STDIN, STDOUT, and STDERR. If you want to temporarily swap one I/O stream for
another, change back to the “standard” standard output by setting $stdin = STDIN.
Keep in mind that since the $std objects are global variables, even a temporary
change affects all threads in your script.

See Also

Recipe 7.15, “Pretending a String Is a File,” has much more information on StringI0

7.16 Redirecting Standard Input or Qutput | 269

7.17 Processing a Binary File

Problem

You want to read binary data from a file, or write it to one.

Solution

Since Ruby strings make no distinction between binary and text data, processing a
binary file needn't be any different than processing a text file. Just make sure you add
b to your file mode when you open a binary file on Windows.

This code writes 10 bytes of binary data to a file, then reads it back:

open('binary', 'wb') do |f]|
(0..100).step(10) { |b|] f << b.chr }
end

s = open('binary', 'rb') { |f| f.read }

=> "|000\n)\024\036(2<FPZd"
If you want to process a binary file one byte at a time, you'll probably enjoy the way
each_byte returns each byte of the file as a number, rather than as single-character
strings:

open('binary', 'rb') { |f| f.each_byte { |b| puts b } }

0

10

20

..

90

100

Discussion

The methods introduced earlier to deal with text files work just as well for binary
files, assuming that your binary files are supposed to be processed from beginning to
end, the way text files typically are. If you want random access to the contents of a

>« »

binary file, you can manipulate your file object’s “cursor.

Think of the cursor as a pointer to the first unread byte in the open file. The current
position of the cursor is accessed by the method I0#pos. When you open the file, it’s
set to zero, just before the first byte. You can then use I0#read to read a number of
bytes starting from the current position of the cursor, incrementing the cursor as a
side effect:

f = open('binary')
f.pos #=>0

270 | Chapter7:Files and Directories

f.read(1) # => "\000"
f.pos #=>1

You can also just set pos to jump to a specific byte in the file:

f.pos = 4 # =>4
f.read(2) #=>"(2"
f.pos #=>6

You can use I0#seek to move the cursor forward or backward relative to its current
position (with File::SEEK_CUR), or to move to a certain distance from the end of a
file (with File: : SEEK_END). Unlike the iterator methods, which go through the entire
file once, you can use seek or set pos to jump anywhere in the file, even to a byte
you've already read:

f.seek(8)

f.pos #=>8
f.seek(-4, File::SEEK_CUR)

f.pos # =>4
f.seek(2, File::SEEK_CUR)

f.pos #=>6

Move to the second-to-last byte of the file.

f.seek(-2, File::SEEK_END)

f.pos #=>9
Attempting to read more bytes than there are in the file returns the rest of the bytes,
and sets your file’s eof? flag to true:

f.read(500) # => "zd"
f.pos # => 11
f.eof? # => true
f.close

Often you need to read from and write to a binary file simultaneously. You can open
any file for simultaneous reading and writing using the r+ mode (or, in this
case, rb+):

-4

= open('binary', 'rb+')

.read # => "|000\n)\024\036(2<FPZd"
.pos = 2

.write('Hello.")

.rewind

.read # => "|000\nHello.Pzd"

<< 'Goodbye.'

.rewind

.read # => "|000\nHello.PZdGoodbye. "

—h —h —h —h -h -h —h —h

f.close

You can append new data to the end of a file you've opened for read-write access, and
you can overwrite existing data byte for byte, but you can’t insert new data into the

7.17 Processing a Binary File | 271

middle of a file. This makes the read-write technique useful for binary files, where
exact byte offsets are often important, and less useful for text files, where it might
make sense to add an extra line in the middle.

Why do you need to append b to the file mode when opening a binary file on Win-
dows? Because otherwise Windows will mangle any newline characters that show up
in your binary file. The b tells Windows to leave the newlines alone, because they’re
not really newlines: theyre binary data. Since it doesn’t hurt anything on Unix to put
b in the file mode, you can make your code cross-platform by appending b to the
mode whenever you open a file you plan to treat as binary. Note that b by itself is not
a valid file mode: you probably want rb.

An MP3 Example

Because every binary format is different, probably the best we can do to help you
beyond this point is show you an example. Consider MP3 music files. Many MP3 files
have a 128-byte data structure at the end called an ID3 tag. These 128 bytes are liter-
ally packed with information about the song: its name, the artist, which album its
from, and so on. You can parse this data structure by opening an MP3 file and doing
a series of reads from a pos near the end of the file.

According to the ID3 standard, if you start from the 128th-to-last byte of an MP3 file
and read three bytes, you should get the string "TAG". If you don't, there’s no ID3 tag
for this MP3 file, and nothing to do. If there is an ID3 tag present, then the 30 bytes
after "TAG" contain the name of the song, the 30 bytes after that contain the name of
the artist, and so on. Here’s some code that parses a file’s ID3 tag and puts the results
into a hash:

def parse_id3(mp3_file)
fields_and_sizes = [[:track_name, 30], [:artist_name, 307,
[:album_name, 30], [:year, 4], [:comment, 30],
[:genre, 1]]

tag = {}
open(mp3_file) do |f|
f.seek(-128, File::SEEK_END)
if f.read(3) == 'TAG' # An ID3 tag is present
fields_and_sizes.each do |field, size|
Read the field and strip off anything after the first null
character.
data = f.read(size).gsub(/\000.*/, '")
Convert the genre string to a number.

data = data[0] if field == :genre
tag[field] = data
end
end
end
return tag

272 | Chapter7:Files and Directories

end

parse_id3('ID3.mp3")

=> {:year=>"2005", :artist_name=>"The ID Three",

:album_name=>"Binary Brain Death",

:comment=>"http://www.example.com/1d3/", :genre=>22,
:track_name=>"ID 3"}

parse_1d3('Too Indie For ID3 Tags.mp3') #=> {}

Rather than specifying the genre of the music as a string, the :genre element of the
hash is a single byte, an entry into a lookup table shared by all applications that use
ID3. In this table, genre number 22 is “Death metal”

It takes less code to specify the byte offsets for a binary file is in the format recognized
by String#unpack, which can parse the bytes of a string according to a given format.
It returns an array containing the results of the parsing:

#Returns [track, artist, album, year, comment, genre]
def parse_id3(mp3_file)
format = 'Z30Z3073074730C'
open(mp3_file) do |f|
f.seek(-128, File::SEEK_END)

if f.read(3) == "TAG" # An ID3 tag is present
return f.read(125).unpack(format)
end
end
return nil
end

parse_1d3('ID3.mp3"')

=> ["ID 3", "The ID Three", "

Binary Brain Death", "2005", "http://www.example.com/
id3/", 22]

As you can see, the unpack format is obscure but very concise. The string
"73023023024230C" passed into String#unpack completely describes the elements of
the ID3 format after the "TAG":

o Three strings of 30 bytes, with null characters stripped ("Z30230Z30")
o A string of 4 bytes, with null characters stripped ("z4")
o One more string of 30 bytes, with null characters stripped ("Z30")

o A single character, represented as an unsigned integer ("C")

It doesn’t describe what those elements are supposed to be used for, though.

When writing binary data to a file, you can use Array#pack, the opposite of
String#unpack:

7.17 Processing a Binary File | 273

id3 = ["ID 3", "The ID Three", "Binary Brain Death", "2005",
"http://www.example.com/1d3/", 22]

id3.pack 'Z30Z30230Z4z30C'

=> "ID 3\000|000|000)\000)\000..http://www.example.com/id3/|000|000)|000|026"

See Also

o The ID3 standard, along with the table of genres; the code in this recipe parses
the original ID3v1 standard, which is much simpler than ID3v2

e ri String#unpack and ri Array#pack

7.18 Deleting a File

Problem

You want to delete a single file, or a whole directory tree.

Solution
Removing a file is simple, with File.delete:

import 'fileutils'
FileUtils.touch "doomed_ file"

File.exists? "doomed_file" # => true
File.delete "doomed file"
File.exists? "doomed_file" # => false

Removing a directory tree is also fairly simple. The most confusing thing about it is
the number of different methods Ruby provides to do it. The method you want is
probably FileUtils.remove_dir, which recursively deletes the contents of a
directory:

Dir.mkdir "doomed_directory"

File.exists? "doomed_directory" # => true

FileUtils.remove_dir "doomed_directory"

File.exists? "doomed_directory" # => false
Discussion

Ruby provides several methods for removing directories, but you really only need
remove_dir. Dir.delete and FileUtils.rmdir will work only if the directory is
already empty. The rm_r and rm_rf defined in FileUtils are similar to remove_dir,
but if you're a Unix user you may find their names more mnemonic.

You should also know about the :secure option to rm_rf, because the remove_dir
method and all its variants are vulnerable to a race condition when you remove a

274 | Chapter7:Files and Directories

http://en.wikipedia.org/wiki/ID3

world-writable directory. The risk is that a process owned by another user might cre-
ate a symlink in that directory while you're deleting it. This would make you delete
the symlinked file along with the files you actually meant to delete.

Passing in the :secure option to rm_rf slows down deletions significantly (it has to
change the permissions on the directory before deleting it), but it avoids the race con-
dition. If youre running Ruby 1.8, you’ll also need to hack the FileUtils module a
little bit to work around a bug (the bug is fixed in Ruby 1.9):

A hack to make a method used by rm_rf actually available
module FileUtils

module_function :fu_world_writable?
end

Dir.mkdir "/tmp/doomed_directory"
FileUtils.rm_rf("/tmp/doomed_directory", :secure=>true)
File.exists? "/tmp/doomed_directory" # => false

Why isn’t the :secure option the default for rm_rf? Because secure deletion isn't
thread-safe: it actually changes the current working directory of the process. You
need to choose between thread safety and a possible security hole.

7.19 Truncating a File

Problem

You want to truncate a file to a certain length, probably zero bytes.

Solution

Usually, you want to destroy the old contents of a file and start over. Opening a file
for write access will automatically truncate it to zero bytes, and let you write new con-
tents to the file:

filename = 'truncate.txt'
open(filename, 'w') { |[f| f << "All of this will be truncated." }
File.size(filename) # => 30

f = open(filename, 'w') {}
File.size(filename) #=>0

If you just need to truncate the file to zero bytes and not write any new contents to it,
you can open it with an access mode of File: : TRUNC:

open(filename, 'w') { |[f| f << "Here are some new contents." }

File.size(filename) # => 27

7.19TruncatingaFile | 275

f = open(filename, File::TRUNC) {}
File.size(filename) #=>0

You can’t actually do anything with a File whose access mode is File: : TRUNC:

open(filename, File::TRUNC) do |f|

f << "At last, an empty file to write to!"
end
IOError: not opened for writing

Discussion

Transient files are the most likely candidates for truncation. Logfiles are often trunca-
ted, automatically or manually, before they grow too large.

The most common type of truncation is truncating a file to zero bytes, but the
File.truncate method can truncate a file to any number of bytes, not just zero. You
can also use the instance method, File#truncate, to truncate a file you've opened for
writing:
f = open(filename, 'w') do |f]|
f << 'These words will remain intact after the file is truncated.'

end
File.size(filename) # => 59

File.truncate(filename, 30)

File.size(filename) # => 30

open(filename) { |f| f.read } # => "These words will remain intact"
These methods don't always make a file smaller. If the file starts out smaller than the
size you give, they append zero bytes (\000) to the end-of-file until the file reaches
the specified size:

f = open(filename, "w") { |f| f << "Brevity is the soul of wit." }

File.size(filename) # => 27
File.truncate(filename, 30)
File.size(filename) # => 30

open(filename) { |f| f.read }
=> "Brevity is the soul of wit.|000|000)|000"

File.truncate and File#truncate act like the bed of Procrustes: they force a file to
be a certain number of bytes long, whether that means stretching it or chopping off
the end.

276 | Chapter7:Files and Directories

7.20 Finding the Files You Want

Problem

You want to locate all the files in a directory hierarchy that match some criteria. For
instance, you might want to find all the empty files, all the MP3 files, or all the files
named README.

Solution

Use the Find.find method to walk the directory structure and accumulate a list of
matching files.

Pass in a block to the following method and it'll walk a directory tree, testing each file
against the code block you provide. It returns an array of all files for which the value
of the block is true:
require 'find'
module Find
def match(*paths)
matched = []
find(*paths) { |path| matched << path if yield path }
return matched
end

module_function :match
end

Here’s what Find.match might return if you used it on a typical disorganized home
directory:

Find.match("./") { |p| File.lstat(p).size == 0 }
=> ["./Music/cancelled_download.MP3", "./tmp/empty2", "./tmp/empty1"]

Find.match("./") { |p| ext = p[-4.p.size]; ext && ext.downcase == ".mp3" }
=> ["./Music/The Snails - Red Rocket.mp3",
=> "./Music/The Snails - Moonfall.mp3", "./Music/cancelled_download.MP3"]

Find.match("./") { |p| File.split(p)[1] == "README" }
=> ["./rubyprog-0.1/README", "./tmp/README"]

Discussion

This is an especially useful chunk of code for system administration tasks. It gives you
functionality at least as powerful as the Unix find command, but you can write your
search criteria in Ruby and you won’t have to remember the arcane syntax of find.

As with Find.walk itself, you can stop Find.match from processing a directory by
calling Find.prune:

7.20 Finding the Files You Want | 277

Find.match("./") do |p]|

Find.prune if p == "./tmp"
File.split(p)[1] == "README"
end

=> ["./rubyprog-0.1/README"]
You can even look inside each file to see whether you want it:

Find all files that start with a particular phrase.
must_start_with = "This Ruby program"
Find.match("./") do |p]|
if File.file? p
open(p) { |f| f.read(must_start_with.size) == must_start_with }
else
false
end
end
=> ["./rubyprog-0.1/README"]

A few other useful things to search for using this function:

Finds files that were probably left behind by emacs sessions.
def emacs_droppings(*paths)
Find.match(*paths) do |p|
(p[-1] == ?~ and p[0] != ?~) or (p[0] == ?# and p[-1] == 7#)
end
end

Finds all files that are larger than a certain threshold. Use this to find
the files hogging space on your filesystem.
def bigger_than(bytes, *paths)
Find.match(*paths) { |p| File.lstat(p).size > bytes }
end

Finds all files modified more recently than a certain number of seconds ago.
def modified_recently(seconds, *paths)

time = Time.now - seconds

Find.match(*paths) { |p| File.lstat(p).mtime > time }
end

Finds all files that haven't been accessed since they were last modified.
def possibly_abandoned(*paths)

Find.match(*paths) { |p| f = File.lstat(p); f.mtime == f.atime }
end

See Also

o Recipe 7.12, “Walking a Directory Tree”

278 | Chapter7:Files and Directories

7.21 Finding and Changing the Current Working Directory

Problem

You want to see which directory the Ruby process considers its current working
directory, or change that directory.

Solution

To find the current working directory, use Dir.getwd:
Dir.getwd # => "/home/leonardr"

To change the current working directory, use Dir.chdir:

Dir.chdir("/bin")
Dir.getwd # => "/bin"
File.exists? "ls" # => true

Discussion

The current working directory of a Ruby process starts out as the directory you were
in when you started the Ruby interpreter. When you refer to a file without providing
an absolute pathname, Ruby assumes you want a file by that name in the current
working directory. Ruby also checks the current working directory when you
require a library that can't be found anywhere else.

The current working directory is a useful default. If youre writing a Ruby script that
operates on a directory tree, you might start from the current working directory if the
user doesn't specify one.

However, you shouldn't rely on the current working directory being set to any partic-
ular value: this makes scripts brittle, and prone to break when run from a different
directory. If your Ruby script comes bundled with libraries, or needs to load addi-
tional files from subdirectories of the script directory, you should set the working
directory in code.

You can change the working directory as often as necessary, but it’s more reliable to
use absolute pathnames, even though this can make your code less portable. This is
especially true if you're writing multithreaded code.

The current working directory is global to a process. If multiple threads are running
code that changes the working directory to different values, you’ll never know for
sure what the working directory is at any given moment.

7.21 Finding and Changing the Current Working Directory | 279

See Also

« Recipe 7.18, “Deleting a File,” shows some problems created by a process-global
working directory

280 | Chapter7:Files and Directories

CHAPTER 8
Code Blocks and Iteration

In Ruby, a code block (or just “block”) is an object that contains some Ruby code, and
the context necessary to execute it. Code blocks are the most visually distinctive
aspect of Ruby, and also one of the most confusing to newcomers from other lan-
guages. Essentially, a Ruby code block is a method that has no name.

Most other languages have something like a Ruby code block: C’s function pointers, C
++’s function objects, Python’s lambdas and list comprehensions, Perl’s anonymous
functions, Java’s anonymous inner classes. These features live mostly in the corners of
those languages, shunned by novice programmers. Ruby can't be written without
code blocks. Of the major languages, only Lisp is more block-oriented.

Unlike most other languages, Ruby makes code blocks easy to create and imposes few
restrictions on them. In every other chapter of this book, you’ll see blocks passed into
methods like it’s no big deal (which it isn’t):

[1,2,3].each { |i]| puts 1 }

#1

#2
3

In this chapter, we’ll show you how to write that kind of method, the kinds of meth-

ods that are useful to write that way, and when and how to treat blocks as first-class
objects.

Ruby provides two syntaxes for creating code blocks. When the entire block will fit
on one line, it's most readable when enclosed in curly braces:

[1,2,3].each { |i] puts 1 }
1
2
3

281

When the block is longer than one line, its more readable to begin it with the do
keyword and end it with the end keyword:

[1,2,3].each do |1i]
if 1% 2 ==
puts "#{i} is even."
else
puts "#{1} is odd."
end
end
1 is odd.
2 1s even.
3 1s odd.

Some people use the bracket syntax when they’re interested in the return value of the
block, and the do..end syntax when they’re interested in the blocK’s side effects.

Keep in mind that the bracket syntax has a higher precedence than the do..end syntax.
Consider the following two snippets of code:

1.upto 3 do [x|
puts X

end

1

2

3

1.upto 3 { [x]| puts x }

SyntaxError: compile error
In the second example, the code block binds to the number 3, not to the function call
1.upto 3. A standalone variable can’t take a code block, so you get a compile error.
When in doubt, use parentheses:

1.upto(3) { [x| puts x }
1
2
3

Usually the code blocks passed into methods are anonymous objects, created on the
spot. But you can instantiate a code block as a Proc object by calling lambda. See
Recipe 8.1 for more details:

hello = lambda { "Hello" }

hello.call
=> "Hello"

log = lambda { |str| puts "[LOG] #{str}" }
log.call("A test log message.")
[LOG] A test log message.

In Ruby 2.1, there is a new, shorter syntax for creating Proc objects:

282 | Chapter8: Code Blocks and Iteration

log = ->(str) { puts "[LOG] #{str}" }
log.call("A test log message.")
[LOG] A test log message.

Like any method, a block can accept arguments. A blocK’s arguments are defined in a
comma-separated list at the beginning of the block, enclosed in pipe characters:

{1=>2, 2=>4%}.each { |k,v| puts "Key #{k}, value #{v}" }
Key 1, value 2
Key 2, value 4

Arguments to blocks look almost like arguments to methods, but there are a few
restrictions: you can't set default values for block arguments, you can’t expand hashes
or arrays inline, and a block cannot itself take a block argument.!

Since Proc objects are created like other objects, you can create factory methods
whose return values are customized pieces of executable Ruby code. Here’s a simple
factory method for code blocks that do multiplication:

def times_n(n)
>(x) { x *n}

end
The following code uses the factory to create and use two customized methods:

times_ten = times_n(10)
times_ten.call(5) # => 50
times_ten.call(1.25) #=>12.5

circumference = times_n(2*Math::PI)

circumference.call(10) # => 62.8318530717959
circumference.call(3) # => 18.8495559215388
[1, 2, 3].collect(&circumference)

=> [6.28318530717959, 12.5663706143592, 18.8495559215388]

You may have heard people talking about Ruby’s closures. What is a closure, and how

is it different from a block? In Ruby, there is no difference between closures and
blocks. Every Ruby block is also a closure.?

So what makes a Ruby block a closure? Basically, a Ruby block carries around the
context in which it was defined. A block can reference the variables that were in scope
when it was defined, even if those variables later go out of scope. Here’s a simple
example; see Recipe 8.4 for more:

1 In Ruby 1.9, a block can itself take a block argument: |argl, arg2, &block|. This makes methods like Mod
ule#tdefine_method more useful. In Ruby 2.1, you'll be able to give default values to block arguments.

2 Someone could argue that a block isn’t really a closure if it never actually uses any of the context it carries
around: you could have done the same job with a “dumb” block, assuming Ruby supported those. For simpli-
city’s sake, we do not argue this.

Code Blocks and Iteration | 283

ceiling = 50

Which of these numbers are less than the target?

[1, 10, 49, 50.1, 200].select { |x| x <

ceiling }

=> [1, 10, 49]
The variable ceiling is within scope when the block is defined, but it goes out of
scope when the flow of execution enters the select method. Nonetheless, the block
can access ceiling from within select, because it carries its context around with it.
That’s what makes it a closure.

We suspect that a lot of people who say “closures” when talking about Ruby blocks
just do it to sound smart. Since we've already ruined any chance we might have had at
sounding smart, we've decided to refer to Ruby closures as just plain “blocks”
throughout this book. The only exceptions are in the rare places where we must dis-
cuss the context that makes Ruby’s code blocks real closures, rather than “dumb”
blocks.

8.1 Creating and Invoking a Block

Problem

You want to put some Ruby code into an object so you can pass it around and call it
later.

Solution

By this time, you should be familiar with a block as some Ruby code enclosed in curly
brackets. You might think it possible to define a block object as follows:

a_block = { |x| puts x } # WRONG

SyntaxError: compile error

That doesn’t work because a block is valid Ruby syntax only when it’s an argument to
a method call. There are several equivalent methods that take a block and return it as
an object. The most favored method is Kernel# lambda:'

a_block
a_block

To call the block, use the call method:

lambda { |x| puts x } # RIGHT
->(x) { puts x } # RIGHT

a_block.call "Hello World!"
Hello World!

1 The name lambda comes from the lambda calculus (a mathematical formal system) via Lisp.

284 | (Chapter8: Code Blocks and Iteration

Discussion

The ability to assign a bit of Ruby code to a variable is very powerful. It lets you write
general frameworks and plug in specific pieces of code at the crucial points.

As you'll find out in Recipe 8.2, you can accept a block as an argument to a method
by prepending & to the argument name. This way, you can write your own trivial ver-
sion of the lambda method:

def my_lambda(&a_block)

a_block
end

b = my_lambda { puts "Hello World My Way!" }
b.call
Hello World My Way!

A newly defined block is actually a Proc object:
b.class # => Proc

You can also initialize blocks with the Proc constructor or the method Kernel#proc.
The methods Kernel#lambda, Kernel#tproc, and Proc.new all do basically the same
thing. These three lines of code are nearly equivalent:

a_block = Proc.new { |x| puts x }
a_block = proc { |x| puts x }
a_block = lambda { |x| puts x }
a_block = ->(x) { puts x }

What’s the difference? Kernel#lambda or Kernel#» is the preferred way of creating
block objects, because it gives you block objects that act more like Ruby methods.
Consider what happens when you call a block with the wrong number of arguments:

add_lambda = ->(x,y) { x + y }

add_lambda.call(4)
ArgumentError: wrong number of arguments (1 for 2)

add_lambda.call(4,5,6)
ArgumentError: wrong number of arguments (3 for 2)

A block created with lambda acts like a Ruby method. If you don’t specify the right
number of arguments, you can’t call the block. But a block created with Proc. new acts
like the anonymous code block you pass into a method like Enumerablet#each:

add_procnew = Proc.new { |[x,y| x +y }

add_procnew.call(4)
TypeError: nil can't be coerced into Fixnum

add_procnew.call(4,5,6) #=>9

8.1(Creating and Invoking aBlock | 285

If you don’t specify enough arguments when you call the block, the rest of the argu-
ments are given nil. If you specify too many arguments, the extra arguments are
ignored. Unless you want this kind of behavior, use lambda.

In Ruby 1.8, Kernel#proc acts like Kernel#lambda. In Ruby 1.9, Kernel#proc acts
like Proc. new, as better befits its name.

See Also

o Recipe 8.2, “Writing a Method That Accepts a Block”
 Recipe 11.4, “Getting a Reference to a Method”

8.2 Writing a Method That Accepts a Block

Problem

You want to write a method that can accept and call an attached code block: a method
that works like Array#each, Fixnum#upto, and other built-in Ruby methods.

Solution

You don’t need to do anything special to make your method capable of accepting a
block. Any method can use a block if the caller passes one in. At any time in your
method, you can call the block with yield:

def call_twice
puts "I'm about to call your block."
yield
puts "I'm about to call your block again."
yield
end

call_twice { puts "Hi, I'm a talking code block." }
I'm about to call your block.

Hi, I'm a talking code block.

I'm about to call your block again.

Hi, I'm a talking code block.

Another example:

def repeat(n)
if block_given?
n.times { yield }
else
raise ArgumentError.new("I can't repeat a block you don't give me!")
end
end

286 | Chapter8: Code Blocks and Iteration

repeat(4) { puts "Hello." }
Hello.
Hello.
Hello.
Hello.

repeat(4)
ArgumentError: I can't repeat a block you don't give me!

Discussion

Since Ruby focuses so heavily on iterator methods and other methods that accept
code blocks, it's important to know how to use code blocks in your own methods.

You don’t have to do anything special to make your method capable of taking a code
block. A caller can pass a code block into any Ruby method; it’s just that there’s no
point in doing that if the method never invokes yield:

puts("Print this message.") { puts "And also run this code block!" }
Print this message.

The yield keyword acts like a special method, a stand-in for whatever code block was
passed in. When you call it, it’s exactly as though the code block were a Proc object
and you had invoked its call method.

This may seem mysterious if youre unfamiliar with the practice of passing blocks
around, but it is usually the preferred method of calling blocks in Ruby. If you feel
more comfortable receiving a code block as a “real” argument to your method, see
Recipe 8.3.

You can pass in arguments to yield (they’ll be passed to the block) and you can do

things with the value of the yield statement (this is the value of the last statement in
the block).

Here’s a method that passes arguments into its code block, and uses the value of the
block:

def call_twice
puts "Calling your block."
retl = yield("very first")
puts "The value of your block: #{ret1}"

puts "Calling your block again."

ret2 = yield("second")

puts "The value of your block: #{ret2}"
end

call_twice do |which_time|
puts "I'm a code block, called for the #{which_time} time."
which_time == "very first" 2 1 : 2

8.2 Writing a Method That Acceptsa Block | 287

end

Calling your block.

I'm a code block, called for the very first time.
The value of your block: 1

Calling your block again.

I'm a code block, called for the second time.

The value of your block: 2

Here’s a more realistic example. The method Hash#find takes a code block, passes
each of a hash’s key-value pairs into the code block, and returns the first key-value
pair for which the code block evaluates to true:

squares = {0=>0, 1=>1, 2=>4, 3=>9}

squares.find { |key, value| key > 1 } #=>[2, 4]
Suppose we want to re-create the new Ruby 2.1 method Hash#find_all that works
like Hash#find, but returns a new hash containing all the key-value pairs for which
the code block evaluates to true. We can do this by passing arguments into the yield
statement and using its result:

class Hash
def find_all
new_hash = Hash.new
each { |k,v| new_hash[k] = v if yield(k, v) }
new_hash
end
end

squares.find_all { |key, value| key > 1 } # => {2=>4, 3=>9}

As it turns out, the Hash#delete_if method already does the inverse of what we
want. By negating the result of our code block, we can make Hash#delete_if do the
job of Hash#find_all. We just need to work off of a duplicate of our hash, because
delete_if is a destructive method:
squares.dup.delete_if { |key, value| key > 1 } # => {0=>0, 1=>1}
squares.dup.delete_if { |key, value| key <= 1 } # => {2=>4, 3=59}
You can write a method that takes an optional code block by calling
Kernel#block_given? from within your method. That method returns true only if
the caller of your method passed in a code block. If it returns false, you can raise an
exception, or you can fall back to behavior that doesn’t need a block and never uses
the yield keyword.

If your method calls yield and the caller didn’t pass in a code block, Ruby will throw
an exception:

[1, 2, 3].each
LocalJumpError: no block given

288 | Chapter8: Code Blocks and Iteration

See Also

« Recipe 8.3, “Binding a Block Argument to a Variable”

8.3 Binding a Block Argument to a Variable

Problem

You've written a method that takes a code block, but it’s not enough for you to simply
call the block with yield. You need to somehow bind the code block to a variable, so
you can manipulate the block directly. Most likely, you need to pass it as the code
block to another method.

Solution

Put the name of the block variable at the end of the list of your method’s arguments.
Prefix it with an ampersand so that Ruby knows it’s a block argument, not a regular
argument.

An incoming code block will be converted into a Proc object and bound to the block
variable. You can pass it around to other methods, call it directly using call, or yield
to it as though youd never bound it to a variable at all. All three of the following
methods do exactly the same thing:

def repeat(n)
n.times { yield } if block_given?
end
repeat(2) { puts "Hello." }
Hello.
Hello.
def repeat(n, &block)
n.times { block.call } if block
end
repeat(2) { puts "Hello." }
Hello.
Hello.

def repeat(n, &block)
n.times { yield } if block

end

repeat(2) { puts "Hello." }

Hello.

Hello.

8.3 Binding a Block Argument to a Variable | 289

Discussion

If &foo is the name of a method’s last argument, it means that the method accepts an
optional block named foo. If the caller chooses to pass in a block, it will be made
available as a Proc object bound to the variable foo. Since it is an optional argument,
foo will be nil if no block is actually passed in. This frees you from having to call
Kernel#block_given? to see whether or not you got a block.

When you call a method, you can pass in any Proc object as the code block by prefix-
ing the appropriate variable name with an ampersand. You can even do this on a Proc
object that was originally passed in as a code block to your method.

Many methods for collections, like each, select, and detect, accept code blocks. It’s
easy to wrap such methods when your own methods can bind a block to a variable.
Here, a method called biggest finds the largest element of a collection that gives a
true result for the given block:

def biggest(collection, &block)
block ? collection.select(&block).max : collection.max
end

array = [1, 2, 3, 4, 5]

biggest(array) {|i| 1 < 3} # => 2
biggest(array) {|i|] 1 != 5} # =>4
biggest(array) #=>5

This is also very useful when you need to write a frontend to a method that takes a
block. Your wrapper method can bind an incoming code block to a variable, then
pass it as a code block to the other method.

This code calls a code block limit times, each time passing in a random number
between min and max:

def pick_random_numbers(min, max, limit)
limit.times { yield min+rand(max+1) }
end

This code is a wrapper method for pick_random_numbers. It calls a code block 6
times, each time with a random number from 1 to 49:

def lottery_style_numbers(&block)
pick_random_numbers(1, 49, 6, &block)
end

lottery_style_numbers { |n| puts "Lucky number: #{n}" }
Lucky number: 20
Lucky number: 39
Lucky number: 41
Lucky number: 10

290 | Chapter8: Code Blocks and Iteration

Lucky number: 41
Lucky number: 32

The code block argument must always be the very last argument defined for a
method. This means that if your method takes a variable number of arguments, the
code block argument goes after the container for the variable arguments:

def invoke_on_each(*args, &block)
args.each { |arg| yield arg }
end

invoke_on_each(1, 2, 3, 4) { |x| puts x ** 2 }
1
4
#9
16

New in Ruby 2.1

Ruby 2.1 introduces the ability for blocks and closures to accept blocks as arguments.
Here is how the same code looks “blockified”:

invoke_on_each = ->(*args, &block) do
args.each { |arg| block.call(arg) }
end

invoke_on_each.call(1, 2, 3, 4) { |x| puts x ** 2 }
1
4
9
16

See Also

o Recipe 9.11, “Accepting or Passing a Variable Number of Arguments”

o Recall from the chapter introduction that in Ruby 1.8, a code block cannot itself
take a block argument; this is fixed in Ruby 1.9

8.4 Blocks as Closures: Using Qutside Variables Within a
Code Block

Problem

You want to share variables between a method, and a code block defined within it.

8.4 Blocks as Closures: Using Outside Variables Within a Code Block | 291

Solution

Just reference the variables, and Ruby will do the right thing. Here’s a method that
adds a certain number to every element of an array:

def add_to_all(array, number)
array.collect { [x| x + number }
end

add_to_all([1, 2, 3], 10) #=>[11, 12, 13]

Enumerable#collect cant access number directly, but it’s passed a block that can
access it, since number was in scope when the block was defined.

Discussion

A Ruby block is a closure: it carries around the context in which it was defined. This is
useful because it lets you define a block as though it were part of your normal code,
then tear it oft and send it to a predefined piece of code for processing.

A Ruby block contains references to the variable bindings, not copies of the values. If
the variable changes later, the block will have access to the new value:

tax_percent = 6
position = lambda do
"I have always supported a #{tax_percent}% tax on imported limes."
end
position.call
=> "I have always supported a 6% tax on imported limes."

tax_percent = 7.25
position.call
=> "I have always supported a 7.25% tax on imported limes."

This works both ways: you can rebind or modify a variable from within a block:

counter = 0

4.times { counter += 1; puts "Counter now #{counter}"}

Counter now 1

Counter now 2

Counter now 3

Counter now 4

counter # =>4

This is especially useful when you want to simulate inject or collect in conjunction
with a strange iterator. You can create a storage object outside the block, and add
things to it from within the block. This code simulates Enumerable#collect, but it
collects the elements of an array in reverse order:

292 | Chapter8: Code Blocks and Iteration

accumulator = []
[1, 2, 3].reverse_each { |x| accumulator << x + 1 }

accumulator #=>[4, 3, 2]

The accumulator variable is not within the scope of Array#reverse_each, but it is
within the scope of the block.

New in Ruby 2.1
Note that in Ruby 2.1, block arguments are now local. Take this code as an example:

foo = "Ruby 2.1 Scope"
[1,2,3].each{|foo]

foo = "Ruby 1.8 Overrided Scope"
}

puts foo
In Ruby 1.8, this code would output Ruby 1.8 Overrided Scope because the block’s
foo argument bleeds through. However, in Ruby 2.1, this was fixed and now it out-
puts Ruby 2.1 Scope.

8.5 Writing an Iterator Over a Data Structure

Problem

You've created a custom data structure, and you want to implement an each method
for it, or you want to implement an unusual way of iterating over an existing data
structure.

Solution

Complex data structures are usually constructed out of the basic data structures:
hashes, arrays, and so on. All of the basic data structures have defined the each
method. If your data structure is composed entirely of scalar values and these simple
data structures, you can write a new each method in terms of the each methods of its
components.

Here’s a simple tree data structure. A tree contains a single value, and a list of children
(each of which is a smaller tree):

class Tree
attr_reader :value
def initialize(value)
@value = value
@children = []
end

8.5 Writing an Iterator Over a Data Structure | 293

def <<(value)
subtree = Tree.new(value)
@children << subtree
return subtree
end
end

Here’s code to create a specific tree (Figure 8-1):

t = Tree.new("Parent")
childl = t << "Child 1"
childl << "Grandchild 1.1"
childl << "Grandchild 1.2"
child2 = t << "Child 2"
child2 << "Grandchild 2.1"

Parent

Grandchild Grandchild Grandchild
1.1 1.2 2.1

Figure 8-1. A simple tree

How can we iterate over this data structure? Since a tree is defined recursively, it
makes sense to iterate over it recursively. This implementation of Tree#each yields
the value stored in the tree, then iterates over its children (the children are stored in

an array, which already supports each) and recursively calls Tree#each on every child
tree:

class Tree
def each
yield value
@children.each do |child_node|
child_node.each { |e| yield e }
end
end
end

The each method traverses the tree in a way that looks right:

t.each { |x| puts x }
Parent

Child 1

Grandchild 1.1

Grandchild 1.2

294 | Chapter8: Code Blocks and Iteration

Child 2
Grandchild 2.1

Discussion

The simplest way to build an iterator is recursively: to use smaller iterators until
you've covered every element in your data structure. But what if those iterators aren't
there? More likely, what if they’re there but they give you elements in the wrong
order? You'll need to go down a level and write some loops.

Traditional loops are somewhat out of style in Ruby because enumerable iterators are
more idiomatic, but when you're writing an iterator you may have no choice but to
use a loop. Here’s a reprint of an iterator from Recipe 5.1, which illustrates how to use
awhile loop to iterate over an array from both sides:

class Array
def each_from_both_sides()
front_index = 0
back_index = self.length-1
while front_index <= back_index
yield self[front_index]
front_index += 1
if front_index <= back_1index
yield self[back_index]
back_index -= 1
end
end
end
end

%w{Curses! been again! foiled I've}.each_from_both_sides { |x| puts x }
Curses!

I've

been

foiled

again!

Here are two more simple iterators. The first one yields each element multiple times
in a row:

module Enumerable
def each_n_times(n)
each { |e| n.times { yield e } }
end
end

%w{Hello Echo}.each_n_times(3) { |x| puts x }
Hello

Hello

Hello

Echo

8.5 Writing an Iterator Over a Data Structure | 295

Echo
Echo

The next one returns the elements of an Enumerable in random order; see Recipe
5.10 for a more efficient way to do the shuffling:

module Enumerable
def each_randomly
(sort_by { rand }).each { |e| yield e }
end
end
%w{Eat at Joe's}.each_randomly { |x| puts x }
Eat
Joe's
at

See Also

o Recipe 5.1, “Iterating Over an Array”

o Recipe 5.10, “Shuffling an Array”

 Recipe 6.7, “Iterating Over a Hash”

o Recipe 8.6, “Changing the Way an Object Iterates”

o Recipe 8.8, “Stopping an Iteration”

« Recipe 8.9, “Looping Through Multiple Iterables in Parallel”

8.6 Changing the Way an Object Iterates

Problem

You want to use a data structure as an Enumerable, but the object’s implementation of
#each doesn't iterate the way you want. Since all of Enumerable’s methods are based
on each, this makes them all useless to you.

Discussion
Here’s a concrete example: a simple array:

array = %w{bob loves alice}

array.collect { |x| x.capitalize }

=> ["Bob", "Loves", "Alice"]
Suppose we want to call collect on this array, but we don’t want collect to use
each: we want it to use reverse_each. Wed use something like this hypothetical
collect_reverse method:

296 | Chapter8: Code Blocks and Iteration

array.collect_reverse { |x| x.capitalize }

=> ["Alice", "Loves", "Bob"]
Actually defining a collect_reverse method would add significant new code and
solve only part of the problem. We could overwrite the array’s each implementation
with a singleton method that calls reverse_each, but that’s hacky and it would surely
have undesired side effects.

Fortunately, there’s an elegant solution with no side effects: wrap the object in an Enu
merator. This gives you a new object that acts like the old object would if youd swap-
ped out its each method:

array = %w{bob loves alice}

reversed_array = array.to_enum(:reverse_each)
reversed_array.collect { |x| x.capitalize }
=> ["Alice", "Loves", "Bob"]

reversed_array.each_with_index do |x, 1i]
puts %{#{i1}=>"#{x}"}

end

0=>"alice"

1=>"loves"

2=>"bob"
Note that you can't use the Enumerator for our array as though it were the actual
array. Only the methods of Enumerable are supported:

reversed_array[0]
NoMethodError: undefined method '[]' for #<Enumerable::Enumerator:0xb7c2cc8c>

Discussion

Whenever youre tempted to reimplement one of the methods of Enumerable, try
using an Enumerator instead. It’s like modifying an object’s each method, but it
doesn’t affect the original object.

This can save you a lot of work. Suppose you have a tree data structure that provides
three different iteration styles: each_prefix, each_postfix, and each_infix. Rather
than implementing the methods of Enumerable for all three iteration styles, you can
let each_prefix be the default implementation of each, and «call
tree.to_enum(:each_postfix) or tree.to_enum(:each_infix) if you need an Enu
merable that acts differently.

Enumerable has two extra enumeration methods, each_cons and each_slice. These
make it easy to iterate over a data structure in chunks. An example is the best way to
show what they do:

sentence = %w{Well, now I've seen everything!}

two_word_window = sentence.to_enum(:each_cons, 2)

8.6 Changing the Way an Object Iterates | 297

two_word_window.each { |x| puts x.inspect }
["Well,", "now"

[”nOW”, NIIVeH]

["I've", "seen"

["seen", "everything!"]

two_words_at_a_time = sentence.to_enum(:each_slice, 2)
two_words_at_a_time.each { |x| puts x.inspect }

["Well,", "now"

["T've", "seen"

["everything!"]

Note how any arguments passed into to_enum are passed along as arguments to the
iteration method itself.

New in Ruby 2.1

In Ruby 1.8, the Enumerable module wasn’t yet part of Ruby core, which meant you
would need an extra require enumerable statement to make the preceding examples
work. Also, each_cons and each_slice were not built-in methods until Ruby 2.1.

See Also

« Recipe 8.9, “Looping Through Multiple Iterables in Parallel”
o Recipe 22.6, “Running a Code Block on Many Objects Simultaneously”

8.7 Writing Block Methods That Classify or Collect

Problem

The basic block methods that come with the Ruby standard library aren’t enough for
you. You want to define your own method that classifies the elements in an enumera-
tion (like Enumerable#detect and Enumerable#find_all), or that does a transforma-
tion on each element in an enumeration (like Enumerable#collect).

Solution

You can usually use inject to write a method that searches or classifies an enumera-
tion of objects. With inject you can write your own versions of methods such as
detect and find_all:

module Enumerable

def find_no_more_than(limit)
inject([]) do |a,e|

298 | Chapter8: Code Blocks and Iteration

a << e if yield e
return a if a.size >= limit
a
end
end
end

This code finds at most three of the even numbers in a list:

a=1[1,2,3,4,5,6,7,8,9, 10]

a.find_no_more_than(3) { x| x % 2 == 0 } #=>[2, 4, 6]
If you find yourself needing to write a method like collect, it’s probably because, for
your purposes, collect itself yields elements in the wrong order. You can't use
inject, because that yields elements in the same order as collect.

You need to find or write an iterator that yields elements in the order you want. Once
you've done that, you have two options: you can write a collect equivalent on top of
the iterator method, or you can use the iterator method to build an Enumerable
object, and call its collect method (as seen in Recipe 8.6).

Discussion

We discussed these block methods in more detail in Chapter 5, because arrays are the
simplest and most common Enumerable data type, and the most common. But
almost any data structure can be enumerated, and a more complex data structure can
be enumerated in more different ways.

As you'll see in Recipe 10.4, the Enumerable methods, like detect and inject, are
actually implemented in terms of each. The detect and inject methods yield to the
code block every element that comes out of each. The value of the yield statement is
used to determine whether the element matches some criteria.

In a method like detect, the iteration may stop once it finds an element that matches.
In a method like find_all, the iteration goes through all elements, collecting the ones
that match.

Methods like collect work the same way, but instead of returning a subset of ele-
ments based on what the code block says, they collect the values returned by the code
block in a new data structure, and return the data structure once the iteration is com-
pleted.

If you're using a particular object and you wish its collect method used a different
iterator, then you should turn the object into an Enumerator and call its collect
method. But if youre writing a class and you want to expose a new collect-like

8.7 Writing Block Methods That Classify or Collect | 299

method, you’ll have to define a new method.! In that case, the best solution is proba-
bly to expose a method that returns a custom Enumerator; that way, your users can
use all the methods of Enumerable, not just collect.

See Also

o Recipe 5.5, “Sorting an Array”

o Recipe 5.11, “Getting the N Smallest Items of an Array”
o Recipe 5.15, “Partitioning or Classifying a Set”

« Recipe 8.6, “Changing the Way an Object Iterates”

o If all you want is to make your custom data structure support the methods of
Enumerable, see Recipe 10.4, “Implementing Enumerable: Write One Method,
Get 48 Free”

8.8 Stopping an Iteration

Problem

You want to interrupt an iteration from within the code block you passed into it.

Solution

The simplest way to interrupt execution is to use break. A break statement will jump
out of the closest enclosing loop defined in the current method:

1.upto(10) do |x|
puts x

break if x == 3
end

1

2

3

Discussion

The break statement is simple, but it has several limitations. You can’t use break
within a code block defined with Proc.new or (in Ruby 1.9 and up) Kernel#proc. If
this is a problem for you, use lambda instead:

1 Of course, behind the scenes, your method could just create an appropriate Enumerator and call its collect
implemenation.

300 | Chapter8: Code Blocks and Iteration

a_block = Proc.new do |x|
puts X
break if x == 3
puts x + 2

end

a_block.call(5s)
#5
7

a_block.call(3)

3

LocalJumpError: break from proc-closure
More seriously, you can’t use break to jump out of multiple loops at once. Once a
loop has run, there’s no way to know whether it completed normally or by using
break.

The simplest way around this problem is to enclose the code you want to skip within
a catch block with a descriptive symbolic name. You can then throw the correspond-
ing symbol when you want to jump to the end of the catch block. This lets you skip
out of any number of nested loops and method calls.

The throw/catch syntax isn't exception handling—exceptions use a raise/rescue
syntax. This is a special flow control construct designed to replace the use of excep-
tions for flow control (as sometimes happens in Java programs). It's a bit like an old-
style global GOTO, capable of suddenly moving execution to a faraway part of your
program. It keeps your code more readable than a GOTO, though, because it’s restric-
ted: a throw can only jump to the end of a corresponding catch block.

The best example of the catch. .throw syntax is the Find. find function described in
Recipe 7.12. When you pass a code block into Find. find, it yields up every directory
and file in a certain directory tree. When your code block is given a directory, it can
stop find from recursing into that directory by calling Find.prune, which throws
a :prune symbol. Using break would stop the find operation altogether; throwing a
symbol lets Find.prune know to just skip one directory.

Here’s a simplified view of the Find.find and Find.prune code:

def find(*paths)
paths.each do |p]|
catch(:prune) do
Process p as a file or directory..
end
When you call Find.prune you'll end up here.
end
end

def prune

8.8 Stopping an Iteration | 301

throw :prune
end

When you call Find.prune, execution jumps to immediately after the catch(:prune)
block. Find. find then starts processing the next file or directory.

See Also

o Recipe 7.12, “Walking a Directory Tree”

e ri Find

8.9 Looping Through Multiple Iterables in Parallel

Problem

You want to traverse multiple iteration methods simultaneously, probably to match
up the corresponding elements in several different arrays.

Solution

The REXML: : SyncEnumerator class, defined in the REXML library, makes it easy to iter-
ate over a bunch of arrays or other Enumerable objects in parallel. Its each method
yields a series of arrays, each array containing one item from each underlying Enu
merable object:

require 'rexml/syncenumerator'

enumerator = REXML::SyncEnumerator.new(%w{Four seven}, %w{score years},
%w{and ago})

enumerator.each do |row|

row.each { |word| puts word }

puts '---'
end
Four
score
and
-
seven
years
ago
-

enumerator = REXML::SyncEnumerator.new(%w{Four and}, %w{score seven years ago})
enumerator.each do |row|
row.each { |word| puts word }

puts '---
end

302 | Chapter8: Code Blocks and Iteration

Four
score
and
seven
nil
years
nil
ago

O W K R KRR R RRR

Discussion

Any object that implements the each method can be wrapped in an Enumerator
object. If you've used Java, think of an Enumerator as being like a Java Iterator
object. It keeps track of where you are in a particular iteration over a data structure.

Normally, when you pass a block into an iterator method like each, that block gets
called for every element in the iterator without interruption. No code outside the
block will run until the iterator is done iterating. You can stop the iteration by writing
a break statement inside the code block, but you can’t restart a broken iteration later
from the same place—unless you use an Enumerator.

Think of an iterator method like each as a candy dispenser that pours out all its candy
in a steady stream once you push the button. The Enumerator class lets you turn that
candy dispenser into one that dispenses only one piece of candy every time you push
its button. You can carry this new dispenser around and ration your candy more
easily.

New in Ruby 2.1

In Ruby 1.8, the Generator class uses continuations to achieve this trick. It sets book-
marks for jumping out of an iteration and then back in. When you call Genera
tor#next the generator “pumps” the iterator once (yielding a single element), sets a
bookmark, and returns control back to your code. The next time you call Genera
tor#next, the generator jumps back to its previously set bookmark and “pumps” the
iterator once more.

Ruby 2.1 uses a more efficient implementation based on threads. This implementa-
tion calls each Enumerable object’s each method (triggering the neverending stream
of candy), but it does it in a separate thread for each object. After each piece of candy
comes out, Ruby freezes time (pauses the thread) until the next time you call Enumera
tor#next.

8.9 Looping Through Multiple Iterablesin Parallel | 303

It’s simple to wrap an array in an enumerator, but if that’s all there were to enumera-
tors, you wouldn’t need to mess around with Enumerator or even REXML: : SyncEnumer
ables. It’s easy to simulate the behavior of REXML::SyncEnumerable for arrays by
starting an index into each array and incrementing it whenever you want to get
another item from a particular array. Enumerator methods are truly useful in their
ability to turn any type of iteration into a single-item candy dispenser.

Suppose that you want to use the functionality of an enumerator to iterate over an
array, but you have an unusual type of iteration in mind. For instance, consider an
array that looks like this:

my_array = ["junk1", 1, "junk2", 2, "junk3", "junk4", 3, "junk5"]

Let’s say youd like to iterate over the list but skip the “junk” entries. Wrapping the list
in an enumerator object doesn’t work; it gives you all the entries:

g = Enumerator.new do |yielder|

count = 0
loop do
yielder.yield my_array[count]
count += 1
end
end
g.next # => "junk1"
g.next #=>1
g.next # => "junk2"

It’s not difficult to write an iterator method that skips the junk. Now, we don’t want an
iterator method—we want an Enumerator object—but the iterator method is a good
starting point. At least it proves that the iteration we want can be implemented in
Ruby.

def my_array.my_1iterator
each { |e| yield e unless e =~ /*junk/ }
end

my_array.my_iterator { |x| puts x }
1
2
3

Here’s the twist: when you wrap an array in an Enumerator or a REXML: : SyncEnumera
ble object, youre actually wrapping the array’s each method. The Enumerator doesn’t
just happen to yield elements in the same order as each: it’s actually calling each, but
using continuation (or thread) trickery to pause the iteration after each call to Enumer
ator#next.

By defining an appropriate code block and passing it into the Enumerator construc-
tor, you can make a generation object out of any piece of iteration code—not only the
each method. The enumerator will know to call and interrupt that block of code, just

304 | Chapter8: Code Blocks and Iteration

as it knows to call and interrupt each when you pass an array into the constructor.
Here’s an enumerator that iterates over our array the way we want:

g = Enumerator.new { |g| my_array.each { |e| g.yield e unless e =~ /*junk/ } }

g.next #=>1
g.next #=> 2
g.next # => 3

The Enumerator constructor can take a code block that accepts the enumerator object
itself as an argument. This code block performs the iteration that youd like to have
wrapped in an enumerator. Note the basic similarity of the code block to the body of
the #my_1iterator method. The only difference is that instead of the yield keyword
we call the Enumerator#yield function, which handles some of the work involved
with setting up and jumping to the continuations (Enumerator#next handles the rest
of the continuation work).

Once you see how this works, you can eliminate some duplicate code by wrapping the
#my_iterator method itself in an Enumerator:

g = Enumerator.new { |g| my_array.my_iterator { |e| g.yield e } }

g.next #=>1
g.next # => 2
g.next #=>3

Here’s an interosculate method that wraps methods. It accepts any combination of
Enumerable objects and Method objects, turns each one into an Enumerator object,

and loops through all the Enumerator objects, getting one element at a time from
each:

def interosculate(*iteratables)
generators = iteratables.collect do |x|
Enumerator.new { |g| x.each { |e| g.yleld e } }

end
done = false
until done
generators.each do |g]
begin
if item = g.next
yield item
done = false
end
rescue StopIteration
done = true
end
end
end
end

Here, we pass interosculate an array and a Method object, so that we can iterate
through two arrays in opposite directions:

8.9 Looping Through Multiple Iterables in Parallel | 305

words1l = %w{Four and years}

words2 = %w{ago seven score}

interosculate(wordsl, words2.reverse) { |x| puts x }
Four

score

and

seven

years

ago

See Also

« Recipe 8.5, “Writing an Iterator Over a Data Structure”

o Recipe 8.6, “Changing the Way an Object Iterates”

8.10 Hiding Setup and Cleanup in a Block Method

Problem

You have a setup method that always needs to run before custom code, or a cleanup
method that needs to run afterward. You don't trust the person writing the code (pos-
sibly yourself) to remember to call the setup and cleanup methods.

Solution

Create a method that runs the setup code, yields to a code block (which contains the
custom code), then runs the cleanup code. To make sure the cleanup code always
runs, even if the custom code throws an exception, use a begin/finally block:

def between_setup_and_cleanup
setup
begin
yield
finally
cleanup
end
end

Here’s a concrete example. It adds a DOCTYPE and an HTML tag to the beginning of an
HTML document. At the end, it closes the HTML tag it opened earlier. This saves you a
little bit of work when you’re generating HTML files:

def write_html(out, doctype=nil)
doctype ||= %{<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">}
out.puts doctype
out.puts '<html>'

306 | Chapter8: Code Blocks and Iteration

begin
yield out
ensure
out.puts '</html>'
end
end

write_html(Sstdout) do |out]|
out.puts '<hi1>Sorry, the Web is closed.</h1>'
end
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<h1>Sorry, the Web is closed.</h1>
</html>

Discussion

This useful technique shows up most often when there are scarce resources (such as
file handles or database connections) that must be closed when youre done with
them, lest they all get used up. A language that makes the programmer remember
these resources tends to leak those resources, because programmers are lazy. Ruby
makes it easy to be lazy and still do the right thing.

You've probably used this technique already, with the the Kernel#open and
File#topen methods for opening files on disk. These methods accept a code block that
manipulates an already open file. They open the file, call your code block, and close
the file once you’re done:

open('output.txt', 'w') do |out]

out.puts 'Sorry, the filesystem is also closed.'
end

Ruby’s standard cgi module takes the write_html example to its logical conclusion.!
You can construct an entire HTML document by nesting blocks inside each other.
Here’s a small Ruby CGI that outputs much the same document as the previous
write_html example:

#!/usr/bin/ruby

closed_cgi.rb
require 'cgi'
c = CGI.new("html4")

c.out do
c.html do
c.hl1 { 'Sorry, the Web is closed.' }

1 But your code will be more maintainable if you do HTML with templates instead of writing it in Ruby code.

8.10 Hiding Setup and Cleanup in a Block Method | 307

end
end

Note the multiple levels of blocks: the block passed into CGI#out simply calls
CGI#html to generate the DOCTYPE and the <html> tags. The <html> tags contain the
result of a call to CGI#h1, which encloses some plain text in <h1> tags. The program
produces this output:

Content-Type: text/html
Content-Length: 137

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<HTML><H1>Sorry, the Web is closed.</H1></HTML>

The XmlMarkup class in Ruby’s builder gem works the same way: you can write Ruby
code that resembles the structure of the document it creates:

gem 'builder'
require 'builder'

xml = Builder::XmlMarkup.new.message('type' => 'apology') do |b]|
b.content('Sorry, Web Services are closed.')

end

puts xml

<message type="apology">

<content>Sorry, Web Services are closed.</content>

</message>

See Also

o Recipe 7.13, “Locking a File,” uses this technique to create a method that locks a
file, and automatically unlocks it when you're done using it

« Recipe 12.8, “Creating and Modifying XML Documents”

« Recipe 22.11, “Avoiding Deadlock,” uses this technique to have your thread lock
multiple resources in the right order, and unlock them when youre done using
them

8.11 Coupling Systems Loosely with Callbacks

Problem

You want to combine different types of objects without hardcoding them full of refer-
ences to each other.

308 | Chapter8: Code Blocks and Iteration

Solution

Use a callback system, in which objects register code blocks with each other to be exe-
cuted as needed. An object can call out to its registered callbacks when it needs some-
thing, or it can send notification to the callbacks when it does something.

To implement a callback system, write a “register” or “subscribe” method that accepts
a code block. Store the registered code blocks as Proc objects in a data structure:
probably an array (if you have only one type of callback) or a hash (if you have multi-
ple types). When you need to call the callbacks, iterate over the data structure and
call each of the registered code blocks.

Here’s a mixin module that gives each instance of a class its own hash of “listener”
callback blocks. An outside object can listen for a particular event by calling sub
scribe with the name of the event and a code block. The dispatcher itself is responsi-
ble for calling notify with an appropriate event name at the appropriate time, and
the outside object is responsible for passing in the name of the event it wants to “lis-
ten” for:

module EventDispatcher
def setup_listeners
@event_dispatcher_listeners = {}
end

def subscribe(event, &callback)
(@event_dispatcher_listeners[event] ||= []) << callback
end

protected
def notify(event, *args)
if @event_dispatcher_listeners[event]
@event_dispatcher_listeners[event].each do |m|
m.call(*args) if m.respond_to? :call
end
end
return nil
end
end

Here’s a Factory class that keeps a set of listeners. An outside object can choose to be
notified every time a Factory object is created, or every time a Factory object pro-
duces a widget:

class Factory
include EventDispatcher

def initialize
setup_listeners
end

8.11 Coupling Systems Loosely with Callbacks | 309

def produce_widget(color)
#Widget creation code goes here..
notify(:new_widget, color)
end
end

Here’s a listener class that’s interested in what happens with Factory objects:

class WidgetCounter
def initialize(factory)
@counts = Hash.new(0)
factory.subscribe(:new_widget) do |color|
@counts[color] += 1
puts "#{@counts[color]} #{color} widget(s) created."
end
end
end

Finally, here’s the listener in action:

f1 = Factory.new
WidgetCounter.new(f1)
f1.produce_widget("red")
1 red widget(s) created.

f1.produce_widget("green")
1 green widget(s) created.

f1.produce_widget("red")
2 red widget(s) created.

This won't produce any output, since our listener is listening to
another Factory.
Factory.new.produce_widget("blue")

Discussion

Callbacks are an essential technique for making your code extensible. This technique
has many names (callbacks, hook methods, plugins, publish/subscribe, etc.) but no
matter what terminology is used, it’s always the same. One object asks another to call
a piece of code (the callback) when some condition is met. This technique works even
when the two objects know almost nothing about each other. This makes it ideal for
refactoring big, tightly integrated systems into smaller, loosely coupled systems.

In a pure listener system (like the one given in the Solution), the callbacks set up lines
of communication that always move from the event dispatcher to the listeners. This is
useful when you have a master object (like the Factory), from which numerous
lackey objects (like the WidgetCounter) take all their cues.

But in many loosely coupled systems, information moves both ways: the dispatcher
calls the callbacks and then uses the return results. Consider the stereotypical web

310 | Chapter8: Code Blocks and Iteration

portal: a customizable home page full of HTML boxes containing sports scores,
weather predictions, and so on. Since new boxes are always being added to the sys-
tem, the core portal software shouldn’t have to know anything about a specific box.
The boxes should also know as little about the core software as possible, so that
changing the core doesn’t require a change to all the boxes.

A simple change to the EventDispatcher class makes it possible for the dispatcher to
use the return values of the registered callbacks. The original implementation of Even
tDispatcher#notify called the registered code blocks, but ignored their return value.
This version of EventDispatcher#notify yields the return values to a block passed in
to notify:

module EventDispatcher
def notify(event, *args)
if @event_dispatcher_listeners[event]
@event_dispatcher_listeners[event].each do |m|
yield(m.call(*args)) if m.respond_to? :call
end
end
return nil
end
end

Here’s an insultingly simple portal rendering engine. It lets boxes register to be ren-
dered inside an HTML table, on one of two rows on the portal page:

class Portal
include EventDispatcher

def initialize
setup_listeners
end

def render
puts '<table>'
render_block = ->(box) { puts " <td>#{box}</td>" }
[:rowl, :row2].each do |row|
puts ' <tr>'
notify(row, &render_block)
puts ' </tr>'
end
puts '</table>'
end
end

Here’s the rendering engine rendering a specific user’s portal layout. This user likes to
see a stock ticker and a weather report on the left, and a news box on the right. Note

that there aren’t even any classes for these boxes; they’re so simple they can be imple-
mented as anonymous code blocks:

8.11 Coupling Systems Loosely with Callbacks | 311

portal = Portal.new

portal.subscribe(:row1l) { 'Stock Ticker' }
portal.subscribe(:row1l) { 'Weather' }
portal.subscribe(:row2) { 'Pointless, Trivial News' }
portal.render # <table>

<table>

<tr>

<td>Stock Ticker</td>

<td>Weather</td>

</tr>

<tr>

<td>Pointless, Trivial News</td>
</tr>

</table>

If you want the registered listeners to be shared across all instances of a class, you can
make listeners a class variable, and make subscribe a module method. This is

most useful when you want listeners to be notified whenever a new instance of the
class is created.

312 | Chapter8: Code Blocks and Iteration

CHAPTER9
Objects and Classes

Ruby is an object-oriented programming language; this chapter will show you what
that really means. Like all modern languages, Ruby supports object-oriented notions
like classes, inheiritance, and polymorphism. But Ruby goes further than other lan-
guages you may have used. Some languages are strict and some are permissive; Ruby
is one of the most permissive languages around.

Strict languages enforce strong typing, usually at compile time: a variable defined as
an array can’t be used as another data type. If a method takes an array as an argument,
you can't pass in an array-like object unless that object happens to be a subclass of the
array class or can be converted into an array.

Ruby enforces dynamic typing, or duck typing (“if it quacks like a duck, it is a duck”).
A strongly typed language enforces its typing everywhere, even when it's not needed.
Ruby enforces its duck typing relative to a particular task. If a variable quacks like a
duck, it is one—assuming you wanted to hear it quack. When you want “swims like a
duck” instead, duck typing will enforce the swimming, and not the quacking.

Here’s an example. Consider the following three classes, Duck, Goose, and
DuckRecording:

class Duck
def quack
'Quack!"’
end

def swim
'Paddle paddle paddle..’
end
end

class Goose
def honk

313

'"Honk!'
end
def swim
'Splash splash splash..'
end
end

class DuckRecording
def quack
play
end

def play
'Quack!"’
end
end

If Ruby were a strongly typed language, a method that told a Duck to quack would fail
when given a DuckRecording. The following code is written in the hypothetical lan-
guage Strongly Typed Ruby; it won’t work in real Ruby:

def make_1it_quack(Duck duck)
duck.quack
end

make_1it_quack(Duck.new) # => "Quack!"
make_1t_quack(DuckRecording.new)
TypeException: object not of type Duck

If you were expecting a Duck, you wouldn't be able to tell a Goose to swim:

def make_1it_swim(Duck duck)
duck.swim
end

make_1it_swim(Duck.new) # => "Paddle paddle paddle.."
make_1it_swim(Goose.new)
TypeException: object not of type Goose

Since real Ruby uses duck typing, you can get a recording to quack or a goose to
swim:

def make_1it_quack(duck)
duck.quack
end
make_1t_quack(Duck.new) "Quack!"
make_1it_quack(DuckRecording.new) # => "Quack!"

H*
I
\Y

def make_1it_swim(duck)
duck.swim
end
make_1it_swim(Duck.new) "Paddle paddle paddle.."
make_1it_swim(Goose.new) # => "Splash splash splash..”

H*
I
\Y

314 | Chapter9: Objects and Classes

But you can’t make a recording swim or a goose quack:

make_1it_quack(Goose.new)

NoMethodError: undefined method 'quack' for #<Goose:0x2bb8a8>
make_1it_swim(DuckRecording.new)

NoMethodError: undefined method 'swim' for #<DuckRecording:0x2b97d8>

Over time, strict languages develop workarounds for their strong typing (have you
ever done a cast when retrieving something from a Java collection?), and then work-
arounds for the workarounds (have you ever created a parameterized Java collection
using generics?). Ruby just doesn’t bother with any of it. If an object supports the
method you're trying to use, Ruby gets out of its way and lets it work.

Ruby’s permissiveness is more a matter of attitude than a technical advancement.
Python lets you reopen a class after its original definition and modity it after the fact,
but the language syntax doesn’t make many allowances for it. It’s sort of a dirty little
secret of the language. In Ruby, this behavior is not only allowed, it's encouraged.
Some parts of the standard library add functionality to built-in classes when impor-
ted, just to make it easier for the programmer to write code. The Facets Core library
adds dozens of convenience methods to Ruby’s standard classes. Ruby is proud of this
capability, and urges programmers to exploit it if it makes their lives easier.

Strict languages end up needing code generation tools that hide the restrictions and
complexities of the language. Ruby has code generation tools built right into the lan-
guage, saving you work while leaving complete control in your hands (see Chap-
ter 11).

Is this chaotic? It can be. Does it matter? Only when it actually interferes with you get-
ting work done. In this chapter and the next two, we’ll show you how to follow com-
mon conventions, and how to impose order on the chaos when you need it. With
Ruby you can impose the right kind of order on your objects, tailored for your situa-
tion, not a one-size-fits-all approach that makes you jump through hoops most of the
time.

These recipes are probably less relevant to the problems you're trying to solve than
the other ones in this book, but theyre not less important. This chapter and the next
two provide a general-purpose toolbox for doing the dirty work of actual program-
ming, whatever your underlying purpose or algorithm. These are the chapters you
should turn to when you find yourself stymied by the Ruby language itself, or grind-
ing through tedious makework that Ruby’s labor-saving techniques can eliminate.
Every other chapter in this book uses the ideas behind these recipes.

Objectsand Classes | 315

9.1 Managing Instance Data

Problem

You want to associate a variable with an object. You may also want the variable to be
readable or writable from outside the object.

Solution

Within the code for the object’s class, define a variable and prefix its name with an at
sign (@). When an object runs the code, a variable by that name will be stored within
the object.

An instance of the Frog class defined here might eventually have two instance vari-
ables stored within it, @ame and @speaks_english:

class Frog
def initialize(name)
@name = name
end

def speak
It's a well-known fact that only frogs with long names start out
speaking English.

@speaks_english ||= @name.size > 6
@speaks_english ? "Hi. I'm #{@name}, the talking frog." : 'Ribbit.'
end
end
Frog.new('Leonard"').speak # => "Hi. I'm Leonard, the talking frog."

lucas = Frog.new('Lucas')

lucas.speak # => "Ribbit."
If you want to make an instance variable readable from outside the object, call the
attr_reader method on its symbol:

lucas.name
NoMethodError: undefined method 'name'’

class Frog
attr_reader :name
end
lucas.name # => "Lucas"

Similarly, to make an instance variable readable and writable from outside the object,
call the attr_accessor method on its symbol:

lucas.speaks_english = false
=> NoMethodError: undefined method 'speaks_english='

316 | Chapter9: Objects and Classes

class Frog
attr_accessor :speaks_english
end
lucas.speaks_english = true
lucas.speak # => "Hi. I'm Lucas, the talking frog."

Discussion

Some programming languages have complex rules about when one object can
directly access another object’s instance variables. Ruby has one simple rule: it’s never
allowed. To get or set the value of an instance variable from outside the object that
owns it, you need to call an explicitly defined getter or setter method.

Basic getter and setter methods look like this:

class Frog
def speaks_english
@speaks_english
end

def speaks_english=(value)
@speaks_english = value
end
end

But it’s boring and error-prone to write that yourself, so Ruby provides built-in deco-
rator methods like Module#attr_reader and Module#attr_accessor. These methods
use metaprogramming to generate custom getter and setter methods for your class.
Calling attr_reader :speaks_english generates the getter method speaks_english
and attaches it to your class. Calling attr_accessor :instance_variable generates
both the getter method speaks_english and the setter method speaks_english=.

There’s also an attr_writer decorator method, which only generates a setter method,
but you won't use it very often. It doesn't usually make sense for an instance variable
to be writable from the outside, but not readable. You'll probably use it only when
you plan to write your own custom getter method instead of generating one.

Another slight difference between Ruby and some other programming languages: in
Ruby, instance variables (just like other variables) don’t exist until they’re defined. In
the following snippet, note how the @speaks_english variable isn't defined until the
Frog#speak method gets called:

michael = Frog.new("Michael")

=> #<Frog:0xb7cf14c8 @name="Michael">

michael.speak # => "Hi. I'm Michael, the talking frog."
michael

=> #<Frog:0xb7cf14c8 @name="Michael", @speaks_english=true>

It’s possible that one Frog object would have the @speaks_english instance variable
set while another one would not. If you call a getter method for an instance variable

9.1 Managing Instance Data | 317

that’s not defined, you’ll get nil. If this behavior is a problem, write an initialize
that initializes all your instance variables.

Given the symbol for an instance variable, you can retrieve the value with
Object#instance_variable_get, and set it with Object#instance_variable_set.

Because this method ignores encapsulation, you should use it only in within the class
itself—say, within a call to Module#define_method.

This use of instance_variable_get violates encapsulation, since we're calling it from
outside the Frog class:

michael.instance_variable_get("@name") # => "Michael"
michael.instance_variable_set("@name", 'Bob')
michael.name # => "Bob"

This use doesn’t violate encapsulation (though there’s no real need to call
define_method here):

class Frog
define_method(:scientific_name) do
species = 'vulgaris'
species = 'loquacious' if instance_variable_get('@speaks_english')
"Rana #{species}"
end
end
michael.scientific_name # => "Rana loquacious"”
See Also

« Recipe 11.10, “Avoiding Boilerplate Code with Metaprogramming”

9.2 Managing Class Data

Problem

Instead of storing a bit of data along with every instance of a class, you want to store a
bit of data along with the class itself.

Solution

Instance variables are prefixed by a single at sign; class variables are prefixed by two
at signs. This class contains both an instance variable and a class variable:

class Warning
@@translations = { :en => 'Wet Floor',
:es => 'Piso Mojado' }

318 | Chapter9: Objects and Classes

def initialize(language=:en)
@language = language
end

def warn
@@translations[@language]
end
end

Warning.new.warn # => "Wet Floor"
Warning.new(:es).warn # => "Piso Mojado"

Discussion

Class variables store information that’s applicable to the class itself, or applicable to
every instance of the class. Theyre often used to control, prevent, or react to the
instantiation of the class. A class variable in Ruby acts like a static variable in Java.

Here’s an example that uses a class constant and a class variable to control when and
how a class can be instantiated:

class Fate
NAMES = ['Klotho', 'Atropos', 'Lachesis'].freeze
@@number_instantiated = 0

def initialize

if @@number_instantiated >= NAMES.size
raise ArgumentError, 'Sorry, there are only three Fates.'

end
@name = NAMES[@@number_1instantiated]
@@number_1instantiated += 1
puts "I give you.. #{@name}!"

end

end

Fate.new
I give you.. Klotho!
=> #<Fate:0xb7d2c348 @name="Klotho">

Fate.new
I give you.. Atropos!
=> #<Fate:0xb7d28400 @name="Atropos">

Fate.new
I give you.. Lachesis!
=> #<Fate:0xb7d22168 @name="Lachesis">

Fate.new
ArgumentError: Sorry, there are only three Fates.

It’s not considered good form to write setter or getter methods for class variables. You
won't usually need to expose any class-wide information apart from helpful constants,

9.2 Managing Class Data | 319

and those you can expose with class constants, such as NAMES in the preceding
example.

If you do want to write setter or getter methods for class variables, you can use the
following class-level equivalents of Module#attr_reader and Module#attr_writer.
They use metaprogramming to define new accessor methods:'

class Module
def class_attr_reader(*symbols)
symbols.each do |symbol|
self.class.send(:define_method, symbol) do
class_variable_get("@@#{symbol}")
end
end
end

def class_attr_writer(*symbols)
symbols.each do |symbol|
self.class.send(:define_method, "#{symbol}=") do |value]|
class_variable_set("@@#{symbol}", value)
end
end
end

def class_attr_accessor(*symbols)
class_attr_reader(*symbols)
class_attr_writer(*symbols)
end
end

Here is Module#iclass_attr_reader being used to give the Fate class an accessor for
its class variable:

Fate.number_instantiated
NoMethodError: undefined method 'number_instantiated' for Fate:Class

class Fate

class_attr_reader :number_instantiated
end
Fate.number_instantiated # => 3

You can have both a class variable foo and an instance variable foo, but this will only
end up confusing you. For instance, the accessor method foo must retrieve one or the
other. If you call attr_accessor :foo and then class_attr_accessor :foo, the
class version will silently overwrite the instance version.

1 In Ruby 1.9, Object#send can’t be used to call private methods. You’ll need to replace the calls to send with
calls to Object#funcall.

320 | Chapter9: Objects and Classes

As with instance variables, you can bypass encapsulation and use class variables
directly with class_variable_get and class_variable_set. Also as with instance
variables, you should do this only from inside the class, usually within a
define_method call.

See Also

o If you want to create a singleton, don’t mess around with class variables; instead,
use the singleton library from Ruby’s standard library

o Recipe 9.18, “Implementing Class and Singleton Methods”
 Recipe 11.10, “Avoiding Boilerplate Code with Metaprogramming”

9.3 Checking Class or Module Membership

Problem

You want to see if an object is of the right type for your purposes.

Solution

If you plan to call a specific method on the object, just check to see whether the object
reponds to that method:

class Package
def initialize(pkg)
@pkg = pkg
end

def self.send_as_package(obj)
if obj.respond_to? :package
packaged = obj.package
else
Sstderr.puts "Not sure how to package a #{obj.class}."
Sstderr.puts 'Trying generic packager.'
packaged = Package.new(obj)
end
packaged
end
end

If you really can accept only objects of one specific class, or objects that include one
specific module, use the is_a? predicate:
def multiply_precisely(a, b)

if a.is_a? Float or b.is_a? Float
raise ArgumentError, "I can't do precise multiplication with floats."

9.3 Checking Class or Module Membership | 321

end
a*b
end

multiply_precisely(4, 5) # => 20
multiply_precisely(4.0, 5)
ArgumentError: I can't do precise multiplication with floats.

Discussion

Whenever possible, you should use duck typing (Object#respond_to?) in preference
to class typing (Object#is_a?). Duck typing is one of the great strengths of Ruby, but
it only works if everyone uses it. If you write a method that accepts only strings,
instead of accepting anything that supports to_str, then you've broken the duck typ-
ing illusion for everyone who uses your code.

New in Ruby 2.1

Object#respond_to? will return false for protected methods in Ruby 2.1 and true for
protected methods in Ruby 1.9 and earlier. If this affects your code, you can change
Object#respond_to? to act like it did in previous versions of Ruby by sending true
as the second argument of Object#respond_to?.

Sometimes you can’t use duck typing, though, or sometimes you need to combine it
with class typing. Sometimes two different classes define the same method (especially
one of the operators) in completely different ways. Duck typing makes it possible to
silently do the right thing, but if you know that duck typing would silently do the
wrong thing, a little class typing won't hurt.

Here’s a method that uses duck typing to see whether an operation is supported, and
class typing to cut short a possible problem before it occurs:

def append_to_self(x)
unless x.respond_to? :<<
raise ArgumentError, "This object doesn't support the left-shift operator."
end
if x.1s_a? Numeric
raise ArgumentError,
"The left-shift operator for this object doesn't do an append."

end

X << X
end
append_to_self('abc") # => "abcabc"
append_to_self([1, 2, 3]) #=>[1, 2, 3, [.]]

append_to_self({1 => 2})

322 | Chapter9: Objects and Classes

ArgumentError: This object doesn't support the left-shift operator.

append_to_self(5)

ArgumentError: The left-shift operator for this object doesn't do an append.
5 << 5 # => 160

That is, 5 * (2 ** 5)

An alternative solution approximates the functionality of Java’s interfaces. You can
create a dummy module for a given capability, have all appropriate classes include it,
and use is_a? to check for inclusion of the module. This requires that each partici-
pating class signal its ability to perform a certain task, but it doesn’t tie you to any
particular class hierarchy, and it saves you from calling the wrong method just
because it has the right name:

module ShiftMeansAppend
def <<(x)
end

end

class String
include ShiftMeansAppend
end

class Array
include ShiftMeansAppend
end

def append_to_self(x)
unless x.1s_a? ShiftMeansAppend
raise ArgumentError, "I can't trust this object's left-shift operator."
end
X << X
end
append_to_self 4
ArgumentError: I can't trust this object's left-shift operator.

append_to_self '4' # => "44"

See Also

o Recipe 2.12, “Testing Whether an Object Is String-Like”

9.4 Writing an Inherited Class

Problem

You want to create a new class that extends or modifies the behavior of an existing
class.

9.4 Writing an Inherited Class | 323

Solution

If youre writing a new method that conceptually belongs in the original class, you
can reopen the class and append your method to the class definition. You should do
this only if your method is generally useful, and youre sure it won’t conflict with a
method defined by some library you include in the future.

This code adds a scramble method to Ruby’s built-in String class (see Recipe 5.10
for a faster way to sort randomly):

class String
def scramble
split(//).sort_by { rand }.join
end
end

"I once was a normal string.".scramble
=> "1 arg cn lnws.Ioateosma n r"

If your method isn't generally useful, or you don’t want to take the risk of modifying a
class after its initial creation, create a subclass of the original class. The subclass can
override its parent’s methods, or add new ones. This is safer because the original class,
and any code that depended on it, is unaffected. This subclass of String adds one
new method and overrides one existing one:

class UnpredictableString < String
def scramble
split(//).sort_by { rand }.join
end

def inspect
scramble.inspect

end
end
str = UnpredictableString.new("It was a dark and stormy night.")
=> " hsar gsIo atr tkd naaniwdt.ym"
str
=> "ts dtnwIktsr oydnhgi .mara aa"

Discussion

All of Ruby’s classes can be subclassed, though a few of them can’t be usefully sub-
classed (see Recipe 9.18 for information on how to deal with the holdouts).

Ruby programmers use subclassing less frequently than they would in other lan-
guages, because it’s often acceptable to simply reopen an existing class (even a built-in
class) and attach a new method. We do this throughout this book, adding useful new
methods to built-in classes rather than defining them in Kernel, or putting them in
subclasses or utility classes. Libraries like Rails and Facets Core do the same.

324 | Chapter9: Objects and Classes

This improves the organization of your code. But the risk is that a library you include
(or a library included by one you include) will define the same method in the same
built-in class. Either the library will override your method (breaking your code), or
you’ll override its method (breaking its code, which will break your code). There is no
general solution to this problem short of adopting naming conventions, or always
subclassing and never modifying preexisting classes.

You should certainly subclass if youre writing a method that isn’t generally useful, or
that applies only to certain instances of a class. For instance, here’s a method
Array#sum that adds up the elements of an array:

class Array
def sum(start_at=0)
inject(start_at) { |sum, x| sum + x }
end
end

This works for arrays that contain only numbers (or that contain only strings), but it
will break if you mix different classes of objects together:

[79, 14, 2].sum # => 95

['so', '"fa'l.sum('") # => "sofa"

[79, "so'].sum

TypeError: String can't be coerced into Fixnum
Maybe you should signal this by putting it in a subclass called NumericArray or
SummableArray:

class NumericArray < Array
def sum
inject(0) { |sum, x| sum + x }
end
end

The NumericArray class doesn’t actually do type checking to make sure it contains

only numeric objects, but since it’s a different class, you and other programmers are
less likely to use sum where it’s not appropriate.

You should also subclass if you want to override a method’s behavior. In the Unpredic
tableString example, we overrode the inspect method in our subclass. If wed just
modified String#inspect, the rest of our program would have been thrown into
confusion. Rarely is it acceptable to override a method in place: one example would
be if you've written a drop-in implementation that’s more efficient.

1 This isn’t a hard and fast rule. Array#sort won’t work on arrays whose elements can’t be mutually compared,
but it would be a big inconvenience to put sort in a subclass of Array or leave it out of the Ruby standard
library. You might feel the same way about sum, but then, you're not the Ruby standard library.

9.4 Writing an Inherited Class | 325

See Also

 Recipe 9.18, “Implementing Class and Singleton Methods,” shows you how to
extend the behavior of a particular object after it's been created

9.5 Overloading Methods

Problem

You want to create two different versions of a method with the same name—that is,
two methods that differ in the arguments they take.

Solution

A Ruby class can have only one method with a given name. Within that single
method, though, you can put logic that branches depending on how many and what
kinds of objects were passed in as arguments.

Here’s a Rectangle class that represents a rectangular shape on a grid. You can instan-
tiate a Rectangle in one of two ways: by passing in the coordinates of its top-left and
bottom-left corners, or by passing in its top-left corner along with its length and
width. There’s only one initialize method, but you can act as though there
were two:

The Rectangle constructor accepts arguments in either of the following forms:
Rectangle.new([x_top, y_left], length, width)
Rectangle.new([x_top, y_left], [x_bottom, y right])
class Rectangle
def initialize(*args)
case args.size
when 2
@top_left, @bottom_right = args
when 3
@top_left, length, width = args
@bottom_right = [@top_left[0] + length, @top_left[1] - width]
else
raise ArgumentError, "This method takes either 2 or 3 arguments."
end

Perform additional type/error checking on @top_left and
@bottom_right..
end
end

Here’s the Rectangle constructor in action:

Rectangle.new([10, 23], [14, 13])

326 | Chapter9: Objects and Classes

=> #<Rectangle:0xb7d15828 @bottom_right=[14, 13], @top_left=[10, 23]>

Rectangle.new([10, 23], 4, 10)
=> #<Rectangle:0xb7d0dad4c @bottom_right=[14, 13], @top_left=[10, 23]>

Rectangle.new
=> ArgumentError: This method takes either 2 or 3 arguments.

Discussion

In strongly typed languages like C++ and Java, you must often create multiple ver-
sions of the same method with different arguments. For instance, Java’s StringBuffer
class implements over 10 variants of its append method: one that takes a Boolean, one
that takes a string, and so on.

Ruby’s equivalent of StringBuffer is StringIO, and its equivalent of the append
method is StringIO#<<. In Ruby, that method can be defined only once, but it can
take an object of any type. There’s no need to write different versions of the method
for taking different kinds of object. If you need to do type checking (such as making
sure the object has a string representation), you put it in the method body rather than
in the method definition.

Ruby’s loose typing eliminates most of the need for method overloading. Its default
arguments, variable-length argument lists, and (simulated) keyword arguments elimi-
nate most of the remaining cases. What’s left? Mainly methods that can take two com-
pletely different sets of arguments, like the Rectangle constructor given in the Solu-
tion.

To handle these, write a method that takes a variable number of arguments, and give
it some extra code at the front that figures out which set of arguments was passed.
Rectangle#initialize rejects argument lists that are of the wrong length. Addi-
tional code could enforce duck typing to make sure that the arguments passed in are
of the right type. See Recipe 11.16 for simple ways to do argument validation.

See Also

o Recipe 9.11, “Accepting or Passing a Variable Number of Arguments”
o Recipe 9.12, “Using Keyword Arguments”

o Recipe 11.16, “Enforcing Software Contracts”

9.5 Overloading Methods | 327

9.6 Validating and Modifying Attribute Values

Problem

You want to let outside code set your objects’ instance variables, but you also want to
impose some control over the values your variables are set to. You might want a
chance to validate new values before accepting them. Or you might want to accept
values in a form convenient to the caller, but transform them into a different form for
internal storage.

Solution

Define your own setter method for each instance variable you want to control. The
setter method for an instance variable quantity would be called quantity=. When a
user issues a statement like object.quantity = 10, the method object#quantity=is
called with the argument 10.

It's up to the quantity= method to decide whether the instance variable quantity
should actually take the value 10. A setter method is free to raise an ArgumentExcep
tion if it’s passed an invalid value. It may also modify the provided value, massaging
it into the canonical form used by the class. If it can get an acceptable value, its last
act should be to modify the instance variable.

Well define a class that keeps track of people’s first and last names. It uses setter
methods to enforce two somewhat parochial rules: everyone must have both a first
and a last name, and everyone’s first name must begin with a capital letter:

class Name

Define default getter methods, but notsetter methods.
attr_reader :first, :last

When someone tries to set a first name, enforce rules about 1it.
def first=(first)

if first == nil or first.size ==

raise ArgumentError.new('Everyone must have a first name.')

end

first = first.dup

first[0] = first[0].chr.capitalize

@first = first
end

When someone tries to set a last name, enforce rules about fit.
def last=(last)
if last == nil or last.size ==
raise ArgumentError.new('Everyone must have a last name.')
end
@last = last

328 | Chapter9: Objects and Classes

end

def full_name
"#{@first} #{@last}"
end

Delegate to the setter methods instead of setting the instance
variables directly.
def initialize(first, last)
self.first = first
self.last = last
end
end

We've written the Name class so that the rules are enforced both in the constructor and
after the object has been created:

jacob = Name.new('Jacob', 'Berendes')
jacob.first = 'Mary Sue'
jacob.full_name # => "Mary Sue Berendes"

john = Name.new('john', 'von Neumann')

john.full_name # => "John von Neumann"
john.first = 'john'
john.first # => "John"

john.first = nil
ArgumentError: Everyone must have a first name.

Name.new('Kero, international football star and performance artist', nil)
ArgumentError: Everyone must have a last name.

Discussion

Ruby never lets one object access another object’s instance variables. All you can do is
call methods. Ruby simulates instance variable access by making it easy to define get-
ter and setter methods whose names are based on the names of instance variables.
When you access object.my_var, youre actually calling a method called my_var,
which (by default) just happens to return a reference to the instance variable my_var.

Similarly, when you set a new value for object.my_var, youre actually passing that
value into a setter method called my_var=. That method might go ahead and stick
your new value into the instance variable my_var. It might accept your value, but
silently clean it up, convert it to another format, or otherwise modify it. It might be
picky and reject your value altogether by raising an ArgumentError.

When you're defining a class, you can have Ruby generate a setter method for one of
your instance variables by calling Module#atttr_writer or Module#attr_accessor
on the symbol for that variable. This saves you from having to write code, but the
default setter method lets anyone set the instance variable to any value at all:

9.6 Validating and Modifying Attribute Values | 329

class SimpleContainer
attr_accessor :value
end

c = SimpleContainer.new

c.respond_to? "value=" # => true

c.value = 10; c.value # => 10

c.value = "some random value"; c.value # => "some random value"
c.value = [nil, nil, nil]; c.value # => [nil, nil, nil]

A lot of the time, this kind of informality is just fine. But sometimes you don't trust
the data coming in through the setter methods. That's when you can define your own
methods to stop bad data before it infects your objects.

Within a class, you have direct access to the instance variables. You can simply assign
to an instance variable and the setter method won’t be triggered. If you do want to
trigger the setter method, you’ll have to call it explicitly. Note how, in the preceding
Name#initialize method, we call the first= and last= methods instead of assign-
ing to @first and @last. This makes sure the validation code gets run for the initial
values of every Name object. We can't just say first = first, because first is a vari-
able name in that method.

See Also

o Recipe 9.1, “Managing Instance Data”
o Recipe 14.13, “Validating Data with ActiveRecord”

9.7 Defining a Virtual Attribute

Problem

You want to create accessor methods for an attribute that isn’t directly backed by any
instance variable: it’s a calculated value derived from one or more different instance
variables.

Solution

Define accessor methods for the attribute in terms of the instance variables that are
actually used. There need not be any relationship between the names of the accessor
methods and the names of the instance variables.

330 | Chapter9: Objects and Classes

The following class exposes four accessor methods: degrees, degrees=, radians, and
radians=. But it stores only one instance variable: @radians:

class Arc
attr_accessor :radians

def degrees
@radians * 180 / Math::PI
end

def degrees=(degrees)
@radians = degrees * Math::PI / 180
end
end

arc = Arc.new
arc.degrees = 180

arc.radians # => 3.14159265358979

arc.radians = Math::PI / 2

arc.degrees # => 90.0
Discussion

Ruby accessor methods usually correspond to the names of the instance variables
they access, but this is nothing more than a convention. Outside code has no way of
knowing what your instance variables are called, or whether you have any at all, so
you can create accessors for virtual attributes with no risk of outside code thinking
they’re backed by real instance variables.

See Also

o Recipe 3.9, “Converting Between Degrees and Radians”

9.8 Delegating Method Calls to Another Object

Problem

Youd like to delegate some of an object’s method calls to a different object, or make
one object capable of “impersonating” another.

Solution

If you want to completely impersonate another object, or delegate most of one
object’s calls to another, use the delegate library. It generates custom classes whose
instances can impersonate objects of any other class. These custom classes respond to

9.8 Delegating Method Calls to Another Object | 331

all methods of the class they shadow, but they don’t do any work of their own apart
from calling the same method on some instance of the “real” class.

Here’s some code that uses delegate to generate CardinalNumber, a class that acts
almost like a Fixnum. CardinalNumber defines the same methods as Fixnum does, and
it takes a genuine Fixnum as an argument to its constructor. It stores this object as a
member, and when you call any of Fixnum’s methods on a CardinalNumber object, it
delegates that method call to the stored Fixnum. The only major exception is the to_s
method, which we've decided to override:

require 'delegate'

An integer represented as an ordinal number (1st, 2nd, 3rd.), as
opposed to an ordinal number (1, 2, 3..) Generated by the
DelegateClass to have all the methods of the Fixnum class.
class OrdinalNumber < DelegateClass(Fixnum)
def to_s
delegate_s = __getobj_ _.to_s
check = abs
if to_check == 11 or to_check == 12
suffix = "th"
else
case check % 10
when 1 then suffix = "st"
when 2 then suffix = "nd"
else suffix = "th"
end
end
return delegate_s + suffix
end
end

4.to_s # => "4"

OrdinalNumber.new(4).to_s # => "4th"
OrdinalNumber.new(102).to_s # => "102nd"
OrdinalNumber.new(11).to_s # => "11th"
OrdinalNumber.new(-21).to_s # => "-21st"
OrdinalNumber.new(5).succ #=>6
OrdinalNumber.new(5) + 6 # => 11

OrdinalNumber.new(5) + OrdinalNumber.new(6) # => 11

Discussion

The delegate library is useful when you want to extend the behavior of objects you
don’t have much control over. Usually these are objects you're not in charge of instan-
tiating—they’re instantiated by factory methods, or by Ruby itself. With delegate,
you can create a class that wraps an already existing object of another class and modi-

332 | Chapter9: Objects and Classes

fies its behavior. You can do all of this without changing the original class. This is
especially useful if the original class has been frozen.

There are a few methods that delegate won’t delegate: most of the ones in Kernel.
public_instance_methods. The most important one is is_a?. Code that explicitly
checks the type of your object will be able to see that it’s not a real instance of the
object it’s impersonating. Using is_a? instead of respond_to? is often bad Ruby prac-
tice, but it happens pretty often, so you should be aware of it.

The Forwardable module is a little more precise and a little less discerning: it lets you
delegate any of an object’s methods to another object. A class that extends Forwarda
ble can use the def_delegator decorator method, which takes as arguments an
object symbol and a method symbol. It defines a new method that delegates to the
method of the same name in the given object. There’s also a def_delegators method,
which takes multiple method symbols as arguments and defines a delegator method
for each one. By calling def_delegator multiple times, you can have a single Forward
able delegate different methods to different subobjects.

Here we'll use Forwardable to define a simple class that works like an array, but sup-
ports none of Array’s methods except the append operator, <<. Note how the <<
method defined by def_delegator is passed through to modify the underlying array:

class AppendOnlyArray
extend Forwardable
def initialize
@array = []
end

def_delegator :@array, :<<
end

a = AppendOnlyArray

a << 4

a<<5

a.size

=> undefined method 'size' for #<AppendOnlyArray:0xb7d23c5c @array=[4, 5]>
AppendOnlyArray is pretty useless, but the same principle makes Forwardable useful
if you want to expose only a portion of a class’s interface. For instance, suppose you
want to create a data structure that works like Hash, but only supports random access.
You don’t want to support keys, each, or any of the other ways of getting information
out of a hash without providing a key.

You could subclass Hash, then redefine or delete all the methods that you don’t want
to support. Then you could worry a lot about having missed some of those methods.
Or you could define a subclass of Forwardable and define only the methods of Hash
that you do want to support.

9.8 Delegating Method Calls to Another Object | 333

class RandomAccessHash
extend Forwardable
def initialize
@delegate_to = {}
end

def_delegators :@delegate_to, :[], "[]="
end

balances_by_account_number = RandomAccessHash.new

Load balances from a database or something.

balances_by_account_number["101240A"] = 412.60
balances_by_account_number["104918]"] = 10339.94
balances_by_account_number["108826N"] = 293.01

Random access works if you know the key, but anything else is forbidden:

balances_by_account_number["104918]"] # => 10339.94
balances_by_account_number.each do |number, balance]|

puts "I now know the balance for account #{number}: it's #{balance}"
end
#=>
NoMethodError: undefined method 'each' for #<RandomAccessHash:0xb7d49078>

See Also

o An alternative to using SimpleDelegator to write delegator methods is to skip
out on the methods altogether, and instead implement a method_missing that
does the delegating; Recipe 3.13, “Simulating a Subclass of Fixnum,” uses this
technique, and you might especially find this recipe interesting if youd like to
make arithmetic on CardinalNumber objects yield new CardinalNumber objects
instead of Fixnum objects

9.9 Converting and Coercing Objects to Different Types

Problem

You have an object of one type and you want to use it as though it were of another

type.

Solution

You might not have to do anything at all. Ruby doesn’t enforce type safety unless the
programmer has explicitly written it in. If your original class defines the same meth-
ods as the class you were thinking of converting it to, you might be able to use your
object as is.

334 | Chapter9: Objects and Classes

If you do have to convert from one class to another, Ruby provides conversion meth-
ods for most common paths:

"4" . to_1 # =>4
4.to_s # => "q"
Time.now.to_f # => 1143572140.90932

{ "key1" => "valuel", "key2" => "value2" }.to_a

=> [["key1", "value1"], ["key2", "value2"]]
If all else fails, you might be able to manually create an instance of the new class, and
set its instance variables using the old data.

Discussion

Some programming languages have a “cast” operator that forces the compiler to treat
an object of one type like an object of another type. A cast is usually a programmer’s
assertion that he knows more about the types of objects than the compiler. Ruby has
no cast operator. From Ruby’s perspective, type checking is just an extra hoop you
have to jump through. A cast operator would make it easier to jump through that
hoop, but Ruby omits the hoop altogether.

Wherever youre tempted to cast an object to another type, you should be able to just
do nothing. If your object can be used as the other type, there’s no problem; if not,
then casting it to that type wouldn’t have helped anyway.

Here’s a concrete example. You probably don’t need to convert a hash into an array
just so you can pass it into an iteration method that expects an array. If that method
only calls each on its argument, it doesn’t really “expect an array”: it expects a reason-
able implementation of each. Ruby hashes provide that implementation just as well as
arrays:

def print_each(array)
array.each { |x| puts x.inspect }
end

hash = { "pickled peppers" => "peck of",
"sick sheep" => "sixth" }

print_each(hash.to_a)

["sick sheep", "sixth"]

["pickled peppers", "peck of"]

print_each(hash)

["sick sheep", "sixth"]

["pickled peppers", "peck of"]
Ruby does provide methods for converting one data type into another. These methods
follow the naming convention to_[othertype], and they usually create a brand new
object of the new type, but containing the old data. They are generally used when you

9.9 Converting and Coercing Objects to Different Types | 335

want to use some method of the new data type, or display or store the data in another
format.

In the case of print_each, not converting the hash to an array gives the same results
as converting, and the code is shorter and faster when it doesn’t do the conversion.
But converting a hash into an array of key-value pairs does let you call methods
defined by Array but not by Hash. If what you really want is an array—something
ordered, something you can modify with push and pop—there’s no reason not to con-
vert to an array and stop using the hash:

array = hash.to_a
=> [["sick sheep"”, "sixth"], ["pickled peppers", "peck of"]]

Print out a tongue-twisting invoice.
until array.empty?
item, quantity = array.pop
puts "#{quantity} #{item}"
end
peck of pickled peppers
sixth sick sheep
Some methods convert one data type to another as a side effect; for instance, sorting a

hash implicitly converts it into an array, since hashes have no notion of ordering:

hash.sort
=> [["pickled peppers", "peck of"], ["sick sheep", "sixth"]]

Number conversion and coercion

Most of the commonly used conversion methods in stock Ruby are in the number
classes. This makes sense because arithmetic operations can give different results
depending on the numeric types of the inputs. This is one place where Ruby’s conver-
sion methods are used as a substitute for casting. Here, to_f is used to force Ruby to
perform floating-point division instead of integer division:

3/4 #=>0

3/4.to_f #=>0.75
Integers and floating-point numbers have to_1i and to_f methods to convert back
and forth between each other. BigDecimal or Rational objects define the same meth-
ods. They also define some brand new conversion methods: to_d to convert a num-
ber to BigDecimal, and to_r to convert a number to Rational. To convert to or from
Rational objects you just have to require rational. To convert to or from BigDect
mal objects you must require bigdecimal and also require bigdecimal/utils:

require 'rational’

Rational(l, 3).to_f # => 0.333333333333333
Rational(11l, 5).to_1 #=>2
2.to_r #=> (2/1)

336 | Chapter9: Objects and Classes

Table 9-1 shows how to convert between Ruby’s basic numeric types.

Table 9-1. Converting between Ruby’s basic numeric types

Integer Floating-point BigDecimal Rational

Integer to_i(identity) to_f to_r.to_d to_r

Float to_i(decimal to_f (new) to_d to_d.to_r (include
discard) bigdecimal/util)

BigDecimal to_1i to_f to_d (new) to_r (include bigdec

imal/util)

Rational to_1i(dec dis to_f (approx) to_d (include to_r (identity)

card) bigdecimal/util)

Two cases deserve special mention. In Ruby 1.8, you can’t convert a floating-point
number directly into a rational number, but you can do it through BigDecimal. In
Ruby 2.1 you can convert floating-point numbers directly into rational numbers, but
it will not be as precise as converting BigDecimal because floating-point numbers are
imprecise:

require 'bigdecimal'

require 'bigdecimal/util'

one_third = 1/3.0 # => 0.333333333333333

one_third.to_r # => (6004799503160661/18014398509481984)

one_third.to_d.to_r # => (3333333333333333/10000000000000000)

20.to_d # => #<BigDecimal:7fa3ad8464b0, '0.2E2',9(36)>
20.to_r # => (20/1)

20.to_r.to_d(1) # => #<BigDecimal:7fa3ac2e3a90, '0.2E2',9(36)>

When it needs to perform arithmetic operations on two numbers of different types,
Ruby uses a method called coerce. Every numeric type implements a coerce method
that takes a single number as its argument. It returns an array of two numbers: the
object itself and the argument passed into coerce. Either or both numbers might
undergo a conversion, but whatever happens, both the numbers in the return array
must be of the same type. The arithmetic operation is performed on these two num-
bers, coerced into the same type.

This way, the authors of numeric classes don't have to make their arithmetic opera-
tions support operations on objects of different types. If they implement coerce, they
know that their arithmetic operations will only be passed in another object of the
same type.

9.9 Converting and Coercing Objects to Different Types | 337

This is easiest to see for the Complex class. In the following example, every input to
coerce is transformed into an equivalent complex number so that it can be used in
arithmetic operations along with the complex number 1i:

require 'complex'

i = Complex(0, 1) # => (0+11)
i.coerce(3) # => [(3+01), (0+11)]
i.coerce(2.5) # => [(2.5+01), (0+11)]

This, incidentally, is why 3/4 uses integer division but 3/4.to_f uses floating-point
division. 3.coerce(4) returns two integer objects, so the arithmetic methods of Fix
num are used. 3.coerce(4.0) returns two ﬂoating—point numbers, so the arithmetic
methods of Float are used.

Other conversion methods

All Ruby objects define conversion methods to_s and inspect, which give a string
representation of the object. Usually inspect is the more readable of the two formats:

[1, 2, 3].to_s #=>"[1, 2, 3]"
[1, 2, 3].inspect #=>"[1, 2, 3]"

Here’s a grab bag of other notable conversion methods found within the Ruby stan-
dard library. This should give you a picture of what Ruby conversion methods typi-
cally do.

o MatchData#to_a creates an array containing the match groups of a regular
expression match.
* Matrix#to_a converts a mathematical matrix into a nested array.

o Enumerable#to_a iterates over any enumerable object and collects the results in
an array.

o Net::HTTPHeader#to_hash returns a hash mapping the names of HTTP headers
to their values.

o String#to_f and String#to_i parse strings into numeric objects. Including the
bigdecimal/util library will define String#to_d, which parses a string into a
BigDecimal object.

o Including the yaml library will define to_yaml methods for all of Ruby’s built-in
classes: Array#to_yaml, String#to_yaml, and so on.

See Also

o Recipe 2.12, “Testing Whether an Object Is String-Like”

o Recipe 3.1, “Parsing a Number from a String”

338 | (Chapter9: Objects and Classes

o Recipe 9.10, “Getting a Human-Readable Printout of Any Object”

9.10 Getting a Human-Readable Printout of Any Object

Problem

You want to look at a natural-looking rendition of a given object.

Solution

Use Object#inspect. Nearly all the time, this method will give you something more
readable than simply printing out the object or converting it into a string:

a=1[1,2,3]
puts a

1

2

3

puts a.to_s
123

puts a.inspect

#[1, 2, 3]

puts /foo/

(?-mix:foo)

puts /foo/.inspect

/foo/

f = File.open('foo', 'a')
puts f

#<File:0xb7c31c30>
puts f.inspect

#<File:foo>

Discussion

Even very complex data structures can be inspected and come out looking just like
they would in Ruby code to define that data structure. In some cases, you can even
run the output of inspect through eval to recreate the object:

periodic_table = [{ :symbol => "H", :name => "hydrogen", :weight => 1.007 },
{ :symbol => "Rg", :name => "roentgenium", :weight => 272 }]
puts periodic_table.inspect
[{:symbol=>"H", :name=>"hydrogen", :weight=>1.007},
{:symbol=>"Rg", :name=>"roentgenium", :weight=>272}]

eval(periodic_table.inspect)[0]
=> {:symbol=>"H", :name=>"hydrogen", :weight=>1.007}

9.10 Getting a Human-Readable Printout of Any Object | 339

By default, an object’s inspect method works the same way as its to_s method.!
Unless your classes override inspect, inspecting one of your objects will yield a bor-

ing and not terribly helpful string, containing only the object’s class name, object_1id,
and instance variables:

class Dog
def initialize(name, age)
@name = name
@age = age * 7 #Compensate for dog years
end
end

spot = Dog.new("Spot", 2.1)
spot.inspect
=> "#<Dog:0xb7c16bec @name="Spot", @age=14.7>"

That’s why you'll help out your future self by defining useful inspect methods that
give relevant information about the objects you’ll be instantiating:

class Dog
def inspect
"<A Dog named #{@name} who's #{@age} in dog years.>"
end
def to_s
inspect
end
end
spot.inspect
=> "<A Dog named Spot who's 14.7 in dog years.>"

Or, if you believe in being able to eval the output of inspect:

class Dog
def inspect
%{Dog.new("#{@name}", #{@age/7})}
end
end
spot.inspect
=> "Dog.new("Spot", 2.1)"
eval(spot.inspect).inspect
=> "Dog.new("Spot", 2.1)"

Just don't automatically eval the output of inspect, because, as always, that’s
dangerous:

strange_dog_name = %{Spot", 0); puts "Executing arbitrary Ruby.."; puts("}
spot = Dog.new(strange_dog_name, 0)
puts spot.inspect

1 Contrary to what ri Object#inspect says, Object#inspect does not delegate to the Object#to_s method: it
just happens to work a lot like Object#to_s. If you override only to_s, inspect won't be affected.

340 | Chapter9: Objects and Classes

Dog.new("Spot", 0); puts "Executing arbitrary Ruby.."; puts("", 0)
eval(spot.inspect)

Executing arbitrary Ruby..

#

0

9.11 Accepting or Passing a Variable Number of
Arguments

Problem

You want to write a method that can accept any number of arguments. Or maybe you
want to pass the contents of an array as arguments into such a method, rather than
passing in the array itself as a single argument.

Solution

To accept any number of arguments to your method, prefix the last argument name
with an asterisk. When the method is called, all the “extra” arguments will be collec-
ted in a list and passed in as that argument:

def sum(*numbers)
puts "I'm about to sum the array #{numbers.inspect}"
numbers.inject(0) { |sum, x| sum += x }

end

sum(1, 2, 10)
I'm about to sum the array [1, 2, 10]
=> 13

sum(2, -2, 2, -2, 2, -2, 2, -2, 2)
I'm about to sum the array [2, -2, 2, -2, 2, -2, 2, -2, 2]
#=>2

sum
I'm about to sum the array []
=> 0

To pass an array of arguments into a method, use the asterisk signifier before the
array you want to be turned into “extra” arguments:

to_sum = []

1.upto(10) { |x| to_sum << x }

sum(*to_sum)

I'm about to sum the array [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

=> 55
Bad things happen if you forget the asterisk: your entire array is treated as a single
“extra” argument:

9.11 Accepting or Passing a Variable Number of Arguments | 341

sum(to_sum)
I'm about to sum the array [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
TypeError: Array can't be coerced into Fixnum

Discussion

Why make a method take a variable number of arguments, instead of just having it
take a single array? Its basically for the convenience of the user. Consider the
Kernel#printf method, which takes one fixed argument (a format string), and then a
variable number of inputs to the format string:

printf('%s | %s', 'left', 'right')
left | right

It's very rare that the caller of printf already has her inputs lying around in an array.
Fortunately, Ruby is happy to create the array on the user’s behalf. If the caller does
already have an array of inputs, it's easy to pass the contents of that array as “extra’
arguments by sticking the asterisk onto the appropriate variable name:

inputs = ['left', 'right']
printf('%s | %s', *inputs)
left | right

As you can see, a method can take a fixed number of “normal” arguments and then a
variable number of “extra” arguments. When defining such a method, just make sure
that the last argument is the one you prefix with the asterisk:

def format_list(header, footer='', *data)
puts header
puts (line = '-' * header.size)
puts data.join("\n")
puts line
puts footer
end
cozies = 21
gaskets = 10
format_list("Yesterday's productivity numbers:", 'Congratulations!',
"#{cozies} slime mold cozies", "#{gaskets} Sierpinski gaskets")
Yesterday's productivity numbers:

21 slime mold cozies
10 Sierpinski gaskets

Congratulations!

You can use the asterisk trick to call methods that don't take a variable number of
arguments. You just need to make sure that the array youre using has enough ele-
ments to provide values for all of the method’s required arguments.

You'll find this especially useful for constructors that take many arguments. The fol-
lowing code initializes four Range objects from four arrays of constructor arguments:

342 | Chapter9: Objects and Classes

ranges = [[1, 10], [1, 6, true], [25, 100, false], [6, 9]]
ranges.collect { |1| Range.new(*1) }
=>[1..10, 1.6, 25..100, 6..9]

9.12 Using Keyword Arguments

Problem

A function or method can accept many optional arguments. You want to let callers
pass in only the arguments they have values for.

Solution

Ruby 1.8 didn’t support keyword arguments as Python and Lisp do, but Ruby 2.1
added support for native keyword arguments. To see the difference, we will use simu-
lated keyword arguments and native keyword arguments to accomplish the same
task.

We will begin with real keyword arguments. Note that this will work only in Ruby 1.9
and above:

def fun_with_text(text, upcase: true, downcase: false, **args)
text = text.upcase if upcase
text = text.downcase if downcase
if args[:find] and args[:replace]
text = text.gsub(args[:find], args[:replace])
end
text = text.slice(0, args[:truncate_at]) if args[:truncate_at]
return text
end

fun_with_text("Foobar", upcase: true, truncate_at: 5)
=> "FOOBA"
fun_with_text("Foobar", find: /(o+)/, replace: '\1d', downcase: true)
=> "foodbar"

Here is the same function written in Ruby 1.8, using simulated keyword arguments
through a hash splat:

def fun_with_text(text, args={})
text = text.upcase if args[:upcase]
text = text.downcase if args[:downcase]
if args[:find] and args[:replace]
text = text.gsub(args[:find], args[:replace])
end
text = text.slice(0, args[:truncate_at]) if args[:truncate_at]
return text
end

fun_with_text("Foobar", {:upcase => true, :truncate_at => 5})

9.12 Using Keyword Arguments | 343

=> "FOOBA"

fun_with_text("Foobar", :upcase => true, :truncate_at => 5)

=> "FOOBA"

fun_with_text("Foobar", :find => /(o+)/, :replace => '\1d', :downcase => true)
=> "foodbar"

Discussion

Keyword arguments don't work like regular arguments because they act like hashes.
You can’t reject an argument that’s not part of the “signature,” and you can't force a
caller to provide a particular keyword argument.

Each of these problems is easy to work around (for instance, does a required argu-
ment really need to be a keyword argument?), but it’s best to define the workaround
code in a mixin so you only have to do it once. The following code is based on a
KeywordProcessor module by Gavin Sinclair:

#H#

This mixin module lets methods match a caller's hash of keyword
parameters against a hash the method keeps, mapping keyword

arguments to default parameter values.

If the caller leaves out a keyword parameter whose default value is
:MANDATORY (a constant in this module), then an error is raised.

#
#
#
#
If the caller provides keyword parameters that have no
corresponding keyword arguments, an error is raised.
module KeywordProcessor
MANDATORY = :MANDATORY

def process_params(params={}, defaults={})
Reject params not present in defaults.
params.keys.each do |key]|
unless defaults.has_key? key
raise ArgumentError, "No such keyword argument: #{key}"
end
end
result = defaults.dup.update(params)

Ensure mandatory params are given.
unfilled = result.select { |k,v| v == MANDATORY }.map { |k,v| k.inspect }
unless unfilled.empty?
msg = "Mandatory keyword parameter(s) not given: #{unfilled.join(', ')}"
raise ArgumentError, msg
end

return result
end
end

344 | Chapter9: Objects and Classes

Here’s KeywordProcessor in action. Note how we set a default other than nil for a
keyword argument, by defining it in the default value of args:

class TextCanvas
include KeywordProcessor

def render(text, args={}.freeze)
args = process_params(args, {:font => 'New Reykjavik Solemn', :size => 36,
:bold => false, :x => :MANDATORY,
1y => :MANDATORY }.freeze)
..
puts "DEBUG: Found font #{args[:font]} in catalog."
..
end
end

canvas = TextCanvas.new

canvas.render('Hello', :x => 4, :y => 100)
DEBUG: Found font New Reykjavik Solemn in catalog.

canvas.render('Hello', :x => 4, :y => 100, :font => 'Lacherlich")
DEBUG: Found font Lacherlich in catalog.

canvas.render('Hello', :font => "Lacherlich")
ArgumentError: Mandatory keyword parameter(s) not given: :x, :y

canvas.render('Hello', :x => 4, :y => 100, :italic => true)
ArgumentError: No such keyword argument: italic

See Also

o Recipe 9.8, “Delegating Method Calls to Another Object”

o The KeywordProcessor module is based on the one in “Emulating Keyword
Arguments in Ruby”; we modified it to be less oriented around the initialize
method

9.13 Calling a Superclass’s Method

Problem

When overriding a classs method in a subclass, you want to extend or decorate the
behavior of the superclass, rather than totally replacing it.

Solution

Use the super keyword to call the superclass implementation of the current method.

9.13 Calling a Superclass’s Method | 345

http://bit.ly/ruby2_0_keyword_args
http://bit.ly/ruby2_0_keyword_args

When you call super with no arguments, the arguments to your method are passed to
the superclass method exactly as they were recieved by the subclass. Here’s a Recipe
class that defines (among other things) a cook method:

class Recipe
.. The rest of the Recipe implementation goes here.
def cook(stove, cooking_time)
dish = prepare_ingredients
stove << dish
wait_for(cooking_time)
return dish
end
end

Here’s a subclass of Recipe that tacks some extra behavior onto the recipe. It passes all
of its arguments directly into super:

class RecipeWithExtraGarlic < Recipe
def cook(stove, cooking_time)
5.times { add_ingredient(Garlic.new.chop) }
super
end
end

A subclass implementation can also choose to pass arguments into super. This way, a
subclass can accept different arguments from its superclass implementation:

class BakingRecipe < Recipe
def cook(cooking_time, oven_temperature=350)
oven = Oven.new(oven_temperature)
super(oven, cooking_time)
end
end

Discussion

You can call super at any time in the body of a method—before, during, or after call-
ing other code. This is in contrast to languages like Java, where you must call super in
the method’s first statement or never call it at all. If you need to, you can even call
super multiple times within a single method.

Often you want to create a subclass method that exposes exactly the same interface as
its parent. You can use the *args constructor to make the subclass method accept any
arguments at all, then call super with no arguments to pass all those arguments (as
well as any attached code block) into the superclass implementation. Let the super-
class deal with any problems with the arguments.

The String#gsub method exposes a fairly complicated interface, but the String sub-
class defined here doesn’t need to know anything about it:

346 | Chapter9: Objects and Classes

class MyString < String
def gsub(*args)
return "#{super} -- This string modified by MyString#gsub (TM)"
end
end
str = MyString.new('"Here's my string")
str.gsub("my", "a")
=> "Here's a string -- This string modified by MyString#gsub (TM)"

str.gsub(/m| s/) { |match| match.strip.capitalize }

=> "Here's MyString -- This string modified by MyString#gsub (TM)"
If the subclass method takes arguments but the superclass method takes none, be sure
to invoke super with an empty pair of parentheses. Usually you don’t have to do this
in Ruby, but super is not a real method call. If you invoke super without parentheses,
it will pass all the subclass arguments into the superclass implementation, which
won't be able to handle them.

In the following example, calling just super would result in an ArgumentError: it
would pass a numeric argument into String#succ!, which takes no arguments:

class MyString
def succ!(skip=1)
skip.times { super() }
self
end
end

str = MyString.new('a')
str.succ!(3) # =>"d"

Invoking super works for class methods as well as instance methods:

class MyFile < File
def MyFile.ftype(*args)
return "The type is #{super}."

end
end
File.ftype("/bin") # => "directory"
MyFile.ftype("/bin") # => "The type is directory."
9.14 Creating an Abstract Method
Problem

You want to define a method of a class, but leave it for subclasses to fill in the actual
implementations.

9.14 Creating an Abstract Method | 347

Solution

Define the method normally, but have it do nothing except raise
NotImplementedError:

class Shape2D
def area
raise NotImplementedError.
new("#{self.class.name}#area is an abstract method.")
end
end

Shape2D.new.area
NotImplementedError: Shape2D#area is an
abstract method.

A subclass can redefine the method with a concrete implementation:

class Square < Shape2D
def initialize(length)
@length = length
end

def area
@length ** 2
end
end

Square.new(10).area # => 100

Discussion

a

Ruby doesn’t have a built-in notion of an abstract method or class, and though it has
many built-in classes that might be considered “abstract,” it doesn’t enforce this

abstractness the way C++ and Java do. For instance, you can instantiate an instance of

Object or Numeric, even though those classes don't do anything by themselves.

In general, this is in the spirit of Ruby. But it’s sometimes useful to define a superclass
method that every subclass is expected to implement. The NotImplementedError
error is the standard way of conveying that a method is not there, whether it’s abstract

or just an unimplemented stub.

Unlike other programming languages, Ruby will let you instantiate a class that defines
an abstract method. You won’t have any problems until you actually call the abstract
method; even then, you can catch the NotImplementedError and recover. If you want,

348 | Chapter9: Objects and Classes

you can make an entire class abstract by making its initialize method raise a NotIm
plementedError. Then no one will be able to create instances of your class:'

class Shape2D
def initialize
raise NotImplementedError.
new("#{self.class.name} is an abstract class.")
end
end

Shape2D.new
NotImplementedError: Shape2D is an abstract class.

We can do the same thing in less code by defining a decorator method of Class that
creates an abstract method by the given name:

class Class
def abstract(*args)
args.each do |method_name|

define_method(method_name) do |*args|

if method_name == :initialize

msg = "#{self.class.name} is an abstract class."
else

msg = "#{self.class.name}##{method_name} is an abstract method."
end

raise NotImplementedError.new(msg)

end
end
end
end

Here’s an abstract class that defines an abstract method, move:

class Animal
abstract :initialize, :move
end

Animal.new
NotImplementedError: Animal i1s an abstract class.

Here’s a concrete subclass that doesn’t bother to define an implementation for the
abstract method:

class Sponge < Animal
def initialize
@type = :Sponge
end

1 Of course, unless you freeze the class afterward, someone else can reopen your class, define an empty initial
ize, and then create instances of your class.

9.14 Creating an Abstract Method | 349

end

sponge = Sponge.new
sponge.move
NotImplementedError: Sponge#move is an abstract method.

Here’s a concrete subclass that implements the abstract method:

class Cheetah < Animal
def initialize
@type = :Cheetah
end

def move
"Running!"
end
end

Cheetah.new.move

=> "Running!"
Abstract methods declared in a class are, by convention, eventually defined in the
subclasses of that class. But Ruby doesn’t enforce this either. An abstract method has a
definition; it just happens to be one that always throws an error.

Since Ruby lets you reopen classes and redefine methods later, the definition of a con-
crete method can happen later in time instead of further down the inheritance tree.
The Sponge class we just defined didn’t have a move method, but we can add one now:

class Sponge
def move
"Floating on ocean currents!"
end
end
sponge.move
=> "Floating on ocean currents!"

You can create an abstract singleton method, but there’s not much point unless you
intend to fill it in later. Unlike instance methods, singleton methods aren’t inherited
by subclasses. If you were to define an abstract Superclass.foo, then define it for
real as Subclass.foo, you would have accomplished little: Superclass.foo would
still exist separately and would still be abstract.

9.15 Freezing an Object to Prevent Changes

Problem

You want to prevent any further changes to the state of an object.

350 | Chapter9: Objects and Classes

Solution
Freeze the object with Object#freeze:

frozen_string = 'Brrrr!'.freeze

frozen_string.gsub('r', 'a') # => "Baaaa!"
frozen_string.gsub!('r', 'a")

TypeError: can't modify frozen String

Discussion

When an object is frozen, its instance variables are permanently bound to their cur-
rent values. The values themselves are not frozen: their instance variables can still be
modified, to the extent they were modifiable before:

sequences = [[1,2,3], [1,2,4], [1,4,9]].freeze

sequences << [2,3,5]

TypeError: can't modify frozen array

sequences[2] << 16 #=>[1, 4, 9, 16]
A frozen object cannot be unfrozen, and if cloned, the clone will also be frozen. Call-
ing Object#dup (as opposed to Object#clone) on a frozen object yields an unfrozen
object with the same instance variables:

frozen_string.clone.frozen? # => true

frozen_string.dup.frozen? # => false
Freezing an object does not prevent reassignment of any variables bound to that
object:

frozen_string = 'A new string.'

frozen_string.frozen? # => false
To prevent objects from changing in ways that would be confusing to the user or to
the Ruby interpreter, Ruby sometimes copies objects and freezes the copies. When
you use a string as a hash key, Ruby actually copies the string, freezes the copy, and
uses the copy as the hash key; that way, if the original string changes later on, the hash
key isn’t affected.

Constant objects are often frozen as a second line of defense against the object being
modified in place. You can freeze an object whenever you need a permanent reference
to an object; this is most commonly seen with strings:

API_KEY = "100f7vo4gg".freeze

API_KEY[0] = 4
TypeError: can't modify frozen string

API_KEY = "400f7vo4gg"
warning: already initialized constant API_KEY

9.15 Freezing an Object to Prevent Changes | 351

Frozen objects are also useful in multithreaded code. For instance, Ruby’s internal file
operations work from a frozen copy of a filename instead of using the filename
directly. If another thread modifies the original filename in the middle of an opera-
tion thats supposed to be atomic, there’s no problem: Ruby wasn’t relying on the orig-
inal filename anyway. You can adopt this copy-and-freeze pattern in multithreaded
code to prevent a data structure youre working on from being changed by another
thread.

Another common programmer-level use of this feature is to freeze a class in order to
prevent future modifications to it (by yourself, other code running in the same envi-
ronment, or other people who use your code as a library). This is not quite the same
as the final construct in C# and Java, because you can still subclass a frozen class,
and override methods in the subclass. Calling freeze only stops the in-place modifi-
cation of a class. The simplest way to do this is to call freeze as the last statement in
the class definition:

class MyClass
def my_method
puts "This is the only method allowed in MyClass."
end
freeze
end

class MyClass
def my_method
"I like this implementation of my_method better."
end
end
TypeError: can't modify frozen class

class MyClass
def my_other_method
"Oops, I forgot to implement this method."
end
end
TypeError: can't modify frozen class

class MySubclass < MyClass
def my_method
"This is only one of the methods available in MySubclass."
end

def my_other_method
"This is the other one."
end
end

MySubclass.new.my_method
=> "This 1s only one of the methods available in MySubclass."

352 | Chapter9: Objects and Classes

See Also

 Recipe 5.7, “Making Sure a Sorted Array Stays Sorted,” defines a convenience
method for making a frozen copy of an object

« Recipe 6.5, “Using an Array or Other Modifiable Object as a Hash Key”
o Recipe 9.16, “Making a Copy of an Object”
« Recipe 9.17, “Declaring Constants”

9.16 Making a Copy of an Object

Problem

You want to make a copy of an existing object—that is, a new object that can be
modified separately from the original.

Solution

Ruby provides two ways of doing this. If you want to remember only one, remember
Object#clone:

sl = 'foo' # => "foo"

s2 = sl.clone # => "foo"

s1[0] = 'b'

[s1, s2] # => ["boo", "foo"]
Discussion

Ruby has two object-copy methods: a quick one and a thorough one. The quick one,
Object#dup, creates a new instance of an object’s class, then sets all of the new object’s
instance variables so that they reference the same objects as the original does. Finally,
it makes the new object tainted if the old object was tainted.

The downside of dup is that it creates a new instance of the object’s original class. If
you open up a specific object and give it a singleton method, you implicitly create a
metaclass, an anonymous subclass of the original class. Calling dup on the object will
yield a copy that lacks the singleton methods. The other object-copy method,
Object#clone, makes a copy of the metaclass and instantiates the copy instead of
instantiating the object’s original class:

material = 'cotton'
class << material
def definition
puts 'The better half of velour.'
end
end

9.16 Making a Copy of an Object | 353

material.definition
The better half of velour.

'cotton'.definition
NoMethodError: undefined method 'definition' for "cotton":String

material.clone.definition
The better half of velour.

material.dup.definition
NoMethodError: undefined method 'definition' for "cotton":String

Object#clone is also more strict about propagating Ruby’s internal flags: it will prop-
agate both an object’s tainted? flag and its frozen? flag. If you want to make an
unfrozen copy of a frozen object, you must use Object#dup.

Object#clone and Object#dup both perform shallow copies: they make copies of an
object without also copying its instance variables. You'll end up with two objects
whose instance variables point to the same objects. Modifications to one object’s
instance variables will be visible in the other object. This can cause problems if you're
not expecting it:

class StringHolder
attr_reader :string
def initialize(string)
@string = string
end
end

sl = StringHolder.new('string")
s2 = sl.dup
s3 = sl.clone

sl.string[1] = 'p'
s2.string # => "spring"”
s3.string # => "spring"

If you want to do a deep copy, an easy (though not particularly quick) way is to serial-
ize the object to a binary string with Marshal, then load a new object from the string:

class Object
def deep_copy
Marshal.load(Marshal.dump(self))
end
end

sl = StringHolder.new('string")

s2 = sl.deep_copy

sl.string[1] = 'p'

sl.string # => "spring"”
s2.string # => "string”

354

| Chapter9: Objects and Classes

Note that this will work only on an object that has no singleton methods:

class << s1
def definition
puts "We hold strings so you don't have to."
end
end
s1.deep_copy
TypeError: singleton can't be dumped

When an object is cloned or duplicated, Ruby creates a new instance of its class or
superclass, but without calling the initialize method. If you want to define some
code to run when an object is cloned or duplicated, define an initialize_copy
method. This is a hook method that gives you a chance to modify the copy before
Ruby passes it back to whoever called clone or dup. If you want to simulate a deep
copy without using Marshal, this is your chance to modify the copy’s instance
variables:

class StringHolder
def initialize_copy(from)
@string = from.string.dup
end

end

sl = StringHolder.new('string")

s2 = sl.dup

s3 = sl.clone

sl.string[1] = "p"

s2.string # => "string"
s3.string # => "string"”

Table 9-2 summarizes the differences between clone, dup, and the deep-copy techni-
que that uses Marshal.

Table 9-2. Comparison of object copy approaches in Ruby

Object#tclone Object#dup Deep copy with Marshal
Same instance variables? New references to the same New references to the same New objects

objects objects
Same metaclass? Yes No Yes!
Same singleton methods? Yes No N/A?

1 Marshal can't serialize an object whose metaclass is different from its original class.

2 Marshal can't serialize an object whose metaclass is different from its original class.

9.16 Making a Copy of an Object | 355

Objecti#clone Object#dup Deep copy with Marshal

Same frozen state? Yes No No
Same tainted state? Yes Yes Yes
See Also

 Recipe 14.2, “Serializing Data with Marshal”

9.17 Declaring Constants

Problem

You want to prevent a variable from being assigned a different value after its initial
definition.

Solution

Declare the variable as a constant. You can’'t absolutely prohibit the variable from
being assigned a different value, but you can make Ruby generate a warning when-
ever that happens:

not_a_constant
not_a_constant

A_CONSTANT = 3
A_CONSTANT = 10
warning: already initialized constant A_CONSTANT

Discussion

A constant variable is one whose name starts with a capital letter. By tradition, Ruby
constant names consist entirely of capital letters, numbers, and underscores. Con-
stants don’t mesh well with Ruby’s philosophy of unlimited changability: there’s no
way to absolutely prevent someone from changing your constant. However, they are a
useful signal to the programmers who come after you, letting them know not to rede-
fine a constant without a very good reason.

Constants can occur anywhere in code. If they appear within a class or module, you
can access them from outside the class or module with the double-colon operator
(::). The name of the class or module qualifies the name of the constant, preventing
confusion with other constants that may have the same name but are defined in dif-
ferent scopes.

356 | Chapter9: Objects and Classes

CONST = 4

module ConstModule
CONST = 6
end

class ConstHolder
CONST = 8

def my_const
return CONST

end
end
CONST # =>4
ConstModule: : CONST #=>6
ConstHolder: :CONST # => 8
ConstHolder.new.my_const #=>8

What’s constant about a constant is its reference to an object. If you change the refer-
ence to point to a different object, you’ll get a warning. Unfortunately, there’s no way
to tell Ruby to treat the redeclaration of a constant as an error:

E = 2.718281828 # => 2.718281828
E=6 # warning: already initialized constant E
E #=>6

However, you can use Module#remove_const as a sneaky way to “undeclare” a con-
stant. You can then declare the constant again, without even triggering a warning.
Clearly, this is potent and potentially dangerous stuftf:

This should make things a lot simpler.
module Math
remove_const(:PI)

PI = 3
end
Math::PI # => 3

If a constant points to a mutable object like an array or a string, the object itself can
change without triggering the constant warning. You can prevent this by freezing the
object to which the constant points:

RGB_COLORS = [:red, :green, :blue] # => [:red, :green, :blue]
RGB_COLORS << :purple # => [:red, :green, :blue, :purple]
RGB_COLORS = [:red, :green, :blue]

warning: already initialized constant RGB_GOLORS

RGB_COLORS # => [:red, :green, :blue]

RGB_COLORS. freeze
RGB_COLORS << :purple
TypeError: can't modify frozen array

9.17 Declaring Constants | 357

Freezing operates on the object, not the reference. It does nothing to prevent a con-
stant reference from being assigned to another object:

HOURS_PER_DAY = 24
HOURS_PER_DAY.freeze # This does nothing since Fixnums are already immutable.

HOURS_PER_DAY = 26
warning: already initialized constant HOURS_PER_DAY
HOURS_PER_DAY # => 26

See Also

o Recipe 9.15, “Freezing an Object to Prevent Changes”

9.18 Implementing Class and Singleton Methods

Problem

You want to associate a new method with a class (as opposed to the instances of that
class), or with a particular object (as opposed to other instances of the same class).

Solution

To define a class method, prefix the method name with the class name in the method
definition. You can do this inside or outside of the class definition.

The Regexp.is_valid? method, defined next, checks whether a string can be com-
piled into a regular expression. It doesn’t make sense to call it on an already instanti-
ated Regexp, but it’s clearly related functionality, so it belongs in the Regexp class
(assuming you don't mind adding a method to a core Ruby class):

class Regexp
def Regexp.is_valid?(str)
begin
compile(str)
valid = true
rescue RegexpError
valid = false

end
end
end
Regexp.is_valid? "The horror!" # => true
Regexp.is_valid? "The)horror!" # => false

Here’s a Fixnum. random method that generates a random number in a specified range:

def Fixnum.random(min, max)
raise ArgumentError, "min > max" if min > max

358 | Chapter9: Objects and Classes

return min + rand(max-min+1)

end

Fixnum.random(10, 20) # => 13
Fixnum.random(-5, 0) #=> -5
Fixnum.random(10, 10) # => 10

Fixnum.random(20, 10)

ArgumentError: min > max
To define a method on one particular other object, prefix the method name with the
variable name when you define the method:

company_name = 'Homegrown Software'

def company_name.legalese

return "#{self} is a registered trademark of ConglomCo International."
end

company_name. legalese

=> "Homegrown Software is a registered trademark of ConglomCo International."
'Some Other Company'.legalese

NoMethodError: undefined method 'legalese' for "Some Other Company":String

Discussion

In Ruby, a singleton method is a method defined on one specific object, and not avail-
able to other instances of the same class. This is kind of analagous to the Singleton
pattern, in which all access to a certain class goes through a single instance, but the
name is more confusing than helpful.

Class methods are actually a special case of singleton methods. The object on which
you define a new method is the Class object itself.

Some common types of class methods are listed here, along with illustrative examples
taken from Ruby’s standard library:

o Methods that instantiate objects, and methods for retrieving an object that imple-
ments the Singleton pattern. Examples: Regexp.compile, Date.parse, Dir.open,
and Marshal. load (which can instantiate objects of many different types). Ruby’s
standard constructor, the new method, is another example.

o Utility or helper methods that use logic associated with a class, but don’t require
an instance of that class to operate. Examples: Regexp.escape, Dir.entries,
File.basename.

o Accessors for class-level or Singleton data structures. Examples: Thread.current,
Struct.members, Dir.pwd.

o Methods that implicitly operate on an object that implements the Singleton pat-
tern. Examples: Dir.chdir, GC.disable, and GC.enable, and all the methods of
Process.

9.18 Implementing Class and Singleton Methods | 359

When you define a singleton method on an object other than a class, it’s usually to
redefine an existing method for a particular object, rather than to define a brand new
method. This behavior is common in frameworks, such as GUIs, where each individ-
ual object has customized behavior. Singleton method definition is a cheap substitute
for subclassing when you only need to customize the behavior of a single object:

class Button
#A stub method to be overridden by subclasses or individual Button objects
def pushed
end

end

button_a = Button.new
def button_a.pushed

puts "You pushed me! I'm offended!"
end

button_b = Button.new
def button_b.pushed

puts "You pushed me; that's okay."
end

Button.new.pushed
#

button_a.pushed
You pushed me! I'm offended!

button_b.pushed
You pushed me; that's okay.

When you define a method on a particular object, Ruby acts behind the scenes to
transform the object into an anonymous subclass of its former class. This new class is
the one that actually defines the new method or overrides the methods of its
superclass.

9.19 Controlling Access by Making Methods Private

Problem

You've refactored your code (or written it for the first time) and ended up with a
method that should be marked for internal use only. You want to prevent outside
objects from calling such methods.

360 | Chapter9: Objects and Classes

Solution

Use private as a statement before a method definition, and the method will not be
callable from outside the class that defined it. This class defines an initializer, a public
method, and a private method:

class SecretNumber
def initialize
@secret = rand(20)
end

def hint
puts "The number is #{"not
end

if secret <= 10}greater than 10."

private

def secret
@secret
end
end

s = SecretNumber.new

s.secret

NoMethodError:

private method 'secret' called for

#<SecretNumber:0xb7c2e83c @secret=19>

s.hint
The number is greater than 10.

Unlike in many other programming languages, a private method in Ruby is accessible
to subclasses of the class that defines it:

class LessSecretNumber < SecretNumber
def hint
lower = secret-rand(10)-1
upper = secret+rand(10)+1
"The number is somewhere between #{lower} and #{upper}."
end
end

1s = LessSecretNumber.new

1s.hint

=> "The number is somewhere between -3 and 16."
1s.hint

=> "The number is somewhere between -1 and 15."
1s.hint

=> "The number is somewhere between -2 and 16."

9.19 Controlling Access by Making Methods Private | 361

Discussion

Like many parts of Ruby that look like special language features, Ruby’s privacy key-
words are actually methods. In this case, they’re methods of Module. When you call
private, protected, or public, the current module (remember that a class is just a
special kind of module) changes the rules it applies to newly defined methods from
that point on.

Most languages that support method privacy make you put a keyword before every
method saying whether it’s public, private, or protected. In Ruby, the special privacy
methods act as toggles. When you call the private keyword, all methods you define
after that point are declared as private, until the module definition ends or you call a
different privacy method. This makes it easy to group methods of the same privacy
level—a good, general programming practice:

class MyClass
def public_method1
end

def public_method2
end

protected

def protected_method1l
end

private

def private_method1
end

def private_method2
end
end

Private and protected methods work a little differently in Ruby than in most other
programming languages. Suppose you have a class called Foo and a subclass SubFoo.
In languages like Java, SubFoo has no access to any private methods defined by Foo.
As seen in the Solution, Ruby provides no way to hide a class’s methods from its sub-
classes. In this way, Ruby’s private works like Java’s protected.

Suppose further that you have two instances of the Foo class, A and B. In languages
like Java, A and B can call each other’s private methods. In Ruby, you need to use a
protected method for that. This is the main difference between private and protected
methods in Ruby.

In the following example, we try to add another type of hint to the LessSecretNumber
class, one that lets you compare the relative magnitudes of two secret numbers. It

362 | Chapter9: Objects and Classes

doesn’t work because one LessSecretNumber can't call the private methods of another
LessSecretNumber:

class LessSecretNumber
def compare(other)

if secret == other.secret
comparison = "equal to"
else
comparison = secret > other.secret ? "greater than" : "less than"
end
"This secret number is #{comparison} the secret number you passed in."
end
end
a = LessSecretNumber.new
b = LessSecretNumber.new
a.hint
=> "The number i1s somewhere between 17 and 22."
b.hint
=> "The number is somewhere between 0 and 12."
a.compare(b)
NoMethodError: private method 'secret' called for
#<LessSecretNumber:0xb7bfel3c @secret=6>

But if we make make the secret method protected instead of private, the compare
method starts working. You can change the privacy of a method after the fact by pass-
ing its symbol into one of the privacy methods:

class SecretNumber
protected :secret
end
a.compare(b)
=> "This secret number is greater than the secret number you passed in."
b.compare(a)
=> "This secret number is less than the secret number you passed in."

Instance variables are always private—accessible by subclasses, but not from other
objects, even other objects of the same class. If you want to make an instance variable

accessible to the outside, you should define a getter method with the same name as
the variable. This method can be either protected or public.

You can trick a class into calling a private method from outside by passing the meth-
od’s symbol into Object#send (in Ruby 1.8) or Object#funcall (in Ruby 1.9). Youd
better have a really good reason for doing this:

s.send(:secret) # => 19

9.19 Controlling Access by Making Methods Private | 363

See Also

o Recipe 9.2, “Managing Class Data,” has a pretty good reason for using the
Object#send trick

364 | Chapter9: Objectsand Classes

CHAPTER 10
Modules and Namespaces

A Ruby module is nothing more than a grouping of objects under a single name. The
objects may be constants, methods, classes, or other modules.

Modules have two uses. You can use a module as a convenient way to bundle objects
together, or you can incorporate its contents into a class with Ruby’s include
statement.

When a module is used as a container for objects, it’s called a namespace. Ruby’s Math
module is a good example of a namespace: it provides an overarching structure for
constants like Math: :PI and methods like Math: : log, which would otherwise clutter
up the main Kernel namespace. We cover this most basic use of modules in Recipes
10.5 and 10.7.

Modules are also used to package functionality for inclusion in classes. The Enumera
ble module isn’t supposed to be used on its own: it adds functionality to a class like
Array or Hash. We cover the use of modules as packaged functionality for existing
classes in Recipes 10.1 and 10.4.

Module is actually the superclass of Class, so every Ruby class is also a module.
Throughout this book we talk about using methods of Module from within classes.
The same methods will work exactly the same way within modules. The only thing
you can’t do with a module is instantiate an object from it:

Class.superclass # => Module
Math.class # => Module
Math.new

NoMethodError: undefined method ‘new' for Math:Module

365

10.1 Simulating Multiple Inheritance with Mixins

Problem

You want to create a class that derives from two or more sources, but Ruby doesn’t
support multiple inheritance.

Solution

Suppose you created a class called Taggable that lets you associate tags (short strings
of informative metadata) with objects. Every class whose objects should be taggable
could derive from Taggable.

This would work if you made Taggable the top-level class in your class structure, but
that won’t work in every situation. Eventually you might want to do something like
make a string taggable. One class can’t subclass both Taggable and String, so youd
have a problem.

Furthermore, it makes little sense to instantiate and use a Taggable object by itself—
there is nothing there to tag! Taggability is more of a feature of a class than a full-
fledged class of its own. The Taggable functionality works only in conjunction with
some other data structure.

This makes Taggable an ideal candidate for implementation as a Ruby module
instead of a class. Once it’s in a module, any class can include it and use the methods
it defines:

require 'set' # Deals with a collection of unordered values with no duplicates

Include this module to make your class taggable. The names of the
instance variable and the setup method are prefixed with "taggable_
to reduce the risk of namespace collision. You must call
taggable_setup before you can use any of this module's methods.
module Taggable

attr_accessor :tags

"

def taggable_setup
@tags = Set.new
end

def add_tag(tag)
@tags << tag
end

def remove_tag(tag)
@tags.delete(tag)
end
end

366 | Chapter 10: Modules and Namespaces

Here is a taggable string class; it subclasses String, but it also includes the functional-
ity of Taggable:

class TaggableString < String
include Taggable
def initialize(*args)
super
taggable_setup
end
end
s = TaggableString.new('It was the best of times, it was the worst of times.')
s.add_tag 'dickens'
s.add_tag 'quotation'
s.tags # => #<Set: {"dickens", "quotation"}>

Discussion

A Ruby class can have only one superclass, but it can include any number of modules.
These modules are called mixins. If you write a chunk of code that can add function-
ality to classes in general, it should go into a mixin module instead of a class.

The only objects that need to be defined as classes are the ones that get instantiated
and used on their own (modules can’t be instantiated).

If you're coming from Java, you might think of a module as being the combination of
an interface and its implementation. By including a module, your class implements
certain methods, and announces that since it implements those methods it can be
treated a certain way.

When a class includes a module with the include keyword, all of the module’s meth-
ods and constants are made available from within that class. They’re not copied, as a
method is when you alias it. Rather, the class becomes aware of the methods of the
module. If a module’s methods are changed later (even during runtime), so are the
methods of all the classes that include that module.

Module and class definitions have an almost identical syntax. If you find out after
implementing a class that you should have done it as a module, it’s not difficult to
translate the class into a module. The main problem areas will be methods defined
both by your module and the classes that include it, especially methods like
initialize.

Your module can define an initialize method, and it will be called by a class whose
constructor includes a super call (see Recipe 10.8 for an example), but sometimes
that doesn’t work. For instance, Taggable defines a taggable_setup method that
takes no arguments. The String class, the superclass of TaggableString, takes one
and only one argument. TaggableString can call super within its constructor to trig-
ger both String#initialize and a hypothetical Taggable#initialize, but theres

10.1 Simulating Multiple Inheritance with Mixins | 367

no way a single super call can pass one argument to one method and zero arguments
to another.

That’s why Taggable doesn’t define an initialize method.! Instead, it defines a tag
gable_setup method and (in the module documentation) asks everyone who
includes the module to call taggable_setup within their initialize method. Your
module can define a <module name>setup method instead of initialize, but you
need to document it, or your users will be very confused.

Its okay to expect that any class that includes your module will implement some
methods you can’t implement yourself. For instance, all of the methods in the Enu
merable module are defined in terms of a method called each, but Enumerable never
actually defines each. Every class that includes Enumerable must define what each
means within that class before it can use the Enumerable methods.

If you have such undefined methods, it will cut down on confusion if you provide a
default implementation that raises a helpful exception:

module Complaint
def gripe
voice('In all my years I have never encountered such behavior..")
end

def faint_praise
voice('I am pleased to notice some improvement, however slight..')
end

def voice(complaint_text)
raise NotImplementedError,
"#{self.class} included the Complaint module but didn't define voice!"
end
end

class MyComplaint
include Complaint
end

MyComplaint.new.gripe
NotImplementedError: MyComplaint included the Complaint module
but didn't define voice!

If two modules define methods with the same name, and a single class includes both
modules, the class will have only one implementation of that method: the one from
the module that was included last. The method of the same name from the other

1 An alternative is to define Taggable#initialize to take a variable number of arguments, and then just ignore
all the arguments. This only works because Taggable can initialize itself without any outside information.

368 | Chapter 10: Modules and Namespaces

module will simply not be available. Here are two modules that define the same
method:

module Ayto
def potato
'Pohtayto’
end
end

module Ahto
def potato
'Pohtahto’
end
end

One class can mix in both modules:

class Potato
include Ayto
include Ahto
end

But there can be only one potato method for a given class or module:'
Potato.new.potato # => "Pohtahto"

This rule sidesteps the fundamental problem of multiple inheritance by letting pro-
grammers explicitly choose which ancestor they would like to inherit a particular
method from. Nevertheless, it’s good programming practice to give distinctive names
to the methods in your modules. This reduces the risk of namespace collisions when
a class mixes in more than one module. Collisions can occur, and the later module’s
method will take precedence, even if one or both methods are protected or private.

See Also

o If you want a real-life implementation of a Taggable-like mixin, see Recipe 14.17,
“Adding Taggability with a Database Mixin”

1 You could get both methods by aliasing Potato#potato to another method after mixing in Ayto but before
mixing in Ahto. There would still be only one Potato#potato method, and it would still be Ahto#potato, but
the implementation of Ayto#potato would survive under a different name.

10.1 Simulating Multiple Inheritance with Mixins | 369

10.2 Extending Specific Objects with Modules

Credit: Phil Tomson

Problem

You want to add instance methods from a module (or modules) to specific objects.
You don’'t want to mix the module into the object’s class, because you want certain
objects to have special abilities.

Solution
Use the Object#extend method.
For example, let’s say we have a mild-mannered Person class:

class Person
attr_reader :name, :age, :occupation

def initialize(name, age, occupation)
@name, @age, @occupation = name, age, occupation
end

def mild_mannered?
true
end
end

Now let’s create a couple of instances of this class:

jimmy = Person.new('Jimmy Olsen', 21, 'cub reporter')
clark = Person.new('Clark Kent', 35, 'reporter')

jimmy.mild_mannered? # => true
clark.mild_mannered? # => true

But it happens that some Person objects are not as mild-mannered as they might
appear. Some of them have superpowers:

module SuperPowers
def fly
'"Flying!"'
end

def leap(what)
"Leaping #{what} in a single bound!"
end

def mild_mannered?
false
end

370 | Chapter 10: Modules and Namespaces

def superhero_name
'Superman'
end
end

If we use include to mix the SuperPowers module into the Person class, it will give
every person superpowers. Some people are bound to misuse such power. Instead,
we'll use extend to give superpowers only to certain people:

clark.extend(SuperPowers)

clark.superhero_name # => "Superman"
clark.fly # => "Flying!"
clark.mild_mannered? # => false
jimmy.mild_mannered? # => true

Discussion

The extend method is used to mix a module’s methods into an object, while include
is used to mix a module’s methods into a class.

The astute reader might point out that classes are actually objects in Ruby. Let’s see
what happens when we use extend in a class definition:
class Person

extend SuperPowers
end

#which is equivalent to:

Person.extend(SuperPowers)
What exactly are we extending here? Within the class definition, extend is being
called on the Person class itself; we could have also written self.extend(SuperPow
ers). Were extending the Person class with the methods defined in SuperPowers.
This means that the methods defined in the SuperPowers module have now become
class methods of Person:

Person.superhero_name # => "Superman”

Person.fly # => "Flying!"
This is not what we intended in this case. However, sometimes you do want to mix
methods into a class, and Class#extend is an easy and powerful way to do it.

See Also

« Recipe 10.3, “Mixing in Class Methods,” shows how to mix in class methods with
include

10.2 Extending Specific Objects with Modules | 371

10.3 Mixing in Class Methods

Credit: Phil Tomson

Problem

You want to mix class methods into a class, instead of mixing in instance methods.

Solution

The simplest way to accomplish this is to call extend on the class object, as seen in the
Discussion of Recipe 10.2. Just as you can use extend to add singleton methods to an
object, you can use it to add class methods to a class. But that’s not always the best
option. Your users may not know that your module provides or even requires some
class methods, so they might not extend their class when they should. How can you
make an include statement mix in class methods as well?

To begin, within your module define a submodule called ClassMethods, which con-
tains the methods you want to mix into the class:'

module MyLib
module ClassMethods
def class_method
puts "This method was first defined in MyLib::ClassMethods"
end
end
end

To make this code work, we must also define the included callback method within
the MyLib module. This method is called every time a module is included in the class,
and it’s passed the class object in which our module is being included. Within the

callback method, we extend that class object with our ClassMethods module, making
all of its instance methods into class methods. Continuing the example:

module MyLib
def self.included(receiver)
puts "MyLib is being included in #{receiver}!"
receiver.extend(ClassMethods)
end
end

Now we can include our MyLib module in a class, and get the contents of ClassMe
thods mixed in as genuine class methods:

1 The name ClassMethods has no special meaning within Ruby; technically, you can call your submodule what-
ever you want. But the Ruby community has standardized on ClassMethods as the name of this submodule,
and it’s used in many Ruby libraries, so you should use it too.

372 | (Chapter 10: Modules and Namespaces

class MyClass
include MyLib
end
MyLib is being included in MyClass!

MyClass.class_method
This method was first defined in MyLib::ClassMethods

Discussion

Module#included is a callback method that is automatically called during the inclu-
sion of a module into a class. The default included implementation is an empty
method. In the example, MyLib overrides it to extend the class that’s including the
MyLib module with the contents of the MyLib: :ClassMethods submodule.

The Object#extend method takes a Module object as a parameter. It mixes all the
methods defined in the module into the receiving object. Since classes are themselves
objects, and the singleton methods of a Class object are just its class methods, calling
extend on a class object fills it up with new class methods.

See Also

o Recipe 8.11, “Coupling Systems Loosely with Callbacks,” covers callbacks in gen-
eral and shows how to write your own

o Recipe 11.6, “Listening for Changes to a Class,” covers Ruby’s other class and
module callback methods

10.4 Implementing Enumerable: Write One Method, Get
48 Free

Problem

You want to give a class all the useful iterator and iteration-related features of Ruby’s
arrays (sort, detect, inject, and so on), but your class can’t be a subclass of Array.
You don’t want to define all those methods yourself.

Solution

Implement an each method, then include the Enumerable module. It defines 22 of the
most useful iteration methods in terms of the each implementation you provide.

Here’s a class that keeps multiple arrays under the covers. By defining each, it can
expose a large interface that lets the user treat it like a single array:

10.4 Implementing Enumerable: Write One Method, Get 48 Free | 373

class MultiArray
include Enumerable

def initialize(*arrays)
@arrays = arrays
end

def each
@arrays.each { |a| a.each { |x| yield x } }
end
end

ma = MultiArray.new([1, 2], [3], [4])

ma.collect # => #<Enumerator:
#<MultiArray:0x007fbe0312d720

@arrays=[[1, 2], [3], [4]]>:collect>

ma.detect { |x| x > 3} # =>4

ma.map { |x| x ** 2} # =>[1, 4, 9, 16]

ma.each_with_index { |x, 1| puts "Element #{i} is #{x}" }

Element 0 is 1

Element 1 is 2

Element 2 is 3

Element 3 is 4

Discussion

Enumerable is the most common mixin module. It lets you add a lot of behavior to
your class for a little investment. Since Ruby relies so heavily on iterator methods,
and almost every data structure can be iterated over in some way, it’s no wonder that
so many of the classes in Ruby’s standard library include Enumerable: Dir, Hash,

Range, and String, just to name a few.

Here’s the complete list of methods you can get by including Enumerable. Many of
them are described elsewhere in this book, especially in Chapter 5. Perhaps the most

useful are collect, inject, find_all, and sort_by:

Enumerable.instance_methods.sort

=> [:all?, :any?, :chunk, :collect, :collect_concat,
:count, :cycle, :detect, :drop, :drop_while,
:each_cons, :each_entry, :each_slice,
:each_with_index, :each_with_object, :entries,
:find, :find_all, :find_index, :first, :flat_map,
:grep, :group_by, :include?, :inject, :lazy,
:map, :max, :max_by, :member?, :min, :min_by,
:minmax, :minmax_by, :none?, :one?, :partition,
:reduce, :reject, :reverse_each, :select,

374

| Chapter 10: Modules and Namespaces

:slice_before, :sort, :sort_by, :take,

:take_while, :to_a, :zip]

New in Ruby 2.1

In Ruby 1.8, there were only 22 methods in Enumerable. Here are the 26 new
methods:

chunk
collect_concat
count

cycle

drop
drop_while
each_cons
each_entry
each_slice
each_with_object
find_index
first
flat_map
group_by
lazy

max_by
min_by
minmax
minmax_by
none?

one?

reduce
reverse_each
slice_before
take

take_while

10.4 Implementing Enumerable: Write One Method, Get 48 Free

375

Although you can get all these methods simply by implementing an each method,
some of the methods won't work unless your each implementation returns objects
that can be compared to each other. For example, a data structure that contains both
numbers and strings can’t be sorted, since it makes no sense to compare a number to
a string:

ma.sort #=>[1, 2, 3, 4]

mixed_type_ma = MultiArray.new([1, 2, 3], ["a", "b", "c"])

mixed_type_ma.sort

ArgumentError: comparison of Fixnum with String failed

The methods subject to this restriction are max, min, sort, and sort_by. Since you
probably don’t have complete control over the types of the data stored in your data
structure, the best strategy is probably to just let a method fail if the data is incompat-
ible. This is what Array does:

[1’ 2’ 3, ||a||, nbn, "C"].sort
ArgumentError: comparison of Fixnum with String failed

One more example: in this one, we'll make Module itself include Enumerable. Our
each implementation will iterate over the instance methods defined by a class or
module. This makes it easy to find methods of a class that meet certain criteria:

class Module
include Enumerable
def each
instance_methods.each { |x| yield x }
end
end

Find all instance methods of String that modify the string in place.
String.find_all { |method_name| method_name[-1] == ?! }
=> [:succ!, :next!, :upcase!, :downcase!, :capitalize!,
:swapcase!, :reverse!, :sub!, :gsub!, :chop!,
:chomp!, :strip!, :lstrip!, :rstrip!, :tr!, :tr_s!,
:delete!, :squeeze!, :slice!, :encode!, :!]

Find all instance methods of Fixnum that take 2 arguments.

sample = 0

sample.class.find_all { |method_name| sample.method(method_name).arity == 2 }
=> [:between?, :instance_variable_set]

See Also

o Many of the recipes in Chapter 5 actually cover methods of Enumerable; see espe-
cially Recipe 5.12, “Building a Hash from an Array”

o Recipe 10.1, “Simulating Multiple Inheritance with Mixins”

376 | Chapter 10: Modules and Namespaces

10.5 Avoiding Naming Collisions with Namespaces

Problem

You want to define a class or module whose name conflicts with an existing class or
module, or you want to prevent someone else from coming along later and defining a
class whose name conflicts with yours.

Solution

A Ruby module can contain classes and other modules, which means you can use it
as a namespace.

Here’s some code from a physics library that defines a class called String within the
StringTheory module. The real name of this class is its fully qualified name: String
Theory: :String. It’s a totally different class from Ruby’s built-in String class:

module StringTheory
class String
def initialize(length=10%*-33)
@length = length
end
end
end

nn

String.new # =>

StringTheory::String.new
#<StringTheory: :String:0x007fbe0186a120
@length=(1/1000000000000000000000000000000000)>

Discussion

If you've read Recipe 9.17, you have already seen namespaces in action. The constants
defined in a module are qualified with the module’s name. This lets Math: :PI have a
different value from Greek: : PI.

You can qualify the name of any Ruby object this way: a variable, a class, or even
another module. Namespaces let you organize your libraries, and make it possible for
them to coexist alongside others.

Ruby’s standard library uses namespaces heavily as an organizing principle. An excel-
lent example is REXML, the standard XML library. It defines a REXML namespace that
includes lots of XML-related classes like REXML: : Comment and REXML: : Instruction.
Naming those classes Comment and Instruction would be a disaster: theyd get over-
written by other libraries’ Comment and Instruction classes. Since nothing about
these generic-sounding names relates them to the REXML library, you might look at

10.5 Avoiding Naming Collisions with Namespaces | 377

someone else’s code for a long time before realizing that the Comment objects have to
do with XML.

Namespaces can be nested: see, for instance, rexmlUs REXML: : Parsers module, which
contains classes like REXML::Parsers::StreamParser. Namespaces group similar
classes in one place so you can find what youre looking for; nested namespaces do
the same for namespaces.

In Ruby, you should name your top-level module after your software project (SAX), or
after the task it performs (XML: :Parser). If you're writing yet another implementa-
tion of something that already exists, you should make sure your namespace includes
your project name (XML: :Parser: :SAX). This is in contrast to Java’s namespaces: they
exist in its package structure, which follows a naming convention that includes a
domain name, like org.xml.sax.

All code within a module is implicitly qualified with the name of the module. This
can cause problems for a module like StringTheory, if it needs to use Ruby’s built-in
String class for something. This is fixed in Ruby 2.1, but you can also fix it by setting
the built-in String class to a variable before defining your StringTheory::String
class. Here’s a version of the StringTheory module that can use Ruby’s built-in
String class:
module StringTheory2
RubyString = String
class String
def initialize(length=10%*-33)
@length = length
end
end

RubyString.new("This is a built-in string, not a StringTheory2::String")

end
=> "This 1s a built-in string, not a StringTheory2::String"

See Also

 Recipe 9.17, “Declaring Constants”

o Recipe 10.7, “Including Namespaces”

10.6 Automatically Loading Libraries as Needed

Problem

You've written a big library with multiple components. Youd like to split it up so that
users don’t have to load the entire library into memory just to use part of it. But you

378 | Chapter 10: Modules and Namespaces

don’t want to make your users explicitly require each part of the library they plan
to use.

Solution

Split the big library into multiple files, and set up autoloading for the individual files
by calling Kernel#autoload. The individual files will be loaded as they’re referenced.

Deprecation Warning

Matz has indicated that autoload has fundamental flaws under
multithreaded environments, which means that although autoload
is included in Ruby 2.1, it will not be included in future versions of
Ruby like 3.0.

Using autoload in any standard libraries is strongly discouraged.

Suppose you have a library, functions.rb, that provides two very large modules:

functions.rb
module Decidable

.. Many, many methods go here.
end

module Semidecidable
.. Many, many methods go here.
end

You can provide the same interface, but possibly save your users some memory, by
splitting functions.rb into three files. The functions.rb file itself becomes a stub
full of autoload calls:

functions.rb
autoload :Decidable, "decidable.rb"
autoload :Semidecidable, "semidecidable.rb"

The modules themselves go into the files mentioned in the new functions.rb:

decidable.rb
module Decidable

.. Many, many methods go here.
end
semidecidable.rb
module Semidecidable

.. Many, many methods go here.
end

The following code will work if all the modules are in functions.rb, but it will also
work if functions.rb contains only calls to autoload:

10.6 Automatically Loading Libraries as Needed | 379

require 'functions'

Decidable.class # => Module

More use of the Decidable module follows..
When Decidable and Semidecidable have been split into autoloaded modules, that
code loads only the Decidable module. Memory is saved that would otherwise be
used to contain the unused Semidecidable module.

Discussion

Refactoring a library to consist of autoloadable components takes a little extra plan-
ning, but it’s often worth it to improve performance for the people who use your
library.

Each call to Kernel#autoload binds a symbol to the path of the Ruby file that’s sup-
posed to define that symbol. If the symbol is referenced, that file is loaded exactly as
though it had been passed as an argument into require. If the symbol is never refer-
enced, the user saves some memory.

Since you can use autoload wherever you might use require, you can autoload built-
in libraries when the user triggers some code that needs them. For instance, here’s
some code that loads Ruby’s built-in set library as needed:

autoload :Set, "set.rb"

def random_set(size)
max = size * 10
set = Set.new
set << rand(max) until set.size == size
return set
end

More code goes here..

If random_set is never called, the set library will never be loaded, and memory will
be saved. As soon as random_set gets called, the set library is autoloaded, and the
code works even though we never explicitly require set:

random_set(10)
=> #<Set: {39, 83, 73, 40, 90, 25, 91, 31, 76, 54}>

require 'set' # => false

10.7 Including Namespaces

Problem

You want to use the objects within a module without constantly qualifying the object
names with the name of their module.

380 | Chapter 10: Modules and Namespaces

Solution

Use include to copy a module’s objects into the current namespace. You can then use
them from the current namespace, without qualifying their names.

Instead of this:

require 'rexml/document'

xml = "<hello>world</hello>"
REXML: :Document.new(xml)

you might write this:

require 'rexml/document'
include REXML

xml = "<hello>world</hello>"
Document.new(xml)

Discussion

This is the exact same include statement you use to incorporate a mixin module into
a class youre writing. It does the same thing here as when it includes a mixin: it
copies the contents of a module into the current namespace.

Here, though, the point isn't to add new functionality to a class or module: it’s to save
you from having to do so much typing. This technique is especially useful with large
library modules like Curses and the Rails libraries.

This use of include comes with the same caveats as any other: if you already have
variables with the same names as the objects being included, the included objects will
be copied in over them and clobber them.

You can, of course, import a namespace that’s nested within a namespace of its own.
Instead of this:

require 'rexml/parsers/pullparser'
REXML: :Parsers::PullParser.new("<hello>world</hello>")
you might write this:

require 'rexml/parsers/pullparser'
include REXML::Parsers

PullParser.new("<hello>world</hello>")

10.7 Including Namespaces | 381

See Also

o Recipe 12.3, “Extracting Data While Parsing a Document”

10.8 Initializing Instance Variables Defined by a Module

Credit: Phil Tomson

Problem

You have a mixin module that defines some instance variables. Given a class that
mixes in the module, you want to initialize the instance variables whenever an
instance of the class is created.

Solution

Define an initialize method in the module, and call super in your class’s construc-
tor. Here’s a Timeable module that tracks when objects are created and how old
they are:

module Timeable
attr_reader :time_created

def initialize
@time_created = Time.now
end

def age #in seconds
Time.now - @time_created

end

end

Timeable has an instance variable time_created, and an initialize method that
assigns Time.now (the current time) to the instance variable. Now let’s mix Timeable
into another class that also defines an initialize method:

class Character
include Timeable
attr_reader :name
def initialize(name)
@name = name
super() #calls Timeable's initialize
end
end
c = Character.new "Fred"

c.time_created
=> 2013-12-09 13:36:46 -0800

382 | (Chapter 10: Modules and Namespaces

Discussion

You can define and access instance variables within a module’s instance methods, but
you can't actually instantiate a module. A modules instance variables exist only
within objects of a class that includes the module. However, classes don't usually need
to know about the instance variables defined by the modules they include. That sort
of information should be initialized and maintained by the module itself.

The Character#initialize method overrides the Timeable#initialize method,
but you can use super to call the Timeable constructor from within the Character
constructor. When a module is included in a class, that module becomes an ancestor
of the class. We can test this in the context of the preceding example by calling the
Module#ancestors on the Character class:

Character.ancestors # => [Character, Timeable, Object, Kernel, BasicObject

When you call super from within a method (such as initialize), Ruby finds every
ancestor that defines a method with the same name, and calls it too.

See Also

o Recipe 9.13, “Calling a Superclass’s Method”

o Sometimes an initialize method wont work; see Recipe 10.3, “Mixing in Class
Methods,” for when it won’t work, and how to manage without one

o Recipe 10.9, “Automatically Initializing Mixed-in Modules,” covers an even more
complex case, when you want a module to perform some initialization, without
making the class that includes do anything at all beyond the initial include

10.9 Automatically Initializing Mixed-in Modules

Credit: Phil Tomson

Problem

You've written a module that gets mixed into classes. Your module has some initiali-
zation code that needs to run whenever the mixed-into class is initialized. You do not
want users of your module to have to call super in their initialize methods.

Solution

First, we need a way for classes to keep track of which modules they’ve included. We
also need to redefine Class#new to call a module-level initialize method for each

10.9 Automatically Initializing Mixed-in Modules | 383

included module. Fortunately, Ruby’s flexibility lets us makes changes to the built-in
Class class (though this should never be done lightly):

class Class
def included_modules
@included_modules |[|= []
end

alias_method :old_new, :new

def new(*args, &block)
obj = old_new(*args, &block)
self.included_modules.each do |mod|

mod.initialize if mod.respond_to?(:initialize)

end
obj

end

end

Now every class has a list of included modules, accessible from the included_mod
ules class method. We've also redefined the Class#new method so that it iterates

through all the modules in included_modules, and calls the module-level initial
ize method of each.

All that’s missing is a way to add included modules to included_modules. We'll put
this code into an Initializable module. A module that wants to be initializable can
mix this module into itself and define an initialize method:

module Initializable

def self.included(mod)
mod.extend ClassMethods
end

module ClassMethods
def included(mod)
if mod.class != Module #in case Initializeable is mixed-into a class
puts "Adding #{self} to #{mod}'s included_modules" if SDEBUG
mod.included_modules << self
end
end
end
end

The included callback method is called whenever this module is included in another
module. Were using the pattern shown in Recipe 10.3 to add an included callback
method into the receiving module. If we didn’t do this, youd have to use that pattern
yourself for every module you wanted to be Initializable.

384 | Chapter 10: Modules and Namespaces

Discussion

That’s a lot of code, but here’s the payoff. Let’s define a couple of modules that include
Initializeable and define initialize module methods:

module A
include Initializable
def self.initialize
puts "A's initialized."
end
end

module B
include Initializable
def self.initialize
puts "B's initialized."
end
end
We can now define a class that mixes in both modules. Instantiating the class instanti-

ates the modules, with not a single super call in sight:

class BothAAndB
include A
include B

end

both = BothAAndB.new

A's initialized.

B's initialized.
The goal of this recipe is very similar to Recipe 10.8. In that recipe, you call super in a
classs initialize method to call a mixed-in module’s initialize method. That
recipe is a lot simpler than this one and doesn’t require any changes to built-in
classes, so it’s often preferable.

Consider a case like the preceding BothAAndB class. Using the techniques from Recipe
10.8, youd need to make sure that both A and B had calls to super in their initialize
methods, so that each module would get initialized. This solution moves all of that
work into the Initializable module and the built-in Class class. The other draw-
back of the previous technique is that users of your module need to know to call
super somewhere in their initialize method. Here, everything happens automati-
cally.

This technique is not without its pitfalls. Anytime you redefine critical built-in meth-
ods like Class#new, you need to be careful: someone else may have already redefined
it elsewhere in your program. Also, you won't be able to define your own included
method callback in a module that includes Initializeable; doing so will override
the callback defined by Initializable itself.

10.9 Automatically Initializing Mixed-in Modules | 385

See Also

o Recipe 10.3, “Mixing in Class Methods”
o Recipe 10.8, “Initializing Instance Variables Defined by a Module”

10.10 Prepending Modules

Problem

You need to override class methods when including module methods.

Solution

New in Ruby 2.1

The prepend method did not exist in Ruby 1.8, it was added only in Ruby 1.9.3. None
of this receipe would work in earlier versions of Ruby. There were ways around it—
specifically, by using alias_method and define_method calls, which were slightly less
elegant than prepend but relatively common.

Instead of using the include method, use the prepend method:

module OverrideModuleMethods
def override
"module method"
end
end

class MyClass
prepend OverrideModuleMethods

def override
"class method"
end
end

MyClass.new.override # => "module method"

Discussion

When you include a module into a class, the classs method dispatch search finds the
class’s defined methods first and then the module’s methods. For example:

module IncludeModuleMethods
def which_gets_called?

386 | Chapter 10: Modules and Namespaces

"module method"
end
end

class MyClass
include IncludeModuleMethods

def which_gets_called?
"class method"
end
end

MyClass.new.which_gets_called? # => "class method"
The class method is called because of the ancestor chain:

MyClass.ancestors
=> [MyClass, IncludeModuleMethods, Object, Kernel, BasicObject]

When the MyClass#which_gets_called? method is called, the method dispatch
searches the anscestor chain, looking for method names that match the called
method. When we use the prepend method, it prepends the module namespace in the
list of ancestors:

module OverrideModuleMethods
def override
"module method"
end
end

class MyClass
prepend OverrideModuleMethods
end

MyClass.ancestors
=> [OverrideModuleMethods, MyClass, Object, Kernel, BasicObject]

This allows you to overwrite methods cleanly.

10.10 Prepending Modules | 387

CHAPTER 11
Reflection and Metaprogramming

In a dynamic language like Ruby, few pieces are static. Classes can grow new methods
and lose the ones they had before. Methods can be defined manually, or automatically
with well-written code.

Probably the most interesting aspect of the Ruby programming philosophy is its use
of reflection and metaprogramming to save the programmer from having to write
repetitive code. In this chapter, we will teach you the ways and the joys of these
techniques.

Reflection lets you treat classes and methods as objects. With reflection you can see
which methods you can call on an object (Recipes 11.2 and 11.3). You can grab one of
its methods as an object (Recipe 11.4), and call it or pass it in to another method as a
code block. You can get references to the class an object implements and the modules
it includes, and print out its inheritance structure (Recipe 11.1). Reflection is espe-
cially useful when you're interactively examining an unfamiliar object or class
structure.

Metaprogramming is to programming as programming is to doing a task by hand. If
you need to sort a file of a hundred lines, you don't open it up in a text editor and
start shuffling the lines; you write a program to do the sort. By the same token, if you
need to give a Ruby class a hundred similar methods, you shouldn't just start writing
the methods one at a time. You should write Ruby code that defines the methods for
you (Recipe 11.10). Or you should make your class capable of intercepting calls to
those methods; this way, you can implement the methods without ever defining them
at all (Recipe 11.8).

Methods you've seen already, like attr_reader, use metaprogramming to define cus-
tom methods according to your specifications. Recipe 9.2 created a few more of these

389

“decorator” methods; Recipe 11.16 in this chapter shows a more complex example of
the same principle.

You can metaprogram in Ruby either by writing normal Ruby code that uses a lot of
reflection, or by generating a string that contains Ruby code, and evaluating the
string. Writing normal Ruby code with reflection is generally safer, but sometimes the
reflection just gets to be too much and you need to evaluate a string. We provide a
demonstration recipe for each technique (Recipes 11.10 and 11.11).

11.1 Finding an Object’s Class and Superclass

Problem

Given a class, you want an object corresponding to its class, or to the parent of its
class.

Solution

Use the Object#class method to get the class of an object as a Class object. Use
Class#superclass to get the parent Class of a Class object:

'a string'.class # => String
'a string'.class.name # => "String"
'a string'.class.superclass # => Object
String.superclass # => Object
String.class # => Class
String.class.superclass # => Module
'a string'.class.new #=>""

Discussion

New in Ruby 2.1

BasicObject is the parent class of all classes (including Objects) in Ruby 2.1. It's an
explicitly blank class; it doesn’t even have primitive kernel methods like puts or
object methods like inspect.

Class objects in Ruby are first-class objects that can be assigned to variables, passed
as arguments to methods, and modified dynamically. Many of the recipes in this
chapter and Chapter 9 discuss things you can do with a Class object once you have it.

The superclass of the BasicObject class is nil. This makes it easy to iterate up an
inheritance hierarchy:

390 | Chapter 11: Reflection and Metaprogramming

class Class
def hierarchy
(superclass ? superclass.hierarchy : []) << self
end
end
Array.hierarchy # => [BasicObject, Object, Array]

class MyArray < Array

end

MyArray.hierarchy # => [BasicObject, Object, Array, MyArray]
While Ruby does not support multiple inheritance, the language allows mixin Mod
ules that simulate it (see Recipe 10.1). The Modules included by a given Class (or
another Module) are accessible from the Module#ancestors method.

A class can have only one superclass, but it may have any number of ancestors.
The list returned by Module#ancestors contains the entire inheritance hierarchy
(including the class itself), any modules the class includes, and the ever-present Ker
nel module, whose methods are accessible from anywhere because Object itself
mixes it in:

String.superclass # => Object
String.ancestors # => [String, Enumerable, Comparable,

Object, Kernel, BasicObject]
Array.ancestors # => [Array, Enumerable, Object, Kernel, BasicObject]
MyArray.ancestors # => [MyArray, Array, Enumerable,

Object, Kernel, BasicObject]
Object.ancestors # => [Object, Kernel, BasicObject]

class MyClass
end
MyClass.ancestors # => [MyClass, Object, Kernel, BasicObject]

See Also

o Chapter 9
« Recipe 10.1, “Simulating Multiple Inheritance with Mixins”

11.2 Listing an Object’s Methods

Problem

Given an unfamiliar object, you want to see what methods are available to call.

11.2 Listing an Object’s Methods | 391

Solution

All Ruby objects implement the Object#methods method. It returns an array contain-
ing the names of the object’s public instance methods:

Object.methods
=> ["name", "private_class_method", "object_id", "new",
"singleton_methods", "method defined?", "equal?", ..]

To get a list of the singleton methods of some object (usually, but not always, a class),
use Object#singleton_methods:

Object.singleton_methods #=>[]
Fixnum.singleton_methods # => ["induced_from"]

class MyClass
def MyClass.my_singleton_method
end

def my_1instance_method
end
end
MyClass.singleton_methods # => ["my_singleton_method"]

To list the instance methods of a class, call instance_methods on the object. This lets
you list the instance methods of a class without instantiating the class:

''.methods == String.instance_methods # => true
The output of these methods is most useful when sorted:

Object.methods.sort
#=>[:1, 1=, :l~, <, <=, i<=>, ==, ===, !=~, >

: _id _, :__send _, :allocate, :ancestors, ..]

k] :>=J

Ruby also defines some elementary predicates along the same lines. To see whether a
class defines a certain instance method, call method defined? on the class or
respond_to? on an instance of the class. To see whether a class defines a certain class
method, call respond_to? on the class:

MyClass.method_defined? :my_instance_method # => true

MyClass.new.respond_to? :my_instance_method # => true

MyClass.respond_to? :my_instance_method # => false

MyClass.respond_to? :my_singleton_method # => true
Discussion

It often happens that while youre in an interactive Ruby session, you need to look up
which methods an object supports, or what a particular method is called. Looking
directly at the object is faster than looking up its class in a book. If youre using a

392 | (Chapter 11: Reflection and Metaprogramming

library like Rails or Facets, or your code has been adding methods to the built-in
classes, it’s also more reliable.

Noninteractive code can also benefit from knowing whether a given object imple-
ments a certain method. You can use this to enforce an interface, allowing any object
to be passed into a method so long as the argument implements certain methods (see
Recipe 11.16).

If you find yourself using respond_to? a lot in an interactive Ruby session, youre a
good customer for irb’s autocomplete feature. Put the following line in your .irbrc
file or equivalent:
require 'irb/completion’
#Depending on your system, you may also have to add the following line:
IRB.conf[:use_readline] = true
Then you can type (for instance) [1,2,3]. and press the Tab key, and see a list of all
the methods you can call on the array [1, 2, 3].

methods, instance_methods, and singleton_methods will return only public meth-
ods, and method_defined? will return true only if you give it the name of a public
method. Ruby provides analagous methods for discovering protected and private
methods, though these are less useful. All the relevant methods are presented in
Table 11-1.

Table 11-1. Discovering protected and private methods

Goal Public Protected Private

List the methods or public_meth protected_methods private_methods
methods ofan ods

object

List the instance instance_methods or protected_1instance_meth pri

methods public_instance_meth ods vate_instance_meth
defined by a ods ods

class

List the singleton_methods N/A N/A

singleton

methods

defined by a

class

Does this class ~ method_defined? orpub protected_method_defined? pri

define such- lic_method_defined? vate_method_defined?
and-such an

instance

method?

11.2 Listing an Object’s Methods | 393

Goal Public Protected Private

Will this object respond_to? N/A N/A
respond to

such-and-such

an instance

method?

Just because you can see the names of protected or private methods in a list doesn’t
mean you can call the methods, or that respond_to? will find them:

String.private_instance_methods.sort

=> [:Array, :Complex, :Float, :Hash, :Integer, :Rational,
:String, :__callee__, :_dir__, :__method__, :°,
:abort, :at_exit, :autoload, :autoload?, :binding,
:block_given?, :caller, :caller_locations, ...]

String.new.respond_to? :autoload? # => false

String.new.autoload?
NoMethodError: private method 'autoload?' called for

nn

:String
See Also
o To strip away irrelevant methods, see Recipe 11.3, “Listing Methods Unique to an

Object”

 Recipe 11.4, “Getting a Reference to a Method,” shows how to assign a Method
object to a variable, given its name; among other things, this lets you find out
how many arguments a method takes

o See Recipe 11.6, “Listening for Changes to a Class,” to set up a hook to be called
whenever a new method or singleton method is defined for a class

« Recipe 11.16, “Enforcing Software Contracts”

11.3 Listing Methods Unique to an Object

Problem

When you list the methods available to an object, the list is cluttered with extraneous
methods defined in the object’s superclasses and mixed-in modules. You want to see a
list of only the methods defined by that object’s direct class.

Solution

Subtract the instance methods defined by the object’s superclass. You'll be left with
only the methods defined by the object’s direct class (plus any methods defined on the

394 | Chapter 11: Reflection and Metaprogramming

object after its creation). The my_methods_only method defined here gives this capa-
bility to every Ruby object:

class Object
def my_methods_only
my_super = self.class.superclass
return my_super ? methods - my_super.instance_methods : methods
end
end

S =

s.methods.size # => 166
Object.instance_methods.size # => 57
s.my_methods_only.size # => 109
(s.methods - Object.instance_methods).size # => 109
def s.singleton_method
end
s.methods.size # => 166
s.my_methods_only.size # => 109
class Object

def new_object_method

end
end
s.methods.size # => 167
s.my_methods_only.size # => 109
class MyString < String

def my_string_method

end
end
MyString.new.my_methods_only # => [:my_string_method]

Discussion

The my_methods_only technique removes methods defined in the superclass, the par-
ent classes of the superclass, and any mixin modules included by those classes. For
instance, it removes the 40 methods defined by the Object class when it is mixed in
the Kernel module. It will not remove methods defined by mixin modules included
by the class itself.

Usually these methods aren’t clutter, but there can be a lot of them (for instance, Enu
merable defines 48 methods). To remove them, you can start out with my_meth
ods_only, then iterate over the ancestors of the class in question and subtract out all
the methods defined in modules:

class Object
def my_methods_only_no_mixins
self.class.ancestors.inject(methods) do |mlist, ancestor|

11.3 Listing Methods Unique to an Object | 395

mlist = mlist - ancestor.instance_methods unless ancestor.is_a? Class

mlist
end
end
end
[1.methods.size # => 174
[].my_methods_only.size # => 115
[1.my_methods_only_no_mixins.size #=>77
See Also

o Recipe 11.1, “Finding an Object’s Class and Superclass,” explores ancestors in
more detail

11.4 Getting a Reference to a Method

Problem

You want to use the name of a method in a reference to the method itself.

Solution
Use the eponymous Object#method method:
s = 'A string'
length_method = s.method(:length) # => #<Method: String#length>
length_method.arity #=>0
length_method.call # =>8
Discussion

The Object#methods introspection method returns an array of strings, each contain-
ing the name of one of the methods available to that object. You can pass any of these
names into an object’s method method and get a Method object corresponding to that
method of that object.

A Method object is bound to the particular object whose method method you called.
Invoke the method’s Method#call method, and its just like calling the objects
method directly:

1.succ #=>2

1.method(:succ).call #=>2
The Method#arity method indicates how many arguments the method takes. Argu-

ments, including block arguments, are passed to call just as they would be to the
original method:

396 | Chapter 11: Reflection and Metaprogramming

5.method('+").call(10) # => 15

[1,2,3].method(:each).call { |x| puts x }
1
2
3

A Method object can be stored in a variable and passed as an argument to other meth-
ods. This is useful for passing preexisting methods into callbacks and listeners:

class EventSpawner

def initialize
@listeners = []
@state = 0

end

def subscribe(&listener)
@listeners << listener
end

def change_state(new_state)
@listeners.each { |1| l.call(@state, new_state) }
@state = new_state
end
end

class EventListener
def hear(old_state, new_state)
puts "Method triggered: state changed from #{old_state} " +
"to #{new_state}."
end
end

spawner = EventSpawner.new

spawner.subscribe do |old_state, new_state|

puts "Block triggered: state changed from #{old_state} to #{new_state}."
end

spawner.subscribe &EventListener.new.method(:hear)
spawner .change_state(4)

Block triggered: state changed from O to 4.

Method triggered: state changed from 0 to 4.

A Method can also be used as a block:

s = "sample string"

replacements = { "a" => "1", "tring" => "ubstitution" }

replacements.collect(&s.method(:gsub))
=> [#<Enumerator: "sample string":gsub(["a", "i1"])>,
#<Enumerator: "sample string":gsub(["tring", "ubstitution"])>]

11.4 Getting a Reference toa Method | 397

You can't obtain a reference to a method that’s not bound to a specific object, because
the behavior of call would be undefined. You can get a reference to a class method
by calling method on the class. When you do this, the bound object is the class itself:
an instance of the Class class. Here’s an example showing how to obtain references to
an instance and a class method of the same class:

class Welcomer
def Welcomer.a_class_method
return "Greetings from the Welcomer class."
end
def an_instance_method
return "Salutations from a Welcomer object."
end
end

Welcomer.method("an_instance_method")

NameError: undefined method 'an_instance_method' for class 'Class’
Welcomer.new.method("an_instance_method").call

=> "Salutations from a Welcomer object."
Welcomer.method("a_class_method").call

=> "Greetings from the Welcomer class."

See Also

« Recipe 8.11, “Coupling Systems Loosely with Callbacks,” contains a more com-
plex listener example

11.5 Fixing Bugs in Someone Else’s Class

Problem

You're using a class that’s got a bug in one of its methods. You know where the bug is
and how to fix it, but you can’t or don’t want to change the source file itself.

Solutions

Extend the class from within your program and overwrite the buggy method with an
implementation that fixes the bug. Create an alias for the buggy version of the
method, so you can still access it if necessary.

Suppose you're trying to use the buggy method in the Multiplier class defined here:

class Multiplier
def double_your_pleasure(pleasure)
return pleasure * 3 # FIXME: Actually triples your pleasure.
end
end

398 | Chapter 11: Reflection and Metaprogramming

m = Multiplier.new
m.double_your_pleasure(6) # => 18

Reopen the class, alias the buggy method to another name, and then redefine it with a
correct implementation:

class Multiplier
alias :double_your_pleasure_BUGGY :double_your_pleasure
def double_your_pleasure(pleasure)
return pleasure * 2

end
end
m.double_your_pleasure(6) # => 12
m.double_your_pleasure_BUGGY(6) # => 18
Discussion

In many programming languages a class, function, or method can’t be modified after
its initial definition. In other languages, this behavior is possible but not encouraged.
For Ruby programmers, the ability to reprogram classes on the fly is just another
technique for the toolbox, to be used when necessary. It's most commonly used to add
new code to a class, but it can also be used to deploy a drop-in replacement for buggy
or slow implementation of a method.

Since Ruby is (at least right now) a purely interpreted language, you should be able to
find the source code of any Ruby class used by your program. If a method in one of
those classes has a bug, you should be able to copy and paste the original Ruby imple-
mentation into your code and fix the bug in the new copy.! This is not an elegant
technique, but it's often better than distributing a slightly modified version of the
entire class or library (that is, copying and pasting a whole file).

When you fix the buggy behavior, you should also send your fix to the maintainer of
the software that contains the bug. The sooner you can get the fix out of your code,
the better. If the software package is abandoned, you should at least post the fix
online so others can find it.

If a method isn’t buggy but simply doesn’t do what youd like it to do, add a new
method to the class (or create a subclass) instead of redefining the old one. Methods
you don’t know about may use the behavior of the method as it is. Of course, there

1 Bugs in Ruby C extensions are much more difficult to patch. You might be able to write equivalent Ruby code,
but there’s probably a reason why the original code was written in C. Since C doesn’t share Ruby’s attitude
toward redefining functions on the fly, you’ll need to fix the bug in the original C code and recompile the
extension.

11.5 Fixing Bugs in Someone Else’s Class | 399

could be methods that rely on the buggy behavior of a buggy method, but that’s less
likely.

See Also

« Throughout this book we use techniques like this to work around bugs and per-
formance problems in the Ruby standard library (although most of the bugs have
been fixed in Ruby 1.9); see, for instance, Recipe 3.7, “Taking Logarithms”;
Recipe 3.16, “Generating Prime Numbers”; and Recipe 7.18, “Deleting a File”

o Recipe 11.14, “Aliasing Methods”

11.6 Listening for Changes to a Class

Credit: Phil Tomson

Problem

You want to be notified when the definition of a class changes. You might want to
keep track of new methods added to the class, or existing methods that get removed
or undefined. Being notified when a module is mixed into a class can also be useful.

Solution

Define the class methods method_added, method_removed, and/or method_undefined.
Whenever the class gets a method added, removed, or undefined, Ruby will pass its
symbol into the appropriate callback method.

The following example prints a message whenever a method is added, removed, or
undefined. If the method important is removed, undefined, or redefined, it throws
an exception:
class Tracker
def important

"This is an important method!"
end

def self.method_added(sym)

if sym == :important
raise 'The "important" method has been redefined!'
else
puts %{Method "#{sym}" was (re)defined.}
end
end

def self.method_removed(sym)
if sym == :important

400 | Chapter 11: Reflection and Metaprogramming

raise 'The "important" method has been removed!'
else
puts %{Method "#{sym}" was removed.}
end
end

def self.method_undefined(sym)

if sym == :important
raise 'The "important" method has been undefined!'
else
puts %{Method "#{sym}" was removed.}
end
end

end
If someone adds a method to the class, a message will be printed:

class Tracker
def new_method
'This is a new method.'
end
end
Method "new_method" was (re)defined.

Short of freezing the class, you can’t prevent the important method from being
removed, undefined, or redefined, but you can raise a stink (more precisely, an excep-
tion) if someone changes it:

class Tracker
undef :important
end
RuntimeError: The "important" method has been undefined!

Discussion

The class methods weve defined in the Tracker «class (method_added,
method_removed, and method_undefined) are hook methods. Some other piece of
code (in this case, the Ruby interpreter) knows to call any methods by that name
when certain conditions are met. The Module class defines these methods with empty
bodies; by default, nothing special happens when a method is added, removed, or
undefined.

Given the preceding code, we will not be notified if our Tracker class later mixes in a
module. We won’t hear about the module itself, nor about the new methods that are
available because of the module inclusion:

class Tracker
include Enumerable
end

Nothing!

11.6 Listening for Changestoa Class | 401

Detecting module inclusion is trickier. Ruby provides a hook method called
Module#included, which is called on a module whenever it's mixed into a class. But
we want the opposite: a hook method that’s called on a particular class whenever it
includes a module. Since Ruby doesn’t provide a hook method for module inclusion,
we must define our own. To do this, we'll need to change Module#include itself:

class Module
alias_method :include_no_hook, :include
def include(*modules)
Run the old implementation.
include_no_hook(*modules)

Then run the hook.
modules.each do |mod|
self.include_hook mod
end
end

def include_hook
Do nothing by default, just like Module#method_added et al.
This method must be overridden in a subclass to do something useful.
end
end

Now when a module is included into a class, Ruby will call that class’s include_hook

method. If we define a Tracker#include_hook method, we can have Ruby notify us
of inclusions:

class Tracker
def self.include_hook(mod)
puts %{"#{mod}" was included in #{self}.}
end
end

class Tracker
include Enumerable
end
"Enumerable" was included in Tracker.

See Also
 Recipe 10.3, “Mixing in Class Methods,” for more on the Module#included
method

 Recipe 11.13, “Undefining a Method,” for the difference between removing and
undefining a method

402 | Chapter 11: Reflection and Metaprogramming

11.7 Checking Whether an Object Has Necessary
Attributes

Problem

You're writing a class or module that delegates the creation of some of its instance
variables to a hook method. You want to be sure that the hook method actually cre-
ated those instance variables.

Solution

Use the Object#instance_variables method to get a list of the instance variables.
Check them over to make sure all the necessary instance variables have been defined.
This Object#must_have_instance_variables method can be called at any time:

class Object
def must_have_1instance_variables(*args)
vars = instance_variables.inject({}) { |h,var| h[var] = true; h }
args.each do |var|
unless vars[var]
raise ArgumentError, %{Instance variable "@#{var} not defined"}
end
end
end
end

The best place to call this method is in initialize or some other setup method of a
module. Alternatively, you could accept values for the instance variables as arguments
to the setup method:

module LightEmitting
def LightEmitting_setup
must_have_instance_variables :light_color, :1light_intensity
@on = false
end

Methods that use @light_color and @light_intensity follow..
end

You can call this method from a class that defines a virtual setup method, to make
sure that subclasses actually use the setup method correctly:

class Request
def initialize
gather_parameters # This is a virtual method defined by subclasses
must_have_instance_variables :action, :user, :authentication
end

Methods that use @action, @user, and @authentication follow..
end

11.7 Checking Whether an Object Has Necessary Attributes | 403

Discussion

Although Object#must_have_instance_variables is defined and called like any
other method, it’s conceptually a “decorator” method similar to attr_accessor and
private. Thats why we didn’t use parentheses in the preceding example, even though
we called it with multiple arguments. The lack of parentheses acts as a visual indicator
that you're calling a decorator method, one that alters or inspects a class or object.

Here’s a similar method that you can use from outside the object. It basically imple-
ments a batch form of duck typing: instead of checking an object’s instance variables
(which are available only inside the object), it checks whether the object supports all
of the methods you need to call on it. Its useful for checking from the outside
whether an object is the “shape” you expect:

class Object
def must_support(*args)
args.each do |method|
unless respond_to? method
raise ArgumentError, %{Must support "#{method}"}

end
end
end
end
obj = "a string"
obj.must_support :to_s, :size, "+".to_sym
obj.must_support "+".to_sym, "-".to_sym

n_n

ArgumentError: Must support

See Also

o Recipe 11.16, “Enforcing Software Contracts”

11.8 Responding to Calls to Undefined Methods

Problem

Rather than having Ruby raise a NoMethodError when someone calls an undefined
method on an instance of your class, you want to intercept the method call and do
something else with it.

Or you are faced with having to explicitly define a large (possibly infinite) number of
methods for a class. You would rather define a single method that can respond to an
infinite number of method names.

404 | Chapter 11: Reflection and Metaprogramming

Solution

Define a method_missing method for your class. Whenever anyone calls a method
that would otherwise result in a NoMethodError, the method_missing method is
called instead. It is passed the symbol of the nonexistent method, and any arguments
that were passed in.

Here’s a class that modifies the default error handling for a missing method:

class MyClass
def defined_method
'This method is defined.'
end

def method_missing(m, *args)
"Sorry, I don't know about any #{m} method."
end
end

o = MyClass.new

o.defined_method # => "This method is defined."
o.undefined_method

=> "Sorry, I don't know about any undefined_method method."

In the second example, we'll define an infinitude of new methods on Fixnum by giving
it a method_missing implementation. Once were done, Fixnum will answer to any
method that looks like “plus_#” and takes no arguments:

class Fixnum
def method_missing(m, *args)
if args.size > 0
raise ArgumentError.new("wrong number of arguments (#{args.size} for 0)")
end
match = /7*plus_([0-9]+)$/.match(m.to_s)
if match
self + match.captures[0].to_1
else
raise NoMethodError.
new("undefined method '#{m}' for #{inspect}:#{self.class}")

end

end
end
4.plus_5 #=>9
10.plus_0 # => 10
-1.plus_2 #=>1
100.plus_10000 # => 10100
20.send(:plus_25) # => 45

100.minus_3
NoMethodError: undefined method 'minus_3' for 100:Fixnum

11.8 Responding to Calls to Undefined Methods | 405

100.plus_5(165)
ArgumentError: wrong number of arguments (1 for 0)

Discussion

The method_missing technique is frequently found in delegation scenarios, when one
object needs to implement all of the methods of another object. Rather than defining
each method, a class implements method_missing as a catch-all, and uses send to del-
egate the “missing” method calls to other objects. The built-in delegate library
makes this easy (see Recipe 9.8), but for the sake of illustration, here’s a class that del-
egates almost all its methods to a string. Note that this class doesn’t itself subclass
String:

class BackwardsString
def initialize(s)
@ = s
end

def method_missing(m, *args, &block)

result = @s.send(m, *args, &block)

result.respond_to?(:to_str) ? BackwardsString.new(result) : result
end

def to_s
@s.reverse
end

def inspect
to_s
end
end

The interesting thing here is the call to Object#send. This method takes the name of
another method, and calls that method with the given arguments. We can delegate
any missing method call to the underlying string without even looking at the method
name:

.sdrawkcab m'I
14

> . SDRAWKCAB M'I
I'm backwards.

s = BackwardsString.new("I'm backwards.")
s.size

s.upcase

s.reverse
s
#

H O W R
onon
v v

I
\%

.no_such_method
NoMethodError:
undefined method 'no_such_method' for "I'm backwards.":String

The method_missing technique is also useful for adding syntactic sugar to a class. If
one method of your class is frequently called with a string argument, you can make
object.string a shortcut for object.method("string"). Consider the following
Library class, and its simple query interface:

406 | Chapter 11: Reflection and Metaprogramming

class Library < Array

def add_book(author, title)
self << [author, title]
end

def search_by_author(key)
reject { |b| !match(b, 0, key) }
end

def search_by_author_or_title(key)
reject { |b| !match(b, 0, key) && !match(b, 1, key) }
end

:private

def match(b, index, key)
b[index].index(key) != nil
end
end

1 = Library.new

1.add_book("James Joyce", "Ulysses")
1.add_book("James Joyce", "Finnegans Wake")
1.add_book("John le Carre", "The Little Drummer Boy")
1.add_book("John Rawls", "A Theory of Justice")

1.search_by_author("John")
=> [["John le Carre", "The Little Drummer Boy"],
["John Rawls", "A Theory of Justice"]]

1.search_by_author_or_title("oy")
=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"]]

We can make certain queries a little easier to write by adding some syntactic sugar. It’s
as simple as defining a wrapper method; its power comes from the fact that Ruby
directs all unrecognized method calls to this wrapper method:

class Library
def method_missing(m, *args)
search_by_author_or_title(m.to_s)

end
end
1.0y
=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"]]
1.Fin

=> [["James Joyce", "Finnegans Wake'"]]

11.8 Responding to Calls to Undefined Methods | 407

1.Jo

=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"],

["John Rawls", "A Theory of Justice"]]

You can also define a method_missing method on a class. This is useful for adding
syntactic sugar to factory classes. Here’s a simple factory class that makes it easy to
create strings (as though this weren’t already easy):

class StringFactory
def StringFactory.method_missing(m, *args)
return String.new(m.to_s, *args)

end
end
StringFactory.a_string # => "a_string”
StringFactory.another_string # => "another_string"

As before, an attempt to call an explicitly defined method will not trigger
method_missing:

StringFactory.superclass # => Object

The method_missing method intercepts all calls to undefined methods, including the
mistyped names of calls to “real” methods. This is a common source of bugs. If you
run into trouble using your class, the first thing you should do is add debug state-
ments to method_missing, or comment it out altogether.

If youre using method_missing to implicitly define methods, you should also be
aware that Object.respond_to? returns false when called with the names of those
methods. After all, they’re not defined:

25.respond_to? :plus_20 # => false

You can override respond_to? to fool outside objects into thinking you’ve got explicit
definitions for methods you've actually defined implicitly in method_missing. Be very
careful, though; this is another common source of bugs:

class Fixnum
def respond_to?(m)
super or (m.to_s =~ /“plus_([0-9]+)5/) != nil

end
end
25.respond_to? :plus_20 # => true
25.respond_to? :succ # => true
25.respond_to? :minus_20 # => false
See Also

o Recipe 3.13, “Simulating a Subclass of Fixnum”

408 | Chapter 11: Reflection and Metaprogramming

o Recipe 9.8, “Delegating Method Calls to Another Object,” for an alternate imple-
mentation of delegation that’s usually easier to use

11.9 Automatically Initializing Instance Variables

Problem

You're writing a class constructor that takes a lot of arguments, each of which is sim-
ply assigned to an instance variable:

class RGBColor(red=0, green=0, blue=0)

@red = red

@green = green

@blue = blue
end

Youd like to avoid all the typing necessary to do those variable assignments.

Solution

Here’s a method that initializes the instance variables for you. It takes as an argument
the list of variables passed into the initialize method, and the binding of the vari-
ables to values.

Using this method, you can eliminate the tedious variable assignments:

class Object
def set_instance_variables(binding, *variables)
variables.each do |[var|
instance_variable_set(:"@#{var}", eval(var.to_s, binding))
end
end
end

class RGBColor
def initialize(red=0, green=0, blue=0)
set_instance_variables(binding, *Llocal_variables)
end
end

RGBColor.new(10, 200, 300)
=> #<RGBColor:0xb7c22fc8 @red=10, @blue=300, @green=200>

Discussion

Our set_instance_variables takes a list of argument names to turn into instance
variables, and a Binding containing the values of those arguments as of the method
call. For each argument name, an eval statement binds the corresponding instance

11.9 Automatically Initializing Instance Variables | 409

variable to the corresponding value in the Binding. Since you control the names of
your own variables, this eval is about as safe as it gets.

The names of a method’s arguments aren’t accessible from Ruby code, so how do we
get that list? Through trickery. When a method is called, any arguments passed in are
immediately bound to local variables. At the very beginning of the method, these are
the only local variables defined. This means that calling Kernel#local_variables at
the beginning of a method will get a list of all the argument names.

If your method accepts arguments that you don’t want to set as instance variables,
simply remove their names from the result of Kernel#local_variables before pass-
ing the list into set_instance_variables:

class RGBColor
def initialize(red=0, green=0, blue=0, debug=false)
set_1instance_variables(binding, *local_variables-['debug'])
puts "Color: #{red}/#{green}/#{blue}" if debug
end
end

RGBColor.new(10, 200, 255, true)
Color: 10/200/255
=> #<RGBColor:0xb7d309fc @blue=255, @green=200, @red=10>

11.10 Avoiding Boilerplate Code with Metaprogramming

Problem

You've got to type in a lot of repetitive code that a trained monkey could write. You're
resentful at having to do this yourself, and angry that the repetitive code will clutter
up your class listings.

Solution

Ruby is happy to be the trained monkey that writes your repetitive code. You can
define methods algorithmically with Module#define_method.

Usually the repetitive code is a bunch of similar methods. Suppose you need to write
code like this:

class Fetcher
def fetch(how_many)
puts "Fetching #{how_many ? how_many : "all"}."
end
def fetch_one
fetch(1)
end

def fetch_ten

410 | Chapter 11: Reflection and Metaprogramming

fetch(10)
end

def fetch_all
fetch(nil)
end
end

You can define this exact same code without having to write it all out. Create a data

structure that contains the differences between the methods, and iterate over that
structure, defining a method each time with define_method:

class GeneratedFetcher
def fetch(how_many)
puts "Fetching #{how_many ? how_many : "all"}."
end

[["one", 1], ["ten", 10], ["all", nil]].each do |name, number|
define_method(:"fetch_#{name}") do
fetch(number)
end
end
end

GeneratedFetcher.instance_methods - Object.instance_methods
=> [:fetch_one, :fetch, :fetch_ten, :fetch_all]

GeneratedFetcher.new.fetch_one
Fetching 1.

GeneratedFetcher.new.fetch_all

Fetching all.
This is less to type, less monkeyish, and it takes up less space in your class listing. If
you need to define more of these methods, you can add to the data structure instead
of writing out more boilerplate.

Discussion

Programmers have always preferred writing new code to cranking out variations on
old code. From lex and yacc to modern programs like Hibernate and Cog, we've
always used tools to generate code that would be tedious to write out manually.

Instead of generating code with an external tool, Ruby programmers do it from
within Ruby.! There are two officially sanctioned techniques. The nicer technique is
to use define_method to create a method whose implementation can use the local
variables available at the time it was defined.

1 This would make a good bumper sticker: “Ruby programmers do it from within Ruby”

11.10 Avoiding Boilerplate Code with Metaprogramming | 411

The built-in decorator methods we've already seen use metaprogramming. The
attr_reader method takes a string as an argument, and defines a method whose
name and implementation is based on that string. The code that’s the same for every
reader method is factored out into attr_reader; all you have to provide is the tiny bit
that’s different every time.

Methods whose code you generated are indistinguishable from methods that you
wrote out longhand. They will show up in method lists and in generated RDoc docu-
mentation (if youre metaprogramming with string evaluations, as seen in the next
recipe, you can even generate the RDoc documentation and put it at the beginning of
a generated method).

Usually you’ll use metaprogramming the way attr_reader does: to attach new meth-
ods to a class or module. For this you should use define_method, if possible. How-
ever, the block you pass into define_method needs to itself be valid Ruby code, and
this can be cumbersome. Consider the following generated methods:

class Numeric
[["add", "+"], ["subtract", "-"], ["multiply", "*",],
["divide", "/"]].each do |method, operator|
define_method("#{method}_2") do
method(operator).call(2)

end
end
end
4.add_2 #=>6
10.divide_2 #=>5

Within the block passed into define_method, we have to jump through some reflec-
tion hoops to get a reference to the operator we want to use. You can’t just write self
operator 2, because operator isn’t an operator: it’s a variable containing an operator
name. See the next recipe for another metaprogramming technique that uses string
substitution instead of reflection.

Another of define_method’s shortcomings is that in Ruby 1.8, you can't use it to
define a method that takes a block. The following code will work in Ruby 1.9 but not
in Ruby 1.8:

define_method "call_with_args" do |*args, &block]|
block.call(*args)

end
call_with_args(1, 2) { |n1, n2| n1 + n2 } #=>3
call_with_args("mammoth"){ |x| x.upcase } # => "MAMMOTH"

412 | Chapter 11: Reflection and Metaprogramming

See Also

o Metaprogramming is used throughout this book to generate a bunch of methods
at once, or to make it easy to define certain kinds of methods; see, for instance,
Recipe 5.7, “Making Sure a Sorted Array Stays Sorted”

o Because define_method is a private method, you can only use it within a class
definition; Recipe 9.2, “Managing Class Data,” shows a case where it needs to be
called outside of a class definition

o The next recipe, Recipe 11.11, “Metaprogramming with String Evaluations”

o Metaprogramming is a staple of Ruby libraries; it's used throughout Rails, and in
smaller libraries like delegate

11.11 Metaprogramming with String Evaluations

Problem

You're trying to write some metaprogramming code using define_method, but there’s
too much reflection going on for your code to be readable. It gets confusing and is
almost as frustrating as having to write out the code in longhand.

Solution

You can define new methods by generating the definitions as strings and running
them as Ruby code with one of the eval methods.

Here’s a reprint of the metaprogramming example from the previous recipe, which
uses define_method:

class Numeric
[['add', '+'], ['subtract', '-'],
['multiply', '*',], ['divide', '/']].each do |method, operator|
define_method("#{method}_2") do
method(operator).call(2)
end
end
end

The important line of code, method(operator).call(2), isn't something youd write
in normal programming. Youd write something like self + 2 or self / 2,
depending on which operator you wanted to apply. By writing your method defini-
tions as strings, you can do metaprogramming that looks more like regular
programming:

class Numeric
[['add', '+'], ['subtract', '-'],

11.11 Metaprogramming with String Evaluations | 413

['multiply', '*',], ['divide', '/']].each do |method, operator|
module_eval %{ def #{method}_2
self.#{operator}(2)

end }
end
end
4.add_2 # =>6
10.divide_2 #=>5
Discussion

You can do all of your metaprogramming with define_method, but the code doesn’t
look a lot like the code youd write in normal programming. You can't set an instance
variable with @foo=4; you have to call instance_variable_set(foo, 4).

The alternative is to generate a method definition as a string and execute the string as
Ruby code. Most interpreted languages have a way of parsing and executing arbitrary
strings as code, but it’s usually regarded as a toy or a hazard, and not given much
attention. Ruby breaks this taboo.

The most common evalutation method used for metaprogramming is Module#mod
ule_eval. This method executes a string as Ruby code, within the context of a class
or module. Any methods or class variables you define within the string will be
attached to the class or module, just as if youd typed the string within the class or
module definition. Thanks to the variable substitutions, the generated string looks
exactly like the code youd type in manually.

The following four pieces of code all define a new method String#last:

class String
def last(n)
self[-n, n]
end
end
"Here's a string.".last(7) # => "string."

class String
define_method('last') do |n]|

self[-n, n]
end
end
"Here's a string.".last(7) # => "string."

class String
module_eval %{def last(n)

self[-n, n]
end}
end
"Here's a string.".last(7) # => "string."

414 | Chapter 11: Reflection and Metaprogramming

String.module_eval %{def last(n)
self[-n, n]
end}

"Here's a string.".last(7) # => "string."

The instance_eval method is less popular than module_eval. It works just like mod
ule_eval, but it runs inside an instance of a class rather than the class itself. You can
use it to define singleton methods on a particular object, or to set instance variables.
Of course, you can also call define_method on a specific object.

The other evaluation method is just plain eval. This method executes a string exactly
as though you had written it as Ruby code in the same spot:

class String
eval %{def last(n)

self[-n, n]
end}
end
"Here's a string.".last(7) # => "string."

You must be very careful when you use the eval methods, lest the end-user of a pro-
gram trick you into running arbitrary Ruby code. When youre metaprogramming,
though, it's not usually a problem: the only strings that get evaluated are ones you
constructed yourself from hardcoded data, and by the time your class is loaded and
ready to use, the eval calls have already run. You should be safe unless your eval
statement contains strings obtained from untrusted sources. This might happen if
you're creating a custom class, or modifying a class in response to user input.

11.12 Evaluating Code in an Earlier Context

Problem

You've written a method that evaluates a string as Ruby code. But whenever anyone
calls the method, the objects referenced by your string go out of scope. Your string
can’t be evaluated within a method.

For instance, here’s a method that takes a variable name and tries to print out the
value of the variable:

def broken_print_variable(var_name)
eval %{puts "The value of #{var_name} is
end

+ #{var_name}.to_s}

The eval code only works when it’s run in the same context as the variable definition.
It doesn’t work as a method, because your local variables go out of scope when you
call a method:

11.12 Evaluating Code in an Earlier Context | 415

tin_snips = 5

broken_print_variable('tin_snips')
NameError: undefined local variable or method 'tin_snips' for main:0Object

var_name = 'tin_snips'
eval %{puts "The value of #{var_name} is
The value of tin_snips is 5

+ #{var_name}.to_s}

Solution

The eval method can execute a string of Ruby code as though you had written in
some other part of your application. This magic is made possible by Binding objects.
You can get a Binding at any time by calling Kernel#binding, and pass it in to eval
to recreate your original environment where it wouldn’t otherwise be available. Here’s
a version of the above method that takes a Binding:

def print_variable(var_name, binding)

eval %{puts "The value of #{var_name} is
end

+ #{var_name}.to_s}, binding

vice_grips = 10
print_variable('vice _grips', binding)
The value of vice_grips is 10

Discussion

A Binding object is a bookmark of the Ruby interpreter’s state. It tracks the values of
any local variables you have defined, whether you are inside a class or method defini-
tion, and so on.

Once you have a Binding object, you can pass it into eval to run code in the same
context as when you created the Binding. All the local variables you had back then
will be available. If you called Kernel#binding within a class definition, you’ll also be
able to define new methods of that class, and set class and instance variables.

Since a Binding object contains references to all the objects that were in scope when
it was created, those objects can’t be garbage-collected until both they and the Bind
ing object have gone out of scope.

See Also

o This trick is used in several places throughout this book; see, for example, Recipe
2.3, “Substituting Variables into an Existing String,” and Recipe 11.9, “Automati-
cally Initializing Instance Variables”

416 | Chapter 11: Reflection and Metaprogramming

11.13 Undefining a Method

Problem

You want to remove an already defined method from a class or module.

Solution

From within a class or module, you can use Module#remove_method to remove a
method’s implementation, forcing Ruby to delegate to the superclass or a module
included by a class.

In the following code, we subclass Array and override the << and [] methods to add
some randomness. Then we decided that overriding [] wasn’t such a good idea, so we
undefine that method and get the inherited Array behavior back. The override of <<
stays in place:
class RandomizingArray < Array
def <<(e)

insert(rand(size), e)
end

def [1(1)
super(rand(size))
end
end

a = RandomizingArray.new
a<<1<<2<<3<<4<<5<<6 #=>1/[6,3,4,5 2, 1]

That was fun; now let's get some of those entries back.

alo] #=>1
a[O] # => 2
alo] #=>5
#No, seriously, a[@].

alo] # =>4
#It's a madhouse! A madhouse!

alo] # => 3

#That does 1it!

class RandomizingArray
remove_method('[]")

end

alo0] #=>6
alo] #=>6
alo0] #=>6
But the overridden << operator still works randomly:

a << 7 #=>1[6, 3, 4, 7, 5, 2, 1]

11.13 Undefininga Method | 417

Discussion

Usually you'll override a method by redefining it to implement your own desired
behavior. However, sometimes a class will override an inherited method to do some-
thing you don’t like, and you just want the “old” implementation back.

You can only use remove_method to remove a method from a class or module that
explicitly defines it. You'll get an error if you try to remove a method from a class that
merely inherits that method. To make a subclass stop responding to an inherited
method, you should undefine the method with undef_method.

Using undef_method on a class prevents the appropriate method signals from reach-
ing objects of that class, but it has no effect on the parent class:

class RandomizingArray
remove_method(:length)
end
NameError: method 'length' not defined in RandomizingArray

class RandomizingArray
undef_method(:length)
end

RandomizingArray.new.length
NoMethodError: undefined method 'length' for []:RandomizingArray
Array.new.length #=>0

As you can see, it’s generally safer to use undef_method on the class you actually want
to change than to use remove_method on its parent or a module it includes.

You can use remove_method to remove singleton methods once youre done with
them. Since remove_method is private, using it to remove a singleton method requires
some unorthodox syntax:

my_array = Array.new

def my_array.random_dump(number)
number.times { self << rand(100) }

end

my_array.random_dump(3)
my_array.random_dump(2)
my_array # => [6, 45, 12, 49, 66]

That's enough of that.
class << my_array
remove_method(:random_dump)
end
my_array.random_dump(4)
NoMethodError: undefined method 'random_dump' for [6, 45, 12, 49, 66]:Array

418 | Chapter 11: Reflection and Metaprogramming

When you define a singleton method on an object, Ruby silently defines an anony-
mous subclass used only for that one object. In the preceding example, my_array is
actually an anonymous subclass of Array that implements a method random_dump.
Since the subclass has no name (my_array is a variable name, not a class name),
there’s no way of using the class <ClassName> syntax. We must “append” onto the
definition of the my_array object.

Class methods are just a special case of singleton methods, so you can also use
remove_method to remove class methods. Ruby also provides a couple of related
methods for removing things besides methods. Module#remove_constant undefines a
constant so that it can be redefined with a different value, as seen in Recipe 9.17.
Object#remove_instance_variable removes an instance variable from a single
instance of a class:

class OneTimeContainer
def initialize(value)
@use_just_once_then_destroy = value
end

def get_value
remove_1instance_variable(:@use_just_once_then_destroy)
end
end

object_1 = OneTimeContainer.new(6)

object_1.get_value

#=>6

object_1.get_value

NameError: instance variable @use_just_once_then_destroy not defined

object_2 = OneTimeContainer.new('ephemeron')
object_2.get_value
=> "ephemeron"

You can’t remove a particular instance variable from all instances by modifying the
class because the class is its own object, one that probably never defined that instance
variable in the first place:

class MyClass
remove_1instance_variable(:@use_just_once_then_destroy)
end
NameError: instance variable @use_just_once_then_destroy not defined

You should definitely not use these methods to remove methods or constants in sys-
tem classes or modules: that might make arbitrary parts of the Ruby standard library
crash or act unreliably. As with all metaprogramming, it’s easy to abuse the power to
remove and undefine methods at will.

11.13 Undefininga Method | 419

See Also

o Recipe 9.17, “Declaring Constants”

o Recipe 11.5, “Fixing Bugs in Someone Else’s Class”

11.14 Aliasing Methods

Problem

You (or your users) frequently misremember the name of a method. To reduce the
confusion, you want to make the same method accessible under multiple names.

Alternatively, you're about to redefine a method and youd like to keep the old version

available.

Solution

You can create alias methods manually, but in most cases, you should let the alias
command do it for you. In this example, we define an InventoryItem class that
includes a price method to calculate the price of an item in quantity. Since it’s likely
that someone might misremember the name of the price method as cost, we'll create

an alias:

class InventoryItem

attr_accessor :name, :unit_price

def initialize(name, unit_price)
@name, @unit_price = name, unit_price
end

def price(quantity=1)
@unit_price * quantity
end

#Make InventoryItem#cost an alias for InventoryItem#price
alias :cost :price

#The attr_accessor decorator created two methods called "unit_price" and

#"unit_price=". I'll create aliases for those methods as well.
alias :unit_cost :unit_price
alias :unit_cost= :unit_price=

end

bacon = InventoryItem.new("Chunky Bacon", 3.95)
bacon.price(100) # => 395.0
bacon.cost(100) # => 395.0

420

| Chapter 11: Reflection and Metaprogramming

bacon.unit_price # => 3.95

bacon.unit_cost # => 3.95

bacon.unit_cost = 3.99

bacon.cost(100) # => 399.0
Discussion

Its difficult to pick the perfect name for a method: you must find the word or short
phrase that best conveys an operation on a data structure, possibly an abstract opera-
tion that has different “meanings” depending on context.

Sometimes there will be no good name for a method and you’ll just have to pick one;
sometimes there will be too many good names for a method and you’ll just have to
pick one. In either case, your users may have difficulty remembering the “right” name
of the method. You can help them out by creating aliases.

Ruby itself uses aliases in its standard library; for instance, for the method of Array
that returns the number of items in the array. The terminology used in this area
varies widely. Some languages use length or len to find the length of a list, and some
use size.!

Ruby compromises by calling its method Array#length, but also creating an alias
called Array#size.” You can use either Array#length or Array#size because they do
the same thing based on the same code. If you come to Ruby from Python, you can
make yourself a little more comfortable by creating yet another alias for length:

class Array
alias :len :length
end

[1, 2, 3, 4].len # =>4

The alias command doesn’t make a single method respond to two names, or create a
shell method that delegates to the “real” method. It makes an entirely separate copy of
the old method under the new name. If you then modify the original method, the
alias will not be affected.

This may seem wasteful, but it’s frequently useful to Ruby programmers, who love to
redefine methods that arent working the way theyd like. When you redefine a
method, it's good practice to first alias the old method to a different name, usually
the original name with an _old suffix. This way, the old functionality isn’t lost.

1 Java uses both: length is a member of a Java array, and size is a method that returns the size of a collection.

2 Throughout this book, we use Array#size instead of Array#length. We do this mainly because it makes the
lines of code a little shorter and easier to fit on the page. This is probably not a concern for you, so use
whichever one you're comfortable with.

11.14 Aliasing Methods | 421

This code (very unwisely) redefines Array#length, creating a copy of the original
method with an alias:

class Array
alias :length_old :length
def length
return length_old / 2
end
end

Note that the alias Array#size still works as it did before:

array = [1, 2, 3, 4]

array.length #=>2
array.size # =>4
array.length_old # =>4

Since the old implementation is still available, it can be aliased back to its original
name once the overridden implementation is no longer needed:

class Array
alias :length :length_old
end

array.length # =>4

If you find this behavior confusing, your best alternative is to avoid alias altogether.
Instead, define a method with the new name that simply delegates to the “real”
method. Here we'll modify the InventoryItem class so that cost delegates to price,
rather than having alias create a copy of price and calling the copy cost:

class InventoryItem
def cost(*args)
price(*args)
end
end

If we then decide to modify price to tack on sales tax, cost will not have to be modi-
fied or realiased:

bacon.cost(100) # => 399.0

require 'bigdecimal'
require 'bigdecimal/util'
class InventoryItem
def price(quantity=1, sales_tax=BigDecimal.new("0.0725"))
base_price = (unit_price * quantity).to_d
price = (base_price + (base_price * sales_tax).round(2)).to_f

end
end
bacon.price(100) # => 427.93
bacon.cost(100) # => 399.0

422 | (Chapter 11: Reflection and Metaprogramming

We don't even need to change the signature of the cost method to match that of
price, since we used the *args construction to accept and delegate any arguments
atall:

bacon.cost(100, BigDecimal.new("0.05")) # => 418.95

See Also

o Recipe 3.9, “Converting Between Degrees and Radians”
o Recipe 5.7, “Making Sure a Sorted Array Stays Sorted”
o Recipe 19.14, “Running Multiple Analysis Tools at Once”

11.15 Doing Aspect-Oriented Programming

Problem

You want to “wrap” a method with new code, so that calling the method triggers some
new feature in addition to the original code.

Solution

You can arrange for code to be called before and after a method invocation by using
method aliasing and metaprogramming, but it’s simpler to use the glue gem or the
AspectR third-party library. The latter lets you define “aspect” classes whose methods
are called before and after other methods.

Here’s a simple example that traces calls to specific methods as they’re made:

gem 'aspectr'
require 'aspectr'
class Verbose < AspectR::Aspect

def describe(method_sym, object, *args)
"#{object.inspect}.#{method_sym}(#{args.join(",")})"
end

def before(method_sym, object, return_value, *args)
puts "About to call #{describe(method_sym, object, *args)}."
end

def after(method_sym, object, return_value, *args)
puts "#{describe(method_sym, object, *args)} has returned " +
return_value.inspect + '.'
end
end

11.15 Doing Aspect-Oriented Programming | 423

Here, we'll wrap the push and pop methods of an array. Every time we call those
methods, the aspect code will run and some diagnostics will be printed:

verbose = Verbose.new
stack = []
verbose.wrap(stack, :before, :after, :push, :pop)

stack.push(10)
About to call [].push(10).
[10].push(10) has returned [[10]].

stack.push(4)
About to call [10].push(4).
[10, 4].push(4) has returned [[10, 4]].

stack.pop
About to call [10, 4].pop().
[10].pop() has returned [4].

Discussion

There’s a pattern that shows up again and again in Ruby (we cover it in Recipe 8.10).
You write a method that performs some task-specific setup (like initializing a timer),
runs a code block, and then performs task-specific cleanup (like stopping the timer
and printing out timing results). By passing in a code block to one of these methods
you give it a new aspect: the same code runs as if youd just called Proc#call on the
code block, but now it’s got something extra: the code gets timed, or logged, or won’t
run without authentication, or it automatically performs some locking.

Aspect-oriented programming lets you permanently add these aspects to previously
defined methods, without having to change any of the code that calls them. It’s a good
way to modularize your code, and to modify existing code without having to do a lot
of metaprogramming yourself. Though less mature, the AspectR library has the same
basic features of Java’s Aspect].

The Aspect#wrap method modifies the methods of some other object or class. In the
preceding example, the push and pop methods of the stack are modified: you could
also modify the Array#push and Array#pop methods themselves, by passing in Array
instead of stack.

Aspect#wrap aliases the old implementations to new names, and defines the method
anew to include calls to a “pre” method (@Verbose#before in the example) and/or a
“post” method (@Verbose#after in the example).

You can wrap the same method with different aspects at the same time:

class EvenMoreVerbose < AspectR::Aspect
def useless(method_sym, object, return_value, *args)
puts "More useless verbosity."

424 | Chapter 11: Reflection and Metaprogramming

end
end

more_verbose = EvenMoreVerbose.new
more_verbose.wrap(stack, :useless, nil, :push)
stack.push(60)

About to call [10].push(60).

More useless verbosity.

[10, 60].push(60) has returned [[10, 60]].

You can also undo the effects of a wrap call with Aspect#unwrap:

verbose.unwrap(stack, :before, :after, :push, :pop)
more_verbose.unwrap(stack, :useless, nil, :push)
stack.push(100) # => [10, 60, 100]

Because they use aliasing under the covers, you can't use AspectR or glue to attach
aspects to operator methods like <<. If you do, AspectR (for instance) will try to
define a method called aopsingleton_<<, which isn’t a valid method name. You'll
need to do the alias yourself, using a method name like old_1lshift, and define a new
<< method that makes the pre- and post-calls.

See Also

o The AspectR home page
o Recipe 8.10, “Hiding Setup and Cleanup in a Block Method”
o Recipe 11.14, “Aliasing Methods”

»

« Recipe 22.4, “Synchronizing Access to an Object

11.16 Enforcing Software Contracts
Credit: Maurice Codik

Problem

You want your methods to validate their arguments, using techniques like duck typ-
ing and range validation, without filling your code with tons of conditions to test
arguments.

Solution

Here’s a Contracts module that you can mix into your classes. Your methods can
then define and enforce contracts:

module Contracts
def valid_contract(input)

11.16 Enforcing Software Contracts | 425

https://github.com/gcao/aspector

if @user_defined and @user_defined[input]
@user_defined[input]
else
case input
when :number
lambda { |x| x.is_a? Numeric }
when :string
lambda { |x| x.respond_to? :to_str }
when :anything
lambda { |x| true }
else
lambda { |x| false }
end
end
end

class ContractViolation < StandardError
end

def define_data(inputs={}.freeze)
Quser_defined ||= {}
inputs.each do |name, contract|
@Quser_defined[name] = contract if contract.respond_to? :call
end
end

def contract(method, *inputs)
@contracts ||= {}
@contracts[method] = inputs
method_added(method)

end

def setup_contract(method, inputs)
@contracts[method] = nil
method_renamed = "__#{method}".intern
conditions = ""
inputs.flatten.each_with_index do |input, 1|
conditions << %{
if not self.class.valid_contract(#{input.inspect}).call(args[#{1}])
raise ContractViolation, "argument #{i+1} of method '#{method}' must" +
"satisfy the '#{input}' contract", caller
end
}

end

class_eval %{
alias_method #{method_renamed.inspect}, #{method.inspect}
def #{method}(*args)
#{conditions}
return #{method_renamed}(*args)
end

}

426 | Chapter 11: Reflection and Metaprogramming

end

def method_added(method)
inputs = @contracts[method]
setup_contract(method, inputs) if inputs
end
end

You can call the define_data method to define contracts, and call the contract
method to apply these contracts to your methods. Here’s an example:

class TestContracts
def hello(n, s, f)
n.times { f.write "hello #{s}!\n" }
end

The hello method takes as its arguments a positive number, a string, and a file-type
object that can be written to. The Contracts module defines a :string contract for
making sure an item is stringlike. We can define additional contracts as code blocks;
these contracts make sure an object is a positive number, or an open object that sup-
ports the write method:

extend Contracts

writable_and_open = lambda do |x|
x.respond_to?('write') and x.respond_to?('closed?') and not x.closed?
end

define_data(:writable => writable_and_open,
:positive => lambda {|x| x >= 0 })

Now we can call the contract method to create a contract for the three arguments of
the hello method:

contract :hello, [:positive, :string, :writable]
end

Here it is in action:

tc =TestContracts.new
tc.hello(2, 'world', Sstdout)
hello world!

hello world!

tc.hello(-1, 'world', $stdout)
Contracts::ContractViolation: argument 1 of method 'hello' must satisfy the
'positive' contract

tc.hello(2, 3001, $stdout)
test-contracts.rb:22: argument 2 of method 'hello' must satisfy the

'string' contract (Contracts::ContractViolation)

closed_file = open('file.txt', 'w') { }

11.16 Enforcing Software Contracts | 427

tc.hello(2, 'world', closed_file)
Contracts::ContractViolation: argument 3 of method 'hello' must satisfy the
'writable' contract

Discussion

The Contracts module uses many of Ruby’s metaprogramming features to make
these runtime checks possible. The line of code that triggers it all is this one:

contract :hello, [:positive, :string, :writable]

That line of code replaces the old implementation of hello with one that looks like
this:

def hello(n,s,f)
if not (n >= 0)
raise ContractViolation,
"argument 1 of method 'hello' must satisfy the 'positive' contract", caller
end
if not (s.respond_to? String)
raise ContractViolation,
"argument 2 of method 'hello' must satisfy the 'string' contract",
caller
end
if not (f.respond_to?('write') and f.respond_to?('closed?")
and not f.closed?)
raise ContractViolation,
"argument 3 of method 'hello' must satisfy the 'writable' contract",
caller
end
return __hello(n,s,f)
end

def __hello(n,s,f)
n.times { f.write "hello #{s}!\n" }
end
The body of define_data is simple: it takes a hash that maps contract names to Proc
objects, and adds each new contract definition to the user_defined hash of custom
contracts for this class.

The contract method takes a method symbol and an array naming the contracts to
impose on that method’s arguments. It registers a new set of contracts by sending
them to the method symbol in the @contracts hash. When Ruby adds a method defi-
nition to the class, it automatically calls the Contracts: :method_added hook, passing
in the name of the method name as the argument. Contracts: :method_added checks
whether the newly added method has a contract defined for it. If it finds one, it calls
setup_contract.

All of the heavy lifting is done in setup_contract. This is how it works, step by step:

428 | Chapter 11: Reflection and Metaprogramming

1. Remove the method’s information in @contracts. This prevents an infinite loop
when we redefine the method using alias_method later.

2. Generate the new name for the method. In this example, we simply append two
underscores to the front.

3. Create all of the code to test the types of the arguments. We loop through the
arguments using Enumerable#each_with_index, and build up a string in the con
ditions variable that contains the code we need. The condition code uses the
valid_contract method to translate a contract name (such as :number) to a Proc
object that checks whether its argument satisfies that contract.

4. Use class_eval to insert our code into the class that called extend Contracts.
The code in the eval statment does the following:
o Call alias_method to rename the newly added method to our generated name.

o Define a new method with the original’s name that checks all of our conditions
and then calls the renamed function to get the original functionality.

See Also

o Recipe 14.13, “Validating Data with ActiveRecord”

« Ruby also has an Eiffel-style Design by Contract library, which lets you define
invariants on classes, and pre-and post-conditions on methods; it’s available as
the dbc gem

11.16 Enforcing Software Contracts | 429

CHAPTER 12

XML and HTML

XML and HTML are the most popular markup languages (textual ways of describing
structured data). HTML is used to describe textual documents, like you see on the
Web. XML is used for just about everything else: data storage, messaging, configura-
tion files, you name it. Just about every software buzzword forged over the past few
years involves XML.

Java and C++ programmers tend to regard XML as a lightweight, agile technology,
and are happy to use it all over the place. XML is a lightweight technology, but only
compared to Java or C++. Ruby programmers see XML from the other end of the
spectrum, and from there it looks pretty heavy. Simpler formats like YAML and JSON
usually work just as well (see Recipes 14.1 or 14.2), and are easier to manipulate. But
to shun XML altogether would be to cut Ruby off from the rest of the world, and
nobody wants that. This chapter covers the most useful ways of parsing, manipulat-
ing, slicing, and dicing XML and HTML documents.

There are two standard APIs for manipulating XML: DOM and SAX. Both are over-
kill for most everyday uses, and neither is a good fit for Ruby’s code block-heavy
style. Ruby’s solution is to offer a pair of APIs that capture the style of DOM and SAX
while staying true to the Ruby programming philosophy.' Both APIs are in the stan-
dard library’s REXML package, written by Sean Russell.

Like DOM, the Document class parses an XML document into a nested tree of objects.
You can navigate the tree with Ruby accessors (Recipe 12.2) or with XPath queries
(Recipe 12.4). You can modify the tree by creating your own Element and Text
objects (Recipe 12.8). If even Document is too heavyweight for you, you can use the
XmlSimple library to transform an XML file into a nested Ruby hash (Recipe 12.5).

1 REXML also provides the SAX2Parser and SAX2Listener classes, which implement the basic SAX2 API

431

With a DOM-style API like Document, you have to parse the entire XML file before
you can do anything. The XML document becomes a large number of Ruby objects
nested under a Document object, all sitting around taking up memory. With a SAX-
style parser like the StreamParser class, you can process a document as it’s parsed,
creating only the objects you want. The StreamParser API is covered in Recipe 12.3.

The main problem with the REXML APIs is that they’re very picky. They’ll only parse
a document that’s valid XML, or close enough to have an unambiguous representa-
tion. This makes them nearly useless for parsing HTML documents off the World
Wide Web, since the average web page is not valid XML.

For more information on the REXML package, see the following:

o REXML home page
o REXML tutorial

12.1 Checking That XML Is Well Formed

Credit: Rod Gaither

Problem

You want to check that an XML document is well formed before processing it.

Solution

The best way to see whether a document is well formed is to try to parse it. The
REXML library raises an exception when it can’t parse an XML document, so just try
parsing it and rescue any exception.

The following valid_xml? method returns nil unless it’s given a valid XML docu-
ment. If the document is valid, it returns a parsed Document object, so you don’t have
to parse it again:

require 'rexml/document'
defvalid_xml?(xml)
begin
REXML: :Document.new(xml)
rescue REXML::ParseException
Return nil i1f an exception is thrown
end
end

432 | Chapter 12: XML and HTML

http://bit.ly/rexml_home
http://bit.ly/rexml_tutorial

Discussion

To be useful, an XML document must be structured correctly or “well formed.” For
instance, an opening tag must either be self-closing or be paired with an appropriate
closing tag.

As a file and messaging format, XML is often used in situations where you don’t have
control over the input, so you can’t assume that it will always be well formed. Rather
than just letting REXML throw an exception, you'll need to handle ill-formed XML
gracefully, providing options to retry or continue on a different path.

This bit of XML is not well formed; it’s missing ending tags for both the pending and
done elements:

bad_xml = %{
<tasks>
<pending>

<entry>Grocery Shopping</entry>
<done>

<entry>Dry Cleaning</entry>
</tasks>}

valid_xml?(bad_xml) # => nil
This bit of XML is well formed, so valid_xml? returns the parsed Document object:

good_xml = %{

<groceries>
<bread>Wheat</bread>
<bread>Quadrotriticale</bread>
</groceries>}

doc = valid_xml?(good_xml)

doc.root.elements[1] # => <bread> .. </>
When your program is responsible for writing XML documents, youw’ll want to write
unit tests that make sure you generate valid XML. You can use a feature of the
Test::Unit library to simplify the checking. Since invalid XML makes REXML throw
an exception, your unit test can use the assert_nothing_thrown method to make
sure your XML is valid:

doc = nil
assert_nothing_thrown {doc = REXML::Document.new(source_xml)}

This is a simple, clean test to verify XML when using a unit test.

Note that valid_xml? doesn’t work perfectly: some invalid XML is unambiguous,
which means REXML can parse it. Consider this truncated version of the valid XML
example. It's missing its closing tags, but there’s no ambiguity about which closing tag
should come first, so REXML can parse the file and provide the closing tags:

12.1 Checking That XML Is Well Formed | 433

invalid_xml = %{
<groceries>
<bread>Wheat

}

(valid_xml? invalid_xml) == nil # => false # That is, it is "valid"
REXML: :Document.new(invalid_xml).write

<groceries>

<bread>Wheat

</bread></groceries>

See Also

« The official documentation on XML

o Wikipedia has a good description of the difference between well-formed and
valid XML documents

« Recipe 19.3, “Handling an Exception”

12.2 Extracting Data from a Document’s Tree Structure
Credit: Rod Gaither

Problem

You want to parse an XML file into a Ruby data structure, to traverse it or extract data
from it.

Solution

Pass an XML document into the REXML: :Document constructor to load and parse the
XML. A Document object contains a tree of subobjects (of class Element and Text)
representing the tree structure of the underlying document. The methods of Docu
ment and Element give you access to the XML tree data. The most useful of these
methods is #each_element.

Here’s some sample XML and the load process. The document describes a set of
orders, each of which contains a set of items. This particular document contains a
single order for two items:

orders_xml = %{
<orders>
<order>
<number>105</number>
<date>02/10/2006</date>
<customer>Corner Store</customer>
<items>

434 | Chapter 12: XML and HTML

http://www.w3.org/XML/
http://bit.ly/xml_well-formed

<item upc="404100" desc="Red Roses" qty="240" />
<item upc="412002" desc="Candy Hearts" qty="160" />
</items>
</order>
</orders>}

require 'rexml/document'

orders = REXML::Document.new(orders_xml)
To process each order in this document, we can use Document#root to get the docu-
ment’s root element (<orders>) and then call Element#each_element to iterate over
the children of the root element (the <order> elements). This code repeatedly calls
each to move down the document tree and print the details of each order in the
document:

orders.root.each_element do |order| # each <order> in <orders>
order.each_element do |node] # <customer>, <items>, etc. in <order>
if node.has_elements?
node.each_element do |child| # each <item> in <items>
puts "#{child.name}: #{child.attributes|['desc']}"
end
else

the contents of <number>, <date>, etc.
puts "#{node.name}: #{node.text}"
end
end
end
number: 105
date: 02/10/2006
customer: Corner Store
item: Red Roses
item: Candy Hearts

Discussion

Parsing an XML file into a Document gives you a tree-like data structure that you can
treat kind of like an array of arrays. Starting at the document root, you can move
down the tree until you find the data that interests you. In the preceding example,
note how the structure of the Ruby code mirrors the structure of the original docu-
ment. Every call to each_element moves the focus of the code down a level: from
<orders> to <order> to <items> to <items.

There are many other methods of Element you can use to navigate the tree structure
of an XML document. Not only can you iterate over the child elements, you can also
reference a specific child by indexing the parent as though it were an array. You can
navigate through siblings with Element.next_element and Element.previous_ele
ment. You can move up the document tree with Element.parent:

12.2 Extracting Data from a Document’s Tree Structure | 435

my_order = orders.root.elements[1]
first_node = my_order.elements[1]

first_node.name # => "number"
first_node.next_element.name # => "date"
first_node.parent.name # => "order"

This only scratches the surface; there are many other ways to interact with the data
loaded from an XML source. For example, explore the convenience methods Ele
ment.each_element_with_attribute and Element.each_element_with_text,
which let you select elements based on features of the elements themselves.

See Also

o The RDoc documentation for the REXML: :Document and REXML : : Element classes
o The section “Tree Parsing XML and Accessing Elements” in the REXML tutorial

o If you want to start navigating the document at some point other than the root,
an XPath statement is probably the simplest way to get where you want; see
Recipe 12.4, “Navigating a Document with XPath”

12.3 Extracting Data While Parsing a Document

Credit: Rod Gaither

Problem

You want to process a large XML file without loading it all into memory.

Solution

The method REXML: :Document.parse_stream gives you a fast and flexible way to
scan a large XML file and process the parts that interest you.

Consider this XML document, the output of a hypothetical program that runs auto-
mated tasks. We want to parse the document and find the tasks that failed (that is,
returned an error code other than zero):

event_xml = %{

<events>
<clean system="dev" start="01:35" end="01:55" area="build" error="1" />
<backup system="prod" start="02:00" end="02:35" size="2300134" error="0" />
<backup system="dev" start="02:00" end="02:01" size="0" error="2" />
<backup system="test" start="02:00" end="02:47" size="327450" error="0" />

</events>}

We can process the document as it’s being parsed by writing a REXML: :StreamLis
tener subclass that responds to parsing events such as tag_start and tag_end. Here’s

436 | Chapter12: XML and HTML

http://bit.ly/rexml_tree_parsing

a subclass that listens for tags with a nonzero value for their error attribute. It prints
a message for every failed event it finds:

require 'rexml/document'
require 'rexml/streamlistener’

class ErrorListener
include REXML::StreamListener
def tag_start(name, attrs)
if attrs["error"] != nil and attrs["error"] != "0@"
puts %{Event "#{name}" failed for system "#{attrs["system"]}" } +
%{with code #{attrs["error"]}}
end
end
end

To actually parse the XML data, pass it along with the StreamListener into the
method REXML: :Document.parse_stream:
REXML: :Document.parse_stream(event_xml, ErrorListener.new)

Event "clean" failed for system "dev" with code 1
Event "backup" failed for system "dev" with code 2

Discussion

We could find the failed events in less code by loading the XML into a Document and
running an XPath query. That approach would work fine for this example, since the
document contains only four events. It wouldn't work as well if the document were a
file on disk containing a billion events. Building a Document means building an elabo-
rate in-memory data structure representing the entire XML document. If you care
about only part of a document (in this case, the failed events), it's faster and less
memory-intensive to process the document as it’s being parsed. Once the parser rea-
ches the end of the document, you're done.

The stream-oriented approach to parsing XML can be as simple as shown in this
recipe, but it can also handle much more complex scenarios. Your StreamListener
subclass can keep arbitrary state in instance variables, letting you track complex com-
binations of elements and attributes.

See Also

o The RDoc documentation for the REXML: : StreamParser class
o The “Stream Parsing” section of the REXML tutorial

o Recipe 12.2, “Extracting Data from a Document’s Tree Structure”

12.3 Extracting Data While Parsing a Document | 437

http://bit.ly/rexml_stream_parsing

12.4 Navigating a Document with XPath

Problem

You want to find or address sections of an XML document in a standard, program-
ming language-independent way.

Solution

The XPath language defines a way of referring to almost any element or set of ele-
ments in an XML document, and the REXML library comes with a complete XPath
implementation. REXML: :XPath provides three class methods for locating Element
objects within parsed documents: first, each, and match.

Take as an example the following XML description of an aquarium. The aquarium
contains some fish and a gaudy castle decoration full of algae. Due to an aquarium
stocking mishap, some of the smaller fish have been eaten by larger fish, just like in
those cartoon food chain diagrams (Figure 12-1 shows the aquarium):

xml = %{
<aquarium>
<fish color="blue" size="small" />

<fish color="orange" size="large">
<fish color="green" size="small">
<fish color="red" size="tiny" />
</fish>

</fish>

<decoration type="castle" style="gaudy">
<algae color="green" />

</decoration>

</aquarium>}

require 'rexml/document’
doc = REXML::Document.new(xml)

438 | Chapter 12: XML and HTML

Aquarium

Small blue fish Large orange fish
Small green fish

Tiny red fish

Gaudy castle

Green algae

Figure 12-1. The aquarium

We can use REXML: :Xpath.first to get the Element object corresponding to the first
<fish> tag in the document:

REXML: :XPath.first(doc, '//fish")
=> <fish size='small' color="'blue'/>

We can use match to get an array containing all the elements that are green:

REXML: :XPath.match(doc, '//[@color="green"]")
=> [<fish size="small' color='green's .. </>, <algae color="'green'/>]

We can use each with a code block to iterate over all the fish that are inside other fish:

def describe(fish)
"#{fish.attribute('size')} #{fish.attribute('color')} fish"
end
REXML: :XPath.each(doc, '//fish/fish') do |fish|
puts "The #{describe(fish.parent)} has eaten the #{describe(fish)}."
end
The large orange fish has eaten the small green fish.
The small green fish has eaten the tiny red fish.

Discussion

Every element in a Document has an xpath method that returns the canonical XPath
path to that element. This path can be considered the element’s “address” within the
document. In this example, a complex bit of Ruby code is replaced by a simple XPath
expression:

red_fish = doc.children[0].children[3].children[1].children[1]
=> <fish size="tiny' color='red'/>

red_fish.xpath
=> "/aquarium/fish[2]/fish/fish"

REXML: :XPath.first(doc, red_fish.xpath)
=> <fish size="tiny' color='red'/>

12.4 Navigating a Document with XPath | 439

Even a brief overview of XPath is beyond the scope of this recipe, but here are some
more examples to give you ideas:

Find the second green element.
REXML: :XPath.match(doc, '//[@color="green"]')[1]
=> <algae color="green'/>

Find the color attributes of all small fish.
REXML: :XPath.match(doc, '//fish[@size="small"]/@color"')
=> [color="blue', color="green']

Count how many fish are inside the first large fish.
REXML: :XPath.first(doc, "count(//fish[@size='large'][1]//*fish)")
#=>2

The Elements class acts kind of like an array that supports XPath addressing. You can
make your code more concise by passing an XPath expression to Elements#each, or
using it as an array index:

doc.elements.each('//fish') { |f| puts f.attribute('color') }
blue

orange

green

red

doc.elements['//fish']
=> <fish size='small' color="blue'/>

Within an XPath expression, the first element in a list has an index of 1, not 0. The
XPath expression //fish[size=1arge][1] matches the first large fish, not the second
large fish, the way large_fish[1] would in Ruby code. Pass a number as an array
index to an Elements object, and you get the same behavior as XPath:

doc.elements[1]
=> <aquarium> .. </>
doc.children[0]
=> <aquarium> .. </>

See Also

o The XPath standard has more XPath examples
o XPath and XPointer by John E. Simpson (O’Reilly)

440

| Chapter 12: XMLand HTML

http://www.w3.org/TR/xpath
http://shop.oreilly.com/product/9780596002916.do

12.5 Converting an XML Document into a Hash

Problem

When you parse an XML document with Document.new, you get a representation of
the document as a complex data structure. Youd like to represent an XML document
using simple, built-in Ruby data structures.

Solution

Use the XmlSimple library, found in the xml-simple gem. It parses an XML document
into a hash.

Consider an XML document like this one:

xml = %{
<freezer temp="-12" scale="celcius">
<food>Phyllo dough</food>

<food>Ice cream</food>
<icecubetray>

<cubel />

<cube2 />

</icecubetray>
</freezer>}

Here’s how you parse it with XMLSimple:

gem 'xmlsimple’
require 'xmlsimple'

doc = XmlSimple.xml_in xml
And here’s what it looks like:

require 'pp'

pp doc

{"icecubetray"=>[{"cube2"=>[{}], "cubel"=>[{}]}],
"food"=>["Phyllo dough", "Ice cream"],

'"scale"=>"celcius",

"temp"=>"-12"}

Discussion

XmlSimple is a lightweight alternative to the Document class. Instead of exposing a tree
of Element objects, it exposes a nested structure of Ruby hashes and arrays. There’s no
performance savings (XmlSimple actually builds a Document class behind the scenes
and iterates over it, so it's about half as fast as Document), but the resulting object is
easy to use. XmlSimple also provides several tricks that can make a document more
concise and navigable.

12.5 Converting an XML DocumentintoaHash | 441

The most useful trick is the KeyAttr one. Suppose you had a better-organized freezer
than the preceding one, a freezer in which everything had its own name attribute:'

xml = %{

<freezer temp="-12" scale="celcius">

<item name="Phyllo dough" type="food" />
<item name="Ice cream" type="food" />

<item name="Ice cube tray" type="container"s
<item name="Ice cube" type="food" />
<item name="Ice cube" type="food" />
</item>

</freezer>}

You could parse this data with just a call to XmlSimple.xml_in, but you get a more
concise representation by specifying the name attribute as a KeyAttr argument.
Compare:

parsedl = XmlSimple.xml_in xml

pp parsedi

{"scale"=>"celcius",

"item"=>

[{"name"=>"Phyllo dough", "type"=>"food"},
{"name"=>"Ice cream", "type"=>"food"},

"name"=>"Ice cube tray",
"type"=>"contailner",
"{tem"=>
[{"name"=>"Ice cube", "type"=>"food"},
{"name"=>"Ice cube", "type"=>"food"}]}],

"temp"=>"-12"}

H OHE R R

parsed2 = XmlSimple.xml_in(xml, 'KeyAttr' => 'name')
pp parsed2

{"scale"=>"celcius",

"item"=>

{"Phyllo dough"=>{"type"=>"food"},

"Ice cube tray"=>

{"type"=>"contailner",

"{tem"=>{"Ice cube"=>{"type"=>"food"}}},

"Ice cream"=>{"type"=>"food"}},

"temp"=>"-12"}

The second parsing is also easier to navigate:

parsedi["item"].detect { |i| i['name'] == 'Phyllo dough' }['type']
=> "food"

parsed2["item"]["Phyllo dough"]["type"]

=> "food"

1 Okay, it’s not really better organized. In fact, it’s exactly the same. But it sure looks cooler!

442 | Chapter 12: XML and HTML

But notice that the second parsing represents the ice cube tray as containing only one
ice cube. This is because both ice cubes have the same name. When two tags at the
same level have the same KeyAttr, one overwrites the other in the hash.

You can modify the data structure with normal Ruby hash and array methods, then
write it back out to XML with XMLSimple.xml_out:

parsedi["item"] << {"name"=>"Curry leaves", "type"=>"spice"}
parsed1["item"].delete_if { |i| i["name"] == "Ice cube tray" }

puts XmlSimple.xml_out(parsedl, "RootName"=>"freezer")
<freezer scale="celcius" temp="-12">

<item name="Phyllo dough" type="food" />

<item name="Ice cream" type="food" />

<item name="Curry leaves" type="spice" />

</freezer>

Be sure to specify a RootName argument when you call xml_out. When it parses a file,
XmlSimple removes one level of indirection by throwing away the name of your doc-
ument’s root element. You can prevent this by using the KeepRoot argument in your

original call to xml_in. You'll need an extra hash lookup to navigate the resulting data
structure, but you'll retain the name of your root element:

parsed3 = XmlSimple.xml_in(xml, 'KeepRoot'=>true)
Now there's no need to add an extra root element when writing back to XML.
XmlSimple.xml_out(parsed3, 'RootName'=>nil)

One disadvantage of XmlSimple is that, since an element’s attributes and children are
put into the same hash, you have no reliable way of telling one from the other.
Indeed, attributes and subelements may even end up in a list together, as in this
example:

pp XmlSimple.xml_in(%{

<freezer temp="-12" scale="celcius">

<temp>Body of temporary worker who knew too much</temp>
</freezer>})

{"scale"=>"celcius",

"temp"=>["-12", "Body of temp worker who knew too much"]}

See Also

o The XmlSimple home page has much more information about the options you
can pass to XmlSimple.xml_1in

12.5 Converting an XML DocumentintoaHash | 443

https://github.com/maik/xml-simple

12.6 Validating an XML Document

Credit: Mauro Cicio

Problem

You want to check whether an XML document conforms to a certain schema or DTD
(document type definition).

Solution

In order to validate XML documents, you need to install the nokogiri gem. To vali-
date a document against a DTD, use the Nokogiri::XML::Document#validate
method.

Consider the following DTD, for a cookbook like this one:

gem 'nokogiri'
require 'nokogiri'

dtd = Nokogiri::XML::Document.parse(%{<!ELEMENT rubycookbook (recipe+)>
<!ELEMENT recipe (title?, problem, solution, discussion, seealso?)+>
<!ELEMENT title (#PCDATA)>

<!ELEMENT problem (#PCDATA)>

<!ELEMENT solution (#PCDATA)>

<!ELEMENT discussion (#PCDATA)>

<!ELEMENT seealso (#PCDATA)>})

Here’s an XML document that looks like it conforms to the DTD:

open('cookbook.xml', 'w') do |f]|
f.write %{<?xml version="1.0"7>
<rubycookbook>
<recipe>
<title>A recipe</title>
<problem>A difficult/common problem</problem>
<solution>A smart solution</solution>
<discussion>A deep solution</discussion>
<seealso>Pointers</seealso>
</recipe>
</rubycookbook>

}

end
But does it really? We can tell for sure with Document#validate:

document = Nokogiri::XML(File.open('cookbook.xml"'))
document.external_subset.validate

444 | Chapter12:XMLand HTML

Discussion

Programs that use XML validation are more robust and less complicated than nonva-
lidating versions. Before starting work on a document, you can check whether or not
it's in the format you expect. Most services that accept XML as input don’t have for-
giving parsers, so you must validate your document before submitting it or it might
fail without you even noticing.

One of the most popular and complete XML libraries around is the GNOME 1ibxm12
library. Despite its name, it works fine outside the GNOME platform, and has been
ported to many different OSes. The Ruby projects nokogiri and libxml are Ruby
wrappers around the GNOME 1ibxm12 library. Not only does 1ibxml support valida-
tion and a complete range of XML manipolation techniques, it can also improve your
program’s speed by an order of magnitude, since it’s written in C instead of REXMLs
pure Ruby.

Don’t confuse the libxml project with the libxml library. The latter is part of the
XML::Tools project. It binds against the GNOME Libxml2 library, but it doesn't
expose that library’s validation features. If you try the preceding example code but
can’t find the XML: :Dtd or the XML: :Schema classes, then you've got the wrong bind-
ing. If you installed the 1ibxml-ruby package on Debian GNU/Linux, you've got the
wrong one. You need the one you get by installing the libxml-ruby gem. Of course,
you'll need to have the actual GNOME 1ibxml library installed as well.

See Also

o The Nokogiri project page

o The Ruby libxml project page

o The GNOME libxml project home page

o Refer to http://www.w3.0rg/XML for the difference between a DTD and a schema

12.7 Substituting XML Entities

Problem

You've parsed a document that contains internal XML entities. You want to substitute
the entities in the document for their values.

Solution

To perform entity substitution on a specific text element, call its value method. If it’s
the first text element of its parent, you can call text on the parent instead.

12.7 Substituting XML Entities | 445

http://nokogiri.org
http://libxml.rubyforge.org
http://nokogiri.org
http://xml4r.github.io/libxml-ruby/
http://xmlsoft.org/
http://www.w3.org/XML

Here’s a simple document that defines and uses two entities in a single text node. We
can substitute those entities for their values without changing the document itself:

require 'rexml/document'

str = %{<?xml version="1.0"?>
<!DOCTYPE doc [
<!ENTITY product 'Stargaze's
<!ENTITY version '2.3'>
1>
<doc>
&product; v&version; is the most advanced astronomy product on the market.
</doc>}
doc = REXML::Document.new str

doc.root.children[0].value

=> "|\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"
doc.root. text

=> "|\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"

doc.root.children[0].to_s

=> "\n &product; v&version; is the most advanced

astronomy product on the market.|n"
doc.root.write

<doc>

&product; v&version; is the most advanced astronomy program on the market.

</doc>

Discussion

Internal XML entities are often used to factor out data that changes a lot, like dates or
version numbers. But REXML only provides a convenient way to perform substitu-
tion on a single text node. What if you want to perform substitutions throughout the
entire document?

When you call Document#write to send a document to some IO object, it ends up
calling Text#to_s on each text node. As seen in the Solution, this method presents a
“normalized” view of the data, one where entities are displayed instead of having their
values substituted in.

We could write our own version of Document#write that presents an “unnormalized”
view of the document, one with entity values substituted in, but that would be a lot of
work. We could hack Text#to_s to work more like Text#value, or hack Text#write
to call the value method instead of to_s. But it’s less intrusive to do the entity
replacement outside of the write method altogether. Here’s a class that wraps any I0
object and performs entity replacement on all the text that comes through it:

require 'delegate'

require 'rexml/text'
class EntitySubstituter < DelegateClass(IO)

446 | Chapter12: XML and HTML

def initialize(io, document, filter=nil)
@document = document
@filter = filter
super(io)

end

def <<(s)
super (REXML: : Text: :unnormalize(s, @document.doctype, @filter))
end
end

output = EntitySubstituter.new(S$stdout, doc)

doc.write(output)

<?xml version='1.0'?><!DOCTYPE doc [

<!ENTITY product "Stargaze's

<!ENTITY version "2.3">

]>

<doc>

Stargaze v2.3 is the most advanced astronomy product on the market.
</doc>

Because it processes the entire output of Document#write, this code will replace all
entity references in the document. This includes any references found in attribute val-
ues, which may or may not be what you want.

If you create a Text object manually, or set the value of an existing object, REXML
assumes that youre giving it unnormalized text, and normalizes it. This can be prob-
lematic if your text contains strings that happen to be the values of entities:

text_node = doc.root.children[0]
text_node.value = "&product; v&version; has a catalogue of 2.3 " +
"million celestial objects."

doc.write

<?xml version='1.0'?><!DOCTYPE doc [

<!ENTITY product "Stargaze"s

<!ENTITY version "2.3">

]>

<doc>&product; vé&version; has a catalogue of
&version; million celestial objects.</doc>

To avoid this, you can create a “raw” text node:

text_node.raw = true

doc.write

<?xml version='1.0'?><!DOCTYPE doc [

<!ENTITY product "Stargaze">

<!ENTITY version "2.3">

]>

<doc>&product; v&version; has a catalogue
of 2.3 million celestial objects.</doc>

12.7 Substituting XML Entities | 447

text_node.value

=> "Stargaze v2.3 has a catalogue of 2.3 million celestial objects."
text_node.to_s

=> "&product; vé&version; has a catalogue of 2.3 million celestial objects."

In addition to entities you define, REXML automatically processes five named char-
acter entities: the ones for left and right angle brackets, single and double quotes, and
the ampersand. Each is replaced with the corresponding ASCII character:

str = %{

<IDOCTYPE doc [<!ENTITY year '2006's>]>
<doc>© &year; Komodo Dragon & Bob Productions</doc>

}

doc = REXML::Document.new str
text_node = doc.root.children[0]

text_node.value

=> "© 2006 Komodo Dragon & Bob Productions”
text_node.to_s

=> "© &year; Komodo Dragon & Bob Productions”

© is an HTML character entity representing the copyright symbol, but REXML
doesn’t know that. It only knows about the five XML character entities. Also, REXML
only knows about internal entities: ones whose values are defined within the same
document that uses them. It won’t resolve external entities.

See Also

o The section “Text Nodes” of the REXML tutorial

12.8 Creating and Modifying XML Documents

Problem

You want to modify an XML document, or create a new one from scratch.

Solution

To create an XML document from scratch, just start with an empty Document object:

require 'rexml/document'
doc = REXML::Document.new
To add a new element to an existing document, pass its name and any attributes into

its parent’s add_element method. You don't have to create the Element objects
yourself:

448 | Chapter 12: XML and HTML

http://bit.ly/rexml_text_nodes

meeting = doc.add_element 'meeting'
meeting_start = Time.local(2006, 10, 31, 13)
meeting.add_element('time', { 'from' => meeting_start,

'to' => meeting_start + 3600 })

doc.children[0] # => <meeting> .. </>
doc.children[0].children[0]

=> "<time from='Tue Oct 31 13:00:00 EST 2006’

to='Tue Oct 31 14:00:00 EST 2006'/>"

doc.write($stdout, 1)
<meeting>
<time from='Tue Oct 31 13:00:00 EST 2006’

to="Tue Oct 31 14:00:00 EST 2006'/>

</meeting>

doc.children[0] # => <?xml .. 7>
doc.children[1] # => <meeting> .. </>

To append a text node to the contents of an element, use the add_text method. This
code adds an <agenda> element to the <meeting> element, and gives it two different
text nodes:

agenda = meeting.add_element 'agenda'
doc.children[1].children[1] # => <agenda/>

agenda.
add_text "Nothing of importance will be decided."
agenda.add_text " The same tired ideas will be rehashed yet again."

doc.children[1].children[1] # => <agenda> .. </>

doc.write(Sstdout, 1)

<meeting>

<time from='Tue Oct 31 13:00:00 EST 2006’

to="'Tue Oct 31 14:00:00 EST 2006'/>

<agenda>

Nothing of importance will be decided. The same tired ideas will be
#

#

#

3

rehashed yet again.
</agenda>
</meeting>

Element#text= is a nice shortcut for giving an element a single text node. You can
also use it to overwrite a document’s initial text nodes:

iteml = agenda.add_element 'item'

doc.children[1].children[1].children[1] # => <item/>
iteml.text = 'Weekly status meetings: improving attendance'
doc.children[1].children[1].children[1] # => <item> .. </>

doc.write(Sstdout, 1)

<meeting>

<time from='Tue Oct 31 13:00:00 EST 2006’
to='Tue Oct 31 14:00:00 EST 2006'/>
<agenda>

12.8 Creating and Modifying XML Documents | 449

Nothing of importance will be decided. The same tired ideas will be
rehashed yet again.

<item>Weekly status meetings: improving attendance</item>

</agenda>

</meeting>

R R W

Discussion

If you can access an element or text node (numerically or with XPath), you can mod-
ify or delete it. You can modify an element’s name with name=, and modify one of its
attributes by assigning to an index of attributes. This code uses these methods to
make major changes to a document:

doc = REXML::Document.new %{<?xml version='1.0'?>
<girl size="little">

<foods>
<sugar />
<spice />
</foods>
<set of="nice things" cardinality="all" />
</qirl>
}
root = doc[1] # => <girl size='little'> .. </>
root.name = 'boy'
root.elements['//sugar'].name = 'snails'

root.delete_element('//spice')

set = root.elements['//set']
set.attributes["of"] = "snips"
set.attributes["cardinality"] = 'some'

root.add_element('set', {'of' => 'puppy dog tails', 'cardinality' => 'some' })
doc.write
<?xml version="'1.0'?>
<boy size='little'>
<foods>
<snails/>

</foods>
<set of='snips' cardinality="'some'/>
<set of='puppy dog tails' cardinality="'some'/></boy>

TR R R R R W

You can delete an attribute with Element#delete_attribute, or by assigning nil
to it:

root.attributes['size'] = nil
doc.write($stdout, 0)

<?xml version="'1.0'?>

<boy>

<foods>

450

| Chapter 12: XMLand HTML

.
</boy>

You can use methods like replace_with to swap out one node for another:
doc.elements["//snails"].replace_with(REXML::Element.new("escargot"))

All these methods are convenient, but add_element in particular is not very
idiomatic. The cgti library lets you structure method calls and code blocks so that
your Ruby code has the same nesting structure as the HTML it generates. Why
shouldn’t you be able to do the same for XML? Here’s a new method for Element that
makes it possible:

class REXML::Element
def with_element(*args)
e = add_element(*args)
yield e if block_given?
end
end

Now you can structure your Ruby code the same way you structure your XML:

doc = REXML::Document.new
doc.with_element('girl', {'size' => 'little'}) do |girl|
girl.with_element('foods') do |foods|
foods.add_element('sugar')
foods.add_element('spice')
end
girl.add_element('set', {'of' => 'nice things', 'cardinality' => 'all'})
end

doc.write(Sstdout, 0)
<girl size='little'>

<foods>

<sugar/>

<spice/>

</foods>

<set of='nice things' cardinality='all'/>
</girl>

The builder gem also lets you build XML this way.

See Also

o Recipe 8.10, “Hiding Setup and Cleanup in a Block Method,” has an example of
using the XmlMarkup class in the builder gem

12.8 Creating and Modifying XML Documents | 451

12.9 Compressing Whitespace in an XML Document

Problem

When REXML parses a document, it respects the original whitespace of the docu-
ment’s text nodes. You want to make the document smaller by compressing extra
whitespace.

Solution

Parse the document by creating a REXML: :Document out of it. Within the Document
constructor, tell the parser to compress all runs of whitespace characters:

require 'rexml/document'
text = %{<doc><a>Some whitespace Some more</doc>}

REXML: :Document.new(text, { :compress_whitespace => :all }).to_s
=> "<doc><a>Some whitespace Some more</doc>"

Discussion

Sometimes whitespace within a document is significant, but usually (as with HTML)
it can be compressed without changing the meaning of the document. The resulting
document takes up less space on the disk and requires less bandwidth to transmit.

Whitespace compression doesn't have to be all-or-nothing. REXML gives us two ways
to configure it. Instead of passing :all as a value for : compress_whitespace, you can
pass in a list of tag names. Whitespace will be compressed only in those tags:

REXML: :Document.new(text, { :compress_whitespace => %w{a} }).to_s

=> "<doc><a>Some whitespace Some more</doc>"
You can also switch it around: pass in :respect_whitespace and a list of tag names
whose whitespace you don’t want to be compressed. This is useful if you know that
whitespace is significant within certain parts of your document.

REXML: :Document.new(text, { :respect _whitespace => %w{a} }).to_s

=> "<doc><a>Some whitespace Some more</doc>"
What about text nodes containing only whitespace? These are often inserted by XML
pretty-printers, and they can usually be totally discarded without altering the mean-
ing of a document. If you add :ignore_whitespace_nodes => :all to the parser
configuration, REXML will simply decline to create text nodes that contain nothing
but whitespace characters. Here’s a comparison of :compress_whitespace alone, and
in conjunction with :ignore_whitespace_nodes:

text = %{<doc><a>Some text\n Some more</doc>\n\n}
REXML: :Document.new(text, { :compress_whitespace => :all }).to_s

452 | Chapter 12: XML and HTML

=> "<doc><a>Some text\n Some more\n</doc>"
REXML: :Document.new(text, { :compress_
whitespace => :all,

:ignore_whitespace_nodes => :all }).to_s
=> "<doc><a>Some textSome more</doc>"

By itself, :compress_ whitespace shouldn't make a document less human-readable,
but :ignore_whitespace_nodes almost certainly will.

See Also

 Recipe 2.11, “Managing Whitespace”

12.10 Guessing a Document’s Encoding

Credit: Mauro Cicio

Problem

You want to know the character encoding of a document that doesn’t declare it
explicitly.

Solution

Use the Ruby gem charguess, which is the binding to the l1ibcharguess library. Once
it’s installed, using libcharguess is very simple.

Here’s an XML document written in Italian, with no explicit encoding:

doc = %{<?xml version="1.0"?>
<menu tipo="specialita" giorno="venerdi"s>
<primo_piatto>spaghetti al ragu</primo_piatto>
<bevanda>frappé</bevanda>
</menu>}

Let’s find its encoding:

gem 'charguess'
require 'charguess'

CharGuess: :guess doc
=> "windows-1252"

This is a pretty good guess: the XML is written in the ISO-8859-1 encoding, and
many web browsers treat ISO-8859-1 as Windows-1252.

12.10 Guessing a Document’s Encoding | 453

Discussion

In XML, the character-encoding indication is optional, and may be provided as an
attribute of the XML declaration in the first line of the document:

<xml version="1.0" encoding="utf-8"?>

If this is missing, you must guess the document encoding to process the document.
You can assume the lowest common denominator for your community (usually this
means assuming that everything is either UTF-8 or ISO-8859-1), or you can use a
library that examines the document and uses heuristics to guess the encoding.

As of the time of writing, there are no pure Ruby libraries for guessing the encoding
of a document. Fortunately, there is a small Ruby wrapper around the libcharguess
library. This library can guess with 95% accuracy the encoding of any text whose
charset is one of the following: BIG5, HZ, JIS, SJIS, EUC-JP, EUC-KR, EUC-TW,
GB2312, Bulgarian, Cyrillic, Greek, Hungarian, Thai, Latin1, and UTF-8.

Note that libcharguess is not XML-or HTML-specific. In fact, it can guess the
encoding of an arbitrary string:

libcharguess: :guess("\xA4\xCF") # => "EUC-JP"

See Also

o To help you find your way through the jungle of character encodings, the Wiki-
pedia entry on character encodings is a good reference

o A good source for sample texts in various charsets is http://vancouver-
webpages.com/multilingual/

o The XML specification has a section on character encoding autodetection

o The libcharguess library is at http://libcharguess.sourceforge.net; its Ruby bind-
ings are available from https://github.com/ernesto-jimenez/charguess

12.11 Converting from One Encoding to Another

Credit: Mauro Cicio

Problem

You want to convert a document to a given charset encoding (probably UTE-8).

Solution

If you don’t know the document’s current encoding, you can guess at it using the 1ib
charguess library described in the previous recipe. Once you know the current

454 | Chapter 12: XML and HTML

http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_encoding
http://vancouver-webpages.com/multilingual/
http://vancouver-webpages.com/multilingual/
http://www.w3.org/TR/REC-xml/#sec-guessing
http://libcharguess.sourceforge.net
https://github.com/ernesto-jimenez/charguess

encoding, you can convert the document to another encoding using Ruby’s standard
iconv library.

Here’s an XML document written in Italian, with no explicit encoding:

doc = %{<?xml version="1.0"?>
<menu tipo="specialitad" giorno="venerdi">
<primo_piatto>spaghetti al ragu</primo_piatto>
<bevanda>frappe</bevanda>
</menu>}

Let’s figure out its encoding and convert it to UTF-8:

gem 'charguess'

require 'iconv'
require 'charguess' # not necessary if input encoding is known

input_encoding = CharGuess::guess doc # => "windows-1252"
output_encoding = 'utf-8'

converted_doc = Iconv.new(output_encoding, input_encoding).1iconv(doc)

CharGuess: :guess(converted_doc) # => "UTF-8"

Discussion

The heart of the iconv library is the Iconv class, a wrapper for the Unix 95 iconv
family of functions. These functions translate strings between various encoding sys-
tems. Since iconv is part of the Ruby standard library, it should be already available
on your system.

iconv works well in conjunction with libcharguess: even if libcharguess guesses
the encoding a little bit wrong (such as guessing Windows-1252 for an ISO-8859-1
document), it always makes a good enough guess that iconv can convert the docu-
ment to another encoding.

Like libcharguess, the iconv library is not XML-or HTML-specific. You can use 1ib

charguess and iconv together to convert an arbitrary string to a given encoding.

See Also

o Recipe 12.9, “Compressing Whitespace in an XML Document”

o The iconv library is documented at http://bit.ly/iconv_class; you can find pointers
to The Open Group Unix library specifications

12.11 Converting from One Encoding to Another | 455

http://bit.ly/iconv_class

12.12 Extracting All the URLs from an HTML Document

Problem
You want to find all the URLs on a web page.

Solution

Do you only want to find links (that is, URLs mentioned in the href attribute of an
<a> tag)? Do you also want to find the URLs of embedded objects like images and
applets? Or do you want to find all URLs, including ones mentioned in the text of the

page?

The last case is the simplest. You can use URI.extract to get all the URLs found in a
string, or to get only the URLs with certain schemes. Here we'll extract URLs from
some HTML, whether or not they’re inside <a> tags:

require 'uri
text = %{"My homepage is at

http://www.example.com/, and be sure
to check out my weblog at http://www.example.com/blog/. Email me at bob@example.com.}

URI.extract(text)

=> ["http://www.example.com/", "http://www.example.com/",

"http://www.example.com/blog/.", "mailto:bob@example.com"]

Get HTTP(S) links only.

URI.extract(text, ['http', 'https'])

=> ["http://www.example.com/", "http://www.example.com/"
"http://www.example.com/blog/."]

If you want only URLs that show up inside certain tags, you need to parse the HTML.
Assuming the document is valid, you can do this with any of the parsers in the rexml
library. Here’s an efficient implementation using REXMUIs stream parser. It retrieves
URLSs found in the href attributes of <a> tags and the src attributes of tags, but
you can customize this behavior by passing a different map to the constructor:

require 'rexml/document'
require 'rexml/streamlistener’
require 'set'

class LinkGrabber
include REXML::StreamListener
attr_reader :links

def initialize(interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
@tags = interesting_tags
@links = Set.new

456 | Chapter 12: XML and HTML

end

def tag_start(name, attrs)
@tags[name].each do |uri_attr|
@links << attrs[uri_attr] if attrs[uri_attr]
end if @tags[name]
end

def parse(text)
REXML: :Document.parse_stream(text, self)
end
end

grabber =LinkGrabber.new

grabber.parse(text)

grabber.links

=> #<Set: {"http://www.example.com/", "mailto:bob@example.com"}>

Discussion

The URI.extract solution uses regular expressions to find everything that looks like
a URL. This is faster and easier to write than a REXML parser, but it will find every
absolute URL in the document, including any mentioned in the text and any in the
document’s initial DOCTYPE. It will not find relative URLs hidden within href
attributes, since those don’t start with an access scheme like http://.

URI.extract treats the period at the end of the first sentence (“check out my weblog
at...”) as though it were part of the URL. URLs contained within English text are
often ambiguous in this way. http://www.example.com/blog/. is a perfectly valid URL
and might be correct, but that period is probably just punctuation. Accessing the URL
is the only way to know for sure, but its almost always safe to strip out those
characters:

END_CHARS = %{.,"'?!:;}

URI.extract(text, ['http']).collect { |u| END_CHARS.index(u[-1]) ? u.chop : u }

=> ["http://www.example.com/", "http://www.example.com/",
"http://www.example.com/blog/"]

The parser solution defines a listener that hears about every tag present in its inter

esting_tags map. It checks each tag for attributes that tend to contain URLs: href
for <a> tags and src for tags, for instance. Every URL it finds goes into a set.

The use of a set here guarantees that the result contains no duplicate URLs. If you
want to gather (possibly duplicate) URLs in the order in which they were found in the
document, use a list, the way URI.extract does.

The LinkGrabber solution will not find URLs in the text portions of the document,
but it will find relative URLs. Of course, you still need to know how to turn relative

12.12 Extracting All the URLs from an HTML Document | 457

http://www.example.com/blog/

URLs into absolute URLs. If the document has a <base> tag, you can use that. Other-
wise, the base depends on the original URL of the document.

Here’s a subclass of LinkGrabber that changes relative links to absolute links if possi-
ble. Since it uses URI. join, which returns a URI object, your set will end up contain-
ing URT objects instead of strings:

class AbsoluteLinkGrabber < LinkGrabber

include REXML::StreamListener
attr_reader :links

def initialize(original_url = nil,
interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
super(interesting_tags)
@base = original_url
end

def tag_start(name, attrs)

if name == 'base'
@base = attrs['href']
end
super
end

def parse(text)
super
If we know of a base URL by the end of the document, use it to
change all relative
URLs to absolute URLs.
@links.collect! { |1| URI.join(@base, 1) } if @base
end
end

Almost 20 HTML tags can have URLs in one or more of their attributes. If you want
to collect every URL mentioned in an appropriate part of a web page, here’s a big map
you can pass in to the constructor of LinkGrabber or AbsoluteLinkGrabber:

URL_LOCATIONS = { 'a' => %w{href},
'area' => %w{href},
'applet' => %w{classid},
'base' => %w{href},
'blockquote' => %w{cite},
'body' => %w{background},
'codebase' => %w{classid},
'del' => %w{cite},
"form' => %w{action},
'frame' => %w{src longdesc},
'{frame' => %w{src longdesc},
"input' => %w{src usemap},
'img' => %w{src longdesc usemap},
'ins' => %w{cite},
"link' => %w{href},

458 | Chapter 12: XML and HTML

'object' => %w{usemap archive codebase data},
'profile' => %w{head},

'q' => %w{cite},

'script' => %w{src}}.freeze

See Also

o Recipe 12.4, “Navigating a Document with XPath”

o We compiled that big map of URI attributes from the W3C’s index of attributes
for HTML 4.0; look for the attributes of type %URI;

12.13 Transforming Plain Text to HTML

Problem
You want to add simple markup to plain text and turn it into HTML.

Solution

Use RedCloth, written by “why the lucky stiff” and available as the RedCloth gem. It
extends Ruby’s string class to support Textile markup: its to_html method converts
Textile markup to HTML.

Here’s a simple document:

gem 'RedCloth'
require 'redcloth'

text = RedCloth.new %{Who would ever write "HTML":http://www.w3.org/MarkUp/
markup directly?

I mean, _who has the time_? Nobody, that's who:

_. Person	_. Has the time?
Jake	No
Alice	No
Rodney	Not since the accident
}

puts text.to_html

<p>Who would ever write

HTML
markup directly?</p>

<p>I mean, who has the time? Nobody, thaté’s who:</p>

<table>

#
#
#
#
#
#
#
<tr>

12.13 Transforming Plain Text to HTML | 459

http://www.w3.org/TR/REC-html40/index/attributes.html

<th>Person </th>

<th>Has the time? </th>
</tr>
..

The Textile version is more readable and easier to edit.

Discussion

The Textile markup language lets you produce HTML without having to write any
HTML. You just add punctuation to plain text, to convey what markup youd like.
Paragraph breaks are represented by blank lines, italics by underscores, and tables by
ASCII-art drawings of tables.

A text-based markup that converts to HTML is very useful in weblog and wiki soft-
ware, where the markup will be edited many times. It’s also useful for hiding the com-
plexity of HTML from new computer users. We wrote this entire book using a
Textile-like markup, though it was converted to Docbook instead of HTML.

See Also

o The RedCloth home page
o A comprehensive Textile reference and a quick reference
 You can experiment with Textile markup at the language’s home page

o Markdown is another popular simple markup language for plain text, and you
can turn Markdown text to XHTML with the BlueCloth gem because BlueCloth
and RedCloth both define String#to_html, it’s not easy to use them both in the
same program

12.14 Converting HTML Documents from the Web into
Text

Problem

You want to get a text summary of a website.

Solution

The open-urti library is the easiest way to grab the content of a web page; it lets you
open a URL as though it were a file:

require 'open-uri'

example = open('http://www.example.com/")

460 | Chapter12: XML and HTML

http://www.whytheluckystiff.net/ruby/redcloth/
http://redcloth.org/hobix.com/textile/
http://redcloth.org/hobix.com/textile/quick.html
http://txstyle.org/
http://daringfireball.net/projects/markdown/
http://www.deveiate.org/projects/BlueCloth

=> #<StringI0:0xb7bb601c>

html = example.read

As with a file, the read method returns a string. You can do a series of sub and gsub
methods to clean the code into a more readable format:

plain_text =
html.sub(%r{<body.*?>(.*?)</body>}mi, "\1').gsub(/<.*?>/m, ' ').
gsub(%r{(\n\s*){2}}, "\n\n")
Finally, you can use the standard CGI library to unescape HTML entities like &1t;
into their ASCII equivalents (<):

require 'cgi
plain_text = CGI.unescapeHTML(plain_text)

The final product:

puts plain_text

Example Web Page

#

You have reached this web page by typing "example.com",

"example.net",

or "example.org" into your web browser.

These domain names are reserved for use in documentation and are not available
for registration. See RFC

2606 , Section 3.

Discussion

The open-uri library extends the open method so that you can access the contents of
web pages and FTP sites with the same interface used for local files.

The preceding simple regular expression substitutions do nothing but remove HTML
tags and clean up excess whitespace. They work well for well-formatted HTML, but
the Web is full of mean and ugly HTML, so you may consider taking a more involved
approach. Let’s define a HTMLSanitizer class to do our dirty business.

An HTMLSanitizer will start off with some HTML, and through a series of search-
and-replace operations transform it into plain text. Different HTML tags will be han-
dled differently. The contents of some HTML tags should simply be removed in a
plain-text rendering. For example, you probably dont want to see the contents of
<head> and <script> tags. Other tags affect what the rendition should look like; for
instance, a <p> tag should be represented as a blank line:

require 'open-uri'
require 'cgi'

class HTMLSanitizer
attr_accessor :html

12.14 Converting HTML Documents from the Web into Text | 461

@@ignore_tags = ['head', 'script', 'frameset']
@@inline_tags = ['span', 'strong', 'i', 'u']
@@block_tags = ['p', 'div', 'ul', 'ol']

The next two methods define the skeleton of our HTML sanitizer:

def initialize(source='")
begin
@html = open(source).read
rescue Errno::ENOENT
If it's not a file, assume it's an HTML string
@html = source
end
end

def plain_text
remove pre-existing blank spaces between tags since we will
be adding spaces on our own
@plain_text = @html.gsub(/\s*(<.*?>)/m, "\1'")

handle_ignore_tags
handle_inline_tags
handle_block_tags
handle_all_other_tags

return CGI.unescapeHTML(@plain_text)
end

Now we need to fill in the handle_ methods defined by HTMLSanitizer#plain_text.
These methods perform search-and-replace operations on the @plain_text instance
variable, gradually transforming it from HTML into plain text. Because we are modi-
fying @plain_text in place, we will need to use String#gsub! instead of
String#gsub:

private

def tag_regex(tag)
%r{<#{tag}.*?>(.*?)</#{tag}>}mi
end

def handle_ignore_tags
@@ignore_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '') }
end
def handle_1inline_tags
@@inline_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '\1 ') }
end
def handle_block_tags
@@block_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), "\n\\1\n") }
end

def handle_all_other_tags

462

Chapter 12: XML and HTML

@plain_text.gsub!(/
/mi, "\n")
@plain_text.gsub!(/<.*?>/m, ' ')
@plain_text.gsub!(/(\n\s*){2}/, "\n\n")
end
end

To use this class, simply initialize it with a URL and call the plain_text method:

puts HTMLSanitizer.new('http://slashdot.org/").plain_text
Stories

Slash Boxes

Comments

#

Slashdot

#

News for nerds, stuff that matters
#

Login

#

Why Login? Why Subscribe?

..

See Also

o Recipe 15.1, “Grabbing the Contents of a Web Page”

« For a more sophisticated text renderer, parse the HTML document with the tech-
niques described in Recipe 12.2, “Extracting Data from a Document’s Tree Struc-
ture”

12.15 Creating a Simple Feed Aggregator

Credit: Rod Gaither

Problem

You want to aggregate data from RSS feeds.

Solution

XML is the basis for many specialized langages. One of the most popular is RSS, an
XML format often used to store lists of articles from web pages. With a tool called an
aggregator, you can collect weblog entries and articles from several websites’ RSS
feeds, and read all those websites at once without having to skip from one to the
other. Here, we'll create a simple aggregator in Ruby.

Before aggregating RSS feeds, let’s start by reading a single one. Fortunately, we have
several options for parsing RSS feeds into Ruby data structures. The Ruby standard

12.15 Creating a Simple Feed Aggregator | 463

library has built-in support for the three major versions of the RSS format (0.9, 1.0,
and 2.0). This example uses the standard rss library to parse an RSS 2.0 feed and
print out the titles of the items in the feed:

require 'rss/2.0'
require 'open-uri'

url = 'http://feeds.oreilly.com/oreilly/news?format=rss2’
feed = RSS::Parser.parse(open(url).read, false)
puts "=== Channel: #{feed.channel.title} ==="
feed.items.each do |item|

puts item.title

puts " (#{item.link})"

puts

puts item.description
end

=== Channel: 0'Reilly Network Articles ===
How to Make Your Sound Sing with Vocoders
(http://digitalmedia.oreilly.com/2006/03/29/vocoder-tutorial-and-tips.html)
..

Unfortunately, the standard rss library is a little out of date. There’s a newer syndica-
tion format called Atom, which serves the same purpose as RSS, and the rss library
doesn’'t support it. Any serious aggregator must support all the major syndication
formats.

So instead, our aggregator will use Lucas Carlson’s Simple RSS library, available as the
simple-rss gem. This library supports the three main versions of RSS, plus Atom,
and it does so in a relaxed way so that ill-formed feeds have a better chance of being
read.

Here’s the preceding example, rewritten to use Simple RSS. As you can see, only the
name of the class is different:

require 'rubygems'
require 'simple-rss'
url = 'http://www.oreillynet.com/pub/feed/1?format=rss2’
feed = RSS::Parser.parse(open(url), false)
puts "=== Channel: #{feed.channel.title} ==="
feed.items.each do |item|

puts item.title

puts " (#{item.link})"

puts

puts item.description
end

Now we have a general method of reading a single RSS or Atom feed. Time to work
on some aggregation!

464 | Chapter12: XML and HTML

Although the aggregator will be a simple Ruby script, there’s no reason not to use
Ruby’s object-oriented features. Our approach will be to create a class to encapsulate
the aggregator’s data and behavior, and then write a sample program to use the class.

The RSSAggregator class that follows is a bare-bones aggregator that reads from mul-
tiple syndication feeds when instantiated. It uses a few simple methods to expose the
data it has read:

#!/usr/bin/ruby
rss-aggregator.rb - Simple RSS and Atom Feed Aggregator

require 'rubygems'
require 'simple-rss'
require 'open-uri'

classRSSAggregator
def initialize(feed_urls)
@feed_urls = feed_urls

@feeds = []
read_feeds
end
protected

def read_feeds
@feed_urls.each { |url| @feeds.push(SimpleRSS.new(open(url).read)) }
end
public
def refresh
@feeds.clear
read_feeds
end

def channel_counts
@feeds.each_with_index do |feed, index|
channel = "Channel(#{index.to_s}): #{feed.channel.title}"

articles = "Articles: #{feed.items.size.to_s}"
puts channel + ', ' + articles
end

end

def list_articles(id)

puts "=== Channel(#{id.to_s}): #{@feeds[id].channel.title} ==="
@feeds[id].items.each { |item| puts ' ' + item.title }
end

def list_all
@feeds.each_with_index { [f, 1| list_articles(i) }
end
end

Now we just need a few more lines of code to instantiate and use an RSSAggregator
object:

12.15 Creating a Simple Feed Aggregator | 465

test = RSSAggregator.new(ARGV)
test.channel_counts

puts "\n"

test.list_all

Here’s the output from a run of the test program against a few feed URLs:

$ ruby rss-aggregator.rb http://rss.slashdot.org/Slashdot/slashdot \
http://feeds.oreilly.com/oreilly/news?format=rss2 \
http://safari.oreilly.com/rss/
Channel(1): Slashdot, Articles: 10
Channel(2): 0'Reilly Network Articles, Articles: 15
Channel(3): 0'Reilly Network Safari Bookshelf, Articles: 10
=== Channel(0): Slashdot ===
Mantis style isn't eas..
It's wonderful when tw..
Red tailed hawk
37signals

While a long way from a fully functional RSS aggregator, this program illustrates the
basic requirements of any real aggregator. From this starting point, you can expand
and refine the features of RSSAggregator.

One very important feature missing from the aggregator is support for the If-
Modified-Since HTTP request header. When you call RSSAggregator#refresh,
your aggregator downloads the specified feeds, even if it just grabbed the same feeds
and none of them have changed since then. This wastes bandwidth.

Polite aggregators keep track of when they last grabbed a certain feed, and when they
request it again they do a conditional request by supplying the HTTP request header
If-Modified Since. The details are a little beyond our scope, but basically the web
server serves the reuqested feed only if it has changed since the last time the RSSAggre
gator downloaded it.

Another important feature our RSSAggregator is missing is the ability to store the
articles it fetches. A real aggregator would store articles on disk or in a database to
keep track of which stories are new since the last fetch, and to keep articles available
even after they become old news and drop out of the feed.

Our simple aggregator counts the articles and lists their titles for review, but it doesn’t
actually provide access to the article detail. As seen in the first example, the Sim
pleRSS.item has a link attribute containing the URL for the article, and a descrip
tion attribute containing the (possibly HTML) body of the article. A real aggregator
might generate a list of articles in HTML format for use in a browser, or convert the
body of each article to text for output to a terminal.

466 | Chapter12: XML and HTML

See Also

o Recipe 15.1, “Grabbing the Contents of a Web Page”

o Recipe 15.3, “Customizing HTTP Request Headers”

o Recipe 12.14, “Converting HTML Documents from the Web into Text”
o A good comparison of the RSS and Atom formats

o Details on the Simple RSS project

o The FeedTools project has a more sophisticated aggregator library that supports
caching and If-Modified-Since

o “HTTP Conditional Get for RSS Hackers” is a readable introduction to If-
Modified-Since

12.15 Creating a Simple Feed Aggregator | 467

http://bit.ly/rss_vs_atom
https://github.com/cardmagic/simple-rss
https://github.com/cradle/feedtools
http://bit.ly/conditional_get

CHAPTER 13
Graphics and Other File Formats

Hundreds of standards exist for storing structured data in text or binary files. Some
of these are so popular that we've devoted entire chapters to them (Chapters 12 and
14). Some are so simple that you can process them with the ad hoc techniques listed
in Chapters 2 and 7. This chapter is a grab bag that tries to cover the rest of the field.

We focus especially on graphics, probably the most common binary files. Ruby lacks
a mature image manipulation library like the Python Imaging Library, but it does
have bindings to ImageMagick and GraphicsMagick, popular and stable C libraries.
The RMagick library provides the same interface against ImageMagick and Graphics-
Magick, so it doesn’t matter which one you use.

You can get RMagick by installing the RMagick or Rmagick-win32 gem. Unfortu-
nately, the C libraries themselves are difficult to install: they have a lot of dependen-
cies, especially if you want to process image formats like GIF and PostScript. On
Debian GNU/Linux, you can just install the imagemagick package and then the RMa
gick gem.

The first recipes in this chapter show how to use RMagick to manipulate and convert
images (on the question of finding images, see Recipe 18.2). Then it gets miscellane-
ous: we cover encryption, archive formats, Excel spreadsheets, and music files. We
don’t have space to cover every popular file format, but this chapter should give you
an idea of what’s out there. If this chapter lacks a recipe on your file format of choice,
you may be able to find a Ruby library for it on the RAA, or by doing a web search for
ruby [file format name].

469

13.1 Thumbnailing Images

Credit: Antonio Cangiano

Problem

Given an image, you want to create a smaller image to serve as a thumbnail.

Solution

Use RMagick, available from the rmagick or rmagick-win32 gems. Its Magick module
gives you a simple but versatile way to manipulate images. The class Magick: : Image
lets you resize images four different ways: with resize, scale, sample, or thumbnatil.

All four methods accept a pair of integer values, corresponding to the width and
height in pixels of the thumbnail you want. Here’s an example that uses resize: it
takes the file myimage.jpg and makes a thumbnail of it 100 pixels wide by 100 pixels
tall:

require 'rubygems'
require 'RMagick'

img = Magick::Image.read('myimage.jpg').first
width, height = 100, 100

thumb = img.resize(width, height)
thumb.write('mythumbnail.jpg')

Discussion

The class method Image.read, used in the Solution, receives an image filename as an
argument and returns an array of Image objects.! You obtain the first (and, usually,
only) element through Array#first.

The code given in the Solution produces a thumbnail that is 100 pixels by 100, no
matter what dimensions the original image had. If the original image was a square, its
proportions will be maintained. But if the initial image was a rectangle, squishing it
into a 100 x 100 box will distort it.

If all your thumbnails need to be the same size, you might be willing to live with this
distortion. But to maintain the proportions between the longest and shortest dimen-
sions, you should define your thumbnail’s width and height in terms of the original

1 Why an array? Because you can pass in an animated GIF or a multilayered image file to Image.read. If you
do, the array will contain an Image object for each image in the animated GIF, or for each layer in the multi-
layered file.

470 | Chapter 13: Graphics and Other File Formats

image’s aspect ratio. You can get the image’s original width and height by using its
accessor methods, Magick: : Image#columns and Magick: : Image#rows.

A simpler solution is to pass resize a floating-point number as a scaling factor. This
changes the image’s size without altering the aspect ratio. Here’s how to generate an
image that is 15% the size of the original:

scale_factor = 0.15

thumb = img.resize(scale_factor)

thumb.write("mythumbnail.jpg")
To impose a maximum size on an image without altering its aspect ratio, use
change_geometry:

def thumb_no_bigger_than(img, width, height)

img.change_geometry("#{width}x#{height}") do |cols, rows, img]|
img.resize(cols, rows)

end
end
img.rows # => 470
img.columns # => 892
thumb = thumb_no_bigger_than(img, 100, 100)
thumb. rows # => 53
thumb.columns # => 100

There are other ways of getting a thumbnail besides using resize. All of the following
lines give you some kind of thumbnail. The methods used here have equivalent meth-
ods (like scale!) that modify an Image object in place:

thumb = img.scale(width, height)

thumb = img.scale(scale_factor)

thumb = img.sample(width, height)

thumb = img.sample(scale_factor)

thumb = img.thumbnail(width, height)

thumb = img.thumbnail(scale_factor)
You might also want to generate a thumbnail by cropping an image, rather than resiz-
ing it. The following code extracts an 80 x 100 pixel rectangle taken from the center
of the image:

thumb = img.crop(Magick::CenterGravity, 80, 100)

Which of these methods should you use? Magick::Image#resize is the most
advanced method, because it accepts two optional arguments: filter and blur.
When you specify a filter, you alter the resizing algorithm’s tradeoff between speed
and quality. Refer to the RMagick guide for a complete list of available filters.

The second optional argument, blur, is a floating-point number that can be used to
blur (values greater than 1) or sharpen (values less than 1) your image as it’s resized.

13.1 Thumbnailing Images | 471

Blurring an image is a way to hide visual artifacts created by the thumbnailing
process.

The scale method is simpler than resize, because it accepts only a width and height
pair, or a scale factor. When you want to generate a thumbnail that's 10% the size of
your original image or smaller, thumbnatil is faster than resize.

Finally, sample scales images with pixel sampling. Unlike the other methods, it
doesn't introduce any new colors through interpolation.

The best advice is to try these methods out with your images. Through trial and error,
you can determine what works best for your application.

Using crop means approaching the problem in a different way. crop only includes a
portion of the original image in the thumbnail. crop has several signatures, each of
which requires the output image’s width and height:

With an x, y offset relative to the upper-left corner:
thumb = img.crop(x, y, width, height)

With a GravityType and the x, y offset:

thumb = img.crop(Magick::WestGravity, x, y, width, height)

With a GravityType:

thumb = img.crop(Magick::EastGravity, width, height)
GravityType is a constant that lets you specify the position of the region that needs to
be cropped. The available options are quite self-explanatory.

Be aware that the x and y offsets passed to the method crop(gravity, x, y, width,
height) are not always calculated from the upper-left corner, but that they depend on
the GravityType being used. Refer to the crop documentation for specific details.

You may also want to enforce rules on your list of images so that they all match. For
example, you may require all your thumbnails to be smaller than 80 x 100 pixels, or
you might want them to all have an equal width of 120 pixels. You may even decide
that all images smaller than a certain limit should not be resized at all. For details on
techniques for this, see the RMagick documentation of the Image#change_geometry
method.

See Also

o This chapter’s introduction discusses installing RMagick

472 | Chapte