
www.allitebooks.com

http://www.allitebooks.org

SQL Server Analysis
Services 2012
Cube Development
Cookbook

More than 100 recipes to develop Business Intelligence
solutions using Analysis Services

Baya Dewald

Steve Hughes

Paul Turley

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

SQL Server Analysis Services 2012 Cube
Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-980-9

www.packtpub.com

Cover Image by William Kewley (william.kewley@kbbs.ie)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Baya Dewald

Paul Turley

Steve Hughes

Reviewers
Dan English

Stevo Smočilac

Acquisition Editors
Edward Gordon

Llewellyn Rozario

Lead Technical Editor
Anila Vincent

Technical Editors
Dipika Gaonkar

Kapil Hemnani

Edwin Moses

Mrunmayee Patil

Siddhi Rane

Tarunveer Shetty

Proofreaders
Cathy Cumberlidge

Bernadette Watkins

Copy Editors
Sarang Chari

Mradula Hegde

Dipti Kapadia

Gladson Monteiro

Karuna Narayanan

Lavina Pereira

Laxmi Subramanian

Project Coordinators
Rahul Dixit

Cheryl Botelho

Mary Alex

Indexer
Rekha Nair

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Baya Dewald has been working with Microsoft SQL Server for over 15 years and
with Analysis Services since its debut in 1999. He has architected, developed,
and administered databases with millions of users and cubes measured in terabytes.
Throughout his career, he has held various certifications, including Microsoft
Certified Solution Developer, Microsoft Certified Systems Engineer, and Microsoft
Certified Database Administrator. He has managed DBA teams and published over
100 technical articles in SQL Server Magazine, SQL Professional, Tech Target,
and InformIT. He has also contributed to several technical books as a co-author and
technical reviewer. He can be reached at baya.dewald@gmail.com.

First and foremost, I'd like to thank my family for allowing me to dedicate
long hours to working on this book. I am also thankful to my friend Scot
Reagin for his encouragement and support while writing this book and to
my friend and mentor Kevin Kline who helped me find excellent co-authors.
Thanks too to all reviewers, particularly to Dan English, for their useful and
thought-provoking comments that helped to make this book more useful to
the readers.

Paul Turley is a mentor with SolidQ and is a Microsoft SQL Server MVP. He consults,
writes, speaks, teaches, and blogs about business intelligence and reporting solutions.
He works with companies around the world to visualize and deliver critical information to
make informed business decisions. He is the director of the Oregon SQL PASS chapter and
user group, and the lead author of Professional SQL Server 2012 Reporting Services and
11 other books by Wrox and Microsoft Press. Paul blogs at SqlServerBiBlog.com.

Special thanks to my wife and daughters for their support and understanding.
Thanks to all the mentors and staff at SolidQ, a truly world-class organization.

www.allitebooks.com

http://www.allitebooks.org

Steve Hughes is a Practice Lead at Magenic. In his current role, he develops strategy
and helps guide data, business intelligence, collaboration, and data integration development
using Microsoft technologies, including SQL Server, SharePoint, and BizTalk. He continues
to deliver data and business intelligence solutions using these platforms. He has been
working with technology for over 15 years with much of that time spent on creating business
intelligence solutions. He is passionate about using data effectively and helping customers
understand that data is valuable and profitable. He also has experience working with a large
software company as a service vendor and there received awards for customer satisfaction
and engineering excellence.

In 2010, he received the Consultant of the Year honor at Magenic. He has delivered multiple
presentations on SQL server, data architecture, and business intelligence over the years.
Steve can often be found at Professional Association for SQL Server (PASS) events where
he serves as a regional mentor and is active with the Minnesota SQL Server User Group
(MNPASS). He shares his insights from the field on his blog at http://dataonwheels.
wordpress.com.

I want to thank my wife, Sheila, and our four children—Kristyna, Alex, Andrew,
and Mikayla—for their patience as I worked on this project. Their support
has been awesome in this and my other endeavors. I also want to thank the
team at Packt Publishing and the reviewers for their guidance throughout the
writing of this book as it has allowed us to put together a better product for
all of you. Finally, I dedicate all my efforts to my father-in-law, Ed Jankowski,
without whom I would have never been involved in software at all. We all
miss you, Ed.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dan English is a Microsoft SQL Server MVP and the Business Intelligence Practice Manager
at Superior Consulting Services in Minneapolis, MN. He has been developing with Microsoft
technologies since 1996 and has focused on data warehousing and business intelligence
since 2004. He has presented for the Minnesota SQL Server user group, the Microsoft
Minnesota BI user group, and Minnesota TechFuse, along with SQL Server and SharePoint
Saturday events. He is also an avid blogger and tweeter.

He holds a Bachelor of Science degree in Business Administration from the Minnesota
State University, Mankato. He is an MCITP: Business Intelligence Developer 2005 and 2008
and a Microsoft Certified Technology Specialist (MCTS) for Microsoft SQL Server Business
Intelligence—Implementation and Maintenance and also for Microsoft Office SharePoint
Server 2007—Configuring.

He and his wife, Molly, live in Minnesota and have two children, Lily and Wyatt.

Stevo Smočilac is an Associate Principal Consultant at Magenic, a Microsoft Gold Certified
Partner that specializes in business intelligence solutions.

He has over 12 years' experience working in software development, the last seven of which
have focused on designing, implementing, managing, and administrating technical solutions
developed using Microsoft SQL Server and the Microsoft Business Intelligence stack. He has
been involved in all phases of the BI development lifecycle from envisioning through
operational support and is passionate about the field of business intelligence.

He is currently a Virtual Technology Solutions Professional (V-TSP) for business intelligence,
a Microsoft Certified IT Professional, and holds a B. Tech degree in Information Technology.

Originally from South Africa, he now resides in the (much colder) northeastern United States
with his wife, Talya. When not in front of his computer, he can often be found either playing
the guitar or riding his mountain bikes.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to Multidimensional Data Model Design 7

Introduction 7
The business value of Business Intelligence 8
Challenges and barriers of effective BI 9
Overcoming BI challenges and barriers 9
Choosing multidimensional or Tabular Models 10
Star- or Snowflake-relational schema 12
A sample scenario for choosing the Snowflake schema 13

Chapter 2: Defining Analysis Services Dimensions 15
Introduction 16
Defining data sources 16
Defining data source views 23
Defining entity relationships in DSV 25
Extending data source views 26
Creating named calculations and queries 29
Creating simple dimensions 32
Building dimension hierarchies 36
Setting essential attribute properties 40
Browsing dimension data 42
Sorting the attributes 45
Customizing advanced attribute properties 46
Creating parent-child dimensions 49
Creating the date and time dimensions 53

Chapter 3: Creating Analysis Services Cubes 57
Introduction 57
Defining measure groups and measures 58
Setting measure properties 65

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Browsing the cube data 69
Dimension usage with measure group 74
Examining cube file structures 78
Partitioning strategies 80
Defining partition slice 88
Merging partitions 89
Defining aggregation designs 91
Distinct count measure groups 97
Enabling write-back feature 98
Deployment options 101

Chapter 4: Extending and Customizing Cubes 103
Introduction 104
Defining calculated measures 105
Defining named sets 108
Defining drillthrough actions 110
Defining URL actions 112
Defining reporting actions 113
Defining key performance indicators 114
Defining perspectives 118
Defining translations 120
Defining measure expressions 122

Chapter 5: Optimizing Dimension and Cube Processing 125
Introduction 125
Understanding dimension processing options 126
Learning about basic dimension processing 128
Learning advanced dimension processing options 132
Using out-of-line bindings for dimension processing 133
Dealing with partition processing options 135
Using SQL Server Integration Services to process Analysis Services objects 139
Monitoring and tuning processing performance 143

Chapter 6: MDX 151
Introduction 151
Returning data on the query axes 154
Limiting the query output 156
Sorting the query output 158
Defining query level calculations and named sets 160
Navigating dimension hierarchies 163
Working with the Time dimensions 167
MDX script's functionality 169
Monitoring and tuning MDX queries 171

iii

Table of Contents

Chapter 7: Analysis Services Security 175
Introduction 175
Managing instance-level administrative security 176
Managing database-level security 178
Managing cube-level security 179
Managing dimension hierarchy-level security 180
Implementing dynamic dimension security 186
Implementing cell-level security 190

Chapter 8: Administering and Monitoring Analysis Services 195
Introduction 196
SSAS instance configuration options 197
Creating and dropping databases 202
Monitoring SSAS instance using Activity Viewer 204
Monitoring SSAS instance using DMVs 208
Cancelling a session 210
Checking whether cubes are accessible 211
Checking SSAS object sizes programmatically 211
Backup and restore 214
Synchronizing databases 218
Detaching and attaching databases 220

Chapter 9: Using Tabular Models 223
Introduction 224
Creating a Tabular Model 224
Working with data sources and loading data 226
Modeling the data 231
Creating a hierarchy 236
Creating a calculated measure 238
Creating a calculated column 240
Creating a KPI 241
Analyzing your model in Excel 246
Deploying Tabular Models 248
Scripting Tabular Models using XMLA 251
Processing Tabular Models 252
Partitioning Tabular Models 253
Implementing perspectives 258
Implementing security in Tabular Models 261
Automating Tabular Model processing 263

Chapter 10: DAX Calculations and Queries 265
Introduction 265
Combining tables using calculated columns 266

iv

Table of Contents

Adding a calculated column 272
Creating measures 274
Testing a Tabular Model in Excel 281
Using the CALCULATE function 283
Querying a Tabular Model 286

Chapter 11: Performance Tuning and Troubleshooting Tabular Models 291
Introduction 291
Understanding usability limits 292
Optimizing and managing a model's design 294
Diagnosing performance issues 295
Using performance tools 296
Investigating query performance with SQL Server Profiler 301

Appendix: Miscellaneous Analysis Services Topics 307
Working with non-SQL Server data sources 307
Common yet confusing SSAS errors 309
Dimension properties 312
Performance considerations for many-to-many dimension relationships 315
DirectQuery with Tabular Models 315

Index 317

Preface
SQL Server Analysis Services 2012 Cube Development Cookbook is a friendly companion to
individuals implementing and managing business intelligence applications using Microsoft's
flagship product, SQL Server Analysis Services. The book provides step-by-step recipes for
developing Analysis Services objects. Readers will learn how to develop business intelligence
solutions using the Analysis Services multidimensional model as well as the Tabular Model.
In addition to development recipes, the book also includes recipes for administering, securing,
monitoring, troubleshooting, and scaling Analysis Services solutions. The book discusses
methods beyond the initial cube design, exploring cube maintenance with partitions and
designing effective aggregations, as well as options for synchronizing analytics solutions.
Filled with tips and recommended best practices based on years of experience, the book
is designed to quickly get the reader from beginner level to the point of comfortably
architecting solutions.

What this book covers
Chapter 1, Introduction to Multidimensional Data Model Design, discusses the value of
business intelligence as well as challenges faced when undertaking a business intelligence
project and how to overcome them. You will learn high-level differences between Analysis
Services tabular and multidimensional models and when each is appropriate. Finally, you will
learn the differences between star and snowflake schemas for dimensional modeling.

Chapter 2, Defining Analysis Services Dimensions, starts off by explaining how to define data
sources and data source views. You will learn how to extend data source views beyond the
model available in the relational database. The chapter's main focus is on teaching you how
to build and customize most commonly encountered dimensions within the Analysis Services
multidimensional model.

Preface

2

Chapter 3, Creating Analysis Services Cubes, explains how to define measure groups
and measures while setting appropriate properties. You will learn how to relate database
dimensions to each measure group and implement basic as well as advanced measure
aggregation functions, including distinct count and semi-additive measures. The chapter also
discusses cube file structures and teaches the most effective strategies for measure group
partitioning and building aggregations. Finally, you will learn various methods of deploying
your multidimensional projects to your Analysis Services instances.

Chapter 4, Extending and Customizing Cubes, builds on the foundation of cube development
laid in Chapter 3, Creating Analysis Services Cubes. You will learn how to make your solutions
more useful to the business by adding calculated measures, named sets, actions,
key performance indicators, perspectives, translations, and measure expressions to
your cubes.

Chapter 5, Optimizing Dimension and Cube Processing, teaches basic and advanced options
for processing multidimensional objects through XMLA, SQL Server client tools, as well as
using SQL Server Integration Services (SSIS). This chapter also demonstrates how you should
monitor and tune processing performance.

Chapter 6, MDX, explains how to write the most commonly encountered Multidimensional
Expressions (MDX) queries and calculations. You will learn how to return data on query axes,
limit and sort query output, define calculations and named sets, and navigate dimension
hierarchies. The chapter also explains the basic functions used within MDX scripts and
introduces the framework for monitoring and tuning MDX queries.

Chapter 7, Analysis Services Security, teaches how to manage multidimensional model security
at the Analysis Services instance, database, cube, dimension, and cell levels. In addition to
basic role-based security, the chapter also includes a recipe for implementing dynamic security.

Chapter 8, Administering and Monitoring Analysis Services, starts off by providing an
overview of Analysis Services configuration options. Next, you learn how to create and
drop databases, monitor and troubleshoot Analysis Services instances, and check the
size of each object. Additionally, you will learn various methods for scaling out your
multidimensional business intelligence solutions using backup and restore,
synchronization, and the detach and attach options.

Chapter 9, Using Tabular Models, teaches you how to define data sources and models and
load data into Tabular Models. You will learn how to define hierarchies, define calculated
measures, and extend the Tabular model using key performance indicators. The chapter also
explains recommended strategies for processing, partitioning, and securing Tabular Models.

Chapter 10, DAX Calculations and Queries, introduces the reader to Data Analysis Expressions
(DAX) fundamentals as it applies to defining calculations within the Tabular Model and
querying the model. You will learn how to write calculated columns and measures in the
Tabular Model designer and DAX queries within SQL Server Management Studio.

Preface

3

Chapter 11, Performance Tuning and Troubleshooting Tabular Models, discusses the Analysis
Services Tabular Model's usability limits. The reader will learn about diagnosing issues,
optimizing performance, and memory use using various tools for troubleshooting suboptimal
performance, which include Windows Resource Monitor and SQL Server Profiler.

Appendix, Miscellaneous Analysis Services Topics, discusses various Analysis Services
topics that don't lend themselves to effective presentation in a recipe format. The chapter
teaches you about various dimension properties, as well as outlining considerations for
multidimensional design when developers are not permitted to create objects in the
relational data sources.

What you need for this book
You will need Microsoft SQL Server 2012 Analysis Services multidimensional as well as
tabular instances to which you have administrative access in order to follow along with the
examples presented in this book. All examples are based on the Adventure Works sample
relational database and Adventure Works Analysis Services database, which can be
downloaded from www.codeplex.com. Each chapter referencing these samples includes
a link to sample downloads.

Who this book is for
The book is for individuals intending to build, maintain, use, and administer business
intelligence solutions exploiting Microsoft SQL Server Analysis Services multidimensional as
well as tabular databases. The intended audience includes seasoned professionals who have
worked with databases and are embarking on more complex business intelligence solutions
as well as for people who have built Analysis Services solutions in the past but would like to
hone their skills further by administering, tuning, and scaling databases.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
" Temporary files can be found under the <TempDir> folder as specified in the
msmdsrv.ini configuration file."

Preface

4

A block of code is set as follows:

<ErrorConfiguration
 <KeyErrorLimit>-1</KeyErrorLimit>
 <KeyErrorLogFile>C:\key_errors.txt</KeyErrorLogFile>
 <KeyNotFound>ReportAndStop</KeyNotFound>
 <KeyDuplicate>ReportAndContinue</KeyDuplicate>
 <NullKeyConvertedToUnknown>ReportAndContinue
 </NullKeyConvertedToUnknown>
 <NullKeyNotAllowed>ReportAndStop</NullKeyNotAllowed>
 </ErrorConfiguration>

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " Now if you query the
cube as a role member and choose All Products as the product category, you will see a
different number than what you would see as the total of Bikes and Accessories."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Introduction to

Multidimensional Data
Model Design

In this chapter we will discuss the differences between Multidimensional databases (cubes)
and Tabular Models in order to help you decide which is best for meeting your particular
needs. More details on how to implement each of these will be covered in the rest of this
cookbook. In this chapter we will explore the following concepts:

 f The business value of Business Intelligence

 f The challenges and barriers faced when implementing Business Intelligence

 f Strategies for overcoming these challenges and barriers

 f Choosing multidimensional or Tabular Models

 f Star- and Snowflake-relational schema

 f A sample scenario for choosing the Snowflake schema

Introduction
Business Intelligence (BI) used to be a competitive advantage for businesses that could afford
it. Today, BI is increasingly becoming a fundamental and critical function of every business,
which means it can no longer operate on an exclusively strategic basis. Also, it must be
responsive to changing business needs in a time frame that allows the business to address
those needs. The demand for more responsiveness (less time to implement) of BI continues to
increase in parallel with the demand for more functionality.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Multidimensional Data Model Design

8

In response to this increasing pressure on BI to perform at "Business speed", a new capability
has emerged in the form of Self-service BI. These Self-service tools allow business users to
acquire and analyze data from a variety of sources according to their specific needs at that
moment. There are challenges and concerns that come with giving this capability to business
users. We'll discuss these in detail in this chapter, but Self-Service BI is a good and growing
solution to an important business need.

Microsoft's offerings for Self-Service BI include tools such as Power Pivot, Power View,
and Tabular Models in Analysis Services. These tools continue to gain acceptance and are
an increasingly presumed capability in Microsoft BI environments. It's not always clear,
however, what precise mix of these tools, along with multidimensional cubes, relational data
marts, and other presentation tools such as Excel and Reporting Services, would be optimal
for any given situation.

There are a large number of variables in determining this optimal mix and we won't be
discussing all of them in this cookbook. Our focus will be on the choice between and
recipes for implementing Multidimensional cubes and Tabular Models.

The business value of Business Intelligence
"Making better decisions faster" is a common phrase used to describe the purpose of BI,
but understanding how this purpose translates into value for the business is the key in
understanding why and how BI should be implemented.

Making better decisions is valuable for the strategic management of an organization;
making those decisions faster is possibly better, but strategic decisions tend to have
longer time frames. So, faster is often not always better or even necessary. Making better
operational decisions faster, given the much higher frequency and shorter decision time
frame, is of great value to the business. For this discussion we'll focus on this less often
considered operational value of BI.

Operational decisions are made every day by people at all levels in the organization.
The nature of these decisions vary greatly, including things such as troubleshooting
and resolving a specific question, finding a more efficient process for performing a
task, or determining an appropriate staffing level for the coming week.

Regardless of the specifics, operational decisions are generally concerned with improving
efficiency, increasing productivity, improving quality of the product, or lowering cost. BI can
provide the information necessary to identify opportunities for improvement in these areas as
well as to make informed decisions on how to implement these improvements. But, the greatest
value is realized only when that information is of high quality and is available when needed.
Poor quality or late information makes for poor quality or late decisions.

Chapter 1

9

Challenges and barriers of effective BI
The need to deliver accurate information quickly is the fundamental challenge for Business
Intelligence. The production of high quality information in a useful format takes time—data
must be acquired, cleansed, modeled, and stored over continuous update and enhancement
cycles. If any of these aspects of properly managing data are given less than appropriate
attention, the quality of the information suffers—you take a short cut for speed of delivery
and risk a reduction in the quality of the final product.

Even the highest quality information is of little value if it comes too late to be helpful. So the
pressure is on meeting the business requests for information now, not in the several days or
weeks it might take to define requirements, update the data model, develop ETL processes,
test, validate, and finally make the information available in the data warehouse. Businesses
often cannot wait and so they develop alternatives for acquiring and "managing" their own
data. These alternatives, though they may answer the need for speed, inevitably result in
both redundant data and inconsistent information.

Over time, technology and business groups have developed strategies and techniques
aimed at coming closer to aligning managed data and the much faster business
cycles. Improvements in traditional data storage engines, including the development of
multidimensional models and ETL tools have helped. Iterative and agile development
methodologies have given BI more of a continuous improvement than waterfall behavior
and have made the environment more nimble. Still, there remained a gap where IT could
not respond quickly enough to business demands, and businesses did not have the skill
and discipline to sufficiently manage high quality data.

Overcoming BI challenges and barriers
Self-Service BI is a good, and still improving answer for bridging the Business Intelligence
technology and business gap. More than just tools and technology, Self-Service BI involves a
commitment to cooperation and continuous—organic—improvement. With the right tools and
cooperation between IT and business, it's now possible to provide long-term and high-quality
managed data while also giving businesses the capability to meet their information needs in
their needed time frame.

The Self-Service tools, such as Power Pivot, Power View, and the Analysis Services Tabular Model
introduced with the SQL Server 2012, allow business resources to acquire, analyze, and share
information relatively independent of IT and with a relatively low requirement for technical
skill—the emphasis is on "relatively". It is possible for a business person to acquire data from
a variety of resources through the use of tools provided by wizards and graphical interfaces.
However, there remains the need for a higher than average technical capability—not a developer
level but an analyst level resource is the typical profile. Also, though there is no requirement to
involve IT or the managed data environment, these resources remain a source of considerable
capability and information, and Self-Service users should look to them first to check if their
needs may be met.

Introduction to Multidimensional Data Model Design

10

Traditional managed data and emerging Self-Service BI are, therefore, not competitive
nor alternative technologies but rather complimentary technologies that together are a
comprehensive, robust, and nimble information environment. Self-Service BI is the pointed end
of the spear in which analysts self-serving information are in direct contact with the business
and are tasked with responding quickly to information requests. As such, these analysts are the
first to be aware of emerging and recurring questions and the information needs that answer
those questions. By regularly harvesting this knowledge, those in charge of maintaining the
managed data environment have a clear direction as to how their environment should evolve.
Incorporating the newly identified, and vetted by Self-Service, sources and business rules for
analysis into the data warehouse continuously improves the quality and depth of the still very
valuable managed data environment.

Choosing multidimensional or Tabular Models
Given the complimentary nature of managed and Self-Service data environments,
it's reasonable to assume that in most organizations, at least one data warehouse
will exist and will be available as the primary source of information.

Prior to the introduction of Tabular Models, cubes were often implemented as the outermost
information interface for reporting and analysis. This configuration provided preaggregated
values, ad-hoc analysis functionality, and a central store for business calculations. However,
the development and maintenance of the Cube is in the exclusive domain of IT, and the
business calculations are written in the MultiDimensional eXpressions (MDX) language
(not the easiest of languages to learn). So, cubes are the logical (multidimensional) extension
of the managed data environment. They provide high quality information and are consistent
as well as fast to query, but dependent on their defined relational sources and, as a result,
often slow to respond to changing needs.

The Tabular Model, like cubes part of the Analysis Services platform and multidimensional in
nature offers much greater flexibility for the introduction of new data sources and subsequent
definition of new dimensions, attributes, and measures.

No formal ETL or data modeling is required; so, turnaround times for
updates are greatly reduced, and no MDX is needed in order to define
calculated values, as this is done via the new language, Data Analysis
Expressions (DAX). Though the DAX language is considered by many to
be easier to learn and use than MDX, it is not, in its current version,
as capable as MDX. So, while certain basic operations are easier to
express in DAX compared to MDX, implementing complex calculations is
much more difficult using DAX. Although this book isn't dedicated to MDX
or DAX, you can learn about the useful constructs of these languages in
Chapter 6, MDX and Chapter 10, DAX Calculations and Queries.

Chapter 1

11

In most environments, both cubes and Tabular Models will be used as each provides a
useful and specific set of functionality. Determining which should be used for a given set
of requirements will depend on the particulars of those requirements, but the following
checklist provides a high-level guideline for selecting the most appropriate tool.

A Cube is best if the following requirements are satisfied (not a comprehensive list, more of
a top five):

 f You need Writeback functionality: Writeback is most commonly used for budgeting
and what-if analysis. It's not the most widely used functionality but can be a very
important part of some BI environments. This functionality is not currently supported
in the Tabular Model.

 f You have complex calculations: It's difficult in DAX to create complex calculations,
which are relatively straightforward in MDX.

 f You plan to have Named sets: Named sets are very useful and user friendly.
However, they are not currently supported in Tabular Models.

 f You have Many-to-Many relationships: While many-to-many relationships are
possible in Tabular Models, they are complicated to set up, whereas in cubes
these relationships are native and relatively easy.

 f You will use Role Playing Dimensions: Like many-to-many relationships, Role Playing
Dimensions are possible in Tabular Models, but they are complex to set up and also
not very intuitive for users.

A Tabular Model is best if the following requirements are satisfied (again, not a
comprehensive list):

 f You need the ability to quickly add additional or external data: The Tabular
Model allows you to connect to a wide variety of sources, while the cube is far
more constrained on its source requirements. The Tabular Model also offers
greater data compression compared to the multidimensional model. Generally,
the cycle for Tabular Model development will be shorter compared to that for
multidimensional model development.

 f Your model is relatively simplistic: As mentioned earlier, complex design scenarios,
such as many-to-many relationships as well as parent-child or role playing dimensions
can be implemented with the Tabular Model, but it would require much greater effort
compared to the effort with the multidimensional model.

 f Fastest possible query performance is required: The Tabular Model is entirely
stored in memory, so it is very fast at query time. Note that cubes are cached as
they are queried, so there is a point at which the Cube may match the Tabular
Model for a similar query but, in most cases, the Tabular Model will outperform
the Cube for sheer query speed.

Introduction to Multidimensional Data Model Design

12

 f You want to use Power View or intend to run reports at a low granularity of data:
An add-in for SQL Server Reporting Services, Power View is an ad hoc visualization
and analysis tool with which users may explore Power Pivot or the Tabular Model data
in a familiar Office-like interface. Prior to SQL 2012 SP1, Power View could not use a
Cube as a source. This is no longer a limitation with the release of SP1. The Tabular
Model is also likely to be more efficient to retrieve data at low granularity, as opposed
to retrieving just the summary values.

For additional information on the comparison between tabular and multidimensional models,
refer to http://technet.microsoft.com/en-us/library/hh212940.aspx.

Star- or Snowflake-relational schema
There continues to be much discussion, and often debate, over the question of whether a Star
or Snowflake schema is preferred and whether cubes or Tabular Models may be required.

In the Star schema, each fact table is directly related to every dimension
table; in the Snowflake schema, some dimension tables may be further
normalized and connected to the fact table through other dimensions.
You can use Star or Snowflake data models for building multidimensional
as well as Tabular Models.

The answer is that either architecture is acceptable, and in most environments, the best
choice is not one or the other but rather a mix of both.

Before making a decision on using a Star or Snowflake architecture for your relational
scheme, it's important to understand the key characteristics of each. Stars are denormalized
models, most typically seen in data marts. Though not optimal for data maintenance
activities (as they are heavily data redundant), Stars are very fast to query and due to their
far less complex schema, they are easier for business users to navigate. Snowflakes, on the
other hand, are normalized models, most typically seen in data warehouses. Since they are
normalized, Snowflakes are optimized for data maintenance, but the requirement of joining
many tables to retrieve data mean a more complex overall schema and slower queries.

Given that our primary goal in BI is to provide access to data as quickly and intuitively as
possible, Stars are generally considered to be the preferred "outer" data layer. Outer in
this case implies that we may have (and often we do have) a normalized (Snowflake) data
warehouse, which is the primary persistent managed data store. The denormalized (Star)
Data Mart is populated from the Data Warehouse as a way of positioning data for optimal
user, reporting, and application use. Cubes and Tabular Models, like all analysis tools,
benefit greatly from this optimization but can consume the normalized data warehouse
as well—usually not as efficiently.

http://technet.microsoft.com/en-us/library/hh212940.aspx
http://technet.microsoft.com/en-us/library/hh212940.aspx

Chapter 1

13

However, this does not mean that my Data Mart must be entirely comprised of denormalized
Star structures. You will find that as your environment matures, you will be faced with the fact
data of differing grains along shared (conformed) dimensions. In such instances, you should
consider normalizing (Snowflaking) those specific dimensions in order to accommodate
those different facts. This is a good example of a Data Mart that is still considered a Star
architecture but contains a small number of Snowflake dimensions.

A sample scenario for choosing the
Snowflake schema

Here's an example of a design decision process that would lead you to a Snowflake
dimension. Start by assuming that all the dimensions in the Data Mart (versus the
Data Warehouse, where we may have different ideas) will be modeled as Stars.

We start in our first design with a single dimension, Geography, containing the
following columns:

 f skGeography (surrogate key)

 f PostalCode (business key)

 f CityID

 f CityName

 f StateID

 f StateName

 f CountryID

 f CountryName

We have one fact source table containing, say, population data with the following columns:

 f CensusDate

 f PostalCode

 f PopulationCount

In ETL, we would join this source table to the dimension table on the business key
PostalCode to retrieve the surrogate key and use this to load the data mart fact table:

 f CensusDate

 f skGeography

 f PopulationCount

Introduction to Multidimensional Data Model Design

14

Now, let's introduce a second fact source table containing projected population data, but with
a different grain. Let's assume this data comes in, not at the Postal Code grain but rather at
the State grain. We'd have a source table with columns such as follows:

 f ProjectionDate

 f StateID

 f ProjectedGrowth

We can't join this new source table to our existing Geography dimension because if we do so,
we will get back many surrogate keys—each representing one postal code within the specified
state. So, we need to Snowflake (partially normalize) the Geography dimension so that it will
support the grain of each of our fact source tables, giving us two dimension tables similar to
the the following two bullet lists:

dimGeography:

 f skGeography

 f PostalCode

 f CityID

 f CityName

 f skGeographyState

and dimGeographyState:

 f skGeographyState

 f StateID

 f StateName

 f CountryID

 f CountryName

Notice that we did not fully normalize the dimension (postal code and city both exist in the first
table, state and country in the second). We just normalized the dimension enough to give us a
single relationship between each of our two facts and this dimension.

2
Defining Analysis

Services Dimensions

In this chapter, we will cover the following recipes:

 f Defining data sources

 f Defining data source views

 f Defining entity relationships in DSV

 f Extending data source views

 f Creating named calculations and queries

 f Creating simple dimensions

 f Building dimension hierarchies

 f Setting up dimension properties

 f Setting up the essential attribute properties

 f Browsing dimension data

 f Sorting the attributes

 f Customizing advanced attribute properties

 f Creating parent-child dimensions

 f Creating date and time dimensions

Defining Analysis Services Dimensions

16

Introduction
This chapter explains how to build and configure most commonly encountered SQL Server
Analysis Services (SSAS) dimensions. Each Analysis Services multidimensional project consists
of dimensions and cubes; knowing how to define and customize dimensions is essential for
building successful business intelligence solutions. Analysis Services builds data structures
based on one or multiple relational data sources. Therefore, before creating dimensions and
cubes, you need to define data sources and their corresponding data source views—layers of
abstraction between the relational database and Analysis Services objects. After you define data
source views, you can create simple dimensions using a dimension wizard and subsequently
customize and enhance dimensions as needed using a dimension editor.

SQL Server Data Tools (SSDT) is the primary client tool for developing Analysis Services
solutions. In prior versions of SQL Server, the same tool was called Business Intelligence
Development Studio (BIDS). To open SSDT navigate to Start | All Programs | SQLServer 2012
| SQL Server Data Tools. After you're happy with the objects you created within SSDT, you can
deploy object definitions to an Analysis Services instance where you can process the objects
(meaning loading data from the relational source into Analysis Services) and browse the data.
The primary tool for administering Analysis Services, along with other products included within
the SQL Server product suite, is called SQL Server Management Studio (SSMS).

Note that throughout this book, we will use a sample SQL Server
database, Adventure Works 2012, along with the corresponding
sample Analysis Services database. You can download the mentioned
samples from www.codeplex.com if you'd like to follow along (look
for Adventure Works Multidimensional Models SQL Server 2012).

Defining data sources
Each Analysis Services project could use multiple data sources. The traditional approach is to
first build a staging relational database where you import data from various data repositories
within your enterprise. Subsequently, you would build a dimensional model using a Star
or Snowflake schema, as opposed to a normalized model you would typically use for a
transactional database, for your data warehouse that has fact and dimension tables.
Lastly, you build the Analysis Services solution using the dimensional model within the
relational data source. This approach is still recommended, because it allows you to have
more control over your data cleansing routines prior to building Analysis Services objects.

Chapter 2

17

On the other hand, SSDT does give you the flexibility to connect to various relational databases
and define necessary data structures within data source views, if you don't have the luxury
of building the staging area or the star schema database. However, this flexibility comes
with a price because your transactional relational databases aren't likely to have data in the
format you need for Analysis Services. Transforming data while you build SSAS objects adds
an unnecessary overhead. Furthermore, you can accomplish certain data cleansing and
transformation operations much more simply and more efficiently while using SQL Server
Integration Services (SSIS) rather than doing so within Analysis Services. Keep this in mind
as you learn how to create data sources.

How to do it...
Once you launch SSDT, go to File | New Project and then select Analysis Services
Multidimensional and Data Mining Project. Provide a descriptive name for the new
project, for example, SSAS Cookbook Chapter 2, and save it to the location of your
choice. At this point you should see the project with the necessary folders within the SSDT's
Solution Explorer window. To define a data source perform the following steps:

1. Right-click on the Data Sources folder in the Solution Explorer window and
select New Data Source. This activates Data Source Wizard, as shown in
the following screenshot.

2. Now, click on New….

www.allitebooks.com

http://www.allitebooks.org

Defining Analysis Services Dimensions

18

3. The Connection Manager allows us to choose a .NET or OLE DB provider, which we
want to use for connecting to the relational data source.

4. Click on the Provider dropdown to see the list of available providers. You have a
number of choices out of the box; you could source data from the SQL Server,
Oracle, Access, or SQL Server Compact databases, among others.

5. The Connection Manager will show more options if you install additional drivers
(for example, Sybase or Teradata driver), which aren't included with the default
Analysis Services installation. Note that you have several options for connecting
to SQL Server data sources, including the SQL Server Native Client or OLE DB
provider. For this exercise, let's use the OLE DB provider for the SQL Server.

6. Provide the name of the SQL Server relational instance. For this example, I'll use
a Julia-PC\SQL2012 instance. You may use the SQL Server or Windows
Authentication for connecting to the SQL Server relational instance.

If you're using the default SQL Server instance, you only need to
provide the host name. If you're using a named instance, you may
provide the host name along with a slash and the instance name
or the host name followed by a comma and the port number.

7. Specify the database you wish to connect to—in this case AdventureWorksDW2012.
You can also click on the Test Connection button to verify connectivity to the data
source, as shown in the following screenshot:

Chapter 2

19

Note the All button on the Connection Manager dialog's left pane, just under
the Connection button. Once you click on All, you can configure all the
properties for the connection on a single tab. This tab is particularly useful
if you are working with non-SQL Server data sources that require additional
configuration besides simply specifying the server name and connection
credentials. The number of properties you can set will vary from one provider
to another. In some cases you must specify the majority of the settings as a
single long string under "extended properties".

Defining Analysis Services Dimensions

20

8. Once you're happy with the settings for a relational data source configuration, click on
OK to return to the Data Source Wizard. Now the wizard shows the connection you
defined as shown in the following screenshot:

9. Once you click on Next, you're ready to configure the information for impersonation.
You have several impersonation options, which are as follows:

 � Use a specific Windows username and password. I recommend using
this option since it ensures a high-level of security for your data source.
Exploiting this option in an environment where multiple SSAS developers
work on the same project could be cumbersome because co-workers aren't
supposed to share their passwords. In such a case it is a common practice
to use a generic user ID (perhaps with a non-expiring password), which all
developers can share. Keep in mind that you will need to keep the account's
password up-to-date. If you use an account with a password that will expire,
you must update the data source definition each time the password changes.
Note that Analysis Services never scripts passwords; although you can script
the data source definition using SSMS, it will not display any passwords. If the
password is incorrect, Analysis Services will report an error: Logon failure;
unknown user name or bad password.

Chapter 2

21

 � Use the service account. This option uses the credentials of the account
running the Analysis Services service. You must be a member of the Analysis
Services administrator group (also known as server role) in order to use this
impersonation option. We'll discuss the server role in Chapter 7, Analysis
Services Security. If the service account isn't permitted to log on to the
relational data source, Analysis Services will report an error, for example,
Login failed for user ABCDomain\XYZUser.

 � Use the credentials of the current user. This option is normally used for data
mining, which is beyond the scope of this book. Do not use this option for
defining data sources not intended for data mining. If you mistakenly use this
option, Analysis Services will report an error: Data Source XYZ contains an
ImpersonationMode that is not supported for processing operations.

 � The Inherit option uses the impersonation option defined at the database
level. As mentioned earlier, each project could have multiple data sources,
and therefore it could be beneficial to re-use the definition for each source
based on the database- or project-level setting.

10. Choose the appropriate impersonation level and click on Next.

To see the impersonation information defined at the database
level, right-click on the project in the Solution Explorer
window and select Edit Database. This will allow you to edit
Analysis Services' database-level properties. You will find the
DataSourceImpersonationInfo property within the
SSDT Properties window.

11. Once you click on the ellipsis button, you'll find that it has the same four options
as the impersonation tab of each data source (the Default option is synonymous
with Inherit).

If impersonation is set to Default at the database level and Inherit
at the data source level, the data source will use the Analysis
Services service account for connecting to the relational database.
For example, if you're using Windows' authentication to connect to
a SQL Server relational source, you need to ensure that the account
running the Analysis Services service has necessary permissions to
read data from SQL Server database objects.

Defining Analysis Services Dimensions

22

12. The last screen of the wizard asks for a data source name. Be sure to supply a
descriptive name before you click on Finish so that you can easily differentiate
between multiple data sources. The newly defined data source will show up in
the Data Sources folder within SSDT.

How it works...
If you have worked with various relational database platforms, you would be aware of the
similarities; they all consist of tables, rows, and columns. But you might also recall the
differences, for example, the flavour of the SQL language used by the SQL Server could
be somewhat different from the one utilized by Oracle, Sybase, or Teradata. So you might
wonder how SSAS knows which syntax works for each type of data source. If you check the
Cartridges folder under your Analysis Services installation directory (by default, this folder
will be under c:\Program Files\Microsoft SQL Server\instance name\OLAP\
bin\), you will find XSL files for each supported data source. These cartridge files control how
SSAS interacts with various relational databases.

There's more...
Now that you have created the data source, you can review and edit its properties by
right-clicking on it in the Solution Explorer window within SSDT and selecting Open.
This screen reveals a few additional properties, which can be useful for fine tuning
your data source configuration; they are given in the following bullet list:

 f Isolation: This property configures the transaction isolation level for retrieving data
from relational tables. The default (and recommended) value is Read Committed.
You also have an option of using the snapshot isolation level. The discussion of
transaction isolation levels is beyond the scope of this book. However, you should be
aware that different isolation levels use different types of locking strategies to ensure
data consistency.

 f Query timeout: This property allows you to specify the number of seconds during
which SSAS should run the SQL statement used for processing any object within
this data source, after which the relational query should timeout. If you have a busy
relational database used to populate SSAS objects, the stability of the relational
source might be more important than having up-to-date data in Analysis Services.
Therefore, you might want to throttle the amount of time a processing query takes
to run. The default value is 0, which means that queries aren't limited at the data
source level. Analysis Services has a configuration property that controls how
long processing queries should run before the timeout; please refer to Chapter 8,
Administering and Monitoring Analysis Services, for more information.

 f The maximum number of connections property defaults to 10, and controls how
many connections SSAS can establish with the data source while processing its
corresponding objects.

Chapter 2

23

Defining data source views
Data source view (DSV) serves as a layer of abstraction between a relational data source and
SSAS objects. You can import existing tables and views from relational sources into a DSV.
DSVs also allow defining new columns and views (named calculations and named queries,
respectively) based on the existing structures within your data sources. Let's learn how to
create and enhance DSVs.

Getting started
A prerequisite to building a DSV is defining at least one data source. Build a data source
before working on DSVs by following a previous recipe.

How to do it...
To define a DSV, perform the following steps:

1. Right-click on the Data Source Views folder in SSDT's Solution Explorer and choose
New Data Source View. This activates the Data Source View Wizard. This wizard
allows using the existing data source or defining a new one. If you choose to create
a new data source, you will go through the same steps we discussed earlier in this
chapter. For this example let's use the existing data source.

2. The following screen allows choosing tables and views we want to include in the
DSV. You can add or remove objects using the left and right arrows in between the
Available objects and Included objects panes of this dialog.

Note the Filter textbox; it comes in very handy in large
databases with thousands of tables and views. You can enter
a string in the Filter textbox to limit the list of available objects
to those objects whose name contains the mentioned string.

3. The Add Related Tables button automatically adds any tables that have foreign key
relationships with the tables already in the Included objects list.

4. It is not uncommon to see the Analysis Services project built on top of a relational
database that includes primary and foreign keys. However, referential integrity adds
an overhead while loading data. If you load data from various sources into fact and
dimension tables, you might not want to define table relationships in SQL Server but
rather specify such relationships in the DSV.

Defining Analysis Services Dimensions

24

5. For this example, select the DimDate (dbo) table from the available objects list,
and click on the right arrow button (>) to move it to the included objects list.

6. Next click on the Add Related Tables button, and you'll see several fact tables
added to the list.

7. Click on the Next button to move on to the final screen of the wizard, allowing you to
specify a name for the new DSV. Be sure to specify a descriptive name so you can
easily differentiate this DSV from others.

8. Click on the Finish button after you name the DSV. Adventure Works DW2012 DSV
should now include the DimDate (dbo) table along with several fact tables.

You can right-click on any object within the DSV and select the
Explore Data option to browse the sample data found in this
object—doing so runs a query against the relational data source.

Chapter 2

25

Defining entity relationships in DSV
While creating a data source view, you noticed that SSDT automatically detected primary
and foreign keys between DimDate and fact tables and established their respective
relationships. If our data source does not have referential integrity constraints, we would
have to define the logical primary keys and necessary relationships directly within the DSV.

To set up relationships between two objects within a DSV, dimension objects (tables or views)
must have a primary key column and fact tables must reference this column. The column names
in fact and dimension tables do not need to match, but they must have compatible data types.
For example, you cannot create a relationship between an integer and string columns.

How to do it...
Let's get started; the following are the steps to define the entity relation in DSV:

1. To define a logical primary key on an object that does not already have one,
right-click on the column that uniquely identifies each record in the table and
select Set Logical Primary Key. To check how relationships are defined in the
DSV you created, double-click on the line connecting FactFinance to DimDate.
As shown in the following screenshot, the relationship includes the table names
of both primary and foreign keys:

Defining Analysis Services Dimensions

26

2. To create a new relationship, you must click on the Foreign Key column in the fact table
and drag it to the dimension table's Primary Key. Alternatively, you can right-click on
the blank area within the DSV and select New Relationship; this will bring up the Edit
Relationship dialog (as shown in the preceding screenshot).

Note the Reverse button on the Edit Relationship dialog;
if you happen to mistakenly drag the Primary Key column
from a dimension to a fact table, you can easily correct
the relationship by clicking on Reverse.

3. The DSV we created in the previous section has multiple relationships from some fact
tables to DimDate. For example, the FactResellerSales table has OrderDateKey,
ShipDateKey, and DueDateKey columns, each referencing the DateKey column in
the DimDate table.

Extending data source views
Now that you know how to create a DSV, you are ready to learn how to extend it. In the
previous recipe we imported a few tables from a relational data source, but that might not
be sufficient to complete your data model. You may need to import objects from multiple
data sources, define calculations, or add new data views.

How to do it...
To add or remove objects from the existing DSV, perform the following steps:

1. Right-click on any blank area within the DSV and choose Add/Remove Tables;
this opens the corresponding dialog shown in the following screenshot:

Chapter 2

27

2. This screen should look familiar from the previous section when you first created the
DSV. You could easily add or remove objects to the DSV by clicking on appropriate
buttons. One notable difference is the Data source drop-down box. If we had defined
multiple data sources, we could import objects into the same DSV using multiple
sources. In order to include objects from multiple data sources into a single DSV,
the primary data source must be SQL Server; as you can see from the previous
screenshot, the dialog clearly identifies the primary data source.

3. Be aware that generally it is not recommended to use the same DSV to combine data
from multiple sources. Importing data from multiple data sources will result in the
use of the OPENQUERY syntax for getting data from non-primary data sources, which
could be less optimal than having a single data source or a separate DSV for each
data source. However, you can only define relationships among objects found in the
same DSV; hence, each DSV would have to have separate measure groups. You will
learn more about measure groups in Chapter 3, Creating Analysis Services Cubes.

4. If you proceed with adding the remaining tables and views found in the Adventure
Works DW 2012 sample database, you'll find that the DSV becomes somewhat
cluttered and difficult to read. Clearly, a DSV for a real-world application with dozens
or even hundreds of tables will be even more complicated to decipher. Fortunately
you can right-click on any blank area within a DSV and choose the Zoom option to
have the DSV fit the available screen space.

www.allitebooks.com

http://www.allitebooks.org

Defining Analysis Services Dimensions

28

5. You also have an option to find a particular table; this option brings up the list of
tables. Once you click on the desired table in the list and click on Ok, SSDT will focus
on that table on the DSV. Alternatively, you can achieve the same by clicking on the
table of interest in the Tables list on the leftmost pane in SSDT, as shown in the
following screenshot:

6. Since the list of tables included in an SSDT project can get unwieldy, you can create
multiple diagrams based on the same DSV. For example, you could build a separate
diagram for each group of fact and dimension tables. To create a new diagram,
right-click anywhere within the Diagram Organizer window (found in the top-left
corner of SSDT when a DSV is open) and choose New Diagram. Once the new
diagram is created, you can give it a descriptive name and add tables/views by
following the same steps as when building the DSV.

Chapter 2

29

Creating named calculations and queries
Named calculations allow extending an existing object to include data structures necessary
for defining a dimension. The most common example is of combining the first and last name
columns into a single column named as full_name. Similarly, we could concatenate the quarter
and year columns to define a full description for each calendar quarter, as in Quarter 2,
2013. If you have sufficient access to the relational database, you have an option of creating
any views you need for building dimensions; this approach is favored by many data warehouse
and cube developers. However, it is also plausible that you won't have permission to create
or alter relational objects. There is no need to worry though; named calculations are here to
help. For example, suppose you have the Employee dimension based on the DimEmployee
table, which includes the FirstName and LastName columns. This could be great for
relational design, but you'll need to define a named calculation if you want to expose a string
concatenating the first and last names as a single dimension attribute.

In addition to named calculations, you can also define named queries. These are most useful
when you'd like to present columns from multiple tables together as a single entity. With named
queries you can also join tables found in multiple databases on the same SQL Server instance.
If you have necessary permissions to create and alter objects in the relational source, it's best
to define relational views (the relational database administrator will advise you if you have such
permissions); however, if you cannot modify the relational source, you will have to resort to using
named queries. You should also consider the advantages/drawbacks of using named queries
versus relational views. If the view is beneficial for relational queries in addition to populating
an SSAS object, it makes more sense to create the view in the relational database. On the other
hand, if the view is specific to your Analysis Services solution, it may make more sense to use a
named query as opposed to creating a new relational object.

How to do it...
To create the full_name named calculation, perform the following steps:

1. Right-click on DimEmployee within the DSV and choose New Named Calculation.
This opens the Create Named Calculation dialog.

2. Enter FullName in the column name text box and specify FirstName + ' ' +
LastName as the expression. Optionally, you could also enter a description for the
named calculation.

Defining Analysis Services Dimensions

30

3. Now, the DimEmployee table shows the FullName column along with a calculator
icon in the DSV. To confirm you get the desired result with your named calculation,
you can right-click on DimEmployee and choose Explore Data.

To create a named query, realize that AdventureWorks DW 2012 contains a snowflake
schema for product subcategories; however, suppose we want to build the Product
dimension based on just one entity, we should include the subcategory data.

4. Right-click on the blank area in the DSV and choose New Named Query; this opens the
Create Named Query dialog. You have an option to either use a generic query builder,
which simply accepts SQL statements, or the Visual Data Tools (VDT) query builder,
which allows you to pick and choose columns you wish to include in the query.

5. Switch to the generic query builder, enter the following query, and click on the run
button as shown in the next screenshot:
SELECT
 DimProduct.ProductKey,DimProduct.ProductAlternateKey,
 DimProduct.ProductSubcategoryKey,DimProduct.
 WeightUnitMeasureCode,
DimProduct.SizeUnitMeasureCode,DimProduct.
 EnglishProductName,
 DimProduct.StandardCost, DimProduct.FinishedGoodsFlag,
 DimProduct.Color,DimProduct.SafetyStockLevel,
 DimProduct.ReorderPoint,DimProduct.ListPrice,DimProduct.[Si
 ze],DimProduct.SizeRange,DimProduct.Weight,DimProduct.
 DaysToManufacture,
 DimProduct.ProductLine,DimProduct.DealerPrice,
 DimProduct.Class,DimProduct.Style,DimProduct.ModelName,

Chapter 2

31

 DimProduct.EnglishDescription,DimProduct.StartDate,
 DimProduct.EndDate,DimProduct.Status,
 DimProductSubcategory.EnglishProductSubcategoryName
FROMDimProductINNERJOIN DimProductSubcategoryONDimProduct.
 ProductSubcategoryKey=DimProductSubcategory.
 ProductSubcategoryKey

6. This dialog allows you to preview the query you are about to save to DSV. Switching to
the VDT query builder will let you review the query design visually.

7. Once you click on OK, the named query is saved to your DSV. You can now add the
logical primary key and define relationships with the named query as you would with
tables and views imported from the relational data source.

Defining Analysis Services Dimensions

32

Creating simple dimensions
The Analysis Services dimension allows examining data across a specific business vertical.
For example, the Product dimension allows managers to see which products generated the
most revenue, and the Geography dimension helps determine the most profitable regions.
Each dimension is based on a corresponding table or view in the relational data source;
dimension table's columns will correspond to SSAS dimension attributes. Analysis Services
allows creation of very simple as well as very complex dimension structures. There are many
dimension and attribute properties which let us customize each dimension to meet specific
business requirements. Let's begin by creating a simple dimension and then working our way
through more complex ones.

Getting ready
To complete this recipe, we must have at least one data source view with necessary tables,
views, named queries, and named calculations.

How to do it...
To create a dimension perform the following steps:

1. Right-click on the Dimensions folder in SSDT's Solution Explorer and choose New
Dimension. This activates the Dimension Wizard. The introductory screen provides
some choices for building dimensions: we can use an existing table, generate a
table, or create a server-level time dimension. A large majority of your dimensions
will be based on tables or views that already exist in the relational source. Date- and
time-related dimensions occasionally make sense if they are to be created through
Analysis Services, as discussed later in this chapter. For this example choose Use an
existing table and click on Next:

Chapter 2

33

2. The following screen asks you to specify the data source view where the dimension
table is found along with the dimension key and its corresponding name.

3. Recall that when creating a data source view, we imported table definitions from a
relational source, including any primary and foreign keys used to relate fact tables
to dimension tables. Additionally, if the source dimension table did not have a
primary key, we defined the logical primary key within the DSV. A dimension's key
attribute must uniquely identify each dimension row. The name column is presented
to Analysis Services users while browsing the dimension and is optional for the key
attribute. This is because you may or may not want to expose the key attribute for
querying. Our project currently contains a single DSV, which is automatically detected
and selected by the wizard. If we had multiple DSVs, you could pick the one from
which you wanted to build the dimension.

Defining Analysis Services Dimensions

34

4. Let's choose DimPromotion as the main table with the key column set to
PromotionKey and the name column set to EnglishPromotionName as
shown in the following screenshot:

5. The following screen asks you to specify columns to be included as dimension
attributes. You can specify attribute names, which do not have to match the
dimension table column names.

The dimension wizard asked us to specify the main table;
this is because a dimension could be built upon multiple
tables. For example, if you use a Snowflake schema, each
dimension could consist of multiple related tables.

6. Choose descriptive attribute names that will be meaningful to cube users.
Business people often don't care how cube architects name tables and columns,
but they do need to know what data each attribute represents. Therefore, it is quite
common to have lengthy attribute names, which include spaces—a practice that is
generally avoided when naming relational database columns.

7. Although we included PromotionKey as the dimension's key attribute,
let's name it Promotion Name. Additionally, let's include English Promotion
Type, English Promotion Category, Discount Percent, Start Date, End Date,
Minimum Quantity, and Maximum Quantity attributes; it is best to spell out
words completely in attribute names rather than cause ambiguity in users' minds.

Chapter 2

35

8. Enabling browsing and attribute type options allows us to set a couple of important
properties. You may want to include an attribute in the dimension without enabling
cube users to slice data by this attribute. For example, the key attribute could simply
be an identity column—a monotonically increasing value that has no business
meaning and won't be useful for browsing. On the other hand, columns that aren't
available for browsing could be useful for sorting other attributes.

9. Most of the attributes will be classified as regular, but occasionally you will need
special attribute types; clicking on the attribute type drop-down box will show you the
choices: Account, Currency, Date, Geography, and Other. Each attribute type has
multiple subtypes associated with it.

10. Leave all the attributes of the type Regular, and click on next after ensuring your
screen looks like the following screenshot:

Do keep in mind that special attribute types are
available and can be set after the dimension
has been created.

Defining Analysis Services Dimensions

36

11. The previous screen simply asks you to name the dimension. Again, remember that
business users will browse the data using dimension names, and therefore names
should be meaningful. Name the dimension as Promotion and click on Finish. At this
point, your SSDT project will show Promotion.dim under the Dimensions folder;
as you might guess, the .dim extension stands for dimension, and each dimension
object within the project will have this extension.

12. Double-click on Promotion.dim to open the dimension editor, and review the
dimension structure created by the wizard. The DSV pane shows the only table
included in the promotion dimension, and the properties' window shows numerous
properties we could set to customize the dimension. Highlighting any attribute in
the leftmost pane will allow setting the properties for that attribute.

13. Hover your mouse pointer over the squiggly line under the promotion dimension in
the leftmost pane and you'll see the warning: Create hierarchies in non parent-child
dimensions. This brings us to the next recipe, that is, creating dimension hierarchies.

How it works...
The only language through which you can communicate with the Analysis Services server
is Extensible Markup Language for Analysis (XMLA). Whether applying project changes
you develop through the SSDT user interface or processing objects using SSMS (or the
.NET code), all actions applicable to Analysis Services are translated into XMLA before
being sent to the server.

If you right-click on any object within your SSDT solution (this means the SSDT project,
not the live database) and choose View Code, SSDT will display the full XMLA for that object.
Generally you would not have to edit the XMLA code, but occasionally SSDT might raise errors
while you're editing a solution, and it's very difficult to work around these errors. In these
rare cases, you might find that changing a few letters in the XMLA code (for example,
switching from one data type to another) is easier than troubleshooting a potential bug in
the SSDT user interface. Of course, you must know exactly what you're doing before editing
the XMLA code directly, and you should make a backup of the solution prior to applying
any changes. Reviewing the code that SSDT generates behind the scenes is a great way to
become familiar with XMLA for Analysis Services' structures.

Building dimension hierarchies
Analysis Services hierarchies specify the navigation path for browsing dimension data.
There are two types of hierarchies: attribute and user-defined hierarchies. For example, in the
promotion dimension we just created, we immediately have a hierarchy for each attribute:
Promotion Name, Start Date, End Date, English Promotion Category, English
Promotion Type, Discount Percent, Minimum Quantity, and Maximum Quantity.
Attribute hierarchies contain two levels.

Chapter 2

37

The top-level is referred to as the All level and includes the aggregated value for all the
members included in the attribute. For example, the English Promotion Category attribute
hierarchy's All level will show the aggregate value of sales for all the promotion categories:
Customer, No Discount, and Reseller. The other level in the same hierarchy will show
individual promotion categories, such as Customer.

User hierarchies combine multiple attributes and must be defined explicitly. In this recipe we will
create a user hierarchy, which allows displaying the summary data for each promotion category,
then drilling down to the promotion type, and finally exposing individual promotion names.

How to do it...
Let's learn how to define multiattribute hierarchies by using the following steps:

1. Right-click on the English Promotion Category attribute and choose Start New
Hierarchy. This adds a new hierarchy object to the Hierarchies pane.

2. Drag the English Promotion Type attribute and drop it under the English Promotion
Category attribute in the newly created hierarchy. Repeat the same for the
Promotion Name attribute, placing it under English Promotion Type. The dimension
structure should now resemble the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Defining Analysis Services Dimensions

38

3. Now let's provide a meaningful name to the hierarchy so that our users know what
data they're browsing. Right-click on the hierarchy, choose Rename, and then enter
Promotion Categories and Types.

4. Alternatively, you can also edit the hierarchy name property within the Properties
window. Now, the Promotion Categories and Types hierarchy contains three levels:
English Promotion Category, English Promotion Type, and Promotion Name.
Highlighting any attribute within the hierarchy allows renaming of the level. For example,
suppose that the majority of our users are fluent in English and hence we don't need
to include the word "English" in level names. Therefore, let's remove this word from
the corresponding levels and arrive at the final design of our hierarchy to include
Promotion Category, Promotion Type, and Promotion Name levels.

5. Now, you're happy with hierarchy-level names, but SSDT shows another warning;
this is because we haven't defined attribute relationships yet. Attribute relationships
define how Analysis Services should roll up data from one hierarchy level to the next.
In this case we know that each promotion category can have multiple types, and each
type can have multiple promotion names. Switch over to the Attribute Relationships
pane within the promotion dimension editor; currently, you'll see the relationships as
shown in the following screenshot:

Chapter 2

39

There's more
Analysis Services creates a relationship from the key attribute to each non-key attribute by
default because the key attribute must uniquely identify each non-key attribute. But note that
English Promotion Category and English Promotion Type appear to the right of Promotion
Name (key attribute), whereas all other non-key attributes appear under Promotion Name.
This is because you included the promotion category and promotion type levels in a user-defined
hierarchy. Right-click on the English Promotion Type attribute and choose New Attribute
Relationship. Doing so brings up the Create Attribute Relationship dialog. Set the related
attribute as English Promotion Category and leave the relationship type as Flexible
(may change over time) as shown in the following screenshot; then click on OK. Attribute
relationships are always one-to-many; in this example, each category could have many
promotion types. A relationship type can be flexible or rigid. Rigid relationships are rare;
they indicate that each member of the related attribute will always be associated with the same
member of the source attribute. For example, January 21, 2013 will always be associated with
the month January 2013; similarly, each calendar month will always be associated with the
corresponding year. The classification of each promotion type can change over time; hence,
we should leave the relationship type at the default value of flexible. Relationship types make
an important difference during dimension processing; you will learn more about processing in
Chapter 5, Optimizing Dimension and Cube Processing.

Defining Analysis Services Dimensions

40

User hierarchies do not always have to include relationships between each combination of
levels. For example, users might want to browse data by the promotion start date and the
discount percent. However, the same discount percent might be applicable to multiple start
and end dates, depending on the quantity of the product a customer decides to purchase.
Therefore, we have a many-to-many relationship between the start date and the discount
percent, and we cannot define an attribute relationship between these two levels. If a
hierarchy contains attribute relationships defined between each combination of levels, it is
called a natural hierarchy. Analysis Services builds additional indexes for natural hierarchies,
which help optimize the query performance. Therefore, to achieve optimal query performance,
always define the necessary attribute relationships when applicable.

All other attributes included in the Promotion dimension (minimum and maximum quantity,
start and end dates, discount percent) will be directly related to the promotion key because
each may be applicable to multiple promotions. Once you've defined the relationship between
the promotion type and category attributes, save your changes and return to the Dimension
Structure tab; you will find that SSDT no longer displays the squiggly line, which acts as a
warning, under the Promotion Categories and Types hierarchy.

Setting dimension properties
You can customize each dimension by setting their respective properties to the desired
values through the Properties window after you select the dimension on the Dimension
Structure tab. Please refer to Appendix A, Miscellaneous Analysis Services Topics for a
table summarizing the most frequently used dimension properties.

Setting essential attribute properties
While running the Dimension Wizard to create the Promotion dimension, you learned
that each attribute has name and key properties. Choosing appropriate columns for these
properties is essential for having the correct attribute design, so we will discuss them in
greater detail here.

How to do it...
The steps for setting essential attribute properties are as follows:

1. The key property must uniquely identify the attribute and could consist of multiple
columns. For example, if we have a date dimension that includes the quarter number
column, with values quarter 1, quarter 2, and so on, this column alone won't be
sufficient to uniquely identify each quarter because quarter names would be duplicated
for each year. Instead, the key property should be set to a combination of quarter and
year columns. If we don't explicitly specify the attribute key, Analysis Services will use
the same column as the attribute key and name, but attribute names might not always
be unique. If we check the properties of the Promotion Type attribute, we find the
following settings:

Chapter 2

41

2. However, a quick check of the DimPromotion relational table will show duplicate
promotion type values. For instance, the Excess Inventory promotion type exists for
both Reseller and Customer promotion categories. If we leave the dimension design
at its current state, Analysis Services processing will fail reporting duplicate values.
Instead, let's specify a composite key consisting of the promotion type and promotion
category columns. Click on the ellipsis button to the right of the Key Columns
property; this will open the Key Columns dialog. Note from the screenshot that you
could choose columns from multiple source tables (if we were using a snowflake
schema). Add the EnglishPromotionCategory column to the Key Columns list and
click on OK:

Defining Analysis Services Dimensions

42

3. Now, SSDT displays a squiggly line under the EnglishPromotionType column,
and we must specify the name column property for any attribute that has multiple
key columns. Right-click on the ellipsis button next to the NameColumn property to
activate the NameColumn dialog. Choose the EnglishPromotionType column and
click on OK. At this point SSDT will remove the missing-name-column warning from
the EnglishPromotionType attribute.

In this example, we used a composite key for the promotion type attribute.
This practice is acceptable for relatively small dimensions, but if you're
working with large dimensions it is best to use narrow keys (meaning a
single column, preferably with an integer data type) for each attribute. It
is a common and recommended practice to create additional keys in a
relational database to assure the uniqueness of each attribute member.

Browsing dimension data
By now you might be anxious to review the fruits of your labor thus far, so let's deploy our
changes to the Analysis Server and take a test drive.

Getting ready
To complete this recipe, you need to have an Analysis Services 2012 instance for which you
have sufficient permissions to deploy and process a database.

How to do it...
The steps for browsing dimension data are as follows:

1. Right-click on the SSAS_Cook_book_Chapter2 project in the Solution Explorer
window and choose Properties; this brings up the project property pages dialog.

2. Switch to the Deployment tab. We can leave the majority of deployment options at
their default values for now. Be sure to specify the correct Analysis Services instance
and change the database name as desired. Note that I have selected the Do Not
Process processing option. I recommend this option during project deployment
because it helps separate two operations, deployment and processing, and therefore
makes debugging corresponding problems easier.

Chapter 2

43

3. The default value for Processing Option is Default, which will bring each object
included in the deployed database to a fully processed mode. Once you are
comfortable with your processing option, Analysis Server name and database
name, click on OK.

4. Right-click on the project again and choose Deploy. If you have followed along
each step, your Analysis Services instance should reflect a new database called
SSAS_Cook_book_Chapter2, which will have the data source, DSV, and the
Promotion dimension you created. You can review database objects in SSMS.
Right-click on the Promotion dimension and choose Process (either from SSDT
or SSMS); use the default option to run the Process Full option and click on OK.

Defining Analysis Services Dimensions

44

5. After you process the promotion dimension, activate the Browser tab in SSDT.
Here you'll see each promotion grouped under the respective type and category,
per the next screenshot. Note that, by default, the browser shows the user
hierarchy, but you could also browse attribute hierarchies by clicking on the
Hierarchy drop-down box and choosing the hierarchy of interest:

Chapter 2

45

How it works...
As discussed earlier in this chapter, all the commands are sent to the Analysis Services
instance using the XMLA language. You can review the statements SSDT creates during
project deployment as well as during processing using the SQL Server Profiler, which is by
far the best tool for learning Analysis Services. The Profiler allows choosing the type of events
and columns you wish to capture and monitor. You can invoke the Profiler by navigating to
Start | All Programs | SQL Server 2012 | Performance Tools | SQL Server Profiler. We will
discuss Profiler in greater detail later in this book. For now, feel free to capture deployment
and processing statements to learn the basics of Profiler.

Sorting the attributes
By default, each dimension attribute is sorted according to its key column values, but this
may or may not fit your requirements. Additional options include sorting the attribute by its
name or by another attribute's name or key. For example, ordering a month attribute within the
date dimension based on an attribute name will clearly not work; this is because we would see
February prior to January since the letter "F" precedes "J" in alphabetical order. More than
likely we want to see data sorted based on the occurrence of months in a calendar, rather than
alphabetically. We can manage the sorting of an attribute using the OrderBy and
OrderByAttribute properties. In this recipe we will sort the English Promotion Type
attribute based on English Promotion Category.

How to do it...
Let's get started with sorting the attributes:

1. Click on the English Promotion Type attribute on the Dimension Structure tab to list
the properties of this attribute.

2. Within the Properties window, change the OrderBy property to AttributeKey and
OrderByAttribute to English Promotion Category. To sort an attribute by another
attribute's key or name, you must first define attribute relationships between the
source attribute and the sorting attribute. In this case you have already defined the
relationship between English Promotion Type and English Promotion Category.
Therefore, you can pick English Promotion Category from the OrderByAttribute
drop-down list.

Defining Analysis Services Dimensions

46

3. Save and deploy your changes, reprocess the Promotion dimension, and browse
its English Promotion Type attribute hierarchy again. This time you'll see that
instead of being sorted alphabetically, promotion types appear in the order of their
corresponding categories:

Customizing advanced attribute properties
Analysis Services allows customizing a number of attribute properties. Discussing each
property with their corresponding screenshots would make this chapter extremely lengthy.
Therefore, we will discuss commonly used advanced properties here and mention other
relevant properties elsewhere in the book. We will refer to relevant dimensions available
within the Adventure Works 2012 sample database so that you can examine existing
dimensions instead of having to define each one of them from scratch.

How to do it...
To set a dimension attribute's property, perform the following steps:

1. Click on the attribute you wish to customize in the list of attributes on the leftmost
pane of the dimension editor in SSDT.

Chapter 2

47

2. Set focus to the Properties window to see a list of all the properties for the
selected attribute.

3. Pick the property you want to change and set its value as desired.

4. Note that you cannot modify any property that is grayed within the properties window.
For example, the ProcessingState and ID properties are read-only and cannot
be changed.

How it works...
The AttributeHierarchyEnabled property controls whether the attribute is enabled for
browsing. Recall that the Dimension Wizard allowed specifying whether each attribute should
be enabled for browsing. The default value is true, which means users will be allowed to
browse the data. Additionally, if the attribute hierarchy is not enabled (meaning that you set
the AttributeHierarchyEnabled property to false), you will not be able to include it in
any of the user-defined hierarchies. However, users can still query such attributes as member
properties of other (enabled) attributes. An attribute that has a relationship with another
attribute is known as the member property. For example, the e-mail address attribute
in the Employee dimension has AttributeHierarchyEnabled set to false, but it is
related to the Employee attribute and hence can be queried as the member property of the
Employee attribute. To expose the e-mail address member property within Excel pivot
table you would right-click on the Employee attribute (once it is selected on rows' axis) and
navigate to Show Properties In Report | Email Address. Keep in mind that Analysis Services
will not build indexes on any attributes for which the AttributeHierarchyEnabled
property is set to "false". This will shorten the dimension's processing time but will also result
in slower query performance for disabled attributes.

The AttributeHierarchyVisible property controls whether the attribute shows up in
the list of attributes through which you can browse the data. The default value is true.
Normally, it is recommended to set this property to false for attributes that are included
in any user hierarchies. For example, since we included the promotion type and the promotion
category in the user hierarchy, we could set the AttributeHierarchyVisible property for
both of these attributes to false.

AttributeHierarchyOptimizedState can be set to Fully Optimized or Not Optimized.
If the attribute is rarely used, we could set it to Not Optimized to prevent Analysis Services
from building indexes for this attribute—doing so will reduce the total dimension size and
shorten the processing time. Always keep this property to Fully Optimized (default value) for
frequently used attributes to ensure the performance is optimal.

www.allitebooks.com

http://www.allitebooks.org

Defining Analysis Services Dimensions

48

The DefaultMember property defines the member of the attribute hierarchy that is queried if
the MultiDimensional eXpressions (MDX) statement does not explicitly reference a member
from this hierarchy. You will learn the essentials of the MDX query language in Chapter
6, MDX. For now it's important to note that regardless of which hierarchies are explicitly
mentioned in the MDX query, all hierarchies are queried. If a hierarchy isn't mentioned in the
statement, its default member will be queried. Each hierarchy has a default member implicitly
specified; by default, it is the All member. For example, if an MDX query doesn't reference
any member of the PromotionType attribute hierarchy, the query will return values for all
the promotion types. You can set the DefaultMember attribute by clicking on the ellipsis
button next to this property; this activates the Set Default Member dialog. You can choose
No custom default, choose a member from the list or specify an MDX expression to derive
the default member. The last option is useful if you want to determine the default member
dynamically. For example, in a time dimension, you could specify the MDX to identify the
current month and use it as the default member. Alternatively, you could also supply MDX to
find the last month for which the sales amount is greater than zero.

The IsAggregatable property controls whether the attribute hierarchy has the All level.
The default value is "true". If you set this attribute's value to false, then the "All" level will not
exist. Furthermore, since there is no "All" level, you should define an explicit default member
to be used by queries which do not explicitly reference this hierarchy.

The DiscretizationMethod property allows grouping attribute members so that you
don't have to show the full list but rather a few groups that represent the entire population of
members. For example, the customer dimension has the yearly income attribute. As you might
guess, each company could have millions of customers with many different income levels,
so breaking down sales by each salary value would produce an impractical result set. Instead,
we need to come up with a few income brackets to identify product sales' trends for each salary
range. Of course, you can define your own way of categorizing income brackets. Alternatively,
you could let Analysis Services do it for you—simply choose one of the predefined discretization
algorithms: automatic, equal areas or clusters. The DiscretizationBucketCount property
lets you specify the number of buckets you would like the cube users to see while browsing
this attribute.

The AttributeHierarchyOrdered property controls whether the hierarchy is ordered.
The default value is true. If a particular attribute is not used for querying very often, you can
save some processing time by setting this property to false; in this case the OrderBy property
is ignored and member values aren't sorted.

Chapter 2

49

Creating parent-child dimensions
Business models often include entities that have a large number of levels. If you work for a
large corporation, you don't have to think very long to come up with an example of a drawn-out
hierarchy, simply refer to your organizational chart. You're likely to have entry-level employees
who report to first-level managers, who in turn report to several other levels of managers,
followed by directors, senior directors, vice presidents, and so on. The exact titles and number
of levels in the food chain might vary, but you get the idea. Such structures are by no means
limited to human resources; many organizations could have buildings that roll up to facilities
that in turn roll up to networks and so on. The main challenge is that of modeling the large and
unpredictable number of levels in a single dimension. If the number of levels in a hierarchy
varies, the object is known as a ragged hierarchy. For example, in a given enterprise, there might
be five levels of managers between John and the Chief Executive Officer (CEO) but only four
levels between Jane and the CEO; even though both Jane and John are entry-level associates.
If the number of levels is unknown or if it could change over time, it's best to use the Analysis
Services parent-child hierarchy feature.

We build parent-child hierarchies upon self-referencing entities, meaning the dimension table
will contain a key column and another column that references the key column. For example,
the Adventure Works 2012 sample database has the DimEmployee table, which contains
EmployeeKey and ParentEmployeeKey columns. The ParentEmployeeKey column refers
to the EmployeeKey column because the parent employee (manager) is also employed by the
same company and unless she is a CEO, she's also likely to have a manager. When we add this
table to the DSV, Analysis Services automatically detects that the entity is self-referencing—the
ParentEmployeeKey column refers to EmployeeKey.

How to do it...
Let's learn how to create a parent-child dimension using the following steps:

1. Invoke the Dimension Wizard as you would with a regular dimension. Select the
Use Existing Table option.

2. Specify DimEmployee as the source table, EmployeeKey as the key column,
and FullName as the name column. Refer to the Creating named calculations
and queries recipe for defining FullName. Ignore any related tables the wizard
might detect; they're irrelevant for this example.

Defining Analysis Services Dimensions

50

3. Choose Employee Key, Parent Employee Key, Title, Hire Date,
and Department Name as regular attributes.

4. Name the dimension as Employee. The wizard automatically detects self-reference
and creates a parent-child hierarchy.

5. Once the dimension is created, rename the Parent Employee Key attribute to
Employees, set the attribute Type property to Person, and the Usage property
to Parent. The Type property assigns commonly used attribute types, such as
person, account, currency, date, and so on to the attribute. Also rename the
Employee Key attribute to Employee.

6. Set the NamingTemplate property to Employee Level *;. This property assigns
the name to each level in a parent-child hierarchy. Since we cannot reasonably predict
the number of levels (and we don't know the job titles at each level), we'll simply call
each level Employee Level N, where N is the integer starting at Employee Level 02
(the top level is All).

7. Set the MembersWithData property to NonLeafDataHidden.

8. Save and process the dimension.

How it works...
If you have created a parent-child dimension as shown in the preceding section, the dimension
browser will show the employees arranged in accordance to the organizational chart. Had we
left the naming template property at its default (blank) value, the levels would simply be called
level 02, level 03, and so on. Checking the Hierarchy dropdown confirms that the Employee
dimension includes other, non-parent-child hierarchies as well: hire date, department name,
and title. Refer to the following screenshot:

Chapter 2

51

Defining Analysis Services Dimensions

52

In the preceding example, you learned yet another important attribute property:
MembersWithData. This property advises Analysis Services how to handle data values at
non-leaf levels. Generally in a regular dimension, non-leaf levels aggregate data from leaf levels;
for example, we'll sum up January, February, and March sales in order to find the value for the
first quarter. In a parent-child scenario, the story is somewhat different because each manager
could have her own sales in addition to the sales reported for salespeople whom she manages.
Analysis Services creates "data members" for such managers; each data member reflects
the data found in the underlying relational source, rather than the aggregation of subordinate
salespeople's sales. You set the MembersWithData property for the Employees hierarchy to
NonLeafDataHidden so that managers' data members don't show up. The default value for
the MembersWithData property is NonLeafDataVisible; if you keep the default value,
a manager's sales figure will show up as though she was reporting to herself. For example,
notice that the list of Amy Albert's direct reports includes Amy Alberts after I switch the
property to NonLeafDataVisible:

There's more...
Unfortunately, the flexibility that parent-child dimensions offer does come with a price of
performance penalty. In general you should try to use flattened dimensions with a finite number
of levels in lieu of parent-child dimensions when possible. For example, we could model the
sample Employees hierarchy to include six levels (Employee Level 1 through Employee Level 6)
since this is a sample database and number of levels will not change. In real-world applications
you may or may not have such luxury; if your company decides to add a new layer of employees,
you would have to modify your dimension structure and reprocess the measure groups
referencing this dimension. If you can't completely avoid parent-child structures, try to
limit each cube to only one parent-child dimension.

Chapter 2

53

Creating the date and time dimensions
The date and time dimensions (sometimes also referred to as periodicity dimensions) are
essential for the majority of data warehousing and business intelligence solutions. Analysis
Services offers a couple of different options for creating time dimensions; you can create a
corresponding table that contains the necessary columns in the relational database, or use
a time dimension defined on the Analysis Services server. Creating the time dimension using
a table in the underlying data source isn't very different from creating other dimensions;
the primary difference is that you advise Analysis Services that the dimension you're creating
should be of the time dimension type. This enables you to use certain MDX functions that are
specific to time dimensions. The server-side time dimension does not have a corresponding
relational table; this option is useful when you do not have necessary permissions to create
or alter relational objects. Additionally, you don't have to maintain data or use storage space
for a server-level time dimension. However, a server-level time dimension does have some
limitations and might not fit every requirement.

How to do it...
To create a server-level time dimension perform the following steps:

1. Invoke the Dimension Wizard as you would with a regular dimension.

2. The Select Creation Method dialog allows you to pick the type of dimension you're
about to create. As you saw earlier in this chapter (the Creating simple dimension
recipe), you can define a dimension based on an existing table. Additionally, you could
also have Analysis Services generate a time table within your relational data source
as long as you have sufficient permissions to do so. The other option is to define
the time dimension on the server without creating the dimension table in the data
source. For this example, select the Generate a time table on the server option and
click on Next.

Defining Analysis Services Dimensions

54

3. The following screen allows choosing time periods you wish to include in your
server-level time dimension. As shown in the screenshot, you can choose the
first and last calendar dates included in the dimension, the first day of the week,
time periods (day, month, quarter, year, and so on), as well as the language for
time members. Unfortunately, the server-level time dimension does not support
time periods under date; for example, you don't have the option to include hour,
minute, or second levels, which could be quite useful for some scenarios (for
example, we might want to examine stock prices by hour). Having a relational
table for your time dimension, of course, allows the flexibility of including finer
attributes. Ensure that the Define Time Periods screen looks similar to the
following screenshot before you click on Next.

Chapter 2

55

4. The next screen lets you choose the type of calendars to be included in the time
dimension. By default, the dimension will only include a regular calendar, but you can
also include fiscal or manufacturing calendars. Should you choose any non-standard
calendars, the dimension will have several additional attributes; you can review
the list of all the attributes on the final screen, which also allows you to specify the
dimension name.

5. Once you deploy and process your server-level time dimension, you can browse
its data.

To create a time dimension based on an existing relational table, complete the following steps:

1. Invoke the Dimension Wizard and select the Use an existing table option.
Choose appropriate columns for time dimension key and name.

2. On the Select Dimension Attributes screen, choose the attributes you wish to
include in your time dimension. Additionally, change the Attribute Type option by
clicking on the drop-down menu and choosing the respective attribute type. For
example, for English Month Name you would select DateàCalendaràMonth.

3. Once you provide a descriptive name for the dimension, click on Finish. If you check
the dimension's Type property, it will be set to Time, and the English Month Name
attribute's type property will be set to Months. If you forget to set some attribute
properties while working through the wizard, you can correct the property value
within the dimension designer.

There's more...
This chapter taught you how to define and configure data sources, create and extend
DSVs, and design the most commonly encountered dimensions. There are other types of
dimensions, which are seldom used in real-world applications. With the knowledge you
acquired in this chapter, you are ready to build typical dimensions. You should refer to product
documentation for any intricate scenarios requiring more specialized dimension types.

A common requirement for enterprise-level cubes is to handle transactions that occur
in multiple timezones. The simplest approach is to convert all time-related values into
a common timezone within the relational database. Although you could implement
support for various time zones in the Analysis Services solution, doing so will require
significant effort and could impose significant overhead for your queries. Please refer
to http://cwebbbi.wordpress.com/2005/11/01/handling-time-zones/
for further information.

3
Creating Analysis

Services Cubes

In this chapter, we will cover the following recipes:

 f Defining measure groups and measures

 f Setting measure properties

 f Browsing the cube data

 f Dimension usage with measure group

 f Examining cube file structures

 f Partitioning strategies

 f Defining partition slice

 f Merging partitions

 f Defining aggregation designs

 f Distinct count measure groups

 f Enabling write-back feature

 f Deployment options

Introduction
This chapter contains recipes for building SQL Server Analysis Services (SSAS) cubes.
Much like we did in Chapter 2, Defining Analysis Services Dimensions, let's start with building
straightforward cubes and then work our way up to more complex requirements.

www.allitebooks.com

http://www.allitebooks.org

Creating Analysis Services Cubes

58

Before you delve into building cubes, you need to become familiar with terms describing the
architecture of an Analysis Services cube. Each Analysis Services database may contain one
or more cubes. You can build each cube based on one or multiple fact tables found in the
relational data warehouse. Each measure group represents a collection of numeric metrics
(or measures) found in a single fact table. However, depending on the requirements, you may
have to build several measure groups based on a single fact table. Each measure group
within a cube may use multiple dimensions available within the database. Not all database
dimensions need to be exposed with each measure group. Each measure group can be split
up into multiple partitions to speed up processing as well as querying operations.

Defining measure groups and measures
The first cube recipe will create a simplistic cube based on the FactResellerSales fact
table and will include only two dimensions: promotion and date.

To create a cube and its related entities, you must first define the data sources from where
we'll import data and Data Source Views (DSVs), which define necessary relationships
between dimension and fact tables, as well as dimensions you intend to include in your cube.
Please refer to Chapter 2, Defining Analysis Services Dimensions, for recipes on defining data
sources, DSVs, and creating dimensions

Getting ready
Create a new SSDT project called SSAS_Cookbook_Chapter3 and save it to any location of
your choice. Create a data source view with all the tables via the AdventureWorksDW2012
database. Add the promotion dimension as discussed in Chapter 2, Defining Analysis Services
Dimensions. Also add the date dimension based on the DimDate table and include the year,
month, and date attributes. The date attribute should be based on the DateKey column,
and use FullDateAlternateKey as the name column. The date attribute should also be
the key attribute of the dimension. The month attribute must use the MonthNumberOfYear
and CalendarYear columns as keys and the EnglishMonthName as the name column.
Be sure to create attribute relationships between the month and year attributes.

How to do it...
Let's build your first cube by performing the following steps:

1. Right-click on the Cubes folder in the Solution Explorer window and choose
New Cube. This activates the cube wizard.

2. Much like the dimension wizard, the cube wizard also allows you to build a
cube-based on existing tables.

Chapter 3

59

3. Other alternatives include creating an empty cube or generating tables in the
relational data source. Creating an empty cube will allow you to add necessary
measure groups and dimensions manually. You will be able to add/remove
dimensions and measure groups even if you create a cube-based on existing
tables, so the empty cube option isn't particularly useful. Generating tables in
the data source option allows you to use one of the built-in templates to create
the sample Adventure Works SQL Server database tables.

4. For this exercise let's choose Use existing tables and click on Next, as shown in
the following screenshot:

Creating Analysis Services Cubes

60

5. The following screen allows you to choose the data source and the fact table(s) to
be included in the cube. Since the project only contains one data source view,
the wizard automatically uses it by default. Notice the Suggest button: if you click
on this button, SSDT will recommend tables that could be used as measure group
sources. Since measures are normally numeric, SSDT will suggest using tables that
contain numeric columns. If you choose multiple fact tables, the cube will include a
separate measure group for each of them. Let's only check FactResellerSales
and click on Next:

6. You can choose the measures you wish to include in the cube on the following screen.
The wizard automatically preselects all the numeric columns, but this may or may not
be the desired outcome. For example, although Revision Number is indeed a numeric
column, exposing it as a measure would not add any value to reseller sales analysis,
so let's uncheck it. The revision number is not additive; also, we cannot add revision
numbers across orders to obtain any meaningful value. However, metadata items such
as revision number (or invoice number) can indeed be useful for reporting and could be
included in fact dimensions, as you will learn later in this chapter.

Chapter 3

61

7. The wizard includes a count of rows for each fact table, in this case, Fact Reseller
Sales Count. We can rename measures within the Cube Editor, so let's leave
measure names as found on the screen and click on Next, as shown in the
following screenshot:

Note that if you set focus on any measure and right-click on it, you
can rename the measure. For example, the screenshot shows the
Unit Price Discount Pct measure selected so that we can spell out the
word "percent" to avoid any confusion. As with dimension attributes,
it is essential to provide meaningful names for your measures.

8. The next screen asks for dimensions you would like to include with the cube.
Since you only have two dimensions (promotion and date), include both and
click on Next.

9. The wizard detects relationships with other tables and suggests creating additional
dimensions via the following screen. As shown in the screenshot, you have an option
to create Sales Territory, Currency, Product, Fact Reseller Sales, and Employee
dimensions based on existing tables. Additionally, the wizard suggests creating a
dimension based on the fact table: FactResellerSales.

Creating Analysis Services Cubes

62

10. Although you should never expose fact level dimensions for ad hoc querying/browsing
data, such dimensions could be very useful for reporting. For example, we could include
the invoice numbers and order revision numbers on a report, and neither of these
attributes could be conveniently exposed through other dimensions. Though this might
sound like a nice shortcut for creating dimensions, the cube wizard doesn't provide any
facilities to customize dimension or attribute properties. Therefore, I do not recommend
this method of building dimensions. Instead, uncheck the box next to Dimension and
click on Next as shown in the following screenshot:

11. The last screen simply asks you to specify the cube name. As with other SSAS
objects, you should choose descriptive, meaningful names for your cubes.

Chapter 3

63

Note that every object (cube, dimension, attribute, measure, and so on) within
the Analysis Services project has an ID (identifier) and name. The object ID
defaults to its name at the time of object creation. You cannot change the
object's identifier without dropping and recreating the object. This might not
sound like a big deal, but keep in mind that all the XMLA commands refer to
the object's identifier. For example, if you have a dimension that you happen to
initially name "my snazzy dimension," then this would be the string you will see
anytime you process the dimension, even if you later rename the dimension
to "employees". Having non-descriptive identifiers makes debugging difficult,
so get in the habit of naming objects appropriately when creating them.

12. After you complete the cube wizard, the SSDT cube design window should resemble
the following screenshot. As you can see, the cube designer has multiple tabs on the
top ribbon; each of these has a specific purpose you will learn about. The data source
view window includes the tables you used to create the cube. The Measures and
Dimensions windows include the listing of measures and dimensions respectively.

Creating Analysis Services Cubes

64

13. You should notice on the Dimensions pane that the cube has four dimensions
even though we had advised the Cube Wizard to only include date and
promotion dimensions.

14. Recall from Chapter 2, Defining Analysis Services Dimensions, that each
dimension table could have one or multiple relationships with the fact table.
The FactResellerSales references date dimension's DateKey column
three times: OrderDateKey, DueDateKey, and ShipDateKey.

15. The Cube Wizard recognizes this and creates three separate cube dimensions based
on a single date dimension available in the database. Such dimensions are called
role playing dimensions. They can be very helpful—instead of storing data in three
separate tables, corresponding to three SSAS objects, you only have to store and
process date-related data once.

The role playing dimension is a great feature but sadly does not provide
the option of renaming attributes. When you expose role playing
dimensions for browsing, it would be very helpful if we could show "ship
date month" under the Ship Date dimension and "due date month" under
the Due Date dimension. Unfortunately we are limited to having just one
attribute name, "month". If you require the additional flexibility of having
different attribute names, you must create separate physical dimensions
for ship and due dates—you can't use role playing. One way to work
around this limitation is by creating single-level, user-defined hierarchies
within each role-playing dimension. For example, you could build a ship
date month hierarchy within the ship date, a due date month within the
due date, and so on.

16. If you click on the plus sign (+) next to each dimension within dimensions' window,
you will see the attributes and hierarchies available within the database dimension.
Using the Properties window you can set various properties for each dimension and
attribute within the scope of the current cube. The dimensions included in the cube
are referred to as cube dimensions; as discussed before, each measure group
(or even each cube) may or may not include all database dimensions.

17. The Visible property advises SSAS whether a particular attribute or user hierarchy
should be available for browsing within the cube. The Aggregation wizard uses the
Aggregation Usage property to determine whether a particular attribute should be
included in aggregations—precalculated summary tables. You will learn how to build
aggregations later in this chapter.

Chapter 3

65

18. Clicking on the Edit option for each dimension simply opens a dimension editor.
Keep in mind that cube dimension properties do not have to match database
dimension properties; for example, the date attribute could be visible in a database
dimension but hidden in a particular cube, where exposing such a level of detail is
not desired.

Setting measure properties
Now let's focus our attention on the measures window; this allows configuring various
properties for the measure group and for each measure.

How to do it...
To set the properties perform the following steps:

1. Highlight the measure (or measure group) of interest and edit its properties in
the Properties window.

2. Set the FormatString property to Currency for the Unit Price, Extended Amount,
Discount Amount, Product Standard Cost, Total Product Cost, Sales Amount,
Tax Amount (spell out the amount in the measure name field), and Freight
measures. Set the FormatString property to Percent for the Unit Price Discount
Percent measure.

Creating Analysis Services Cubes

66

3. Set the Display Folder property to PRICE for the Unit Price, Extended Amount,
Sales Amount, Tax Amount, and Freight measures. Set the Display Folder property
to COST for the Product Standard Cost and Total Product Cost measures.

4. Save your project; set deployment properties as shown in Chapter 2, Defining Analysis
Services Dimensions, and deploy and process your database.

The Unit Price Discount Percent Measure properties are shown in the following
screenshot for your reference:

Chapter 3

67

There's more...
The following table lists the most commonly used measure properties:

Measure property Explanation
Aggregation Function This function determines how measure values are

supposed to be aggregated from the bottom-level (also
known as leaf level) to the top-level of each hierarchy.
SSAS supports additive, semi-additive, and non-additive
aggregate functions. The semi-additive functions require a
time dimension (the dimension's type property must be set
to "time"). Such measures can only be aggregated across
the time dimension. The non-additive measures cannot be
aggregated across any dimension and are reported only at
the leaf level.

Analysis Services supports the following measure
aggregation functions:

 f SUM: This is the sum of values;

 f COUNT: This is the count of values;

 f MIN: This reports the smallest value;

 f MAX: This reports the largest value;

 f DISTINCT COUNT: This is the count of
unique values;

 f NONE: This reports a non-additive value only at the
leaf level;

 f ByAccount: This aggregates non-additive values
depending on the account; this function is
specifically for financial reporting / accounting
applications. The ByAccount measure requires a
dimension, which has the type property set
to account;

 f AverageOfChildren: This reports the semi-additive
average value determined by summing the values
found at a lower-level and dividing them by the count
of values;

Creating Analysis Services Cubes

68

Measure property Explanation
 f FirstChild: This reports the first semi-additive value,

for example, the value of January 01 if you browse
January's data;

 f LastChild: This reports the last semi-additive value,
for example, the value of January 31st if you browse
January's data;

 f FirstNonEmpty: This reports the first semi-additive,
non-null (non-empty) value. For example, if the first
date in January with a non-null value is January
10th, you will see the data of January 10th when
browsing the data for January;

 f LastNonEmpty: This reports the last semi-additive
non-null (non-empty) value.

DataType By default, SSAS measures inherit the data type from the
underlying data source. However, the list of supported data
types varies from one relational platform to the next, so you
need to ensure that the relational type can be mapped to
the SSAS type.

DisplayFolder By default, all the measures show up under the Measures
folder in the client application. If you have multiple measure
groups within a single cube, measures would be listed
under the corresponding measure groups. If you have many
measures within a measure group, it makes sense to
organize related measures into folders, for example,
cost-related measures could be included in the COST
folder and price-related measures under PRICE.
The DisplayFolder property allows you to type in the
folder name. If you have used a folder name once, you can
choose the same name for another measure from a
drop-down box instead of having to retype it.

MeasureExpression This function allows specifying the MDX formula for deriving
a measure's value based on another measure. Measure
expressions are useful for many-to-many relationships
discussed later in this chapter. You will learn more
about measure expressions in Chapter 4, Extending and
Customizing Cubes.

FormatString This is a very useful property for customizing how the
measure is presented to cube users. For example, we could
specify that the measure should be formatted in currency
or percent. You can also specify the number of digits to the
right of a decimal point.

Chapter 3

69

Measure property Explanation
Visible The supported values of this property are true (default)

and false. You might want to create a measure that is
used for further calculations but should not be exposed
to the user. In such a case you'd set the measure's visible
property to false.

Source This function defines various properties of the relational
column used as the source of the measure. You can set
the data type and size (for seldom-used textual measures).
The additional useful properties in this group include:

 f NullProcessing: This property advises SSAS
whether null values should result in an error or
be quietly translated to zero. In terms of Analysis
Services, zero is the same as NULL.

 f InvalidXMLCharacters: This property advises
SSAS how to treat invalid XML characters at query
time. You might need to tweak this property for
dimension attributes more frequently than measures,
since measures are normally numeric whereas
dimension attributes could include special characters
such as &, <, and >, which have special meanings
in XML. Data with such characters is generally
processed fine but could return errors during querying
(the error will simply state "invalid character," and will
not provide any specifics). You have an option to
remove invalid characters or replace them with a
question mark (?).

Browsing the cube data
Now that you have created, deployed, and processed a cube, you're ready (and probably
anxious) to review the result. You can browse cube data using SSDT, an SSMS cube browser,
or a client tool of your choice. Prior versions of SSMS and SSDT (formerly known as Business
Intelligence Development Studio or BIDS) used Office Web Components (OWC), which is a
deprecated technology and is no longer available with Analysis Services 2012. Although OWC
had its share of issues, with the SSMS 2008R2 (and earlier) cube browser, we could navigate
through user hierarchies one level at a time. Unfortunately SSMS and SSDT 2012 no longer
offer this functionality, which is very limiting, as you will see shortly. With SSMS 2012,
Microsoft included a shortcut to launch Excel, which provides a much richer user interface
for browsing cube data. Of course, this design presumes that each developer would have
Microsoft Office (or at least Excel version 2007 or later) installed on the same machine where
you have SSMS, which may or may not be true. Hopefully, the following release of SQL Server
will include a better cube browser. The good news is that if you still have SSMS 2008R2,
you can use it to browse SSAS 2012 cubes.

Creating Analysis Services Cubes

70

How to do it...
To browse a cube perform the following steps:

1. Connect to the Analysis Services instance where you deployed and processed
your solution.

2. Navigate to the database you created, expand the Cubes folder, right-click on the
cube, and select Browse. Within SSDT you can simply click on the Browser tab of
the cube editor.

3. You see that measures are listed under the Fact Reseller Sales measure group and
some of them are organized further into COST and PRICE folders. Expand the COST
folder and drag the Total Product Cost measure into the grid area. Alternatively,
you can right-click on the measure and select Add to Query. Do the same with the
Unit Price measure found in the PRICE folder.

4. Next expand the Due Date dimension and add the Due Date.Calendar hierarchy
to the query.

5. Notice that SSMS/SSDT browsers immediately flatten out the hierarchy and list
every single member found in the hierarchy. This might not cause a huge concern
for a sample database with a few hundred members in the calendar hierarchy,
but real-world applications are likely to have much larger dimensions.

6. Flattening the result set does not allow you to have the same experience offered by
Excel and other cube-browsing tools. Note that the SSMS cube browser ignored the
formatting choices we applied to the Unit Price and Total Product Cost measures.

7. The new cube browser does offer a nice improvement in being able to review and edit
the MDX generated by SSMS. If you click on the Design Mode button found at the
right-most corner of the top ribbon, you will see the following MDX statement:
SELECT
NON EMPTY { [Measures].[Unit Price], [Measures].[Total
 Product Cost] } ON COLUMNS,
NON EMPTY { ([Due Date].[Calendar].[Date].ALLMEMBERS) }
 DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON
 ROWS
 FROM [AdventureWorksSample]
CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR,
 FORMATTED_VALUE, FORMAT_STRING, FONT_NAME, FONT_SIZE,
 FONT_FLAGS

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 3

71

8. Do note that although you can edit the MDX, you cannot include functions that are
not supported by the cube browser. For example, the browser does not support
sorting data, so neither can we include the order function to sort data nor can we
include any dimension, except for measures on columns (yet another limitation of
the 2012 cube browser).

9. The cube browser does allow us to filter data. Click on the Select dimension
drop-down box above the result set and select the Promotion dimension. Next,
select the Promotions hierarchy, and set the filter to Volume Discount 41 to 60
(filter expression dropdown allows you to pick an option from the list of available
promotion categories, types, and names). Switch to the design view again to see
the updated MDX. Notice that this time the query used a subselect (subquery)
to limit the output. Also have a look at the following code:
SELECT
NON EMPTY { [Measures].[Unit Price], [Measures].[Total
 Product Cost] } ON COLUMNS,
NON EMPTY { ([Due Date].[Calendar].[Date].ALLMEMBERS) }
DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON
 ROWS

Creating Analysis Services Cubes

72

FROM
(SELECT
({ [Promotion].[Promotions].[Promotion Name].&[5] }) ON
 COLUMNS
 FROM [AdventureWorksSample])
WHERE ([Promotion].[Promotions].[Promotion Name].&[5])
CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR,
 FORMATTED_VALUE, FORMAT_STRING, FONT_NAME, FONT_SIZE,
 FONT_FLAGS

With the updated MDX, the result set is much smaller, as shown in the following
screenshot:

10. Click on the Excel icon found next to the Language dropdown on top of the
screen—the icon's tool tip states Analyze in Excel. Again, the prerequisite for
analyzing in Excel is that you have Excel installed on your computer. Excel isn't
part of the SQL Server product suite and isn't installed as part of the Analysis
Services installation.

11. This opens an Excel worksheet with a Pivot Table. Select the Unit Price and Total
Product Cost measures, then drag the Promotions hierarchy onto rows and
Due Date.Calendar hierarchy on filters. Now your Pivot Table should resemble
the next screenshot, and you can browse the data as in any other Pivot Table—choose
various years within the due date dimension's calendar hierarchy and expand and
collapse the Promotions hierarchy to review different promotion categories, types,
and names. We could also include ship date or order date hierarchies on rows,
columns, or filters as shown in the following screenshot. Note that Excel recognizes
the formatting we applied to measures.

Chapter 3

73

Now that we're in the most ubiquitous cube browsing tool Excel we can easily create
useful reports. For example, the following report analyzes 2007 and 2008 reseller
sales based on promotions:

Creating Analysis Services Cubes

74

Dimension usage with measure group
Earlier in this chapter, you built your first cube and experienced how quickly you can build
business applications using Analysis Services and Excel. The sample cube was very simplistic
in a sense that it only exposed two dimensions, each of which had a direct relationship with
the fact table. The Cube Wizard automatically detected such relationships and required
minimal developer interaction. There are many real-world applications that have a model very
similar to your sample cube. However, other requirements necessitate the usage of more
complex fact-to-dimension relationships, which you will learn next.

To define how dimensions relate to various measure groups in your cube, switch over to the
tab called Dimension Usage. Instead of creating all the dimensions from scratch, you will
use the Adventure Works 2012 sample database. Keep in mind that the sample database
exposes every possible dimension relationship type because the database is a learning tool,
not necessarily a recommended design.

How to do it...
Let's get started. Perform the following steps to learn about dimension usage using
a measure group:

1. Open the Adventure Works 2012 sample database project in SSDT, and double
click on the Adventure Works cube. On the cube structure tab, notice that the
cube contains multiple measure groups.

2. Switch over to the Dimension Usage tab and notice that each measure group is
associated with some, but not all, cube dimensions. If you click on the intersection
of any dimension with a measure group, SSDT will enable an ellipsis button next
to the intersection, as shown in the following screenshot:

Clicking on the ellipsis button opens the Define Relationship dialog where you specify a
dimension's relationship with the measure group. The following table summarizes the types
of relationships you can define:

Chapter 3

75

Relationship Type Explanation and examples
No relationship This relationship type indicates that the dimension is not

related to the measure group. For example, the Employee
dimension is not related to the Internet sales measure group
because customers do not interact with salespeople while
shopping online. If you do attempt querying Internet sales
measures based on the Employee dimension, you can expect
one of two outcomes:

1. Analysis Services will return the same measure values
 for each members of the Employee dimension;

2. Analysis Services will return null values for
 each employee.

Ignore Unrelated Dimensions measure group property controls
the way SSAS treats dimensions with no relationship to the
current measure group. The default value of this property is
TRUE, which produces results outlined with the outcome 1.
The other value is FALSE, which results in the outcome of 2.

Regular This relationship type implies that the dimension is directly
related to the measure group through one of its attributes,
normally the key attribute. Once you specify the relationship
type, you must specify the dimension column and the
corresponding measure group column (the names of these
two columns do not have to match). You must also specify the
granularity. In most cases you use dimension's key attribute
to relate it to the measure group. For example, the Promotion
dimension is directly related to Internet sales through the
Promotion Key. It is possible to relate a dimension through a
non-key attribute; if you do so, you must ensure that attribute
relationships are defined from the relating attribute to all the
other attributes within the dimension. Recall that all non-key
dimension attributes are directly related to the key attribute,
and that is how SSAS ensures that data is aggregated
correctly. For example, budgeting measure groups could be
related to the date dimension on month, quarter, or year
attributes instead of the key attribute, which is normally set to
individual dates.

Creating Analysis Services Cubes

76

Relationship Type Explanation and examples
Fact Fact dimensions are built upon the fact table and therefore

have a one-to-one relationship with fact records. Fact tables
often contain millions or billions of records, therefore, fact-
level dimensions should not be exposed for ad hoc queries.
Instead, they can be used for reporting such attributes as an
invoice number or an order revision number. Some literature
refers to fact-level dimensions as degenerate dimensions.
For example, the Internet sales order details dimension has
a fact relationship with the Internet sales measure group.
This dimension is exposed using Internet details drillthrough
action. You will learn about actions in Chapter 4, Extending
and Customizing Cubes.

Referenced This relationship type indicates that a dimension is
related to the measure group through another dimension.
The referenced dimension and the intermediate dimension
must have a common key, which you specify while defining
such a relationship. For example, the FactResellerSales
table does not have a GeographyKey column, so we cannot
use a direct relationship for a geography dimension. Instead,
we use the Reseller dimension as the intermediary between
FactResellerSales and DimGeography and specify
GeographyKey as the reference dimension attribute and
the intermediate dimension attribute. Note that you have an
option to materialize the referenced relationship. It is
recommended to materialize referenced dimensions
so that Analysis Services builds necessary indexes during
the processing time instead of resolving the relationship at
query time.

Data mining This relationship type is used for data mining, which is beyond
the scope of this book.

Chapter 3

77

Relationship Type Explanation and examples
Many-to-many This relationship type requires an intermediary measure group

to resolve many-to-many relationship between a dimension
and a measure group. For example, each Internet sale
could be associated with multiple sales reasons: television
advertisement, manufacturer, review, or promotion. Similarly,
each of these reasons for sales is associated with multiple
sales orders. Therefore, you cannot build a direct relationship
between the Internet sales measure group and the Sales
Reason dimension. Instead, you can build an intermediate
fact table called FactInternetSalesReason and
include only three columns: Sales Order Number,
Sales Order Line Number, and Sales Reason Key.
Next, you can relate the FactInternetSales table to
FactInternetSalesReason using the Sales Order
Number and Sales Order Line Number columns.
Next, relate the FactInternetSalesReason key to the
DimSalesReason table using SalesReasonKey. You
can review the relationship between tables using a sales
order reasons diagram within the data source view. On the
dimension usage tab, you must relate the Sales Reason
dimension with the Sales Reasons measure group using a
regular relationship. Next, relate the sales reason dimension
to the Internet sales measure group using a many-to-many
relationship, specifying the reasons for sales as the
intermediate measure group.

Although the many-to-many relationship offers great flexibility
and is essential for some modeling scenarios, it should be
used only when necessary and handled with care. Keep in
mind that many-to-many relationships are not materialized;
instead, Analysis Services runs a query against the relational
data source to derive the MDX query results during the
execution when using ROLAP. Even if you use the MOLAP
storage, Analysis Services has to perform the in-memory
join operation of the data, which has already been
imported as part of processing. Chapter 4, Extending and
Customizing Cubes, provides additional information about
many-to-many relationships.

Creating Analysis Services Cubes

78

Examining cube file structures
It's time to take a break from SSDT and check what's happening under the hood. Unlike other
database platforms, each SSAS database consists of many files. Analysis Services does
not expose its transaction log, nor does it have system databases as master or tempdb.
Instead, all of the metadata for the entire server resides in the master.vmp file, which you
cannot read or modify. You don't have to know what's within each database file, but knowing
Analysis Services' database file structures can be very helpful during troubleshooting.

How to do it...
Let's get started; perform the following steps to examine the cube file structure:

1. Each of the Analysis Services instances is associated with a data folder, which stores
files for all the databases found on this instance.

2. All of the SSAS instance configuration properties are stored in the msmdsrv.ini
file found in the CONFIG folder under your Analysis Services installation directory.
DataDir is the property that controls the location of the database folders.
Each database has its own separate data folder.

3. I will be using the ssas_cookbook_chapter3 database folder as an example to
demonstrate SSAS file structures. If you have followed along with the recipes of this
chapter, this database should now have several folders and over 100 files.

4. As seen in the next screenshot, the database folder has separate subfolders for each
dimension, data source, and cube. Additionally, it contains metadata XML files for
dimensions, cube, data source, and data source view.

Chapter 3

79

5. If you open each dimension folder, you'll find a number of files with different
extensions, each of them serving a specific purpose: storing keys, strings,
indexes, and so on.

Under the folder with the .cub extension (in the preceding screenshot, the folder
name is AdventureWorksSample.0.cub), you will find separate folders for each
measure group with the extension .det, and each partition folder will have the
.prt extension.

6. Each partition folder contains partition data files, which are usually the largest files,
along with header and aggregation files. So remember that each Analysis Services
database is a complex structure consisting of cubes, measure groups, partitions,
and many files making up each object.

7. If you have been browsing through files by now, you must have probably noticed the
file version numbers. Analysis Services updates the file version numbers when the
file changes. For example, when you process the promotion dimension, SSAS will
increment the file version numbers upon completion of processing.

8. Similarly, if a database exists on the given SSAS instance, and you synchronize it from
another instance, the target database version number will be incremented. Master.
vmp stores all the version numbers.

9. If you happen to delete some files or modify version numbers manually while the
server was stopped, the version numbers will not match those found in master.
vmp, and your object will be corrupted. Therefore, if you want to keep your databases
healthy, be very careful about having any extraneous activity within the Analysis
Services data folder.

There's more...
Any time you process an object (dimension, partition, cube, and so on), Analysis Services
creates a new "shadow" copy of the object and replaces the old object with it upon completion
of processing. This allows the database and all the underlying objects to remain available for
queries during processing. Likewise, Analysis Services creates shadow folders while restoring
and synchronizing databases, so you'll have to account for storage requirements necessary to
perform such actions. For example, if you have a 100 GB database and you want to restore it
from a backup—while the existing copy remains online—you need to have at least 200 GB of
total storage available on the drive, where you store the SSAS data.

Creating Analysis Services Cubes

80

Partitioning strategies
Each Analysis Services measure group consists of one or more partitions. When you first
create a measure group, it has a single partition; however, for large scale implementations,
creating additional partitions is essential. Having multiple partitions benefits both processing
as well as querying performance. Partitions can improve query performance because Analysis
Services can examine multiple partitions in parallel and therefore return the requested results
quicker than if it had to scan a single, very large partition. Additionally, Analysis Services
can exclude the partitions which do not contain the relevant data for a particular query
request, thereby shortening the total query execution time. Analysis Services can also process
multiple partitions in parallel to minimize the total processing time of the measure group.
The mentioned benefits can only be achieved with necessary prerequisites in place, and we
will discuss those prerequisites in this section. Partitions also ease cube maintenance;
most of the cubes retain relevant data for a limited time span, perhaps for a week, a month,
or even for a few years. Once data for a specific day, month, or year is no longer needed,
you can simply delete the obsolete partitions.

In general you should limit each partition to less than 20 million fact table records. It is also
beneficial to split a partition if the corresponding datafile size exceeds 2 GB. These are merely
best practice recommendations based on experience; your mileage may vary and you should
monitor querying as well as processing performance to determine the most appropriate
partition size and row count for each project.

You have multiple options for creating partitions; given in the following bullet list:

1. Use the Partition wizard within the Partitions tab of SSDT or SSMS.

2. Use the XMLA command; you can submit the command to the server through the SSMS
or the ascmd.exe command-line utility. Note that if you're not familiar with ascmd.
exe, it is an extremely valuable tool for executing XMLA, MDX, and DMX commands
from the Windows command prompt (download it from www.codeplex.com).

3. Use the Analysis Management Objects (AMO) interface to create partitions
programmatically using .NET or a scripting language of your choice.

How to do it...
Creating a partition through XMLA is straightforward, regardless of the method you choose to
use. The statement for creating a partition will be sent to the SSAS server in XMLA language,
so it makes sense to first take a look at the XMLA used to define a partition:

1. Connect to an SSAS instance using SSMS, expand the database of your choice,
and navigate to cube | measure groups | partition. If you have been following
along the recipes included in this chapter, you will see a measure group with a
single partition in the database you created earlier.

http://www.codeplex.com

Chapter 3

81

2. Right-click on the partition, navigate to Script partition as | Create to | New Query
Editor Window, and you will see XMLA similar to following:
<Createxmlns="http://schemas.microsoft.com/analysisservices
 /2003/engine">
<ParentObject>
<DatabaseID>ssas_cookbook_chapter3</DatabaseID>
<CubeID>AdventureWorksSample</CubeID>
<MeasureGroupID>Fact Reseller Sales</MeasureGroupID>
</ParentObject>
<ObjectDefinition>
<Partitionxmlns:xsd="http://www.w3.org/2001/XMLSchema"xmlns
 :xsi="http://www.w3.org/2001/XMLSchema-
 instance"xmlns:ddl2="http://schemas.microsoft.com/
 analysisservices/2003/engine/2"xmlns:ddl2_2=http://
 schemas.microsoft.com/analysisservices/2003/engine/2/2
 xmlns:ddl100_100="http://schemas.microsoft.com/
 analysisservices/2008/engine/100/100"xmlns:
 ddl200="http://schemas.microsoft.com/analysisservices
 /2010/engine/200"xmlns:ddl200_200="http://
 schemas.microsoft.com/analysisservices/2010/
 engine/200/200"xmlns:ddl300="http://schemas.microsoft.com
 /analysisservices/2011/engine/300"xmlns:ddl300_300=
 "http://schemas.microsoft.com/analysisservices/2011/
 engine/300/300">
<ID>Fact Reseller Sales</ID>
<Name>Fact Reseller Sales</Name>
<Sourcexsi:type="DsvTableBinding">
<DataSourceViewID>Adventure Works DW2012</DataSourceViewID>
<TableID>dbo_FactResellerSales</TableID>
</Source>
<StorageMode>Molap</StorageMode>
<ProcessingMode>Regular</ProcessingMode>
<ProactiveCaching>
<SilenceInterval>-PT1S</SilenceInterval>
<Latency>-PT1S</Latency>
<SilenceOverrideInterval>-PT1S</SilenceOverrideInterval>
<ForceRebuildInterval>-PT1S</ForceRebuildInterval>
<Sourcexsi:type="ProactiveCachingInheritedBinding" />
</ProactiveCaching>
</Partition>
</ObjectDefinition>
</Create>

http://� schemas.microsoft.com/analysisservices/2003/engine/2/2
http://� schemas.microsoft.com/analysisservices/2003/engine/2/2

Creating Analysis Services Cubes

82

Notice that XMLA contains references to a partition's parent objects: database, cube,
and measure group, specifies the partition identifier as well as its name, storage mode,
and processing mode. The partition is based on the FactResellerSales table,
meaning that it will include all the records from this table. You could also bind a partition
to a view or a query. Whether you bind each SSAS partition to a table or view is a matter of
preference and performance. The Partition wizard has the necessary intelligence to warn
you that a given fact table is already referenced by an existing partition, and you cannot use
it for additional partitions within the same group; otherwise, you would include duplicate
records, and your solution would report incorrect results. Binding a partition to a query offers
additional flexibility in a sense that you can change the SSAS partition without having to make
any changes to the relational objects. Using query binding also allows you to quickly create an
empty partition (by adding a condition, which will never be met, such as SELECT column_1,
column_2 FROM fact_table WHERE 1 = 2), which can later be used as the target for
merging multiple existing partitions.

Creating partitions through the wizard
Now that you've seen the XMLA statement for creating a partition, let's see how it is done
using the Partition wizard within SSDT. Before we create additional partitions, let's limit
the original partition to the subset of fact data. Open the solution using SSDT and click on
the Partitions tab. Next, click on the ellipsis button in the partition source box shown in
the following screenshot:

Switch to the Query Binding option in the Binding Type drop-down box. In the partition source
dialog, you will see that SSDT scripts the SQL statement for you and advises that you should
limit the query to those rows that are not included in other partitions of the same measure
group. Replace the WHERE keyword with the WHERE DueDateKey< 20051231 clause in the
query to limit the partition to Reseller Sales records with a due date prior to December 31,
2005, and click on OK. You will see the Check button to check the syntax of the query;
 the Check button does not check the validity of the query—it is up to you to ensure
that the query returns only the necessary data. Once you save and deploy the changes,
the partition will be bound to the query instead of the table; you can then verify this
by scripting the partition to a query window within SSMS. This time XMLA will contain
<QueryDefinition></QueryDefinition> tags instead of specifying the table identifier
as shown in the following screenshot:

Chapter 3

83

Perform the following steps for creating partitions through wizards:

1. To activate the Partition wizard in SSDT, you can click on the New Partition link
under any measure group on the partitions tab. To activate the same wizard in SSMS,
right-click on the Partitions folder of a measure group and select New Partition.
The wizard works the same way using either of the tools; since we already have SSDT
open, let's continue working within SSDT.

2. After the welcome screen, the wizard asks you to choose the fact table to be used as
the partition source. Note that you can choose the data source which contains the
table. Had we not bound the original partition to a query and left it bound to the fact
table, we could not have created additional partitions through the wizard.

Creating Analysis Services Cubes

84

3. Select FactResellerSales and click on Next. The following screen allows you
to specify the query, which will populate the partition. Once again the wizard warns
you not to include duplicate rows already found in other partitions. This time
replace the WHERE keyword with this code; WHERE DueDateKey BETWEEN
20051231 AND 20061231.

4. The following screen allows you to specify processing and storage locations for the
partition. You can process the partition on the current instance or on a remote instance.

5. Although processing on a remote instance is possible and could reduce the resource
usage on the current instance, this feature is used very seldom and isn't trivial to
implement. Keep the default option of processing on the current instance.

6. The choice of storage location is useful in case your database grows so large that you
cannot fit all the partitions on the same drive/data volume. By default, a partition
is saved in the current instance's data folder as specified in the msmdsrv.ini
configuration file. I recommend using the default option unless storing the new partition
in the current data folder is impossible due to storage limitations. Choosing a
non-default location will require additional work should you need to synchronize or
restore the database from a backup. Simply click on Next to move on to the screen,
allowing you to name the partition. In addition, to choosing a descriptive name for
the partition, it is very useful to use the same naming convention for all the partitions
within a given measure group. For large implementations with dozens or hundreds
of partitions, a common naming scheme will save you many maintenance headaches.
Let's name the new partition "Reseller Sales 2006" since the sample database is
small and yearly partitions will suffice.

Chapter 3

85

7. As the screenshot shows, the final wizard screen allows building aggregations
immediately, copying aggregation designs from an existing partition or designing
aggregations later. You will learn about aggregations later in this chapter; for now
choose the design aggregations later option. Designing aggregations later also
allows us to check the Deploy and Process Now box. Once you click on Finish,
SSDT will proceed with deploying changes, and you'll have the option to process
the newly created partition.

Creating partitions through AMO
If you have a relatively small database with a handful of partitions, using XMLA statements
through SSMS or running through a wizard several times a year will suffice. In an enterprise
environment, partition management must be automated because running the wizard 24 times
per day (for hourly partitions) is too labor intensive. Furthermore, creating partitions might
only be a small portion of the scheduled job streams. The sequence of scheduled jobs could
collect data from various source systems, populate a relational warehouse, and manage
Analysis Services objects as new data becomes available. Even if you're not a programmer,
don't despair, as you can automate the creation of partitions with relatively easy commands
using the PowerShell scripting language. Of course Powershell is not the only language you
can use to create partitions; feel free to experiment with a language of your choice. Here are
sample Powershell commands for creating a new partition based on an existing model
partition. You can customize the script for your environment:

Script to create a new partition based on existing partition
#load the Analysis Services assembly first so you can instantiate
 Analysis Services server object(# MicrosoftAnalysisServices.dll
 #will be found under your Analysis Services installation #folder:
[Reflection.Assembly]::LoadFrom("E:\Program Files\Microsoft SQL
 Server\110\SDK\Assemblies\Microsoft.AnalysisServices.dll")|out-
 null
$instance="Julia-PC\SQL2012"
$amoServer= new-object Microsoft.AnalysisServices.Server
#connect to the instance:
$amoServer.Connect($instance)
#connect to the database, cube and measure group of interest:
$db=$amoServer.databases.GetByName("ssas_cookbook_chapter3")
$cube = $db.cubes.GetByName("AdventureWorksSample")
$mg=$cube.MeasureGroups.GetByName("Fact Reseller Sales")
#clone the existing partition:
$new_partition = $mg.partitions.GetByName("Reseller Sales
 2006").clone()

Creating Analysis Services Cubes

86

set id, name and query definition properties for the new
 partition:
$new_partition.id = "Reseller Sales 2008"
$new_partition.name = "Reseller Sales 2008"
$new_partition.Source.QueryDefinition = "SELECT * FROM
 FactResellerSales WHERE DueDateKey BETWEEN 20080101 AND 20081231"

store new partition's identifier in a variable for the next
 step:
$partition_id = $amoServer.Databases[$db].Cubes[$cube].
MeasureGroups[0].partitions
 .Add($new_partition)

send the new partition definition to the server:
$amoServer.Databases[$db].cubes[$cube].MeasureGroups[0].Partitions
 [$partition_id].Update()
$amoServer.databases[$db].update()

#disconnect from the server
$amoServer.disconnect()

Once you run the script and refresh the partition list in SSMS, you will see the newly created
"Reseller Sales 2008" partition. You can examine its properties by scripting it into a new query
window to confirm that the ID, name, and query definition are set correctly.

Partition storage mode options
Each partition can use one of the three storage options summarized in the following table:

Storage Option Explanation Advantages Drawbacks
Multi-Dimensional
OLAP (MOLAP)

This storage
option stores data
in Microsoft's
proprietary, highly
compressed format.

It offers superior
performance. MOLAP
storage is used
by the majority of
successful SSAS
implementations.

Data must be read
from the relational
database and
written to MOLAP
structures. Hence
data is duplicated and
users must wait until
processing is complete
and it is available
for querying.

Chapter 3

87

Storage Option Explanation Advantages Drawbacks
Relational OLAP
(ROLAP)

This storage option
retains data in the
relational database.
If defined,
aggregations are
created as additional
tables in the relational
database, thereby
increasing its size.

Data is not duplicated
and processing
simply validates SSAS
metadata. Therefore,
data is available for
querying very soon
after it arrives in the
relational database.

Use ROLAP only
if data latency
issues cannot be
overcome with the
implementation of
MOLAP storage.

Any MDX queries
submitted to MSAS
will be translated into
relational SQL queries.
ROLAP performance is
generally worse than
that offered by MOLAP.
If you need many
aggregations, the
relational database
size could grow
exponentially.

Hybrid OLAP
(HOLAP)

This storage option
keeps data in the
relational database but
creates aggregations
in the MOLAP format.
If the data requested
by a query is not
found by scanning
aggregations, the
relational database
is queried.

It does not create
a copy of relational
data. If the requested
data is found in
aggregations, the
response time is
as fast as it is
with MOLAP.

HOLAP is very seldom
used because it
requires much
tuning to offer the
benefits of either
ROLAP or MOLAP.
Aggregations are
only built when using
the ProcessFull
option, not with
ProcessIndexes.
So, each time we run
ProcessUpdate
on dimensions
(effectively dropping
aggregations), we
must also perform
the full process of
all the partitions to
rebuild indexes and
aggregations.

Since we can specify the storage mode at the partition level, each measure group could
contain both ROLAP and MOLAP partitions. For example, if 90 percent of your queries check
the current data and only 10 percent of them reference the historical data, you could use
MOLAP for the most frequently queried partitions and ROLAP for historical ones.

Creating Analysis Services Cubes

88

Defining partition slice
As mentioned earlier, Analysis Services can intelligently decide which partitions to check
for each query. For example, if we submit a query requesting reseller sales data for year
2005, SSAS should only have to check the Reseller Sales 2005 partition and not spend
any time examining datafiles for 2006 or any other partitions. To exclude irrelevant partitions,
Analysis Services checks the index files found within each partition folder; these files
contain the range of internally assigned key values. You have already seen that we can
partition measure groups by date; indeed, the majority of SSAS projects are partitioned by
one of the levels found in the date dimension: day, month, quarter, or year. However,
sometimes partitioning only at the date level is insufficient—you may have large volumes
of intraday data that represents only a small portion of the total daily volume. In such
case you can create partitions based on multiple attributes, for example, we could partition
reseller sales data by date and product category. According to SSAS documentation,
when using MOLAP storage, SSAS should always exclude irrelevant partitions, even when
data is partitioned by multiple attributes. If you use ROLAP, on the other hand, data remains
in the relational tables; to help SSAS query only the relevant partitions, we must define
the partition slice property. Through practical implementation of SSAS projects on various
versions of the product, I also recommend setting the slice property on MOLAP partitions
because it is essentially a query hint for the SSAS engine. Additionally, the algorithm for
detecting the correct partitions is particularly susceptible to errors when you partition data
by multiple attributes. Another advantage of setting partition slice is that it prevents loading
incorrect data into the partition—if you attempt to process a partition with an incorrect query
definition, processing will fail with an error stating that the criteria specified by the partition
slice have been violated.

How to do it...
You can set the partition slice through SSMS or SSDT. Keep in mind that you must process
the partitions after setting its slice. Even if you have previously processed a partition and
later need to update the slice, you will have to re-process it after the slice property is set.

Refer to the following steps to set the partition slice:

1. Right-click on the partition and choose properties.

2. Click on the ellipsis button next to the slice property to open the Partition Slice
dialog. You can specify the MDX within the dialog by picking the appropriate
attribute member. For example, the slice for Reseller Sales 2006 partition would
be [Due Date], [Year], and [2006]. Had we partitioned data by year and
promotion category, the slice definition would be: [Due Date].[Year].&[2006]
[Promotion].[Promotions].[Promotion Category].&[Customer].

3. You will learn more about MDX in Chapter 6, MDX. It is important to note that the
partition slice can reference each hierarchy only once.

Chapter 3

89

Merging partitions
Merging multiple partitions is common as the partitions age (become less frequently queried)
or when you need to reduce the total number of database files. For example, in the year 2013,
we might not be particularly interested in data from the 1990s but could expect historical
data to be queried occasionally. If so, we could keep monthly partitions for the current year
but merge partitions for each previous year into yearly partitions and perhaps even merge
all of the 1990s data into a decade-level partition. If you work in an environment where data
must be aggregated many times each day, you might create multiple partitions throughout
the day and later merge all intraday partitions into a single daily partition. As you will learn in
Chapter 8, Administering and Monitoring Analysis Services, synchronization speed is largely
dependent on the number of files that must be transferred. Therefore, merging partitions
could also optimize synchronization speed.

How to do it...
To merge partitions you must identify the source and target partitions. You can use an
empty target partition or an existing partition that already has data. In either case both source
and target partitions must be fully processed before you can merge them. Suppose we would
like to merge 2007 and 2006 partitions into the main partition called Fact Reseller Sales,
which will act as the target; for reference, perform the following steps:

1. Right-click on the Partitions folder within SSMS, and select Merge Partitions to open
the Merge Partition dialog:

Creating Analysis Services Cubes

90

2. Choose Fact Reseller Sales as the target, Reseller Sales 2006 and Reseller Sales
2007 as sources, and click on OK. Alternatively, you could also script the XMLA
command, which would be similar to the following:

<MergePartitionsx mlns="http://schemas.microsoft.com/
analysisservices/2003/engine">
<Sources>
<Source>
<DatabaseID>ssas_cookbook_chapter3</DatabaseID>
<CubeID>AdventureWorksSample</CubeID>
<MeasureGroupID>Fact Reseller Sales</MeasureGroupID>
<PartitionID>Reseller Sales 2008</PartitionID>
</Source>
</Sources>
<Target>
<DatabaseID>ssas_cookbook_chapter3</DatabaseID>
<CubeID>AdventureWorksSample</CubeID>
<MeasureGroupID>Fact Reseller Sales</MeasureGroupID>
<PartitionID>Fact Reseller Sales</PartitionID>
</Target>
</MergePartitions>

Unfortunately merging partitions does have its share of limitations. For example, the query
definition of the resulting partition will be the same as the query definition of the target partition.
Let's suppose we had set the target partition's query to only include 2005 sales. Once we
merge 2006 and 2007 into the target, the resulting partition will contain data for all three years.
However, the query definition will remain set to only include 2005 data. Now, if you intentionally
or accidentally process the resulting partition, you will lose data for 2006 and 2007. Fortunately,
you can update the partition's query definition without having to reprocess it.

Another limitation is that MergePartitions does not update the target partition's slice.
So the resulting partition could actually provide a wrong query hint to the server, indicating
that it only contains 2005 sales whereas in reality it contains sales for 2005, 2006, and
2007. To work around this limitation, you could create a new partition with the correct slice,
include a query definition that returns no rows ("SELECT column1, column2 … FROM
fact_table WHERE 1=2"), process the empty partition, and then use it as the merge
operation's target.

Chapter 3

91

Defining aggregation designs
Aggregations are precalculated summary tables that provide query results much faster than
if you were to query the full fact table. For example, the sample FactResellerSales table
contains over 60000 rows. Instead of reading through 60000 rows to find the sum of total
product cost, SSAS can read a single row in the aggregation table. In real-world applications with
billion-row fact tables, the difference is much more pronounced, especially when summarized
values are grouped by dozens of attributes. Unfortunately aggregations don't come free of
charge; they are calculated as part of partition processing and therefore increase the total
processing duration. Aggregations could also use significant amount of disk space. Therefore,
designing aggregations is an art of balancing performance improvement with the overhead of
processing time and additional storage.

SSDT and SSMS offer two wizards for designing aggregations: Aggregation Design Wizard
and Usage Based Optimization Wizard. To activate either of these wizards from SSMS,
right-click on any partition (or the Partitions folder) and select either the Design
Aggregations or Usage Based Optimization option, respectively. Both wizards are aptly
covered in product documentation, so we will not include any screenshots here.

The aggregation design wizard allows you to specify the relative significance of each dimension
attribute you wish to include in aggregations. It can also count the number of rows in the fact
table and compare it to the count of rows found in each attribute to determine approximate
performance improvement offered by each potential aggregation. If the wizard determines that
the aggregation file size will be at least one third (1/3) of the full data file size, the aggregation
will not be considered. This is limiting because you may well have the most important query
that is executed hundreds of times per day that would benefit from a very large aggregation.
Another limitation is that counting rows in a fact table with billions of rows or in very
large dimensions could take unacceptably long and hence isn't always a practical option.
Nevertheless, many developers use the aggregation design wizard as the starting place
when they don't have a lot of time to dedicate to performance tuning and the initial data set
is relatively small.

Usage-based Optimization (UBO) wizard allows building aggregations depending on query
history. To use this wizard you must first enable query logging by editing Analysis Services
configuration properties (you can right-click on the SSAS instance and select properties to
view and modify configuration options). The relevant properties are as follows:

1. Log\QueryLog\CreateQueryLogTable: Set this property to True unless you
intend to create the relational database table manually. The default value is False.

2. Log\QueryLog\QueryLogConnectionString: This property sets connection
properties for the SQL Server relational database where you intend to store query
logs. By default, logs are not collected and therefore the default value is blank.

Creating Analysis Services Cubes

92

3. Log\QueryLog\QueryLogTableName: This is the name of the relational table
where the query log will be stored. The default value is OLAPQueryLog.

4. Log\QueryLog\QueryLogSampling: To capture every query request set this
property to 1. The default value is 10, which means only one out of every 10 query
requests will be logged. Keep in mind that capturing every query on a very busy SSAS
server will result in a large amount of data and could cause performance overhead.

The term "Query Log" is a bit of a misnomer because if you examine the table, the most
relevant column, called dataset, contains a collection of ones and zeros separated by
occasional commas and not the actual MDX query. The content of the dataset column
is called a subcube and is expressed as a vector of dimension attributes. For example,
000,000,001,000 indicates that my query requested a subcube, which included an explicit
reference to only one attribute from the third dimension. The other three dimensions are
represented with three zeroes each because the query did not explicitly reference any of the
three attributes included in those dimensions. Perhaps a more accurate name would be a
subcube log, because each MDX query can request multiple subcubes and the entire cube
space can be defined as the collection of subcubes. Apart from the naming convention,
the query log is very useful; as you will see shortly, subcubes determine the essence of
aggregation design.

Usage-based Optimization wizard reads the query log table, reporting the total number of
queries, distinct queries, and users, as well as the average response time. If you log every
subcube request on a busy SSAS server, you could soon have a huge query log table. So the
wizard allows filtering subcubes based on the execution date and the number of users who
requested a particular subcube. Next, the wizard translates the subcube vectors into attributes
and allows you to count the rows in the fact/dimension tables. You can also override the
estimated counts to increase the likelihood of UBO aggregating data for a specific attribute.
Though useful, the UBO wizard suffers from similar limitations as the aggregation design
wizard—it won't consider aggregations over a certain size and counting rows might not work
in every situation. Note that both the wizards allow creating a new aggregation design,
merging new aggregations with the existing aggregation design, and applying designs to
partitions. You also have an option to process the affected partitions immediately.

If you click through the wizard and save the aggregation design, you'll be able to see this
design in SSMS under the aggregation design folder. Right-click on the aggregation
design and select the script to new query window option to understand the difference
between aggregation files and aggregation design. For example, the following is an
aggregation design created using the UBO wizard (list of all dimension attributes is
omitted to save space):

<Create xmlns="http://schemas.microsoft.com/analysisservices/2003/
 engine">
<ParentObject>
<DatabaseID>ssas_cookbook_chapter3</DatabaseID>
<CubeID>AdventureWorksSample</CubeID>

Chapter 3

93

<MeasureGroupID>Fact Reseller Sales</MeasureGroupID>
</ParentObject>
<ObjectDefinition>
<AggregationDesignxmlns:xsd="http://www.w3.org/2001/XMLSchema
 "xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xmlns:ddl2="http://schemas.microsoft.com/analysisservices
 /2003/engine/2"xmlns:ddl2_2="http://schemas.microsoft.com/
 analysisservices/2003/engine/2/2"xmlns:ddl100_100=
 "http://schemas.microsoft.com/analysisservices/2008/engine
 /100/100"xmlns:ddl200="http://schemas.microsoft.com/
 analysisservices/2010/engine/200"xmlns:ddl200_200=
 "http://schemas.microsoft.com/analysisservices/2010/
 engine/200/200"xmlns:ddl300="http://schemas.microsoft.com/
 analysisservices/2011/engine/300"xmlns:ddl300_300=
 "http://schemas.microsoft.com/analysisservices/2011/engine
 /300/300">
<ID>UBO AggregationDesign</ID>
<Name>UBO AggregationDesign</Name>
<EstimatedRows>47572</EstimatedRows>
<Dimensions>
<Dimension>
<CubeDimensionID>Ship Date</CubeDimensionID>
<Attributes>
<Attribute>
<AttributeID>Date</AttributeID>
<EstimatedCount>2191</EstimatedCount>
</Attribute>
<Attribute>
<AttributeID>Month</AttributeID>
<EstimatedCount>72</EstimatedCount>
</Attribute>
<Attribute>
<AttributeID>Calendar Year</AttributeID>
<EstimatedCount>6</EstimatedCount>
</Attribute>
</Attributes>
</Dimension>
</Dimensions>
<Aggregations>
<Aggregation>
<ID>Aggregation 0</ID>
<Name>Aggregation 0</Name>
<Dimensions>
<Dimension>

Creating Analysis Services Cubes

94

<CubeDimensionID>Ship Date</CubeDimensionID>
</Dimension>
<Dimension>
<CubeDimensionID>Order Date</CubeDimensionID>
</Dimension>
<Dimension>
<CubeDimensionID>Due Date</CubeDimensionID>
<Attributes>
<Attribute>
<AttributeID>Calendar Year</AttributeID>
</Attribute>
</Attributes>
</Dimension>
<Dimension>
<CubeDimensionID>Promotion</CubeDimensionID>
</Dimension>
</Dimensions>
</Aggregation>
</Aggregations>
</AggregationDesign>
</ObjectDefinition>
</Create>

As you can see, the aggregation design contains only one aggregation, Aggregation 0,
which aggregates the Calendar Year attribute. We can easily extend this aggregation design
XMLA to include additional aggregations and additional attributes. When you assign the
aggregation design to a given partition, you're simply changing the partition's metadata so that
Analysis Services knows which attributes to aggregate when you process the partition. To create
the actual aggregation files, we must use the ProcessIndexes option, which rebuilds both
index and aggregation files. Note that the partition must already contain data before you can
use the ProcessIndexes option to add indexes and aggregations.

Using BIDS Helper for customizing aggregations
The Analysis Services user community has published a number of very useful free tools
through www.codeplex.com. One of these tools is BIDS Helper. The tool is distributed
with an installation wizard and takes only a few clicks to integrate it with SSDT. BIDS Helper
offers much useful functionality, and I recommend that you become familiar with the tool.
BIDS Helper allows you to customize aggregations using Aggregation Manager.

http://www.codeplex.com
http://www.codeplex.com

Chapter 3

95

How to do it...
To design aggregations using BIDS Helper, perform the following steps:

1. Click on a cube within SSDT and select Edit Aggregations to activate
Aggregation Manager.

2. As shown in the next screenshot, Aggregation Manager displays and allows
the editing of existing aggregation designs. You can also create new aggregation
designs. For reference, have a look at the following screenshot:

3. Right-click on the existing design and select Edit. Within the dialog you will see
that you can check those attributes you wish to aggregate.

4. Alternatively, you could also copy a particular dataset from the query log table and
paste it into the Aggregation Definition column.

5. The tool also allows you to add aggregation definitions directly from the Query Log.
For example, you could specify the SQL statement to find only those subcubes
that took excessively long to retrieve, or those that were executed by a user who
complained about slow queries.

6. You can also use Aggregation Manager to provide more descriptive names for your
aggregations instead of using the generic Aggregation 0.

Creating Analysis Services Cubes

96

7. Once you're happy with your aggregation design, you can apply it to the necessary
partitions, save your changes, and review the results in SSMS.

Unlike UBO and Aggregation Design wizards, Aggregation Manager does not limit the size
of aggregations, nor do you have to provide row counts for each attribute. Clearly, you should
be careful not to design too many aggregations,so that you don't run out of disk space or
tremendously increase the processing time. However, I recommend becoming familiar with
Aggregation Manager in case you need greater control over aggregation designs than that
offered by SSDT/SSMS wizards.

There's more...
As mentioned earlier in this chapter, you can use the ProcessIndexes processing option to
build indexes and aggregations on a given partition for which data has already been loaded
(The ProcessFull option includes ProcessIndexes). In some environments it might be
beneficial to make data available to users even before indexes and aggregations are built.
MOLAP storage often outperforms relational queries by an order of magnitude, even if you
don't build any aggregations and indexes, thus business users can query data faster even
before we add the speed-boost with indexes and aggregations. In this case you can allow
Analysis Services to build aggregations "lazily" using a background thread. The term "lazy"
indicates that the thread uses minimal resources and works only when sufficient system
resources are available.

Chapter 3

97

Therefore, building aggregations lazily could take considerably longer than through
ProcessIndexes. The configuration property that controls whether the lazy thread is
activated is OLAP\LazyProcessing\Enabled—the default value is 1, which means the
lazy thread is active. If you prefer not to have the lazy thread building missing aggregations
or indexes, set the property to 0. You must also set the ProcessingMode property on the
cube, measure group, or partition level to customize data availability.

Distinct count measure groups
As you learned earlier in this chapter, the DISTINCT COUNT aggregation function supplies
the count of unique values within a fact table. Analysis Services handles DISTINCT COUNT
measure groups somewhat differently than measure groups that include measures with other
aggregation functions.

How to do it...
To implement a distinct count measure, perform the following steps:

1. Right-click on an existing measure group and select New Measure.

2. Change the Usage to Distinct count and choose the column Analysis Services,
which should be used for counting distinct values.

3. SSDT will create a separate measure group for the distinct count measure.

4. Give the new measure a descriptive name and set the necessary properties.

There's more...
The SQL query for processing a partition using a DISTINCT COUNT measure group includes
an ORDER BY clause to ensure that the data is sorted based on the column identifying the
DISTINCT COUNT measure. Therefore, the data in each DISTINCT COUNT measure group
is sorted based on the DISTINCT COUNT measure column. Although this may not sound like
a huge limitation, it does affect how SSAS resolves DISTINCT COUNT MDX queries. If you
partition the DISTINCT COUNT measure group by the date dimension attribute (which is the
most commonly used approach for normal measure groups), Analysis Services will have to
check every partition for every query because distinct count data values could be spread across
all partitions. This also means that SSAS cannot eliminate any partitions during queries; if your
measure group has 100 partitions, querying each partition for every query can severely lengthen
the query execution time. An alternative approach is to partition DISTINCT COUNT measure
groups based on the DISTINCT COUNT column value. Doing so effectively serves as a query
hint because SSAS only has to check for specific partition(s) and not others.

Creating Analysis Services Cubes

98

For example, the Adventure Works 2012 sample database contains the Internet orders
measure group, which is partitioned by year so that the SQL query defining each partition
limits the rows by OrderDateKey. A more effective way of partitioning this measure group
would be to specify the range of SalesOrderNumbers (SalesOrderNumber is the
DISTINCT COUNT column) to be included in each partition. The following queries could be
used to define four partitions based on the SalesOrderNumber column:

SELECT * FROM FactInternetSales
WHERE SalesOrderNumberBETWEEN'SO43697'AND'SO55999'

SELECT * FROM FactInternetSales
WHERE SalesOrderNumber BETWEEN'SO57000'AND'SO63999'

SELECT * FROM FactInternetSales
WHERE SalesOrderNumber BETWEEN'SO64000'AND'SO69999'

SELECT * FROMFactInternetSales
WHERE SalesOrderNumber>'SO70000'

If we expect the majority of our queries to check the number of orders by a calendar year,
a more effective strategy would be to partition the measure group by the sales order number
as well as the order date.

Enabling write-back feature
The write-back feature allows data analysts to perform what-if analysis and is typically used
for budgeting applications. For example, an operations manager might want to see what the
profit margins would look like if her team were to achieve a cost reduction of 10 percent.
Although not frequently used, write-back is a useful feature.

Chapter 3

99

Analysis Services does not overwrite any values in the existing fact tables from which it sources
data. Rather, it creates a new partition for storing the write-back data. The new partition is based
on a table that could be stored in the same database as the primary fact table or in a different
relational database. SSAS derives requested values at the query execution time by aggregating
write-back and regular partition values. Note that the write-back feature works only on measure
groups that have measures using the SUM aggregation function. If you have followed along with
the examples in this chapter, you must remove the Fact Reseller Sales Count measure
before enabling write-back.

How to do it...
To enable write-back on a measure group, perform the following steps:

1. Right-click on the measure group's Writeback folder in SSMS, and select Enable
Writeback to activate the dialog shown in the next screenshot.

2. Specify the data source where you want to store the write-back data; you may use
the existing data source or define a new one. Also specify the table name; by default,
the table will have the WriteTable_ prefix.

3. Specify the storage mode for the write-back partition, either MOLAP or ROLAP.
Once you click on OK, Analysis Services will create the write-back partition. You need
to process the write-back partition before SSAS creates the relational table.

4. Any queries against the write-enabled measure group will query both regular and
write-back partitions; the SQL Profiler will display the following messages:

Messages Description of the action
Progress Report Begin Started reading data from the "Fact Reseller

Sales" partition.
Progress Report Begin Started reading data from the "WriteTable_Fact

Reseller Sales" partition.
Progress Report End Finished reading data from the "Fact Reseller

Sales" partition.
Progress Report End Finished reading data from the "WriteTable_

Fact Reseller Sales" partition.

Creating Analysis Services Cubes

100

Note that in order to actually write the data back into the cube, you must have a client
application that supports write-back. The discussion of client application implementation
details is beyond the scope of this book.

If your users are happy with their changes to the cube data values, SSAS provides an option
to convert write-back partition into a regular partition. Simply right-click on the Writeback
folder again and select Convert to Partition. The ensuing dialog box will allow you to specify
the partition name and whether you wish to copy aggregation design from any existing partition.

If you no longer wish to support write-back capability, click on the Writeback folder and
select disable Writeback. You will need to drop the relational table manually.

Chapter 3

101

Deployment options
You have already learned that you can deploy an SSDT project to an SSAS instance.
For enterprise-level applications, it is imperative to maintain source control—SSDT projects
can be checked in and out of version control software. Since the entire Analysis Services
database can be scripted using SSMS in XMLA language, you can also save copies of
 database definition in that format. Scripting is also helpful when moving databases from
test to quality assurance and subsequently to production environments. However, scripting a
complex database with hundreds of partitions can take prohibitively long. In some cases,
even deployment through SSDT can hang and might never complete. Fortunately, there is an
additional option for deploying SSAS database projects: the Deployment Wizard.

How to do it...
Let's learn how to use the Deployment Wizard by performing the following steps:

1. To activate the wizard navigate to Start | All Programs | Microsoft SQL Server
2012 | Analysis Services | Deployment Wizard.

2. After the welcome screen, the wizard lets you specify the location of the file with an
.asdatabase extension—this file is created in the bin subfolder when you build a
project with SSDT.

3. After you specify the target server and database name, the wizard displays options
shown in the following screenshot:

Creating Analysis Services Cubes

102

4. Unlike deployment from SSDT, which completely wipes out the existing database
and replaces it with the new project, the Deployment Wizard allows you to retain
partitions for existing measure groups and only deploy partitions of the new measure
groups. Similarly, you have a choice of retaining existing security role members.

5. The next screen allows you to change the data source connection strings so
that the test SSAS database can source data from the test relational database,
while the production instance sources data from the corresponding production
SQL Server instance.

6. The wizard reads the existing settings from files with .configsettings,
.deploymentoptions, and .deploymenttargets extensions found in
the SSDT solution's bin folder. Note too that you could override the database
as well as cube storage locations.

7. The following screen allows you to change the processing option which you had set
within SSDT project properties.

8. Lastly you have an option of saving the deployment script or running it immediately.

4
Extending and

Customizing Cubes

In this chapter, we will cover:

 f Defining calculated measures

 f Defining named sets

 f Defining drillthrough actions

 f Defining URL actions

 f Defining reporting actions

 f Defining key performance indicators

 f Defining perspectives

 f Defining translations

 f Defining measure expressions

Extending and Customizing Cubes

104

Introduction
This chapter contains recipes for extending Analysis Services cubes with calculations,
actions, and key performance indicators (KPIs). Additionally, you will learn how to customize
cubes using translations, perspectives, and measure expressions.

As you learned in the previous chapters, Analysis Services cubes expose data found in relational
data sources. The primary advantage of polling SSAS cubes in lieu of relational tables is the
swift execution of queries achieved by the efficient data storage in the MOLAP format and
precalculated summary values called aggregations. However, relational data sources might
not contain all numbers helpful for business analysis. For example, you could have sales data
for each broker, but the application might also need to compare the average sale amount per
broker in the northern states with the respective performance of brokers in the south, east and
west regions. You might also need to calculate each product's contribution to total sales per
region. Although you could include calculation definitions in each user query, it's preferable to
define them at the cube level for two reasons: to provide consistent dataset for all users and to
benefit from the SSAS global calculation cache for better query performance.

Actions extend the cube's functionality to the next step that the user might want to take
based on data analysis. For example, actions can display additional details for a given dataset,
launch a website, and generate a report. The actions are (usually) seamlessly integrated
with cube functionality. The recipes in this chapter will teach you about the most commonly
utilized action types: drillthrough, URL, and reporting. Actions are defined within the SSDT cube
designer's Actions tab. You must set certain properties for each action. If you would like to
expose additional data, an action's target can be measure-group members. And, if you'd like to
expose more data about dimension attributes, dimension-level, hierarchy-level, or attribute-level
members could be the target of the action.

Key performance indicators (KPIs) enhance the application by displaying the state of your
business using various visual indicators, such as gauges, smiley faces, and speedometers.
KPIs are calculations which business users would like to see on their dashboard to get a very
high-level overview of the data before they dive into more detailed analysis.

Although seldom used, translations offer the useful functionality of displaying cube data in
different languages depending on the user's selection.

Perspectives are similar to relational database views in the sense that they expose a subset
of the entire database. Enterprise-level solutions can have multiple cubes, many measure
groups, and measures. Being exposed to dozens of dimensions and measures could
overwhelm the users; hence, you can create multiple perspectives, tailoring each one to the
needs of a particular group of users.

Chapter 4

105

Measure expressions allow for either multiplying or dividing two measures from two separate
measure groups, which normally have many-to-many relationships you learned about in
Chapter 3, Creating Analysis Services Cubes.

As in the previous chapters, all examples in this chapter will reference Adventure Works
DW sample database.

Defining calculated measures
You can add calculations to the cube at any time by simply typing calculation definitions on
the Calculations tab and saving the database. Cube-level calculations are stored in the MDX
script, which you can review on the cube designer's Calculations tab. This tab has two views:
Form View and Script View. The Form View is helpful in developing individual calculated
members, calculated measures, and named sets. The Script View contains all calculations as
a single script, which is essentially a collection of MDX statements separated by semicolons.
Regardless of whether you use Form View or Script View, the Calculations tab includes the
metadata—dimensions and measures as well as a list of all supported MDX functions along
with the syntax reference. Additionally, SSDT also includes templates for the most common
types of calculations.

Calculated measures are measures derived by performing operations on other,
previously defined measures. Calculated members are very similar but reference
a dimension other than the special, measures dimension.

Calculations do not change the cube structure, and therefore, do not require reprocessing of
dimensions or partitions. However, calculations do increase the cube space by adding new
cells—this is accomplished by executing the MDX script. You can monitor what happens under
the hood using SQL Server Profiler.

Getting ready
Launch SSDT and connect to the existing Adventure Works sample database, which has
been previously deployed and processed on your instance of Analysis Services. Right-click on
the Adventure Works cube, choose Open, and then navigate to the Calculations tab.
Also launch SQL Server Profiler, connect to the same SSAS instance, and start a trace using
the default trace template. Finally, launch SSMS, navigate to File | New | Analysis Services
MDX Query, and connect to the same SSAS instance.

Extending and Customizing Cubes

106

How to do it...
First hover your mouse pointer over each icon found on the top ribbon of the Calculations
tab to become familiar with the environment. Notice the new calculated member button,
which looks like a calculator, and the new named set button, which has a couple of dots
enclosed in curly braces. Also ensure that you are using Form View—you'll switch to Script
View shortly. Also note the Calculation Tools pane in the bottom left-hand corner.

Create a reseller sales moving-average calculation using the following steps:

1. Click on the Templates tab within Calculation Tools, right-click on Moving Average,
and choose Add Template. This creates a new calculated member and provides the
syntax for deriving the moving average.

2. Change the name of the calculation to Reseller Sales Moving Average.

3. Edit the expression supplied by the template to the following:
Avg ([Date].[Calendar].CurrentMember.Lag(6):[Date].
 [Calendar] .CurrentMember, [Measures].[Reseller Sales
Amount])

4. Change the measure's Format String property to Currency, Associated Measure
Group to Reseller Sales, and Nonempty Behavior to Reseller Sales Amount.

5. Click on the save button to save the calculation to the server. Quickly switch to
SQL Server Profiler to see what takes place behind the scenes—if you examine the
Command End event, you will see that SSDT sends an ALTER command to the server
to change the cube's definition.

6. Next, switch to SSMS, and execute the following query:

SELECT {measures.[reseller sales amount],
 measures.[Reseller Sales Moving Average]} ON 0,
NONEMPTY([Date].[Calendar].[Month].members) ON 1
FROM
[Adventure Works]

Here is a partial result of this query:

 Reseller Sales Amount Reseller Sales Moving Average

[July 2006] $729,200.55 $729,200.55
[August 2006] $668,122.85 $698,661.70
[September 2006] $637,697.79 $678,340.40
[October 2006] $449,344.69 $621,091.47
[November 2006] $698,449.60 $636,563.10

Chapter 4

107

Notice that the moving average for July 2006 is the same as the reseller sales amount. This is
because the calculation tells SSAS to go back six months and get the average for the last six
months. We didn't have any sales prior to July 2006; hence, the average is the same as sales.
The moving average for August 2006 is the average of July and August sales, the moving
average for September 2006 is the average of July, August, and September, and so on.

Now let's build a calculation to show each reseller type's contribution to the total reseller sales
as follows:

1. Right-click on the Percentage of Total template, and choose Add Template to create
a blueprint for the next calculation.

2. Edit the calculation definition as shown in the following code snippet. We check
the reseller sales amount to ensure it's not null, if so we compare sales for a given
reseller type to total reseller sales (you will learn more about MDX functions in
Chapter 6, MDX):
Case
When IsEmpty
 (
 [Measures].[Reseller Sales Amount]
)
Then Null
Else ([Reseller].[Reseller Type].CurrentMember,
 [Measures].[Reseller Sales Amount])
 /
 (
 Root
 (
 [Reseller]
),
 [Measures].[Reseller Sales Amount]
)
 End

3. Set the measure's Format String property to Percent, Associated Measure Group
to Reseller Sales, and NonEmpty Behavior to Reseller Sales Amount.
Save the database.

4. Next, to check the newly added calculation, launch Excel and create a pivot table
against the Adventure Works database. Choose the Reseller Sales Amount
and Reseller Type Percentage of Total measures as values and the Reseller Type
hierarchy on rows to see the following result:

Row Labels Reseller Sales Amount Reseller Type Percentage of Total
Specialty Bike Shop $1,173,474.01 7.30%
Value Added Reseller $5,628,923.80 35.05%
Warehouse $9,258,257.62 57.65%
Grand Total $16,060,655.43 100.00%

Extending and Customizing Cubes

108

Defining named sets
Named sets group either one or multiple dimension members based on certain criteria.
Named sets could be either dynamic or static. Static sets are evaluated once you define the
set, whereas dynamic sets are evaluated at the time of query execution. In this section, we will
first build a static named set of the top three resellers and validate it with queries, and then
make the set dynamic to note the difference.

How to do it...
Let's get started. To build a named set of the top three resellers in terms of sales amount:

1. Right-click on the Top N Count template, and choose Add Template.

2. Call the named set Leading Resellers, and edit the calculation as follows:
TOPCOUNT
([Reseller].[Reseller].[all resellers].children, 3,
 measures.[reseller sales amount])

3. Change the Type property to Static, and save the changes.

4. To verify the named set, switch to SSMS, and execute the following query (the results
are shown immediately after the query):
SELECT measures.[reseller sales amount] ON 0,
[leading resellers] ON 1
FROM [Adventure Works]

 Reseller Sales Amount

Metropolitan Equipment $644,059.49
Corner Bicycle Supply $616,663.89
Retail Mall $611,102.67

5. So far so good. Now let's limit the query to calendar year 2007 and check the
results again:
SELECT measures.[reseller sales amount] ON 0,
[leading resellers] ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Calendar Year].&[2007]

 Reseller Sales Amount

Metropolitan Equipment $307,274.84
Corner Bicycle Supply $315,833.45
Retail Mall $291,364.58

Chapter 4

109

6. So, we got the same three resellers. They must have had the highest reseller sales
amounts for 2007 as well, right? Wrong. We can easily double-check our result by
writing a query that does not reference the named set as shown next. Note that the
Retail Mall reseller actually shows up in the sixth spot, it's not one of the top
three resellers. Our set should have included Top Sports Supply instead:
SELECT measures.[reseller sales amount] ON 0,
NONEMPTY(ORDER(reseller.reseller.[all resellers].children,
measures.[reseller sales amount], DESC)) ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Calendar Year].&[2007]

 Reseller Sales Amount

Corner Bicycle Supply $315,833.45
Top Sports Supply $308,875.49
Metropolitan Equipment $307,274.84
Registered Cycle Store $296,124.95
Health Spa, Limited $294,128.38
Retail Mall $291,364.58

7. The reason for the inaccurate result is that the static named sets are not evaluated at
query time. Instead SSAS derives the top three resellers when you save the calculation.
Hence, the same three resellers will be shown regardless of query context. To work
around this limitation, go back to SSDT and change the [leading resellers] named set's
Type to Dynamic, and save the changes.

8. Execute the query shown in step 5 again to confirm that the named set works as
expected, displaying the top three resellers within 2007; here are the results:

 Reseller Sales Amount

Corner Bicycle Supply $315,833.45
Top Sports Supply $308,875.49
Metropolitan Equipment $307,274.84

Extending and Customizing Cubes

110

Defining drillthrough actions
Drillthrough is a very frequently used functionality that allows the examination of detailed
level data values. Earlier versions of Analysis Services allowed for executing queries against
the relational data source, thereby enabling leaf-level data to remain in the relational format.
Unfortunately, this often led to poor performance, which could not be controlled from SSAS.
Starting with SSAS 2005, drillthrough only works within the cube space and requires any
detailed data to be imported into the MOLAP storage. Clearly the major drawback of this
approach is that we might have to build huge dimensions in order to expose data at the
transaction level. An alternative approach is to implement an Excel macro to run a query
against the relational data source if the user needs to see such data.

How to do it...
Let us define a drillthrough action as follows:

1. Choose New Drillthrough Action after right-clicking on the SSDT Action Organizer
within the Actions tab. Supply a descriptive name for the action.

2. Specify the measure group for which you plan to supply detailed data.
Normally drillthrough actions expose data from fact-level (degenerate)
dimensions. For example, the sample Adventure Works database has the
Reseller Details action to expose Reseller Sales Order Details
dimension attributes: carrier tracking number, customer PO number, sales order
number, and sales order line.

3. Specify each attribute you'd like to include with the action. You can include attributes
from any dimension and measure.

4. Specify additional action properties in the Properties window:

 � Default: You can only have one default action per measure group.
The default action is invoked by simply double-clicking on the cell of
interest. The supported values are True or False. Note that actions
can only be invoked from client tools that support actions.

 � Maximum rows: It advises SSAS to limit the output of the action to a specified
number of rows. This property serves two purposes. Firstly, returning too many
rows could confuse the user—most users can only decipher several hundred
to several thousand rows of data in a reasonable amount of time. Secondly,
returning too many rows using the DRILLTHROUGH command can impose a
severe burden on the SSAS instance. This is especially true when using 32-bit
hosts or hosts with a limited amount of memory.

 � Invocation: Its supported values are interactive, on open, or batch.
Generally you should use the interactive option—you should not present
thousands of rows to the user unless this amount of data is necessary.

Chapter 4

111

 � Application: It specifies the name of the application that executes
the action.

 � Description: It supplies additional metadata about the action.

 � Caption: This is the string that users will click on to execute the action.
Be sure to supply the value that clearly conveys the purpose of the action.

 � Caption is MDX: It advises SSAS whether the caption is defined as an
MDX expression. Generally this is FALSE for drillthrough actions.

5. Save the action by clicking on the SSDT Save button.

6. To test the action, create a pivot table in Excel, expose the Reseller Sales
Amount measure, and display resellers on rows. Right-click on a cell showing
Reseller Sales Amount for a single reseller, and then navigate to Additional
Actions | Drillthrough…. This opens a new tab within the Excel worksheet and
displays all attributes and measures included in the Reseller Details action.
Clearly the action's caption within the sample database doesn't include much detail
about the action—you should not follow this poor practice in the actions you create.

How it works...
Drillthrough actions are implemented using the DRILLTHROUGH MDX command. As usual,
you can use SQL Server Profiler to see the statement executed behind the scenes. For example,
the following MDX command is executed when invoking the Reseller Details action for the
Community Department Stores reseller:

DRILLTHROUGH Select ([Measures].[Reseller Sales Amount],[Reseller].
[Reseller].&[571]) on 0
From [Adventure Works]
RETURN [Reseller Sales].[Reseller Sales Amount],[Reseller Sales].
[Reseller Order Quantity],[Reseller Sales].[Reseller Extended
Amount],[Reseller Sales].[Reseller Tax Amount],[Reseller Sales].
[Reseller Freight Cost],[Reseller Sales].[Discount Amount],[Reseller
Sales].[Reseller Unit Price],[Reseller Sales].[Unit Price
Discount Percent],[Reseller Sales].[Reseller Total Product
Cost],[Reseller Sales].[Reseller Standard Product Cost],[$Reseller].
[Reseller],[$Promotion].[Promotion],[$Employee].[Employee],[$Delivery
Date].[Date],[$Sales Territory].[Sales Territory Region],[$Reseller
Sales Order Details].[Carrier Tracking Number],[$Reseller
Sales Order Details].[Customer PO Number],[$Reseller Sales
Order Details].[Sales Order Number],[$Reseller Sales Order
Details].[Sales Order Line],[$Product].[Product],[$Ship Date].
[Date],[$Source Currency].[Source Currency Code],[$Date].
[Date],[$Geography].[City],[$Geography].[State-Province],[$Geography].
[Country],[$Destination Currency].[Destination Currency Code]

Extending and Customizing Cubes

112

The DRILLTHROUGH command displays details of each sale making up the total Reseller
Sales Amount measure for Community Department Stores, showing the order
date, ship date, delivery date, customer name, purchased product name, and other
attributes. Please reference the online documentation for more information about the
DRILLTHROUGH command. Note that if you do not limit the number of rows returned by
the drillthrough action, the upper limit is controlled by the server-wide configuration option
DefaultDrillthroughMaxRows in the msmdsrv.ini file or through the instance
configuration properties in SSMS.

Defining URL actions
URL actions invoke a link with a parameter set to the current dimension member.
This functionality is helpful in obtaining additional information about a particular
attribute. For example, a URL action in a movie database could look up a particular
actor's biography; a URL action in a real estate application could allow navigating
to the property's listing, and so on.

How to do it...
To set up a URL action that gets state information from maps.google.com:

1. Right-click on Action Organizer and choose New Action. Set the action type to URL,
and name the action State Information.

2. Set target type to Level Members and target object to Geography.Geography.
State-Province.

3. Set the action expression to the following:
"http://maps.google.com/maps/place?ftid=0x54936e7c9b9f6a55:0x7d4c6
5db7a0bb876&q=" +
[Geography].[State-Province].CurrentMember.Name +
"&hl=en&ved=0CBIQ3g0&sa=X&ei=Li5WUZCeLofFtwflo4H4BA"

4. Set the invocation property to interactive, the caption to State Information
Link. The Caption is MDX property should be set to False.

5. Save the action by clicking on the SSDT Save button.

6. To test the action, create a pivot table in Excel with the Geography hierarchy on
rows, Reseller Sales Amount measure on columns, and the Geography
dimension's country attribute filtered to United States.

7. Expand the Geography hierarchy so that it shows states, then right-click on
Wyoming, and navigate to Additional Actions | State Information Link.

8. Your browser will open the link showing information about Wyoming.

Chapter 4

113

Now let's modify the action slightly to use MDX for deriving the caption:

1. To use an MDX caption, simply set the Caption Is MDX property to True,
and modify the caption to:
"View information for " +
[Geography].[State-Province].CurrentMember.Member_Caption

2. Once you save the application and refresh the pivot table, the action's caption for
Wyoming will be View Information for Wyoming.

Defining reporting actions
Reporting actions can launch a SQL Server Reporting Services (SSRS) report passing the
currently selected dimension member as a parameter. Reporting actions are conceptually
similar to drillthrough actions in the sense that both types of actions typically display additional
detail about the data cell exposed by the cube. The difference is that drillthrough is not as
feature-rich as an SSRS report could be, and an SSRS report could retrieve data from the
relational source, whereas drillthrough must retrieve detailed data directly from the cube.
An SSRS report could contain links to additional resources, whereas enhancing drillthrough data
set to include links is difficult at best. Discussion of SSRS report development is beyond the
scope of this book, but you will review the reporting action defined within the sample database.

How to do it...
To learn how to define a reporting action, review the Sales Reasons Comparison action.
The procedure will be as follows:

1. Right-click on Action Organizer, and choose New Reporting Action. Provide a
descriptive name for the action.

2. Set the action's target type to Level Members and target object to Product.
[Product Categories].[Category].

3. Provide the SSRS settings: Server Name and Report Path. Server Name is the
host/computer on which SSRS is running; Report Path should include the report
server URL and the path to the actual report you wish to display.

4. Provide the parameter name to be passed to the SSRS report. In this case,
the parameter name is ProductCategory and set the parameter value to
the current member's unique name, as in [Product].[Category].
CurrentMember.UniqueName.

Extending and Customizing Cubes

114

5. Set the Invocation property to interactive, the Caption is MDX property to
True, and Caption to the following:
"Sales Reason Comparisons for " +
[Product].[Category].CurrentMember.Member_Caption

6. Click on the Save button to save the action.

7. To test the action, create a pivot table in Excel with product categories and sales
reasons hierarchies on rows and the Internet Sales Amount measure on
columns. Note that you will only be able to test this action if you have an instance
of SSRS set up and available. Additionally, the report must be deployed as well.
Right-click on the Accessories product category, then navigate to Additional
Actions | Sales Reasons Comparison for Accessories. This will launch an SSRS
report similar to the following screenshot:

Defining key performance indicators
You can define a KPI within the SSDT tab called KPIs by specifying the value, goal, status,
and trend expressions along with optional properties. A KPI's value is a measure, its goal
is the ideal value of the calculation, the status shows the relative condition of the measure
compared to the goal, and the trend indicates whether the business is moving closer to the
target. For example, the Adventure Works sample database has a KPI called Growth in
Customer Base. This KPI is built upon the [measures].[growth in customer base]
measure which compares the current time span's customer count with that of the previous
time span: the current year is compared to last year, the current quarter is compared to last
quarter, and so on. The goal is arbitrarily set to 30 percent increase for each fiscal year,
15 percent for semesters, 7.5 percent for quarters, and 2.5 percent for months. The KPI's
status is shown as a green check mark if the goal is met or with a red X sign if we're below
target. Lastly, the trend displays an upward arrow if the value is increasing, a downward
arrow if decreasing, and a horizontal arrow if the number remains flat.

Chapter 4

115

In this recipe you will create internet order sales growth KPI to monitor Adventure Works
internet order traffic health. Let's set modest goals of 20 percent growth per calendar year,
10 percent per calendar semester, 5 percent per quarter, and 2.5 percent per month.
We'll consider values within 80 percent as a decent progress.

How to do it...
To define internet order sales growth KPI:

1. Open the Adventure Works cube within the sample database (existing on your
SSAS instance) in SSDT and navigate to the Calculations tab.

2. Create a new calculated member by entering the following expression on the Script
View, and save the solution. The expression simply compares the order count for the
current time span with the previous time span, reports N/A if we're at the top level
(all calendar time) and returns null if the previous time span had no orders:
CREATE MEMBER CURRENTCUBE.[Measures].[Internet Order Count Growth]
 AS CASE
WHEN [Date].[Calendar].CurrentMember.Level.Ordinal = 0 THEN "N/A"
WHEN ISEMPTY(([Date].[Calendar].CurrentMember.PrevMember,
 measures.[Internet Order Count])) THEN NULL
ELSE
(([Date].[Calendar].CurrentMember, measures.[Internet Order
Count]) -
([Date].[Calendar].CurrentMember.PrevMember,
measures.[Internet Order Count]))/
([Date].[Calendar].CurrentMember.PrevMember, measures.[Internet
Order Count])
END,
FORMAT_STRING = "Percent",
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP =
 'Internet Orders' ;

3. Navigate to the KPIs tab, right-click on the KPI Organizer tab (found in upper
left-hand corner), and choose New KPI. Rename the KPI to Internet Order
Growth, and set Associated measure group to Internet Orders.

4. Enter the newly created measure [measures].[internet order count
growth] as the Value Expression.

Extending and Customizing Cubes

116

5. Define the Goal Expression for each level within the Calendar hierarchy using
the following MDX query:
Case
 When [Date].[Calendar].CurrentMember.Level Is [Date].
[Calendar].[Calendar Year]
 Then .20
 When [Date].[Calendar].CurrentMember.Level Is [Date].
[Calendar].[Calendar Semester]
 Then .10
 When [Date].[Calendar].CurrentMember.Level Is [Date].
[Calendar].[Calendar Quarter]
 Then .05
 When [Date].[Calendar].CurrentMember.Level Is [Date].
[Calendar].[Month]
 Then .025
 Else "N/A"
End

6. Next choose the thermometer as the Status Indicator, icon and define the status
expression as follows:
Case
 When KpiValue("Internet Order Growth") >=
 KpiGoal ("Internet Order Growth")
 Then 1
 When KpiValue("Internet Order Growth") >=
 KpiGoal ("Internet Order Growth") * .80
 And
 KpiValue("Internet Order Growth") <
 KpiGoal ("Internet Order Growth")
 Then 0
 Else -1
End

7. Lastly choose standard arrow as the Trend Indicator, and enter the following MDX
query for trend expression:
Case
 When IsEmpty(
 ParallelPeriod
 ([Date].[Calendar].[Calendar Year], 1, [Date].[Calendar].
CurrentMember))
 Then 0
 When VBA!Abs
 ((KpiValue("Internet Order Growth")
 -

Chapter 4

117

 (KpiValue("Internet Order Growth"),
 ParallelPeriod
 ([Date].[Calendar].[Calendar Year], 1,[Date].[Calendar].
CurrentMember))
)
 /
 (
 KpiValue("Internet Order Growth"),
 ParallelPeriod
 ([Date].[Calendar].[Calendar Year],1,[Date].[Calendar].
CurrentMember))
) <=.02
 Then 0
 When (KpiValue("Internet Order Growth")
 -
 (KpiValue("Internet Order Growth"),
 ParallelPeriod
 ([Date].[Calendar].[Calendar Year],1,[Date].[Calendar].
CurrentMember))
)
 /
 (KpiValue("Internet Order Growth"),
 ParallelPeriod([Date].[Calendar].[Calendar Year],1,[Date].
[Calendar].CurrentMember)
) >.02
 Then 1
 Else -1
End

Note that we only have three values for status and trend: 1, -1, and 0 because we
can only display upward/downward movement or no change in our calculation.

8. Save your solution. Since KPIs are calculations, you do not have to reprocess
any object.

Extending and Customizing Cubes

118

9. To test the newly defined KPI, create a pivot table in Excel using the Adventure
Works cube. Navigate to the KPI's folder and check the value, goal, status, and trend
boxes next to the Internet Order Count Growth KPI. Show the Date.Calendar
hierarchy on rows, and you should see a screen similar to the following:

Defining perspectives
As mentioned earlier in this chapter, Analysis Services perspectives are similar to views
defined in the relational database. Each multidimensional SSAS project could contain multiple
cubes, several measure groups, hundreds of measures, many hierarchies, and thousands
of attributes. Many cube users might only need a subset of these attributes to get their job
done. Including unnecessary options in the reports and analytical views could simply confuse
data consumers; instead, you should try to expose only the essential attributes to each user
group by defining perspectives. Unlike relational views, perspectives should not be used for
implementing security; they are simply intended to conceal the complexity of your solution.

The Adventure Works sample multidimensional database contains several perspectives,
for example, the Direct Sales perspective exposes Internet Sales, Internet
Orders, Internet Customers, and Exchange Rates measure groups, whereas the
Finance perspective includes measures only from the Financial Reporting and
Exchange Rates measure groups. The two perspectives also expose different sets of KPIs,
actions and calculations because the groups of employees using the two perspectives are
likely to be interested in different datasets.

Chapter 4

119

How to do it...
To define a perspective, the following steps need to be followed:

1. Connect to the Adventure Works cube using SSDT and navigate to the Perspectives
tab. Right-click anywhere within this tab, and choose New Perspective. Alternatively,
you could click on the New Perspective icon found in the upper left-hand corner of the
Perspectives tab.

2. Give the perspective a descriptive name to ensure that your users can quickly identify
its purpose.

3. Define the Default Measure for the perspective by picking one of the measures from
the drop-down list. The default measure is returned in a query that does not explicitly
specify requested measures or uses the measures.defaultmember syntax to
reference the desired measure.

4. Uncheck the measures, hierarchies, attributes, KPIs, actions, and calculations
that should not be available within the current perspective. By default, each new
perspective includes all attributes, so every single one of them is checked.

5. Once you are happy with your selections, save the solution.

6. To confirm the perspective works as expected, create a pivot table in Excel using
the newly defined perspective. Within Excel's data tab choose From Other Sources
| From Analysis Services, then enter the name of your Analysis Services instance.
Choose your database name from the drop-down list, then ensure the Connect
to specific cube or table box is checked, and you will see the list of available
cubes/perspectives as shown in the following screenshot:

Extending and Customizing Cubes

120

Defining translations
Analysis Services does not translate attributes or measure names for you, but it allows you to
specify your own translations in case your application will serve a multilingual audience. You can
define translations for dimension attributes as well as cube metadata. The Adventure Works
sample multidimensional database supplies French and Spanish translations. You can use
either SSMS/SSDT or a cube browsing tool of your choice to test translations.

How to do it...
To define translations for dimension attributes, the following steps need to be followed:

1. Right-click on any database dimension within the SSDT project, and choose open.
Navigate to the Translations tab within the dimension designer.

2. Right-click anywhere within the Translations tab, and choose New Translation;
doing so will open a dialog box that allows you to choose the language you will
be using.

3. The Translations tab lists all the dimension attributes. Once you choose the
language, you will see a separate column where you can specify the values for
each attribute's translation.

4. When you click on each attribute, you will see a button on the right-hand side of
the cell. Click on the button to activate the Attribute Data Translation dialog shown
in the following screenshot. In this example, the translation is specified for the
day and name of the week in French by choosing the corresponding column from
the relational dimension table. Note that you could specify a translated caption in
addition to supplying the value from the relational column.

Chapter 4

121

5. In addition to applying translations to each attribute based on a relational column,
you could also define translations for metadata items, such as the dimension name
and the default member.

6. Save and process your dimension. Processing is necessary because you'll be reading
translated values such as FrenchDayNameOfWeek name from the relational table.

Extending and Customizing Cubes

122

To define cube-level translations, the following steps need to be followed:

1. Open the cube within SSDT, and navigate to the Translations tab. Right-click anywhere
in this tab, and choose New Translation from the pop-up menu. Alternatively you could
click on the New Translation icon in the upper left-hand corner. As with dimension-level
translations, you will be asked to choose the language.

2. Once the language is chosen, the tab will have a new column for specifying
the translated values for each measure group, measure, perspective, KPI,
dimension name, action, and calculation.

3. Once you specify the necessary values, save the solution. You do not have to reprocess
the cube because translations are applied to metadata and not the data.

4. You can choose the language you wish to see translations in while browsing data
using SSDT or SSMS. Translated values will only appear for the languages for which
you defined translations.

5. To test the translations in Excel, define the pivot table as usual, next activate the
Data tab, and click on properties to edit Connection definition. Enter the locale
identifier for the language of choice, for example, you can append the following to
the connection string to see Spanish translations for the Spain region: Extended
Properties="LocaleIdentifier=3082".

Defining measure expressions
Measure expressions allow the performing of a calculation at the individual dimension
member-level and subsequently aggregating the result for the entire dimension. A measure
expression is either a product or division of two measures that could belong to the same or
different measure groups. For example, the sample Adventure Works multidimensional
database contains Reseller Sales and Exchange Rates measure groups. Since the
fictitious bike company operates globally, we might want to express the [reseller sales
amount] measure in multiple currencies. As you know, the currency rates vary from time to
time, and hence, we maintain the Exchange Rates measure group that tracks how various
currencies perform in comparison to the base currency of the USD. Both Reseller Sales
and Exchange Rates measure groups have direct relationships with the date dimension.
However, Exchange Rates is also directly related to the destination currency measure
group, whereas Reseller Sales is not. To relate the Reseller Sales measure to
the Destination Currency dimension, we need a many-to-many relationship with the
Exchange Rates measure group. This makes sense if you examine Reseller Sales
Amount values reported in just two currencies: USD and EURO. For simplicity's sake,
let's just have a look at the second half of 2006:

Chapter 4

123

 Average Rate
Reseller Sales
Amount

Row Labels EURO US Dollar EURO US Dollar
CY 2006 .90 1.00 € 4,134,145.70 $3,713,626.10
H2 CY 2006 .90 1.00 € 4,134,145.70 $3,713,626.10
Q3 CY 2006 .91 1.00 € 2,268,813.51 $2,035,021.19
July 2006 .86 1.00 € 848,351.92 $729,200.55
August 2006 .93 1.00 € 750,368.76 $668,122.85
September 2006 .93 1.00 € 670,092.84 $637,697.79
Q4 CY 2006 .90 1.00 € 1,865,332.19 $1,678,604.91
October 2006 .92 1.00 € 487,943.39 $449,344.69
November 2006 .89 1.00 € 779,749.13 $698,449.60
December 2006 .89 1.00 € 597,639.67 $530,810.61
Grand Total .90 1.00 € 4,134,145.70 $3,713,626.10

Note how the average EURO rate has varied from month to month; this is why we need to take
the currency rate into consideration for accurately reporting reseller sales amounts during
each time period. Measure expressions are intended precisely for this purpose. Also note that
the grand total for the second half of 2006 is the sum of the Reseller Sales Amount in
EURO for July 2006 through December 2006 and not the grand total divided by the average
rate for this time span (which would have been 3713626.10/.90 = 4126251.22).

How to do it...
To define a measure expression for the Reseller Sales Amount measure, the following
steps need to be followed:

1. Open the Adventure Works cube, then expand the Reseller Sales
measure group under Measures pane within the Cube Structure tab.

2. Select the Reseller Sales Amount measures, and activate the
Properties window.

3. Edit the measure expression property to state [Reseller Sales Amount]
/ [Average Rate]. As mentioned earlier, the measures included in the measure
expression could be from the same or different measure groups.

4. Save the solution, and reprocess the Reseller Sales measure group.

5. Since this measure expression is included with the sample database you could
remove it first and check the cube values without it to understand the effect of
the calculation.

5
Optimizing Dimension
and Cube Processing

In this chapter, we will cover:

 f Understanding dimension processing options

 f Learning about basic dimension processing

 f Learning advanced dimension processing options

 f Using out-of-line bindings for dimension processing

 f Dealing with partition processing options

 f Using SQL Server Integration Services to process Analysis Services objects

 f Monitoring and tuning processing performance

Introduction
This chapter discusses various processing options available with dimensions and cubes.
As discussed in the previous chapters, all commands sent to Analysis Services use XMLA
language—the same holds true for processing commands. You will start by learning the
basic processing commands and work your way up to more complex options.

If you use ROLAP storage for any of your SSAS objects, processing simply defines metadata;
ROLAP does not copy relational data into multidimensional format. You can reference
Chapter 3, Creating Analysis Services Cubes, for more information about various storage
options. For the remainder of this chapter, we will discuss processing for MOLAP objects.

Optimizing Dimension and Cube Processing

126

Processing loads the data from the relational database tables into the Analysis Services
objects. The easiest option allows the processing of the entire Analysis Services database,
including all dimensions and all partitions. This option is suitable for tiny sample databases
or for a proof of concept type implementation that has a few megabytes of data. However,
for real-world applications, you must approach processing carefully, as loading many
gigabytes or even terabytes of data into the cube daily is not a viable option.

The most common approach is to fully process the database periodically—when it is first
deployed and after applying any structural changes. At other times, you should process
dimensions incrementally, and process only those partitions whose data has changed or
has not yet been loaded into Analysis Services.

Understanding dimension processing
options

We must ensure that each dimension referenced, by a particular measure group, has an
up-to-date dataset prior to processing any partitions in that measure group. If we attempt to
process a measure group before dimensions have up-to-date data, we will encounter missing
key errors and the measure group / partition processing will fail.

How it works...
The following table summarizes dimension processing options:

Processing option Description Used for
ProcessFull This option loads a full dimension

dataset and rebuilds all indexes.
This option invalidates all
partitions referencing the current
dimension; every partition will
have to be fully reprocessed.

Each dimension must first be
processed using ProcessFull.
From time to time, you should
reprocess these dimensions
to remove fragmentation
introduced by ProcessAdd
or ProcessUpdate.

ProcessClear This option empties a dimension
object's contents to "unprocess"
the dimension.

This option is sometimes necessary
if you reach a 4 GB string store limit
(applicable to SSAS versions prior to
2012), and the ProcessUpdate
option fails to complete. In this
case, use ProcessClear followed
by ProcessFull, after ensuring
that you use the smallest data type
possible for each attribute and
that you only load the data values
necessary for analytics.

Chapter 5

127

Processing option Description Used for
ProcessData This option loads a full dataset

into a previously unprocessed
dimension without
building indexes.

This option is sometimes useful for
32-bit systems that are short on
memory, to ensure the processing of
a very large dimension completely,
without exhausting all memory.

ProcessIndexes This option rebuilds indexes on
a dimension after it has been
populated with a full dataset.

This option is used for
same scenarios as the
ProcessData option.

ProcessAdd This option loads only newly
added records to the dimension
from the most recent time it was
fully processed.

This option is the less intrusive of
the two incremental processing
options for dimensions. Since it
does not account for updated or
deleted records, ProcessAdd
does not invalidate existing partition
indexes or aggregations.

ProcessAdd is also used for
incremental processing with
out-of-line bindings, discussed later
in this chapter.

ProcessUpdate This option incrementally
refreshes the dimension
accounting for all data changes:
inserts, updates, and deletes.

This option drops existing partition
indexes and aggregations
that are invalidated due to
dimension data changes. SSAS
2012 has an intelligent engine,
capable of keeping the indexes
and aggregations that are still
valid, instead of wiping out all
existing structures. However,
ProcessUpdate still has to
check every partition referenced
by the updated dimension to
determine which of these indexes
need to be dropped. You must use
the ProcessIndexes partition
processing option (after running
ProcessUpdate on dimensions)
to re-create missing indexes
and aggregations.

ProcessDefault This option brings a dimension
from its current state to a
fully-processed state.

This option is viable if your
dataset is small, and finer
control over dimension
processing isn't a concern.

Optimizing Dimension and Cube Processing

128

Learning about basic dimension processing
You can process dimensions using SSMS processing dialog or XMLA script. Alternatively,
you could use the ascmd.exe command line utility to schedule a dimension processing.
While developing the solution, you could also process dimensions using SSDT.

Getting ready
Launch SSMS and connect to the existing AdventureWorks_Sample database, which has
been previously deployed on your instance of Analysis Services. Expand the Dimensions
folder within the current database.

How to do it...
To process a dimension, perform the following steps:

1. Right-click on any dimension and choose Process; doing so opens the Process
Dimension dialog.

2. Choose any of the dimension processing options except ProcessAdd. This option is
not available in the dialog.

3. Click on the Script button in the top-left corner of the dialog and choose Script
Action to New Query Editor Window. The sample XMLA command for processing
the Geography dimension is as follows:
<Batch xmlns = "http://
 schemas.microsoft.com/analysisservices/2003/engine">
 <Parallel>
 <Process xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 xmlns:xsi = "http://www.w3.org/2001/
 XMLSchema-instance"
 xmlns:ddl2 = "http://schemas.microsoft.com/
 analysisservices/2003/engine/2"
 xmlns:ddl2_2 = "http://schemas.microsoft.com/
 analysisservices/2003/engine/2/2"
 xmlns:ddl100_100 = "http://
 schemas.microsoft.com/analysisservices/
 2008/engine/100/100"
 xmlns:ddl200 = "http://schemas.microsoft.com/
 analysisservices/2010/engine/200"
 xmlns:ddl200_200 = "http://
 schemas.microsoft.com/analysisservices/
 2010/engine/200/200"
 xmlns:ddl300 = "http://schemas.microsoft.com/
 analysisservices/2011/engine/300"
 xmlns:ddl300_300 = "http://
 schemas.microsoft.com/analysisservices/

Chapter 5

129

 2011/engine/300/300">
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <DimensionID>Dim Geography</DimensionID>
 </Object>
 <Type>ProcessUpdate</Type>
 <WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 </Parallel>
</Batch>

4. To change the processing option, simply edit the <Type> tag. For example, to use the
incremental processing option, ProcessAdd, change the line to say:
<Type>ProcessAdd</Type>

5. Switch back to the Process Dimension dialog, and click on the Change Settings
button. The resulting dialog has two tabs: Processing options and Dimension
key errors.

6. The first processing option allows you to process objects in parallel or sequence.
Since you're currently processing a single dimension, this option doesn't make a
difference to our processing. However, if you were processing multiple dimensions,
you could specify how many of them should be processed in parallel. If you change
the degree of parallelism to 3, the XMLA statement will include the following tag after
the <Batch> command:
<Parallel MaxParallel="3">

7. Should you choose the Sequential button, you will see the multiple options to
process all the objects in a single transaction, or to create a separate transaction
for each object. Choosing separate transactions adds the following string to the
<Batch> command:
Transaction="false"

8. Unfortunately, SSMS Object Explorer does not provide a graphical option for
processing multiple dimensions at the same time. However, now that you've seen the
<Batch> command processing a single dimension, it won't be difficult to extend it to
include three dimensions, as shown in the following code snippet. Though this might
seem like a lot of code, it simply repeats the <Process> command while substituting
the identifier for the Promotion, Account, and Geography dimensions:
<Batch xmlns = "http://schemas.microsoft.com/
 analysisservices/2003/engine">
 <Parallel MaxParallel="3">
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>

Optimizing Dimension and Cube Processing

130

 <DimensionID>Dim Geography</DimensionID>
 </Object>
 <Type>ProcessUpdate</Type>
<WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <DimensionID>Dim Account</DimensionID>
 </Object>
 <Type>ProcessUpdate</Type>
<WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <DimensionID>Dim Promotion</DimensionID>
 </Object>
 <Type>ProcessUpdate</Type>
<WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 </Parallel>
</Batch>

If you would like to process multiple dimensions in parallel using SSMS,
open the Object Explorer Details window by pressing the F7 button
on your keyboard or by navigating to View | Object Explorer Details.
This window allows you to hold down the Shift key and select multiple
dimensions at the same time. Once you choose multiple dimensions,
you can either process or delete them using a single command.

9. SSDT allows processing multiple dimensions using a single batch. Simply click
on multiple dimensions while holding down the Shift key and choose Process.
Doing so opens the Process Dimension dialog, identical to that available with
SSMS, except the dialog lists all the chosen dimensions.

10. Execute the XMLA statement by pressing F5 and monitor what happens behind
the scenes using SQL Server Profiler (you can use the default Analysis Services
template within SQL Server Profiler).

Chapter 5

131

How it works...
SQL Server Profiler will report the following event subclasses during dimension processing:

 f Build processing schedule

 f Execute SQL

 f Read data

 f Write data

 f Build decode

 f Build index

 f Object created

 f Commit

So running the process update on a dimension involves allocating Analysis Services threads,
executing queries against the relational data store, reading data, and subsequently, writing to
MOLAP storage, and building indexes prior to committing the transaction.

If you look closely, SSAS also has an event subclass, object created, which should more
appropriately be named object updated. This is because we must update each partition's
indexes and aggregations to reflect changes in the dimension data. You can scroll over to the
ObjectName column within SQL Server Profiler to see the list of affected partitions.

If you check the SELECT statements submitted to the relational database
engine, you will find that they're not exactly identical to the dimension table
/ view definition. Analysis Services writes a separate query for each attribute
and retrieves distinct values. If you find that such queries take too long to
complete or if SSAS runs out of memory during dimension processing, you
could alter the ProcessingGroup dimension property. The default value for
this property is ByAttribute. Changing the property to the ByTable value will
advise SSAS to run a single SELECT statement for the entire dimension,
instead of running separate queries for each attribute. Furthermore, the query
will no longer include the DISTINCT keyword.

Optimizing Dimension and Cube Processing

132

Learning advanced dimension processing
options

In the previous recipe, you processed a few dimensions after altering the degree of
parallelism. You can specify additional options to handle any errors you might encounter
during processing from the same dialog using the Dimension key errors tab. You should
handle a majority of the data quality issues in the Extraction, Transformation, and Loading
(ETL) layer of your application. However, in some cases it's acceptable to ignore processing
errors, particularly during the development stage when your ETL routines might be half-baked.
The following table lists the remaining dimension processing options you can specify:

Processing option Description
Key error action The default action in case of an error is to convert

the attribute key to the unknown member. The other
alternative is to discard the record. Though this is a viable
alternative during the development phase, you should be
careful with discarding dimension records in production
since this will also cause Analysis Services to exclude
partition data for any ignored dimension records, and by
doing so would lead to inaccurate reports.

Processing error limit The Ignore errors count value ignores all errors.
The other value is Stop on Error. This value allows you
to specify the number of errors to ignore before you stop
processing or stop logging errors.

Specific error conditions Conditions include KeyNotFound, KeyDuplicate,
NullKeyConvertedToUnknown, and
NullKeyNotAllowed. In each case, key refers to an
attribute key column. Each condition allows three ways of
dealing with the problem:

IgnoreError: Error is not logged or reported.

ReportAndContinue: Error is reported in the processing
dialog, but processing continues.

ReportAndStop: Error is reported and processing stops.
Error log path This allows specifying the name and full path to the

file which contains any dimension key related errors
encountered during processing.

Chapter 5

133

How to do it...
To customize error handling for a processing command, perform the following steps:

1. Navigate to the Dimension key errors tab within SSMS or SSDT and make the
desired selections.

2. If you prefer to use XMLA, the command will include the string similar to the following
code, immediately after the <Batch> tag:

<ErrorConfiguration
 <KeyErrorLimit>-1</KeyErrorLimit>
 <KeyErrorLogFile>C:\key_errors.txt</KeyErrorLogFile>
 <KeyNotFound>ReportAndStop</KeyNotFound>
 <KeyDuplicate>ReportAndContinue</KeyDuplicate>
 <NullKeyConvertedToUnknown>ReportAndContinue
 </NullKeyConvertedToUnknown>
 <NullKeyNotAllowed>ReportAndStop</NullKeyNotAllowed>
 </ErrorConfiguration>

Using out-of-line bindings for dimension
processing

You could use out-of-line bindings for incrementally processing very large dimensions without
having to read the full dataset. In this context, the term binding applies to the dimension
table or view. The sample database only has a handful of records for each dimension table,
but in a realistic scenario you could have a client, customer, or even product dimension with
millions of members. On a normal day, you could expect only a small number (compared to
the total number) of dimension members to be added. Keep in mind that the ProcessAdd
option reads the entire dataset in order to determine which rows must be added to the SSAS
dimension. Running a query against a multimillion row dimension table could add an undue
burden to the relational database engine and cause processing to be unnecessarily lengthy.
Fortunately, there is a better option: out-of-line bindings.

Optimizing Dimension and Cube Processing

134

How to do it...
Let's pretend for a few minutes that Adventure Works has grown by leaps and bounds to become
a multibillion dollar enterprise, which sells products to millions of customers. We try to process
data many times per day, but can't afford to query the gigantic customer dimension each time.
Instead you have built a SQL Server view named NewCustomers, which dynamically determines
only those records which haven't been added to the Analysis Services dimension (perhaps
by checking the Create Date column, and comparing it to the last time the dimension was
successfully processed). You will use this view to add new customers throughout the week by
performing the following steps. Over the weekend, you can run ProcessUpdate against the full
customer dataset to prune any obsolete records as well as refresh/update existing records that
might have changed.

1. Connect to the SSAS instance with Adventure Works DW sample database
using SSMS, expand the Dimensions folder, right-click on the Customer dimension,
and chose Process.

2. Change the processing option to Process Update, choose the option to ignore
duplicate key errors (as shown earlier in this chapter), and select Script Action
to New Query Window. Once the statement is scripted, click on Cancel on the
Processing dialog, and edit the <Type> tag of the XMLA command to ProcessAdd.

3. Switch to SSDT and open the sample database solution (not the live database,
but rather the project that defines it). Open the Adventure Works DW.dsv
data source view.

4. Remove all tables except Customer and Geography from the data source view.
Do not save changes. (In this case, we need the Geography table because some
Customer attributes use columns in the Geography table. If your dimension only
references a single table, you could remove all objects except the entity referenced
by the Dimension attributes.)

5. Right-click on the Customer table and choose Replace Table with New Named
Query. Replace FROM DimCustomer with FROM NewCustomers within the Edit
Named Query dialog. Leave all column selections and everything else intact.

6. Right-click on the Adventure Works DW.dsv data source view and choose View
Code. Copy the full contents of the resulting XMLA, and paste it into the SSMS
window where you have the ProcessAdd command for the Customer dimension.
Be sure the entire statement is within the <Process> tag.

Chapter 5

135

7. Remove all content between the <Annotations> and </Annotations> tags. Also
remove the <CreatedTimestamp> and <LastSchemaUpdate> sections from the
XMLA processing command.

8. Save the XMLA command to a file, and execute the processing command in SSMS.
If you monitor the processing using SQL Server Profiler, you will see a command
similar to the following code, confirming that we are using the NewCustomers
view and not the DimCustomer table to refresh the dimension:

SELECT
 DISTINCT
 [dbo_DimCustomer].[CustomerKey] AS
 [dbo_DimCustomerCustomerKey0_0],[dbo_DimCustomer].
 [FullName] AS [dbo_DimCustomerFullName0_1],
 FROM
 (

SELECT CustomerKey, GeographyKey,
 CustomerAlternateKey,
FROM newCustomers
)
 AS [dbo_DimCustomer],[dbo].[DimGeography] AS
 [dbo_DimGeography]
 WHERE
 (

 (
 [dbo_DimCustomer].[GeographyKey] =
 [dbo_DimGeography].[GeographyKey]
))

Dealing with partition processing options
Once you are happy with the dimensions' processed state, it's time to process partitions,
measure groups, and cubes.

Although you can process an entire measure group or even an entire cube, those options
are rarely used. Instead you're likely to process only the most recent (perhaps daily) partition
in each measure group. If you use the ProcessUpdate incremental dimension processing
option, you will also need to rebuild indexes on some or all partitions in the affected
measure groups.

Optimizing Dimension and Cube Processing

136

The following table summarizes partition processing options:

Processing option Description Used for
ProcessClear This option empties out

the partition's contents to
"unprocess" it.

This option could be useful if
you're running out of disk space
on the data drive and need to
quickly free up some space
by unprocessing a historically
obsolete partition. You can also
use this option if you find,
and subsequently fix,
discrepancies in fact data.

The same option applies to
measure groups, cubes, and
databases. If a database is
particularly large, deleting
it could take an exceedingly
long time, unless you first
"unprocess" it.

ProcessFull This option loads a full
dataset into a partition,
and builds the necessary
indexes and aggregations.

Each partition must be fully
processed to provide optimal
querying performance.

ProcessAdd This option incrementally
updates an existing partition
by defining the query which
returns only those rows not
already found in the SSAS
partition. The query could
include the condition such
as record_create_date
> 'last processed
date' to limit the dataset.

Though rarely used, this
incremental processing option
is useful when your relational
source has an incomplete
dataset during the previous
execution of ProcessFull.
In the background, SSAS creates
a temporary partition, processes
it, and subsequently merges it
with the existing partition.

ProcessData This option loads the full
dataset, but does not
build the aggregations
and indexes.

This option is useful on 32-
bit implementations that
cannot use more than 2 GB of
memory. Separating data and
aggregation processing could
prevent SSAS from running out
of memory.

ProcessIndexes This option creates indexes
and aggregations on a
partition that already has
the full dataset.

This option is necessary after
running ProcessUpdate on
dimensions. This option could
also be required in the case of
sparse memory resources.

Chapter 5

137

Processing option Description Used for
ProcessClearIndexes This option drops existing

indexes and aggregations
without deleting data.

This option is useful after you
change the aggregation design
and would like to use a new
set of aggregations. This option
must follow up with
ProcessIndexes to build
the new aggregations.

ProcessDefault This option brings the
partition from its current
state into a fully-
processed state.

This option is used only if
finer control on the partition
processing isn't required.

How to do it...
To process a partition, perform the following steps:

1. Select an existing partition by expanding cubes, measure groups, and partitions'
folders within SSMS. Right-click and choose Process. You can process multiple
partitions by opening Object Explorer Details, by pressing F7 within SSMS,
then selecting desired partitions, right-clicking and choosing Process.

2. Much like what you saw with dimensions, SSDT allows choosing multiple partitions
if you wish to process them in the same batch. To use SSDT for partition processing,
navigate to the Partitions tab within the cube designer, expand the measure group
you're interested in, and click on the partitions you want to process while holding
down the Shift key.

3. Both SSDT and SSMS allow for setting the same options as with dimension processing.
The options you could specify are the degree of parallelism, dimension key errors,
and whether the entire batch should be processed in a single transaction.

Dimension errors could occur during the partition processing if the partition query
(or table) references a dimension key that does not exist in the SSAS dimension. This is
the reason why you should process dimensions prior to processing any partitions.

Exercise special care when processing many partitions in
parallel. SSAS sometimes attempts to bite off more than it can
handle unless you explicitly specify the number of partitions
to be processed in parallel. Furthermore, the relational source
could also get overburdened if you attempt processing too many
partitions in parallel, because processing each one requires
sending a hefty query to the relational database.

Optimizing Dimension and Cube Processing

138

4. Sadly, SSDT does not provide an option to script the processing command. Not to
worry, you can get the XMLA command from SQL Server Profiler. For example,
the following command processes three partitions in parallel:

 <Batch xmlns = "http://schemas.microsoft.com/
 analysisservices/2003/engine">
 <Parallel MaxParallel="3">
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <CubeID>Adventure Works</CubeID>
 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>
 <PartitionID>Internet_Sales_2005</PartitionID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <CubeID>Adventure Works</CubeID>
 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>
 <PartitionID>Internet_Sales_2006</PartitionID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 <Process>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 <CubeID>Adventure Works</CubeID>
 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>
 <PartitionID>Internet_Sales_2007</PartitionID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting
 </WriteBackTableCreation>
 </Process>
 </Parallel>
</Batch>

Chapter 5

139

How it works...
SQL Server Profiler reports the following event subclasses:

 f Build processing schedule

 f Execute SQL

 f Read data

 f Write data

 f Build aggregations and indexes

 f Aggregate

 f Merge aggregations on disk

 f Object created

 f Commit

Much like with dimension processing, partition processing also involves building processing
schedules, allocating SSAS threads, running SQL statements against the relational source,
and reading data and writing it into MOLAP storage. Additionally, we build indexes and
aggregations (if aggregations are defined and assigned to the partition).

Using SQL Server Integration Services to
process Analysis Services objects

SQL Server Integration Services (SSIS) is an enterprise-level data ETL tool, which can be
used for a multitude of purposes, including the processing of Analysis Services objects. SSIS
is a huge product in its own right and even the discussion of its capabilities is well beyond
the scope of this book. In this section, you will learn how to create a simple SSIS package
that processes various SSAS objects. You could extend the SSIS solution to include a variety
of tasks, such as extraction of data from source systems, populating a staging area,
populating a Star schema data warehouse, and so on.

How to do it...
To create a SSIS package for processing SSAS objects, perform the following steps:

1. Open SSDT and navigate to File | New Project. Choose Integration Services
Project from the business intelligence templates and provide a descriptive name
for the project.

2. Drag Analysis Services Processing Task from the SSIS toolbox to the package's
Control Flow tab. Give the task a descriptive name, for example, Process Objects
in Sample Database.

Optimizing Dimension and Cube Processing

140

3. Double-click on the task to open the Analysis Services Processing Task editor.
Next navigate to the Processing Settings tab to choose objects to be processed.

4. Once you configure a connection to your Analysis Services instance and specify
the database, you can choose multiple cubes, measure groups, partitions, and
dimensions you wish to process.

5. When you click on the Impact Analysis button, SSIS provides you with the list of
objects which will be impacted by processing options you chose. For example,
fully-processing dimensions will cause partitions to become unprocessed. You also
have an option to check the impacted object in order to add it to the list of objects,
which will be processed by this task, as shown in the following screenshot:

Chapter 5

141

6. You can change additional processing settings as you could with SSMS and SSDT:
specify the number of objects to be processed in parallel, whether they should
be processed in a single transaction or not, as well as custom configuration for
dimension key errors. Click on OK once you're happy with your selection of the
processing settings.

7. To test the task you have just defined, you can right-click on it and choose
Execute Task.

Another option for executing processing XMLA commands is to use Analysis Services Execute
DDL Task available under the Other Tasks group within the SSIS toolbox. To process objects
using this option, first use SSMS to script the processing XMLA command you wish to use and
save it to a file. To execute this file using SSIS package, perform the following steps:

1. Drag Analysis Services Execute DDL Task, found under the Other Tasks group,
to the package's Control Flow tab. Provide a descriptive name for the task,
for example, ProcessDailyPartition..

2. Double-click on the task to launch Analysis Services Execute DDL Task Editor.
Navigate to the DDL tab, and set Connection to the instance of Analysis Services
where you want to process objects.

3. You have multiple options for the Source Type property as follows:

 � Direct Input: This option means that you will specify the XMLA command
directly in the SSIS package. This only works if you're confident that your
XMLA will rarely change. If you choose Direct Input source type, SSIS will
allow you to specify the XMLA command in the Source Direct property.

 � File Connection: This option means that you will specify the file containing
the XMLA command. This option is more flexible than the Direct Input
option, because you can change the XMLA file as needed without having to
edit the SSIS package.

 � Variable: This option is used to specify a variable containing the processing
XMLA. This is the most flexible option that allows setting a variable value
dynamically, perhaps based on values found in a relational database table.

4. For this example, choose the File Connection option for Source Type and specify the
full path to the file containing the processing command.

5. To test the task, right-click on it and choose Execute Task.

6. The Execute DDL task could be used to execute any XMLA, not just for processing.
For example, you could use the same SSIS task type to create new partitions or
synchronize a database from one SSAS instance to another.

Optimizing Dimension and Cube Processing

142

Once you're happy with your SSIS package, you could schedule its execution using the SQL
Server Agent job, as follows:

1. Create a new job in SSMS, add a new step, and provide a descriptive name, such as
process SSAS objects.

Please reference http://technet.microsoft.com/en-us/
library/ms190268.aspx#SSMSProcedure for more information
on how to create a SQL Server Agent job.

2. The package can be stored on a filesystem, SQL Server, SSIS package store, or SSIS
catalog. For this example, you can keep the package on the filesystem and provide
the full path to the package within the New Job Step configuration, as shown in the
following screenshot:

Chapter 5

143

3. As you can see in the preceding screenshot, you have a number of options you can
specify for executing the package. Perhaps the most important of these is the Data
Sources tab, which allows you to specify the SSAS instance on which you wish to
process objects. This allows you to easily move your SSIS package from development
to QA, and subsequently to production environment without having to edit it directly.

4. Specify any additional job steps, execution schedule, and alerts/notifications as
needed before saving the job.

Monitoring and tuning processing
performance

The performance of Analysis Services is mainly measured in terms of how quickly you can
execute MDX queries. However, if cube data becomes stale it may no longer be helpful to
the decision makers. Optimal processing performance ensures timely availability of up-to-
date data in a user-friendly, highly efficient format. You can monitor SSAS processing using
Performance Monitor (PerfMon) as well as SQL Server Profiler. Processing performance is
heavily dependent on how quickly you can query the relational data source objects, but SSAS
hardware and other operations running concurrently could also introduce a bottleneck.
There are some Analysis Services configuration options you could tweak to try to improve
the processing performance. In this section, you will learn about PerfMon counters and SQL
Server Profiler events useful for monitoring processing, as well as useful configuration options
for troubleshooting processing issues.

You can launch PerfMon by executing perfmon.exe using Run from the Start menu
(depending on your operating system the steps might vary, but you can find the executable
under the \Windows\System32 folder). There are a number of PerfMon counters you could
collect, but choosing too many counters can quickly make the output overwhelmingly difficult
to decipher. Instead you should try to focus on specific counters that are particularly useful
for detecting the problem you are troubleshooting. The following table summarizes the most
useful counters for troubleshooting processing performance:

Counter group: counter Explanation
Processing: rows read /
second

Number of rows read per second while processing dimension or
partition data. It would be unfair to specify a range of values that
indicates excellent performance, because the rate of reading
data will depend on the relational source, hardware, network
connectivity, and OLEDB / .NET provider efficiency. Generally
OLEDB providers are more efficient than .NET providers.

When processing many partitions in parallel, it's not uncommon
to see SSAS read hundreds of thousands of rows per second
on highly tuned systems. If this counter is in hundreds or low
thousands, you should check your relational database for
tuning opportunities.

Optimizing Dimension and Cube Processing

144

Counter group: counter Explanation
Processing: total rows /
read

Total number of rows read since the SSAS instance was started.
This counter isn't particularly useful for monitoring current
performance, but rather for gauging the level of processing activity
since the last restart.

Processing: rows
converted / second

Number of rows converted from relational source into a
multidimensional format.

Processing: total rows
converted

Total number of rows converted from relational source into a
multidimensional format.

Processing: rows
written / sec

Number of rows written to the disk in a multidimensional format.
Again, it is unfair to stipulate the number that constitutes excellent
performance, but if this number is much lower than number of
rows read per second you need to check the logical / physical
disk counters.

Processing: total
rows written

Total number of rows written to the disk as part of processing since
the instance was last started.

Threads: Processing Pool
Job Queue Length

A nonzero value indicates that some processing threads had to be
queued up; this is because not enough worker threads were made
available for all active processing requests. Keep in mind that
processing threads are used for processing as well as querying.
Check CPU utilization on the server. If CPU is already busy (>=80
percent), additional worker threads will not help. If the CPU usage
is below 80 percent, you could increase the number of available
processing threads to improve the processing performance.

Proc Indexes: Current
Partitions

Number of partitions for which SSAS is currently building indexes.

Proc Indexes:
Total Partitions

Total number of partitions for which SSAS has built indexes since
the instance was last started.

Proc Indexes: rows / sec Number of rows already converted into a multidimensional format,
which SSAS reads to build indexes. If this number is low, your SSAS
could be short on memory resource.

Proc Indexes: total rows Total number of rows SSAS has read to build indexes since the
instance was last restarted.

Proc Aggregations:
Current Partitions

Number of partitions for which SSAS is currently
building aggregations.

Proc Aggregations:
Total Partitions

Total number of partitions for which SSAS has built aggregations
since the instance was last restarted.

Proc Aggregations: Temp
file rows written / sec

If SSAS does not have sufficient space to create the aggregations
in memory, some of the rows will be written to temporary files on
the disk. A nonzero value for this counter indicates that SSAS could
use additional memory.

Chapter 5

145

Counter group: counter Explanation
Proc Aggregations: Temp
file bytes written / sec

Number of temporary file bytes written on disk per second. Much like
the previous counter, a nonzero value indicates memory shortage.

Processor: % processor
time

CPU utilization on the host. This counter isn't specific to SSAS,
but rather indicates the total CPU usage. If the counter is at or
above 80 percent, you may have a CPU bottleneck. Try to isolate
SSAS to its own host if possible.

Physical Disk: Current
Disk Queue Length

AND / OR
Logical Disk: Current Disk
Queue Length

A nonzero value of this counter indicates that you could have a
disk bottleneck; some disk requests cannot be served right away
and have to wait in a queue. If you have a single local disk on your
server, the logical and physical disk are the same. Many production
implementations use high performance Storage Area Network
(SAN) or Solid State Disk (SSD) data volumes. You could be using
SAN with RAID features, when a single volume consists of multiple
striped or mirrored disks. In this case, it might be beneficial to
monitor each physical disk to determine which one is busy causing
SSAS requests to queue up.

Memory: Memory
Usage KB

The total amount of memory in KB used by SSAS instance. You will
learn more about SSAS memory management in Chapter 8,
Administering and Monitoring Analysis Services. On older operating
systems it might be beneficial to reserve some memory at SSAS
instance start-up.

How to do it...
To collect PerfMon counters, perform the following steps:

1. Launch PerfMon prior to kicking off the processing jobs, expand the Data
Collector Sets folder, and choose User Defined.

2. In the right-hand pane, navigate to New | Data Collector Set.

3. Name the collector set SSAS Processing, and choose the Create Manually
(Advanced) option.

4. On the next screen, choose Create Data Logs and check the Performance
Counter checkbox.

5. The screen that follows lets you click on the Add button and then pick the counters
of interest. If you check the Show description box, PerfMon will also display a brief
description of the highlighted counter.

6. Be sure to define the sample interval. Depending on how busy your server is and how
long SSAS processing takes, you could choose to collect counters every five seconds
or every minute.

Optimizing Dimension and Cube Processing

146

7. The next screen allows you to specify the directory where the log will be stored.
By default, Perfmon creates the Perflogs directory on the system root drive
and stores files in that folder. Feel free to override as desired.

8. The final screen allows you to specify the Windows account used to run the data
collection. The user must have administrative permissions to the host.

9. Select your Data Collection Set and click on the Start button to kick it off. Once your
processing is done, stop your collection set and review the results.

You can launch SQL Server Profiler by navigating to Start | Microsoft SQL Server 2012
| Performance Tools | SQL Server Profiler. Although you can collect a large number of
SQL Server Profiler events and columns, you should exercise care to keep the trace to a
reasonable size, while containing the necessary troubleshooting data. Bear in mind that
SQL Server Profiler does add some overheads to Analysis Server; the more events you
collect the larger the overhead.

The following is the list of events I find particularly helpful for troubleshooting
processing performance:

Event class and event Description
Command events: Command Begin and
Command End

Record the start and completion of
processing (and any other) commands.
Pay attention to other commands taking
place on the same instance too, as these
could conflict with your processing.
For example, a job creating new partitions
or deleting historical partitions could
block your processing because both
operations update metadata.

Errors and warnings: Error Useful for detecting and resolving any
errors encountered during processing.
For example, missing attribute keys
will fail partition processing unless you
explicitly specify the option to ignore
missing key errors.

Locks: Deadlock, Lock Acquired,
Lock Released, Lock Timeout,
Lock Waiting

Analysis Services' processing job can be
blocked if there is a conflicting processing
command. Additionally, long running
queries may prevent SSAS from updating
metadata. You could also experience
delays if the processing job runs while the
database is being synchronized.

Chapter 5

147

Event class and event Description
Progress reports: Progress Report
Begin, Progress Report End,
Progress Report Current, and
Progress Report Error

Progress reports are particularly useful
for monitoring processing in-flight.
For example, Progress Report
Current shows the number of rows
read for a partition or dimension
being processed, whereas Progress
Report Error displays the error
encountered during a specific object's
processing. These events also show the
SQL statements executed against the
relational database.

Notification events: Notification This event is helpful in detecting when
SSAS has completed the creation of new
files for the object, and enters the commit
phase. During the commit phase, SSAS
acquires necessary locks to delete the
existing object and replace it with the new
set of files. Depending on other activities
taking place on the server, the commit
phase could be lengthy.

1. Open SQL Server Profiler, navigate to File | New Trace, and connect to the desired
Analysis Services instance.

2. To choose the desired events, switch to the Events Selection tab and ensure Show
all events and Show all columns boxes are checked. SQL Server Profiler displays a
short description of each event and event category.

3. Click on Run when you're happy with your selections to collect the trace.

4. Navigate to File | Stop Trace when you have collected the desired diagnostics.

5. Navigate to File | Save As to save the trace output as a SQL Server table or trace file,
if you wish to refer to trace contents later.

There are a couple of SSAS trace templates included with the SQL
Server Profiler installation: Standard (default) and Replay. The default
template is fine for most troubleshooting. If you find yourself re-using
the same set of counters repeatedly, you can also create your own
template. To create a new template navigate to File | New Template,
and then choose the desired events and columns.

Optimizing Dimension and Cube Processing

148

So you collected the troubleshooting artifacts, including the SQL Server Profiler and PerfMon
output. Now what? Since processing performance depends on a number of factors, there are
no hard and fast rules for tuning. However, I can provide the list of items that commonly cause
poor performance and can be remediated as follows:

 f Ensure you have appropriate indexes in the relational database. If you encounter slow
performance during the partition processing, be sure to check the query executed by
Analysis Services against the relational source. Cut the SQL query captured by SQL
Server Profiler and paste it into SSMS (presuming that your relational source is SQL
Server). Examine the query execution plan and ensure necessary indexes exist.

 f Ensure Analysis Services has plenty of memory available to it. If you have multiple
SSAS instances running on the same host, or if the host is shared with the SQL
Server relational database engine you can use the preallocate configuration option
to reserve some memory when the instance starts. Be sure to review SSAS memory
configuration properties found in msmdsrv.ini as well. Reference Chapter 8,
Administering and Monitoring Analysis Services, for additional information about
configuration options.

 f If you see any temporary files created during the aggregation processing, your server
does not have sufficient memory. Consider adding memory or separating querying
and processing activity onto dedicated SSAS instances. Temporary files can be found
under the <TempDir> folder, as specified in the msmdsrv.ini configuration file.

 f Experiment with various degrees of parallelism to see which one works best in your
environment. If you have dozens (or even hundreds) of partitions processing, all of
them in parallel might not work well, because the relational source might not be able
to handle this volume of queries in parallel.

 f Watch out for conflicting jobs, for example, processing and synchronization stepping
on each other.

 f Remember that you have multiple options for dimension processing. Consider using
ProcessAdd in lieu of ProcessUpdate if your dimension tables only have new
rows added (no updates or deletes). ProcessUpdate needs to check each partition
to ensure that none of the indexes have been invalidated. It is not uncommon to
see ProcessUpdate read dimension data very quickly, but then spend more time
refreshing indexes.

 f If processing a particular dimension uses an excessive amount of memory and
heavily taxes the relational source, consider switching to the ByTable processing
group option instead of the default value of ByAttribute.

 f Use out-of-line bindings if you have gigantic dimensions with millions of members.

 f If your host does not have much memory it could be helpful to separate the
processing partition data from index processing.

Chapter 5

149

 f If reading data from the relational source is quick but writing takes a long time,
be sure to check the disk counters. Remember that each SSAS database could
consist of a huge number of files. Suboptimal disk subsystem could hurt both
processing and querying performance.

 f If you have a large database which includes rarely-queried historical partitions,
consider using ROLAP storage mode for such partitions, while using MOLAP for
frequently-queried partitions.

 f In rare scenarios, it might be beneficial to experiment with HOLAP. Remember that
HOLAP leaves data in the relational format, but builds aggregations on the Analysis
Services host. If the relational data source does not support indexed views (that is
how ROLAP aggregations are implemented), the only choice is to build aggregations
in a multidimensional format. Keep in mind, however, that the Analysis Services
engine must scan fact tables (or views) to build aggregations. Reading millions
of data rows will be time-consuming, even for building aggregations, hence your
processing will be slow. You can't simply run ProcessIndexes on partitions after
running ProcessUpdate on dimensions while using ROLAP; you must fully reprocess
partitions, which in this case will mean scanning fact tables specifically to build
the aggregations.

 f If you're processing multiple objects in parallel and see a smaller number of SQL
statements sent to the relational source than you expect, based on degree of
parallelism, experiment with BufferMemoryLimit and BufferRecordLimit options.
SSAS could overestimate the amount of memory needed for processing each object
and, therefore, throttle the number of objects processed. Lowering the value of the
mentioned settings can help improve the processing performance by working on
more objects in parallel. Also, examine the Maximum Number of Connections data
source property. Ensure you allow enough connections to your relational data source,
but not too many. For example, if you're processing 64 partitions in parallel, but you
only allow 10 connections to the data source, you will see that only up to 10 queries
will run in parallel and the rest of them will queue up. If your relational database
can indeed handle 64 parallel queries, bump up the Data Source property to,
maximum of 64 connections.

6
MDX

In this chapter, we will cover:

 f Returning data on the query axes

 f Limiting the query output

 f Sorting the query output

 f Defining query-level calculations and named sets

 f Navigating dimension hierarchies

 f Working with the Time dimension

 f MDX script's functionality

 f Monitoring and tuning MDX queries

Introduction
This chapter explains how to write the most commonly encountered MultiDimensional
eXpression (MDX) queries. You use MDX to model calculations in the MDX script within
the cube designer as well as to query the cubes. Although most MDX concepts, functions,
and keywords will apply to queries as well as the MDX script, the framework for developing
MDX will be distinctly different in each environment.

The basic MDX query construct resembles Structured Query Language (SQL) in a sense that
both languages include the SELECT, FROM, and WHERE clauses. However, beyond these clauses,
the two languages are very different. SQL operates on rows and columns, whereas MDX works
on cube cells, tuples, and sets—concepts you must learn to get your mind around the syntax of
MDX. Any errors that you encounter when authoring MDX will also refer to the same terms.

MDX

152

Each cube consists of a multitude of cells, with each cell identifying a single member found
in each dimension. Although each cube could contain many dimensions, let's consider a cube
with only three dimensions:

 f Time: This dimension contains only one attribute: Year

 f Product: This dimension contains two attributes: Product Name and Product Color

 f Country of sale: This dimension contains only one attribute: Country

Let's also suppose that we only have one measure called Sales Amount. The cube consisting
of these dimensions will have one cell for each combination of Year, Name, Color, and Country.
To further simplify the example, we presume that the cube only contains sales figures for two
products, a green sweater and a pair of blue jeans, in the United States and England for the
years 2011 and 2012. The following table should help us visualize the cube space:

Year Product Name Product Color Country Sales Amount

2011 Sweater Green USA 200000.00

2011 Sweater Green England NULL

2011 Jeans Blue USA 957000.00

2011 Jeans Blue England 150000.00

2012 Sweater Green USA 250000.00

2012 Sweater Green England 350245.00

2012 Jeans Blue USA 304892.00

2012 Jeans Blue England 384204.00

2011 Sweater Blue USA NULL

2011 Sweater Blue England NULL

2012 Sweater Blue USA NULL

2012 Sweater Blue England NULL

2011 Jeans Green USA NULL

2011 Jeans Green England NULL

2012 Jeans Green USA NULL

2012 Jeans Green England NULL

Notice that the cube space includes many empty cells. For example, the sales amount for
green jeans and blue sweaters in both 2011 and 2012 is NULL (or empty) because we did
not sell any such products. Also note the large number of cells in an extremely simplistic
cube. As we add dimensions, attributes, and measures, the cube space grows exponentially.

Chapter 6

153

To refer to an attribute within MDX, you should specify the dimension, hierarchy, and member
names. For example, [time].[year].[2011] is an attribute and so is [product].
[product name].[sweater]. The square brackets around each word are only necessary
if the word only consists of digits, if it is an MDX keyword, or if it contains a space.

You could also identify each dimension member by its key, for example,
the following notation identifies a calendar year by its key: [Date].
[Calendar Year].&[2008]. Note that the ampersand (&) sign is followed
by the key value of 2008. As you learned in Chapter 2, Defining Analysis
Services Dimensions, the attribute key doesn't have to be a numeric value.
For example, the following notation identifies the calendar semester of a year by
its key CY H1: [date].[Calendar Semester of Year].&[CY H1].

A tuple identifies a single cell or multiple cells using a combination of dimensions. Each tuple
must be enclosed in parenthesis. For example, ([time] .[year].[2011],[product].
[product color].[green]) is a tuple defining the cube space consisting of all the green
products and the year 2011. Note that this tuple could contain empty cells, meaning the
green products that had no sales in 2011 as well. A tuple does not have to include a reference
to each attribute from every dimension. In fact, a tuple could only refer to one attribute:
([country].[country].[England]), which is a valid tuple.

A set consists of zero or more tuples. Each set should be enclosed in curly braces. For example:

{
([time].[year].[2011], [product].[product name].[sweater]),
([time].[year].[2012], [product].[product name].[jeans])
}

The preceding example is a set consisting of two tuples. Note that the tuples you use to
construct a set must refer to the same dimensions. We cannot construct a set by combining a
tuple referencing only the Country dimension with another tuple referencing time and product
dimensions. The majority of MDX functions operate on sets and returns sets.

All of the examples in this chapter will use the sample Adventure Works 2012 database.
To save space we will not list the query results unless necessary. I will refer to the most
commonly used MDX functions, but since this is not a book on MDX, I won't discuss the full
syntax of each function. You can refer to the SSAS online documentation for the full syntax of
each function.

MDX

154

Returning data on the query axes
Each MDX query refers to one or more axes on which data should be returned. You can refer
to an axis by its name (columns, rows, pages, and so on) or by its ordinal number, starting at
zero. You cannot skip an axis, so each query must include columns (ordinal 0), but could also
include rows (ordinal 1), pages (ordinal 2), and so on. The majority of frontend tools can only
work with two axes, columns and rows, so don't let this scare you. The SELECT clause of the
query must include the definition of all the axes, and the FROM clause defines a single cube
(or perspective) from which you extract the data. The WHERE clause contains a slicer limiting
the data set specified in the query's SELECT clause.

Getting ready
To follow the examples in this chapter, please connect to the Analysis Services 2012
instance using the SQL Server Management Studio (SSMS), right-click on the Adventure
Works 2012 sample database, and go to New Query | MDX. This will open a new query
window. After typing the query text, you can execute queries by pressing the F5 key or by
clicking on the execute button that includes an exclamation mark (!).

How to do it...
Let's get started and look into the steps for returning data on the query axis.

1. Execute the following query to retrieve the total amount of Reseller Sales
Amount across all the dimensions:
SELECT [Measures].[Reseller Sales Amount] ON 0
FROM [Adventure Works]

Since the query only refers to the Measures dimension, Analysis Services will return
data for the default member of each dimension hierarchy. Unless you explicitly define
the default member for each attribute while designing a dimension, the default
member is ALL.

2. Next, modify the query slightly to include the breakdown of reseller sales by a
calendar year:
SELECT [Measures].[Reseller Sales Amount] ON 0,
[Date].[Calendar].[Calendar Year].members ON 1
FROM [Adventure Works]

Chapter 6

155

Notice that I have used the members function to retrieve a set consisting of
every member of the [Calendar Year] hierarchy within the date dimension.
The members function does not include any calculated members; you will learn
more about calculated members later in this chapter. To include calculated
members in the output, use the allmembers function instead of members.

3. MDX also allows returning sets of multiple hierarchies on each axis using the
CROSSJOIN function. CROSSJOIN accepts two sets as parameters and returns
their cross product. For example, the following query will return a cross product
of each promotion category with each calendar year on rows and the reseller
sales amount measure on columns:
SELECT {[Measures].[Reseller Sales Amount]} ON 0,
CROSSJOIN ({[Promotion].[Promotions].[Category].members},
{[Date].[Calendar].[Calendar Year].members}) ON 1
FROM [Adventure Works]

You could nest multiple CROSSJOIN functions to create a more complex set consisting
of multiple dimensions. You could also include cross-joined sets of multiple dimensions
on columns. When using a CROSSJOIN in MDX, it is important to group all hierarchies
from the same dimension together instead of spreading them apart. This will allow the
engine to select a more efficient algorithm for the join and should result in improved
performance and reduced memory consumption.

4. An alternate syntax for writing CROSSJOIN is a single multiplication (*) character
between each combination of sets. For example, you could rewrite the last query
as follows:

SELECT [Measures].[Reseller Sales Amount] ON 0,
[Promotion].[Promotions].[Category].members *
[Date].[Calendar].[Calendar Year].members ON 1
FROM [Adventure Works]

Though it is often considered to be the culmination of MDX's power,
CROSSJOIN of large sets is a rather expensive operation. You can expect
query performance to progressively worsen as you add multiple nested
CROSSJOIN functions. Although the result set could be very useful for
reporting purposes, the performance of such queries rarely lives up
to the definition of Online Analytical Processing (OLAP) that expects
queries to be completed within a few seconds.

MDX

156

Limiting the query output
MDX supports multiple ways of limiting query results. You could use the WHERE clause,
often referred to as slicer, since it limits the result set by specifying a data slice. You could
also use the FILTER function to specify the criteria for members included on each axis
and thereby derive a more focused result set.

While reviewing the results of queries, as shown in the previous section, you probably noticed
that the result sets included some empty cells. As you might imagine, large cubes could
include many empty cells, and such data may or may not be desirable in the query's output.
You have a couple of options for limiting the output to only non-null (non-empty) values.

How to do it...
Let's get started with limiting the query output.

1. Execute the following queries to limit the output to only the components product
category. As mentioned earlier, we can refer to a hierarchy member by its name or
by its key, so either of the following statements will return the same output:
--Reference "components" category by member name:
SELECT [Measures].[Reseller Sales Amount] ON 0,
[Date].[Calendar].[Calendar Year].members ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[components]

--Reference "components" category by member key:
SELECT [Measures].[Reseller Sales Amount] ON 0,
[Date].[Calendar].[Calendar Year].members ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].&[2]

2. To reduce the result set based on a specific condition, you can employ the
FILTER function that accepts a set and a condition as parameters. For example,
the following query returns only those members of the city hierarchy where sales
have exceeded $200,000:
SELECT FILTER([Geography].[City].members, [Measures].[Reseller
Sales Amount] > 200000) ON 0,
[Measures].[Reseller Sales Amount] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

Chapter 6

157

3. Previous query's result set includes the All Geographies member, which you
might not want to list along with individual cities. Fortunately, we could use an
additional filter criteria exploiting the CurrentMember function to eliminate the
All Geographies member as follows:
SELECT FILTER([Geography].[City].members, [Measures].[Reseller
Sales Amount] > 200000
AND [Geography].[City].CurrentMember.Name<> 'All Geographies') ON
0,
[Measures].[Reseller Sales Amount] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

The CurrentMember function must follow a hierarchy
and is essential for navigating SSAS hierarchies.

4. Use the NON EMPTY keywords or the NONEMPTY function to remove empty cells from
the results, as the following two queries demonstrate:
SELECT [Measures].[Reseller Sales Amount] ON 0,
NONEMPTY ([Date].[Calendar].[Calendar Year].members) ON 1
FROM [Adventure Works]

SELECT [Measures].[Reseller Sales Amount] ON 0,
NON EMPTY [Date].[Calendar].[Calendar Year].members ON 1
FROM [Adventure Works]

I recommend using the NONEMPTY function because it
outperforms the NON EMPTY keywords. The NONEMPTY
function can take either one or two sets as the input, and you
can nest multiple occurrences of this function if necessary.

5. As mentioned earlier you could nest the CROSSJOIN functions to generate a more
complex set. You can still use the NONEMPTY function to remove unnecessary content
from the result set. The only difference is that in this case, you'll be removing empty
tuples rather than empty cells, as shown by the next query:
SELECT NONEMPTY(CROSSJOIN(CROSSJOIN([Promotion].[Promotions].
[Category].members,
[Reseller].[Reseller].[all resellers].children), product.[product
categories].category.members)) ON 1,
measures.[reseller sales amount] ON 0
FROM [Adventure Works]
WHERE [Date].[Calendar].[Month].&[2008]&[5]

MDX

158

MDX is not case sensitive. There is no performance
advantage for using one format over another, but I
generally prefer to type all the functions in uppercase.

6. As you learned, using the NONEMPTY function generally yields results faster than
the NON EMPTY keywords. Yet another alternative for removing empty tuples is the
NONEMPTYCROSSJOIN function. This function has limitations when working with
calculated members and is deprecated. However, you might see references to it in
the legacy code. Consider the following query:

SELECT NONEMPTYCROSSJOIN([Promotion].[Promotions].[Category].
members,
[Reseller].[Reseller].[all resellers].children, product.[product
categories].category.members,
measures.[reseller sales amount], 3) ON 1,
measures.[reseller sales amount] ON 0
FROM [Adventure Works]
WHERE [Date].[Calendar].[Month].&[2008]&[5]

This query uses NONEMPTYCROSSJOIN to work on three sets: promotions, resellers,
and products. Note that this function does not require nesting when working with
more than two sets. Furthermore, the function accepts the reseller sales amount
measure to determine which tuples will be empty and therefore discarded from the
result set. The last parameter (in this case 3) advises NONEMPTYCROSSJOIN how
many sets are needed to be cross joined on the axis.

Sorting the query output
To make the output easier to decipher, you could use the ORDER function to sort the returned
dimension members based on some criteria. In addition, many reports require limiting
the results only to the best- or worst-performing hierarchy members. You can exploit the
TOPCOUNT and BOTTOMCOUNT functions to meet such requirements.

How to do it...
Let's get started with sorting the query output.

1. The ORDER function accepts a set as the parameter and allows sorting in an ascending
or descending manner, depending on the sorting expression. For example, the following
query returns those cities in which the reseller sales amount for components exceeded
$200000, ordering results based on the reseller sales amount:
SELECT ORDER (
 FILTER([Geography].[City].members, [Measures].[Reseller Sales
Amount] > 200000

Chapter 6

159

 AND [Geography].[City].CurrentMember.Name<> 'All Geographies'),
 [Measures].[Reseller Sales Amount], DESC)ON 0,
[Measures].[Reseller Sales Amount] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

2. Another frequent requirement is to sort the output based on the city's name,
rather than the amount of sales. The following query sorts cities based on their
name in the ascending order, once again exploiting the CurrentMember function:
SELECT ORDER(
 FILTER([Geography].[City].members, [Measures].[Reseller Sales
Amount] > 200000
 AND [Geography].[City].CurrentMember.Name<> 'All Geographies'),
 [Geography].[City].CurrentMember.Name, ASC)
ON 0,
[Measures].[Reseller Sales Amount] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

3. To find the top three cities in terms of their reseller sales amount, we could use the
TOPCOUNT function. This function accepts a set as the first parameter, the number
of members to return as the second parameter, and the criteria for finding the top
members as the final parameter, as follows:
SELECT [measures].[reseller sales amount] ON 0,
TOPCOUNT([Geography].[City].[All Geographies].children, 3,
measures.[reseller sales amount]) ON 1
FROM [Adventure Works]

Note the usage of the Children function to obtain members at the leaf level of the
[Geography].[City] attribute.

4. The BOTTOMCOUNT function does the opposite of TOPCOUNT; it finds the cities at the
other end of the spectrum where reseller sales are minimal. In some cases we must
further restrict the result set to find the bottom N members of the hierarchy that still
have some activity. The following query finds the cities with the least reseller sales,
that still have some sales which are greater than 0:

SELECT BOTTOMCOUNT(
FILTER (
 [Geography].[City].[All Geographies].children, [measures].
[reseller sales amount]>0),
 3, measures.[reseller sales amount])
ON 0,
[Measures].[Reseller Sales Amount] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

MDX

160

Defining query level calculations and
named sets

In addition to listing the existing dimension hierarchy members, MDX queries often include
calculations. If your application repeatedly references the same calculation, you should
define such calculations in the MDX script. However, ad hoc queries will often necessitate
calculations that are not defined within the cube. Query-level calculations are defined using
the WITH MEMBER clause. Calculations included within the Measures dimension are often
called calculated measures, whereas within other dimensions they're referred to as calculated
members. A named set allows grouping of one or more dimension members to perform
additional calculations specific to the group or to more elegantly reference the collection.
Use the WITH SET keywords to define the named set. Each query must specify the WITH
keyword only once; if a query defines a calculated measure using the WITH MEMBER
construct, you don't need to repeat WITH for the named set. In this case your query will
have a notation similar to the following:

 WITH MEMBER measures.my_calculated_measure AS "calculation
definition"
 SET my_named_set AS "set definition"

This section will also teach you how to use named sets for two common requirements:
defining a date range and aggregating data for several dimension members.

How to do it...
Let's get started with defining query level calculations and named sets.

1. To define a calculated measure for deriving the average unit price, let's use the
[reseller unit price] and [reseller transaction count] measures.
The average unit price will be the unit price divided by the transaction count. We will
also include the FORMAT_STRING="Currency" option to limit the number of digits
to the right of the decimal points:
WITH MEMBER [measures].[average unit price] AS

[measures].[reseller unit price] / measures.[reseller transaction
count], FORMAT_STRING="Currency"

2. At first glance this calculation looks good, but it includes a division operation,
which will result in an error if the transaction count is 0. We will wrap the calculation
in the IIF function and display N/A for "Not Available" in case the transaction count
is indeed zero.
WITH MEMBER [measures].[average unit price] AS IIF (measures.
[reseller transaction count]=0, "N/A",

Chapter 6

161

[measures].[reseller unit price] / measures.[reseller transaction
count]), FORMAT_STRING="Currency"

3. Lastly, you can specify a performance hint using the NON_EMPTY_BEHAVIOR
property, which advises Analysis Services to consider the calculated measure empty
if the underlying measure is empty. As discussed earlier, large cubes can have many
empty cells. Traversing the huge cube space and applying the division to each cell
individually can be slow; the NON_EMPTY_BEHAVIOR property helps SSAS eliminate
empty cells from consideration. The final calculation along with the full query will look
like this:
WITH MEMBER [measures].[average unit price] AS IIF (measures.
[reseller transaction count]=0, "N/A",
[measures].[reseller unit price] / measures.[reseller transaction
count]), FORMAT_STRING="Currency", NON_EMPTY_BEHAVIOR=measures.
[reseller unit price]

SELECT [Geography].[Country].[All Geographies].Children ON 0,
[Measures].[average unit price] ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

For better performance it is recommended to use FORMAT_STRING
to specify a value to return if a specific condition is met. For example,
the previous query could be rewritten to return NULL if the reseller
transaction count is zero. Next we would use FORMAT_STRING to
cleverly substitute N/A for NULL values as follows:

WITHMEMBER [measures].[average unit price] AS

IIF (measures.[reseller transaction count]=0, NULL,

[measures].[reseller unit price] / measures.[reseller
transaction count]),

FORMAT_STRING="$#,##0;;;\N\/\A"

SELECT [Geography].[Country].[All Geographies].
ChildrenON 0,

[Measures].[average unit price] ON 1

FROM [Adventure Works]

WHERE [Product].[Product Categories].[Category].
[Components]

For more information on this topic please refer to http://technet.
microsoft.com/en-us/library/ms146084.aspx.

MDX

162

4. Now suppose that you'd like to limit the result set only to those countries in which the
reseller sales amount for the components category exceeded $300000. You could
use the FILTER function to check the reseller sales amount in each country. To verify
the output, let's include the reseller sales amount along with the average unit price
on the rows axis:
WITH MEMBER [measures].[average unit price] AS IIF (measures.
[reseller transaction count]=0, "N/A",
[measures].[reseller unit price] / measures.[reseller transaction
count]), FORMAT_STRING="Currency"
SET [Successful Reseller Countries] AS
FILTER([Geography].[Country].[All Geographies].Children,
[measures].[reseller sales amount]>300000)
SELECT [Successful Reseller Countries] ON 0,
{[Measures].[average unit price], measures.[reseller sales
amount]} ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

5. The query in the previous step shows the output for each successful (in terms
of reseller sales) country. Let's take it one step further to show the total number
of reseller sales as well as the average unit price for all the successful countries
combined. Use the AGGREGATE function to derive measure values for the
Successful Reseller Countries named set as follows:
WITH MEMBER [measures].[average unit price] AS IIF (measures.
[reseller transaction count]=0, "N/A",
[measures].[reseller unit price] / measures.[reseller transaction
count]), FORMAT_STRING="Currency"
SET [Successful Reseller Countries] AS
FILTER([Geography].[Country].[All Geographies].Children,
[measures].[reseller sales amount]>300000)
MEMBER [Geography].[Country].[All Successful Countries] AS
AGGREGATE([successful Reseller Countries])
SELECT {[Successful Reseller Countries], [Geography].[Country].
[All Successful Countries]} ON 0,
{[Measures].[average unit price], measures.[reseller sales
amount]} ON 1
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

Chapter 6

163

Note that the AGGREGATE function uses the aggregation
method applicable to each measure. In the previous example,
AGGREGATE returns the average of all the unit prices and
sum of all the reseller sales amounts.

6. The final requirement of this section is to display the average unit price and total
reseller sales amount for successful countries during each month between January
2007 and June 2008. You can define a range of hierarchy members by using a colon
(:) operator. The following query cross joins the requested date range (defined in the
my_range named set) and successful countries on rows:

WITH MEMBER [measures].[average unit price] AS IIF (measures.
[reseller transaction count]=0, "N/A",
[measures].[reseller unit price] / measures.[reseller transaction
count]), FORMAT_STRING="Currency"
SET [Successful Reseller Countries] AS
FILTER([Geography].[Country].[All Geographies].Children,
[measures].[reseller sales amount]>300000)
MEMBER [Geography].[Country].[All Successful Countries] AS
AGGREGATE([successful Reseller Countries])
SET my_range AS {[date].[calendar].[month].&[2007]&[1]: [date].
[calendar].[month].&[2008]&[6]}
SELECT CROSSJOIN (my_range, {[Successful Reseller Countries],
[Geography].[Country].[All Successful Countries]}) ON 1,
{[Measures].[average unit price], measures.[reseller sales
amount]} ON 0
FROM [Adventure Works]
WHERE [Product].[Product Categories].[Category].[Components]

Navigating dimension hierarchies
Earlier in this chapter you learned how to use the CurrentMember function to retrieve the
name of the current hierarchy member. MDX allows browsing hierarchies easily using similar
functions, PrevMember and NextMember, which are extremely useful for trend analysis.
Additionally, you can obtain hierarchy members using relative functions, such as children,
ancestors, descendants, and parent, to build sets based on the members of interest.
This section will list examples where these functions are particularly beneficial.

MDX

164

How to do it...
Let's get started with navigating dimension hierarchies.

1. To implement the [Year-over-Year Growth in Reseller Sales Amount]
calculated measure, open the sample Adventure Works 2012 database in SQL
Server Data Tools (SSDT), navigate to Adventure Works cube's Calculations tab,
and enter the expression that will follow. Note that we have two nested IIF functions.
The first IIF function uses an ordinal function to determine whether we are at the
[Calendar Year] level of the [Date].[Calendar] hierarchy and applies the
calculation only at that level. The second IIF function uses the PrevMember function
to ensure the previous calendar year member exists and has a non-zero value for the
Reseller Sales Amount measure:
CREATE MEMBER CURRENTCUBE.[Measures].[Year-To-Year Reseller Sales
Growth]
 AS IIF([Date].[Calendar].CurrentMember.Level.Ordinal = 1,
IIF (
([Date].[Calendar].CurrentMember.PrevMember, measures.[Reseller
Sales Amount])=0
OR ISEMPTY([Date].[Calendar].CurrentMember.PrevMember),
 "N/A",
(([Date].[Calendar].CurrentMember, measures.[Reseller Sales
Amount]) -
([Date].[Calendar].CurrentMember.PrevMember, measures.[Reseller
Sales Amount]))/
([Date].[Calendar].CurrentMember.PrevMember, measures.[Reseller
Sales Amount])
) , "N/A"
),
FORMAT_STRING = "Percent",
NON_EMPTY_BEHAVIOR = { [Reseller Sales Amount] },
VISIBLE = 1 , ASSOCIATED_MEASURE_GROUP = 'Reseller Sales' ;

2. Save the database solution; Analysis Services objects won't have to be reprocessed,
but the MDX script will be executed to apply the calculation you just added.

3. Open Excel and create a PivotTable based on the Adventure Works 2012 database.
Include the Reseller Sales Amount and Year-To-Year Reseller Sales
Growth measures on columns and the [Date].[Calendar] hierarchy on rows.
As shown in the following output, SSAS applied the calculation to determine that
reseller sales grew by 121.50 percent in 2007 and shrank by 49.93 percent in
2008, compared to prior years respectively. For all other years, Excel displayed N/A
because year-over-year calculation of growth was not applicable. You could use the
NextMember function in a similar way to compare the current values with those of
the next calendar year:

Chapter 6

165

CY 2005 N/A
CY 2006 $3,713,626.10 N/A
CY 2007 $8,225,508.77 121.50%
CY 2008 $4,118,716.85 -49.93%
CY 2009 -100.00%
CY 2010 N/A
Grand Total $16,057,851.72 N/A

To apply the same calculation across all the levels within
the [Date].[Calendar] hierarchy, simply remove the
outer IIF statement.

4. The next query finds the products that account for at least 10 percent of the total
reseller sales amount for the respective category within May of 2008. To do so we
first find the product's category using the ANCESTOR function and find the total
reseller sales amount for that category. The ANCESTOR function accepts a dimension
member as the first parameter and the level at which we need to find the ancestor.
Next we compare the reseller sales amount for the current product with the total
amount for the category, multiplied by 0.1:
WITH MEMBER measures.[sum for category] AS
SUM(ANCESTOR(product.[product categories].currentmember, product.
[product categories].[category])
, measures.[reseller sales amount])
MEMBER measures.[category] AS
ANCESTOR(product.[product categories].currentmember, product.
[product categories].[category]).name
SELECT {measures.category, measures.[reseller sales amount],
measures.[sum for category]} ON 0,
FILTER([Product].[Product Categories].product.members,
measures.[reseller sales amount]>= (measures.[sum for category] *
0.1)) ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Month].&[2008]&[5]

Products Category
Reseller Sales
Amount

Sum for
Category

Hitch Rack - 4-Bike Accessories $6,400.32 $12,272.04
Sport-100 Helmet, Blue Accessories $1,343.59 $12,272.04
Hydration Pack - 70 oz. Accessories $1,861.54 $12,272.04
Short-Sleeve Classic Jersey,
XL Clothing $3,055.57 $23,549.22

MDX

166

Products Category
Reseller Sales
Amount

Sum for
Category

Women's Mountain Shorts, L Clothing $3,121.39 $23,549.22
Women's Mountain Shorts, S Clothing $3,262.23 $23,549.22
Classic Vest, S Clothing $3,703.37 $23,549.22

5. The next query finds the top-selling product for each category. To do so it uses the
DESCENDANTS function to generate a set of all the products within the category first,
then uses the TOPCOUNT function to identify the product with the higher reseller
sales amount. Recall that TOPCOUNT returns a set—in this case a set of only one cell.
You must use the ITEM function twice; first we use ITEM(0) to extract the first tuple
from the set and then we use ITEM(0) to extract a single cell / dimension member.
The last calculated member within this query obtains the reseller sales amount for
the top-selling product:

WITH MEMBER measures.[top selling product for category] AS
TOPCOUNT(
DESCENDANTS([Product].[Product Categories].CurrentMember, 3),
1, measures.[reseller sales amount]).item(0).item(0).name
MEMBER measures.[product's reseller sales amount] AS
SUM(TOPCOUNT(
DESCENDANTS([Product].[Product Categories].CurrentMember, 3),
1, measures.[reseller sales amount]), measures.[reseller sales
amount])
SELECT [Product].[Product Categories].category.members ON 0,
{measures.[reseller sales amount], measures.[top selling product
for category],
measures.[product's reseller sales amount]
} ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Month].&[2008]&[5]

The result is as follows:

Accessories Bikes Clothing Components
Reseller Sales
Amount $12,272.04 $837,984.79 $23,549.22 $156,572.02
top selling product
for category

Hitch Rack -
4-Bike

Mountain-200
Black, 38 Classic Vest, S

HL Touring
Frame - Yellow, 54

product's reseller
sales amount $6,400.32 $57,741.95 $3,703.37 $13,853.96

Chapter 6

167

Working with the Time dimensions
In the previous section you learned how to navigate dimension hierarchies. Date- and
time-related dimensions are somewhat special because they are a part of nearly all business
intelligence implementations, and much of the analysis focuses on examining the trends
over time. MDX offers a number of functions for working specifically with date dimensions.
In this section I will provide a couple of examples of the most frequently exploited time
intelligence functions.

How to do it...
A very common reporting requirement is to display the running total of values for each
timespan. Yet another frequent requirement is to compare the current values with that of
an equivalent value during the previous week, month, quarter, or year. The following recipe
shows the steps to display quarter-to-date and year-to-date running totals, in addition to
reporting internet sales' values for each month. You will also learn how to compare the
current measure's values with the corresponding values from a previous timespan:

1. Use the PeriodsToDate function to get a year-to-date value. This function accepts
the attribute (or level) at which you wish to aggregate the measure as well as the
member to which the values should be aggregated. The calculation will once again
refer to the CurrentMember function to advise SSAS to aggregate year-to-date
values to the current member of the calendar hierarchy:
WITH MEMBER [Measures].[YTD] AS SUM(PERIODSTODATE([Date].
[Calendar].[Calendar Year], [Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

2. PeriodsToDate can work at any level of the time dimension. MDX also provides
special cases of PeriodsToDate that work on specific levels: MTD function is for
month-to-date, QTD for quarter-to-date, and YTD for year-to-date. Let's use QTD to
also report the subtotals for each calendar quarter. Since QTD only works at the
quarter level, you do not have to explicitly specify the attribute on which data needs
to be summed:
MEMBER [Measures].[QTD] AS SUM(QTD([Date].[Calendar].
CurrentMember), [Measures].[Internet Sales Amount])

3. Next you specify the measures you wish to retrieve on columns and the month level
of the calendar hierarchy on rows to define the whole query. Let's limit the output to
the 2007 calendar year:
WITH MEMBER [Measures].[YTD] AS SUM(PERIODSTODATE([Date].
[Calendar].[Calendar Year], [Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

MDX

168

MEMBER [Measures].[QTD] AS SUM(QTD([Date].[Calendar].
CurrentMember), [Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount], [Measures].[YTD],
measures.[QTD]} ON 0,
[Date].calendar.[Month].members ON 1
FROM [Adventure Works]
WHERE [date].[calendar year].[cy 2007]

The query output should be similar to the following table. Note how quarter-to-date
values are reset for each quarter whereas year-to-date values continue to grow
throughout the year:

 Internet Sales Amount YTD QTD

Jan-07 $438,865.17 $438,865.17 $438,865.17
Feb-07 $489,090.34 $927,955.51 $927,955.51
Mar-07 $485,574.79 $1,413,530.30 $1,413,530.30
Apr-07 $506,399.27 $1,919,929.57 $506,399.27
May-07 $562,772.56 $2,482,702.13 $1,069,171.83
Jun-07 $554,799.23 $3,037,501.36 $1,623,971.06
Jul-07 $886,668.84 $3,924,170.20 $886,668.84
Aug-07 $847,413.51 $4,771,583.71 $1,734,082.35
Sep-07 $1,010,258.13 $5,781,841.84 $2,744,340.48
Oct-07 $1,080,449.58 $6,862,291.42 $1,080,449.58
Nov-07 $1,196,981.11 $8,059,272.53 $2,277,430.69
Dec-07 $1,731,787.77 $9,791,060.30 $4,009,218.46

4. You could use the ParallelPeriod function to instruct SSAS to march a specified
number of timespans up the time hierarchy to obtain the needed value. This function
accepts the attribute (level) that Analysis Services should examine and a number
of periods to skip. The positive value of the second parameter will check for prior
periods, whereas the negative value will check for periods that follow. For example,
the following expression will get the internet sales amount for the month that is two
months ahead of the current calendar month:
(ParallelPeriod([Date].[Calendar].Month, 2, [Date].[Calendar].
CurrentMember),[Measures].[Internet Sales Amount])

5. Next use the expression defined in the previous step to subtract the sales
realized two months ago from the current sales for each month within the
2007 calendar year:

WITH MEMBER [Measures].[Compared To Two Months Ago] AS
[Measures].[Internet Sales Amount] -
(ParallelPeriod([Date].[Calendar].Month, 2, [Date].[Calendar].

Chapter 6

169

CurrentMember), [Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount], [Measures].[Compared
To Two Months Ago]} ON 0,
[Date].[Calendar].[Month].members ON 1
FROM [Adventure Works]
WHERE [date].[calendar year].[cy 2007]

The result is as follows:

Internet Sales Amount Compared to Two Months Ago

Jan-07 $438,865.17 $103,770.08
Feb-07 $489,090.34 ($88,223.66)
Mar-07 $485,574.79 $46,709.62
Apr-07 $506,399.27 $17,308.93
May-07 $562,772.56 $77,197.77
Jun-07 $554,799.23 $48,399.96
Jul-07 $886,668.84 $323,896.28
Aug-07 $847,413.51 $292,614.28
Sep-07 $1,010,258.13 $123,589.29
Oct-07 $1,080,449.58 $233,036.07
Nov-07 $1,196,981.11 $186,722.98
Dec-07 $1,731,787.77 $651,338.19

MDX script's functionality
You already saw a couple of examples for defining calculated measures in the MDX script
found on the Calculations tab within SSDT. Some MDX functionality applies only within the
MDX script and not in queries. For example, you could define the calculation scope so that it
only applies to certain hierarchy members. You can also use the ROOT function to refer to the
topmost level of the hierarchy. The ROOT function isn't specific to the MDX script, but it is most
commonly used in cube-level calculations.

The MDX script is evaluated when you first deploy the solution and anytime you change
calculations; it doesn't require processing any objects (dimensions or partitions), but it
could overwrite the existing cube values. Full discussion on how MDX scripts work is beyond
the scope of this book. The examples in this section demonstrate how MDX-script-specific
functions change the calculated values of the cube.

MDX

170

How to do it...
Let's get started with MDX script's functionality.

1. Scope assignment is used to overwrite an existing data value (or format).
The assignment always includes the SCOPE and END SCOPE keywords. In this
example, you will overwrite the existing reseller sales amount value for the
[Hitch Rack -4 – Bike] product and set it to 75 percent of the total reseller
sales amount for the accessories category. To note the difference prior to the
assignment, run the following query:
SELECT [product].[product categories].[product].[Hitch Rack –
4-Bike] ON 0, [measures].[reseller sales amount] ON 1
FROM [Adventure Works]
WHERE [Date].[Calendar].[Month].&[2008]&[5]

The result will be $6400.32.

2. Open Script View from the Calculations tab of the Adventure Works cube (hover your
mouse pointer over the ribbon on the Calculations tab; the Script View button is right
next to the Form View button that resembles a form), navigate all the way to the end of
the MDX script, and add the following calculation:
Scope
 (
 [Date].[Calendar].[Month].&[2008]&[5],
 [product].[product categories].[product].[Hitch Rack -
4-Bike],
 [Measures].[reseller sales amount]
);

 This =
 (
 [Date].[calendar].&[2008]&[5],
 [product].[product categories].[accessories]
) * 0.75;

3. Save the database. If you are making changes to the offline mode, you'll need to
deploy the database to the server.

4. Rerun the query specified in step 1. This time the result is $9,204.03, which is 75
percent of the total [reseller sales amount], prior to applying the scope assignment.

Chapter 6

171

5. While still on the Calculations tab, find the [Internet Ratio to All
Products] calculation—you can hold down the CTRL key and press the letter
F to open the Find and Replace dialog. Note how the calculation compares the
[Internet Sales Amount] measure of the current member to the topmost
member of the dimension using the ROOT function:
CREATE MEMBER CurrentCube.[measures].[Internet Ratio to All
Products] AS
Measures.[Internet Sales Amount] /
(
 ROOT([product]),
 Measures.[Internet Sales Amount]
),
Format_String = "Percent",
Associated_Measure_Group = "Internet Sales",
Non_Empty_Behavior = [Internet Sales Amount]

6. Switch to SSMS and execute the following query to see the calculated measure in
action. The result will be a list of each product's subcategory that had sales ordered
by the internet sales amount, along with the percentage of contribution to the total
internet sales amount:

SELECT {measures.[Internet Ratio to All Products], measures.
[internet sales amount]} ON 0,
ORDER (FILTER (product.[product categories].[subcategory].members,
NOT ISEMPTY(measures.[Internet Sales Amount])),
Measures.[Internet Sales Amount], DESC) ON 1
FROM [Adventure Works]

Monitoring and tuning MDX queries
The best monitoring tool for MDX queries is SQL Server Profiler, which you could launch by
navigating to Start | All Programs | SQL Server 2012 | Performance Tools | SQL Server
Profiler. Profiler records various phases of the query execution, including the retrieval of data
from partitions or dimensions, querying aggregations or memory cache as well as displaying
the results to the application. Based on the Profiler output, we can surmise whether SSAS
spends most of its execution time retrieving data from the storage engine or in the formula
engine, meaning deriving calculated values after the data retrieval is complete.

MDX

172

How to do it...
Follow these steps for monitoring and tuning MDX queries.

1. Once the Profiler is open, go to File | New Trace and connect to your Analysis
Services instance. Profiler allows choosing numerous events and columns that you
could include in your trace. Ensure that the Show all Events checkbox is checked,
then choose the following events:

 � Progress Report Begin

 � Progress Report Current

 � Progress Report End

 � Query Begin

 � Query End

 � Calculate Non Empty End

 � Get Data From Aggregation

 � Get Data From Cache

 � Query Dimension

 � Query Subcube

 � Query Subcube Verbose

2. Check the following columns to be included in the trace before clicking on the Run
Trace button:

 � Event Subclass

 � TextData

 � NTUserName

 � StartTime

 � Current Time

 � Duration

 � SPID

 � CPUTime

Note that not all columns are available for each event.

Chapter 6

173

3. Switch to SSMS and run the following statement to clear the storage engine cache so
that your execution results are not skewed:
<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/
engine">
 <ClearCache>
 <Object>
 <DatabaseID>Adventure Works DW</DatabaseID>
 </Object>
 </ClearCache>
</Batch>

4. Run a few MDX queries included in this chapter.

5. Stop the Profiler trace collection and examine the results. Pay particular attention to
the duration column of the Query End event, as well as each Progress Report
End event.

Full discussion of query tuning is beyond the scope of this book. However, normally, a query
bottleneck is either in the storage or calculation engine. Storage engine queries are relatively
straightforward to tune. You will need to pay attention to which partitions are taking longest
to query. You might be able to add aggregations to this partition, or split the partition if only a
small portion of it needs to be checked by each query. Refer to Chapter 3, Creating Analysis
Services Cubes, for more information on designing useful aggregations and partitioning
strategies. The calculation engine queries are much more complicated to tune and involve
ensuring that your MDX uses the most efficient set of functions in the correct order.

You should also download and refer to Microsoft's white paper http://www.microsoft.
com/en-us/download/details.aspx?id=661 for troubleshooting MDX query bottlenecks.

There's more...
Writing MDX queries and calculations is a complex science and certainly warrants its own
book. This chapter merely covered the basic concepts and most commonly encountered
MDX constructs. To learn MDX in greater detail please refer to MDX Solutions or another
book dedicated to this language.

7
Analysis Services

Security

In this chapter, we will cover:

 f Managing instance-level administrative security

 f Managing database-level security

 f Managing cube-level security

 f Managing dimension hierarchy-level security

 f Implementing dynamic security

 f Implementing cell-level security

Introduction
This chapter teaches how to secure Analysis Services starting at the instance level and working
all the way down to the individual cube cells. Analysis Services administrators have unrestricted
access to all items within the server—they can restart the service, read and process data in
every database, dimension, and cube, alter configuration settings, collect traces, and so on.
This level of access is best reserved for database administrators. SSAS developers need
full access to the database they're working with but not necessarily to the entire instance;
each instance could host multiple databases constructed by multiple development teams.
Individual users may need access to all or some of the cube and dimension data depending on
their job requirements. In addition to explicitly defining the list of dimension members, you can
also dynamically configure the security if your cube is queried by many users, each requiring
access to a specific dataset.

Analysis Services Security

176

Unlike the SQL Server relational engine, Analysis Services has no concept of its own security
logins; it completely relies on the security of the Windows operating system. However, you can
define very granular security settings for each Windows user or group.

Analysis Services builds a bitmap of the dimension members or cells that are available
for reading or writing whenever the user connects to the instance. So, defining security
adds some overhead to the application. Generally, if you don't have too many roles
(several hundred) or if you use effective MDX functions for implementing dynamic
security, such overhead is negligible.

Managing instance-level administrative
security

Each Analysis Services instance has one server role reserved for administrators. All members
of this role have unrestricted access to all objects on the instance. Membership in the
administrator role is mandatory to perform the following operations:

 f Create and drop databases

 f Collect traces against multiple databases on the same instance in a single trace

 f Stop/restart the instance

 f Backup/restore databases

 f Modify server configuration settings

 f Grant server-level administrator permissions

 f Detach/attach databases

 f Synchronize databases (requires administrative permissions to both source and
target instances)

How to do it...
To add members to the server administrator role, perform the following steps:

1. Connect to the SSAS instance to which you have administrative access using SSMS,
right-click on the instance, and choose Properties.

2. Navigate to the Security tab of the resulting Analysis Services Properties dialog
box. Click on Add, enter the domain and login name (for example, MyCorp\User),
and click on OK.

3. By default, you can add individual users and security principles to the server role.
If you need to add Windows groups, you must click on the object types button and
check the groups box that is unchecked by default.

Chapter 7

177

4. If you examine the script that SSAS runs behind the scenes using SQL Server
Profiler, you'll find the two XMLA Alter commands, as shown in the following
code snippet:
<Batch Transaction='true'>
<Alter AllowCreate="true"
ObjectExpansion="ObjectProperties">
<Object />
<ObjectDefinition>
<Server>
<ID>ComputerName\InstanceName</ID>
<Name> ComputerName\InstanceName </Name>
</Server>
</ObjectDefinition>
</Alter>
<Alter AllowCreate="true"
ObjectExpansion="ObjectProperties">
<Object>
<RoleID>Administrators</RoleID>
</Object>
<ObjectDefinition>
<Role>
<ID>Administrators</ID>
<Name>Administrators</Name>
<Members>
<Member>
<Name>DomainName\WindowsUserName</Name>
</Member>
</Members>
</Role>
</ObjectDefinition>
</Alter>
</Batch>

5. On the filesystem, the server administrator role's contents are found in the
Administrators.file_version_number.role.xml file under the
instance's data directory.

6. Users who are part of the host-level local administrator's group by default also have
administrative permissions to SSAS. The <BuiltinAdminsAreServerAdmins>
property controls this behavior. If you do not want local host administrators
to administer Analysis Services, set this property to the value of 0 in the msmdsrv.
ini configuration file found in the config folder under the Analysis Services
installation directory.

7. The account that runs SSAS service by default has administrative permissions
to the instance. This is controlled by the <ServiceAccountIsServerAdmin>
configuration property.

Analysis Services Security

178

Managing database-level security
Each SSAS instance could be shared for multiple projects. As long as databases can fit on
the data drive and SSAS can handle processing and querying requests efficiently, there is no
reason why you couldn't have many databases on a single instance. This is particularly true
in development and quality assurance environments. Since each instance could be shared
by multiple developers, it's generally best to provide each developer with the necessary
permissions for the database that he/she is responsible for instead of granting unlimited
server-wide permissions.

Database-level security is implemented through roles within each SSAS database.
Each database can have many roles, normally one role per group of users that needs
a specific level of access. Keep in mind that SSAS permissions are additive; if a user
belongs to multiple groups, he/she will have all permissions available to each of the
groups that he/she is a part of.

How to do it...
To define database-level permissions, perform the following steps:

1. Use SSMS to connect to the AdventureWorksDW2012 database on your SSAS
instance, right-click on the Roles folder within the database, and choose New Role.
This activates the Create Role dialog.

2. Specify a descriptive role name on the General tab of the dialog. Optionally, you can
also specify the role's description.

3. The General tab allows you to specify three levels of database access:
 � Full control (Administrator): This level includes unrestricted access to

create, alter, process, and drop objects within the database but not on other
databases within the same instance. If you check this option, the other two
options are automatically selected because they represent subsets of full
database-wide permissions. This option also allows members to trace the
Analysis Services activity within the current database.

 � Process database: This self-explanatory option allows us to process each
object within the database. If you grant this option without the ability to read
definition, the user will not be able to see the objects using any tool including
SSMS but can still run XMLA commands for processing. This might be a
good option for a junior DBA / developer who need not see that data but is
responsible for ensuring that cube data stays up-to-date.

 � Read definition: This level allows us to browse metadata but does not permit
us to create, modify, process, or drop objects. The opposite of previous
options, the Read definition access, is often granted to cube users who
need to see metadata without requiring the ability to update the objects'
data through processing.

Chapter 7

179

4. Switch to the Membership tab to add individual Windows users or groups.
The process of adding/removing users is identical to the one described in
the Managing instance-level administrative security section.

The Data Sources tab is used for data mining, which is
beyond the scope of this book.

Managing cube-level security
You already learned how to define SSAS instance administrators and how to grant the
necessary permission to cube developers. Now, it's time to secure the solution at the
cube level so that each user is permitted to see only the data that they require to
perform their job functions.

Each database could have multiple cubes. Cube-level data is also secured using roles,
and (not surprisingly) cube-level security is defined on the Cubes tab.

How to do it...
Let's get started by performing the following steps:

1. Open the role that you created in the previous recipe, navigate to the Cubes tab,
and note the Access, Local Cube/Drillthrough Access and Process settings.

2. Cube users could have three levels of access:

 � None: They cannot read any data from the cube

 � Read: They can read cube data

 � Read/Write: They can read cube data and write-back values only if
write-back is enabled

3. The DRILLTHROUGH permission allows role members to execute drillthrough actions
and the DRILLTHROUGH MDX command against the specific cube. You could have
some users who need access to detailed data whereas others could only require
high-level summarized values.

4. Local Cube is an interesting option that allows cube users to download some or all
of the cube data to their local desktop/laptop for offline analysis. Clearly, Local Cube is
not a good option for saving an entire enterprise-level cube to a laptop, but it could be
useful if an executive needs to run a few reports during his/her airplane trip to a remote
office. If drillthrough / Local Cube access isn't granted, users will receive errors when
attempting to create a local copy of the cube or drillthrough to detailed data.

Analysis Services Security

180

You can define a local cube by navigating to the OLAP Tools | Offline OLAP
option in Excel's Analyze tab. Choosing this option activates the Offline OLAP
Setting dialog that has a Create offline data file… button. It activates the
Create Cube File wizard. The wizard allows you to choose the dimensions,
dimension members, and measures that you would like to include in the local
file and specify the full path and name of the file with the .cub extension.

5. The Process option allows role members to process measure groups within a
particular cube. Generally, cube users do not need this permission on production
instances. The majority of SSAS implementations only grant access to read
cube data.

Managing dimension hierarchy-level security
So far so good; you've allowed cube-level access to users, but this might only be a part of
the battle. Cube-level access does not restrict any dimensions or attributes. This means that
each employee could see not only those sales that he/she is directly responsible for, but also
the sales of his/her peers and managers. Furthermore, not all employees need to see highly
sensitive data such as salaries and commission rates.

You can manage access to dimensions using the Dimension Data tab within the Role
Properties dialog. The same dialog also has the Dimensions tab that is used less frequently
and allows you to specify write access if the dimension write-back is configured; otherwise,
all dimensions are available for read-only access. The Dimension Data tab, on the other
hand, is for securing individual dimension attribute hierarchy members.

You will begin by implementing a simple requirement of only allowing the role to see bikes and
accessories product categories in the sample database. The section that follows will examine
a somewhat more complex requirement of dynamic security.

How to do it...
To restrict a role to see sales only for bikes and accessories, perform the following steps:

1. Create a new role within Adventure Works DW2012 sample database and add a
member, as shown earlier in this chapter.

2. Grant access to Read definition on the General page.

Chapter 7

181

3. Grant the Read access to the Adventure Works cube on the Cubes page.

4. Navigate to the Dimension Data page. Take a moment to notice that this dropdown
lists database dimensions as well as cube dimensions. Recall that each database
dimension may or may not be included in each cube. Cube dimension's properties do
not necessarily have to match the properties of the database dimension. If you define
security at the database dimension level, the same security configuration will be
applied to the corresponding cube dimensions as well.

5. Select the Product database dimension from the Dimension drop-down list.

6. Choose the Deselect all members option and then check the Bikes and Accessories
categories as shown in the following screenshot:

Analysis Services Security

182

7. Switch to the Advanced tab and review the Allowed member set, Denied member set,
and Default member boxes as well as the Enable Visual Totals checkbox as shown in
the following screenshot. Clicking on the Edit MDX button next to the Allowed member
set, Denied member set and Default member boxes, opens MDXBuilder to help you
with defining the corresponding sets or default member:

8. Click on OK to save the changes.

To test the role that you just created, perform the following steps:

1. Right-click on the Adventure Works cube and choose Browse.

2. Once the cube browser opens, click on the Change User button in the top-left
corner, as shown in the following screenshot:

Chapter 7

183

3. The previous step activates the Security Context dialog. By default, you'll browse
the cube data using your own security context. You also have an option to specify a
user name that belongs to the role you're testing (this must be in the domain_name\
user_name format) or the role itself. For this exercise, I'll use the bikes_and_
accessories_only role and click on OK, as shown in the following screenshot:

Analysis Services Security

184

4. At this point, browsing the Product Categories hierarchy will be limited only to
Bikes and Accessories. If we drop the Product Categories hierarchy on rows axis,
SSMS will immediately flatten out the hierarchy to display all products and product
subcategories under Bikes and Accessories. Similarly, if you try to filter the Product
Categories hierarchy, you will only see subcategories and products under the
restricted list of categories, as shown in the following screenshot:

Chapter 7

185

How it works...
At this point, you should have some questions regarding the various options that you saw
while configuring a simplistic security role. You noticed that you could have chosen Select
all members or Deselect all members prior to choosing which product categories to make
available for the role. It's only natural to wonder what the difference between these two
options is. If you choose Deselect all members first and check only the needed members,
the checked members will be included in the allowed member set on the Advanced tab.
Had you instead chosen Select all members and subsequently unchecked the members you
did not want to expose, the unchecked member list would be shown in the denied member
set. This does not make a big difference for the sample database, but consider what happens
if we add a new product category to the dimension. If we specify the allowed members for the
role, the new category will not be visible to the role members; on the other hand, if we include
an explicit list of denied members with the role, the new category will be visible because it
won't be part of the denied member set.

Keep in mind that we could define both allowed and denied member sets on the Advanced
tab. In this case, SSAS will allow us to browse data for all members included in the allowed
member set except those in the denied member set. To completely deny access to a hierarchy,
include an empty set specified by the{} notation in the allowed member set.

The default member box that you saw while configuring the role can be used to define the
product category that will implicitly be used by any query that does not include a reference
to the category hierarchy. For example, you could set the default member to [Product].
[Category].&[1]so that the role members will see the measures specifically for the
Bikes category unless their queries explicitly specify other categories. You normally define
the default member for the role if the allowed member set does not include the hierarchy's
default member (visible to roles with full access to the dimension). For example, if the default
member is All Categories but you only want to expose Bikes and Accessories to a particular
role, you could set the role's default category to Bikes.

Now, if you query the cube as a role member and choose All Products as the product
category, you will see a different number than what you would see as the total of Bikes
and Accessories. Although you have accomplished the goal of hiding the Clothing and
Components categories, the role members can become suspicious and perhaps even
doubt the validity of cube data because the sum of the categories they see does not add
up to the total for all categories. Fortunately, the visual totals feature is here to help;
once you check the Enable Visual Totals box on the Advanced tab, SSAS will calculate
the aggregate value (in this case, the aggregate will be the sum of Bikes and Accessories)
during query execution instead of displaying the aggregate value available in the cube that
includes all product categories. Since the value must be calculated during query execution,
the visual totals feature does add a slight performance overhead.

Analysis Services Security

186

Although we explicitly secured only the Product Categories
hierarchy, the list of subcategories will also be restricted
based on the available categories. If you browse the Product
dimension as the bikes_and_accessories_only role,
you will not see any subcategories for Clothing or Components.
You could define different allowed/denied member sets from
each dimension hierarchy depending on the cube. For example,
users might want to see only the current and future years in the
Forecast cube, but they will need to see the previous years'
data in the Actual Values cube. Hence, the option to secure
dimension data at database-dimension or cube-dimension level
is available.

You can define allowed/denied members on multiple hierarchies of the same dimension.
For example, you could enter an empty set {} in the allowed member set for the date
attribute of the Date dimension to ensure that users cannot browse data for individual
dates. Additionally, you could also specify a set consisting of [May 2005] and [June 2005]
within the denied member set under the Month Name attribute to restrict users from viewing
data for these months.

You can secure the measures as you can for any cube dimension; look for measures
dimension under each cube within the Dimension drop-down box. Unfortunately, we don't
have an easy way of hiding calculated measures. If you prefer not to expose a calculation
for browsing, you can remove it from a particular perspective. However, keep in mind that
perspectives are not a security mechanism and, hence, a savvy user could still access the
calculation by referencing it explicitly in MDX queries.

Yet another alternative is to define a regular measure with its value always
set to NULL or zero and then use a SCOPE statement to overwrite the
measure with a calculation. This way you will have a calculation exposed
as a regular measure that could be secured.

Implementing dynamic dimension security
In the previous section, you learned how to restrict a role's access to certain dimension
hierarchy members. This worked well for a dimension with few categories and a single role.
As long as you can group users into a few roles depending on their job function, this approach
will suffice. However, when the number of roles grows to hundreds, you'll find that managing
security can become very cumbersome and tedious. Clearly, creating a new role to expose a
specific data set to each retail customer is unacceptable. Fortunately, you can work around
this limitation using a security measure group.

Chapter 7

187

Although it takes several steps to implement, the security measure group utilizes relatively
straightforward concepts. You need to identify the attribute to secure, perhaps the sales
territory that each cube user should be able to browse. Next, you create a measure group
defining the mapping between the user and sales territory. The security role will then use the
UserName function within an MDX expression to determine the set of sales territories that
the user is permitted to browse. This way, you can have a single role that manages security
dynamically based on values found in the security measure group.

How to do it...
Let's get started by performing the following steps:

1. Create a user dimension table in the AdventureWorksDW2012 sample relational
database using the following code:
CREATE TABLE [dbo].[dimUser](
[user_key] [int] IDENTITY(1,1) NOT NULL,
[user_login] [varchar](50) NULL,
 CONSTRAINT [pk_user_key] PRIMARY KEY CLUSTERED
(
[user_key] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_
DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON
[PRIMARY]
) ON [PRIMARY]

2. Create the FactUserTerritory table by mapping users to sales territories
as follows:
CREATE TABLE FactUserTerritory (
user_key INT,
sales_territory_key INT,
is_allowed BIT)

3. Populate the dimUser dimension table with a domain account that does not have
administrative access to your SSAS instance. For example:
INSERT dimUser (user_login)
SELECT 'domain_name\JaneDoe'

4. Define mappings between the login and sales territory keys as follows:
INSERT FactUserTerritory
SELECT
(SELECT user_key
FROM dimUser
WHERE user_login='domain_name\JaneDoe'),
(SELECT SalesTerritoryKey
FROM DimSalesTerritory
WHERE SalesTerritoryCountry = 'Germany'),
1

Analysis Services Security

188

5. Create a new Analysis Services project named Security in SSDT with the Date,
Promotion, SalesTerritory, and Reseller dimensions. Please refer to
Chapter 2, Defining Analysis Services Dimensions, for dimension recipes.

6. Add the dimUser and FactUserTerritory tables to your data source view.

7. Create a user dimension with a single attribute named user with user_key as the
key column and user_login as the name column.

8. Add a cube named AdventureWorks to the Security project based on the
FactResellerSales, Date, Promotion, SalesTerritory, Reseller,
and User dimensions. Please refer to Chapter 3, Creating Analysis Services
Cubes, for cube recipes. You do not have to set up a relationship between the
User dimension and the ResellerSales measure group.

9. Add a second measure group to the AdventureWorks cube based on
FactUserTerritory. Expose UserTerritoryCount (row count) as the only
measure from theFactUserTerritory measure group. Ensure that User and
SalesTerritory have regular relationships with FactUserTerritory.

10. Create a role named Dynamic within the Security project. Grant membership in
this role to the domain user that you included in the dimUser table.

11. Grant the Dynamic role Read access to the AdventureWorks cube.

12. Navigate to the Dimension Data page, choose the SalesTerritory dimension,
go to the Advanced tab, and choose the Sales Territory Region attribute.

13. Enter the following MDX expression in the Allowed member set box:
NONEMPTY([Sales Territory].[Sales Territory Region].members,
StrToMember("[user].[user].[" + UserName() + "]"),
measures.UserTerritoryCount))

14. Check the Enable Visual Totals box. The Dimension Data page should look as
shown in the following screenshot:

Chapter 7

189

15. Save and deploy the project to your SSAS instance and process the database.

16. To test the role, open the cube browser and click on the Change User button to
impersonate the domain user that you added to the Dynamic role. The user will
only see the data for sales territory region = "Germany" and the
corresponding visual total.

17. After you have confirmed that the dynamic security role works as expected, set the
User dimension's and the UserTerritoryCount measure's visible property to
False. These do not add any value to cube consumers; they are simply used for
implementing security.

Analysis Services Security

190

You can add any number of users to the Security measure group as long as the same
domain accounts are granted permission to the dynamic security role.

Keep in mind that the dynamic security implementation discussed in this
section relies on the measure group. In order to provide access to new
users, you must process the Security measure group after adding
user logins to the FactUserTerritory table. Newly added users will
not be able to read the cube data until the Security measure group
is processed.
The dynamic security solution that we just implemented uses the
StrToMember function. This could result in some performance
overhead when working with large data sets. For an alternative syntax for
implementing a dynamic security role, please refer to the A role security
MDX tip section in the blog post: http://nickbarclay.blogspot.
com/2008/01/pps-data-connection-security-with.html.

There's more...
Some applications use the .NET code to enforce dimension or cell-level security within
cubes. The primary reason for using .NET programs to secure cubes is that the Security
measure group grows too large and processing it is often not a feasible option. However,
most applications serve hundreds or thousands of users and processing the Security
measure group is much quicker than processing other measure groups that are likely to
have millions of rows. You can create partitions to speed up the processing of the Security
measure groups much like you do with any other measure group. Refer to online forums and
blogs for examples of implementing dynamic security using .NET code.

Implementing cell-level security
Restricting access to specific dimension members is normally sufficient even for very granular
security schemes. However, in rare cases, you might have a need to secure individual cells in
addition to specifying allowed and denied dimension member sets. Although I discuss cell-level
security here, be warned that securing at the cell level can cause severe performance issues,
particularly, for large cube implementations.

You can grant read-only, read-write, and read-contingent permissions at cell level. Read-write
permissions only apply if the cube write-back is enabled. Read-contingent permissions define
SSAS behavior for cells that are defined from other cells that are known as calculated members.
If you grant read-contingent permission on a calculated member, you must ensure that the same
role also has access to the members included in the calculated member's definition.

Chapter 7

191

In addition to imposing performance overhead, cell-level security also introduces an issue
with cube usability. Any cell that the role member isn't allowed to see will still be visible but
will display the #N/A value instead of the actual cell value. You have some flexibility as far as
overwriting #N/A in the client application is concerned. Nevertheless, the users will know that
the cell exists, but they're not permitted to see its value. A cleaner solution would have hidden
the cell completely so that the user would not be aware that the secured cell exists.

How to do it...
To restrict a role to see only the [internet order count]measure, perform the
following steps:

1. Create a test role within the Adventure Works DW2012 sample database using
SSMS and grant membership to a valid domain account.

2. Grant the Readaccess to the Adventure Works cube as discussed earlier in
this chapter.

3. Navigate to the Cell Data tab of the role editor, check the Enable read permissions
box, and enter the following MDX expression:
Measures.CurrentMember IS measures.[internet order count]

4. Save the role and try browsing the cube as the domain account to which you granted
membership in the role. All measures except [internet order count] will show
up as #N/A (in SSMS, they will be displayed as NULL).

5. To grant read-contingent permissions, you can use the following expression:

measures.CurrentMember IS measures.[sales amount]
 OR
measures.CurrentMember IS measures.[average sales amount]

Analysis Services Security

192

If you use the preceding expression to define read-contingent permission (as shown in
the preceding screenshot), the role members will see #N/A for the calculated measure
Average Sales Amount because you did not grant them the permission to see the
Order Count measure that is necessary for calculating the average. On the other
hand, if you enter the same expression under the Enable read permissions checkbox,
role members will see the calculated measure even though they won't see the Order
Count measure.

Chapter 7

193

There's more...
In some cases, when you must use multiple fact tables, you have a choice of creating multiple
cubes or a single cube with multiple measure groups. If you use a Security measure group,
you should create a single cube with multiple measure groups because you would only have
to process the Security measure group once. This is presuming that the same Security
measure group can be used for securing dimension data for all other measure groups which
may or may not always be the case.

8
Administering and

Monitoring Analysis
Services

In this chapter, we will cover:

 f SSAS instance configuration options

 f Creating and dropping databases

 f Monitoring SSAS instance using Activity Viewer

 f Monitoring SSAS instance using DMVs

 f Cancelling a session

 f Checking whether cubes are accessible

 f Checking SSAS object sizes programmatically

 f Backup and restore

 f Synchronization

 f Detaching and attaching databases

Administering and Monitoring Analysis Services

196

Introduction
As you have learned throughout the various chapters of this book, SQL Server Analysis
Services (SSAS) is a data container in its own right, separate and apart from the SQL Server
relational database engine. As such, SSAS has numerous configuration options, many of
which alter its behavior. You can use dynamic management views, SQL Server Profiler,
Performance Monitor, and other tools to monitor and troubleshoot SSAS activity.

If your environment has only one or a handful of SSAS instances, they can be managed
by the same database administrators managing SQL Server and other database platforms.
In large enterprises, there could be hundreds of SSAS instances managed by dedicated
SSAS administrators. Regardless of the environment, you should become familiar with
the configuration options as well as troubleshooting methodologies. In large enterprises,
you might also be required to automate these tasks using the Analysis Management
Objects (AMO) code.

Analysis Services is a great tool for building business intelligence solutions. However, much like
any other software, it does have its fair share of challenges and limitations.

Most frequently encountered enterprise business intelligence system goals include quick
provision of relevant data to the business users and assuring excellent query performance.
If your cubes serve a large, global community of users, you will quickly learn that SSAS is
optimized to run a single query as fast as possible. Once users send a multitude of heavy
queries in parallel, you can expect to see memory, CPU, and disk-related performance counters
quickly rise, with a corresponding increase in query execution duration which, in turn, worsens
user experience. Although you could build aggregations to improve query performance, doing
so will lengthen cube processing time, and, thereby, delay the delivery of essential data to
decision makers. It might also be tempting to consider using ROLAP storage mode in lieu of
MOLAP so that processing times are shorter, but MOLAP queries usually outperform ROLAP due
to heavy compression rates. Hence, figuring out the right storage mode and appropriate level of
aggregations is a great balancing act. If you cannot afford to use ROLAP, and query performance
is paramount to successful cube implementation, you should consider scaling your solution.
You have two options for scaling, given as follows:

 f Scaling up: This option means purchasing servers with more memory, more CPU
cores, and faster disk drives

 f Scaling out: This option means purchasing several servers of approximately the
same capacity and distributing the querying workload across multiple servers
using a load balancing tool

SSAS lends itself best to the second option—scaling out. Later in this chapter you will learn
how to separate processing and querying activities and how to ensure that all servers in the
querying pool have the same data.

Chapter 8

197

SSAS instance configuration options
All Analysis Services configuration options are available in the msmdsrv.ini file found in the
config folder under the SSAS installation directory. Instance administrators can also modify
some, but not all configuration properties, using SQL Server Management Studio (SSMS).

SSAS has a multitude of properties that are undocumented—this normally means that such
properties haven't undergone thorough testing, even by the software's developers. Hence,
if you don't know exactly what the configuration setting does, it's best to leave the setting at
default value. Even if you want to test various properties on a sandbox server, make a copy
of the configuration file prior to applying any changes.

How to do it...
To modify the SSAS instance settings using the configuration file, perform the following steps:

1. Navigate to the config folder within your Analysis Services installation directory.
By default, this will be C:\Program Files\Microsoft SQL Server\MSAS11.
instance_name\OLAP\Config.

2. Open the msmdsrv.ini file using Notepad or another text editor of your
choice. The file is in the XML format, so every property is enclosed in opening
and closing tags.

3. Search for the property of interest, modify its value as desired, and save the changes.

4. For example, in order to change the upper limit of the processing worker threads,
you would look for the <ThreadPool><Process><MaxThreads> tag sequence
and set the values as shown in the following excerpt from the configuration file:

<Process>
 <MinThreads>0</MinThreads>
 <MaxThreads>250</MaxThreads>
 <PriorityRatio>2</PriorityRatio>
 <Concurrency>2</Concurrency>
 <StackSizeKB>0</StackSizeKB>
 <GroupAffinity/>
 </Process>

To change the configuration using SSMS, perform the following steps:

1. Connect to the SSAS instance using the instance administrator account and choose
Properties. If your account does not have sufficient permissions, you will get an error
that only administrators can edit server properties.

Administering and Monitoring Analysis Services

198

2. Change the desired properties by altering the Value column on the General page of
the resulting dialog, as shown in the following screenshot:

3. Advanced properties are hidden by default. You must check the Show Advanced
(All) Properties box to see advanced properties. You will not see all the properties in
SSMS even after checking this box. The only way to edit some properties is by editing
msmdsrv.ini as previously discussed.

4. Make a note of the Reset Default button in the bottom-right corner. This button
comes in handy if you've forgotten what the configuration values were before you
changed them and want to revert to the default settings. The default values are
shown in the dialog box, which can provide guidance as to which properties have
been altered.

5. Some configuration settings require restarting the SSAS instance prior to being
executed. If this is the case, the Restart column will have a value of Yes.

6. Once you're happy with your changes, click on OK and restart the instance if
necessary. You can restart SSAS using the Services.msc applet from the
command line using the NET STOP / NET START commands, or directly in
SSMS by choosing the Restart option after right-clicking on the instance.

Chapter 8

199

How it works...
Discussing every SSAS property would make this chapter extremely lengthy; doing so is well
beyond the scope of the book. Instead, in this section, I will summarize the most frequently
used properties.

Often, synchronization has to copy large partition datafiles and aggregation files. If the timeout
value is exceeded, synchronization fails. Increase the value of the <Network><Listene
r><ServerSendTimeout> and <Network><Listener><ServerReceiveTimeout>
properties to allow a longer time span for copying each file.

By default, SSAS can use a lazy thread to rebuild missing indexes and aggregations after you
process partition data. If the <OLAP><LazyProcessing><Enabled> property is set to 0,
the lazy thread is not used for building missing indexes—you must use an explicit processing
command instead. The <OLAP><LazyProcessing><MaxCPUUsage> property throttles
the maximum CPU that could be used by the lazy thread. If efficient data delivery is your
topmost priority, you can exploit the ProcessData option instead of ProcessFull. To build
aggregations after the data is loaded, you must set the partition's ProcessingMode property
to LazyAggregations. The SSAS formula engine is single threaded, so queries that perform
heavy calculations will only use one CPU core, even on a multiCPU computer. The storage
engine is multithreaded; hence, queries that read many partitions will require many CPU
cycles. If you expect storage engine heavy queries, you should lower the CPU usage threshold
for LazyAggregations.

By default, Analysis Services records subcubes requested for every 10th query in the query
log table. If you'd like to design aggregations based on query logs, you should change the
<Log><QueryLog><QueryLogSampling> property value to 1 so that the SSAS logs
subcube requests for every query.

SSAS can use its own memory manager or the Windows memory manager. If your SSAS
instance consistently becomes unresponsive, you could try using the Windows memory
manager. Set <Memory><MemoryHeapType> to 2 and <Memory><HeapTypeForObjects>
to 0. The Analysis Services memory manager values are 1 for both the properties. You must
restart the SSAS service for the changes to these properties to take effect.

The <Memory><PreAllocate> property specifies the percentage of total memory to be
reserved at SSAS startup. SSAS normally allocates memory dynamically as it is required by
queries and processing jobs. In some cases, you can achieve performance improvement by
allocating a portion of the memory when the SSAS service starts.

Setting this value will increase the time required to start the service.
The memory will not be released back to the operating system until
you stop the SSAS service. You must restart the SSAS service for
changes to this property to take effect.

Administering and Monitoring Analysis Services

200

The <Log><FlightRecorder><FileSizeMB>and <Log><FlightRecorder><LogDu
rationSec> properties control the size and age of the FlightRecorder trace file before
it is recycled. You can supply your own trace definition file to include the trace events and
columns you wish to monitor using the <Log><FlightRecorder><TraceDefinition
File> property. If FlightRecorder collects useful trace events, it can be an invaluable
troubleshooting tool. By default, the file is only allowed to grow to 10 MB or 60 minutes. Long
processing jobs can take up much more space, and their duration could be much longer than
60 minutes. Hence, you should adjust the settings as necessary for your monitoring needs.
You should also adjust the trace events and columns to be captured by FlightRecorder.
You should consider adjusting the duration to cover three days (in case the issue you are
researching happens over a weekend).

The <Memory><LowMemoryLimit> property controls the point—amount of memory used
by SSAS—at which the cleaner thread becomes actively engaged in reclaiming memory from
existing jobs. Each SSAS command (query, processing, backup, synchronization, and so on)
is associated with jobs that run on threads and use system resources. We can lower the value
of this setting to run more jobs in parallel (though the performance of each job could suffer).
Two properties control the maximum amount of memory that a SSAS instance could use.
Once memory usage reaches the value specified by <Memory><TotalMemoryLimit>,
the cleaner thread becomes particularly aggressive at reclaiming memory.

The <Memory><HardMemoryLimit> property specifies the absolute memory limit—SSAS
will not use memory above this limit. These properties are useful if you have SSAS and other
applications installed on the same server computer. You should reserve some memory for
other applications and the operating system as well. When HardMemoryLimit is reached,
SSAS will disconnect the active sessions, advising that the operation was cancelled due to
memory pressure.

All memory settings are expressed in percentages if the values
are less than or equal to 100. Values above 100 are interpreted
as kilobytes. All memory configuration changes require restart of
the SSAS service to take effect.

In the prior releases of Analysis Services, you could only specify the minimum and maximum
number of threads used for queries and processing jobs. With SSAS 2012, you can also specify
the limits for the input/output job threads using the <ThreadPool><IOProcess> properties.

The <Process><IndexBuildThreshold> property governs the minimum number of rows
within a partition for which SSAS will build indexes. The default value is 4096. SSAS decides
which partitions it needs to scan for each query based on the partition index files. If the
partition does not have indexes, it will be scanned for all the queries. Normally, SSAS can
read small partitions without greatly affecting query performance. But if you have many
small partitions, you should lower the threshold to ensure each partition has indexes.

Chapter 8

201

The <Process><BufferRecordLimit> and <Process><BufferMemoryLimit>
properties specify the number of records for each memory buffer and the maximum percentage
of memory that can be used by a memory buffer. Lower the value of these properties to process
more partitions in parallel. You should monitor processing using the SQL Profiler to see if some
partitions included in the processing batch are being processed while the others are waiting.

The <ExternalConnectionTimeout> and <ExternalCommandTimeout> properties
control how long an SSAS command should wait for connecting to a relational database
and how long SSAS should wait to execute the relational query before reporting timeout.
Depending on the relational source, it might take longer than 60 seconds (that is, the default
value) to connect. If you encounter processing errors without being able to connect to the
relational source, you should increase the ExternalConnectionTimeout value. It could
also take a long time to execute a query; by default, the processing query will timeout after
one hour. Adjust the value as needed to prevent processing failures.

The contents of the <AllowedBrowsingFolders> property define the drives and directories
that are visible when creating databases, collecting backups, and so on. You can specify
multiple items separated using the pipe (|) character.

The <ForceCommitTimeout> property defines how long a processing job's commit operation
should wait prior to cancelling any queries/jobs which may interfere with processing or
synchronization. A long running query can block synchronization or processing from committing
its transaction. You can adjust the value of this property from its default value of 30 seconds to
ensure that processing and queries don't step on each other.

The <Port> property specifies the port number for the SSAS instance. You can use the
hostname followed by a colon (:) and a port number for connecting to the SSAS instance
in lieu of the instance name. Be careful not to supply the port number used by another
application; if you do so, the SSAS service won't start.

The <ServerTimeout> property specifies the number of milliseconds after which a query
will timeout. The default value is 1 hour, which could be too long for analytical queries. If the
query runs for an hour, using up system resources, it could render the instance unusable by
any other connection. You can also define a query timeout value in the client application's
connection strings. Client setting overrides the server-level property.

There's more...
There are many other properties you can set to alter SSAS instance behavior.
For additional information on configuration properties, please refer to product documentation
at http://technet.microsoft.com/en-us/library/ms174556.aspx.

Administering and Monitoring Analysis Services

202

Creating and dropping databases
As discussed in Chapter 7, Analysis Services Security, only SSAS instance administrators are
permitted to create, drop, restore, detach, attach, and synchronize databases. This recipe
teaches administrators how to create and drop databases.

Getting ready
Launch SSMS and connect to your Analysis Services instance as an administrator. If you're
not certain that you have administrative properties to the instance, right-click on the SSAS
instance and choose Properties. If you can view the instance's properties, you are an
administrator; otherwise, you will get an error indicating that only instance administrators
can view and alter properties.

How to do it...
To create a database, perform the following steps:

1. Right-click on the Databases folder and choose New Database. Doing so launches
the New Database dialog shown in the following screenshot.

2. Specify a descriptive name for the database, for example, Analysis_Services_
Administration Chapter. Note that the database name can contain spaces.
As you learned in the previous chapters, each object has a name as well as an
identifier. The identifier value is set to the object's original name and cannot be
changed without dropping and recreating the object; hence, it is important to come
up with a descriptive name from the very beginning. You cannot create more than
one database with the same name on any SSAS instance.

3. Specify the storage location for the database. By default, the database will be stored
under the \OLAP\DATA folder of your SSAS installation directory. The only compelling
reason to change the default is if your data drive is running out of disk space and
cannot support the new database's storage requirements.

I recommend procuring additional disk space rather than placing the
database in a nondefault data folder. Not only does using a nondefault
data folder make troubleshooting more difficult, but also it could cause
issues during database synchronization.

Chapter 8

203

4. Specify the impersonation setting for the database. Remember from Chapter 2,
Defining Analysis Services Dimensions, you could also specify the impersonation
property for each data source. Alternatively, each data source can inherit the
DataSourceImpersonationInfo property from the database-level setting.
You have four choices as follows:

 � Specific user name (must be a domain user) and password: This is the
most secure option but requires updating the password if the user changes
the password

 � Analysis Services service account

 � Credentials of the current user: This option is specifically for data mining

 � Default: This option is the same as using the service account option

Administering and Monitoring Analysis Services

204

5. Specify an optional description for the database.

6. As with the majority of other SSMS dialogs, you can script the XMLA command you
are about to execute by clicking on the Script button.

To drop an existing database, perform the following steps:

1. Expand the Databases folder on the SSAS instance, right-click on the database,
and choose Delete.

2. The Delete objects dialog allows you to ignore errors; however, it is not applicable to
databases. You can script the XMLA command if you wish to review it first.

3. An alternative way of scripting the DELETE command is to right-click on the database
and navigate to Script database as | Delete To | New query window.

A good practice is to ensure that you have a database backup before deleting
any database, just in case the wrong database is deleted or you need to get
the database back online due to some unforeseen circumstance.
Unlike other database platforms, the Analysis Services database
grows automatically. This could be a blessing or a curse depending on
circumstances. SSAS shields the administrator from the mundane tasks of
allocating additional space to the database or shrinking database files to
save space. However, beware, since the SSAS instance will crash if it runs
out of disk space during processing or synchronization. Also, SSAS does not
check whether any users are logged on to the database when the DELETE
command is executed; it is the database administrator's job to ensure that
the database is no longer used before it is deleted.

Monitoring SSAS instance using Activity
Viewer

Unlike other database systems, Analysis Services has no system databases. However,
administrators still need to check the activity on the server, ensure that cubes are available
and can be queried, and there is no blocking. You can exploit a tool named Analysis Services
Activity Viewer 2008 to monitor SSAS Versions 2008 and later, including SSAS 2012.
This tool is owned and maintained by the SSAS community and can be downloaded from
www.codeplex.com.

To use Activity Viewer, you need to install Analysis Services OLE DB
Provider for Microsoft SQL Server 2008, which you can obtain as a
part of the SQL Server 2008 feature pack from Microsoft's website.

Chapter 8

205

Activity Viewer allows viewing active and dormant sessions, current XMLA and MDX queries,
locks, as well as CPU and I/O usage by each connection. Additionally, you can define rules to
raise alerts when a particular condition is met.

How to do it...
To monitor an SSAS instance using Activity Viewer, perform the following steps:

1. Launch the application by double-clicking on ActivityViewer.exe.
2. Click on the Add New Connection button on the Overview tab. Specify the hostname

and instance name or the hostname and port number for the SSAS instance and
then click on OK.

3. For each SSAS instance you connect to, Activity Viewer adds a new tab. Click on
the tab for your SSAS instance. Here, you will see several pages as shown in the
following screenshot:

 � Alerts: This page shows any sessions that met the condition found in the
Rules page.

Administering and Monitoring Analysis Services

206

 � Users: This page displays one row for each user as well as the number of
sessions, total memory, CPU, and I/O usage.

 � Active Sessions: This page displays each session that is actively running an
MDX, Data Mining Extensions (DMX), or XMLA query. This page allows you
to cancel a specific session by clicking on the Cancel Session button.

 � Current Queries: This page displays the actual command's text, number of
kilobytes read and written by the command, and the amount of CPU time
used by the command. This page allows you to cancel a specific query by
clicking on the Cancel Query button.

 � Dormant Sessions: This page displays sessions that have a connection to
the SSAS instance but are not currently running any queries. You can also
disconnect a dormant session by clicking on the Cancel Session button.

 � CPU: This page allows you to review the CPU time used by the session as
well as the last command executed on the session.

 � I/O: This page displays the number of reads and writes as well as the
kilobytes read and written by each session.

 � Objects: This page shows the CPU time and number of reads affecting each
dimension and partition. This page also shows the full path to the object's
parent; this is useful if you have the same naming convention for partitions in
multiple measure groups. Not only do you see the partition name, but also the
full path to the partition's measure group. This page also shows the number
of aggregation hits for each partition. If you find that a partition is frequently
queried and requires many reads, you should consider building aggregations
for it.

 � Locks: This page displays the locks currently in place, whether already
granted or waiting. Be sure to check the Lock Status column—the value
of 0 indicates that the lock request is currently blocked.

 � Rules: This page allows defining conditions that will result in an alert.
For example, if the session is idle for over 30 minutes or if an MDX query
takes over 30 minutes, you should get alerted.

How it works...
Activity Viewer monitors Analysis Services using Dynamic Management Views (DMV).
In fact, capturing queries executed by Activity Viewer using SQL Server Profiler is a good
way of familiarizing yourself with SSAS DMV's.

Chapter 8

207

For example, the Current Queries page checks the $system.DISCOVER_COMMANDS DMV
for any actively executing commands by running the following query:

SELECT SESSION_SPID,COMMAND_CPU_TIME_MS,COMMAND_ELAPSED_TIME_MS,
 COMMAND_READ_KB,COMMAND_WRITE_KB, COMMAND_TEXT
FROM $system.DISCOVER_COMMANDS
WHERE COMMAND_ELAPSED_TIME_MS > 0
ORDER BY COMMAND_CPU_TIME_MS DESC

The Active Sessions page checks the $system.DISCOVER_SESSIONS DMV with the session
status set to 1 using the following query:

SELECT SESSION_SPID,SESSION_USER_NAME, SESSION_START_TIME,
 SESSION_ELAPSED_TIME_MS,SESSION_CPU_TIME_MS, SESSION_ID
FROM $SYSTEM.DISCOVER_SESSIONS
WHERE SESSION_STATUS = 1
ORDER BY SESSION_USER_NAME DESC

The Dormant sessions page runs a very similar query to that of the Active Sessions page,
except it checks for sessions with SESSION_STATUS=0—sessions that are currently not
running any queries. The result set is also limited to the top 10 sessions, based on idle time
measured in milliseconds.

The Locks page examines all the columns of the $system.DISCOVER_LOCKS DMV to find all
requested locks as well as lock creation time, lock type, and lock status. As you have already
learned, the lock status of 0 indicates that the request is blocked, whereas the lock status
of 1 means that the request has been granted. Analysis Services blocking can be caused by
conflicting operations that attempt to query and modify objects. For example, a long running
query can block a processing or synchronization job from completion because processing
will change the data values. Similarly, a command altering the database structure will block
queries. The database administrator or instance administrator can explicitly issue the LOCK
XMLA command as well as the BEGIN TRANSACTION command. Other operations request
locks implicitly.

The following table documents the most frequently encountered Analysis Services lock types:

Lock type identifier Description Acquired for
2 Read lock Processing to read metadata.
4 Write lock Processing to write data after it is read

from relational sources.
8 Commit shared During the processing, restore or

synchronization commands.
16 Commit exclusive Committing the processing, restore,

or synchronization transaction when
existing files are replaced by new files.

Administering and Monitoring Analysis Services

208

Monitoring SSAS instance using DMVs
In the previous section you learned about a few DMVs referenced by Activity Viewer. Analysis
Services supports many other DMVs not used by Activity Viewer. You can query DMVs directly
using the SSMS or ASCMD command-line utility.

How to do it...
You can query DMVs by executing simple SELECT statements in the MDX query window within
SSMS by performing the following steps:

1. Navigate to FILE | New | Analysis Services MDX Query.

2. Connect to your SSAS instance as an administrator.

3. Paste the DMV queries you captured using SQL Server Profiler (see the previous
section, Monitoring SSAS instance using Activity Viewer). The SELECT statements
that you can use for querying DMVs are somewhat limited:

 � You can only query one DMV at a time and cannot join multiple DMVs.

 � You can extract a subset of all the rows by specifying the TOP keyword and
the ORDER BY clause.

 � You can extract a subset of all the columns by explicitly listing column names
or get all the columns using the star (*) operator.

 � You cannot use the GROUP BY clause to aggregate data. You can set up a
linked server from the SQL Server to Analysis Services and import DMV data
into a relational table first if you wish to use GROUP BY or any other syntax
elements not supported by SSAS DMVs.

How it works...
In this section I will discuss a few DMVs that are particularly useful for monitoring and
troubleshooting Analysis Services, along with the SELECT statements used to query them.

To get a list of all the cubes and dimensions within the current database, you can query
$system.MDSCHEMA_CUBES. Dimensions will be returned in the result set because you
can query each dimension as though it were a cube using the $Dimension_Name notation.
To obtain additional dimension specific metadata, such as the dimension's default hierarchy,
dimension type, and whether the dimension is visible, check the $system.MDSCHEMA_
DIMENSIONS DMV. Additional metadata for dimension hierarchies is available in $system.
MDSCHEMA_HIERARCHIES. You can query all the MDSCHEMA_* DMVs as well as most other
DMVs by simply running the SELECT * FROM DMV_NAME query.

Chapter 8

209

To get a list of traces that currently monitor your SSAS instance, check $system.DISCOVER_
TRACES as follows:

SELECT * FROM $system.DISCOVER_TRACES

You can find additional trace related metadata in DISCOVER_TRACE_COLUMNS and
DISCOVER_TRACE_EVENT_CATEGORIES. To list the transactions running on the current
instance, check DISCOVER_TRANSACTIONS.

You can use $system.DISCOVER_DIMENSION_STAT to get the member counts for each
attribute. You must specify the database name and dimension name when querying this DMV.
For example, the following query gets attribute member counts for the Promotion dimension
in the AdventureWorks_Sample database:

SELECT * FROM SYSTEMRESTRICTSCHEMA (
 $SYSTEM.DISCOVER_DIMENSION_STAT, DIMENSION_NAME = 'promotion'
 , DATABASE_NAME='AdventureWorks_Sample')
 ORDER BY Attribute_Count DESC

The following table shows the results:

DATABASE_NAME DIMENSION_NAME ATTRIBUTE_NAME ATTRIBUTE_COUNT
AdventureWorks_
Sample Promotion

Discount
Percent 11

AdventureWorks_
Sample Promotion End Date 11

AdventureWorks_
Sample Promotion Start Date 9

AdventureWorks_
Sample Promotion Promotion Type 7

AdventureWorks_
Sample Promotion Min Quantity 7

AdventureWorks_
Sample Promotion Max Quantity 6

AdventureWorks_
Sample Promotion

Promotion
Category 4

Administering and Monitoring Analysis Services

210

You can query $system.DISCOVER_PARTITION_STAT much the same way as
DISCOVER_DIMENTION_STAT, except you must provide the cube name as well as
measure group name and partition name, as shown in the following code snippet.
The result will be the aggregation name and aggregation size.

SELECT * FROM SYSTEMRESTRICTSCHEMA (
 $SYSTEM.DISCOVER_PARTITION_STAT, PARTITION_NAME =
 'Internet_Sales_2005', CUBE_NAME = 'Adventure Works',
 MEASURE_GROUP_NAME = 'Internet Sales',
 DATABASE_NAME='AdventureWorks_Sample')

You can query $system.DISCOVER_PERFORMANCE_COUNTERS to obtain the current
value of a specific performance counter, for example:

SELECT * FROM SYSTEMRESTRICTSCHEMA(
 $SYSTEM.DISCOVER_PERFORMANCE_COUNTERS, PERF_COUNTER_NAME =
 '\MSOLAP$SQL2012:Threads\Processing Pool Busy I/O job
 Threads')

There's more...
As you learned in this section, DMVs contain a lot of useful information about SSAS metadata
and internals even though the product does not have any system databases. Please reference
product documentation for the full list of DMVs at http://msdn.microsoft.com/en-us/
library/hh230820.aspx.

Cancelling a session
If you have managed SQL Server or other relational database systems, you should be familiar
with the unambiguous KILL command that disconnects the offending session and terminates
the query executed on that session. Analysis Services has a similar statement, though it
uses a somewhat milder term, CANCEL, perhaps more appropriate for the type of operation
it performs. After all, the impact of terminating the session isn't always immediate, even in
relational systems. If a user is running a large transaction affecting thousands or millions of
records, it could take a long time to roll such transactions back. The CANCEL command is also
different from KILL in a sense that it doesn't immediately terminate the session or query.
Rather it tags the session to be terminated. SSAS periodically checks sessions and takes
action on those sessions that have been tagged.

Chapter 8

211

How to do it...
You can terminate a session using SSMS or ASCMD by performing the following steps:

1. Query $system.DISCOVER_SESSIONS, as shown earlier in this chapter, to find
the server process identifier (SPID) of the session you wish to cancel.

2. Execute the XMLA command, similar to the following, to tag the session to be
cancelled (substitute the correct SPID value):

<Cancel xmlns = "http://
 schemas.microsoft.com/analysisservices/2003/engine">
 <SPID>2790</SPID>
</Cancel>

Cancelling a large processing or synchronization operation can take a
long time because SSAS has to rollback the work it has done up to the
second when the CANCEL command was issued.

Checking whether cubes are accessible
Microsoft does not provide any database consistency checker (DBCC) command for SSAS.
However, this does not imply that Analysis Services objects could never get corrupted. In order
to assure whether your cubes can be queried, you can set up a job that periodically runs very
lightweight queries against each cube within your SSAS plant.

How to do it...
1. To check whether your cubes are available for querying, you could use the ASCMD

utility to run a query similar to the following:

WITH member measures.is_accessible AS "1"
SELECT measures.is_accessible ON 0 FROM [adventure works]

Checking SSAS object sizes
programmatically

Most SSAS databases contain data for a finite time span instead of perpetually accumulating
data. After a while, data becomes stale and irrelevant for frequent analysis and should be
either purged or migrated to a historical database. Since the volumes of the data we work with
tend to grow quickly, we need to have a way of quickly checking the available disk space as
well as the size of each object.

Administering and Monitoring Analysis Services

212

How to do it...
Microsoft supplies a couple of handy commands you could execute directly from the SSMS
MDX query window to obtain the free disk space amount on the data drive.

1. You can execute SYSTEMGETLOGICALDrives within SSMS or from the ASCMD utility.
The command doesn't take any parameters, as shown in the following code snippet:
SYSTEMGETLOGICALDRIVES

The following table shows the result:

Drive Free Space

E: 5309

The output of the SYSTEMGETLOGICALDRIVES command depends on
the AllowedBrowsingFolders property value. Had I included C:\ in the
AllowedBrowsingFolders property value, the output would include both
C and E drives.

2. You could use the SYSTEMGETSUBDIRS command to get subdirectories of a folder
included in the AllowedBrowsingFolders property. For example, the following
command retrieves folders for each database found under the SSAS data folder:

SYSTEMGETSUBDIRS 'E:\Program Files\Microsoft SQL Server\MSAS11.
SQL2012\OLAP\Data'

There's more...
As you can tell, the commands discussed in this section are very useful but somewhat
limited because they don't provide the size of each data folder or each partition. SSMS allows
obtaining the estimated size for one partition at a time (simply right-click on the partition and
choose Properties); going through hundreds or thousands of partitions to collect the size of
each is unacceptable. Fortunately, we can obtain the necessary information with a little effort,
as shown in the following PowerShell script:

script to obtain partition and measure group sizes
#load the Analysis Services assembly first so we can instantiate
Analysis Services object:
[Reflection.Assembly]::LoadFrom("E:\Program Files\Microsoft SQL
Server\110\SDK\Assemblies\Microsoft.AnalysisServices.dll")|out-null
$instance="Julia-PC\SQL2012"
$amoServer= new-object Microsoft.AnalysisServices.Server
#connect to the instance

Chapter 8

213

$amoServer.Connect($instance)
#connect to the db and cube:
$db=$amoServer.databases.GetByName("AdventureWorks_Sample")
$cube = $db.cubes.GetByName("Adventure Works")
#loop over measure group partitions:
foreach ($mg in $cube.MeasureGroups)
 {
 $mg_size = 0
 $mg_name = $mg.name
 write-host "checking partitions in $mg_name measure group: "
 foreach ($partition in $mg.partitions)
 {
 $size = $partition.EstimatedSize;
 $size = $size / 1024 / 1024
 $size = [math]::round($size, 3)
 $partition_name = $partition.name;
 write-host "partition $partition_name is $size MB"
 $mg_size = $mg_size + $size
 }
 write-host "measure group $mg_name is $mg_size MB"
 }
#disconnect from the server
$amoServer.disconnect()

The output from this code will look similar to the following:

checking partitions in Internet Sales measure group:
partition Internet_Sales_2005 is 0.029 MB
partition Internet_Sales_2006 is 0.08 MB
partition Internet_Sales_2007 is 0 MB
measure group Internet Sales is 3.145 MB
checking partitions in Internet Orders measure group:
partition Internet_Orders_2005 is 0.739 MB
partition Internet_Orders_2006 is 0.569 MB
partition Internet_Orders_2007 is 0.501 MB
measure group Internet Orders is 2.243 MB

Scaling out SSAS solutions
As you learned in the introductory section of this chapter, Analysis Services is tuned for running
a single query as fast as possible. This means that a single large query can use much of the
available system resources and force other queries to wait. As a cube developer or database
administrator, you need to take time to educate users on how to best use SSAS's power without
bringing the production server to its knees. However, even fine-tuned cube design and queries
leave room for scalability issues—a single server computer can only have a finite amount of
system resources and, hence, can only serve a limited number of user requests. Additionally,
you will often find that processing and querying activities conflict with each other; much like in
any other database system, data readers can block writers and vice versa.

Administering and Monitoring Analysis Services

214

You have several methods at your disposal for scaling out Analysis Services solutions,
given as follows:

 f Backup databases on the processing instance and restore the databases to the
querying instances

 f Synchronize databases from the processing instances to querying instances

 f Detach databases from the processing instance and attach them to querying
instances in the read-only mode

Let's learn how to implement these scale out methods while considering the benefits and
drawbacks of each.

Backup and restore
Assuring data availability is the primary responsibility of each database administrator,
so collecting and validating SSAS database backups is essential for your job security. You can
only collect full database backups—Analysis Services does not support backups at individual
cube, measure group, or dimension level, nor does it support incremental or differential
backups. Hence, when building SSAS databases, it is imperative to consider which data sets
need to be backed up together. For example, if 80 percent of user queries examine current
data and only 20 percent check historical data, you could implement two databases—one for
historical and the other for recent data. If historical data changes rarely, you may only need
to backup the historical database once a month, whereas the database with daily changes
should be backed up more frequently. Much like other database platforms, when thinking
about your SSAS backup strategy, you should consider how much data loss is acceptable.
Some organizations consider Analysis Services backups optional because the underlying
relational data source can be used to rebuild the MOLAP database. Although this is a valid
statement, rebuilding SSAS database structure and reprocessing all objects could take
considerably longer than restoring it from a valid backup. In addition to being one of the
methods for assuring continuous data availability, backup and restore could also be used for
scaling out SSAS implementations.

How to do it...
To collect Analysis Services database backup, perform the following steps:

1. Connect to the instance using SSMS, expand the Databases folder, right-click on the
database of interest, and choose Back Up. Doing so activates the Backup Database
- AdventureWorks_Sample dialog shown in the following screenshot.

2. Supply the full path and name of the backup file. The file extension must be .abf.
If you do not explicitly specify the path, the backup file will be stored in the backup
directory as defined in the msmdsrv.ini configuration file.

Chapter 8

215

3. Specify whether the backup should be compressed. Analysis Services initially
reserves more space than it actually requires for storing the backup and
subsequently compresses the file (if the Apply compression box is checked).

4. Specify whether the backup should be encrypted with a password. Use this option
judiciously; if you forget or misplace the password, the backup file is useless because
you won't be able to restore the database from it. However, if you don't encrypt your
backups, you need to store them securely, or someone could restore your backup
and access all your organization's data.

5. Specify if the existing backup file should be overwritten and whether any remote
partitions should be backed up. Remote partitions are seldom used.

6. Take a note of the advice included at the bottom of the Remote partition backup
location dialog regarding the ROLAP, HOLAP, and MOLAP storage modes and
corresponding backup actions. You can script the XMLA backup command or
execute directly by clicking on the OK button.

I recommend appending the backup collection date and time to the backup
file's name so that each backup has a unique name. You could write a simple
script to check the backup folder and only keep a certain number of backup
files for each database after the current backup command is complete.

Administering and Monitoring Analysis Services

216

After you collect the backup, you can restore it to another server for scaling out or to the
same server in case the database becomes corrupted. Perform the following steps to
restore the database:

1. Connect to the instance where you wish to restore the database, expand the
Databases folder, right-click on the Databases folder, and choose Restore.
This activates the Restore Database dialog shown in the following screenshot.

2. Specify the full path and name of the backup file. You can click on the Browse...
button to find the file (this will only allow you to browse the folders specified in
the SSAS instance properties); alternatively, you can type the entire string into
the textbox.

3. Specify the name of the database you wish to restore. You could restore over an
existing database, in which case you must check the Allow database overwrite
box or you can restore by creating a new database.

4. Specify the security settings for the restore operation; you can either copy all security
roles or skip security. This option only applies to existing databases. For example,
if you are restoring the production database backup to a test SSAS instance,
the security settings in the two environments might be different. In this case,
you can skip security during restore.

5. If the backup file was encrypted, you must specify the password.

6. The Storage location textbox allows specifying an optional alternate/nondefault
location for database files. By default, files will be copied to the \OLAP\data folder
of the SSAS installation directory specified in the SSAS instance properties.

7. The Partitions page of the dialog allows restoring remote partitions as well as
specifying alternate locations for individual partitions. Use this flexibility with care;
placing datafiles in a nondefault location makes debugging difficult.

You can restore a database using a different name than the name
of the database you backed up.

Chapter 8

217

How it works...
Analysis Services creates a temporary folder—the folder name is globally unique identifier
(GUID)—for the database being restored and extracts all datafiles into this folder. After all the
files have been copied, the existing database folder is deleted, and the temporary folder is
renamed from GUID to the actual database name.

Keep in mind that if you're restoring an existing database it will continue to remain
online—available for queries—while the restore command is running. Therefore, you will
need sufficient disk space to hold both the existing and new copy of the database until the
restore command copies all files to the temporary data folder. So, if you are restoring a
100 GB database, you will need at least 200 GB to continue using the existing database
while it is being restored.

Administering and Monitoring Analysis Services

218

If you host multiple databases on the same instance, you can run multiple backup/restore
commands in parallel. However, you cannot process or make any structural changes to the
database being backed up since doing so will cause the backup command to fail.

Sadly, Microsoft does not provide any DBCC commands to check backup
consistency. The only way to verify the validity of your backup is to actually
restore from it. A reasonable practice is to have an automated job that
restores production database backups to a test (standby) instance.
Contrary to popular belief, SSAS databases can indeed get corrupted for
various reasons. So, having multiple copies of the database and valid
backups is highly prudent.

Synchronizing databases
Analysis Services database synchronization is a very useful feature that allows the database
administrator to copy database files from the source to target SSAS instance. Synchronization
is always incremental; it only copies the files that are different on the source instance as
compared to the same files on the target instance. This enables the administrator to ensure
that the source and target instance have the same data with minimal effort. Because
synchronization is incremental, it could be much faster than collecting the backup and
restoring the full database to the target instance.

Synchronization always works in the pull mode—the command is executed on the target
instance. Synchronization is also single threaded, which means that it only copies one file at a
time and there is no way to force copying multiple files in parallel. This normally isn't an issue
for dimension files because these tend to be relatively small. However, partition data and
aggregation files can get quite large and copying only one file at a time could be prohibitively
slow. You can synchronize an existing database or synchronize to an instance that currently
does not have the database; in this case, SSAS will have to copy every file to the target.

How to do it...
To synchronize a database, perform the following steps:

1. Connect to the target instance using SSMS, right-click on the Databases folder,
and choose Synchronize. Skip the Welcome screen.

2. Specify the source SSAS instance and the database you wish to copy. The same
screen allows you to choose the destination (target) data folder. Unless your data
drive is out of disk space and you must choose an alternate location, use the default
values and click on Next.

3. Review the list of partitions on the next screen to get an idea of how much data will
need to be copied.

Chapter 8

219

4. The screen that follows allows you to choose whether data should be compressed
during synchronization; this is the default and recommended option. Additionally,
you can choose to copy all security settings, ignore security, or transfer only the
security roles without including the role members. Much like the case when restoring
the database, security options are useful when transferring data from production to
QA or test environments.

5. The Synchronization wizard allows you to execute synchronization right away
or save the command to a file. You do not have the option of scripting the command
to the query window or clipboard. The Synchronize XMLA command will look like
the following:

<Synchronize xmlns:xsi = "http://www.w3.org/2001/XMLSchema-
 instance" xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
 xmlns = "http://schemas.microsoft.com/analysisservices/
 2003/engine">
 <Source>
 <ConnectionString>Provider = MSOLAP.5;Data Source =
 julia-pc\sql2012;Integrated Security = SSPI;Initial
 Catalog = AdventureWorks_Sample</ConnectionString>
 <Object>
 <DatabaseID>AdventureWorks_Sample</DatabaseID>
 </Object>
 </Source>
 <SynchronizeSecurity>CopyAll</SynchronizeSecurity>
 <ApplyCompression>true</ApplyCompression>
</Synchronize>

How it works...
As you already know, the Synchronize command runs on the target instance. However,
you cannot process or make changes to the source database while it is being synchronized.
This is implemented through an explicit BEGIN TRANSACTION command on the source
instance. Once all the files are copied over to the target instance data folder and
synchronization is ready to commit its work on the target instance, SSAS issues an explicit
ROLLBACK TRANSACTION command on the source instance to release locks and allow
resuming processing.

The Synchronize command generates an in-memory list of all database files on both the
source and target instances (presuming, of course, that the target instance already has the
database you're about to sync). Synchronization next compares the metadata on two instances
and comes up with the list of files that have a different version number, name, or size on the two
instances. The files that are different are copied to a temporary folder on the target instance.
The temporary folder uses a GUID as the name. Once all new files are copied, the existing files
(identical on the source and target) are copied from the target instance's existing database
folder to the temporary data folder. Once the GUID folder has all the files, SSAS deletes the
existing database folder and renames the GUID folder to have the same name as the
database. Synchronization also increments the data folder version number.

Administering and Monitoring Analysis Services

220

Much like the restore function, synchronization keeps the existing database online while
new files are being copied. Therefore, if you're copying the large majority of database files,
you will need free space to support two copies of the same database at the same time.

As you already learned, synchronization compares file version numbers, in addition to file sizes
and creation dates. If you want to avoid having to transfer all files, it is best not to process any
items on the target instance because doing so will change the file version numbers even if the
file contents do not change.

Due to its incremental design, synchronization can be considerably faster than backup and
restore. On the other hand, synchronization failure (perhaps due to a network outage) can
often lead to target database corruption. If the target database is corrupted, we must either
restore it from a backup or drop the corrupted version and run a full synchronization from
another instance. Yet another disadvantage of synchronization is that it does not create a copy
of the database as the backup command does. If the source database has incorrect data (or
even a corruption issue), synchronization quietly transfers the problem to the target instance.

Detaching and attaching databases
You are now familiar with backup and restore as well as synchronization methods for
scaling out SSAS solutions. However, as you learned in the previous section, synchronization
is single threaded and must transfer only one file at a time. Fortunately, you can use the
Detach and Attach features along with the Robocopy command for copying files to ensure
the faster delivery of files from the source to target instance.

When you detach a database, SSAS leaves the data folder in its current location and creates
a detach logfile. You can copy the entire data folder to another host or another instance's data
folder and reattach the database. Keep in mind, however, that unlike synchronization,
the Detach and Attach methods do not copy the data for you; you must come up with
your own routine (script) for copying data. Additionally, you can attach a previously detached
database in the read/write mode to only one instance. For all other instances, you must attach
the database in the read-only mode. For most environments, this is acceptable because large
databases rarely use write-back, and data must be processed on only one instance.

The Detach and Attach operations simply update the server metadata; they don't have to
copy files or change security. Hence, both are very fast.

Chapter 8

221

How to do it...
To detach a database, perform the following steps:

1. Connect to the SSAS database of interest using SSMS, right-click on the database,
and choose Detach. This activates the Detach Database dialog.

2. You can specify the password that will be used for encrypting the detached database.
As with the backup command, document the password in a secure location if you
intend to encrypt the database. You can script the Detach command—it will look
similar to the following code snippet:
<Detach xmlns = "http://schemas.microsoft.com/
 analysisservices/2003/engine">
 <Object>
 <DatabaseID>ssas_cookbook_chapter3</DatabaseID>
 </Object>
</Detach>

3. After you run the command, you will find a file named ssas_cookbook_chapter3.
detach_log in the Database folder.

To attach a previously detached database, perform the following steps:

1. Connect to the target SSAS instance (or the same instance from which you previously
detached the database) and choose Attach.

2. If you encrypted the database prior to detaching, you must provide the password.

3. Specify the full path to the folder with the detached database. You have an option
to attach the database from its current location (without copying any files) or from a
different location after you copy the database files to that location.

4. If you script the Attach command, it will look similar to the following code snippet:
<Attach xmlns = "http://schemas.microsoft.com/
 analysisservices/2003/engine">
 <Folder>E:\Program Files\Microsoft SQL Server\
 MSAS11.SQL2012\OLAP\Data\ssas_cookbook_chapter3.0.db
 </Folder>
 <ReadWriteMode xmlns = "http://schemas.microsoft.com/
 analysisservices/2008/engine/100">ReadOnly
 </ReadWriteMode>
</Attach>

5. If you prefer to attach in the read-write mode, simply replace Readonly with
ReadWrite within the command previously shown.

Administering and Monitoring Analysis Services

222

If you do not copy files and attach the database to multiple SSAS
instances from the same location in the read-only format, you'll be
able to use CPU and memory resources on multiple hosts when
sharing the same disk resource. Although this option might sound
attractive, test your queries thoroughly to ensure that storage-
intensive queries still perform to your expectations.

How it works...
As you learned, the Detach and Attach operations are nearly instantaneous because they
only modify the SSAS instance metadata and do not have to copy any files. In order to make
the same files available on different hosts, you must copy the files yourself, either manually
or through code. Robocopy (Robust File Copy) is a command-line tool, which you could use
to copy files. It is available as part of the Windows Resource Kit. Robocopy is multithreaded,
out of the box on Windows 2008. If you use prior versions of the Windows operating system,
you cannot take advantage of multithreading but you can be creative and launch multiple
instances of Robocopy in parallel, each copying one set of data. One approach is to copy
all the files with a certain extension in the same Robocopy session; this approach is not
particularly effective because it copies dimension files very quickly but larger partition
files still have to wait. A better approach is to launch a separate Robocopy session for
each partition. Reference the Robocopy documentation for necessary switches and
syntax examples.

The Detach/Robocopy/Attach method could be the fastest way of ensuring that multiple
SSAS instances have the same data. However, unlike synchronization, this method does not
provide an automated way of copying files. Additionally, this method does not make a copy of
the database (unlike the backup command); hence, it could quietly transfer incorrect data
or corruption issues from source to target. Remember too that we can only have one copy of
the database attached in the read-write mode—all other copies must be read-only. Once a
database is in the read-only mode, you cannot process any objects or write data back to any
object. Furthermore, you can no longer drop the database. If you need to drop the read-only
database, you must detach it first and then manually delete its files from the data folder.

Each of the scale-out methods requires a third-party solution for balancing the querying load
across multiple SSAS instances. The common implementation of load balancing distributes
queries using the Round-robin approach; however, this approach could lead to one instance
being heavily loaded, while others are virtually idle due to the lightweight queries. A better
approach is to check CPU and/or memory usage on each host and send each query to the
host with least resource utilization. Please refer to the SQLCAT team blog for more information
regarding query load balancing and scaling out SSAS solutions at http://www.sqlcat.com.

9
Using Tabular Models

In this chapter, we will cover:

 f Creating a Tabular Model

 f Working with data sources and loading data

 f Modeling the data

 f Creating a hierarchy

 f Creating a calculated measure

 f Creating a calculated column

 f Creating a KPI

 f Analyzing your model in Excel

 f Deploying Tabular Models

 f Scripting Tabular Models using XMLA

 f Processing Tabular Models

 f Partitioning Tabular Models

 f Implementing perspectives

 f Implementing security in Tabular Models

 f Automating Tabular Model processing

Using Tabular Models

224

Introduction
This chapter covers the concepts of creating SQL Server Analysis Services (SSAS)
Tabular Models that are included in SQL Server 2012. Tabular Models are the enterprise
implementation of the xVelocity In-Memory Analytics Engine models that were introduced with
Power Pivot and SQL Server 2008 R2. Often, Tabular Models are the result of working with
Power Pivot models. The Power Pivot and Tabular Models are built on the same technology.
However, there are some features which are not included in Power Pivot but are available in
Tabular such as DirectQuery, partitions, and higher-level security. In this chapter, we will focus
on building Tabular Models in SSAS using Visual Studio.

We will be using SQL Server Data Tools (SSDT) in this chapter to create our model. Much of
the work that we do in the initial creation of the model can also be done using Microsoft Excel
2010 or Microsoft Excel 2013 with the Power Pivot add-in. The design interface is very similar,
so you will be able to use much of what you learn here to create Power Pivot models as well.
As a result, I will be calling out those features that are exclusively the domain of SSAS so that
you are able to understand the expanded capabilities of the Tabular Model.

In this chapter, we will be using the SQL Server sample database, AdventureWorksDW2012,
which can be downloaded from www.codeplex.com. The sample work in this chapter will focus
on the Internet Sales fact table (factInternetSales) and its related dimension tables.

Creating a Tabular Model
In this recipe, we will walk through creating a Tabular Model database project using SSDT.
As you begin working with Tabular Models, you will see that some of the complexities in setting
up a good multidimensional model do not apply. While working with multidimensional models,
you typically need all of the data organized and ready for consumption by Analysis Services.
However, Tabular Models are much more forgiving. The key design requirement to take into
consideration is: What data does the business need? As a result, we will create a model
database here and work through model modifications in the following recipes.

Getting ready
Before you create your first Tabular Model database, you must have an installation of Analysis
Services with a Tabular Model instance available to you. This can be a local installation or a
network installation. This is required because a Tabular Model database is developed in real
time using the xVelocity In-Memory Analytics Engine and RAM to store the database while you
are working with it.

Chapter 9

225

How to do it…
Let's get started on our Tabular Model by performing the following steps:

1. Using SSDT, choose to create a new project. This will bring up the New Project dialog.
From this dialog, there are three methods to create a new Tabular project. Two of
them are import options: Import from PowerPivot and Import from Server (Tabular).
Although they are not the subject of this recipe, I do want to call these options out.
The Import from Power Pivot option is particularly effective while upgrading a Power
Pivot model to take advantage of the Tabular Model features in Analysis Services.
This usually includes expanded requirements such as security, processing, and
partitioning. You can create a Tabular Model that serves as a template that can be
modified to meet any business needs. This makes the Import from Server (Tabular)
option compelling for scenarios that can use baseline models for targeted analysis.

2. We are going to pursue the first option in the list that allows us to build a Tabular
Model using Visual Studio. Select Analysis Services Tabular Project, give the new
project a name, and set a location that will work for you.

3. Once you have set these details, click on OK to create the project. This will create a
new solution, a new project, and a development database on your tabular instance.

If you have a local Tabular Model instance of SSAS, the project
will point to that. However, if the project cannot discover the
tabular instance, you will be prompted to select the instance
to be used for the project.

4. In the project's solution explorer, you will see your project and a Model.bim file.
This file is the container for your Tabular Model. However, as I mentioned before,
the actual development requires a tabular instance.

Only one BIM file will exist in the project. Tabular database
projects only support one model.

Using Tabular Models

226

5. If you open up SQL Server Management Studio and connect to your tabular instance,
you will see a new tabular database, which has the name of the project, the name of
the user, and GUID to make up the name.

There's more…
If you need to change the target server for your tabular development, you can do that by
modifying the settings for the model. Right-click on Model.bim and select Properties.
From this Properties page, you can change Workspace Server and set Workspace Retention.
The server just needs to have an Analysis Services tabular instance on it.

The Workspace Retention property is used to set how the tabular instance manages your
model when the project is closed. Workspace Retention is set to Unload from Memory by
default. This has the following three options: Keep in Memory, Unload from Memory, and
Delete Workspace. Keep in Memory will keep the workspace database in memory even
after you have closed the project. Unload from Memory will remove the database from the
memory. Delete Workspace will remove the database from the server once you have closed
the project. The Delete Workspace and Unload from Memory options force you to reload the
data whenever you want to work on your project. You should choose the best option based on
the resources you have available on your workspace server.

Working with data sources and loading data
In the previous recipe, you created the project; now it is time to load data into the model.
Unlike other data modeling or data projects you have worked with, the Tabular Model loads
the data into the model as soon as you define the data source and specify the data to load.
This is a step beyond What You See Is What You Get (WYSIWYG). In this case, you see the
data and the effects of all changes you make to it in real time.

The other thing is that you can load all types and sources of data into the model and relate
the data after the data has been loaded. Data from a relational database, a text file, a data
feed, or even a Power Pivot model can all be loaded into the same Tabular Model for analysis.

Chapter 9

227

In multidimensional models, you will create a data source and then a
data source view. The next step is to finish designing the dimensions
and measure groups. Once you have completed the design, you will
load data. In a Tabular Model, creating the data source and loading the
data are done simultaneously.

In our example, we will be loading tables from the AdventureWorksDW2012 database. We will
be using the project that was created in the previous recipe as the target for our recipe.

How to do it…
In your project, you will notice that there is no concept of creating a data source:

1. Open the model by double-clicking on Model.bim or choose Open from the
context menu. Once the model is open, you will be looking at a blank tab in
the Visual Studio IDE.

2. From the MODEL menu at the top of the IDE, choose Import from Data Source.
As you can see, there is no create data source option. Instead, once you select
your data, it will be loaded into memory on the target Tabular Model instance.

It is very important to understand the size of the data you are
planning to work with in your Tabular Model. If you have a lot of
rows, very wide rows, or a combination thereof, you may need
to start with a sample set or a filtered set of data to keep the
loading time shorter and to manage memory consumption better
during the development process.

3. Once you click on Import from Data Source, you will open the Connect to a Data
Source dialog. In our example, we will be using Microsoft SQL Server to connect to
our AdventureWorksDW2012 database. However, many different data sources are
supported by Tabular Models, and while the process may vary from source to source,
the result is the same—data is imported into your model.

4. Once you have selected your data source, click on Next, and you will be prompted to
fill out the connection information.

5. As you complete the connection information, Microsoft will create a name based on
the properties you have specified, such as SqlServer ServerNameSQL2012DB
AdventureWorksDW2012 in our case. As you can see, it concatenated the data
source, server name, and database name. While being informative, something like
Adventure Works DW would also be easier to understand and work with. This also
solves an issue where you need to change the server name at a later time, but you
want to keep the same connection name.

Using Tabular Models

228

6. On the next dialog, you will be prompted for the impersonation information.
The purpose of this information is to set a user or a set of credentials that
can be used by the tabular instance to refresh the data. You can specify a
user account or use the service account if your instance's service account
has access to the data source.

7. Our next step allows us to choose the data. There are two ways to get data from a
relational data source: you can choose from a list of tables and views, or you can
write a query. In most cases, you will find that selecting from tables and views will
be a quicker solution.

8. The Select Tables and Views dialog has a number of important features including
the ability to find related tables and filter the data. In our example, we will select the
FactInternetSales table and then click on Select Related Tables. The selected
six additional tables are listed in the information area below the list, as shown in the
following screenshot:

Chapter 9

229

9. We still have a couple of steps to complete before we are done. The next task to
do on this screen is to set a friendly name for each of the tables. In our example,
this is fairly straightforward. We will remove the prefix and add spaces where
needed. For example, DimPromotion will become Promotion.

10. You can also preview and filter the data here. From the preview dialog, you are able
to filter, sort, and reduce the width of your table. You can filter the table by clicking
on the down arrow on the right-hand side of the column header. This will open a
drop-down list of distinct values from the column you are working with. You can
select one to many of the options, and the table will be filtered appropriately,
as shown in the following screenshot:

11. There are also sensitive filters for different data types that handle ranges and more
complex filtering options. You can sort the data from the same drop down. You can
reduce the width of your table by unselecting the columns using the checkbox to
the left of the column header. The preceding screenshot shows where all of these
options are.

Using Tabular Models

230

12. Once the data has been selected and filtered, click on Finish. The data will start
importing, showing the current table being imported and the number of rows
transferred to the model.

Reducing columns at the data source will help improve
performance during the design process and ultimately in
the final model.

13. After the data has been successfully loaded, you will see an Excel-like display of
the imported data. At this point, you should save the model so that you do not
lose your work.

There's more…
Not only can you select tables, you can also create a query. When you choose to create a
query, you will be asked to set a friendly name (which is Query by default) and enter the SQL
statement. In our case, we will use a query to bring in the contents of the ProductCategory
and ProductSubCategory tables. A designer is available by clicking on the Design button,
but I would recommend that you use a query tool, such as SQL Server Management Studio,
to do the initial design work on your query.

We are going to use the following query to create a ProductCategory table in our model:

select pc.ProductCategoryKey
 ,pc.EnglishProductCategoryName as CategoryName
 ,psc.ProductSubcategoryKey
 ,psc.EnglishProductSubcategoryName as SubcategoryName
from DimProductCategory pc
inner join DimProductSubcategory psc
on pc.ProductCategoryKey = psc.ProductCategoryKey

In the query import, you do not have preview or filtering options. You can validate the syntax
from here though. Once your query is ready, click on Finish to load the data into the model.
The import dialog is the same as that for the tables but will only contain one work item in this
case. Once it is done, your data has been loaded into the model.

If you need to add more tables or queries from the same data source, you can use the
Existing Connections button on the toolbar or the MODEL menu. This will open up a dialog
with the data sources you have already created. By naming your connections in a meaningful
way, this dialog will allow you to add data easily from the existing connections in your model.

Chapter 9

231

Modeling the data
Now that the data has been loaded, there are a few modeling techniques that should be
applied to the model. Due to the mash up nature of the Tabular Models, you will likely need
to do the following common clean up operations:

 f Update column names

 f Fix data types and formats

 f Add relationships

You will learn how to do each of these in this recipe.

Getting ready
Before you can model data, you will need data in your model. If you have not loaded data yet,
refer to the previous recipe on loading data.

How to do it…
You will be working in SSDT to make the changes.

1. Our first change is to update the column names. The column names should be
user-friendly and easy to understand.

2. You can rename the column by right-clicking on the column and selecting Rename
Column from the shortcut menu. In some complex scenarios, you may be required to
rename all of the columns. In particular, this will likely be required for text loads that
may be loaded with column names; for example, Column1, Column2, and so on.

As a best practice, you should update column names when
the data is loaded and before you begin updating the model.
This will prevent issues with calculations that are added to
the model later and are dependent on the column names.

3. It is also important to verify and fix any data types that were not properly identified
during the load. While loading from relational data sources is usually not a problem,
it is a common issue from file-based or feed-based sources.

4. You can change the data type in the Properties page of the selected column. In the
Basic section, you will see the Data Type property, which has a drop-down list of the
supported types.

Using Tabular Models

232

Tabular Models only support a few basic data types: text,
whole number, decimal number, currency, date, and TRUE/
FALSE. The default type is text and will often be the only
type used for text file loads.

5. You can also change the data format in the Properties page of the selected column.
In the Basic section, you will see the Data Format property, which uses a drop-down
list to let you select the correct format and type for the column.

Always fix the data type before working with the format.
Once you have corrected the data type, the data format
drop-down list will display the valid options for the type.

Chapter 9

233

6. The third model modification is adding relationships. Relationship building is likely
the most important part of the modeling process as it allows the user to interact with
the data in interesting ways. However, you should fix columns and data types prior to
working with the relationships.

7. In SSDT, you should look for the diagram view. This is the easiest way to visualize
the data relationships. You can get to the relationship view either by accessing the
main menu or a small button on the design surface. Navigate to the menu option via
MODEL | Model View | Diagram View. The button on the design surface is at the
lower right-hand corner on your Model.bim tab. Refer to the following screenshot to
see what to look for:

Using Tabular Models

234

8. Once you open the diagram view, you will see how the relationships are mapped in
your model, as shown in the following screenshot:

9. As you can see, SSAS was able to identify the relationships in our model when we
imported the data. You will also notice that we are missing the relationship between
the Product Category table and the Product table.

10. The easiest way to create this relationship is to drag ProductSubCategoryKey
from one table to the other; the direction does not matter as SSAS will evaluate the
data to determine the correct direction for the relationship.

11. You can also create the relationship by right-clicking on the column name in either
view and by selecting Create Relationship…. This will open up a dialog that allows
you to select the tables and fields in the relationship.

Chapter 9

235

12. You need to be aware of a couple of restrictions around relationship building.
The Tabular Model does not support a multifield relationship. Tabular Models
also do not support role-playing dimensions. If you look at the preceding
screenshot, you can see that the relationships between the Date table and
the Internet Sales tables include dotted lines. These represent nonactive
relationships in the model. Only active relationships can be used in major parts
of the data analysis natively.

Inactive relationships can still be used through DAX. Refer to
Chapter 10, DAX Calculations and Queries, to see how DAX
can be used to extend the model.

How it works…
While loading the data, SSAS evaluates the data and sets the settings (previously discussed)
based on what it can learn from the data source. For instance, if foreign keys are discovered
in the incoming data, and the related tables are also imported at the same time, relationships
will be added to the model during the initial load. (Subsequent loads with new tables will not
include the relationships.) The model will also evaluate data types during this initial load and
set them in the model. These features work well with metadata-rich data sources such as
relational databases. However, some sources provide little to no information during the load
process, such as text files, and need to be reconciled as previously mentioned.

There's more…
Actually, there are many other options you can use to refine your model. The following are just
a few additional options you should consider while you are finishing your model:

 f Specifying the date table
 f Setting the default columns
 f Hiding the columns from client tools
 f Hiding the tables from client tools

You should note that the sorting and filtering of data
within the design surface of SSDT does not affect the data
presented to the user. These features help you as a designer
to view relevant data during the modeling process.

Once the date table is specified, time intelligence can be applied to the data. You can specify
a table as a date table by navigating to TABLE | Date | Mark As Date Table when the table
is selected. In our example, select the Date table and then set it as the Date table for the
model. Usually, this will detect and set the date column of this table as well, but it is always
good to verify that the correct column was identified.

Using Tabular Models

236

You can also designate certain columns as part of the Default Field Set property. This can be
done from the Properties page for a column or a table. In the Reporting Properties section,
click on the ellipse button to the right of the Default Field Set property. This will allow you
to select the fields and the order of those fields that represent the default view of the table.
This can be used by some client tools that enable you to select a table instead of individual
fields while creating visualizations.

Often, there are fields included in the model that do not need to be seen or used by the users.
You can hide these by using the Context menu on a column and selecting the Hide from
Client Tools option, or by changing the value of the Hidden property on the Properties page.
The same options work for tables; you just need to select the table instead of the column.

See also
 f If you need to use a multifield relationship between tables within the model, checkout

the Creating a calculated column recipe. Calculated columns can reshape the data to
make relationships work.

Creating a hierarchy
As with multidimensional models, hierarchies can be helpful while defining the relationship
between the fields in a table. The Tabular Model allows you to add hierarchies that can be
used by client tools.

How to do it…
You will need to open the diagram view (MODEL | Model View | Diagram View) in order to
work with hierarchies. In this recipe, we will be using the Date table and creating a calendar
and fiscal hierarchy, which are used pretty commonly, by performing the following steps:

1. In the diagram view, you need to click on the Create Hierarchy button on the Date
table. This will add a hierarchy section to the bottom of the table. You will assign a
name to the hierarchy here and then drag fields to add to the hierarchy.

2. Our hierarchy will be fairly simple. Drag the columns down to the hierarchy. You need
to drag the first column directly on to the hierarchy name.

3. Each column thereafter, you will drag and place in the preferred order of the
hierarchy. I would recommend that you drag the columns by always adding
new columns to the bottom of the field list; for example, CalendarYear,
CalendarQuarter, EnglishMonthName, FullDateAlternateKey.

Chapter 9

237

4. Now that you have the fields, you can rename them in the hierarchy in the Properties
page or from the context menu. This can be helpful if you plan to re-use columns
in other hierarchies. In our example, we will be reusing EnglishMonthName and
FullDateAlternateKey, and we will rename them to Calendar Month and
Calendar Day, respectively.

5. Now, let's add the Fiscal hierarchy. To create this hierarchy, right-click on the
FiscalYear column, and select Create Hierarchy. This will add FiscalYear
as your first level in a new hierarchy, which you can name Fiscal. Next, you drag
the fields you want in this hierarchy. Once you have completed these activities,
your Date table should look like the following screenshot:

Using Tabular Models

238

There's more…
You can modify the hierarchies later as needed. From the Context menu on the hierarchy,
you can change the order of the fields in the hierarchy or remove fields that no longer fit
in your hierarchy. For example, if you wanted to add the semester levels to the hierarchies,
you can drop those anywhere into the hierarchy and move them to the proper location.

Creating a calculated measure
One of the great strengths in a model is the ability to create calculated measures and
calculated columns. This recipe will cover calculated measures, and the next recipe will
discuss calculated columns. However, this is a good place to differentiate between the two.

A good example of a calculated measure would be the sum of sales in our sample model.
In this case, we will want to slice the sum by many different values within the model, such as
date, customer, and product. A calculated measure will use these values to create a slice of
references that are used to get the sum of sales.

One example of a calculated member is a formatted customer name such as Last name,
first name. In this case, you need to use the context of the row in the table as part of
the calculation because each row will use its values in the calculation. More on calculated
columns can be found in the next recipe.

In this recipe, you will learn how to create calculated measures within the model.

Getting ready
You need to have the data view of the model open. Open the Internet Sales table and we
will begin.

How to do it…
In the Internet Sales table, select the SalesAmount column. The quickest way to add
a calculated measure is by using the Aggregation button on the toolbar, which also looks
like a sum symbol. Because the most common aggregation used in analytic models is sum,
it is therefore the default option. However, the drop down will create averages, counts,
distinct counts, max, and min aggregations for the selected column as well.

Chapter 9

239

1. Select the Sales Amount column, and then click on the sum symbol. This will
create a new calculated measure in the measure grid below the column. If you click
on the cell in the measure grid, you will see the DAX formula used to create the
calculation. It should be similar to the following formula:
Sum of SalesAmount:=SUM([SalesAmount])

2. If you want to change the name, you can change it in the formula bar or in the
Properties page using the Measure Name property. The name precedes the colon
and equal sign. The expression would look like the following, when the name is
changed to Total Sales:
Total Sales:=SUM([SalesAmount])

One of the key differences between the Tabular Model
and the multidimensional model is its support for
distinct counts. Distinct counts require additional work in
multidimensional models, whereas this is not required in
the Tabular Models.

3. You can also add calculations based on multiple columns. In our next example,
we will calculate the effective tax rate by dividing the tax amount by the sales
amount. As a calculated measure, we want this to still be a sliceable value.
To create this calculation, we will add a formula anywhere in the measure grid
at the bottom of the design surface. The formula we will add is as follows:
=SUM('Internet Sales'[TaxAmt])/ SUM('Internet Sales'[SalesAmount])

4. When you add this formula in the measure grid, it is assigned a generic name such
as Measure 1. As previously mentioned, you can and should change the name.
You can also change the formatting in the Properties page. This measure should
be in the percent format.

See also
 f For a more detailed discussion on DAX, refer to Chapter 10, DAX Calculations and

Queries, where more complex DAX calculations will be discussed.

Using Tabular Models

240

Creating a calculated column
Unlike calculated measures, calculated columns use row context with the formula.
Calculated columns also are helpful for nonaggregated calculations such as concatenated
text values like formatted full names (Last Name, First Name).

How to do it…
Using the data grid design view, there are a couple of ways to add the column. You can
right-click on a column header, and use the Insert Column option to add a column to
the left of the selected column. The other option is to go to the far right of the data grid,
and you will see an undefined column with Add Column in the header:

1. Let's create a full name column in the Customer table for reporting. Click on the
Add Column header at the end of the grid.

2. In the formula bar at the top of the grid, add an equal sign. To add the last name
to the formula, scroll over to the left and select any value in the LastName column.
This will add [LastName] to the formula.

While not applicable here, you can also change tables
and select columns from other tables to add to the
formula. This works best with related tables.

3. After adding the last name, add the following characters & ", " & and then
type "[F", and you should see [FirstName] in the intellisense list. Click on
[FirstName] and hit Enter. This will add the column at the end of the data grid.
The completed formula is [LastName] & ", " & [FirstName].

Be aware that hitting Enter while the item is highlighted in the
intellisense list will complete the entry and build the column. If you
are not done creating the formula, you may find this frustrating.
Use the Tab key instead while writing formulas to avoid this issue.

4. Once you have completed the formula, you should rename the column to
Full Name.

Chapter 9

241

There's more…
In the Modeling the data recipe, I mentioned that data can be related using calculated
columns. This is important while working with data from different sources where the data
may not be naturally related. You can resolve this issue by using calculated columns which
will support relationships. A quick example would be bringing in an external ZIP code reference
table named ZipCode. If your Address table had the ZIP+4 format, (55778-4224) and the
new ZipCode table only had ZIP codes without the "+4" (55778), you could create a calculated
column on the Address table to strip those extra five characters off (=Right([Address].
[ZipCode],5)). Now, a relationship is possible between the new column in Address and
the existing column in ZipCode.

See also
 f Check out more options for creating calculated columns in Chapter 10, DAX

Calculations and Queries, in the section on DAX formulas.

Creating a KPI
Key Performance Indicators (KPIs) are used to visualize specific metrics that represent
the overall health of what is being measured, such as sales or growth. The Tabular Model
supports the creation of KPIs that can be used in various client tools.

Getting ready
You need to first create a calculated measure. We will use two new calculations for this KPI in
the Internet Sales table. In Measure Grid, create a new measure in the Total Product
Cost column, named Total Cost. You can do this by simply clicking on a cell in the column
in Measure Grid in the Total Product Cost column. Next, use the aggregation shortcut on
the toolbar to create a SUM measure and rename the column Total Cost.

Once you have Total Cost created, you will use Total Cost and Total Sales created
in the previous recipe to create a new measure named Cost Percent. In Measure Grid,
click on a cell and add the following expression to the formula bar:

Cost Percent:=[Total Cost] / [Total Sales]

All that is left is to set the format for this new calculation to percentage with two decimal
places. This will help with the presentation of the new calculation.

As mentioned previously, it is very important that you use good names
and formatting as you create measures. Consider this as a best practice,
and make it a habit when designing Tabular Models.

Using Tabular Models

242

How to do it…
Now that we have the supporting measures created, we can add the KPI by performing the
following steps:

1. You can add a KPI by right-clicking on the calculated measure or using the Create KPI
icon on the ribbon. This will open the following screenshot:

If you look at the preceding screenshot, you will notice the four key elements that
make up a KPI: KPI base measure, target value, status thresholds, and icon style.
Let's work through each element.

Chapter 9

243

2. When you create the KPI, you select a calculated measure in the measure grid.
This becomes the base measure. The role of the base measure is the value which
will be measured against the target value. In our example, Cost Percent is our
KPI base measure.

3. The target value can be sourced from one of two areas. The first option is to use
another calculated measure. You would use that option when you can use calculation
for targets. For instance, if you created a calculation to represent the previous year's
sales, you could use that as the target. In our example, we are using a percentage
value, which lends itself well to using the other option, an absolute value. Let's say
that you set a target of 50 percent of the total cost for all sales. Then you would
select the Absolute value option and put 0.5 into the textbox.

4. Next, you need to define the status thresholds. There are four sample color grids in
the lower right-hand side of the threshold definition. These represent your options to
create your thresholds. They represent how to display the KPI based on the distance
from the target. The threshold options will change based on the icon set selected.

5. Select the first icon set, which has the red, yellow, and green circles.

6. Next, you need to select the threshold style in the lower left-hand corner, which has
three colors in the order green, yellow, and red. This lets us represent lower cost
percentages as good and higher percentages as bad. At this point, you would notice a
dotted line on the threshold bar named Target. This bar represents the target value.

7. Our next decision is to split the threshold among our three options. Drag the left-most
marker to the Target bar. It should now have 0.5 as the value above it. This means
that we are marking our target or lower as "good" or green.

8. Next, we need to determine what the range for "concerned" or yellow should be.
You can set this at 0.6. Even if you do not see that much room on the right-hand
side of the threshold bar, keep moving the marker as it will expand as you need
it to. You can also enter values directly into the white boxes above the markers.

Using Tabular Models

244

9. Your finished dialog should look like the following screenshot:

10. In Measure Grid, you will see a change to your measure. It now has a small Chart icon
in the cell, as shown in the following screenshot:

Chapter 9

245

There's more…
KPIs can use a different set of thresholds based on some of the other icon sets.
Right-click on your Cost Percent measure, and choose Edit KPI settings….
With the dialog open, let's experiment with some of the options available to us.
Let's choose the circle icon set. This changes our options as shown in the
following screenshot:

As you can see, you now have five markers. While our data does not present itself well in this
scenario, it does demonstrate the fact that more than three icons can be used with the KPIs.

Using Tabular Models

246

The last scenario uses one of the tricolor options with five segments. Select the threshold set
that is red, yellow, green, yellow, red. This option allows you to set a KPI where "close to target"
is good. This will create four markers, but they actually still only have three states: good,
concerned, and bad.

As you can see from these examples, you are able to create a variety of KPIs that can be used
with your models.

See also
 f Look at the next chapter on DAX in order to understand more complex calculations

that you can use to create more compelling KPIs.

Analyzing your model in Excel
Do you want to see how your model would look in Excel? Before we get to the deployment and
other more enterprise or server options related to Tabular Models, you should have a look at
your model in a client tool. This capability is built into SSDT.

How to do it…
A good time to analyze your model is before deploying it:

1. In the Model menu on the ribbon, choose Analyze in Excel.

2. You will be prompted to choose a few options that we will discuss later. Leave the
defaults and click on OK.

Chapter 9

247

In Excel, you can use the Pivot Table to check measures, hierarchies, and KPIs that
you have created so far. This is a nice, quick check on how your data will look to an
end user.

There's more…
When you first choose to analyze the data in Excel, you are presented with multiple options
about how you want to view the data. As you can see, you have the option to choose different
users, roles, and perspectives when analyzing the data. This will allow you to verify security
settings (users and roles) as well as perspectives when you analyze the data.

Using Tabular Models

248

See also
 f For more information on security, see the Implementing security in Tabular Models

recipe. You can also check out perspectives in the Implementing perspectives recipe.

Deploying Tabular Models
Next up is deploying your model. There are a number of clickable methods to deploy
your model.

Getting ready
Before you start deploying your model, it is important to set your deployment settings.
This allows you to set the target server for deployment. You will find the deployment
configuration in the project's properties. You can change the Deployment Server settings
here. You are also able to set up multiple deployment configurations, such as test,
development, and even production using the Configuration dropdown.

How to do it…
The following steps will describe how to deploy your model using SSDT, the deployment
wizard, and the deployment utility:

1. You can deploy to a server using SSDT by right-clicking on the project and
choosing Deploy. This will deploy the project to the targeted, actively configured
deployment server.

2. As you can see from the dialog, metadata is deployed first, and then each table
is loaded.

3. Open up Microsoft SQL Server Management Studio to see the deployed database.
You will see that the connection and table folders have content.

According to Microsoft documentation, you should not use the SSDT
option for production deployment. Some properties will be overwritten
in this scenario. See http://technet.microsoft.com/en-us/
library/gg492138.aspx for more details.

4. The quickest way to get to the deployment wizard is to use Search in Windows 7 or
Windows 8. Click on the Deployment Wizard result to open up Analysis Services
Deployment Wizard.

Chapter 9

249

5. On the next dialog, you will be asked to select a database to deploy. This database
can be found in the bin folder in your SSAS Cookbook Chapter 9 project folder,
if you have built your project.

6. If you did not change the Model.bim file, your database will be named Model.
asdatabase. Click on OK and then on Next.

7. This opens up the dialog for the installation target. In this dialog box, you need to
specify the server and the database you plan to deploy. If your active configuration
has the correct target, you should be able to click on Next and move the Specify
Options for Partitions and Roles dialog. Leave the default settings at this point and
click on Next.

8. In the Specify Configuration Properties dialog, you can change the connection
information as well as the impersonation information for the configuration. These are
currently based on the settings you set up before. In our case, you can select the first
two checkboxes, which will retain your deployment settings.

This allows you to change these properties prior to a
production deployment. It will allow your DBAs or similar roles
to set credentials upon the deployment, which helps meet a
number of compliance considerations in various industries.

9. The next dialog, Select Processing Options, we will also leave it with its
default settings.

10. Finally, in the next dialog, you have one last chance to back out as you will overwrite
the existing database with the same name. Once you click on Next here, you will
deploy the database. After it is complete, you have one more dialog box, which will
close the dialog.

11. The Deployment utility is a command-line deployment option. This option uses the
ASDATABASE file as well. So let's open command prompt and deploy the database
using this option. You will find the executable here:

C:\ProgramFiles(x86)\MicrosoftSQLServer\110\Tools\Binn\
ManagementStudio

If you only have one installation of SSAS on your server,
you can just use the executable directly as follows:

C:\>AnalysisServices.Deployment.exe

If you just run the executable file, it will open up an
instance of the Deployment Wizard UI.

Using Tabular Models

250

How it works…
When the project is deployed for the first time, the database is created and will be loaded into
memory. As part of your planning, you will need to make sure you have enough memory on the
server to support all of the models you are deploying and developing.

Subsequent deployments will update the schema of the database and fully reload the data in
the database on the server.

When the server is shut down, all of the Tabular Model databases are written to a disk so
that they are not lost. Once the server is restarted, the models are loaded back from the disk,
but not refreshed. When deploying the models to the server, you need to plan for the space
needed to hold the models as well as the time required to write and read the models during
the service start-up and shut-down cycles.

There's more…
One key advantage of using the Deployment utility is that it gives you the ability to deploy in
silent mode, which suppresses the dialogs during deployment.

You will need to use the s switch. You have the option of adding a location to write a log file
out as well. Here is the full command line to use when deploying in silent mode with a
log file:

C:\>"C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Binn\
ManagementStudio\Microsoft.AnalysisServices.Deployment.exe" "C:\Source\
SSAS Cookbook\SSAS Cookbook Chapter 9\SSAS Cookbook Chapter 9\bin\Model.
asdatabase" /s:"C:\Source\Logs\SSAS Cookbook Chapter 9.log"

This will deploy and fully reprocess the database and send the log information to the file
as specified.

See also
 f You can also use XMLA, AMO, synchronization, and backup-restore to deploy

models. For more information on these options check out the Tabular Model
Solution Deployment at http://technet.microsoft.com/en-us/library/
gg492138.aspx.

 f Check out the next recipe to learn more about using XMLA with Tabular Models.

Chapter 9

251

Scripting Tabular Models using XMLA
In this recipe, you will learn how to create XMLA files that can be used for a variety of purposes
including deploying and processing.

Getting ready
Unlike most of our work to this point, we will now be working primarily out of SQL Server
Management Studio. We will also be working with a deployed Tabular Model database. If you
have not deployed your database yet, refer to the previous recipe for deployment options.

How to do it…
While XMLA can definitely look daunting, generating XMLA scripts is quite easy, as shown in
the following steps:

1. Open up Microsoft SQL Server Management Studio, and connect to the tabular
instance you are using for development.

2. Right-click on the database and navigate to the following sequence of options:
Script | Script Database as | CREATE To | New Query Editor Window. This will
generate the XMLA script to create the database in the query window. If you want
to create a new database on a different server, you can use this script.

3. The same technique can be used to generate multiple XMLA scripts for use in other
tools. For instance, right-click on the database and select Process from the menu.
This will open a dialog box for processing the database (reloading the data). You can
set the properties you would like, and then instead of clicking on OK, use the Script
button at the top of the dialog box to generate XMLA to process the database using
the selected options.

Any script created here can be executed in SQL Server Management Studio or any
other tool that can execute XMLA.

There's more…
You can also use the Deployment utility to generate XMLA for deployment. You need to use
the d and o switches. The o switch is used to generate output files, which is exactly what we
need in this case. The d switch tells the utility not to connect to the specified targets to create
the script that is needed to generate the create database script. Here is the command line:

C:\>"C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Binn\
ManagementStudio\Microsoft.AnalysisServices.Deployment.exe" "C:\Source\
SSAS Cookbook\SSAS Cookbook Chapter 9\SSAS Cookbook Chapter 9\bin\Model.
asdatabase" /d /o:"C:\Source\SSAS Cookbook\SSAS Cookbook Chapter 9\SSAS
Cookbook Chapter 9\bin\Model.xmla"

Using Tabular Models

252

Processing Tabular Models
Once a Tabular Model has been loaded initially, you may need to reload the data to pick up
new data or handle data source refinements. Unlike a multidimensional model, which does
not need data to work, the Tabular Model starts out in a processed state.

How to do it…
The Processing primarily occurs during development, while using Microsoft SQL Server
Management Studio:

1. In order to process the database, individual tables, or partitions, you merely need to
right-click on the object and select the Process option. This will open the Process
dialog box.

2. From here you will pick your processing option and click on OK to process the
selected object.

How it works…
Processing the model refreshes the data or the metadata depending on the processing
option chosen.

As you can see Process Default is available to all objects. This will process any table
or partition that is currently unprocessed and update the internal structures including
calculations and hierarchies. Process Full replaces all components, data, and internal
structures. Process Clear does the opposite and removes all data in the database, table, or
partition. Process Data will reload the data in the selected table or partition. After either a
Process Clear or Process Data option is run, you should run a Process Recalc option, which
will rebuild all of the calculations, relationships, and other structures used in the model.

If you process a partition fully or incrementally, you may get an error which
refers to duplicate keys. This will happen when the data you add causes a
duplicate key to appear in tables or relationships that require unique values
within the model.

Process Defrag optimizes the table structures within the model. This is essentially a clean-up
operation that should be run occasionally to keep the solution running smoothly.

Finally, the Process Add option only applies to the Process Partition option. This option
allows you to add only new data. SSAS does not check the existing data, so you are
responsible for making sure the partition can accept new rows and not run into duplicates.

Chapter 9

253

In order to get to the Process Partition(s) dialog, you need to right-click
on the table and select the Partition option. This will open the partitions
dialog box. Click on the Processing button (three green arrows in a
circle) to open the dialog.

There's more…
Table-based processing means you can choose volatile tables to process more frequently.
Because of the nature of how relationships are built; "bad" data will not prevent the
processing of data where related data is missing. This happens because the data in a Tabular
Model is essentially outer-joined.

See also
 f There is no incremental or partial process supported outside of partitions. You can

learn how to create partitions in the next recipe.

 f In the previous recipe on XMLA, you learned how to generate XMLA for processing at
any level.

Partitioning Tabular Models
Partitions in Tabular Models are one of the key features you would use Tabular Models to
support. This is the best way to support incremental processing of data in Tabular Models.

Power Pivot models do not support partitions.

Getting ready
In order to implement partitions, you need to have an existing table. You also need to have
a partitioning plan. Most often, partitioning makes the most sense when working with data
that resembles a fact table with a high row count and lots of measures. We only have one
data table in our model, Internet Sales. Order Date, that looks like the best candidate
for partitioning. It is unlikely that we will get orders out of sequence that will cause us to
reprocess a large number of partitions. Next, we need to determine the scheme we will use.
We will focus on a historic partition, a previous six months partition, and a current partition.

Using Tabular Models

254

How to do it…
Creating partitions in a Tabular Model is fairly straightforward. You will need to bring
focus to the table you want to partition, the Internet Sales table, by performing
the following steps:

1. There are two easy ways to get the partition dialog box. You can select the
TABLE | Partitions… option on the menu or use the Partitions button on the
toolbar. Both options are available when a table is selected and shown in the
following screenshot. This will open the Partition Manager dialog as shown
in the following screenshot:

Chapter 9

255

2. As you can see, here every table exists as a single partition that contains all of
the data. Our next step is to create a new partition by clicking on the New button.
You will now see that a new partition has been added named Internet Sales.
It is currently exactly the same as the initial partition.

If we stop here, it will duplicate the data in our table. There is
nothing here that will magically prevent the duplication of the
data. This is the responsibility of the modeler.

3. Your next step is to change the definition of the partition. Before we go any further,
delete the partition you just created. Highlight the Internet Sales partition,
 and click on the SQL button above the table in the Partition Manager dialog as
shown in the following screenshot:

You should now see a window with the following SQL statement:

SELECT [dbo].[FactInternetSales].* FROM [dbo].[FactInternetSales]

4. We will use this as our starting point. Our first partition will be the historical partition.
It will be for all orders that were placed prior to 2008. Our SQL statement will now
look like the following:
SELECT [dbo].[FactInternetSales].* FROM [dbo].[FactInternetSales]
where OrderDateKey < 20080101

The data in our Internet Sales fact table only includes
data from July 1, 2005 through July 31, 2008. Orders from
2008 will be used to build the additional partitions.

5. Next, we want to rename this partition Internet Sales – History. Click on OK,
and the partition definition will be applied to the table.

Using Tabular Models

256

6. You will notice that the data has not been refreshed. Navigate to MODEL | Process
Table … to reprocess the data. The rows processed have been decreased to around
30,000 and only include orders prior to 2008.

7. You will now add the next two partitions: Internet Sales – 6 Months and
Internet Sales – Current. Open the Partition Manager dialog again.
Now, we will copy the partition using the Copy button. Click on that twice and
two new partitions will be created: Internet Sales – History Copy and
Internet Sales – History Copy - Copy.

8. Click on either one, and we will modify it to become our six-month partition by
renaming it to Internet Sales – 6 Months and changing the Where clause in
the SQL Statement to the following:
Where OrderDate between 20080101 and 20080630

This will create a partition to cover the first six months of 2008.

9. Click on the unmodified copy and change its name to Internet Sales –
Current, and set its Where clause to:
Where OrderDate > 20080630

This will create the final partition for you, and you will now have three partitions you
can use to manage processing or data reloads.

10. Click on OK and reprocess the table.

The last-processed information does not come from your development
model; it comes from the deployed model. To see accurate processing
information from your development model, you will need to use
Microsoft SQL Server Management Studio. Right-click on the
Internet Sales table and select Partitions. This will open the
Partitions dialog from the selected model. Remember that your
development model has a GUID as part of its name.

There's more…
Partition management is a key part of your model design. What if you wanted to move the
data from the six-month partition into your historical partition? Partitioning supports merging
partitions. To do this, open up Microsoft SQL Server Management Studio and right-click on
the table. Select the Partitions option from the context menu, and it will open a dialog that is
shown in the following screenshot.

Chapter 9

257

Select the two partitions you want to merge. Once you have them selected, the Merge icon,
which has two arrows pointing at each other, will become activated. Click on the Merge icon,
and the Merge Partition dialog will open. Once it is open, you can see that Target Partition is
our Internet Sales – History partition, and the selected Source Partition option is the
Internet Sales – 6 Months partition. At this point, if we want to merge more partitions
at the same time, we can do so by selecting the other partitions to merge.

Click on OK, and the partitions will be merged. The Partitions dialog will now only show two
partitions. From here, you can also process the new partition to complete the process.

If you deploy the model to the server using SSDT and have not merged the
partitions in the same way, the partition design in SSDT will overwrite any
changes made in Microsoft SQL Server Management Studio.

See also
 f Partitions can be created using XMLA and PowerShell as well. The recipe on XMLA

discusses how to script processes using SSMS. Refer to the recipe on creating
multidimensional partitions for more details on using PowerShell to create partitions
with XMLA.

Using Tabular Models

258

Implementing perspectives
Perspectives are similar to views in relational databases. Perspectives allow you to create views
of the model that may serve a specific function or help a specific user group. For instance,
you could create perspectives that only show finance measures and dimensions. You can reduce
the number of visible tables and the fields for users to make the user experience better.

While tempting, you should not use perspectives as a security tool. They are
not designed for security but for ease of use and visual organization of the
model.

Getting ready
You will be expanding on the model we have been working on throughout this chapter.
We will be creating a perspective that focuses on product orders and hides most of the
customer data.

How to do it…
Similar to partitions in the previous recipe, you can open the Perspectives dialog from the
toolbar or menu and then perform the following steps:

1. In the Perspectives dialog, click on the New Perspective button. You can name this
perspective Product Order. There is a series of checkboxes in the new column
next to the table and the field definition on the right.

2. Because this perspective focuses on products, select the Product and Product
Category tables. If you expand the Product table, you will see that all fields have
been selected. Next, expand the Internet Sales table, and select some fields that
you feel are relevant to this perspective, such as Order Date, Order Quantity,
Sales Amount, Average Sales, Total Cost, and Total Sales.

Chapter 9

259

As you can see, calculated measures and members
are included in the list of fields to select.

The following screenshot shows a partial view of what your perspective selection may
look like:

3. Click on OK, and you have successfully created a new perspective.

Using Tabular Models

260

There's more…
SSDT allows you to see the impact of your perspective. You can change the perspective in
SSDT by using the Select Perspective dropdown on the toolbar or by selecting it from the
MODEL | Perspectives | Select menu. This will filter the view in the designer, as shown in
the following screenshot:

Chapter 9

261

See also
 f Check the effect of your perspectives from your user's viewpoint using the Analyze in

Excel feature mentioned in the previous recipe.

Implementing security in Tabular Models
One of the key differentiators or reasons to move Power Pivot models into SQL Server Analysis
Services is security. Tabular Models support a much more robust security model than what is
available in Power Pivot in Excel or SharePoint.

Getting ready
In order to work with security, you will need some users that you can assign to the roles.
In my solution, I have added SteveReader and SteveFiltered to my local computer.
Normally, you would be using Active Directory users and groups to manage your security.
If you have a test or development environment with users at your disposal, use them.
In either case, you will need users to complete this next recipe.

How to do it…
You can open the Role Manager dialog by clicking on the Roles button on the toolbar or the
Roles option in the MODEL menu item. This will open the Role Manager dialog. You will be
creating a read-only role, which will prevent a user from reloading data or making changes to
the model:

1. This can be done by clicking on the New button, which will add a new role.
Rename the role Read Only and select the Read permissions from the dialog.

2. Next, click on the Members tab in the lower half of the dialog, and add the user or
group to which you want to give Read Only permissions to your model. Now the dialog
should show your changes.

As you likely would have noticed, there are other permissions
available. Here is a brief breakdown of these permissions and
what they allow:
None: No permissions assigned
Read: Read data
Read and Process: Read data and reload data
Process: Reload data, but no ability to read
Administrator: Full access

Using Tabular Models

262

3. We also made no changes in the Row Filters tab when we created the Read Only
user. As a result, the permissions that were assigned apply to the entire model.
By assigning a group to our Read Only role, that group would be able to use our
entire model in their analysis.

4. Let's add a filtered role that only allows the role to see data related to a specific sales
territory, that is, Central. This territory is defined in the Sales Territory table.
Once again, you open the Role Manager dialog. Add a new role named Central
Sales. Assign the Read permission to the new role, and add your filtered user to the
Members area.

5. Now, you double-click on the DAX Filter cell by Sales Territory. You get no help at all.
So, you will need to create the filter by hand. Add the following filter to the dialog:

=[SalesTerritoryRegion]="Central"

You need a DAX formula that will return a Boolean value . In this case, the formula
tests the name of the region and sets the result to TRUE or FALSE.

In order to create this formula, I created it as a calculated
member in the model. This allowed me to verify the results
and the syntax. Once I was done, I removed the column.

Now you have a role that will only show data that is available based on that filter in
related tables. In this case, your Sales table will be filtered. If you want to have this
filter apply to other lists, you could create a lookup table that associates data such as
customers directly with the sales territories, which would result in a filtered customer
list as well.

How it works…
Role-based security in the Tabular Model is very similar to role-based security in
multidimensional models. Permissions within the model are additive, which means
user permissions are accumulative across all the roles they belong to. For instance,
this means that administrators cannot be limited in their ability to see the data even
if that user has read-only permissions on a table.

There's more…
You want to verify that your roles and users have the expected permissions. You can do this
using the Analyze with Excel feature. When you open the Analyze with Excel dialog, you can
see that you have the option to select users, roles, and even perspectives. If you use the
Central Sales role you created and click on OK, you will see the effect of the role using
Excel. This helps administrators test security during development and helps verify the results,
which are what you need to support the role you created.

Chapter 9

263

Automating Tabular Model processing
Power Pivot models in Excel are manually processed only, and Power Pivot models in
SharePoint can be scheduled at the data source level. Tabular Models take this one step
further by allowing you to process partitions in your model. This allows you to use partitions
to keep processing windows short and your model impact low.

Getting ready
In order to work with automation, you should have a deployed version of your Tabular Model to
work with. To see how to deploy your model, see the previous recipe on the subject. You should
also have a scheduling tool, preferably SQL Server Agent, available to create the job.

How to do it…
1. In Microsoft SQL Server Management Studio, open the tabular instance of SQL

Server Analysis Services. Right-click on the database you would like to process,
and click on the Process Database option on the shortcut menu. In the Process
Database dialog, choose the processing mode you would like to use. (I will be using
Default for the examples.) Then click on the Script button at the top. This will open
a new query window with XMLA in it.
<Process xmlns = "http://schemas.microsoft.com/
 analysisservices/2003/engine">
 <Type>ProcessDefault</Type>
 <Object>
 <DatabaseID>SSAS Cookbook Chapter 9</DatabaseID>
 </Object>
</Process>

2. Next, we need to create the job in SQL Server Agent. Open up a new job in SQL Server
Agent. Give the job a name such as Process SSAS Cookbook Model.

3. Next, select the Steps page and click on New to create a new step. In this step,
set the following properties:

 � Step Name: Process Model
 � Type: SQL Server Analysis Services Query
 � Run As: Choose a Run As account with permissions to the database
 � Server: Server name
 � Database: SSAS Cookbook Chapter 9
 � Command: Use the preceding code

4. Click on OK, and this will save the step. You can then set the schedule as needed to
process the database.

Using Tabular Models

264

There's more…
You can also follow the same steps and process individual tables and partitions. This allows
you the flexibility to only process those objects which have changes in them.

My preference is to use the Full processing mode when processing SSAS
objects. This requires the least amount of overall maintenance. I only move
away from this when processing times interfere with usage.

See also
 f There are a couple of projects on CodePlex that describe other automation

techniques using AMO and PowerShell. Check these out if using SQL Server
Agent is not a possibility:

 � Tabular Database PowerShell Cmdlets at http://tabularcmdlets.
codeplex.com/

 � Tabular AMO 2012 at http://tabularamo2012.codeplex.com/

10
DAX Calculations

and Queries

This chapter will expand on concepts introduced in Chapter 9, Using Tabular Models,
and cover these topics in greater depth:

 f Combining tables using calculated columns
 f Adding a calculated column
 f Creating measures
 f Testing a Tabular Model in Excel
 f Using the CALCULATE Function
 f Querying a Tabular Model

Introduction
DAX (Data Analysis Expressions) is actually a combination of two languages. It is fundamentally
a simple expression language, consisting of functions that work very much like Excel functions,
which return either values or objects that can be used by other functions. Additionally, DAX is
also a query language that can be used to execute requests for a Tabular semantic model and
return an entire result set for use by a reporting tool or application to display data. DAX is an
evolution of previous expression languages and those familiar with MDX and Excel functions will
recognize its heritage.

DAX Calculations and Queries

266

Our journey down the DAX path will begin with an introduction to the fundamental components
of DAX expressions. You will learn to use several useful functions that can be applied to
business logic and get answers to business-related questions. Expanding on the topics
introduced in the previous chapter, we will use calculated columns to combine data from two
source tables and then design calculated measures from numeric columns in the Internet
Sales fact table.

Combining tables using calculated columns
To begin working with calculated columns, we'll make a modification to the Tabular Model
design created in the previous chapter. In a business intelligence solution, we often combine
data from multiple source tables to simplify the structure and make it easier for users to
navigate and report on information. Previously, we used a T-SQL query to join the Product
Subcategory and Product Category table information to populate a single table in the
semantic model. To gain experience with a different table design technique and develop new
skills, we will change the approach.

Getting ready
You're going to make a design modification to the Tabular Model you created in Chapter 9,
Using Tabular Models. If you would like to keep that project in its current state for reference,
you can make a copy of the project folder for backup purposes. Otherwise, we'll just pick up
from where we left off and continue to work in the same Tabular Model.

How to do it…
You'll start with the work you did in the previous chapter:

1. Open the SQL Server Data Tools (SSDT) project you created in the previous chapter.

2. Using the Solution Explorer, double-click on the Model.bim file to open it in the
model designer. You should be looking at the tables in the grid view.

3. Click on the Product Category tab at the bottom to view the rows and columns in
this table.

Chapter 10

267

4. On the Table menu, find and select the Table Properties item. This opens the
Edit Table Properties dialog.

5. Take a quick look at the query script that uses a join operator to combine the
columns of two tables. The steps following this screenshot will have you replace it
with similar functionality in the model.

6. Close this window.

7. Right-click on the Product Category tab and delete it from the model.

DAX Calculations and Queries

268

8. Now, import the Product Category and Subcategory tables separately and then use
a calculated column to serve the same purpose as the table you just deleted.

9. On the Analysis Services toolbar, the third icon is Existing Connections. Click on
this icon to open the Existing Connections dialog.

The connection on this list was created when you initially imported tables into the
model from SQL Server.

10. On the Existing Connections dialog window, click on Open to select more tables and
data to import. The Table Import Wizard opens.

11. Select the first option from a list of tables and views to choose the data to import and
then click on the Next button to continue.

12. The next page, titled Select Tables and Views, allows you to select multiple objects
to import. For each, you can include or omit different columns, rename the imported
table, and filter unwanted records.

13. Click on the checkboxes to place a check mark in front of the DimProductCategory
and DimProductSubcategory tables.

The next step may not seem perfectly intuitive until I explain
the purpose. Oftentimes in the semantic model, we need to
import objects used for internal purposes. We also need to give
visible objects the best names and hide those that will only be
used internally. You will rename two imported tables with the
first table used only for internal purposes. After you're done
with the final design, the new Product Category table will
contain both product category and subcategory information.

14. In the Friendly Name column for the DimProductCategory table, rename the
table to _ProductCategory.

15. Rename the DimProductSubcategory table to Product Category.

Chapter 10

269

16. With the row for the DimProductCategory table highlighted, click on the Preview &
Filter button to open a window showing the columns for the table.

17. Uncheck the boxes for all the columns except for ProductCategoryKey and
EnglishProductCategoryName; click on OK to close this window.

18. Repeat the same steps for the DimProductSubcategory table. Uncheck all
columns except for ProductSubcategoryKey, EnglishProductSubcategoryName,
and ProductCategoryKey; click on OK to close the window and return to the list
of all the tables in the Table Import Wizard.

19. Click on Finish to import both the tables and then click on Close to close the wizard.

DAX Calculations and Queries

270

There's more…
Now to tidy things up… With the goal of keeping the model as simple as possible, hide the
objects that users don't need to see. In the model design grid view, you will see two new tables:

1. Right-click on the new table named _ProductCategory and select Hide from
Client Tools.

In model design, it's common to rename objects to provide
simple and friendly names for users.

2. Click on the tab for the Product Category table and then right-click on the
EnglishProductSubcategory column header.

3. From the menu, select the option to rename the column and change the name to
SubcategoryName.

4. In the lower right-hand corner of the model designer, you can switch between grid
and diagram view. These two small icons aren't labeled but will display a tooltip
when you hover the mouse pointer over them.

5. Click on the Diagram icon to view table relationships in the model.

6. Add a relationship between the Product and Product Category tables by
dragging the ProductSubcategoryKey column in the Product table to the
ProductSubcategoryKey column in the Product Category table.

7. Add a relationship between the Product Category table and the hidden
_ProductCategory table by dragging the ProductCategoryKey column
in the Product Category table to the ProductCategoryKey column in
the _ProductCategory table.

Chapter 10

271

8. Right-click on the Product Category table and hide the two key columns.

9. To return to the grid view and work with a single table, you can right-click on the
header of the Product Category table and click on Go To.

Now, we're ready to add a calculated column to the table.

DAX Calculations and Queries

272

Adding a calculated column
Calculated columns serve many purposes but are usually used to combine values from
multiple columns or derive a new value from another column. We don't normally aggregate
values or perform complex business logic in the same way that we would in a measure.
The key concept is that calculated column logic is applied to each row in a table. Keep in
mind that this can also add storage and memory overhead.

Getting ready
If you're working through the instructions in this chapter from start to finish, you should be in
the right place to continue with the next step. Get in the habit of saving your work often. If you
have the project open and you're looking at the model designer, just click on the Save All icon
on the toolbar that looks like a stack of floppy disks. (I haven't saved anything to a floppy disk
for a while, but somehow this remains the universal icon to save your work.)

If your project isn't already open, then open the project in SSDT and use Solution Explorer to
open the Model.bim file. When the model designer window opens in the grid view, click on
the tab at the bottom of the model designer to edit the Product Category table.

How to do it…
You can add a new column at any position in the table. For convenience, the right-most
column is a placeholder for a new calculated column:

1. Either right-click or double-click on the heading of the column labeled Add Column,
rename it to CategoryName, and then press the Enter key. It's a subtle thing but get
used to pressing the Enter key to save your changes to expressions.

2. Place the cursor in any cell in this new column. Start typing an expression with an
equal to sign, then type the letter R. Notice that a drop-down list below the formula
box displays functions and objects that match the text you type. Type or select the
word RELATED. When you have the object or function name selected in the drop-
down list, press the Tab key to select it.

The RELATED function accepts one argument, which is
the table and column reference for any table related to
the current table through a direct or indirect relationship.

Chapter 10

273

3. You can complete the expression by selecting items in the drop-down list as you type.

You should learn to work with this feature as it can help avoid
mistyped object names and spelling errors. There are caveats to
the autocompletion feature that can lead to syntax errors unless
you learn to work within its capabilities and outside of its limitations.
I suspect that as the product matures in future versions, we will see
some fine-tuning and optimization. Personally, I find this feature
helpful most of the time but I have learned to anticipate certain
patterns of behavior. In particular, if an object name (such as a
table or column name) has already been entered into an expression
and you use autocompletion to select a different object, the tool
will replace the object reference but add redundant quote marks
or bracket characters. These can be hard to spot at a glance and
will result in a syntax error. Another rather unfortunate feature of
the tool is that when a syntax error is introduced to an expression,
especially when the expression is long and complex, after reporting
an error, it will revert to a previous state and you will lose changes.
While making changes, I've learned to copy the entire expression to
the clipboard before pressing the Enter key. This way, I can paste the
expression, make corrections, and then save changes (of course,
after recopying the new expression to the clipboard).

4. After typing the open parenthesis after the RELATED function name, type the
underscore character to show objects in the hidden _ProductCategory table.

5. Click on the EnglishProductCategoryName column, type the close parenthesis,
and press Enter to save the expression.

That's it! By creating a relationship between these two tables, hiding one and
then using the RELATED function to reference a related column in the hidden
table, we have essentially joined the subcategory and category information
into a single table.

6. Switch to the Date table in the grid view.

7. Right-click on the FullDateAlternateKey column header and rename the
column to FullDate.

DAX Calculations and Queries

274

8. Change the Format property to Short Date. This was covered in Chapter 9,
Using Tabular Models.

9. On the Table menu, navigate to Date | Mark As Date Table and use the
FullDateAlternateKey as the date identifier.

You will use this table in calculations a little later. This is a critical step as the date
lookup table is required for time-intelligence functions to work correctly.

Creating measures
A calculated measure performs aggregation in the model efficiently by processing calculations
on the server during query time. Measures can be defined using simple aggregate functions,
or they can include complex business logic by using combinations of functions.

Chapter 10

275

Getting ready
In a Tabular Model, a table can play two roles either as a container for measures (often referred
to as a measure group or fact table) or a lookup table (often referred to as a dimension table
in multidimensional models). When a model is processed, the Tabular processing engine
determines the role of tables and applies the appropriate metadata to them in the final model.
If a table has non-summarized or non-numeric columns, it shows up in the client application
as a lookup table and these columns become attributes. If a table has numeric columns that
can be summarized or it contains defined measures, it may be presented by the client tool as
a measure group. If a table contains the attribute columns and summary numeric columns
and/or measures, it can actually play both the roles and will show up in most client tools as two
separate tables having the same name. Remove or hide all of the columns and leave only the
measures in a table containing the measure base columns. Column and measure names must
be unique in a table, so it's a good idea to plan ahead when naming columns and make it a
point to use different names for measures and the numeric columns in your measure table.
The following exercise will make this clear.

How to do it…
Creating measures can be done in two ways:

 f Creating AutoSum measures

 f Creating calculated measures

Creating AutoSum measures
Simple measures may be added to a model that aggregate a column of numeric values.
The AutoSum feature creates a measure using a selected aggregate function (such as
SUM, AVERAGE, DISTINCTCOUNT, COUNT, MIN, or MAX) and automatically gives the measure
a name such as Sum of Sales Amount. This is a good way to get started with creating
measures, but you may not want to have every measure in your model begin with the text
Sum of.

Working with a measure table that contains numeric columns, you will hide the base columns,
create calculated measures, and apply formatting properties:

1. Select the Internet Sales table in grid view.

2. Select all of the key columns (the first eight columns whose names end with the
word Key) and hide them. You can use the Shift key to click on and select a range
of columns.

3. Right-click on the selected range and then click on Hide from Client Tools.

DAX Calculations and Queries

276

4. I'll show you a trick that will save time when using the AutoSum feature to create
measures. Select each of the following columns and use the Properties window to
set the Format property as indicated in the following table:

Column Name Format Property
OrderQuantity Data Format: Whole Number

Show Thousand Separator: True

UnitPrice Currency

ExtendedAmount Currency

UnitPriceDiscountPct Currency

DiscountAmount Currency

ProductStandardCost Currency

TotalProductCost Currency

SalesAmount Currency

TaxAmt Currency

Freight Currency

5. Select the range of numeric columns listed in the table and click on the Hide from
Client Tools menu option.

6. With the range still selected, click on the AutoSum icon on the toolbar designated
with the ∑ (Sigma) icon. This creates a measure for each column in the Calculation
Pane below.

7. The lazy model designer might leave the default measure names as Sum of… but we
will rename our measures.

Chapter 10

277

This is a convenient way to define a measure for a numeric column. When you use the
AutoSum feature, this actually creates a new measure in the Calculation Pane just
as you would define a measure manually. The measure also inherits the formatting
properties of the base column if they have been set.

DAX Calculations and Queries

278

The Calculation Pane is displayed at the bottom on the grid view designer.
Measures can be defined in any cell. Also, the name of the new measure
is the original column name prefixed with the text Sum of.

8. Select each measure cell and then change the name in the formula box using the
expressions listed in the following step.

A convenient convention for renaming the measure is to add a space between the
two words in each column name.

9. Change the name of each measure using this convention. For the Freight measure,
change the name to Freight Cost.
Order Quantity:=SUM([OrderQuantity])
Unit Price:=SUM([UnitPrice])
Extended Amount:=SUM([ExtendedAmount])
Unit Price Discount Pct:=SUM([UnitPriceDiscountPct])
Discount Amount:=SUM([Discount Amount])
Product Standard Cost:=SUM([ProductStandardCost])

Chapter 10

279

Total Product Cost:=SUM([TotalProductCost])
Sales Amount:=SUM([SalesAmount])
Tax Amt:=SUM([TaxAmt])
Freight Cost:=SUM([Freight])

10. Take a look at the columns in the table. We have key columns, which you have
hidden, and we have the base columns for measures, which you have hidden.
The remaining visible columns are not needed, so you will delete them.

11. Delete each remaining column that is not hidden. Make sure that you don't delete the
key columns and numeric measure base columns that you hid earlier. You can delete
a column by selecting it and then pressing the Delete key or by right-clicking on the
column and choosing Delete Column from the menu.

As a rule, if you don't need a column from the source data,
delete it. It's easier to add a column later if you decide you
need it than to have unnecessary data in the model,
which can impact performance and memory.

12. To inspect measures, select the cell in the Calculation Pane below the table grid.

DAX Calculations and Queries

280

13. The properties for each selected measure are displayed in the Properties window on
the right-hand side of the designer. You can verify the name of the selected measure
or any other object with the drop-down list displayed at the top of this window.

14. Check the Format property for the new measures using the Properties window on
the right-hand side of the model designer. Since the base column properties were
set correctly, you should see the same Format property setting in the measure.
If not, you can change it in this window.

Creating calculated measures
It's great that we can define measures to add up a column of numbers, but we can provide
more business value with more specific calculations. We'll start with a few simple calculations
and then introduce DAX functions to add logic and business rules.

The Calculation Pane, located below the table grid, was designed to emulate an Excel
worksheet. The placement of the current set of measures in the columns below the base
numeric columns is actually just for convenience, and measures can really be placed in
any cell:

1. Select a cell below the Total Product Cost measure and enter the following
calculation script. When you get to each measure reference, you can click on a
measure cell or type the open square bracket and then select the measure name
from the list of objects.
Net Cost:=[Total Product Cost] + [Tax Amt] + [Freight Cost]

2. Press Enter to validate the expression and save the changes.

Chapter 10

281

3. With the new measure cell selected, use the Properties window to set the Format
property to Currency.

4. Select the cell to the right, and enter this expression to define a calculation named
Net Profit. You will also format this measure as Currency.
Net Profit:=[Sales Amount] – [Net Cost]

5. In the next cell, define a calculated measure named Net Margin.
Net Margin:=[Net Profit] / [Sales Amount]

This expression produces a ratio value that we want to format as a percentage.

6. After writing the expression, set the Format property to Percent and the Number of
Decimal Places field to the value 2.

Testing a Tabular Model in Excel
Excel is a convenient tool to browse and query a Tabular Model so that you can validate
your design. Rather than opening Excel and connecting to the deployed model on the
Tabular server, you can open Excel directly from the model designer and connect it to
the workspace database.

How to do it…
You will use Excel to browse the Tabular Model using the data in the active workspace
database on the development machine. Before you continue, make sure you have
Excel 2010 or Excel 2013 installed on the development computer:

1. On the left-hand side of the toolbar in the model designer, click on the Analyze in
Excel icon. Again, this icon is not labeled but has a tooltip when you hover over it.

This action will open an instance of Excel, create a connection to the model
workspace, and open a PivotTable. A small dialog opens titled Analyze in Excel.

2. Click on the OK button to accept the default settings. Excel may open in the
background. If it doesn't appear to open right away, watch for the Excel icon in
your Windows task bar and then click on it to bring Excel to the foreground.

DAX Calculations and Queries

282

Understanding Row Context
When you define a calculated column that references values from different columns in a table,
that expression is applied, individually, to each row in the table. In Chapter 9, Using Tabular
Models, you created a FullName calculated column that concatenates the FirstName and
LastName column values on each row. Earlier in this chapter, you used the RELATED function
to look up the product category for every product subcategory row. In these examples, it's easy
to think about how these expressions are applied within the context of each row. When working
with measures, we extend the same concept of filter context to calculate values that aggregate
or apply functional logic to the values of all filtered rows. We'll look at some examples to examine
this behavior:

1. With any cell in the PivotTable selected, use the PivotTable Fields list to check
the CategoryName option in the Product Category table. This adds a row to the
PivotTable for each category. In the Internet Sales table measure group/
table, check the Sales Amount, Net Profit, and Net Margin measures.

Chapter 10

283

PivotTable queries the model and displays one category per row, and for each
row, the measures are calculated in the context of that row. The first row is for the
ProductCategory name: Accessories. For every row in the Product Category
table with that value, the model navigates through the relationship to the Product
table to get a filtered set of rows. It then navigates to the Internet Sales table
and gets all the related rows for those products; for this set of rows, it applies the
calculations. The model adds up all the Sales Amount values and then performs
the Net Profit and Net Margin calculations within the context of rows related to
Accessories. Does this make sense?

2. Leave Excel open so we can keep using it.

Understanding Filter Context
Now that you have the concept of Row Context, you shouldn't have any trouble
understanding its cousin, Filter Context. To get started, I'll introduce an important
DAX function called CALCULATE.

Using the CALCULATE function
The purpose of the CALCULATE function is to apply a measure or calculation expression to a
filtered set of rows, usually by calling another function that returns a table object. We will use
the FILTER function to explicitly filter rows in the Internet Sales table where related rows
from the Sales Territory table have a SalesTerritoryCountry column value equal to
United States. Using these functions, we will define the filter context.

How to do it…
Follow the given steps to use the CALCULATE function:

1. Return to the Internet Sales table in grid view and select a new cell in the
Calculation Pane. Write a new calculated measure named US Sales as follows:
US Sales:=CALCULATE([Sales Amount], 'Internet Sales',
 'Sales Territory'[SalesTerritoryCountry] =
 "United States")

2. Move on to another cell and write a similar measure named Non-US Sales.
The only difference from the previous example is that the value is not equal to
United States. It should look similar to the following code:
Non-US Sales:=CALCULATE([Sales Amount], 'Internet Sales',
 'Sales Territory'[SalesTerritoryCountry] <>
 "United States")

DAX Calculations and Queries

284

Test the Measures in Excel
1. Switch back over to Excel, and on the Data ribbon, click on Refresh All. With the

PivotTable selected, you should see the US Sales and Non-US Sales
measures added to the Internet Sales fact table.

2. Check both of these measures to add them to the PivotTable columns.
Alongside the total sales for each product category, for all the sales territories,
we see the contribution in the US along with the Non-US Sales.

Working with Time Intelligence
Now let's have some fun with dates. Several DAX functions contain built-in date logic that
simplifies the otherwise complex logic for comparing and accumulating values across dates
and time. We'll start with a function called TOTALMTD. This function accepts a single date
value and returns a table object filled with all the dates from the beginning of the month up
to that date. By using this in the second argument for the CALCULATE function, we can
calculate the month-to-date accumulation for any measure value:

1. Create a new measure in the Internet Sales table by entering the following text in
an open cell in the Calculation Pane:
Sales MTD:= TOTALMTD ([Sales Amount], 'Date'[FullDate])

Chapter 10

285

2. Move to an open cell and enter the following expression. This measure will calculate
the sales amount for a period of time exactly one year earlier than the current period.

Sales Prior Year:=CALCULATE([Sales Amount]
 , SAMEPERIODLASTYEAR('Date'[FullDate])
)

You can experiment with Excel and visualize the model in different ways. In the following
example, after opening Excel, I added a PivotChart, chose a line chart, and added the
FullDate field from the Date table to the chart axis. I added the Sales Amount and
Sales Prior Year measures from the Internet Sales fact table. Via the PivotChart
Tools | Design ribbon, I inserted a timeline based on the FullDate field in the Date table.

You can see that by comparing the Sales Amount values side-by-side with the previous year
in the Sales Prior Year measure, we can see that sales have increased significantly;
using the timeline, we can compare sales with the prior year for a more specific period of time.

DAX Calculations and Queries

286

Querying a Tabular Model
Two query languages are used with the Tabular implementation of SSAS Tabular. Any client
tool that generates MDX can connect to and browse a model because Tabular exposes the
same interface and metadata as a multidimensional SSAS database. This is how Excel
currently interfaces with a Tabular Model from a PivotTable or PivotChart.

With handwritten queries, you also have the option to use the DAX query syntax. In this
section, I'll give you a brief tour of the fundamental constructs of a DAX query and the most
essential commands used to get results and navigate a model.

Getting ready
In the Deploying Tabular Models recipe in Chapter 9, Using Tabular Models, using Data tools,
the deployment wizard, and the deployment utility, you configured the SSDT project to create
a database named SSAS Cookbook Chapter 9.

To start with this recipe, please follow the given steps:

1. Follow the instructions in that recipe to return to the Project Property Pages dialog
and change the name of the database to SSAS Cookbook Chapter 10.

2. Deploy and process that database.

3. We will use the SQL Server Management Studio (SSMS) to query the new database.

4. If SSMS is still open from the last time you used it, use the Connect drop-down
button above Object Explorer on the left-hand side of the window. If not, open SSMS
and in the Connect to Server dialog, choose Analysis Services.

5. Enter the server name (if your SSAS Tabular server uses a named instance,
enter the server and the instance name separated by a backslash such as
LocalHost\TABULAR), and click on the Connect button.

You will see the server and the instance name in the Object Explorer with a blue
SSAS Tabular icon, similar to what is shown in the following screenshot:

6. Expand the Databases node and right-click on the SSAS Cookbook Chapter 10
database. Go to New Query… | MDX.

Chapter 10

287

How to do it…
Hold on a second! We just told the SQL Server Management Studio that we are going to
run MDX queries against a Tabular database. Can this be right? It is because SSMS doesn't
actually know the difference between MDX and DAX but the Analysis Services data provider
does. We can actually run both MDX and DAX queries in the query window. Let's get started.

DAX queries can be quite simple. One of the core missions of SSAS Tabular and Power
Pivot was to keep things just as simple as possible. In MDX, users had to learn a lot of new
concepts such as measure groups, dimensions, hierarchies, levels, sets, and tuples. In the
Tabular world, we use simple concepts such as tables, measures, and columns. Adhering to
that goal, let us execute the following steps:

1. We introduce the EVALUATE statement that really means "show me a table." In the
query window, type the following query:
EVALUATE Customer

2. Click on the Execute button on the toolbar, and you will see the entire content of the
Customer table displayed in the results grid.

A lot of information is returned by the query. We can return a subset of columns by
using the SUMMARIZE function. This function takes the table name followed by any
number of column names.

3. Enter the following query script, select the text, and click on Execute.
EVALUATE SUMMARIZE(Customer, [FirstName], [LastName])

When executed, the query only returns two columns:

DAX Calculations and Queries

288

4. Now we can add a measure by providing an alias name followed by the table and
column reference. The SUMMARIZE function, like other functions of the same type,
accepts an unlimited number of columns or alias and measure pairs as parameters.

5. Let's add the Sales Amount measure from the Internet Sales table.

6. Make the following addition to the query and run it in the query window:

EVALUATE SUMMARIZE(Customer, [FirstName], [LastName]
 , "Sales Amt", 'Internet Sales'[Sales Amount])

The results include the new Sales Amt measure defined in the query as shown in
the following screenshot:

There's more…
DAX supports a lot of the same essential constructs of the T-SQL language such as the ability
to filter and order results. A basic element of a DAX query is that the relationship between
tables has already been established in the model and therefore there is no need to join
tables in the query as you would in SQL. This isn't to suggest that we can't use more complex
techniques to join non-related tables or combine data in unique ways. DAX affords a lot of
advanced functionality when it's needed.

If we change the SUMMARIZE function to begin with the Internet Sales table, we can
add table and column references for any table that is related either directly or indirectly.
Ordering the results is similar to SQL using the ORDER BY clause followed by a series of
table and column references. Let us execute the following step to query the Model:

Chapter 10

289

1. Write a new query using the following text and then execute it:
EVALUATE SUMMARIZE('Internet Sales', Customer[FirstName]
 , Customer[LastName], 'Product Category'[CategoryName]
 , "Sales Amt", 'Internet Sales'[Sales Amount])
ORDER BY Customer[LastName], Customer[FirstName]
 , 'Product Category'[CategoryName]

The results are shown in the following screenshot, which shows us the total of sales
for each product category purchased by each customer:

2. To filter results you can use, you guessed it, the FILTER function, which wraps a
table expression and operates on the columns and values it contains. You can do it
by entering the query, selecting the text, and executing it as follows:

EVALUATE
FILTER(
 SUMMARIZE('Internet Sales', 'Date'[CalendarYear]
 , Customer[FirstName], Customer[LastName]
 , 'Product Category'[CategoryName]
 , "Sales Amt", 'Internet Sales'[Sales Amount])
 , 'Date'[CalendarYear] = 2008)

ORDER BY Customer[LastName], Customer[FirstName]
 , 'Product Category'[CategoryName]

The query returns only the sales figure for 2008, grouped by Customer and Category.

DAX Calculations and Queries

290

See also
The DAX expression and the query language consists of about 180 functions with more
being added as the language evolves. You're not going to need to know how to use all of
these commands and functions, but having a good reference is helpful. The DAX Function
Reference pages on the TechNet site are a good place to begin. These can be found at
http://technet.microsoft.com/en-us/library/ee634396.aspx.

One of the coolest tricks I have learned about DAX was something Darren Gosbell, a SQL
Server MVP from the UK, showed me not long ago. I was commenting that not all of the
latest DAX functions were included in Microsoft's online official documentation at the time.
Darren showed me that when a new feature is added to the language, the documentation
actually gets added to the language metadata that you can view by running a dynamic
management view (DMV). Check this out; run the following query in any MDX query window:

SELECT * FROM $System.MDSchema_Functions

This returns the complete online help and contextual metadata for both DAX and MDX. If you
want MDX only, use this expression in the WHERE clause: origin = 1. For DAX only, the WHERE
expression would be WHERE origin = 3 OR origin = 4 (the DMV query syntax doesn't
support extended SQL commands such as the IN function). Putting it all together, we can use
the following query to return complete documentation for the DAX language:

SELECT
 INTERFACE_NAME
 , FUNCTION_NAME
 , [DESCRIPTION]
 , PARAMETERINFO
FROM $System.MDSchema_functions
WHERE origin = 3 or origin = 4

We've covered the basics in this chapter to get you started and to lay a foundation that
you can build upon. With this basic understanding of DAX expressions, calculated columns,
measures, and DAX queries, you can use additional functions that provide specific
capabilities and features.

A dedicated DAX query tool, called DAX Studio, can be downloaded from http://
daxstudio.codeplex.com. This Excel add-in is an excellent resource developed by
members of the SQL Server MVP community for writing and editing DAX queries.

11
Performance Tuning
and Troubleshooting

Tabular Models

This chapter will address the following topics:

 f Understanding usability limits

 f Optimizing and managing a model's design

 f Diagnosing performance issues

 f Using performance tools

 f Investigating query performance with SQL Server Profiler

Introduction
This chapter will help you understand how to optimize a data model for performance and
to utilize memory and other system resources effectively. The topic of performance tuning
and troubleshooting is a little different than most of the other chapters you've read so far.
So troubleshooting isn't a purely prescriptive exercise where you follow a set of steps with a
predictable outcome. It is both an art and a science that often requires investigation and an
iterative approach to eliminate possible issues.

Performance Tuning and Troubleshooting Tabular Models

292

Understanding usability limits
A man goes to see his doctor and says, "Doctor, it hurts when I do this," and the doctor says,
"Don't do that." Performance tuning can only go so far as to remedy a problem that might
simply be a usability issue. Tabular technology can do impressive things with data, but every
technology has its practical limits, and the best solution might be to change the approach
or to educate users in ways to have a better experience. We will begin with an example to
demonstrate this principle.

Getting ready
Using Excel to browse the Tabular Model created in Chapter 10, DAX Calculations and Queries,
you will play the role of a business user. Your objective is to first get the total of year-to-date sales
daily and then the customers and the products they purchased. We will typically look at the
report at the end of each month, so we'll need to filter the data by year and month.

How to do it…
Use the following steps to create a sales report in Excel:

1. Open Excel 2013 and place the cursor in any blank worksheet.

2. On the DATA tab of the ribbon, choose From Other Sources and then choose
From Analysis Services.

3. In the Data Connection Wizard, enter your Tabular instance name and click on
the Next button.

4. Select the database you deployed in Chapter 10, DAX Calculations and Queries,
and then click on the Next button.

5. Click on the Finish button and save the connection if prompted.

6. On the Import Data dialog box, click on OK to insert a PivotTable at the current
position in the sheet.

7. Use the field list to the right to add the FullDate field from the Date table to
ROWS, and add the Sales YTD field measured from the Internet Sales
table to VALUES.

Take a look at what we have done so far. You've asked the query
engine to perform the Sales YTD calculation 1,280 times, adding
the daily values to the previous values on each day of the same year.
For December 31 of each year, it would add at least 365 values to
calculate the value in that cell, but it does all of this very quickly.

Chapter 11

293

8. Add the LastName field from the Customer table to ROWS and notice how long
it takes.

9. Add the EnglishProductName field from the Product table. Go get a coffee or
take a break because this is going to take a while.

After a few minutes, Excel will display the message: The PivotTable report will not fit
on the sheet. Do you want to display as much as possible? Excel is indicating that
the PivotTable size exceeds its limit.

10. Click on OK and scroll down to the bottom row.

You have added over one million rows to the sheet, but you only have room for about
two-thirds of the available data.

11. In the field list, expand the Calendar hierarchy in the Date table, right-click on the
CalendarYear field, and add this field as a slicer.

Let's stop here because this was not a good user experience, and we haven't achieved our
objective. Many users would be frustrated and either call the help desk or just give up at
this point.

Performance Tuning and Troubleshooting Tabular Models

294

There's more…
The solution to this problem is actually quite simple but requires that users are educated
about the practicality of consuming any significant volume of data.

If the same level of detailed reporting is a requirement, filters should be applied before selecting
the fields that would result in cross-joining values on the rows. In our case, we can filter by year
and month to reduce the result size and improve performance. Repeat the previous exercise,
but prior to step 7 of the previous section, perform the following additional steps:

1. Add CalendarYear and MonthNumberOfYear as filters.

2. Select a value from each of these cells before adding other fields to the rows or
columns of the PivotTable report.

Another approach is to help users understand the value of summarizing and slicing data,
rather than drilling down to raw details in a single report. If slicers or filters were applied
on dimensional members such as product category, product, and customer, we could have
displayed daily details without adding the product and customer to the details of the report
and creating the cross-join problem. Multiple reports can also be created to get customer
details in one list and product details in another list, with interactive filters and slicers that
can bring us to the same information in a simple and more effective presentation.

Optimizing and managing a model's design
As the designer of a Tabular Model, your experience is affected by different factors than those
of the consumers of the solution you deploy.

Managing memory usage
A common issue that users encounter with the Power Pivot add-in for Excel occurs when a
large volume of data is imported that uses all the available memory resources on the local
computer. This is especially true when running a 32-bit operating system or Office edition with
restricted memory resources. The logical path for many of these solutions is to migrate the
desktop Power Pivot model to a Tabular Model that runs on a well-equipped server.

The xVelocity In-Memory Analytics Engine is designed to utilize memory, rather than disk
I/O, to provide improved performance when compared to more conventional technologies.
Since models reside entirely in memory, the way we think about providing and managing
resources must be fundamentally different than it would be for managing relational databases
or even multidimensional semantic models. The simple reality is that when a Tabular
database server doesn't have enough memory to hold all of the data in the model, it simply
will not work. In many ways, the xVelocity In-Memory Analytics Engine is less complicated
and can be easier to troubleshoot. Many problems can be avoided by simply providing extra
memory to hold data, process objects, and execute queries.

Chapter 11

295

Many database administrators and virtual server administrators aren't accustomed to thinking
about server management in this way. In fact, the objective when configuring a virtual server
is to restrict memory and CPU resources as much as possible so they can be allocated to
other virtual machines on the same physical hardware. Make sure that when you specify the
memory requirements for a Tabular Analysis Services server, you should not only consider the
size of each model that will be loaded into memory but also the additional headroom needed
for growth, object processing, and other contingencies.

Specific issues will require investigation and systematic troubleshooting steps, but consider
these general guidelines that may help to prevent or resolve many common issues:

 f If the Tabular server is used to run other services such as the SQL Server relational
engine, restrict the memory allocated to those services so the Tabular instance
doesn't have to compete for the required memory.

 f Monitor the rate of compression for each table and database. Investigate and
optimize objects that are not being compressed effectively by eliminating unused
columns, and use conservative data types, especially for columns that contain sparse
and redundant values.

 f After estimating the size of each Tabular database on the server, once the data is
compressed, allow at least 20 percent of more memory as a contingency buffer.

 f Allow additional memory to facilitate object processing. The total memory that is
required will largely depend on the processing strategy. For databases that use the
Process Full option, allow twice the amount of memory that is required when the
database is at rest, while the database is being processed.

 f Use a partitioning strategy to reduce the memory overhead on the server and control
the use of memory on development machines. If you can process a single partition
containing added rows or process partitions for groups of rows one at a time, this will
reduce the overall use of memory during the processing time.

Diagnosing performance issues
The practice of performance tuning can range from being simple to being very complex,
but most issues are easy to resolve through effective design and by applying simple
troubleshooting steps and techniques. Sometimes problems are obvious and can be resolved
easily. In more challenging cases, we must consider the possible causes and then eliminate
possibilities to discover the remaining options. Fortunately, in most models, performance
issues can be addressed without extensive experimentation. If your models have large
volumes of data, many tables, complex relationships, or layers of complex calculation logic,
you have a higher likelihood of running into performance problems that you'll need to sort out.

Performance Tuning and Troubleshooting Tabular Models

296

Processing and query-related performance
The xVelocity In-Memory Analytics Engine consists of a storage engine and a query engine
that work in tandem to return query results and perform calculations. A fundamental
understanding of these components is helpful, much like a basic understanding of automotive
principles is helpful to diagnose problems with a car. Some problems are discovered and
corrected by reading the instrument panel or engine code displayed by a diagnostic computer.
Some problems can be discovered and resolved by listening to the engine to find a pulley,
bearing, or belt making noise. A few more elusive problems require the expertise of a certified
mechanic and can't be fixed easily by tinkering and experimenting. Troubleshooting the
Tabular storage and query engine is similar.

Using performance tools
Your design and management tool belt will contain several tools that will help you with
troubleshooting, optimization, and performance tuning. These may consist of:

 f SQL Server Management Studio

 f DAX Studio add-in for Excel

 f Windows Task Manager and Resource Monitor

 f SQL Server Profiler

Task Manager and Resource Monitor
The most convenient method to check system resources and activity is that of using
performance tools in the Windows Task Manager. You can access the Task Manager in any
version of Windows using Ctrl + Alt + Delete or by right-clicking on the Windows task bar.
Use the Performance tab to view a summary of CPU and memory usage on the computer.
Memory use is typically the most important factor to consider first. This will tell you how much
RAM is available on the system and how much is currently in use by the Tabular engine and
other processes. Use the Processes tab to see whether any other services or applications are
competing for memory. You should typically be concerned when memory use is consistently
over 80 percent or spiking over 90 percent, but there are many other factors to consider. On a
production server, you should maintain a memory reserve to cover for multiple models being
loaded into the memory and have enough additional memory for database processing.

The CPU usage is also an important factor in performance. If all the CPU cores are running
high consistently when queries run, this could be an indication of inefficiencies in the model
design or the calculation of formulas. Disk I/O and network performance are usually less
important in monitoring Tabular's query performance but can be important considerations
when processing the database, tables, or partitions. Depending on your version of Windows,
you can get a more extensive view of these resources and processes using the button on this
dialog to open Resource Monitor.

Chapter 11

297

Dynamic Management Views
Several Dynamic Management Views (DMVs) were added to the SQL Server to support Tabular
Model's design and optimization. These views are queried using OLE DB for Analysis Services
data provider, which is also used to run DAX and MDX queries against Analysis Services.

A complete list of DMVs is available in the MSDN Library under the topic Use Dynamic
Management Views (DMVs) to Monitor Analysis Services, which is located at: http://
msdn.microsoft.com/en-us/library/hh230820.aspx.

There are 59 DVMs related to SQL Server Analysis Services in SQL Server 2012. Most, but not
all, of these views apply to both multidimensional and Tabular SSAS databases since both
platforms expose objects through XML/A interfaces.

To query a DMV, open an MDX query window in the SQL Server Management Studio with a
connection to your Tabular instance. Even though you are using the same query interface to
write MDX and DAX queries, the query syntax for DMVs is very similar to T-SQL. Because of
the lack of support for advanced query operators for DMVs, it's often easiest to copy the results
of a query into Excel or a SQL Server table and then use other methods to filter and examine
the results. For example, to get the memory use of all the tables in a database, you would first
need to use the following query to return information for all the objects on the server:

select
 ObjectParentPath,
 ObjectID,
 MemoryUsed
from $system.DISCOVER_MEMORYUSAGE

The ObjectParentPath column contains a complete reference to each object in the form of
<Server\Instance>.Databases.<Database Name>.<Object Name>. This string can
be parsed to filter and discriminate the objects of interest.

One of the most convenient ways to discover and query SSAS Dynamic Management Views is to
use the DAX Studio tool. This is an installable add-in for Excel that you can download from the
Microsoft CodePlex community code sharing site at http://daxstudio.codeplex.com/.

DAX Studio has many other useful features and is, in many ways, a superior query tool to SSMS,
with features such as code completion, syntax checking, and query keyword color coding.

http://msdn.microsoft.com/en-us/library/hh230820.aspx
http://msdn.microsoft.com/en-us/library/hh230820.aspx
http://daxstudio.codeplex.com/

Performance Tuning and Troubleshooting Tabular Models

298

BISM server memory report
One very good example and useful application of this DMV is in an Excel workbook created by
Kasper de Jonge from the Analysis Services product team at Microsoft. This workbook contains
a Power Pivot model that runs a simple query, similar to the previous example, to populate
a table with calculations used to analyze the memory usage of various database objects in
comparison to other objects. The results are displayed in Excel PivotTables with conditional
formatting to proportionally highlight larger objects as shown in the following screenshot:

You can get more information and download the from Kasper's blog at http://www.Power
Pivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-
instance. Keep in mind that this is a simple application and just one of the many useful
DMVs; this DMV returns approximated values that can be affected by different factors, but it
does provide useful information for quick and easy problem solving.

Chapter 11

299

Now we'll do some serious performance testing. To set this up, we need a calculation added
to the model that demands more resources. Depending on how a query is constructed,
the following calculation might take several seconds to run. Keep in mind that our Tabular
database is quite small, but if this measure is used with several million rows of data loaded
into the model, it could take several minutes to run:

1. Add the following measure to a cell in the measures grid of the Internet Sales
table. Don't enter any carriage returns; the text wraps to fit on the printed page of
the book.
Qty Ratio Over Reorder Point:=DIVIDE([Order Quantity],
 sum(Product[ReorderPoint]))

2. Press Enter to validate and create the measure. Now, move on to another cell and
enter the following calculation all on one line:
Last Order Qty Ratio Over Reorder
 Point:=sumx(values('Internet Sales'[ProductKey]),
 CALCULATE([Qty Ratio Over Reorder Point],
 LASTNONBLANK('Internet Sales'[OrderDate],
 [Qty Ratio Over Reorder Point])))

3. Again, press Enter to validate and save the measure.

4. Deploy the database to the SSAS Tabular instance like you did in Chapter 10,
DAX Calculations and Queries.

5. Now we're ready to query the model and use the new measure. Open Excel to create
a new workbook.

6. On the DATA tab, select the From Other Sources icon in the Get External Data group.

7. Select From Analysis Services. Enter the server and instance name and click on the
Next button. Select the database name. Click on Next and then click on Finish to
complete the connection.

8. When prompted, add a PivotTable report.

9. Right-click on CalendarYear and select Add as Slicer.

10. In the slicer, click on select 2005.

11. From the Date table, expand More Fields.

12. Select the FullDate field to add it to ROWS.

13. From the Product table, select the EnglishProductName field to be added to
ROWS under the FullDate field.

Performance Tuning and Troubleshooting Tabular Models

300

14. From the Internet Sales measure table at the top of the fields list, select the
following measures:

 � Order Quantity

 � Qty Ratio Over Reorder Point

 � Last Order Qty Ratio Over Reorder Point

15. Use the slicer to select different years. Also, use the clear all icon at the top-right
corner of the slicer to release the filter and include all the years. The time to run
each query may vary from one to multiple seconds.

Chapter 11

301

You will use this PivotTable to capture the query that Excel generates when you interact with
slicers and other elements used to browse the Tabular Model.

Investigating query performance with SQL
Server Profiler

The most important step in determining performance bottlenecks is to find the cause. You need
to discover specific events that are taking too long to run or provide evidence of the issue.
The most effective way to decompose a query and understand the individual tasks it performs
is to run a trace using the SQL Server Profiler. Often times, this is simple but it can also be a
tedious and time-consuming process, depending on the complexity of the issue.

How to do it…
Let's get started with running a Profiler trace:

1. You will open SQL Server Profiler and start a trace to capture events on the Analysis
Services instance.

2. From the Microsoft SQL Server 2012 program group, expand Performance Tools
and click on SQL Server Profiler.

3. Click on the top-left button on the toolbar to start a New Trace.

4. When prompted, connect to the Tabular instance of Analysis Services.

5. On the Trace Properties dialog, switch to the Events Selection tab.

6. Check the box in the lower-right corner of the dialog labelled Show all events.

7. In the Events list, uncheck every box in the leftmost Events column. Scroll all the way
to the bottom and make sure every event is deselected.

8. Scroll back to the top and check the leftmost box in the Events column to include the
following events in the final set of objects:

 � Query Begin

 � Query End

 � DAX Query Plan

 � Calculate Non Empty End

Performance Tuning and Troubleshooting Tabular Models

302

 � VertiPaq SE Query End

 � Serialize Results End

9. When you're ready, click on the Run button.

Keep in mind that when the query begins to fire and does what it is supposed to do, it will be
capturing every interaction that Excel has with Analysis Services, which includes interactions
with the field list, filters, slicers, and the PivotTable. We want to capture only the events that
fire when you change the slicer.

Chapter 11

303

We will make one simple interaction, capture the trace, and then stop the trace capture.
Ready? Here we go:

1. Switch to Excel and use the slicer to click on CalendarYear 2007.

2. Switch back to the SQL Server Profiler. You will see the query activity being captured.

3. As soon as you see the Query End event added to the trace, click on the red stop
button on the toolbar, labelled Stop Selected Trace in the tooltip. This stops the trace
and continues to show the results in the grid.

To perform another trace, you can click on the eraser icon on the toolbar to clear all
the events and then click on the Start button to start a new trace.

4. Clear and restart the trace using the toolbar in the SQL Server Profiler. The Clear
Trace Window button looks like an eraser and the Start Selected Trace button is a
green play arrow.

5. Return to Excel and use the clear filter icon in the top-right corner of the
CalendarYear slicer to release the filter and include all the years.

Performance Tuning and Troubleshooting Tabular Models

304

6. Return to the SQL Server Profiler and watch the query trace run.

7. When the Query End event is captured, stop the trace as shown in the
following screenshot:

There's more…
Each entry in the table provides detailed information about different activities performed by
Analysis Services. Click on each row to view the trace details in the pane under the grid. If you
look at each row, it will essentially tell you the story of what went on, beginning with setting up
the query, choosing the slicer value, choosing a filter value, preparing an execution plan, and
then executing the query. Scroll to the right and note the Duration and CPUTime columns.
These values tell you the number of milliseconds it took for those events.

You can use the SQL Server Profiler with the SQL Server Management Studio to reproduce
a query for further analysis. You should first clear the SSAS query cache to avoid masking a
query performance issue with cached results from a previous query execution by performing
the following steps:

1. Switch to SQL Server Management Studio.

2. Add a few carriage returns to the end of the text in the open query window.

3. Add the following XML/A query, adding the name of the deployed database instead of
the --Database Name-- placeholder:
<ClearCache xmlns="http://schemas.microsoft.com/
 analysisservices/2003/engine">

http://schemas.microsoft.com/analysisservices/2003/engine
http://schemas.microsoft.com/analysisservices/2003/engine

Chapter 11

305

<Object>
<DatabaseID> --Database Name-- </DatabaseID>
</Object>
</ClearCache>

4. Highlight only this text and execute the query.

You should run this query to clear the execution cache each
time, prior to running a test query, to measure performance.

5. Switch back to the SQL Server Profiler.

6. Select the last row for the Query End event.

7. Select and copy the entire row of text from the pane under the grid to the clipboard.

8. Switch back to SSMS and insert a few more carriage returns to the bottom of the
query window.

9. Paste the query text from the clipboard.

10. Select only the new text and then execute the query.

There are other events you can add to a trace to get useful information. For example,
the Calculation Evaluation event returns detailed information about the execution
options the query engine uses for each stage of the query, but this information is very
verbose and can be time consuming to analyze.

Now you have a way to capture a query created by Excel or any other client tool and then
rerun the query in Management Studio. You can make changes to the calculation logic
to test performance and results and then easily rerun the query. This can be an invaluable
technique to investigate how different tools are interacting with a Tabular Model and
generating a query script.

Following a few simple guidelines, designing and using Tabular Models for optimal
performance is fairly uncomplicated. After all, an SSAS Tabular Model is simple and performs
very well as long as the application remains true to the design principles of the technology.
Larger and more complicated models are more prone to experience issues with performance
and errors, as is the nature of technology in general.

See also
The Microsoft white paper titled Performance Tuning of Tabular Models in SQL Server 2012
Analysis Services contains extensive guidance to analyze performance and optimize design at
a deeper level. This document can be downloaded from http://msdn.microsoft.com/
en-us/library/dn393915.aspx.

Miscellaneous Analysis
Services Topics

This appendix will cover:

 f Considerations when building a SSAS solution against nonSQL Server data sources

 f Common yet confusing SSAS errors

 f Dimension properties

 f Performance considerations for many-to-many dimension relationships

 f DirectQuery with Tabular Models

Working with non-SQL Server data sources
As discussed throughout the book you normally build cubes based on the SQL Server
relational database. SQL Server DBA's and cube developers don't always share responsibilities,
although some responsibilities may overlap. Generally, cube developers have database owner
permissions to the relational source, which allows them to define necessary data structures for
dimensions and partitions. However, in the real world the aforementioned assumptions do not
always hold. Analysis Services solution can be developed on top of any relational data source
to which you could connect to using .NET or OLEDB providers. The data warehouse might be
owned by a different team than the one responsible for developing Analysis Services objects.
Database administrators might only be willing to provide read access to the tables and no
permission to create additional objects.

In the easiest scenario, you can exploit SQL Server Integration Services (SSIS) to import data
from a nonSQL Server relational source into a SQL Server database and use it as the staging
data repository. Once data is in the SQL Server you can use either stored procedures or SSIS
to load data into fact and dimension tables as needed.

Miscellaneous Analysis Services Topics

308

In a more complicated scenario, the company might not allow you to use the SQL Server
even for a relational data warehouse or a staging area. The reasons for this could vary but
aren't really relevant to this discussion—the bottom line is that you must create a SSAS
solution using Oracle, db2, Sybase, Teradata, or another relational platform. This complicates
development because you must learn at least the basics of SQL flavor, used by the relational
data source, to define named queries and calculations. Additionally, you must also become
familiar with errors that the relational data source might raise during processing (and queries,
in case you use a ROLAP storage). The transaction isolation levels supported by each RDBMS
can also be different, and the various classes of objects can be implemented using a different
nomenclature. For example, the SQL Server implements ROLAP aggregations as indexed
views, but db2 does not support indexed views—similar objects in db2 are called
Materialized Query Tables (MQT). Lastly, not every database vendor allows looking under
the hood as Microsoft does using Profiler, and majority of the vendors offer support for textual
(not graphical) query execution plans.

In this section, I will cover a few "gotchas" in case you find yourself developing SSAS solutions
against nonSQL Server data sources.

SSAS data structures
Most SSAS solutions are built using fact and dimension tables. If you must develop
against a database using the third normal form, you may have to define the necessary
objects in your data source views as named queries and/or named calculations. This is
relatively straightforward as long as you have the necessary permissions to the underlying
objects (tables or views) and you are comfortable using the SQL syntax of a given RDBMS.
Additionally, you'll need the parameters for connecting to the relational data source using a
.NET or OLEDB provider supplied either by Microsoft or another vendor. Keep in mind that
Microsoft will not support third-party providers. If you have any issues during processing or
ROLAP queries, you'll have to work directly with the vendor who supplied the driver.

Transaction isolation levels
By default, Analysis Services uses a read-committed transaction isolation level. With this
level enforced, you should never experience data consistency issues. You could improve
processing performance by using a read-uncommitted transaction isolation level, because the
relational database wouldn't have the locking overhead while reading the fact and dimension
table data. To ensure that each processing command reads uncommitted data, you can edit
the cartridge corresponding to the relational data source. For example, you can reference a
knowledge-based article: http://support.microsoft.com/kb/959026 for instructions
to read the uncommitted data in db2 data sources. Please note that if you alter the cartridge,
every statement will read uncommitted data—you won't be able to control it for individual
statements. Furthermore, you cannot add query hints to SQL statements used in the named
queries or partition definitions. This is because Analysis Services uses such SQL statements
as subqueries and writes an outer query prior to sending the statement to the relational
source—using query hints in subqueries is not permitted.

Appendix

309

Processing performance issues
Analysis Services' processing performance largely depends on how fast you can execute
queries against the relational data source. If you're limited to read-only access, you need
to speak with the DBAs and see if they could review the query execution plans and come
up with necessary indexes. Bear in mind that SSAS does not offer much flexibility in how
the processing queries are written—you need to capture the progress report begin and
progress report end events in SQL Profiler during processing to obtain the SQL statements.
As discussed in the previous chapters, you can adjust the ProcessingGroup dimension
property and use the ByTable option instead of the default ByAttribute option to run only
one query while processing the dimension; by default, SSAS will run one query per attribute.
You can also adjust queries defining each partition as necessary. To maximize processing
performance, you should try processing as many partitions in parallel as possible. From the
performance perspective, it is always preferable to build a true Star schema model instead
of using a normalized database model.

You may also run into processing performance issues if you have a very large number of
dimensions and measures in your fact table. In some Star schema models, each new attribute
is celebrated with a separate dimension. This approach is simple to implement results in very
wide fact tables. In fact with such a data model each row read during processing might require
more than one buffer. If this is the case, you should try splitting measures into different
measure groups. Better yet, try to combine some of the dimensions, build necessary
attribute relationships, and use role-playing dimensions whenever appropriate.

Common yet confusing SSAS errors
Although documenting every SSAS error you could encounter is well beyond the scope of this
book, there are common errors you may encounter that are particularly obscure and might
leave you scratching your head for days. Hopefully, the explanations and troubleshooting steps
included here will help alleviate some of your headaches.

Binding is too small
The term "binding" in the Analysis Services context indicates mapping of a relational database
column to a dimension attribute. You can expect binding errors if you change the column data
type without adjusting your data source view or attribute properties. SSAS doesn't update
properties automatically; any time you make changes to the relational schema, you should
also apply corresponding changes in the SSAS project.

You can encounter another set of binding errors when data contains invalid XML characters.
Ensure your attributes are configured to account for such characters.

Miscellaneous Analysis Services Topics

310

Attribute key cannot be found
Although quite benign and easy to troubleshoot when encountered during partition
processing, the missing attribute key error can also pop up when running Process Update
against dimensions. The key to understanding the reason for error lies in how Analysis
Services processes attributes. The query for processing a specific attribute also includes any
related attributes. For example, if we're processing the date dimension, the query sent to the
relational database for the month name attribute will be the following code:

SELECT
 DISTINCT
 [dbo_DimTime].[dbo_DimTimeCalendarYear0_0] AS
 [dbo_DimTimeCalendarYear0_0],
 [dbo_DimTime].[dbo_DimTimeMonthNumberOfYear0_1] AS
 [dbo_DimTimeMonthNumberOfYear0_1],
 [dbo_DimTime].[dbo_DimTimeMonthName0_2] AS
 [dbo_DimTimeMonthName0_2],
 [dbo_DimTime].[dbo_DimTimeMonthNameValue0_3] AS
 [dbo_DimTimeMonthNameValue0_3],
 [dbo_DimTime].[dbo_DimTimeCalendarQuarter0_4] AS
 [dbo_DimTimeCalendarQuarter0_4]
 FROM
 (
 SELECT [CalendarYear] AS [dbo_DimTimeCalendarYear0_0],
 [MonthNumberOfYear] AS [dbo_DimTimeMonthNumberOfYear0_1],
 EnglishMonthName+' '+ CONVERT(CHAR (4), CalendarYear)
 AS [dbo_DimTimeMonthName0_2],
 CAST(CONVERT(CHAR(2), MonthNumberOfYear) + '/ ' +
 '1/'+CONVERT(CHAR(4), CalendarYear)
 AS DATE) AS [dbo_DimTimeMonthNameValue0_3],
 [CalendarQuarter] AS [dbo_DimTimeCalendarQuarter0_4]
 FROM [dbo].[DimDate]
)
 AS [dbo_DimTime]

Analysis Services retrieves calendar quarter and calendar year, along with month number and
month name columns. While calendar year and month number are the key columns for the
month name attribute, Analysis Services retrieves the calendar quarter column because the
month name attribute is directly related to the calendar quarter attribute (you can confirm that
through the attribute relationships' tab in SSDT). If, due to data consistency issues, the query
retrieving calendar quarter attribute members get a key not retrieved by the month name
attribute's processing query, the dimension processing job will fail and report the missing
attribute key error. The best way to troubleshoot such errors is to grab the SELECT statements
executed by Analysis Services and execute them against your relational data source. More than
likely you have a problem in the data extraction, transformation, and loading layer.

Appendix

311

Undefined column name
You might encounter this error while processing SSAS objects after altering a data source
view to add a column to a named query, or after adding a column to an existing table or view.
General troubleshooting steps include checking the data source to ensure that the column
name is spelled correctly and that the login account reading data from the relational source
has the necessary permissions. However, this error could simply be due to memory corruption.
If so, restarting Analysis Services will resolve the issue.

DSV does not contain definition for an xyz column
Though it seems obvious, this error isn't always caused by a misspelled column name. Keep in
mind that XMLA is case sensitive. If you have a dimension definition that has the column name
in uppercase, whereas the data source view has the same column in lowercase, you will get an
error. The resolution is to fix either the data source view or the dimension definition so that the
columns' case match.

Operation is cancelled
This error could have two root causes:

 f The user became impatient with the processing or querying job and cancels it.
Clearly such errors are benign. As a cube developer or DBA, you need to identify the
operation details and take corrective actions to assure improved query performance.

 f Analysis Services ran out of memory. You can check the Windows error log or the
msmdsrv.log file for additional error messages indicating out of memory condition.
If you consistently experience out of memory condition, you should migrate the
application to 64-bit Analysis Services and/or add memory to the host.

File is corrupted
Perhaps one of the most dreaded errors, this message indicates exactly what it says. The bottom
line is that you need to reprocess the affected object. If corruption affects dimension index or
partition aggregation files, you only need to run the ProcessIndexes command. If the fact file
is corrupted, you need to fully reprocess the entire partition. Fortunately, Microsoft has made
great strides towards fixing potential corruption issues over the years, so you shouldn't see many
occurrences of such errors with the latest builds of the software.

Keep in mind that synchronization doesn't check for file corruption—it simply copies files from
a source to target instance. Hence, if you use synchronization you could replicate the problem
before it is detected. One practice that could help you detect dimension file corruption is
to run the ProcessIndexes command against dimensions—if any files are corrupted the
command will fail. Clearly, your code needs to be smart enough to trap the errors and take the
corrective action.

Miscellaneous Analysis Services Topics

312

Error encountered in the transport layer
This error could be encountered during querying or synchronization and normally indicates
a transient network connectivity issue. If you repeatedly encounter such errors during
synchronization, consider the increasing server send timeout and server receive timeout
properties on both source and target instances.

Internal error or unexpected exception
This indicates an issue with MSFT code—you should open a case with support and look for
memory dumps generated around to the time of the error. Fortunately, MSFT consistently
tries to fix bugs in the latest releases of the software; be sure to check for a list of fixes
included in each service pack and cumulative update.

Deadlock
Deadlocks have a somewhat different meaning in SSAS compared to relational database
systems. Deadlock error advises that processing or metadata operation attempted to but could
not acquire necessary locks due to a conflicting operation. I have most commonly observed this
error when the user attempts creating a session-level cube, using Excel's grouping functionality.
Creating session-level cubes against large databases can be a very time-consuming operation,
during which attempts to create or delete partitions could fail with the deadlock error. If your
users commonly create session-level cubes to group dimension members, you should try to
define named sets, which contain the desired dimension member groups.

Dimension properties
The following table summarizes most frequently used dimension properties:

Dimension property name Explanation

AttributeAllMemberName Specifies the name of the top level of each
attribute hierarchy. For example, if you set this
property for promotion's dimension to All
Adventure Works Promotions, each
attribute hierarchy will show All Adventure
Works Promotions as its top level. The
default value is All.
This property does not apply to user-defined
hierarchies. You can set the ALLMemberName
property for each user-defined hierarchy to
override its default.

Appendix

313

Dimension property name Explanation

StorageMode The default value is MOLAP (Multi-dimensional
OLAP), which stores dimension data in Microsoft's
proprietary multidimensional storage format.
The other option is ROLAP, which leaves data
in the relational data source. If the storage
option is ROLAP, MDX queries are resolved by
sending the necessary SELECT statements to
the relational source and retrieving data at query
time. With previous releases of the software,
very large dimensions had to use the ROLAP
mode because of the string store data limit—see
the StringStoresCompatibilityLevel
property. The MOLAP mode generally outperforms
ROLAP and is hence preferred. If you find that
dimension processing time is exceedingly long and
delivering data to users is more important than
query performance, you could try using ROLAP.
Note: SSDT shows an InMemory option in
a drop-down box for this property; however,
the InMemory option is only available for the
Tabular Model, discussed in this book.

ErrorConfiguration It defines how Analysis Services should handle
processing errors. Refer to Chapter 5,
Optimizing Dimension and Cube Processing,
for more information.

ProcessingGroup The default value is ByAttribute, which sends
a separate SELECT statement to the relational
source for each attribute during dimension
processing. Additionally, ByAttribute includes
a DISTINCT keyword to ensure that we only
return unique attribute values. The ByTable
option sends a single SELECT statement for the
entire dimension without using the DISTINCT
keyword. Refer to Chapter 5, Optimizing Dimension
and Cube Processing, for more information.

ProcessingMode The default value is regular. The other option is
lazy aggregations, which allows building indexes
using the background thread, thereby shortening
dimension-processing time. Refer to Chapter 5,
Optimizing Dimension and Cube Processing,
for more information.

Miscellaneous Analysis Services Topics

314

Dimension property name Explanation

StringStoresCompatibilityLevel In Analysis Services versions prior to 2012,
dimension string store files were limited to 4 GB.
If your MOLAP dimension string store file exceeded
the 4 GB limit, processing would immediately
fail and report an error similar to: "File system
error: A FileStore error from WriteFile Occurred.
Physical file:\\?\N:\Analysis Services\
Data\database name\...\2.string.
data. Logical File:.. Errors in the OLAP Storage
Engine: An error occurred while processing an XYZ
object". One of the most anticipated fixes in 2012
is the StringStoresCompatibilityLevel
option, which removes the 4 GB limit if it is set to
1100. If you restore a database from a backup
file collected using a previous Analysis Services
version, this property defaults to 1050. If the
database was created using the 2012 version,
the compatibility level is set to 1100 by default.

MDXMissingMemberMode It controls how Analysis Services handles queries,
which reference members that do not exist in the
dimension. Many reports based on MDX queries
explicitly reference dimension members. Some
dimension members that once existed could
have been removed. By default, Analysis Services
2012 simply treats such data as null—so the
report will return nothing for missing members.
The other option is Error—if you use this value,
Analysis Services will report an error any time the
MDX query references a missing member.

UnknownMember This property controls how Analysis Services
behaves if it does not find the expected
dimension member during processing.
The record could be ignored, converted to an
"unknown" member, or hidden. The available
property values are None (default), Visible,
Hidden, or AutomaticNull. An unknown
member generally exposes an issue within your
data source. If you prefer to not display such
rows at all, set this property to Hidden. If you
prefer to identify issues (perhaps during quality
assurance testing), make UnknownMember
visible. By default the unknown members
show up as unknown, but you can change the
UnknownMemberName dimension property if
you prefer to display it as something different,
for example, "unspecified" or "undetermined".
The value of None indicates that an unknown
member is not used.

Appendix

315

See also
Discussing each dimension property is beyond the scope of this book—you can refer to
product documentation for properties not mentioned in the preceding table.

Performance considerations for
many-to-many dimension relationships

As you learned in Chapter 3, Creating Analysis Services Cubes, many-to-many dimension
relationships allow modeling complex business requirements, but this design option should
not be abused because it is associated with a performance penalty. When your query involves
many-to-many dimension relationships, Analysis Services retrieves data from both measure
groups (data measure group and intermediate measure group) as well as the intermediate
dimension; subsequently SSAS joins the results of these queries in memory before deriving
the result set returned to the requesting application. Since, we cannot materialize many-to-
many relationships, we must try to minimize their usage and look for opportunities to tune
performance using other methods. The best way to optimize many-to-many relationships is to
minimize the size of the intermediary measure group, thereby reducing the footprint required
for retrieving intermediary measure group's data into memory, as well as the time it takes to
join results to the primary measure group's data. Additionally, you can build suitable partitions
and aggregations on data and intermediate measure groups to further reduce the size of data
sets that will be joined during the query execution time.

Microsoft has published a white paper documenting the recommended practices for tuning
many-to-many query performance. You can download the white paper from http://www.
microsoft.com/en-us/download/details.aspx?id=137.

DirectQuery with Tabular Models
DirectQuery is a deployment option available in Tabular Models, which allows the developer
to use the relational data instead of the in-memory data in the model. This feature is still
immature and needs to be understood to determine how this can be used.

Data sources
DirectQuery can only use SQL Server and SQL Server PDW databases as sources. No other
relational or non-relational sources are supported including Oracle, SQL Server Analysis
Services or files. In this case, using DirectQuery would be valuable if using a SQL Server data
source and either real-time changes or large data volume are required in your solution.

Miscellaneous Analysis Services Topics

316

Security
The role-based security in the Tabular Model is not supported with DirectQuery. The security
within the data source, however, is supported.

Design limitations
Calculated columns are not supported in a table based on a DirectQuery source.
While calculated measures and KPIs are supported, the DAX formula support is limited.
It is possible to use derived columns in the source to overcome some of the calculation
issues. Even these workarounds may not have the desired results as there are also cases
where the calculations differ between the standard Tabular Model and DirectQuery model.
This is caused because the SQL Server engine and the xVelocity engine can handle these
calculations slightly differently.

Client restrictions
Only clients who work with DAX are able to interact with a model using DirectQuery.
This eliminates many tools such as SQL Server Reporting Services and Excel Pivot
Tables. They do work with Power View reports.

When choosing whether to use DirectQuery, you will need to evaluate the preceding
limitations to determine if it is a good choice in your solution. In most cases,
the limitations seem to outweigh the benefits.

Index
Symbols
<AllowedBrowsingFolders> property 201
<ExternalCommandTimeout> property 201
<ExternalConnectionTimeout> property 201
<ForceCommitTimeout> property 201
<Log><FlightRecorder><FileSizeMB>

property 200
<Log><FlightRecorder><LogDurationSec>

property 200
<Log><FlightRecorder><TraceDefinitionFile>

property 200
<Log><QueryLog><QueryLogSampling>

property 199
<Memory><HardMemoryLimit> property 200
<Memory><PreAllocate> property 199
<OLAP><LazyProcessing><Enabled>

property 199
<OLAP><LazyProcessing><MaxCPUUsage>

property 199
<Port> property 201
<Process><BufferRecordLimit> property 201
<Process><IndexBuildThreshold>

property 200
<ServerTimeout> property 201
<ThreadPool><IOProcess> property 200

A
Activity Viewer

used, for SSAS instance monitoring 204-207
Add Related Tables button 23
advanced attribute properties

customizing 46-48
advanced dimension processing

options 132

AGGREGATE function 163
aggregation designs

BIDS Helper, used for aggregations customiza-
tions 94-96

defining 91-94
aggregation function

about 67
AverageOfChildren 67
ByAccount 67
COUNT 67
DISTINCT COUNT 67
FirstChild 68
FirstNonEmpty 68
LastChild 68
LastNonEmpty 68
MAX 67
MIN 67
NONE 67
SUM 67

Aggregation wizard 64
All level 37
AllowedBrowsingFolders property 212
Analysis Management Objects (AMO) 80, 196
Analysis Services

securing 175
Analysis Services cubes 104
Analysis Services database

backing up 214-217
restoring 214-217

Analyze in Excel feature 261
Analyze with Excel feature 262
ANCESTOR function 165
Attach command 221
Attach method 220
AttributeAllMemberName property 312

318

AttributeHierarchyEnabled property 47
AttributeHierarchyOrdered property 48
AttributeHierarchyVisible property 47
attributes

sorting 45, 46
AutoSum feature 275
AutoSum measures

creating 275-280

B
backup command 221
backup/restore commands 218
basic dimension

about 128
processing 128-131

BI
about 7, 8
barriers 9
barriers, overcoming 9
business value 8
challenges 9
challenges, overcoming 9, 10

BIDS 16
BISM server memory report 298-300
BOTTOMCOUNT function 159
Business Intelligence. See BI
Business Intelligence Development Studio.

See BIDS
ByAccount measure 67
ByAttribute option 309

C
calculated columns

adding 272, 274
creating 240
used, for table combining 266-271

calculated measures
creating 238, 239, 280, 281
defining 105-108

CALCULATE function
measures, testing 284
Time Intelligence, working with 284, 285
using 283

CANCEL command 210

CategoryName option 282
cell-level security

implementing 190-193
Change User button 182
Children function 159
Command Begin event 146
Command End event 146
common issues

resolving, issues 295
cube access

checking 211
cube data

browsing 69-73
cube dimensions

Country of sale 152
product 152
time 152

cube file structures
examining 78, 79

cube-level security
managing 179

cube-level translations
defining 122

Cube Structure tab 123
Cube Wizard 64

D
data

loading 227-230
modeling 231-236
returning, on query axes 154, 155

Data Analysis Expressions. See DAX
database consistency checker (DBCC)

command 211
database-level security

database-level permissions, defining 178
managing 178

databases
attaching 221, 222
creating 202-204
detaching 221, 222
dropping 202-204
synchronizing 218, 219

Data Format property 232
Data Mining Extensions (DMX) 206

319

data mining relationship 76
DataQuery, with Tabular Models

client restrictions 316
data sources 315
design limitations 316
role-based security 316

data sources
defining 16-22
working with 226-230

Data Source Views (DSVs)
about 23, 58
defining 23, 24
entity relationships, defining 25
extending 26-28

Data type 68
date and time dimensions

creating 53, 55
DAX 10, 265
DAX Function Reference pages 290
DAX Studio 290
deadlock 312
Deployment Wizard

using 101, 102
DESCENDANTS function 166
Deselect all members option 181
Detach/Robocopy/Attach method 222
dimension data

browsing 42-45
dimension hierarchies

building 36-40
navigating 163-166
properties, setting 40

dimension hierarchy-level security
managing 180-186

dimension processing
options 132
out-of-line bindings, using 133, 135

dimension processing, options
about 126
error handling, customizing 133
error log path 132
Key error action 132
ProcessAdd 127
ProcessClear 126
ProcessData 127
ProcessDefault 127

ProcessFull 126
ProcessIndexes 127
ProcessUpdate 127
processing error limit 132
specific error conditions 132

dimension properties
AttributeAllMemberName 312
ErrorConfiguration 313
MDXMissingMemberMode 314
ProcessingGroup 313
ProcessingMode 313
StorageMode 313
StringStoresCompatibilityLevel 314
UnknownMember 314

Dimension Structure tab 40
dimension usage

measure group, using 74-77
Dimension Usage tab 74
DiscretizationBucketCount property 48
DiscretizationMethod property 48
DisplayFolder 68
distinct count measure group

implementing 97
DMVs

about 58, 297
used, for SSAS instance monitoring 208-210

drillthrough actions
defining 110, 111
working 111, 112

DRILLTHROUGH command 112
dynamic dimension security

implementing 186-190
Dynamic Management Views. See DMVs

E
English Promotion Type attribute 46
ErrorConfiguratio property 313
essential attribute properties

setting 40-42
Excel

Tabular Model, analyzing 246, 247
Tabular Model, testing 281, 283

Extensible Markup Language for Analysis. See
XMLA

Extraction, Transformation,
and Loading (ETL) 132

320

F
fact relationship 76
FILTER function 162, 289
Format property 280
FormatString property 65, 68
Form View button 170

G
globally unique identifier (GUID) 217

H
hierarchy

creating 236, 237
Hybrid OLAP (HOLAP) 87

I
Inherit option 21
InMemory option 313
instance-level administrative security

managing 176
members, adding 176, 177

InvalidXMLCharacters property 69
IsAggregatable property 48
isolation property 22

K
Key Performance Indicators. See KPI
KPI

about 114, 241
creating 242-246
defining 114-118

L
Local Cube 179

M
many-to-many dimension relationships

performance considerations 315
many-to-many relationship 77
Materialized Query Tables (MQT) 308
MDX 10, 48, 151

MDXMissingMemberMode property 314
MDX queries

monitoring 171, 173
tuning 171, 173

MDX script’s functionality
about 169
using 170, 171

MeasureExpression 68
measure expressions

defining 122, 123
measure groups

defining 58-64
dimension usage 74-77

Measure Name property 239
measure properties

aggregation function 67
Aggregation function 68
Data type 68
DisplayFolder 68
FormatString 68
MeasureExpression 68
setting 65-69
Source 69
Visible 69

measures
AutoSum measures, creating 275-280
calculated measures, creating 280, 281
creating 274
defining 58-61
properties, measuring 65-69

Members tab 261
MembersWithData property 52
Memory><LowMemoryLimit> property 200
model design

memory usage, managing 294
MultiDimensional eXpression. See MDX
Multidimensional models

choosing 10
requirements 11

Multi-Dimensional OLAP (MOLAP) 86

N
NameColumn property 42
named calculations

creating 29-31

321

named sets
defining 108-162

New Perspective button 258
NextMember function 164
NON_EMPTY_BEHAVIOR property 161
NONEMPTY function 158
NonLeafDataVisible property 52
nonSQL Server data sources

performance issues, processing 309
SSAS data structures 308
transaction isolation levels 308
working with 307, 308

No relationship 75
normalizing (Snowflaking) 13
Notification event 147
NullProcessing property 69

O
Online Analytical Processing (OLAP) 155
ORDER function 158

P
ParallelPeriod function 168
parent-child dimensions

creating 49-52
partition

merging 89, 90
processing, options 135, 137
processing, steps 137, 139

Partition Manager dialog 256
partition processing, options

ProcessAdd 136
ProcessClear 136
ProcessClearIndexes 137
ProcessData 136
ProcessDefault 137
ProcessFull 136
ProcessIndexes 136

partition slice
defining 88

Partitions option 256
performance issues

diagnosing 295
query-related performance 296

performance tools
BISM server memory report 298-300
Dynamic Management Views (DMVs) 297
Resource Monitor 296
Task Manager 296
tools 296

performance tuning 292
PeriodsToDate function 167
perspectives

about 154
defining 118
implementing 258-261

Perspectives tab 119
Process Add option 252
ProcessClear option 126
Process Clear or Process Data option 252
ProcessData option 127
ProcessDefault option 127
Process Full option 295
ProcessIndexes command 311
ProcessIndexes option 94, 127
ProcessingGroup property 313
ProcessingMode property 97, 313
processing performance

monitoring 143-145
PerfMon counters, collecting 145-149
tuning 143-145

Process option 180
ProcessUpdate option 127
Progress Report End event 173

Q
queries

creating 29, 31
Query End event 304
query level calculations

defining 160, 162
Query Log 92
query output

limiting 156-158
sorting 158, 159

query performance
investigating, with SQL

Server Profiler 301-305
Query timeout property 22

322

R
referenced relationship 76
regular relationship 75
RELATED function 272
Relational OLAP (ROLAP) 87
reporting actions

defining 113
Reset Default button 198
restore function 220
Reverse button 26
Robocopy command 220
Robocopy (Robust File Copy) 222
Role Manager dialog 261, 262
Row Filters tab 262
Run Trace button 172

S
SAAS 196
sales report

creating, in Excel 292-294
scaling out 196
scaling up 196
script to new query window option 92
security

implementing, in Tabular Models 261, 262
Select Creation Method dialog 53
Select Tables and Views dialog 228
server process identifier (SPID) 211
session

cancelling 210, 211
simple dimensions

creating 32-36
snowflake schema

about 12
selecting, scenario 13, 14

Solid State Disk (SSD) 145
Solution Explorer window 58
Source 69
Source Type property 141
SQL 151
SQL Server Profiler 171
SQL Server Analysis Services. See SSAS
SQL Server Data Tools. See SSDT
SQL Server Integration Services. See SSIS

SQL Server Management Studio. See SSMS
SQL Server Profiler

about 45
used, for query performance

investigation 301-305
using 105

SQL Server Reporting Services (SSRS) 113
SSAS

about 16, 58, 224
instance configuration options 197

SSAS errors
attribute key not found 310
binding 309
corrupted file 311
deadlock 312
operation is cancelled 311
transport layer error 312
undefined column name 311
unexpected exception 312
xyz column definition 311

SSAS instance
monitoring, Activity Viewer used 204-206
monitoring, DMVs used 208-210

SSAS instance settings
configuration modifying, SSMS used 197,

198
modifying 197-201

SSAS object sizes
checking, programmatically 211-213
SSAS solution, scaling 213

SSDT 16, 224, 266
SSIS

about 17, 139, 307
creating 139-143

SSMS 16, 197, 286
star schema 12
Status Indicator 116
Storage Area Network (SAN) 145
StorageMode property 313
strategies partitioning

about 80
creating 80, 82
creating, through AMO 85, 86
creating, through wizards 82-85
storage mode options 86, 87

323

StringStoresCompatibilityLevel option 314
StringStoresCompatibilityLevel

property 313, 314
StrToMember function 190
Structured Query Language. See SQL
SUMMARIZE function 288
Synchronize command 219

T
table

combining, calculated columns used 266-271
TABLE | Partitions option 254
Tabular Model, Excel

analyzing 246, 247
Row Context 282, 283
testing 281-283

Tabular Model
choosing 10, 11
creating 224-226
deploying 248, 249, 250
DirectQuery 315
partitioning 253-257
processing 252, 253
processing, automated method 263, 264
querying 286-290
requirements 11
security, implementing in 261, 262
scripting, XMLA used 251

Tabular Model processing
automating 263

Test Connection button 18
time dimension based

creating 55
time dimensions

working with 167, 168
Time Intelligence

working with 284, 285
TOPCOUNT function 166
translations

defining 120
Translations tab 120
Trend Indicator 116
tuple 153

U
UnknownMemberName dimension

property 314
UnknownMember property 314
URL actions

defining 112
usability limits 292
Usage-based Optimization (UBO) wizard 91

V
Visible property 64, 69
Visual Data Tools (VDT) 30

W
What You See Is What You Get

(WYSIWYG) 226
write-back feature

enabling 98-100
Writeback folder 100

X
XMLA

about 36
used, for Tabular Model scripting 251

xVelocity In-Memory Analytics Engine 294

Z
Zoom option 27

324

Thank you for buying
SQL Server Analysis Services 2012 Cube

Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with
SQL Server 2012 Cube
Development
ISBN: 978-1-84968-950-2 Paperback: 288 pages

Learn to develop and query Analysis Services cubes and
modules, with a practical, step-by-step approach

1. Learn how to develop a complete business
intelligence solution using SQL Server 2012

2. Understand the difference between tabular in-
memory models and OLAP cubes, and which to
use where and when

3. Add advanced features such as key performance
indicators (KPIs) and calculated measures to your
business intelligence model

Instant SQL Server Analysis
Services 2012 Cube Security
ISBN: 978-1-84968-870-3 Paperback: 68 pages

Analyze and secure cubes in the SQL Server 2012
environment in no time using this hands-on guide

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Get to know what’s new in BI space

3. Learn about tools & tricks to secure the
data layers

4. Implement best practices for Security
administration

Please check www.PacktPub.com for information on our titles

MDX with Microsoft SQL
Server 2008 R2 Analysis
Services Cookbook
ISBN: 978-1-84968-130-8 Paperback: 480 pages

80 recipes for enriching your Business Intelligence
solutions with high-performance MDX calculations
and flexible MDX queries

1. Enrich your BI solutions by implementing best
practice MDX calculations

2. Master a wide range of time-related, context-aware,
and business-related calculations

3. Enhance your solutions by combining MDX with
utility dimensions

Microsoft SQL Server 2012
Security Cookbook
ISBN: 978-1-84968-588-7 Paperback: 322 pages

Over 70 practical, focused recipes to bullet-proof your
SQL Server database and protect it from hackers and
security threats

1. Practical, focused recipes for securing your
SQL Server database

2. Master the latest techniques for data and code
encryption, user authentication and authorization,
protection against brute force attacks, denial-of-
service attacks, and SQL Injection, and more

3. A learn-by-example recipe-based approach that
focuses on key concepts to provide the foundation
to solve real world problems

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Multidimensional Data Model Design
	Introduction
	The business value of Business Intelligence
	Challenges and barriers of effective BI
	Overcoming BI challenges and barriers
	Choosing multidimensional or Tabular models
	Star- or Snowflake-relational schema
	A sample scenario for choosing the Snowflake schema

	Chapter 2: Defining Analysis Services Dimensions
	Introduction
	Defining data sources
	Defining data source views
	Defining entity relationships in DSV
	Extending data source views
	Creating named calculations and queries
	Creating simple dimensions
	Building dimension hierarchies
	Setting essential attribute properties
	Browsing dimension data
	Sorting the attributes
	Customizing advanced attribute properties
	Creating parent-child dimensions
	Creating the date and time dimensions

	Chapter 3: Creating Analysis Services Cubes
	Introduction
	Defining measure groups and measures
	Setting measure properties
	Browsing the cube data
	Dimension usage with measure group
	Examining cube file structures
	Partitioning strategies
	Defining partition slice
	Merging partitions
	Defining aggregation designs
	Distinct count measure groups
	Enabling write-back feature
	Deployment options

	Chapter 4: Extending and Customizing Cubes
	Introduction
	Defining calculated measures
	Defining named sets
	Defining drillthrough actions
	Defining URL actions
	Defining reporting actions
	Defining key performance indicators
	Defining perspectives
	Defining translations
	Defining measure expressions

	Chapter 5: Optimizing Dimension and Cube Processing
	Introduction
	Understanding dimension processing options
	Learning about basic dimension processing
	Learning advanced dimension processing options
	Using out-of-line bindings for dimension processing
	Dealing with partition processing options
	Using SQL Server Integration Services to process Analysis Services objects
	Monitoring and tuning processing performance

	Chapter 6: MDX
	Introduction
	Returning data on the query axes
	Limiting the query output
	Sorting the query output
	Defining query level calculations and
named sets
	Navigating dimension hierarchies
	Working with the Time dimensions
	MDX script's functionality
	Monitoring and tuning MDX queries

	Chapter 7: Analysis Services Security
	Introduction
	Managing instance-level administrative security
	Managing database-level security
	Managing cube-level security
	Managing dimension hierarchy-level security
	Implementing dynamic dimension security
	Implementing cell-level security

	Chapter 8: Administering and Monitoring Analysis Services
	Introduction
	SSAS instance configuration options
	Creating and dropping databases
	Monitoring SSAS instance using Activity Viewer
	Monitoring SSAS instance using DMVs
	Cancelling a session
	Checking whether cubes are accessible
	Checking SSAS object sizes programmatically
	Backup and restore
	Synchronizing databases
	Detaching and attaching databases

	Chapter 9: Using Tabular Models
	Introduction
	Creating a Tabular Model
	Working with data sources and loading data
	Modeling the data
	Creating a hierarchy
	Creating a calculated measure
	Creating a calculated column
	Creating a KPI
	Analyzing your model in Excel
	Deploying Tabular Models
	Scripting Tabular Models using XMLA
	Processing Tabular Models
	Partitioning Tabular Models
	Implementing perspectives
	Implementing security in Tabular Models
	Automating Tabular Model processing

	Chapter 10: DAX Calculations
and Queries
	Introduction
	Combining tables using calculated columns
	Adding a calculated column
	Creating measures
	Testing a Tabular Model in Excel
	Using the CALCULATE function
	Querying a Tabular Model

	Chapter 11: Performance Tuning
and Troubleshooting
	Introduction
	Understanding usability limits
	Optimizing and managing a model's design
	Diagnosing performance issues
	Using performance tools
	Investigating query performance with SQL Server Profiler

	Appendix: Miscellaneous Analysis Services Topics
	Working with nonSQL Server data sources
	Common yet confusing SSAS errors
	Dimension properties
	Performance considerations for many-to-many dimension relationships
	DirectQuery with Tabular models

	Index

