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Introduction

During the past few years, Web applications have undergone an amazing transition. Not
that long ago they were a relative rarity. Sites might have an email feedback form, or a
search engine, or maybe even a message board. From there, we moved to a realm in
which hundreds of companies centered around Web applications sprung up. Since then,
the craze has died down some and many of those companies are no longer around, but
Web applications themselves aren’t going away—indeed, they’re more common than
ever.

These days, not only does nearly every company have a Web site, but most of them fea-
ture Web applications as well. Corporate intranets are also filled with Web applications
of all kinds. More importantly, most software companies offer some level of Web inte-
gration for their software. Large enterprise software companies like Siebel, SAP, and
Oracle have Web interfaces for their products. The main reason that Web applications
aren’t in the headlines every day any more is that they’ve become so common.

The primary focus of this book is on using the Common Gateway Interface (CGI), which
is built into nearly every Web server, to develop Web applications. The biggest advantage
of CGI is that it supports nearly every popular programming language. So, if you already
know how to program, you can probably get started writing Web applications right away.
Even if you don’t program, you can copy existing CGI programs and modify them to suit
your own needs.

The larger focus of this book is on teaching you how Web applications are designed and
built. Although you may start out writing CGI programs, there’s a good chance that down
the road you’ll be building applications using some other platform, like Active Server
Pages, ColdFusion, or perhaps Java servlets. Even so, this book will provide you with the
knowledge you need to understand how Web applications work in general, and some
methods you can use to write Web applications that are easy to improve and maintain.
Also, knowing CGI will enable you to quickly solve problems that you might not be able
to solve using other technologies. For example, because CGI programs can be written in
a wide variety of languages, often it’s easiest to write Web applications that communicate
with other programs using CGI.

I should also point out that most of the examples in this book are written in Perl. Perl is a
scripting language that’s available for most computing platforms, including Unix and
Windows. It has a number of features that make it well-suited to CGI programming, and
in fact, it’s the most popular language for writing CGI programs. The biggest advantage
for readers of this book is that it’s easy to learn Perl in bits and pieces. You don’t need to
understand any big concepts behind software design in order to write useful programs in
Perl.
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My goal in this book is to explain the Perl concepts that I use in the example programs,
and not to go beyond that. I also used as few special Perl features as possible in order to
apply the lessons in these examples to the programming language that you use to write
CGI programs. If you don’t know any programming languages, Perl is as good a starting
point as any other language. I’d advise you to pick up a Perl book (like Laura Lemay’s
Teach Yourself Perl in 21 Days), or at least check out the Perl information at
www.perl.com.

Hopefully this book will be the first step in sending you off on a long and successful
career as a professional or amateur developer of Web applications. If you have any com-
ments or feedback, please send them to me at rafecolburn@rafe.us. Good luck!
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Overview of CGI

Programming

Do you use the World Wide Web to look up the latest stock quotes? Do you
purchase items from online stores? Have you ever used a feedback form on
a Web site? If the answer to any of those questions is yes, you’ve not only
browsed a Web site, you’ve interacted with a Web application.

It didn’t take long for Web developers to realize that Web sites could provide
a lot of functionality above and beyond browsable content. Increasingly,
you’ll find that Web applications—which provide truly interactive function-
ality to your Web sites—are taking the place of static HTML content. If you
want to accept and process user input, retrieve and present data from a data-
base, or communicate with applications external to the Web server, you must
use a Web application development platform. In this book, you will learn
how to build interactive Web applications using the Common Gateway
Interface (CGI)—which is the predominant platform for deploying Web
applications today.
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This hour will provide the introductory and background information you need before you
can start writing CGI programs. The following topics will be discussed:

» Types of Web applications

* A brief history of CGI

* The definition of a CGI program

* How CGI programs work

* Pros and cons of using CGI to write Web applications

* Programming languages you can use to implement CGI programs

Types of Web Applications

A Web application is like any other application, except that the interface for it is pro-
vided through the browser. Originally, Web applications were generally used for func-
tions that are unique to the Web  site feedback forms, online discussion boards, and
shopping carts for electronic commerce sites. However, the world of Web application
programming has matured, and now there are Web-based replacements for many desktop
applications. People use the Web to manage their calendars and contacts, to locate places
using online mapping services, and to read their email.

_ Y/ Although you could use JavaScript to augment a Web page with “interactiv-
,
/ ity,” such as image rollovers and pull-down menus of links, you'd still be

stuck with the static information the author originally placed on the page.

A History of CGI

You might be wondering where CGI was created and why it is still the most widely used
platform for developing Web applications.

One of the first Web servers to be developed was NCSA HTTPD. It was developed at
the National Center for Supercomputing Applications, where most of the founders of
Netscape worked (and also developed the Mosaic browser). One of the most important
features of NCSA HTTPD was CGI, which was added to the server with the 1.0 release.

Because NCSA HTTPD was one of the first widely used Web servers (along with the
CERN server), CGI became the de facto standard for implementing Web applications.
CGI support was added to the CERN server (the original Web server) in version 2.15,
back in April of 1994.
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At the time NCSA released HTTPD, CGI was the only way to implement Web applica-
tions. Because CGI is so simple, and the source code to NCSA HTTPD was freely avail-
able, nearly every Web server developed after NCSA HTTPD supports CGI. If you're
interested, you can view the original CGI documentation at:

http://hoohoo.ncsa.uiuc.edu/cgi/
Today, all of the popular Web servers on both Windows and UNIX support CGI.

In the years since the people at NCSA initially defined CGI and implemented it in their
Web server, lots of other methods of developing Web applications have been introduced.
Some Web application platforms you might be familiar with include JavaServer Pages
and servlets, Microsoft’s Active Server Pages, Macromedia’s ColdFusion, and PHP.
These Web application development tools, among others, will be discussed in Hour 12,
“Pros and Cons of Alternate Technologies.”

What Is a CGI Program?

A CGI program is executed by the Web server in response to a request made by the Web
browser. The Web server acts as an intermediary between the browser and the CGI pro-
gram: it passes the browser’s request to the CGI program, and it sends output from the
program back to the Web browser for processing. For example, a program might accept a
stock ticker symbol, look up the stock price associated with that symbol and return it to
the user as part of a dynamically generated Web page. Or, a program might accept a
user’s comment, and send it to the site’s Webmaster in an email message. Almost any
programming language can be used to write a CGI program; CGI itself is the defined
interface between the Web server and the external program you want to write.

Let me discuss briefly what a CGI program doesn’t do—it doesn’t interact with the user
in a direct way. It doesn’t display or retrieve information from prompts, menus, or other
interactive features. A CGI program doesn’t display graphics, either. Although it may
generate binary data that is, in fact, an image, it doesn’t create any windows or otherwise
interact with a graphical user interface.

To work properly, a CGI program must meet the following criteria:

* You must be able to execute the program from the command line by simply typing
the program’s name. (For example, Java programs must be executed through the
Java virtual machine, by typing java programname. This makes them unsuitable
for use as CGI programs.)

* The program must generate a valid content-type header.

lvww.allitebooks.cond



http://www.allitebooks.org

Hour 1

Any type of content is fair game as output of a CGI program. For example, content types
include HTML code, GIF images, plain text files, Microsoft Word documents, and audio
files. The content-type header that’s supplied by the program indicates which sort of con-
tent is being returned, so that the browser can take the appropriate action. Later in the
hour, I’'ll discuss the details of how to create this header.

Basically, that’s it. As long as the Web server can execute the program, and the program
generates valid output, it’s acceptable for use as a CGI program. Later in the hour, I’11
discuss what qualifies as valid output, and I'll also discuss other capabilities generally
associated with CGI programs.

How CGI Programs Work

Now I’'m ready to get down to the nuts and bolts of how CGI programs work. The great
thing about CGI is that it’s an extremely simple interface. If you’re familiar with UNIX-
based operating systems, you will recognize the concepts that CGI is grounded in.

As I've already discussed, CGI is a set of conventions that allows Web servers and exter-
nal programs to communicate. To illustrate how CGI programs work, I’'m going to
include a description of the entire HTTP session, so you can understand at a high level
how it all fits together.

How Resources Are Requested

An HTTP session is initiated when a Web client (usually a Web browser) requests a
resource from a Web server. As I’'m sure you already know, these resources are identified
using URLs. When you’re dealing with static HTML pages, the URL simply consists of
the location of a file stored on a Web server. Let’s say you have a URL like this:

http://www.example.com/somedirectory/index.html

That URL corresponds to the file index.html in the somedirectory subdirectory of the
Web server’s document root. If the document root is /home/httpd/htdocs, the path that
corresponds to the URL is:

/home/httpd/htdocs/somedirectory/index.html

If the Web server can locate and read the file, the contents of the file will be sent back to
the client that requested it.

When the URL points to a CGI program, things get a bit more complicated. Let’s look at
a URL that points to a CGI program:

http://www.example.com/cgi-bin/example.cgi
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In this case, the resource being requested is a program named example.cgi. What it does
is unimportant. What is important is that when the Web server determines that the
requested resource is a CGI program, it executes that program and returns the output of
the program to the client.

This process is very different from that used for static HTML files. For one thing, a lot
more can go wrong. When a CGI program is requested, the Web server must determine
the following:

1. Can it locate the requested program file?

2. Does it know that the requested file is a CGI program? (I'll discuss this in Hour 2,
“Setting Up Your CGI Environment.”)

3. Isit allowed to execute the program?
4. Did the program execute without any errors?

5. Was the output of the program a valid response to a Web request? (I’1l discuss this
later in this section.)

Only if the answer to all of those questions is affirmative can the Web server successfully
fulfill the request. If the answer to any of these is no, an error will be returned, or some-
thing strange will happen.

Fulfilling the Request

As stated earlier, a CGI program must supply a contenttype header so the Web browser
knows what type of output the program has returned. Normally, the server derives the
content type from the extension of the requested file. Because the extension of the CGI
program generally has no relation to the content type of the data that the program gener-
ates, the content type has to be specified within the program itself. Content types for Web
content are specified using MIME types. MIME is a standard that is commonly associ-
ated with email, but the naming system used for identifying the type of data stored in a
MIME attachment is exactly the same as the naming system for specifying content types
on the Web. Table 1.1 contains a list of common content types.

TaBLe 1.1 Common Web Content Types

Identifier Content type
text/html HTML documents
text/plain Plain text documents
image/gif GIF images
image/jpeg JPEG images
video/quicktime A QuickTime movie

application/octet-stream Binary files
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If a CGI program generates HTML code, it produces the following content-type header:
Content-type: text/html

That information is received by the Web server, and included with the other headers that
are sent back to the browser. The HTTP protocol specifies that headers are to be sepa-
rated from the actual content by two linefeeds. When a browser receives two consecutive
linefeeds, it knows that the headers have ended and the content to be processed has
begun. So, to conclude this example, if the CGI program example.cgi produces HTML
code as its output, the full output of the program might be as follows:

Content-type: text/html

<html>

<head><title>A simple example.</title></head>
<body>This is a simple example.</body>
</html>

As you can see, the required header is separated from the actual content by two line-
feeds. The rest of the HTTP headers are added by the Web server, and it’s all packaged
up and sent to the browser for rendering. Here’s the full response sent back to the
browser, including the output of the script and the response line and other headers added
by the Web server:

200 OK

Connection: close

Date: Thu, 30 May 2002 03:24:56 GMT
Server: Apache/1.3.23

Content-Type: text/html

Client-Date: Thu, 30 May 2002 03:24:56 GMT
Client-Peer: 209.197.70.60:80

<html>

<head><title>A simple example.</title></head>
<body>This is a simple example.</body>
</html>

HTTP Headers

Most of the information relevant to an HTTP transaction is visible to the user. The URL
being requested and the information entered in a form are the visible parts of a request.
Similarly, the HTML (or other) data returned by a request is displayed by the browser or
saved to disk.

However, other information is exchanged that’s invisible to users. This information is
exchanged between the browser and server, and is used to make their jobs easier.
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You're already familiar with one kind of header, the content-type header, which must be
provided by every CGI program. This header tells the browser how to handle the content
being returned by the CGI program. Other common headers are used to specify the types
of content that browsers accept, or to indicate the name and version of the Web server
or Web browser.

A list of the common HTTP headers appears in Appendix B, “Environment Variables and
Request Headers.”

Passing Data to a CGI Program

In my description of how a typical HTTP session works, I left out something very impor-
tant! I didn’t explain how information is passed from the Web browser to the CGI pro-
gram. There are several different ways that data can be passed to the Web server from a
browser. For now, I'll provide an overview of how this process works.

Generally speaking, the data passed to CGI programs is collected using HTML forms.
(There are other ways to provide data as well.) In Hour 5, “Creating HTML Forms,” I
discuss how to create forms for submitting information to CGI programs, and I also dis-
cuss some alternate methods of providing data to a CGI program. The data can also be
embedded in URLs used within standard hyperlinks.

Before data can be passed to a CGI program, it has to be encoded to remove any charac-
ters that might break things. Most of the time, a technique called URL encoding is used.
URL encoding is a method of escaping certain characters that are significant to the Web
server so that they’re ignored and passed directly to the CGI program. For example, the ?
character is used to separate the filename in the URL from the query string. If the query
string itself contains a ?, passing it without escaping it could cause problems. So, the ? is
translated so that it doesn’t confuse the Web server.

Spaces are also confusing, so they’re converted into plus signs. Since plus signs are used
to replace spaces, real plus signs have to be encoded as well. Fortunately, these days you
don’t need to worry much about the mechanics of URL encoding, because there are pro-
grams and libraries that will do your dirty work for you. More details about how URL
encoding works will be provided in Hour 6.

Pros and Cons of CGlI

There are advantages and disadvantages to writing your Web applications as CGI pro-
grams. In Hour 12, I’1l discuss some of the alternatives to CGI for Web application pro-
gramming and how those alternatives compare to CGI. For now I'll just talk about CGI.
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I'll talk about the good stuff first—the advantages of CGI programming. The main
advantage of CGI programming is that it’s the ultimate cross-platform technology. It
works on Web servers running both Windows and UNIX, and with almost every Web
server. So when you write CGI programs, you can be fairly certain that they’ll be
portable to whatever environment you’ll want to run them in. The second major advan-
tage of CGI is that it’s language independent. For the most part, you can write CGI pro-
grams in the language of your choice. There’s no need to learn a new programming
language just to write CGI programs. If you choose a cross-platform language, like Perl,
it’s trivial to port your programs from UNIX to Windows, or vice versa.

Another advantage of CGI is that it’s a very simple interface. It’s not necessary to have
any special libraries to create a CGI program, or write your programs to use a particular
APIL. Instead, CGI programs rely on the standard UNIX concepts of standard input, stan-
dard output, and environment variables to communicate with the Web server.

Now let’s take a look at the disadvantages of CGI. The single greatest disadvantage of
CGI programs comes into play when you write your CGI programs in a scripting lan-
guage. Every time a CGI program is requested, the interpreter for the scripting language
has to be started, the script has to be evaluated, and then the script has to be executed.
The fact that you have to run the Perl interpreter every time a Perl CGI script is
requested is very inefficient. Whether this is a problem depends on how powerful your
Web server is, how many requests there are for your CGI scripts, and how long it takes
the CGI program to load. Generally speaking, the performance issue does not become a
problem unless you run a very high traffic Web site, or you have an antiquated Web
Server.

People who write their CGI programs in a compiled language like C don’t have to deal
with this problem, because there’s no extra overhead like that generated by an interpreter.
In fact, it was once common to use small, fast-executing CGI programs as a gateway
between the Web server and the application server process. That allowed the application
server to work with Web servers that they can’t communicate with through a native inter-
face.

The other main complaint about CGI programs is that they don’t make things as easy on
Web programmers as some other newer Web application platforms. When you write a
CGI program, in addition to all of the program logic that creates the functionality you
want, you also have to write code to generate the HTML code for the page. Most of
today’s more popular application servers allow you to embed program logic within a
standard HTML page, which can save some work when you write the programs. These
application servers are also easier to learn for people who know HTML but don’t know
how to program. It is, however, harder to write structured, well organized programs when
you use this type of technology, so the choice is really one of preference. One isn’t
absolutely better than the other.
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CGIl Programming Languages

As I've already stated, almost any programming language can be used to write CGI pro-
grams. Just because it isn’t mentioned here doesn’t mean that it’s unsuitable for CGI pro-
gramming. As long as programs written in the language can meet the criteria that I
discussed earlier in this hour for CGI programs, it can be used for CGI programming. In
this section of the hour, I'm going to discuss some of the more commonly used lan-
guages, but this is by no means a complete list.

Perl

Perl is the granddaddy of all of the languages used for CGI programming. Perl had the
right mix of ease of use, features helpful to CGI programming, and popularity to become
the dominant language for writing CGI programs when the original Web servers that sup-
port CGI were released. It’s not necessarily any better suited to CGI programming than
any of a number of other languages, but it’s the language most CGI programmers use.

One factor that established the popularity of Perl as a CGI programming language was
the availability of libraries that made it easy to write CGI programs. The CGI.pm module,
which is used to make a number of CGI-related tasks easier, is now bundled with the Perl
interpreter. The most important functionality provided by CGI.pm is seamless conversion
of form input to a useful Perl data structure. It also provides tons of additional function-
ality to make it convenient to generate HTML code.

Another advantage of Perl is that a lot of CGI programs that have already been written in
the language are available for download on the Internet. In many cases, you can down-
load an existing script and adapt it to your purposes rather than writing a new script from
scratch.

In this book, nearly all of the CGI programs will be written in Perl. Perl is easy to learn,
especially if you already know how to program, and is generally considered to be the de
facto standard for CGI programming. However, this book is really about proper Web
application design, and isn’t written as a Perl tutorial. The most important thing for you
to take away are the proper design techniques for creating Web applications.

UNIX Shell

When it comes to writing a simple CGI program, particularly one that is designed to
interact with UNIX programs, writing it as a shell script is a common choice. Most peo-
ple who write CGI programs using shell scripts do so because they’re system administra-
tors who are already familiar with shell scripting. It’s easy to do a lot with a few lines of
code in a shell script, particularly if it involves interfacing with other UNIX command
line programs.
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For example, if you wanted to write a CGI program that returns the load average for the
server (using the uptime command), writing it as a shell script would make a lot of
sense. The disadvantage of writing your CGI programs as shell scripts is that, in my
opinion, shell scripts are best suited to quick and dirty tasks. Other languages are better
suited for writing complex CGI programs.

The C Language

The C programming language is perfectly acceptable for writing CGI scripts, as are any
other compiled languages that can be used to create standard command-line executable
files. The main advantage of writing CGI programs in a compiled language like C is that
the performance is very good. The programs execute in less time than it takes to start the
Perl interpreter to run a Perl script.

Unfortunately, there are a number of disadvantages involved with writing CGI programs
in C as well. These are all general software development tradeoffs, they’re not specific to
CGI programming. Any comparison of scripting languages to compiled languages will
include the same reasons. For the benefit of people who haven’t read such a discussion,
I'll quickly cover the issues here.

Basically there are three areas where scripting languages have an advantage over com-
piled languages. The first area is speed of development. Scripting languages tend to have
higher-level statements than compiled languages, which makes it easier to complete the
tasks for which the scripting language was designed. For example, Perl has lots of tools
that are designed to make it easy to manipulate text files. Writing a program to search
through a text file for valid email addresses would require a lot fewer lines of Perl code
than C code.

The second advantage is in debugging. When you work with a compiled language, you
have to recompile your code every time you make a change to it. So, when you’re debug-
ging a C program, you have to compile the program, run it, and if it doesn’t work, you
have to change it, recompile it, and run it again. When you use a scripting language,
you’re saved the compilation steps. You can simply test your program, and if it doesn’t
work, you can make a change and test it again.

The third advantage of scripting languages is that they’re easier to learn than compiled
languages, generally speaking. With most scripting languages, you can learn language
constructs as you need them, rather than learning an overarching language philosophy
first, or learning how to structure the programs. Many languages allow you to build more
structure into your programs once you learn how, but still allow you to create simple pro-
grams at first.
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Now let’s talk about the advantages of compiled languages over scripting languages. The
primary advantage is performance. Scripting languages must be processed by an inter-
preter and turned into machine executable code every single time they’re run. When you
write scripts that you only use occasionally for various tasks, the performance issue isn’t
a big deal. In a high demand Web environment where a CGI program has to process hun-
dreds of requests per hour, the overhead can make using CGI scripts prohibitive.

Another advantage of most compiled languages, and C in particular, is that they’re suit-
able for just about any programming task. Most scripting languages are designed for a
particular task, or type of task. There are many good general purpose scripting lan-
guages, but even they aren’t as flexible as C. Most of the time, this flexibility doesn’t
come into play because scripting languages are flexible enough for the task at hand, but
in some cases, C is the only language that will do.

Visual Basic

Visual Basic is an incredibly popular language for writing client/server applications.
Microsoft claims that there are more Visual Basic programmers than there are for any
other language. Unfortunately, for a number of reasons Visual Basic is poorly suited to
the creation of CGI programs. While Visual Basic can be used with some Web servers
using the wince interface, it’s not really much like the standard CGI interface, and is kind
of awkward for writing Web applications.

Fortunately, there are other options for Visual Basic programmers. Microsoft’s Internet
Information Server supports Active Server Pages (ASP), which allows you to embed
application logic into a Web page. ASP supports a scripting language called VBScript,
which is kind of a simplified version of Visual Basic. You can also write COM objects in
Visual Basic that can be accessed from ASP pages. Microsoft’s .NET framework also
makes it easy to integrate code written in Visual Basic (or other .NET languages) with
ASPNET pages. I’ll discuss both of these options in Hour 12.

Python

Python is an object-oriented scripting language that’s available for most popular operat-
ing systems. Like Perl, it’s a general purpose language suitable for many tasks, including
CGI programming. Most Python fans like it because it’s easy to write readable, maintain-
able programs using the language. It combines many of the advantages of scripting lan-
guages, like rapid development, with some of the advantages of compiled languages, like
solid program structure. One of the nicest, and most controversial, features of the lan-
guage is that it uses white space to define blocks in the source code. In other words, in
order to work properly, Python code has to be formatted in a sensible manner. You can
learn more about Python at http://www.python.org.
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Java

Java programmers are in the same boat as Visual Basic programmers when it comes to
CGI programming. Earlier, I said that it’s impossible to write CGI programs in Java. The
reason for this is that Java programs have to be executed using a Java Virtual Machine, so
there’s no way to call a Java CGI program directly from the Web server. However, you
can write wrapper CGI programs in another language that can be used to call the Java
program using the Java Virtual Machine. If you do choose to go this route, you’re then
faced with the overhead of starting a wrapper program, which in turn starts the Java
Virtual Machine and then executes the Java program.

Again, like Visual Basic, there are other options available for Java programmers. You can
use Java servlets to write Web applications. Servlets are the Java equivalent of CGI pro-
grams. A servlet engine includes a Java Virtual Machine, and runs while the Web server
is up. When a request is made, the servlet engine executes the Java program that was
requested and sends the output of the servlet to the user as a response. There are also a
number of application servers that use Java as their programming language. Any of these
options are better for writing Web applications in Java than writing CGI programs in
Java.

Summary

The purpose of this hour was to provide you with a wide ranging overview of the CGI
landscape. At this point you should understand, at least at a high level, how CGI pro-
grams work and what qualifies a program as a CGI program. You should also have a
good idea which programming languages can be used to write CGI scripts, and the
advantages and disadvantages of the most popular CGI programming languages. In the
next hour, “Setting Up Your CGI Environment,” I’'m going to tell you how to set up your
computer so that you can begin writing and testing CGI scripts.

Q&A

Q [I’ve heard of Web Objects, ColdFusion, JavaServer Pages, (insert application
server here)—how does it compare to CGI for writing Web applications?

A Tl discuss most of the popular Web application servers in Hour 12. Each applica-
tion server has its own strengths and weaknesses and it’s impossible to generalize.

Q Does the browser that my site’s visitors use matter when I write CGI pro-
grams?

A No. CGI programs are browser-independent—what counts is the content generated
by your CGI program, which is entirely up to you.
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Q Are any security issues related to running CGI programs?

A Yes, CGI programs can make your site vulnerable to intruders in many different

ways if you’re not careful. Hour 22, “Securing CGI Scripts,” covers the most com-
mon security issues.

My Internet service provider (ISP) doesn’t allow me to write my own CGI
programs. What can I do?

Not a lot. Many ISPs don’t allow users to supply their own CGI programs for secu-
rity reasons. If this is the case, you’ll have to find another ISP that does. Most
Web-hosting services aimed at professional Web designers do allow their users to
create their own CGI programs. You can find a list of some ISPs that support CGI
at the Web site for this book at http://rc3.org/books/cgi-in-24-hours/.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour.

Quiz

1.
2.
3.

Which was the first Web server to support CGI?
What is the primary advantage of compiled languages over interpreted languages?

What is the name of the technique used to translate special characters in query
strings to characters that are acceptable to the Web server?

Quiz Answers

1.
2.

The first Web server that supported CGI was NCSA HTTPD.

The primary advantage of compiled languages over interpreted languages is perfor-
mance they are stored in a machine-native form that enables them to be executed
quickly.

. URL coding is the technique used to translate special characters so that they can be

accepted by a Web server.
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HoOUR 2

Setting Up Your CGI
Environment

In this hour, I’'m going to explain what you need to do to get started in CGI
programming. To write and test your CGI programs, you need to have the
proper environment set up, either on your own computer or on a server that
you have access to.

During this hour, I'll discuss the following topics:
* The advantages and disadvantages of running your own Web server
versus using a hosting service
* Popular Web-server operating systems
* The requirements for setting up a CGI programming environment

» Step-by-step instructions for setting up a Web server under Windows
for CGI development

The Web Server Itself

The first question you face as you begin to write CGI scripts is what com-
puter to test them on. The second question is where they will reside after
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you’ve written them and you’re ready to start using them. Fortunately, the answer to both
of these questions does not have to be the same. Before I get started, I’d like to clear up
one point of confusion. The word “server” can be used in two ways. In the first sense, a
server is a computer that is used to provide various services to other computers. For
example, most companies have a mail server to which all of the employees connect to
retrieve their email. In this case, I'm talking about a Web server, a computer which is
used to house Web content and Web applications that can be accessed using a Web
browser. In the other sense of the word, server refers to the particular piece of software
used to provide the service. Running on the computer that serves as the Web server is a
program that’s unfortunately also referred to as a Web server. It can also be referred to as
an HTTP daemon. This program actually accepts HTTP requests and fetches the appro-
priate resource to respond to them.

The requirements for setting up a place where you can write CGI scripts are few. Any
computer running Windows will work fine, as will any computer running a version of
UNIX, including Linux or FreeBSD. As long as your computer is running one of the
operating systems I just mentioned and you have the software that’s necessary to run the
CGI programs, you’re ready to start developing software. Later this hour, I'll discuss
exactly what you need to do to get your CGI programming environment up and running
on a standard desktop machine running Windows.

Hosting Your CGI Scripts

After you’ve finished writing your CGI scripts, you have to find a place to store them so
that they’re accessible from the Internet, or from your intranet, depending on what you’re
going to use them for. If you’re going to use them for an intranet application, you’ll need
to store them on a server that’s accessible from your internal network.

If you’re writing a script for use on the Internet, you have a few more options. The first
option is to place the scripts on a server of your own that’s connected to the Internet. The
second option is to lease space on a server managed by an ISP.

Running Your Own Web Server

In some cases, you might have a server of your own on which you’re going to place your
CGI scripts. Perhaps your company already owns a server where all of the content is
placed, or you have a server on which you’re going to place the scripts. For some appli-
cations, using a server that belongs to you or your company is the only option that will
work.

For example, perhaps you’re writing CGI scripts for your company’s intranet. If that’s
the case, your scripts need to be hosted somewhere on your internal network. Generally,
these will be hosted on a company-wide intranet server, or perhaps a departmental server.
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If your application is widely used by a lot of people, or deals with particularly sensitive
data, perhaps there will be a server dedicated to it.

In any case, there are advantages and disadvantages involved with using a server of your
own. The single largest disadvantage of running your own Web server is the extra
responsibility it entails. When you’re in charge of a server, you have to make sure that
everything is set up properly, that the server doesn’t run out of disk space, that every-
thing is backed up, and that the server is secure.

That’s a lot of work, especially for someone who isn’t trained as a system administrator.
In most cases, programmers aren’t in charge of all of the management tasks involved
with the servers that they use. If you’re writing CGI scripts for work, there are usually
people in the information systems department whose job it is to take care of the servers.

Explaining in detail how to set up a computer for Web hosting is well beyond the scope
of this hour. You should determine which operating system and Web server you’re going
to use, and then look up reference material explaining how to run them.

If you do decide to set up your own server, be aware of the your responsibil-
ity to the Internet community. If your server is compromised, it can be used
as a starting point for attacks on other people’s servers or to launch denial
of service attacks. If you configure your system improperly for relaying mail,
it can be exploited by spammers to send unsolicited email to millions of
other people. There's plenty of information available to explain how to
properly administer a server on the Internet, but it's a lot to keep track of.
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Web Hosting

Most Web sites on the Internet are not on servers owned or managed by the people who
created the site. Rather, they’re run on servers that are owned by a company that is in the
business of Web hosting. These companies administer the servers themselves, and place
multiple customers on each server. Although many of these companies focus on allowing
users to place static HTML files on their servers, there are some who allow you to place
CGI scripts on their servers as well.

High-end Web hosting companies will allow companies to place their own servers in a
managed facility where they will take care of network connectivity, power, and backups,
and the company that owns the server manages the content on the server and access to
the server. Another option provided by some hosting companies is a dedicated server that
is managed by the hosting company but is available exclusively for the use of the com-
pany that is leasing space on it.
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The advantages of using a hosting company to store and serve your CGI programs (and
static HTML documents) include the following:

» The hosting company takes care of all the connectivity for the server. Rather than
worrying about providing enough bandwidth for all of the requests to your Web
server, you can rely on the hosting company to make sure that there’s plenty of
bandwidth. The hosting company is able to get better rates for network connectiv-
ity than their customers could individually because they buy enough bandwidth for
all their customers at once. Most of hosting companies place limits on how much
bandwidth you can consume before they charge you a metered rate based on usage,
but that’s still generally cheaper than purchasing your own connection for all but
the highest traffic sites.

* The hosting company manages the Web server for you. Hosting companies should
be experts on keeping Web servers up and running.

* You save costs on server hardware. When you rent space on a server from a Web
hosting company, the hosting company purchases the server, and you share space
on it with other users.

One disadvantage of hosting services is that they generally configure servers to ensure
that they are secure, and so that customers don’t consume too many resources. They are
also concerned with making sure that the servers are easy to manage. That often means
that what you can do as a user is somewhat limited, especially in terms of managing your
CGI scripts. You should make sure that your hosting provider offers the capabilities that
you need.

Web-Server Operating Systems

One issue you have to deal with when you write CGI programs is which operating sys-
tem you’re going to use. The operating system affects which Web server software you
can use, and which programming languages are available for writing CGI programs.
Different Web servers are accessed and managed differently as well. I'm going to discuss
three Web-server operating systems specifically in this hour. The two most popular plat-
forms for serving Web content are Windows and UNIX. I'll include the Mac in the UNIX
category now that Mac OS X is based on BSD UNIX.

UNIX

As you know from Hour 1, “Overview of CGI Programming,” UNIX is the original Web
server operating system. UNIX and the Internet are intimately linked. The TCP/IP proto-
col, upon which all Internet services run, is built into the UNIX kernel. Written for
UNIX, the CERN server (one of the first Web servers) was written by Tim Berners-
Lee—the inventor of the Web.
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1 When | talk about UNIX, I'm speaking generally. There is no one operating
=1
4 system called UNIX. There are a number of operating systems available that
= are all derived from the original UNIX operating system, and that are

extremely similar to one another. For the purpose of writing CGI scripts,
they're almost identical. Some of the common UNIX flavors are Solaris,
Linux, FreeBSD, and HP-UX.

There’s little you need to do to get CGI scripts up and running under UNIX. When you
install a UNIX Web server, generally it’s already set up for running CGI scripts. You just
need to put the scripts in the right directory and make sure that the Web server has exe-
cute permission for the scripts in order to get the scripts working. I'll discuss some of the
common Web servers for UNIX a bit later in this hour.

If you're interested in experimenting with a UNIX-based operating system,
there are several free options that run on standard PC hardware. Linux is
Z the most popular free UNIX operating system, you can find out about it at

http://www.linux.com. FreeBSD is also a free UNIX operating system, and is
run by some of the largest sites on the Web. You can find out more about it
at http://www.freebsd.org.

Windows

The second dominant Web server platform is Windows. Windows 2000 is Microsoft’s
server operating system. Even though Windows is very popular, and most Web servers
for Windows have provided CGI support for a long time, it’s not generally associated
with CGI programming. At one time, it was rather difficult to write CGI programs to run
under Windows, but this is no longer the case.

In fact, many CGI programs that are written to run on UNIX servers are very easily
portable to run under Windows. There are versions of most of the popular UNIX script-
ing languages, including Perl, Python, and TCL, that run under Windows. Nearly all
Windows Web servers now support CGI as it was defined for UNIX servers.

The CGI Environment

As you already know, CGI programs aren’t like regular programs. Although they can be
executed from the command line, they’re really designed to be executed by a Web server
in response to a request from a Web browser. There are several pieces of software that are
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required in order to set up a proper environment for CGI programming. A list of the soft-
ware that is required, and some that is just helpful, follows:

* A Web server. In order to execute your CGI programs and send the results to a
Web browser, a Web server is required. Naturally, in order to write CGI scripts, the
server must support CGI.

* A language interpreter or compiler. If you write your CGI programs in a scripting
language, you need the language interpreter. For example, if you write your pro-
grams in Perl, a Perl interpreter must be available. If you write them in the Bourne
shell, /bin/sh must be present. Alternatively, if you write your CGI programs in a
compiled language, the compiler must be available.

* Libraries or applications that automatically translate form input into a data struc-
ture native to the language that you’re using. If you wish to decode the user input
manually, these aren’t necessary, but they can help to avoid errors and save you a
lot of work.

Web Servers

The piece of software most integral to CGI programming is the Web server. The Web
server handles all the requests sent by the Web browser, and retrieves the appropriate
resource from disk and sends it back. It also executes CGI scripts when they’re
requested, and handles authentication. There are a number of Web servers available, but
the two most popular are Apache for UNIX, and Microsoft Internet Information Server
(I1S) for Windows. Most Web servers are extremely similar in functionality.

Web-Server Directory Structure

It’s important to understand how the directories associated with a Web server are orga-
nized. Unless you understand the directory structure of the Web server, you won’t know
where your CGI scripts should be placed. Most Web servers share a common directory
structure. They have a place to put static HTML files, and a place to put CGI scripts.

The Apache Web server, on both UNIX and Windows, uses the directory structure
depicted in Figure 2.1. The htdocs directory is used to store static content, and is gener-
ally referred to as the document root. The cgi-bin directory is used to store CGI pro-
grams.

This is simply the default configuration—if there’s a directory structure you prefer more,
you can easily reconfigure Apache so that you can use it. For example, if you like, you
can set up Apache so that files in the htdocs directory are executed as CGI scripts if they
have a certain extension. You can also create aliases so that directories elsewhere on the
file system are treated by Apache as though they are below the document root.
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FIGURE 2.1 Server Root Directory —— conf
The typical directory htdocs
structure for an cgi-bin
Apache Web server: b

in

Other Web servers use a similar directory structure by default, but nearly all Web servers
allow you to configure the directories however you want. There are two important points
to keep in mind when you’re storing CGI scripts on a Web server. The first is that you
need to make sure that your CGI scripts are in a directory where they’ll be executed, and
not just sent to the Web browser that requests them. If you place a script in the wrong
directory, it will look something like Figure 2.2 when the browser requests it.

FIGURE 2.2 Mozilla [Build ID; 20020530123 [i=11E3)
The result of a script’s Tt Edt Yew Go Bookmarks Took Yindow e

L3 L3
source COde belng sent #!/usr/local/bin/perl -Tw
to a browser. S— ;

y Spage_t
my Eresponae_liat = (};
my (Stopic_title, Stopic_author, $last_modified, $post);
my Sneed_header = 1:

if (Sguery->parem(’topiz')) {
sparas_topic(fopen_topic|Squery-rparam|'topic'))):
le = Stopic_title:

&sprint_response_form($querv->param('topic')):
&sprint_page end;

_0 & @ @ @ vocument: Done (0321 s2es)

SH=e

The second thing you should think about is how you want your Web content organized.
There are sometimes good reasons for placing CGI scripts under your document root
with your standard HTML files. For example, if you want the default home page for your
Web site to be generated by a CGI script, you’ll need to set up your server so that you
can keep your CGI scripts in the home directory of the Web site.

How Scripts Are Executed

There are two separate tasks involved with processing a request for a CGI script. The
first task is recognizing that the request is for a script that should be executed, and the
second task is executing the script that was requested. The Web server is in charge of fig-
uring out that the request is for a CGI script; the operating system is in charge of figuring
out what needs to be done to execute the script.

There are a number of ways that the Web server can differentiate between requests for
static files and requests for CGI programs. The most common method is specifying a
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directory as a cgi-bin directory. All the files in this directory are treated as though they
are CGI programs, and the server attempts to execute them when they’re requested.

Another option is to set up the Web server so that it treats files with a certain extension
as CGI programs. For example, you can set it up so that any file with the extension .cgi
is considered to be a CGI program, even if it resides in a document directory.

After the script has been requested, it’s up to the operating system to figure out what to
do with the request. The operating system handles the file as though its name were typed
in at a command prompt. Generally, if the CGI program is running on a Windows-based
server, it must have a specific extension as well. For example, when you install Perl on a
computer running Windows, it associates files with the .pl extension with the Perl inter-
preter. So if you’re using IIS, you should assign the .pl extension to Perl CGI programs.
(These days, ActiveState Perl will do that for you if you have it installed. )

Setting Up Your CGI Development
Environment

Now that I’'ve surveyed the landscape of Web server hardware and software, I’'m going to
walk you through the steps for setting up an environment where you can test your CGI
scripts on a standard desktop computer running Windows. After you’ve followed these
steps, you should be able to test almost all the scripts printed in this book on your local
desktop computer.

o The following steps assume that you have any relatively modern version of
/= =¥ Windows installed on your computer. If you're running UNIX or the Mac OS
—_— 4

f

- on your local computer, the steps won't be nearly as useful to you as they
are to people who are running Windows. Even though the exact technical
information won't be applicable to you, the concepts involved in getting a
Web server up and running are still the same.

Step 1: Download a Web Server

To test your CGI scripts, you’ll need access to a Web server. Fortunately, there are many
free ones available, so you won’t have to spend any money.

If you don’t have one installed on your system already, I recommend the Apache Web
server. You could also install Microsoft’s Personal Web Server, but I prefer Apache for a
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number of reasons. The main reason I think Apache is a good choice is that it doesn’t do
any permanent, irreversible damage to your system when you install it. It’s a small down-
load, and doesn’t create a large footprint in your Registry or on your system. When
you’re done with it, it’s easy to uninstall.

Another advantage of using Apache is that all the configuration directives for the
Windows version of Apache are the same as those used for the UNIX version. Most com-
puters used as Web servers run some flavor of UNIX, and UNIX is particularly popular
for hosting CGI programs. If you can get your scripts working under Apache for
Windows, it’s not hard to migrate them to a server running Apache for UNIX. Besides,
everything you learn about Apache on your local system can be transferred to a produc-
tion Web server running Apache.

Personal Web Server is probably a better choice for you. For information on
figuring out which Microsoft-supported Web server you can install on your
version of Windows, see

@ If your CGl script will eventually reside on a Web server running IS, 1IS or
Z

http://www.adopenstatic.com/resources/guide/gettingstarted
/setup.asp

You can download the installer for the Apache server at the Apache Software
Foundation’s Web site. The URL is

http://httpd.apache.org/

When you click on the download link, the files listed at the top level are bundles of

Apache source code. Chances are, you don’t want that. Click on the binaries link, and
then click on the platform you’re using—probably win32. In the end, you’ll see a list of
various Windows installers. The file you want to download will be something similar to

apache_1.3.24-win32-x86-no_src.msi

Step 2: Install the Web Server

After you’ve downloaded the Apache installer on your local machine, the next step is to
install the software. Apache uses a standard Windows software installation package, so
all you have to do to install the Web server is double-click on the executable, agree to the
license agreement, and choose a directory and installation type.

lvww.allitebooks.cond
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my recommendation is to place the Web server in a directory that doesn’t
include a space in the name. Although everything should work fine if you
place it in the default directory as the installer suggests, I've had an easier
time in the past when | installed the Web server in a directory that had no
spaces in the name, like C:\Apache. To change the directory where the server
is installed, choose the Custom setup type and use the Change button to set
the directory where Apache will be installed.

@ The installer wants to put the server under the Program Files directory, but
-
Z

Step 3: Download a Perl Interpreter

This book follows the prevailing trend by focusing on Perl for CGI programming, so
you’ll need access to a Perl interpreter to run the programs in the book. Most UNIX sys-
tems have Perl interpreters installed already. If Perl isn’t installed on your UNIX server,
you should have a heart-to-heart conversation with your systems administrator, or if
you’re the administrator, you should download Perl at http://www.perl.com.

Windows users can obtain an excellent version of Perl at http://www.activestate.com.
One of the nicest features of the ActiveState Perl distribution is that it comes with all
sorts of Perl modules that ordinarily have to be downloaded and installed individually.
Because most of the installers for these programs were written with UNIX in mind,
ActiveState went ahead and included the modules with their distribution of Perl so that
Windows users can take advantage of them. It also includes a program called PPM (the
Perl package manager), which enables you to easily install standard modules.

In any case, you should download the latest Perl build from http://www.activestate.
com. There’s a download link right on the front page. Clicking on it will enable you to
get the latest build of Perl for Windows.

Step 4: Install the Perl Interpreter

After you’ve downloaded the latest version of Perl, you should install it on your com-
puter. After Perl has been properly installed, you should be able to execute Perl programs
by double-clicking them.

Just as | suggested that you install Apache in a directory with no spaces in
the name, | suggest the same thing for the Perl interpreter. Perl CGl pro-
grams that work with either the UNIX or Windows version of Apache are
required to have the path to the executable for the Perl interpreter in the
first line of the script. Spaces in the path to the interpreter break the CGI
scripts, so you have to use the DOS name for any directory that has a space

S
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in the name. If you installed Perl in the directory C:\Program Files\Perl,
your CGlI scripts would have to begin with the following line:

#!C:\progra~1\perl\bin\perl.exe

ActiveState Perl is installed by default in a directory called perl in the root
directory of your hard drive. As long as you accept the default, you're fine.

Step 5: Get the Web Server Up and Running

After the Web server and Perl are installed, you need to get the server up and running.
With Apache, this is very easy. There are two options for running Apache; you can either
install it as a service, or run it only when you need it. My recommendation is to just run
the server when you need it, and only install it as a service when you want it up and run-
ning full time.

If you’re only running the server for your personal testing, it makes sense to just run it
when you’ll be using it. If you’re going to let other people view pages and test scripts on
the server, it makes more sense to just keep the server up and running at all times.

Starting the server is really easy. Just find Apache in your Start menu, go to the Control
Apache Server folder, and select Start Apache in Console. A console window will appear
when the server starts. To stop the server, just press Ctrl+C in the server’s window, and
the server will stop automatically.

If you decline to install Apache as a service at installation time, you can always go back
later and install the service. Documentation on setting up the service can be found on the
Apache Web site at

http://httpd.apache.org/docs-2.0/platform/win_service.html

Step 6: Test the Web Server

After you have the server up and running, you can test it with a Web browser to make
sure that it’s working. Generally, it’s easiest to test the server on your local machine
rather than connecting to it from another machine. To test the server, you need to know
what URL to type into the browser. If you generally connect to the Internet with a
modem, a cable modem, or DSL, the name of your computer is probably something
strange like dial813.example.net—plus, every time you dial up again, it will change.

Fortunately, there are a couple of ways to identify the local computer without knowing
the name or IP number assigned to the computer. The TCP/IP standard mandates that
you be able to refer to the local computer as localhost, and that the loopback address is
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The test page for the

A
Apache server. ®® @) N il oatacmn) Of@) @O

127.0.0.1. So, you can use either of the two following URLS to access the Web server
running on your computer:

http://localhost/

http://127.0.0.1/

When you enter one of the two URLs in your browser, you should see a page something
like the one in Figure 2.3. If that page appears, Apache has been installed successfully. If
not, you’ll need to do some troubleshooting to determine why the installation wasn’t suc-
cessful.

FIGURE 2.3 Test Page for Apache Installation - Mozilla {Bufld ID: 20020530123

¥ He Edt View Go Bookmarks Took Ygndow Help

If you can ses this, it means that the mnstallation of the Apache web server soft on this svetem was successfil You may
now add content to this directory and replace this page.

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact the
person responsible for maintaining this server with questions. The Apache Scftware Foundation, which wrote the
web server software this site administrator is using, has nothing to do with maintaiming this site and cannot help resobes
configuration issues,

The Apache documentation has been inchided with this distribution.

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!
X
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Step 7: Test a Perl CGI Script

After you’ve verified that the Apache installation was a success, you're ready to make
sure that you can create and execute Perl CGI programs as well. This test involves creat-
ing a simple Perl CGI script, placing it in the appropriate directory, and verifying that it
can be executed through the Web server.

The first step is to create the script. In order to create it, you’ll need to know the location
where you installed your Perl interpreter. Listing 2.1 contains the source code for the test
script.

Listing 2.1 A Simple Sample Program

1: #!c:/perl/bin/perl
2:
3: use CGI;
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: $query = new CGI;

: print "<html><head><title>A test</title></head>\n";

4

5

6:

7: print $query->header;

8-

9

10: print "<body>The test was successful.</body></html>";

You should enter the script in a text editor, save it to a file named test.pl, and place the
script in the cgi-bin directory in the root directory of your Web server. The first line of
the file should be changed to reflect the actual location of perl.exe on your system. If
you’re testing the script on a computer running some UNIX-like operating system, the
first line will be something such as

#!/usr/local/bin/perl

The first line of the script is important under Unix, because it indicates
which program is supposed to be used to interpret the script. Apache for
Z Windows follows this convention and also determines how the file is sup-

posed to be handled based on the contents of the first line of the file. Other
Web servers running under Windows decide how to handle programs based
on their extension, so they ignore the first line of the program.

You can then request the file with your Web browser using the following URL:
http://localhost/cgi-bin/test.pl

If the test is successful, you’ll see a page very similar to the one in Figure 2.4 in your
browser window.

FIGURE 2.4 [ A test - ozilia {Build ID: 2002053012} r- |r|3][§
Executing the test CGI || He &t ten g goomaris Toas pindow e

il N
script successfully. ®® @ - [B hmirderdsgmnenlca et ol @ @Go

The test was successful.

The test verifies that a number of components of the CGI environment are set up prop-
erly. Here’s a list of the important components that the test verifies:

* The Web server is running properly and is set up to execute CGI scripts
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* You’ve installed the CGI script in the proper directory, and the Web server is set up
to treat files in that directory as CGI scripts

¢ Perl is properly installed on your system, and you’ve entered the correct path to the
Perl executable in the first line of your script

* The Perl libraries that ship with Perl are correctly installed, specifically CGI.pm

What If Something Went Wrong?

In the next hour, “Downloading, Installing, and Debugging CGI Scripts,” I'm going to
talk a lot about debugging CGI scripts, but I want to give you the information you need
to debug the CGI script if it didn’t work in this test.

Here are a few basic steps you can take to diagnose the problem. The first step is to
make sure that you transcribed the script properly. You should execute the program from
the command line to verify that it works and that the output is correct. To run the pro-
gram from the command line, you need to run the Perl interpreter and pass it the name
and path to your script. Let’s assume that your Perl executable is in C: \perl\bin. To test
your script, you can use the following command line:

C:\perl\bin\perl C:/apache/cgi-bin/test.pl

If Perl is in your path, this command line will suffice:

perl c:/apache/cgi-bin/test.pl

If the script was transcribed correctly, the program will generate the following output:

Content-Type: text/html; charset=IS0-8859-1

<html><head><title>A test</title></head>
<body>The test was successful.</body></html>

1 On executing test.pl from the command line, you may first encounter the
following message:

Il
£

&

(offline mode: enter name=value pairs on standard input)

This will allow you to enter key pairs that will be passed to cgi script (some-
thing we’ll be doing a lot of later in the book). For now just press Ctrl+Z
(Ctrl+D on UNIX) to continue.

If it wasn’t copied correctly, it will probably print an error of some kind.

There’s some chance that the error could be related to the presence of the CGI.pm mod-
ule. If the Perl interpreter can’t find CGI.pm, your program will fail to execute. You
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should check to make sure that Perl is installed correctly, and that CGI.pm is in the Perl
library directory.

If the Perl program works correctly, in all likelihood there’s a problem with the Web
server. Go back again and make sure that the test in step 6 still works. If it doesn’t,
you’ve either used the wrong URL in your browser or the Web server isn’t running.
There’s an off chance that the networking on your computer might be misconfigured. If
you can view Web sites on the Internet or a local network, this isn’t the case.

It’s important to get this script to work before you move on to the next hour. If you can’t
get it working, you’ll have trouble getting the rest of the scripts in the book to work too.
So be sure to spend time to get this one up and running.

Summary

The purpose of this hour was to provide you with the information you need to set up an
environment where you can run CGI scripts. It’s pointless to write CGI scripts if you
don’t have anywhere to put them once they’re written. This hour discussed some options
for hosting CGI scripts. You also learned about the most popular operating systems for
Web servers, and how Web servers work. Finally, you learned how to install the Apache
Web server and ActiveState Perl on a computer running Windows, and how to test your
CGI environment to make sure that it works properly.

Q&A

Q I’m partial to a Web server you didn’t mention in this chapter (such as
Apache Tomcat, Zeus, or iPlanet). What do I need to do to get CGI scripts
running?

A Check out the documentation for your Web server. Nearly all Web servers follow
the same pattern—you should be able to use CGI scripts if you put them in the
cgi-bin directory for the server. Your Web server may also support other ways you
can set up scripts as CGI scripts; check out the configuration instructions.

Q I’d like to write CGI scripts for a Web server running on a Macintosh. What
should I do?

A If you’re using Mac OS X, you’re in luck. Because it’s based on Unix, it runs
Apache right out of the box. If you’re still running Mac OS 9, I suggest that you do
your CGI development on a remote machine that supports CGI, or upgrade to Mac
OS X. There are ways to run CGI scripts under Mac OS 9, but at this point they’re
esoteric enough that it’s probably not worth the bother.
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Q Should I install Perl even if I plan on writing my CGI programs in another

language?

A Yes, you should. Most of the examples in this book are written in Perl. If you want

to install them to see how they work, you’ll need to install Perl on your Web server
or your local computer.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1.
2.

3.

What are the two dominant families of Web server operating systems?

Which two URLs can be used to address the Web server on the local machine,
regardless of its domain name and IP number?

What is the name of the directory where CGI scripts are usually installed?

Exercises

1.

Get a Web server up and running on your local computer so that you can run CGI
scripts.

Start looking into where your CGI scripts will be hosted when you finish writing
them.

Quiz Answers

1.
2.

The two dominant Web server operating systems are UNIX and Windows.

You can always reach the local Web server using http://localhost and
http://127.0.0.1. Those URLs only work if the server is running on port 80, if
you run the server on another port, you have to include it in the URL.

Usually, you put CGI scripts in the cgi-bin directory.
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Downloading, Installing,
and Debugging CGI
Scripts

Before I begin to discuss how to design and create your own CGI scripts, |
thought I’d give you the opportunity to save yourself a lot of work. There
are thousands of CGI scripts that have already been written and are publicly
available for download over the Internet. In some cases, rather than writing a
script of your own, you can download a script from the Internet and use it
instead. This hour also explains some methods for debugging CGI scripts
after they’re installed. You can use these methods to get scripts you down-
load to work, or to debug your own CGI scripts.

The topics covered in this hour are

* A discussion of how to download scripts from the Internet
 Information on installing and configuring scripts you download

¢ Information on debugging CGI scripts using a number of different
techniques
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Downloading Scripts from the Internet

The objective of this book is to teach you how to build your own Web applications using
CGI. However, it isn’t here to convince you to do unnecessary work. There are bunches
of CGI scripts other people have written that you can download from the Internet and use
on your own site.

These scripts are useful for two purposes. First, they can save you a lot of work. If you
can find a script out there that provides the functionality you need for an application, you
may want to use it instead of writing a program from scratch. Second, they can help
teach you how to write better applications. You can look at existing programs to see how
the author accomplished certain tasks, and decide how you might design your own pro-
grams differently, or how you might apply their solutions to problems you have to solve.

Finding the Scripts You Need

In order to find CGI programs to use on your Web sites, you need to know where to
look. There are a number of popular repositories for free CGI scripts on the Internet. The
best way to find the scripts you need is to search for scripts that seem to offer the func-
tionality you require, and then download those scripts and evaluate them carefully. Some
of the most popular script repositories are included in Table 3.1.

TaBLe 3.1 Sites Where You Can Download Public CGI Scripts

Site URL

http://www.cgi-resources.com This site contains all sorts of information about CGI pro-
gramming, along with a large library of publicly available
scripts.

http://www.freecode.com A large repository of free programs, including CGI scripts.

http://www.scriptsearch.com Billed as the world’s largest library of CGI programs, this

archive contains thousands of CGI scripts along with other
Internet scripts.

http://www.extropia.com These scripts originally made up Selena Sol’s Public
Domain Script Archive. The scripts are still all free and
available to the public.

http://nms-cgi.sourceforge.net/ The NMS scripts are drop-in replacements for scripts orig-
inally written by Matt Wright. Matt’s scripts were some of
the earliest publicly available CGI programs, and were
widely adopted. Thousands of sites and ISPs still have
them installed. Unfortunately, they’re kind of buggy and
are fraught with security holes. The NMS scripts work just
like Matt’s scripts, except without the bugs and security
problems.
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What to Look for in Publicly-Available Scripts

Obviously, the first thing to look for is whether the CGI script meets the requirements for
your application. Without a well-defined set of requirements, it’s impossible to reason-
ably compare one script to another. After you're certain what the application’s require-
ments are, you can start narrowing the field of the CGI scripts available to ones that meet
those requirements.

Beyond the satisfaction of your requirements, there are some other issues that you should
investigate before using a CGI script that you downloaded over the Internet. These issues
surround the general reliability and maintainability of publicly distributed scripts.

Quality of the Source Code

When you download a CGI script from the Internet to use on your site, one issue you’ll
really want to look into is the quality of the script’s source code. Before you start using
the script, check out the formatting and comments in the source code. Is the program
readable? Can you follow what it does? If not, it may not be worth using. If you need to
fix something later, or you want to add some functionality, it’s nice to be able to go right
in and see where changes need to be made.

Quality source code indicates that the script’s author took care when writing the script,
and it is also a good sign that the code itself is of high quality. If you’re reviewing a
number of scripts before you look at any of them in depth, you should be able to throw
away scripts that aren’t written in an organized and neat manner.

Security

Any time you place a CGI script with a security hole on your server, there’s a chance
that some malicious person could exploit it to gain access to the server. Well-written CGI
scripts don’t have security holes. Unfortunately, the Web is full of CGI scripts that aren’t
well written, and that will introduce security holes on your site. Many of them are writ-
ten by people to use on their own Web sites; some of them are distributed for use by the
public.

These scripts have security holes not because the authors want to expose people who use
the scripts to risks, but because writing secure software is difficult. You should be aware
of the fact that any time you download someone else’s program and use it on your server,
there might be security problems with the program that you don’t know about.

Think about it—if thousands of people are using the same insecure script, chances are
somebody has figured out where the hole is. If the person who discovered the hole, or
any person who’s heard about the security hole, is interested in breaking into your Web
server, he can take advantage of the publicly known security flaw.

lvww.allitebooks.cond
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Even worse, this malicious person can use Internet search engines to find sites that use
the offending CGI script, and then break into them. So it’s very important to understand
CGI script security when you install CGI scripts, and to review the source code for the
scripts before you install them on your Web server. In Hour 22, “Securing CGI Scripts,”
I’ll talk more about CGI security and provide a list of sites where you can find out about
security problems with scripts that you might be using.

Support

One question you’ll want to get an answer to is how much support the author of the
script provides. Support comes in two forms: direct support to users who are having
problems, and regular improvements and updates to the program. Most people who dis-
tribute software for free don’t provide much personal support, although if you treat them
nicely, they’ll often answer questions. On the other hand, you should look for scripts that
are being actively maintained by their authors, or by someone who has taken over the
maintenance of the software.

Despite the best efforts of software developers, most software has bugs, security holes,
and other problems that must be fixed. If nobody is maintaining the program you use, it’s
up to you to maintain it yourself. For most people, it’s easier to rely on the original
author to maintain a script than to maintain it themselves.

If you purchase commercial scripts, you should make sure that the company you deal
with offers adequate support for your problems. Dealing with a one man shop where the
developer also provides support and handles sales can be a pain if the proprietor gets
overburdened or decides to get a regular job instead of keeping up with their products.

Installing a Downloaded Script

After you’ve downloaded a script, you should install it on your local server. Usually,
you’ll have to make some changes to the script to get it to work in your environment. If
it’s written in a compiled language, like C, you’ll also have to compile the script locally
before you can use it. Better written scripts allow you to get them up and running simply
by changing a few specific variables, and they provide documentation that explains
exactly what needs to be changed in order to get the scripts working.

Example: Downloading and Installing a
Guestbook Script

Let’s take a look at the steps required to download and install a typical CGI script on a
server. For this example, I'm going to use the Guestbook script from the NMS collection
of scripts. The guestbook program allows users who visit your site to enter some
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personal information that will be published as part of your site’s guestbook. Other
users who visit your site can view the guestbook and add entries of their own. One nice
thing about the NMS scripts is that they’re designed to allow users to get them up and
running quickly. The documentation is clear and concise, and the scripts themselves are
written so that they’re easy to configure for the local computer. The guestbook script is
available at:

http://nms-cgi.sourceforge.net/scripts.shtml

The script and its attending files can be downloaded in any number of formats; you
should download it in the format that’s appropriate for your platform. After you’ve down-
loaded it, you should unpack the archive into a directory outside your Web directories.
The package comes with a CGI program (guestbook.pl), several HTML documents, and
a README file which explains how to install the application.

o By unpack, | mean that you should use the appropriate application to
4 extract the files from the archive. On Windows, you might use WinZip to
== extract the files. Under UNIX, you would most likely use gzip and tar.

Configuring the Script

After you’ve downloaded and unpacked the script, the next step is to get the guestbook
up and running on your Web server. The first step is to read the README file—it explains
exactly what you need to change to get the script to work. Because it’s a Perl script,
you’ll have to edit it so that it works in your environment. Generally, that means editing
the shebang line (the first line of the script), so that the pointer to the Perl interpreter is
correct. For example, the script is set by default to look for the Perl interpreter at
/usr/bin/perl. On my Web server, Perl is installed at /usr/local/bin/perl, so I
changed the first line to point to the correct location. After that’s done, the script should
run, but there’s still more work to do.

o The first line of a UNIX script, the one with the pointer to the script inter-
/ preter is called the “shebang line.” It's called that because the first two char-
<= acters are #!. The # is sometimes called the hash character, and UNIX people

call exclamation points bangs, thus shebang.

To get the script working, you have to go into the script and set some variables so they
reflect your environment. These variable assignments are found in the guestbook.pl
script immediately after the comments at the top. Some of the information you must
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enter or verify is the location of the date program on your system, the URL where the
guestbook form is located, and the name of the file to be used as the guestbook log.
There are also a number of options that can be set to alter the behavior of the script.
These options are described in the README file.

Installing the Files and Setting Permissions

You must put all the files in the proper locations. The guestbook.pl file should reside in
your cgi-bin directory, and the HTML files distributed as part of the guestbook applica-
tion should reside under the document root on your Web server with the rest of your sta-
tic HTML documents. Some of the variables in guestbook.pl will have to be set after
you’ve determined the final locations for the files in the package. You also have to edit
the addguest.html form and change the action attribute of the form tag so that it points
to the location where you installed guestbook.pl.

You also have to make sure that the actual guestbook file, guestbook.html, and the guest
log, guestlog.html, have the proper permissions set. They must be writable by the user
that the Web server runs as. You can either change the owner of the files to the Web
server user (often nobody), or just make the files world writable. It’s up to you.

If you're a Windows user (especially one who's running the Web server as
yourself), you don’t need to worry about this. All of the scripts will be able
to write to the data files already.

afl
N
=
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These concepts are universal to all CGI scripts that write to local files, so I’ll elaborate
some. Under UNIX and Windows, all processes run as a particular user. For example,
if I log into a computer running UNIX and start a Web browser, the Web browser
process will run under my user ID. When the Web server is started, the process runs
under the user ID that started it, or under the user ID that’s assigned to the process. For
security purposes, the Web server processes are often assigned to the user ID nobody,
which has few, if any, privileges. To change the owner of the guestbook and log file to
the user ID nobody, the following commands are used:

chown nobody guestbook.html guestlog.html

If you opt not to deal with changing the owner of these files, you can just give all the
users on the server write access to them. The big problem here is that if the computer
on which the guestbook runs is used by multiple users, they’ll all have the ability to
modify that file. If you’re worried about that, you should change the owner to the Web
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server user. If that’s not a concern, you can just use the chmod command to provide write
access to the files to all users on the system. The following command is used:

chmod o+w guestbook.html guestlog.html

Testing the Script

After you’re done with the installation, you should be able to run the script. If it isn’t
working, read over the documentation again to make sure that you’ve set everything up
properly. Then, if it still won’t work, check out the next section of the hour to find out
how to debug your CGI scripts. When the script is working, the guestbook will appear in
your browser as it does in Figure 3.1.

FIGURE 3.1 | Guestiook - Moeilla Build ID: 2002053012} CEX|
The guestbook from Bl TTeatT Vs o ek’ oo iNidow | e

the NMS project. f @ - @ ) [Shijunderd bockjgestbeok hinl o @ @@)0

Guestbook

Thank: you for visiting our pages. We would love it f vou would Add to this guestbook we are keeping!

This is a test entry.

Raleigh, NC USA - Sunday, fune 23, 2002 at (Eastern Daylight Tane)

+ Back to My Home Page
+ Scripts and Guestbook can be found at nms guesthook

o @ G‘ @ | Document: Dons (0,12 secs) Slli= e B |

Customizing the Look and Feel

After you have the script working, you can edit all of the files associated with the guest-
book to align them with the look-and-feel of your Web site. There are some instructions
on customizing the files associated with the guestbook in the documentation. To view the
guestbook on my Web site, use the following URL:

http://rc3.org/cgibook/guestbook/guestbook.html

In Figure 3.2, you can see the addguest.html script after its appearance has been
changed to fit the design of my Web site.
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Debugging CGI Scripts

Some people would say that the toughest step in the process of creating an application is
debugging it after all the functionality that you wanted is, in theory, complete. Certainly
working out all of the nagging bugs in an application can take as long as getting the
main functionality written.

One problem with CGI scripts is that they exist as part of a larger system. The actual
CGI program is just one component of the system; there’s also the operating system, the
Web server, and the network connection between the Web browser and the Web server. A
problem can occur with any of these components, and one of the toughest tasks facing a
CGI programmer is determining where a problem occurred.

In many cases, problems crop up in the network connection between the Web server and
Web browsers. In this book, I'm not going to discuss problems caused by bad Internet
connections. Instead, I’'m going to focus on problems that crop up on the Web server.
However, you should be mindful of the fact that in some cases, the problem lies in the
network connection, or even in the configuration of the browser or computer running the
browser. Sometimes, when errors in your CGI scripts are reported, it turns out that the
user just didn’t understand how to use the script.

Finding the Source of an Error

Before you can fix an error, you have to figure out what caused it. Because this book
focuses on CGI programming and not Web server administration, I’m not concerned
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with problems like your Web server crashing or your router preventing incoming connec-
tions. The important point to make is that if you can’t connect to the Web server at all,
either because the domain name in the URL you entered can’t be looked up, or the server
is refusing network connections, don’t blame your CGI program. You’ve got some prob-
lem cropping up at a lower level that has to be fixed first.

Let’s assume that the Web server is up and running, and there’s some problem with your
CGI script. Before you start digging through your program’s source code, you should
verify that a few common mistakes haven’t been made. These mistakes plague everyone
who writes CGI scripts, even people who are old hats. You can learn a lot about what
went wrong by looking at the response code that’s returned with the response.

Examining the HTTP Status Code

Every HTTP response is accompanied by a status code that indicates what the result of
the request was. The status code is part of the response headers that are sent from the
server to the browser. The most common status code by far is 200 Success. You never
see or hear about this one because it means that the request was valid and returned a suc-
cessful response. Whenever you request a page that is displayed properly, the response
had a status code of 200.

When the status is something other than 200 Success, the Web server generally sends an
error document back with the response. Often, the response code will be displayed as
part of the error document. If it is not, you have to check the server’s access log to find
the response code for the failed request. The most common error code encountered is
404 Not Found. This code is returned when the requested resource could not be located
by the Web server. Usually this error message crops up when a user clicks on a link to a
file that no longer exists.

A 403 Access Denied error is returned when a user attempts to request a file that the
Web server is not allowed to read. The Web server user must have read permission for a
file in order to send it to a user.

When a user tries to visit a site that is password protected using basic authentication and
she enters an invalid account and password combination, she receives a 401 Unauthorized
error.

None of these errors are specific to CGI programming, I’m just including them here so
that you’ll know what you’re looking at when you see them. The most important error
for CGI programmers is 500 Server Error. It indicates that something went wrong
when the server tried to execute the CGI script. It doesn’t necessarily mean that the pro-
gram itself is broken, just that the server had trouble requesting it and getting back the
proper results.
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Reading the Error Log

Web servers that support CGI programs maintain an error log of some kind. Any time a
request fails, the error that occurred is stored in the log so that responsible system admin-
istrators and programmers can see what went wrong when their applications failed to
work properly. The error log isn’t restricted to CGl-related errors. It stores any error that
the Web server sends as a response to a request, so all the 404 Not Found errors and
other errors associated with regular requests go there as well.

The most important feature of the error log, from a CGI programmer’s standpoint, is that
it goes beyond storing the error code generated by the Web server to storing the error
message produced by the program itself. This works in an interesting way. When a CGI
program fails, it generally displays an error message. If the error message is displayed
before (or instead of) the required Content-type header, the Web server reports an error
to the user (because of the missing header). When the request for the CGI program fails,
the server copies some of the output of the attempt to execute the program (in other
words, the CGI program’s error message) into the error log. This message is generally
the most important clue for determining what went wrong with the CGI program.

The error log for the Apache Web server is generally found in the logs directory under
the server root and is usually named error_log. However, the name and location of the
error log can be changed to something else, so you can’t count on that being the case.
You can generally get the location of this file from the server administrator, or if you’re
able, by checking the Web server’s configuration files. Some service providers don’t turn
on error logging by default, and you may have to ask them to enable error logs for your
site so that you can debug your programs more easily.

Listing 3.1 contains an excerpt from an Apache error log. I’ll discuss what some of the
common errors found in the error log are a bit later.

Listing 3.1 An Excerpt from an Apache Error Log

1: [Wed Dec 1 21:33:20 1999] [error] (2)No such file or directory: exec of
= /web/cgi-bin/bad.cgi failed

2: [Wed Dec 1 21:33:20 1999] [error] [client 199.72.11.45] Premature end of
wscript headers: /web/cgi-bin/bad.cgi

Fixing Setup Errors

Now that you’ve learned how to find errors, I’'m going to go over some of the common
errors you might encounter and explain how to fix them. Because these common errors
are generally related to features required of all CGI programs, they’re easy to track down
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and fix. Errors in your application logic are far more insidious and can take an awful lot
longer to fix than the simpler errors listed here. I will talk about some debugging tech-
niques later that you can use to isolate these types of bugs in your code.

Setting the Proper File Permissions

One of the most common mistakes most people make when they write CGI programs is
setting the file permissions improperly. CGI scripts must be executable by the user that
the Web server runs as. The easiest way around this is to make sure that all your CGI
programs are executable by everyone. If the Web server isn’t allowed to execute the pro-
gram, the response to any request for it will be 560 Server Error.

File Permissions Under UNIX-Based Operating Systems

If your CGI programs are installed on a server running some UNIX-based operating sys-

tem, you can make your program executable by everyone using the following command:
chmod a+x

You can tell if a program is executable by looking at the long version of the directory list-

ing, which looks like this:

drwxr -xr-x 3 rafeco users 512 Dec 1 00:11 ./
drwxr-xr-x 26 rafeco users 1024 Nov 30 22:56 ../
-rwxr-xr-x 1 rafeco users 5018 Oct 27 11:21 archive.pl*

Irwxrwxrwx 1 rafeco users 9 Dec 1 00:11 example.sh@ ->
simple.sh

drwxr-xr-x 2 rafeco users 512 Nov 30 22:56 guestbook/

-rwxr-xr-x 1 rafeco users 280 Oct 24 12:44 pinggeneric.sh*

-rwxr-xr-x 1 rafeco users 666 Aug 23 12:31 sample.cgi*

-rwxr-xr-x 1 rafeco users 3867 Oct 27 11:07 search.pl*

-PWXP - XTI -X 1 rafeco users 156 Aug 22 23:51 simple.sh*

The file permissions are cryptically expressed by the string -rwxr-xr-x. Let me explain
how this string is decoded. The first character, a dash in this case, indicates what type of
file the current file is. The dash indicates that this is a normal file. Directories have a d in
this space, and symbolic links have an 1. The next nine characters are used to display the
access permissions for the file.

The characters are divided into three groups of three permissions. There are three sets of
people that can be granted permission for a file, and there are three types of permission
for each file. From left to right, the three sets are user, group, and others.

The user permissions pertain to the owner of the file. The owner is listed in the third col-
umn of the long directory listing. The group permissions apply to the members of the
group to which the file is assigned. The group associated with a file is listed in the fourth
column of a long directory listing. The last group of permissions is for others. The others
permissions apply to all the system'’s users.
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When you attempt to access a file, the permissions for the most restrictive set of users of
which you are a member apply to you. In other words, the others permissions are only
used if you're neither the owner of the file nor a member of the group associated with
it. Similarly, the group permissions do not apply to the file's owner, even for a member of
the group associated with the file.

Now let me explain what the individual permissions mean. As | said before, there are
three permissions for each set of users. The permissions are read, write, and execute. If
that set of users has the permission, the appropriate letter will appear in that space. If
they do not, a dash will appear there instead. For example, if the owner has the permis-
sions rw-, he can read and write the file, but not execute it. Similarly, if others have r-x
permissions, they can read and execute the file, but not modify it.

Permissions are slightly different for directories. The names of the permissions read,
write, and execute are the same, but how they work differs. If you have read permission
for a directory, you're allowed to list files in that directory. If you have execute permis-
sion for a directory, you can make it your current directory. If you have write access to a
directory, you can create files in that directory. It's possible to access files in a directory if
you have execute permission for the directory but not read permission. You just have to
be allowed access to the file, and you have to know the name of it because you aren’t
allowed to get a listing.

So now let's go back and look at the full file permissions for a file. If a file has the per-
missions -rwxr-xr-x, it's a normal file, and the owner has read, write, and execute per-
mission for the file. Both the group and others have read and execute permission, but

not write permission.

Checking Your Headers

A common pitfall for CGI programmers is forgetting to include the code that produces
the content-type header; instead the program goes straight to generating HTML or other
output, causing an error.

Anytime your program won’t execute because of syntax errors, or because the Web
server is unable to call it, you’ll generally get an error complaining that the script didn’t
print the proper header. As described earlier, the script probably sent an error message
instead, so you should look in the error log to find out what the error was.

Checking the Path to Your Script Interpreter

One very common problem you’ll often find when you move scripts from one server to
another, or you install a script downloaded from the Internet, is that the path to the Perl
interpreter (or whatever script interpreter you’re using) is wrong in the shebang line.

If the path to your script interpreter is incorrect, instead of seeing the output of your
script, you’ll see something like the following in the error log:
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[Wed Dec 1 21:33:20 1999] [error] (2)No such file or directory: exec of
= /web/cgi-bin/bad.cgi failed

[Wed Dec 1 21:33:20 1999] [error] [client 199.72.11.45] Premature end of
wscript headers: /web/cgi-bin/bad.cgi

If you encounter one of these errors, you just need to enter the right path in the shebang
line. To do so, find the directory where your script interpreter is installed, and use that
path in your program.

If you have a UNIX shell account on the server where the CGI program
resides, you can often find the location of executable files using the which
command. The which command searches all the directories in your path for
the program you specify, and tells you where it is. For example, the follow-
ing sequence illustrates how which is used to find the Perl interpreter

’

$ which perl
/usr/local/bin/perl

Tools and Techniques for Debugging Your
Program Code

If you’ve gotten past all the standard problems people run into with CGI scripts and your
script still isn’t working properly, you have to start searching for bugs within your code.
This can be a much tougher job than dealing with all the common problems mentioned
previously.

Basically, errors within programs come in two flavors—syntax errors and runtime errors.
Syntax errors crop up when you use your programming language of choice improperly.
If you leave out a required semicolon or use elseif instead of elsif, your program will
not compile, or if it’s an interpreted language, it won’t execute all the way through.
Runtime errors occur when all the syntax in your program is correct, but your program
still doesn’t behave as expected.

Runtime errors can cause your programs to exit with an error during execution, or they
might execute but produce unexpected results. For example, if you have a mathematical
construct in your program that divides a number by 0, most languages will exit and
return an error during execution. On the other hand, if your program multiplies a number
by 1000 when it should multiply by 100, the program will appear to work correctly but
will produce invalid results.

lvww.allitebooks.cond
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Compiled Versus Interpreted Languages

When we talk about debugging, it’s important to contrast two types of languages—
compiled languages and interpreted languages. The difference between the two is that
there are at least two steps to get from source code to execution with compiled lan-
guages; with interpreted languages, there’s only one—execution. A scripting language,
which is a simple language designed to perform special or limited tasks, is usually inter-
preted.

Let me talk about an interpreted language first to give you an example. Scripts written in
the Bourne shell are interpreted. When a Bourne shell script is executed, the shell reads
the program command by command, and executes each command before moving on to
the next one. With interpreted languages, even syntax errors are “runtime errors.” In
other words, if there’s a syntax error on the fifth line of a shell script, the first four lines
will be executed, and the program will exit with an error when it reaches the fifth line.

On the other hand, when you write a program in a compiled language, the source code
must be transformed into machine readable instructions prior to execution. How this is
handled differs from language to language. When you program in C, you use a compiler
to transform source code into machine readable code. The code is then stored in exe-
cutable format so that it can be used. When you program in Java, the source code is com-
piled into an intermediate format called bytecode, and is stored in that format. When you
execute a Java program, the Java virtual machine translates the bytecode into machine
readable code for the platform it’s running on and executes the code.

The other example of a compiled language is Perl, which is a scripting language. Despite
the fact that it’s a scripting language, it’s not an interpreted language. The difference
between Perl and other compiled languages is that Perl code isn’t stored in an executable
format or bytecode after it’s compiled. Instead, every time you run a Perl program, the
source code is read by the Perl interpreter and compiled, and then executed immediately.
So, it’s a scripting language in the sense that to the user, compilation and execution are
part of the same step, but it’s a compiled language because the code is compiled before it
is executed.

The difference in debugging the two types of languages is that, with an interpreted lan-
guage, all debugging occurs at runtime. There is no compilation step during which you
can iron out all the syntax errors in your code; instead you have to run the program to
find any errors in it. This really becomes a problem when your interpreted program mod-
ifies files, or makes any other changes to permanent resources. For example, let’s say
you’ve written a shell script that, among other things, submits a credit card transaction
for processing. If there’s a syntax error in the program after the credit card submission,
you’ll have to submit a credit card transaction to get to the bug, and then submit another
to determine whether the bug is fixed after a change. This can make debugging inter-
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preted programs a real hassle (fortunately, in this case, most credit card verification
services provide bogus credit card numbers you can use to test your programs).
Generally in these situations you comment out instructions that make permanent changes
for debugging.

Running CGI Scripts from the Command Line

When you’re debugging your CGI scripts, it’s important to remember that they’re stan-
dard command-line programs. That means that you don’t have to always run them
through the Web server. In many cases, it’s a lot easier to run them from the command
line and look at the output there to find bugs.

This is certainly true when your script is returning a 500 Server Error result when
requested. As you know, when you run into one of these errors, oftentimes you can find
out what caused the error in the server’s error log. You should always take a 500 Server
Error as an indication that you should test the CGI program at the command line if you
can’t spot the problem immediately in the error log.

Running your program at the command line will let you know immediately whether
there’s a syntax error in your program if it’s written in a scripting language, or whether
there’s a runtime error in the code that prevents the program from executing if it’s a com-
piled language. In fact, if you’re writing a program in Perl, you can execute it at the com-
mand line using the -cw flags to compile the program without executing it, nd to turn on
warnings to catch coding mistakes that aren’t necessarily syntax errors. For example, to
compile (but not execute) the program example.pl with warnings, the following com-
mand line is used:

perl -cw example.pl

It’s also easy to verify from the command line whether your program produces the
proper HTTP header. The first two lines of the program’s output should be the content
type header and a blank line. This output is processed by the Web browser, so you never
see it when you’re testing through a server, but it’s right there on the screen if you test
your program at the command line.

cGI.pm and the Command Line

CGI.pm, the standard Perl tool for creating CGI scripts, is designed to make testing CGI
programs from the command line very easy. When you run a program that uses CGI.pm
from the command line, you can pass in name and value pairs as arguments, like this:

$ perl archive.pl year=2002 month=5 day=1
or this:

$ perl archive.pl year=2002&month=5&day=1
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CGI.pm treats data received through the POST and GET methods the same, so there’s no
need to distinguish between them when you pass data to a script from the command line.

Using Print Statements for Debugging

One of the most important and time-tested techniques for tracking down logic errors in
programs is using print statements to isolate bugs and find out where incorrect values are
introduced. After you have your script working well enough to produce output, you can
start inserting print statements to track down logic errors.

Many programming languages include debuggers that allow you to step through the exe-
cution of your program’s statement by statement. You can stop execution at any time, and
examine the values of variables that have been set within the program. Unfortunately,
many languages used for CGI programming don’t have debuggers, and even if they do,
it’s sometimes easier to just use print statements for debugging.

Generally speaking, print statements are most often used to display the values of vari-
ables that are normally used internally by the program. Let me show you how print state-
ments are used for debugging with some examples. One of the most common uses of
print statements to debug is to print values as a loop executes. If you’re unsure of how
many times a loop iterates in a program, you can insert a print statement in the loop so
that it prints either a count, or just a marker value every time through.

Another common usage for print statements is to determine where, exactly, an error is
occurring. Generally, you place print statements before and after the potentially offend-
ing code, and check to see whether the text in both of the print statements gets printed
out. You can place these types of “markers” throughout your code to figure out where,
exactly, something is failing along the way.

Summary

In this hour, I explained how one goes about obtaining CGI scripts other people have
written, and configuring them so that they’ll run on your Web site. Not only can these
scripts save you a lot of work, but they are a good learning tool as well. Even experi-
enced CGI programmers can use downloaded scripts to get the Web applications they
need up in a quick and efficient manner.

After you’ve installed scripts on your server that you’ve written or downloaded, chances
are you’ll have to do some debugging before they work just right. The second half of this
hour discussed methods you can use to identify and fix bugs in your CGI programs.
Debugging can take up a huge amount of development time, so using proper techniques
and looking for common, simple problems first can save you a lot of time in the long run.
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You list sites where I can find free scripts; should I look into purchasable
scripts as well?

If a purchasable script offers the functionality that you’ll need, and the amount of
money you spend on the script is worth the time you save by buying it, you should
definitely purchase commercial software. When you’re working with Web applica-
tions, you really want to pay attention to the amount of tweaking you can do to
commercial software. Generally, applications have to fit within the overall design
of your site, and you may want functionality that’s not provided by the commercial
program. It helps to be able to make changes to the software on your own.

Search engines, content management systems, and message board software are all
examples of Web applications that you can purchase to augment your site.

Can I use a debugger to debug CGI programs?

You can if you can run them from the command line and test them there. There’s
no way to run a debugger on a program being accessed over the Web, but all CGI
programs should work fine at the command line as long as you pass them data in
the appropriate manner. If you’re accustomed to debugging software using an inter-
active debugger, by all means use your scripts from the command line and debug
them that way.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1.
2.
3.

What does the letter d at the beginning of a UNIX file permission string indicate?
When you run Perl at the command line, what do the ¢ and w flags do?

True or false: You can simulate both the GET and POST methods when you run CGI
programs from the command line.

How do you simulate passing name and value pairs to a program that uses CGI.pm
when running it from the command line?
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Exercises

1.

Find out where the error log is located on your Web server. Check out the contents
of the file to see what kinds of errors are being recorded there.

Go to one of the popular CGI program download sites, and download a few appli-
cations that look interesting. Try to get them up and running on your local server.

Quiz Answers

1.

A d at the beginning of a set of UNIX file permissions indicates that the file in
question is a directory, not a normal file.

2. The c flag indicates that the file should be compiled but not executed—it’s for test-
ing to make sure your script compiles properly.

3. True.

4. There are a number of ways that you can pass values into a CGI program from the

command line. One option is including them as command-line arguments; another
is to put them in a file and pass it to the script using standard input.
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Writing Your First CGl
Program

In the previous hour, I explained how to make sure your CGI environment is
configured and running properly, and how to adapt CGI programs down-
loaded from the Internet to work properly in that environment. In this hour,
you’ll get your first real look at developing CGI programs from scratch. I’1l
also provide you with a brief overview of Perl programming that will help
non-Perl programmers understand how the programs in this book work. This
hour covers

The structure of a basic CGI program

How to write a program that redirects a user to a new URL
How redirection of input and output works

How to deal with filehandles in Perl

How Perl loops and conditional statements work

How to use Perl expressions
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Parts of CGI Programs

A CGI program can generally be broken down into three components. The program must
process input, execute the code that gives the program its actual functionality, and gener-
ate output. The code that is sandwiched between the input and output can be thought of
as the data processing functionality.

Take, for example, a program that sends form data to a particular email address. It must
process the form data submitted by the browser, compose and send the email message,
and then print an acknowledgement indicating that the email was sent. Or, let’s say
you’re writing a program for your intranet that allows company employees to change
their health coverage. Your program would read their form input, store their health cover-
age preference somewhere, and then send a confirmation indicating which health cover-
age they selected. The data processing functionality is the part where the user’s
preference is stored.

The first step in writing your CGI program is to nail down exactly what the program is
supposed to do. In the example I just mentioned, the sole purpose of the program is to
translate a form submission into an email message. The purpose of a checkout form on a
Web site is to validate the user’s payment information and insert his order into the mer-
chant’s fulfillment process. Most CGI programs have a purpose that can be stated simply
like this. In other cases, you might write more complex CGI programs that can perform a
number of actions based on the input that they receive.

After you’ve figured out what the purpose of your program is, you can figure out what
input it requires and what output it should produce. Generally, the input and output
requirements are easy to derive logically from the purpose of the program. If you’re writ-
ing a program that displays a map of the user’s neighborhood, you’ll need her street
address, or perhaps just her zip code, as input. You also know that regardless of what
other output your program produces, you’ll need to return the appropriate map to the
user.

Splitting your program into sections associated with each of these three areas will make
the program easier to maintain, and easier for other people to understand.

A Sample CGI Program

Let’s look at an example of a CGI program that contains all three of these components.
It’s a simple program that accepts a user’s age and tells him whether he can legally vote
in the United States. The source code for the program appears in Listing 4.1.
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Listing 4.1 voter.cgi, a Simple CGI Program

#!/usr/local/bin/perl

# Import the CGI module and create a query object to retrieve the
# form input.

use CGI;

$query = new CGI;

0N O~ WN =

# Determine whether the user is of legal voting age.
9: if ($query->param(‘'age') >= 18) {

10: $voter = 'yes';

11: }

12: else {

13: $voter = 'no';

14: }

16: # Print out a message indicating whether the user is

17: # a registered voter or not.

18: print $query->header;

19: print "<html><head><title>Voting Age Check</title></head>\n";
20: print "<body>\n";

21: print "<hi>Voting Age Check</h1>\n";

22: if ($voter eq 'yes') {

23: print "<p>You are old enough to vote.</p>\n";

24: }

25: else {

26: print "<p>You are not yet old enough to vote.</p>\n";
27: }

28: print "</body></html>\n"

Now let’s look at the sections of the program, which are marked with comments to make
it easier to understand. On line 1, I provide the path to the Perl interpreter. When the Web
server attempts to execute this program, it looks for Perl in the location specified, and if
it doesn’t find it there, it returns an error.

Determining the path to the Perl interpreter based on the first line of the
program is the UNIX approach. Most Windows Web servers determine which
Z program to use to execute a CGl program based on the file's extension. The

exception is the Apache Web server, which uses the UNIX approach even if
you're running it under Windows.

Before we get to the program logic, the user’s input has to be processed. I'm using Perl
with the CGI module, so this step is very simple. First, I import the CGI module on line
5 with the command use CGI. By importing the module and creating a query object
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(assigned to the variable $query), I automatically transfer all of the form input into a Perl
data structure. That’s all there is to it.

Depending on the language that you use, this step can be more compli-
cated. Even in Perl, if you opted to perform this step by hand, it would be
an operation requiring several steps. If you're interested in how the Perl CGI
module works, you should check out Hour 10, “Delving Further into Perl.”
To learn how to process form input using languages other than Perl, see
Hour 11, “Other Popular CGI Programming Languages.”

After you’ve processed the user’s input, the actual program logic comes into play. In this
case, the logic is very straightforward. The if statement on line 9 contains a single con-
dition:

$query->param('age') >= 18

I check the value associated with the age parameter. If the user entered an age equal to
or greater than 18, I treat them as a voter. Otherwise, I treat them as a non-voter. That’s
all there is to the logic. (Of course, the logic of a real-world program is often more com-
plex.)

Finally, I print out the Web page that is sent to the user. First, I call the header method
of the query object on line 18 to print the content type for the output. Then, I print the
opening tags for the page and the page heading. To print the body of the page, I use an
if statement to test whether the user is a voter, and print the appropriate message for
each alternative.

You may wonder why I didn’t just eliminate the $voter variable and test the user’s age
here. It would conserve a few lines of code, for sure. The problem is that it mingles the
program’s output with the program logic. In this case, the test to determine whether a
user is a voter is very simple. However, there are a lot more tests I could add. Using the
current design, I could have all those tests modify the value of $voter and leave the
code that generates the program’s output unchanged. If I included the test in the output
section of the program, it would require more radical changes to add new tests. It makes
more sense to keep all the program’s functionality separate.

Let’s look at a form you could use to call this script. The form appears in Figure 4.1. It
will work with a field that contains one field named age, and some means of submitting
the form. The form in Listing 4.2 will work fine.
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Listing 4.2 voter.html, the Form Used to Call the voter.cgi Program

1: <html><head><title>Are you old enough to vote?</title></head>
2: <body>

3: <h1>Are you old enough to vote?</h1>
4: <p>

5: <form action="voter.cgi">

6: Age: <input type="text" name="age">
7: <input type="submit">

8: </form>

9: </p>

10: </body>

11: </html>

A URL-Redirection Program

Let’s look at a simple program of a type that’s used on lots of Web sites. Many sites pro-
vide pull-down menus as navigational aids. When you select an option from the menu,
the browser automatically redirects you to the link that you selected. This functionality is
implemented using JavaScript. In many cases, there’s also a submit button associated
with the field that users whose browsers support JavaScript can use to navigate using the
menu. When a user clicks on the submit button, the link he chose is submitted to a CGI
script, which then redirects the user to the appropriate page.

In this example, there is no intermediate processing step between processing the user
input and generating the appropriate output. The program receives a URL from the form
and prints the appropriate HTTP header to redirect the user to that URL. There’s no
intervening logic in the middle to speak of. First, let’s look at a form that works with the
redirection script. It appears in Listing 4.3.
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Listing 4.3 A Form Used to Call a Redirection Script

1: <html>

2: <head>

3: <title>Redirect Form</title>

4: </head>

5:

6: <body>

7:

8: <form action="redirect.cgi">

9: <p>

10: Go to:

11: <select name="link">

12: <option value="http://www.uncorked.org/medley">Medley</option>
13: <option value="http://www.camworld.com/">CamWorld</option>

14: <option value="http://www.stuffeddog.com">The Stuffed Dog</option>
15: <option value="http://www.dangerousmeta.com">Dangerousmeta!</option>
16: </select>

17: <input type="submit" value="go">

18: </p>

19: </form>
20:
21: </body>
22: </html>

The page contains a form with two fields, a submit button and a pull-down list. I'll dis-
cuss how to create and use these form fields in detail in Hour 5, “Creating HTML
Forms.” For now, all you need to know is that you can select one option from the pull-
down list and then submit the form to the CGI script using the submit button. A browser
displaying the redirection form appears in Figure 4.2.

FIGURE 4.2 "\ Redirect Form - Mozilla {Build ID: 2002053012}
The site redirection " Be Edl Vew Go Beokmals Took Wndow Help
¥
orm. @ @ [S httpafred.ceatbonk ’ 3jrediact_form himl @) @ 0
fi o . 0@,
e

Medley

CamWarld

The Stufed Dog

Dangerousmelal

(%] & @ @F 6B vocumert: Done (014 52cs) ———

Now let’s look at the CGI script that’s specified in the action parameter of the form. The
source code to the script appears in Listing 4.4.



Writing Your First CGI Program

59|

Listing 4.4 The Site Redirection Script

#!/usr/local/bin/perl
use CGI;

$query = new CGI;

NOoO O WD =

print $query->redirect($query->param('link'));

As you can see, the script is very short. The values associated with each option in the
pull-down list are URLs. This script simply takes the URL submitted by the browser and
redirects the user to it. Let’s look at this script line by line.

The first line of the script indicates which application is used to compile and execute the
script. It points to /usr/local/bin/perl, the Perl interpreter. The next line imports the
CGI module, which is used both to decode the form input and to redirect the user. The
third line creates a new CGI object. Anytime I want to call any subroutines in the CGI
module, or extract any data stored by the module, I need to reference this object.

On line 5, I call the redirect subroutine associated with the query object, and pass the
value of the link parameter to that subroutine to specify which URL the user should be
sent to. $query->param('link"') is a reference to the 1ink parameter from the form. It is
passed as an argument to $query->redirect, which is a CGI.pm subroutine that automat-
ically sends the user to the URL passed to it as an argument.

The functionality of this script is actually transparent to the user. When she selects a site
from the list and clicks on the submit button, she is transparently redirected to the site
she chose. The CGI.pm module makes use of the HTTP protocol to pass the user along to
the new site without displaying anything in the user’s browser.

How File Redirection Works

There are a few general topics that concern CGI programming that will be helpful in
understanding the rest of this book, and in developing CGI programs. Most of this infor-
mation isn’t specific to CGI, but rather is general Perl or UNIX information that is used
whenever you write CGI programs.

One of the core concepts of UNIX is file redirection. All UNIX shells support redirec-
tion, and the file redirection metaphor is utilized in most UNIX scripting languages as
well (even when they’re running on other platforms). Before I can explain file redirec-
tion, I have to explain standard input and standard output.

Most command-line programs running under UNIX accept their input from standard
input, and send their output to standard output. By default, standard input and standard
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output are assigned to the console. In other words, these programs expect you to type in
data using the keyboard and send their output to the screen by default. Take the UNIX
cat program for example. Its purpose is to read a file and print it out. Usually, you spec-
ify the name of the file to be read as a command-line parameter, like this:

cat some_file

It will read some_file and print it out to standard output (the console in this case). Using
redirection, you can print out the contents of some_file to another file, like this:

cat some_file > another_file

A new file named another_file will be created, and the contents of some_file will be
stored in it. This is referred to as redirecting standard output. What happens if you don’t
supply the name of a file as a command-line parameter? The cat program will assume
that you want to use the console as standard input. Anything you type will be echoed to
standard output until you press Ctrl+D to end the file. So, if you type

cat > yet_another_file

everything you type (until you press Ctrl+D) will be echoed to the file
yet_another_file. You can also use the append operator (>>) to redirect the output of a
program to the end of an existing file. If the file doesn’t exist, it will be created. For
example:

cat some_file >> another _file
will add the contents of some_file to the end of another file.

Now let’s talk about redirecting standard input. You can redirect standard input to the cat
program, and it will have the same effect as specifying a file on the command line. For
example, you can use this command:

cat < some_file > another_file

This tells cat to read input from some_file and print it to another_file. Because of the
way cat works, this is no different than just specifying some_file as a command-line
parameter. However, when you’re using other programs, especially programs that expect
the user to type input, redirecting standard input can be very useful.

Pipes
Pipes are a slightly more complex redirection operator. Basically, a pipe redirects the

standard output of one program to the standard input of another program. Here’s a com-
mand line you’ll see sometimes:

1s | more
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The 1s command prints a directory listing for the current directory, and the more
command paginates whatever it receives through standard input. This command line
pipes the output of 1s to more. If the directory listing is more than a page long, the more
command will automatically paginate the listing.

Working with Files in Perl

Now let’s look at how files are handled from within Perl programs. Redirection operators
are used when files are opened in Perl to indicate how the file will be used. Because CGI
programs so often work with external files, it’s important to understand how Perl handles
these operations.

To access an external file from within a Perl function, the open function is used. It
accepts two arguments, the filehandle that will be used to refer to the file, and the speci-
fication for the file to be opened. Here’s an example:

open (FILE, "< this_file.html");

The first argument is FILE. When I want to retrieve data from the file later in the pro-
gram, I’ll use the filehandle FILE to do so. You don’t have to make your filehandles all
capital letters, but most Perl programmers do so. There’s no good reason not to do it, and
when you use that convention, other people who look at your program later will know
that identifiers in all capital letters are filehandles (conversely, when you name other
variables, you should skip the capital letters). The second argument indicates that the file
some_file.html should be opened for input. The < operator means that the program can
read data from the filehandle only.

Usually, the open function is used with an or die clause for error handling. If the pro-
gram is unable to open the file for any reason, execution of the program is terminated,
and the error message specified in the or die clause is displayed. Here’s an example of
the or die clause:

open (FILE, "< some_file.html")
or die "Can't open some_file.html";

When the error message associated with the or die clause doesn’t end with a linefeed,

Perl automatically appends the name of the program and the line number on which the
error was encountered to the error message you specify.

The other redirection operators can also be used when you open files. For example, to
open a file for output, the > operator is used:

open (OUTPUT, "> log_file.txt")
or die "Can't open log_file.txt";
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After the OUTPUT filehandle is open, you can send output to that filehandle by specifying
it in your print statements, like this:

print OUTPUT "This string will be printed to the file.";

If you plan on printing a bunch of stuff to a filehandle you opened, you can use the
select statement:

select OUTPUT;

print "All of this";

print "will be printed";

print "to the OUTPUT";

print "filehandle.";

To resume sending output to the default filehandle (standard output), use the following
statement:

select STDOUT;

You can also open files for appending so that output sent to the file will be added to the
end of the file rather than overwriting the file if it exists. The >> operator is used to open
a file for appending within Perl:

open (OUTPUT, ">> log file.txt")
or die "Can't open log_file.txt";

Let’s go back to looking at files opened for input. What if you wanted to write a program
that does nothing more than read a particular HTML file and send it to the browser?
Listing 4.5 contains a simple program that does just that.

Listing 4.5 cat.pl, a Program That Reads and Sends an HTML File

#!/usr/local/bin/perl
$html_file = "example.html";
open (INPUT, "< $html_file")
or die "Can't open $html file";
print "Content-type: text/html\n\n";
while (<INPUT>) {
print;
}
close INPUT;

© oONO O WN =

For convenience, I store the name of the file to be opened in a variable. For a program
this simple, that’s not really necessary, but in larger programs it generally makes sense to
store this type of information in a variable near the top of the program, rather than refer-
encing the filename deep within the program where it’s hard to find. The program
attempts to open the specified file for input.
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If it fails, the program dies; otherwise, the program uses a while loop to iterate over the
contents of the file one line at a time. I'll discuss how these while loops work in the next
section. When you iterate over a filehandle, each line of the file is magically copied into
the variable $_. Many Perl functions (including print) use $_ as their default argument.
In other words, if you call the print function without telling it what to print, it assumes
that you wanted to print $_. That’s why this example works. Listing 4.6 contains an alter-
native version of the program that explicitly uses the $_.

LisTiNnG 4.6  Alternative Version of the Previous Program

#!/usr/local/bin/perl
$html file = "example.html";
open (INPUT, "< $html_file")
or die "Can't open $html_file";
print "Content-type: text/html\n\n";
while (<INPUT>) {
print $_;
}
close INPUT;

© oo NO O WN =

In some cases, it’s easier to deal with a file in one big chunk. You can use the join func-
tion to merge all the contents in a file into a single scalar variable. This is actually a two
step process that looks like this:
open (FILE, "< some_file.txt")
or die;
# Read the entire contents of the file into an array
@file = <FILE>
# Convert the array into a single string
$file_contents = join ('', @file);

When you set a filehandle processed using the diamond (<>) operator equal to an array
(in this case @file), each of the lines in the file is stored as a single element in the array.
At that point, you can use the join function to copy all the elements in the array into a
scalar variable. The first argument to join is the expression that should be included
between each element in the array. Because each element in the array (a line from the
file) ends with a line feed, I don’t include anything between the array elements.

Common Statements Used in Perl

Now I'd like to briefly discuss some of the Perl language constructs that you’ll see
throughout this book. If you’re already a Perl programmer, just skip the remaining sec-
tions of this hour. If you’re not, you’ll probably find these sections helpful as you read
the rest of the book. Unfortunately, they won’t serve as a replacement for a book dedi-
cated to Perl or the documentation provided with Perl.
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First, let’s talk about the loops available in Perl. There are actually many types of loops
that you can use in your Perl programs, but I’ll only use a couple of them in this book.
The two loops I use most often are while and foreach. Let’s look at each of them in
turn.

while loops are executed until a particular condition is true. Often, while loops are used
with the diamond operator, which reads lines from a filehandle one at a time until it hits
the end of a file marker, and returns undef (which is treated as a false result). So, if I
opened a file using the filehandle FILE, I could iterate over each of the lines and print
them using the command:
while (<FILE>) {

print;

}

Any expression will work in a while loop, however. The statement:
while (1) {

}

creates an infinite loop. The expression 1 is always true. Usually, comparative expres-
sions are used in while loops. For example, you might test a numeric value in a while
loop, like this:

$1 = 0;

while ($i < 100) {
$itt;

}

This loop doesn’t actually do anything, it just increments $i every time the loop is exe-
cuted and exits when $i gets to 99.

The other loop I frequently use is the foreach loop. foreach extracts each item from a
list one at a time, assigns it to a variable, and then executes the body of a loop. This type
of loop is generally used when you want to iterate over all the items in an array or in a
hash. Let’s look at a couple of examples. Here’s the most basic example; it just iterates
over the items in a list that I define just for the loop:
foreach $color ('red', 'green', 'blue') {

print $color, "\n";

}

The loop is executed three times, one for each of the items in the list. The output of the
program (assuming all it contains is this loop) is
red

green
blue
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You can also iterate over the items stored in an array variable, as follows:

@colors = ('red', 'green', 'blue');
foreach $color (@colors) {
print $color, "\n";

}

foreach loops are also commonly used to iterate over the contents of hashes (also
referred to as associative arrays). Here’s an example of such a loop:
%scolors = (
'red' => 'FF0000',
'green', => 'Q0FF00',
'blue', => '000QFF');
foreach $color (keys %colors) {
print $color, ":", $colors{$color}, "\n";

}

In this example, the keys for the associative array are extracted using the keys function,
and then iterated over by the loop. The output of this program looks like:
red:FF0000

green:0Q0FF00
blue:0000FF

The if Statement

Now let’s look at one of the fundamental statements of any language, the if statement.
An if statement in Perl evaluates an expression, and if that expression is true, it executes
the code within the statement. Here’s an example:
if (2 >1) {

print "2 is greater than 1.\n";

}

As you can see, the expression being evaluated is enclosed in parentheses, and the block
of code to be executed appears within braces. If the block of code to be executed consists
only of a single statement, you can use a shorthand version of the if statement, which
looks like this:

print "2 is greater than 1.\n" if (2 > 1);

That’s basically a more readable way to write an if statement. It acts just as it reads:
“Print something if this condition is true.” If the body of your if statement contains more
than one statement, you must use the block form. You’re also required to use the block
form if you want to use an else block to specify code that is executed if the condition is
false. Here’s an example:
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if (2 >1) {
print "2 is greater than 1.\n";
}
else {
print "2 is not greater than 1.\n";
}

You can string together multiple if constructs using the keyword elsif, like this:

$color = "blue";
if ($color eq "red") {
print "Red is for roses.\n";
}
elsif ($color eq "green") {
print "Green is for grass.\n";

}
elsif ($color eq "blue") {
print "Blue is for the ocean.\n";

}
else {

print "I don't know anything about that color.\n";
}

If you want, you can also create statements that are executed only when the condition
specified is false. These are created using the unless statement:
unless ($number == 7) {

print "The number isn't 7.\n";

}

This is equivalent to the following statement:

if ($number !=7) {
print "The number isn't 7.\n";

}

all
R

Because the action taken by an if or unless statement depends on a condi-
tion, these statements are also referred to as conditional statements.

i

Perl Expressions

In the expressions used by the conditional statements and while loops I described, vari-
ous expressions were evaluated to determine how the flow of the program will work.
The simplest expressions just evaluate a value and determine whether it is considered to
be true or false. Any non-zero number or non-empty string is true; zero, empty strings,
and the value undef are false. A simple if statement might evaluate a variable by itself,
like this:
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$var = undef;
if ($var) {
print "The expression is true.\n";

}

The code inside that if statement would not be executed because undef is always con-
sidered to be false. Just as you can evaluate a variable or static value as an expression,
you can also evaluate the value returned by a subroutine. Let’s look at a quick example:

sub some_subroutine {
return 1;

}

if (&some_subroutine) {
print "This is true!\n";
}
Because the subroutine returns a nonzero number, the expression evaluates as true, and
the code inside the if block is executed.

Now let’s look at comparative expressions, which I've used throughout this hour already.
Comparative expressions use an operator to compare two expressions and return true or
false. The important thing here is that Perl supports separate comparison operators for
numbers and strings. To test whether two numbers are equal, == is used. To test the
equality of strings, you use eq. Table 4.1 contains a list of comparison operators.

TaBLE 4.1 Perl Comparison Operators

Operator Tests

== Numeric equality

1= Numeric inequality

> Numeric greater than

< Numeric less than

>= Numeric greater than or equal to
<= Numeric less than or equal to

eq String equality

ne String inequality

gt String greater than

1t String less than

le String less than or equal to

ge String greater than or equal to
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You can also use Boolean operators to string together multiple expressions and create
complex expressions. The Boolean operators are and, or, and not. They can also be writ-
ten as &&, | |, and !, respectively. Here are some simple examples of how the expres-
sions above are used:

if ("one" eq "one") { print "true"; }
if ("one" ne "none") { print "true"; }
if (1 == 1) { print "true"; }

if (1 !=1) { print "true"; }

Summary

In this hour, I explained how to write simple CGI scripts using Perl. You’ll build on the
concepts of simple scripts throughout the rest of this book to learn how to build powerful
Web applications. I also provided a very concise introduction to Perl that will help non-
Perl programmers understand some of the constructs used throughout this book. If this
was all confusing to you, you’ll need to pick up Perl as you read the book. You can do it
the hard way by reviewing the documentation that comes with your Perl installation. Or,
you can do it the less hard way by reading a good Perl book, such as Laura Lemay’s
Sams Teach Yourself Perl in 21 Days. Hour 10 goes further in explaining how to use Perl
in a CGI environment.

Q&A

Q Is it necessary to make filehandles in Perl all upper case?

A No, it’s not required. However, it is a convention that’s followed by nearly every-
one. Making filehandles all upper case makes it easy to distinguish them from vari-
ables and function calls. You should definitely follow this convention.

Q Aren’t there more types of loops supported by Perl than you list in this hour?

A Yes there are, but these are the only loops that are used in this book. There’s not
enough time to go into all of the loop constructs supported by Perl here.

Q I tried to use the redirection operators you discussed at the DOS prompt in
Windows, but they didn’t work.

A They won’t work there because they’re a feature specific to UNIX shells. If you
like, you can download a version of the Bash shell for Windows that will provide
UNIX shell functionality at http://sourceware.cygnus.com/cygwin.
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Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour.

Quiz
How do the > and >> redirection operators differ?
What are the two arguments passed to a foreach loop?

Under what circumstance would you use the eq comparison operator?

RO - &

What’s the name of the variable where the contents of the current line are stored
when you’re iterating over a file?

Exercises

1. Write a CGI script that counts down from 100 to O and prints each of the numbers
on the page.

2. Write a script that redirects users, but that accepts a number as its parameter, and
then looks up the URL based on that number. You’ll have to use an if statement to
derive the URL to redirect to from the argument.

Quiz Answers

1. The > operator redirects output to a new file, or overwrites it if it exists; the >>
operator appends the output of the command in question to the file if it exists.

2. The two arguments passed to a foreach loop are the temporary variable used to
store the current element in the list being processed, and the list to be iterated over.

3. The eq comparator is used to test strings for equality.

4. The current line in a file being processed is stored in the temporary variable $_.
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Creating HTML Forms

HTML forms are used to build the interfaces for Web applications. The
forms are created using tags which place various input fields on a Web page.
Whether you’re creating a pull-down menu of links to provide navigation
options for your users, or building a multiple step checkout process for an
online store, the HTML form tags provide the only interface elements you’ll
have access to, other than hyperlinks.

When a form is submitted, all the data entered by the user is sent to the Web
server, where it is then passed along to a resource specified in the URL
requested. During this hour, you’ll learn how to use HTML forms to build
interfaces for your CGI programs. The following topics will be discussed:

e The <form> tag

» Form fields based on the <input> tag

e The <textarea> tag

e The <select> tag

* Designing usable forms
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The <form> Tag

The <form> tag is used to place a form on a Web page and to indicate that the fields
within it are all part of the same form.

Form fields can't be placed on a page at all unless they’re enclosed within a

2
I <form> tag.

7
0
¢

To create a form, the following syntax is used:

<form>
<!-- insert form fields here -->
</form>

There are a number of attributes associated with the <form> tag that control the behavior
of the form. Each of the attributes has a default value, so they can all be left out, as I did

in the previous example. I’ll go through the attributes associated with the <form> tag
one by one.

W In this chapter, you'll see that | use lowercase text for all of my HTML tags.
sf g You'll also notice that all of the attributes in my tags have values, and that
= . oee .

= all of my tags have closing tags, or are specifically noted as tags with no
closing tag by including a slash inside the tag, like this: <input />. My HTML
is written this way so that it's XHTML compliant. XHTML is a reformulation
of HTML in an XML-compliant fashion. In other words, any HTML document
created using XHTML is also a valid XML document. No current browsers
require this, but it doesn’t cost anything to be XHTML compliant and it

could be important in the future. For more on XHTML, see

N
N\
N

http://www.w3.0org/TR/xhtml1/

The action Attribute

A form submission/ is similar to a link, in that it requests a particular URL from the
server. Generally, the URL requested points to a CGI program or some other program
that will process the data submitted using the form. When you create a form, the action
attribute is used to indicate which URL the form should be submitted to. So, the follow-
ing <form> tag would submit the contents of the form to the program /cgi-bin/
example.cgi:



Creating HTML Forms 75 |

<form action="/cgi-bin/example.cgi">
<!-- insert form fields here -->
</form>

If you leave out the action attribute, the form will be submitted to the URL of the cur-
rent page. If the form appears on a static HTML page, this doesn’t make much sense.
However, if the form is generated by a CGI script, it’s oftentimes easiest to submit the
form back to the program that generated it for processing. Obviously, this is a question of
application design. This is a technique I'll use several times throughout this book.

The method Attribute

The method attribute/ is used to specify how the data in the form will be sent to the
server. There are two valid methods, get and post. The get method tacks all the form
data onto the end of the URL being requested. The post method submits the form data
as the body of the request. Generally speaking, the two methods are interchangeable, at
least when it comes to creating forms. When you write CGI scripts, there are some crite-
ria you should think about when deciding whether to write scripts that accept data from
the post or get methods.

The method attribute defaults to get if it is unspecified in the <form> tag used to create
the form.

The enctype Attribute

The enctype attribute /is used to specify how form data is encoded when it is submitted
to the Web server. As I discussed in Hour 1, “Overview of CGI Programming,” encoding
is used to sanitize data so that it can be sent to the Web server in a manner that won’t
break the request. Encoding types are specified as MIME types. The default encoding
type is application/x-www-form-urlencoded. The other option, which is generally only
used when you create a form with a file upload field, is multipart/form-data.

The target Attribute

When you create a site that uses multiple frames or windows, you can use the target
attribute to indicate which frame (or window) the results of the form submission should
be displayed in. For example, if you create a page with two frames, left_nav and
main_content, you can put a search form in the left_nav frame and have the results pop
in the main_content frame by including the attribute target="main_content" in the
<form> tag. By default, form submissions target the window or frame in which the form
itself appears.
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The <input> Tag

The <input> tag is used to actually create most of the HTML form fields. The type
attribute of this tag is used to indicate what type of field is being created, and other
attributes are used to set the parameters for that field. The types of input fields available
are text fields, password fields, check boxes, radio buttons, hidden fields, and file upload
fields. The <input> tag is also used to create Submit and Reset buttons. I’'m going to talk
about each of them individually.

First, however, I want to discuss two attributes that are common to all input fields, name
and value. When the data in a form is sent to the Web server, it is organized in
name/value pairs. The name attribute allows you to identify each field on the form.
Generally speaking, form fields allow you to set the value associated with each field
name. The value attribute is used to predefine a value for a form field. The use of the
value attribute differs depending on the type of field you’re creating, so I’ll discuss it
within the context of each field type.

) In some cases, fields appear in groups, and all the fields in the group should
bk / have the same name. I'll talk about this more when | discuss the individual
—_— 4 X
ol field types.

Text Input Fields

The default type of input field is the text input field. It allows the user to enter text in a
single line. You can explicitly define an input field as a text field using the type="text"
attribute in the <input> tag.

The value attribute of a text input field is used to specify a default value for the text
field. If the value attribute is included in the <input> tag, the value assigned to the
value attribute will be displayed in the text field.

The size and maxlength attributes are used to set the display width of the field, and the
maximum number of characters that can be typed in the field, respectively. You should
place a reasonable maxlength on all your text fields, but you shouldn’t count on them in
your CGI programs. People can submit data to your CGI programs without using the
form you provide, and you have to account for that in your programming. There are a
number of ways in which this can be accomplished. For example, the user could down-
load your form and modify it so that he can enter whatever data he wants, or he could
just write a program that submits data directly to your CGI program without using the
Web browser at all.
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Here’s an example of an <input> tag for a text input field:
<input type="text" name="name' size="30" maxsize="50" />

The field created using that tag appears in Figure 5.1.

FIGURE 5.1 [ A Survey Form - Mozilla [Build ID; 20020530121 EER
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Password Fields

Password fields are identical to text fields, except that they mask the user input so that
people can’t read what the person is typing in the field when they look over their shoul-
der. Unfortunately, the value entered in the field is not encrypted in any way when it is
sent to the Web server, and if a value is assigned to the field using the value attribute, it
will appear in the page source as plain text.

However, this field type has two important uses. First, it prevents people watching the
user type from seeing what they enter, and second, it provides a visual indication to the
user that he is typing a password. The masking will make the user more comfortable
with entering his password and provide the user with an interface element that he is
probably accustomed to seeing. A password field that didn’t hide what the user typed
would, in all likelihood, be confusing to many users.

In any case, to create a password field, you must set the field type to password, using the
type attribute. The name, value, length, and maxsize attributes work the same for pass-
word fields as they do with text fields. The <input> tag used to create the password field
in Figure 5.1 looks like this:

<input type="password" name="password_example" value="something" size="30"
maxlength="30" />
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Check Boxes

A check box presents users with a binary choice—it can be either off or on. When a user
clicks on a check box, the value of the field is reversed. If it’s checked, it becomes
unchecked, and vice versa. If a check box is checked when the form is submitted, the
name/value pair associated with that field is sent to the server. If the check box is not
checked, nothing is sent to the server for that field.

To create a check box field, you set the type attribute to checkbox. You set the value for
the field using the value attribute (it’s important to assign a value to the field because
users can’t enter one for this type). The value you enter is generally irrelevant, it’s just a
placeholder that you can test for in your CGI program. Usually people set the value to
something like “yes” or “on.”

Other than type, name, and value, the only other attribute for check boxes is checked.
There’s no value associated with the checked attribute; it’s a flag. When the checked
attribute is included in the <input> tag, the check box will be checked when the form
loads. Otherwise, the check box will be unchecked at load time. The check box in
Figure 5.1 was created using the following <input> tag:

<p>

<input type="checkbox" name="purchaser" value="yes" />

I am authorized to make purchases.
</p>

XML requires that all attributes have values, so if you want your pages to be
XHTML compliant, you have to use the attribute checked="checked" to turn
on check boxes by default. The XHTML specification states that attributes
that normally have no value should have the attribute name as their value.

S

Radio Buttons

Radio buttons allow you to select one item from a group of possible choices. Whenever
you select an item in the group, the item that was already selected becomes unselected.
In this way, radio buttons are similar to a multiple choice test. They’re actually named
after the buttons on the old car radios. Whenever you pushed a button to select a station,
the button for the station that was selected at the time was automatically unselected.

To create a radio button, you use an <input> tag with the type attribute set to radio.
Each <input> tag creates a single radio button—to create a group of buttons, you must
use several <input> tags, and assign the same name to them using the name attribute.

Like check boxes, you can make a radio button selected when the page loads by includ-
ing the checked flag in the <input> tag for that button.
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You are permitted to use the checked flag with several radio buttons in the
same group, and when the form is rendered, all the buttons will be selected
at once. However, because this is contrary to the design of radio buttons, it
will only serve to confuse users. You should limit yourself to one checked
flag per radio button group.

=
2

17
0
¢

Here’s the code to create the group of radio buttons in Figure 5.1:

<p>

IT budget:<br />

<input type="radio" name="budget" value="10000" />Less than $10,000<br />
<input type="radio" name="budget" value="100000" />From $10,000 to
$100,000<br />

<input type="radio" name="budget" value="1000000">From $100,000 to
$1,000,000<br />

</p>

Hidden Fields

One type of field that might not initially make much sense is the hidden form field.
Hidden form fields are used to include data in a form that can’t be modified by users.
When you include a hidden form field on a page nothing is actually displayed in the
browser window. However, the data is stored within the source code of the page and is
submitted to the server along with the rest of the data in the form.

To create a hidden form field, you should specify the field type as hidden. The only
attributes used with hidden fields are the name and value fields. A hidden form field is
created like this:

<input type="hidden" name="some_data" value="some value">

Generally, hidden fields are used on dynamically generated forms to store information
that the programmer wants to send to the program but doesn’t want the user to see. For
example, a programmer might create two forms for an online store that has a two-step
checkout process. The code can place all the data from the first form into hidden form
fields on the second form, and then update the order only after the second form is sub-
mitted.

In other cases, hidden form fields are used with CGI programs that are used for multiple
purposes. Hidden form fields make it easier to write multiple purpose CGI scripts
because they allow you to pass information to those scripts to indicate how they should
be used in a given situation. For example, a search engine might have multiple collec-
tions of data available for searching. If you create a form designed for searching one of
the collections, you can specify the collection to be searched in a hidden form field.
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File Upload Fields

File upload fields are used to enable users to upload files through an HTML form. To
create a file upload field, you should set the type attribute of the <input> tag to file.
The user will be able to specify the location of the file on her local machine, and the
contents of that file will be uploaded when she submits the form. As I stated earlier when
I discussed the <form> tag, file upload fields must appear on forms that use the post
method, and the multipart/form-data encoding type.

There’s an example of a file upload field in Figure 5.1. The appearance of these fields
varies from platform to platform, but they generally consist of a text field that is used to
hold the path to the file to be uploaded, and a button that opens a file selection box that
can be used to locate the file to be uploaded. When a file is selected using the file selec-
tion box, its path is copied into the text field associated with the file upload field.

The <input> tag used to create a file upload field is

<p>

Portrait:

<input type="file" name="some_file" />
</p>

Reset Buttons

A form Reset button resets all the fields on a form to their default values. No value is
associated with the Reset button itself. If the value attribute for a field is present, the
value of that attribute will be placed in the form field. If no value is specified for a field
on the form, the Reset button will empty that field. To create a Reset button, set the type
attribute of an <input> tag to reset.

The value attribute of the <input> tag specifies the button label. No other attributes
apply to Reset buttons. There’s an example of a Reset button in Figure 5.1 that was cre-
ated with this code:

<input type="reset" value="Clear Form" />

Submit Buttons

The Submit button on a form is used to send the contents of the form to the Web server
to be processed. All the relevant information about how the form input should be format-
ted, and where the contents of the form should be submitted, is specified in the form tag
used to create the form. To add a Submit button to a form, use the input tag with the
type attribute set to submit. To specify a label for the Submit button, use the value
attribute.
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You can use the name attribute of a Submit button to send additional information to the
CGI program. If a name attribute is specified for a Submit button, the value specified as
the value attribute of that button will be sent to the server. If no name is specified for the
field, the value associated with the button is not sent back to the server.

The main reason one might assign a name to a submit button is to create a form with
multiple submit buttons, and assign different functionality to each of the buttons. For
example, you could create an order management system, and for each order, place two
submit buttons in a form. You could give them both the name transaction, and assign
one of them the value Refund and the other the value Credit. If the user clicks the
Refund button, he will receive a refund in the mail; if he clicks Credit, the customer will
receive store credit instead.

Using Images as Submit Buttons

Another option available when you design forms is to use an image as the submit button
for a form. To indicate that you want to use an image as a Submit button, use the input
tag with the type set to image. The main advantage of using an image as the submit but-
ton for a form is that it enables you to make your forms more aesthetically pleasing.

When you create an image-type form field, nearly all the attributes associated with the
HTML img tag are available to you in addition to the attributes generally associated with
an input tag. A list of the image-related attributes that can be used with image fields
appears in Table 5.1.

TaBLE 5.1 Attributes Associated with the image Input Type

Attribute Purpose

type If you want to create an image input field, this has to be set to image.

name The name associated with the field when it is submitted through the form.

src The location of the image that will be displayed as the form field.

height The vertical size of the image in pixels.

width The horizontal size of the image in pixels.

alt Text to display as the image’s placeholder if the browser does not support images,

or has image loading turned off.
border The number of pixels in the border around the image.
hspace The number of pixels to provide as a margin on the left and right of the image.

vspace The number of pixels to provide as a margin on the top and bottom of the image.
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There is no value attribute used with an image field. If you assign a name to an image
input field, the X and Y coordinates of the spot on the image where the user clicked are
sent to the Web server as the value. This is only useful if you divide your image into
regions that have different functionality.

Other than that, image input fields work just like Submit buttons. There’s an example of
an image input field in Figure 5.2.

FIGURE 5.2 A Survey Form - Mozilla {Build ID: 2002053012}
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Other Form Fields

There are two other types of form fields that are not created using an <input> tag. These
two items are text areas and select lists. They’re both a bit more complex than the fields
based on the <input> tag. Figure 5.3 contains examples of both types of fields.

FIGURE 5.3 Example Form - Mozilla [Build ID: 2002053012}
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Text Areas

Standard, one-line text input fields are fine for many tasks, but for some applications,
like online discussion groups and feedback forms, you need to give users more space to
enter text. This is where the <textarea> tag comes into play. It enables you to create a
multirow form field for text entry. Unlike the <input> tag, the <textarea> tag has both
an opening and closing tag. Any text that is enclosed within the <textarea> tags is dis-
played in the text box on the form. Take a look at this example, which is depicted in
Figure 5.3:

<textarea name="example" cols="40" rows="4">

This is just an example.
</textarea>

The cols and rows attributes set the size for the text box. In the example, the box is four
rows tall and 40 columns wide. As with other form input fields, the name attribute identi-
fies the field when it is sent back to the server.

There’s another important attribute of text boxes that is unique to them, wrap. The wrap
attribute controls how text is displayed in the form field, and how the text is formatted
when it is sent back to the server. There are three settings for the wrap attribute: none,
physical, and virtual. If wrap is set to none, when a user enters text in the box, it is
never wrapped. Each line extends to the right until the user presses Return.

The virtual setting wraps the text by inserting line feeds at the right margin of the text

box. The line feeds are used for display only—to make it easier for the user to read what
he typed. They are removed before the text is sent to the server. The physical setting is

similar: It wraps the text at the right margin of the text box, but it includes the line feeds
when the text is sent to the server. This is the only setting that actually changes what the
user typed.

When you create a <textarea> tag, anything that’s between the opening and closing tags
is considered to be the default value for the field, including white space. So, a text box
created using the following code would include a single carriage return as its default
value:

<textarea name="example" wrap="none" rows="3" cols="40">
</textarea>

If you really want your text area to be empty (including line feeds), you have to create it
as follows:

<textarea name="example" wrap="none" rows="3" cols="40"></textarea>
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Select Lists

Select lists provide the user with a menu of several choices and enable the user to select
one or more of the choices before submitting the form. They are created using the
<select> and <option> tags. The <select> tag has an opening and closing tag, and is
used to set up the select list. <option> tags are used within the <select> tag, and each
<option> tag adds one option to the select list.

Really, the <select> tag is used to create two distinct types of form fields. The type of
field that’s created is based on the size attribute, which specifies how many options
should be displayed at once. Setting the size to 1 creates a pull-down list of options, with
the selected option displayed. Setting the size to any value greater than 1 creates a list
with more than one option displayed. In the latter case, a vertical scroll bar is included if
the number of options exceeds the size of the display. When you create this type of select
list, you can use the multiple flag to indicate that users are allowed to select more than
one item at once. Both types of select lists are shown in Figure 5.3.

The name attribute is used to identify the select list, and the size attribute indicates how
many options will be displayed at once. The size attribute defaults to 1. <option> tags
have one attribute, value. The value associated with an option is sent to the server
when that option is selected. Here’s the one line select list from Figure 5.3:
<select name="color">

<option value="red">Red</option>

<option value="blue" selected="selected">Blue</option>

<option value="yellow">Yellow</option>
</select>

The selected flag is used to indicate which option in the list is selected. If it’s not
included, the first item in the list will be selected by default for single line select lists. If
the select list displays multiple items at once and no selected flags are included in the
options, nothing is selected by default when the form loads. The first items in the list are
displayed.

To create a select list with multiple options, simply set the SIZE attribute to a number
other than 1. If there are more options than there are lines in the multiline select list, the
user will be able to scroll through them using a vertical scroll bar on the select list. The
example in Figure 5.3 was created with the following code:

<select name="operating_system" size="3" multiple="multiple">
<option value="macos">Mac 0S</option>
<option value="linux">Linux</option>
<option value="freebsd">FreeBSD</option>
<option value="windows">Windows</option>
</select>
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As you can see if you refer to Figure 5.3, the first three options are displayed by default.
The last option can be accessed using the scroll bar. (If you prefer, you can use selected
flags to specify the options that will be pre-selected.) This select list also allows users to
select multiple items at once because the <select> tag includes the multiple flag.
multiple select lists are very useful. In the previous case, if the user had both Linux and
Windows installed on her home computer, she could select both of the options before
submitting the form.

On the downside, multiple select lists can be confusing to users. Many neophyte users
don’t know how to properly select multiple items from one select list. In fact, the method
used to select multiple items varies from platform to platform. When you’re designing
forms, you should take this barrier into consideration before using multiple select lists.
Before using them, you should think about whether something else might work better for
that application.

Workshop: Building an Entire Form

Now you’ve been introduced to all the fields that can be used in an HTML form. At this
point, I’'m going to talk about how you put these pieces together to create a usable form.
Generally speaking, a form consists of more than just a group of fields—those fields
need to be labeled, and often some explanation is required in order to help users under-
stand what’s going on.

In this case, I'm going to create a simple survey form, of the kind one might fill out to
get a free subscription to a trade magazine. The source code for the HTML form appears
in Listing 5.1.

Listing 5.1 survey.html, A Sample Survey Form

1: <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3: <html xmlns="http://www.w3.0rg/1999/xhtml">

4: <head>

5: <title>A Survey Form</title>

6: </head>

7: <body>

8: <h1>A Survey Form</h1>

10: <form action="/cgi-bin/survey.cgi" method="post">
11: <p>Name: <input type="text" name="name" size="30"
12: maxsize="50" /></p>

14: <p><input type="checkbox" name="purchaser" value="yes" /> I am
15: authorized to make purchases.</p>

continues
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LISTING 5.1

continued

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

<p>IT budget:<br />

<input type="radio" name="budget" value="10000" />Less than
$10,000<br />

<input type="radio" name="budget" value="100000" />From $10,000

to $100,

000<br />

<input type="radio" name="budget" value="1000000" />From $100,000
to $1,000,000<br />

</p>

<p>Current job responsibility:

<select name="job" size="1">

<option value="senior">Senior Management</option>
<option value="management">Management</option>
<option value="engineer">Engineer</option>
<option value="consultant">Consultant</option>
</select></p>

<p>Comments:<br />

<textarea name="comments" wrap="virtual'></textarea></p>

<p><input type="submit" /> <input type="reset" /></p>

</form>
</body>
</html>

First, let’s take a look at the entire form. As you can see, the form is embedded within a
standard HTML page. All the form fields appear within the opening and closing <form>
tags. You can see what the form looks like in Figure 5.4.

FIGURE 5.4
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Looking at the <form> tag, you can see that the data entered in the form will be submit-
ted to a program called survey.cgi in the cgi-bin directory on the server. The form
uses the post method because it contains a text box. Because users can enter lots of data
in text boxes, using the post method is more convenient because the form data is sent
back to the server in the body of the request.

Elements in the Survey Form

Now I’'m going to discuss the individual fields in the form. The first field in the form is a
text box in which the user should enter her name. The field is 30 characters wide, and
can hold a maximum of 50 characters. The name of the field is name, which is a bit con-
fusing, but is an appropriate identifier for a field used to hold the user’s name.

The second field in the form is a check box, named purchaser. The user checks this
field if she is authorized to make purchases at her company. If she does check the field,
the name and value are sent to the server. If not, nothing is sent to the server to represent
this field.

Next is a group of radio buttons. The group is composed of several <input> tags, all with
the same name. They allow the user to select her company’s information technology bud-
get from a range of values. Only one value is sent to the server to represent this group of
buttons.

The field that follows is a single line select list, from which the user can select the type
of job that she has. The size attribute was used to specify that the select list is one row
high. In this case, it was optional because select lists default to a height of one row.

The final input field is a text box, named comments. The wrap setting for the text box is
virtual. Ordinarily, this setting defaults to none.

Finally, the remaining two <input> tags place the Submit and Reset buttons on the form.
I didn’t specify values for either of them so that you could see the default labels that are
placed on the buttons by the Web browser. Generally, you’ll want to specify your own
labels using the value attribute, as the default values don’t correctly describe the func-
tion of the buttons. Because no default values were specified for the fields on this form,
pressing the Reset button will empty all the fields on the form.

Summary

HTML forms are the primary method by which Web programmers can create user inter-
faces for their CGI scripts. In this hour, I detailed all the elements that can be placed
within an HTML form, and explained how they are utilized within forms. Most form ele-
ments are created using the <input> tag. The exceptions are the <textarea> and
<select> tags.
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Q&A
Q

A

Is there a way to change the contents of a form field based on the value a user
enters or selects in another form field?

You can manipulate the contents of various form fields based on events that occur
in the browser using JavaScript and VBScript. For example, if a user clicks on a
check box, you can insert a value into a text field. Some browsers enable you to
modify the contents of one select list based on the value selected in another. Of
course, for this to work, your users’ browsers must support the language you used
to accomplish these tasks. JavaScript is supported by most newer Web browsers,
and VBScript is supported by versions of Internet Explorer starting with 3.0.

Is it possible to submit a form without a submit button?

Yes, there are two ways to do so. If a form contains a text field, then pressing
return while the cursor is in that field will usually submit the form (depending
upon which browser you’re using). You can also use JavaScript to cause a form to
be submitted based on an event that occurs in another form field. For example, a
common navigational device involves creating a form with a single select list. The
user selects a link from the list, and the form is submitted using JavaScript, direct-
ing them to that link.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1.

2
3.
4

In what way is the password field type insecure?

. What is the purpose of the multiple attribute when used in a select field?

How do you include default text in a textarea field?

. True or false: A form must include a submit button in order for the form to be sub-

mitted?

Exercises

1.
2.

Create a select list with six items that displays two of the items at any given time.

Create a form with a text input field, a password field, a group of radio buttons,
and a submit button.
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Quiz Answers

1. The password field type is insecure in that it only prevents the value in the field
from being displayed on screen. The value is still stored in the page as plain text
and transmitted to the server as such unless the connection itself is secure.

2. The multiple attribute in a select field enables users to select more than one item
at a time.

3. You can include default text in a textarea field by including it between the open-
ing and closing textarea tags.

4. False.
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Working with HTTP

When you enter a URL in the location field of your Web browser,
more often than not it begins with http. The http stands for
Hypertext Transfer Protocol, the modus operandi that Web servers
and Web browsers follow in order to talk with each other. This hour
covers the inner workings of http to provide you with a good
understanding of the basic building blocks of the Web.

This hour includes

* A discussion of how the HTTP protocol works
* A detailed description of an HTTP transaction

¢ Information about response codes and response headers from
an HTTP server

* How content types work on the Web

¢ A brief discussion of secure Web connections
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HTTP Basics

HTTP (Hypertext Transfer Protocol) is a protocol—a set of rules that computers
use to communicate over a network. It is designed to enable HTTP clients (such
as Web browsers) to request information or services from HTTP servers (better
known as Web servers).

HTTP is a connectionless protocol. This means Web browsers and Web servers
don’t establish a connection to each other; instead, they send individual mes-
sages back and forth. A connection-oriented protocol works like the telephone
system. When you call someone on the telephone, a connection is established.
You can then talk to each other over that connection until one of you hangs up.
On the other hand, connectionless protocols work like the postal service (except
much more quickly). You and I can send each other letters as long as we know
the correct address to write on the envelope. The important difference here is
that like the postal service, every message sent between the client and server
requires the full address to be delivered to the proper destination. On the other
hand, connection-oriented protocols only require this information when the con-
nection is initially established. Because HTTP is connectionless, no “state”
information is maintained between messages. In other words, there is no built-in
way to tell what information the client and server have exchanged in the past.

HTTP follows a request/response model. A Web browser (or any client) sends a
request to a Web server. The server then processes the request and sends the
appropriate response. All HTTP sessions are structured as a set of requests and
responses.

HTTP uses content typing. This means that every entity sent to a Web browser
by the Web server has some content type associated with it. These types are
modeled on the MIME Internet mail protocol, and will be discussed fully later
in the hour. Appendix A, “MIME Types,” includes a list of common content
types. By sending a content type along with every entity sent to the Web
browser, the Web server tells the Web browser what sort of thing that entity is—
an HTML document, a GIF image, a sound file, or a standalone application pro-
gram. Most browsers have a configurable list of helper applications that tell the
browser how to handle the various content types sent by Web servers.

What Takes Place During an HTTP
Session

Now you’ll learn exactly what happens when a Web browser requests a docu-
ment from a Web server. Understanding the details of how Web browsers and
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servers communicate will come in handy later when I’m discussing how to

build CGI scripts that take advantage of this architecture.
steps in this process appears in Figure 6.1.

FIGURE 6.1

The steps in \ 1. TCP
Connection

an HTTP Established

session.

Web Browser

request to the
server

3. Brows
sends request
headers

~ =

4. Server/
sends

response code
/ 5. Server

sends
response
headers

/

Web Browser

Step 1: Establish a TCP Connection

Before the HTTP protocol can go to work, the computer

An illustration of the

2 Browser
sends a

———

Web Server

6. Server
sends
requested data

7. Server
closes TCP

/ Connection

that is running the Web

browser has to connect over the network to the computer running the Web
server. This connection is established using the TCP protocol which, along with
the Internet Protocol (IP), is used by most application protocols for communica-
tion. For this reason, the Internet is referred to as a TCP/IP network. HTTP is a
higher-level protocol than TCP, which is, in turn, a higher-level protocol than IP.
As a rule, higher-level protocols can’t communicate until a connection is estab-
lished at the lower level. HTTP is an application-level protocol, which means

that it is at the highest level in the TCP/IP model.

I’m not going to cover what goes into connecting at the IP and TCP levels in

gruesome detail, but here’s a short overview. If the URL

entered in the Web

browser was http://www.example.com, the first thing the client computer
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would do is perform a DNS (Domain Name Service) lookup on the name of
machine in the URL (the contents of a URL were discussed in detail in Hour 1,
“Overview of CGI Programming”).

A DNS lookup is basically equivalent to looking up a phone number in a tele-
phone book. Then the DNS server converts the hostname in the URL into an IP
address. Every computer on the Internet has a unique IP address, consisting of
four numbers between 0 and 255. An example of an IP address is
192.9.200.155. If the name is successfully looked up by the DNS server, the
client will try to connect to the Web server using TCP; if the DNS lookup fails,
the HTTP request will fail.

If you are connecting to a Web server over the Internet, chances are the request
will travel through a number of routers in the process of connecting to the desti-
nation Web server. Routers are computers that connect independent networks to
one another. If the TCP connection is made, the HTTP session itself can start,
and the server will begin sending data to the client. If the Web server is unreach-
able, the HTTP request will fail.

Step 2: The Web Browser Sends a Command to
the Server

After the TCP connection has been established, the Web browser sends a com-
mand to the Web server. The command includes a method, a resource identifier,
and an HTTP version number. An example of a request line is

GET /cgi-bin/vote.cgi HTTP/1.0

The method describes the type of request that the browser is sending. There are
three possible methods—GET, POST, and HEAD. I’ll discuss the three methods a
bit further on.

The next element in the request is the URI, or Universal Resource Identifier. In
almost every case, the URI is the absolute path to the requested file. The proto-
col and machine name are left out of the URI, and only the path to the resource
remains. If the URL entered in the Web browser didn’t include a path, the
default path / is used. For example, entering the following URL in your Web
browser:

http://www.example.com
would generate this request line:

GET / HTTP/1.0
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The last part of the request line tells the version of the HTTP protocol for that
request. Ordinarily, this is version 1.0, although the HTTP specification has
been updated to version 1.1. Most Web servers still use version 1.0 for the sake
of backward compatibility.

As you probably remember, if you are submitting form data using the GET
method, it is added at the end of the requested URI. The form data is separated
from the actual URI by a question mark.

Step 3: The Web Browser Sends Request Headers

After the browser sends its request line, it sends some other information to the
Web server in the form of headers. This information usually includes identifying
the browser that made the request, the content types that the browser accepts,
and the URL that referred the user to the requested Web page. Appendix C,
“Environmental Variables and Request Headers,” contains an extensive list of
client request headers, the environment variables that they stored in by the
server, and to what the headers refer.

You can make use of the information provided in the request headers in your
CGI scripts to serve specific pages based on which browser the user is running,
or send special information based on where the user came from. All the
response headers are optional, so the browser lets the server know that it has
finished sending header information by sending a blank line.

After the browser has sent the header information, the request portion of the
HTTP session has finished.

Step 4: The Web Server Responds

After the client has sent its request to the server, the server sends a response
back to the client. The first line of the server’s response looks like this:

HTTP/1.0 200 OK

The first part of the response is the protocol and version number. The version
number indicates which version of the HTTP protocol that the response will be
sent in because the syntax of the responses and headers differs between ver-
sions.

The last part of the response is the status code for the response. Most of the
time, the response code is 200 OK, which means that the request was successful,
and the response contains the data that the client requested. Another status code
you may be familiar with is 404 Not Found, which means that the document
referenced in the request does not exist.
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Response codes are discussed in detail later in this hour in the section entitled,
“Server Response Codes.” Hour 23, “Creating Custom Error Documents,” will
discuss how to create CGI-based pages that are sent with error response codes.

Step 5: The Web Server Sends Response Headers

Just as the client sends information about itself along with the request, the
server sends data to the user about itself and the requested document with the
response. Appendix B, “Response Codes and Reason Phrases,” is a list of items
that can be included in HTTP headers. Response headers can be used to perform
authentication, give the name and version of the server software, and set up
“magic cookies.”

The server’s response headers also usually include the content type for the data
being sent with the response, and the content length (in bytes) for the data. An
example of a typical response header is:

Date: Tue, 26 Aug 1997 00:45:46 GMT

Server: Apache/1.2.4

Last-Modified: Thu, 14 Aug 1997 15:17:43 GMT

Content-Length: 7437
Content-Type: text/html

As you can see, this header includes the date and time that the response was
sent, the name and version of the server software, the date that the requested
URL was last modified, and the content length (in bytes) and content type for
the resource being sent to the browser.

Step 6: The Web Server Sends the Data to the
Browser

After the server has sent the header to the browser, it sends a blank line to indi-
cate that it is finished. Then it sends the actual data that the user requested in the
format described by the Content-type response header.

Step 7: The Web Server Closes the TCP
Connection

Ordinarily, after the Web server has sent the requested data to the browser, it
closes the TCP connection. However, if the browser or the server includes the
line

Connection: Keep-alive

in its header, the TCP connection will remain open after the data is sent. Then
the browser can continue to send requests over the same connection. Keeping
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the connection alive saves the overhead of opening a new connection for each
request, and conserves network bandwidth. Unlike HTTP 1.0, the default behav-
ior of HTTP 1.1, the new version of the protocol, is to keep connections alive.

That’s an overview of what transpires when a Web browser contacts a Web
server and requests a document. Now that you have a good overview of what a
Web transaction looks like, you can explore each part of the transaction and
learn how to utilize them when you write CGI programs.

Request Methods

As I mentioned in the previous chapter, you can control which method a form submis-
sion uses using the method attribute of the form tag. Web servers accept three types of
requests: GET, POST, and HEAD. A request from a program to a Web server looks like this:

GET /index.html HTTP/1.0

The first part of the request, which is GET in this case, is the method for that request. The
second part, /index.html, is the URL being requested. The third part of the request,
HTTP/1.0, is the protocol that the client is using.

o There are generally additional header lines that are included with the
/= [/ request, but the request line itself is all that is required by the Web server to
%Ad

f

service a request. The other headers contain non-essential information that
CGI programmers might find useful, such as which browser the user is using,
and what MIME types that browser accepts.

The two important request methods are GET and POST (note that they correspond to the
two methods available when you create a form). The HEAD method is not normally used
by Web browsers because it is a request for only the header of a response. The actual
body of the response is not returned. HEAD is used by programs that need information
only from a page’s header. For example, programs that test links or check when pages
have been updated can use the HEAD request to retrieve that information without utilizing
the extra bandwidth necessary to retrieve the actual body of the request.

The GET Method

GET is the default method for Web requests. POST is only used if it is specified as the
method in the form used to make the request. The important thing for CGI programmers
to know about the GET method is that form data is appended to the URL when it is sent
to the server. Web servers that support CGI then copy that information to an environment
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variable called QUERY_STRING. At that point, it’s up to the CGI program to retrieve the
data from the environment variable and decode it.

A URL that includes query string information looks like this:
http://finance.yahoo.com/q?s=aapl&d=v1

The ? separates the query string from the actual path to the resource being requested. The
two parameters passed to the server are s and d.

The PoST Method

The POST method is used when an HTML form has the METHOD attribute set to POST.
Unlike the GET method, the POST method places data in the body of the request as well as
in the URL. A POST request looks a lot like an HTTP response. The first line is a stan-
dard HTTP request, with the method POST specified. It includes any additional headers
specified by the browser, and then the body of the request is sent, separated from the
header by a blank line.

The body of a request that uses the POST method is sent to the CGI program through
standard input. Standard input is a UNIX term that is generally associated with input
read from the console. In this case, the body of the HTTP request is redirected into the
program through standard input.

Information can also be sent to the server in the form of a query string following the file-
name in the URL. This information is still stored in the QUERY_STRING environment vari-
able. I'll explain how standard input works, and how to handle information passed to
programs from the POST method, later this hour.

Choosing Between GET and POST

Obviously, one question that CGI programmers face when designing forms is whether to
use the GET or POST method. For a large percentage of tasks, they’re interchangeable—
either will work fine. However, in a small percentage of cases, there are advantages to
using one or the other.

As you know, data submitted using GET and POST are passed to CGI programs
in different ways. Fortunately, most CGl libraries convert the submitted form
Z data into a data structure native to the programming language being used,

so it's not necessary to deal with the complexity of decoding the form data.
For that reason, it's not necessary to take that complexity into account when
you're deciding between the two methods. More importantly, if you use a
library like CGI.pm, it will parse the form data no matter how it is submitted,
so your scripts can be called using the GET and POST methods interchangeably.




Working with HTTP 99 |

Here’s a list of a few conditions where it makes sense to choose GET over POST, or vice
versa:

» If you want your application to be capable of being called from a hyperlink, it has
to support the GET method. If you use a CGI library that supports both methods
interchangeably, this isn’t a concern (because GET support is built in).

* If you don’t want arguments passed to the script to be captured in the server’s logs,
you should create the form using the POST method. For example, if the form is a
login form, you don’t want all the usernames and passwords to be captured in the
Web server’s access log. You also don’t want to let people see your users’ pass-
words in plain text in a URL if they’re watching over the user’s shoulder.

* If the form input is very long (let’s say it contains a TEXTAREA field), you’ll want to
use the POST method. You can use the GET method, although there are various limi-
tations on the length of URLs imposed by browsers, servers, and operating systems
(which restrict the size of environment variables). It’s often easier to stick to POST.

* If you want users to be able to bookmark the results of a form submission, you
should use the GET method. All the arguments users enter will be preserved as part
of the bookmark because they’re included in the URL. You can’t capture form sub-
missions that use POST in the same way. By the same token, if you don’t want peo-
ple to bookmark the results of a form submission, use POST. For example, you
probably don’t want to allow users to bookmark the results of a form that submits
their credit card information and completes an order at an online store.

* If your form includes a file upload field you must use the POST method. You must
also set the form’s ENCTYPE to multipart/form-data.

* If you want to preserve the query string in a URL in referrer logs, you’ll want to
use the GET method. For example, most search applications use the GET method so
that the URL to the search results page contains the search terms the user typed in
the query string. That way, when a user clicks on a link on that page, the search
terms will be passed to the page that the link refers to, and thus stored in the refer-
rer log.

Server Response Codes

In the example I used previously, the server sent the response code 200 OK to
the browser. There are a lot more server response codes that are commonly sent
to the browser by Web servers. Table 6.1 contains the categories of server
response codes. After I introduce the categories, I will discuss a few specific
server response codes that are used frequently. A complete list of server
response codes and what they indicate is included in Appendix C.
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TABLE 6.1 Categories of Server Response Codes

Category Description

Informational The codes between 100 and 199 are informational response codes. They are
only implemented under HTTP version 1.1. They indicate that the request
from the browser has been received and is being processed.

Successful Server response codes between 200 and 299 indicate that the client’s
request was successful. The request was received, understood, and
processed.

Redirection A response code in the range of 300 to 399 indicates that the client’s

Client Error

Server Error

request was not fulfilled, and further action must be taken on the part of the
client to successfully complete the request. For example, if the requested
page has moved, a redirection response code is sent to tell the client that it
needs to request the page again from the new location.

Response codes between 400 and 499 indicate that there is some error in
the client’s request. These errors can indicate that the page was not found,
that the client’s request used invalid syntax, or that access to the page was
denied.

A response code in the range of 500 to 599 indicates that there is a problem
with the server that prevents it from fulfilling the request. Usually informa-
tion is sent along with this response code that elaborates on the problem.

Table 6.2 contains a list of the codes that are used in the bulk of responses. The
others are obscure, and you won’t often see them used by Web servers.

TaBLE 6.2 Common Server Response Codes

Response Code

Description

200 OK

401 Unauthorized

403 Forbidden

Hopefully, this is the most common response from your Web site. It
means that the client’s request was successful and that the requested
document is being sent back to the user with the response.

When a site is set up to use authentication, and the user fails to enter a
correct user name and password, he is greeted with the 401
Unauthorized response.

The 403 Forbidden code is a generic response code that the server
sends when the request can’t be fulfilled but the server doesn’t know
why, or does know why but isn’t allowed to tell. In practice, this code
is often seen when the file permissions on the requested document are
set up incorrectly. It means that the Web server process can’t read the
file, or in the case of CGI scripts, it doesn’t have permission to exe-
cute the file.
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Response Code Description

404 Not Found The 404 response code has attained fame on the World Wide Web
because it indicates that the document you are requesting is no longer
at the requested URL. Because almost no one ever sees the 200 0K
status code when it is sent, this is probably the best known response
code, and has, in fact, attained pop culture status.

500 Internal Another common error response is 500 Internal Server Error.
Server Error When a Web server is misconfigured, or there’s a problem with a CGI
script, this is the response code that is usually sent to the user.

Response Headers

There are also a number of headers that are usually sent to the browser by the
server, and I will introduce some of the most important ones here. Appendix D
includes an extensive list of headers that can be sent by both the browser and
the server.

Cache-control

The Cache-control response header was added to HTTP 1.1 to provide more
advanced methods of controlling the behavior of caching mechanisms like
proxy servers. It is a more powerful replacement for the Pragma: no-cache
response header, which is described a bit later. To prevent caching mechanisms
from storing the entity sent with the response in their cache, you should use the
Cache-control: no-cache response header.

Content-length

Content-length specifies the size of the entity that is sent to the browser with
the response. The size is given in bytes.

Content-type

Content-type describes the media type and subtype of the entity sent with the
response. Content types are covered in depth later in this hour.

Expires

The Expires header is used to specify when the information contained in the
document will no longer be valid. Its value should be a valid time and date in
the format specified by RFC 1123 (http://www.cis.ohio-state.edu/
htbin/rfc/rfc1123.html). An example of this date format is

Sat, 13 Sep 2002 10:42:00 GMT
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This response header is designed to let browsers know that after a certain date,
they should go back to the server to download a document instead of using a
copy from the cache, if one exists.

Pragma

The Pragma header is used to send instructions to any proxy servers between the
requesting browser and responding server. A proxy server is a computer that can
be used to cache Web pages to conserve network usage. For example, a com-
pany may have a proxy server through which all of its Web traffic is routed. The
proxy server can cache commonly requested pages so that these pages can be
sent to servers from the proxy server’s cache instead of being transferred over
the Internet. In HTTP 1.0, the Pragma: no-cache header tells the proxy server
to request the document from the remote server instead of loading it from its
cache.

Server

The Server response header contains the name and version number of the
server software that the responding Web server runs.

Set-Cookie

The Set-Cookie response header is used to send a cookie to the user’s Web
browser. Cookies are stored on the user’s hard drive and are sent back to the
Web server that sent them every time the user connects until they expire (an
expiration date is required with every cookie). Cookies can be used to store a
user’s login name and password. When they visit your site in the future, they
will be logged in automatically, or any other data that the server wants to store
after the HTTP transaction. The use of cookies is discussed in depth in Hour 15,
“Session Management.”

NPH Scripts

Most Web servers allow CGI programs the option of providing all the headers
that are sent to the browser, completely bypassing the Web server itself (under
ordinary circumstances, CGI scripts only provide the content type header).
When the Web server calls a script in NPH (non-parsed header) mode, the script
is responsible for generating all the headers that are sent to the browser.

Various Web servers identify NPH scripts in different ways. Most recognize any
script with a name beginning with nph- as an NPH script. If they see a script
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with such a name, they treat it as an NPH script and send the output straight
back to the browser. Your Web server might identify NPH scripts differently,
you should check your Web server documentation for details.

After you know how to identify NPH scripts, the next question is what to do
with them. Generally, NPH scripts are used to take advantage of features of
HTTP that aren’t supported by your Web server. At one time, NPH scripts were
widely used to implement server push. Server push was a technique that allowed
you to add animation to your Web pages by sending multiple GIFs from the
server that overwrote what was on screen. When Netscape added support for
animated GIFs to its Web browser, the age of server push swiftly came to an
end. Animated GIFs were easier to create (you didn’t need to write a CGI script
for the image) and required less bandwidth than server push.

The most important usage of NPH CGI scripts these days is to make CGI.pm
scripts work with Microsoft IIS. CGI.pm only works under IIS if you generate
the headers in NPH mode.

There are several methods that can be used to generate NPH headers with
CGI.pm. The first method involves passing the -nph symbol to CGI.pm when you
import it:

use CGI qw(-nph);

The second method is to set the -nph flag anywhere in the script before you
print the headers by calling the nph method, like this:

CGI->nph(1);

The final method is to set the -nph flag when you actually print the headers, like
this:

print $query->header(-nph=>1);

Content Types

All computer systems have a system that enables them to know what to do with
files. On Windows systems, the three letter extension tells the system the file
type and often what to do with it. Files with the .EXE extension are executable
files, the .DOC extension indicates that a file is a Word document, and .HTM tells
the system that the file is an HTML document. Similarly, Macintosh classic sys-
tems store the file type and file creator in the resource fork.
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It probably doesn’t surprise you that every operating system has a method of
specifying file types, and the method is different in each system. MS-DOS file
extensions don’t mean anything on the Macintosh, and Macintosh resource forks
can’t be transferred to computers running Windows. UNIX has a primitive file
typing system that’s not compatible with either platform.

In order to transfer files from one platform to another over the Internet, a com-
mon system of file types was designed. This system was originally designed for
describing the contents of email messages that contain attachments, and is
referred to as MIME—Multipurpose Internet Mail Extensions.

When the World Wide Web was created, the existing MIME standard was used
as the foundation for sending file type information over the Web. Web browsers
and Web servers on every platform have mechanisms for translating to and from
their native file typing systems, so that when a Web server on a computer that
runs Linux sends an Adobe PDF document to a user with a Macintosh com-
puter, it can recognize the file type and know to open it with Adobe Acrobat
Reader.

You’ve already seen some examples of how content types work. One of the first
examples of content types that you’ve seen is the enctype attribute of the
<form> tag. Remember that when you submit a form using the post method, an
entity with the form’s contents is sent to the Web server with the request. The
post is accompanied by the Content-type and Content-length headers. The
Content-type is the enctype that was specified in the form tag.

In some of the CGI scripts that were provided as examples in the previous
hours, I also used content types. Every CGI script that returns a document also
has to send the Content - type response header so that the browser knows what
sort of document it is receiving. For example, when a CGI script dynamically
generates an HTML document, it sends the text/html content type so that it
will render the document as a Web page instead of just displaying the HTML
source code.

How Servers Use Content Types

As you already know, when a browser requests a document or file from a Web
server, the Content -type header is sent along with the entity in the response to
tell the browser what type of entity it is. The question is, how does the server
know the content type of the entity?

With CGI scripts, it’s easy. The CGI script is supposed to generate the Content -
type header for the server. If the CGI script generates an HTML file, it specifies
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text/html; if it creates a GIF, it sends image/gif. The server just passes the
information along from the script to the browser.

What about other files? Web servers generally decide what content type to
assign to files according to their extension, just like a computer running
Windows. Web browsers also have a table of content types that they refer to
when they receive a response from the server. When they get the response, they
take the appropriate action as defined in the table.

A common misconfiguration problem with Web servers is that they aren’t con-
figured to send the proper content type with .EXE files, so when a user tries to
download an .EXE file (like an installer for an application), the contents of the
file are displayed in the browser instead of being saved to the user’s hard drive.
Of course, because an executable file is a binary file, it just displays as pages
and pages of garbage in the browser. If you run into this problem when you’re
surfing the Web, use the Save Link As command in your browser to download
the link to your hard disk instead of displaying it.

If you're running the Apache server, you can view a list of content types and
the extensions they’re associated with in the mime.types file. You can add
content types and file associates by editing this file and restarting your Web
server. If a file type should be handled by the server and not sent to the
Web browser directly, you can use the AddHandler directive. For example, if
you want to place CGI programs in your document directories, this line in
the httpd.conf file is used:

<

AddHandler cgi-script .cgi

Content-Type Categories

Each content type contains two parts—a type and a subtype. The type indicates
the basic kind of file that is being sent, the subtype specifies the format of the
file or which application created it. Take, for example, the content type
text/html. The type is text, indicating that it is a normal text file, and the sub-
type is html, which indicates that it contains HTML source code. Most Web
servers are configured to send the text/html content type for files with the
extensions .htm and .html.

Table 6.3 contains a list of standard content types. The list of types is relatively
short and isn’t added to very often. On the other hand, the list of subtypes is
always growing, and anyone can create a new subtype.
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TaBLE 6.3 Content Types

Type

Description

text

multipart

message

image

audio

video

application

The text type contains messages that are in plain text. No special application
is required to open plain text files as long as the computer supports the charac-
ter set in which the file is written. Common subtypes of the text type are plain
and html.

The multipart type is used to transmit a message consisting of multiple parts
that can all be of a different data type. This type is usually used for email mes-
sages with attachments, which contain separate parts for the textual part of the
message and the attachment. However, the enctype attribute of the form tag
accepts multipart/form-data type as an acceptable option.

The message type is used for email messages. The most common subtype is
rfc822, which indicates that the entity is an RFC 822—compliant email mes-
sage. (RFC 822 is the IETF standard for the format of Internet email mes-
sages.)

The image type is used to indicate that the entity is an image file. Some of the
popular image formats that you have probably used include image/jpeg and
image/gif. There are all sorts of other subtypes of the image type that specify
proprietary image formats.

The audio type contains all sorts of audio file formats, including normal for-
mats like Sun .AU files, .WAV files, and .AIFF files, as well as streaming audio
files like RealAudio.

The video type is the type for all types of video files, including QuickTime,
MPEG, and AVI files, along with streaming video formats like RealVideo,
VExtreme, and VDOLive.

The application type is a catchall type for all types of file formats that don’t
fit into any of the other types. The basic application subtype is octet -stream,
which indicates that the file is a standard binary file that shouldn’t be inter-
preted by the browser when it is received. The typical action for applica-
tion/octet-stream is to save it to disk. Despite the fact that the type is named
application, all sorts of subtypes are document formats, including Adobe
PDF files, Microsoft Office documents, and many, many more.

Nonstandard Types

When someone writes a new application for use on the Web, or creates a new
file format, there is a provision for creating a new, nonstandard content type.
Unlike standard types, which are present in standards documents and should be
implemented in any piece of software that wants to stick to the standard, non-
standard types face a tougher road.



Working with HTTP 107 |

They are differentiated from standard types by prepending the prefix x - to the
type or subtype section of the content type. For example, if you wanted to create
a new image format called the All Blue Image format and it used the extension
.ABI, you would also want to create a content type so that Web browsers would
know how to handle .ABI files. As long as you use the x- prefix that’s required
for nonstandard types and subtypes, anything is fair game, although it’s wise to
do some research and make sure you’re not using a type or subtype that’s
already being used by another format. You could choose image/x-allblue as
your content type.

Ironically, some nonstandard types are probably more commonly used than
many of the standard types. One example is the content type for Shockwave
Flash movies, which is application/x-shockwave-flash.

Secure Connections

One of the most common uses of Web applications is in electronic commerce.
You can use CGI programs to enable people to manage their bank account, shop
in an online mall, or donate to their favorite charity. One sticking point that
users run into is that, by default, information sent via the Internet is not
secure—if someone happens to intercept a message that you send to a friend, he
can simply open it and read it. Imagine if that message contained your credit
card numbers or other private information that you wouldn’t want others to see.

Fortunately, many Web servers and Web browsers have the capability to create
secure connections so that they can communicate privately. This enables your
users to send sensitive data to your Web site and not have to worry about any-
one sharing it while it’s in transit.

The most common standard for providing secure connections over the Internet
is the Secure Sockets Layer, or SSL, protocol. SSL is an application-level proto-
col (like HTTP) that is used to exchange data over the Web in a secure fashion.
SSL uses a public key encryption system. Basically, what this means is that
each party in the transaction has a public and a private key. When one party
encrypts a message using the other’s public key, only the person with the match-
ing private key can decrypt it. Put simply, public key encryption provides a very
secure method for exchanging data between two parties. When an SSL connec-
tion is established, both the client and the server exchange public keys, and ver-
ify them before the transaction is conducted. After each of the parties’ keys has
been verified, the data is exchanged securely.
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Web servers also use documents that are referred to as “certificates” to verify
their authenticity. For example, when you purchase a Netscape Web server, you
also receive a digital certificate that verifies that you are who you claim to be.
The certificate indicates that an independent third party, referred to as a certifi-
cate authority, verifies that the server holding the certificate is using its true
identity. For example, if you connect to Amazon.com’s online bookstore and try
to place an order, when the SSL connection is made, a certificate is sent to your
browser that confirms that the server you are connecting to really belongs to
Amazon.com.

There are two sources that provide the vast majority of certificates to people
running secure servers on the Internet, VeriSign (http://www.verisign.com)
~ and Thawte (http://www.thawte.com). VeriSign acquired Thawte in 1999.
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The great thing about SSL is that as long as things are working correctly, all this
business about encryption and digital certificates is completely transparent to the
user. The only change you should notice is that your browser will indicate you
are using a secure connection rather than a nonsecure one. SSL servers also gen-
erally run on TCP port 443 instead of the default for HTTP, port 80.

The reason that this brief discussion of secure connections is included in this
hour is that even though SSL isn’t a part of the HTTP protocol, many CGI
applications involve sending sensitive data over the Internet. So, if you plan on
using CGI to build electronic commerce applications, you should be sure to
implement them using a secure server so that your users feel comfortable con-
ducting financial transactions, like purchasing things, using your site.

Summary

This hour provided you with knowledge of how the plumbing of the Web works.
Understanding what actually takes place when you conduct a transaction over
the Web enables you to create more powerful applications that can take advan-
tage of this underlying structure.
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Is it really safe to conduct commercial transactions over the Web?

In short, yes. Thanks to SSL, your data is extremely safe as it travels over the
Internet. The odds of someone successfully intercepting the packets containing
your data, and subsequently cracking the encryption, are quite slim. The dangers of
fraud in Internet transactions are the same as those that plague traditional transac-
tions, in that your credit card number is most at risk when it is handled by humans,
or stored in an unsafe place.

Why was HTTP created as a connectionless protocol?

HTTP is a connectionless protocol because connectionless protocols tend to be
more scalable and efficient than connection-oriented protocols. With connection-
less protocols, you don’t have to worry about the overhead of keeping a connection
open when it is not being used. Because most packets traveling over the Internet
pass through a number of routers, it’s easier and more efficient for each router to
simply accept a packet and pass it on to the next router in the chain than to set up
and maintain a connection that ties up a port on each of the routers between the
server and client.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each
hour. The exercises help you build on that knowledge by providing you with the
opportunity to apply it to real problems.

Quiz

1.

2.
3,
4.

What port does the HTTP protocol ordinarily run on?
What is the purpose of a DNS server?
What does a standard HTTP request line contain?

How can you tell a standard content type from a nonstandard one?

Exercises

1.

Learn more about how TCP/IP works. You can certainly write powerful CGI scripts
without learning the internals of TCP/IP, but knowing about TCP/IP will help you
understand how the Internet works. It will also help you figure out why you can’t
reach your favorite Web sites some of the time.
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2. Find the RFCs on the Internet Web site at http: //www.internic.net. Find the
RFCs that define the HTTP protocol and read them to see how cryptic most stan-
dards documents are.

Quiz Answers
1. The HTTP protocol is normally bound to port 80 on a server.

2. The purpose of a DNS server is to enable clients to look up the IP addresses for
hostnames.

3. The standard HTTP request line includes a request method, URL, and the version
of the HTTP protocol used for the request.

4. You can tell standard content types from nonstandard ones because nonstandard
content types begin with x-.



HouRr 7

Validating User Input

One of the most common tasks required of CGI programs is validation of
user input. Whether you’re taking an order online, allowing a user to sub-
scribe to a mailing list, or enabling the user to enter stock symbols to look
up a quote, it’s necessary to verify that the user entered all the required
information in the form, and that the information entered is properly
formatted.

There are a number of techniques that can be used for form validation, and
in this hour, I’'m going to cover some of the most effective ones. Over the
course of this hour, you will learn

* How to use JavaScript to validate form content

* How to design forms that require less validation

* How to design applications that efficiently incorporate form validation

¢ How to use regular expressions to validate form content

Using JavaScript for Form Validation

Although this book is about CGI programming, I want to talk a bit about
JavaScript—the first line of defense for validating user input. The most
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important thing to remember about using JavaScript to validate forms is that it’s not
completely reliable. In other words, you must validate the form content on the server side
as well.

There are two advantages to using JavaScript to validate forms. One works to the benefit
of the user, and the other works to the benefit of the systems administrator. Users benefit
because JavaScript provides instant feedback. You can set up your form validation so that
it tests the value in a form field the moment the user leaves that field, or before the form

is submitted. Either way, the user doesn’t have to wait until the form has been submitted

and processed to figure out whether his input was valid.

Pretty much every error that is caught by JavaScript conserves one form submission.
Let’s say JavaScript was not used. If the user submitted a form and his name was incor-
rect, the CGI program would have to reject his form submission, present the form to him
again, and force him to submit it a second time. If that error were caught with JavaScript,
however, it could be fixed without submitting the form the first time—saving one form
submission and reducing the load on the Web site.

The only real disadvantage of JavaScript is that it is somewhat unreliable. Not all Web
browsers support JavaScript. Some users turn off JavaScript even if their browsers do
support it. Another factor that reduces the reliability of JavaScript is that it’s imple-
mented differently from browser to browser, so it’s difficult to ensure that your scripts
will work in all browsers. Fortunately, the level of JavaScript support necessary to enable
form validation is pretty low.

How JavaScript Works to Validate Forms

Form validation using JavaScript is event driven. This means the JavaScript interpreter in
the browser knows when certain events occur. If there is JavaScript code associated with
those events, the browser automatically executes that code. For example, form fields sup-
port the onchange event. To validate the contents of a field whenever its value changes,
you just have to write an event handler to test the value. An event handler is nothing
more than a function associated with the appropriate event.

There are lots of other events that are associated with forms as well. If you want to vali-
date the contents of a form when the user submits the form, you can use the onsubmit
event. There are also events that occur when a user enters or leaves a form field.

To react to an event, you have to add an event-handler reference to the appropriate tag.
For example, if you want to trap a change in a text field, you need to refer to an
onchange event handler in the <input> tag for the field, like this:

<input type="text" name="example" onchange="check_example()" />
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Whenever the value in the field changes, the function check_example() is called. If you
want to validate your form when it’s submitted, you should refer to an onsubmit event
handler in the <form> tag, like this:

<form action="/cgi-bin/example.cgi" onsubmit="return verify_form()">

You might have noticed a difference between the references to the onchange and
onsubmit event handlers. When you reference an onsubmit event handler, you have to
preface the event handler name with the return keyword. The event handler itself must
return a Boolean value (either true or false). If the user entered an invalid value, the event
handler should return a value of false. The value returned by the function referenced in
the onsubmit handler is then passed to the return statement, which prevents the form
from being submitted. Likewise, if the form data is valid, the event handler should return
a value of true.

An Example of Form Validation

Let’s take a look at a simple example in which the form is validated prior to submission.
The form is very simple, it consists of a text input field and a submit button. The user is
prompted to enter her zip code. If the value she enters is less than five characters long,
the validation function assumes that the value entered was not valid, and instructs the
user to enter a valid value before she tries to submit the form again. I'm going to exam-
ine the two main components of the script: the form and the event handler.

The Form Itself

This form includes two fields: a text field and a submit button. Here’s the source code for
the form, which also includes the call to the event handler that validates the form:

<form onsubmit="return check_form(this)">

<b>Zip Code:</b>

<input type="text" name="zip_code" size="5" maxlength="5" /><br />

<input type="submit" />

</form>

As you can see, there’s not much to it. (Because this is an example, I didn’t specify an
action for the form.) Most importantly, the form specifies an onsubmit event handler.
When the form is submitted, the check_form() function is called. If the validation code
in check_form() succeeds, the function returns true and the form is submitted. If the val-
idation fails, the function returns false and the form is not submitted.

The word this is passed to the function as an argument. In JavaScript, this is shorthand
for the current object. Because the function call appears within a <form> tag, the this
argument refers to the form. You’ll see how the argument is used when I discuss the
details of the event handler, in the next section.
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The Event Handler

The JavaScript code used to validate the form in this case is very simple. It verifies that
the value entered in the zip_code field is five characters long. It verifies that the user
entered five characters in the field. Here’s the source code:
function check_form(the_form) {
if (the_form.zip_code.value.length != 5) {
alert("The Zip Code must be 5 digits long.");
return false;

}
}

The function begins with the basic function declaration. check_form is the name of the
function, and the_form indicates that the function accepts one argument and that the
value of that argument should be assigned to a variable named the_form. The function
itself contains a single conditional statement that checks whether the value in the
zip_code field is five characters long.

The length of the value in that field is retrieved using the identifier
the_form.zip_code.value.length. The the_form variable points to the form object
passed to the function from the <form> tag.

Designing Easily Validated Forms

You can ease the burden of form validation by writing forms that require less effort to
validate. You should design your form fields so that they give the user few opportunities
to make mistakes. Let me provide you with a few examples.

When you have a form that contains a field for the U.S. state, you should create a pull-
down list of states that the user selects from rather than placing a text field on the page
and allowing the user to enter his state abbreviation. Restricting the user to only valid
options eliminates typing errors, even though it makes data entry a bit slower for experi-
enced users. Any time you create a field that has a restricted set of options, you should
use a select box or a group of radio buttons.

Any time you require a value that is of a fixed length, you should use the maxlength
attribute of the text or password input field to restrict the number of characters a user can
enter. For example, all United States Social Security Numbers are nine digits long. If you
create a form field to allow someone to enter her Social Security Number, you should
restrict the length to nine characters so that she can’t inadvertently enter a value that’s
too large.

Another example that has less to do with data validation than with the way the data is
ultimately stored is the wrap attribute of textarea fields. Neither the none nor the
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virtual setting inserts linefeeds into the user input. The physical setting does. When
you choose a setting, you need to make sure that it corresponds to your idea of how the
data should be stored. If the user’s input should have a line feed at the end of each line,
you might consider using the physical or none settings. The none setting will often
induce users to hit return at the end of every line, and the physical setting physically
inserts line feeds when each line wraps.

Incorporating Validation into the Form-
Processing Code

When many people begin writing CGI programs, they wind up writing lots of extra code.
For example, they create an HTML page with a form on it, and then they write a CGI
script to which the form will be submitted. If that script includes code to validate the
user’s input, chances are they’ll also write code that redisplays the form with the values
the user entered and messages to indicate where the user made errors.

This is a perfectly valid method for creating Web applications, but it’s probably not the
most efficient method available. The main problem with this approach is that if the code
to display the form already exists in the CGI script, there’s no reason to reproduce it in a
separate HTML file. A better strategy is to use the same CGI script to initially display
the form and to process the form after it has been submitted.

That way, when you need to make a change to the fields on the form or to the form’s
appearance, you only have to make the change in one place. It’s also easier to keep track
of one file rather than two. The trick is to set up your script so that it knows whether it’s
being displayed for the first time.

How a Form-Processing Program Works

The first step in a form processing program is to determine whether the program should
display a new form or process a form submission. To make this determination, you
should test for the existence of a parameter that you know will be passed any time the
form is submitted. For example, if your form contains a text field called search_term,
the program can test for the existence of a query parameter named search_term to deter-
mine whether the request is a form submission. There are other methods that you can use
as well—that’s just the easiest.

If the request was not a form submission, the user needs to see the form for the first time.
The CGI program should print out the form along with any other information associated
with it. On the other hand, if the request is a form submission, the form content must be
validated. If the form content is, for some reason, invalid, the form must be redisplayed
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along with some indication of what the user did incorrectly. If the form was submitted,
and the content was valid, you can move along to the main logic in the CGI program.

Take a look at the diagram in Figure 7.1. It demonstrates how an application that both
generates and processes a form works.

FIGURE 7.1 .
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An Example of Form Processing

Now let’s look at an example that demonstrates exactly how form processing works. This
example consists of a simple application that displays a form, accepts the submitted
form, validates the content, and displays the information (with or without an error mes-
sage) back to the user.

The script itself is organized in components. The script begins with a pointer to the Perl
executable. It follows by importing the CGI.pm module and creating a new query object
to import the form parameters into the Perl namespace:

#1C:/perl/bin/perl.exe

use CGI;
$query = new CGI;
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The Main Script Logic

The body of the script contains the logic that determines whether to display the form for
the first time, display the form with an error message, or display the results of a success-
ful form submission. It also prints the HTML header and footer. Take a look at the code

in Listing 7.1.

Listing 7.1 The Application Logic in a Form Processing Application
1: &print_page_start;
2: if ($query->param('submitted')) {
3: $error_message = "";
4: &validate_form;
5: if ($error_message eq "") {
6: &print_form_values;
7 }
8: else {
9: print "<ul>\n" . $error_message . "</ul>\n";
10: &print_form;
11: }
12:
13: else {
14: &set_initial_values;
15: &print_form;
16:
17: &print_page_end;

All the constructs beginning with & are calls to user-defined subroutines. Placing the vast
majority of the code in subroutines allows you to streamline the application’s logic so
that it’s easier to read. It also enables you to reuse components of the code. I’ll walk you
through the application logic so that you can see how it works.

First, there’s a call to the subroutine print_page_start. This code prints the HTTP con-
tent-type header, the HTML heading, and the headline for the page. The next step is a
conditional statement that tests for the presence of the submitted parameter, which is a
hidden field that appears in the form. The only purpose of the hidden field is to indicate
that the form has been submitted. It can be tested regardless of the values entered in the
other fields. There are a number of other ways to tell whether a form has been submitted,
but this one is pretty simple and illustrates clearly how CGI applications can be designed.

If the query has been submitted, the next step is to test the values entered to make sure
that they’re valid. The first thing I do is define a variable called $error_message. If any
of the values entered in the form are invalid, error messages will be placed in this vari-
able. To check the values, I call the validate_form subroutine.
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If the $error_message variable is still empty after validate_form has executed, the val-
ues the user entered were okay. The print_form_values subroutine is called, and the
values that the user entered are displayed. If this CGI script had a real purpose, then at
this point, the real functionality would be implemented.

If the $error_message variable is not empty, there was some problem with the user’s
input. The script prints the error message stored in the $error_message variable, and
redisplays the form with the values that the user entered, using the &print_form subrou-
tine.

Let’s skip back to the beginning. If a user arrived at the page without submitting the
form, the form is displayed for the first time. This is accomplished using two subrou-
tines. The first subroutine, set_initial values, sets the default values for the form. In
this case, all the variables are set to blank values. Then, the form is printed using the sub-
routine print_form. At that point, the print_page_end subroutine is called, and execu-
tion of the script concludes.

The Input Validation Subroutine

Now let’s look at the important subroutines from the script. The first interesting subrou-
tine is validate_form. Listing 7.2 shows the source code.

LisTinG 7.2 The validate_form Subroutine

1: sub validate_form {

2: $name = $query->param('name');

3 $quest = $query->param('quest');

4: $fav_color = $query->param('fav_color');

5: if ($name eq "") {

6: $error_message .= "<li>You must enter a name.</1li>\n";

7 }

8: if ($quest eq "") {

9: $error_message .= "<li>You must enter your quest.</1li>\n";
10: }
11: if ($fav_color eq "") {
12: $error_message .= "<li>You must select your favorite color.</li>\n";
13: }

14: }

The first part of the subroutine just copies the form parameters into variables that are
more convenient to access from within the script. This makes the code a bit more read-
able. Then, each field is tested to verify that the user entered or selected a value. The
code could be as complex as you want at this point. We could test to make sure there are
two words in the name field, or that the quest field contains only letters and numbers
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with no punctuation. If the form submission was invalid, the form is displayed again with
an error message, as shown in Figure 7.2.

FIGURE 7.2 ' '.q Form Example - Mozilla {Build ID: 2002053012}
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The Output Subroutine

The output subroutine for this script just prints out the values that the user entered or
selected for all the form fields. This is the slot where the real application logic would
appear in an application that had a legitimate purpose. For example, if this were an order
entry system, at this point the script would actually store the user’s order in the database.
The code in this program is very simple.

sub print_form_values {

print "<b>Name:</b> " . $query->param('name') . "<br />\n";
print "<b>Quest:</b> " . $query->param('quest') . "<br />\n";
print "<b>Favorite Color:</b> " . $query->param('fav_color');

print "<br />\n";

}

The script just prints the name of each form field on a line, and the value assigned to that
field afterward. Because the form validation subroutine is always called before the

print_form_values subroutine, you can use the shorter variable names from that subrou-
tine here.
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The Form Creation Subroutine

The key subroutine in this script is &print_form. Not only is it by far the most complex
subroutine in this script, but it’s the whole reason for this exercise. It demonstrates how
the same code can be used to generate both the initial form for an application, and fol-
low-up forms that allow users to correct their errors.

In most applications, the code used to display the form will not be the most
complex code in the application. Instead, the actual application logic will
comprise the bulk of the complexity.

Listing 7.3 shows the source code for the subroutine print_form.

Listing 7.3 The print_form Subroutine

1: sub print_form {

2: my @colors = ('red', 'green', 'blue');

3 print "<form>\n";

4: print "<input type=\"hidden\" name=\"submitted\" value=\"yes\" />\n";
5: print "<b>Name:</b>";

6: print "<input type=\"text\" name=\"name\" value=\"$name\" /><br />\n";
7 print "<b>Quest:</b>";

8: print "<input type=\"text\" name=\"quest\" value=\"$quest\" />";

9: print "<br /><br />\n";

10: print "<b>Favorite Color:</b><br />\n";
11: foreach $color (@colors) {

12: print "<input type=\"radio\" name=\"fav_color\" ";
13: print "value=\"$color\"";

14: if ($fav_color eq $color) {

15: print " checked=\"checked\"";
16: }

17: print " />$color<br />\n";

18: }

19: print "<br />\n";

20: print "<input type=\"submit\" />\n";
21: print "</form>\n";

22: }

The subroutine begins with a statement that creates an array containing all the colors
that will be provided as options for the user’s favorite color. The advantage of setting the
script up this way is that it’s very easy to add or remove colors from the form. You just
modify the list to reflect the change you want to make.
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to create the @colors array at the very beginning of the program, shown in
Listing 7.4. That way programmers don’t have to dig through the source
code to change the list of colors.

@ If this script were longer and more complex, it would have been a good idea
Z

Then, on line 3, the opening <form> tag is presented. The tag has no attributes because
this form will use the get method, and will be submitted to itself. The next statement
prints the hidden field submitted. This field is just a marker with a known value that
enables you to determine whether a request for the script is a form submission, or just a
standard request.

The code on lines 5 through 8 creates the name and quest fields. Creating both of the
fields is identical conceptually. Just print out the label for the field, and then the <input>
tag itself. If the field has a value (because the form was submitted), that value is included
in the value attribute. If the form was displayed for the first time, the value attribute will
be empty (but will still be included).

The third field, fav_color, is a bit more interesting. This field is created with a group of
radio buttons. As you no doubt remember, the list of colors that are options for the
fav_color field was created earlier in the subroutine. I use a foreach loop to create the
radio buttons. The foreach loop on line 11 pulls out all the elements of an array one at a
time, and assigns them to a variable, in this case, $color. I use the $color variable
within the loop body for both the label on the form, and for the value attribute in the
<input> tag I create. Because this is a radio button group, all the tags have the same
name attribute.

In the body of the loop, there’s a test that compares the current value of $color to the
value of $fav_color. If the script is processing a form submission, the $fav_color vari-
able is set to the color that the user selected on the form. If $color and $fav_color are
the same, the checked attribute is included in the <input> tag to indicate that the button
will be selected by default when the form is displayed.

After the radio button group has been displayed, all that’s left is to print the submit but-
ton for the form, and end with the closing form tag.

The Full Source Code

The remaining subroutines in the script aren’t particularly complex; they consist of sim-
ple print statements or variable assignments. The full source code for the script appears
in Listing 7.4.
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LisTiNG 7.4 The Source Code for the form.pl Program
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#!/usr/local/bin/perl
use strict;

use CGI;

$query = new CGI;

&print_page_start;
if ($query->param('submitted')) {
$error_message = "";
&validate_form;
if ($error_message eq "") {
&print_form_values;

P}

}

else {
print "<ul>\n" . $error_message . "</ul>\n";
&print_form;

}

: else {
&set_initial_values;
&print_form;

©}
: &print_page_end;

: sub set_initial values {

$name = ;
$quest = "";
$fav_color = "";

: sub validate_form {

$name = $query->param('name');

$quest = $query->param('quest');
$fav_color = $query->param('fav_color');
if ($name eq "") {

$error_message .= "<li>You must enter a name.</li>\n";
}
if ($quest eq "") {
$error_message .= "<li>You must enter your quest.</li>\n";
}
if ($fav_color eq "") {
$error_message .= "<li>You must select your favorite color.</li>\n";
}

: sub set_form_values {

$name = $query->param('name');
$quest = $query->param('quest');
$quest = $query->param('fav_color');
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49: }

50:

51: sub print_form {

52: my @colors = ('red', 'green', 'blue');

53: print "<form>\n";

54: print "<input type=\"hidden\" name=\"submitted\" value=\"yes\" />\n";
55: print "<b>Name:</b>";

56: print "<input type=\"text\" name=\"name\" value=\"$name\" /><br />\n";
57: print "<b>Quest:</b>";

58: print "<input type=\"text\" name=\"quest\" value=\"$quest\" />";
59: print "<br /><br />\n";

60: print "<b>Favorite Color:</b><br />\n";

61: foreach $color (@colors) {

62: print "<input type=\"radio\" name=\"fav_color\" ";

63: print "value=\"$color\"";

64: if ($fav_color eq $color) {

65: print " checked=\"checked\"";

66: }

67: print " />$color<br />\n";

68: }

69: print "<br />\n";

70: print "<input type=\"submit\" />\n";

71: print "</form>\n";

72: }

73:

74: sub print_form_values {

75: print "<b>Name:</b> " . $query->param('name') . "<br />\n";
76: print "<b>Quest:</b> " . $query->param('quest') . "<br />\n";
77: print "<b>Favorite Color:</b> " . $query->param('fav_color');
78: print "<br />\n";

79: }

80:

81: sub print_page_start {

82: print $query->header;

83: print "<html>\n<head>\n";

84: print "<title>A Form Example</title>\n";

85: print "</head>\n<body>\n";

86: print "<h1>A Form Example</h1>\n";

87: }

88:

89: sub print_page_end {

90: print "</body>\n</html>\n";

91: }

Validating Values

It’s not enough to know which technique should be used to process form input; you also
need to know what sorts of things you can validate in form fields. In the sample script, I
checked to make sure that the user entered something in each of the fields. That sort of
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check is better than nothing, but it doesn’t really do much to ensure that the user entered
the type of data that you expected in the field.

In some cases, validation beyond making sure that the field is populated is unnecessary.
For example, if you’re just letting users enter feedback about the Web site, it’s not so
important what they enter in the form field for comments. Or, such a wide variety of val-
ues is allowed that there’s no reliable way to make sure that they entered the right thing
in the form field. On the other hand, there are many fields that require specific types of
data that can be easily validated.

I’ll give you a few examples. All Social Security Numbers must contain nine digits, so
you can write code to make sure that the user submitted a string nine characters long and
that all nine of those characters are numbers. Another good example of data that’s easily
validated is credit card numbers. Not only do credit card numbers have a fixed number of
digits, but most of them have numbers that can be verified using a checksum. A check-
sum is a number derived by performing a calculation on the digits in a number. Credit
card numbers follow a pattern that enable them to be verified using the checksum, which
can be used to discriminate between valid credit card numbers and random numbers.

Regular Expressions

Regular expressions are a special language used for pattern matching against strings.
They were originally created as part of the UNIX utility grep, which is used to extract all
the lines containing a particular pattern from a text file. Since then, implementations of
regular expressions have appeared in many scripting languages, utilities, and applications
for most computing platforms. For example, many text editors allow you to search the
contents of files using regular expressions.

There are two problems with regular expressions: they’re rather cryptic and hard to
understand, and they’re implemented differently from language to language. The upside
is that they’re the most powerful pattern matching language available.

I’'m going to discuss how to use regular expressions to validate form content in Perl.
Chances are, the language you use to write Web applications will support regular expres-
sions, but you’ll have to use different syntax to use them within the program.

Regular expressions are collections of meta-characters. The meta-characters are used as
wildcards of various kinds, or to match specific parts of a string that aren’t visible. For
example, the ~ meta-character matches the beginning of a string, and $ matches the end
of a string. More important, though, are the various wildcards.

There are two types of wildcard characters or groups of characters. The first type defines
what to match; the second type defines how many characters should be matched. The
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period is a wildcard that matches any character. The * meta-character indicates that the
wildcard that appears before it should match 0 or more characters (or groups of charac-
ters) that match the wildcard. That may sound somewhat confusing, but I think I can
clear things up a bit with an example. Take a look at this regular expression:

/p.*q/

The slashes on both sides are just delimiters. They’re generally used to indicate that the
text inside is a regular expression. Anyway, that expression will match pshoesq, pqg, or
p'"?>,q. It won’t match pb, pabst, or portal. Let’s say it’s passed a string like:

The horse prances quickly.

The expression will match “prances q” inside the longer string. If the expression were
changed to /"p.*q$/, it wouldn’t match the sentence above at all. That’s because the *
character matches the beginning of the string, and $ matches the end of the string, mean-
ing that the first character of the string must be p, and the last must be q. The p and q
occur in the middle of the sentence, so “p and g$ aren’t matched.

Let’s look at another meta-character, +. The + meta-character is like *, except that it
matches one or more characters, instead of zero or more. The only difference between
the expression /p.+q/ and /~p.*q$/ is that it won’t match the string pqg. The + dictates
that one character of the type defined by the previous meta-character must appear
between the two characters listed.

Another important wildcard is ?, which matches any single character. It doesn’t require a
character afterward to list how many characters to match. The expression b?t will match
bit, or bat, but not boot. Because the ? will match any character, it will also match
something like b&t.

At this point, I should tell you how to escape characters. As you can see, the list of meta-
characters piles up quickly. So what happens when you want to match one of the meta-
characters when it appears in a string? For example, how do you write an expression that
matches the string “Mr. Colburn”? The answer is that you escape the period to indicate
that it won’t be treated as a meta-character. The appropriate expression to match that
string is /Mr\. Colburn/. The backslash is used to escape meta-characters in regular
expressions.

There are also a number of grouping operators that can be used with regular expressions
to create more advanced expressions. For example, one problem with the . operator is
that it will match literally any character. It doesn’t care if the character is a letter, num-
ber, symbol, tab, or line feed. In some cases, you need to constrain the list of characters
to be matched. Brackets are used to create groups of characters to be matched. For
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example, [aeiou] will match any lowercase vowel. [aeiou]* will match O or more low-
ercase vowels, and [aeiou]+ will match one or more lowercase vowels. Some regular
expression engines, including the one in Perl, will also allow you to define a series of
characters, using a hyphen. For example, [a-zA-Z] will match any upper- or lowercase
letter. [@-9] will match any digit.

Another grouping operator supported by most regular expression engines allows you to
create an expression that will match any one of several substrings using parentheses. For
example, let’s say you wanted to match one of several email addresses using a regular
expression. The following expression matches several addresses at my Internet domain:

/(rcolburn;rafe ,webmaster)@rc3.org/

That expression matches rcolburn@rc3.org, rafe@rc3.org, and webmaster@rc3.org.
Needless to say, such an expression can save a lot of typing and make your expressions
more readable.

These are just some of the basic functions that most regular expression engines support.
Most support lots more advanced functionality as well. Appendix D, “Summary of
Regular Expressions,” contains a detailed reference for the regular expression engine
that’s built into Perl.

An Example That Uses Regular Expressions

Let’s look at a very simple example that uses a regular expression for form validation. In
this example, a regular expression will be used to validate a Social Security Number. The
source code for the program appears in Listing 7.5.

Listing 7.5 The Source Code for validss.pl

1: #lc:/perl/bin/perl.exe

2:

3: use CGI;

4: $query = new CGI;

5:

6: print $query->header;

7: print "<html><head><title>SSN Validator</title></head>\n";
8: print "<body>\n";

9:

10: if ($query->param) {

11: my $ssn = $query->param('ssn');

12: print "<p>";

13: if ((length($ssn) == 9) && ($ssn =~ /"[0-9]+$/)) {
14: print "Valid Social Security Number.";

15: }

16: else {
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17: print "Invalid Social Security Number.";
18: }

19: print "</p>\n"

20: }

21: else {

22: print "<form>\n";

23: print "Social Security Number: \n";

24: print "<input type=\"text\" name=\"ssn\" />\n";
25: print "<input type=\"submit\" />\n";

26: print "</form>\n";

27: }

28:

29: print "</body></html>\n";

This program follows the format that I introduced earlier in the chapter; it both displays
the form and processes it. It’s a lot simpler, though, because it doesn’t redisplay the form
if the user didn’t enter a valid Social Security Number. The purpose of this example is to
show you how to validate a value using regular expressions. Here’s the validation code:

if ((length($ssn) == 9) && ($ssn =~ /"[0-9]+$/)) {
print "Valid Social Security Number.";

}
else {

print "Invalid Social Security Number.";
}

print "</p>\n"

The part that actually validates the user input is in the if statement. It performs two tests
on the value. First, it checks whether the input is exactly nine characters long, using the
length () function. Then, it uses a regular expression to determine whether the user
entered anything other than numbers in the field. Here’s the relevant code:

$ssn =~ /"[0-9]+$/

The binding operator, =~, compares the value in the variable to the left of the operator to
the pattern match on the right. The purpose of the operator is to determine whether the
string contains the pattern. If it does, the entire expression returns a true value; otherwise
it returns false. The operator is designed for cases just like this one where you need to
determine whether one string is part of another.

In this case, the regular expression begins with ~ and ends with $, which means that the
expression must match the entire value in $ssn. The expression searches for a group of
one or more characters ranging between 0 and 9. This is just a check to make sure that

the user entered only numbers. The number of characters the user entered is checked in
the first expression of the if statement.
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If the value entered is both the right length and matches the expression, the Social
Security Number is considered valid. If either of the expressions is false, it’s considered
invalid and an error message is displayed.

Summary

A large chunk of the CGI programs on the Web are used for one thing—processing form
input. The objective of this hour was to provide you with a basic architecture that will
work for the vast majority of forms processing scripts, and to explain how you can build
data validation code into those scripts. When you write CGI programs, especially ones
that will be gathering data that will be stored permanently, it’s important to make sure
that the data that’s entered is valid. One tool that you can use to create expressions that
will validate a wide variety of data is regular expressions. This hour contained a brief
explanation of some regular expression functionality, to give you an idea of how it can be
used.

Q&A

Q You mentioned validating credit card numbers with checksums earlier; where
can I find out more?

A There is a formula, called the Luhn check, that you can apply to credit card num-
bers to check for mistyped numbers. Information on using the Luhn check can be
found at
http://www.beachnet.com/~hstiles/cardtype.html
You can also use the Business: :CreditCard Perl module to verify credit card

numbers using the checksum formula for each credit card type rather than writing
the code to do it yourself.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. What are the two primary advantages of using JavaScript for form validation?

2. Why is it important to validate user-submitted data in your CGI programs even if
your forms are validated with JavaScript?
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3. What is the difference between the + character and the * character in regular
expressions?

Exercises
1. Write a JavaScript function that verifies that a user checked a checkbox.

2. Write a Perl subroutine that verifies that the user entered a nine digit Social
Security Number, and that all of the characters the user entered are digits.

3. Write a Perl subroutine to validate phone numbers, making sure that the correct
number of digits were entered, and that accepts a number of different formats, like:

(800) 555-1212
800.555.1212
8005551212

Quiz Answers

1. The two primary advantages of using JavaScript for form validation are that it
saves bandwidth by avoiding erroneous requests to the server, and it provides
instant feedback to users.

2. You should validate data in your scripts even if you validate it with JavaScript
because JavaScript is a client-side technology—there’s no way to be sure if your
validation worked, or even if it was used.

3. In regular expressions, + means one or more of a certain expression; * means zero
or more.
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Creating an Email
Feedback Form

Web browsing isn’t the most popular Internet application—email is. There
are many circumstances under which you might want to send email from a
CGI script. You might want to send the data submitted by a user to the per-
son who has to process it, or you might want to acknowledge a user’s form
submission by sending him an email message. In this hour, I’ll explain how

you can send Internet email from a CGI program. The following topics will
be discussed:

* Real-world examples that illustrate why you’d want to send email
from CGI scripts

e A brief overview of how Internet email works

Using the Net: : SMTP module to send mail using Perl

How to use sendmail to send email messages from the command line
of a UNIX-based system

How to use sendmail within a CGI program running on a UNIX-
based server
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What Kinds of Applications Involve Sending
Email?

Several types of applications benefit from sending email programmatically. Consider a
feedback form on a Web site that is used to solicit comments from users. The easiest way
to pass the feedback to the designers is to send it to them via email each time the form is
submitted. Email sent to users is often utilized by online stores. When a user places an
order, usually a receipt is sent to her via email so that she can keep it for her records.

Another real-world example involves a small store that allows customers to purchase var-
ious products online. The application process is handled through HTML forms, but ulti-
mately the orders must be fulfilled by a human being. The CGI script that processes the
user’s form submission, formats all the data, encrypts it using PGP (Pretty Good Privacy,
an encryption program for email), and sends it to the customer service department at the
store via email. At that point, the human being processes the order and ships the cus-
tomer’s order.

Even if your CGI script stores user-submitted data in a database rather than
emailing the data directly to the appropriate person, you might want to
Z send an email to someone notifying him that the data was submitted. For

example, if you run an electronic commerce site, you probably store all the
orders in a database. You might also want to send email to the person in
charge of fulfilling orders to let him know that an order has been placed.

How Email Works

Before I explain how to send email from within a CGI script, let me first explain how
Internet email works at a very high level. First, email messages are usually generated
using a mail client. Popular mail clients include Outlook Express, Eudora, and Mutt.
However, a mail client is really any program from which an email message originates.
In this hour, the email client is the CGI program that sends the email message.

Internet email delivery is facilitated by software called a mail transfer agent. A mail
transfer agent, or MTA, is different than mail clients, like Eudora or Microsoft Outlook.
A mail transfer agent’s job is to examine email messages, determine what the next step
toward delivering them is, and then performing that step. When you send mail using a
mail client, it just passes the email off to a mail transfer agent, which then moves the
message along in the delivery process. When I discuss mail servers in this context, I'm
talking about computers on which MTAs reside.
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There are two ways that email messages can be passed to MTAs for delivery. The first
method—the one we’ll use most of the time in this chapter—is to connect to the server
using the SMTP protocol and pass the message on to the MTA that way. The second
method is to execute the MTA itself from the command line, which is another method
that I’1l discuss. The most commonly used MTA is sendmail, which is an executable on
UNIX systems. To send a message, you just pass it to sendmail, which in turn evaluates
the mail headers and sends the message on its way.

SMTP, the Simple Mail Transfer Protocol, is the protocol that MTAs use to talk to each
other. It can also be used by mail clients, or any other program, to initiate the process of
sending an email message. Your program just has to connect to port 25 of an SMTP
server, send the necessary commands to indicate that a message is being sent, and then
send over the body of the message. Most Web application development environments
have libraries that make it simple to send email by connecting to an SMTP server. In this
chapter, we’ll look at a Perl module called Net: : SMTP that enables you to send emails by
connecting to an SMTP server.

Irrespective of which method you use to initiate the email sending process, after the
MTA has the message, it starts doing all the work. Much like HTTP requests and
responses, email messages have headers that should have all the information necessary to
indicate where the message should be delivered. Just like physical mail handled by the
postal service, all messages should have a destination address and a return address. The
destination addresses are specified in the To: header, and the return address is specified
in the From: header. There are headers that can be used to specify other recipients as
well, like cC: and BCC:.

When the MTA receives the email, it examines the recipients’ addresses and uses DNS
(Domain Name Service, which is usually used to translate domain names to IP numbers)
to determine which mail server is associated with the domain names in the addresses.
The DNS database should include a record, called an MX record, that specifies the mail
server for every domain. For example, if the email is addressed to rafe@rc3.org, it looks
up the MX (mail exchange) record for rc3.org, and discovers that the mail server asso-
ciated with that domain is umbar.pair.com. At that point, it opens a connection to
umbar.pair.com and transfers the message. Then the MTA at umbar.pair.com invokes a
program that places the message in the inbox for rafe, or, if rafe isn’t a valid user for
that mail server, returns the message to the sender with an error.

What CGI programmers need to know is that to get an email message delivered, they
need to address the message properly and then place it into the mail delivery stream by
passing it off to an MTA on the local computer, or by connecting to an SMTP server and
sending it from there. If you’re using a UNIX server, it’s usually easier to pass the mes-
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sage off to the local MTA. If you’re running a Web server on another computer, it’s
sometimes easier to send the message via SMTP rather than invoking the local MTA,
which may not exist. In this chapter, ’'m going to hand the message off directly using
SMTP in most examples because it’s a solution that will work on nearly every platform.
Both options will be discussed later in this hour.

Mail Message Composition

An email message consists of two parts—a set of headers and the message body. This is
analogous to the structure of HTTP requests and responses. Just as the response from a
Web server consists of headers that describe the response, and then the body of the
response, an email message consists of headers that describe the message and the body
of the message.

The most important headers in the email message are those that relate to addressing.
Another header is used to indicate what the subject of the mail is. As the email message
is passed from host to host on its way to the final recipient, headers are added to specify
how the email message was routed. Also, mail clients can add any headers they want, by
prepending them with X-. Listing 8.1 contains all the headers and the body for a typical
Internet email message.

Listing 8.1 A Typical Internet Email Message

From rafeco@umbar.pair.com Sun Jun 16 21:16:07 2002
Return-Path: <rafeco@umbar.pair.com>

Delivered-To: rafeco-rc3:org-rafeco@rc3.org
X-Envelope-To: rafeco@rc3.org

Received: (qmail 81956 invoked by uid 46140); 16 Jun 2002 21:16:06 -0000
Date: Sun, 16 Jun 2002 17:16:06 -0400

From: Rafe Colburn <rafeco@rc3.org>

To: rafeco@rc3.org

9: Subject: test message

10: Message-ID: <20020616211606.GA81928@umbar.pair.com>
11: Mime-Version: 1.0

12: Content-Type: text/plain; charset=us-ascii

13: Content-Disposition: inline

14: User-Agent: Mutt/1.3.251

0N O~ WN =

16: this is a test

As you can see from the listing, there are all sorts of headers in the message that don’t
have anything at all to do with identifying who the message is to or from. When you’re
constructing email messages to be sent, you only need to worry about the To: and From:
headers. Generally, you’ll want to include the Subject: header as well.
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Using Net: :SMTP

You’ve already seen how the CGI module can be used to save work for Perl programmers
writing CGI scripts, now I'm going to show how you can use Net: :SMTP as a labor sav-
ing device. Not only is the syntax for sending email messages simple, but it will work
regardless of the platform that your CGI script runs on. Net: : SMTP is included as part of
the standard Perl distribution on Windows, but not on UNIX. If it’s not installed on your
Web server, you’ll need to download it and install it yourself, or get your system admin-
istrator to do so for you.

Here’s a code snippet that demonstrates how to use Net: : SMTP:

my $smtp = Net::SMTP->new('localhost');
$smtp->mail ($from);
$smtp->to($address);

$smtp->data();
$smtp->datasend("From: $from\n");
$smtp->datasend("To: $address\n");
$smtp->datasend("Subject: $subject\n");
$smtp->datasend("\n");

: $smtp->datasend($body);

0: $smtp->dataend()
1: $smtp->quit();

H)

- 2 0o NOOOA~OLN =

The first step, on line 1, is to create a Net: : SMTP object. The argument passed to the con-
structor of the object is the hostname of the SMTP server. (A constructor is just a sub-
routine that is used to create a single instance of a type of object.) I'm going to be
running this script on a Unix server, so I can just use localhost and connect the SMTP
server running on my Web server.

If you're testing this script on your personal computer, you probably want
to use the hostname of your ISP’s SMTP server as the argument to the con-
Z structor.

Once you have your SMTP object, you start interacting with the SMTP server. First, you
call the mail method with your sender address to indicate that you’re sending an email
message, as shown on line 2. Next, you call the to (or recipient) method once for each
recipient of the email message. In this case, it’s only necessary to call it once, because
the email is only being sent to one person.

At that point, you can start sending the message itself. First, you must let the SMTP
server know that you’re going to start sending data using the data method (line 4). Then,
you send the headers and the email data, using the datasend as what amounts to a print
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statement. Note that I send an extra line feed after the last header line. Just as with
HTTP, two consecutive line feeds indicate to the email servers that there are no more
headers and that the output that follows is the body of the message. I then call the
dataend method, ending the message, and the quit method, which ends the session with
the SMTP server.

Example: Sending Email from a CGI Script

Let’s look at a simple example that illustrates how email is sent using a CGI script. I've
written a CGI script (email-form.pl) that presents users with a form that requests their
email address, a subject, and a message body. When the user fills out the form fields and
submits the form, an email message with the subject and body that they entered is sent to
the email address specified in the script. Theoretically, the email address is their own, but
that’s not necessary. The full source code for the script appears in Listing 8.2.

LisTiNnG 8.2 The Source Code for email-form.pl

#!/usr/local/bin/perl

use CGI;
use Net::SMTP;

my $query = new CGI;
my $smtp = Net::SMTP->new('localhost');

0N O~ WN =

9: # Set to the name of the to address
10: my $address = "webmaster\@rc3.org";

11: my $error_message = "";
12:

13: if (!$query->param()) {
14: &print_page_start;

15: &print_form;

16: &print_page_end;

17: }

18: else {

19: &set_form_vars;

20: if (!&validate_form) {
21: &send_email;

22: &print_page_start;
23: &print_success;
24: &print_page_end;
25: }

26: else {

27: &print_page_start;
28: &print_error_message;

29: &print_form;
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30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:

}

sub

sub

sub

sub

sub

&print_page_end;

print_page_start {

print $query->header;

print "<html>\n";

print "<head>\n";

print "<title>Email Form</title>\n";
print "</head>\n";

print "<body>\n";

print "<h1>Email Form</h1>\n";

print_page_end {
print "</body>\n";
print "</html>\n";

set_form_vars {

$from = $query->param('from');
$subject = $query->param('subject');
$bhody = $query->param('body');

print_form {
print "<form method=\"post\">\n";
print "<p>\nYour email address:\n";

print "<input type=\"text\" name=\"from\" value=\"$from\" />\n";

print "</p>\n";
print "<p>\nEmail subject:\n";

print "<input type=\"text\" name=\"subject\" value=\"$subject\" />\n";

print "</p>\n";
print "<p>\nEmail body:<br />\n";

print "<textarea name=\"body\" wrap=\"physicall" rows=\"5\" ";

print "cols=\"70\">";
print $body;
print "</textarea>\n</p>\n";

print "<p>\n<input type=\"submit\" value=\"Send Email\" />\n</p>\n";

print "</form>\n";

validate_form {
if (!$subject) {

$error_message .= "<li>You need to enter a subject ";
$error_message .= "for your message.</li>\n";

}
if (!$from) {

$error_message .= "<li>You need to specify a recipient for ";

$error_message .= "the message.</li>\n";

continues
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LisTING 8.2 continued

80: }

81: if ($from !~ /~[\w\.]+\@[\w\.]+$/) {

82: $error_message .= "<li>The email address you entered is invalid,
83: $error_message .= "please enter a valid address. </1i>\n";
84: }

85: if (!$body) {

86: $error_message .= "<li>You need to enter some text in the ";
87: $error_message .= "body of your message.</li>\n";

88: }

89:

90: return $error_message;

91: }

92:

93: sub print_error_message {

94: print "<font color=\"red\">\n";

95: print "<p>Please correct the following errors:</p>\n";

96: print "<ul>\n";

97: print $error_message;

98: print "</ul>\n";

99: print "</font>\n";

100: }

101:

102: sub print_success {

103: print "<p>An email with the subject \"$subject\" was sent to ";
104: print "$address from $from.</p>\n";

105: }

106:

107: sub send_email {

108: $smtp->mail ($from);

109: $smtp->to($address);

110: $smtp->data();

111: $smtp->datasend("From: $from\n");

112: $smtp->datasend("To: $address\n");

113: $smtp->datasend("Subject: $subject\n");

114: $smtp->datasend("\n");

115: $smtp->datasend($body);

116: $smtp->dataend();

117: $smtp->quit();

118: }

Setting Things Up
The first few lines of the script are used to import some modules that you’ll need, and set
a few variables that are used later in the program (see Listing 8.4).
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o A module is just a body of code that someone else has written that you can
/=T import into your own program and use. Perl and most other programming
IS /

~ languages come bundled with modules (or libraries) that provide functional-

ity needed by many programmers.

As is the case with all Perl CGI scripts, the first line is a pointer to the Perl interpreter.
On line 3, the CGI module is imported to read the form data into the CGI program. On
line 4 T import the Net: : SMTP module, which I just discussed. Next, I set four variables.
The first is the CGI object, the second is the Net: : SMTP object. The third, set on line 10,
is used to specify the recipient of the email message.

The Application Logic

After the script has been set up, there’s some overarching application logic used to deter-
mine what the script should do at any given point in time. The main application logic
starts on line 13 and ends on line 32. If no form submission has been made, the script
prints an empty form. If the form was submitted, the script validates the input. If it’s
valid, the script sends the email message and the user receives confirmation that the
script was successful. If the input was invalid, the script indicates the errors and redis-
plays the form for revision.

Let’s take a closer look at how all of this works. The application logic is created using
one conditional statement nested inside another. The if statement on line 13 tests for the
existence of $query->param(), which contains all of the form fields passed to the script.
If it exists, that indicates that the form has been submitted.

If the form was not submitted, the script prints the form for the first time. Three subrou-
tines are called on lines 14—16 to print the page, &print_page_start, &orint_form, and
&print_page_end. The &print_page_start and &print_page_end subroutines are called
no matter what the outcome of the script was. They’re just used to begin and end the
HTML document. The &print_form subroutine is used to print the form, and is used to
print a new form and to redisplay the form in case of erroneous input.

If the form has been submitted, the code on lines 19-31 is executed. The values are
moved from $query->param() to normal variables using the &set_form_vars subrou-
tine. Then, the values the user entered are validated using the &valid_form subroutine.
The if statement on line 23 checks whether the form input is valid. If the form input is
valid, the email is sent, and a success message is displayed. The &send_email subroutine
uses the SMTP object as the outgoing mail message. The two subroutines
&print_page_start and &print_page_end are used to set up the page, and
&print_success lets the user know that the form submission was successful.
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Validating the Form

Form validation is particularly important when you’re dealing with email. The subroutine
valid_form, which begins on line 72 and ends on line 91, is used to validate the user’s
input. The most important thing is to make sure that the user enters a valid email address.
Many Web applications don’t do any more than cursory testing on email addresses to
make sure that they’re valid—perhaps they just check to make sure that the address con-
tains an @ sign. Unfortunately, doing so just leads to more problems later. These prob-
lems take the form of bounced email messages, or, if the user is malicious, they can lead
to the user gaining access to the Web server.

The validation for the body and subject fields is simple. As long as something’s there,
the values are considered to be valid. The validation for the email address is a bit more
complex. It uses a regular expression to make sure that the email address matches a spe-
cific pattern. To match the pattern, the email address must consist of one of a specific set
of characters, followed by an at sign (@), followed by one or more of a specific set of
characters. Included in the set of characters are letters, numbers, dashes, periods, and
underscores. This will throw out all obviously invalid email addresses, and it will throw
out any email address that contains characters that aren’t allowed to appear in an email
address. Let’s look at the pattern:

A VAR EAYCIRVAWS B2-7)

I’ll go ahead and break down the pattern so that you can understand how it works. The /
characters at the beginning and end are just delimiters; the actual regular expression is
everything in between. The expression begins with the ~ character, which matches the
beginning of the string. The $ at the end matches the end of the string. Using these two
characters indicates that the expression must match the entire string, not just a part of it.
The expression [\w\.] appears twice in the pattern. The brackets group all the characters
within it into one expression. Any character that matches any of the characters inside the
brackets is considered to be a match. The characters inside the brackets are \w, and a
period. The \w matches any “word character.” Word characters include letters, numbers,
and underscores. Because the pattern then includes a hyphen and a dot, these characters
are also matches. The + signs following the expressions in brackets indicate that only a
group of one or more characters that match the smaller expression should be considered
a match.

However, it doesn’t check for full compliance with RFC 2822, the standard for Internet
email messages. (RFC stands for Request for Comments. These documents are used to
specify standards for various Internet applications.) The code necessary to verify that an
email address is compliant with RFC 2822 is long and involved. Any time an invalid
value is encountered, an error is added to the $error_message variable.
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Sending the Email Message

The most important subroutine for our purposes is the one that actually sends the email
message. The mail is sent by the send_email subroutine, which begins on line 107 and
ends on line 118. This subroutine is the code that uses Net: : SMTP that I discussed earlier.

Using sendmail

sendmail is the most popular UNIX MTA. Most computers that run a UNIX-based oper-
ating system use sendmail for two reasons. It can run as a daemon, listening on port 25
for SMTP connections. It can also be run as an executable, to send email messages over
the Internet. Configuring the behavior of sendmail when it’s set up to run as a daemon is
a monumental task, and is well beyond the scope and subject matter of this book. In this
hour, you will learn how to execute sendmail at the command line to send email mes-
sages from within your CGI programs.

Let’s take a look at how sendmail is executed from the command line. I’'m going to use
the same command line options that you would use if you were calling sendmail from
within a script. The sendmail session is captured in Listing 8.3.

LisTing 8.3 Running sendmail from the Command Line

1: $ sendmail -n -t -oi
2: From: rafe@rc3.org
3: To: rafe@rc3.org

4: Subject: A subject
5-

6

: This is the message body.

I use three command line arguments when I invoke the sendmail program to enhance the
security of the script. The -n flag indicates that sendmail shouldn’t try to interpret
aliases from the addresses. This requires a bit of explanation. On most UNIX systems,
there’s a file called etc/aliases that is used to map various account names to other
addresses. For example, /etc/aliases usually includes a pointer from the account name
postmaster to the email account of the email administrator. The -n flag just indicates to
sendmail that it shouldn’t compare the recipients of the email to the contents of the
aliases file before sending.
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o For most Web applications, this flag isn’t important because the aliases file is
/ only applied to email addresses on the local mail server. Users shouldn’t be
—_— . . . .

- entering email addresses associated with the local server, so /etc/aliases
shouldn’t be consulted anyway. Even so, it's better to leave this in place for
insurance.

The -t flag indicates that the addressing information should be taken from the actual
message content, rather than from the command line, which prevents the user from
embedding escapes to shell commands and committing other malicious trickery from the
command line. Ordinarily, users can enter the address of the recipient (or a group of
recipients) on the command line when they invoke sendmail.

The -oi flag tells sendmail not to take a line with a single dot on it as a message termi-
nator. Ordinarily, email messages can be terminated using a line that contains only a dot
in the first column. Because I know I’'m not going to use that notation to indicate that
I’'m terminating the message, I use the -oi flag. This prevents users from terminating the
email message inadvertently. Instead, the email message is terminated when an end of
file marker is passed to it. This is the easiest way to end an email message from within a
program. When you enter an email message on the command line, the Control-D charac-
ter is used as the end of file marker. Once you’re done entering the message, you just
press Control-D to send it. Within programs, the file is ended automatically when you
close the filehandle, or when execution of the program ceases. I always close filehandles
manually, as you’ll see in the examples that follow.

After the sendmail program has been invoked, the next step is to pass the actual email
message to the program. Email messages are just like HTTP requests and responses in
that the headers are separated from the message body by a blank line. In this case, |
typed only three headers: the sender, recipient, and subject. There are many other headers
that could be included, but these are the only three that are really necessary.

Using sendmail with Perl

Now that you’ve seen how sendmail is called from the command line, you will learn
how to call sendmail from within a Perl program. To call sendmail from within a Perl
program, you have to create a filehandle that opens a pipe to the sendmail executable.
After the filehandle is created, any print statements sent to that filehandle are passed on
to sendmail.

Briefly, this is how everything works. Any time you want to send the output of a Perl
program somewhere other than to the console, you have to open a filehandle. A filehan-
dle is just a pointer to a file, or a program where the output will be sent. When you open
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the filehandle, you specify where output sent to that filehandle will go. In this case, the
filehandle is opened using a pipe. A pipe is a UNIX construct that uses the output of one
program as the input for another. In this case, we’re using the output of the CGI program
that’s sent to the filehandle as the input for the sendmail program.

After the filehandle is open, you can use print statements to generate the headers

and body of the email message. Closing the filehandle will close the pipe and cause
sendmail to process the message. The email form I created earlier could use sendmail
to send a message using the code that appears in Listing 8.4.

Listing 8.4 Sending Email from a Perl Program

1: sub send_email {

2: # Set to the location of your sendmail executable
3 my $sendmail = "/usr/sbin/sendmail -n -t -o0i";
4:

5: open(MAIL, "| $sendmail") or

6: die "Couldn't open sendmail: ";

7 print MAIL "From: $from\n";

8: print MAIL "To: $address\n";

9: print MAIL "Subject: $subject\n";
10: print MAIL "\n";
11: print MAIL "$body\n";
12: close MAIL;
13: }

That’s all there is to it. The call to the open function creates a filehandle called MAIL. The
second argument to the function is this:

"1 $sendmail"

This argument uses the pipe character, |, to indicate that the filehandle type is a pipe.
The full path to sendmail is inserted in place of the $sendmail variable, as are the com-
mand arguments that I discussed earlier. After the filehandle is open, the output of print
statements is directed to it by specifying the filehandle before the actual text to be
printed. After the full email message has been printed, the close function is used to close
the filehandle and send the message.

Summary

Email and Web browsing are the two most popular Internet applications, so it isn’t very
surprising that there are all sorts of situations where you’ll want to use them together.

Mail is generally sent using the SMTP protocol. Using the Perl Net: : SMTP module, you
can connect to an SMTP server and send email messages. In this chapter, you saw how
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Net::SMTP can be used from within a CGI program. This technique can be used from
any platform that runs Perl. This chapter also illustrated how sendmail can be used on
UNIX servers to send mail.

Q&A

Q Are there MTAs available for UNIX other than sendmail?

A Yes, there are quite a few. Two popular alternatives to sendmail are gmail and

postfix. sendmail has a reputation not entirely unjustified for being insecure and
is also notoriously difficult to configure. Other MTAs that have appeared address
both of those problems. Because sendmail has been around so long and is so well-
known, it’s still the most popular MTA by far. It is also very well maintained, and
security holes are closed as fast as they are found. Even so, some sites have chosen
to go with these other MTAs. You can find out more information about gmail at
http://www.gmail.org. You can also find out more information about postfix at
http://www.postfix.org.

What other tools for sending Internet mail from Windows are available?

Because Windows does not share the common history with the Internet that UNIX
does, no support for Internet email is integrated with Windows. For that reason,
many third parties have created SMTP servers and MTAs for Windows. Currently,
Microsoft ships an SMTP service with Internet Information Server that can be
addressed using COM, or using any program that uses the SMTP protocol. There’s
also a version of sendmail available for Windows these days. For information on
more Windows-based Internet mail tools, you should search the Internet.

Is it ethical to send email to everyone who visits my Web site, or all of my cus-
tomers?

Funny you should ask...seriously, though, it is often tempting for people to send
“bulk email” to large groups of people in order to pique their interest in a new fea-
ture on their site, or let them know about a great deal they’re offering. You should
resist this temptation. You should never send bulk email to people who haven’t
given you permission to include them on your mailing list. Regardless of whether
such a practice is ethical, doing so will make you extremely unpopular with a sig-
nificant number of people.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.
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Quiz
1. Which RFC document defines the standard for Internet email messages?
2. How does the Net::SMTP module in Perl know which SMTP server to use?
3. What does the -t flag for sendmail indicate?

4. Which two roles does sendmail play on a typical server?

Exercises
1. Find out where sendmail is located on your Web server (if it’s a UNIX server).

2. Find out which SMTP server is used by computers in your Web server’s domain (if
it’s a Windows NT Web server).

3. Adapt the sample program from this hour so that the user can choose an address
from a select box and then have the email sent to that address.

Quiz Answers

1. The standard for Internet email messages is RFC 2822 (if you answered 2822, give
yourself partial credit).

2. The hostname of the SMTP server is passed to the constructor of a Net: : SMTP
object as the constructor.

3. The -t flag indicates that the recipient addresses will be sent as part of the mes-
sage itself, rather than on the command line used to call sendmail.

4. sendmail is used to send email messages from the command line and to accept
incoming SMTP connections on the server.
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Web Application
Architecture

So far, you’ve learned how to write relatively simple CGI scripts, which
receive requests and process them. These days, though, most applications

are designed to process many different kinds of requests. There are a number
of ways you can create these sorts of scripts, and in this lesson, I’ll explain
some approaches that you can take. This lesson is a bit more theoretical than
many others in the book, but understanding the way that Web applications
are designed should enable you to create better applications from the outset.
The following topics will be covered in this lesson:

* General Web application architecture

* Writing scripts that generate forms and process the requests as well

» Using declarative programming to write scripts that are easy to under-
stand and maintain

e Using the CGI: :Application framework
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Application Design

In the previous chapter, the example script was simple. It enabled users to submit a form,
and if the form is valid, it forwards the contents to a specific email address. Given that it
follows a very simple request/response model, there’s really no architecture. Most appli-
cations tend to be significantly more complex. In this book, by the end you’ll see that
there are a number of larger applications than the ones you’ve seen so far. Even so,
they’re not nearly as complex as most of the applications you’ll find in the real world.

When you create more complex Web applications, it’s generally a good idea to have a
design of some kind in mind, rather than just attacking the problem using brute force. In
addition to making sure that things work, period, the most important consideration when
you’re building applications is making sure that they’re easy to maintain. There’s nothing
worse than going back and looking at an application a few months after it was written
and realizing that you have no idea how it works. This problem is generally compounded
when one of your users reports a bug, and you can’t figure out where the bug is because
your code is poorly organized.

Another consideration is future requirements. You probably won’t write many applica-
tions that never need to be changed once they’re deployed. Thus, you should also con-
sider how easy those changes will be to make when you originally set out to write a Web
application. A few years ago, it was simple to hack out most Web applications, but these
days, real software engineering is required for most projects. The goal in this chapter is
to expose you to some methods you can use to make your applications reusable, main-
tainable, and flexible.

Round-trip Scripts

One design strategy that you’ll see throughout this book is scripts that are used to gener-
ate a form and process that same form. Rather than creating an HTML page with a form
on it, and then having that form submitted to a script, it’s often easier to write a single
script that detects whether a form was submitted, generates the form if it was not submit-
ted, or processes the form if it was. This approach is particularly useful if the script per-
forms any validation on the user’s input, because in these cases, the script will probably
have to include code that generates the form in the first place.

Because scripts that process form input are the core of nearly every Web application, it
makes sense to spend time on how this approach has evolved. It used to be fairly com-
mon that writers of CGI scripts would create an HTML page containing a form and a
script to process that form that may or may not validate the data submitted with the form.
If there were errors in the user’s input, the script would simply indicate that an error had
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occurred, and that the user should use the back button on their browser to go back to the
form and enter valid information.

These days, users expect something more from Web applications. Generally, if a form is
validated, the expected behavior is that the form will be displayed again with all the
user’s input intact, along with a list of the errors on the top of the form or the problem
fields highlighted in some way. To accomplish these sorts of things, you need code in the
program that will generate the form. If you have such code in your program, it’s usually
easier to skip the initial HTML file altogether.

The usual approach when writing these sorts of scripts is to put in decision logic that
determines whether to display the new form or to process the form, and then second level
logic that determines whether the form input is valid, and either redisplays the form with
a list of errors or performs whatever business logic is required on the valid data. Let’s
look at each of these two steps and see how they work.

Figuring Out Whether a Form Was Submitted

When you write a script that generates a form and then submits that form to itself, the
first bit of logic you have to write must determine whether the form needs to be dis-
played for the first time or whether form input needs to be processed. There are a number
of ways to determine whether a form was submitted, and all of them generally involve
checking for the existence of query parameters. Using CGI.pm, if no query parameters
were submitted, you can check for their existence by testing the query () method itself,
like this:
#!/usr/local/bin/perl
use CGI;
$query = new CGI;
if ($query->param()) {

# Process form input.

}
else {
# Print the form.

}

If the user submits any form parameters whatsoever, the form needs to be displayed. If
form parameters were submitted, the script needs to take the next step.

One thing that may not be obvious at first glance is that this script processes two differ-
ent kinds of requests, one for a new form and one to process the form. I’'m going to build
on this later to illustrate how one script can process many different sorts of requests. This
is one of the fundamentals of building more complex applications.
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Declarative Programming

Before I discuss application architecture further, I want to talk a little bit about program-
ming style. One way you can make your scripts easier to understand is to use a style
called declarative programming. Declarative programming, simply defined, involves
writing subroutines for all of the discrete tasks in your programs. In other words, rather
than writing a long series of code that performs a bunch of different tasks, you write sub-
routines for each of the individual tasks and call them all in a row.

First, here’s a very short primer on writing subroutines in Perl. Declaring a subroutine is
simple:

sub my_subroutine { }

That’s it. Unlike Java and C, you don’t have to specify which arguments will be passed
to your subroutine. Any subroutine can accept any set of arguments—the only catch is
that lists and hashes that are passed in as arguments get flattened out. The arguments to
the subroutine are made available via the list @_. You can extract arguments from the list
one at a time like this:

$variable = shift (@_);

That removes the first element from @_ and assigns it to $variable. The shift function
also acts implicitly on @_, so you can shorten that even further like this:

$variable = shift;

You can use shift repeatedly to extract all of the arguments that were passed in to a sub-
routine. Another option is to extract all of the arguments at once, like this:

($vart, $var2, $var3, $vard) = @_;

That code assigns the first four elements in the list to the variables that are listed. So, a
real subroutine might look something like:
sub print_name {

$name = shift(@_ );

print $name;

}

You can also return values from your subroutines if you wish. The results of the last
expression evaluated is automatically returned by a subroutine. However, using subrou-
tines that way is rather confusing. In fact, I"d recommend that you never write a subrou-
tine that doesn’t use return if it’s expected to return a value. You can return a value
explicitly using the return function, like this:
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sub compare {
my $name = shift(@_);
if ($name eq "Rafe") {
return "true";

}
else {

return "false";
}

}

Now that you know how to create subroutines, lets talk about how to use them. One
obvious usage is in situations where you want to use the same code more than once in a
program. If you package it into a subroutine, you can call it as many times as you like.
This sort of code reuse can make your life a lot easier, and is one of the most basic fun-
damentals of software development.

However, in this book, I use subroutines for another purpose—to encapsulate functional-
ity by task so that it makes it clear what’s going on at all times. You can think of it as an
alternative to comments.

Here’s a simple example of non-declarative programming:

print $query->header;

print "<html><head><title>Test</title></head><body>";
print "This is the page body.";

print "</body></html>";

And here’s a snippet of a script that uses declarative programming:

&print_header();

&print_page_start();

&print_body();

&print_page_end();

The contents of those subroutines is unimportant. The point here is that rather than writ-
ing a program that consists of a number of different print statements all in a row, you can
break it up into subroutines in order to illustrate the purpose of the code. Reading the
code listed above makes it clear exactly what’s going on, even without comments. In this
example, the usefulness of declarative programming may be a bit unclear. If the non-
declarative block above were 150 lines long, then the utility of chopping things up would
be more obvious. While you’re by no means obliged to use this style, you’ll see it
throughout this book.

Handling Many Types of Requests

In the previous section, you saw how you can handle two types of requests with one
script. Well, there’s nothing to say you can’t handle any number of different types of
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requests within the same script. The script just has to be able to determine what it’s sup-
posed to do based on the parameters that are passed in.

The simplest approach here is to use a parameter to specify exactly what action the script
is supposed to take. Unsurprisingly, many people have standardized on calling this para-
meter action in their scripts. For example, let’s say you’re writing a script that enables
someone to view a list of records, add records, delete records, and edit records. If you
wanted to use the same script for all of those operations (which often makes sense in
order to share code), you would include the action parameter in each form to indicate
which operation to perform. Listing 9.1 contains a stub of a program that processes a
number of requests, as described previously.

Listing 9.1 A Script That Handles Several Types of Requests

1: #!/usr/local/bin/perl

2:

3: use CGI;

4: my $query = new CGI;

5:

6: # Set the default action.

7: my $action = "list";

8:

9: if ($query->param('action')) {
10: $action = $query->param('action');
11: }

12:

13: &print_header;
14: &print_page_start;
15: if ($action eq "list") {

16: &do_list;

17: }

18: elsif ($action eq "add") {
19: &do_add;

20:

21: elsif ($action eq "edit") {
22: &do_edit;

23: }

24: elsif ($action eq "delete") {
25: &do_delete;

26: }

27: # Unrecognized action.

28: else {

29: &do_unrecognized;

30: }

31:

32: &print_page_end;
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34: sub print_header {

35: print $query->header;

36: }

37:

38: sub print_page_start {

39: print "<html><head><title>Example Page</title></head>\n<body>\n";
40: }

41:

42: sub do_list {

43: print "<h1>Item List</h1>\n";

44: print "<p>... the item list would appear here ...</p>\n";
45: '}

46:

47: sub do_add {

48: print "<h1>Add Item</h1>\n";

49: print "<p>... the add item form would appear here ...</p>\n";
50: }

51:

52: sub do_edit {

53: print "<hi1>Edit Item</h1>\n";

54: print "<p>... the edit item form would appear here ...</p>\n";
55: }

56:

57: sub do_delete {

58: print "<h1>Delete Item</hi1>\n";

59: print "<p>... the item deletion would occur here ...</p>\n";
60: }

61:

62: sub do_unrecognized {

63: print "<hti>Unrecognized Action</h1>\n";

64: print "<p>The action you submitted was unrecognized.</p>\n";
65: }

66:

67: sub print_page_end {

68: print "</body></html>\n";

69: }

If you read over this script quickly, you’ll see that it doesn’t actually do anything.
However, it illustrates an important concept, which is that one CGI script can service
many types of requests. You can also see that some of the subroutines in the script are
called regardless of the action being used, and others are specific to certain actions.

If you think about this script a bit, you’ll see that one thing is missing, and that’s actions
for processing the forms for transactions that will have to be submitted. In this case, the
update and add transactions are two step processes, the first displays the form and the
second processes the form submission. Usually, I recommend just creating separate
actions like save_edit and save_add that process the forms. The other option would be
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to use the edit and add actions for both the form display and form processing actions
and include code within those actions to determine how the request should be processed
(just as you would with a normal script that displays and processes a single form).

Now let’s look at some specific code in this script. On line 7, I declare the action vari-
able and set its value to list. This is the default action for this script. If the user doesn’t
submit an action (by calling the script with no parameters, for example), the script will
use the list action by default. On line 9 I check to see whether the action parameter was
submitted with the request. If it was, I set the action variable to that value. Before I start
handling specific actions, I call the print_header subroutine and the print_page_start
subroutine.

Once I've determined which action to take, I have a long if ... elsif ... else construct
that handles the various actions. Let me skip ahead to the else clause, which starts on
line 28. If the statement gets to the else clause, it means that the action was specified,
and that it’s not valid. (If it weren’t specified, then the default action would be used.) In
that case, it calls the do_unrecognized subroutine, which prints an error message (the
subroutine definition is on page 62).

For all of the other cases, it just calls the appropriate subroutine. Obviously this script is
extremely simplified. Were it more complex, it might be necessary to break down the
logic further and to add many more subroutines.

Sharing Code Among Scripts

In some cases it’s impractical to bundle the code to handle all of your requests into one
giant script. However, some of the code associated with your group of scripts is probably
useful in more than one of them. Bundling up the common code into a library of sorts is
an alternative to building complex scripts that handle multiple types of requests.

You can write any number of files containing subroutines that can be called from the pro-
grams that use them. Whenever you use the use function built into Perl, you are in fact
loading an external library. You’ve seen the CGI module (a library that is written in a spe-
cific way) used in every CGI program in this book so far. The use function imports a
module, and depending on the arguments passed in, optionally imports some subroutine
and variable names into the local name space. In this chapter, I'm not going to explain
how to write or import your own modules, because it’s fairly complicated. Instead, I'm
going to explain how to use a simpler function—require.

The require function takes a string as its argument. It assumes that the argument is a file
name, and attempts to load that file and execute the code that’s in it. One nice thing
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about it is that if you require the same file twice in your program, it won’t load it two
times. It just loads it the first time and ignores further attempts to require the file. You
can do anything you like inside the required file—initialize variables, define subroutines,
or just execute code. If you’re writing a library, you should probably stick to defining
subroutines and perhaps setting variables. Since you don’t know at what point users of
the library will load it into your script, it’s risky to put executable code in the library. To
load a library called mylibrary.pl, you’d use the following code:

require "mylibrary.pl";

One question you might have is where your libraries should be stored. One variable
that’s implicitly set in Perl scripts is @INC. It contains a list of directories that will auto-
matically be searched for modules files included using require. Usually, @INC includes
the directories created for storing libraries when Perl is installed, which you probably
won’t put your libraries in. It also includes the directory, also known as the current direc-
tory. The easiest approach is to simply put your library files in the same directory where
your program files are. If you want to include another directory in @INC, you can add it
to the array before you require a file in that directory. The easiest way to do that is

push @INC, '/usr/home/rafe/lib';

The push function adds the second argument to the array specified in the first argument.
That code adds the directory /usr/home/rafe/1lib to @INC, meaning that from that point
on I can require libraries in that directory in my program. Now that you’ve seen how to
use libraries, let’s look at some actual code that uses a library. First, the library itself
appears in Listing 9.2.

Listing 9.2 A Simple Perl Library

1: #!/usr/local/bin/perl

2:

3: sub print_page_start

4: {

5: my $page_title = shift(e@_);

6: print "<html><head><title>$page title</title></head><body>\n";
7: print "<h1>$page_title</h1>\n";
8: }

9:

10: sub print_page_end

11: |

12: print "</body></html>\n";

13: }

15: 13
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The library defines two subroutines, print_page_start and print_page_end. The
print_page_start subroutine, which starts on line 3, accepts the page title as an argu-
ment, and prints out the page heading along with a headline for the page. The
print_page_end subroutine just prints out the closing tags for the page. Of course either
of them could print out anything you want, which is the real point.

One thing that might seem unusual is line 15, which just contains 1;. While it might not
look like much, the bare number 1 is an expression that evaluates as true. The last
expression evaluated in an included file must evaluate as true to indicate to the script that
requires it that the file was evaluated successfully. A surefire way to accomplish this is to
just stick a bare expression like the one on line 15 in there. Now, let’s look at a script that
uses this library. A sample script is included in Listing 9.3.

Listing 9.3 A Script That Uses a Library

1: #!/usr/local/bin/perl
g use CGI;

4: my $query = new CGI;

2 require "lib.pl";

; print $query->header;
9:

10: &print_page start("a title");
11: print "<p>page body</p>\n";
12: &print_page_end;

In this script, on line 3 I include the CGI module using use, and on line 4 I create a
query object. On line 6, I use require to load a file called 1ib.pl. At this point, the two
subroutines defined in 1ib.pl are available to the including script. I call the
print_page_start subroutine on line 10, and the print_page_end subroutine on line 12.
That’s all there is to it.

Using CGI: :Application

A lot of the strategies for writing Web applications that are easy to maintain and provide
reusable parts are well known. In fact, not only are there well known methodologies for
writing such applications, but there are also various application frameworks that encap-
sulate a lot of the functionality that is commonly required in building Web applications.
An application framework is a set of generic parts that provide structure for a type of
application. One such framework is the CGI: :Application module. It encapsulates a lot
of the ideas that have been discussed in this chapter.
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CGI::Application is based around a concept called run modes. Each page in an applica-
tion is associated with a run mode, and your implementation of CGI: :Application will
contain one subroutine associated with each subroutine. When you create your applica-
tion, you’ll build a mapping of run mode values to subroutines, and then based on a para-
meter you define, the appropriate run mode subroutine will be executed. This is quite
similar to the example that handled multiple types of requests that I provided back in
Listing 9.1. It’s just a cleaner way of providing that type of functionality.

Installing CGI::Appliction

If CGI::Application isn’t already installed on your computer (or on the computer where
your CGI scripts will reside), you’ll need to download it and install it. It’s available from
CPAN, an archive of publicly available Perl modules and scripts. If you’re installing it on
a Unix-like server, it’s easiest to use the CPAN shell (perldoc CPAN) or to just download
the archive and build it yourself. You can find it at: http://www.cpan.org.

If you’re a Windows user, you can use the PPM program that comes with ActiveState
Perl to install it. To get it, start up PPM (it should be available in the Start menu), and at
the ppm> prompt, type search CGI. This should yield results like the following:

ppm> search CGI
Searching in repository 2 (ActiveState Package Repository)

1. Apache-HeavyCGI [0.0133] Framework to run complex CGI
tasks on an Apache

2. CGI [2.74] Simple Common Gateway Interface
Class

3. CGI-Application [2.4] Framework for building reusable
web-applications

4. CGI-ArgChecker [0.02] An extensible CGI parameter
validation module

5. CGI-ASP-Lite [1.01] a Module for ASP emulation

6. CGI-Authent [0.2.1] request a HTTP authentification
under specified

7. CGI-BuildPage [0.95] object to hold and build page

8. CGI-Bus [0.51] CGI user interface for DBI
applications

9. CGI-Cache [1.03] Perl extension to help cache
output of time-intensive CGI

10. CGI-CIPP [0.07] Use CIPP embedded HTML Pages in
a CGI environment

11. CGI-ClientError [0.03] send minimalistic error messages
to the browser

12. CGI-ConvertParam [0.05] Decorator class which adds
several hooks to

13. CGI-Debug [1.0] module for CGI programs

--line 23/116 (enter for more, or q to quit)---q
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As you can see, item 3 is the CGI: :Application module, which is what I’m looking for.
Once you’ve found it, just type install 3 (or the number assigned to
CGI::Application when you run the search). You’ll see the following output, or some-
thing like it:

ppm> install 3
Package 3:

Downloaded 47359 bytes.

Extracting package. This may take a few seconds.
Extracting 7/7: blib/arch/auto/HTML/Template/.exists
Installing C:\Perl\html\site\lib\HTML\Template.html
Installing C:\Perl\site\lib\HTML\Template.pm

Writing C:\Perl\site\lib\auto\HTML\Template\.packlist

Downloaded 18397 bytes.

Extracting package. This may take a few seconds.
Extracting 18/18: blib/arch/auto/File/Spec/.exists
Installing C:\Perl\html\site\lib\File\Spec.html

Installing C:\Perl\html\site\lib\File\Spec\Functions.html
Installing C:\Perl\html\site\lib\File\Spec\Mac.html
Installing C:\Perl\html\site\lib\File\Spec\0S2.html
Installing C:\Perl\html\site\lib\File\Spec\Unix.html
Installing C:\Perl\html\site\lib\File\Spec\VMS.html
Installing C:\Perl\html\site\lib\File\Spec\Win32.html
Installing C:\Perl\site\lib\File\Spec.pm

Installing C:\Perl\site\lib\File\Spec\Functions.pm
Installing C:\Perl\site\lib\File\Spec\Mac.pm
Installing C:\Perl\site\lib\File\Spec\0S2.pm
Installing C:\Perl\site\lib\File\Spec\Unix.pm
Installing C:\Perl\site\lib\File\Spec\VMS.pm

Installing C:\Perl\site\lib\File\Spec\Win32.pm
Writing C:\Perl\site\lib\auto\File\Spec\.packlist

Downloaded 24091 bytes.

Extracting package. This may take a few seconds.
Extracting 12/12: blib/arch/auto/Test/Harness/.exists
Installing C:\Perl\html\site\lib\Test\Harness.html

Installing C:\Perl\html\site\lib\Test\Harness\Assert.html
Installing C:\Perl\html\site\lib\Test\Harness\Iterator.html
Installing C:\Perl\html\site\lib\Test\Harness\Straps.html
Installing C:\Perl\site\lib\Test\Harness.pm
Installing C:\Perl\site\lib\Test\Harness\Assert.pm
Installing C:\Perl\site\lib\Test\Harness\Iterator.pm

C

Installing C:\Perl\site\lib\Test\Harness\Straps.pm
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Writing C:\Perl\site\lib\auto\Test\Harness\.packlist

Downloaded 47452 bytes.

Extracting package. This may take a few seconds.
Extracting 12/12: blib/arch/auto/Test/Simple/.exists
Installing C:\Perl\html\site\lib\Test\Builder.html

Installing C:\Perl\html\site\lib\Test\More.html
Installing C:\Perl\html\site\lib\Test\Simple.html
Installing C:\Perl\html\site\lib\Test\Tutorial.html
Installing C:\Perl\site\lib\Test\Builder.pm
Installing C:\Perl\site\lib\Test\More.pm

Installing C:\Perl\site\lib\Test\Simple.pm

Installing C:\Perl\site\lib\Test\Tutorial.pod
Writing C:\Perl\site\lib\auto\Test\Simple\.packlist

Install 'CGI' version 2.81 in ActivePerl 5.6.1.631.

Downloaded 141580 bytes.

Extracting package. This may take a few seconds.
Extracting 22/22: blib/arch/auto/CGI/.exists
Installing C:\Perl\html\site\1lib\CGI.html

Installing C:\Perl\html\site\lib\CGI\Apache.html
Installing C:\Perl\html\site\1lib\CGI\Carp.html
Installing C:\Perl\html\site\1lib\CGI\Cookie.html
Installing C:\Perl\html\site\lib\CGI\Fast.html
Installing C:\Perl\html\site\1lib\CGI\Pretty.html
Installing C:\Perl\html\site\1lib\CGI\Push.html
Installing C:\Perl\html\site\1lib\CGI\Switch.html
Installing C:\Perl\html\site\1lib\CGI\Util.html
Installing C:\Perl\site\1lib\CGI.pm
Installing C:\Perl\site\lib\CGI\Apache.pm
Installing C:\Perl\site\1lib\CGI\Carp.pm
Installing C:\Perl\site\1lib\CGI\Cookie.pm
Installing C:\Perl\site\lib\CGI\Fast.pm
Installing C:\Perl\site\1lib\CGI\Pretty.pm
Installing C:\Perl\site\1lib\CGI\Push.pm

C

Installing C:\Perl\site\1lib\CGI\Switch.pm
Installing C:\Perl\site\1lib\CGI\Util.pm
Writing C:\Perl\site\lib\auto\CGI\.packlist

Downloaded 33923 bytes.

Extracting package. This may take a few seconds.

Extracting 8/8: blib/arch/auto/CGI/Application/.exists
Installing C:\Perl\html\site\1lib\CGI\Application.html
Installing C:\Perl\html\site\1lib\CGI\Application\Mailform.html
Installing C:\Perl\site\1lib\CGI\Application.pm

Installing C:\Perl\site\lib\CGI\Application\Mailform.pm
Writing C:\Perl\site\lib\auto\CGI\Application\.packlist
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PPM automatically downloads CGI: :Application as well as all of the modules that it
requires in order to work, and installs them. The output shown is the output produced by
PPM as it installs those modules.

Creating CGI::Application Applications

When you use CGI::Application, you create a very simple module, which is basically
just like the library that I just used, except that it has a few additional requirements. The
first is that it has to extend CGI: :Application. If you’re a Java developer, you’ll know
exactly what I’m talking about, but in case you aren’t, I'll explain. When you extend a
module, all of the subroutines in that module will be available in your module. You can
replace any of the subroutines with subroutines of your own, and you can add more sub-
routines that aren’t included in the base module if you wish.

CGI::Application is designed so that it can only be used as the basis for other modules.
When you write an application based on CGI: :Application, your module must override
the setup module built into the base module. This is where you define which parameter
will be used to specify the run mode, and the mapping of run modes to subroutines.
Finally, you write subroutines for each of the run modes. These differ from the subrou-
tines you’ve seen so far in that instead of printing out the HTML directly, you put all

of it into a variable and return that from the subroutine. The base module handles send-
ing the HTML to the user. You can also skip printing the header—that’s taken care of
for you.

The other thing that’s a bit strange is that the module isn’t the actual CGI program—it’s
a library that’s used by another extremely small CGI program. The CGI program just
imports your module and calls the run subroutine, which is defined as part of the
CGI::Application module and doesn’t need to be overridden.

The only other thing to mention is that CGI: :Application provides access to a regular
CGI.pm query object so that you can access query parameters or use any of its other fea-
tures. The query () subroutine is used to return the new CGI object.

An Example That Uses CGI::Application

This is a lot of information to digest, so I’ll go ahead and provide an example that should
help clear things up. This example has two run modes, one that would provide access to
a list of something or another, and another that would provide a detailed view of items in
the list. The source code is in Listing 9.4.
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LisTING 9.4 The Example.pm Module

1 package Example;

2: use base 'CGI::Application’;

3: sub setup {

4: # Get a reference to the Example object
5: my $self = shift;

6 .

7 # Set up run modes

8: $self->run_modes (

9: 'list' => \&show_list,

10: 'detail' => \&show_details,

11: )

12:

13: # Set the default run mode

14: $self->start_mode('list');

15:

16: # Set the parameter used to specify the run mode
17: $self->mode_param('action');

18: }

19:
20: sub show_list {
21: # Get a reference to the Example object
22: my $self = shift;
23:
24: # Set up a variable to hold our output.
25: my $output = "";
26:
27: # Generate the HTML for the page.
28: $output .= "<html><head><title>Example List</title></head><body>\n";
29: $output .= "<hi1>Example List</h1>\n";
30: $output .= "<p>The actual list would appear here.</p>\n";
31: $output .= "</body></html>\n";
32: return $output;
33: }
34:
35: sub show_details {
36: # Get a reference to the Example object
37: my $self = shift;
38:
39: # Get the query object from my Example object
40: my $query = $self->query();
41:
42: my $item = $query->param('item');
43:
44: # Set up a variable to hold our output.
45: my $output = "";
46:
47: # Generate the HTML for the page.

continues
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LisTiING 9.4 continued

48: $output .= "<html><head><title>Detail for
$item</title></head><body>\n";

49: $output .= "<hi>Detail for $item</h1>\n";

50: $output .= "<p>Additional information would appear here.</p>\n";
51: $output .= "</body></html>\n";

52: return $output;

53: }

54:

55: 1;

Let’s look at this module line by line, because it’s relatively complicated compared to the
code you’ve seen so far. The first line contains a package declaration, stating that the
code that follows is part of a module called Example. This is provided so that subroutines
and variables defined in the module do not conflict with those defined in scripts or mod-
ules that might use this module. On line 2, I import the CGI: :Application module with
the added keyword base, which indicates that the module I'm defining should extend
that module.

On line 3, I’'m on to defining the first subroutine in my script, setup. This subroutine
overrides the setup subroutine in CGI: :Application, and is required in every module
that extends it. On line 5, I use the shift function to assign the first argument to the sub-
routine to the variable $self. The first argument passed to every subroutine in my mod-
ule is a reference to the current object, that’s just the way object oriented Perl works. I
can use $self to call subroutines native to my module or inherited from
CGI::Application, as you'll see in a bit.

On line 8, I set up the run mode mapping. There’s some notation that will be new to you
here, but bear with me. On line 8, I use the $self variable for the first time—to call the

run_modes method. The mapping is a hash, a Perl data structure that contains name and

value pairs. The names are the names of the run modes, and the values are references to

subroutines defined in my module. Let’s take a look at this code in isolation:

8: $self->run_modes (
9: 'list' => \&show_list,
10: ‘detail' => \&show_details,

11: )

The deal here is that run_modes is being passed four arguments, two names and two val-
ues if you think of them as a hash. The first and third arguments are the names of run
modes, 1list and detail. The second and fourth arguments are references to subroutines.
Let me briefly explain the notation here. As you have seen previously, &show_list is a
call to the subroutine show_1list. When you tack on the backslash, it indicates that you
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want a value associated with calling that subroutine. For all intents and purposes, the ref-
erence is a pointer. If you don’t know what that means, don’t worry. Basically, it’s a way
of saying “the value that’s returned by this subroutine at the time this value is examined.”
Hopefully that makes sense, if it doesn’t, just memorize the notation—the values on the
left side of => are run mode names, the values on the right are the subroutines associated
with them.

Once the mapping has been set up, there are two things left to do. The first is to specify
the default run mode. On line 14, I use the start_mode subroutine to set the default run
mode to list. The other thing I have to do is specify which parameter sets the run mode
for each script invocation—on line 17, I set the run mode parameter to action using the
mode_param subroutine. If the action parameter isn’t passed in with a request, the list
run mode will be called.

All that’s left at this point is to create the run mode subroutines for my two run modes.
On line 20, I define the show_1list subroutine. It starts by extracting the $self reference
from its arguments on line 22. On line 25, I define a variable called $output to store the
HTML that I generate. Then on lines 28-31 I generate my HTML. Finally, on line 32, I
return the value of $output, which will be sent back to the user.

The show_details subroutine, which starts on line 35, is quite similar to show_list. The
most important line in it is line 40, which demonstrates how to get the CGI object from
$self. I call the query() subroutine and assign the result to $query so that I can extract
the value of the item parameter on line 42. Then, when I generate the HTML for the
page, I include the value of the parameter in the output. Were this script anything more
than an example, I'd do some error checking here to make sure that the user passed in a
value for the item parameter (and I’d probably also have to fetch more information about
the item from a database as well). Finally, on line 55, you’ll see that bare expression
again. The fact that Example.pm is a module doesn’t change the fact that you have to end
with an expression that evaluates as true to indicate that it was successfully loaded.

Now let’s look at the script that uses the module. The source code for it is in Listing 9.5.

Listing 9.5 A CGI Script That Uses Example.pm

#!/usr/bin/perl -w

use Example;

my $app = Example->new();
$app->run();

AWM=

As you can see, this script is short and sweet, as promised. On line 2, I import the
Example module. When you use the use function, all of the directories in @INC are
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searched for a file with the name specified and the extension .pm. In this case,
Example.pm is in the local directory. On line 3, I create a new instance of the Example
object, similarly to how I’d create a new instance of the CGI object in a regular script.
Then, on line 4, I call the run subroutine in the Example module, which executes the
proper run mode and sends the HTML back to the user.

Other CGI::Application Notes

There are a couple of other things worth mentioning about CGI: :Application. When
you write a module that extends CGI: :Application, you’re not constrained to defining
run mode subroutines and subroutines that are defined in the base module. You can write
any user defined subroutines that you like. The only catch is that if they’re going to gen-
erate HTML output, they need to return a string that’s appended to your HTML content
rather than printing it out, like this:
sub print_page_start {

my $arg = shift;

return "<html><head><title>Example List $arg</title></head><body>\n";

}
To include the output of the subroutine in your page, use the following code:
$output .= &print_page start('foo');

Another subroutine that’s commonly overridden in modules that extend
CGI::Application is teardown. The teardown subroutine is called once the run mode
subroutine has been executed and the output has been sent to the user. It’s used for any
cleanup you need to perform before the script exits, like closing database connections or
deleting temporary files you might have used.

Also, as I mentioned earlier, CGI: :Application automatically prints out the query
header for you. If you want to change the content type, you can do so with the
header_props() subroutine, like this:

$self->header props(-type => 'text/plain');

Summary

In this chapter, I provide a broad overview of a number of techniques that should enable
you to write Web applications that are easy to maintain and reuse. The idea was to pro-
vide a brief list of practices that will improve your productivity, and to stimulate your
thinking with regard to how you design your applications from a technical standpoint. I
also introduced an application framework called CGI: :Application, which can be used
to create applications in a standard way and handle some of the tasks that are common to
nearly all the applications that you write.
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Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Q&A

Q Where can I find out more about CGI::Application?

A The easiest place is the CGI: :Application perldoc documentation. Other than that,

you’re pretty much on your own. Fortunately, the packaged documentation is fairly
detailed, and unlike CGI.pm, CGI: :Application is not terribly complex.

Isn’t there a lot more to application architecture than was described in this
chapter?

Yes. This chapter was really just an introduction to application architecture. Most
CGI programs started out relatively simple, and many of the advances in Web
application development are occurring outside the scope of CGI programming. For
example, the Model View Controller pattern, which was originally conceived back
in 1987, has more recently become a very popular way to design Web applications.
You can find out more about it at

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

Quiz

1.

DA

Using the CGI module, how do you determine whether parameters were passed in
with a request?

What is the name of the array where arguments to a subroutine are stored in Perl?
What must all Perl libraries end with in order to be imported correctly?
In CGI::Application, how does one gain access to the CGI object?

What is the purpose of using the keyword base when you import the
CGI::Application module?

Exercises

1.

2.

Modify the example program in Chapter 8 that sends email to an address so that
it’s a round trip program with validation.

Install CGI::Application and attempt to convert some of the previous example
programs to use it.
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Quiz Answers

1. By calling the param() subroutine of the CGI object with no arguments, you can
determine whether parameters were passed in with a request.

2. Arguments to subroutines are stored in the @_ array.

3. All Perl libraries must end with an expression that evaluates as true in order to be
included without causing errors.

4. You can obtain the CGI object in a CGI: :Application module by calling the
query () method of the application object.

5. The keyword base is used to indicate that the current program extends the program
that imports it.
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Delving Further into Perl

Because Perl is the most commonly used language for writing CGI scripts,
developers have created many tools to simplify Perl programming. Although
teaching you the Perl language itself is beyond the scope of this book, I will
discuss some tools and recommend some resources that can help out. In this
hour, I’ll cover the following topics:

» Taking care of common programming tasks with CGI.pm
* Using cgi-1lib.pl—the precursor to CGI.pm

* Handling errors with CGI::Carp

» Taking Advantage of CPAN

* Finding out more about Perl programming

CGI.pm

As you already know, CGI.pm is a Perl module specifically designed to take
care of common CGI programming tasks, saving you work in writing CGI
programs. All recent versions of Perl come with CGI.pm as part of the stan-
dard distribution. This has cemented the position of CGI.pm as the de facto
standard for creating CGI scripts in Perl. (Earlier versions of Perl required
you to download and install the CGI.pm module.)
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CGI.pm is most often used to decode data submitted through HTML forms. However, it
provides extensive additional functionality to make it easy for programmers to generate
HTML using Perl. How much of this functionality is used generally depends on whether
the programmer is more familiar with Perl or HTML. People more familiar with HTML
tend to just create HTML tags with print statements.

I’ll briefly cover the most important features of CGI.pm in this hour. For the full docu-
mentation of the module, you can read the Perl documentation using the command:

perldoc CGI
Extensive documentation is also provided online at the URL:

http://stein.cshl.org/WW/software/CGI

Accessing CGI.pm from Your Program

Vi

The first step in using CGI.pm from within the program is importing the module. As long
as the CGI.pnm file is in one of the standard library directories with your installation, you
can import it using the command

use CGI;
CGI.pm has an object-oriented interface, which requires you to create a new CGI object,

and then reference all the data structures and functions associated with CGI.pm using that
object.

o A discussion of the nature of object-oriented programming is beyond the

I 4 scope of this book. Suffice it to say that when you use the object-oriented
interface to CGI.pm, you keep the method names and variable names associ-
ated with CGI.pm completely separate from the rest of your program. It also
lets you easily identify calls to CGI.pm methods within your program.

The object is created by initializing a variable and assigning it to a reference to a new
CGI object. If you want to create a CGI object called $query, the following statement is
used:

$query = new CGI;

If you use the object-oriented interface, any time you want to use any of the methods
(methods are just what you call subroutines associated with a particular object) supported
by CGI.pm, like the param method, which returns parameters passed to the program, you
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have to reference them using the query object. For example, to retrieve the value of a
parameter called name, you have to use the following syntax:

$name = $query->param('name');

There’s also a standard interface to CGI.pm that you can use if you don’t want to deal
with creating the query object and referencing it whenever you call any of the methods in
CGI.pm. To import the CGI module in standard mode rather than object-oriented mode,
use the following line:

use CGI qw(:standard);

When you use CGI.pm in standard mode, you can leave the references to the CGI object
out. So, to retrieve the value of a parameter called name in standard mode, you can call
the param method directly, like this:

$name = param('name');

The standard interface is fine in almost all cases. On larger projects, I prefer to use
CGI.pm in object-oriented mode because it allows me to differentiate between calls to
methods contained in CGI.pm and subroutines of the same name in other modules or
those that I’ve written myself.

Decoding Form Data via CGI.pm

The most common usage of CGI.pm is to decode form data. In fact, in many CGI pro-
grams, that’s all it’s used for. As soon as you import the CGI.pm module, all the input
from the form is automatically translated and made accessible through the param method.

In most cases, the translation from form field to Perl variable is obvious. A group of
radio buttons called favorite_color is accessible through param('favorite_color').
A text input field called name is accessible through param('name'). There are three spe-
cial cases that merit individual discussion when it comes to translating form input into a
Perl data structure. These three cases are image input fields for which names are speci-
fied, select lists that allow you to select multiple options, and file upload fields. Let’s
take a look at how each of these are handled.

Named Image-Input Fields

As you learned in Hour 5, “Creating HTML Forms,” when you use an image as a submit
button on a form, and you specify a name for that field, the X and Y coordinates where
the user clicked on the image are sent back to the server. Rather than sending one para-
meter back to the server, the input from the field is split into two separate parameters,
representing the X and Y values. If the field is named button, the two parameters sent
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back are button.x and button.y. The two values are accessed using the param function
using these parameter names. To retrieve the X and Y values, the following code is used:

$x = $query->param('button.x');
$y = $query->param('button.y');

Multiple Select Lists

When you create a multiple select list on a form and the user selects more than one
option, multiple name and value pairs with the same name are sent to represent that field.
For example, here’s a URL request from a form that includes a multiple select list with
two items selected:

http://rc3.org/cgibook/scripts/10/mult_select.html?color=green&color=blue

As you can see, the color parameter is passed twice, with two different values. CGI.pm
handles this by placing the contents of that field in an array instead of a scalar variable.
If you call the param method to retrieve the values in the color field, the proper way to
call it is like this:

@colors = $query->param('color');

Called in this manner, the two values from the field color will be placed in the array
@colors. Let’s look at what happens if you call it like this:

$color = $query->param('color');

The value of $color will be the first of the parameters, and the remaining selections that
the user made will go unaccessed.

File Upload Fields

As you might imagine, handling file uploads from HTML forms is a bit more complex
than handling values in other form fields. First, as I mentioned back in Hour 5, if you
want to use file upload fields, your form must be created with the enctype attribute set to
multipart/form-data. If you use the default enctype, only the file’s name will be
accessible within your CGI program.

The param method can be used to obtain the name of the uploaded file. If the file upload
field on a form is named portrait, you can grab the filename of the uploaded file using
the following code:

$portrait = $query->param('portrait');

The contents of the file itself are accessible through a filehandle that is automatically cre-
ated with the name of the uploaded file. To print out the contents of the uploaded file,
you can use the following code:
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while (<$portrait>) {

print;
}
The while loop prints each line of the uploaded file in turn because print, like many
other functions, accepts the implied $ argument that contains the current line of the file-
handle being processed. What about binary files that the user uploaded and you want to
save to disk? You can use the same filehandle to access the contents of the file, but you
have to use the binary read function to extract data from the filehandle.

Let’s assume that the portrait the user uploads is expected to be a binary file. You want to
write the file to disk using the name of the file that the user uploaded, assuming that
there’s not already a file stored under that name. The source code for the program
appears in Listing 10.1.

Listing 10.1 upload.pl, a Program That Processes File Uploads

1: #!/usr/local/bin/perl

2:

3: use CGI;

4: $query = new CGI;

5:

6: $upload_directory = "portraits";

7:

8: if ($query->param('portrait')) {

9: &print_page_start;

10: &write_file;

11: &print_page_end;

12: }

13: else {

14: &print_page_start;

15: &print_form;

16: &print_page_end;

17: }

18:

19: sub print_page_start {
20: print $query->header;
21: print "<html><head><title>Portrait Upload</title>\n</head>\n<body>\n";
22: print "<h1>Portrait Upload</h1>\n";
23: }
24:
25: sub print_page_end {
26: print "</body></html>\n";
27: }
28:
29: sub print_form {
30: print "<form action=\"upload.pl\" method=\"post\" ";

continues
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LisTinGg 10.1

continued

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

sub

sub

print "enctype=\"multipart/form-data\">\n";

print "<input type=\"file\" name=\"portrait\" /><br />\n";
print "<input type=\"submit\" value=\"upload file\"><br />\n";
print "</form>\n";

write_file {

$filename = $query->param('portrait');

if ($filename =~ /.*[\/\\1(.*)/) {
$out_filename = $1;

}
else {

$out_filename = $filename;
}

$counter = 0;

while (-e "$upload_directory/$out_filename") {
$counter++;
$out_filename =~ s/~ (.+)\.(.+)$/$1$counter\.$2/;
}

print "$filename<br />\n";

open (OUTFILE, "> $upload_directory/$out_filename");
while ($bytesread = read ($filename, $buffer, 1024)) {
print OUTFILE $buffer;

close $filename;

close OUTFILE;

print_success {
print "<p>The file was saved successfully.</p>\n";

This program is actually somewhat complex. Not only does it process a file that has been
uploaded using a form, but it also makes sure that it has a unique name and then saves it
to disk. Let’s look at how all that works.

Most of the script is straightforward. First, the program determines whether the request
includes the portrait parameter. If it does, it assumes that a file has been uploaded; oth-
erwise, it prints the form. In the print_form subroutine, which begins on line 30, note
that the form uses the post method and multipart/form-data encoding. Both of these
are necessary for files to upload properly.

The most interesting part of the script is the write_file subroutine, which actually saves
the uploaded file to disk. There’s a lot going on in this subroutine, so let’s look at it
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closely. First, the filename of the upload file sent by the browser is extracted using param
on line 39. Then, the actual filename is extracted from the full path of the file and stored
in the variable $out_filename. That’s the name that will be used for the file when it’s
stored on disk.

After the base name of the output file has been derived, the program checks to make sure
that the file doesn’t already exist. If it does exist, the number in a counter is appended to
the filename and that number is checked, until an unclaimed filename is found. This is
accomplished using the while loop that begins on line 47.

When the final name of the output file has been generated, the filehandle OUTFILE is
opened, pointing to the location of the new file. On line 54, another while loop is used
with the read function to read data from the filehandle pointing to the uploaded file. That
data is then printed to the OUTFILE filehandle. After the entire file has been printed, both
filehandles are closed.

After the file has been written to disk, the program prints a message indicating that the
file has been saved successfully, prints the ending HTML tags, and exits.

Generating HTTP Headers and HTML Tags via
CGI.pm

One use of CGI.pm is to generate HTTP headers and HTML tags so that you don’t have
to write them out in print statements yourself. The ability to generate HTML using
CGI.pm is particularly useful for people who are Perl programmers and aren’t proficient
with HTML. I would recommend learning HTML to anyone who’s serious about CGI
programming, but if you’re a Perl programmer, you can use CGI.pm to generate lots of
HTML for you. One serious flaw with this approach is that anyone wanting to change
the layout of pages you generate using CGI.pm in this way will have to know Perl, which
can be a problem if you are working on a team that includes designers who are familiar
with HTML and not Perl.

f

o Throughout this book, | use CGI.pm to generate HTTP headers so that | don't
/ have to print them myself. On the other hand, | don't use CGI.pm to gener-
e=1 ate HTML that appears in my Web documents because | don’t want this

book to focus too closely on CGI.pm.
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How to Generate HTTP Headers

As you know from Hour 3, “Downloading, Installing, and Debugging CGI Scripts,” a
CGI script is required to provide a content-type header before it produces any actual con-
tent. The header subroutine provided by CGI.pm takes care of this for you. In most of the
CGI programs written in Perl in this book, I include the following line:

print $query->header;

This line uses the header method to generate a content type header with a default MIME
type of text/html. If the output of your script is not HTML, you can change the content
type in the header by passing an argument to the header method. To indicate that the
script’s output is a GIF image, for example, the following line would be used:

print $query->header('image/gif');

There are other properties to the header method as well; if you want to use them, you
should include the property names along with the values.

_ Y/ property is an attribute of an object. The eader object, for example,
_4 A i ib f bj The CGI header obj f |
T has a number of properties that can be altered before the header is pro-
—_— 4 .
~ duced. For example, hanging the -type property allows you to change the

content type in the header.

For example, if you want to send a cookie stored in the variable $cookie to the user and
set the content type to text/plain, the following code is used:

print $query->header(-type=>'text/plain',
-cookie=>$cookie);

)

r=r
/ Cookies are discussed in full detail in Hour 15, “Session Management.”

IS5

-

The expires property is used to indicate to browsers and proxy servers how long the
document generated by the CGI script should be cached before a new copy is requested.
To tell the proxy servers to store the page for three days, use the following call to the
header method:

print $query->header(-expires=>'+3d');

Oftentimes, Web developers use a <meta> tag to indicate when documents should expire.
On pages that should not be cached, you will often find the following <meta> tag:

<meta http-equiv="expires" content="now">
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You can achieve the same effect using the header method:
print $query->header(-expires=>"'now');

Another property of the header method is status. The HTTP status code 200 Success is
normally sent to the browser with successful requests. You can override this status with
any status code you choose by setting the status property, as follows:

print $query->header(-status=>'204 No Response');

The 204 No Response code indicates that the request was successful but that no docu-
ment is being sent as a response. The browser should remain at the current URL.

How to Generate HTML Tags

CGI.pm provides methods that can be used to generate almost any tag in the HTML lexi-
con. For example, to generate a top-level heading, you can use the following code:

print $query->h1('This is a top level heading');

There are similar methods used to produce most other HTML tags. If you’re interested in
them, I’ll let you look them up in the CGI.pm documentation yourself. However, I would
like to talk about how you can use CGI.pm to generate HTML forms. I’'m not going to
use this technique elsewhere in the book, but I do use it when I’'m writing CGI scripts for
my own use.

The nicest thing about the form generation methods in CGI.pm is that they make it very
easy to redisplay a form with values that were submitted through a script. For example,
you can set a default value for a form field when you call the method to create that field.
If there is a parameter that is already in existence with the same name, the value of that
parameter will be used instead of the default value you specify.

Let’s look at a quick example. Listing 10.2 contains a simple CGI program that creates a
form with one field and a submit button. All the HTML in the file is generated using the
methods in CGI.pm.

Listing 10.2 A Program That Uses CGI.pm to Generate a Form

#!/usr/local/bin/perl

use CGI;
$query = new CGI;

print $query->header;

ONOO O~ WD =

print $query->start_html('A form generated by CGI.pm'), "\n",

continues
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Listing 10.2 continued

9: $query->h1('A form generated by CGI.pm'), "\n";
10:

11: print $query->start_form, "\n";

12:

13: print $query->p, "Favorite color: ";

14: print $query->textfield(-name=>'color',
15: -default=>'red');
16: print $query->p, "\n";

17:

18: print $query->submit, "\n";

19: print $query->end_form, "\n";

20:

21: print $query->end_html, "\n";

When you view the page, the source code in Listing 10.3 is generated.

Listing 10.3 The HTML Generated by the makeform.pl Script

1: <!DOCTYPE html

2: PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

3: "DTD/xhtml1-transitional.dtd">

4: <html xmlns="http://www.w3.0rg/1999/xhtml" lang="en-US"><head>
<title>A form generated by CGI.pm</title>

5: </head><body>

6: <h1>A form generated by CGI.pm</hi1>

7: <form method="post" action="/books/cgi24/scripts/10/makeform.pl"
enctype="application/x-www-form-urlencoded">

8:

9: <p />Favorite color: <input type="text" name="color" value="red" /><p />
10: <input type="submit" name=".submit" />
11: </form>
12: </body></html>

As you can see, all the calls to methods in CGI.pm are translated into HTML tags when
the program is executed. The default value specified for the color field is inserted into
the form field, as you’d expect. What happens if the user enters a value in the field and
submits the form? The value entered overrides the default value that’s set and appears
instead. A post-submission screen shot appears in Figure 10.1. You might also note that
the HTML generated by CGI.pmis XHTML 1.0 compliant—Lincoln Stein, the author of
CGI.pm, does a great job of keeping the module current.
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Ficure 10.1 | A form generated by CGl.pm - Mozilla Build ID; 2002053017} F.Iﬁ:l?
A CGI.pm-generated T e Edt Wew Go Bockmarks Tools Wndow tielp

form after submission. f ®@ @ ) [ nmme s 107 u 8 @ ®0
A form generated by CGLpm

Favorite color: red
Submit Query
© G @ @F @l oocumset: Done (037 ecs) e

As you can see, the new value that was entered replaces the default value. If you want the
default value to override user entered values when the form field is displayed, you must
set the override property for that field to 1. When you add the override property to the
color field, the code used to create it looks like this:

print $query->textfield(-name=>'color"',

-default=>'red',
-override=>1);

Skipping the Object-Oriented Stuff

In every example that uses CGI.pm, I’ve used it in the object-oriented manner. There’s
another way to use it that enables you to avoid creating the query object and calling all of
its methods by dereferencing that object. All you have to do is invoke the :standard flag
when you import the module, like this:

use CGI qw(:standard);

The qw() bit just means “treat all of these words as though they are in quotation marks.”
The argument basically puts all of the subroutines built into the CGI.pm module into the
namespace of the program. In other words, instead of printing the header like this:

print $query->header;
you can just use this:
print header;

The same goes for accessing the parameters in the request. If you use CGI.pm in non-
object-oriented mode, you can use the param subroutine directly within your script:

if (param->('height') > 7)

Many people always use CGI.pm in this fashion, because it saves some typing. I generally
prefer to use object-oriented mode because it makes it clear that the subroutines I’'m call-
ing are part of another package.
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cgi-lib.pl
At one time, the most popular Perl library used by authors of CGI scripts was cgi-
lib.pl. cgi-1lib.pl has been around a lot longer than CGI.pm, and was the dominant
CGlI library for Perl 4. After Perl 5 was released, CGI.pm became the most popular Perl
library and, even though it’s bundled with the standard Perl distribution, lots of people
still write CGI programs using cgi-1ib.pl. The official home page for cgi-1lib.pl is

http://cgi-1lib.berkeley.edu/

The number one advantage of cgi-1lib.pl is that it’s relatively simple, especially com-
pared to CGI.pm. By way of comparison, CGI.pm is about 180Kb. cgi-1ib.pl is about
15Kb. Of course, it offers an awful lot less functionality than CGI.pm does. To use
cgi-1lib.pl in your program, you have to process it using the require subroutine, like
this:

require "cgi-lib.pl";

The most important subroutine in cgi-1lib.pl is ReadParse. It’s the subroutine used to
copy all the form data into a data structure. To copy all the form data into a hash called
input, the following code is used:

&ReadParse(*input);

You can then access any form field by name. For example, if the submitted form con-
tained a field called address, you could access it as follows:

print $input{'address'};

Calling ReadParse with no argument will place all of your form data in the hash
called %in.

Replacing cgi-1lib.pl with CGI.pm

When CGI.pm was released, nearly all CGI scripts used cgi-1ib.pl to decode form
input. In order to get people to convert their scripts to use CGI.pm, Lincoln Stein added
functionality to CGI.pm so that it would function as a drop-in replacement for cgi -
lib.pl. 'm not recommending that you replace cgi-1lib.pl with CGI.pm if cgi-lib.pl
is working for you, but there are a lot of reasons why one might want to move to CGI.pm.
For example, CGI.pm handles cookies in a very robust manner, whereas cgi-1lib.pl has
no support for cookies. Also, there are a few methods in cgi-1lib.pl that don’t have
drop-in replacements in CGI.pm and will actually require you to change your code so that
it uses the CGI.pm methods for accomplishing those tasks, but they’re few and far
between.
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In any case, if you want to replace cgi-1ib.pl with CGI.pm, you don’t have to change
much in your programs. Just replace the line

require "cgi-lib.pl";
with
use CGI qw(:cgi-lib);

That’s all there is to it. Everything else can remain the same in your programs. For more
information on porting CGI programs from cgi-1lib.pl to CGI.pm, check out the follow-
ing URL:

http://stein.cshl.org/WWW/software/CGI/cgi-1ib_porting.html

Handling Errors with CGI::Carp

One of the most useful tools for Web developers who are trying to figure out how to fix
broken CGI scripts is the server’s error log. If a CGI program dies due to a runtime error,
the error message that the program generated when it died is stored in the error log.
Unfortunately, these error messages generally aren’t time stamped or marked with the
name of the program that generated them. The CGI::Carp module solves that problem.

When you add the line
use CGI::Carp;

at the beginning of a CGI program, the module traps the die and warn functions, adds a
time stamp and program identification information to the error message, and saves the
message in the error log. Here’s an error log entry for a program that does not use
CGI::Carp:

Can't open test.file: at /home/httpd/cgi-bin/test.pl line 5.

[Wed Feb 9 15:14:01 2002] [error] [client 10.0.0.105] Premature end of
script headers: /home/httpd/cgi-bin/test.pl

When you add the CGI::Carp module to the program, the error message looks like this:

[Wed Feb 9 15:14:18 2003] test.pl: Can't open test.file:
at /home/httpd/cgi-bin/test.pl line 6.
[Wed Feb 9 15:14:18 2003] [error] [client 10.0.0.105]
Premature end of script headers: /home/httpd/cgi-bin/test.pl

As you can see, in the second case the error report contains more detail than the first. In
these two isolated cases, the difference doesn’t seem to matter much, but when your error
log is 1,500 lines long, the extra identifying information is a big help.
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Sending error mes-

sages to the browser i @@ @ [ hitpsje3.org bosks/ogi23jserpts/ 0jcarp ol ®| @ ®O

with CGI::Carp.

Sending Fatal Errors to the Browser

When you’re developing CGI scripts, sometimes it’s better to just avoid the error log
entirely. Using CGI: :Carp, you can instead redirect fatal errors to the browser directly.
To use CGI::Carp in this mode, you should import it in fatalsToBrowser mode, like
this:

use CGI::Carp gw(fatalsToBrowser);

Then, when you try to access a script that contains a fatal error, instead of getting a stan-
dard 500 Server Error, you’ll actually get the message that’s normally printed to the
server’s error log. Figure 10.2 shows what an error message redirected to the browser in
this way looks like. When you use fatalsToBrowser, the failed request is transformed
into a successful request by CGI::Carp, so the actual server error will no longer be
logged to the server’s error log. However, the error message generated by the script itself
(along with the identifying information added by CGI: :Carp) will still be appended to
the error log.

FiGURE 10.2 | Mozilla (Build Ib: 2002053012

Y £le Edt Vew Go Bookmarks Toak Wndow Help

Software error:

Semething fsn't working ... &t /fusr/www/users/refeco/backs/cgiZé/scriprs/10/carp.pl line 7.

For help, please send mail to the webmaster (rafeco @ pair com), giving this error message and the time and date of the error

_0 @ @ G; & Document: Done (0,73 secs)  E—

= Sending errors to the browser is fine when your script is still in development

7 mode, but you should turn that feature off when you make the script avail-
“sz able over the Web. Error messages can provide information to users that
you probably don’t want to make public.

Resources for Perl Programmers

So far, I’ve described three tools that can make your life easier as a Perl programmer.
You might be wondering where you can find information about other tools or about the
Perl language itself. In this section, I’ll discuss the built-in Perl documentation, various
Web sites, and two book resources. I’1l also take a look at CPAN—the Comprehensive
Perl Archive Network, a huge archive of Perl modules that you can use to save yourself
work.
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Perl Documentation

First of all, when Perl is installed on a system, lots of documentation is installed with it.
This documentation takes three forms: man pages, POD files, and HTML documentation.

Man pages are the standard online documentation on computers running UNIX. If you
want to find out how to use the 1s command, just type man Is. If you want to find out
about perl, type man perl. Most Perl modules, including CGI.pm and CGI: :Carp, install
man pages when they are installed. When you look up documentation on a Perl module,
you leave off the .pm extension. For example, to find information about CGI.pm, you just
type man CGL.

POD files are the native format for Perl documentation (POD stands for Plain Old
Documentation). One nice thing about POD files is that the POD information can actu-
ally be stored inside a Perl program using a specialized markup language. You can use a
POD reader to extract that information from a program that has the POD information
built in. Even if a module doesn’t install a man page when it’s installed, it might still
have POD information. Under UNIX and Windows, the POD reader is the perldoc pro-
gram.

There are a lot of POD files that come with the Perl distribution. For a list of them, just
type perldoc perl. One POD file you might find particularly useful is the per1func POD
file, which contains documentation for all the functions built into Perl. To read Perl docu-
mentation for a module, use perldoc and the name of the module in the same way you’d
use the man command. perldoc CGI will get the documentation for CGI.pm, and perldoc
CGI::Carp will display the documentation for CGI: :Carp.

Finally, there’s also HTML documentation that’s installed when you install Perl under
Windows. This documentation is actually generated by a program that comes with Perl
called pod2html. Under UNIX, you can create HTML documentation from your POD
files yourself using pod2html. The ActiveState distribution of Perl for Windows does this
for you. The HTML documentation is stored under the html subdirectory of the directory
where Perl is installed. So, if you install Perl on a Windows machine in the directory
C:\perl you can find the HTML documentation in C:\perl\html.

Perl Information on the Web

The best spot for finding out more about Perl in general is http: //www.perl.com, the
official Perl home page. Not only can you access all sorts of Perl documentation and
information, but you can also read the latest Perl news and find out about the latest
releases. You might also find interesting information at http://www.perl.org, the home
page for the Perl Mongers, a group that provides advocacy and support for Perl.
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new.architect is a magazine concerned with Web development in general that covers Perl
and CGI programming very well. You can read articles from the magazine at
http://www.newarchitectmag.com.

Perl Books

There are an awful lot of Perl books on the shelves, and I'd like to recommend a couple
with which I am familiar. The book you should buy depends greatly on what you’re
looking for. If you don’t know Perl and want to learn it, I recommend Teach Yourself Perl
in 21 Days by Laura Lemay. It’s very well written and provides a gentle introduction for
novices. At the same time, it delves into deeper issues than most introductory books.

For reference purposes, the number one title by far is Programming Perl (commonly
referred to by Perl programmers as the “Camel Book™), written by the author of Perl
itself, Larry Wall, along with Tom Christiansen and Randal L. Schwartz. The book is a
bit esoteric for the true novice, but if you have a decent handle on Perl you’ll find the
book indispensable. It’s the book I keep next to my desk when I’m doing all of my Perl
programming.

The Comprehensive Perl Archive Network

If you’re writing programs in Perl and you’ve never heard of CPAN, you’re missing out.
CPAN is an online archive of hundreds of Perl modules designed for all sorts of tasks.
Long before CGI.pm was part of the standard Perl distribution, it was available through
CPAN. There are CPAN modules for date arithmetic, sending email, generating random
numbers, and everything else in between.

The modules in CPAN are written by individuals who want to contribute their source
code to the Perl community, and thus the quality of the modules varies widely. That said,
I’ve never downloaded anything from CPAN that didn’t work. There are a number of
ways to access CPAN. The two most common are via the Web and using the CPAN shell.

To access CPAN over the Web, go to the following URL:
http://www.cpan.org

When you’re there, there are a number of ways to navigate the hierarchy of modules. You
can search the archive, review a list of all the modules on a single page, or traverse the
tree of modules by author, category, name, or date of submission. After you’ve found the
module you want, it’s up to you to download it and install it.

The other option for installing modules is to use the CPAN shell. The CPAN shell is part
of the module CPAN. pm, which was written by Andreas Konig. The nicest feature of the
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CPAN shell is that when you select a module, it will automatically take the steps neces-
sary to download, build, and install the module. If there are prerequisites for the module,
it will download, build, and install them as well. To start the shell, just type the following
at a command prompt:

perl -MCPAN -e shell;

The first time you launch the CPAN shell, you have to answer a few questions. The vast
majority of users can accept the default answers to the questions, at least until they get to
the point where they have to enter the URL for their favorite CPAN site. At that point,
you should pick one from the list at

http://www.perl.com/CPAN-local/SITES.html

After you’re in the shell, you can start working with CPAN. You can get help on how to
use CPAN from within the shell by typing h at the cpan> prompt. You can also find out
more about how to use CPAN by typing man CPAN or perldoc CPAN at a prompt.

I
\

3

The CPAN shell only works reliably on systems running UNIX.

(4

Windows users can use the PPM program that comes with ActiveState Perl to locate and
install modules. PPM is short for Perl Package Manager, and it allows you to browse a
library of available modules, search for specific modules, download them, and install
them. To start PPM, just look for it in the ActiveState Perl folder in your Start menu.
Once it’s started, you’ll be presented with a command line window.

To find a module, just type search and part of the module name. For example, let’s say I
want to install the Date: :Calc module, which is used to perform arithmetic on dates and
times. At the PPM prompt, I type:

ppm> search calc

Several modules (with names containing “calc’) will be listed. Date::Calc is the first in
the list, so I type install 1 at the prompt. PPM checks for module dependencies, and
discovers that the Bit: :Vector module is required by Date: :Calc. It downloads and
installs that module and then proceeds to install Date: :Calc. Once I've installed it, I can
verify that it’s there by typing:

ppm> query calc

This lists all of the matching modules that are installed on my local machine. Sure
enough, Date: :Calc is listed.
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Summary

In this hour, you took a closer look at the tools and resources you can use to assist you in
writing CGI programs in Perl. First, I discussed some of the capabilities of CGI.pm. I
then contrasted it with cgi-1ib.pl, a simpler library for decoding form data. Next, I
looked at CGI::Carp, a tool to assist programmers in debugging CGI programs. Finally,

I talked about some places where you can look for more information on Perl, and
explained how to find and download modules in CPAN.

Q&A

Q What is the performance difference between CGI.pm and cgi-1lib.pl?

A Under some situations, using cgi-lib.pl instead of CGI.pm can reduce compila-
tion time for CGI programs by half. If performance is a big issue, you might con-
sider using cgi-1lib.pl. Most Perl programmers who are confronted with
performance constraints tend to lean toward using mod_perl to execute their pro-
grams. This alternative is discussed in Hour 12, “Pros and Cons of Alternate
Technologies.”

Q Is it okay to use code downloaded from CPAN on commercial sites?

A This varies depending on the license for the individual module you’re download-
ing. However, as a general rule, if it’s okay to use Perl for a task, it’s okay to use
modules downloaded from CPAN for that task.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. Which method in CGI.pm is used to generate the <form> tag that begins forms?

2. Which subroutine in cgi-1lib.pl is used to import form variables into a CGI pro-
gram?

3. True or false: cgi-1ib.pl supports cookies.

Exercises

1. Check out the documentation for CGI.pm, and create a document that produces all
the HTML tags using methods from CGI.pm.
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2. Search CPAN for a module that will perform a task that you would ordinarily write
code to perform yourself. Download and install that module.

Quiz Answers
1. The form() method in CGI.pm is used to generate <form> tags.

2. The ReadParse () subroutine in cgi-1lib.pl imports form variables into your pro-
gram.

3. False.
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Other Popular CGI
Programming Languages

One of the most powerful features of CGI is its language independence. Any pro-
gramming language that meets a few simple criteria can be used to develop CGI
programs. In this hour, I'm going to explain how to write CGI programs in two
languages other than Perl.

In this hour, you’ll learn

* What criteria permit a language to be used for CGI programs
* How to write CGI programs using the Bourne shell

* How to write CGI programs in C

* How to use the cgic library with your C programs

* How to write CGI programs in Python

Will My Favorite Language Work for CGI?

One big question most programmers face when they start to learn about CGI is
whether their favorite programming language will work for writing CGI scripts.
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If that language is Perl or the Bourne shell, the answer is a resounding yes. However, the
truth is that many languages are suitable for use in writing CGI programs; they just have
to meet a few simple criteria.

These criteria are easy to deduce when you think about how CGI programs work. First,
let’s look at how CGI programs are called. CGI programs are invoked by the Web server.
The key here is that the server must be able to call the program by name alone. In other
words, if your program must be called by passing the program name as an argument to
the program interpreter, or with particular arguments, it isn’t going to work in the CGI
environment. That’s a big reason why Java won’t work for writing CGI scripts. (You
have to call Java programs using the Java virtual machine.)

Next, let’s look at how CGI programs accept input. Data can be passed to a CGI script in
one of two ways. Either the data can be stored in an environment variable, or it can be
passed to the program via standard input. To use a programming language to write CGI
programs, it must be able to access and process data passed to it using either of these
methods.

Finally, let’s look at the output of CGI programs. When any computer program is exe-
cuted as a CGI program, all the data printed to standard output is returned to the browser.
As long as your program is capable of printing text data and sending it to standard out-
put, you’re fine here.

As you can see, CGI is associated with command-line programs. Programming environ-
ments like PowerBuilder and Visual Basic are unsuitable for CGI programming because
they are geared toward creating programs that allow the user to interact with them via a
graphical interface. Simpler scripting languages that work from the command line tend to
work best.

Writing CGI Programs Using the Bourne Shell

When you think about UNIX shells, you usually think about the interactive command-
line environment available to UNIX users. When you use Telnet to connect to a computer
running UNIX, or you’re sitting at a computer running UNIX, you enter all your com-
mands into a shell. The closest equivalent to a UNIX shell on a computer running
Windows is the MS-DOS prompt.

One of the ingenious things about the UNIX shells is that they are also a full-featured
programming environment. All the UNIX shells provide the programming constructs that
you’d expect from any scripting environment, and can be used for application develop-
ment. This hour is concerned with writing CGI programs using a UNIX shell.
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All the programs in this hour will be written in the Bourne shell (generally found at
/bin/sh on UNIX systems). There are two reasons for this. The first is that the Bourne
shell is available on every system running UNIX. The programs in this hour should run
on every computer running UNIX with no alterations. (Windows users who have Cygwin
installed should also be able to run them.) The second is that the Bourne shell is gener-
ally considered to be the best shell for programming. Lots of people also write programs
in the C Shell (/bin/csh), but there are some good reasons not to do that. Those reasons
are outlined in the seminal article “Csh Programming Considered Harmful,” which can
be found at

http://www.faqgs.org/faqs/unix-faq/shell/csh-whynot/

How Shell Scripts Work

Shell scripts are truly interpreted, unlike scripts written in Perl. The scripts are processed
and executed one line at a time; they aren’t compiled before they are executed. In that
sense, they differ from Perl in an important way. The script has no prior knowledge of
what lies ahead in the script at runtime. You can’t place function definitions later than
calls to those functions in the script.

Shell scripts begin just like all UNIX scripts. The first line is the shebang line, which
points to the application used to execute the script. (The line is called the shebang line
because the first character is sometimes referred to as the “hash” character, and exclama-
tion points are often referred to as “bangs.” So, shebang is a useful mnemonic reminder
of how the line is constructed.)

If you’re writing a Bourne shell script, the first line should be
#!/bin/sh

The next step, of course, is to print the content type header, which is required of all CGI
scripts, regardless of the language they’re written in. The echo command is used for
printing in shell scripts, and automatically appends a line feed to its output, unless it’s
executed with the -n flag. To generate the content type header, the following lines of
code are used:

echo 'Content-type: text/html'
echo

After you’ve printed the header, you can print out the actual HTML document. You can
use any shell command you like within a shell script, so if the HTML is stored in another
file, you can just print it using the cat command, like this:

cat whatever.html
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The contents of the file would be read from the disk and printed. If you prefer, you can
just use echo to generate the HTML for your document. Here are some echo statements
that print HTML.:

echo "<html><head><title>Example</title></head><body>"
echo "Just an example.</body></html>"

A full script looks like this:

#1/bin/sh
echo 'Content-type: text/html'
echo

echo "<html><head><title>Example</title></head><body>"
echo "Just an example.</body></html>"

Creating Gateways to UNIX Commands

One of the most common uses of shell scripts in CGI programming is to create Web
gateways to UNIX commands. Rather than logging into a server using Telnet or SSH
every time you want to find out some of the vital statistics for the machine, it might be
easier just to write a CGI script that executes the commands you’re interested in and
prints the results to an HTML document. Shell scripts consist mostly of UNIX com-
mands, so using shell scripts to create these kinds of CGI programs is an obvious choice.

Let’s look at a script that executes several commands that are of use to system adminis-
trators and that provide a general picture of how the computer is doing. You’ll execute
the uptime command to see how busy the server’s processor is. You’ll use df to see
whether any of the file systems are running out of space. Then you use uname -a to
check out the system type for the server. The script itself is very simple. It doesn’t accept
any arguments and just prints out the output of those commands inside <pre> tags so
that the layout of the output is preserved. The source code for the script appears in
Listing 11.1.

Listing 11.1 A Shell Script That Executes UNIX Commands

#!/bin/sh

echo "Content-type: text/html"
echo

echo "<html><head><title>System Status</title></head><body>"
echo "<h1>System Status</ht1>"

echo "<h3>uptime</h3>"

echo "<pre>"

uptime

S WO NOOA~WN =

—_
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11: echo "</pre>"

12: echo "<h3>drive space</h3>"
13: echo "<pre>"

14: df -k

15: echo "</pre>"

16: echo "<h3>system type</h3>"
17: echo "<pre>"

18: uname -a

19: echo "</pre>"

20: echo "</body></html>"

As you can see, the three shell commands appear as bare words in the script. They’re
executed as they’re encountered. echo is also a shell command, and is in this case used to
print out the HTML tags and HTTP header information. The df -k command prints out
a list of the drives connected to the system, and how much capacity they have remaining.
The -k flag indicates that the values in the output should appear in kilobytes. The uname
-a command prints out all the values associated with uname. The output of the script
appears in Figure 11.1.

FIGURE 11.1 System Status - Mozilla {Bulld ID: 2002053012} =113
v
The output ofa shell g Ele Edt Wew Go Bookmarks Took Wndow Help
Scrl'pt that executes @ . @ ) | % hupsjjres.argboaks/ogizgjscrpts/ 1 yfshel .cg @] @ @@0
UNIX commands.
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drive space
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fdev/ad0slf 24857363 13331483 09537201 ses fuszt
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procfs 5 4 a 100% /root/pzoc
system type
FreeBSD umbar.pair.com 4.1.1-STABLE FreeBSD 4.1.1-STABLE #1: Tue Rpr 232 10:00:42 EDT
q I -y
© & & @ & oocurent: Done (0,141 95c5) [ —

Working with Query Strings
As an alternative to processing form data, you can work with raw query strings in your
shell CGI programs. When you execute a script from the shell prompt, the arguments
passed to the script are made available in numbered environment variables. The first
argument to the script is stored in $1, the second in $2, and so on. The query string in a
request for a CGI program is passed to that program as a command-line parameter. So, if
you request the URL http://localhost/cgi-bin/test.sh?foo, the $1 variable will be
set to foo.
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Sending multiple arguments is easy, too. All you have to do is separate each argument
with a space. You can URL-encode the spaces in one of two ways. Web servers will con-
vert plusses into spaces. So to send the arguments foo, bar, and baz to a script, you
would use the URL:

http://localhost/cgi-bin/test.sh?foo+bar+baz

To URL-encode a space, you can also use the code %20, the ASCII code for a space.
However, using %20 isn’t as reliable. Some Web servers will not split the arguments on
%20. So, if you use the following URL, all the arguments will be stored in $1:

http://localhost/cgi-bin/test.sh?fo0%20bar%20baz

Writing a Program That Uses the Query String

Now that you know how to pass data to a shell script through the query string, let’s look
at some programs that might use that data. Often, shell programs are used to provide a
Web interface to UNIX programs. For example, you could write a program that accepts
the path to a file and then deletes that file. That probably wouldn’t be such a good idea,
though, because it would allow any user to delete files on your server. Another example
might be a program that lists the users currently logged into a server.

When you write programs that allow you to run shell commands over the Web, you have
to be extremely mindful of the security concerns involved. These issues are discussed in
detail in Hour 22, “Securing CGI Scripts.” The main thing you have to prevent is the use
of shell meta-characters in the arguments passed to the script. For example, let’s say
you’ve written a script that uses the finger command to get information about one of the
system’s users. The name of the user to finger is passed to the script as its argument.
What happens if the URL looks like this:

http://localhost/cgi-bin/finger.sh?user;rm%20-rf%s20/

If the script were set up to paste the argument into a shell command, the finger command
would work as expected, the semicolon would be interpreted as the break between two
commands, and the CGI script would also attempt to execute the command rm -rf /.
UNIX users know that this command attempts to delete every file on the root file system
with prejudice. (Of course, even if you wrote your script badly and allowed this com-
mand to be executed, you wouldn’t be running your Web server as the root user, so this
command wouldn’t work anyway, right?)

The easiest way to prevent malicious people from executing dangerous commands
through your shell CGI scripts is to perform all your environment variable expansions
inside double quotation marks. In other words, finger "$QUERY_STRING" is not danger-
ous, but finger $QUERY_STRING is. Needless to say, in the sample program, I'll stick to
the former usage.
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So let’s look at using the query string to pass arguments to the script. The purpose of this
script is to use the finger command to retrieve information about one of the system’s
users. The source code for the script is shown in Listing 11.2.

Listing 11.2 A Shell Script That Receives Its Arguments in the Query String

: #!/bin/sh

1
2:
3: echo "Content-type: text/html"

4: echo

5: echo "<html><head><title>finger $1</title></head><body>"

6: if [ -n "$1" ]; then

7 echo "<hi>finger $1</h1>"

8: echo "<pre>"

9: finger "$1"

10: echo "</pre>"

11: else

12: echo "You must specify the name of the user you want to finger."
13: fi

14: echo "</body></html>"

Let’s look at the script. First, on line 3, the script prints out the HTTP header. The echo
statement on line 4 prints a blank line to separate the header from the body of the
response. Line 5 prints the beginning HTML for the page and the page title.

You only want to attempt to finger a user if he supplied an account name in the query
string. On line 6, I test the contents of $1 (the first argument to the script) to determine
whether an account name was supplied. The -n test is true if the string provided as an
argument is not null. If the string is empty, the condition evaluates as false. Note that $1
is enclosed in double quotation marks in order to avoid security problems.

If an argument was specified, the script passes the specified username to the finger
command. The output of the finger command is sent to the browser. The $1 variable is
placed within double quotation marks for security reasons. It doesn’t affect how the
finger command works.

Writing CGl Programs in C

C is one of the most popular programming languages in the world. It’s the language in
which operating systems, applications, and even other programming languages are writ-
ten. It’s a compiled, low level language. For these reasons, C programs offer great perfor-
mance. Because C is generally associated with system programming and has been around
for a very long time, C compilers are also tuned to compile applications that offer the
best performance possible.



|196

Hour 11

The main problems with C from the CGI programmer’s perspective are the things that
make it great for system programming. Most CGI programmers prefer higher level lan-
guages that provide lots of built-in functions that make writing CGI programs easy. C, on
the other hand, is a low level language suited to any task. Unfortunately, that means that
you have to write code to perform tasks that are greatly simplified in many popular
scripting languages. The other problem with C for CGI programmers is that it’s a com-
piled language. Compilation adds another step to the development cycle that can slow
development significantly.

For many applications, the performance gains obtained by using programs written in
compiled languages rather than scripting languages are crucial. Generally speaking, in
the CGI environment this just isn’t so. If CGI does become a bottleneck, generally it’s
easier to port your programs to a development platform that does not use the CGI inter-
face than it is to rewrite all your programs in C. Besides, CGI has other disadvantages
aside from raw performance that can be avoided by moving to another interface.

The cgic Library

cgic is a CGI library for C written by Thomas Boutell (http://www.boutell.com/
cgic). Like CGI.pm and cgi-1lib.pl, it is used to decode data submitted by the user and
make it available within your CGI program. The only difference is that this library is
written to work with C programs instead of programs written in Perl or any other lan-
guage.

Before you can use cgic, you have to import it into your C program. Generally, it is loaded
into your CGI program using a line like:

#include "cgic.h"

Programs written to work with cgic differ from standard C programs in some ways. All
C programs must contain a function named main () in order to compile and execute prop-
erly. When you write programs that use cgic, you eliminate the main () function and
instead start with a function called cgiMain().

cgic provides the main() function so that it can perform all of the setup necessary to get
the environment ready for your code. The main() function takes care of parsing all the
form data and reading in data from environment variables; it then calls the cgiMain ()
function, which you write yourself.

Printing Headers

cgic provides three functions for generating HTTP headers from your script. Usually,
you’ll use the cgiHeaderContentType() function, which accepts the content type of the
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data your script generates as an argument. If your script generates HTML, you’d call it as
follows:

cgiHeaderContentType("text/html");

If you want to redirect the user to a different location, the cgiHeaderLocation() func-
tion is used. It accepts the URL to which the user should be redirected as an argument.
To send a status code other than 200 (the default), you can use cgiHeaderStatus(),
which accepts a status code as an argument. You can only use one of the header functions
in your program.

Printing Output

Rather than just using the printf function, it is recommended that you use fprintf to
write output to cgiOut in programs that use cgic. cgiOut is basically a wrapper for stan-
dard output; the advantage of using it is that it makes your programs more portable. If at
some point it’s advantageous for CGI programs to print to somewhere other than stan-
dard output, cgic will be updated so that cgiOut sends its output there instead, and you
won’t need to make updates to your programs.

Let’s look at a typical fprintf function call used with cgic:
fprintf(cgiOut, "<html><head>\n");

Right now, this is equivalent to

printf("<html><head>\n";

As I said, using the fprintf function puts you in better shape for the future.

Handling Form Input

One of the big differences between C and a scripting language like Perl is that C is more
rigorous about how its variables are defined. When you’re dealing with a string in Perl,
you can just stuff it into a scalar variable. You don’t have to predefine the variable, spec-
ify how big it is, or indicate what type of data is stored in it. String handling in C is sig-
nificantly more complex. I won’t discuss it here because it’s assumed that if you’re
interested in writing CGI programs in C, you’re already a C programmer. However, I will
explain how form input, which generally consists of strings, is handled with cgic.

Handling String Data

When you want to handle string data from a form, the first thing you need to do is
declare a variable in which to store the data. C strings are arrays of characters, and it’s
extremely important to make sure that your arrays are large enough to hold all of the data
submitted by the user. If more data is submitted than can be stored in the memory that
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you allocate, a buffer overflow occurs. Buffer overflows are a huge security problem, so
you should take every measure you can to avoid them.

Let’s say your form contained a field called name that you specified with a maxlength of
80 characters. The following code is used to copy it into a variable in your program
called name:

char name[81];
cgiFormStringNoNewlines("name", name, 81);

First, I declare an array of characters called name that can store up to 81 bytes of infor-
mation. The first 80 characters are allocated for storage of the user’s input, and the last
character is used to store the null character that marks the end of the string. On the next
line, I use cgiFormStringNoNewlines to retrieve the data that the user submitted. The
function accepts three arguments: the name of the form field, the name of the buffer in
which the form data should be stored, and the maximum size of the string to be retrieved.
If the value submitted is larger than the number of bytes you specify, the value will be
truncated and cgiFormStringNoNewlines () will return a different value.

By allowing me to specify the amount of information to retrieve, cgic allows me to
avoid buffer overflows. As you already know, a malicious user is not constrained by
MAXLENGTH attributes in forms. They can easily submit more data than you request in a
number of ways. The functions that retrieve form values in cgic protect you from this
sort of activity by constraining the amount of data they return. An additional feature of
cgiFormStringNoNewlines () is that it strips any linefeeds from the data it returns. If
you're retrieving data from a <textarea> field, you might want to use cgiFormString(),
which preserves linefeeds in the user submitted data.

Handling Numeric Data

As you know, C discriminates between numeric data and character data. If you want to
treat data submitted by a user as a number, you have to retrieve it using numeric func-
tions. There are four numeric functions associated with cgic. cgiFormInteger() and
cgiFormDouble() are used to retrieve integer and floating point data respectively.
cgiFormIntegerBounded() and cgiFormDoubleBounded () retrieve integer and floating
point data with bounds checking. Let’s look at the cgiFormDoubleBounded () function;
you can find out more about the rest of the numeric functions in the cgic documentation.

The cgiFormDoubleBounded () function accepts five arguments. They are the name of the
form field, the address of the variable to store the value in, the data’s lower bound, the
data’s upper bound, and the default value to return. A call to cgiFormDoubleBounded ()
looks like this:

double state_tax_rate;
cgiFormDoubleBounded("tax_rate", &state_tax_rate, .05, .65, .25);
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The value is retrieved from the tax_rate field and stored in the variable
state_tax_rate. The value cannot be less than .05 or more than .65. If the value is out-
side the specified bounds, it is automatically changed to the bound that it violates. If the
user entered the number 1000 in the field, it would be changed to .65. If the parameter is
missing or no value was entered, the default value is returned, in this case .25.

Handling Single Check Boxes

The methods of accessing form data I just described work perfectly for text, password,
hidden, submit, and textarea fields. Let’s look at how checkbox fields are handled. As
you know, when a checkbox field is included on a form, if it is checked, the name and
value pair associated with the field are sent to the server. If it’s not checked, that name
and value pair are just left out. cgic provides a function that makes it easy to handle sin-
gle check boxes. The cgiFormCheckboxSingle function tests for the existence of a par-
ticular parameter, and if it exists, returns cgiFormSuccess. If it doesn’t exist, it returns
cgiFormNotFound. Code to test whether a checkbox field named citizen was checked
looks like this:

if (cgiFormCheckboxSingle("citizen") == cgiFormSuccess) {
fprintf(cgiOut, "Glad you're a citizen!\n");

}

else {
fprintf(cgiOut, "Wish you were a citizen.\n");

}

Handling Single Select Fields

Select lists without the multiple flag and radio button groups allow users to select one
of a group of options. The simplest method of handling these fields is to use the
cgiFormStringNoNewlines () function to copy the value that the user selected into a
string variable and use it from there, just as you would with a text-based input field.
However, cgic also lets you define a list of options for a particular field in your program
and then correlate the user’s input with that list of values.

Let’s look at how this code works. First, I have to create an array that contains a list of
options that were presented to the user:

char *counties[] = {
"Wake",
"Orange",
"Chatham",
"Johnston"

b

To determine which option the user chose, I use the cgiFormSelectSingle() function as
follows:

int user_county;
cgiFormSelectSingle("county", counties, 4, &user_county, 0);
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The arguments to cgiFormSelectSingle() are the query parameter from which to
retrieve the value, the name of the array containing the list of options, the number of
options in the array, the variable in which to store the retrieved value, and the array index
of the default option. The index of the option that the user chose is stored in the specified
variable. If the user’s choice is not in the list, the default value specified is stored in the
variable.

There’s also a function meant for handling radio button groups called cgiFormRadio().
Although it might seem counterintuitive, the only difference between cgiFormRadio ()
and cgiFormSelectSingle () is the name. In other words, you can use either function for
a single select list or for a radio button group.

Even though cgiFormSelectSingle() and cgiFormRadio() are identical
today, you should use the appropriate function for the field in your form in
Z case changes are made later to differentiate the two functions.

Handling Multiple Select Fields

The cgiFormSelectMultiple() and cgiFormCheckboxMultiple () functions are used to
handle form fields from which the user can select multiple values. They each work with
two types of fields—select lists that allow you to select multiple items, and multiple
check boxes with the same name. Both of these send back multiple parameters with the
same name to the CGI script. Handling this type of field is moderately complex, at least
compared to how the other data handling functionality works.

cgiFormSelectMultiple() and cgiFormCheckboxMultiple() work exactly the same
way. Each function accepts five arguments. The first argument is the name of the para-
meter that was submitted to the script. The second argument is a pointer to an array of
possible values associated with the parameter. The third argument is the number of ele-
ments in the array of possible values. The fourth argument is the name of an array of
integers with the same number of elements as the array of possible values. Each element
in this array will be set to true or false depending on whether the user submitted the cor-
responding value in the array of possible values. The final argument is an integer vari-
able that will be set to the number of values submitted that aren’t in the list of possible
values.

Let’s take a look at how to handle the counties field if multiple selections were allowed:

char *counties[] = {
"Wake",
"Orange",
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"Chatham",

"Johnston"
b
int selected_counties[4];
int invalid;
cgiFormSelectMultiple("county", counties, 4, selected_counties, &invalid);
As you can see, three variables have to be defined in order to use
cgiFormSelectMultiple() or cgiFormCheckboxMultiple(). The counties array con-
tains a list of possible values that can be submitted. The selected_counties array is an
array of integers that the cgiFormSelectMultiple() function stores its results in, and
invalid is an integer variable used to store the number of submitted values that aren’t in
the list supplied to the function.

Let’s say that the user submitted the form with the options Wake and Chatham selected.
When the cgiFormSelectMultiple() function is executed, the selected_counties
array is updated so that the first and third elements are set to true. These elements actu-
ally have 0 and 2 as indexes because array elements in C are numbered beginning with 0.

There’s also a simpler, less reliable method for extracting data in cases where multiple
parameters with the same name are submitted. The cgiFormStringMultiple() function
accepts two arguments, the name of the field to retrieve data from, and an array to stuff
the data into. Each of the values is stored in a separate element of the array. This method
isn’t as failsafe as the more complex method described previously because it operates
under the assumption that the user isn’t malicious and won’t send data that isn’t in the
form. This function is used in the example below.

A C Example

This is a simple example of a form handling program written in C. It accepts user input
submitted through a form, and prints the values that the user entered. The source code for
the program appears in Listing 11.2.

Listing 11.2 A Sample CGI Program Written in C

#include <stdio.h>
#include "cgic.h"

void print_name();

void print_secure();

void print_operating_system();
void print_browser();

© oo ~NOOO D WN =

int cgiMain() {

continues
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Listing 11.2 continued

10: cgiHeaderContentType("text/html");

11: fprintf(cgiOut, "<html><head>\n");

12: fprintf(cgiOut, "<title>C Example</title></head>\n");
13: fprintf(cgiOut, "<body><h1>C Example</hi1>\n");

14: print_name();

15: print_secure();

16: print_operating_system();

17: print_browser();

18: fprintf(cgiOut, "</body></html>\n");

19: return 0;

20: }

21:

22: void print_name() {

23: char name[81];

24: cgiFormStringNoNewlines("name", name, 81);

25: fprintf(cgiOut, "Name: %s<br />\n", name);

26: }

27:

28: void print_secure() {

29: if (cgiFormCheckboxSingle("secure") == cgiFormSuccess) {
30: fprintf(cgiOut, "<p>Your browser supports secure connections.</p>\n");
31:

32: else {

33: fprintf(cgiOut, "<p>Your browser does not support ");
34: fprintf(cgiOut, "secure connections.</p>\n");

35: }

36: }

37:

38: char *operating_systems[] = {

39: "Mac 0S",

40: "Windows",

41: "Linux"

42: };

43:

44: void print_operating_system() {

45: int os_choice;

46: cgiFormSelectSingle("operating_system", operating_systems, 3,
47: &os_choice, 0);

48: fprintf(cgiOut, "<p>The operating system you use is %s.</p>\n",
49: operating_systems[os_choice]);

50: }

51:

52: char *browsers[] = {

53: "Netscape Navigator",

54: "Mozilla",

55: "Opera",

56: "Internet Explorer"

57: };

58:
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59: void print_browser() {

60: int 1i;

61: int result;

62: int valid;

63: char **browsers;

64:

65: fprintf(cgiOut, "<p>Browsers chosen:<br />\n");

66: result = cgiFormStringMultiple("browser", &browsers);
67: if (result == cgiFormNotFound) {

68: fprintf(cgiOut, "No browsers selected!<br />\n");
69: }

70: else {

71: int i = 0;

72: while (browsers[i]) {

73: fprintf(cgiOut, "%s\n<br />", browsers[i]);

74: it++;

75: }

76: }

77: fprintf(cgiOut, "</p>\n");

78: }

This script uses several of the functions provided by cgic to process the form data that is
submitted. As required by cgic, the program is built around the cgiMain () function,
with separate functions to handle each field on the form. In the cgiMain() function
(which begins on line 9), I call the cgiHeaderContentType () function to print out the
header. (I could just as easily print the header myself, but it’s better programming to let
the library take care of it.)

After the header is printed, I use the fprintf statements on lines 11-14 to start the
HTML on the page. When I get to the page body, I start calling the form processing
functions. The first function I call is the print_name () function, which begins on line 22.
It uses the cgiFormStringNoNewlines () function to extract a value of up to 80 charac-
ters from the form data, and prints it out.

The second function called is the print_secure() function, which processes a check
box and begins on line 28. It uses the cgiFormCheckboxSingle () function, which returns
either cgiFormSuccess or cgiFormNotFound, depending on whether the check box was
checked on the form. I test the value returned by the function, and print the appropriate
message.

The next field to be processed is handled by the print_operating_system function on
line 44, which deals with a single item select list. It uses cgiFormSelectSingle() to
extract the value the user entered, and then displays it.
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The final function is the print_browser () function, which handles a group of check
boxes submitted from the form. It uses the simpler cgiFormStringMultiple() to retrieve
the user input, and places it in the browsers array. I store the value returned by the
cgiFormStringMultiple () function so that I can determine whether the user checked
any of the check boxes. If he didn’t, I print out a message indicating so. If he did, I use a
while loop to iterate over the browsers array and print out each of the elements. After
the print_browsers () function has been executed, I print out the closing HTML tags for
the page, and the program exits. The form used to submit data to this script appears in
Listing 11.3.

Listing 11.3 The Form Used to Submit Data to the Sample Program

1: <html>

2: <head>

3: <title>C CGI Script Test</title>
4: </head>

5: <body>

6:

7: <h1>CGI Example</h1>

8:

9: <form action="sample">

10: <p>

11: Name: <input type="text" name="name">
12: </p>

13:

14: <p>

15: <input type="checkbox" name="secure" value="yes">
16: My browser supports secure connections.

17: </p>

18:

19: <p>

20: <select name="operating_system">

21: <option value="Mac 0S">Mac 0S</option>
22: <option value="Windows">Windows</option>
23: <option value="Linux">Linux</option>
24: </select>

25: </p>

26:

27: <p>

28: I use these browsers:<br />

29: <input type="checkbox" name="browser" value="Netscape Navigator" />
30: Netscape Navigator<br />

31: <input type="checkbox" name="browser" value="Mozilla" />

32: Mozilla<br />

33: <input type="checkbox" name="browser" value="Opera" />

34: Opera<br />

35: <input type="checkbox" name="browser" value="Internet Explorer" />
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36: Internet Explorer

37: </p>

38: <p><input type="submit" /></p>
39: </form>

40: </body>

41: </html>

Writing CGI Programs in Python

Python is a scripting language that is in some ways similar to Perl. Many people prefer
Python because it’s highly object oriented, which makes it easy to write highly struc-
tured, maintainable programs. This section of the chapter is written for people who
already know how to program in Python, but have never used Python for CGI program-
ming.

Writing a CGI program in Python is as simple as writing one in any other language. As
long as your program prints a valid content type header and generates content that con-
forms to that content type, you’re out of the woods. The most difficult part of writing a
CGI program in any language is processing form input. Unsurprisingly, there’s a module
for translating form data using Python. It’s called cgi.py.

Let’s look at how form parameters are decoded and accessed using cgi.py. Dot notation
is used to access methods and properties of objects in Python. The first step is to import
the cgi.py module using the following import statement:

import cgi

As you might imagine, this imports the CGI module into your program. At that point,
you can create an object that contains all the form data by calling the FieldStorage ()
method of the CGI object. Here’s how that code looks:

form = cgi.FieldStorage()

At this point, all the form data is stored in the object form. form is what’s known as a
dictionary object—it’s like a hash in Perl. To access an item in a Python dictionary, you
just pass the name of the object to retrieve the value. For example, to retrieve the county
field you’d use the following code:

county = form["county"]
To print the value in that field, you could use the following print statement:

print county.value
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If your form contains multiple check boxes with the same name, or a select list that
allows multiple selections, the FieldStorage() function will return a list of values for
that field rather than a single value. You can then access the list of values using a for
loop, like this:

counties = form["counties"]
county_list = ""
# Iterate over all of the counties that the user selected
# for county in counties:
# If the county_list already contains an item, insert a
# comma before adding the next one
if county_list:
county_list = county_list + "," + county.value
# In this case, no counties have been added to the list
else:
county_list = county.value

If the form the user submitted contains a file field, you can access the file in the same
way you access any other data. First, you can retrieve the field from the form object:

uploaded_file = form["file_field"]
Then, you can access the file using the property of the field object, like this:

uploaded_file.file.readline()

A Python Example

Now let’s look at an example written in Python. If the user’s form input contains the hid-
den field action, the script processes that information. Otherwise, it prints a new form to
be filled out. The source code for the script is in Listing 11.4.

Listing 11.4 A CGI Script Written in Python

1: #!/usr/local/bin/python

2:

3: import cgi

4: form = cgi.FieldStorage()

5:

6: def print_page_start():

7: print "Content-type: text/html\n\n"
8: print "<html><head><title>Example Form</title></head><body>\n"
9: print "<hi1>Example Form</h1>"
10:
11: def print_page_end():
12: print "</body></html>\n"
13:

14: def print_form():
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15: print "<form>\n"

16: print "<input type=\"hidden\" name=\"action\" value=\"process\" />\n"
17: print "Name: <input name=\"name\" /><br />\n"
18: print "Age: <input name=\"age\" /><br />\n"
19: print "<input type=\"submit\" />\n</form>\n"
20:

21: def process_form(form):

22: try:

23: name = form["name"].value

24: except:

25: print "You must enter your name.\n"

26: print_page_end()

27: raise SystemExit

28:

29: try:

30: age = form["age"].value

31: except:

32: print "You must enter your age.\n"

33: print_page_end()

34: raise SystemExit

35:

36: print "<p>Your name is " + name + ".</p>\n"
37: print "<p>Your age is " + age + ".</p>\n"

38:

39: # Check for the existence of the action parameter
40: try:

41: action = form["action"].value

42: except:

43: action = None

44:

45: print_page_start()

46:

47: # If the form was submitted, process it. Otherwise, print the form
48: if action == "process":

49: process_form(form)

50: else:

51: print_form()

52:

53: print_page_end()

The script starts the same way CGI scripts written in Perl do—with a pointer to the inter-
preter used to execute the script. In this case, there’s a pointer to the Python interpreter
on line 1. On line 3, I import the Python CGI module, and on line 4, I copy the form
parameters into the form object using the FieldStorage () method of the CGI module.

At that point, I define a few subroutines. The print_page_start subroutine, which starts
on line 6, and print_page_end, which starts on line 11, are very similar to the subrou-
tines I include in my Perl programs. The print_form (line 14) subroutine is used to
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generate the form if the user requested the script without submitting the form. The
process_form subroutine on line 21 is where the action takes place. I'll go back to it
in a bit.

After I define all the subroutines I’'m going to use, I get to the main body of the script.
On line 48, T use an if statement to check whether the action parameter exists. If it
does, I set the action variable equal to the action parameter’s value. If it doesn’t, I set
the variable to None.

I then use print_page_start to print the first chunk of HTML in the program. After
that, I check whether action is equal to process. If it is, I call the process_form sub-
routine, and if it isn’t, I print the form.

The process_form subroutine is where most of the action takes place. The user is
required to enter both their name and age. The program attempts to read the values into
variables, and if there are no values, an error occurs when the code in the except blocks
is executed. These blocks print an error message, called the print_page_end subroutine,
and then raise SystemExit to stop the execution of the program.

Summary

This hour was directed at people who are familiar with shell, C, or Python programming,
and would like to use one of those languages to write CGI scripts. It introduced libraries
you can use with those languages to make it simpler to write CGI programs.

Q&A

Q My favorite programming language still hasn’t been covered!

A 1It’s possible to write CGI programs in almost any programming language. You
should research your favorite programming language on the Web to find out how to
use it to write CGI programs.

Q Can I write CGI shell scripts that run under Windows?

A Not easily. More importantly, one wonders why you would want to do such a
thing. Most of the advantages of writing your CGI programs in a UNIX shell are
tied to the command-line—oriented paradigm of UNIX. Windows does not provide
the advanced command-line functionality that UNIX does, so it really doesn’t
make sense to write shell scripts in that environment.
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Q Are there any advantages to writing CGI programs as shell scripts instead of
in Perl?

A If you aren’t an expert shell scripter, and you already know Perl, I don’t really
think there are any advantages to writing CGI programs using shell scripts. There
are some things that are easier to do in a shell program than they are to do in Perl,
but there are a lot more tasks associated with CGI programming that Perl makes
easier than shell scripting. You can call any shell command within Perl that you
can call from a shell script, so there’s no advantage there. If you want to write a
very simple program that just sends the output of a UNIX command to the
browser, using a shell script instead of a Perl program probably makes sense.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour.

Quiz
1. Why must you not pass unprotected user input to a shell command?

2. What is the difference between the cgiFormSelectSingle() and cgiFormRadio ()
functions in cgic?

3. Why is it important to make sure that you allocate enough space for strings in CGI
programs written in C?

Quiz Answers

1. Users can send shell commands to your scripts through form fields. If you pass
those commands to the shell, they can cause security problems.

2. There is no difference between the two functions.

3. If you try to store a string in a variable that is not large enough to hold it, a buffer
overflow occurs.
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Pros and Cons of
Alternate Technologies

The real goal of this book is not to just teach you how to write CGI programs,
but how to build Web applications. CGI programming is just one means to
that end. However, there are plenty of other platforms available upon which
you can build Web applications. Most of them offer some distinct advantages
over CGI programming, and also generally have some weaknesses when com-
pared with CGI. In this hour, I'm going to provide a broad survey of some of
the more popular Web application platforms that you can use.

In this hour you will learn

* Why CGI alternatives developed
* Types of CGI alternatives

* J2EE

e PHP

» Active Server Pages

* Allaire ColdFusion

* Apache mod_perl and FastCGI
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Looking Back

CGI was quite a breakthrough in the early days of the World Wide Web. It was the first
enabling technology that let people create truly dynamic Web pages. Before CGI was
implemented in NCSA HTTPD, Web sites were simply collections of static files. The
Web was a valuable resource, but without CGI there were no search engines, connections
to existing databases, or Web-based gateways to other Internet services.

CGI provided a simple way to build these new features into the Web interface and made
the Web a much better place to do research, conduct electronic commerce, or even just
look for interesting reading. In fact, thanks to CGI and its descendants, the Web now pro-
vides a common interface to what once were custom applications, like client/server data-
base applications. By building applications using Web servers and Web browsers,
businesses can lower development and maintenance costs and provide their users with an
interface to their data with which they are already familiar.

Why CGI Alternatives Appeared

Although CGI was truly a breakthrough, like any new technology it has some inherent
limitations. The number one problem is performance. Every time a user requests a CGI
script, the server must launch the CGI program, which takes processor time. When the
CGI program is written in Perl, the server must run the entire Perl interpreter and com-
pile the program before it can be run, which takes even more processor time. This isn’t
an issue for many Web sites because they don’t serve enough users to be affected by
these performance problems, but for busy sites running complex applications, the limita-
tions of CGI were once difficult to outmaneuver.

The other problem with CGI is the complexity of writing CGI programs. Although CGI
itself isn’t particularly complex, CGI programs are somewhat complex in that you have
to write a program that not only contains all of your application logic but also generates
all the HTML for a page in order for it to work properly. This means that Web-page
designers who don’t know how to program have to learn how to edit HTML contained
within print statements in your script, or your programmers have to include the HTML
from the designers in their programs. Neither solution is optimal. Many application plat-
forms have been created to specifically address this problem. For example, both Active
Server Pages and ColdFusion allow you to create applications by embedding code within
standard HTML pages. The goal is to simplify Web application development.

Getting Past CGl’s Limitations

Most of the newer solutions also tackle some of the problems with CGI. They take care
of some of the performance problems by hooking your application directly into the Web
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server so that the server doesn’t have to request an external application every time a user
requests a dynamic page. They also simplify or automate many of the tasks that must be
written manually if you’re using CGI.

One of the main advantages of these newer technologies is that they are designed from
the ground up to provide seamless connectivity to relational databases. One of the most
significant weaknesses of CGI is that writing programs to connect to databases is fairly
complex. Using software specifically designed for that purpose makes things a lot easier.

As you know, every time a user requests a CGI script, the server runs the script and cap-
tures its output. If the CGI script is designed to gather data from a database, every time
the CGI script runs it must also connect to the database and log in. This can really slow
down the performance of your Web site and slow down your database with the overhead
of opening and closing connections repeatedly, as well. Most of the more modern tools
simply open a database connection, or pool of connections, when they’re initially started
and reuse those connections to service the requests that they receive.

Another limitation of CGI is that there was no happy medium between writing static
HTML pages and building pages dynamically using CGI scripts. Many CGI replace-
ments enable you to embed code into your HTML Web pages that can do the same types
of things for which CGI scripts are commonly used.

Server side includes can be used to place commands within your HTML

=
2 pages, but they are not particularly flexible or powerful.

7
0
¢

Yet another reason why CGI alternatives have taken off is because CGI programs are
executed on demand whenever they’re requested: There’s no easy way for them to share
data between one request and the next. You can code around that by storing information
in a database or in a file, but newer Web application platforms provide a better alterna-
tive. Because they run as part of the Web server or as services unto themselves that
maintain a connection to the Web server, they can store data from transaction to transac-
tion, keeping track of the user’s state. In Chapter 15, “Session Management,” I explain
how to accomplish this sort of thing using CGI scripts.

J2EE

J2EE is an abbreviation for Java 2 Enterprise Edition—a bucket of technologies that
includes, among other things, the standard Java framework for building Web applica-
tions. The main Web-related components of J2EE are Java servlets, which are quite
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similar to CGI programs except that they’re written in Java, and JavaServer Pages, which
are essentially HTML pages that can have Java code embedded within them.

Servlets and JSP are complementary, not alternatives. Generally, large systems are built
using both servlets and JSPs—the hard core processing is written using servlets, and the
information is presented to the user using a JSP. That’s one option. You can also write
servlets that print out HTML (such as CGI scripts), or you can write JSPs that have busi-
ness logic embedded within them (or that contain calls to external code). There are many
possible options for Web developers who use Java.

In order to run servlets or JSPs, you need a servlet engine. One popular option is Tomcat,
which is the freely available at

http://jakarta.apache.org/tomcat/index.html

In order to run Tomcat, you’ll also need the Java Development Kit, which you can down-
load from the Sun Web site at java.sun.com.

Servlets

Servlets are the Java analogue to CGI programs. A servlet is a Java program that extends
what’s referred to as a base class. Basically, it inherits certain methods (subroutines)
from the base class, and is required to implement other methods that are used for pro-
cessing the browser’s request. When the servlet container receives a request for a servlet,
it packages up the information about the request into an object and passes it along to the
servlet, which it calls using one of the methods the servlet is required to implement.

In this way, it’s similar to a CGI script that uses CGI.pm. Unlike CGI scripts, servlets are
required to implement the servlet base class, whereas in a CGI script, it’s up to the devel-
oper whether he wants to use CGI.pm to help them out. The other difference is that the
servlet is resident in memory at all times in the servlet container.

JavaServer Pages

JavaServer Pages (or JSPs for short) are one of many application development platforms
that involve embedding code into HTML documents. JSPs do work a bit differently than
most others, though, in that each JSP is really a Java servlet. The first time a JSP is
requested, the servlet container turns the JSP into a servlet, compiles it, and then exe-
cutes it to service the user’s request. So, even though for programmers the JSP looks like
an HTML page containing some code, for all intents and purposes it’s really a servlet.
This really improves the performance of the JSPs, because they’re compiled and stored
in memory.
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Here’s a simple example of what a JSP looks like:

<%@ page language="Java" %>
<html>
<head>
<title>Sample JSP</title>
</head>
<body>
<h1>Sample JSP</h1>
<%
String color = request.getParameter("color");
if (null != color)

{
%>
<p>Favorite color selected.</p>
<p>You chose <%= color %>.</p>
<%

}

%>

<jsp:include page="footer.jsp" />

</body>

</html>

As you can see, the bulk of the page is made up of regular HTML tags, however, there is
some Java code in there. The page begins with a directive indicating that the page uses
the Java programming language. Java code (or directives) are surrounded by <% and %>.
This indicates that Java code is being embedded at that point.

There’s one larger code block on the page that accomplishes a number of tasks. First, it
creates a new string variable named color (unlike Perl, Java requires that your variables
have explicit types) and stores the value of the request parameter color in that variable.
Next, there’s an if statement that verifies that the value of the variable color is not null,
which indicates that it was passed in with the request. If the value of the variable is not

null, the body of the statement is executed.

You should see that inside the body of the statement, I close the Java scriptlet and return
to using regular HTML. This HTML will only be displayed if the if statement’s condi-
tion was true. I also use another shortcut:

<%= color %>

Any expression surrounded by <%= and %> will be evaluated and the results will be
printed directly to the page. This basically saves the user the trouble of writing a print
statement in a scriptlet. The last bit of code is an XML-formatted directive that includes
a file in the JSP. Here’s the code:

<jsp:include page="footer.jsp" />
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PHP

PHP is one of the oldest embedded scripting languages for Web pages. It consists of a C-
like syntax and includes a fairly extensive set of functions that enable you to process
forms, gather information from databases, and include conditional statements (like
if...else) in your Web pages. For PHP documentation and examples, as well as the
actual software distribution, you should see the PHP home page at http://www.php.net.

PHP can run on any UNIX Web server that supports CGI, but you probably want to
install it as an Apache module, so if you use the Apache server, you can compile the PHP
engine into your Web server for better performance. On other servers, the PHP CGI
script works by appending extra path information on the end of the path to the php.cgi
program. Best of all, PHP is completely free and is distributed as open source software.

Another powerful feature of PHP is its capability to provide native connectivity to many
relational databases, including Oracle, Sybase, Postgres, and MySQL. It also supports
ODBC, which is a standard database interface supported by many databases.

Examples Using PHP

The PHP scripting language is actually quite robust. It provides all the functions and
commands that one would expect in a regular language, and the syntax is somewhat sim-
ilar to C but is more like Perl in how it works. Here’s a basic example from the docu-
mentation.

First, suppose you created a simple form like this:

<form action="display.php" METHOD="post">
<input type="text" name="name" />

<input type="text" name="age" />

<input type="submit">

</form>

The action attribute sends the output from the form to the display.php file, which is an
HTML file with embedded PHP script commands. The PHP interpreter automatically
translates the output from the form into variables that can be accessed from within the

display.php page. For example, the command to print the value that the user entered in
the name and age fields of the form is

<?echo "<p>Hi $name, you are $age years old!</p>" ?>

Now, look at a slightly more advanced script. Using if...else statements, you can print
specific messages depending on the value the user entered in the age field of the form:
<?

if ($age > 50)
echo "<p>Hi $name, you are ancient!</p>";
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elseif ($age > 30)
echo "<p>Hi $name, you are very old!</p>";
else
echo "<p>Hi $name.</p>";
endif;
72>

Finally, examine PHP’s database support. Listing 12.1 demonstrates how to connect to a
MySQL database.

Listing 12.1  An Example of a PHP Script That Includes a Database Connection

1: <? $hostname = "dbhost.example.com";

2: $username = "dbuser";

3: $password = "dbpassword";

4:

5: mysql connect($hostname, $username, $password);

6: mysql_select_db("some_database");

7:

8: $query = "select name, address, city, state, zip ";
9: $query = $query . "from addresses ";

10:

11: $result = mysql query($query);

12: $rows = mysql_numrows($result);

13:

14: $i = 0;

15:

16: while ($i < $rows) {

17: $name = mysql result($result, $i, "name");
18: $address = mysql_result($result, $i, "address");
19: $city = mysql_result($result, $i, "city");
20: $state = mysql result($result, $i, "state");
21: $zip = mysql_result($result, $i, "zip");
22:

23: print "<p>\n";

24: print "$name<br>\n";

25: print "$address<br>\n";

26: print "$city, $state $zip\n";

27: print "</p>\n\n";

28: $i++;

29: }

30: ?>

First, the program assigns some variables that are passed to the mysql_connect function
as arguments. Then, the mysql_select_db function is used to indicate which database is
to be used on the server it just connected to. The $query variable is initiated, and the
SQL query to be executed is assigned to it. The value of $query is then passed to the
mysql_query function to execute the query against the database. The number of rows
retrieved is fetched using the mysql_numrows function.
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At that point, you’re ready to display the results of the query. A while loop is used to
iterate over all the rows in the results, and display the address from each row. $i is a
counter that is incremented every time through the loop, which stops executing when $i
is equal to $rows, the number of rows retrieved using the query.

Of course, many more functions and capabilities are built into the PHP package. To learn
more about them, you should visit the PHP home page.

ASP.NET

ASPNET provides a framework for building Web applications using HTML and code. In
many ways, it is similar to JSP or PHP, at least in that it generally consists of HTML
pages with code interspersed in them. You create an ASP.NET page by embedding scripts
in your HTML page. When a user requests an ASPNET page, the server executes the
scripts embedded within the page, and the output of the scripts is included as part of the
HTML so that any browser can view the page.

ASPNET supports any language that will run on Microsoft’s Common Language
Runtime (CLR). This includes Visual Basic .NET, C#, and JScript (Microsoft’s version
of JavaScript). The first time a user downloads an ASP page, the scripts in the page are
compiled into a .NET runtime class. The server stores the compiled source until the code
changes, at which time the code is recompiled and stored again. By using this caching
method, ASP avoids many of the performance issues that plague CGI programming
because the scripts don’t need to be recompiled to respond to every request.

Look at the three separate parts of ASP: ActiveX components, scripts, and HTML pages.
One of the difficulties in describing ASP is the sheer volume of acronyms that Microsoft
uses to describe their technologies, as you’ll soon find out.

Business Objects

Not only can you embed script objects in your pages using ASP.NET, but you can also
access external objects that are compiled and placed in a special directory in your Web
application. You can create these objects using any language that works under the CLR,
and accessing them from within your pages is trivial.

A common application design technique is to build all of your business logic into these
objects, and then just include the code for presentation of information (and gathering
information) into your ASP.NET files. The ASP.NET files make calls to the business
objects, which in turn do things like access the database, interact with other systems, or
process the transactions associated with the application.
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For example, in order to access a relational database, you can use the System.Data and
System.Data.SqlClient business objects in your applications. These objects provide
you with the tools you need to connect to databases and issue queries against them. If
you want, you can write business objects that operate at a higher level. For example,
rather than writing the queries and putting them into your ASP.NET page, you could put
all of your queries inside a business object (which used the Microsoft objects for data-
base access), and then make calls into your custom business objects from your ASP.NET

page.

Code Blocks

ASP.NET code blocks are embedded in HTML documents and are used to interface with
ASPNET components. The scripts are compiled by the .NET runtime and are executed
by the server when the page is requested. The output from the script is inserted into the
Web page in place of the script code, so users downloading the page see what appears to
be a normal HTML page.

The scripts can be written in any of languages supported by the CLR, including Visual
Basic .NET, C#, and JScript (Microsoft’s version of JavaScript). Any other language that
will run on the CLR will also be able to be used in ASP.NET code blocks.

Look at the sample code in Listing 12.2. In this example, I’ve embedded some ASP
script statements in a document. The if statements print an error message if an error was
produced by a script statement from a previous part of the document. The first if state-
ment checks to see whether there was an error, and if there was it prints an error message
based on the value of the last_error variable.

Listing 12.2 An ASP.NET Code Sample

1: <html>

2 <head>

3 <link rel="stylesheet"href="intro.css">

4 </head>

5:

6 <script language="VB" runat=server>

7

8: Sub SubmitBtn_Click(Sender As Object, E As EventArgs)
9: Message.Text = "Hi " & Name.Text & ", you selected: " &
Category.SelectedItem.Text

10: End Sub
11:
12: </script>
13:
14: <body>

continues
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Listing 12.2 continued

15:

16: <center>

17:

18: <form action="intro6.aspx" method="post" runat="server">

19:

20: <asp:adrotator AdvertisementFile="ads.xml" BorderColor="black"

wBorderWidth=1
runat="server"/>
21:
22: <h3> Name: <asp:textbox id="Name" runat="server"/>
23:
24: Category: <asp:dropdownlist id="Category" runat=server>
25: <asp:listitem >psychology</asp:listitem>
26: <asp:listitem >business</asp:listitem>
27: <asp:listitem >popular_comp</asp:listitem>
28: </asp:dropdownlist>
29: </h3>
30:
31: <asp:button text="Lookup" OnClick="SubmitBtn_Click"
runat="server"/>
32:
33: <p>
34:
35: <asp:label id="Message" runat="server"/>
36:
37: </form>
38:
39: </center>
40:
41: </body>
42: </html>

As you already know, HTML tags are enclosed in greater-than and less-than signs, like
this: <tag>. To set ASP script statements apart from standard HTML tags, percent signs
are used within the greater-than and less-than signs, like this: <% script code %>. You
can also put them inside <script> tags, just like JavaScript, as long as you include the

appropriate language declaration and the runat=server attribute.

An HTML document containing ASP scripts can also include client-side
scripts, which are designed to be executed in the browser. The separate cod-
ing method that ASP scripts use (with the percentage signs or runat
attribute) make it easy to differentiate server-side from client-side scripts.
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HTML Pages

No matter how you create your ASP components and scripts, by the time they get to the
browser they look like normal HTML pages. All the code you insert into your pages is
compiled and executed by the server, and the output is included in the page as normal
HTML code.

One of the main advantages of ASP is that you can do most of your coding in HTML
and add functionality by adding a small amount of ASP code to the pages. Instead of
writing programs to build your pages, you can build your pages and augment them
through small programs.

Macromedia ColdFusion

ColdFusion is an application server that was originally available for Windows Web
servers. Since its release, it has been ported to Solaris and HP-UX, and Linux. It supports
a number of Web servers, including Apache, MS Internet Information Server, Netscape,
iPlanet, and JRun. ColdFusion is similar to JSP, PHP, and ASP in the way that it oper-
ates. To create dynamic pages, you simply embed the special ColdFusion tags into your
Web pages, and the ColdFusion application interprets those tags and inserts standard
HTML in their place before the document is sent to the user.

The main difference between ColdFusion and ASP is that each program statement in
ColdFusion is contained in a single tag, whereas in ASP, the programmer can create
blocks of code that look more like traditional statements. This makes it easier to write
more structured programs in ASP; on the other hand, people who know HTML but not a
programming language will have an easier time adapting to ColdFusion.

ColdFusion Sample Code

Let’s look at some sample code to explain how ColdFusion works. I know that I haven’t
explained how to use CGI with relational databases yet, so bear with this example. An
overview of SQL is provided in Hour 18, “Working with Relational Databases.” The
strength of ColdFusion is its ability to easily interface with relational databases, and
process the results of a query. ColdFusion uses a custom set of tags to embed application
logic in a Web page. This set of tags is referred to as CFML—the ColdFusion Markup
Language.

For example, let’s look at a query that retrieves a list of addresses from a database, and
then prints them out. The first part of the example connects to the database and executes
a SQL query which returns a list of addresses. The second part of the example loops over
the results of the query and displays them on a page. The sample code appears in

Listing 12.3.
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Listing 12.3 CFML That Queries a Database and Displays the Results of the
Query

<cfquery name="get_addresses" datasource="address_book">
SELECT name, address, city, state, zip
FROM Addresses

</cfquery>

<cfoutput query="get_addresses">
<P\p>
#name#<br />

9: #address#<br />

10: #eity#, #state# #zip#

11: </p>

12: </cfoutput>

ONOO OB~ WD =

Now let me explain how the code works. The <cfquery> tag is used to execute a query
against a particular data source, in this case, address_book. Data sources are set up in
the ColdFusion Administrator, so the server already knows which database, username,
and password are associated with the address_book data source. The query is also
assigned a name so that the results can be accessed later.

Inside the <cfquery> tag is a SQL SELECT statement that retrieves all the addresses from
the table Addresses. After the query has been executed, the <cfoutput> tag is used to
display the results of the query. The existence of the query attribute in the <cfoutput>
tag indicates that the tag should loop over the results of the query, one row at a time (the
query returns the results as one address per row). The actual text and HTML to be dis-
played is placed within the <cfoutput> tags. The expressions surrounded by hash sym-
bols (#) are evaluated and replaced with the values assigned to them. So #name# is
replaced with the value in the name column from the current row, and so on.

The Apache mod_perl Module

The Apache Web server is built using a group of programs referred to as modules. When
the Apache Web server receives a request for a particular document, it is sent to several
modules, which check to see whether they are supposed to handle the request. To extend
the Apache Web server, a user can write new modules in C. Of course, writing new mod-
ules in C to extend the functionality of your Web server is not an easy task.

On the other hand, a particular module called mod_perl combines the Perl interpreter
with the Apache server. Among other things, this enables you to run your Perl CGI
scripts using the mod_perl module, which eliminates the overhead of starting Perl and
compiling your scripts every time they’re requested. Running your scripts through the
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embedded Perl interpreter instead of the regular Perl interpreter can improve the perfor-
mance of your scripts drastically, and many Perl CGI scripts will run under mod_perl
without any changes.

mod_perl also provides Perl programs with access to Apache’s API (Application
Programming Interface), so even if you don’t know how to program in C, you can use
Perl to write extensions to your Web server. The API provides hooks that you can use to
extend or modify any of the functionality built into the Web server.

Apache is the most popular Web server on the Internet. In a recent survey, Apache had
more than 50 percent of the Web server market. Apache is written and maintained
entirely by a group of volunteers and is always on the leading edge of Web technology.
Despite the fact that it is available for free, it offers some of the most advanced features
of any Web server and offers performance comparable with any commercial Web server.
For more information on the Apache project, check out its home page at
http://httpd.apache.org.

To learn more about Perl/Apache integration and mod_per1l, you should visit the
Perl/Apache Integration Project at http://perl.apache.org.

Porting Your Scripts from CGI to mod_perl

Thanks to the Apache: :Registry module, you don’t have to do much work to move your
Perl scripts from CGI to the mod_perl interface. You can set up the Apache Web server to
execute files with certain extensions using the mod_perl interface, or you can register
certain directories as containing files that should be executed through mod_perl.

You can run into a few snags when you run existing Perl scripts using mod_perl; be on
the lookout for them. All of these snags arise from the very capability that provides the
biggest advantage: The Perl interpreter used by mod_perl doesn’t exit after your script is
finished running.

Because the interpreter stays active all the time, things don’t necessarily get cleaned up
properly after it executes a script. The global variables retain their values, and unclosed
files stay open. Because of this, flaky behavior can sometimes occur when a program
expects a variable to be empty but it contains the value that was placed there the last time
the script ran. To avoid these types of problems, remember to be tidy with your code.
The easiest way to enforce tidiness on yourself is to run all your scripts by launching the
Perl interpreter with the -w flag, which provides warnings for all types of problems that
might not seem obvious. You should also include the line use strict; at the beginning
of your programs, which makes sure that you don’t create errant global variables.
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Another programming practice that you should avoid is using the exit () function in
your mod_perl scripts. The exit () function closes the Perl interpreter, so the next time a
mod_perl script is called, the Perl interpreter must be restarted. This can rapidly elimi-
nate any performance gains from using mod_perl. You should write your scripts so that
they exit naturally (by running out of statements to execute) instead of ending them in
the middle. If you want to cheat, you can set a label at the very end of the program, and
replace the calls you would have made to exit () with goto statements that point to the

label.

Summary

As you can see from this hour, there are plenty of ways not to use CGI and still build
powerful Web-based applications. Much like CGI, there are tradeoffs that come with all
these technologies. One thing that you give up as you move away from CGI is portabil-
ity. CGI is available for nearly every Web server, and the languages used to write CGI
programs (such as C, Perl, and UNIX shell scripting) are very portable as well. As you
move to proprietary application platforms, you might find yourself locked into a solution
that’s not the best choice for the long run.

Q&A
Q

A

(e

Are any of the packages described in this hour preconfigured for particular
applications, like electronic commerce?

No. This hour discussed open platforms usable for creating pretty much any type
of Web application. There’s another, even longer list of products that are designed
for specific applications like publishing Web content or developing electronic com-
merce sites. Some of those products are built on top of the products mentioned
here.

Does my ISP support (insert CGI alternative here)?

I don’t know. Many CGI alternatives are complicated and expensive. Others pretty
much require that you have a server dedicated to your application. That means that
you won’t be able to host your application in a shared hosting environment the way
you can with static HTML files or basic CGI scripts. On the other hand, there are
many ISPs that do support some of the popular application servers, including PHP,
ColdFusion, and ASP. You just need to do some research to find out if your ISP is
one of them.
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Q Are more CGI alternatives available?

A Of course. This hour is really only the tip of the iceberg when it comes to CGI
alternatives. Application back-ends for Web sites are one of the hottest areas of
growth in the software industry right now. Although the technologies described in
this hour can give you a good starting point, you should always be on the lookout
for technologies that can make the job of building Web applications easier and
better.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. What is the difference between a Java servlet and a JSP?
2. Which languages are supported by ASP.NET out of the box?

3. True or false: PHP is only available as an Apache module.

Exercises

1. Before you choose a particular product to use, you should first define the problem
you’re trying to solve. When you have in mind what exactly you’re trying to do,
you can select the product that makes the most sense in solving the problem.
Therefore, before running out and trying all these technologies, determine what the
Web application you’re going to create will do.

2. The great thing about most of these application servers is that there are free ver-
sions available to download for evaluation. (Some of them, like PHP and ASP, are
just free, period!) You should try downloading one for your Web server platform
and seeing how you like it.

Quiz Answers

1. A JSP is a Web page with Java code embedded in it that is converted into a servlet
automatically when it is deployed. A servlet is a Java class (program) that extends
a specific class that provides methods for handling Web requests.

2. ASP.NET supports Visual Basic .NET and C# out of the box.

3. False.
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Using Flat Files for Data
Storage

One thing most applications of any complexity require is persistent data
storage. Whether you’re creating an online message board, a catalog, or just
allowing users to register, your programs need to be able to retrieve existing
data and store new data entered by users. There are a number of ways to add
data storage capabilities to your programs. One of the simplest is to store the
data in a flat-file database—which is nothing more than a plain text file.

In this hour you will learn

* What, exactly, a database is
e What defines a flat-file database

* How to build an application that retrieves data from a flat-file database
and displays it using HTML

* How to build applications that add, delete, and modify data in a flat-
file database
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What Is a Database?

In the simplest terms, a database is simply a place to store multiple chunks of similar
data. Each chunk of data is known as a record, and each piece of information in a record
is known as a field. Every record in a database contains the same number and type of
fields. If you use an address book with your email client, for example, the file that stores
all the addresses is a database. In this case, the database contains a record for every user,
and the fields might be the user’s real name and email address. If your database were a
Rolodex, each card in the Rolodex would be a record, and each separate piece of infor-
mation on the card would be a field.

Of course, there are also enormous databases that store millions of records, like the ones
that banks use to keep track of all their accounts. Although your email address book and
the bank’s account database might not have much in common, they do share the fact that
they’re repositories for multiple incidences of the same type of record.

There are different types of databases, but the two most common are flat-file databases
and relational databases. I am going to discuss flat-file databases in this hour, and then
relational databases in Hour 18, “Working with Relational Databases.”

Flat-File Databases

A flat-file database is simply a plain text file that stores multiple records separated by
delimiters. A delimiter is a character, or group of characters, that indicates where one
record (or field) ends and another begins. Flat-file databases ordinarily use one delimiter
to indicate the breaks between records, and a different delimiter to indicate the breaks
between the fields that make up a record. Alternatively, if you know what size each field
is going to be, you can split the data up by assigning a width to each field.

If you know, for example, that the colon (:) character isn’t going to appear within the
data in your file, you could use the colon to separate the fields in each record. Another
popular method of delimiting fields is to separate each field with a tab. In most character
sets, a tab is an individual character, not just a set number of spaces.

)
‘ More often than not, in a flat-file database, the end of line character is used
x/

as a delimiter between records.
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Delimiting Data Using Characters

Let’s look at a common database that uses characters to delimit data fields—the UNIX
password file. On almost every computer running the UNIX operating system, there is a
file that contains a list of the users who can log in to the system. It contains their user-
names, an encrypted version of their passwords, their real names, their home directories,
and some other information. All this information is stored in a flat-file database (usually
located at /etc/passwd). Each line of the file is a separate record, because the linefeed
character is the delimiter between records. The fields are separated using colons. Let’s
take a look at a snippet from a typical password file:

jsmith:VFSRFd2ad158g:998:100:Joe Smith:/usr3/home/jsmith:/bin/tcsh

rjones:BglAiMro/BHJQ:999:100:Robert Jones:/usr3/home/rjones:/bin/tcsh
bwhite:tQ6pGzsWB6.FQ:587:100:Beth White:/usr3/home/bwhite:/bin/tcsh

The fields are as follows: username, encrypted password, user ID number, group ID, real
name, home directory, and shell. Although the UNIX password file is a good example of
a flat-file database, it’s not something you want to provide access to over the Web!

Delimiting Data Using Field Widths

Now let’s take a look at a file that is broken up based on the widths of the data fields. In
this case, let’s say that the file is a check register. Each line in the database represents a
separate check. A line contains the account number (10 digits), the check number (four
digits), the date the check was cashed (six digits), and the amount of the check (eight
digits). Here’s some sample data:

012345678900011204970035050
112233445500051104970025511

Let’s take a look at the first line. The account number is 0123456789, the check number
is 0001, the date is April 12, 1997, and the check was written for $350.50 (we assume
that the last two digits of the amount are supposed to be after the decimal point).

You might notice from this data that the database is somewhat “brittle.” What I mean by
this is that the field layout governs what types of values can be placed in each field. For
example, what happens if the check number is above 99997 It will be too large for the
field in the record that is meant to hold it. If you try to make that field larger, you have to
change all the programs that know how to read data stored in this format.

The main advantage of using data that is delimited according to field width is conserva-
tion of space. Because you know how much data each record can hold, you know exactly
how much space your database takes up, no matter what appears in the records.
However, it’s not often that I have such an apt and obvious example of why writing
applications in a particular way can be really bad. The only reason I mention this method
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is that many existing systems do provide data formatted this way, so you should under-
stand how it works in case you have to use these types of files with your CGI programs. I
wouldn’t advocate storing your own data in this manner.

File Operations

Before I go into a specific example of an application, let me explain how accessing a
flat-file database works in general. There are four operations that you might want to per-
form—reading a record, adding a record, deleting a record, and modifying a record. Let’s
look at the steps required to perform each of these operations.

Retrieving Records from a Database

1. Find some information that will allow you to identify the record or records you
need to retrieve.

2. Open the file in which the data is stored.

3. Search through all the records in the file until you find the ones that match the
information you’re looking for.

4. Copy the data from the file into a data structure that can be accessed from within
your program.

5. Close the file.

Inserting a Record into a Database

1. Adapt the data that will be stored in the record to the format used by records in the
database.

2. Lock the file so that no other processes can write to the file while it’s open. (I'll
discuss file locking later in the hour.)

. Open the database file for writing.

. Close the file.

3
4. Write the record to the end of the file (also known as appending the record).
5
6. Unlock the file.

Deleting Records from a Database

1. Find some information that you can use to identify the record or records that you
want to delete.

2. Lock the file so that no other process can write to the file while it’s open.

3. Open the file for reading and writing.
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4. Read all the records into memory.
5. Remove all the records from the file.

6. Write all the records that are stored in memory, except those to be deleted, to the
file.

7. Close the file.
8. Unlock the file.

Modifying a Record in a Database
1. Find some information that you can use to identify the record you want to modify.
2. Lock the database file.
3. Open the file for reading and writing.
4. Read all the records into memory.
5

. In memory, replace the information in the record that you want to modify with the
updated information.

6. Remove all the records from the file.
7. Write all the records that are stored in memory to the file.
8. Close the file.
9. Unlock the file.
Note that when you modify a record in a flat file, the easiest method is to
read all of the records into memory and then write them all back to the file
Z after modifying the appropriate record. If your database is very large, this

can cause your program to run very slowly. If you begin running into perfor-
mance problems when you modify records, you should consider moving to a
more robust type of database, like a relational database.

File Locking

I mentioned file locking in the descriptions of some of the flat-file database transactions.

Locking a file grants the locking process exclusive access to the file until the lock is
released. This prevents various problems involved with two processes trying to write
information to the same file at the same time.

Locking is important when you use flat-file databases in a CGI environment because the
probability of receiving concurrent requests that modify the same file is high. If you
don’t use file locking to keep multiple instances of the same program from stomping on
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each other, you can wind up losing data, or worse, with a corrupt database file. File lock-
ing ensures that updates are never lost, and that concurrent writes are avoided.

The problem generally associated with the need for file locking is referred to as the lost
update problem. This problem arises when two transactions try to modify the same
record concurrently. Let’s say that two travel agents are both trying to reserve the last
seat on a flight at the same time. Both check the availability and see that one seat is
available. The first agent checks the availability and finds that there is an opening; then
the second agent checks the availability and also sees that there’s an opening. The first
agent then reserves the seat. Since the second agent checked the availability between the
first agent’s checking the seat and posting the reservation, the second agent also reserves
the seat, overwriting the first agent’s registration. The first agent’s update is lost.

If some locking scheme were implemented, the interaction would go quite differently.
The first agent would obtain a lock on the file (or table, if this were a relational database
application), check the availability, and then post the reservation. In the meantime, the
second agent would attempt to obtain a lock on the resource but would have to wait until
the first agent’s transaction is complete. At that point, the reservation would already be
posted and the second agent would not be able to book the seat.

After you’ve opened the file and have obtained an exclusive lock on it, you should per-
form all the operations on the file as quickly as possible. When a file is locked, all the
other processes that want to write to the file have to wait. If there are bunches of Web
requests coming in at the same time, you can really slow down access to your CGI pro-
gram with file locking because it’s a bottleneck. Any way you can minimize the amount
of time that the file is locked will help.

Building a Database Application

Now that you know which steps you need to take to perform various operations on flat-
file databases, and you know how to use file locking to give your programs exclusive
access to files when you modify them, I'm going to explain how to perform each of
those operations using Perl programs. When appropriate, the examples use file locking to
gain exclusive access to the files, and wrap the file modification code in an eval con-
struct so that any errors can be trapped and reported to users in a friendly manner.

The Sample Database

Before I can demonstrate any scripts that make use of a database, I need to explain the
structure of the sample database itself. This database is very simple. It contains one
record per line, and each record contains three fields: name, email address, and browser
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preference. The fields are delimited by single tab characters. The sample database, which
contains three records, is included in Listing 13.1.

Listing 13.1 The Sample Flat-File Database

1: Rafe Colburn rafe@rc3.org Netscape
2: John Doe nobody@rc3.org Internet Explore
3: Tom Sawyer tom@rc3.org Opera

Retrieving Records from the Database

The first example demonstrates how to retrieve records from a flat-file database. This
program allows the user to enter a name to search for, and then returns all the records
from the file with names that contain the string the user entered. So, if the user enters the
string “john” in the form, any users whose names contain “john” will be returned. The
search is not case-sensitive. Names like “John Smith,” and “Samuel Johnson” will be
matched by that search.

This script follows a structure that should be familiar to you. If a request for the program
is received without a query, the form is displayed. If the query has been submitted, the
database is loaded and the names in the file are compared to the value submitted by the
user. Any records from the database with names that match the value submitted will be
displayed.

The source code to the script appears in Listing 13.2. I’'ll walk you through the code to
explain exactly how it works, but I'm going to skip the parts that you should already
know about from previous hours. On line 6, I set the variable $guest_file to the name
of the file that serves as the guest database. If the file was stored in a directory other than
the directory in which the script resides, this variable would also contain the path to that
file.

Listing 13.2 The Source Code to the retrieve.pl Script

#!/usr/local/bin/perl

use CGI;
$query = new CGI;

$guest_file = "guests.txt";

&print_page_start;

© 0O NO O WN =

continues
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Listing 13.2 continued

10: if ($query->param()) {

11: $search_name = $query->param('search_name');
12:

13: # Wrap this code in an eval block in order to trap
14: # errors.

15: eval {

16: open (GUESTS, "< $guest _file") or

17: die "Can't open $guest_file: $!";

18: while (<GUESTS>) {

19: chomp;

20: ($name, $email, $browser) = split /\t/;
21: if ($name =~ /$search_name/i) {

22: print "<p>\n";

23: print "$name<br />\n$email<br />\n";
24: print "$browser<br/ >\n<hr />\n";
25: print "</p>\n";

26: }

27: }

28: }

29: }

30: else {

31: print "<form>\n";

32: print "<input type=\"text\" name=\"search_name\" /><br />\n";
33: print "<input type=\"submit\" />\n";

34: print "</form>\n";

35: }

36:

37: chomp $@;

38: if (%@) {

39: print "<p>ERROR: $@</p>\n";

40: }

41:

42: &print_page_end;

43:

44: sub print_page_start {

45: print $query->header;

46: print "<html>\n<head>\n<title>Search for Records</title>\n";
47: print "</head>\n<body>\n";

48: print "<hi1>Search for Records</h1>\n";

49: }

50:

51: sub print_page_end {

52: print "</body>\n</html>\n";

53: }

Lines 10-35 contain the main logic for the application. The if statement in line 10 tests
for the existence of query parameters, and if none exist, the query form is displayed. If
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query parameters do exist, the script proceeds to search the database and display match-
ing records.

Line 15 opens an eval block. These blocks are used to encapsulate the code within them
so that if a problem occurs during the execution of the code within the block, the pro-
gram won’t exit. Instead, the exception will be trapped, and execution of the program
continues after the eval block is closed (in this case, on line 28). The eval block ensures
that execution of the program can continue even if the program is unable to access the
database file.

Lines 16 and 17 open the database file for input. The < operator indicates that the file
should be used as input for the program. I assign the filehandle GUESTS to the open file.
The or die construct throws an error if the database can’t be opened. The program
might not be able to open the file because the Web server process doesn’t have read
access to it, or because it doesn’t exist. Under normal circumstances, the program would
exit if the die function was called, printing the message in quotation marks. (The vari-
able $! is a special variable containing the operating system’s error message.) Because
the code appears inside an eval block, the die command is trapped and the error mes-
sage is stored for later.

After the filehandle is open, you have to parse through the records in the file one by one
and compare them to the search term entered by the user. The while loop that begins on
line 18 does just that. while (<GUESTS>) is a Perl expression that pulls lines out of the
GUESTS filehandle one at a time, and makes them available within the loop using the spe-
cial variable $_.

One interesting thing about the variable $_ is that many Perl functions know they should
use it as an argument if no other argument is specified. When you’re iterating over the
lines in a text file, the current line being processed is automatically stored in $_. For
example, line 19 contains only a call to the chomp function. An argument of $_ is
implied. The chomp function removes the linefeed at the end of the current record.

Line 20 splits the record into individual fields using the split function. Ordinarily, the
split function accepts two arguments, the field delimiter and the expression to be split.
However, like the chomp function, it will automatically split the value in $_ if no expres-
sion to be split is passed to it. The first argument is the delimiter; in this case, the delim-
iter is /\t/. The \t meta-character indicates that the record should be split on tabs.

After the record has been split into fields, the if statement on line 21 uses the binding
operator to figure out whether the search term is part of the name field, which is stored in
the variable $name. If it is, the record is printed using the print statement on line 22.
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After the main program logic is complete, the error handling code, which spans lines
37-40, is executed. $@ is a special variable used to store any error message returned by
the eval block. If that variable was set (due to an error being trapped by eval), the error
message is displayed. After errors are handled, the end of the HTML is printed. The
results of a database search with the name field left empty are displayed in Figure 13.1.

FIGURE 13.1 Search for Records - Mozilla {(Build ID; 2002053012}
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Inserting a Record into the Database

The next task is to insert a record into the database. This script is a bit more complex
than the retrieval script because it has to lock the file before the new record can be
inserted. It also includes some validation code to make sure that the user enters some-
thing in every field. The other significant difference is that the form contains three fields
instead of one. The full source code for the script appears in Listing 13.3.

LisTiNnG 13.3 The Source Code for insert.pl

1: #!/usr/local/bin/perl -wT

2:

3: use CGI;

4: use strict;

5:

6: my $query = new CGI;

7: my $guest file = "guests.txt";
8: my @browsers = ("Mozilla", "Internet Explorer", "Opera");
9: my $error_message = "";

10:

11: &print_page_start;

12:

13: if ($query->param()) {
14: &valid_form;
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15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

if ($error_message) {
print "<p>Please correct the following errors:</p>\n";
print "<ul>$error_message</ul>\n";
&print_form;

}
else {
# Create the record to be inserted
my $record = $query->param('name') . "\t";
$record .= $query->param('email') . "\t";
$record .= $query->param('browser') . "\n";
# Wrap this code in an eval block in order to trap
# errors.
eval {
open (GUESTS, ">> $guest file") or
die "Can't open $guest_file: $!";
flock GUESTS, 2;
print GUESTS $record;
close GUESTS;
print "<p>New record inserted.</p>\n";
}
}
}
else {
&print_form;
}
# If an error occurred, let the user know.
chomp $@;
if ($@) {

print "<p>ERROR: $@</p>\n";
}

&print_page_end;

sub print_page_start {
print $query->header;
print "<html>\n<head>\n<title>Add New Record</title>\n";
print "</head>\n<body>\n";
print "<h1>Add New Record</h1>\n";
}

sub print_form {
print "<p>\n<form>\n";
if (!$query->param()) {
print "Name: <input type=\"text\" name=\"name\" /><br />\n";

print "Email: <input type=\"text\" name=\"email\" /><br />\n";

print "Browser:<br />";
foreach my $browser (@browsers) {
print "<input type=\"radio\" name=\"browser\" ";

continues
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LisTingG 13.3 continued

65: print "value=\"$browser\">$browser<br />\n";

66: }

67: }

68: else {

69: print "Name: <input type=\"text\" NAME=\"name\" ";

70: print "value=\"", $query->param('name'), "\" /><br />\n";
71: print "Email: <input type=\"text\" name=\"email\" ";

72: print "value=\"", $query->param('email'), "\" /><br />\n";
73: print "Browser:<br />";

74: foreach my $browser (@browsers) {

75: print "<input type=\‘"radio\" name=\"browser\" ";

76: print "value=\"$browser\"";

77: if ($browser eq $query->param('browser')) {

78: print " checked";

79: }

80: print " />$browser<br />\n";

81: }

82: }

83: print "<input type=\"submit\" />\n";

84: print "</form>\n</p>\n";

85: }

86:

87: sub valid_form {

88: if (!$query->param('name')) {

89: $error_message .= "<li>You must enter a name.</li>\n";

90: }

91: if (!$query->param('email')) {

92: $error_message .= "<li>You must enter an email address.</li>\n";
93: }

94: if (!$query->param('browser')) {

95: $error_message .= "<li>You must select a browser.</li>\n";
96: }

97: return $error_message;

98: }

99:

100:

101: sub print_page_end {

102: print "</body>\n</html>\n";

103: }

There’s a bit less to explain with this script than the last one because some parts are very
similar. However, I do want to talk about a slightly different approach that I used here.
Because this script is used to write to a file on your server, I ratcheted up the security. I’ll
talk more about security in Hour 22, “Securing CGI Scripts,” but for some scripts, it’s
important to always pull out the stops when it comes to locking things down.
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First, look at the very first line of the script. It includes -wT after the path to Perl. The -w
flag indicates that I want to turn on compiler warnings in order to catch any small mis-
takes I might have made in writing my script. The problems it catches won’t prevent
your script from working, but they can prevent your script from working as it should.
The -7 flag is for taint checking. It performs runtime checks to make sure that no
“tainted” data (data supplied by the user) is used in an unsafe manner. I'll talk more
about it in Hour 22.

Finally, I pass the use strict command to the program. While this line looks like it’s
importing a module, what it’s really doing is telling the script not to allow various unsafe
programming practices in your program. The most important thing it does is disallow
global variables. What this means in a simple script like the one I wrote is that when 1
declare my variables for the first time, I have to use the my function to indicate that
they’re “local.” In larger scripts, it makes it easier to keep track of how your variables are
used and to prevent programming errors like inadvertently overwriting the values of vari-
ables. Again, I’ll talk more about this later, all you need to know now is that you have to
use my to make your variables local.

In this script, I start out by declaring variables that will be used throughout the script,
just as in the previous one. On lines 6-10, I set the $guest_file and $query variables,
just like in the last script, create an array called @browsers that provides a list of browser
options to the user, and initialize a variable called $error_message, which stores the
error message produced by the input validation subroutine.

The main script logic runs from lines 13—40. First, there’s a condition to check whether
parameters have been passed to the script. If not, the subroutine print_form is used to
print out the form for the first time. If parameters were received, the valid_form subrou-
tine is called on line 15. If the form is valid (indicated by the absence of data in the
$error_message variable), the record is appended to the file. If the form is not valid, an
error message is printed and the form is printed again so that the user can make the nec-
essary corrections.

The valid_form subroutine itself (lines 87-98) just checks to make sure that the user
entered a value in all three form fields. If this script was more than just an example in a
book, you might want to perform more extensive validation on the form fields to make
sure that the user entered something that actually looks like a name and an email address,
but to save space, I just checked to make sure they entered something.

The code used to print the form the first time, and reprint the form in the case of bad
input, isn’t anything exciting. The code is in the print_form subroutine, which runs from
lines 57-85.
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The important part of the script is the code that appends a new record to the database
file. This code is in an eval block that begins at line 20 and ends at line 27. Before the
record is inserted, it has to be created. The variable assignment statements on lines 22
through 24 copy the values from the parameters to the variable $record, which is used to
store the new record that will be placed in the database.

Now let’s look at the inside of the eval block. Like the previous script, this one uses the
open function to open a filehandle called GUESTS that accesses the file named in the
$guest_file variable. In this case, the filehandle is opened for appending, not for input.
The >> operator indicates that anything printed to the GUESTS filehandle should be
appended to the end of the file. As in the previous example, the or die construct is
included to handle errors.

In line 31, the flock function is used to get a lock on the GUESTS filehandle. (If neces-
sary, flock waits for any other process that has already locked the file.) The flock func-
tion itself accepts two arguments, the filehandle that points to the file to be locked, and
the type of lock to obtain. In CGI scripts, you want an exclusive lock, so the second
argument is 2.

On line 32, the $record variable is printed to the GUESTS filehandle, appending the
record to the end of the file. On line 33, the filehandle is closed. When the filehandle is
closed, Perl automatically releases the lock on the file, allowing other processes to obtain
a lock on the file and modify it.

Figure 13.2 shows the form used to enter a new record, and Listing 13.4 is a listing of
the database with a new record for Bill Clinton appended to it.
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Listing 13.4 The Updated Guest Database

1: Rafe Colburn rafe@rc3.org Opera

2: John Doe nobody@rc3.org Internet Explorer

3: Tom Sawyer tom@rc3.org Opera

4: Bill Clinton president@whitehouse.gov Netscape

Deleting Records from the Database

Now let’s look at a script that’s used to delete records from the database. It’s again a bit
more complicated than the previous script. Because it has to modify the existing contents
of the file, and not just add a record onto the end, it has to open the file in read/write
mode. It’s similar to retrieve.pl in that the form accepts all or part of a name as input,
and performs an operation (in this case, deletion) on all the records that match that name.

Let’s take a look at the source code to the script. The full source code appears in
Listing 13.5.

Listing 13.5 The Source Code for the delete.pl Script

1: #!/usr/local/bin/perl -wT

2

3 use CGI;

4: use strict;

5:

6: my $query = new CGI;

7: my $guest_file = "guests.txt";

8:

9: &print_page_start;

10:

11:  if ($query->param()) {

12: my $search _name = $query->param('search_name');
13:

14: # Wrap this code in an eval block in order to trap
15: # errors.

16: eval {

17: open (GUESTS, "+>> $guest_file") or

18: die "Can't open $guest file: $!";

19: flock GUESTS, 2;
20:

21: seek GUESTS, 0, 0;

22: my @guests = <GUESTS>;

23: my @new_guests = ();

24:

25: foreach my $guest (@guests) {

26: my ($name, $email, $browser) = split /\t/, S$guest;

continues
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Listing 13.5 continued
27: if ($name !~ /$search_name/i) {
28: push @new_guests, $guest;
29: }
30: }
31:
32: seek GUESTS, 0, 0;
33: truncate GUESTS, 0;
34: print GUESTS @new_guests;
35: close GUESTS;
36:
37: print "<p>Record(s) deleted.</p>\n";
38: }
39: }
40: else {
41: print "<form>\n";
42: print "<input type=\"text\" name=\"search_name\" /><br />\n";
43: print "<input type=\"submit\" />\n";
44: print "</form>\n";
45: }
46:
47: chomp $@;
48: if (%$@) {
49: print "<p>ERROR: $@</p>\n";
50: }
51:
52: &print_page_end;
53:
54: sub print_page_start {
55: print $query->header;
56: print "<html>\n<head>\n<title>Delete Records</title>\n";
57: print "</head>\n<body>\n";
58: print "<h1>Delete Records</hi1>\n";
59: }
60:
61: sub print_page_end {
62: print "</body>\n</html>\n";
63: }

Most of this script should be familiar to you, as it’s not much different than the previous
two scripts. The most important part of the script occurs within the eval block (lines
16-38) where the file is opened, locked, and modified.

The filehandle is opened on line 17. The operator +>> is used to open the file in this case.
The + before the append operator indicates that the file should be opened in read/write
mode. Because the file is opened in read/write mode, it is handled differently.
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First, the process obtains an exclusive lock on the file using the flock function in line
19. On line 21, the program moves the pointer to the beginning of the file using the seek
function. On line 22, the program copies the entire contents of the file into the array
@guests. On the next line, I create a new array called @new_guests.

On line 25, a foreach loop begins that is used to process all the records retrieved from

the file. It moves each record into a variable named $guest, which is then evaluated in

the body of the loop. On line 26, the record is split into fields, and then on line 27, the

name field is compared to the value the user entered, and if they don’t match, the record
is inserted into the @new_guests array. If the records do match, the record is left out of
the array, and is thus deleted.

After all the records have been evaluated and the ones to be deleted have been discarded,
the cursor is returned to the beginning of the file on line 32. On line 33, all the contents
of the file are deleted using the truncate function. Then, on line 34, the contents of the
array @new_guests are printed to the file. This prints all the records except those that
were supposed to be deleted. After the records have been printed back into the file, it’s
closed on line 35.

Modifying a Record in the Database

Modifying a record in a flat file is a three step process. First, you have to select a record
to modify. Second, you have to enter the new data for that record, and third, you have to
store that data in the database. I'm going to use one script to implement all three steps.
First, take a look at the source code for the script in Listing 13.6.

LisTING 13.6 The modify.pl Script

1: #!/usr/local/bin/perl -Tw

2:

3: use CGI;

4: use strict;

5:

6: my $query = new CGI;

7: my $guest_file = "guests.txt";

8: my @browsers = ('Netscape', 'Internet Explorer', 'Opera');
9: my $error_message = "";
10:
11: &print_page_start;
12:
13: if ($query->param()) {
14: if ($query->param('new_name')) {
15: &valid_form;
16: if (!$error_message) {

continues
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Listing 13.6 continued

17: # Wrap this code in an eval block in order to trap
18: # errors.

19: eval {

20: open (GUESTS, "+>> $guest file") or

21: die "Can't open $guest_file: $!";

22: flock GUESTS, 2;

23:

24: seek GUESTS, 0, 0;

25: my @guests = <GUESTS>;

26: my @new_guests = ();

27:

28: foreach my $guest (@guests) {

29: chomp $guest;

30: my ($name, $email, $browser) = split /\t/, $guest;
31: if ($name eq $query->param('name') &&
32: $email eq $query->param('email') &&
33: $browser eq $query->param('browser')) {
34: $name = $query->param('new_name');
35: $email = $query->param('new_email');
36: $browser = $query->param('new_browser');
37: $guest = "$name\t$email\t$Sbrowser";
38: }

39: $guest .= "\n";

40: push @new_guests, $guest;

41: }

42: seek GUESTS, 0, 0;

43: truncate GUESTS, 0;

44: print GUESTS @new_guests;

45: close GUESTS;

46:

47: print "<p>Record(s) modified.</p>\n";

48: print "<p><a href=\"retrieve.pl\">";

49: print "Retrieve records.</a></p>\n";

50: }

51: }

52: else {

53: &print_form;

54: }

55: }

56: else {

57: &print_form;

58: }

59: }

60: else {

61: &print_record_list;

62: }

63:

64: chomp $@;

65: if ($@) {

66: print "<p>ERROR: $@</p>\n";
67: }
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68:

69: &print_page_end;

70:

71: sub print_form {

72: print "<p>\n<form>\n";

73: if (!$query->param()) {

74: print "Name: <input type=\"text\" name=\"new_name\" /><br />\n";
75: print "Email: <input type=\"text\" name=\"new_email\" /><br />";
76: print "Browser:<br />";

77: foreach my $browser (@browsers) {

78: print "<input type=\"radio\" name=\"new_browser\" ";

79: print "value=\"$browser\" />$browser<br />\n";

80: }

81: }

82: else {

83: if ($query->param('new_name')) {

84: print "Name: <input type=\"text\" name=\"new_name\" ";
85: print "value=\"", $query->param('new_name'), "\" /><br />\n";
86: print "Email: <input type=\"text\" name=\"new_email\" ";
87: print "value=\"", $query->param('new_email'), "\" /><br />";
88: print "Browser:<br />";

89: foreach my $browser (@browsers) {

90: print "<input type=\"radio\" name=\"new_browser\" ";
91: print "value=\"$browser\"";

92: if ($browser eq $query->param('new_browser')) {

93: print " checked";

94: }

95: print " />$browser<br />\n";

96: }

97: }

98: else {

99: print "Name: <input type=\"text\" name=\"new_name\" ";
100: print "value=\"", $query->param('name'), "\" /><br />\n";
101: print "Email: <input type=\"text\" name=\"new_email\" ";
102: print "value=\"", $query->param('email'), "\" /><br />\n";
103: print "Browser:<br />";

104: foreach my $browser (@browsers) {

105: print "<input type=\"radio\" name=\"new_browser\" ";
106: print "value=\"$browser\"";

107: if ($browser eq $query->param('browser')) {

108: print " checked";

109: }

110: print " />$browser<br />\n";

111: }

112: }

113: }

114: print "<input type=\"hidden\" name=\"name\" ";

115: print "value=\"" . $query->param('name') . "\" />\n";

116: print "<input type=\"hidden\" name=\"email\" ";

117: print "value=\"" . $query->param('email') . "\" />\n";

118: print "<input type=\"hidden\" name=\"browser\" ";

continues
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119: print "value=\"" . $query->param('browser') . "\" />\n";
120: print "<input type=\"submit\" value=\"Update record\" />\n";
121: print "</form>\n</p>\n";
122: '}
123:
124: sub valid_form {
125: if (!$query->param('new_name')) {
126: $error_message .= "You must enter a name.<br />\n";
127: }
128: if (!$query->param('new_email')) {
129: $error_message .= "You must enter an email address.<br />\n";
130: }
131: if (!$query->param('new_browser')) {
132: $error_message .= "You must select a browser.<br />\n";
133: }
134: }
135:
136: sub print_record_list {
137: open (GUESTS, "< $guest _file") or
138: die "Can't open guest file: $!";
139: while (<GUESTS>) {
140: chomp;
141: my ($name, $email, $browser) = split /\t/;
142: print "<p>\n";
143: print "<form>\n";
144: print "Name: $name<br />\n";
145: print "Email: $email<br />\n";
146: print "Browser: $browser<br />\n";
147: print "<input type=\"hidden\" name=\"name\" ";
148: print "value=\"$name\" />\n";
149: print "<input type=\"hidden\" name=\"email\" ";
150: print "value=\"$email\" />\n";
151: print "<input type=\"hidden\" name=\"browser\" ";
152: print "value=\"$browser\" />\n";
153: print "<input type=\"submit\" value=\"Edit this entry\" />\n";
154: print "</form>\n";
155: print "</p>\n";
156: }
157: }
158:
159: sub print_page_start {
160: print $query->header;
161: print "<html>\n<head>\n<title>Search for Records</title>\n";
162: print "</head>\n<body>\n";
163: print "<hi>Search for Records</h1>\n";
164: }
165:
166: sub print_page_end {
167: print "</body>\n</html>\n";
168: }
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Let’s take a look at how the script works. First, if no parameters are passed to the script,
it fetches all the records from the file, and prints a page with a form for each record in
the file. To edit a particular record, the user just has to choose one from the list and click
on Edit This Entry. The &print_record_list subroutine is called on line 61. The sub-
routine (lines 136—157) opens the file listed in $guest_file, and prints the contents of
each record. It also prints a form for each record, storing the values in the fields in hid-
den form fields.

When a user clicks one of the form buttons to edit a record, a form is printed with all the
current values of each of the fields so that the user can edit them. The values are also
stored again in hidden fields, so that the program can determine which record should be
updated. When the form is submitted, both the old and new values will be submitted to
the program.

After the form used to edit the record is submitted, the values in the form are validated.
The form validation code is identical to the code used to validate the form in the
insert.pl script. If the user failed to enter something in any of the fields, the form is
sent back to the user with an error message. If all the form fields contain values, the pro-
gram attempts to update the record in the database.

A lot of this code will look familiar to you as well. The code that deals with the
guests.txt file is wrapped in an eval block so that errors can be trapped. On line 20, I
open a read/write filehandle for the guests database. I lock the file on line 22, and on line
24 move the pointer to the beginning of the file. All the records in the file are read into
the array @guests on line 25. On line 26, I create a new array, @new_guests to store the
future contents of the file.

The foreach loop that begins on line 28 and ends on line 41 is where things get really
different. Like the delete.pl script, it evaluates the records one at a time. On line 29,
the linefeed at the end of each record is removed. On line 30, the fields are broken out
into individual variables. The if statement that runs from line 31 to line 38 is the crux of
the entire script. It checks to see whether the old values for each field submitted from the
form are equal to the fields in the current record. If they are, that’s the record to be modi-
fied.

When all the fields are equal, the current values in the record are replaced by the new
values submitted with the form. Whether the record was the one to be modified or not,
after the if statement executes, the linefeed is added back onto the end of the record, and
record is placed in the @new_guests array on line 40. After the foreach loop is complete,
all the records in the file are stored in the @new_guests array.
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On lines 4245, the file is emptied and the new set of records is printed to the file. The
filehandle is closed to release the lock, and the program finishes up by printing out a suc-
cess message and the closing HTML tags.

Summary

Flat-file databases are a useful way to store rudimentary data structures between execu-
tions of a program. In this hour, I explained how flat-file databases are designed, and
how to access them using Perl programs. I also explained, step by step, the four most
common operations performed on data stored within a flat file. I also explained how to
use file locking to protect your databases from being damaged by simultaneous access
from multiple processes.

Q&A
Q

A

Flat-file databases seem pretty easy to use; why shouldn’t I use them instead
of more powerful database applications?

One of the main reasons is performance. In order to retrieve a specific piece of
information from a flat-file database, you have to search every record in order to
find it. Relational databases are designed explicitly with fast retrieval of data in
mind, so they provide better performance. Flat-file databases are also very crude if
the record contains lots of fields, or contains fields that hold a lot of data. On the
other hand, flat-file databases are almost infinitely easier to set up and administer
than relational databases. If you need only one table, a flat-file database is proba-
bly the right choice.

I already have information stored in a database; how can I connect it to the
Web?

Because databases are such powerful and important applications, many different
commercial database packages are available for every platform. Unfortunately, this
means that [ probably can’t explain how to use your particular database on the Web
in the space that I have. A couple of common standards, however, make it easier
for programs to get data from databases: ODBC (Open Database Connectivity),
and SQL (Structured Query Language). I'm going to discuss both in the next hour.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.
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Quiz
1. How do you open a file for output in Perl?
2. What is a delimiter?

Exercises

1. Write a program that searches the guests database and prints the results of the
search. You should use the same while loop that was used in the last sample pro-
gram in this hour, and use the bind operator to search the lines and then print the
ones that match.

2. Write a CGI application that creates a flat-file database of your own. Flat-file data-
bases are simple, but they are powerful enough for many data storage tasks.

Quiz Answers
1. Using the output redirection operator, like this:
open (FILEHANDLE, "> $file name);

2. A delimiter is a character or series of characters used to separate records, or fields
within a record, in a database.
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Creating a CGI-Based
Message Board

One feature found on many Web sites is a discussion group where the site’s
users can discuss topics of common interest and share information. This
hour’s lesson consists of a walkthrough of a Web discussion group applica-
tion that you can adapt for use on your own site. Not only is the application
useful on its own, but it also demonstrates how flat files are used for data
storage in a real application, and illustrates the following topics:

 Creating flat files from a Web application

* Creating a file format for data storage

» Parsing through a text file to extract information

* Modifying a structured text file

* Generating unique filenames dynamically
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The Structure of the Application

The message board is implemented using two Perl programs. One is used to display a list
of topics; the other is used to post new topics and responses to existing topics. Each topic
with its responses is stored in a text file. All the topic files are stored in a common direc-
tory.

.
‘%" All the topics could have been placed in a single file, but that would have
A/

made it a bit more confusing.

The topic files themselves are plain text files, which are formatted using XML. The pro-
gram used to create and modify topics generates XML format using a structure that I
designed, and the Web discussion group application understands how to parse the files.
Despite the fact that the files are XML documents, I'm not going to use an XML parser
(a special application designed to deal with XML files generically) to deal with the
files—instead I'll just use regular Perl string handling constructs. However, the topic
files could be processed using an XML parser if you prefer.

The File Format

First, let’s look at the file format that I designed. A topic file with one response appears
in Listing 14.1. You’ll see the custom tags I created for this file format.

Listing 14.1 The Topic File Format for the Web Discussion Application

1: <topic>

2: <title>Sample Topic</title>

3: <author>Rafe Colburn</author>

4: <lastmodified>1024805727</lastmodified>

5: <post>

6: Just some information you might find interesting.</post>
7: <responses>

8: <response>

9: <responseauthor>John Doe</responseauthor>

10: <responsepost>Yes, that was interesting.</responsepost>
11: </response>

12: </responses>

13: </topic>
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Let’s look at the tags (or elements, as they’re called in the XML world) that appear in the
file. These tags aren’t HTML tags, they’re tags I made up myself for this custom file for-
mat. Because XML requires that all of the elements in the document are stored within a
single root element, the top level tag of my document is <topic>. On line 2, the <title>
tag surrounds the topic title. The <author> tag on line 3 surrounds the name of the
topic’s author. The date and time of the last modification of the topic appears in the
<last_modified> tag on line 4. The date is presented as the number of seconds since the
UNIX epoch, the value returned by the Perl time function.

o The time function in Perl returns the number of seconds since the UNIX
‘/ / epoch regardless of which platform the program is running on. It's consis-

f

tent across platforms.

You can convert that number to a properly formatted time using the Perl localtime func-
tion:

umbar:~ > perl -e "print scalar localtime(1056324591), \"\n\";"
Sun Jun 22 19:29:51 2003

The <post> tag encapsulates the actual text of the topic itself. Each response resides
within an individual <response> tag. Inside the response tag are the two other tags,
<responseauthor> and <responsebody>.

The Display Script
The script used to display the topics has two modes. If it’s passed a topic ID through the
topic parameter, it attempts to display that specific topic and its responses. If no para-
meters are passed to it, it displays a list of the topics available to read. The topic list is
generated by listing all the files in the topic directory and extracting the title and author
from those files. The topic IDs correspond to the names of the files in the topic direc-
tory.

If the topic parameter is supplied, the full text of the topic is displayed. Each of the
responses is displayed on the same page as the original topic, and a form used to respond
to the topic is also displayed. The full source code for the display.pl script appears in
Listing 14.2.
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Listing 14.2 The display.pl Program

WWWWMNDMNDMPPDNDMNDMNODMNDNDNOND = ===
WM 200 O0WONOODURWN 000N, WON = O©

A B2 DDA DAEDDDOOWWW
O N WN -2 ©0NOO,

O~NOO O~ WD =

w
>

#1/

use
use

my
my
my
my
my
my

if

}

els

sub

sub

sub

usr/local/bin/perl -Tw

CGI;
strict;

$query = new CGI;

$topic_directory = "topics";

$page_title = "Message Board";

@response_list = ();

($topic_title, $topic_author, $last_modified, $post);
$need_header = 1;

($query->param('topic')) {
&parse_topic(&open_topic($query->param('topic')));
$page_title = $topic_title;

&print_page_start;

&print_topic;
&print_response_form($query->param('topic'));
&print_page_end;

e {

$page_title = "Topic Index";
&print_page_start;
$need_header = 0;
&print_topic_index;
&print_page_end;

print_page_start {

print $query->header;

print "<html>\n<head>\n<title>$page title</title>\n</head>\n";
print "<body>\n<hi1>$page_title</h1>\n";

print_page_end {

print "<p><a href=\"display.pl\">view response list</a> |\n";
print "<a href=\"post.pl\">create new topic</a></p>\n";

print "</body>\n</html>\n";

print_topic_index {
eval {
opendir (TOPICS, "$topic_directory")
or die "Can't open $topic_directory";
my @topics = grep (/".+\.xml$/, readdir (TOPICS));
print "<p>\n";
foreach my $topic (@topics) {
$topic =~ s/(.+)\.xml/$1/;
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49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

90:
91:
92:
93:
94:
95:
96:
97:
98:

sub

sub

&parse_topic(&open_topic($topic));
print "<b><a href=\"display.pl?topic=$topic\">";
print "$page title</a></b>, $topic_author<br />\n";
}
print "</p>\n";

h

open_topic {
my $topic = shift(e@ );
if ($topic =~ /~([-\@\w.]+)$/) {

$topic = $1; # $data now untainted
} else {
print "<p>Tainted data submitted. Response not opened.</p>\n";
return;
I3
my $topic_file = "$topic_directory/" . $topic . ".xml";
my @topic_text = ();
eval {
open (TOPIC, "< $topic_file")
or die "Can't open $topic_file";
@topic_text = <TOPIC>;
b
if (se) {
&file_error($@);
}

return join("", @topic_text);

parse_topic {
my $topic_text = shift(@ );
if (!$topic_text) {

&format_error("Empty topic file.");

return;

}
# Extract the topic title from the topic
if ($topic_text =~ /<title>(.*)<\/title>/s) {

$page_title = $1;

$topic_title = $1;

}

else {
&format_error("Title not found.");
return;

}

# Extract the author from the topic

if ($topic_text =~ /<author>(.*)<\/author>/s) {
$topic_author = $1;

}

else {

continues




|258 Hour 14

Listing 14.2 continued

99: &format_error("Topic author not found.");

100: return;

101: }

102:

103: # Extract the date when the file was last modified

104: if ($topic_text =~ /<lastmodified>(.*)<\/lastmodified>/s) {
105: $last_modified = $1;

106: }

107: else {

108: &format_error("Last modified date not found.");

109: return;

110: }

111:

112: # Extract the first post from the topic

113: if ($topic_text =~ /<post>(.*)<\/post>/s) {

114: $post = $1;

115: }

116: else {

117: &format_error("Post not found.");

118: return;

119: }

120:

121: while ($topic_text =~ /<response>(.*?)<\/response>/sg) {
122: my $response = $1;

123: if ($response =~ /<responseauthor>(.*)<\/responseauthor>/s)
124: push @response_list, $1;

125: }

126: else {

127: &format_error("Invalid response format (author).");
128: return;

129: }

130: if ($response =~ /<responsepost>(.*)<\/responsepost>/s) {
131: push @response_list, $1;

132: }

133: else {

134: &format_error("Invalid response format (post).");
135: return;

136: }

137: }

138: }

139:

140: sub print_topic {

141: print "<p><table border=\"1\" cellspacing=\"0\" ";

142: print "cellpadding=\"5\">\n";

143: print "<tr><td colspan=\"2\" bgcolor=\"cyan\">";

144: print "<b>$topic_title</b></td></tr>\n";

145: print "<tr><td>Author:</td><td>$topic_author</td></tr>\n";

146: print "<tr><td>Most recent response:</td>";
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147: print "<td>", scalar localtime($last_modified), "</td></tr>\n";
148: print "<tr><td colspan=\"2\">";

149: print "$post\n";

150: print "</td></tr>\n";

151: my $part_type = "author";

152: foreach my $response_part (@response list) {

153: if ($part_type eq "author") {

154: print "<tr bgcolor=\"lightgrey\">";

155: print "<td colspan=\"2\">Response from ";

156: print "$response_part</td></tr>\n";

157: $part_type = "body";

158: }

159: else {

160: print "<tr><td colspan=\"2\">";

161: print "$response part\n";

162: print "</td></tr>\n";

163: $part_type = "author";

164: }

165: }

166: print "</table></p>\n";

167: }

168:

169: sub print_response_form {

170: my $topic = shift(@ );

171: my $author = ($query->param('author') || "");

172: print "<p><table border=\"@\" bgcolor=\"lightgrey\">\n";
173: print "<tr><td><b>Enter your response below:</td></tr>\n";
174: print "<form method=\"post\" action=\"post.pl\">\n";

175: print "<input type=\"hidden\" name=\"action\" ";

176: print "value=\"response\" />\n";

177: print "<input type=\"hidden\" name=\"response_to\" ";
178: print "value=\"$topic\" />\n";

179: print "<tr><td>Author: ";

180: print "<input type=\"text\" name=\"author\" ";

181: print "size=\"40\" maxlength=\"72\" value=\"$author\" /></p>\n";
182: print "</td></tr>\n";

183: print "<tr><td><p>Message body:</td></tr>\n";

184: print "<tr><td>\n";

185: print "<textarea rows=\"10\" cols=\"60\" name=\"post\" ";
186: print "wrap=\"virtual\">";

187: print "</textarea></td></tr>\n";

188: print "<tr><td>\n";

189: print "<input type=\"submit\" value=\"post response\" />\n";
190: print "</td></tr>\n";

191: print "</form>\n";

192: print "</table></p>\n";

193: }

194:

195: sub format_error {

continues
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Listing 14.2 continued

196: if ($need_header) {

197: print $query->header;

198: print "<html><head><title>Format Error</title></head><body>\n";
199: }

200: my $error_message = shift(@_);

201: print "<p><table border=\"1\" cellspacing=\"0\"><tr><td>\n";
202: print "<h3>Format Error</h3>\n<p>$error_message</p>\n";

203: print "</td></tr></table></p>\n";

204: '}

205:

206: sub file_error {

207: my $error_message = shift(@_);

208: if ($need_header) {

209: print $query->header;

210: print "<html><head><title>File Error</title></head><body>\n";
211: }

212: print "<p><table border=\"1\" cellspacing=\"0\"><tr><td>\n";
213: print "<body><h3>File Error</h3>\n<p>$error_message</p>\n";
214: print "</body>\n</html>\n";

215: print "</td></tr></table></p>\n";

216: exit;

217: '}

Utility Subroutines

There are a few utility subroutines in the script that you can look at before you dig into
the meat of the script. You should already be familiar with print_page_start and
print_page_end. They just print out the HTML tags needed to start and end an HTML
page. The print_page_start subroutine uses the page title specified in the $page_title
variable.

There are also a couple of subroutines written for error handling. If an error occurs when
the program attempts to open a topic file, the program uses the file_error subroutine,
which begins on line 206, to print an error message for the user. If the topic file is
improperly formatted, the format_error subroutine (it begins on line 195) is used to
send an error message to the browser. Note that both of these subroutines have logic in
them that indicates whether they should print out the page header. These subroutines are
sometimes called in the middle of rendering the page, and sometimes before any of the
page is rendered. The $need_header flag indicates which circumstances the subroutines
were called under. How these errors are trapped will be discussed later.

Opening the Topic File
The open_topic subroutine, .which starts on line 57, is used to open a topic file and
returns the data stored in that file. The name of the topic file to open is passed in via an
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argument. The actual argument is just the topic ID, the subroutine converts it into a file-
name. Before it does that, though, I use some code that I copied directly from the
perlsec Perl documentation to verify that the user’s input isn’t unsafe. Because the topic
ID is passed in from the browser, we have to make sure that we’re not passing malicious
commands to the shell. Once the taint check succeeds, I construct the path to the topic
file and open the file within an eval block.

If the file cannot be opened for some reason, the eval block traps the error and I pass it
off to the file_error subroutine so that it can be displayed for the user. If the file is
opened successfully, I copy the contents of the file into an array, and then use the Perl
join function to concatenate the array into a single string, and return that string. The
join function takes two arguments, a delimiter and a list to join together. In this case, I
use an empty string as the delimiter because the line feeds that are already present will
work just fine, and they’re already there.

Parsing a Topic File

The most important functionality found in this program is the code used to parse topic
files. After a topic file is opened, the parse_topic subroutine is used to extract all the
information from that file and store it in regular variables so that it can be printed. The
parse_topic subroutine begins on line 68. The full text of the topic file is passed to

the subroutine as a single string in an argument. On line 79 I use the shift function to
read the argument into the local variable $topic_text. If, for some reason, no text is
passed to the subroutine, it simply returns without doing anything (after printing an error
using format_error).

The purpose of the subroutine is to search the text for predefined tokens and extract the
needed data. The first piece of data the script tries to extract is the topic title. On line 85,
the regular expression /<title>(.*)<\/title>/s is used to extract the title from the
file. If the title tag is not present, the format_error subroutine is called and the subrou-
tine returns. This is the pattern followed throughout this subroutine. It attempts to locate
each token, and if it fails, it prints out an error message and stops processing.

Let’s look at a couple of features of the regular expression. After the regular expression,
the s flag is supplied. This indicates that matches should span line feeds. The wildcard in
the regular expression, which matches everything between the opening and closing title
tags, is surrounded by parentheses. In a regular expression, when an expression is sur-
rounded by parentheses, it indicates that the value the expression matches should be pre-
served. The values are preserved by being copied into variables. The first expression so
preserved is copied into the variable $1, the value of which I assign to the variable
$page_title on line 86 and $topic_title on line 87.
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The same technique is used to extract the author, date last modified, and body text from
the topic. In any of these cases, if the proper opening and closing tags can’t be found, the
script exits with an error. All of the values that I extract are assigned to global variables
that I declared at the beginning of the script.

The code for extracting responses is a bit more complex. The first four elements found in
a topic can only appear one time. There’s only one date last modified, only one author,
only one title, and only one body text field. On the other hand, there can be any number
of responses to a particular topic. That makes extracting responses a two step process.
The first step is to extract all the responses one at a time, the second step is to extract the
information from each response and store it in an array so that it can be displayed later.

A special type of loop is used to extract all the responses from the topic. The loop begins
on line 121. Let’s take that line of code apart piece by piece. The loop is a while loop, so
it is executed until the loop condition is false. In this case, the loop condition uses the
binding operator. Under normal circumstances, the expression will evaluate as true as
long as the expression to the right of the operator can be found in the variable to the left
of the operator. That means that an infinite loop would be created if the response tag
were present, or that the loop would not execute at all if the topic has no responses.

However, I use the g flag at the end of the expression. The g flag causes a regular expres-
sion to iterate over the instances of that expression in a string, rather than matching the
first instance in the string every time. When all the instances of the matching string are
exhausted, the binding operator returns false, and execution of the while loop ceases.
This makes it extremely convenient to iterate all of the instances of a particular pattern
within a larger string, just as I'm doing here.

Let’s look at one other feature of this regular expression. The actual wildcard in the
expression is (.*?). The question mark tells the wildcard to be “non-greedy.” By default,
Perl regular expressions match the largest possible number of characters. So, if a topic
had multiple responses and you didn’t include the question mark, the expression would
match the opening tag of the first response and the closing tag of the last response, and
treat them like one big response. The question mark indicates that the first </response>
encountered should be treated as the end of the match, instead of the last </response> in
the string.

After a response has been matched, it is copied into the variable $response (on line
122). At that point, the author and body of the response are extracted and appended to
the array @response_list. There’s no differentiation between authors and actual
response text in the @response_list array; because the authors and response text alter-
nate, I can take advantage of that later when I print out the responses.
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The parsing routine leaves me with several scalar variables that contain data associated
with the topic, and one array that contains all the responses. At that point, I’'m ready to
present the data in the format that I choose.

Printing the Topic List

Now that you understand how the topic files are parsed, I can take you through the vari-
ous execution paths through the script. First, let’s look at what happens when no topic is
specified and a list of topics is presented. The code from line 22-line 26 is executed if no
topic ID is supplied. On line 25, the print_topic_index subroutine is called. That sub-
routine, which begins on line 41, parses all the files in the topic directory and extracts the
titles and authors of those topics.

Looking at that subroutine, you’ll see how I process all the files in a directory. The entire
contents of the subroutine are wrapped in an eval statement so that any errors that occur
can be trapped and handled gracefully within the program. In this case, I haven’t built an
error handler for errors that occur when accessing the directory.

Let’s look at the code that reads the files from the directory. First, I use opendir to open
a directory handle for the topic directory. Conceptually directory handles are very similar
to filehandles. The thing to remember is that completely separate functions are used to
deal with the contents of a directory after it’s open. In this case, I read a list of all the
files in the directory at once on line 45.

I use the grep function on the list returned by the readdir function to filter out all the
files that don’t have an extension of .xml. The statement used to do this is somewhat
complex, so let me explain it in detail. First of all, I assign the list of files to the array
@topics. This is important because the entire expression is accessed in the list context.
When I use readdir, it will read all the files at once (instead of just reading the next file
in the directory).

In Perl, there are two contexts in which a function can be called, the list con-

)
J= T / text and the scalar context. Some functions behave differently depending on
ISSS- 4

i

ol the context. For example, if you call the localtime function in the scalar
context, it returns a nicely formatted string. If you call it in the list context,
it returns a list of all the components of a date and time.

The @topics array isn’t just assigned the contents of the full list of files returned by
readdir. Instead, the list of files is filtered using the grep function and a regular expres-
sion. The grep function takes the list of files returned by readdir and discards all the
filenames that don’t match the regular expression. In the end, the @topics array is filled
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with a list of names of files that are assumed to be topics for the discussion group. (Any
file that lives in the topics directory and has an extension of .xml is assumed to be a dis-
cussion group topic.)

After all the topic filenames are placed in @topics, a foreach loop is used to iterate over
those filenames. On line 49, I use another fairly complex statement. The open_topic
subroutine opens each file and returns the contents of that file. I pass the output of that
subroutine directly to the parse_topic subroutine to extract all the topic information
from the file. Because I nested the subroutine calls, I don’t have to worry about using a
temporary variable. At that point, all that’s left is to print a link for the topic. The query
string with the proper topic ID for each topic is embedded into the links. The topic list
appears in Figure 14.1.

FIGURE 14.1 Topic Index - Mozilla [Build ID: 2002053012}
The topic listfor the T gl Edt Wew Go Hookmarks Tools Wndaw Hep

discussion group. : @@ @ [ nttpsre3.ceg/bocks caiz4scripts 14/dsplay ol ®| @ ®0

Topic Index

Tenants Sought for "Haunted' Apartments. Rafe Colburn
Boys' ID Scam Foiled by School Uniforms, Rafe Colburn
Count Zooms Across Atlantic on Jet Ski, Rafe Colburn
Library Book Returned 60 Years Late, Rafe Colburn

view response Hst | create new lopic

Q @ @' @7‘ @ Document: Dons (0,15 secs) 1 Sli-el

Printing a Topic

When a user clicks a link to a particular topic, that topic file is opened and parsed, and
then the program prints out the topic. Just as I did when I was printing the list of topics, I
nest the calls to open_topic and parse_topic, and pass the topic ID in directly as an
argument to open_topic on line 14. As I already explained, all of the information in the
topic file is then stored in global variables. On line 15, I set the page title to the title of
the topic.

Once I’ve parsed the topic file, I'm ready to print out the topic. The print_topic sub-
routine, which runs from line 140-167, formats all the data from the parsed topic using
HTML and sends it to the browser. The only interesting part of this subroutine is the
code that prints responses. As you know, both the authors and response text were placed
in the same array. This subroutine uses a foreach loop to extract each element from the
array and print it. The program knows that the first element is an author, the second is a
response body, the third is an author, and so on. It uses a test in the foreach loop to
determine which type of data it’s printing and format it appropriately. Figure 14.2 con-
tains an example of a topic.



Creating a CGl-Based Message Board

265 |

FIGURE 14.2

Library Book Returned 60 Years Late - Mozilla {Build ID: 20020530123 =13
A topic rendered by Bl e e Ve G o ot D

the display script. v @@ ) @ ”\\ [ husprffes ks fegiaafocripts 14 display plitopic=102997468582387 @] @ @@0
Library Book Returned 60 Years Late

Library Book Returned 60 Years Late

Author: Rafe Colbumn

Most recent response: Mon Jun 24 23:12:04 2002

WILLTAMSPORT, Pa. (AP) - A book that was checked out of a library in Williamsport, Pa., 60 years ago has made it
back to the lbrary's bookshelves.

Teresa Stugart of Hughesville has returned the longest-cverdue book belonging to the James V. Brown Library.
Response from Rafe

Sayitisn't so!

Eunter your response below:

6 & @ @ @ vocuret: Done (1,221 ) e = 1 LI

After the topic is printed, the print_response_form subroutine is called to print out the
form the user can use to enter a response for the topic. The form is submitted to the
post.pl program, which I’ll discuss in a bit. The complete response form appears in

Figure 14.3.
FiGURE 14.3 . Library Book Returned 60 Years Late - Mozilla [Bulld ID: 2002053012} r_ |[|:||§
The response form. T Ele Edt Wew Go Gookmarks Todk Wncow el

A . /.‘\
- ) |% http:ire3.org fbooks fogi24fseripte/ 14/digplay plitopic = 10249 7463532387 [C] @ o
@,.0.@@ 20,0

Eanter your response below:
Author: |
Mescage body:

postresponse

view response st | create new topic

0 @ @' @ @ Doeursent: Dans (0,221 ses) T

The Posting Script

Now that you’ve seen how topics are displayed, let’s take a look at how new topics are
created and how responses are added to existing topics. The post.pl script serves two
purposes. First, it is used to create new topics, and second, it’s used to append responses
to existing topics. The source code for the script appears in Listing 14.3.
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LisTiNnG 14.3 The Source Code for post.pl

1: #!/usr/local/bin/perl -Tw

2:

3: use CGI;

4: use strict;

5: use CGI::Carp gw(fatalsToBrowser);

6:

7: my $query = new CGI;

8: my $topic_directory = "topics";

9: my $page_title;

10: my ($action, $author, $title, $post, $response_to) = ("","","","","");
11:

12: print $query->header;

13:

14: if ($query->param('action')) {

15: &set_variables;

16:

17: # The form to create a new topic has been submitted
18: if ($action eq "new") {

19: my $error_message = &validate_form;
20: if (!$error_message) {
21: my $topic = &write new_topic;
22: $page_title = $title;
23: &print_page_start;
24: &print_success;
25: &print_page_end;
26: }
27: else {
28: $page_title = "New Topic";
29: &print_page_start;
30: &print_error($error_message);
31: &print_form;
32: &print_page_end;
33: }
34:
35: elsif ($action == "response") {
36: &set_variables;
37: my $error_message = &validate_form;
38: if (!$error_message) {
39: &write_response;
40: $page_title = "New response entered";
41: &print_page_start;
42: &print_response_success;
43: &print_page_end;
44: }
45: else {
46: $page_title = "New response";
47: &print_page_start;

48: &print_error($error_message);
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49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

90:
91:
92:
93:
94:
95:
96:
97:
98:

}
I3
}
else {
$action = "new";
$page_title = "Enter new topic";
&print_page_start;
&print_form;
&print_page_end;
}
sub set_variables {
$action = ($query->param(‘'action') || "");
$title = ($query->param('title') || "");
$author = ($query->param('author') || "");
$post = ($query->param('post') || "");
$response_to = ($query->param('response_to') || "");
}
sub print_page_start {
print "<html>\n<head>\n<title>$page_title</title>\n</head>\n";
print "<body>\n<h1>$page title</h1>\n";
}
sub print_page_end {
print "<p><a href=\"display.pl\">view response list</a> |\n";
print "<a href=\"post.pl\">create new topic</a></p>\n";
print "</body>\n</html>\n";
}
sub print_form {

&print_form;
&print_page_end;

print "<p><table border=\"0\" bgcolor=\"lightgrey\">\n";

print "<tr><td colspan=\"2\">";
if ($action eq "response") {

print "<b>Enter your response below:</b></td></tr>\n";

}

else

{
}

print "<form method=\"post\">\n";

print "<b>Create your new topic below:</b></td></tr>\n";

print "<input type=\"hidden\" name=\"action\" value=\"S$action\"

if ($action eq "response") {

print "<input type=\"hidden\" name=\"response_to\" ";

print "value=\"$response_to\" />\n";

}

if ($action eq "new") {

print "<tr><td><b>Topic Title:</b></td><td>";
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LisTiNG 14.3

continued

99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:

sub

}

print "<input type=\"text\" name=\"title\" ";
print "size=\"40\" maxlength=\"72\" value=\"$title\" />\n";
print "</td></tr>\n";
}
print "<tr><td><b>Author:</b></td>";
print "<td><input type=\"text\" name=\"author\" ";
print "size=\"40\" maxlength=\"72\" value=\"$author\" />\n";
print "</td></tr>\n";
print "<tr><td colspan=\"2\"><b>Message body:</b></td></tr>\n";
print "<tr><td colspan=\"2\">\n";
print "<textarea rows=\"10\" cols=\"60\" name=\"post\" ";
print "wrap=\"virtuall\">$post</textarea><br />\n";
if ($action eq "response") {
print "<input type=\"submit\" value=\"post response\"><br />\n";

}
else {

print "<input type=\"submit\" value=\"post topic\"><br />\n";
}

print "</td></tr>\n";
print "</form>\n";
print "</table></p>\n";

validate_form {
my $error_message = '';
if ($title eq '' && $action eq 'new') {

$error_message .= "<li>You must enter a title.</li>\n";
}
if ($author eq '') {

$error_message .= "<li>You must enter an author.</li>\n";
}
if ($post eq '') {

$error_message .= "<li>You must enter a message.</li>\n";
}

if ($error_message eq '') {
return undef;

}
else {

return $error_message;
}

sub write_new_topic {

my $topic = time . $$;
open (TOPIC, "> $topic_directory/$topic.xml")
or die "Can't open $topic_directory/$topic.xml";
print TOPIC "<topic>\n";
print TOPIC "<title>$title</title>\n";
print TOPIC "<author>$author</author>\n";
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148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:

}

print
print
$post
print
print
print
close

TOPIC "<lastmodified>" . time . "</lastmodified>\n"j;
TOPIC "<post>\n";

=~ s/\n/<br \/>\n/g;

TOPIC $post;

TOPIC "</post>\n";

TOPIC "</topic>\n";

TOPIC;

return $topic;

sub write_response {
if ($response_to =~ /*([-\@\w.]+)$/) {

sub

$response_to = $1; # $data now untainted

} else {
print "<p>Tainted data submitted. Response not written.</p>\n";
return;

}

my $topic_file = $response_to . '.xml';

open (TOPIC, "+>> $topic_directory/$topic_file")
or die "Can't open $topic_directory/$topic_file";

flock

TOPIC, 2;

seek TOPIC, 0, 0;

my @topic_text = <TOPIC>;

my $topic_text = join '', @topic_text;

my $current_time = time;

$topic_text =~ s/<lastmodified>(\d+)<\/lastmodified>

/<lastmodified>$current_time<\/lastmodified>/x;

$topic_text =~ s/<\/responses>//;
$topic_text =~ s/<\/topic>//;
seek TOPIC, 0, 0;

truncate TOPIC, 0;

print

TOPIC $topic_text;

if ($topic_text !~ /<responses>/) {
print "<responses>\n";

}

print
print
$post
print
print
print
print
close

print_
"<p><b>Created new topic: $title.</b></p>\n";

TOPIC "<response>\n";

TOPIC "<responseauthor>$author</responseauthor>\n";
=~ s/\n/<br \/>\n/g;

TOPIC "<responsepost>$post</responsepost>\n";

TOPIC "</response>\n";

TOPIC "</responses>\n";

TOPIC "</topic>\n";

TOPIC;

success {

continues
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LisTing 14.3 continued

198:
199:
200:
201:
202:
203:
204:
205:
206:

sub print_response_success {
print "<p>New response entered.</p>\n";

}

sub print_error {
my $error_message = shift(e@_);
print "<p>Please correct the following errors:</p>\n";
print "<ul>$error_message</ul>\n";

The action parameter, which is included in the response form and new topic form, is

tested to determine whether the user is creating a new topic, has submitted a new topic,
or has submitted a response. If the action parameter is missing, the program displays the

form used to create a new topic. If the action parameter is set to new, the program

assumes that the form for creating a topic was filled out and that it has been submitted. If
the action is response, the program assumes that a response to an existing topic has been
submitted. Now let’s take a look at each of the options in detail.

Presenting the New Topic Form

If the action parameter is omitted, or it’s not set to new or response, the new topic form

is displayed. The print_form subroutine is used by all the actions—if no action is speci-
fied, it just prints all the fields with no values prefilled. The new topic form appears in

Figure 14.4.

FIGURE 14.4
The new topic form.

Enter new topic - Mozilla [Build ID: 2002053012}
¥ He Edt Vew Go Boolmarks Took YWindow Help

v
®® @ [ % hitpsffes.cratoocks fcaiadfserpts 14isost pl

AiaaELE LU TY LuUpras

Create your new topic below:
Topic Title: |

Author: |
Message body:

postiopic

_0 @ @' @ @ Docursent: Dane (0,77 secs)  —
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Processing a New Topic Submission

Let’s look at what happens when a user submits a new topic. Like most form processing
scripts, post.pl validates the user’s input to make sure that the new topic is acceptable.
It uses the validate_form subroutine, which just checks to make sure that the user
entered an author, title, and body text. Of course, you could add any additional validation
to this subroutine that you wanted. If the form submission is not valid, the print_error
subroutine lets the user know what the problems were with his form input, and the form
is redisplayed with the values the user entered inserted into the fields. The results of an
invalid form submission appear in Figure 14.5.

FIGURE 14.5 [ ow Topic - Mozilla Build ID; 2002053012} EER
An invalid form sub- Yligle et yew G geomarks Toos wndow ke
v
mission. @@ @ [ hupsires ks fegiddfeeripts/ 14isost pl @ @ @Q
New Topic

Please correct the following errors:

* You must enter atitle.
* You must enter an author. =
+ You must enter a message.

Create vour new topic below:
Topic Title: |
Author: |
Message body:
© & @ @ & oocurent: pons (04 820 —

If the form submission is valid, the program goes on to create the new topic file. The
topic file is created by the write_new_topic routine, which begins on line 141.

The first step in the process is to create a name for the topic file. The only important
thing about the name of the topic file is that it must be unique. The easiest way to create
a unique filename in a Perl CGI program is to append the output of the time function
(which returns the number of seconds since the UNIX epoch to the process ID of the
current instance CGI script). In most cases, just the time would be enough, but there’s an
off chance that two processes will try to create a file at the same time, and then you’d
have a conflict. It’s safer to include the process ID in the filename to avoid this problem.

= If you use a utility like FastCGl or mod_perl to create persistent Web applica-
=
Z tions, you'll have to use another method of generating unique filenames;
“‘ Z the same process services all the requests for the application.
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After the filename has been created, a filehandle is opened to write to the file with the
new name. All the information associated with the topic is printed to the new file, and the
file is then closed. Of course, the predefined topic file format that I created is used so
that the display.pl script can successfully parse it later.

Adding a Response

The code used to add a response is a bit more complex than the new topic creation code.
When a response is submitted, the values in the response are validated, just as they are
when a new topic is submitted. The valid_form subroutine does not require responses to
have a title because the response form contains no title field. If the user’s input from the
response form was valid, the write_response subroutine is called.

If the write_response subroutine just appended the response to the topic file without
altering any of the other content, there wouldn’t be anything to it. I would just open an
appended filehandle for the topic file, and print the new response at the end of the file. In
this case, the response has to be added, the closing responses and topic tags must be
added, and the date the response was last modified must also be updated.

On line 158, the file is opened in read/write mode. Line 133 locks the response file so
that it doesn’t get damaged if multiple users try to respond to the same topic at the same
time. Lines 171 and 172 copy the entire contents of the file into a single scalar variable.
And line 174 replaces the last modified date in the file with the current time. Let’s look
at that one a bit more closely. The regular expression spans two lines for readability pur-
poses. By passing the x flag to the regular expression, I indicate that white space inside
the expression should be ignored.

Line 178 moves back to the beginning of the file. On the next line I truncate the contents
of the file, and on line 180, I copy the new, modified information with the new last modi-
fied date into the file. Then I tack on the response, and close the file, saving it and releas-
ing the lock.

Summary

This hour contains the first in-depth example in the book. It demonstrated how to use
several programs in concert to create a fairly robust online message board that you can
use on your Web site. It also demonstrated how to apply a number of important concepts
in real-world applications, including how to create unique filenames and how to create
and modify files from within a CGI script. It also contained an example of a simple
parser that was used to translate topics from an established format to a data structure
accessible from a Perl program. Even if the discussion board isn’t useful to you directly,
you can mine useful information out of this hour that applies to the scripts that you are
writing.
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Q&A
Q

A

Isn’t it easier to just download a prebuilt discussion group package from the
Web and use that?

Probably, but then you wouldn’t have the benefit of learning how the discussion
group works. If you add some navigation to the discussion group application in this
hour, it will work fine for most tasks. If you’re looking for something more robust,
you may want to check out Ultimate Bulletin Board
(http://www.ultimatebb.com), a very nice discussion group package that will run
on UNIX or Windows.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1.

Why are both the time and process ID included in filenames generated by
post.pl?

Exercises

1.
2.

Create an application that will allow you to delete topics from the message group.

Insert code in the message group application that will store the date/time for each
response in a topic, and that will display those response times when topics are
printed.

Quiz Answers

1.

Both the process ID and time are included in the filenames of the topic files in
order to make sure that no file names are accidentally duplicated.
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Session Management

Online shopping malls, sites that want to remember users between visits,
and sites with customizable interfaces can only work if you have a way to
uniquely identify users and keep track of their activities. In other words, to
build complex Web-based applications, you need to store data that persists
between requests. This hour therefore discusses different methods for creat-
ing sessions, which enable you to store transaction data from one request to
the next. This hour also discusses cookies, which store small amounts of
data on the user’s computer for later use by the Web site.

This hour will

¢ Define session management

* Discuss the rationale behind using session management
» Explain basic authentication

* Cover the usage of hidden form fields

* Explain how cookies work

* Demonstrate how to use cookies in your Web site
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Why Use Session Management?

Vi

Session management is a means by which a user’s identity can be preserved between
requests. Session management in a Web environment works by passing an identifier to
the user with a response, and then having the user pass back that identifier with subse-
quent requests to keep track of his session. This identifier can then be used to correlate
the user with information relating to his activity. For example, if the user is shopping on
your site, you can keep track of all of the items he’s placed in his shopping basket using
session management.

As you’ve already learned, HTTP is a connectionless protocol. When a user requests a
Web page, the server sends the page and forgets that the browser ever asked. If a Web
site could only serve one user at a time, there wouldn’t be any problems with session
management. The individual user would begin using the site, the server could keep track
of where the user was and what she was doing, and the user could work through her
transaction until it was complete.

Alternatively, a Telnet server or FTP server can service multiple users and keep track of
all of them by allowing each user to open a persistent connection to the server. Every
user has his own socket connection, so the server differentiates the users by the ports
from which they connected.

Unlike Telnet and FTP, the connection to a Web server is only open long enough to
accept the request from the browser and send the response. Therefore, there are no ses-
sion management mechanisms built into the HTTP standard. Ordinarily, this isn’t a prob-
lem. When a user is visiting a static Web site, all the server needs to know is which
document the user is requesting. However, there are some situations where session man-
agement can make life much easier for users and for site administrators.

Let’s say you run a Web-based conferencing system that requires the user to log in
before browsing the site or posting any messages. HTTP is connectionless, so if the
server doesn’t store any information about the user, it will “forget” that the user already
logged in and require her to enter her user ID and password every time she wants to
access a page on the site.

By using a session management mechanism, however, the server can keep track of where
the user has been and who he is—without forcing him to identify himself every time he
visits a page.

o Actually, most session management mechanisms do require user identifica-
D (/ tion for every visit to a page, but the identification occurs in the back-
~ ground without any explicit action from the user.
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Perhaps the classic session management usage is in the creation of a “shopping cart.”
Without session management, a user would have to remember all the items he wanted to
order and enter them in the order form when he was done shopping. By using session
management, you can allow a user to add items as he browses the catalog. When he
checks out, all the items that he selected along the way will appear on the final ordering
screen. All he has to do is enter his name, address, and credit card number to order the
items.

Basic Authentication

o Realms are documents on a Web server that are grouped together under
the same authentication system. In other words, the same user IDs and pass-
—_— 4 el

~ words can be used to access any document within a realm.

One of the earliest mechanisms for preserving client state is basic authentication. By
state, I mean the current status of the user’s activity or transaction. Basic authentication
is used to protect subdirectories of a Web server by user ID and password, and was
implemented on some of the earliest Web servers. The only element of the session’s state
that basic authentication maintains is the username and password they used to log in.

The way basic authentication works is that the server expects to receive an
Authorization: header with requests. If the Authorization: header is not present or
the user ID and password sent in the header are not valid, the request is rejected. The
user sees a 401 Unauthorized response code, along with the WWw-Authenticate:
header that indicates the realm for which the user should provide authorization. When
most browsers receive this code, they display a dialog box where the user can enter a
user ID and password that will be sent with a new request for the page. If the user ID and
password are valid, they are sent with every subsequent request within that realm.

Most Web servers include support for basic authentication, although they vary widely in
how it is configured. For information on setting up realms and configuring authentica-
tion, you should refer to the documentation provided with your Web server.

Let’s take a look at the actual header lines that are exchanged in the course of an authen-
ticated Web session (these examples are taken from RFC 1945, the HTTP 1.0 specifica-
tion). First the server sends the WW-Authenticate: line:

WW-Authenticate: Basic realm="WallyWorld"
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This line indicates that Basic is the type of authentication required, and the document is
in the WallyWorld realm. If the user enters the user ID Aladdin and the password open
sesame, the following authorization header is returned:

Authorization: Basic QWxhZGRpbjpvcGVuIHN1c2FtzQ==

The Authorization: line indicates that it is using Basic authentication and sends the
user ID and password, encoded using Base64 encoding.

In one sense, Basic Authentication is a very simple session management system. It keeps
track of the user’s identity between requests. Once a user enters the username and pass-
word for an authentication realm in their browser, that username and password are sent
with every request for a URL in that authentication realm until they close their browser.
Although basic authentication is pretty useful for managing access to resources on a
server, it’s not very useful for keeping track of who a user is and what he is doing. To do
that, you have to write your own session tracking mechanism (or use one provided by
whatever application server you’re using).

Hidden Fields in Forms

As you learned back in Hour 5, “Creating HTML Forms,” you can use hidden form
fields in your forms. Each of these fields contains a name and value that is passed to the
CGI script along with the other visible form fields. You can use these hidden form fields
to save the state of a transaction from one form to the next, as you saw in the previous
lesson.

Let’s say you’re building a Web page that allows a user to register, and you want to ask
the user additional questions based on the information he provides in the registration
form. If the user responds that he has a TV in his home, you may want to ask how much
TV he watches in a week. If he has a dog, you could ask what his favorite brand of dog
food is.

In order to store all the information that the user enters in the registration form until you
actually save it to a database when he submits the second form, you can transfer it from
the first form to the second using hidden fields in the form. Figure 15.1 illustrates how to
preserve information between forms using hidden form fields.

As you can see in Figure 15.1, using multiple forms can break up the data a user must
enter into logical “chunks” so that the user isn’t confronted with a large, confusing form.
By passing the data the user has already entered from one form to the next using hidden
fields, you save yourself the trouble of storing the information temporarily on the server.
It also saves you from writing to your transaction database twice.
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FiGure 15.1 name occupation

Processing an order address gender

using two forms and phor?le Income

. emal

hidden form fields. : »
name
address
phone
email

Hidden Form Fields Example

I’m going to use a very simple example to illustrate how hidden form fields can be used
to preserve client state from one form to the next in a multiple form application. This
example is simplified by leaving out all form validation code, and by using very few
form fields.

) If form validation was included, the application would have to verify that
/ the user input in each stage of the application was valid before moving on
= to the next form. Adding more form fields is easy—you just have to deter-

mine which form to place them in, and be sure that you replicate them in
each following form using hidden form fields.

In this case, the example is ostensibly a registration script for the Web site. The applica-
tion is designed to capture three pieces of information—the user’s name, the user’s email
address, and the name of the company that the user works for. The first form is used to
capture the user’s name and email address, and the second form is used to capture his
company name. The full source code listing for the program appears in Listing 15.1.

LisTING 15.1—A Script That Maintains Sessions with Hidden Form Fields

#!/usr/local/bin/perl

use CGI;
$query = new CGI;

if ($query->param()) {
if ($query->param('company')) {
&set_variables;

0N OB~ WD =

continues
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Listing 15.1 continued

9: $title = "Registration Results";

10: &print_page_start;

11: &print_results;

12: }

13: else {

14: &set_variables;

15: $title = "Registration Form, Part 2";

16: &print_page_start;

17: &print_second_form;

18: }

19: }

20: else {

21: $title = "Registration Form, Part 1";

22: &print_page_start;

23: &print_first_form;

24: }

25:

26: &print_page_end;

27:

28: sub set_variables {

29: $name = $query->param('name');

30: $email = $query->param('email');

31: $company = $query->param('company');

32: }

33:

34: sub print_page_start {

35: print $query->header;

36: print "<html>\n<head>\n<title>$title</title>\n</head>\n<body>\n";
37: print "<hi>$title</h1>\n";

38: }

39:

40: sub print_first_form {

41: print "<form>\n";

42: print "Name: <input type=\"text\" NAME=\"name\" /><br />\n";
43: print "Email: <input type=\"text\" NAME=\"email\" /><br />\n";
44: print "<input type=\"submit\" value=\"Continue\" /><br />\n";
45: print “</form>\n";

46: }

47:

48: sub print_second_form {

49: print "<form>\n";

50: print "<input type=\"hidden\" name=\"name\" value=\"$name\" />\n";
51: print "<input type=\"hidden\" name=\"email\" value=\"S$email\" />\n";
52: print "<input type=\"text\" name=\"company\" />\n";

53: print "<input type=\"submit\" value=\"Register\">\n";

54: print “</form>\n";

55: }

56:
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57: sub print_results {

58: print "<p>\n";

59: print "Name: $name<br />\n";
60: print "Email: $email<br />\n";
61: print "Company: $company<br />\n";
62: print "</p>\n";

63: }

64:

65: sub print_page_end {

66: print "</body>\n";

67: print "</html>\n";

68: }

Application Logic

This CGI program begins the way all the other CGI programs written in Perl do—with a
pointer to the Perl interpreter. In this program, I’'m using the object-oriented interface to
CGI.pm, so I import the module and create a new query object. After that is complete, the
script determines whether to show the first form, show the second form, or process the
user input. Listing 15.1 shows the code that implements that logic.

On line 6, the script checks to see whether the form was submitted at all. If the script
was called without a form submission, the initial form is displayed. Otherwise, on line 7
the script checks to see whether the form submission was from the first or second form
by checking for the presence of the company parameter. If that parameter is present, all
the user input is processed. In this case, the &print_results function is used to process
the full user input. If the parameter company is not present, the second form is displayed
by the function &print_second_form.

The $title variable is used to store the title of the page. The &print_page_start sub-
routine includes the value in $title in both the page title and in the page heading.

Printing the Hidden Fields

The most important part of this script is the subroutine &print_second_form, which
begins on line 48. It transfers the values entered in the first form into hidden fields in the
second form.

The subroutine &set_variables is called before this one to move the values from the
param() data structure to normal variables. Then, the second form is printed with the val-
ues from the first stored in hidden fields. The HTML source generated when the second
form is displayed appears in Listing 15.2.
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Listings 15.2 HTML Generated by register.pl

—_ =
PONM 2SO

O~NOO O~ WD =

<html>

<head>

<title>Registration Form, Part 2</title>

</head>

<body>

<h1>Registration Form, Part 2</h1>

<form>

<input type="hidden" name="name" value="rafe" />
<input type="hidden" name="email" value="rafe" />

: <input type="text" name="company" />

! <input type="submit" value="Register">
: </form>

1 </body>

1 </html>

Using Cookies

The release of Netscape Navigator 2.0 was a watershed event for the Web. It contained a
plethora of new features, including support for frames, JavaScript, and cookies. As stated
earlier, cookies are used by servers to store information with the client that they can

retrieve later.

Cookies didn’t get a whole lot of press at first, but these days they’re used behind the
scenes at pretty much every popular Web site. To get a sense of how many Web sites use
cookies to store information about their users, set the preferences on your browser to
notify you anytime a site sends you a cookie. You’ll wear out your mouse-clicking finger
responding to all the “cookie alert” dialog boxes (see Figure 15.2).

Fioure 15.2
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Before you learn the technical details of using cookies to build better Web sites, you
need to understand the political issues surrounding them. You probably know that a lot of
savvy Web surfers distrust cookies. There are also plenty of users who don’t know that
they even exist, or who know what they are but don’t care whether sites use them or not.
Cookies are like any other technology, in that the problems don’t stem from the technol-
ogy itself but the way it’s used.

For example, one common use of cookies is to store passwords for accessing Web sites.
For low-security sites, like those that require free registration, cookies can save users
from being forced to enter their usernames and passwords every time they visit. This is a
fairly innocuous use of cookies, making things more convenient for users. On the other
hand, some Web advertising companies use cookies to track which sites users visit and
build profiles of their surfing habits. Although this certainly isn’t illegal, many users con-
sider it to be unethical to gather information about them without their knowledge or con-
sent.

Before you use cookies on your site, you should ask yourself what you’re trying to
accomplish. If you’re using cookies to make the lives of your users easier or to provide
enhanced features through your Web site, most users won’t mind. On the other hand, if
you use cookies to monitor user activity or otherwise spy on your users, chances are that
there will be a backlash.

The most important thing to remember is that because some users are concerned about
protecting their privacy, they surf with cookies turned off. You should always make sure
that your site will still work for users that don’t accept cookies, for whatever reason.

How Cookies Work

Now that we’ve gotten the politics of cookies out of the way, we can get down to the
nuts and bolts of how they work. Cookies are just another header sent with a request or
response. Here’s how they work.

When a browser sends a request to a site that uses cookies, the server sends a cookie to
the user in the response header. The cookie is stored by the client. Anytime the user visits
a page in the domain specified with the cookie, it sends the information in the cookie
back to the server. The server can send up to 4KB of information in a cookie, and
browsers will not store more than 20 cookies per domain.

To use cookies for session management, Web sites usually send a unique ID number to a
user, which is returned every time the user requests a page stored in the domain specified
in the cookie. The Web server can save information like the user’s name and password,
his interface preferences, or the contents of his shopping cart under that unique ID.
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Generally speaking, these IDs should be truly unique—meaning that once one is
assigned, it should never be assigned to anyone else. This can be accomplished by letting
users pick their own account name (notifying them of conflicts with existing account
names, of course) or by using an algorithm that generates unique identifiers. If your ses-
sions expire after a specific time period, then you can recycle session identifiers if you
wish, but using unique session IDs can save you trouble down the line if you change
your site so that session IDs persist over longer periods of time. Let’s take a look at a
sample cookie:

Set-Cookie: example=avalue; domain=.rc3.org; path=/books;
expires=Wed, 26-Jun-2003 02:23:11 GMT

The parts of the cookie are as follows:
name=value

Both the name and value of a cookie are set by the server. In the previous example, I
named the cookie example and set the value as the value of the cookie. The maximum
size of the cookie cannot exceed 4KB. Neither the name nor value can contain a space,
tab, or semicolon. If you’re going to include lots of information in a cookie, you can use
URL encoding to store the information. It’s a format that doesn’t use any of the charac-
ters that are prohibited in cookie values, and it automatically converts whitespace to its
hexadecimal equivalent.

domain=.example.com

The domain is specified to indicate the servers to which the cookie should be sent. For
example, if the browser has received the cookie in the previous example, anytime it con-
nects to a server in the example.com domain, like www.example.com,
stuff.example.com, or even www.stuff.example.com, it sends the cookie. On the other
hand, you can specify a specific server in the cookie and the cookie will only be returned
to that server. For example, if the cookie used domain=home.netscape.com, the cookie
would only be returned to that particular server.

By default, cookies are sent back only to the server that set them. To get a
server to send the cookie to every computer in that domain, you have to
Z specify the domain parameter with the cookie. Some browsers allow users

to only send cookies back to the originating server. In those cases, even if
you specify that your cookie should be sent back to the entire domain, it
will only be sent back to the server that set it.
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The server that is sending the cookie must be part of the domain specified in the cookie
in order for it to be accepted by the browser. For example, if you wrote a CGI script and
stored it on the server www.mcp.com, but you tried to set a cookie with the domain
.netscape.com, the cookie would not be set. Some old browsers will accept cookies that
are set for different domains than the one that is sending the cookie, but this has been
phased out.

path=/

Just as the domain specifies which servers a cookie should be sent to, the path specifies
which entities on the server should receive the cookie. For example, if you want a cookie
you’ve set to be returned to your CGI programs only, you could use path=/cgi-bin/ in
the cookie. Most of the time, however, you will probably just want to use path=/, which
indicates that the cookie should be sent regardless of the location of the requested file on
the server.

expires=Wed, 26-Jun-2003 02:23:11 GMT

The expires field indicates when the cookie should be deleted automatically by the Web
browser. If you don’t provide an expiration date with the cookie, it will be deleted when
the user closes her Web browser. Cookies with no expiration date are useful for tracking
a single Web session. On the other hand, if you want to save information with the client
for an extended period of time, you should include an expiration date for the cookie. The
amount of time the cookie should persist is up to you. Many sites set the cookies to
expire several years in the future.

Using Cookies to Save User Information

One common use of cookies is to save user information so that the user doesn’t have to
enter it every time she visits the site. For example, popular sites like eBay and My
Yahoo! use cookies to store users’ login IDs and passwords.

Let’s take a look at the headers you receive when you connect to espn.go.com:

200 OK

Cache-Control: no-cache

Date: Tue, 25 Jun 2002 02:45:19 GMT

Pragma: no-cache

Via: 1.1 espn.go.com (Redline Networks Accelerator 2.0.7A3)
Accept-Ranges: bytes

Server: Microsoft-IIS/5.0

Vary: Accept-Encoding, User-Agent
Content-Length: 3271

Content-Type: text/html

ETag: "c897a924f21bc21:b59"

Last-Modified: Tue, 25 Jun 2002 02:43:53 GMT
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Cache-Expires: Tue, 25 Jun 2002 02:48:51 GMT

Client-Date: Tue, 25 Jun 2002 02:45:19 GMT

Client-Peer: 204.202.129.230:80

P3p: CP="CAO DSP COR CURa ADMa DEVa TAIa PSAa PSDa IVAi IVDi CONi OUR
=BUS BUS PHY ONL UNI COM NAV INT DEM CNT STA PRE"

Set-Cookie: SWID=F53782EA-ED91-4D1B-B2D1-9B5F60154665; path=/;
wexpires=Tue, 25-Jun-2022 02:45:19 GMT; domain=.go.com;

The site sets a cookie that doesn’t expire until June 25, 2022. The cookie contains a
unique ID that can be keyed to database entries or site logs. Listing 15.4 contains a script
that sets two cookies.

LisTiNG 15.4 A Script That Sets a Cookie

#!/usr/local/bin/perl
use CGI;

1
2
3
4:
5: $query = new CGI;
6-
7
8

9: $cookie = $query->cookie (-name => 'menus’,

10: -value => 'on', -domain => '.rc3.org',

11: -path => '/books', -expires => '+1d');

12: $cookie2 = $query->cookie (-name => 'color',

13: -value => 'red');

14:

15: print $query->header(-cookie=>[$cookie, $cookie2]);
16:

17: print "<html><head><title>cookie</title></head><body>";
18: print "<p>cookie.</p></body></html>";

The first cookie, which expires on Wednesday, June 26, 2002, will be saved by the client.
It contains the name and value pair menus=on. The site could use this cookie to determine
whether to display full or condensed menus to the user when she visits the site.

The second cookie will expire as soon as the user closes her browser; it has the name and
value color=red. [ used the CGI.pm module to create both of them. Then, when I print
the query headers, I include the two cookies as arguments to the header subroutine.

Creating cookies with CGI.pm is even easier. All you have to do is use the cookie method
of the query object and set the appropriate parameters for the cookie you’re creating.
Listing 15.5 contains the source code for the previous program, written using CGI.pm
instead.
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Listing 15.5 A Script That Sets a Cookie Using CGI.pm

1: #!c:/perl/bin/perl

2:

3: use CGI;

4: $query = new CGI;

5:

6: $cookie = $query->cookie(-name=>'menus',

7: -value=>'on',

8: -expires=>'+30d"',

9: -path=>'/");

10: print $query->header(-cookie=>$cookie);

11: print $query->start_html(-title=>'Example');
12: print "This is an example page that sets a cookie. \n";
13: print $query->end_html;

One big advantage of using CGI.pm to set cookies is that you don’t have to calculate the
date when you want the cookie to expire. Instead, you can use constructs like +30d to set
an expiration date 30 days in the future, or +8h to expire in eight hours.

Using Cookies to Retrieve User Information

Setting cookies is only half the job. After you’ve stored the data on the user’s computer,
you need to retrieve it and do something with it. Cookies are passed to CGI programs
through the request header HTTP_COOKIE. If there are multiple cookies, they are stored in
a semicolon-separated list. If you’re using CGI.pm, it’s easy to extract cookies from the
request.

Listing 15.6 contains a program that extracts all the cookies sent with a request and
prints them.

Listing 15.6 A Program That Prints All the Cookies Associated with a Request

#!/usr/local/bin/perl

use CGI;
use strict;

1
2

3

4

5:

6: my $query = new CGI;
7-

8: print $query->header;
9

0

1 print "<html><head><title>cookies</title></head>\n";

continues
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LisTING 15.6 continued

11:
12:
13:
14:
15:
16:
17:
18:
19:

print "<body><h3>Cookies</h3>\n";
print "<table border=\"1\">\n";
print "<tr><th>name</th><th>value</th></tr>\n";
foreach my $cookie_name ($query->cookie()) {
print "<tr><td>$cookie name</td>\n";
print "<td>", $query->cookie($cookie name), "</td>\n";
}
print "</table>\n";
print "</body></html>";

Naturally, after you’ve extracted the cookies from the environment variable, you can do
anything you like with them. In this case, they’re just displayed in the browser. It demon-
strates how to get the name of all of the cookies sent with the current request, and how to

fetch

individual cookies as well. To fetch the names of all the cookies associated with a

request, you can use the following function call:

$query->cookie();

To fetch the value of a single cookie, this does the trick:

$query->cookie('menu');

On line 14 I fetch the names of all of the cookies and on line 16 I fetch the value of the
each cookie specifically. The output of the script appears in Figure 15.3.

FIGURE 15.3
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Setting and Retrieving Cookies with JavaScript

If you know that your site’s visitors all use browsers that support JavaScript, or your site
will still work properly without cookies, you can bypass CGI and use JavaScript to han-
dle your cookies. There are some disadvantages to this, the largest of which is that the
users can view all your source code if they want to. Another disadvantage is that because
the JavaScript code is executed within the client, your program only has access to the
resources that are available from within the client’s environment. It can’t read input from
files on the server or connect to databases. Setting and retrieving cookies with a
JavaScript program is simple. The document.cookie method is used to create cookies
and to retrieve the values of existing cookies. For example, to set the cookie used in the
previous example with JavaScript, all you have to do is include the following line within
the <script> tags in the header of your document:

document.cookie="menus=on; expires=Fri, Nov-14-97 00:00:00 GMT; path=/"

Assuming the person visiting the site has already been here before, you can read the
cookie using the document.cookie method as well. Listing 15.7 contains an example of
how to grab a cookie that you’ve already set.

Listing 15.7 Some JavaScript Code That Sets and Reads Cookies

1: // First make sure that there are cookies being sent back
2: // to the server.
3: if(document.cookie) {

4 // Now check to see whether the menus cookie exists

5: index = document.cookie.indexOf ("menus");

6: // If the cookie doesn't exist, set it to on.

7: if (index == -1) {

8: // I'm only setting the name, value, and expiration;
9: // all the other properties will be set to the

10: // default values.

11: document.cookie = "menus=on"

12: cookie_val = "on";

13: }

14: /] If the cookie exists, set up the variables to extract
15: // the cookie's value.

16: else {

17: str_begin = (document.cookie.indexOf("=", index) + 1);
18: str_end = (document.cookie.indexOf(";", index));

19: if (str_end == -1) {

20: str_end = document.cookie.length;

21: }

22: cookie_val = document.cookie.substring(str_begin, str_end);
23: }

continues
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LisTiNG 15.7 continued

24: // If the menus are on, print the first message. If they
25: // are not, print the second.
26: if (cookie_val == "on") {
27: document.write("This would be a menu.");
28: }
29: else {
30: document.write("Menus are off.");
31: }
32: }
You don’t need to include all the attributes with a cookie. All that's required
@ is the name attribute; the others all have default values and can be left out,
Z as demonstrated in Listing 15.7.

Cookies that are set and read using JavaScript are no different than cookies created with
CGI programs. You can use JavaScript to read cookies that were set by CGI, and vice
versa.

Session Management with Cookies

Now that you’ve seen how to create cookies and how to retrieve them after they’ve been
stored, I can show you how to create and maintain sessions using cookies. You’re going
to create what in all likelihood is the world’s smallest shopping site, because the catalog
only contains two items. The way the site works is that there is a separate cookie for
each unique item in the catalog. The cookie stores the quantity of the item that the user
is going to order. When the user checks out of the store, the check-out program looks at
the cookies that are sent back by the browser and builds a list of items that the user has
ordered.

This isn‘t how a real shopping site would work; if there were thousands of
items in the catalog there would be thousands of different cookies to set.
Real sites store a unique identifier in a cookie, and then store all the infor-
mation associated with the user’s session in a database or some other persis-
tent data structure. Every time the user requests a page, their identifier is
sent back to the server and the information about their session is looked up.
You'll see how sites like that are constructed over the course of the next few
chapters.
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The Catalog Page

The first program serves as the catalog for the site. Because all the shopping cart infor-
mation is stored in cookies, you could have any number of pages that work just like this
one does. This CGI program displays a page with two forms on the screen (shown in
Figure 15.4), one for each item in the catalog. When the user clicks on the Add to Cart
button, he receives a cookie that specifies how many of the items he wants to add to the
cart, and the page is reloaded so he can order other items. When he is done ordering, he
can click on Check Out to complete the transaction. The source code to the script
appears in Listing 15.8.

Listing 15.8 The Product Selection Page in the Online Store

1: #!/usr/local/bin/perl

2:

3: use CGI;

4: use strict;

5:

6: my $query = new CGI;

7: my $cookie;

8:

9: if ($query->param('item') eq "deluxe ") {

10: $cookie = $query->cookie(-name=>'deluxe',
11: -value=>$query->param('quantity'));
12: }

13: elsif ($query->param('item') eq "standard") {
14: $cookie = $query->cookie(-name=>'standard',
15: -value=>$query->param('quantity'));
16: }

17:

18: if ($cookie) {

19: print $query->header(-cookie=>$cookie);
20: }
21: else {
22: print $query->header;
23: }
24:
25: print <<EOF;
26: <html>
27: <head>
28: <title>Mall Example</title>
29: </head>
30: <body>
31: <hi1>Mall Example</h1>
32:

33: <table border="0" cellpadding="10" width="400">
34: <tr valign="top" align="left">

continues
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LisTinG 15.8 continued

35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:

<form method="post">
<td>
<b>Deluxe Widget</b><br />

The deluxe widget is the finest of its kind.

for the low price of \$1,995.
</td>
<td>
<select name="quantity">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
</select>
</td>
<td>

Purchase yours today

<input type="hidden" name="item" VALUE="deluxe " />
<input type="submit" value="Add to Cart" />

</td>
</form>
</tr>

<tr valign="top" align="left">
<form method="post">

<td>

<b>Standard Widget</b><br />

The standard widget is really pretty boring.

for the low price of \$995.
</td>
<td>
<select name="quantity">
<option value="1">1</option>
<option value="2">2</option>
<option value="3">3</option>
</select>
</td>
<td>

Purchase yours today

<input type="hidden" name="item" value="standard" />
<input type="submit" value="Add to Cart" />

</td>

</form>

</tr>

<tr>

<td colspan="3" align="center">

<font size="+1"><a href="checkout.pl">Check OQut</a></font>

</td>
</tr>
</table>

</body>
</html>
EOF
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FIGURE 15.4
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The first thing the program does is check to see whether it has received any input from

the forms contained in the page. If it has, it sets a cookie that specifies how many of an

item the user wants to buy, and then redisplays the page so that the user can select other
items. If it does not receive input from a form, it just displays the page.

In this example, I used what’s called a HERE document in the Perl world. Take a look at
the following statement:

print <<EOF;

The HERE document prints everything from the beginning of the HERE document (the pre-
vious code statement) to a line that begins with EOF. This is just an easy way to print a
bunch of lines without having to put each of them in individual print statements.

The Checkout Form

After the user is done with the page, he can click on the Check Out link to complete the
order. The checkout.pl program simply checks to see whether there is a cookie set for
each item in the catalog. If there is, it adds a line to the invoice for that item, containing
the name of the item, the quantity ordered, the price, and the total cost. The source code
to the checkout.pl script appears in Listing 15.9.
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Listing 15.9 The Checkout Script

1: #!/usr/local/bin/perl

2:

3: use CGI;

4: use strict;

5:

6: my $query = new CGI;

7:

8: print $query->header;

9: print $query->start_html(-title=>'Check Out');

10: print "<h1 align=\"center\">Checking Out</h1>\n";

11: print "<div align=\"center\">\n";

12: print "<table cellpadding=\"4\" border=\"1\">\n<tr>\n";

13: print "<th>Item</th><th>Quantity</th><th>Price</th><th>Amount</th></tr>";
14: if ($query->cookie('standard')) {

15: my $quantity = $query->cookie('standard');

16: print "<tr><td>Standard Widget</td><td align=\"right\">";
17: print "$quantity</td>\n";

18: print "<td align=\"right\">\$995</td><td align=\"right\">";
19: print "\$", 995 * $quantity;
20: print "</td></tr>\n";
21 }
22: if ($query->cookie('deluxe')) {
23: my $quantity = $query->cookie('deluxe');
24: print "<tr><td>Deluxe Widget</td><td align=\"right\">";
25: print "$quantity</td>\n";
26: print "<td align=\"right\">\$1995</td><td align=\"right\">";
27: print "\$", 1995 * $quantity;
28: print "</td></tr>\n";
29: }
30: print "</table>\n</div>\n";
31: print "</body></html>\n";

The checkout page (shown in Figure 15.5) is very simple in this example. If this was a
real commerce site, you would probably require the user to enter his name, address, tele-
phone number, credit card number, and a bunch of other stuff at this point. If you were
really on the ball, you would have a database of users based on cookies, and you’d auto-
matically print out all the information for each user every time she visits the site. Then
he would only have to enter the information the first time he visits the site, and update
his record with any changes made after that.
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Why CGI and Cookies Don’t Mix

Now that I’ve shown you all sorts of cool things you can do with cookies, I'm going to
explain why cookies and CGI really don’t mix. The problem with combining cookies
and CGI is that much of the time, cookies are used by every page on your site. For
example, if you want to log a user’s session ID every time he visits a page on your Web
site, you have to run all those pages using CGI, which is extremely slow.

If you want to use session management across your entire site, you may benefit by using
an application development platform like J2EE, ASP, ColdFusion, or PHP that lets you
embed code snippets into standard HTML pages. These platforms provide fast applica-
tion servers that integrate directly with the Web server, and also enable you to spend
most of your time designing your pages and then go in and add the session management
code once you’re done. These platforms were discussed in Hour 12, “Pros and Cons of
Alternate Technologies.”

Summary

Session management is one of the key building blocks of interactive, large-scale Web
applications. The capability to conduct transactions that span more than one page and to
create individual sessions for each user who visits your Web site makes applications like
Amazon.com’s online bookstore possible. This hour discussed two ways to add session
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management to your applications—using hidden form fields and using cookies. Using
cookies is the more robust method; it enables you to manage sessions that comprise all
the pages on your site.

Q&A

Q What can I do to manage user sessions if a user has cookies turned off?

A Unfortunately, if your site’s visitors are using a browser that doesn’t support cook-
ies, or they have cookies turned off, there isn’t an easy alternate method for session
management. One option is to include session identifiers as part of the URL on
your site. To use this strategy, every link on your site has to be generated dynami-
cally with the user’s session ID included as part of the URL. This is a lot of work,
but if you want to support all users, it’s necessary. One site that uses such a scheme
is Amazon.com. Session IDs are stored in a cookie, but they are also included in all
of the links on the site.

Q Can cookies be used to steal my email address, find out my real name, or list
the files on my hard drive?

A There are a lot of rumors surrounding cookies, but the bottom line is that they can
only be used to store information that the user has provided to the Web site.
Cookies can only store information, not gather it. The main privacy issue with
cookies is that they can be used to store a history of Web pages you’ve visited, but
remember that cookies are only sent back to the domain from which they origi-
nated. A cookie can’t be used to gather information from sites other than the one
that sent it. Unfortunately, cookies can be included with images and other files as
well as with HTML documents. So, if an image on a page is served from a domain
other than that which is serving the actual Web document, it can send you a cookie
as well. Some ad banner networks are using this to track user activity across all of
the sites that participate in their network.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. What is the purpose of the domain attribute of a cookie?

2. How are the names and passwords for basic authentication encoded?
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3. How can users spoof hidden form fields and send values other than those that
you’ve specified?

4. How do you remove an existing cookie?

Exercises

1. Create a CGI program that asks a user for his name the first time he visits the page,
and then sets a cookie and welcomes him by name every time he comes back.

Quiz Answers
1. The domain attribute of a cookie restricts which server the cookie will be sent to.

2. Usernames and passwords are encoded using Base64 encoding in the basic authen-
tication scheme.

3. Users can spoof hidden form fields by downloading your forms and editing and
submitting them themselves, or by simply appending parameters to their URLs.

4. You can remove an existing cookie by giving it an expiration date in the past.
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Building a Simple
Shopping Cart

Nearly all Web sites that sell merchandise over the Internet include that
ubiquitous element—the shopping cart. Most shopping cart applications
work by assigning the user a session identifier, and associating the user’s
purchase choices with that identifier. The application keeps track of the
user’s activities by carrying the identifier from page to page within the site.
When the user is ready to “check out,” the application retrieves all the items
to be purchased.

This hour demonstrates how to build a simple shopping cart by discussing
the following topics:

* How shopping cart applications work

* How to build a catalog

* How to build a shopping cart

* How the checkout procedure for an online store works
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How the Sample Shopping Cart Works

The sample shopping cart application has three components. In this case, they’re rather
simplified, but the concepts are the same whether you’re selling five items or you’re
Amazon.com. The first component is the catalog. The catalog contains the ID, name, and
price for all the items that are sold by the online store. Generally, the catalog is the most
sophisticated component of the site. At Amazon.com, not only is the basic name and
pricing information included in the catalogs, but so is lots of other information, including
reader reviews, editorial reviews, and images of the book covers.

In this case, the catalog is stored in a single flat text file. In Hour 20, “Creating an Online
Store,” I'll explain how to create an online catalog using a relational database. Relational
databases are really ideal for the storage of information associated with online stores, but
many smaller sites use flat files for data storage. In any case, in this sample application,
flat files will be used. The main reason is that this application is designed to illustrate
how session management is used to create a shopping cart, not how to use relational
databases.

The structure of the products.txt file, which contains a list of products sold on the site,
appears in Listing 16.1.

Listing 16.1 The products.txt File

64 megabyte SIMM 99.00
3D Video Card 199.00
DVD-ROM Drive 79.00
500mhz Athlon processor 249.00
Ethernet adapter 19.00
19 inch monitor 319.00

o0 WD =

As you can see, the product catalog for this application is very simple. For every product,
there’s only a product ID, product description, and product price.

The rest of the data associated with the application is stored in a file called cart.txt.
This file contains the shopping cart information for all the users using the site at any
given time. The following code is a snippet of the cart.txt file:

946771592332 1 2
946771592332 4 1
946771592332 3 1

The cart file contains three fields per record—a session ID, a product ID, and a quantity.
Whenever a user adds a new item to his cart, a new record is added to the file. If a user
adds an item that’s already in his cart, or alters the quantity of an item in the cart, the
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appropriate record is modified. If the user removes an item, the corresponding record is
removed from the file. When a user checks out and places his order, the order is stored
elsewhere and all the cart information is expunged from the file.

There’s one significant problem that isn’t covered by this application, and that is the
expiration of unpurchased content from the file. Consider the following scenario: a user
arrives at the site and adds a bunch of stuff to his shopping cart. Instead of checking out
or removing all the stuff in the cart, he just leaves and never comes back. The items he
placed in his shopping cart remain there forever. The best solution for this problem is to
log the date and time that items were placed in the cart, and automatically remove them
after a certain amount of time.

The Catalog

First let’s take a look at the catalog script. It serves two purposes—it lists the products on
the screen, and it adds selected products to the shopping cart. Each item in the cart has
its own form, which the user can submit to add an item to the cart. The form fields are
passed back to the catalog.pl script through the query string.

Like many of the scripts presented in this book, it decides what to do based on the para-
meters it receives in the query string. If a product ID is passed to the script, it retrieves
the user’s session ID or assigns a new one, and attempts to add that product to her cart. If
no product ID is passed to the script, it just displays the product listing without altering
the contents of the user’s cart. The source code for the catalog.pl script appears in
Listing 16.2.

LisTiNG 16.2 The catalog.pl Script

#!/usr/local/bin/perl -w

use strict;

use CGI;

use CGI::Carp gw( fatalsToBrowser );

my $query = new CGI;

0N OB~ WN =

9: my $catalog_file = "products.txt";
10: my $cart_file = "cart.txt";
11: my ($session_id, $product_id, S$quantity);

12:

13: if ($query->param('product_id')) {

14: if ($query->cookie('session_id')) {

15: $session_id = ($query->cookie('session_id'));

continues
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LisTiNG 16.2 continued

16: }

17: else {

18: $session_id = time . $$;

19: }

20: &set_variables;

21: &add_to_cart;

22: &print_page_start;

23: &open_catalog;

24: &display_catalog;

25: &print_page_end;

26: }

27: else {

28: &print_page_start;

29: &open_catalog;

30: &display_catalog;

31: &print_page_end;

32: }

33:

34: sub add_to_cart {

35: open (CART, "+>> $cart_file")

36: or die "Can't open shopping cart file";
37: flock CART, 2;

38: seek CART, 0, 0;

39: my @records = <CART>;

40: my @new_records = ();

41: my $found = 'no';

42: foreach my $record (@records) {

43: chomp $record;

44: my ($rec_session_id, $rec_product_id, $rec_quantity) =
45: split /\t/, $record;

46: if (($session_id eq $rec_session_id) and
47: ($product_id eq $rec_product_id)) {
48: my $new_quantity = $quantity + $rec_quantity;
49: my $new_record = "$session_id\t$product id\t$new quantity";
50: $record = $new_record;

51: $found = 'yes';

52: }

53: $record .= "\n";

54: push @new_records, $record;

55: }

56: seek CART, 0, 0;

57: truncate CART, 0;

58: print CART @new_records;

59: if ($found eq 'no') {

60: print CART "$session_id\t$product_id\t$quantity\n";
61: }

62: close CART;

63: }

64:

65: sub set_variables {
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66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:

sub

sub

sub

sub

$product_id = $query->param('product_id");
$quantity = $query->param('quantity');

open_catalog {
eval {
open (CATALOG, "< $catalog_file")
or die "Can't open $catalog _file";
b

display catalog {

print "<div align=\"center\">\n";

print "<table border=\"1\" cellpadding=\"4\">\n";

print "<tr>\n<th>Description</th>\n<th>Price</th>\n</tr>\n";

while (<CATALOG>) {
my ($product_id, $product_desc, $product_price) = split /\t/;
print "<tr>\n";
print "<form>\n";
print "<input type=\"hidden\" NAME=\"product_id\" ";
print "value=\"$product_id\" />\n";
print "<td>$product_desc</td>\n<td>$product_price</td>\n";
print "<td><input type=\"text\" name=\"quantity\" ";
print "value=\"1\" size=\"2\" /></td>\n";
print "<td><input type=\"submit\" value=\"add\" /></td>\n";
print "</form>\n";
print "</tr>\n";
}

print "</table>\n</div>\n";

print_page_start {
if ($session_id) {
my $cookie = $query->cookie(-name=>'session_id',
-value=>$session_id);
print $query->header(-cookie=>$cookie);

}
else {

print $query->header;
}

print "<html>\n<head>\n<title>PC Product Catalog</title>\n";
print "</head>\n<body>\n";
print "<h1 align=\"center\">PC Product Catalog</hi1>\n";

print_page_end {

print "<p><div align=\"center\"><b>";

print"<a href=\"cart.pl\">view cart</a></b></div></p>\n";
print "</body>\n</html>\n";
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In this script, as in most, there’s some setup that takes place before the actual processing
of user data gets under way. As is the case in all the scripts I write, first I import the CGI
module and create a query object. Then, I create variables that contain the locations of
the shopping cart and catalog files. The Web server must have read access for the catalog
file (it doesn’t write to the file), and it must have read and write access to the shopping
cart file.

Printing the Catalog

Before we look at manipulating the shopping cart, let’s take a look at how the catalog is
presented to users. The presentation of the catalog is a two-step process. First, I use the
open_catalog subroutine to create a file handle named CATALOG in order to read the list
of items from the file. The open statement is wrapped in an eval block, but in this sam-
ple program, there’s no error-handling code to specifically handle any errors trapped by
the eval block. The open_catalog subroutine runs from line 70 to line 75.

After the catalog file is open, the next step is to print all the records in the file. The
display_catalog subroutine, which begins on line 77, does this job. The catalog itself is
formatted using an HTML table, so on lines 79 and 80, I begin the table and print the
table headings.

The actual contents of the catalog file are processed and printed using the while loop
that begins on line 82. Each line is pulled from the file and processed by the loop. When
you process a form using a loop and file handle in this way, each line of the file is auto-
matically copied into the special variable $_ as it is processed by the loop.

Many Perl functions process $_ if no argument to replace it is specified.

On line 83, the split function is used to extract data from a line in the file. It splits the
current value of $_ into several variables by treating tabs as delimiters. When you’re
working with $_, it’s not necessary to pass the string to split to the split function. After
the individual fields have been extracted from the record, the catalog item can be printed.

Each row of the table is actually an individual form. Each form contains three fields—

a hidden field with the product ID, a text field where the user can enter a quantity for the
product, and a submit button. To add products to her cart, the user just has to enter a
quantity in the text box (the default is 1) and click on the submit button. The catalog
page is displayed in Figure 16.1.
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Next, I’ll explain what happens if a user does add an item to the shopping cart.

Adding Items to the Shopping Cart

Now let’s look at what happens when a user submits a form in the catalog to add an item
to the cart. It’s important to point out that users can’t add more than one type of item to
their carts at a time. Each item in the catalog has a form unto itself, and while the user
can add any quantity of that item to his cart at any given time, he can’t add several differ-
ent items at the same time.

When a user submits a form to add an item to the cart, two parameters are passed to the
script—the product ID of the item being added, and the quantity of that item that should
be added. When a user adds an item to the cart, the script first searches the cart file to see
whether the user already has that item in his cart. If he does, the new quantity is added to
the existing quantity of that item, and that record in the cart file is updated. If the item
being added isn’t already in the cart, a new record is added to the file with the session
ID, product ID, and quantity.

The addition of items to the shopping cart is handled by the add_to_cart subroutine.
This subroutine opens the cart file, determines whether an existing record needs to be
updated or a new record needs to be created, and updates the cart file. First, the subrou-
tine opens the file in read/write mode, and locks the file. The file is actually opened using
the append (>>) operator, but that only affects where the file pointer is located when the
file is opened. After the file is opened, the file pointer is moved to the beginning of the
file, and all the records are read into the array @records. A new variable, $found, is
defined so that you can keep track of whether you’ve located a record that matches the
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product being added to the cart. If the session ID of the user adding the item, and the
product ID of the item being added, match a record that’s already in the cart file, the
$found variable is set to 'yes', so you know not to create a new record later.

After all the variables are set up, I iterate over all the records in the cart file to find one
that matches. As each record is evaluated, it’s placed in the @new_records array, which
will eventually be written back to the file. If a record is a match, the quantity being
added is added to the current quantity in the record, and it is pushed into the
@new_records array. The $found variable is also set to indicate that the record was
found.

= One bit of code that's not built into this application is a check that deter-
Z mines whether the user entered a valid quantity in the form. If the user
“@ entered non-digits, that value can’t be added to the current quantity. If the
user entered a negative number, that item could actually wind up with a
negative quantity in the cart file, and the user could actually receive a credit
when she checks out. If this were a real application, you'd have to check for
those types of conditions.

After all the records in the file have been processed, the existing file is truncated and the
records are then printed to the now empty file. At that point, if a matching record wasn’t
found, a new record is appended to the file containing the session ID and product that
was to be added. After all the records have been printed to the file, it is closed.

The Contents of the Shopping Cart

The cart.pl file is used to view the contents of shopping carts, and to allow users to
remove items from the cart if they no longer intend to purchase them. If the script
receives no parameters, it just retrieves the list of items in the user’s shopping cart and
displays them. Each item in the cart is accompanied by a form that can be used to
remove that item from the shopping cart. If the action parameter is set to remove, it
attempts to remove the specified item from the cart. The full source code for the script
appears in Listing 16.3.

Listing 16.3 The Source Code for cart.pl

1 #!/usr/local/bin/perl
2:
3: use strict;
4:
5

use CGI;
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use CGI::Carp gw( fatalsToBrowser );

my $cart file = "cart.txt";
my $catalog_file = "products.txt";
my $query = new CGI;

my ($session_id, $page_title);
my @user_cart;

my S%product_names;

my %product_prices;

if ($query->cookie('session_id')) {
$session_id = ($query->cookie('session_id'));
}

if ($query->param('action')) {
if ($query->param('action') eq 'remove') {
$page_title = "Shopping Cart";
&remove_item;
&print_page_start;
&get_cart_contents;
if (@user_cart) {
&get_product_list;
&print_cart;
}
else {
&print_no_cart;
}
&print_page_end;
}
}
else {
$page_title = "Shopping Cart";
&print_page_start;
&get_cart_contents;
if (@user_cart) {
&get_product_list;
&print_cart;
}
else {
&print_no_cart;
}
&print_page_end;

sub remove_item {
open (CART, "+>> $cart_file")
or die "Can't open cart file";
flock CART, 2;
seek CART, 0, 0;

continues
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ListinG 16.3 continued

56: my @records = <CART>;

57: my @new_records = ();

58: foreach my $record (@records) {

59: chomp $record;

60: my ($rec_session_id, $rec_product_id, $rec_quantity) =
61: split /\t/, $record;

62: unless (($rec_session_id eq $session_id) and

63: ($rec_product_id eq $query->param('product_id'))) {
64: push @new_records, $record . "\n";

65: }

66: }

67: seek CART, 0, 0;

68: truncate CART, 0;

69: print CART @new_records;

70: close CART;

71: }

72:

73: sub get_cart_contents {

74: open (CART, "< $cart_file")

75: or die "Can't open shopping cart file";

76: my @records = <CART>;

77: @user_cart = ();

78: foreach my $record (@records) {

79: chomp $record;

80: my ($rec_session_id, $rec_product_id, $rec_quantity) =
81: split /\t/, $record;

82: if ($rec_session_id eq $session_id) {

83: push @user_cart, $record;

84: }

85: }

86: }

87:

88: sub get_product_list {

89: open (CATALOG, "< $catalog file")

90: or die "Can't open catalog file";

91: sproduct_names = ();

92: %sproduct_prices = ();

93: while (<CATALOG>) {

94: my ($cat_product_id, $product_name, $product_price) =
95: split /\t/;

96: $product_names{$cat_product_id} = $product_name;
97: $product_prices{$cat_product_id} = $product_price;
98: }

99: close CATALOG;

100: }

101:

102: sub print_cart {
103: print "<div align=\"center\">\n<table>\n<tr>\n";
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104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:

sub

sub

sub

print "<th>Product ID</th>\n<th>Product Name</th>\n";
print "<th>Price</th>\n<th>Quantity</th>\n</tr>\n";
foreach my $cart_item (@user_cart) {
my ($rec_session_id, $rec_product_id, $rec_quantity) =
split /\t/, $cart_item;
print "<td>$rec_product_id</td>\n";

print "<td>", $product_names{$rec_product_id}, "</td>\n";
print "<td>", $product_prices{$rec_product_id}, "</td>\n";

print "<td>$rec_quantity</td>\n";
print "<td>\n<form>\n";
print "<input type=\"hidden\" name=\"action\" "“;
print "value=\"remove\" />\n";
print "<input type=\"hidden\" name=\"product_id\" ";
print "value=\"$rec_product_id\" />\n";
print "<input type=\"submit\" value=\"remove\" />\n";
print "</td>\n";
print "</TR>\n";

}

print "</table></div>\n";

print_page_start {

print $query->header;

print "<html>\n<head>\n<title>$page title</title>\n";
print "</head>\n<body>\n";

print "<h1 align=\"center\">$page_title</h1>\n";

print_no_cart {
print "<p>There are no items in your shopping cart.</p>\n";

print_page_end {
print "<p><div align=\"center\"><b>";

print "<a href=\"catalog.pl\">return to catalog</a></b><br />\n";

print "<b><a href=\"checkout.pl\">check out</a></b>\n";
print "</div></p>\n";
print "</body>\n</html>\n";

Printing the User’s Cart

You’d think that printing the contents of the user’s cart would be pretty simple, but in
fact it’s a relatively complex process. In order to properly display the contents of a cart,
data must be retrieved from multiple files and correlated so that records are displayed
correctly. Take a look at the shopping cart in Figure 16.2. Each line of the shopping cart
contains the product ID, quantity, description, and price for the product on that line.
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FIGURE 16.2 " Shopping Cart - Mozilla [Build ID: 2002053012}
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Now let’s take a look at the steps required to display a user’s shopping cart. The first
step in displaying the user’s shopping cart is retrieving a list of all the items in her cart
from the cart file. This is accomplished in the get_cart_contents subroutine. In that
subroutine, all the records in the cart file are read into the @records array, and the
matching records are stored in the @user_cart array. To determine which records match,
each record is broken out into its individual fields, and the session ID in each record is
compared to the user’s session ID.

After all the matching records have been extracted, the program determines whether
there are, in fact, any items in the user’s cart. If there aren’t, a message is printed indi-
cating that the cart is empty and the user is directed back to the catalog. If the cart is not
empty, the get_product_list subroutine is called to fetch the prices and descriptions
for the items in the catalog so that they can be printed in the cart listing.

Because this book is about CGI programming and not data structures, I use a relatively
simple data structure to store all the product information when I retrieve it from the cat-
alog. I create two hashes (also known as associative arrays). In this case, there are two
hashes. The first keeps track of the descriptions of each product; the second keeps track
of prices. The product ID is used as the key for both hashes. After all the product infor-
mation has been retrieved, the contents of the cart can be displayed.

If you're unfamiliar with the term, in Perl, a hash is just an associative array.
In other words, a set of name and value pairs that enables you to look up
values using a key. Accessing a hash is quite similar to accessing the query
parameters associated with a request. The syntax is a bit difference, but the
concept is the same.
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S When you want to reference a single element in a hash, you prefix the
/=T / name of the hash with $. To reference a hash as a whole, you prefix the
IS /o

The print_cart subroutine is used to print the contents of the shopping cart. First, it
prints the beginning tags for the table and column headings, and then a foreach loop is
used to print the actual contents of the cart. The columns in the table are, from left to
right, the product ID, the product description, price, and quantity. The far right column
contains a button used to remove that item from the cart.

When the columns are printed, the description and price are retrieved from the hashes
created in the get_product_list subroutine. Information is retrieved from a hash by ref-
erencing the hash using the appropriate key. For example, to retrieve the description of a
product with the ID 1, the following code is used:

$product_names{'1'}

hash name with a %. To extract an item from the hash product_names, the
usage is: $product_names{KEY}. To create it initially, the notation is:
%product_names.

There’s also a form embedded in every row of the table. It contains hidden fields that
specify the product ID and action. In this case, the action is always remove. After the
foreach loop has processed all the contents of the user’s cart, the table is closed, and the
print_page_end subroutine is used to display the closing HTML tags for the page.

Removing an Item from the Cart

Removing an item from the shopping cart is just another example of code that removes
records from a flat file database. The remove_item subroutine is used to remove the
record associated with a particular item in the cart. The remove_item subroutine uses the
pattern seen in all the code used to modify records in a flat file database.

It opens the file, locks it, and retrieves all the records. Then it deletes the entire contents
of the file, and prints all the records except for the one that is supposed to be removed.
This record is identified using the product ID found in the form in the shopping cart, and
the user’s session ID, which is retrieved from the session_id cookie. After all the
records have been printed back into the file, the cart file is closed, and the new contents
of the shopping cart are printed.

There is no form validation for this function because all the values in the form are hard
coded in the shopping cart page. Of course, this form could be spoofed by altering the
URL used to call the page, but the damage the user could potentially do is very low.
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Even so, in a production application, you would want to include some error-checking
code to make sure that the user isn’t abusing the application.

Checkout

From the shopping cart, the user is allowed to check out. In this case, the user is simply
asked for his address and payment information, which is then stored so that the order can
be fulfilled. Let’s look at the general case for online stores first. After a user has selected
some items from an online catalog, and is ready to purchase them, certain information
must be collected. After the information has been gathered, there are several steps that
generally also occur. Not all sites use all these steps, but I'll list them anyway. First, let’s
look at the information gathered:

L]

The user’s name and billing address
The address to which the items being purchased should be shipped
The method of payment for the shipment

If the method of payment is a credit card, you must get the user’s credit card num-
ber, expiration date, and the name on the credit card

You might also want to ask whether the purchase is a gift

If it is a gift, you might want to ask for a message to place on the invoice, and
whether the gift should be wrapped

There’s a lot more information that could also be gathered, if you choose. For example,
you might allow the user to enter discount codes or coupon IDs if your site offers such
promotions. In addition to gathering all the information associated with the order, you
must also perform the steps necessary to verify that the order is valid and that it should
be fulfilled. You must also calculate the final cost of the order based on the information
that the user enters. These steps might include:

Verifying that the user filled out all the required fields on the form and that the data
the user entered seems to be appropriate for those fields

Verifying that the user entered a valid credit card number
Taking into account any discounts or credits the user is entitled to

Contacting a payment processing service to verify that the credit card is valid and
that the user has enough credit available to accept the charge for the order

Determining shipping costs based on the user’s preference and geographical
location

Determining whether sales tax should be charged for the order, and if so, what per-
centage should be added
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After you’ve calculated the final total for the order and have confirmed that you do in
fact want to accept it, the next step is to move the order into the queue for fulfillment.
How this is accomplished varies widely depending on how your site is built, and more
importantly, on how your order fulfillment process works. For simpler sites, the most
common process is to bundle all the order information up and email it to the person who
is responsible for making sure the order is fulfilled. Sites with more complicated back-
end systems might use some remote procedure calling scheme to insert the order into an
automated order fulfillment system.

The Checkout Script for This Example

Let’s look at the simple checkout script for this example. In this case, I just ask the user
to fill out a few forms, verify that she entered the information that was requested, and
then just append her order information to a file. In theory, if this were a real site, some
person or program would periodically read that file and move the orders along in the
fulfillment process. Because this is just an example, we don’t really care what happens
to that information down the road. The source code for the checkout script is in

Listing 16.4.

LisTiNG 16.4 The Source Code for checkout.pl

1: #!/usr/local/bin/perl

2:

3: use strict;

4:

5: use CGI;

6: use CGI::Carp gw(fatalsToBrowser);
7: use DBI;

8:

9: my $cart_file = "cart.txt";

10: my $catalog_file = "products.txt";

11: my $query = new CGI;

12: my ($session_id, $page_title, $name, $address, $city, $state, $zip,

13: $cc_type, $cc_number, $exp_month, $exp_year);
14: my @user_cart;

15:

16: my %cc_types = ('AMEX' => 'American Express',
17: '"VISA' => 'Visa',

18: 'MC' => 'Mastercard',

19: 'DISC' => 'Discover');

20:

21: if ($query->cookie('session_id')) {

22: $session_id = $query->cookie('session_id');
23: }

24: else {

continues
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Listing 16.4 continued

25: $page_title = "Checkout: Error";

26: &print_page_start;

27: &print_no_cart;

28: &print_page_end;

29: exit;

30: }

31:

32: &get_cart_contents;

33:

34: if (@user_cart) {

35: if ($query->param('cc_type')) {

36: &set_variables;

37: my $error_message = &valid_form;
38: if (! $error_message) {

39: $page_title = "Checkout Complete";
40: &print_page_start;

41: &insert_order;

42: &empty_cart;

43: &print_success;

44: &print_page_end;

45: }

46: else {

47: $page_title = "Checkout: Please correct errors";
48: &print_page_start;

49: &print_error($error_message);
50: &print_form;

51: &print_page_end;

52: }

53: }

54: else {

55: $page_title = "Checkout";

56: &print_page_start;

57: &print_form;

58: &print_page_end;

59: }

60: }

61: else {

62: $page_title = "Error: Your cart is empty";
63: &print_page_start;

64: &print_no_cart;

65: &print_page_end;

66: }

67:

68: sub get_cart_contents {

69: open (CART, "< $cart_file")

70: or die "Can't open shopping cart file";
71: my @records = <CART>;

72: @user_cart = ();
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73: foreach my $record (@records) {

74: chomp $record;

75: my ($rec_session_id, $rec_product_id, $rec_quantity) =
76: split /\t/, $record;

77: if ($rec_session_id eq $session_id) {

78: push @user_cart, $record;

79: }

80: }

81: }

82:

83: sub insert_order {

84: 1;

85: }

86:

87: sub empty _cart {

88: open (CART, "+>> $cart_file")

89: or die "Can't open cart file";

90: flock CART, 2;

91: seek CART, 0, 0;

92: my @records = <CART>;

93: my @new_records = ();

94: foreach my $record (@records) {

95: chomp $record;

96: my ($rec_session_id, $rec_product_id, $rec_quantity) =
97: split /\t/, $record;

98: unless ($rec_session_id eq $session_id) {
99: push @new_records, $record . "\n";
100: }

101: }

102: seek CART, 0, 0;

103: truncate CART, 0;

104: print CART @new_records;

105: close CART;

106: }

107:

108: sub print_empty cart {

109: print "<p>You cannot check out until you have placed items ";
110: print "in your shopping cart.</p>\n";

111: print "<p>Return to the <a href=\"catalog.pl\">catalog</a>.</p>\n";
112: '}

113:

114: sub set_variables {

115: $name = $query->param('name');

116: $address = $query->param('address');

117: $city = $query->param('city');

118: $state = $query->param('state');

119: $zip = $query->param('zip');

120: $cc_type = $query->param('cc_type');

121: $cc_number = $query->param('cc_number');

122: $exp_month = $query->param('exp_month');

continues
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LisTing 16.4 continued

123: $exp_year = $query->param('exp_year');

124: '}

125:

126: sub valid_form {

127: my $error_message;

128: $error_message .= "<li>You must enter your name</1li>\n"

129: if ($name =~ /"\s*$/);

130: $error_message .= "<li>You must enter your address</li>\n"

131: if ($address =~ /"\s*$/);

132: $error_message .= "<li>You must enter your city</li>\n"

133: if ($city =~ /"\s*$/);

134: $error_message .= "<li>You must enter a valid zip code</li>\n"
135: if ($zip !~ /~\d+$/);

136: $error_message .= "<li>You must enter a valid expiration month</1i>"
137: if ($exp_month > 12 || $exp_month < 1);

138: $error_message .= "<li>You must enter a valid expiration year</li>\n"
139: if ($exp_year < 2000 || $exp_year > 2010);

140: $error_message .= "<li>You must enter a valid CC number</li>\n"
141: if ($cc_number !~ /*\d+$/);

142: return $error_message;

143: }

144:

145: sub print_error {

146: my $error_message = shift(@ );

147: print "<p>Please correct the following errors:</p>\n";

148: if ($error_message) {

149: print "<ul>\n$error_message\n</ul>\n";

150: }

151: }

152:

153: sub print_form {

154: print "<form>\n";

155: print "<table border=\"0\">\n";

156: print "<tr><td>Name:</td>\n";

157: print "<td><input type=\"text\" name=\"name\" value=\"$name\" />\n";
158: print "</td></tr>\n";

159: print "<tr><td>Street address:</td>\n";

160: print "<td><input type=\"text\" name=\"address\" ";

161: print "value=\"$address\" size=\"40\" maxlength=\"80\" />";

162: print "</td></tr>\n";

163: print "<tr><td>City:</td>\n";

164: print "<td><input type=\"text\" name=\"city\" value=\"$city\" />";
165: print "</td></tr>\n";

166: print "<tr><td>State:</td>\n";

167: print "<td><input type=\"text\" name=\"state\" ";

168: print "value=\"$state\" size=\"2\" MAXLENGTH=\"2\" /></td></tr>\n";
169: print "<tr><td>Zip:</td>\n";

170: print "<td><input type=\"text\" name=\"zip\" ";

171: print "value=\"$zip\" size=\"5\" maxlength=\"5\" /></td></tr>\n";
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172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:

sub

sub

sub

sub

print "<td>Credit card:</td>\n<td>\n<select name=\"cc_type\">\n";
foreach my $key (sort {$a <=> $b} keys %cc_types) {
print "<option value=\"$key\">", $cc_types{$key}, "</option>\n";
}
print "</select>\n</td>\n";
print "<tr><td>Credit card number:</td>\n";
print "<td><input type=\"text\" name=\"cc_number\" ";
print "value=\"$cc_number\"></td></tr>\n";
print "<tr><td>Expiration date:</td>\n";
print "<td><input type=\"text\" name=\"exp_month\" ";
print "value=\"$exp_month\" size=\"2\" maxlength=\"2\">\n";
print "<input type=\"text\" name=\"exp_year\" ";
print "value=\"$exp_year\" size=\"2\" maxlength=\"4\"></tr>\n";
print "<tr><td></td>\n";
print "<td><input type=\"submit\" value=\"Complete Checkout\">";
print "</td></tr>\n";
print "</table>\n";
print "</form>\n";

print_page_start {

print $query->header;

print "<html>\n<head>\n<title>$page_title</title>\n";
print "</head>\n<body>\n";

print "<h1 align=\"center\">$page_title</h1>\n";

print_no_cart {
print "<p>There are no items in your shopping cart.</p>\n";

print_success {
print "<p>Your order is complete.</p>\n";

print_page_end {

print "<p><div align=\"center\"><b>";

print“"<a href=\"catalog.pl\">return to catalog</a></b></div></p>\n";
print "</body>\n</html>\n";

This program is a typical form handling program. It’s somewhat similar to the other pro-
grams presented this hour in the preliminary variables that are set up, and in how it
fetches information about the contents of the user’s cart. Let’s look at the areas where it
differs from those other programs. It begins by fetching the contents of the user’s cart. If

the user does not have anything in his shopping cart, the page prints an error message.
Someone who has nothing in his cart can’t check out.
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If the user does have items in his shopping cart, I check for the presence of the cc_type
form field in the user’s request in order to determine whether the order form has been
submitted. The reason why I chose this particular field is that it’s a select list, so the user
always has to select a value from the field. The other fields on the form are text boxes, so
they’re not suitable for testing in this way. The user could submit the form without enter-
ing anything in the text field I chose to test, and then I would assume that they didn’t
submit the form even though they really did.

Once I've determined whether the user did or didn’t submit the form, I can have the
script take the appropriate action. If they did submit the form, there’s one more decision
to be made. Did the user submit valid data? The valid_form subroutine is used to make
this determination. This valid_form subroutine uses regular expressions to verify that
the user entered valid information. Most of the tests just make sure that the user entered
something in the field other than just spaces. The zip code is tested to make sure that the
user entered only numbers in the field. The credit card expiration date is actually tested
to verify that the user entered appropriate values for the month and year.

If the user’s form submission is valid, the program empties the user’s shopping cart and
inserts the order into the order entry system. The cart is emptied using the empty_cart
subroutine, which begins on line 81. The subroutine just opens the cart file, copies all of
the records into memory, empties the file, and then prints all of the records not associated
with the user’s session ID back to the file. The insert_order subroutine is just a place-
holder in this script. There is no back office system to hook this script into, so the cus-
tomer’s order is thrown away. Obviously, if you were using this script on a real site,
you’d want to store the user’s order somewhere. (In Hour 20, I’ll demonstrate how you
can insert an order into a relational database.)

If the user’s form input was not valid, print an error message and require them to correct
the errors and submit the form again in order to have their order processed. The same
subroutine, print_form, is used to print the empty form or to print the form if an error
occurs.

Summary

The purpose of this hour was to illustrate how session management works using a real
world example. Shopping carts are a feature common to almost all electronic commerce
sites, and are one of the classical cases of an application that must keep track of the
user’s session. In these examples, you learned how cookies are used to keep track of a
user’s identity as they use an online catalog, and how that identity is correlated with data
stored on the server.
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Q&A

Q How do I verify the user’s credit card account to make sure that the number
the user entered is valid and that we can charge the order to the user’s credit
card?

A Generally, you contract with a third party to do the credit card validation for your
site. When the user submits the order form, you connect with the payment process-
ing company’s computer and submit the credit card number and amount of the
transaction in order to verify that the customer’s credit card is valid and can accept
the charge. There are a number of companies that provide this service. Two of the
most popular are VeriSign (http://www.verisign.com) and CyberSource
(http://www.cybersource.com). Most companies that provide this service will
give you sample code that you can integrate into your programs to communicate
with their servers. Another option—if you’re not processing a lot of transactions
and don’t want to deal with the overhead of setting up credit card processing—is to
allow people to pay you via PayPal (http://www.paypal.com).

What role does SSL play in this?

A SSL (secure sockets layer) is a protocol that allows Web browsers and Web servers
to communicate in a secure manner. All of the data sent between the browser and

(e

server is encrypted so that if someone intercepts the network traffic, he won’t be
able to determine what data was being transmitted. SSL should be used whenever a
user is submitting personal information to the Web server. Examples include credit
card numbers, or the user’s social security number. When you set up an online
store, you should place the checkout script on a secure server. For more informa-
tion, check out Hour 22, “Securing CGI Scripts.”

Q Isit OK to store all of the user’s order information on the Web server?

A 1It’s OK to store some order information on the Web server, but you should remove
the user’s payment information from the Web server as soon as possible after the
order is submitted. Storing credit card numbers on a Web server is a very bad idea
because Web servers are left exposed on the Internet and can be broken into by
malicious individuals. You should forward payment information to a computer that
is less exposed to the outside world in order to make sure that credit card numbers
aren’t stolen through your site.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.
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Quiz

1.

In the sample application, what happens to items that users have in their carts when
they leave the site without completing their orders?

Why can a user have multiple lines in the shopping cart file associated with the
same file?

Exercises

1.

Enhance the shopping cart application so that the session ID is preserved in the
query string in each link as well as being stored in the cookie.

Add a button to the cart page that allows users to remove all of the items from their
cart at once.

Quiz Answers

1.

When users abandon their shopping carts, nothing happens to the contents. The
items in the cart are orphaned until somebody comes and cleans them up.

. The user can have one line in the cart file for every item in the catalog, because the

records in the cart file consist of a session ID, a product ID, and a quantity.
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Content Management
with CGI

CGI is generally associated with Web applications. The user interacts with
the application using HTML forms, and the CGI application processes the
data the user enters and produces the requested results. However, CGI is also
widely used for content management. By building a content management
system, you can separate your content and its presentation, and save yourself
the trouble of maintaining thousands of HTML documents.

In this hour, you’ll learn
* How content publishing systems are used
* Which types of content publishing systems you can create

* How to build a content publishing system

Why Content Publishing?

Back in the good old days, sites were pretty easy to manage. They generally
consisted of a few HTML documents, and maybe some images. When you
wanted to change the look and feel of a site, you loaded up Notepad and
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edited all the documents to reflect the changes you wanted to make. As sites grew larger,
other techniques and tools were developed to make life easier for site maintainers. You
could get tools to make sure that all the links on your site work, and multifile search and
replace tools to make it easier to update your entire site at once.

These days, though, many Web sites consist of so many individual documents that it’s
just not practical to keep everything in separate HTML files. Making changes to the
entire site is too difficult, and even keeping track of that many files and directories is an
unenviable chore. Verifying that all the links on your site work is a total nightmare.

Separating Content and Presentation

The solution to this problem is to store the data that will appear on your pages in a for-
mat other than HTML, and then use a program to generate the HTML dynamically. The
main advantage here is that content and presentation of that content separated. You can
change the templates that dictate how your content is presented without making any
changes to the content itself. This also allows you to change the look and feel of any
number of pages with a change to a single template.

Clearly, when you’re dealing with very large volumes of content, this is the way to go.
There are a number of other advantages provided by building a content publishing sys-
tem as well. It makes it easier to allow users to create and update pages through a Web-
based application instead of editing HTML files by hand. It also makes it easier to create
dynamic, personalized sites.

Building in an Editorial Process

Another advantage of a content management system is that you can create an editorial
process using software. When users are directly editing HTML files, it’s difficult to make
sure that content has been reviewed and approved before it is published. When you use a
content management system, you can add editorial steps to the publishing process to
make sure that no unapproved content is published to your site.

Let’s look at how this might work. A story begins its life when a writer visits your pub-
lishing application and submits his story using an HTML form. The next time that
writer’s editor logs into the system, she sees that a new story awaits her review. At that
point, she can review the story, make any required changes, and then approve or reject
the story. If she rejects it, the writer will be notified and can revise the story, or if she
approves it, it will be published or moved along to the next step in the approval process.

Types of Content Publishing Systems

No two content publishing systems are exactly alike, but they can be categorized based
on various criteria. One important criterion for categorization is the time when the
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HTML is generated. Some systems generate the HTML whenever the page is requested,
others generate the HTML periodically and store it on disk. Others generate the HTML
the first time a page is requested, and then save it on disk until the template or content
changes, at which time it’s generated again the next time that page is requested.

There are advantages to each of these approaches. Let’s talk about each of them individu-
ally. First let’s look at systems that generate all of their pages on-the-fly. In a system like
this, every time a user requests a page, the data required to build the page is retrieved and
placed in the HTML template. Every user receives a page custom created for him.

This type of system makes it very easy to add personalization to your site. Because all
the pages are already being created dynamically for each user, customizing the page for
that user doesn’t change the architecture of the system at all. The disadvantage of this
system is that it’s taxing from a performance standpoint. When a user requests a static
page, the server just has to read the file and send it to the user. Generating every page
with a CGI script can tax server performance.

For some sites, the best option is to generate the pages using a program, but then save the
generated HTML on the Web server and then use those files statically. The advantage
here is good performance. You can build your site whenever something changes, and then
just serve it as a completely static site. Whenever you add new content or make a change,
you can just “publish” those changes, and the new dynamically generated files will over-
write the old ones. The disadvantage is that you can’t include truly dynamic content on
these pages. The content is only as fresh as the last time it was published. The other dis-
advantage is that your content has to be published manually when you want to update it.
Changes won’t automatically be transferred into the content on the site.

The third option is to write a system that generates pages dynamically and then caches
them until they change. When a change in the underlying content is detected, the page in
the cache is deleted and a new page is generated to replace it. The great thing about these
systems is that they offer the advantage of immediately making new content available to
users while at the same time not generating any pages dynamically if it’s not necessary.
The main problem here is that the architecture is pretty complex to create. If you want to
use this type of architecture, you should look into some of the third party content pub-
lishing solutions that support this type of functionality.

Another advantage nearly all content management systems offer is versioning of content.
In many systems, both the templates used to render content and the content itself are sub-
ject to version control. In other words, when new versions of documents are saved, the
older versions are preserved. This enables you to go back and retrieve the old versions if
something goes wrong when you update them, or you simply need to revert to the older
content.
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Data Storage for Content Publishing Systems

One of the big questions you face when you create a content publishing system is how to
store the data associated with your site. Often, the site content itself is stored in a rela-
tional database. In Hours 18, “Working with Relational Databases,” and 19, “How to Use
the Structured Query Language,” I explain how relational databases work, and how to
use them for data storage with Web applications.

You can also use flat files for data storage on a Web site. In Hour 14, “Creating a CGI-
Based Message Board,” I explained how to create a message board for your Web site. All
the message board content was stored in formatted text files and rendered using a CGI
program.

Rather than developing your own file format, you can use XML to format the data for
your publishing system. XML, the Extensible Markup Language, is a markup language
similar to HTML. The difference is that rather than confining you to a particular set of
tags, XML enables to write your own markup language by creating tags of your own.
You’ve already seen how XML can be used as the back end for a Web application, in
Hour 14. That was a particular kind of content management system. If you want, you can
create all your Web documents using XML and then render them when they are pub-
lished or render them automatically for each user, depending on how your site works.

A Content Publishing Example

Let’s look at an example of how a content publishing system might work. This example
illustrates how an online publication like a magazine or newspaper might publish articles
using a template system. In this case, the page will be generated every time the user vis-
its the page. The system consists of three components: a story-input program (which
allows writers to submit stories), the stories themselves, and a story-display program
(which applies a template to a story and displays it in the browser).

First let’s look at the template file and the data files. The template looks like a regular
HTML file but it contains placeholders that take will be populated with content from the
data files. The template file is included in Listing 17.1.

Listing 17.1 The Story Template File

<html>
<head>
<title>News: #title#</title>
</head>
<body>

g~ wnNn =
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<h1 align="center">#title#</h1>
<p><b>#datefiled#</b></p>

10: <font size="2">#byline#</font><br />
12: #illustration#

14: #body#

16: <p>Copyright&copy; News 2002</p>

18: </body>
19: </html>

Now let’s look at the format of the data files. The story-display program writes files in
this format. A sample data file is included in Listing 17.2.

Listing 17.2 A Data File for the Content Publishing System

<story>

<datefiled>Thu Jun 27 21:23:39 2002</datefiled>

<title>This is a story</title>

<byline>This is a classic tale.</byline>

<body>Once upon a time ...</body>

<sidebar>info.html</sidebar>

<illustration align="right">http://rc3.org/img/image.jpg</illustration>
</story>

O~NOO O~ WD =

The tags in the data file correspond to the placeholders in the template. The story-display
program can work with any template and data file, as long as the fields in the data file
correspond to the placeholders in the template. The story-input program is specific to this
particular data format, although you could write a more complex program that would
work for any format.

The Story-Input Program

Let’s start at the beginning of the editorial process. Before stories can be published or
viewed by users, they have to be entered into the content management system. The story-
input program accepts the user’s form submission, performs some basic validation, and
then creates the story file. In our system, there are no additional steps in the approval
process. When the writer submits his story, it’s published immediately. Let’s look at the
source code for this program, which is included in Listing 17.3.
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Listing 17.3 The Story-Input Program

1: #!/usr/local/bin/perl

2:

3: use strict;

4:

5: use CGI;

6: use CGI::Carp gw(fatalsToBrowser);

7: my $query = new CGI;

8:

9: my $news_directory = "news";

10:

11: my ($page_title, $action, $title, $byline, $body, $illustration, $align);
12:

13: if ($query->param('action')) {

14: &set_variables;

15: # The form to create a new story has been submitted
16: if ($action eq "new") {

17: my $error_message = &valid_form;
18: if (! $error_message) {

19: &write_new_story;
20: $page_title = $title;
21: &print_page_start;
22: &print_success;
23: &print_page_end;
24: }
25: else {
26: $page_title = "New Topic";
27: &print_page_start;
28: &print_error($error_message);
29: &print_form;
30: &print_page_end;
31: }
32: }
33: }
34: else {
35: $action = "new";
36: $page_title = "Enter new story";
37: &print_page_start;
38: &print_form;
39: &print_page_end;
40: }
41:
42: sub set_variables {
43: $action = $query->param(‘'action');
44: $title = $query->param('title');
45: $byline = $query->param('byline');
46: $body = $query->param('body');
47: $align = $query->param(‘'align');

48: $illustration = $query->param('illustration');
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49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:

90:
91:
92:
93:
94:
95:
96:
97:
98:

}

sub

sub

sub

sub

print_page_start {

print $query->header;

print "<html>\n<head>\n<title>$page_title</title>\n</head>\n";
print "<body bgcolor='lightgrey'>\n<hi1>$page title</hi1>\n";

print_page _end {
print "</body>\n</html>\n";

print_form {
print "<form method=\"post\">\n";
print "<table border=\"0\">\n";
print "<input type=\"hidden\" name=\"action\" value=\"$action\" />";
if ($action eq "new") {
print "<tr><td>Headline:</td><td>\n";
print "<input type=\"text\" name=\"title\" size=\"40\" ";
print "maxlength=\"72\" value=\"$title\" /></td></tr>\n";
}
print "<tr><td>Byline:</td><td>";
print "<input type=\"text\" name=\"byline\" ";
print "size=\"40\" maxlength=\"72\" value=\"S$byline\" /></td></tr>";
print "<tr><td colspan='2'>Story:</td></tr><tr>\n";
print "<td colspan='2'><textarea rows=\"10\" name=\"body\" ";
print "cols='60' wrap=\"virtual\" />$body</textarea></td></tr>\n";
print "<tr><td>Illustration URL:</td><td>\n";
print "<input name='illustration' value='$illustration' ";
print " type='text' size='40' maxlength='80' /></td></tr>\n";
print "<tr><td>Align:</td><td>";
print "<input type='radio' name='align' value='right'";
print " checked " if ($align eq "right");
print "/>right ";
print "<input type='radio' name='align' value='left'";
print " checked " if ($align eq "left");
print "/>left</td></tr>";
print "<tr><td colspan='2'>";
print "<input type=\"submit\" value=\"publish story\" /></td></tr>";
print "</form>\n";

valid_form {
my $error_message;
if ($title eq '' && $action eq 'new') {

$error_message .= "<li>You must enter a story title.</li>\n";
}
if ($byline eq '') {

$error_message .= "<li>You must enter a byline.</li>\n";
}

continues




| 328 Hour 17

Listing 17.3 continued

99: if ($body eq '') {

100: $error_message .= "<li>You must enter the body of your "
101: $error_message .= "story.</li>\n";

102: }

103:

104: return $error_message;

105: }

106:

107: sub write_new_story {

108: my $news_file = time . $$ . '.xml';

109: open (STORY, "> $news_directory/$news_file")

110: or die "Can't open $news_directory/$news_file";
111: print STORY "<story>\n";

112: print STORY "<datefiled>".scalar(localtime(time))."</datefiled>\n";
113: print STORY "<title>$title</title>\n";

114: print STORY "<byline>$byline</byline>\n";

115: print STORY "<body>\n";

116: $body =~ s/\n/<br \/>\n/g;

117: print STORY $body;

118: print STORY "</body>\n";

119: if ($illustration)

120: {

121: print STORY "<illustration";

122: if ($align) { print STORY " align='$align'"; }
123: print STORY ">$illustration</illustration>\n";
124: }

125: print STORY "</story>\n";

126: close STORY;

127: }

128:

129: sub print_success {

130: "<p>New story published.</p>\n";

131: '}

132:

133: sub print_error {

134: my $error_message = shift(@_);

135: print "<font color=\"red\">\n";

136: print "<p>Please correct the following errors:</p>\n";
137: print "<ul>$error_message\n</ul></font>\n";

138: }

The program begins like nearly all of the scripts in this book, by pointing to the Perl
interpreter and then importing the modules needed to run the program. As written, the
program is set up to send fatal errors to the browser. If you use this script on your Web
site, you’ll want to turn that feature off before you make the script public. I also specify
in which directory the program should place the new-story files.
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This program is designed to serve two purposes. It can process a submission or print a
new-story form. To determine which of these actions it should take, it looks at the
action parameter. The new-story form contains a hidden field named action with a
value of new. If the script finds that the action parameter is set to new, it attempts to
process the form submission; otherwise, it prints the form, which appears in Figure 17.1.

FIGURE 17.1 | Enter new story - Mozilla [Build ID: 2002053012 EE®
The Story inputform. B Ele Edt Vew Go Bookmarks Took Window Help
@@ @ | % httpyfwww re3.arobosksfegiagjseripts/ 17 jpubish.pl @] @ @@0
Enter new story
Byline: I
Story:
Thastration TRT: |
Al Cright Cle
publish story
© B @ @ o vocursrt: oms 03010 -

Let’s look at the decision structure for the program. On line 13, I check whether the
action parameter exists. If it doesn’t exist, I skip straight down to line 34 and print the
new-story form. On line 35, I set the $action variable to new. This value will be
included in the hidden form field on the form. I then set the page title, print out the
beginning HTML for the page, print the form itself, and print the closing HTML for the
page.

If the action parameter does exist, the set_variables subroutine is called. It just trans-
fers the form data to regular variables so that it’s less cumbersome to access. On line 16,
an if statement checks whether the action parameter is set to new. This extra if state-
ment is meaningless in this script because the only possible action is the submission of a
new story. However, leaving it in there makes it easier to add other actions later, if I need
to do so. (For example, it might make sense to allow users to edit existing stories using
this script.)

On line 17, I determine whether the form submission was valid. This is accomplished by
calling the valid_form subroutine and setting a variable with the error message it
returns. It then tests that variable as the expression in an if statement. The value
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returned by the subroutine is tested to determine whether the form input was valid. The
subroutine itself, which begins on line 91, checks to make sure that the user entered a
value in every field on the form. Whenever there’s an empty form field, the script
appends an error message to the variable $error_message. The subroutine returns the
contents of $error_message. If there was an error, the script prints the error using the
print_error subroutine, and then displays the form again, prepopulated with all the val-
ues that the user entered. If the form submission was successful, the script saves the new-
story file to disk, and prints a message indicating that the story was created successfully.

The write_new_topic subroutine begins on line 107. First, it creates a unique filename
by combining the process ID of the CGI program and value returned by the time func-
tion. It then adds .xml to the filename, and attempts to open a file with that name in the
directory specified at the beginning of the program. After the file is open, I print out all
the data that the user submitted in a format that the story-display program can read.

The Story-Display Program

Now let’s look at how the stories are displayed after they’ve been published. I’ve written
a program that reads a template file and a data file, inserts the data into the template, and
sends the results to the browser. The source code for the program appears in Listing 17.4.

Listing 17.4 The Story-Display Program

my $query = new CGI;

my $news_directory = "news";

9: my ($template, $error, $page title, $story text);
10: my %vals;

1: #!/usr/local/bin/perl

2:

3: use CGI;

4: use CGI::Carp gw(fatalsToBrowser);
5: use strict;

6:

7:

8:

12: if ($query->param('story') && $query->param('template')) {

13: my $story = $query->param('story');

14: my $template = $query->param('template');

15: &format_error unless (&parse_story(&open_story($story)));

16: &format_error unless (&parse_template(&open_template($template)));
17: &print_page_start;

18: &print_story;

19: print "<p>Return to the <a href=\"display.pl\">story list</a>.</p>";
20: &print_page_end;

21: }

22: else {

23: $page_title = "Story Index";
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24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

sub

sub

sub

sub

&print_page_start;

&print_story_index;

&print_page_end;

print_page_start {

print $query->header;

print "<html>\n<head>\n<title>$page_title</title>\n</head>\n";
print "<body>\n<h1>$page title</h1>\n";

print_page _end {

print "</body>\n</html>\n";

print_story_index
eval {

opendir (STORIES, "$news directory")
or die "Can't open $news_directory";
grep (/".+\.xml$/, readdir (STORIES));
foreach my $story (@stories) {
$story =~ s/(.+)\.xml/$1/;
&parse_story(&open_story($story));

my @stories =

# In this case, we assume that stories contain
# a value called STORY_TITLE.
if ($vals{'title'}) {

{

print "<a href=\"story.pl?story=$story&template=story\">";

print $vals{'title'}, "</a><br />\n";

b

open_template {
my $template file
$template_file .=
my @template_text
eval {

open (TEMPLATE, "< $template_file")
or die "Can't open $template_file";
@template_text = <TEMPLATE>;

return join('', @template_text);

}
if ($@) {
$error = $@;
return undef;
}
else {
}

shift(e );
Ltmpl®;

0

continues
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Listing 17.4 continued

74: }

75:

76: sub open_story {

77: my $story = shift(@ );

78: my $story file = "$news_directory/" . $story . ".xml";
79: my @story_text = ();

80: eval {

81: open (STORY, "< $story file")

82: or die "Can't open $story_file";
83: @story_text = <STORY>;

84: };

85: if ($e) {

86: $error = $@;

87: return undef;

88: }

89: else {

90: return join('', @story_text);

91: }

92: }

93:

94: sub parse_template {

95: my $template text = shift(@ );

96:

97: $template_text =~ s/\#(.+?)\#/$vals{$1}/sg;
98:

99: $story_text = $template_text;

100: }

101:

102: sub parse_story {

103: my $story_text = shift (@_);

104:

105: svals = ();

106:

107: # Get the contents of the <story> tag.

108: if ($story_text =~ /<story>(.+)<\/story>/) {
109: $story_text = $1;

110: }

111:

112: # Get the values of all of the fields other than the alignment of
113: # the illustration.

114: while ($story_text =~ /<(.+2)>(.+?)<\/.+?>/sg) {
115: my $key = $1;

116: my $value = $2;

117: if ($key =~ /~(\w+)/) {

118: Skey = $1;

119: }

120: $vals{$key} = $value;

121: }
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122:

123: if ($story_text =~ /<illustration align='(\w+?)'>/) {

124: $vals{'align'} = $1;

125: }

126:

127: if ($vals{'illustration'}) {

128: $vals{'illustration'} = "<img src='".$vals{'illustration'}.""'";
129: if ($vals{'align'}) {

130: $vals{'illustration'} .= " align='" . $vals{'align'} . "'";
131: }

132: $vals{'illustration'} .= ">";

133: }

134:

135: # Return a value so that the parse was considered successful.

136: 13

137: }

138:

139: sub print_story {

140: print $story_text;

141: }

142:

143: sub format_error {

144: print $query->header;

145: print "<html>\n<head>\n<title>Format Error</title>\n</head>\n";
146: print "<body><h3>Format Error</h3>\n<p>$error</p>\n</body></html>";
147: exit;

148: }

149:

150: sub file_error {

151: print $query->header;

152: print "<html>\n<head>\n<title>File Error</title>\n</head>\n";

153: print "<body><h3>File Error</h3>\n<p>$error</p>\n</body>\n</html>\n";
154: exit;

155: }

This script does two things. It creates a list of all the stories in a directory, and it renders
the stories by merging them with the appropriate templates. Let’s look at the story-
indexing functionality first. If the template and story parameters are not present in the
query string, the script builds a list of available stories. The print_story_index subrou-
tine, which begins on line 39, generates the list of stories.

First, print_story_index opens the directory specified on line 8 to get a list of the story
files. Then, it retrieves a list of all the files with the extension .xml and copies them into
the array @stories. After a list of stories has been obtained, the program iterates over
each of the stories to retrieve the story title. The open_story and parse_story subrou-
tines are used here, just as they will be when a single story is displayed. The script
searches for a field in the stories called title. If it’s present, the program generates a
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link to that story including the story and template parameters. The story parameter is
taken from the filename of the file currently being processed, and the template parame-
ter is hard coded into the program.

The important thing about this part of the program is that it’s not generic—it only works

with content files that contain a title field. The next section of the program, which gen-
erates the HTML for specific stories, is completely generic. It reads a template file and a
data file and displays the formatted data. This code is only called if both the story ID and
the template used to render the story are specified in the query parameters.

If they are, the program first calls open_story and parse_story to retrieve all the data
associated with the current story. The open_story subroutine begins on line 76. First, it
derives the name of the file in which the content is stored from the value of the story
parameter. Then, the program attempts to open that file and retrieve all the data from it
and store it in the @story_text array. If the program fails to open the file for some rea-
son, the error is trapped and the program continues execution, thanks to the eval con-
struct.

After the contents of the file have been retrieved, the parse_story subroutine is used to
extract the data. parse_story, which begins on line 102 extracts all of the text from the
file that’s inside the story tag. It then iterates over all of the content extracting tag names
and the data between the tags. It adds the content to a new hash I create called %vals.
The tag name is used as the index for the hash, and the text between the tags serves as
the value for that item in the hash. There’s one problem with this scheme. If the actual
content in the file includes opening and closing HTML tags, that data will also be copied
into the %vals array, even if you don’t need it. For that reason, when working with
HTML documents it might make more sense to use some alternative layout scheme other
than the HTML-like tagging scheme I used in this application. In the XML world, I
could use namespaces to prevent conflicts like this.

It also handles the illustration element in the story file in a special way. First, it looks
for an illustration tag with the align attribute. If it finds it, it extracts the value so it
can be used when the image is presented. It also searches for the il1lustration tag and
alters its value so that it’s a complete img tag rather than just the name of the image file.

After the data has been extracted from the content file, I parse the template file. There
are two subroutines that I use, open_template and parse_template. In the open_tem-
plate subroutine, I get the name of the template file by appending .tmpl to the value in
the template parameter, and then I attempt to open that file. I then read all the data in
the template file into the array @template_text. At that point, I execute the parse_tem-
plate routine.

All the tokens in the template are enclosed within # symbols. To replace the tokens with
the data, I search for strings within those symbols, and then replace the token with the
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value in %vals that matches the string. So, if the program finds #byline# in the template
file, it is replaced with the value stored in $vals{'byline'}. After all the tokens have
been replaced with the corresponding values from the content file, the print_story sub-
routine prints the resulting page, which appears in Figure 17.2.

FIGURE 17.2 " Mozilla [Build ID: 20020530123 r_ |ﬁ3][>?
Y Ele Edt Yew Go Bookmarks Took Vindow Help

v n
@@ @ [ % https)www.re3.argoaks o4 fsripts/ L7jstory pi7story = 102548575 @) | @ @o

Brazil's Triumph Quiets Critics

The story output page.

BARERY WILNER, AP Sports Writer
YOKOHAMA Japan (AP) - Brasil was weak. Ronaldo was through. The World Cup titls
was bevond their reach.

The Brarilians shut up the critics m a most convineing way Sunday night, winning an
unprecedented fifth soccer championslip with a 2-0 victory against Germany.

Even better, they did it with traditional Brazilian { news - web sites) flair, restoring order to a World Cup of upsets
and upstarts

"Everything changes,” Fonaldo said through tears. "People said Brasiian soccer was decadent and in crisis. But this
will prove that Brazil's soccer is alive.”

And kicking.

Fonaldo scor=d both goals, cappmg a superb towrnament that helped eras= bad memories of his knee injuries and the
team's 1998 World Cup final He embraced Pele on the victory stand, and the man who led the nation to its first

three tides kissed Ronaldo's forehead
0 @ G’ @ Document: Dans (0,431 sees)

Sl= e

Free Content Management Systems

As you might imagine, content management is a big problem for many Web sites. There
are many products on the market that attempt to solve this problem so that you don’t
have to write your own software to manage your Web site’s content. There are also some
free applications that attempt to solve this problem as well. Rather than writing your own
application to manage the content on your site, it may make sense to use one of the
existing packages to save yourself some time.

This is by no means a complete list of these systems. There are probably hundreds of
these types of products available today. I'm only going to discuss a few of the most pop-
ular ones. One important thing to remember is that once you choose a content manage-
ment system, you’re going to be married to it. Most of these systems have little in
common. They support different programming languages, template formats, and ways of
storing the actual content. After you’ve committed to one of them, moving your content
to a different system can be a long and arduous process.

The three most important criteria you’ll want to have in mind when you look at these
systems are your budget, your schedule, and the capabilities you’re looking for.
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Content management systems range in price from free to hundreds of thousands of dol-
lars. Price isn’t directly correlated to capability, either. Some of the free systems are very
powerful, whereas some very expensive systems are hard to use and inflexible. If you
know your budget, you can probably eliminate some systems based on their price right
off the bat.

The second issue is your schedule. Content management systems tend to follow the
standard curve, familiar to most software users, of built-in functionality versus flexibility.
Consider the difference between C and Perl. In C, you can write programs to do just
about anything, but writing programs to perform even the simplest of tasks takes quite a
bit of work, at least compared to Perl. On the other hand, Perl isn’t as flexible as C. In C,
people write operating systems and compilers. In Perl, people tend to write string pro-
cessing scripts and CGI programs. Because Perl is built for those sorts of tasks, it has a
lot of built-in functionality that makes writing those specific types of programs easy.

Getting back to my point, the issue you face when selecting a content management sys-
tem is how much time you have to get it up and running. Given infinite time (and devel-
opment resources) you could write a content management system yourself that would be
perfect for your site. It would do exactly what you want to do. If you have a month to get
the site up and running and only yourself to work on it, it probably makes more sense to
use a system with tons of built-in functionality. You may have to compromise on how
flexible it is and settle for doing without some features that you might have wanted, but
the time you save in using an existing system will probably be worth it.

The third issue is the capabilities of the content management system you choose. This
issue is probably the most important because ultimately the system you select must pro-
vide the capabilities you require or it won’t do you any good. One important issue is the
programming language that the content management system uses. Most systems can be
programmed using at least one programming language; you should find out which lan-
guages are supported and make sure that you’re comfortable with them. Other capabili-
ties you’ll want to look at are the ability to cache content that doesn’t need to be
generated dynamically every time a page is requested, and workflow capabilities that
allow you to manage the publishing process.

Now let’s look at a few specific content management systems that are available.

Mason

Mason is a free content management system written in Perl. It allows you to use tem-
plates to publish documents, and to create HTML documents with Perl embedded in
them that is executed when the page is rendered. It also provides caching capabilities.
You can find out more about Mason at http://www.masonhg.com.
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Zope

Zope is a content management system and application server built around the Python
programming language. Python is a developer-friendly language built on the principles of
object orientated programming. Zope uses these principles to provide a powerful content
management system. Zope has a built-in Web server and object database. You can also
run Zope in CGI mode to use it with other Web servers, and use other relational data-
bases for data storage. Like Mason, Zope is completely free. The Zope home page is
http://www.zope.org.

PostNuke

PostNuke is a content management system written in PHP. It’s designed to make it easy
to create sites that are vaguely similar to Slashdot.org in style and appearance. You can
find out more about it at http://www.postnuke.com.

Red Hat Content Management Solution

Red Hat Content Management Solution is the product formerly known as ArsDigita
Content Management Solution. It’s a full-blown content management system with work-
flow and templating, written in Java. It’s an open source product and is available for free
download from the Red Hat web site at

http://www.redhat.com/software/ccm/cms/

Summary

The goal of this hour was to introduce you to the world of content management. Static
Web sites are increasingly going the way of the dinosaur, and these days, it’s more com-
mon to see Web sites that enable you to separate your content from the manner in which
it is presented, so that you can make changes to your site without editing hundreds of
individual HTML documents. In this hour, I provided an example of a simple content
management system written using a couple of CGI scripts. I also discussed some of the
pre-built content management systems that are available, and how to evaluate them.

Q&A

Q How does XML fit into the content management picture?

A XML is a markup language that is designed to be more structured than HTML.
Unlike HTML, XML documents must conform to a particular document type defi-
nition in order to be considered valid. These document type definitions, or DTDS,
really allow you to write markup languages of your own, using the tags and struc-
ture that you specify. The advantage of XML is that it can be processed easily by
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computer programs. After an HTML document has been published, it’s not easy to
extract the data from the document. Using XML, it should be just as easy to get
data out of a document as it is to put it into it. Because of its flexible functionality
and rigid structure, XML is a good source format for documents that will be con-
verted to HTML by a content management system, as you’ve seen both in this les-
son and on Hour 14.

Q What do I do with the content that’s already part of my static site?

A There’s no easy answer to this question. One of the biggest challenges in moving
from a static system to a content management system is converting all your HTML
documents into whatever format your content management system uses. If your
pages all follow a very similar format, you might be able to write scripts that read
your HTML documents and store them in the new format. If they don’t, you might
have to convert a lot of your content manually, which is a pretty huge job.
However, when you compare the amount of time it will take to the time it takes to
redesign a large static site, you may find it’s worth it. Some sites just leave all their
static content as it is, and generate all the new content using their content manage-
ment system.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. Why was it a questionable decision to use HTML-style tags as delimiters for the
content files in the example?

2. On what types of sites is caching HTML documents not a good idea?

Exercises

1. Create a new template and content file format and modify the sample programs to
use them.

Quiz Answers

1. It was questionable to use XML in our story files because the tags can conflict with
the HTML tags inside the content.

2. Sites that serve up dynamic content for every user are bad candidates for caching.
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Working with Relational
Databases

These days, most complex Web sites use a relational database for data stor-
age. They are widely used to store transaction data and user account infor-
mation, and in many cases, they’re used to store the actual content that will
be published on the Web site as well. Over the course of the next two hours,
I’ll explain how relational databases work, and how you can build Web
applications that use relational databases. In this hour you’ll learn:

¢ What the relational model for databases is

* Structured Query Language (SQL)—the means to accessing data in a
relational database

* How the database design process works

* What types of data are supported by relational databases

The Relational Database Model

Today, the dominant paradigm in the world of databases is the relational
model. The fundamental attribute of the relational model is that data is
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stored within tables. Each table consists of rows and columns; each row represents a sin-
gle record, and the columns contain the data that make up each record. The intersection
of a row and column is referred to as a field. Each field contains a single value.

Table 18.1 contains an example of what a table about movies might look like. As you can
see, each column contains a particular type of data, and each row makes up a single
record.

TaBLe 18.1 A Sample Table

ID Title Studio Budget
1 Mineral House Giant 20

2 Prince Kong MPM 3.25

3 The Code Warrior MPM 10.3

4 Bill Durham Delighted Artists 10.1

So, in the sample table, each row is made up of four columns, ID, Title, Studio, and
Budget. The value in each field is a single, atomic piece of data.

You could place a list of several values, separated by commas, in a single
field. However, the database would treat that list as a single value; you
Z would need to extract the individual values after retrieving the list from the

database. Doing things this way is generally considered to be very poor
design, because it makes it much more difficult to retrieve the data using
queries later on.

A relational database is made up of groups of tables, which are linked together through
relationships. For example, if there were another table in the database that contained
information on each studio, you could look up information on the studio that produced
each of the movies by cross referencing the Studio column in Table 1.1 with the column
that contained the studio name in the second table.

By taking advantage of relationships between tables, you can avoid duplicating data in a
database. Rather than including the city where each studio is located in Table 1.1 (where
the data would be duplicated among each movie from the same studio), you could
include it in the table specifically related to studios, and then cross-reference the two
tables to obtain that information when you need it.

The practice of designing your databases so that information is not needlessly duplicated
is referred to as normalization. Not only are normalized databases more space-efficient
than non-normalized databases, but they don’t suffer from the data inconsistency that can
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occur without normalization. Duplicated data means that every program that performs an
update operation must remember to access the data in every location.

Structured Query Language

For every popular relational database system, the Structured Query Language (SQL) is
used to insert, modify, and delete data, and is used for queries as well. The full SQL
standard is more than 600 pages long, and no commercial relational database system
fully conforms to the standard. This hour and the next cover the details of the language
that are most commonly implemented in popular relational databases.

SQL is made up of three types of statements: statements that are used to manipulate data,
statements for data definition, and statements for database administration. I’ll discuss
some of the statements that are common to most relational databases.

Statements for Data Manipulation

Within the category of statements for data manipulation, there are two types of com-
mands: commands that are used to retrieve data from a database, and commands that
modify data within a database. Let’s look at the statements within these categories.

There is a single statement that is used to retrieve data stored within a database, SELECT.
Thanks to the rich capabilities of SQL, however, incredibly complex SELECT statements
can be written to perform complex queries on data within a database. Listing 18.1 con-

tains an example of a simple SELECT statement and its results from the database.

) | display both the query and its results in these listings in order to make it
=
) easy for you to see what happens when you enter these queries, even if you
== don't have access to a relational database containing these tables yourself.

LisTING 18.1 A SELECT Statement

1: mysql> select * from Studios;

A R I L Foei e +
3: | studio_id | studio_name , studio_city | studio_state |
4 e o I Foee e +
5: | 1 | Giant | Los Angeles | CA i
6: ! 2 ' MPM ! Burbank ' CA !
7, 3 | Delighted Artists | Austin 1 TX "
8: | 4 | FKG ' Apex ' NC !
9: 5 | Metaversal Studios | Los Angeles | CA 1
10 +----------- o I I Foemi e +
11: 5 rows in set (0.00 sec)




| 344 Hour 18

Because the SELECT statement is used to retrieve data from a database, it's
i usually referred to as a query.

N
\
N\

N

il
:

The statements available for manipulating data within a database are UPDATE, INSERT,
and DELETE. As you probably can guess, the UPDATE statement is used to make changes to
records, the INSERT statement is used to create new records in a table, and the DELETE
statement is used to remove records from a table. There are examples of these three types
of statements in Listing 18.2.

Listing 18.2 Data Manipulation Statements

1: mysql> UPDATE Studios

2 -> SET studio_city = 'Houston'

3 -> WHERE studio_state = 'TX';

4: Query OK, 1 row affected (0.00 sec)

5: ws matched: 1 Changed: 1 Warnings: 0
6.

7

8

: mysql> DELETE FROM Studios
: -> WHERE studio_name = 'Giant';
9: Query OK, 1 row affected (0.00 sec)

10:

11: mysql> INSERT INTO Studios

12: -> (studio_id, studio_name, studio_city, studio_state)

13: -> VALUES

14: -> (5, 'Big Pictures', 'Culver City', 'CA");

15: Query OK, 1 row affected (0.00 sec)

16:

17: mysql> SELECT * FROM Studios;

18: +--ccmmnanan R i I I B I R I I +
19: | studio_id | studio_name , studio_city | studio_state |
20 +----eea- R I I A R I L +
21: | 5 | Big Pictures | Culver City | CA |
22: 2 | MPM | Burbank | CA "
23: | 3 | Delighted Artists | Houston 1 TX 1
24: | 4 | FKG 1 Apex 1 NC 1
25: 5 | Metaversal Studios | Los Angeles , CA |
26 +----ieaa- R I I A R I L +

27: 5 rows in set (0.00 sec)

Statements for Data Definition

Statements used for data definition create or alter the structure of the database, or allo-
cate resources to a database. First among these statements is CREATE. The CREATE com-
mand can be used to create databases, views, and tables. Listing 18.3 contains an
example of the CREATE statement, used to create a table.
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Listing 18.3 Creating a Table Using the CREATE Statement

1: mysql> CREATE TABLE example

2 -> (name VARCHAR (60) ,
3: -> rank CHAR(10),

4: -> serial_number INT);

5: Query OK, 0 rows affected (0.00 sec)

In some databases, after an element like a table has been created, it can be changed using
an ALTER statement. For example, if you had wanted to make the serial_number a char-
acter field instead of a number field, the ALTER command could be used to change the
data type of the column, as shown in Listing 18.4.

Listing 18.4 An Example of the ALTER Command

1: mysql> ALTER TABLE example

2 -> MODIFY serial_number CHAR(10);
3: Query OK, 0 rows affected (0.01 sec)
4: cords: @ Duplicates: @ Warnings: 0

Statements for Database Administration

The other category into which SQL commands fall is database administration commands.
These commands are used to grant and remove privileges from users, and to perform
other tasks related to general database operation rather than specific manipulation of ele-
ments within the database.

In most cases, the configuration of the database is stored within tables in the database
itself that are accessible only to the database administrator’s account. When this is the
case, you can use the standard data manipulation commands to configure the database.

Database Design

As you can tell by now, the relational model is completely centered around tables. All
data in a database is stored in tables, and all queries receive their results in tables.
Therefore, when you’re thinking about how to organize your data, it’s important to think
about how to group your data within tables. Here are some important rules that apply:

¢ All data must be returned by the database in a tabular format.

* Each field must contain a single value.

» For the purposes of data integrity, every row must contain a value (or group of val-
ues) that uniquely identifies that row.
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* A relationship between two tables is represented by part or all of the data in a col-
umn. In other words, the column data that expresses a relationship must appear in
corresponding columns of both tables.

Strangely enough, the default behavior of most databases is to make the third and fourth
rules optional. Not all of the rows in your tables must be unique, and there need not be a
formal link between related tables. However, both of these rules help to preserve the
integrity of data in your database. The third rule, which states that every row must be
unique, is important because it eliminates redundancy in your database. In the relational
world, redundancy is always a bad thing. If you have redundant data, whenever you need
to update that data, you have to remember to update it in every place that it exists.
Failing to update one instance of the same data when you update another causes your
data to get out of sync, and eliminates the integrity of that data.

Adhering to the final rule assures that your database has referential integrity. Referential
integrity is simply the principle that when you have data in one table that refers to data in
another, the data it refers to really exists. In some cases, it may be prudent to intention-
ally break these rules. However, when you do so you should be sure you know why
you’re breaking the rules and what the pitfalls of doing so are.

The value (or group of values) that uniquely identifies each row is referred to as the pri-
mary key. When the primary key from one table corresponds to a column in another
table, it expresses a relationship between the two tables, and the corresponding column
(or columns) in the other table is referred to as a foreign key. I will return to the topic of
these keys when I start discussing the nuts and bolts of database design later in this hour.

Before delving further into the topic of design, let me introduce a new term: schema. The
schema of a database is the set of all the tables in the database, along with the keys and
columns in each of those tables. The schema of a table includes the table name, a list of
the columns in the table, and an indication of the keys.

The notation used to portray the schema for a table contains the name of the table, fol-
lowed by the names of the columns within parentheses. The primary key of the table
should be underlined with two lines. Here’s an example:

studios (name, city, state)

Characteristics of Good Databases

When you think about it, the characteristics of well-designed databases are self-evident.
Good databases make it easy to retrieve the data you need, exhibit high integrity so that
the data remains consistent after updates, and provide optimal performance in responding
to queries.
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Naturally, although a good database exhibits all three of these qualities, there are trade-
offs among them. For example, it might make it easy to retrieve data if you store it all in
a single table; however, this can lead to poor performance, and can lead to needless
duplication of data that hurts the integrity of your database. On the other hand, splitting
up your data into many tables can ensure that you never run into problems with data
integrity, but can make it tiresome to write queries that return the data you need, and can
also be detrimental to performance. Designing a database that is solely focused on good
performance over concerns of organization and integrity is probably likely to be unsatis-
factory as well.

It’s up to you to create the proper recipe for your database. You should be mindful of all
three of the qualities listed here when you design your database, balancing each of them
as appropriate for your application. In the end, the ultimate positive characteristic of any
database is that it provides high levels of user satisfaction, and that it reliably meets its
requirements.

Symptoms of Bad Databases

All too often, it’s easier to point out the wrong way to do things than to explain how to
do them correctly. Not surprisingly, the symptoms of a bad database are more or less the
opposites of the good qualities described previously.

It’s quite possible to design a confusing database with bad performance and poor
integrity. Hopefully this hour will help you to avoid doing so. Symptoms of a poorly
designed database include

* Tables or columns with confusing or unclear names.

» Database design that requires users or programmers to enter the same data more
than once, or change the value of the same piece of data in multiple places when it
is updated.

» Allowing data in the database to get out of sync, so that multiple queries seeking
the same piece of information return different results.

* Poor performance.
« Difficulty in determining the relationship between pieces of data.

* Duplicate rows within a single table.

The Design Process

Regardless of what type of information will eventually be stored in your database, the
design procedure generally follows a standard set of steps. Let’s take a look at a list of
the steps involved in database design:
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1. Information gathering. Obviously, before you can design a database, you need to
know exactly what will be stored in the database.

2. Taking inventory. After you’ve found all the information you’ll store in the data-
base, you need to create a laundry list of all the types of data you’ve found, and the
attributes of those types.

3. Entity-relationship modeling. Arrange the data into individual entities and attrib-
utes of those entities. Determine how the entities are related.

4. Determine which level of normalization is required for your database. Apply the
normalization rules to your data.

5. Write the SQL code necessary to create the database, and then create the database
in your relational database system.

6. Determine which users should have access to your data, and then grant the appro-
priate levels of access to the users.

7. Populate your database with data.

These are general steps that can be taken in the process of designing a database. They are
by no means set in stone, and if another method works better for you, that is the method
you should follow. In the end, it is the result that matters, not necessarily the route by
which you arrived at that result.

Creating a Database

In some databases, before you can create individual tables within a database, it’s neces-
sary to create a new database and allocate space for storing the records. In most data-
bases, the CREATE DATABASE command is used to initialize a new database. Many
database packages also provide graphical tools that can be used to create new databases.
In fact, some low-end packages leave out the CREATE DATABASE command and require
you to create databases through a graphical interface. In its most basic incarnation, the
CREATE DATABASE statement looks like:

CREATE DATABASE Film_Industry

Oracle requires database names to be less than eight characters long, so if you’re using
Oracle, you can use a statement like:

CREATE DATABASE FI

There are lots of additional attributes that can be passed to the CREATE DATABASE state-
ment that specify the physical location where the database style will be stored, log file
information, and other information relating to the operation of the database. These
options vary significantly between various database packages, so I’ll cover them later on,
when I talk about specific databases.
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There are a number of other CREATE statements that can be used to specify various inter-
nal information for a database. For example, using the CREATE TABLESPACE command in
Oracle, you can allocate more physical drive space for tables. The CREATE SCHEMA com-
mand can be used to create more than one table in a single statement. Generally, use of
those commands is best left to database administrators. Most database programmers
rarely create anything above the table level.

Choosing Which Database to Access

If you’ve created more than one database, your SQL statements need to specify the data-
base in which to find tables. In most databases, you can prepend a table name with the
database name and two periods to indicate that the table is in a database other than the
one that is currently active. For example, in Microsoft SQL Server, if you’re currently
using a database called DB_ONE, but you want to retrieve data from a table within DB_TWO,
you could use the following SELECT statement:

SELECT *
FROM DB_TWO..Employees

If you want to change the active database, most databases provide the USE or DATABASE
command. For example, if you want to switch from DB_ONE to DB_TWO for a series of
queries, you could just use

USE DB_TWO
to make DB_TWO active. Similarly, the DATABASE command is used as follows:
DATABASE DB_TWO

Once you’ve made a database active, you can leave out the database specification in your
queries, and just use the table name in the table list, like this:

SELECT *
FROM Employees

Creating a Table

In order to create a new table within a database, the CREATE statement is used. CREATE
can be used to create more than tables, so you have to specify that you’re creating a table
when you use it. The basic structure of a CREATE statement is as follows:
CREATE TABLE Table Name
(column_name data type[(size)],
column_name data type[(size)],

:)
The table specified by Table Name will be created with the columns specified in the col-
umn listing. Each column name must be followed by a data type for that column. Most
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data types require that you specify a size for the field, but a few don’t. I’ll explain the
details of the data types in the next section.

Let’s take a look at a real table specification very quickly, before I get into the explana-
tions of the individual data types. Listing 18.5 contains a CREATE statement that could be
used to create a table to store information about movie studios.

LisTiNng 18.5 A Statement to Create the Studios Table

1: CREATE TABLE Studios

2: (name CHAR(20) ,
3: city VARCHAR2(50) ,
4: state CHAR(2),

5:

revenue NUMBER)

For now, don’t worry about the data types listed in the table; I’ll explain what they are in
the next section. Look at the structure of the statement. This statement creates a table
called Studios, with four columns: name, city, state, and revenue. There are a lot
more options available when a table is created; I could have specified the primary key, or
set up relationships with other tables, or placed constraints on the values that could be
entered in the columns. For information on those options, you should refer to a book that
deals specifically with databases.

Some good books covering relational databases are The Practical SQL Handbook, by
Judith S. Bowman, Sandra L. Emerson, and Marcy Darnovsky; and Special Edition
Using SQL, by me. You might also consider books that deal specifically with the data-
base product that you’re using.

Relational Data Types

Relational databases support different data types based on the type of information that
you store within a column. These data types not only affect how data is stored on disk,
but also, more importantly, how data is compared to each other. For example, if you are
comparing two numbers, or two dates, you don’t want to compare them alphabetically.
Storage requirements are important as well. You don’t want to reserve 255 bytes of space
for the state field of a table, which you know will contain only the two letter abbreviation
of a state’s name. Similarly, you don’t want to reserve only five bytes of space for a tele-
phone number, which you know is 10 digits long.

Fortunately, relational databases provide you with a wide assortment of data types that
you can assign to columns within your databases. There are data types for text strings,
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numbers, dates, and other objects, like binary data, and large text objects. Unfortunately,
each relational database product has its own distinct set of data types, although there is
some overlap between products.

In any case, the basic types of data which each database can store are basically the
same—the main difference is in what those data types are named. Some databases offer a
variety of subtypes for some of the types; for example, in addition to a basic numeric
type, they offer specific types for integers, floating point numbers, and money. The fol-
lowing sections cover the three general types of data that are offered by nearly every
database: string, numeric, and temporal. (There are several other common data types sup-
ported by relational databases, but they’re used less often with Web applications.) To
ascertain the necessary details, you should review the documentation specific to your
database when you create tables.

String Data

Most databases offer two string data types, fixed length and variable length. The differ-
ence is that a fixed length field always occupies a given amount of space on disk, no
matter how much data is placed in it, whereas a variable length string occupies only the
amount of space consumed by its contents, no matter what its maximum size is.

The data type for fixed length strings is usually CHAR. When you create a fixed length
string, you must specify the length of the string. For example, a column called state
would be of the type CHAR (2). This column always uses two bytes of disk space, even if
it is actually blank, or contains only one character. Similarly, a name field might be a
fixed length field that can hold up to 20 characters. CHAR fields are automatically padded
to fill out the bytes that are not consumed by data placed in them.

Strings can also be stored in variable length fields. These fields are generally specified
using the identifier VARCHAR or, in the case of Oracle, VARCHAR2. Variable length fields
must be specified with a maximum length. For example, the data type of a city field that
can contain up to 50 characters would be VARCHAR (50). The difference between it and a
field specified as CHAR (50) is that although the variable-length field can hold up to 50
characters, it will be resized to fit its actual contents. So, if a city name is 10 characters
long, it will take up 10 bytes of space on disk, rather than the 50 that a CHAR (50) field
would consume.

The maximum sizes for string fields vary widely among databases. Oracle 8 allows CHAR
fields up to 2000 bytes in length, and VARCHAR2 fields up to 4000 bytes in length. Some
databases restrict you to 255 bytes in both types.

In some cases, you may need to store more data in a character field than either of the two
data types I’ve already discussed will allow. Most databases provide a data type for large
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character objects. Oracle provides the CLOB (character large object) data type for text that
won’t fit within a VARCHAR2 field; CLOB will hold up to four gigabytes of data. Microsoft
SQL Server provides the TEXT data type for large strings. MySQL supports TINYTEXT,
TEXT, MEDIUMTEXT, and LONGTEXT, which range from 256 bytes to over 4 megabytes in
capacity.

Numeric Data

The large majority of commercial databases differentiate between numeric and string
data. Unlike string data, numeric data does not have to be enclosed in single quotation
marks. You can also include numeric data in mathematical expressions.

Most databases provide at least two numeric data types, one for integers and another for
floating point numbers. Some others provide more distinct numeric types, like MONEY,
which always allots two numeric places after the decimal point. Table 18.2 contains a list
of numeric data types that are found in nearly every database. Most databases support a
number of other numeric data types as well. The number of digits supported by these
types varies. In many databases, you can specify how many digits a number contains,
just as you can specify how many characters a CHAR field holds.

TaBLe 18.2 Numeric Data Types in SQL

Type Definition

DECIMAL A floating point number.

FLOAT A floating point number.

INTEGER (size) An integer of specified length.

MONEY A number which contains exactly two digits after the decimal point.
NUMBER A standard number field, which can hold a floating point number.

Sometimes, you’ll want to store numeric data as strings. For example, zip codes and
phone numbers should be stored strings for two reasons. First, many numeric data types
remove leading zeroes from the data, but a zip code might contain a leading zero.
Second, a numeric data type cannot store non-numeric data, but you might want to allow
phone numbers to contain alphabetic, dash, and parenthesis characters. A good rule of
thumb is that numeric data types are for numbers that you might perform calculations
on—not just fields that contain numbers.

Temporal Data

Another distinct data type supported by most relational data types is temporal data—
dates and times. The variation between databases is very wide when it comes to temporal
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data. The way dates are stored and displayed differs, and some databases support more
temporal data types than others.

Basically, the three types of temporal data supported by relational databases are dates,
times, and date-time combinations. Some databases support only a single date type,
which combines both a date and time. Others support all three.

Summary

The purpose of this hour was to provide you with an overview of the relational database
landscape. Many books have been written about relational databases themselves, so as
you might imagine, not much detail was presented in this hour. Still, it should provide
you with the foundation you need for writing Web applications that use relational data-
bases for data storage. If you find yourself using relational databases a lot, you might
want to look into purchasing a book that covers SQL or the relational database you’re
using.

Q&A

Q What is database normalization?

A Database normalization is the process of designing databases so they conform to
certain rules, which prevent various data storage and retrieval problems. Generally,
the rules prevent unnecessary duplication of data in a database.

(e

How do I know if the database I’m using supports SQL?

A The key word to look for is “relational.” Nearly all relational databases provide
SQL support. The most popular databases—Oracle, Sybase, Informix, IBM DB/2,
MySQL, Microsoft SQL Server, and even Microsoft Access—all support SQL to
varying degrees.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. Which SQL statement is used to add a new table to a database?

2. What criteria must a column or combination of columns satisfy to be able to serve
as a primary key?
3. How do CHAR and VARCHAR fields differ?
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Exercises

1. Install a relational database for your own use. If you own Microsoft Office
Professional, you can use Access. If you don’t, check out MySQL
(http://www.mysql.net).

Quiz Answers

1. You can add new records to a table using the INSERT statement.

2. In order for a column or group of columns to serve as the primary key for a table,
the values must be unique for that table.

3. CHAR fields differ from VARCHAR fields in that VARCHAR fields only consume as much
storage as is actually used by the data in those fields, whereas CHAR fields automati-
cally consume all of the storage allocated to them.
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How to Use the
Structured Query
Language

The Structured Query Language (SQL) is the lingua franca of the relational
database world. Nearly all relational databases use SQL for data retrieval,
data modification, and database administration. While the SQL dialect used
by various databases differs, once you know the basics of SQL, you should
be able to use most any relational database. In this lesson, I'm going to dis-
cuss the statements associated with SQL and demonstrate how they are used
in CGI programs.

This lesson includes the following:
* A brief overview of Structured Query Language (SQL)
* What the Open Database Connectivity (ODBC) standard is

* How to access relational databases from Perl programs using DBI
and DBD
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Structured Query Language

Structured Query Language (SQL) is a standard language for retrieving records from
databases. The standard is maintained by the American National Standards Institute
(ANSI), and is supported by most major database vendors, including MySQL, IBM,
Oracle, Informix, Sybase, and Microsoft.

You can embed SQL statements in your CGI programs that issue queries to databases

and include the results in your Web pages. Because SQL is an open standard, your SQL
statements will be portable so that they work no matter which database package you opt
to use.

Although most database vendors have created proprietary extensions to SQL
that only work with their database package, your code will remain
extremely portable if you stick with the standard SQL statements.

First, let me show you a sample table that I can refer to throughout this section. The
table in Listing 19.1, which contains the records for four students, is named

StudentData.

LisTING 19.1 The StudentData Table

SSN

1 555123322
1 834781313
777333111
316385989
1 123456789

o0 hs WD =

FirstName LastName Class Major Tuition
Joe Smith Freshman Business 5000
Michael Albrecht Freshman Chemistry 3500
Robert Jones Senior English 10000
Alicia Brown Junior Business 5000
Bill Brown Junior History 7500

Now let’s take a look at how SQL statements are built.

N
/] N
L
AN
Ao

&

f

The following sections describe just a few of the most useful SQL commands.
I've written an entire book on using SQL that describes the language in full
detail. The book, published by Que, is entitled Special Edition Using SQL.
There are a number of other excellent books on SQL as well, including
books that are written to cover specific database engines.
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The SELECT Statement

The most common, and important, SQL statement is the SELECT statement, which is used
to retrieve data from the database. The simplest SELECT statements are used to extract a
list of columns from a specific table. Here’s an example:

SELECT SSN, FirstName, LastName
FROM StudentData;

This statement retrieves the values in the three specified columns from every row in the
StudentData table. By default, SELECT statements retrieve every row from the table in
the FROM clause.

As seen in the previous chapter, to select all the columns in a table, instead
of entering all the column names in the SELECT statement, you can use the *
Z (asterisk) character.

To constrain the query so that only specific rows are returned, you can use the WHERE
clause to set up conditions that filter the records based on the values in certain columns.
Here’s an example:

SELECT SSN

FROM StudentData
WHERE Tuition > 7000;

This query uses the greater-than conditional operator (>) to return the social security
numbers of only those students who are paying more than $7,000 tuition.

You can also select records based on textual values. For example, to retrieve the first and
last names of all the members of the junior class, you would use the following statement:

SELECT FirstName, LastName
FROM StudentData
WHERE Class = 'Junior';

Table 19.1 contains a list of all the conditional operators that can be used in the WHERE
clause of a SELECT statement.

TaBLE 19.1 Operators for Use in Conditional SELECT Statements

Operator Definition
= Equal
<>or = Not equal
< Less than

continues
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TaBLe 19.1 continued

Operator Definition

> Greater than

<= Less than or equal to
>= Greater than or equal to
AND and OR

You can also create more complex expressions in your WHERE clauses using the AND and
OR operators, which enable you to select records based on the values in more than one
column. Let’s take a look at a SELECT statement that retrieves the SSN of students who
are freshmen and business majors:

SELECT SSN

FROM StudentData
WHERE Class = 'Freshman' AND Major = 'Business';

If you look back at the sample data in Listing 19.1, you can see that this query will
return one row, the one for Joe Smith. Michael Albrecht and Alicia Brown each meet one
of the two conditions, but neither satisfy both, so because of the AND operator, neither of
those records is returned.

You can use the UPPER or LOWER functions to create case-insensitive textual

@ conditions. To make the previous query case insensitive, you could use either
Z function on the column name and rewrite the value it is compared to appro-

priately, as follows:

SELECT SNN

FROM StudentData

WHERE LOWER(Class) = 'freshman'’

AND LOWER(Major) = 'business'

Compound SELECT Statements

You can use multiple expressions with the AND and OR operators to create even more
complex WHERE clauses. Take a look at this one, for example:
SELECT FirstName, LastName

FROM StudentData
WHERE Class = 'Senior' AND Major = 'English' OR Tuition < 5000;

The problem with this example is that it doesn’t make the order in which these expres-
sions are evaluated clear. The query could return different results depending on whether
the AND expression is evaluated before the OR operator, or vice versa. In this case the AND
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operator is evaluated first. So, the query would be written in plain English as, “Either the
student is a senior majoring in English, or the student’s tuition is less than $5,000.”
SELECT FirstName, LastName

FROM StudentData
WHERE (Class = 'Senior' AND Major = 'English') OR Tuition < 5000;

The parentheses make it clear that the two conditionals combined with the AND statement
are one group. You can also use parentheses to group the operators in the statement so
that it reads the last two expressions as a single group. Here’s an example:

SELECT FirstName, LastName

FROM StudentData
WHERE Class = 'Senior' AND (Major = 'English' OR Tuition < 5000);

In this example, the results are different than they would be for the previous two queries.
In plain English, it’s written as “The student is a senior, and either her major is English
or her tuition is less than $5,000.” Whenever you create compound SELECT statements,
you should use parentheses to group the expressions in order to make the code more
readable and to ensure that the database engine knows exactly how you want the expres-
sions evaluated.

IN, NOT, and BETWEEN

When you are writing compound SELECT statements, there are several other operators
that you can use in WHERE clauses to build expressions. These include the IN, NOT, and
BETWEEN operators. Let’s take a look at the IN operator first. It compares a value to a list
of values that you specify. If the value in the current row matches any of the values in the
list, the IN expression evaluates as true. Conveniently, lists in SQL are identical to lists in
Perl, so it’s easy to remember the syntax. Here’s an example:

SELECT SSN

FROM StudentData
WHERE Class IN ('dJunior', 'Senior');

This SELECT statement will return any records in which the Class column contains a
value of Junior or Senior. Take a look at a statement that uses the OR operator to do the
same thing:

SELECT SSN

FROM StudentData
WHERE Class = 'Senior' OR Class = 'Junior';

As you can see, using the IN statement shortens the line of code. In this case, the advan-
tage isn’t too dramatic, but imagine if you wanted to use a list of 20 alternatives. The IN
expression would radically decrease the amount of code you had to write, and make your
code more readable.
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Now let’s look at the NOT operator, which reverses the meaning of any conditional
expression. Take a look at the previous example, with the NOT operator inserted:
SELECT SSN

FROM StudentData
WHERE Class NOT IN ('Junior', 'Senior');

As you probably guessed, this example selects any records in which the value in the
Class column is not equal to Junior or Senior.

S The NOT operator can be used with any operator, but it doesn't make much
3 % sense to use it with the mathematical operators—for each, there is already
= an inverse operator that does the opposite operation. For example, rather

than using NOT < you can just use >=.

BETWEEN is used to check whether a column contains a value between the two values that
are specified. Not surprisingly, NOT BETWEEN checks to see whether a value is not
between the two specified values. BETWEEN provides a shorthand way of writing the fol-
lowing example:

SELECT SSN

FROM StudentData
WHERE (Tuition => 5000) AND (Tuition <= 10000);

The same statement written using the BETWEEN operator looks like this:

SELECT SSN
FROM StudentData
WHERE Tuition BETWEEN 5000 AND 10000;

The LIKE Comparison

LIKE is used to match the contents of a column to a pattern. The basic syntax of the LIKE
command is very simple. LIKE uses the % sign for pattern matching. The % character
matches any character or sequence of characters. Take a look at this example:

SELECT SSN

FROM StudentData
WHERE LastName LIKE 'S%';

This statement extracts any columns in which the LastName field starts with S. You can
create all sorts of patterns using the LIKE command. For example, LIKE 'S%h' matches
any last names that begin with S and end with A, like Smith.
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If you just want to match one character, most databases support the ? wild-
card as well. The ? character will match any single character, so t?p will
Z match top and tap, but not tarp.
Joins

When databases are designed, it is a good practice to only include a single type of infor-
mation in each table. For example, you wouldn’t include personal information about the
students, information on classes, and all the student schedules within a single table.
Instead, you would create three tables.

Using joins, you can retrieve data from each of the tables with one SELECT statement. A
join is a query that retrieves data from more than one table, and correlates the data from
the tables based on what’s referred to as a joining condition.

o The previous paragraph was a gross oversimplification; there are two
/=T ) processes that are generally used in the design of relational databases,
ISNS—

f
A8

entity-relationship modeling, and normalization. Entity-relationship
modeling is the process of looking at all the data that will be stored in your
database and organizing it into tables that make sense from a relational
database standpoint. Normalization is the process of further breaking your
data down into tables in order to avoid data redundancy. For more informa-
tion about these processes, you should consult resources on database design.

First, 'm going to create some sample data for the examples that I will use. I will be
using the StudentData table shown earlier as well as two new tables, named Courses
and StudentGrades.

Here’s the Courses table:

SectionNumber Dept Professor
001 Math Einstein
002 English  Whitman
003 Business Trump

004 Biology  Salk

Here is an excerpt from the StudentGrades table consisting of a single student’s grades

SSN SectionNumber Grade
555123322 001 A
555123322 002 C+

123456789 003 B
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SectionNumber is the primary key of the Courses table. Each of the records in that table
is uniquely identified by its SectionNumber, even if the course is in the same department
and has the same professor. The SectionNumber is a foreign key inside the
StudentGrades table, as is the SSN. Any value given as a SectionNumber in the
StudentGrades must correspond to an existing record in the Courses table. Any value
given inside the SSN column of the StudentGrades table must correspond to a record in
the StudentData table. This is known as referential integrity.

Primary and foreign keys enable you to create relationships between tables so that you
don’t have to repeat data between them. Therein lies the power of relational databases.
For example, I can find the names of a student’s professors without having to include
them in the StudentGrades table. The reason it’s a bad idea to store the professor names
in the StudentGrades table is that it would cause potential updating problems. If you
wanted to change the professor for a course, you’d have to find every record in the table
associated with the old professor and replace them with the new professor. Here’s an
example of how to look up the names of the professors for a particular student’s courses:
SELECT Courses.Professor

FROM Courses, StudentGrades

WHERE (Courses.SectionNumber = StudentGrades.SectionNumber)
AND (StudentGrades.SSN = '555123322');

Unlike the SELECT statements I used previously, I select from two tables here, Courses
and StudentGrades, because I need information from both of them to complete the
query. In order to indicate which table I am taking each value from, I use dot notation to
prefix the column name with the name of the table it comes from. This is only required
when the column name isn’t unique amongst all of the tables in the query, but I use it
here to make my code easier to read.

This particular query returns Einstein and Whitman. The condition

(Courses.SectionNumber = StudentGrades.SectionNumber) is referred to as the join-
ing condition because it creates the relationship between the two tables. In this case, it is
referred to as an equijoin because it joins the two tables based on a condition of equality.

Using DISTINCT

Let’s say you want a list of the names of students who are enrolled in any course. When
you’re generating this list, you obviously only want each student to appear one time, no
matter how many courses he or she is enrolled in. At the same time, you only want stu-
dents who are actually enrolled in a course. If a student is enrolled in more than one
course, he appears multiple times in the StudentGrades table. The StudentData table
contains records for all of the students, regardless of whether they’re enrolled in any
classes this semester. A joining query between StudentData and StudentGrades is
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required to retrieve a list of students who are enrolled in courses. To eliminate duplicates
from this list, you use the DISTINCT operator. The duplication occurs for students who
are enrolled in multiple courses. The most important thing to remember when you use
the DISTINCT operator is to use it on the proper column. Look at this example:

SELECT DISTINCT StudentGrades.SSN, StudentData.FirstName,

StudentData.Lastname

FROM StudentGrades, StudentData
WHERE StudentGrades.SSN = StudentData.SSN;

First, notice that I use an equijoin that grabs all the first and last names where the SSN
from the StudentData table is equal to an SSN from the StudentGrades table. Using the
DISTINCT operator indicates that no matter how many times a particular SSN appears in
the StudentGrades table, it will only be extracted once.

This SELECT statement returns a list of the SSN, first name, and last name for every stu-
dent who appears in the StudentGrades table.

Sorting Output from SELECT Statements

You can use the ORDER BY operator to sort the output of a SELECT statement. Here’s an
example:
SELECT FirstName, LastName

FROM StudentData
ORDER BY LastName, FirstName;

This example takes the first and last name from every record in the StudentData table
and alphabetizes them by the last name and first name. First, all of the records are sorted
by last name, and then the records with the same last name are ordered by first name.
You can also use ORDER BY on fields containing numbers, and they will be sorted into
numerical order.

Adding, Deleting, and Modifying Records

In addition to using SQL to retrieve records, you can also use it to change the actual con-
tents of databases. There are separate commands to add records to a table, delete records
from a table, and modify records in a table. Compare these to the code that I used back
in Hour 13, “Using Flat Files for Data Storage,” to add, delete, and modify entries in a
flat-file database. The relational model and SQL make it much easier to perform these
types of operations than writing code to accomplish the same tasks in a flat file.

Adding Records

Let’s first look at how to add a record to a table. The INSERT statement is used to add a
record (or records, if your database supports it) to a table. The record will be added to
the “end” of the specified table. Technically speaking there is no first or last record in a
relational database table. A record that appears first in the results of one query could turn
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up last in the next, unless you use the ORDER BY clause to specify the order in which they
should appear. Most databases do store records sequentially in the order that they were
inserted, but it’s a bad idea to count on their being stored that way. Here’s how I would
add a student to the StudentData table:

INSERT INTO StudentData
VALUES (131333885, 'Todd', 'Wilson', 'Freshman', 'Biology', 15000);

If you only want to include some of the columns in the new record you are creating, or
you want to specify them in an order other than the default, you need to include a list of
the column names. (If you don’t remember the order of the columns in a table, you can
include a column list to make sure your INSERT statement will work.) For example, if |
wanted to create a new student record, except for the tuition, and list the columns in
reverse order, I could use this INSERT statement:

INSERT INTO StudentData (Major, Class, LastName, FirstName, SSN)
VALUES ('Biology', 'Freshman', 'Wilson', 'Todd', 131333885)

By specifying the columns I want to populate as well as the values, I place the values in
exactly the fields in which I want them to appear, even though I'm not populating every
field. If you leave a column out of an insert statement, the default value for that column
will be included. Generally, the default value for columns is null, unless you specify a
different default when you create the table. Most databases allow to disallow null values
for certain columns, and in those cases you must specify a value unless a default is set
for that column.

Deleting Records

You can use the DELETE FROM command to delete records in a table. You can use any
WHERE expression that works with the SELECT statement to choose records to delete. In
fact, you will probably want to test the condition with SELECT before you use it with
DELETE to make sure you’re not deleting records that you really want to keep. Let’s look
at an example, in which I will try to delete the record I just inserted:

DELETE FROM StudentData
WHERE LastName = 'Wilson';

Of course, this will delete any students with the last name Wilson, so you probably
wouldn’t want to use it. Instead, you should probably either stick to deleting records
based on the primary key, or use some other combination of values that you know will
only match the records that you want to delete. You could be more specific about what
you want to delete by using a compound statement like this:

DELETE FROM StudentData

WHERE LastName = 'Wilson'

AND FirstName = 'Todd'
AND CLASS = 'Freshman’;



How to Use the Structured Query Language 365 |

This still deletes all the freshmen named Todd Wilson, but you get the idea of how
records can be deleted using compound conditional statements. Your best bet if you
really wanted to delete just the record that I entered in the previous example would be to
simply delete the record by matching the SSN:

DELETE FROM StudentData
WHERE SSN = 131333885;

Modifying Records

One way to modify a record is simply to delete it and then add a record with the same
primary key and new values in the other fields. However, SQL provides a more conve-
nient method than that. Using the UPDATE command, you can select records using WHERE
and then change only the fields in the record that you specify.

Let’s say a student has just completed a year of college and will be moving up a class.
You can change their classification using the following command:
UPDATE StudentData

SET Class = 'Senior'
WHERE SSN = 123456789;

You can also change more than one record at a time by matching a field that is not a pri-
mary key. You can modify more than one field at a time by separating the name and
value pairs using commas. Here’s an example:

UPDATE StudentData

SET Class = 'Senior', Tuition = 10000
WHERE Class = 'Junior';

That command changes the class to senior and the tuition to 10,000 for every record with
the class set to Junior in the database.

Database Interfaces

As you’ve already read, SQL is fairly standardized. Most of the SQL statements you
write will work with any relational database. However, there’s another layer of communi-
cation that I haven’t yet discussed. SQL is what you use to issue commands to a data-
base, but the next question you have to answer is how to connect to the database with
your program so that you can issue those SQL statements and retrieve the results. All
databases provide a native interface of some kind that you can use to communicate with
the database. Unfortunately, those interfaces are proprietary. A program that is written
specifically to communicate with an Oracle database will be totally unable to issue SQL
statements to a MySQL database. Fortunately, there are ways around this problem. There
are a number of database interfaces available that provide a uniform interface to your
programs while at the same time using database-specific drivers to communicate with
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whatever database you’re using. If you use one of these database interfaces to connect to
the database, all you have to do is write your code to access the API provided by the
database interface, which then connects to the appropriate database and issues your SQL
statements.

The advantage of using these interfaces is that you can use the same code to connect to
any database that has the appropriate driver available. The disadvantage is that it adds an
extra layer of processing between the application and the database that can reduce perfor-
mance. If you need the best performance possible, you should probably forego using a
database interface and connect straight into the database using its native API. If you’re
more concerned with portability, writing your application to the database interface is
probably the safer choice.

There are several of these types of interfaces available. Generally they are associated
with various programming languages or operating system platforms. For example,
ODBC is a database interface associated with the Windows platform. JDBC is a database
interface used to provide connectivity to relational databases in Java programs. DBI is
the database interface for Perl.

ODBC

ODBC is a generic database interface associated with the Windows platform. All of
Microsoft’s database products support ODBC (as do most other databases these days),
and the ODBC drivers are built into Windows. If you’re using any kind of database-
related product under Windows, you can generally count on it supporting ODBC. UNIX
users can purchase third-party ODBC drivers as well. Generally, ODBC drivers for
UNIX come packed with applications that require ODBC support in order to work.

DBI and DBD

Using Perl to access a relational database requires two pieces: the DBI (Database
Interface) module and a DBD driver. DBI is the interface from Perl to any relational
database, and DBD (Database Driver) provides the code necessary to communicate with
a particular database. There are DBD drivers available for all the popular relational data-
bases.

Much like ODBC, DBI and DBD provide a level of abstraction between an application
and a database. DBI provides a uniform means of accessing the data inside any database
because the DBI interface is standard regardless of the database. Internally, DBI works
with the DBD driver specific to the database you’re using. DBD modules are available
for most popular databases, including Oracle, Sybase, Informix, and MySQL. There is
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even a DBD driver for ODBC. When you use DBD and ODBC together, that means

that there is an
Figure 19.1.

FIGURE 19.1
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a database that supports ODBC, but does not have a DBD driver, you
DBD driver for ODBC. Obviously, there’s no advantage to using ODBC
driver exists for your database.

You can download the DBI module and the appropriate DBD driver for your database
from the Comprehensive Perl Archive Network (CPAN) at http://www.perl.com/CPAN/.

DBI and DBD

can be found in category 7 of the archive called Database Interfaces. After

you’ve installed DBI on your system, you can view the DBI documentation by typing

perldoc DBIL.

A Sample Program Using DBI and DBD

I’'m going to write a simple CGI program that uses DBI and the MySQL DBD driver to
connect to a database, send a SELECT statement, and print the output of the SELECT state-
ment in an HTML table. The full source code for the program appears in Listing 19.2.

©

If your Web server doesn’t already have a database engine installed and you
want to experiment with a real SQL database, | suggest that you look at
MySQL. It's available free of charge. If you like, you can pay for a support
subscription. You can download MySQL and find the documentation at
http://www.mysqgl.com.
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LisTinG 19.2 The dbiquery.pl Program

#!/usr/local/bin/perl

use strict;

1
2

3

4:

5: use DBI;
6: wuse CGI;

7: use CGI::Carp qw(fatalsToBrowser);

8:

9: my $database = "database";

10: my $db_server = "dbserver.example.com";
11: my $user = "dbiuser";

12: my $password = "dbipass";

13:

14: my $query = new CGI;

15:

16: print $query->header;

17:

18: my $dbh = DBI->connect("DBI:mysql:$database:$db_server",$user,$password);
19:

20: my $statement = "SELECT * FROM StudentData ORDER BY SSN";

21:

22: my $sth;

23: $sth = $dbh->prepare($statement)

24: or die "Couldn't prepare the query: $sth->errstr";

25:

26: my $rv = $sth->execute

27: or die "Couldn't execute query: $dbh->errstr";

28:

29: print "<html>\n<head>\n<title>Student Data</title>\n</head>\n<body>\n";
30:

31: print "<hi1>Student Data</hi1>\n";

32:

33: print "<table border=\"1\">\n";
34: print "<tr>\n<th>SSN</th>\n<th>Name</th>\n<th>Class</th>\n";
35: print "<th>Major</th>\n<th>Tuition</th>\n</tr>\n";

36:

37: while (my @row = $sth->fetchrow_array) {

38: my ($ssn, $first_name, $last_name, $class, $major, $tuition) = @row;
39: print "<tr>\n";

40: print "<td>$ssn</td>\n";

41: print "<td>$first_name $last_name</td>\n";
42: print "<td>$class</td>\n";

43: print "<td>$major</td>\n";

44: print "<td>$tuition</td>\n";

45: print "</tr>\n";

46: }

47:

48: print "</table>\n";
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49:

50: my $rc = $sth->finish;

51: $rc = $dbh->disconnect;

52:

53: print "</body>\n</html>\n";

As always, the first step is to point to the Perl interpreter. Afterward, I import two mod-
ules. The CGI module is, of course, CGI.pm, which is used to import data from forms and
generate HTML code automatically. The DBI module provides the methods necessary to
access a database. On line 6, I import the CGI: :Carp module so that any runtime errors
encountered are automatically echoed to the browser.

After all the modules are imported, I create variables to hold all of the connection infor-
mation for the database on lines 9-12. These variables are used in the connection string
to establish a connection to the database. On line 14, I create a new query object for this
program. On line 16, I print the HTML headers for the page.

On line 18, I open a database connection and assign it to the variable $dbh. To connect to
the database, I use the connect method of the DBI module. There are three arguments
that are passed to the connect method (they appear inside the parentheses). The first
argument tells the connect method which database to connect to. In this case, the data-
base type is mysql, and the database name is retrieved from the $database variable. The
next two attributes are used to send the username and password for the database account
being used.

The next step is to use the prepare method to get an SQL statement ready for execution.
First, I create the statement on line 20. On line 23 and 24, I prepare the statement and
assign the prepared statement to $sth. An or die construct (which appears on line 24) is
used to trap any errors that occur when attempting to prepare the statement. The prepared
statement can be executed later using the execute method. There are other methods for
executing SQL statements as well. For example, you can prepare and execute statements
at the same time by using the do method.

On lines 26 and 27, I actually execute the statement, assigning the resulting code to $rv.
Calling the execute method on a prepared statement will execute that statement. Again,
an or die construct is used to trap errors. The results of the query are then accessible
through the $sth variable.

On lines 29 through 35, I print out the HTML that appears before the actual query
results. Then, on line 37, a while loop that retrieves all the records returned by the query
is initiated. The fetchrow_array method of the statement handle returns the next row of
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the query results in an array. In this case, that array is assigned to @row. In the body of
the loop, the data retrieved is printed in an HTML table. After the loop’s execution is
complete, I close the table on line 48. On lines 50 and 51, I release the statement handler
using the finish method, and close the database using the disconnect method of the
database connection object.

o Of course, there's a lot more you can do with DBI than just fetch rows from
/ a database. DBI provides full SQL access to the databases that it supports.
— For more information, you might want to look at the book Programming

the Perl DBI, by Alligator Descartes and Tim Bunce (published by O'Reilly
and Associates).

Summary

This lesson gave you a broad introduction to designing and using relational databases.
You should have come away with a good overview of the technologies involved in build-
ing a relational database and in accessing them using CGI.

Q&A

Q Isn’t there a lot more to working with relational databases than this?

A Of course there is, but due to the enormity of the subject, the lesson was “A mile
wide and an inch deep,” as they say. If you’re going to be working with databases
a lot, you should really buy a book that discusses them in detail. You may want to
look at the following books: Special Edition Using SQL, by Rafe Colburn; The
Practical SQL Handbook, by Judith S. Bowman, Sandra L. Emerson, and Marcy
Darnovsky; or Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design, by Michael J. Hernandez.

Q Are there easier ways to connect databases to the Web than those illustrated
in this lesson?

A A booming field in the Internet software industry is the creation of middleware
that makes it easy to connect databases to the Web. There is a mind-boggling list
of products available to connect your Web server to your relational database.
Hour 12, “Pros and Cons of Alternate Technologies,” covered some of these prod-
ucts, although it seems new products in this category are released every day.
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Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. What’s the difference between a primary key and a candidate key?
2. What is the relationship between DBI and DBD?

3. What shortcut is used to select all the columns in a table?

Exercises

1. Obtain a copy of MySQL (or Microsoft Access or another relational database if
you’re using Windows NT server), create some tables, and try connecting them to
the Web. If you already have access to a relational database, find out the schema
and write some programs that grab information from the database.

Quiz Answers
1. Candidate keys are all of the keys that could potentially serve as primary keys.

2. DBI is the generic database interface that you use from Perl programs, DBD is the
database-specific driver.

3. You can use * to select all of the columns in a table.







HOUR 20

Creating an Online Store

In Hour 16, “Building a Simple Shopping Cart,” I provided an example of
an online store that demonstrated how one uses session management to cre-
ate a shopping cart. In this hour, ’'m going to extend that example to show
how you can use a relational database to store all the data used by a Web
site—specifically an online store. In this hour, you’ll look at modified ver-
sions of the programs from Hour 16 that interface with a relational database.

In this hour you’ll learn

* What the database schema for a basic online store looks like
* How to write a catalog script that works with a relational database
¢ How a database simplifies the shopping cart script

* How a real-life checkout script works

The Database Design

In Hour 16, I had to create some flat files to use for data storage. Those flat
files will no longer be used; instead, I've created tables in a relational data-
base that will house all the data associated with the online store. Before I
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can get into the changes I’ve made to the programs, I need to explain the database
design, and provide you with the SQL queries I used to create those tables.

The two data files I used in Hour 16 were products.txt and cart.txt. The
products.txt file contained a list of products sold by the online store. I've replaced it
with a table named products. The cart.txt file, which was used to save session infor-
mation for users with products in their shopping cart, has been replaced with a table
named cart. I’ve also created two additional tables for use in the application, orders and
order_products. These tables are used to store order information when orders are sub-
mitted.

o All the sample programs in this hour communicate with a MySQL database.
The queries are written in standard SQL, so they should work with any rela-
tional database that provides SQL support. However, you might have to alter
the data types to get them to work with the relational database you use.
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Let’s look at the layout for each of these tables. Listing 20.1 contains the output of the
MySQL desc commands that show the schema of the tables in the database.

ListiNG 20.1 The Schema for the Tables Used by the Online Store

1 +— — — — — — — - - -t -t — — — - +—— -+
2: | Field . Type i Null | Key | Default | Extra |
3 t—m——_————— - -ttt —_- — — — - +—— -+
4: | product_id Lint(11) ! ' PRI | 0 ! !
5: | product_name | varchar(25) , X X ' X
6: | product_desc | varchar(25) X X ! X
7: | product_price | float(10,2) ; i | 0.00 1

8 +—— — — — —— . - +——t—— - — — — - +—— — -+
9: 4 rows in set (0.00 sec)

10:

11: mysql> desc products;

12 +—— — — — — — - - - -t — -t —-— — — - +—— -+
13: | Field , Type i Null } Key | Default |, Extra
14 +— — — — — — — - - +——t—— -t —— — — - +——— -+
15: | product_id 1 oint(11) | \ PRI | 0 : X
16: | product_name | varchar(25) | \ \ : \
17: | product_desc | varchar(25) | X X " X
18: | product_price | float(10,2) X | 0.00 : X
19: +— — — — — — — - - -t -t —— — - +—— -+
20: 4 rows in set (0.01 sec)

21:

22: mysql> desc cart;
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24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
58:

, Field . Type i Null | Key ;
e — — = e —— —— — - e — —t— — -4
, session_id | varchar(25) , . PRI
, product_id | int(11) . :

\ quantity | int(11) i i i
e — — e —_— — — . e — —t— — -+
3 rows in set (0.01 sec)

mysql> desc orders;

e —— — — — = e —— — — . e — —t— —
, Field . Type i Null | Key
e  — — = e —_— — — . e — —t— —
, order_id , varchar(25) | . PRI
| name | varchar(60) | i

, addr \ varchar(60) | "

| city | varchar(60) "

| state , char(2) ' !

. zip , varchar(5) | "

| cc_number | varchar(20) X

, cc_type | varchar(4) | i

. cc_exp_month | char(2) 1 "

| cc_exp_year | varchar(4) | X

e — —— e — — — e — —t— —
10 rows in set (0.00 sec)

mysql> desc order_products;

e — — e —_— — — . e — —t— — -+
, Field . Type i Null | Key ;
e — — = e —— —— — - e — —t— — -4
, order_id | varchar(25) , . PRI
 product_id | int(11) . :

| quantity | int(11) i i i
e — — e —_— — — . e — —t— — -+

3 rows in set (0.00 sec)

Default | Extra

————— +—— — -4

I |

I |
0 i |
0 i |
_____ e — — -+
et ———— . -+
| Default | Extra |
e —— . e — -+
| | |
I | I
I | I
| | |
I | I
I | |
| | |
I | I
I | I
| | |
I | I
I | |
| | |
I | I
I | I
| | |
I | I
I | |
| | |
I | I
b — — — - +— — — -+
_____ e — — -+
Default | Extra
————— +—— — -4

I |

I |
0 i |
0 ! |
_____ e — — -+

The first table is the products table. It’s similar to the products.txt file that I used in
Hour 16, except that I added the field product_name. The product_desc field is used to
store a description of the product that will be displayed in the catalog, and the
product_name field contains a short name that can be used in the shopping cart and on

invoices.

The second table is the cart table, which is used to store session information about users
who have items in their shopping carts. The cart table contains the same fields as the

cart.txt file—session ID, product ID, and quantity.

There are two tables associated with orders, which will be used to store information
when orders are completed. The first table, orders, is used to store general information
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about the order as a whole. The user’s name, address, and credit card information are
stored in the orders table. The second table is the order_products table. It’s similar to
the cart table—it stores the type and quantity of each product associated with an order.

The reason you need to store order information in two tables is that you want to store as
little duplicate information in the database as possible, and at the same time, you want to
avoid storing multiple data elements in a single field. Let’s look at each of these prob-
lems individually.

The first problem involves storing duplicate data. You know that you need one record for
each type of product in the order. However, if you also stored the general order informa-
tion (name, address, and credit card) in each product record, you’d duplicate the general
information if the order contained multiple product records.

The second problem involves storing multiple “atoms” of data in a single field. What
would happen if you tried to squish all the product information for the order into a single
order record? If the order included multiple products, one of the fields would contain
multiple product IDs, and another would contain multiple quantities. This would violate
a database design rule, called the First Normal Form, and introduce lots of problems into
the process of retrieving data from the database. The most sensible option is to use both
tables, and to associate the products in each order with the general order information
using a common field, in this case, order_id.

Listing 20.2 shows the SQL queries used to create all the database tables.

LisTING 20.2 Create Statements for the Online-Store Database Tables

create table cart

(session_id varchar(25) not null,
product_id integer not null,
quantity integer not null);

create table products

(product_id integer primary key,
product_name varchar(25) not null,
product_desc varchar(25) not null,

: product_price float(10,2) not null);

ONOO O~ WD =

—_ =
N =+ o ©

: create table order_products
(order_id varchar(25) not null,
! product_id integer not null,

: quantity integer not null);

—_ =
NOoO O~ W

: create table orders
(order_id varchar(25) primary key,
: name varchar(60) not null,

—_ =
© o
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20: addr varchar(60) not null,

21: city varchar(60) not null,

22: state char(2) not null,

23: zip char(5) not null,

24: cc_number varchar(20) not null,
25: cc_type varchar(4) not null,
26: cc_exp_month char(2) not null,
27: cc_exp_year char(4) not null);

The Catalog Script

Now that you’ve got a picture of what the relational database looks like, let’s examine
the modified catalog.pl program. This program offers the same functionality as the cat-
alog program from Hour 16. It displays the catalogs for users, and process requests to
add items to the user’s shopping cart. It differs from the old script in that it opens a data-
base connection instead of creating filehandles, and processes the results of SQL queries
instead of parsing files. The source code for the new catalog.pl program appears in
Listing 20.3.

Listing 20.3 The Source Code for catalog.pl

1: #!/usr/local/bin/perl
2:

3: use strict;

4:

5: use CGI;

6: use CGI::Carp gw( fatalsToBrowser );
7: use DBI;

8:

9: my $query = new CGI;
10:

11: my $database = "store";

12: my $db_server = "db.example.com";
13: my $user = "dbiuser";
14: my $password = "dbipass";

15:

16: my ($session_id, $dbh, $sth, $action, $product_id, $quantity);
17:

18: if ($query->param('product_id')) {

19: if ($query->cookie('session_id')) {

20: $session_id = ($query->cookie('session _id'));

21:

22: else { $session_id = time . $$; }

23: &set_variables;

continues



| 378 Hour 20

LisTing 20.3 continued

24: &db_connect;

25: &print_page_start;

26: &add_to_cart;

27: &get_products;

28: &display_catalog;

29: &db_cleanup;

30: &print_page_end;

31: }

32: else {

33: &print_page_start;

34: &db_connect;

35: &get_products;

36: &display_catalog;

37: &db_cleanup;

38: &print_page_end;

39: }

40:

41:  sub add_to_cart {

42: my $rec_quantity;

43:

44: # First, make sure they don't already have the product
45: # in their shopping cart. If they don't have the cookie,
46: # then it's definitely not in their shopping cart.
47:

48: if ($query->cookie('session_id')) {

49: # Since they have a session, let's see if they
50: # already have the product in their cart.

51: my $statement = qq[select quantity from cart

52: where session_id = '$session_id'

53: and product_id = $product_id];

54: $sth = $dbh->prepare($statement)

55: or die "Couldn't prepare the query:", $sth->errstr, "\n";
56: my $rv = $sth->execute

57: or die "Couldn't execute select statement: ",
58: $sth->errstr, "\n";

59:

60: # If a record was found, we need to update it. Otherwise
61: # we can just insert a new record.

62: if (($rec_quantity) = $sth->fetchrow_array) {

63: $action = "update";

64: }

65: else {

66: $action = "insert";

67: }

68: }

69: else {

70: $action = "insert";

71: }

72:
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73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:

if ($action eq "insert") {
my $statement = qq[insert into cart
values ($session_id, $product_id, $quantity)];
$sth = $dbh->prepare($statement)

or die "Couldn't prepare the query:", $sth->errstr, "\n";

my $rv = $sth->execute
or die "Couldn't execute insert statement: ",
$sth->errstr, "\n";
}
else {
my $new_quantity = $quantity + $rec_quantity;
my $statement = qq[update cart
set quantity = $new_quantity

where session_id = $session_id and product_id = $product_id];

$sth = $dbh->prepare($statement)

or die "Couldn't prepare the query:", $sth->errstr, "\n";

my $rv = $sth->execute
or die "Couldn't execute update statement: ",
$sth->errstr, "\n";
my $rc = $sth->finish;

}

sub get_products {

my $statement = qq[select product_id, product_name, product_desc,

product_price from products];
$sth = $dbh->prepare($statement)

or die "Couldn't prepare the query:", $sth->errstr, "\n";
my $rv = $sth->execute

or die "Couldn't execute select statement: ", $sth->errstr, "\n";

# my $rc = $sth->finish;
}

sub set_variables {
$product_id = $query->param('product_id");
$quantity = $query->param('quantity');

}

sub db_connect {
$dbh = DBI->connect("DBI:mysql:$database:$db_server", $user,
$password) ;
}

sub db_cleanup {
my $rc = $dbh->disconnect;

}

sub display_catalog {
print "<div align=\"center\">\n";
print "<table border=\"1\" cellpadding=\"4\">\n";

continues
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LisTinG 20.3

continued

123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:

sub

sub

print "<tr>\n<th>Description</th>\n<th>Price</th>\n</tr>\n";

while (my @row = $sth->fetchrow_array) {
my ($product_id, $product_name, $product_desc,
$product_price) = @row;
print "<tr>\n";
print "<form>\n";
print "<input type=\"hidden\" name=\"product_id\" ";
print "value=\"$product_id\" />\n";
print "<td>$product_desc</td>\n<td>$product_price</td>\n";
print "<td><input type=\"text\" name=\"quantity\" ";
print "value=\"1\" size=\"2\" /></td>\n";
print "<td><input type=\"submit\" value=\"add\" /></td>\n";
print "</form>\n";
print "</tr>\n";
}

print "</table>\n</div>\n";

print_page_start {
if ($session_id) {
my $cookie = $query->cookie(-name=>'session_id',
-value=>$session_id);
print $query->header(-cookie=>$cookie);
}
else { print $query->header; }
print "<html>\n<head>\n<title>PC Product Catalog</title>\n";
print "</head>\n<body>\n";
print "<h1 align=\"center\">PC Product Catalog</h1>\n";

print_page_end {

print "<p align=\"center\"><b>";

print'<a href=\"cart.pl\">view cart</a></b></p>\n";
print "</body>\n</html>\n";

Let’s take a look at the changes that were made to the catalog.pl script to get it to work
with the relational database. First, I added some new variables to the beginning of the
script on lines 11-14. These variables provide information about the database that will be
used by the program. They specify the name of the database, the hostname of the data-
base server, and the username and password used to connect to the database. The loca-
tions of the product and cart files have been removed because they’re no longer used.
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Opening and Closing Database Connections

I’ve added two additional subroutines to this script. These subroutines appear in all the
scripts in this hour because they’re used whenever I want to communicate with the data-
base. The two subroutines are db_connect and db_cleanup. The db_connect subroutine
is used to open a new connection to the database, and the db_cleanup script cleans up
resources used by the connection and then closes the connection.

In db_connect, I assign the database connection to the variable $dbh. The connect
method of the DBI object accepts the connection string for the server as an argument,
along with the database username and password. The connection string contains the data-
base driver name, database server hostname, and the name of the database itself.

Displaying the Product List

In the old script, the product file was parsed, and the contents of the file were displayed
as a catalog. In this case, I use a SQL query to retrieve the contents of the products
table, and then I iterate over the results of that query to display the catalog. These steps
take place in different subroutines. The query is prepared and executed in the get_
products subroutine. Let’s take a look at the query itself:

select product_id, product_name, product_desc, product_price from products

The query simply selects the four columns from the products table, returning all the
rows. There are two steps in the query process. First, I use the prepare method to prepare
the statement for execution, and then I call the execute method to execute the statement.
Errors that occur with both of these statements are trapped using an or die clause. If
either the preparation of the statement or the execution fails, the program will exit with
an error message.

After all the product records have been fetched, I print the catalog using the
display_catalog subroutine. In the old version, I iterated over the lines in the catalog
file; in this case, I process the rows returned by the query one at a time. The while loop
that processes the query results begins on line 125. Let’s look at the condition associated
with the while loop:

while (@row = $sth->fetchrow_array)

The while loop continues until there are no longer any rows left to pull out of the result
set using the fetchrow_array method. It processes the result set one row at a time, and
assigns the values in the row to the @row array in the order that the columns were speci-
fied in the query. To make this clear, let’s look at the next statement in the subroutine:

($product_id, $product_name, $product_desc, $product_price) = @row;
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As you can see, the list of variable extracted from @row conforms to the select list in the
SQL statement used to fetch the product list. The values in these variables are used to
populate the catalog.

Adding Items to the Shopping Cart

Now let’s look at what happens when you an add an item to the shopping cart and you’re
using a relational database. There’s one important decision to make in the add_to_cart
subroutine: whether to use an insert statement to add a new record to the cart or an
update statement to change the quantity in an existing record. First, the script checks for
a session ID. If there’s no session ID, the script assumes that the user doesn’t already
have any records in the cart table, and thus an insert statement should be used.

If the user had a cookie, the next step is to determine whether there’s already a record for
that session ID and product. A select statement is executed that retrieves the quantity of
items associated with the user’s session ID and the product that was selected. The script
then counts how many rows were returned by the query. If no rows were returned, the
script assumes that it should insert a new record. If a row was returned, the script adds
the quantity being added to the quantity of items already in the user’s cart, and updates
the cart table with that value. After the item is added to the cart, the script prints out the
catalog.

The Shopping Cart Script

The cart.pl program has two purposes—to list the contents of the user’s shopping cart
and to remove items from the cart. When I kept everything in text files, this program was
pretty complex because it had to correlate products listed in the cart. txt file with prod-
uct information stored in the products. txt file. In this case, I use a single query to fetch
the contents of the cart and the product information for each of the products in the cart at
once. A delete statement is used to remove items from the user’s shopping cart. All of
the database connection code in this script is identical to that in catalog.pl. In other
words, I included the db_connect and db_cleanup subroutines, imported the DBI mod-
ule, and set the variables necessary to connect to the database. The full source code for
the cart.pl program appears in Listing 20.4.

LisTinG 20.4 The Source Code for cart.pl

1 #!/usr/local/bin/perl
2:
3: use strict;
4
5

use CGI;
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use
use

my
my
my
my
my
my
if
}

if

}

els

sub

CGI::Carp qw( fatalsToBrowser );
DBI;

$query = new CGI;

$database = "rafeco_rc3";
$db_server = "db4.pair.com";
$user = "rafeco_w";
$password = "vmppas5r";

($session_id, $page_title, $dbh, $sth);

($query->cookie('session_id')) {
$session_id = ($query->cookie('session_id'));

($query->param('action')) {
if ($query->param('action') eq 'remove') {
$page_title = "Shopping Cart";
&db_connect;
&remove_item;
&print_page_start;
&get_cart_contents;
if ($sth->rows) {
&print_cart;
}
else {
&print_no_cart;
}
&print_page_end;
&db_cleanup;
}

e {
$page_title = "Shopping Cart";
&print_page_start;
&db_connect;
&get_cart_contents;
if ($sth->rows) {
&print_cart;
I3
else {
&print_no_cart;
I3
&print_page_end;
&db_cleanup;

db_connect {
$dbh = DBI->connect("DBI:mysql:$database:$db_server"

, $user,

continues
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Listing 20.4 continued
56: $password) ;
57: }
58:
59: sub db_cleanup {
60: my $rc = $sth->finish;
61: $rc = $dbh->disconnect;
62: }
63:
64:  sub remove_item {
65: my $product_id = $query->param('product_id');
66: my $statement = qqf
67: delete from cart
68: where session_id = '$session_id'
69: and product_id = $product_id
70: 1;
71: $sth = $dbh->prepare($statement)
72: or die "Couldn't prepare the query:", $sth->errstr, "\n";
73: my $rv = $sth->execute
74: or die "Couldn't execute select statement: ", $sth->errstr, "\n";
75: }
76:
77: sub get_cart_contents {
78: my $statement = gq[select cart.product_id as product_id,
79: quantity, product_name, product_price
80: from cart, products
81: where session_id = '$session_id'
82: and cart.product_id = products.product_id];
83: $sth = $dbh->prepare($statement)
84: or die "Couldn't prepare the query:", $sth->errstr, "\n";
85: my $rv = $sth->execute
86: or die "Couldn't execute select statement: ", $sth->errstr, "\n";
87: }
88:
89: sub print_cart {
90: print "<div align=\"center\">\n<table>\n<tr>\n";
91: print "<th>Product ID</th>\n<th>Product Name</th>\n";
92: print "<th>Price</th>\n<th>Quantity</th>\n</tr>\n";
93: while (my @row = $sth->fetchrow_array) {
94: my ($rec_product_id, $rec_quantity, $rec_product_name,
95: $rec_price) = @row;
96: print "<td>$rec_product_id</td>\n";
97: print "<td>$rec_product_name</td>\n";
98: print "<td>$rec_price</td>\n";
99: print "<td>$rec_quantity</td>\n";
100: print "<td>\n<form>\n";
101: print "<input type=\"hidden\" name=\"action\" ";
102: print "value=\"remove\" />\n";
103: print "<input type=\"hidden\" name=\"product_id\" ";



Creating an Online Store 385|

104: print "value=\"$rec_product_id\" />\n";

105: print "<input type=\"submit\" value=\"remove\" />\n";
106: print "</td>\n";

107: print "</tr>\n";

108: }

109: print "</table>\n";

110: }

111:

112: sub print_page_start {

113: print $query->header;

114: print "<html>\n<head>\n<title>$page_title</title>\n";

115: print "</head>\n<body>\n";

116: print "<h1 aligh=\"center\">$page title</h1>\n";

117: }

118:

119: sub print_no_cart {

120: print "<p>There are no items in your shopping cart.</p>\n";
121: }

122:

123: sub print_page_end {

124: print "<center>";

125: print "<p><b><a href=\"catalog.pl\">return to catalog</a></b></p>\n";
126: print "<p><b><a href=\"checkout.pl\">check out</a></b></p>\n";
127: print "</center>";

128: print "</body>\n</html>\n";

129: }

Displaying the Shopping Cart

First let’s look at how the cart is displayed. The code here is similar to that used in
catalog.pl, in that it’s split between two subroutines. The get_cart_contents subrou-
tine retrieves the user’s cart from the database. The program then checks to see whether
the user has anything in his cart. If he does, the print_cart subroutine is used to print
it out.

The most interesting thing here is the query used to retrieve the contents of the user’s
cart from the database. In this case, I use a joining query that retrieves data from both the
products and cart table using a single select statement. Let’s take a look at the query:
select cart.product_id as product_id,

quantity, product_name, product_price

from cart, products

where session_id = '$session_id'
and cart.product_id = products.product_id

First, let’s look at the select list. Because this query retrieves data from two tables, and
both tables contain a column called product_id, I have to specify from which table I
want to retrieve the product_id column using dot notation. Using cart.product_id



| 386 Hour 20

indicates that I want the product_id column from the cart table. In this case, it doesn’t
matter which table I retrieve the column from because product_id is the joining condi-
tion for this query. The query retrieves rows where the product_id values match
between the tables. I'll explain this in a bit. I use the as keyword to associate the name
product_id with cart.product_id. This makes it easier to retrieve the value in that col-
umn later.

As you can see, the from clause of this query contains two column names. When you
join two tables, they are actually merged to create one giant table that contains the
Cartesian product of both tables. In other words, if you join two 10 row tables, you’ll
come out with one 100 row table to be used by the query, which contains every combina-
tion of rows between the two tables.

In the where clause, I use two conditions. The first is the joining condition. Its purpose is
to throw out all of the rows in the joined table that are irrelevant. In this case, I want to
correlate all the items in the cart with the product information associated with those
items. So, any rows where the product_id column from the cart table doesn’t match the
product_id column from the products table are discarded. The condition used to
accomplish this is cart.product_id = products.product_id. The second condition in
the where clause discards any rows that aren’t associated with the current user’s session.
So, the query results include the contents of the user’s cart along with the product infor-
mation associated with them.

After the contents of the user’s shopping cart have been fetched, the next step is to deter-
mine whether the user actually had anything in his shopping cart. Line 29 of the script
contains a simple condition that tests for whether the $sth->rows expression evaluates as
true. If no rows were returned by the query, the expression is false; otherwise, the user
does have items in his cart and the expression is true.

Assuming the expression is true, the print_cart subroutine is executed. The print_cart
subroutine, which begins on line 89, is very similar to the display_catalog subroutine
in catalog.pl. It uses a while loop to process the records returned by the query one at a
time, and extracts them from the result set using fetchrow_array. The individual data in
the fields is extracted from the @row array and printed.

Removing Items from the Shopping Cart

When the cart is displayed, a form is created for each item that allows the user to remove
that item by clicking on a button. If the cart.pl program is called by a form submission
that includes the action parameter, and the parameter is set to remove, the remove_item

subroutine is called. The remove_item subroutine executes a single query:

delete from cart

where session_id = '$session_id'
and product_id = $product_id
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This query simply deletes any rows in the cart table that match the user’s session ID and
the product ID of the item that he wanted to remove.

The Checkout Script

In Hour 16, I didn’t write code to do anything with the order information the user
entered after the checkout form was processed. In this hour, I'm inserting the order data
into the database, so you can see how the back-end processing often works for online
stores. As you’ve probably guessed, I had to make the same changes to this script that

I had to make to the other scripts in order to get them to talk to the database. Before I
look at the script’s new functionality, let’s look at the source code, which appears in
Listing 20.5.

ListingG 20.5 The Source Code to checkout.pl

1: #!/usr/local/bin/perl

2:

3: use strict;

4:

5: use CGI;

6: use CGI::Carp gw(fatalsToBrowser);
7: use DBI;

8:

9: my $query = new CGI;

10:

11: my $database = "rafeco rc3";

12: my $db_server = "db4.pair.com";
13: my $user = "rafeco_w";
14: my $password = "vmppa55r";

15:

16: my ($session_id, $page_title, $cart_query, $dbh, $sth, $name, $address,
17: $city, $state, $zip, $cc_type, $cc_number, $exp _month, $exp_year);
18:

19: my %cc_types = ('AMEX' => 'American Express',

20: 'VISA' => 'Visa',

21: 'MC' => 'Mastercard',

22: 'DISC' => 'Discover');

23:

24: if ($query->cookie('session_id')) {

25: $session_id = $query->cookie('session_id');

26: }

27: else {

28: $page_title = "Checkout: Error";

29: &print_page_start;

30: &print_no_cart;

continues
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LisTingG 20.5 continued

31: &print_page_end;

32: exit;

33: }

34:

35:  &db_connect;

36:

37: &get_cart_contents;

38:

39: if ($cart_query->rows) {

40: if ($query->param('cc_type')) {

41: &set_variables;

42: my $error_message = &valid_form;
43: if (! $error_message) {

44: $page_title = "Checkout Complete";
45: &print_page_start;

46: &insert_order;

47: &empty_cart;

48: &print_success;

49: &print_page_end;

50: }

51: else {

52: $page_title = "Checkout: Please correct errors";
53: &print_page_start;

54: &print_error($error_message);
55: &print_form;

56: &print_page_end;

57: }

58: }

59: else {

60: $page_title = "Checkout";

61: &print_page_start;

62: &print_form;

63: &print_page_end;

64: }

65: }

66: else {

67: $page_title = "Error: Your cart is empty";
68: &print_page_start;

69: &print_no_cart;

70: &print_page_end;

71: }

72:

73: &db_cleanup;

74:

75: sub db_connect {

76: $dbh = DBI->connect("DBI:mysql:$database:$db_server", $user,
77: $password) ;

78: }
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79:

80: sub db_cleanup {

81: my $rc;

82: if ($sth) {

83: $rc = $sth->finish;

84: }

85: if ($cart_query) {

86: $rc = $cart_query->finish;

87: }

88: $rc = $dbh->disconnect;

89: }

90:

91: sub get_cart_contents {

92: my $statement = qqf

93: select product_id, quantity

94: from cart

95: where session_id = '$session_id' ];

96: $cart_query = $dbh->prepare($statement)

97: or die "Couldn't prepare the query:", $cart_query->errstr, "\n";
98: my $rv = $cart_query->execute

99: or die "Couldn't execute select statement: ",
100: $cart_query->errstr, "\n";

101: }

102:

103: sub insert_order {

104: # Create a unique Order ID

105: my $order_id = time . $$;

106:

107: # Insert all of the items in the user's cart into the
108: # order_products table

109:

110: while (my @row = $cart_query->fetchrow_array) {

111: my ($product_id, $quantity) = @row;

112: my $statement = qqf

113: insert into order_products

114: values ('$order_id', $product_id, $quantity) 1I;
115: $sth = $dbh->prepare($statement)

116: or die "Couldn't prepare the query:", $sth->errstr, "\n";
117: my $rv = $sth->execute

118: or die "Couldn't execute insert statement: ",
119: $sth->errstr, "\n";

120: }

121:

122: # Create a record for the order itself

123: my $statement = qq[

124: insert into orders

125: values ('$order_id', '$name', '$address’,

126: '$city', '$state', '$zip',

127: '$cc_number', 'S$cc_type',

128: "$exp_month', '$exp_year') ];

continues
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Listing 20.5 continued

129: my $sth = $dbh->prepare($statement)

130: or die "Couldn't prepare the query:", $sth->errstr, "\n";
131: my $rv = $sth->execute

132: or die "Order insert failed: ",

133: $sth->errstr, "\n";

134: }

135:

136: sub empty_cart {

137: my $statement = qql

138: delete from cart

139: where session_id = $session_id ];

140: $sth = $dbh->prepare($statement)

141: or die "Couldn't prepare the query:", $sth->errstr, "\n";
142: my $rv = $sth->execute

143: or die "Couldn't execute delete statement: ", $sth->errstr, "\n";
144: }

145:

146: sub print_empty cart {

147: print "<p>You cannot check out until you have placed items ";
148: print "in your shopping cart.</p>\n";

149: print "<p>Return to the <a href=\"catalog.pl\">catalog</a>.</p>\n";
150: }

151:

152: sub set_variables {

153: $name = $query->param('name');

154: $address = $query->param('address');

155: $city = $query->param('city');

156: $state = $query->param('state');

157: $zip = $query->param('zip');

158: $cc_type = $query->param('cc_type');

159: $cc_number = $query->param('cc_number');

160: $exp_month = $query->param('exp_month');

161: $exp_year = $query->param('exp_year');

162: }

163:

164: sub valid_form {

165: my $error_message = '';

166: $error_message .= "<li>You must enter your name</li>\n"

167: if ($name =~ /"\s*$/);

168: $error_message .= "<li>You must enter your address</li>\n"
169: if ($address =~ /"\s*$/);

170: $error_message .= "<li>You must enter your city</li>\n"

171: if ($city =~ /"\s*$/);

172: $error_message .= "<li>You must enter a valid zip code</li>\n"
173: if ($zip !~ /"\d+$/);

174: if ($exp_month > 12 || $exp_month < 1) {

175: $error_message .= "<li>You must enter a valid ";

176: $error_message .= "expiration month.</1li>\n"

177: if ($exp_year < 2000 |, $exp_year > 2010) {
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178: $error_message .= "<li>You must enter a valid expiration ";
179: $error_message .= "year</li>\n"

180: }

181: if ($cc_number !~ /~\d+$/) {

182: $error_message .= "<li>You must enter a valid credit card "
183: $error_message .= "number</li>\n"

184: }

185: return $error_message;

186: }

187:

188: sub print_error {

189: my $error_message = shift(@_);

190: print "<p>Please correct the following errors:</p>\n";

191: if ($error_message) {

192: print "<ul>\n$error_message\n</ul>\n";

193: }

194: }

195:

196: sub print_form {

197: print "<form>\n";

198: print "<table border=\"0\">\n";

199: print "<tr><td>Name:</td>\n";

200: print "<td><input type=\"text\" name=\"name\" value=\"$name\" />\n";
201: print "</td></tr>\n";

202: print "<tr><td>Street address:</td>\n";

203: print "<td><input type=\"text\" name=\"address\" ";

204: print "value=\"$address\" size=\"40\" maxlength=\"80\" />";
205: print "</td></tr>\n";

206: print "<tr><td>City:</td>\n";

207: print "<td><input type=\"text\" name=\"city\" ";

208: print "value=\"$city\" /></td></tr>\n";

209: print "<tr><td>State:</td>\n";

210: print "<td><input type=\"text\" name=\"state\" ";

211: print "value=\"$state\" size=\"2\" maxlength=\"2\" /></td></tr>\n";
212: print "<tr><td>Zip</td>\n";

213: print "<td><input type=\"text\" name=\"zip\" ";

214: print "value=\"$zip\" size=\"5\" maxlength=\"5\"></td></tr>\n";
215: print "<td>Credit card:</td>\n<td>\n<select name=\"cc_type\">\n";
216: foreach my $key (sort {$a <=> $b} keys %cc_types) {

217: print "<option value=\"$key\">", $cc_types{$key}, "\n";
218: }

219: print "</select>\n</td>\n";

220: print "<tr><td>Credit card number:</td>\n";

221: print "<td><input type=\"text\" name=\"cc_number\" ";

222: print "value=\"$cc_number\" /></td></tr>\n";

223: print "<tr><td>Expiration date:</td>\n";

224: print "<td><input type=\"text\" name=\"exp_month\" ";

225: print "value=\"$exp_month\" size=\"2\" maxlength=\"2\" />\n";
226: print "<input type=\"text\" name=\"exp_year\" ";

227: print "value=\"$exp_year\" size=\"4\" maxlength=\"4\" />\n";

continues
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228: print "<tr><td></td>\n";
229: print "<td><input type=\"submit\" value=\"Complete Checkout\" />";
230: print "</td></tr>\n";
231: print "</table>\n";
232: print "</form>\n";
233: }
234:
235: sub print_page_start {
236: print $query->header;
237: print "<html>\n<head>\n<title>$page_title</title>\n";
238: print "</head>\n<body>\n";
239: print "<h1 align=\"center\">$page title</h1>\n";
240: )}
241:
242: sub print_no_cart {
243: print "<p>There are no items in your shopping cart.</p>\n";
244: }
245:
246: sub print_success {
247: print "<p>Your order is complete.</p>\n";
248: }
249:
250: sub print_page_end {
251: print "<div align=\"center\"><b>";
252: print"<a href=\"catalog.pl\">return to catalog</a></b></div>\n";
253: print "</body>\n</html>\n";
254: }

Before I talk about the code that inserts orders into the database, which comprises the
bulk of the changes to this script, I’ll mention a couple of other smaller changes I made.
In the old script, I had to read the cart file to figure out whether the user had any items in
his shopping cart. In the new program, I retrieve the contents of the shopping cart using
the get_cart_contents subroutine. It contains a query that retrieves a list of the items in
the user’s cart, and the quantity of each of those items.

I assign this query result set to $cart_query, so that it doesn’t conflict with any of the
other queries in the script, which are assigned to $sth. Before the checkout form can be
displayed, I make sure that the user’s cart contains at least one item by verifying that the
result set for $cart_query contains some records.

Storing Orders in the Database

After the items in the user’s cart have been retrieved, and the user’s form input has been
validated, you’re ready to store the user’s order in the database. Storing the order is a two
step process. First, all the items in the user’s cart are stored in the order_products table.
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Then, the information the user entered in the checkout form is stored in the orders table.
Both the items in the order_products table and the order in the orders table are identi-
fied using an order ID, which is generated in the same way that the session IDs are cre-
ated in the catalog.pl program.

Let’s look at the two steps in more detail. To store the items in the user’s cart as part of
the order, I use a while loop that iterates over the results of the query that retrieved all
the items from the user’s cart. Inside the while loop, I insert the current item into a new
row in the order_products table. Here’s the query:

insert into order_products values ('$order_id', $product_id, $quantity)

The $order_id variable is set at the beginning of the insert_order subroutine. The
product ID and quantity are taken from the query results.

After all the items in the order are stored in the database, I insert the order information
that the user entered into the orders table. The insert statement used to create the
record is
insert into orders values ('$order_id', '$name', '$address', '$city’',

'$state', '$zip', '$cc_number','$cc_type', '$exp_month', '$exp_year')
When the order information has been stored, all that’s left is to remove the items associ-
ated with the user’s session from the cart table. A single delete statement takes care of
that job by deleting all the rows associated with the user’s session ID.

Summary

In Hour 16, I used an online store to demonstrate how session management works in
Web applications. I’ve reworked those scripts in this hour to demonstrate how to use a
relational database to store data associated with a Web application. I took each of the
scripts from Hour 16 and replaced the calls to flat files with relational database queries.
In the course of this hour, you saw how insert, update, delete, and select statements
are used within the context of a Web application.

Q&A

Q Is it possible to use a mixture of relational database tables and flat files to
store application data?

A Yes, it is. However, if you’re using a relational database to store any data associ-
ated with your application, I’d recommend that you store all your data there.
Relational databases provide a lot of advantages over flat files for data storage.
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Q Are there any performance issues associated with accessing relational data-
bases from CGI scripts?

A Yes. Well, there’s one issue in particular that you should know about. As you know,
every time a CGI program is requested, a new process is started to execute the CGI
program. This means that you have to open a new database connection every time
the script is called, and close the database connection when it exits. This can create
performance problems, particularly with some databases.

()

What do I need to test out these sample programs?

A In addition to the Web server software and a Perl interpreter, you’ll need a rela-
tional database. To download MySQL (it’s free and available for both Windows
and UNIX), go to http://www.mysqgl.com.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. Why did I use a joining query in the cart.pl script?

2. Why did I use two different variables as statement handlers in the checkout.pl
script?

Exercises

1. Create a script that allows you to add new items to the product catalog through a
Web interface.

Quiz Answers

1. T used a joining query so that I could include information from both the cart table
and products table in the query results.

2. T used two different statement handlers because I needed to execute some insert
statements while I was still dealing with the result set from a select statement, and
I didn’t want to overwrite those results.
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HOUR 21

Handling Other Content
Types

Throughout this book so far, the CGI programs have produced HTML out-
put. As you know, though, a CGI program can produce any kind of output.
You can use CGI programs to dynamically serve images, to stream content
to users, and to authenticate users before letting them download files. In this
lesson, you’ll learn:

* How to set the proper content type for the content that you’re serving

* How to send binary data from a CGI program

¢ How to authenticate users before allowing them to download files

* How to create a simple ad server

* How to track users using images

Content Types

One of the first things you learned in this book is that the Web server
depends on the CGI program to generate the Content -type header. This is
because the Web server has no way of knowing what sort of content the CGI
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program is going to generate. It just so happens that so far, I've always printed out a
Content -type header that looks like this:

Content-type: text/html

Back in lesson 6, I explained how content types work, and how servers use them. I also
discussed some of the families that content types are grouped into. Sending a different
content type from your CGI scripts is simple. If you want to indicate that the content
returned is plain text, specify the content type as text/plain:

print "Content-type: text/plain\n\n";
If you prefer to print the HTTP header using CGI.pm, you can use the following code:
print $query->header(-type=>'text/plain');

That’s all there is to it.

Handling Binary Content

There are several common text-based content types that you might generate with CGI
scripts besides HTML. For example, you might want to send images, audio files, or Zip
archives to your users via a CGI program. The first step is to set the content type appro-
priately—the second step is to send the binary content to the user as the body of the
request. Sending a text file is simple, here’s a very short script that will do the trick:
#!/usr/local/bin/perl
use CGI;
my $query = new CGI;
print $query->header(-type=>'text/plain');
open (FILE, "< some_file.txt")

or die "Can't open some_file.txt";
while (<FILE>) {

print;

}

Sending a binary file to the user is slightly more complex. First, let’s look at a simple
script that opens and prints an image when the user requests the script. Listing 21.1 con-
tains the source code for the script.

Listing 21.1 A Program That Sends a Binary File

#!/usr/local/bin/perl

use CGI;

my $query = new CGI;

print $query->header(-type=>'image/gif');
open (FILE, "< some_image.gif")

g wWwND =
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or die "Can't open some_image.gif";
binmode FILE;
while (read(FILE, my $buf, 512)) {
print $buf;

S © 0 N O»®

}

Let’s go through this short program in detail. Skipping down to line 4, you can see that I
generate the Content -type header with a MIME type of image/gif. This indicates to the
browser that the body of the request will be a GIF. On line 5, I open the image file just
like I’d open a text file, and on line 6, the script dies if it can’t open the image for some
reason.

On line 7, you’ll see a function call that you haven’t seen before. The binmode function
indicates that the file associated with the file handle should be treated as a binary file.
Most operating systems don’t distinguish between binary and text files, and so this func-
tion call is just ignored, but some versions of Windows do require this to handle binary
files properly.

Lines 8 through 10 print out the actual binary content as the body of the response. Since
there are no lines, per se, in a binary file, I read the file in chunks using the read func-
tion. As you can see, I pass three arguments to the read function. The first is the file han-
dle to read data from, the second is the name of the variable to store the data in, and the
third is the number of bytes to read from the file. As you use the read function, a
pointer is moved forward in the file so that the next time read is called, it picks up where
the previous read left off. Inside the loop, I just print out the current value of $buf. This
loop is just a simple means of reading the contents of a binary file and sending it out as
the body of an HTML response.

Now that you’ve seen how a CGI script can be used to send a binary file to a user, let’s
look at some specific applications that might transmit binary files.

An Authenticated Download Application

There are plenty of sites that allow users to download software or other files for their
own use. For example, a software publisher might let users download evaluation versions
of software, or a movie studio’s Web site might want to let users download movie trail-
ers. Generally, making such files available for download is simple, you just put them in a
directory that’s accessible from your Web site and provide links to them.

However, let’s say that you want to control who is allowed to download the files. One
way you could do it is to protect the directory where the files are stored using basic
authentication, but then you’re forced into the user/password scheme of authentication,
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and you also have to rely on the Web server to maintain your authentication scheme.
Using a CGI program, you can create a much more flexible authentication scheme.

For example, let’s say that you offer a program on your Web site that people have to
download before they can download it. You want to keep track of how many times each
purchaser downloads the product, or you want to make sure that the customer doesn’t
download the software more than once.

Let’s take a look at a CGI program that provides this sort of functionality. In order to
allow a user to download a file, it requires two parameters. The first is auth_code, which
is passed in via a traditional name/value pair in the query string. The second is the file-
name that the user wants to download, which is passed in using extra path information.
The URL for the script looks like this:

http://example.com/cgi-bin/download.pl/some_image.gif?auth_code=1

The script itself appears in Listing 21.2.

Listing 21.2 The Download Script

#!/usr/local/bin/perl

use CGI;
use strict;

use vars qw($query $auth_code $file $error_message);

0N OB~ WN =

$query = new CGI;

9: $auth_code = $query->param('auth_code');
10: $file = $query->path_info();

11: $file =~ s/™\/(.*)$/$1/;

12: $error_message = '';

14: if (!&valid_auth_code && !&valid file) {
15: &send_file;

16: }

17: else {

18: &print_error;

19: }

21: sub valid_auth_code

22: |

23: if ($auth_code ne '1') {

24: $error_message = '<li>Invalid authentication code.</li>';
25: }

26: return $error_message;

27: '}

29: sub valid file
30:
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31: if (I$file) {

32: $error_message = "<li>No filename specified.</li>";
33: }

34: if ($file =~ /~([-\@\w.]+)$/) {

35: $file = $1;

36: if (!(-e $file) || !(-r $file)) {

37: $error_message = '<li>File not available.</li>';
38: }

39: } else {

40: $error_message = "<li>Tainted data in $file.</1li>";
41: }

42: return $error_message;

43: }

44:

45: sub send_file

46: {

47: print $query->header(-type=>'application/octet-stream',
48: -attachment=>$file);

49: open (FILE, "< $file")

50: or die "Can't open $file";

51: while (read FILE, my $buf, 512) {

52: print $buf;

53: }

54: }

55:

56: sub print_error

57: {

58: print $query->header;

59: print $query->start_html('An error occurred.');

60: print "<hi1>Error</hi1>\n";

61: print "<ul>$error_message</ul>\n";

62: print $query->end_html;

63: }

The purpose of this script is to check a user’s authentication code, and if it’s valid, allow
him to download the file that he specifies. Take a look at line 6, it’s used to specify
which variables will be used as global variables in this program. It’s an alternative
approach to declaring them all with my at the beginning of the program.

On line 8 and 9 I create the query object and extract the value of the auth_code parame-
ter and assign it to $auth_code. On lines 10 and 11, things get a bit more interesting. On
line 10, I assign the path information passed in with the request to the variable $file.
Remember, this information is everything after the filename in the URL, and is stored in
the environment variable PATH_INFO. The path_info() method of the CGI object returns
this value for the request. PATH_INFO includes the initial slash that separates the path info
from the rest of the URL, so on line 11 I get rid of it.
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Lines 14-16 provide the core logic for the program. If the expression on line 14 evalu-
ates as true, the file is sent to the user. If it’s false, an error is printed—a subtle but
important feature of the Perl language, called short-circuiting. The expression is rela-
tively complex, basically it reads as, “If not valid auth code and not valid file.” If the first
expression, “not valid auth code,” is false, then, because the two expressions are joined
by an and, the second of the two is not evaluated at all. Both of the subroutines,
&valid_auth_code and &valid_file, set the $error_message variable. By taking advan-
tage of short circuiting, I can call both subroutines in one expression and make sure that
the $error_message variable does not get overwritten by the second subroutine if it’s set
by the first subroutine.

Let’s look at those two subroutines, because they’re really the key to this script. First,
valid_auth_code. In this script, this subroutine doesn’t really do anything—it sets an
error message if the auth code is anything other than just 1. However, this is where the
interesting stuff would happen if this script were for real users. You could look up the
auth code in a relational database, or you could store a list of valid auth codes in a text
file. You could also log the download at this point if you wanted. The power of a script
like this is that you can do anything you want before allowing the user to actually down-
load the file.

Unlike the valid_auth_code subroutine, the valid_file subroutine is fairly complex.
Its purpose is to verify that the file requested by the user exists, and that the CGI pro-
gram has permission to download it. First, on line 31, it verifies that path info was sub-
mitted with the request. If it wasn’t, then an error is generated. On line 34, I sanitize the
value in the $file variable just to make sure that the user hasn’t tried to sneak in some
malicious code. Once the input has been sanitized, I perform two checks on $file, -e
and -r. The -e test verifies that there’s a file that exists in the location specified by
$file. The -r flag verifies that the file in question is readable by the Web server. If
either of those tests fail, an error is printed. If all of these tests succeed, we can send the
file to the user.

The send_file subroutine is basically a duplicate of the code in Listing 21.2. If you’re
going to let people download binary files and your script will be deployed under
Windows, you’ll need to stick in a binmode FILE after line 50. Let’s look a couple of
things that differ from the previous script. On line 48, I set an additional parameter in the
header, -attachment. This lets the browser that receives the download know what to call
the downloaded file if it’s saved to disk. Not all browsers will use this value, but it
doesn’t hurt to put it in. I send the application/octet-stream content type, which indi-
cates that the file being downloaded is a generic binary file. The browser will generally
just ask where to save this content type, or if it recognizes the file’s extension, try to
open it with the appropriate application.
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One thing to note is that the script expects the file to be in the same directory that the
script is in. In the real world, you’d probably want to keep the downloadable files some-
where completely outside the document root so that people can’t just download them
directly. For simplicity’s sake, I left the files in the same directory as the script.

The only other subroutine is print_error. It simply prints out a basic HTML page con-
taining the error message that was generated. The interesting thing here is that if this
subroutine is called, the text/html content type is returned, unlike the send_file sub-
routine, which used application/octet-stream.

Creating Your Own Ad Server

These days, it’s rare to find a Web site that doesn’t have advertisements. Generally, ads
on a Web site are provided by an ad server. The way ad servers work varies, but basically
their job is to display ads to each user, and to make sure that all of the ads available get
shown the proper number of times. In the example in this chapter, the ad server will just
display an ad at random each time the script is called.

Most ad servers are more complex, because the advertisers buy a certain number of
advertisements and the ad server has to manage each ad purchaser’s contractual obliga-
tions. They are also generally integrated with the Web publishing system so that the ads
can insert some text in the page, including a link that points at a particular application for
ad clickthrough tracking. Creating such a system is a bit ambitious given the amount of
space I have here, so I'm going with something simpler.

In this case, the script just displays one of a random set of ad images that are available.
The script, in Listing 21.3, serves up the ads.

Listing 21.3 The Source Code for ad.pl

#!/usr/local/bin/perl

use strict;
use CGI;

use vars qw($ad_directory $query);

0N OB~ WD =

$query = new CGI;
9: $ad_directory = "ads";

11: my $ad = &pick_image;
12: &print_header;
13: &log_ad($ad);

continues
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ListinG 21.3 continued

14: &print_image($ad);

15:

16: sub pick_image

17: |

18: opendir(FILES, $ad_directory)

19: or die "Can't open $ad_directory";
20:

21: my @files = readdir FILES;

22: my @ads;

23:

24: foreach my $file (@files) {

25: if (-f "$ad_directory/$file") {
26: push @ads, $file;

27: }

28: }

29:

30: return $ads[int(rand(scalar @ads))];
31: }

32:

33: sub print_header

34: {

35: print $query->header(-type=>"image/gif");
36: }

37:

38: sub log_ad

39: {

40: my $ad = shift(@_);

41: if (!%ad) {

42: return;

43: }

44: open (LOG, ">> adlog.txt")

45: or die "Can't open log";

46: print LOG "$ad\n";

47: close LOG;

48: }

49:

50: sub print_image

51:

52: my $ad = shift(@_);

53: if (!$ad) {

54: return;

55: }

56: open (FILE, "< $ad _directory/$ad")
57: or die "Can't open $ad";

58: while (read FILE, my $buf, 512) {
59: print $buf;

60: }

61: }
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The script is relatively simple. The core logic of the script consists of four subroutine
calls. The first, on line 11, calls the pick_image subroutine. In the pick_image subrou-
tine, I build a list of all of the files that are in the ads subdirectory. I then iterate over the
files in the directory and add the ones that are real files (not directories) to an array.

On line 30 I select one of the files at random and return it. Because there are multiple
ads, this code selects one at random to display. Let’s look at this line more closely. With
all of those parentheses and brackets it might seem a bit daunting. Let’s take each of the
expressions from the outside in. The goal here is to return the value of one of the ele-
ments in the array. So, the basic call is:

return $ads[];

The rest of the code just determines which number to put inside the brackets. It uses
scalar @ads to get the size of the array containing the names of the ads. Then it passes
that value to the rand function, which picks a random number from O to the size of the
array. The random number, which is a floating point number, is then passed to the int
function which rounds it off so that it’s an appropriate index for an array.

The print_header subroutine prints out the query header. The 1og_ad subroutine logs
the name of the ad that was selected to a text file, in order to keep track of which ads
have been displayed. Finally, the print_image subroutine prints out the actual contents
of the image file.

Tracking User Activity

Let’s say you have a service that sends out HTML email to all of the subscribers to a
mailing list. (Let’s also assume that you use email ethically and that the emails are only
sent to subscribers who have also confirmed their subscriptions, and that your users don’t
mind getting HTML email.) One question you might have is how many people actually
open the emails that are sent to them, as opposed to just deleting them without looking at
them. One way to keep track of this statistic is to include an image tag in the email mes-
sage that requests an image served by a CGI script.

If the only place that the image-serving CGI is referenced is in your HTML email, or
you pass back an identifier for the email with the request, you can keep track of exactly
how many users have requested the image and thus how many times the HTML email
was opened (and stayed open long enough for the image to be downloaded). If you just
send the HTML file without the tracking image, there’s no way to tell how many of your
email messages are actually read. The img tag would look something like this:

<img src="/cgi-bin/tracker.pl?campaign=100" />
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If you wanted to find out exactly which users read the email messages, you could send
out a unique identifier as a parameter passed to the script (via the img tag). When the
image is retrieved from the server, the opened email message can be correlated with the
user that it was sent to, thus letting you know which users actually opened their email
message. This opens the door for testing things like different message subjects and other
personalized approaches. Here’s what the img tag looks like for when you’re tracking an
individual user:

<img src="/cgi-bin/tracker.pl?campaign=100&recipient=100381" />

As you can see, two parameters are passed to tracker.pl. The first is a campaign ID—
it’s used to indicate which campaign the email sent to the user was associated with. By
logging each “hit” for the campaign and comparing the number of hits to the number of
emails sent out, you can judge how successful the campaign was. The second parameter,
recipient, is the unique identifier for the person who the email was sent to. By includ-
ing it, you can see exactly which users opened their email messages, almost like return
receipts.

Using these types of approaches is fraught with certain ethical and technical difficulties,
but is nonetheless very common. The problem is that most users generally don’t like to
feel like they’re being tracked in how they use the Web. Furthermore, even if you are
able to track which emails your users receive, it’s difficult to turn that into something
useful. If you’re sending out thousands of email messages, it’s questionable whether
knowing which user opened which email messages is really important.

The bottom line though is that plenty of companies do use exactly this sort of approach
to tracking user activity. In some cases it can be advantageous, but you should carefully
weigh the pros and cons before you commit to using these sorts of approaches.

Let’s look at a script that enables you to track users via email. First of all, you must
assume that the program generates the email messages in the first place. It must generate
an img tag like the one listed above, that passes the campaign and user info to the CGI
script. We’re picking this up when the user opens the email message and the email client
attempts to download the image pointed to by the img tag. The source code for the
tracker.pl script is in Listing 21.4.

ListinG 21.4 The Source Code for the tracker.pl Script

#!/usr/local/bin/perl
use strict;

use vars qw($query $campaign $recipient);

NOoO O~ WwN =

use DBI;
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8: use CGI;
9: $query = new CGI;
10:

11: $campaign = $query->param('campaign');
12: $recipient = $query->param('recipient');

13:

14: if ($campaign && $recipient)
15:

16: &log_event;

17: }

18: &print_header;
19: &print_image;

20:

21: sub log_event

22: |

23: my $database = "mysqldb";

24: my $db_server = "db.example.com";

25: my $user = "dbiuser";

26: my $password = "dbipass";

27:

28: my $dbh = DBI->connect("DBI:mysql:$database:$db_server", $user,
29: $password) ;

30:

31: my $statement = "insert into tracker_log values (?, ?, now())";
32:

33: my $sth;

34: $sth = $dbh->prepare($statement)

35: or die "Couldn't prepare the query: $sth->errstr’;
36:

37: my $rv = $sth->execute($recipient, $campaign)

38: or die "Couldn't execute query: $dbh->errstr";

39:

40: my $rc = $dbh->disconnect;

41: '}

42:

43: sub print_header

44: {

45: my $cookie = $query->cookie(-name=>'recipient’,

46: -value=>$recipient,

47: -expires=>"'+1M");

48: print $query->header(-type=>'image/gif', -cookie=>$cookie);
49: }

50:

51: sub print_image

52: {

53: open (FILE, "< invis.gif")

54: or die "Can't open invis.gif";

55: binmode FILE;

56: while (read(FILE, my $buf, 43)) {

57: print $buf;

58: }

59: }
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This script is quite simple. If the recipient and campaign are submitted with the request,
it logs the tracker event (to a relational database), it prints out the query header, and it
prints out the tracker image. Let’s look at each of these steps.

The first is the step that logs the event to the database. Looking at line 14, you’ll see that
the log_event subroutine is only called if the user submitted values for both the recipient
and the campaign. If either of them were left out, this step is skipped.

If 1og_event is called, the script connects to the database and inserts a new record into
the tracker_log table containing the recipient and campaign information typed in by the
user. On lines 23 through 26, I set up the variables needed to connect to the database
(with dummy information, of course, you’d need to include information specific to your
own environment there in your own script). On line 28, I use DBI to establish a connec-
tion to the database, and assign that connection to the variable $dbh.

Line 31 contains my SQL statement. It’s an insert statement, and if you look closely
you’ll see that two of the values that I’ll be inserting have been replaced with 2. I'm
using this statement as a prepared statement. In prepared statements, you can leave place-
holders for values that change, and then pass the values for them in later. Ordinarily, pre-
pared statements are used in cases where the same base statement will be called many
times with different sets of values. There are some efficiency gains associated with
preparing the statement once and then passing the values in each time it’s called. Since
only one SQL statement is used in this program, I won’t reap any benefits from using a
prepared statement in this way, but I wanted to illustrate how prepared statements are
used.

On line 34, I prepare the statement that I assigned on line 31. One line 37, I execute the
prepared statement. Note that I pass in two arguments to the execute method call,
$recipient and $campaign. The arguments to execute are substituted into the prepared
statement for the placeholders, in the order in which they are passed in. So the first ? is
replaced with $recipient, and the second ? is replaced with $campaign. When execute
is called, the fact that the recipient viewed the email is logged to the database.

The remaining two subroutines are things you’ve seen before—print_header and
print_image. For further tracking purposes, the print_header subroutine creates a
cookie that expires in one year. It’s called recipient, and has the value of the recipient
parameter that was passed in. It enables you to determine whether users who visit your
Web site previously received email messages from you. The final subroutine prints out
the image. The only thing different about it than the other binary file printing code
you’ve seen in this chapter is that it reads from the file in 43 byte chunks—that’s because
the file being printed is only 43 bytes total.
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Summary

As you can see, there’s more to CGI programming than just printing out HTML tags and
text. You can use CGI scripts to generate any type of content that can be delivered via
HTTP. Regardless of which type of content your script returns, you have to generate the
proper Content -type header for the request. Other than that, there’s not much to remem-
ber. As you’ve seen in this chapter, you can do more than just print out the content as
well. Processing query parameters, setting cookies, and performing other business logic
are all perfectly acceptable.

Q&A

Q

A

Isn’t it the case that the “ad server” in this chapter wouldn’t work in the real
world?

It will run and serve up random ads, but it won’t work as a real ad server, for one
reason, which is that it doesn’t print the links that will be included in the HTML on
the page. Ads require not only an image, but also a link that the ad will click
through to. Most ad servers also provide functionality that enables the administra-
tor to make sure that each ad is shown the required number of times and to divide
the ads up into campaigns. Obviously the script in this chapter is much simpler
than that.

I hate those images they use to track your activities on the Web. Why did you
explain how to create them?

I hate them too, but I think it’s better for people to understand how they work and
how they’re used. Just because you can use a certain technique doesn’t mean that
you should use it.

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1.
2.
3.

Why can’t a script that iterates over the lines in a file print out binary files?
Can a script that just prints out an image file set a cookie as well?

Must URLs that return a file of a particular type end with the file extension associ-
ated with that type?
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Exercises

1. Write a script that reads all of the files in a directory and allows users to download
them from a menu. If possible, use the file extension to determine the content type
and print out the proper content type.

2. Modify the download authentication script so that it verifies a username and pass-
word instead of just the single auth code parameter.

Quiz Answers

1. Binary files don’t contain line breaks, so scripts that print out binary data must
read from the file in a buffered fashion.

2. A script that prints out an image can also set a cookie.

3. No, a script can end with any extension, the content type that it returns is indicated
to the browser by the Content -type header.
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Securing CGI Scripts

Over the course of this book, I’ve shown you many techniques for writing
CGI programs to build Web applications. Here and there, I’ve mentioned
security considerations that should be taken into account when you’re writ-
ing CGI scripts. In this hour, I am going to focus solely on security because,
no matter how cool or powerful your application is, if it opens easy-to-
exploit holes that allow malicious folks to access your Web server, it’s not
worth installing. This hour discusses some methods for protecting your
server and some common security holes found in CGI scripts. The following
topics are covered in this hour:

* Why you should care about Web security

» Assessing risks and placing a value on your data
* Securing your Web server

* Common CGI security holes

» Writing security-friendly programs
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Why Security?
The Internet is a large public network with millions of hosts distributed throughout the
world. Under optimum conditions, any of those hosts is capable of reaching any of the
others at any given time. The advantages of connecting your computers to this network
are obvious. Not only can you retrieve all kinds of interesting and valuable information
quickly and easily, but you can also publish information on the Web and make it easy for
people around the world to access it.

Therein lies the rub. Whenever users view a Web page on your site, download a file from
your FTP server, or connect to your mail server, they are gaining access to a computer on
your network. Under ideal circumstances, they are gaining access to only a very limited
part of the system and are severely restricted in what they are allowed to do.
Unfortunately, there are many ways to exploit software misconfigurations or applications
with bugs and gain more access to the computer than you originally intended to allow.

The security problem is compounded by CGI scripts and other custom programs running
on the Web server. Unlike publicly distributed software, which is generally well tested
before it is released, the programs that you write to use on your Web site generally
haven’t been as well tested. Because of this, most Web sites that are successfully
breached by intruders are exploited through poorly written or configured CGI programs.

The Crack-a-Mac Contest

In early 1997, a Swedish Macintosh consulting firm announced a contest on the World
Wide Web offering a cash prize to anyone who could break into its Web server, which
ran on a Macintosh, and modify the site’s home page. The contest ran for an entire
month, and nobody was able to hack into the Web server, so the firm ran the contest
again.

The second time the company put on the contest, someone broke into the Web server and
modified the site’s home page, thanks to an improperly written CGI script. I'm including
this story to illustrate how a minor inconsistency can lead your site to be compromised,
and to put you in the proper mindset to think about information security.

The Web server software that was running on the Macintosh in the contest includes a
security feature that prevents it from serving any files that have a specific creator code
(creator codes on the Macintosh are basically analogous to extensions on Windows and
UNIX files). A commercial CGI script was installed on the Web server that enabled the
site’s administrators to log in remotely and upload pages for the site. Naturally, the pass-
word file for the CGI program used the restricted creator code so that users from outside
couldn’t obtain the file.
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Another CGI program was installed on the server; it was used to gather data from a
Filemaker Pro database and publish it on the Web. Unfortunately, this CGI program
didn’t share the same restrictions as the Web server when it came to publishing particular
types of files. The cracker exploited the database connectivity program to grab the pass-
word file for the site update application, and then logged into the site update application
and uploaded a new version of the home page, thus winning the contest.

What’s the point of this story? It’s designed to put you in the mindset of people who are
paid to think about information security. The Web server, the database connectivity appli-
cation, and the site update application all had decent enough security by themselves, but
when they were placed on the same computer, holes were created. There are a few
lessons that can be taken from this story:

* The more complex a system, the greater the chance for security loopholes in the
system. You should always use as few CGI programs as possible, and make those
programs as simple as possible.

* When designing a system, don’t take things for granted. The authors of the site
update tool assumed that because they used a creator code that restricted the Web
server from sending their password file, they didn’t need to encrypt the password
file. If they had used strong encryption on the password file, chances are the
cracker couldn’t have used the entries in the password file even after he obtained it.

* Don’t open unnecessary doors to your system. The sponsors of the Crack-a-Mac
contest assumed that because the Mac OS is very secure by default, they could
install CGI programs like the site update tool. Although updating your site
remotely can be convenient, when you provide this capability you provide yet
another door through which unauthorized users can attack your system. You should
think long and hard before you write or install any programs that provide addi-
tional access to your Web server.

Risk Assessment

Despite all the movies and books about the glamorous lives of hackers and the people
who catch them, computer security really centers on something extremely boring: risk
assessment. Basically, risk assessment involves deciding how much your data is worth
and how much you are willing to spend to protect it.

For example, pictures of your wedding that you scanned in and posted on your Web site
probably have a very low value. The originals are stored somewhere else, you can
replace them online rather quickly, and chances are that making them available 24 hours
a day and 7 days a week is not very important. So you probably won’t be spending thou-
sands of dollars to make sure your wedding pictures are secure and available.
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On the other hand, suppose you’re in charge of the Web site for a bank. Obviously, you
have a lot of information in databases that you don’t want disseminated to the general
public. In fact, you probably want to make sure that nobody breaks into your Web site at
all because making people feel they can trust the bank with their money is important.

In such a situation, you would probably take all the steps necessary to make your site as
secure as possible. You would encrypt all the transactions handled by the Web site, and
you would be extra careful to make sure that your Web server and network are extremely
secure, probably disallowing access to the machine from the outside world except via
HTTP (and HTTPS).

Most Web sites fall somewhere in between these two examples. When you’re designing
your Web site, you should do your best to place an accurate value on the data on the Web
site. You should also take into account any business losses that could stem from having
your home page redesigned by some clever hacker, like the U.S. Department of Justice or
Central Intelligence Agency did.

Remember that if someone broke into your Web site and replaced the hard work you did
on your company’s home page with offensive material, aside from the monetary value of
the actual data on the Web server, the value of your company’s reputation should be
taken into account. This is especially important in the age of electronic commerce.
Security breaches on your Web site can be a crippling blow to your company’s image.

Securing Your Web Server

Before you can begin to think about securing your CGI programs, be sure that your Web
server is reasonably secure at the operating system level. There are all kinds of guide-
lines for securing the operating system on which your Web server runs that I won’t go
into here. Entire books on UNIX and Windows security exist, and if you’re in charge of
the computer on which the Web server runs, you should do some research and make sure
that the computer is protected against attack. One of the easiest steps to take is to turn off
every network service that you aren’t actually using. If malicious users can’t connect to a
computer using a particular service, they certainly can’t exploit that service.

There are some guidelines to follow to secure your actual Web server software, however.
First and foremost is that you should never, under any circumstances, allow the Web
server on a computer running UNIX to run with root privileges. Correspondingly, you
should never allow a Web server running under Windows to run with Administrator privi-
leges. When you install Windows Web servers, they are generally configured to run under
an unprivileged account.
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root is the name of the account on UNIX systems that has full access to the
entire system. The root user is authorized to run, modify, or delete any file
on the system. If an attacker gains root access on your system, he has com-
plete control of the computer. The root account is also referred to as the
superuser account. The equivalent account on Windows is Administrator.

When the Web server runs with root privileges, mistakes made in writing CGI scripts or
configuring the server are amplified greatly because a user can exploit those mistakes to
directly compromise your system. Usually, Web servers run as nobody, a special account
that is used to run servers with no privileges. If you want to run your Web server on port
80, which is the default port for HTTP connections, you must launch the Web server with
root privileges. When the Web server is launched as root and is listening on port 80, it
forks individual processes that handle HTTP requests. These processes should not run
with root privileges.

Keep Your Software Up-to-Date

You should always keep your server software and operating system up-to-date. This
doesn’t necessarily mean running the newest version of the software, but it does mean
keeping track of any security holes that are discovered and installing the appropriate
updates or patches to close them. For example, many people run older versions of Linux
or FreeBSD even though new versions are released all the time. The Computer
Emergency Response Team (http://www.cert.org) releases security advisories when-
ever a new security problem is found within a common operating system. By subscribing
to CERT’s mailing list, you can receive all its advisories as soon as they are issued. You
can also find lots of security information at http://www.securityfocus.com. Chances
are your vendor also provides some kind of announcement service for vulnerabilities as
they’re discovered.

Store Your CGI Scripts Together

Most Web servers provide two options for storing your CGI scripts: You can either keep
them all together under the cgi-bin/ directory, or you can store them under your docu-
ment directory with your HTML files and images. Although storing them along with
your documents might make sense from an organizational standpoint, from a security
standpoint, you should always store them under cgi-bin/.

There are several reasons why you should keep your CGI scripts under cgi-bin/. The
first is that you can prevent them from being downloaded by users. Your server knows to
try to execute files in the CGI directory instead of sending them directly to the user, no
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matter which extension they have. That means there’s no chance that a user will try to
execute one of your CGI programs and see the source code to your Perl script instead.
On the other hand, if you store your CGI programs in your document directory along
with your regular HTML files and images, the only way the server knows whether to run
the program as a CGI script or send it to the user as a text file is by the extension. If your
server isn’t configured properly, or if you accidentally save your CGI program with the
wrong extension, users will be able to download the files instead of executing them.

Another concern is being able to locate your CGI scripts when you must edit or disable
them. If CGI scripts are scattered throughout your file system, keeping track of how
many you have and what they do is difficult. If you keep all your CGI programs in one
location they’ll be easier to find when the time comes to audit your server and look at all
the CGI scripts.

File Permissions

There are some rules of thumb you can use to set the file permissions properly for files
on your Web server. Your best bet, in terms of security, is to make file permissions as
restrictive as possible. The fewer the people who can read, write, and execute the files on
your Web server, the better off you are.

Earlier I said that you should run the Web server as nobody, which is a special unprivi-
leged account. Another option is to create a special account like www or web that has
extremely restricted privileges. You should change the ownership of all the files under
your Web root directory to the www account, and set up the server’s log files and configu-
ration files so that only the www account can write to them. Then, you can run the Web
server under the www account instead of nobody.

If you’re really ambitious, you can also create a group for users who are allowed to cre-
ate content for your Web site. Then, you can change the file permissions for all the files
in the document root so that only a member of the Web group can write to them. Hour 1,
“Overview of CGI Programming,” contains a discussion of UNIX file permissions.

Hour 3, “Downloading, Installing, and Debugging CGI Scripts,” contains a
discussion of UNIX file permissions.

If you’re running your Web server under Windows, you can also set up your file permis-
sions to restrict access to Web files to the user that the Web server runs as.
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Server Options That Are Bad for Security

Several features available for most Web servers are not conducive to good security. You
should turn off any features that you don’t plan to use, but you should also take a hard
look at the following options before you decide to leave them turned on.

You should probably always turn off the automatic directory listings feature that ships
with most Web servers. As a user, I find it helpful at times to get listings of directories
that don’t contain the default document. As a server administrator, however, I probably
don’t want users randomly surfing through the document directories on my server, espe-
cially because backups of access control documents or CGI scripts can be viewed if they
don’t have the correct extension. You should always remove any unused files from your
document directories, but turning off directory listings can provide an added measure of
security.

Most Web servers can also be set up to follow symbolic links to directories outside the
document root. For example, you could set a symbolic link in the document root to a
directory under your home directory and store Web documents there. While this may
make things convenient for you, it’s a really bad idea. If your server is set up to follow
symbolic links, it can be easy to make mistakes and set links to system directories where
Web users can get access to files that will make it easier for them to break into your sys-
tem. Most Web servers offer the capability to extend the document root by setting up
pointers to directories outside the server root in the configuration files. You should
always use this method.

The SSI directive exec can also pose a major security risk because it can execute any
system command and echo the output to the Web browser. If you are running your Web
server as an unprivileged user, users can’t do much with the exec command that could
compromise your server, but you should still turn it off for all of the directories in which
it is not required.

Common CGI Security Holes

You can make several common mistakes when you code CGI scripts that can make it
easy for intruders to break into your Web server. If you avoid these pitfalls, you’ll be way
ahead of the game when it comes to protecting your server from attack.

A Note on How CGI Works

One thing you might not realize is that users can always access your CGI scripts without
using the interface you’ve provided when they know where the CGI script is. For exam-
ple, you might be using maxsize attributes on all your text entry fields, and you might
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validate all the form input using JavaScript before it’s sent to the CGI script, but users
can bypass all that if they choose to, especially if your form uses the GET method.

Remember that the GET method sends all the form data to the server encoded as part of
the URL. When a user sees how the form data is encoded and sent to the server, she can
go to the location field of her browser and enter any input that she wants as part of the
URL, bypassing your form altogether.

Things are only a bit tougher if you use the POST method. A determined user can simply
write an HTML page that calls your CGI script and saves it on his hard drive. He then
can place any data in the form that he wants and send it to your CGI script.

Because of the ease of bypassing the HTML front-ends to CGI scripts, you can never
make assumptions about what kind of input you’ll be getting from users. You should
always take this into account when you’re writing CGI programs.

The Buffer Overflow Problem

One trap that’s easy to fall into is allocating a fixed amount of memory to gather input
from a user. An attacker can send a lot more data than you planned for and crash the pro-
gram, sometimes opening security holes that can be exploited to gain access to your sys-
tem. This problem most often crops up in C or C++ programs. Here’s an example of
some improperly written code:
#include <stdlib.h>
#include <stdio.h>
static char query_string[1024];
char* read_POST() {
int query_size;
query_size=atoi(getenv("CONTENT_LENGTH"));
fread(query_string,query_size,1,stdin);
return query_string;

}

In the example, the programmer allocates 1024 bytes of memory for the user’s input. If
the form from which the programmer is gathering input contains text input fields with
no maxsize attribute, or textarea fields, the user can send any amount of data he wants,
so it would be easy for him to exceed the hard limit of 1024 bytes that the developer
used. Even if the form contains only static fields like radio buttons or even hidden fields,
the user can create a submission of her own to call the script and include any data she
wants.

The programmer should have allocated the space for the information that the user posted
dynamically in order to avoid the buffer overflow bug. Here’s the correct method of writ-
ing the previous code:
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char* read_POST() {
int query_size=atoi(getenv("CONTENT_LENGTH"));
char* query_string = (char*) malloc(query_size);
if (query_string != NULL)
fread(query_string,query_size,1,stdin);
return query_string;

}

When you’re writing any C program, you should also avoid using the strcpy () and
strcat() functions in general because they’re susceptible to the buffer overflow prob-
lem. strncpy () and strncat () are safer choices because they enable you to specify the
maximum length of the string that you’re manipulating.

Don’t Send Raw Input to Shell Commands

In order to make it easy to use shell commands in your programs, most UNIX program-
ming languages provide functions that will escape to a shell and execute commands.
These are very handy, but you should be very careful when you use them in your pro-
grams. Look at some Perl code that illustrates what a problem this can be.

Suppose you’re going to provide a Web-based interface to the finger command from
your Web site. You would provide a field in which the user could enter a username to fin-
ger, and then launch the finger command from within your CGI script. The CGI script
would print the output of the finger command in the browser window.
$user_to_finger = $data_from_form # Taken from the form input
print "Content-type: text/plain\n\n";
open (FINGER, "finger $user_to_finger |");
while (<FINGER>) {

print;
}
If the person enters a username in the form as he is supposed to, the script simply tries to
finger that person and print the output to the Web page.

However, what happens if the user enters rafe; cat /etc/passwd? The script will run
both commands and pipe the output back to the browser, so the user will have the con-
tents of your server’s password file. Now, imagine that the server administrator has com-
mitted another cardinal sin and is running the Web server under the root user ID. If the
user enters rafe; rm -rf / in the text field of the form, your server will suddenly
develop big problems (for the non-UNIX savvy, this will attempt to delete all the files on
the server).

As you can see, improper use of shell escapes can lead to big problems in a hurry. If you
do use any shell escapes in your programs, you should be absolutely certain that there’s
no way the user can send input to them. C functions that run shell processes include
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system() and popen(). In Perl, the system() and exec () functions launch shell
processes, and the eval() function runs the code in the function argument through the
Perl interpreter. As shown in the previous example, using pipes with the open function
can also expose you to risk. The exec and eval commands are used in shell scripts to
spawn another process to run shell commands. Characters enclosed in backtick (*) char-
acters are evaluated as shell commands in Perl scripts and shell scripts as well.

Obviously, shell escapes are far too useful to completely avoid when you’re writing CGI
scripts. For example, if you’ve used the gd library to write a program that creates graphs
and you want to call it from within a CGI script, you must execute the program using a
shell escape. The main problem with shell escapes is not using them in your programs,
but passing them input sent by users. You should always filter user input to ensure that
users haven’t tried to insert commands into the input before you pass it along to external
programs.

As mentioned earlier in the book, if you’re writing Perl programs, you can use taint
checking to make sure that you’re not passing unsafe user input to the shell. To turn on
taint checking, you pass the -T flag to Perl when it’s invoked. This flag turns on runtime
taint checking. It won’t cause your program to fail to compile due to syntax errors, but it
will cause your program to exit if you try to pass tainted data to a shell command. Taint
checking just makes it easy to make absolutely sure that you don’t mistakenly pass
unsanitized user input to the shell through a shell escape or through something such as
opening a file.

In any case, to turn on taint checking, start your Perl program like this:
#!/usr/local/bin/perl -T

This code, from the Perl documentation, will sanitize tainted data:

if ($data =~ /~([-\@\w.]+)$/) {

$data = $1; # $data now untainted
} else {
die "Bad data in $data"; # log this somewhere

}

Using File Paths Is Risky

Any time you use direct file paths in your Web pages or you let users enter paths in a
form, you expose yourself to risk. Suppose you write a script that loads text files from
somewhere on your file system and formats them using a CGI script. The argument
passed to the script is the path to a file on the server. If you enable users to enter the path
information (either through a field on the form or by doctoring the URL in the location
field on the browser), they can enter paths to any file on the system that the server is
capable of reading. For example, suppose your program is set to automatically look for
files in the /home/documents directory.
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If the user entered the path ../../etc/passwd in the URL, a poorly written script would
send the password file to the user. Whenever you write a CGI program that uses path
information, you should always check to make sure that .. expressions haven’t been
slipped into the path.

Don’t Place the Perl Interpreter in cgi-bin

At one time, it was recommended that the perl.exe program for Windows NT be placed
in the cgi-bin directory in order to execute CGI scripts written in Perl. For example,

to run a CGI script named search.pl, you would use the URL /cgi-bin/perl.
exe?&search.pl. Unfortunately, placing the Perl executable in the cgi-bin directory
enables any user to run arbitrary snippets of Perl code on the server, thanks to the -e
command-line flag. For example, the user could enter the following URL to delete all the
files in the server’s directory:

/cgi-bin/perl.exe?&-e+unlink+%3C*%3E

As you can see, placing perl.exe in your CGI directory is a recipe for disaster. The
same holds true for any other command interpreter.

improved, as has support for Perl scripts by most Windows Web servers.

J—// . L . . .
ﬁ This practice is very antiquated. The Perl installer for Windows has
\/

Security Hole with DOS Batch Files

When DOS batch files are used as CGI programs with Windows NT, users can append
an extra command to the URL and they will be executed after the batch file has exe-
cuted. Suppose you’ve written a simple batch file called output.bat that prints a mes-
sage on the screen. A user can simply type the URL:

/cgi-bin/output.bat?&dir

Both the batch file and the dir command will run. This security hole is closely related to
the problem with passing user input to shell commands on UNIX servers. The best way
around this problem is just to avoid using DOS batch files as CGI programs.

Keep Your Server Information Private

As cool as it sounds to add gateways to all types of UNIX utilities like who, finger,
ifconfig, netstat, or any other programs that print system information, it generally
isn’t a good idea. The more information about your server that you give out, the easier it
is for crackers to break into your system. Even providing a list of usernames is a good
start if someone is actively trying to break into your server.
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Safe Programming

Now that you’ve looked at some of the common holes that can make it easy for crackers
to break into your server, look at some good programming practices that can help ensure
that your scripts are secure.

Running Shell Commands Without Using the Shell

I warned you of the dangers of using shell commands within your CGI scripts, and espe-
cially of the dangers of using user input in shell commands. Now I’'m going to show you
a method by which you can still run shell commands without running the risk of having
the shell’s command-line parser examine the command you want to execute.

The risks associated with using shell commands involve the shell’s command-line parser.
When the shell receives a command line, it interprets some characters as instructions to
the shell itself. These are referred to as meta-characters. Take the following command
line for example:

1ls -al | grep "passwd"; cat ‘find . -name "thisfile"®

The pipe (l), semicolon, and backtick () characters are all meta-characters. They are
meant to indicate something to the shell itself, unlike the other characters on the line,
which are used to invoke commands or pass information to the command being invoked.
The security risk involved with running commands through the shell is that users will
send meta-characters that thwart the intended purpose of the shell escape. By the way,
the preceding command line contains two commands separated by the semicolon. The
first gets a full directory listing of the current directory, and prints only lines that contain
the string passwd. The second uses the find command to search the directory tree, begin-
ning with the current directory, for any files with names that contain thisfile. It then
prints the contents of those files.

One of the easiest ways to get around problem meta-characters is to simply discard them
before you send the command to the shell. Here’s a list of meta-characters that the shell
uses:

& V" *2-<>2 ()] 4{}s\nr

By using a regular expression to scan for the meta-characters and remove them, you can
prevent users from doctoring commands. You should note that the list of meta-characters
includes \n and \r, which are newline characters.

This is a fairly rudimentary method of avoiding the risks involved with the shell escape
characters. A better method is to use regular expressions to whittle down the user input to
exactly the data you need. For example, if you requested an email address or the path to
a file, you can use regular expressions and the binding operator (=~) to make sure that the
user’s input is valid before you send it along to the command line.
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In Perl, you can also call external programs without going through the shell (which
enables you to avoid any nasty effects embedded meta-characters can have). To do so,
instead of sending the command to the shell as one long string, you can send the com-
mand name and each argument sent to the command as separate strings in a list. For
example, instead of using the command

system "grep rafec /etc/passwd";
you would use the following construct:

system "grep", "rafec", "/etc/passwd";

Summary

Remember that when you write CGI programs for use on the Web, they can potentially
be accessed by millions of people. At least a few thousand of those people probably
don’t have the best intentions, so you should always have security in mind. By keeping
the guidelines presented in this lesson in mind, and by testing your CGI scripts rigor-
ously, you can avoid intrusion by most crackers.

Q&A

Q What are denial of service attacks?

A Denial of service attacks are designed to deny access to a computer rather than to
break into it. They usually involve sending a lot of data over a network to a com-
puter so that it’s overwhelmed and can’t respond to legitimate requests. There have
also been some bugs that enable malicious people to send certain commands to a
computer that cause it to crash. Most of these attacks work on the network level
and are usually corrected by patches released by operating system vendors. This is
one reason why you should always stay up-to-date on the latest security issues.

Q How can I stay up-to-date on security issues?

A There are a number of excellent Web sites that provide security information.
Security Focus (http://www.securityfocus.com/) provides all sorts of security
news and information, and is home to the well known Bugtraq mailing list.
Windows users might find the NTBugtraq (http://www.ntbugtraq.com) site and
mailing list more useful.

Q What should I do if someone breaks into my Web server?

A Don’t panic. If you suspect that someone has broken into your system, you should
consult the CERT Intruder Detection Checklist available at

http://www.cert.org/tech_tips/intruder_detection_checklist.html
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Following the steps on this checklist should reveal whether your system has been
compromised, but it may not, depending on how skillful the attacker is. It may be
necessary to bring in a professional security consultant to get a handle on things.
If you find that your system has been compromised, you should take the system
offline and follow the instructions in the CERT document “Steps for Recovering
from a UNIX or NT System Compromise,” assuming your server runs a UNIX
derivative. The document is available at

http://www.cert.org/tech_tips/root_compromise.html

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz

1. Why is it important to scan form input for meta-characters?

2. Why is it a bad idea to store CGI scripts under the document root directory?

3. What causes a buffer overflow?

Exercises

1. Search the Internet for security information on the operating system that runs on

your server. Each operating system has distinctive security issues, and you should
always be sure that you’ve corrected any known problems with the operating sys-
tem that you use on your server.

Check out the CERT intruder detection checklist and be sure your system hasn’t
already been compromised. Familiarize yourself with the logging mechanisms and
other security facilities provided with your server’s operating system to make sure
you know what to do if your system is compromised.

Quiz Answers

1.

You must scan form input for meta-characters so that they aren’t passed on to the
shell and interpreted, causing trouble.

. Storing CGI programs in a document directory can be dangerous because it’s pos-

sible that the source code could be downloaded by users.

A buffer overflow is caused when more data is placed in a variable than it was
designed to hold.
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Creating Custom Error
Documents

What can make your Web site more user friendly when something goes
wrong? The answer is displaying a custom error document. When an error
occurs, the Web server usually displays a default error document. Most Web
servers allow you to specify that custom documents be substituted for the
default ones. In this hour, I'll discuss how to configure your Web server to
use custom error documents as well as how to write CGI scripts that display
them.

In this hour, you’ll learn

* What exactly error documents are
* How to set up your Web site to use custom error documents

¢ What custom error documents should contain

What Is an Error Document?

Whenever you request a URL that no longer exists, or you enter the wrong
username and password trying to view a page that is protected using basic
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authentication, you’re met with an error document. Most Web servers have default error
documents for each type of error, and also allow the server administrator to configure
things so that another document or CGI program can be called to override the default
documents. The document in Figure 23.1 is the default document for a 404 Not Found
error from the Apache server.

FIGURE 23.1

A typical document
generated for a 404

404 Not Found - Mozilla {Build ID: 20020530123
T Bl Edt Vew Go Hookmarks Tooks Wndow Help

i @@ @ [ httpd zpache.orgjnot 2 redl_page [3]] @ ®0

Not Found error.
Not Found

The requested URL /not_a_real_page was not found on this server

Apache/2.0.39 Server at httpd apache.org Port 80

o @ (3' @}1 @4 Decussert: Dane (0511 sees) | E—

Internet Explorer, in a bid to be helpful, hides error documents behind a
built-in error page, unless they are larger than 512 bytes. It assumes that
anything smaller is the default page sent by the Web server, and sticks its
own page in there instead. If you create your own useful error pages, make
sure that the output is larger than 512 bytes if you want your users to see
them.

Documents like the one in Figure 23.1 get the point across that there is a problem with
the request. However, they don’t do much to help the user find their way to the content
that they were looking for, or resolve the problem in a way that would make them eager
to return to your Web site.

This problem is exaggerated by the fact that many Internet users find pages using a
search engine. If you’ve ever reorganized your content and changed the URLs for some
of your pages, there’s a good chance that users will find the old URLs to those pages
through a search engine and come up empty when they try to visit your site. Chances
are, if a user tries to visit your site and sees an error document instead, they won’t come
back anytime soon. Obviously, when you’re designing a site, it’s a good idea to try to
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structure it so that as few URLSs as possible change over time. Sometimes older content is
moved aside as a site is revised, however, and it helps to make it as easy as possible for
users to find current content when the page they’re looking for isn’t available.

To minimize the shock when a user encounters an error on your site, you can create cus-
tom error documents. These documents can simply include a link to your home page and
an email address for reporting the problem, or they can automatically look up the new
location of the page and redirect users to that location. In any case, by creating cus-
tomized error documents, you can give users the opportunity to locate useful information
on your site, even if their first attempt to enter the site fails. Figure 23.2 is an example of
a customized document that is generated when a user tries to access a non-existent page
on the Washington Post Web site.

FIGURE 23.2 [ Error - Mozilia (Bulld ID: 2002053012}
A customized 404 Not | 52 5t Ven o Eeomaris Tods Mndow tep
i
Found error document ®@ @ [S nuw amfrot hese e @ &
Jrom the Washington washingtonpost past | 6o to mywashingtonpost

Post Web site. CTUCR News | Onpolitics | Entertainment | Live Online | Camera Works § Marketplace f WashingtonJobs |

We are unable to locate the page you requested.
The page may have moved or may no longer be available.

The most current washingtonpost.com articles can be
found on our homepage.Our site Index is also available for
sections and features on washingtonpost.com.

Search Search our paid Archives for

MNews = articles from 14 days ago
@ back to 1977

For incorrectly linked articles or features, please send
e-mail to our Customer Care team. We appreciate your
help!

@ Copyright 2002 The Washington Post Company

As you can see, the error document still uses the site’s overall look-and-feel, and pro-
vides a search form so that the user can find what he’s looking for. Even though the user
requested a page that does not exist, the document he is presented with is still somewhat
inviting. That’s a big improvement over the default error document in Figure 23.1, which
practically screams “Go away! ”’

Configuring Your Web Server for Custom
Error Documents

Before you can use custom error documents, you have to set up your Web server to send
your custom documents instead of sending the default ones. Custom error documents can



| 428

Hour 23

be plain HTML documents or they can be generated dynamically using CGI scripts. This
section includes instructions on setting up pointers to custom error documents on several
popular Web servers.

The Apache Web Server

The Apache Web server has very robust support for custom error documents. You can
specify custom error documents in a wide variety of contexts. For example, you can
modify the global configuration files to specify specific error documents for the entire
server, for virtual hosts served by the server, or for specific directories on the server. You
can also modify the .htaccess files to specify custom error documents for Web pages
that are governed by that file.

)
7 " In order to specify custom error documents from within an .htaccess file,
e — you must have the FileInfo override turned on for the Web server.

The ErrorbDocument directive is used to specify the location of custom error documents,
as well as the errors to which they are sent in response. The ErrorDocument directive is
a member of the core group of configuration directives, so any Apache Web server
installation should support the directive. If you want to specify a new ErrorDocument for
the entire server, you should probably place this directive in the httpd.conf file. In the
past, this directive would have been placed in the srm.conf file, but these days all the
server-wide configuration directives live in httpd.conf; srm.conf has fallen into disuse.

The syntax for the ErrorDocument directive is
ErrorDocument error-code document-location
Error responses can be configured in four different ways:

* Print the message hard coded into the server. This is the default response.
* Print a different message, specified using the ErrorDocument directive.
* Redirect the user to a local URL.

e Redirect the user to a URL on another Web server.

The default configuration simply prints a basic error message and sends it to the user,
which is not very exciting or informative. The second option, a custom message, is con-
figured by placing the text of the message on the same line in the configuration file as
the ErrorDocument directive. To change the error message for a 404 error, for example,
all you have to do is add the following line to a configuration file that affects the URL
the user is looking for:
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ErrorDocument 404 "Sorry, I couldn't find that document..."

The third option sends the visitor to another URL on the Web site. To specify the Web
site, all you have to do is add the relative location of the error document to a configura-
tion file using the ErrorDocument directive:

ErrorDocument 404 /cgi-bin/404_response.cgi

The final option is to send the user to an external Web site. Any ErrorDocument line in
which the document location begins with http: is considered to be an external link, even
if the URL points to a document on the local Web server:

ErrorDocument 404 http://home.netscape.com

7 Q, Links to external error documents will not work for 401 Unauthorized errors
\ M because of the way basic authentication works.

¢

Using HTML to Create a Basic Error
Document

At a minimum, an error document should tell the user what went wrong, provide a link
to your site’s home page, and send an email to the site administrator. Errors are logged
by the server, but it’s still polite to give users the opportunity to tell you what went
wrong when they tried to view your page.

For example, Listing 23.1 shows what a basic error document for 404 Not Found errors
could be.

Listing 23.1 A Sample Error Document for a 404 Error

1: <html>

2: <head>

3: <title>Document Not Found</title>

4: </head>

5: <body>

6: <hi1>Document Not Found</h1>

7: <p>The document you requested is no longer available at the location that
8: you specified. You can return to our <a href="/index.html">home page</a>

9: or send email to the

10: <a href="mailto:siteadmin@example.com">site administrator</a>.</p>
11: </body>

12: </html>
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You could create similar documents for the other error messages. An error that practi-
cally demands a custom document is the 461 Unauthorized response. If you are using
basic authentication, you should create a custom document for users who aren’t autho-
rized, so they can either figure out why they’re not allowed in, or go to a page where
they can apply to be allowed in. If the error page resides on your intranet or on a site
used by a specific community of users, it also might make sense to include contact infor-
mation for support staff on your error pages.

Your custom error documents should reflect the look-and-feel of your Web
site. If people have been to your site before and they get an error document
that looks like your site, they'll get the “Hey, I'm in the right place” feeling
even though their request turned up an error. Hopefully users can follow a
link on your error document and be on their way to the information they're
seeking.

S

Using CGI to Create an Advanced Error
Document

CGI offers you a lot of flexibility in creating custom error documents that you just don’t
get from building a plain HTML error document. The problem with straight HTML is
that no matter which page the user requested, or how he got to the page, he still gets the
same error message. Through the use of CGI scripts, you can create dynamic error docu-
ments that provide customized content depending on what the user is looking for.

Environment Variables for Error Documents

When a CGI program is called as the result of an error, Apache (and other NCSA-
compliant Web servers) set three environment variables that aren’t part of the normal
CGI environment. These variables contain information about the user’s request that are
helpful in constructing an error document. These environment variables are described in
Table 23.1.

TaBLE 23.1 Environment Variables for Error Documents

Variable Contains

REDIRECT_REQUEST The full request that caused the error, including the request
method, path to the file, and protocol.

REDIRECT_URL The URL that actually caused the error.

REDIRECT_STATUS The status code that would have been sent to the user had the

request been successful.
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Linking Back from the Error Document to the
Referring Page

One common feature of error documents, particularly those received with 404 errors, is a
link back to the referring page. This enables the user to at least go back to the page that
they came from, and perhaps inform the person who runs that site (assuming it’s not a
search engine) that their link is no longer working.

The page with the link that led to the current page is stored in an environment variable
by the Web server, so that you can use it in your CGI scripts. Thanks to the presence of
the HTTP_REFERER variable, creating a document that links back to the referrer is really
quite simple. Listing 23.2 contains sample code that demonstrates how to create the
referrer link. The document generated by the script is shown in Figure 23.3.

Listing 23.2 An Error Document That Sends the User Back to the Referring Page

#!/usr/local/bin/perl
use CGI;

my $query = new CGI;
print $query->header;

0N O~ WN =

print <<HERE;

9: <html>

10: <head>

11: <title>Document Not Found</title>

12: </head>

13: <body>

14: <hi1>Document Not Found</h1>

15: <p>The document you requested is no longer available at
16: the location you specified. You can return to our

17: <a href="/index.html">home page</a> or send email to
18: the <a href="mailto:webmaster\@example.com">webmaster</a>.

19: </p>

20: HERE

21:

22: if ($ENV{'HTTP_REFERER'}) {

23: $referrer = $ENV{'HTTP_REFERER'};

24: print "<p>You can also go back to the referring page:<br />\n";
25: print "<a href=\"$referrer\">$referrer</a></p>\n";

26: }

27: print "</body>\n</html>\n";
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= The @ character has to be escaped using the \ character within strings in

=R

7z Perl. If you leave an @ inside a quoted string without escaping it first, your
“‘ 7 program will fail to compile with a syntax error.

FIGURE 23.3 " Document Not Found - Mozl (Bulld ID: 2002053012] EER)

An error document il B PR s vy ) 1)

v
Containing a link back @@ @ [ http:ffre3.orafockefcgiadfscripte 23 wbatever him @ @ @0

to the referring page.
ferring pag Document Not Found

The document you requested is no longer available at the location you specified. You can return to our home
page or send email to the webmaster.

You can also go back to the referring page:
http/rc3.org’boaoks/cgil4/scrpts/2 3 /index hitml

== e

_o @ @ G; @ Docursent: Done (0,131 secs)

Creating Custom Links from the Error Document

Let’s say you have a relatively small site with only a few directories of HTML docu-
ments. For each of these directories, a known file provides links to all the documents
under that directory. In addition to, or instead of, providing links back to the referring
page, you can create a program that selects the appropriate page within the site to send
the user to, and create a link to that page.

Basically, this program takes a look at the requested path and compares it to the paths of
the existing sections of the site. If the requested path matches, the program supplies a
link to a page that hopefully contains current information that the user will find useful.
On the other hand, if the user has entered a path that doesn’t fit into any of the known
sections of the site, the program provides them with a link back to the referring page.
Listing 23.3 contains the source code for the program.

Listing 23.3 A 404 Handling Program That Redirects Users to the Proper
Section of a Site

: #!/usr/local/bin/perl

1
2:

3: use CGI;

4: my $query = new CGI;
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print $query->header;

print <<HERE;

<html>

9: <head>

10: <title>404 Not Found</title>

11: <head>

12: <body>

13: <h1>404 Not Found</h1>

14: <p>The document that you requested was not found on the server.</p>

15: <p>You can try looking at the index for that section of the Web site:</p>

16: <p>

17: HERE

18:

19: (undef, $main_path) = split /\//, $ENV{'REDIRECT_URL'};

20:

21: if ($main_path eq "football") {

22: print "<a href=\"/football/index.html\">Football Index</a>\n";
23: }

24: elsif ($main_path eq "baseball") {

25: print "<a href=\"/baseball/index.html\">Baseball Index</a>\n";
26: }

27: elsif ($main_path eq "basketball") {

28: print "<a href=\"/basketball/index.html\">Basketball Index</a>\n";
29: }

30: else {

31: print "<a href=\"/index.html\">Go to the home page.</a>\n";
32: }

33:

34: print "</p></body></html>\n";

First, the program prints out the first part of the Web page. It then examines the
requested URL to see under which directory the file being searched for is located (the
program assumes that the site is logically organized with a separate subdirectory for each
topic). The program prints a link to the appropriate index page for each subdirectory. If
the link isn’t under one of the known subdirectories, the program prints out a link to the
home page for the site. The document generated by the script is shown in Figure 23.4.

Of course, I could write a more complex program that examines the path even more
closely and tries to make a really educated guess about what the user was looking for. If
the user tried a URL that ended with a .htm extension, for example, the custom error
message could check to see whether there is a file in the same location with a .html
extension instead, and point the user toward that file. Listing 23.4 contains the source
code to the program.
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FIGURE 23.4 [ 404 Not Found - Mozilla [Build ID: 2002053012}
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Listing 23.4 A Program That Attempts to Determine the Proper Extension for a
Missing File

: #!/usr/bin/perl

1
2:
3: use CGI;

4: my $query = new CGI;

5: print $query->header;
6:
7
8

1 print <<HERE;
¢ <html>
9: <head>
10: <title>404 Not Found</title>
11: <head>
12: <body>
13: <h1>404 Not Found</h1>
14: <p>The document that you requested was not found on the server.</p>
15: <p>
16: HERE

18: $extension = substr($ENV{'REDIRECT_URL'}, -3);
19: if ($extension eq "htm" or $extension eq "HTM") {

20: if ($extension eq "htm") {

21: $path_to_file = $ENV{'DOCUMENT_ROOT'} . $ENV{'REDIRECT_ URL'} . "1";
22: $url = S$ENV{'REDIRECT_URL'} . "1";

23:

24: elsif ($extension eq "HTM") {

25: $path_to_file = $ENV{'DOCUMENT_ROOT'} . $ENV{'REDIRECT_URL'} . "L";
26: $url = $ENV{'REDIRECT _URL'} . "L";

27: }

28: if (-e $path_to file) {

29: print "Perhaps the file you're looking for is located at \n";
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30: print "the following URL:\n";

31: print "<a href=\"", $url, "\">", $url, "</a>\n";

32: }

33: }

34: else {

35: print "You can go to our <a href=\"/index.html\">home page</a>.\n";
36: }

37: print "</p>\n";

38: print "<p>You can also return to the ";
39: print "<a href=\"", $ENV{'HTTP_REFERER'}, "\">referring page</a>.</p>\n";
40: print "</body>\n";

41: print "</html>\n";

Like the other two programs, this one first prints the standard HTML section of the error
document. It then takes a look at the URL that was requested. If the extension of the
requested file is .htm (or .HTM), the program tries to check and see whether the file exists
with the .html extension instead. It does this by putting the DOCUMENT_ROOT and
REDIRECT_URL environment variables together in order to get the absolute path to the file,
and putting the 1 on the end to create the filename to test. The program then uses if (-e
$path_to_file), which tests to see whether the file location stored in the
$path_to_file variable exists (-e is an operator that checks for the existence of a file).

If the file the user is looking for exists (with the new extension), the script points the user
in the direction of the file. If the file doesn’t exist, a link back to the home page is
printed instead. A link back to the referring page is offered as well.

Some of the environment variables used in these three examples may not be

available with certain Web servers. You should research the environment
Qf/ variables that are set by the server for the CGI environment and find the
appropriate ones to get the information you need. To find out which envi-
ronment variables are available for your CGlI scripts, create a small CGl pro-
gram that includes the statement print %ENV;, which prints the names of all
the environment variables and their contents.

Handling a “Not Found” Error

Most Web sites are redesigned periodically to add new information to the site, reorganize
existing information, and update the look-and-feel. Most of the time when a site is
redesigned, some stuff gets moved around. A popular page that was buried deep within
the site might get moved closer to the top, and various sections of the site are generally
moved around as part of the process.
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Unfortunately, this has a big impact on visitors who’ve bookmarked pages within your
site, and also on potential visitors who are pointed to your site by search engines. The
indexes in search engines generally aren’t up to date. There are hundreds of millions of
pages on the Web, and it’s nearly impossible to keep track of all of them. Not only is it
difficult for sites to keep track of all the new pages on the Web, but it’s also challenging
for them to know when to discard old ones. In any cases, pages that were moved or
removed months ago might still be in the indexes of popular search engines, waiting for
users to find them.

One solution to this problem that’s often advocated is simply never killing links on your
site. You never know who’s linking to you, so it’s best to just keep everything around
indefinitely for fear of driving visitors away. Rarely is this a workable solution 100 per-
cent of the time. Let’s say you move from a static HTML site to a template-driven sys-
tem. Rather than applying new designs to every old static HTML page on your site, it’s
easier just to remove them.

This example contains a script that can ease the pain of moving resources from one place
to another on your site. It has a list of old URLs and the new URLs that they map to.
When a user tries to pull up a page using the old URL, it looks it up in the list and auto-
matically refers them to the new URL, with a reminder that they should change their
bookmark to reflect the new location.

First, let’s look at the data file used by the program. Each line represents a record in the
file. The old URL and new URL make up each record, and are separated by tabs. Here is
the data file:

/some_page.html /some_other_page.html
/toc.html /sitemap.html

Note that the file could just as easily contain hundreds of lines of data. In this case, there
are only two URLs that have been moved. Now let’s review the source code for the
script, which appears in Listing 23.5.

LisTiNG 23.5 A 404 Script That Redirects Users from Old File Locations to New

#!/usr/local/bin/perl

use CGI;
use CGI::Carp;

my $query = new CGI;
my $new_urls_file = "new_urls.txt";
my $new_location;

O~NOO O~ WD =
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10: # REDIRECT_URL is a special environment variable set when an
11: # error occurs
12: my $requested url = $ENV{'REDIRECT URL'};

13:

14: open (URLS, "< $new_urls_file")

15: or die "Can't open $new urls file";
16:

17: while (<URLS>) {

18: my ($old url, $new url) = split /\t/;
19: if ($old_url eq $requested_url) {
20: $new_location = $new_url;

21: last;

22: }

23: }

24:

25: close URLS;

26:

27: print $query->header;
28: print "<html>\n<head>\n<title>";

29:

30: if ($new_location) {

31: print "Page Moved";

32: }

33: else {

34: print "Requested URL Not Found";

35: }

36:

37: print "</title>\n</head>\n<body>\n";

38:

39: if ($new_location) {

40: print "<h1>Page Moved</h1>\n";

41: print "<p>The page you're looking for has moved.\n";
42: print "It is now located at:</p>\n";

43: print "<p align=\"center\"><font size=\"+1\">";

44: print "<a href=\"$new_location\">$new_location</a>";
45: print "</font></p>\n";

46: }

47: else {

48: print "<ht1>Requested URL Not Found</hi1>\n";

49: print "<p>The URL you requested does not exist or has been moved.\n";
50: print "If you'd like, you can return to the \n";

51: print "<a href=\"/\">home page</a>.</p>\n";

52: }

53:

54: print "<p>If you have questions or would like to report a problem \n";
55: print "send email to <a href=\"mailto:webmaster\@example.com\">";

56: print "webmaster\@example.com</a>.</p>\n";

57: print "</body>\n</html>\n";




| 438

Hour 23

The basic structure of the script should be pretty familiar to you, but I’d like to go over
some features specifically. First, the location of the data file is specified on line 7. The
location of the file is stored in the variable $new_urls_file. On line 12, I retrieve the
URL that the user originally requested from the REDIRECT_URL environment variable, and
store it in $requested_url.

On line 14, I open the data file. The while loop that begins on line 17 iterates through all
the records in the data file and compares the old URLs to the URL that the user
requested. If it matches, the $new_location variable is set to the URL of the new loca-
tion of that page. The 1last command indicates that the loop should exit at that point.
This means that if the same old URL appears twice in the file, the first new URL
assigned to it will be used.

At this point, it’s time to start printing out the HTML for the page. First the header and
initial HTML is printed. When the script reaches line 30, it determines whether a new
URL was found that corresponds to the requested URL. If so, then the “Page Moved”
title is printed. If not, the title indicates that the file was not found.

The same logic appears on line 39. If there is a new URL corresponding to the URL
requested, that URL is printed along with a link to the new location for the page. If not, a
generic Page Not Found message is printed. After that, a brief message containing the
site administrator’s email address and the ending HTML are printed. An error document
for a page that has moved appears in Figure 23.5, and an error document for a missing
file appears in Figure 23.6.

FIGURE 23.5 | Page Moved - Mozilla {Build ID: 2002053017]
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FIGURE 23.6 404 Not Found - Mozilla [Build ID: 2002053017] CE&
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Handling an “Unauthorized” Error

As you learned earlier in the book, the 401 Unauthorized error is sent to the user when
she fails to enter the correct username or password for a site that requires the user to log
in. Unfortunately, the default error documents for the 401 error aren’t very descriptive, as
you can see from Figure 23.7.

FIGURE 23.7 | 401 Authorization Required - Mezilla (Build ID: 2002053012) WEE
A standard error doc- Vg wt pen g Bt S MRl
ument from the 401 @@ : @ ) [3 hpyrerargh forotzcied ol @ @@o

Unauthorized error.

Authorization Required

This server could not verify that you are authonized to access the document requested. Either you supplied the
wrong credentials (e g., bad password), or your browser doesn't understand how to supply the credentials
required.

Q© & @& @ & cocurent: pone (2333 55} —

If your site uses authentication, you should provide users with an error document that
explains why access to the page wasn’t granted if they fail to log in correctly.
Furthermore, if you run a public site, you should explain how users can gain access on
the error document.
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Custom error documents for 404 errors are often dynamically created by CGI scripts,
depending on which page the user was looking for, and usually include a link back to the
referring page. On the other hand, error documents for 401 errors can usually be regular
HTML files that explain to users why they can’t access the page, or what they need to do
to register.

Listing 23.6 shows an example of an HTML document that you could use as the docu-
ment that appears for 401 errors.

LisTiING 23.6 An Error Document for a 401 Error

1: <html>

2: <head>

3: <title>Unauthorized</title>

4: </head>

5: <body>

6: <hi1>Unauthorized</h1>

7: <p>

8: Sorry, the username or password you entered was incorrect. You can go
9: back to the <a href="/restricted_site/">restricted site</a>, or go to
10: the <a href="/register.html">registration page</a>.

11: </p>
12: </body>
13: </html>

Summary

In this hour, you learned how to configure Web servers to use custom error documents,
and I gave you some ideas for creating custom error documents to use on your Web site.
Informative error documents can really reduce the support load on your Web site because
users have a better chance of figuring out what’s going on when they try to load a page
but get an error instead.

Q&A

Q Can I create custom error documents for errors other than 401 and 404?

A Yes, but it’s not as important to do so as it is for the two most common errors. One
is 403 Access Denied, which is returned when the browser doesn’t have permis-
sion to access the requested file and is usually caused by a file permission problem.
The other is 500 Server Error, which is almost always the result of a bug in a
CGI script that prevents it from sending the appropriate header information.
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Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.

Quiz
1. What causes 401 errors?

2. Why are custom error documents usually created by CGI scripts rather than static
HTML documents?

Exercises

1. Try creating some custom error documents for your own server, if you administer
one. Your users will appreciate it.

Quiz Answers

1. 401 errors occur when a user fails to submit the correct username and password
when he tries to access a page protected using Basic Authentication.

2. Custom error documents are often built using CGI scripts so that they can make
use of the URL of the page the user tried to view, or the referring URL.
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Server Side Includes

Server Side Includes (SSI) are a kind of shortcut around CGI. As you know,
a CGI program is external to your HTML page and can generate complex
content, which is provided to the Web browser. A Server Side Include, on
the other hand, is a simple command you place within an HTML page that
adds functionality—such as reading an external file, inserting the current
date or last file-modification date, or executing a program and inserting that
program’s output into your page. It’s true that SSI doesn’t provide nearly the
same level of interaction for your users as CGI does. However, the number
one advantage of SSI is that it saves you lots of work when you need the
same HTML code snippet in many pages. Like CGI programs, Server Side
Includes are processed on the server before a response is sent to the browser.

The following topics are covered in this hour:

* How SSI works in general

* How to get SSI to work with some popular Web servers
* An overview of SSI directives

» Taking advantage of SSI in the design of a site

» Using Apache’s extended server-side includes
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How Server Side Includes Work

As you already know, when a user sends a request for a CGI script to the Web server, the
server sends the request to the CGI script and then sends the data that the script returns
back to the user that requested it. Server side includes work a bit differently. An SSI page
is any page that the server parses for SSI directives. SSI directives are commands embed-
ded in HTML comments that the Web server parses and replaces with whatever the
directive calls for.

Unlike CGI programs, which are generally set apart in their own directory, cgi-bin, SSI
pages are located in your Web directories with your regular HTML pages. Your Web
server has to be configured to tell which files are regular HTML documents and which
ones are SSI files. Generally, you configure your Web server to parse files with certain
extensions for SSI directives. Most often, the extension .shtml is associated with SSI. If
you want to use SSI with every page on your site, it might just be easier to configure
your Web server to files with the .html extension for SSI directives.

When an SSI page is requested by a user, the Web server reads the file and interprets the
directives in the file. It then substitutes the results of the directive in the file for the direc-
tive itself. For example, if you embed a directive in your file that looks up the current
time and date, the Web server places the current time and date on the page in place of the
directive.

The directives themselves look similar to HTML comments. They are embedded in the
file wherever the information that the directive returns is to be displayed on the rendered
page. Each directive is interpreted separately, so if you include lots of them in your
pages, the performance of your Web server can suffer.

VQ
\

3

Each SSI directive is interpreted individually, so if you include lots of them in

2 your pages, the performance of your Web server can suffer.

Setting Up Your Web Server for SSI

Before you can start creating SSI pages for your Web site, you need to configure your
Web server so that it can recognize which files to scan for SSI directives. The method for
specifying which file extensions belong to SSI documents varies, depending on which
Web server you’re using and the platform on which it runs.

Configuring your Web server to scan all files with the .html extension for SSI directives
can place an additional processing load on your Web server, but only administrators run-
ning extremely high-volume sites need to worry about it. Most Web servers are powerful
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enough that the increase in server load this directive causes won’t affect the performance
of the Web site. The rule of thumb is to go ahead and use SSI in designing your Web site
if you want, but it should be the first thing you remove if your Web server’s performance
starts to degrade to a point where it’s refusing connections.

There is also a security problem. Let’s say that you have a guest book CGI program on
your Web site that provides a form where visitors can enter a short message that will be
displayed on a page. If your server is set up to parse all HTML documents for SSI direc-
tives, and the user enters a directive that deletes an important file (like your server’s log
file) or prints the server’s password file as part of the page, that directive will be exe-
cuted when the page is rendered. Anytime you set up your server to look for SSI direc-
tives in all of your HTML documents, you have to be doubly careful with input from
forms.

Apache

To configure Apache to interpret SSI pages, you need to make changes to two configura-
tion files.

First, you have to specify the extensions that you want to associate with SSI files in the
appropriate configuration file. (Recent versions of Apache consolidate all configuration
directives in httpd.conf; older versions keep this type of stuff in srm.conf.) To set up

files with the .shtml extension as SSI documents, you should add the following line to
the file:

AddType text/x-server-parsed-html .shtml

To specify other extensions as SSI documents, you can add additional lines to the config-
uration file, replacing the .shtml extension in the preceding example with the extension
of other SSI documents.

If you want the Web server to parse all the HTML documents on your Web site for SSI
directives before it sends them, you can add the following line to your configuration file:

AddType text/x-server-parsed-html .html

There is also a security problem. Let’s say that you have a guest book CGI program on
your Web site that provides a form where visitors can enter a short message that will be
displayed on a page. If your server is set up to parse all HTML documents for SSI direc-
tives, and the user enters a directive that deletes an important file (like your server’s log
file) or prints the server’s password file as part of the page, that directive will be exe-
cuted when the page is rendered. Anytime you set up your server to look for SSI direc-
tives in all your HTML documents, you have to be doubly careful with input from forms.
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To use SSI on Apache Web servers, you also need to indicate which kinds of directives
you will allow in the access configuration file. To allow directives that display environ-
ment variables and file statistics, enable the Includes feature. To allow directives that
execute external programs, including system commands and CGI applications, enable the
ExecCGI feature. The reason these two are split into different permissions is that
enabling ExecCGI is a security risk, the Includes feature isn’t. You should only enable
ExecCGI if you have a very specific need to use it. Enabling Includes is safer, so you
don’t have to worry as much when you enable it. For example, to enable both of these
options, you would embed the following line in either the httpd.conf, access.conf, or
.htaccess file:

Options Includes ExecCGI

Microsoft Internet Information Server

Microsoft IIS only supports the #include directive, which inserts the contents of a file
into the Web page where the directive appears. You don’t need to make any configuration
changes to enable this feature. Generally, if you want to do much with includes and
you’re using IIS, it’s easier just to make your pages ASP pages and use the include facili-
ties built into that platform.

Using SSI Directives

Let’s look at a simple example of embedding SSI directives in a page. The syntax for SSI
directives is very similar to HTML comments. There’s a good reason for this. If for some
reason you used SSI directives in a document that the Web server thought was a normal
HTML file, the Web browser would interpret the directives as comments instead of dis-
playing them as part of the page. The basic format for SSI directives is

<!--#command parameter="argument"-->

With SSI directives, punctuation counts. Be sure to use all the punctuation
exactly as it appears in the preceding example. Specifically, it is important
not to put a space between the <! -- and the # sign, or between the closing
quotation marks and the end of the directive, - ->. SSI directives are also
case-sensitive, so both the directive and the parameter should be lowercase.

S

flastmod

Listing 24.1 shows an example of a page that uses an SSI directive to indicate when the
page was last modified.
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LisTiNG 24.1 A Page That Includes the flastmod Directive

1: <html>

2: <head>

3: <title>Current Weather</title>

4: </head>

6: <body>

7: <p>

8: The current weather is a balmy 108 degrees with 90% humidity. You can
9: expect gale force winds for most of the day, accompanied by torrential
10: rainstorms and tornado activity.

11: </p>

12:

13: <p>

14: Last modified: <!--#flastmod file="weather.shtml"-->
15: </p>

16: </body>

17: </html>

Figure 24.1 shows what this page looks like in a browser.

FIGURE 24.1 [ Current Weather - Mozilla (Build ID: 2002053012] EIER
An HTML page that BiigeTTed. e Gl pokmeris’ oo i | e

L] —
uses an SSI directive to @@ - @ ) [% hupiifes.erafsocks miadfseripts 24 /weather shiml @ @ @@o

pnnt the date the -ﬁle The current weather is a balmy 108 degrees with 90% hommdity. You can expect gale force winds for most of
was last modified. the day, accompanied by terrential rai and tomado activity.

Last modified: Friday, 05-Tul-2002 15:01:44 EDT

& @& & @ cocumsr: Done (024 52e5)  — | LR

This page has a brief blurb about the current weather. At the bottom is the flastmod
directive, which inserts the date and time when the file specified in the file parameter
was last modified. In this case, the file being viewed, weather.shtml, is the one speci-
fied in the file parameter of the directory. This SSI directive is useful because it tells
viewers of the page exactly how current that weather information is.

The flastmod directive can be used to insert the last modified date of any file, not just
the one that’s currently being viewed. For example, let’s say you used the include
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directive to insert the file weather.txt into your document. The last modified date that is
relevant to the user is probably the one for the weather. txt file, not for the HTML doc-
ument that it is embedded in. To print that date, you would use this directive:

<!--#flastmod file="weather.txt"-->

SSI Directives

The other SSI directives are similar to the flastmod directive in their basic syntax, but
they provide lots of flexibility in designing dynamic Web pages.

#echo

The echo command inserts the value of an environment variable in the page. The syntax
of the #echo directive is

echo var="variable name"

The variable can be any environment variable that’s defined on the Web server, including
any of the CGI environment variables set by the Web server. There are also several envi-
ronment variables associated specifically with SSI. Table 24.1 lists SSI-specific environ-
ment variables.

TaBLE 24.1 SSI| Environment Variables

Variable Contains

DOCUMENT_NAME The filename of the current document.

DOCUMENT_URL The URL of the current document.

QUERY_STRING_UNESCAPED The query string sent with the request, decoded with all
shell characters escaped using the backslash character.

DATE_LOCAL The current date according to the server’s clock.

DATE_GMT The server’s current date setting in Greenwich Mean Time.

LAST_MODIFIED The date and time when the current file was last modified.

The echo directive is an alternative to the flastmod direc-
tive. However, unlike flashmod, LAST MODIFIED applies to
the current file only.

#include

You can use the #include directive to insert the contents of a text file directly into a doc-
ument. For example, if you want to insert the current weather forecast on many pages on
your site, but you don’t want to make changes to every one of those places whenever the
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weather changes, you can use the #include directive to automatically read the contents
of a file with the weather report into your pages whenever a user requests them.

There are two parameters for the include directive: file and virtual. The file direc-
tive specifies the location of the file you’re including, relative to the location of the file in
which the directive appears. So, to include a file named weather. txt in an HTML docu-
ment that appears in the same directory, use this directive:

<!l--#include file="weather.txt"-->

On the other hand, the virtual parameter specifies the location relative to the Web
server’s document root directory. If the weather report is located in the
/reports/weather.txt subdirectory of the Web server, you can use this directive in any
files that should include it:

<!--#include virtual="/reports/weather.txt"-->

#fsize

The #fsize directive inserts the size, in bytes, of the file specified in the file parameter.
For example, to insert the size of a file called visitor.log into your page, you would
use the directive:

<!--#fsize file="visitor.log"-->

#exec

The #exec directive inserts the output of an external program into the page. You can
insert the output from a regular application or from a CGI script, depending on whether
you use the cmd parameter or the cgi parameter. As you might imagine, the cmd parame-
ter launches a normal application or command, and the cgi parameter launches a CGI
script.

For example, let’s say that you want to create a page that automatically provides a list of
users logged into the Web server. The easiest way to do this is to run the who command
(if you’re on a UNIX system). To insert the output from the who command into your Web
page, include the following directive in your page:

<l--#exec cmd=/usr/bin/who"-->

On the other hand, sometimes you may want to use SSI to include the output from a CGI
script on your page. To capture the output of a CGI script using an SSI directive, you use
the cgi parameter instead of the cmd parameter. For example, the directive to insert the
output of a CGI script called guestbook.cgi is

<!--#exec cgi="/cgi-bin/guestbook.cgi"-->
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You might use this if you want to write a very simple CGI script, perhaps one that
returns the current price of a particular stock. Rather than writing a script to generate all
of the HTML for a page and insert the stock price, you can simply insert this SSI direc-
tive into the page and execute a script that prints only the number that you need. Another
case where you might use this is one where you want to include CGI-generated informa-
tion from a document that lives outside cgi-bin. If you run your own server, you can set
things up so that you can put CGI scripts in the document directories, but if you don’t,
you might have to use the exec cgi directive as a workaround.

#config

The #config directive doesn’t insert content into your Web page, but rather specifies

the format that other directives use for their output. There are three parameters for the
#config directive. The errmsg parameter specifies the error message when SSI directives
fail, the sizefmt parameter specifies the format for the #fsize directive, and the
timefmt parameter formats the output from directives that display a time and date, like
#flastmod.

Listing 24.2 shows an HTML file that demonstrates how to use the #config directive to
format the output of other SSI directives:

LisTiNnG 24.2 An SSI Document That Uses the Config Directive

1: <html>

2: <head>

3: <title>Using the config directive</title>

4: </head>

5: <body>

6: <p>This is an example of an unconfigured date:
7: <!--#flastmod file="config.shtml"--></p>

8: <p><!--#config timefmt="%r on %A, %B %e"-->

9: This is an example of a date with a configuration I specified:

10: <!--#flastmod file="config.shtml"--></p>

11: <p>There are a couple of options for the <b>sizefmt</b> option:<br />
12: <!--#config sizefmt="bytes"-->

13: bytes: <!--#fsize file="config.shtml"--><BR>

14: <!--#config sizefmt="abbrev"-->

15: abbrev: <!--#fsize file="config.shtml"--><BR></P>

16: <p>You can also create custom error messages.</p>

17: <p>If you try to act on a file that doesn't exist, the default message
18: is: <br />

19: <!--#fsize file="a_file that_doesnt_exist"--></p>

20: <p>0On the other hand, we can create a custom error message:<br />

21: <!--#config errmsg="Whoops, the file doesn't exist!"-->

22: <!--#fsize file="this_file doesnt_exist"--></p>

23: </body>

24: </html>




Server Side Includes 451|

Figure 24.2 shows this page rendered in a browser.

FIGURE 24.2 | Using the config dircctive - Mozilla {Bulld ID: 2002053012 EIER
This page uses the BlCES By s T

#config directive to ®® > @ () [S hipifct.oraboska/aisfsapis/asjconfip shint a @ @@o
Jormat the output of This is an example of an unconfigured date: Friday, 05-Jul-2002 15:32:48 EDT

other SSI directives.

Ths 15 an example of a date with a configuration [ specified: 0332:4% PM on Friday, July 5
There are a couple of options for the sizefmt option:

bytes: 904

abbrev: 1k

You ean alse create custom error messages.

If you try to act on a fil= that doesn't exist, the default message is:
[an error occurred while processing this directive]

O the other hand, we can create a custom error message:
Whoops, the file doesn't exist!

0 @ @' @ @4 Document: Dans (1,201 ses)  —

Let’s take a look at each of the parameters for the #config directive.

errmsg

The errmsg parameter enables you to set an alternative error message for SSI directives
that fail to execute properly. Let’s say you try to perform an #fsize on a file that doesn’t
exist. By default, the Apache server prints [An error occurred while processing
this directive] instead of printing the file size. This error message doesn’t really tell
the user much. You can change the error message to something that’s a bit more informa-
tive to the user:

<!--config errmsg="Whoops, the file doesn't exist."-->

sizefmt

When you use the #fsize directive to display the size of a file on a Web page, by default
the size is displayed in bytes. You can use the #config directive to display the size
rounded to the nearest kilobyte instead. To change the display to kilobytes, use this com-
mand:

<!--#config sizefmt="abbrev"-->
To change it back to bytes, you can use this command:
<!--#config sizefmt="bytes"-->

timefmt

The most flexible configuration attribute is timefmt, which enables you to change the
way the date and time are displayed by SSI directives. Let’s look again at the example I
used earlier:
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<!--#config timefmt="%r on %A, %B %e"-->

This directive changes to time format so that it appears in the browser as follows:

07:41:45 PM on Saturday, September 20

There are a number of codes that the timefmt parameter replaces with actual time and
date information when the page is rendered. In order to create a new display format, you
can choose the codes that you want to use and arrange them, along with any text you
want to include in the new format. Table 24.2 contains a list of the variables that are

available.

TaBLE 24.2 SSI Time Codes

Code Example Definition

%a Mon Abbreviated day of the week
%A Monday Day of the week

%b, %h Aug Abbreviated month name

%B August Month name

%d 01 Day

%D 08/01/03 Numerical date

%e 1 Day without the leading zero
%H 18 Hour (in 24-hour format)

%I 07 Hour (in 12-hour format)

%] 365 Day of the year

% 08 Month number

M 55 Minutes

%p AM AM or PM

%r 08:17:59 AM 12-hour time string

%S 31 Seconds

%sT 18:25:31 24-hour time

%U, SW 26 Week of the year

SHW 7 Numerical day of the week (starts on Sunday)
%y 97 Two digit year

%Y 1997 Four digit year

CDT

o°
N

Time zone
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To create a custom date format, just select the items you want and place them in the
order you want. For example, if you want a date that says Monday, May 4, 1997 at
06:30 PM, use this directive:

<!--#config timefmt="%A, %B %e, %Y at %I:%M %p"-->

Designing Pages Using SSI
Now that you understand the mechanics of SSI, let’s take a look at how to use them to
create dynamic sites and to make your sites easier to maintain.

Using the #include Directive

The most commonly used SSI directive is #include because it can save tons of labor for
Web designers, especially when the time comes to update a site long after it was
designed.

Let’s say you’ve created a site that has 200 HTML pages. Some of them are index pages
that provide links into the site, and others are pages with articles or other content for the
user to read. However, one thing that they all have in common is a navigation bar and
copyright statement at the bottom of the page. When you create the site, it’s easy enough
to use a common template that contains the copyright statement and navigation bar, so
that all your pages are consistent. However, the first time the CEO of your company says
that there needs to be a link to his home page from the navigation bar, or that the word-
ing of the copyright statement exposes you to potential lawsuits from everyone in the dog
food industry, you probably have a lot of work ahead of you.

This is where the #include directive comes in. Instead of including identical blocks of
HTML code in every page on the site (or even in most of them), it’s a lot easier to use
the same #include directive in every page to link to one block of code. So, when the
CEO asks you to make a change to the navigation bar, you just go to the included file on
the disk and make the change there. It’s then reflected in all the pages that load the file
when they are parsed.

Let’s look at an example that shows how you’d use the #include directive in an HTML
document. Bear in mind that you’re only going to see a single HTML document here, but
you could use the #include directive in any number of documents on your site to link to
the included file.

First, look at the HTML file shown in Listing 24.3.
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Listing 24.3 An HTML Document That Uses SSI to Include a Footer

1: <html>

2: <head>

3: <title>An example page</title>

4: </head>

5: <body>

6: <h1 align="center">An Example of Server Side Includes</hi>
7: <p>The actual content of the page appears here.</p>

8: <p>We can enter all the information that's unique to the page
9: in the body of the document, then we can place all the
10: standard information in a separate file that we link into
11: the page using the #include directive.</p>
12: <!--#include file="included.html"-->
13: </body>
14: </html>

Figure 24.3 shows what the Web page with the included data looks like when rendered in

a browser.
FIGURE 24.3 [ An example page - Mozdlla [Build D; 2002053012
An HTML page ¥ Be £dt Vew Go Bookmarks Took YWindow Help
hd
that loads itsfooter @@ @ [ httpefpes, ks fogiddscripts 24fncude shiml @] @ @O
using SSI.

An Example of Server Side Includes

The actual content of the page appears here

We can enter all the information that's unique to the page i the body of the document, then we can place all the
standard mformation in 2 separate file that we link into the page using the #inchide doective.

home | table of contents | search

All contents of this site are copynght© 2002

_o @ @' @ @4 Document: Done (0,161 secs)

=ili= e

For the most part, this page appears to be a normal HTML file. However, at the bottom
of the page where there normally might be some standard footer information, like a link
to the home page or to the page maintainer’s email address, there’s the #include direc-
tive instead. When the page is requested by a browser, the #include directive loads the
following code into the page:

<hr width="70%" />

<p>

<b><a href="home.html">home</a> |

<a href="toc.html">table of contents</a> |
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<a href="search.html">search</a></b>

</p>

<p>All contents of this site are copyright&copy; 2002.</p>

As you can see from the preceding example, using SSI can make it easy to automatically
load any boilerplate information that your site requires into pages. More importantly, it’s
easy to change that information later.

It's best to use absolute links and image paths in files that will be included
in other files, because the included file and the including file may not be in
the same place. Relative links are resolved from the location of the including
file, and if an included file is used in files in more than one location, relative
links are liable to break.

=
2

1z
0
¢

Last Modified Dates

One of the keys to building useful Web sites is timeliness. If the information on your
Web site is outdated, visitors probably won’t be too interested in giving it a second look.
Another key is to tell users how current the information on your page is. Many popular
Web pages now include the current date somewhere on their home page, indicating that
the page changes every day and that the user can find current information inside.

You can use the #echo directive to display the LAST_MODIFIED variable, which displays
the date that the current page was last changed. You can also use the #flastmod directive
to insert the date specified in the file parameter into the page.

You can also use the #config directive to create new time and date formats that are more
readable or look better on your page.

Using the #exec Directive

The #exec directive isn’t the most commonly used feature of SSI, but it is probably the
most powerful. Because the #exec directive executes commands on the Web server, it
can be a significant security risk, especially if the person who creates the Web pages isn’t
careful about which sorts of commands he uses.

By using the cmd parameter with the #exec directive, you can insert the output from
UNIX shell commands into your Web pages.
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Output from SSl is interpreted as part of the HTML page. Because the out-
put from UNIX commands isn’t formatted in HTML, unless you use the PRE
tag around the exec directive, the resulting HTML page can look pretty
strange.

Figure 24.4 shows how Listing 24.4 looks when rendered by a browser.

LisTiNG 24.4 Using the <pre> Tag

<html>
<head>

<title>A #exec Directive</title>

</head>

<p>Here's what <tt>1ls -al</tt> looks like without formatting:</p>
<p><!--#exec cmd="1ls -al"--></p>
<p>0n the other hand, here's what it looks like formatted with the PRE

1;
2
3
4:
5: <body>
6.
7
8

9: tag:</p>
10: <p><pre>

11: <!--#exec cmd="ls -al"-->
12: </pre></p>

13: </body>
14: </html>
FIGURE 24.4 A ffexee Directive - Mozilla {Build ID: 2002053012}

This page illustrates
the importance of
using the <pre> tag to
format the output of
UNIX commands.

¥ Ble Edt Vew Go Bookmarks Took Wndow Help

i @@ @ [ S hupsjici.orgosks ogingfscrpts/zafs shiml @] @ @0

Here's what the 12 -a1 command looks like without formatting;

total 14 drwxr-xr-x 2 rafeco users 312 Jul 9 22:17 . drwar-xr-x 21 rafeco users 512 Jul 6 2338 . -rwr-—1-- 1
rafeco users 904 Jul 5 15:32 config. shim] -rw - | rafeco users 434 Jan 15 2000 inchide shtml -rov-r--r-- 1
rafeco users 202 Jul 9 22:17 inchaded hom! -rw-r--r-- 1 rafeco users 316 Jul 5 15:53 Is shtml -rw-r--r-- 1
rafeco users 325 Jul 5 15:01 weather. shuml

On the other hand here's what it locks like formatted with the PRE tag

2 config.shoml
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) Rather than using preformatted text, it also might make sense to use cascad-
ing style sheets to style the output of an include. For example, rather than
~= <pre> you might use <div class="shelloutput"> in this case, and add
appropriate styling information to your page’s style sheet.

vt

XSS|

XSSI, or Extended SSI, is a group of advanced SSI directives that are built into the
mod_include module included with versions 1.2 and later of the Apache Web server.
These directives enable you to create more powerful server-parsed HTML documents
than you can by using standard SSI directives.

First, the following sections provide a brief overview of the directives that are available
with XSSI.

printenv

The printenv directive takes all the environment variables that are currently available in
the Web server’s environment and dumps them to the screen. This is mainly useful for
debugging purposes. If you’re trying to use environment variables with other XSSI direc-
tives, or with a CGI script, you can use the printenv directive to make sure that the val-
ues in the environment variables are what you expect them to be. The usage of printenv
is as follows:

<!--#printenv -->

set
The set directive assigns a value to a variable. You can use the variables with if state-

ments later in the document. Here’s an example of the set directive:

<!--#set var="color" value="blue" -->

if Directives

You can use XSSI to embed if directives within your documents. This enables you to
create pages that can change the data that is displayed based on a criteria evaluated using
the if directive.

There are actually four separate directives associated with if directives: if, elif, else,
and endif. The if directive tests to see whether a condition is true, and if it is, the
HTML enclosed by the XSSI directive is displayed. The elif directive is only executed
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if the previous if directive was false. If so, the elif directive is executed as though it
were a normal if directive. The HTML enclosed within an else directive is displayed if
the previous if (or elif) directive was false. The endif directive indicates the end of an
if directive (or a group of if, elif, and else directives).

Here’s an example of how if directives can be used:

<!--#if expr="$color = \"blue\""-->
<p>The color is blue.</p>
<!--#elif expr="$color = \"red\""-->

<p>The color is red.</p>

<!--#else-->

<p>I don't know what the color is.</p>
<!--#endif-->

The backslashes are used in the first two directives to escape the internal quotation marks
so that they’re not interpreted as ending the expression.

There are several test conditions that can be evaluated using the if statement, other than
just =. Table 24.3 contains a list of conditionals that can be used with the if directive.

TaBLE 24.3 XSSI Conditional Expressions

Expression Tests

(string) Returns true if string exists.

stringl = string2 Returns true if the two strings are identical.

stringl != string2 Returns true if the two strings are not identical.

stringl < string2 Returns true if the first string is smaller than the second one.

stringl <= string2 Returns true if string1 is smaller than or identical to
string2.

stringl > string2 Returns true if string1 is larger than string2.

stringl >= string2 Returns true if string1 is identical to, or larger than string2.

Istring ! is the not operator. It reverses the truth of the condition. So
(!'string) returns true if string doesn’t exist. Or, ! (string1
= string2) returns the same result as string1 != string2.

(stringl) && (string2) && is the and operator. Both of the conditions being tested

must be true for the entire expression to be true. In this exam-
ple, both string1 and string2 would have to exist for the
expression to be true.

(stringtl) || (string2) | | is the or operator. If one or both of the expressions evalu-
ate as true, the entire expression is true. In the example, if
either string1 or string2 exists, it returns true.
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Here’s a quick example of how you could use the if directive to send different content
depending on the name of the file:

<!--#if expr="\"$DOCUMENT_NAME\" = \"index.html\"-->

This is the root directory of the Web server.

<l--#else-->

This is not the root directory of the Web server.
<!--#endif-->

The code looks at the $DOCUMENT _NAME environment variable, which contains the file-
name of the current document. If the name is index.html, it displays the first sentence,
and if it isn’t, it displays the second sentence.

Summary

SSI is a kind of shortcut around CGI. It provides you with some of the same dynamic
page-building features as CGI, but it doesn’t allow nearly the level of interaction for your
users. The number one advantage of SSI is that it can save you lots of work when you
need to use the same snippet of HTML source code in many pages. You can create that
snippet as a separate file and use SSI directives to load them into each page.

Q&A

Q What’s the difference between using the exec directive to include the input
from a command and using it for a CGI script?

A When you execute a command using the exec directive, the command is executed
using /bin/sh and is not passed the data that is ordinarily provided to a CGI script
by the server. On the other hand, when you exec a CGI script using SSI, the script
is run in the normal CGI environment. All the environment variables, the query
string, and the extra path information are passed to the script.

Q Are there server-parsed HTML technologies other than SSI?

A There are lots of other server-parsed HTML products, including Active Server
Pages, Meta-HTML, and ColdFusion. Many of these products are discussed in
Hour 12, “Pros and Cons of Alternate Technologies.”

Workshop

The quiz questions are designed to strengthen the knowledge you gain each hour. The
exercises help you build on that knowledge by providing you with the opportunity to
apply it to real problems.
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Quiz
1. What is the difference between #include and #exec?

2. Why is it sometimes a bad idea to parse all your HTML documents for SSI direc-
tives?

3. How do you set a variable using SSI?

Exercises

1. Create an SSI document that sends different data depending on the time of day.
Hint: use the DATE_LOCAL environment variable.

2. Create a page that includes data from a command, a CGI script, and a file.

Quiz Answers

1. The #include directive reads the contents of a file into a page; the #exec directive
executes a program and includes its output in a page.

2. Parsing all your HTML files for SSI directives can hinder the performance of your
Web server. For most servers, it doesn’t add enough overhead to become an issue.

3. The #set directive is used to set a variable using XSSI.
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APPENDIX A

MIME Types

Table A.1 lists some the file extensions and MIME content types supported
by many popular Web servers. If your server does not list an extension for a
particular content type, or if the type you want to use is not listed at all, you
will have to add support for that type to your server configuration.
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TaBLe A.1  MIME Types and HTTPD Support

File
MIME Type What It Is (If Noted) Extensions
application/acad AutoCAD Drawing files dwg, DWG
application/arj arj
application/clariscad ClarisCAD files CCAD
application/drafting MATRA Prelude drafting DRW
application/dxf DXF (AutoCAD) dxf, DXF
application/excel Microsoft Excel x1
application/i-deas SDRC I-DEAS files unv, UNV

application/iges IGES graphics format igs, iges, IGS, IGES
application/mac-binhex40 Macintosh BinHex format hagx
application/msword Microsoft Word word, wéw, doc
application/mswrite Microsoft Write wri
application/octet-stream Uninterpreted binary bin
application/oda oda
application/pdf PDF (Adobe Acrobat) pdf

application/postscript

application/pro_eng

PostScript
PTC Pro/ENGINEER

ai, PS, ps, eps

prt, PRT, part

application/rtf Rich Text Format rtf
application/set SET (French CAD standard) set, SET
application/sla Stereolithography stl, STL
application/solids MATRA Prelude Solids SoL
application/STEP ISO-10303 STEP data files stp, STP, step, STEP
application/vda VDA-FS Surface data vda, VDA
application/x-csh C-shell script csh

application/x-director

Macromedia Director

dir, dcr, dxr

application/x-dvi TeX DVI dvi
application/x-gzip GNU Zip 9z, gzip
application/x-mif FrameMaker MIF Format mif
application/x-hdf NCSA HDF Data File hdf
application/x-latex LaTeX source latex
application/x-netcdf Unidata netCDF nc,cdf
application/x-sh Bourne shell script sh
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File
MIME Type What It Is (If Noted) Extensions
application/x-shockwave-flash ~ Macromedia Flash swf
application/x-stuffit Stuffit Archive sit
application/x-tcl TCL script tcl
application/x-tex TeX source tex
application/x-texinfo Texinfo (Emacs) texinfo,texi
application/x-troff Troff t, tr, roff
application/x-troff-man Troff with MAN macros man
application/x-troff-me Troff with ME macros me
application/x-troff-ms Troff with MS macros ms
application/x-wais-source WAIS source src
application/x-bcpio Old binary CPIO bcpio
application/x-cpio POSIX CPIO cpio
application/x-gtar GNU tar gtar
application/x-shar Shell archive shar
application/x-své4cpio SVR4 CPIO sv4cpio
application/x-svécrc SVR4 CPIO with CRC své4crc
application/x-tar 4.3BSD tar format tar
application/x-ustar POSIX tar format ustar
application/x-winhelp Windows Help hlp
application/zip ZIP archive zip
audio/basic Basic audio (usually p-law) au, snd

audio/x-aiff
audio/x-pn-realaudio
audio/x-pn-realaudio-plugin

audio/x-wav

image/gif
image/ief

image/jpeg

image/pict

AIFF audio
RealAudio

RealAudio (plug-in)
Windows WAVE audio

GIF image
Image Exchange Format
JPEG image

Macintosh PICT

aif, aiff, aifc
ra, ram
rpm

wav

gif
ief
jpg, JPG, JPE, jpe, JPEG,
jpeg
pict

continues




| 466 Appendix A

video/mpeg

video/quicktime
video/msvideo

video/x-sgi-movie

x-world/x-vrml

MPEG video

QuickTime Video
Microsoft Windows Video

SGI Movieplayer format

VRML Worlds

TaBLe A.1 continued
File

MIME Type What It Is (If Noted) Extensions
image/tiff TIFF image tiff, tif
image/x-cmu-raster CMU raster ras
image/x-portable-anymap PBM Anymap format pnm
image/x-portable-bitmap PBM Bitmap format pbm
image/x-portable-graymap PBM Graymap format pgm
image/x-portable-pixmap PBM Pixmap format ppm
image/x-rgb RGB Image rgb
image/x-xbitmap X Bitmap xbm
image/x-xpixmap X Pixmap xpm
image/x - xwindowdump X Windows dump (xwd) format  xwd
multipart/x-zip PKZIP Archive zip
multipart/x-gzip GNU ZIP Archive gzip
text/html HTML html, htm
text/plain Plain text txt, g, h, C, cc, hh, m, 90
text/richtext MIME Rich Text rtx
text/tab-separated-values Text with tab-separated values tsv
text/x-setext Struct enhanced text etx

mpeg, mpg, MPG, MPE, mpe,
MPEG, mpeg

qt, mov
avi

movie

wrl




APPENDIX B

Response Codes and
Reason Phrases

Status codes and their corresponding explanations (reason phrases) are a key
part of the HTTP specification. Normally, a Web user will only notice status
codes when something has gone wrong (for instance, the ubiquitous 404
File Not Found error). However, Web programmers should be familiar with
HTTP response codes.

Status codes are provided in four blocks. Codes from 200 to 299 are success
codes. Codes from 300 to 399 are redirection codes. Codes from 400 to 599
are error codes, but they come in two blocks. The block from 400 to 499 are
error codes where, most likely, the Web client has performed the error. The
block from 500 to 599 are error codes where the server has determined that
it itself has failed in some way. Note that the vast majority of these codes are
reserved for future use. In fact, a few defined errors aren’t all that defined
regarding what situations they are to be used in.

The following is a table of status codes and the description phrases. This
information is adapted from the Web site of the World Wide Web
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Consortium, the source of HTML, HTTP, and all things Web. My thanks to the authors
and the W3C for all their good work. Please visit

http://www.w3.org/Protocols/HTTP/HTRESP.html

for more information regarding status codes. See Hour 23, “Creating Custom Error
Documents,” for more information on creating customized responses when these error
codes are generated.

Status Code

Brief Description

Status Block

Description

200
201

202

203

204

301

302

303

304

400

OK
Created

Accepted

Partial Information

No Response

Moved

Found

Method

Not Modified

Bad request

Success

Success

Success

Success

Success

Redirection

Redirection

Redirection

Redirection

Client error

Request was fulfilled.

Following POST command,
indicates success. (Rarely
used.)

Request has been accepted
for processing, but process-
ing has not been completed.

Information regarding request
is derived from secondary
source.

Server has received and
processed request, but there’s
no information to send back.

Requested data has been
permanently moved to
new URL.

Suggests referring to differ-
ent URL for document, but
it’s not there.

Same as 302, but provides
additional information on
method for accessing redi-
rected document.

Document has not been mod-
ified as expected. Meant to
support efficient caching.

Request had bad syntax or
was inherently impossible to
satisfy.



Response Codes and Reason Phrases 469 |

Status Code Brief Description Status Block Description

401 Unauthorized Client error Parameter to this message
gives specification of accept-
able authorization schemes.
Client should retry request
with suitable authorization
header.

402 Payment Required Client error Parameter to this message
gives specification of accept-
able charging schemes.

403 Forbidden Client error Request is forbidden, likely
due to file or directory per-
missions.

404 Not found Client error Server has not found any-
thing matching URL supplied
by client.

500 Internal Error Server error Server encountered unex-
pected condition that pre-
vented it from fulfilling
request.

501 Not implemented Server error Server does not support
required facility.

502 Service temporarily Server error Server cannot process request
overloaded due to high load traffic.
Likely temporary.
503 Gateway timeout Server error Server has decided to stop

waiting for service it must
depend upon to fulfill

request. Equivalent to
Internal Error 500 but
possesses more diagnostic
value.

Many of these status codes won’t appear in everyday Web interaction. You really have to
try to make these conditions occur.






APPENDIX C

Environment Variables
and Request Headers

CGI Environment Variables

CGI programs receive information in a variety of forms. One of the most
useful of these forms is the set of CGI environment variables. Based on the
contents of these variables, a CGI program can make meaningful decisions
regarding how best to interact with the Web client that invoked the CGI pro-
gram.

CGI environment variables are provided to the CGI program by the parent
Web server process. The server creates these variables using information
derived from three different sources:

* The incoming HTTP request. This provides REMOTE_ADDR information.

* The Web server program itself. For instance, the SERVER_SOFTWARE
variable is provided by the Web server.
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e The HTTP request header provided to the Web server by the Web client. For
instance, REQUEST_METHOD, CONTENT_TYPE, QUERY_STRING, and more information is
taken from the HTTP request header by the Web server and placed into environ-
ment variables.

Some environment variables will be populated from combinations of the above sources.
REMOTE_HOST requires REMOTE_ADDR, plus the ability of the server to resolve a name for
the given IP address. PATH_TRANSLATED comes in part from the Web client-requested
URL, and in part from the directory structure of the server as determined by the Web
server software.

Some HTTP request header-derived environment variables aren’t strictly required by the
CGI specification. However, the CGI specification does outline a method for the Web
client to extend the standard set of environment variables provided to the CGI program
by the Web server. A very popular CGI environment variable that is derived from this
extension is HTTP_USER_AGENT. This environment variable contains the name of the Web
client software that is being used to invoke the CGI program, and is essential in the cre-
ation of CGI programs that generate browser-specific Web pages. Extension-derived vari-
ables are denoted by an HTTP_ prefix.

The following is a table of the standard CGI specification environment variables, along
with a few highly popular extension-derived variables. This information comes from the
NCSA CGI Specification home page at http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

CGI Environment Variable Description

AUTH_TYPE The protocol-specific authentication method used to vali-
date the user, if applicable.

CONTENT_LENGTH The byte count of the attached comment provided by the
Web client. See the CONTENT_TYPE environment variable.

CONTENT_TYPE The type of data content attached to the Web client—created
HTTP header, if any. Examples are POST and PUT.

HTTP_ACCEPT The MIME types that the client will accept, as given by
HTTP response headers. This is an extension variable, not
part of the basic CGI environment variable specification
but in extremely common use.

HTTP_USER_AGENT The browser the client is using to send the request. This is
an extension variable, not part of the basic CGI environ-
ment variable specification but in extremely common use.

GATEWAY_INTERFACE The revision of the CGI specification to which this server
complies.

PATH_INFO Extra path information, as given by the Web client.
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CGI Environment Variable Description

PATH_TRANSLATED A Web server—created translated version of PATH_INFO,
which takes the path and does any needed virtual-to-
physical mappings.

QUERY_STRING The information that follows the ? in the URL that refer-
enced the CGI program in question.

REMOTE_ADDR The IP address of the remote host making the request.

REMOTE_HOST The DNS name of the remote host making the request. If

the server cannot obtain this information, you may observe
two different actions: Either the server will leave this vari-
able unset, or it will give it the same value as REMOTE_ADDR.

REMOTE_IDENT This variable will be set to the remote username retrieved
from the server if the HTTP server and client both support
RFC 931 identification.

REMOTE_USER If the server supports user authentication and the script is
protected, this is the username they have authenticated as.

REQUEST_METHOD The method used to make the HTTP request, most likely
GET or POST.

SCRIPT_NAME A virtual path to the script being executed, used for self-
referencing URLs.

SERVER_NAME The server’s hostname, DNS alias, or IP address as it

would appear in self-referencing URLs.

SERVER_PORT The port number to which the HTTP request was sent.

SERVER_PROTOCOL The name and revision of the protocol the request came in
with. This will virtually always be HTTP.

SERVER_SOFTWARE The name and version of the Web server software answer-

ing the request.

Here’s a quick, easy, and useful Perl program that I call showenv.cgi, which will dump
all applicable environment variables:

#!/usr/local/bin/perl

print "Content-type: text/plain\n\n";

while (($key,$value) = each %ENV) {
print "[$key]\t[$value]\n";
}

Note that %ENV is the hash array that Perl uses to store environment variable information.
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Here is the output I received (through my Web browser!) after running the preceding
code on an installation I use. Names and IP addresses have been changed:

[SERVER_SOFTWARE] [NCSA/1.5]
[GATEWAY_ INTERFACE] [CGI/1.1]
[DOCUMENT_ROOT] [/var/spool/www]
[REMOTE_ADDR]  [255.255.255.255]
[SERVER_PROTOCOL ] [HTTP/1.0]
[REQUEST_METHOD] [GET]

[REMOTE_HOST] [www.mywebsite.com]

[QUERY_STRING] []

[HTTP_USER_AGENT] [Mozilla/4.04 [en] (WinNT; U) via Harvest Cache version
2.1-beta-internal-41]

[PATH] [/bin:/usr/bin:/usr/ucb:/usr/bsd:/usr/local/bin:.]

[HTTP_CONNECTION] [Keep-Alive]

[HTTP_ACCEPT] [image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,
*/*]

[HTTP_ACCEPT_LANGUAGE] [en]

[SCRIPT_NAME] [/show_env_var.cgi]

[SERVER_NAME] [www.mywebsite.com]

[HTTP_ACCEPT_CHARSET] [1s0-8859-1,*,utf-8]

[SERVER_PORT] [80]

[HTTP_HOST] [www.mywebsite.com]

[HTTP_VHOSTING_AGENT] [255.255.255.255 via www.mywebsite.com:80 to
www2.mywebsite.com:80]

[SERVER_ADMIN] [admin@mywebsite.com]

There are two points about the environment variables listed above that I would like to
make. First, some environment variables prefaced with HTTP_ are extension variables, but
they are added by the Web server and not due to the contents of the HTTP request
header. Second, the PATH environment variable is indeed an environment variable, but it’s
not a CGI environment variable. This is an artifact of the environment of the Perl script.

HTTP Request Headers

When a user types a URL into the Web client and “sends it on its way” to fetch a Web
page, the Web client uses that URL to create an HTTP request header. This request
header is sent to the Web server, which then decodes the header and sends back an
appropriate HTTP reply.

I provided many examples of simple request headers in Appendix B, “Response Codes
and Reason Phrases.” They consisted of a single GET line. Request headers can be far
more complex and extensive than that. Here is the header that my Netscape Web client
produced when I asked it to fetch the root index at a fictitious Web site:
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GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.04 [en] (WinNT; U)

Host: www.mywebsite.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: is0-8859-1,*,utf-8

The first line of this request header should look familiar enough. It’s the single GET
header command I used in the previous appendix, with a little bit extra to specify the ver-
sion of HTTP acceptable to the client. Notice that these bits of the header find their way
into the REQUEST_METHOD and SERVER_PROTOCOL CGI environment variables. The User-
Agent header line states that the Web client being used is Mozilla, which is an alias for
Netscape. The three Accept header lines are turned into the HTTP_ environment variables
shown in the preceding listing. Note that if I were to specify a URL of

http://www.mywebsite.com/mycgiprogram.cgi?this=that

and access it via a link from another page, the HTTP request header would be changed
slightly:

GET /mycgiprogram.cgi?this=that HTTP/1.0

Referer: http://www.mywebsite.com/refererlink.html

Connection: Keep-Alive

User-Agent: Mozilla/4.04 [en] (WinNT; U)

Host: www.mywebsite.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Note that the query string isn’t explicit at this point. It’s still hidden within the GET line.
The Web server is responsible for decoding this information and placing it within the
QUERY_STRING environment variable. The Referer header line will have its contents
placed in the HTTP_REFERER environment variable.

A quite different HTTP request header is generated when a form is posted to a CGI pro-
gram as an ACTION. First, here is the HTML source code:

<html><head><title>a test form</title></head>

<body>

<form method=post action=http://www.mywebsite.com/test.cgi>
<input type=text name=texttest value="first bit 'o' stuff"><br>
<textarea name=textareatest rows=4 co0ls=30> 2nd bit o stuff,
this time in a textarea.</textarea>

<input type=submit name=submit value=submit>
</form></body></html>
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Here’s the HTTP request header generated from this form:

POST /test.cgi HTTP/1.0

Referer: http://www.mywebsite.com/formtest.html

Connection: Keep-Alive

User-Agent: Mozilla/4.04 [en] (WinNT; U)

Host: www.mywebsite.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: is0-8859-1,*,utf-8

Content-type: application/x-www-form-urlencoded

Content-length: 105

mytest=first+bit+%270%27+stuff&bubba=2nd+bit+o+stuff%2C%0D%0Athis+time+in+a+text
area.%0D%0A&submit=submit

The first thing you’ll notice is that POST is the method used, rather than GET. Also, a few
new headers have been added. Content - type informs the Web server that there is content
attached to the header of the MIME type application/x-www-form-urlencoded. This is
the formal name of the standard encoding scheme encountered all the time in CGI pro-
gramming. Next, the header divulges the length in bytes of the attached content. Finally,
we see the content of the submitted form, with spaces translated into +s and special char-

acters translated into a %-escaped hex code. This content is provided to CGI programs
through the STDIN file stream.

Here is a condensed reference list of the list of HTTP Request Headers, as taken from
the W3C Web site:

http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html

Please refer here for the exact header specification and more detailed descriptions.

Header Description
From: The name of the requesting user in Internet email format.
Accept: A semicolon-separated list of representation schemes (Content-

Type meta-information values) that will be accepted in the
response to this request.

Accept-Encoding: Similar to Accept, but lists the Content-Encoding types that are
acceptable in the response.

Accept-Language: Similar to Accept, but lists the Language values that are prefer-
able in the response.
User-Agent: Gives the name of the original Web client software used,

untainted by proxies. Although optional, this header should be
included.
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Header Description

Referer: An optional header field, meant to tell the server the URL of the
document from which the requested URL was obtained.

Authorization: Contains authorization information, which might be needed to
access certain protected Web documents.

ChargeTo: Contains account information for the charging of currency.

If-Modified-Since:

Pragma:

Introduced for the sake of electronic commerce support.

This request header is used with the GET method to make it condi-
tional. If the requested document has not changed since the time
specified in this field, the Web server will send a Not Modified
304 reply instead of the requested document.

Pragma directives for the sake of intermediary and proxy servers.







APPENDIX D

Summary of Regular
Expressions

A regular expression is a way of specifying a pattern that filters text and
only matches particular strings. Once a string has been matched, it can be
extracted from the larger body of text or replaced with another string. In
Perl, another common technique is to use regular expressions as conditions
in if statements so that the statement evaluates as True if a particular text
string contains text that matches the expression.

Like arithmetic expressions, regular expressions are made up of a sequence
of legal symbols linked with legal operators. Table D.1 lists all of these
operators and symbols. If you’re interested in investigating regular expres-
sions more deeply, read Jeffrey E. F. Friedl’s Mastering Regular
Expressions, published by O’Reilly and Associates. You can also find out
more about regular expressions using perldoc perlre.
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TaBLe D.1 Regular Expression Meta-Characters, Meta-Brackets, and Meta-

Sequences

Meta-Character

Description

A~

Matches the beginning of a string or, if the /m option is used, the
beginning of a line. It is one of two pattern anchors, the other being $.

Matches any single character except for the newline (unless the /s
option is specified, in which case the newline will also be matched).

Matches the end of a string or, if the /m option is used, the end of a
line. It is one of two pattern anchors, the other being ~.

Lets you specify two values that can cause the match to succeed. For
instance, m/a|b/ means that the $_ variable must contain the a or b
character for the match to succeed.

Indicates that the item immediately to its left should be matched O or
more times in order to be evaluated as True. Thus, .* matches any
number of characters.

Indicates that the item immediately to its left should be matched 1 or
more times in order to be evaluated as True.

Indicates that the item immediately to its left should be matched O or
1 times in order to be evaluated as True. When used in conjunction
with the +, 2, or {n, m} meta-characters and brackets, it means that
the regular expression should be non-greedy and match the smallest
possible string.

Meta-Brackets

Description

()

(?...)

(?#comment)

(?:regx)

(?=regx)

(?!regx)

The parentheses let you affect the order of pattern evaluation and act
as a form of pattern memory.

If a question mark immediately follows the left parentheses, it indi-
cates that an extended mode component is being specified (new to
Perl 5).

Extension: comment is any text.

Extension: regx is any regular expression, but parentheses are not
saved as a back reference.

Extension: Allows matching of zero-width positive look-ahead charac-
ters (that is, the regular expression is matched but not returned as
being matched).

Extension: Allows matching of zero-width negative look-ahead char-
acters (that is, negated form of (=regx)).
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Meta-Brackets

Description

(?options)

{n, m}

Extension: Applies the specified options to the pattern, bypassing the
need for the option to be specified in the normal way. Valid options
are: i (case-insensitive), m (treat as multiple lines), s (treat as single
line), and x (allow white space and comments).

The braces let you specify how many times the item immediately to
the left should be matched. {n} means that it should be matched
exactly n times. {n,} means it must be matched at least n times. {n,
m} means that it must be matched at least n times but not more than m
times.

The square brackets let you create a character class. For instance,
m/[abc]/ will evaluate to true if any of a, b, or ¢ is contained in $_.
The square brackets are a more readable alternative to the | meta-
character.

Meta-Sequences

Description

\

\nnn

\a

\A

\b

\B

\cn

\d
\D
\e
\E
\f

Escapes the character that follows so that any special meaning nor-
mally attached to that character is ignored. For instance, if you need to
include a dollar sign in a pattern, you must use \$ to avoid Perl’s vari-
able interpolation. Use \\ to specify the backslash character in your
pattern.

Any octal byte, where nnn represents the octal number. This allows
any character to be specified by its octal number.

Alarm character that, when printed, produces a warning bell sound.

Represents the beginning of the string. Its meaning is not affected by
the /m option.

Represents the backspace character inside a character class.
Otherwise, it represents a word boundary, or the spot between word
(\w) and non-word (\W) characters. Perl thinks that the W meta-
sequence matches the imaginary characters of the end of the string.

Matches a non-word boundary.

Any control character (where n is the character; for example, \cY for
Ctrl+Y).

Matches a single digit character.
Matches a single non-digit character.
The escape character.

Terminates the \L or \U sequence.
The form feed character.

continues
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TaBLe D.1 continued

Meta-Brackets

Description

\G
\1
\L

\n
\Q

\r
\s
\S
\t
\u

\u

\v

\w

\W
\xnn

\Z

\$

Matches only where the previous m/ /g left off.
Changes the next character to lowercase.

Changes the following characters to lowercase until a \E sequence is
encountered.

The newline character.

Quotes regular expression meta-characters literally until the \E
sequence is encountered.

The carriage return character.

Matches a single white space character.
Matches a single non-white space character.
The tab character.

Changes the next character to uppercase.

Changes the following characters to uppercase until a \E sequence is
encountered.

The vertical tab character.

Matches a single word character. (Word characters are the alphanu-
meric and underscore characters.)

Matches a single non-word character.
Any hexadecimal byte.

Represents the end of the string. Its meaning is not affected by the /m
option.

The dollar character.
The ampersand character.

The percent character.
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ASCII Table
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Dec Hex Binary Dec Hex Binary

X, X6 X, ASCII X, X6 X, ASCII
000 00 0000 0000 null 026 1A 00011010 -
001 01 0000 0001 © 027 1B 0001 1011 —
002 02 0000 0010 e 028 1C 00011100 =
003 03 0000 0011 4 029 1D 00011101 —
004 04 0000 0100 + 030 1E 0001 1110 N
005 05 0000 0101 L J 031 1F 0001 1111 v
006 06 0000 0110 L3 032 20 0010 0000 space
007 07 0000 0111 . 033 21 0010 0001 !
008 08 0000 1000 a 034 22 0010 0010 "
009 09 0000 1001 ° 035 23 0010 0011 #
010 0A 00001010 o] 036 24 0010 0100 $
011 0B 00001011 o 037 25 0010 0101 %
012 0C 00001100 Q 038 26 00100110 &
013 0D 00001101 J 039 27 00100111 '
014 0E 00001110 5 040 28 0010 1000 (
015 OF 0000 1111 T 041 29 0010 1001 )
016 10 0001 0000 - 042 2A 00101010 *
017 11 0001 0001 - 043 2B 0010 1011 +
018 12 0001 0010 ! 044 2C 00101100 ’
019 13 0001 0011 I 045 2D 00101101 -
020 14 0001 0100 1 046 2E 0010 1110

021 15 0001 0101 § 047 2F 0010 1111 /
022 16 0001 0110 - 048 30 0011 0000 0
023 17 0001 0111 1 049 31 0011 0001 1
024 18 0001 1000 1 050 32 0011 0010 2
025 19 0001 1001 ! 051 33 0011 0011 3
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Dec Hex Binary Dec Hex Binary

X, X6 X, ASCII X, X6 X, ASCII
052 34 00110100 4 078 4E 01001110 N
053 35 0011 0101 5 079 4F 01001111 @)
054 36 00110110 6 080 50 0101 0000 P
055 37 00110111 7 081 51 0101 0001 Q
056 38 00111000 8 082 52 01010010 R
057 39 00111001 9 083 53 01010011 S
058 3A 00111010 084 54 01010100 T
059 3B 00111011 ; 085 55 01010101 U
060 3C 00111100 < 086 56 01010110 \Y%
061 3D 00111101 = 087 57 01010111 W
062 3E 00111110 > 088 58 0101 1000 X
063 3F 00111111 ? 089 59 0101 1001 Y
064 40 0100 0000 @ 090 5A 0101 1010 Z
065 41 0100 0001 A 091 5B 0101 1011 [
066 42 01000010 B 092 5C 01011100 \
067 43 01000011 C 093 5D 01011101 ]
068 44 01000100 D 094 5E 01011110 A
069 45 0100 0101 E 095 5F 01011111 -
070 46 01000110 F 096 60 01100000 '
071 47 01000111 G 097 61 0110 0001 a
072 48 0100 1000 H 098 62 01100010 b
073 49 0100 1001 I 099 63 01100011 c
074 4A 01001010 ] 100 64 01100100 d
075 4B 01001011 K 101 65 01100101 e
076 4C 0100 1100 L 102 66 01100110 f
077 4D 0100 1101 M 103 67 01100111 g
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Dec Hex Binary Dec Hex Binary

X, X6 X, ASCII X, X6 X, ASCII
104 68 0110 1000 h 130 82 1000 0010 é
105 69 0110 1001 i 131 83 1000 0011 a
106 6A 01101010 j 132 84 1000 0100 i
107 6B 01101011 k 133 85 1000 0101 a
108 6C 01101100 | 134 86 1000 0110 a
109 6D 01101101 m 135 87 1000 0111 ¢
110 6E 01101110 n 136 88 1000 1000 é
111 6F 01101111 0 137 89 1000 1001 g
112 70 0111 0000 p 138 8A 10001010 IS
113 71 0111 0001 q 139 8B 1000 1011 i
114 72 0111 0010 r 140 8C 10001100 i
115 73 0111 0011 $ 141 8D 10001101 i
116 74 01110100 t 142 8E 10001110 A
117 75 0111 0101 u 143 8F 1000 1111 A
118 76 01110110 v 144 90 1001 0000 E
119 77 01110111 w 145 91 1001 0001 @
120 78 0111 1000 X 146 92 1001 0010 A
121 79 0111 1001 y 147 93 1001 0011 )
122 7A 01111010 z 148 94 1001 0100 )
123 7B 01111011 { 149 95 1001 0101 o
124 7C 01111100 | 150 96 1001 0110 it
125 7D 01111101 } 151 97 1001 0111 u
126 7E 01111110 ~ 152 98 1001 1000 )4
127 7F 01111111 A 153 99 1001 1001 O
128 80 1000 0000 C 154 9A 1001 1010 U
129 81 1000 0001 i 155 9B 1001 1011 ¢
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Dec Hex Binary Dec Hex Binary

X, X, X ASCII X, X, X ASCII
156 9C 1001 1100 £ 182  BG6 10110110 P)
157 9D 1001 1101 ¥ 183  B7 10110111 b
158 9E 1001 1110 R 184 B8 10111000 I
159  9F 10011111 f 185 B9 10111001 n
160 A0 1010 0000 4 186  BA 10111010 |
161 Al 10100001 { 187 BB 10111011 3
162 A2 10100010 6 188  BC 10111100 4
163 A3 10100011 4 189  BD 10111101 Q
164 A4 10100100 i 190  BE 10111110 4
165 A5 10100101 N 191  BF 10111111 1
166 A6 10100110 2 192 CO 1100 0000 L
167 A7 10100111 o 193 Cl 11000001 L1
168 A8 1010 1000 . 194  C2 11000010 T
169 A9 10101001 - 195 C3 11000011 v
170 AA 10101010 - 196 C4 11000100 -
171 AB 10101011 12 197 G5 11000101 +
172 AC 10101100 % 198 C6 11000110 A
173 AD 10101101 # 199 C7 11000111 IF
174  AE 10101110 « 200 C8 1100 1000 LL
175 AF 10101111 » 201 C9 11001001 I
176 BO 1011 0000 202 CA 11001010 A
177 Bl 10110001 N 203 CB 11001011 T
178 B2 10110010 | 204 CC 11001100 L
179 B3 10110011 > 205 CD 11001101 =
180 B4 10110100 1 206 CE 11001110 1
181  BS 10110101 mn 207 CF 11001111 L
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Dec Hex Binary Dec Hex Binary

X, X, X ASCII X, X, X ASCII
208 DO 1101 0000 L 234 EA 11101010 Q
209 D1 11010001 T 235 EB 11101011 3
210 D2 11010010 T 236 EC 11101100 oo
211 D3 11010011 L 237 ED 11101101 o
212 D4 11010100 L 238 EE 11101110 e
213 D5 11010101 F 239  EF 11101111 N
214 D6 11010110 + 240 FO 1110 0000

215 D7 11010111 0 241  F1 11110001 +
216 D8 1101 1000 + 242 F2 11110010 >
217 D9 11011001 J 243 F3 11110011 <
218 DA 11011010 r 244  F4 11110100 [
219 DB 11011011 | 245 F5 11110101 J
220 DC 1101 1100 - 246 F6 11110110 +
221 DD 11011101 1 247 F7 11110111 ~
222 DE 11011110 1 248  F8 11111000 °
223 DF 11011111 - 249 F9 11111001 .
224 E0 11100000 o 250  FA 11111010

225 El 11100001 B 251  FB 11111011 v
226 E2 11100010 r 252 FC 11111100 n
227 E3 11100011 n 253  FD 11111101 2
228  E4 11100100 ) 254 FE 11111110 .
229 ES 11100101 o 255 FF 11111111

230 E6 11100110 n

231 E7 11100111 Y

232 E8 11101000 @

233 E9 11101001 )
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Symbols

* (asterisk), SELECT state-
ments, 357

* meta-character, 125

* (backtick), shell com-
mands, 420

!= operator, 67

+ meta-character, 125

< operator, 67

<= operator, 67

== operator, 67

+>> operator, 244

>> operator, 242

< operator, 237

? (question mark), wild-
cards, 361

? meta-character, 125

$_ variable, 237

200 Success status code, 43

401 Unauthorized error, 43,
429, 439-440

403 Access Denied error,
error documents, 440

403 Access Denied error
code, 43

404 Not Found error, 43,
426-438

500 Server Error error,
error documents, 440

505 Server Errorerror code,
43

A

.ABI files, 107
access
Apache API, mod_perl
module, 223
databases
performance issues,
394
selecting, 349

denial of service attacks,
423
root, Web server security
issues, 414-415
accessing, CGL.pm module
(Perl)
object-oriented interfaces,
170-171
standard interfaces, 171
accounts, root, Web server
security issues, 414-415
action attribute, 74
action parameter, 154, 329
topic posting scripts (mes-
sage boards), 270
Active Server Pages. See
ASP; ASPNET
ad servers, 403, 409
creating, 403-405
adding
items to shopping carts,
305-306
limitations, 305
online store database,
382
product IDs, 305
quantities, 305
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records
flat-file databases, 232,
238-242
INSERT statement,
363-364
responses (message
boards), 272
advanced error documents
creating with CGI,
430-438
404 Not Found errors,
435-438
custom links, 432-435
environment variables,
430, 435
linking back to refer-
ring pages, 431-432
advantages
Apache, 27
CGI, 11-12
error logs, 44
JavaScript form validation,
112
SSL, 108
Web hosting, 22
Allaire ColdFusion, ASP
comparison, 221
ALTER statements, 345
alternatives, session man-
agement, 296
alternatives to CGI
Apache mod_perl module.
See Apache
ASP.NET. See ASP
ColdFusion. See
ColdFusion
design benefits, 213
flexibility, 213
ISP support, 224
Java servlets. See Java
performance issues, 212
PHP. See PHP
preconfiguration, 224
simplification, 212
American National
Standards Institute
(ANSI), 356

AND operator, SELECT
statements, 358-359
ANSI (American National
Standards Institute), 356
Apache
advantages, 27
benefits, 223
configuring, SSI recogni-
tion, 445-446
downloading installer, 27
error logs, 44
installing, 29
Perl/Apache Integration
Web site, 223
running, 29
servers
mod_perl module,
222-224
PHP, 216
software, installing, 27
Web site, 223
Apache Software
Foundation Web site, 27
Apache Web server, 24
configuring for error docu-
ments, 428-429
cqi-bin directory, 24
htdocs directory, 24
API (Application
Programming Interface),
223
Apache, mod_per]l mod-
ule, 223
appending records, 232
Application Programming
Interface (API), 223
applications, 254. See also
scripts
binary files, downloading
from Web sites, 399-403
sending email, 132
shopping cart, 299
adding items to shop-
ping carts, 305-306,
382
cart files, 300-301,
306, 309-311
catalogs, 300-301,
304-305

checkout script analy-
sis, 317-318
checkout script exam-
ple, 313
checkout steps,
312-313
credit card validation,
319
deleting items from
shopping carts,
311-312, 386
displaying the shop-
ping cart (online
store), 385-386
gathering checkout
information, 312
online store example,
382-385
SSL, 319
storing order informa-
tion, 319
unpurchased content
issues, 301
Web
design, 150
types, 6
arguments
FILE, 61
passing shell scripts,
193-195
ASP (Active Server Pages),
15, 218
ColdFusion comparison,
221
VBScript, 15
ASPNET
business objects, 218-219
HTML pages, 221
language support, 218
scripts, 219
code example, 219-220
languages, 219
tags, 220
assessing security risks,
413-414
asterisk (*), SELECT state-
ments, 357
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attributes
action, 74
checked="checked”, 78
cookies, 290
enctype, 75, 104
maxlength, 76, 114
method, 75, 97-99
name, 76, 84
size, 76, 84
target, 75
type="text”, 76
value, 76, 84
wrap, 114
authentication (basic)
limitations, 278
process, 277-278
realms, 277
AUTH_TYPE variable, 472

B

backtick (*), shell com-
mands, 420
basic authentication
limitations, 278
process, 277-278
realms, 277
batch files, DOS batch file
security holes, 421
BETWEEN operator,
SELECT statements, 360
binary content, 398-399
applications, downloading
from Web sites, 399-403
block forms, 65
blocks, eval, 237
books
Database Design for Mere
Mortals: A Hands-On
Guide to Relational
Database Design, 370
Mastering Regular
Expressions, 479
Practical SQL Handbook,
The, 350, 370

Programming Perl, 184
Programming the Perl
DBI, 370
Sams Teach Yourself Perl
in 21 Days, 184
Special Edition Using
SQL, 350, 356, 370
Bourne shell, 191
browsers
error messages, CGIL:Carp
module (Perl), 182
Web
connections, 107-108
content types, 103-106
HTTP, 92-96
NPH scripts, 102-103
request methods, 97-99
response headers,
101-102
security, 107-108
server response codes,
99-101
buffer overflow, 418-419
building
shopping cart applications,
299
adding items to shop-
ping carts, 305-306,
382
cart files, 300-301,
306, 309-311
catalogs, 300-301,
304-305
checkout script analy-
sis, 317-318
checkout script exam-
ple, 313
checkout steps,
312-313
credit card validation,
319
deleting items from
shopping carts,
311-312, 386
displaying the shop-
ping cart (online
store), 385-386
gathering checkout
information, 312

online store example,
382-385
SSL, 319
storing order informa-
tion, 319
unpurchased content
issues, 301
sites, Web page last modi-
fied dates (SSI), 455
Web sites, #include direc-
tive (SSI), 453-455
bulletin boards. See message
boards
buttons
radio, 78-79
cgiFormRadio() func-
tion, 200
reset, 80
submit, 80-81
images as submit but-
tons, 81-82

C

C
advantages, 195-196
CGI script example,
201-204
cgic library, 196
cgiFormCheckbox
Multiple() function,
200-201
cgiFormCheckbox
Single() function, 199
cgiFormDouble() func-
tion, 198
cgiFormDouble
Bounded() function,
198
cgiFormlInteger() func-
tion, 198
cgiFormlInteger
Bounded() function,
198
cgiFormRadio() func-
tion, 200
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cgiFormSelectMultiple()
function, 200-201
cgiFormSelectSingle()
function, 200
cgiFormString() func-
tion, 198
cgiFormStringNoNewli
nes() function, 198
cgiHeaderContentType()
function, 196
cgiHeaderLocation()
function, 197
cgiHeaderStatus()
function, 197
cgiMain() function,
196
check boxes, 199
fprintf statements, 197
loading, 196
numeric data handling,
198-199
select fields, 199-201
string data handling,
197-198
disadvantages, 196
form for CGI script exam-
ple, 204-205
C programming language,
14-15
debugging, 14
C shell (csh), 191
Cache-control response
header, 101
calling functions (Perl), 263
capabilities, content man-
agement systems, 336
cart files (shopping cart
applications), 300
cart.pl file example, 306
fields, 301
printing, 309-311
case sensitivity, SSI direc-
tives, 446
cat command, shell scripts,
191

catalogs (shopping cart
applications), 300
catalog script example,
301, 304
database connection
subroutines, 381
displaying product list
(online store),
381-382
online store, 377-380
printing, 304-305
products.txt file example,
300
CERN server, 22-23
CERT (Computer
Emergency Response
Team), 415
Web site
Intruder Detection
Checklist, 423
security advisories, 415
security breach recov-
ery information, 424
CFML (ColdFusion
Markup Language), 221
CGI
advantages, 11-12
alternatives
ASPNET, 218
ColdFusion, 221
design benefits, 213
flexibility, 213
ISP support, 224
Java servlets. See Java
performance issues,
212
PHP, 216
preconfiguration, 224
simplification, 212
disadvantages, 11-12
environment variables
derivation, 471-472
listing, 473-474
standard, 472-473
history, 212
overview, 6-7, 417
performance, cookies, 295

programming languages,
13
C language, 14-15
Java, 16
Perl, 13
Python, 15
UNIX shell scripts, 13
Visual Basic, 15
scripts
buffer overflow securi-
ty hole, 418-419
C language example,
201-204
C language form exam-
ple, 204-205
complexity, 212-213
DOS batch file security
holes, 421
file path security holes,
420
guarding server infor-
mation, 421
meta-character security
holes, 422
performance issues,
212
Perl interpreter security
hole, 421
porting to mod_perl
module, 223-224
Python, 205-208
secure storing, 415-416
security tips, 413
security vulnerabilities,
412-413, 417-418
shell command security
holes, 419-423
SSI comparison,
443-444
CGI environment, 23-24
‘Web servers, 24
directories, 24-25
scripts, 25-26
cgi parameter, #exec direc-
tive, 449
CGI programs, 7
components, 54-57
content types, 9-11
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criteria, 7-8
data, passing to programs,
11
resources, requesting, 8-9
software requirements,
23-24
Web servers, 24-26
URL redirection, 57-59
URLs, 8-9
Web hosting, 21-22
writing, 54
CGI scripts
configuring, on servers,
39-41
customizing, on servers,
41
debugging, 32-33, 42
command lines, 49-50
print statements, 50
tool, 50
tools, 47-49
downloading
from Internet, 36-37
source code, 37
error documents
404 Not Found errors,
435-438
creating, 430-438
custom links, creating,
432-435
environment variables,
430, 435
linking back to refer-
ring pages, 431-432
errors, 42
error logs, 44
file permissions, 45-46
headers, 46
HTTP status code, 43
paths to interpreters,
46-47
response code, 43
setup errors, 44
executing, 25-26
GET method, 418
hosting, 20
installing on servers,
38-39

locating on Internet, 36
requirements, 37
Web sites, 36
on Internet
installing, 38
security, 37-38
support, 38
POST method, 418
requesting, 25-26
running from command
lines, 49
CGl.pm file, 49
sending email from,
136-139
source code, 25
testing, 26-32
on servers, 41
Perl, 30-32
writing, 19-20
CGI::Application module,
158
creating, 162-166
installing, 159-162
perldoc documentation,
167
subroutines, defining, 166
CGI::Application module
Web site, 167
cgi-lib.pl library (Perl), 180
CGI.pm comparison, 186
ReadParse subroutine, 180
replacing with CGL.pm,
180-181
simplicity, 180
Web site, 180
CGI.pm file, 49
CGIL.pm module (Perl)
cgi-lib.pl comparison, 186
creating query tags, 179
de facto CGI standard, 169
decoding form data,
171-175
file upload fields,
172-175
multiple select lists,
172
named image-input
fields, 171

documentation, 170
generating HTML tags,
175-179
generating HTTP headers,
175-177
importing, 170
object-oriented interface,
170-171
replacing cgi-lib.pl,
180-181
standard interface, 171
CGI.pm scripts, 103
cgi.py module, 205
cgic, Web site, 196
cgic library, 196
cgiFormCheckboxMultiple
() function, 200-201
cgiFormCheckboxSingle()
function, 199
cgiFormDouble() function,
198
cgiFormDoubleBounded()
function, 198
cgiFormInteger() function,
198
cgiFormIntegerBounded()
function, 198
cgiFormRadio() function,
200
cgiFormSelectMultiple()
function, 200-201
cgiFormSelectSingle()
function, 200
cgiFormString() function,
198
cgiFormStringNo
Newlines() function, 198
cgiHeaderContentType()
function, 196
cgiHeaderLocation() func-
tion, 197
cgiHeaderStatus() func-
tion, 197
cgiMain() function, 196
check boxes, 199
fprintf statements, 197
loading, 196

How can we make this index more useful? Email us at indexes@samspublishing.com



| 494 cgic library

numeric data handling,
198-199
select fields, 199-201
string data handling,
197-198
cgiFormCheckboxMultiple()
function, 200-201
cgiFormCheckboxSingle()
function, 199
cgiFormDouble() function,
198
cgiFormDoubleBounded()
function, 198
cgiFormInteger() function,
198
cgiFormIntegerBounded()
function, 198
cgiFormRadio() function,
200
cgiFormSelectMultiple()
function, 200-201
cgiFormSelectSingle() func-
tion, 200
cgiFormString() function,
198
cgiFormStringNoNewlines()
function, 198
cgiHeaderContentType()
function, 196
cgiHeaderLocation() func-
tion, 197
cgiHeaderStatus() function,
197
cgiMain() function, 196
CGI::Carp module (Perl),
error messages
browsers, 182
error logs, 181
changing
active databases, 349
records, UPDATE com-
mand, 365
CHAR data type, 351
characters
regular expressions, escap-
ing, 125
wildcard, regular expres-
sions, 124-125

check boxes
cgic library, 199
HTML forms, 78
check example() function,
113
checked=*‘“checked”
attribute, 78
checkout (shopping cart
applications), 312
gathering checkout infor-
mation, 312
script analysis, 317-318
script example, 313
online store, 387-392
storing orders, 392-393
steps, 312-313
chomp function, 237
clauses, or die, 61
CLOB data type, 352
CLR (Common Language
Runtime), 218
cmd parameter, #exec direc-
tive, 449, 455
code
print form subroutine,
120-123
scripts, sharing, 156-158
validated forms, 115
ColdFusion
ASP comparison, 221
benefits, 221
CFML, 221
code example, 221-222
ColdFusion Markup
Language (CFML), 221
columns, relational data-
bases, 342
command lines
debugging CGI scripts,
49-50
running CGI scripts from,
49
commands
cat, shell scripts, 191
DELETE FROM, 364-365
echo, shell scripts,
191-192
eval, 420

exec, 420
Web server security
issues, 417
LIKE, SELECT state-
ments, 360-361
Is, 61
more, 61
Save Link As, 105
server, 94-95
shell
* (backtick), 420
meta-characters, 422
security concerns,
419-423
SSI directives, 444
case sensitivity, 446
#config, 450-453
#echo, 448
#exec, 449-450,
455-456, 459
flastmod, 446-448
#fsize, 449
#include, 448-449,
453-455
syntax, 446
UNIX, executing with
shell scripts, 192-193
UPDATE, 365
XSSI directives, 457
conditional expres-
sions, 458
elif, 457-459
else, 457-459
endif, 457-459
if, 457-459
printenv, 457
set, 457
Common Language
Runtime (CLR), 218
comparative expressions,
67-68
comparing
compiled and interpreted
languages, 48
compiled and scripting
languages, 14-15
GET and POST methods,
98-99
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compatibility
CGl/languages compatibil-
ity issues, 189-190, 195
cookies, 290
data types (relational data-
bases), 351-353
compiled languages
debugging, 48
interpreted languages,
comparing, 48
scripting languages, com-
paring, 14-15
components, CGI programs,
54-57
Comprehensive Perl Archive
Network (CPAN), 184-186
Computer Emergency
Response Team. See
CERT
conditional expressions
(XSSI), 458
conditional statements, 66
conditions
GET method, 99
POST method, 99
#config directive
code example, 450-451
errmsg parameter, 451
sizefmt parameter, 451
timefmt parameter,
451-453
configuring
Apache, SSI recognition,
445-446
CGI scripts, on servers,
39-41
IIS, SSI recognition, 446
NCSA, SSI recognition,
445-446
Web servers
SSI recognition,
444-445
SSI security concerns,
445
connections
database, online store
example, 381
Internet, 107-108

TCP, 93-96
‘Web, databases, 250
content management sys-
tems, 337
Mason, 336
moving from static sys-
tems, 338
PostNuke, 337
Red Hat Content
Management Solution,
337
selecting, 335-336
capabilities, 336
costs, 336
flexibility, 336
XML (Extensible Markup
Language), 337
Zope, 337
content publishing systems,
322-325, 329-330, 333-334
data files, 325
data storage, 324
editorial process, 322
Story template file, 324
story-display program,
330, 334
story-input program,
325-330
XML (Extensible Markup
Language), 324
content types, 103-105,
397-398
binary content, 398-399
applications, 399-403
CGI programs, 9-11
HTML code, 10
HTTP headers, 10-11
MIME, 9
headers, 46
MIME, 463-465
nonstandard, 106
server usage, 104-105
subtypes, 105-106
types, 105-106
Content-length response
header, 101
Content-type header,
397-398

Content-Type response
header, 104-106
CONTENT_LENGTH vari-
able, 472
CONTENT_TYPE variable,
472
cookies, 275
attributes, 290
CGI performance issues,
295
compatibility issues, 290
cookie alert dialog boxes,
282
1Ds, 283
domains, 284-285
expires fields, 285
names, 284
paths, 285
values, 284
Netscape Navigator, 282
passwords, 283
privacy issues, 283, 296
retrieving
CGlI, 287-288
JavaScript, 289-290
session management,
283-284, 290, 293-294
catalog page code
example, 291-293
checkout form code
example, 293-294
setting
JavaScript, 289-290
saving user informa-
tion, 285-287
script example, 286
costs, content management
systems, 336
CPAN (Comprehensive Perl
Archive Network), 184-186
CPAN Web site, 159
cqi-bin directory, 24
crashes, buffer overflow,
418-419
CREATE DATABASE state-
ments, 348
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CREATE SCHEMA state-
ments, 349
CREATE statements, 344
tables, 349-350
CREATE TABLESPACE
statements, 349
creating
ad servers, 403-405
CGI::Application module,
162-166
forms, 150-151
HTML forms, 85-87
survey form elements,
87
credit cards
storing order information
(shopping cart applica-
tions), 319
validation (shopping cart
applications), 319
criteria, CGI programs, 7-8
csh (C shell), 191
Csh Programming
Considered Harmful arti-
cle, 191
custom error documents
configuring Web servers
for, 427-428
Apache Web servers,
428-429
ErrorDocument directive,
428-429
customizing CGI scripts on
servers, 41
CyberCash Web site, 319
CyberSource Web site, 319

D

data, passing to CGI pro-
grams, 11

data definition statements
(SQL), 344-345

data files (content publish-
ing systems), 325

data manipulation state-
ments (SQL), 343-344
data storage (content pub-
lishing systems), 324
data types
compatibility issues,
351-353
numeric, 352
relational databases,
350-351
string, 351-352
CHAR, 351
CLOB, 352
TEXT, 352
VARCHAR, 351
temporal, 352-353
database administration
statements (SQL), 345
Database Driver. See DBD
Database Interface module.
See DBI module
DATABASE statements,
selecting database to
access, 349
databases
access, performance
issues, 394
Database Design for Mere
Mortals: A Hands-On
Guide to Relational
Database Design, 370
entity-relationship model-
ing, 361
fields, 230
flat files comparison, 393
flat-file, 230
adding records (Perl
script), 238, 240-242
adding records (process
steps), 232
deleting records (Perl
script), 243-245
deleting records
(process steps), 232
delimiters, 230-232
drawbacks, 250
example, 234

file locking, 233-234
modifying records
(Perl script), 245-246,
248-250
modifying records
(process steps), 233
retrieving records (Perl
script), 235-238
retrieving records
(process steps), 232
foreign keys, 362
interfaces, 365-366
benefits, 366
DBD (Perl), 366-370
DBI module (Perl),
366-370
drawbacks, 366
ODBC, 366
proprietary, 365
joins
equijoins, 362
joining conditions, 362
SELECT statements,
361-362
middleware, 370
MySQL, downloading,
394
normalization, 361
online store
adding items to shop-
ping carts, 382
catalog script, 377-380
checkout script,
387-392
database connection
subroutines, 381
displaying product list,
381-382
shopping cart applica-
tion, 382-386
storing orders, 392-393
online store example, 373
creating tables,
376-377
tables schema, 374-376
primary keys, 362
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records, 230
adding, 363-364
appending, 232
changing, 365
deleting, 364-365
referential integrity, 362
relational, 341
bad characteristics, 347
changing active data-
base, 349
columns, 342
data type compatibility
issues, 350-351, 353
fields, 342
foreign keys, 346
good characteristics,
346-347
model, 341-342
normalization, 342,
353
numeric data types,
352
planning, 345-348
primary keys, 346
referential integrity,
346
rows, 342
schema, 346
selecting database to
access, 349
SQL, 343
SQL support, 353
string data types,
351-352
tables, 342, 349-350
temporal data types,
352-353
Web connections, 250

date

SSI directives, 451-453
Web page last modified
dates (SSI), 455

DBD (Database Driver), 366

code example, 367-370
downloading, 367

DBI (Database Interface)
module (Perl), 366
code example, 367-370
documentation, 367
downloading, 367
Programming the Perl
DBI, 370
debugging, 42. See also
troubleshooting

C programming language,

14
CGI scripts, 32-33, 42
command lines, 49-50
print statements, 50
tools, 47-50
compiled languages, 48
interpreted languages, 48
DECIMAL data type, 352
declarative programming,
152
subroutines, 152-153
values, 152
decoding form data

(CGL.pm module), 171-175
file upload fields, 172-175

multiple select lists, 172

named image-input fields,

171
defining subroutines, 166

DELETE FROM command,

364-365
DELETE statements, 344
deleting

items from shopping carts,

311-312
online store, 386
meta-characters, 422
records

DELETE FROM com-

mand, 364-365

flat-file databases, 232,

243-245
delimiters, 230
characters, 231
field width, 231-232
denial of service attacks,
423

design Web applications,
150
designing validated forms,
114
dialog boxes, cookie alert,
282
directives
#config
code example, 450-451
errmsg parameter, 451
sizefmt parameter, 451
timefmt parameter,
451-453
#echo, 448
#exec, 449-450, 455-456,
459
cgi parameter, 449
cmd parameter, 449,
455
code example, 456
PRE tag, 456
#fsize, 449
#include, 448-449
building Web sites,
453-455
code example, 453
case sensitivity, 446
ErrorDocument directive,
428-429
flastmod, 446-448
syntax, 446
XSS, 457
conditional expres-
sions, 458
elif, 457-459
else, 457-459
endif, 457-459
if, 457-459
printenv, 457
set, 457
directories
cgi-bin, 24
handles, file handles com-
parison, 263
htdocs, 24
logs, 44
Web servers, 24-25
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disadvantages
CGIL, 11-12
JavaScript form validation,
112
regular expressions, vali-
dating forms, 124
discussion groups. See mes-
sage boards
displaying
file size, SSI, 451
new topic forms (message
boards), 270
shopping cart (online
store), 385-386
topics, message board
scripts, 255-260
displaying product list
(online store), 381-382
DISTINCT operator,
SELECT statements,
362-363
.DOC files, 103
document root, 24
documentation
CGIL.pm module (Perl),
170
DBI module (Perl), 367
Perl, 183
HMTL, 183
man pages, 183
POD files, 183
documents
error documents, 425-440
401 Unauthorized
error, 429, 439-440
403 Access Denied
error, 440
404 Not Found error,
426-429
404 Not Found errors,
435-438
500 Server Error error,
440
configuring Web
servers for, 427-428
creating with CGI,
430-438

creating with HTML,
429-430
custom links, creating,
432-435
environment variables,
430, 435
ErrorDocument direc-
tive, 428-429
linking back to refer-
ring pages, 431-432
domains, cookies, 284-285
dot notation, 362
downloading, 28. See also
installing
Apache installer, 27
applications from Web
sites, 399-403
CGI scripts, from Internet,
36-37
DBD (Perl), 367
DBI module (Perl), 367
.EXE files, 105
MySQL, 367, 394
Perl interpreters, 28
drivers, DBD (Perl), 366
downloading, 367

E

echo command, shell
scripts, 191-192
#echo directive, 448
editorial, content publish-
ing, 322
elements, HTML forms, 87
elif directive, 457-459
else directive, 457-459
email
headers, 134
sending
applications, 132
flags, 141
form validation, 140
from CGI scripts,
136-139
headers, 133

mail clients, 132
MTAs, 133-134
sendmail MTA,
141-143
tracking user activity,
405-408
email messages, Net::SMTP,
135-136
enctype attribute, 75, 104
endif directive, 457-459
entity-relationship modeling
(databases), 361
environment variables
derivation, 471-472
error documents, 430, 435
listing, 473-474
SSI, 448
standard, 472-473
eq operator, 67
equijoins, 362
errmsg parameter (#config
directive), 451
error, format_error subrou-
tine, 260
error code
401 Unauthorized, 43
403 Access Denied, 43
404 Not Found, 43
505 Server Error, 43
error codes, 467
error documents, 425-440
401 Unauthorized error,
429, 439-440
403 Access Denied error,
440
404 Not Found error,
426-429
500 Server Error error,
440
creating with CGI,
430-438
404 Not Found errors,
435-438
custom links, 432-435
environment variables,
430, 435
linking back to refer-
ring pages, 431-432
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creating with HTML,
429-430
custom error documents
configuring Web
servers for, 427-428
ErrorDocument direc-
tive, 428-429
error logs, 44
advantages, 44
Apache, 44
logs directory, 44
$error message variable,
117
ErrorDocument directive,
428-429
errors
401 Unauthorized error,
error documents, 429,
439-440
403 Access Denied error,
error documents, 440
404 Not Found error, error
documents, 426-429,
435-438
500 Server Error error,
error documents, 440
CGI scripts, 42
error logs, 44
file permissions, 45-46
headers, 46
HTTP status code, 43
paths to interpreters,
46-47
response code, 43
setup errors, 44
file_error subroutine, 260
form processing, 118
messages
CGI::Carp module
(Perl), 181-182
SSI, 451
setup, 44
eval blocks, 237
eval command, 420
event driven, defined,
112-113
event handlers, 112
JavaScript forms, 114

events
onchange, 112
onsubmit, 112
.EXE files, 103
downloading, 105
exec command, 420
Web server security issues,
417
#exec directive, 449-450,
455-456, 459
cgi parameter, 449
cmd parameter, 449, 455
code example, 456
PRE tag, 456
exec() function, 419
exit() function, mod_perl
module, 224
expires field, cookies, 285
Expires response header,
101
expressions
comparative, 67-68
conditional (XSSI), 458
if statement, 65
Perl, 66
comparative, 67
regular, 479
Mastering Regular
Expressions, 479
meta-brackets, 480-481
meta-characters, 480
meta-sequences, 481
validating forms, 124-128
disadvantages, 124
Perl, 124-126
expressions, regular, mes-
sage board scripts,
261-262
Extended SSI. See XSSI
Extensible Markup
Language (XML), 324
content management sys-
tems, 337
extensions, 463, 465
files, 103-106
server usage, 104-105
SSI, 444-445

F

fav color field, 121
$fav color variable, 121
fields, 230
cart files (shopping cart
applications), 301
delimiters, 230
characters, 231
field width, 231-232
expires (cookies), 285
fav color, 121
file upload, CGL.pm mod-
ule, 172-175
hidden, 79-80
capturing form submis-
sion information,
278-281
form validation issues,
279
name fields, 79
printing form submis-
sion information, 281
session management,
278, 281
value fields, 79
input, 76-77
JavaScript forms, 113
name, 79
password, 77
relational databases, 342
select, cgic library,
199-201
select lists, CGL.pm mod-
ule, 172
value, 79
FieldStorage() method,
Python CGI scripts,
205-206
FILE argument, 61
file extensions. See exten-
sions
file redirection
Perl, 61-63
UNIX, 59-60
pipes, 60
standard input, 59
standard output, 59

How can we make this index more useful? Email us at indexes@samspublishing.com



| 500 file upload fields

file upload fields, CGL.pm
module, 172-175
files
.ABI, 107
batch, DOS batch file
security holes, 421
cart (shopping cart appli-
cations), 300
cart.pl file example,
306
fields, 301
printing, 309-311
CGI.pm, 49
data files (content publish-
ing systems), 325
.DOC, 103
.EXE, 103-105
extensions, 103-106,
463-465
server usage, 104-105
file locking, 233-234
benefits, 233
lost update problems,
234
flat, databases comparison,
393
guestbook.pl, 39
installing, 40-41
.HTM, 103
message board scripts
adding responses, 272
parsing topic files,
261-263
printing topic files,
264-265
printing topic lists,
263-264
processing topic sub-
missions, 271-272
topic file formats, cre-
ating, 254-255
mime.type, 105
paths, security concerns,
420
permissions, 45-46
UNIX, 45
Web server security,
416

POD (Perl), 183
size, SSI displays, 451
template files, Story tem-
plate file (content pub-
lishing systems), 324
transferring between plat-
forms, 104
file_error subroutine, 260
flags
-n, 141
-nph, 103
-oi, 142
-t, 142
flastmod directive, 446-448
flat files, database compari-
son, 393
flat-file databases, 230
delimiters, 230
characters, 231
field width, 231-232
drawbacks, 250
example, 234
file locking, 233-234
benefits, 233
lost update problems,
234
records
adding (Perl script),
238-242
adding (process steps),
232
deleting (Perl script),
243-245
deleting (process
steps), 232
modifying (Perl script),
245-250
modifying (process
steps), 233
retrieving (Perl script),
235-238
retrieving (process
steps), 232
flexibility, content manage-
ment systems, 336
FLOAT data type, 352
flock function, 242

foreach loop, 64-65
foreign keys, 346, 362
<form> tag, 74
formats, topic files, message
board scripts, 254-255
format_error subroutine,
260
forms
creating, 150-151
decoding form data
(CGIL.pm module),
171-175
file upload fields,
172-175
multiple select lists,
172
named image-input
fields, 171
fields, hidden, 278-281
HTML, 73
action attribute, 74
creating, 85, 87
enctype attribute, 75
<form> tag, 74
<input> tag, 76-82
method attribute, 75
select lists, 84-85
survey form elements,
87
target attribute, 75
text areas, 83
JavaScript, validating,
111-114
new topic (message
boards), 270
submitting, 151
validating
code, 115
design, 114
email, 140
programs, 115-116
regular expressions,
124-128
script logic, 117-118
source code, 121-123
subroutines, 117-121
values, 123-124
fprintf statements, 197
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free content management
systems
Mason, 336
PostNuke, 337
Red Hat Content
Management Solution,
337
Zope, 337
FreeBSD Web site, 23
#fsize directive, 449
functions
cgiFormCheckbox
Multiple(), 200-201
cgiFormCheckboxSingle(),
199
cgiFormDouble(), 198
cgiFormDoubleBounded(),
198
cgiFormInteger(), 198
cgiFormIntegerBounded(),
198
cgiFormRadio(), 200
cgiFormSelectMultiple(),
200-201
cgiFormSelectSingle(),
200
cgiFormString(), 198
cgiFormStringNo
Newlines(), 198
cgiHeaderContentType(),
196
cgiHeaderLocation(), 197
cgiHeaderStatus(), 197
cgiMain(), 196
check example(), 113
chomp, 237
exec(), 419
exit(), mod_perl module,
224
flock, 242
join, 63
length(), 127
LOWER, SELECT state-
ments, 358
open, 61, 419
Perl
$_ variable, 237
calling contexts, 263

popen(), 419
require, 156
split, 237
strcat(), 419
strepy(), 419
strncat(), 419
strnepy(), 419
system(), 419
time, 255
UPPER, SELECT state-

ments, 358
use, 156

G-H

Gamespot Web site, 427
GATEWAY_INTERFACE
variable, 472
ge operator, 67
GET method, 97, 418
POST method, comparing,
98-99
gr operator, 67
greater than operator, 67
grouping operators, regular
expressions, 125-126
guestbook.pl file, 39
installing, 40-41

handles, directory, file han-
dles comparison, 263
handling
check boxes, cgic library,
199
numeric data, cgic library,
198-199
select fields, cgic library,
199-201
string data, cgic library,
197-198
HEAD method, 97
header method, CGIL.pm
module (Perl), 176-177
headers, 46
Content-type, 397-398
email, 133-134

HTTP, 10-11
cgiHeaderContent
Type() function, 196
cgiHeaderLocation()
function, 197
cgiHeaderStatus()
function, 197
generating (CGL.pm
module), 175-177
HTTP request headers
descriptions, 476
examples, 474-476
request, 95
response, 96, 101-102
Cache-control, 101
Content-length , 101
Content-type, 104-106
Expires, 101
Pragma, 102
Server, 102
Set-Cookie, 102
help
Practical SQL Handbook,
The, 350
Special Edition Using
SQL, 350
hidden fields
capturing form submission
information, 278-281
form validation issues, 279
HTML forms, 79-80
name fields, 79
value fields, 79
printing form submission
information, 281
session management, 278,
281
history, CGI, 212
hosting
CGI scripts, 20
Web, 21-22
htdocs directory, 24
.HTM files, 103
HTML (Hypertext Markup
Language)
content types, 10
documentation, Perl, 183
error documents, creating,
429-430
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HTML email, tracking user
activity, 405-408
HTML forms, 73
action attribute, 74
creating, 85-87
decoding form data
(CGIL.pm module),
171-175
file upload fields,
172-175
named image-input
fields, 171
select lists, 172
enctype attribute, 75
fields, hidden, 278-281
<form> tag, 74
<input> tag, 76
check boxes, 78
file upload fields, 80
hidden fields, 79
password fields, 77
radio buttons, 78-79
reset buttons, 80
submit buttons, 80-82
text input fields, 76-77
method attribute, 75
select lists, 84
<option> tag, 84-85
<select> tag, 84-85
target attribute, 75
text areas, 83
HTML pages
ASP.NET, 221
file_error subroutine, 260
format_error subroutine,
260
open_topic subroutine,
260-261
print_page_end subrou-
tine, 260
print_page_start subrou-
tine, 260
Server Side Includes, 213
HTML tags
generating (CGIl.pm mod-
ule), 175-179
XHTML compliance, 74

HTTP (Hypertext Transfer
Protocol), 92
headers, 10-11
sessions, 92
connections, 107-108
content types, 103-106
NPH scripts, 102-103
request headers, 95
request methods, 97-99
response headers, 96,
101-102
security, 107-108
server commands,
94-95
server response codes,
99-101
server responses, 95
TCP connections,
93-96
status codes, 43
error codes, 467
reason phrases,
467-469
redirection codes, 467
success codes, 467
HTTP headers
cgiHeaderContentType()
function, 196
cgiHeaderLocation() func-
tion, 197
cgiHeaderStatus() func-
tion, 197
generating (CGIL.pm mod-
ule), 175-177
request headers
descriptions, 476
examples, 474-476
HTTP_ACCEPT variable,
472
HTTP_USER_AGENT vari-
able, 472
Hypertext Markup
Language (HTML), error
documents, creating,
429-430
Hypertext Transfer Protocol
(HTTP), 92

IDs
cookies, 283
domains, 284-285
expires fields, 285
names, 284
paths, 285
values, 284
users, basic authentication,
277-278
if directive, 457, 459
if statement, 65-66
block forms, 65
expressions, 65
stringing multiple con-
structs, 66
IIS (Internet Information
Server), 446
IIS configuring, SSI recog-
nition, 446
images, submit buttons,
81-82
img tag, 81
importing CGL.pm module
(Perl), 170
IN operator, SELECT state-
ments, 359
#include directive, 448-449
building Web sites,
453-455
code example, 453
input fields, 76-77
<input> tag, 76
check boxes, 78
hidden fields, 79-80
password fields, 77
radio buttons, 78-79
reset buttons, 80
submit buttons, 80-81
images as submit but-
tons, 81-82
text input fields, 76-77
input validation subroutine,
118-119
INSERT statements, 344,
363-364



languages 503 |

installing, 28. See also
downloading
Apache, 27-29
CGI scripts
from Internet, 38
on servers, 38-39
CGI::Application module,
159-162
PPM program, 159
guestbook.pl file, 40-41
Perl interpreters, 28-29
INTEGER(size) data type,
352
interfaces
CGIL.pm module
object-oriented,
170-171
standard, 171
database, 365-366
benefits, 366
DBD (Perl), 366-370
DBI module (Perl),
366-370
drawbacks, 366
ODBC, 366
proprietary, 365
Internet
CGI scripts
downloading from,
36-37
installing, 38
locating, 36
requirements, 37
security, 37-38
source code, 37
support, 38
‘Web sites, 36
connections, 107-108
security, 107-108
Internet Information Server
(11IS), 446
Internet Service Providers
(ISPs), 224
interpreted languages
compiled languages, com-
paring, 48
debugging, 48

interpreters, Perl
mod_perl module, 223
security concerns, 421
Intruder Detection
Checklist (CERT Web
site), 423
ISPs (Internet Service
Providers), 224

J

J2EE (Java 2 Enterprise
Edition), 213-214
Java, 16
servlets, 213-215
Java 2 Enterprise Edition
(J2EE), 213-214
JavaScript
cookies, 289-290
form validation, 111-113
advantages, 112
disadvantages, 112
event driven, 112-113
event handlers, 114
fields, 113
JavaServer Pages (JSPs),
214-215
join function, 63
joining conditions, 362
joins
equijoins, 362
joining conditions, 362
SELECT statements,
361-362
JSPs (JavaServer Pages),
214-215

K

keys
foreign, 346, 362
primary, 346, 362

languages
ASP.NET scripts, 219
ASP.NET support, 218
C
advantages, 195-196
CGI script example,
201-204
cgic library, 196-201
fprintf statements, 197
disadvantages, 196
form for CGI script
example, 204-205
CGI compatibility,
189-190, 195
compiled
debugging, 48
interpreted languages,
comparing, 48
scripting languages,
comparing, 14-15
interpreted
compiled languages,
comparing, 48
debugging, 48
Java, servlets, 213-214
Perl, 169
adding flat-file data-
base records, 238-242
calling functions, 263
cgi-lib.pl library,
180-181, 186
CGIL.pm module,
169-171
CGI::Carp module,
181-182
CPAN, 184-186
creating query objects
(CGIL.pm module),
179
DBD, 366-370
DBI module, 366-370
decoding form data
(CGIL.pm module),
171-175
deleting flat-file data-
base records, 243-245
documentation, 183
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file upload fields
(CGIL.pm module),
172-175

generating HTML tags
(CGLpm module),
175-179

generating HTTP head-
ers (CGL.pm module),
175-177

modifying flat-file
database records,
245-250

mod_perl module,
222-224

multiple select lists
(CGIL.pm module),
172

named image-input
fields (CGIL.pm mod-
ule), 171

Perl interpreter security
hole, 421

Perl Journal, The, 184

Perl/Apache
Integration Web site,
223

Programming Perl, 184

regular expressions,
261-262

retrieving flat-file data-
base records, 235-238

Sams Teach Yourself
Perl in 21 Days, 184

shell scripts compari-
son, 209

time function, 255

Web sites, 183

Web Techniques, 184

PHP, 216

Apache servers, 216

benefits, 216

code examples,
216-218

Web site, 216

programming, 13
C language, 14-15
Java, 16

Perl, 13
Python, 15
UNIX shell scripts, 13
Visual Basic, 15
Python
CGI script example,
206-208
CGI scripts, 205-206
cgi.py, 205
scripting compiled lan-
guages, comparing,
14-15
SQL, 355
ALTER statements,
345
ANSI, 356
checking database sup-
port, 353
CREATE DATABASE
statement, 348
CREATE SCHEMA
statement, 349
CREATE statements,
344, 349-350
CREATE TABLE-
SPACE statement,
349
data definition state-
ments, 344-345
data manipulation
statements, 343-344
database administration
statements, 345
DATABASE state-
ments, 349
DELETE FROM com-
mand, 364-365
DELETE statements,
344
INSERT statement,
344, 363-364
MySQL, 367
numeric data types,
352
portablility, 356
Practical SQL
Handbook, The, 350,
370

relational databases,
343

SELECT statements,
343-344, 349,
357-363

Special Edition Using
SQL, 350, 356, 370

UPDATE statements,
344, 365

USE statements, 349

L

le operator, 67
length() function, 127
less than operator, 67
libraries
cgi-lib.pl (Perl), 180
CGI.pm comparison,
186
ReadParse subroutine,
180
replacing with CGL.pm,
180-181
simplicity, 180
Web site, 180
cgic, 196
cgiFormCheckbox
Multiple() function,
200-201
cgiFormCheckbox
Single() function, 199
cgiFormDouble() func-
tion, 198
cgiFormDoubleBounde
d() function, 198
cgiFormlInteger() func-
tion, 198
cgiFormIntegerBounde
d() function, 198
cgiFormRadio() func-
tion, 200
cgiFormSelect
Multiple() function,
200-201
cgiFormSelectSingle()
function, 200
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cgiFormString() func-
tion, 198

cgiFormStringNoNewli

nes() function, 198

cgiHeaderContentType

() function, 196
cgiHeaderLocation()
function, 197
cgiHeaderStatus()
function, 197
cgiMain() function,
196
check boxes, 199

fprintf statements, 197

loading, 196

numeric data handling,

198-199
select fields, 199-201
string data handling,
197-198
writing, 157
LIKE command, SELECT
statements, 360-361
linking error documents to
referring pages, 431-432
links
error documents, custom
links, creating, 432-435
symbolic, Web server
security, 417
list contexts, calling func-
tions, 263
listing environment vari-
ables, 473-474
listings
404 Handling Program
that Redirects Users to
Proper Section of Sites,
432-433
404 Script that Redirects
Users form Old File
Locations to New Ones,
436-437
ALTER statement exam-
ple, 345
ASP.NET script code
example, 219-220

binary content, 398
C language CGI script
example, 201-203
C language form example,
204-205
cart files (shopping cart
applications), cart.pl file
example, 306-309
catalogs (shopping cart
applications)
catalog script example,
301-303
products.txt file exam-
ple, 300
CGI programs, 55
redirection scripts, 58
voter.cgi program, 57
CGI scripts, Example.pm,
165
CGI::Application module
Example.pm module,
163-164
CGIL.pm module (Perl)
generating forms, 178
generating HTML
forms, 177
generating HTML tags,
178
processing file uploads,
173-174
checkout script example,
online store, 387-392
checkout script example
(shopping cart applica-
tions), 313-317
ColdFusion code example,
221
cookies
catalog page code
example, 291-292
checkout form code
example, 293-294
retrieving cookies
example (CGI), 287
retrieving cookies
example (JavaScript),
289-290

setting cookies exam-
ple, 286
setting cookies exam-
ple (CGIL.pm), 286
setting cookies exam-
ple (JavaScript), 289
setting cookies exam-
ple (JavScript), 290
CREATE statement exam-
ple, 344
creating tables, 350
Data File for Content
Publishing System, 325
data manipulation state-
ments (SQL), 344
DBI module/DBD (Perl)
code example, 368-369
Download Script, 400
email
email-form.pl, 136-138
messages, 134
sending from Perl pro-
grams, 143
sendmail MTA, 141
Error Document for a 401
Error, 440
Error Document that
Sends the User Back to
Referring Page, 431
flat-file databases
example, 235
record addition Perl
script, 238-240
record deletion Perl
script, 243-244
record modification
Perl script, 245-248
record retrieval Perl
script, 235-236
updated database
example, 242
form processing
application logic, 117
form.pl program,
122-123
print form subroutine,
120
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validate form subrou-
tine, 118
validss.pl source code,
126-127
hidden field session man-
agement
code example, 279-281
maintained session
HTML form exam-
ple, 281
HTML forms, survey.html,
85-86
message board scripts
topic display script
example, 255-260
topic file format exam-
ple, 254
topic posting script
example, 265-270
online store
catalog script, 377-380
creating tables,
376-377
shopping cart applica-
tion, 382-385
table schema, 374-375
Perl
cat.pl alternative pro-
gram, 63
cat.pl program, 62
Perl libraries, 157
PHP code example, 217
Program that Attempts to
Determine the Proper
Extension for Missing
Files, 434-435
Python CGI script exam-
ple, 206-207
Sample Error Document
for a 403 Error, 429
script requests, 154
scripts, libraries, 158
SELECT statement exam-
ple, 343
shell scripts
executing UNIX com-
mands, 192-193
query strings, 195

SQL, StudentData table,
356
SSI
#config directive,
450-451
#exec directive, 456
flastmod directive, 446
#include directive, 453
Story Template File, 324
Story-Display Program,
330-333
Story-Input Program,
326-328
tracker.pl script, 406-407
lists
select
CGIL.pm module, 172
HTML forms, 84-85
topics, message boards,
263-264
loading cgic library, 196
locating CGI scripts on the
Internet, 36
locking files, 233-234
benefits, 233
lost update problems, 234
logs (error), CGI::Carp
module (Perl), 181
logs directory, 44
log_ad subroutine, 405
log_event subroutine, 408
loops
foreach, 64-65
Perl, 64-65
while, 64-65
message board scripts,
262
lost update problems, 234

LOWER function, AND/OR

operators, 358
Is command, 61
It operator, 67

M

mail clients, 132
mail transfer agents
(MTAs), 132
man pages, Perl, 183
Mason, 336
Mason HQ Web site, 336
Mastering Regular
Expressions, 479
maxlength attribute, 76, 114
message board scripts, regu-
lar expressions, 261-262
message boards
new topic forms, 270
scripts
adding topic responses,
272
parsing topic files,
261-263
printing topic files,
264-265
printing topic lists,
263-264
processing topic sub-
missions, 271-272
structure, 254
topic display script,
255-260
topic file formats, cre-
ating, 254-255
topic posting script
example, 265-270
while loops, 262
Ultimate Bulletin Board,
273
messages
email
headers, 134
Net::SMTP, 135-136
errors
CGI::Carp module
(Perl), 181-182
SSI, 451
meta-brackets (regular
expressions), 480-481
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meta-characters, 125, 422.
See also wildcards
* 125
+, 125
7,125
regular expressions,
124-126, 480
meta-sequences (regular
expressions), 481
method attribute, 75, 97-99
methods
FieldStorage(), Python
CGI scripts, 205-206
GET, 97, 418
POST method, com-
paring, 98-99
HEAD, 97
header, CGl.pm module
(Perl), 176-177
nph, 103
POST, 97-98, 418
GET method, compar-
ing, 98-99
query(), 151
request, 97-99
Microsoft Internet
Information Server, 446
middleware, 370
MIME (Multipurpose
Internet Mail Extensions),
9,104
types, 463-465
mime.types file, 105
modifying
records, flat-file databases,
233, 245-250
Web sites, Web page last
modified dates (SSI),
455
modules
CGI::Application, 158
creating, 162-166
installing, 159-162
perldoc documentation,
167
subroutines, defining,
166

cgi.py, 205
defined, 139
mod_perl. See mod_perl
module
PHP, 216
mod_perl module
Apache API access, 223
Apache servers, 222-223
exit() function, 224
performance benefits, 222
Perl interpreter issues, 223
Perl/Apache Integration
Web site, 223
porting in CGI scripts,
223-224
MONEY data type, 352
more command, 61
moving CGI scripts, porting
to mod_perl, 223-224
MTAs (mail transfer
agents), 132-134
sendmail
flags, 141
Perl, 142-143
UNIX, 141-142
Multipurpose Internet Mail
Extensions (MIME), 104
MySQL
databases, 367
downloading, 394
Web site, 367, 394

N

-n flag, 141
name attribute, 76, 84
name fields, 79
names

cookies, 284

dot notation (tables), 362
NCSA, configuring, SSI

recognition, 445-446

NCSA HTTPD, 6
NCSA HTTPD Web site, 7
ne operator, 67

Net::SMTP, 135-136
Netscape Navigator, cookies,
282
new topic forms (message
boards), 270
newsgroups. See message
boards
normalization
databases, 361
relational databases, 342,
353
NOT operator, SELECT
statements, 360
-nph flag, 103
nph method, 103
NPH scripts, 102-103
NTBugtraq Web site, 423
NUMBER data type, 352
numeric data, handling, cgic
library, 198-199
numeric data types (rela-
tional databases), 352

(0

object-oriented interfaces,
CGIL.pm module (Perl),
170-171
objects
ASPNET, 218-219
query, creating (CGLpm
module), 179
ODBC, 366
-oi flag, 142
onchange event, 112
online shopping
cookies, 290
catalog page code
example, 291-293
checkout form code
example, 293-294
shopping carts, 277
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online store database exam-
ple, 373
adding items to shopping
carts, 382
catalog script, 377-380
checkout script, 387-392
creating tables, 376-377
database connection sub-
routines, 381
displaying product list,
381-382
shopping cart application,
382-385
deleting items from
shopping cart, 386
displaying the shop-
ping cart, 385-386
storing orders, 392-393
tables schema, 374-376
onsubmit event, 112
open() function, 61, 419
open_topic subroutine,
260-261
operating systems, Web
servers, 22-23
operators
1=, 67
<, 67
<=, 67
==, 67
+>>, 244
>>, 242
<, 237
AND, SELECT state-
ments, 358-359
BETWEEN, SELECT
statements, 360
comparative expressions,
67-68
DISTINCT, SELECT
statements, 362-363
eq, 67
ge, 67
er, 67
grouping regular expres-
sions, 125-126
IN, SELECT statements,
359

le, 67
It, 67
ne, 67
NOT, SELECT statements,
360
OR, SELECT statements,
358-359
ORDER BY, SELECT
statements, 363
redirection, Perl, 61-63
SELECT statements, 357
or die clause, 61
OR operator, SELECT
statement, 358-359
ORDER BY operator,
SELECT statements, 363
orders, storing (online store
example), 392-393
output validation subrou-
tine, 119
overview, CGI, 6-7

P

pages, 443. See also Web
pages
HTML
ASP.NET, 221
file_error subroutine,
260
format_error subrou-
tine, 260
open_topic subroutine,
260-261
print_page_end subrou-
tine, 260
print_page_start sub-
routine, 260
Server Side Includes,
213
parameters
action, 154
topic posting scripts
(message boards),
270
action parameter, 329

cgi (#exec directive), 449
cmd (#exec directive),
449, 455
errmsg (#config directive),
451
sizefmt (#config direc-
tive), 451
story parameter, 333
template parameter, 333
timefmt (#config direc-
tive), 451-453
parsing topic files, message
board scripts, 261-263
passing arguments, shell
scripts, 193-195
password fields, 77
passwords
basic authentication,
277-278
cookies, 283
PATH variable, 474
paths
cookies, 285
files, security concerns,
420
PATH_INFO variable, 472
PATH_TRANSLATED vari-
able, 473
performance
accessing databases, 394
CGl, cookies, 295
CGI alternatives, 212
CGI scripts, 212
mod_perl module, 222
Perl, 13, 169
CGI programs, testing, 30
cgi-lib.pl, 180
CGI.pm comparison,
186
ReadParse subroutine,
180
replacing with CGIL.pm,
180-181
simplicity, 180
‘Web site, 180
CGIL.pm module
cgi-lib.pl comparison,
186
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creating query objects,
179
de facto CGI standard,
169
decoding form data,
171-175
documentation, 170
file upload fields,
172-175
generating HTML tags,
175-179
generating HTTP head-
ers, 175-177
importing, 170
multiple select lists,
172
named image-input
fields, 171
object-oriented inter-
face, 170-171
replacing cgi-lib.pl,
180-181
standard interface, 171
CGI::Carp module, error
messages, 181-182
CPAN, 184-186
DBD, 366
code example, 367-370
downloading, 367
DBI module, 366
code example, 367-370
documentation, 367
downloading, 367
Programming the Perl
DBI, 370
documentation, 183
HTML, 183
man pages, 183
POD files, 183
expressions, 66-67
functions
$_ variable, 237
calling, 263
if statement, 65-66
loops, 64-65

mod_perl module
Apache API access,
223
Apache servers,
222-223
exit() function, 224
performance benefits,
222
Perl interpreter issues,
223
porting in CGI scripts,
223-224
Perl interpreter security
hole, 421
Perl Journal, The, 184
Perl/Apache Integration
Web site, 223
Programming Perl, 184
redirection operators,
61-63
regular expressions,
261-262
regular expressions to vali-
date forms, 124-126
Sams Teach Yourself Perl
in 21 Days, 184
scripts
adding flat-file data-
base records, 238-242
deleting flat-file data-
base records, 243-245
modifying flat-file
database records,
245-250
retrieving flat-file data-
base records, 235-238
sendmail MTA, 142-143
shell scripts comparison,
209
statements, 63
time function, 255
Web site, 183
CPAN access, 184
CPAN sites list, 185
downloading DBI
module/DBD, 367
Web Techniques, 184

Perl CGI programs
testing, 31-32
Perl interpreters, 28
downloading, 28
installing, 28-29
paths, locating, 46-47
Perl Journal, The, 184
Perl Web site, 28
Perl/Apache Integration
Project Web site, 223
perldoc documentation,
CGI::Application module,
167
permissions
file, Web server security,
416
files, 45-46
persistence, 275
PHP, 216
Apache servers, 216
benefits, 216
code examples, 216-218
Web site, 216
pipes, 60
planning
databases
bad characteristics, 347
good characteristics,
346-347
relational databases
data organization rules,
345-346
design steps, 347-348
POD files (Perl), 183
popen() function, 419
portability, SQL, 356
POST method, 97-98, 418
GET method, comparing,
98-99
posting
responses (message
boards), 272
topics (message boards)
message board scripts,
265-270
processing topic sub-
missions, 271-272
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PostNuke, 337
PPM program, installing
CGI::Application module,
159
Pragma response header,
102
PRE tag, #exec directive,
456
presentation, content pub-
lishing, 322
primary keys, 346, 362
print form subroutine,
120-121
source code, 120
&print form subroutine,
118-121
print form values subrou-
tine, 118-119
print page end subroutine,
118
print page start subroutine,
117
print statement, 62
debugging CGI scripts, 50
printenv directive, 457
printing
cart files (shopping cart
applications), 309, 311
catalogs (shopping cart
applications), 304-305
topic files, message board
scripts, 264-265
topic lists, message board
scripts, 263-264
print_error subroutine, 403
print_header subroutine,
405, 408
print_image subroutine,
405, 408
print_page_end subroutine,
260
print_page_start subrou-
tine, 260
privacy issues, cookies, 283,
296

processing topic submis-
sions (message boards),
271-272
programming, declarative.
See declarative program-
ming
programming languages, 13
C, 14-15
Java, 16
Perl, 13
Python, 15
UNIX shell scripts, 13
Visual Basic, 15
programs
CGL, 7
components, 54-57
content types, 9-11
criteria, 7-8
data, passing to pro-
grams, 11
resources, requesting,
8-9
URL redirection, 57-59
URLs, 8-9
Web hosting, 21-22
writing, 54
form-processing, 115-116
story-display program
(content publishing sys-
tems), 330, 334
story-input program (con-
tent publishing systems),
325-330
protocols
HTTP, 92
headers, 10-11
status codes, 467
SSL, 107
shopping cart applica-
tions, 319
Python, 15
CGI script example,
206-208
CGI scripts, 205-206
cgi.py module, 205
Python Web site, 15

Q-R

queries, 344. See also
SELECT statements

query objects, creating
(CGLpm module), 179

query strings, shell scripts,
193-195

query() method, 151

QUERY_STRING variable,
473

question mark (?), wild-
cards, 361

radio buttons
cgiFormRadio() function,
200
HTML forms, 78-79
reading error logs, 44
ReadParse subroutine (cgi-
lib.pl library), 180
realms, 277
reason phrases, 467-469
records, 230
adding, INSERT state-
ment, 363-364
appending, 232
changing, UPDATE com-
mand, 365
deleting, DELETE FROM
command, 364-365
delimiters, 230
characters, 231
field width, 231-232
flat-file databases
adding Perl script,
238-242
adding process steps,
232
deleting Perl script,
243-245
deleting process steps,
232
modifying Perl script,
245-250
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modifying process
steps, 233
retrieving Perl script,
235-238
retrieving process
steps, 232
Red Hat Content
Management Solution, 337
redirection
files
Perl, 61-63
UNIX, 59-60
URLs, 57-59
redirection codes, 467
referential integrity, 346,
362
regular expressions, 479
characters, escaping, 125
grouping operators,
125-126
Mastering Regular
Expressions, 479
message board scripts,
261-262
meta-brackets, 480-481
meta-characters, 124-126,
480
meta-sequences, 481
validating forms, 124-128
disadvantages, 124
Perl, 124-126
wildcard characters,
124-125
relational databases, 341,
370. See also databases
bad characteristics, 347
changing active database,
349
columns, 342
data types, 350-351
compatibility issues,
351-353
numeric, 352
string, 351-352
temporal, 352-353
fields, 342
foreign keys, 346

good characteristics,
346-347
model, 341-342
normalization, 342, 353
planning
data organization rules,
345-346
design steps, 347-348
primary keys, 346
referential integrity, 346
rows, 342
schema, 346
selecting database to
access, 349
SQL, 343
SQL support, 353
tables, 342
creating, 349-350
REMOTE_ADDR variable,
473
REMOTE_HOST variable,
473
REMOTE_IDENT variable,
473
REMOTE_USER variable,
473
request headers, 95
request methods, 97-99
requesting CGI resources,
89
content types, 9-11
requests
CGI scripts, 25-26
scripts, 153-156
action parameter, 154
REQUEST_METHOD vari-
able, 473
require function, 156
requirements
CGI scripts on the
Internet, 37
CGI software, 23-24
Web servers, 24-26
reset buttons, HTML forms,
80

resources
CGI programs, requesting,
8-9
CGI resources, URLs, 8-9
response code
404 Not Found, 43
CGI script errors, 43
response headers, 96
Content-type, 104-106
responses
headers, 101-102
Cache-control, 101
Content-length, 101
Expires, 101
Pragma, 102
Server, 102
Set-Cookie, 102
message boards, adding,
272
server, 95
codes, 99-101
retrieving
cookies
CGI, 287-288
JavaScript, 289-290
records, flat-file databases,
232, 235-238
risk assessment, 413-414
root, Web server security
issues, 414-415
rows, relational databases,
342
running
Apache, 29
CGI scripts, from com-
mand lines, 49
Web servers, 20-21

S

Save Link As command, 105
scalar contexts, calling func-
tions, 263
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schema
relational databases, 346
tables, 346
online store database
example, 374-376
scripting languages
compiled languages, com-
paring, 14-15
interpreted, 48
scripts, 254. See also appli-
cations
ASP.NET, 219
code example, 219-220
languages, 219
tags, 220
CGI
buffer overflow securi-
ty hole, 418-419
C language example,
201-204
C language form exam-
ple, 204-205
complexity, 212-213
configuring, 39-41
customizing, 41
debugging, 42, 47-50
DOS batch file security
holes, 421
downloading from

paths to interpreters,
46-47

performance issues,
212

Perl interpreter security
hole, 421

porting to mod_perl,
223-224

POST method, 418

Python, 205-206

Python example,
206-208

running from command
lines, 49

secure storing, 415-416

security, 37-38

security tips, 413

security vulnerabilities,
412-413, 417-418

setup errors, 44

shell command security
holes, 419-423

source code, 25, 37

SSI comparison,
443-444

support, 38

testing, 41

Web servers, 25-26

writing, 19-20

printing topic lists,
263-264
processing topic sub-
missions, 271-272
regular expressions,
261-262
topic display script,
255-260
topic posting script
script, 265-270
while loops, 262
message boards
structure, 254
topic file formats, cre-
ating, 254-255
NPH, 102-103
Perl
adding flat-file data-
base records, 238-242
deleting flat-file data-
base records, 243-245
modifying flat-file
database records,
245-250
retrieving flat-file data-
base records, 235-238
requests, 153-156
action parameter, 154
setting cookies

Internet, 36-37

error logs, 44

errors, 42-43

file path security holes,
420

file permissions, 45-46

GET method, 418

guarding server infor-
mation, 421

headers, 46

hosting, 20

HTTP status code, 43

installing, 38

installing on servers,
38-39

locating on Internet,
36-37

meta-character security
holes, 422

CGlL.pm, 103
code, sharing, 156-158
cookies
catalog page code
example, 291-293
checkout form code
example, 293-294
JavaScript, 289-290
retrieving, 287-288
setting, 285-287

form-processing, 117-118

message board

adding topic responses,

272

parsing topic files,
261-263

printing topic files,
264-265

code example, 286
code example
(CGIL.pm), 286

shell, 191

Bourne shell, 191

C shell, 191

cat command, 191

echo command,
191-192

executing UNIX com-
mands, 192-193

Perl scripts compari-
son, 209

query strings, 193-195

shebang lines, 191

Windows NT, 208

writing, 191-192

writing, 150-151

form submission, 151
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SCRIPT_NAME variable,
473
Secure Sockets Layer (SSL),
107
security
* (backtick), 420
CERT Web site
Intruder Detection
Checklist, 423
security advisories, 415
security breach recov-
ery information, 424
CGI script vulnerabilities,
412-413, 417-418
buffer overflow,
418-419
DOS batch files, 421
file paths, 420
GET method, 418
guarding server infor-
mation, 421
meta-characters, 422
Perl interpreter loca-
tion, 421
POST method, 418
shell commands,
419-423
CGI scripts, from Internet,
37-38
cookies, 283, 296
denial of service attacks,
423
eval command, 420
exec() function, 419-420
Internet, 107-108
NTBugtraq Web site, 423
open() function, 419
popen() function, 419
risk assessment, 413
Security Focus Web site,
415, 423
security risk assessment,
414
SSI, security holes, 445
SSL, shopping cart appli-
cations, 319

storing order information
(shopping cart applica-
tions), 319
strcat() function, 419
strepy() function, 419
strncat() function, 419
strnepy() function, 419
system() function, 419
tips, 413
Web servers, 414-417
disabling automatic
directory listings, 417
exec command, 417
root privileges,
414-415
setting file permissions,
416
storing CGI scripts,
415-416
symbolic links, 417
updating software, 415
Security Focus Web site,
415, 423
select fields, cgic library,
199-201
select lists
CGIL.pm module, 172
HTML forms, 84
<option> tag, 84-85
<select> tag, 84-85
select statement, 62, 357
SELECT statements,
343-344
* (asterisk), 357
AND/OR operators,
358-359
BETWEEN operator, 360
compound, 358-359
DISTINCT operator,
362-363
IN operator, 359
joins, 361-362
equijoins, 362
joining conditions, 362
LIKE command, 360-361
LOWER function, 358

NOT operator, 360
operators, 357
ORDER BY operator, 363
selecting database to
access, 349
UPPER function, 358
WHERE clause, 357
<select> tag, 84-85
selecting
content management sys-
tems, 335-336
capabilities, 336
costs, 336
flexibility, 336
databases, to access, 349
sending email
applications, 132
flags, 141
form validation, 140
from CGI scripts, 136-139
headers, 133
mail clients, 132
MTAs, 133-134
sendmail MTA, 141-143
sendmail MTA
Perl, 142-143
UNIX, 141-142
send_file subroutine, 402
server commands, 94-95
Server response header, 102
server responses, 95
codes, 99-101
Server Side Includes (SSI),
213, 443
servers
ad, 403, 409
creating, 403-405
Apache
configuring for custom
error documents,
428-429
mod_perl module,
222-224
PHP, 216
CERN, 22-23
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CGI scripts
configuring, 39-41
customizing, 41
installing, 38-39
testing, 41
Web, 19-20, 24
Apache, 24, 27
Apache SSI recogni-
tion, 445-446
connections, 107-108
content types, 103-106
directories, 24-25
guarding server infor-
mation, 421
HTTP, 92-96
IIS SSI recognition,
446
NCSA SSI recognition,
445-446
NPH scripts, 102-103
operating systems,
22-23
realms, 277
request methods, 97-99
response headers,
101-102
running your own,
20-21
scripts, 25-26
securing, 414-417
security, 107-108
server response codes,
99-101
SSI configuration,
444-445
SSI security concerns,
445
Web securing, 415-416
SERVER_NAME variable,
473
SERVER_PORT variable,
473
SERVER_PROTOCOL
variable, 473
SERVER_SOFTWARE
variable, 473
servlets (Java), 213-215

sessions, 275
session management
alternatives, 296
background user identi-
fication, 276
basic authentication,
277-278
benefits, 276-277
cookies, 283-284, 290,
293-294
hidden fields, 278, 281
shopping carts, 277
set directive, 457
Set-Cookie response header,
102
setting
cookie alert notification,
282
cookies
JavaScript, 289-290
saving user informa-
tion, 285-287
script example, 286
script example
(CGlL.pm), 286
permissions, Web server
security, 416
setup errors, 44
shebang lines, shell scripts,
191
shell commands
* (backtick), 420
meta-characters, 422
security concerns, 419-423
shell scripts, 13, 191
Bourne shell, 191
C shell, 191
cat command, 191
echo command, 191-192
executing UNIX com-
mands, 192-193
Perl scripts comparison,
209
query strings, 193-195
multiple arguments,
194
shebang lines, 191
Windows NT, 208
writing, 191-192

shells
Bourne, 191
C, 191
shopping cart applications,
299
adding items to shopping
carts, 305-306
limitations, 305
online store database,
382
product IDs, 305
quantities, 305
cart files, 300
cart.pl file example,
306
fields, 301
printing, 309-311
catalogs, 300
catalog script example,
301, 304
printing, 304-305
products.txt file exam-
ple, 300
checkout
checkout script analy-
sis, 317-318
checkout script exam-
ple, 313
checkout steps,
312-313
gathering checkout
information, 312
credit card validation, 319
deleting items from shop-
ping carts, 311-312, 386
online store example,
382-385
displaying the shop-
ping cart, 385-386
SSL, 319
storing order information,
319
unpurchased content
issues, 301
shopping carts, 277
Simple Mail Transfer
Protocol (SMTP), 133
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sites, 443. See also Web
pages; Web sites
building
#include directive
(SSI), 453-455
Web page last modified
dates (SSI), 455
CERT, security advisories,
415
CyberCash, 319
CyberSource, 319
MySQL, 367
PHP, 216
risk assessment, 414
Security Focus, 415
security risk assessment,
413
World Wide Web
Consortium, 476
sites (Web), content publish-
ing, 321
size, files, SSI displays, 451
size attribute, 76, 84
sizefmt parameter (#config
directive), 451
SMTP (Simple Mail
Transfer Protocol), 133
software
Apache, installing, 27
CGI program require-
ments, 23-24
Web servers, 24-26
updating, security issues,
415
source code
CGI scripts, 25
from Internet, 37
form processing, 121-123
print form subroutine, 120
split function, 237
SQL (Structured Query
Language), 343, 355
ANSI, 356
checking database support,
353
CREATE DATABASE
statement, 348

CREATE SCHEMA state-
ment, 349
CREATE TABLESPACE
statement, 349
MySQL, 367
numeric data types, 352
portablility, 356
Practical SQL Handbook,
The, 350, 370
relational databases, 343
SELECT statements, com-
pound, 358-359
Special Edition Using
SQOL, 350, 356, 370
statements
ALTER, 345
CREATE, 344,
349-350
data definition,
344-345
data manipulation,
343-344
DATABASE, 349
database administra-
tion, 345
DELETE, 344
DELETE FROM com-
mand, 364-365
INSERT, 344, 363-364
SELECT, 343-344,
349, 357-363
UPDATE, 344
UPDATE command,
365
USE, 349
SSI (Server Side Includes),
443
CGI comparison, 443-444
directives, 444
#config, 450-453
#echo, 448
#exec, 449-450,
455-456, 459
#fsize, 449
#include, 448-449,
453-455
case sensitivity, 446

environment variables,
448
flastmod, 446-448
syntax, 446
extensions, 444-445
process, 444
time codes, 452
Web page last modified
dates, 455
Web server configuration,
444-445
Apache, 445-446
1IS, 446
NCSA, 445-446
Web server security con-
cerns, 445
XSS, 457
conditional expres-
sions, 458
elif directive, 457-459
else directive, 457-459
endif directive,
457-459
if directive, 457-459
printenv directive, 457
set directive, 457
SSL (Secure Sockets Layer),
107
advantages, 108
shopping cart applications,
319
standard input, 59
standard interfaces,
CGLpm module (Perl),
171
standard output, 59
pipes, 60
statements
ALTER, 345
conditional, 66
CREATE, 344
tables, 349-350
CREATE DATABASE,
348
CREATE SCHEMA, 349
CREATE TABLESPACE,
349
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subtypes, content types,
105-106
success codes, 467
Sun Web site, 214
support
CGI scripts, from Internet,
38
ISPs, CGI alternatives,
224
switching. See changing
symbolic links, Web server
security, 417
syntax
#echo directive, 448
SSI directives, 446
system() function, 419

T

-t flag, 142
tables
dot notation, 362
foreign keys, 362
joins
equijoins, 362
joining conditions, 362
SELECT statements,
361-362
online store database
example
creating tables,
376-377
schema, 374-376
primary keys, 362
records
adding, 363-364
changing, 365
deleting, 364-365
referential integrity, 346,
362
relational databases, 342
creating, 349-350
schema, 346

tags
<form>, 74
<input>, 76
check boxes, 78
hidden fields, 79-80
password fields, 77
radio buttons, 78-79
reset buttons, 80
submit buttons, 80-82
text input fields, 76-77
<select>, 84-85
ASPNET scripts, 220
CFML, 221
HTML
generating (CGL.pm
module), 175-179
XHTML compliance,
74
img, 81
PRE, #exec directive, 456
target attribute, 75
TCP, connections, 93-96
template files, Story tem-
plate file (content publish-
ing systems), 324
template parameter, 333
temporal data types (rela-
tional databases), 352-353
testing CGI scripts, 26-32
Perl, 30-32
on servers, 41
text, HTML forms, 83
TEXT data type, 352
text input fields, 76-77
Thawte Web site, 108
time, SSI directives, 451-453
time codes (SSI), 452
time function, 255
timefmt parameter (#config
directive), 451-453
tools, debugging CGI
scripts, 47-50
topics (message boards)
displaying, message board
scripts, 255-260
new topic forms, 270

posting
message board scripts,
265-270
processing topic sub-
missions, 271-272
responses, adding, 272
troubleshooting, 42. See also
debugging
CGI scripts, 32-33
error logs, 44
errors, 42
file permissions, 45-46
headers, 46
HTTP status code, 43
paths to interpreters,
46-47
response code, 43
setup errors, 44
type=*“‘text” attribute, 76
types
content, 103-105
nonstandard, 106
subtypes, 105-106
types, 105-106
content types, 105-106
nonstandard, 106
MIME, 463-465
subroutines
form creation, 120-121
input validation,
118-119
output validation, 119
Web applications, 6

U

Ultimate Bulletin Board,
273
UNIX, 13
CERN server, 22-23
file permissions, 45
sendmail MTA, 141-142
flags, 141
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data definition (SQL),
344-345
data manipulation (SQL),
343-344
DATABASE, selecting
database to access, 349
database administration
(SQL), 345
debugging CGI scripts, 50
DELETE, 344
fprintf, 197
if, 65-66
block forms, 65
expressions, 65
stringing multiple con-
structs, 66
INSERT, 344, 363-364
Perl, 63
print, 62
select, 62, 343-344, 357
SELECT
* (asterisk), 357
AND/OR operators,
358-359
BETWEEN operator,
360
compound, 358-359
DISTINCT operator,
362-363
IN operator, 359
joins, 361-362
LIKE command,
360-361
LOWER function, 358
NOT operator, 360
operators, 357
ORDER BY operator,
363
selecting database to
access, 349
UPPER function, 358
WHERE clause, 357
SQL
DELETE FROM com-
mand, 364-365
UPDATE command,
365

unless, 66
UPDATE, 344
USE, selecting database to
access, 349
states
defined, 277
session management,
276-277
basic authentication,
277-278
hidden fields, 278, 281
static systems, moving to
content management Sys-
tems, 338
status codes
200 Success, 43
error codes, 467
HTTP, 43
reason phrases, 467-469
redirection codes, 467
success codes, 467
storing
data, content publishing
systems, 324
databases/flat files com-
parison, 393
order information (shop-
ping cart applications),
319
orders (online store exam-
ple), 392-393
story parameter, 333
Story template file (content
publishing systems), 324
story-display program (con-
tent publishing systems),
330, 334
story-input program (con-
tent publishing systems),
325-330
strcat() function, 419
strepy() function, 419
string data types
CHAR, 351
CLOB, 352
relational databases,
351-352
TEXT, 352
VARCHAR, 351

strings
handling, cgic library,
197-198
query, shell scripts,
193-195
strncat() function, 419
strncpy() function, 419
Structured Query Language
(SQL), 343, 355
submit buttons, HTML
forms, 80-82
submitting forms, 151
subroutines, 117
CGI::Application module,
defining, 166
database connections,
online store, 381
declarative programming,
152-153
file_error, 260
format_error, 260
log_ad, 405
log_event, 408
open_topic, 260-261
&print form, 118
print form, 120-121
print form values, 118-119
print page end, 118
print page start, 117
print_error, 403
print_header, 405, 408
print_image, 405, 408
print_page_end, 260
print_page_start, 260
ReadParse (cgi-lib.pl
library), 180
send_file, 402
types
form creation, 120-121
input validation,
118-119
output validation, 119
valid form, 140
validate form, 117-119
valid_auth_code, 402
valid_file, 402
valid_form, posting topics
(message boards), 271
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URL redirection, 59-60
pipes, 60
standard input, 59
standard output, 59
UNIX commands, executing
with shell scripts, 192-193
UNIX Web site, 23
unless statement, 66
UPDATE statements, 344,
365
updating software, security
issues, 415
UPPER function, AND/OR
operators, 358
URLs
CGI programs, 8-9
redirection, 57-59
UNIX, redirection, 59-60
use function, 156
USE statements, selecting
database to access, 349
users
printing, 309, 311
ID, basic authentication,
277-278
Web, tracking activity,
405-408

Vv

valid form subroutine, 140
validate form subroutine,
117-119
validating
forms
code, 115
design, 114
email, 140
programs, 115-116
regular expressions,
124-128
script logic, 117-118
source code, 121-123
subroutines, 117-121
values, 123-124

JavaScript form content,
111-113
advantages, 112
disadvantages, 112
event driven, 112-113
event handlers, 114
fields, 113
validation
credit cards (shopping cart
applications), 319
form, hidden field issues,
279
valid_form subroutine,
posting topics (message
boards), 271
valid_auth_code subroutine,
402
valid_file subroutine, 402
valid_form subroutine, post-
ing topics (message
boards), 271
value attribute, 76, 84
value fields, 79
values
cookies, 284
forms, validating, 123-124
subroutines, 152
VARCHAR data type, 351
variables
$error message, 117
$_, 237
environment
derivation, 471-472
listing, 473-474
SSI, 448
standard, 472-473
fav color, 121
PATH, 474
VBScript, 15
VeriSign Web site, 108
Visual Basic, 15

W-Z

W3C (World Wide Web
Consortium), Web site,
468, 476

Web

CGI scripts
downloading from,
36-37
installing, 38
locating, 36
requirements, 37
security, 37-38
source code, 37
support, 38
Web sites, 36
database connections, 250
downloading applications
from, 399-403
user activity, 405-408
Web applications
design, 150
types, 6
Web browsers, HTTP, 92
connections, 107-108
content types, 103-106
NPH scripts, 102-103
request headers, 95
request methods, 97-99
response headers, 96,
101-102
security, 107-108
server commands, 94-95
server response codes,
99-101
server responses, 95
TCP connections,
93-96

Web hosting, 21-22

Web pages, 443. See also
sites

SSI, 443
Apache configuration,
445-446
CGI comparison,
443-444
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#config directive,
450-453

#echo directive, 448

environment variables,
448

#exec directive,
449-450, 455-456,
459

extensions, 444-445

flastmod directive,
446-448

#fsize directive, 449

IIS configuration, 446

#include directive,
448-449, 453-455

last modified dates,
455

NCSA configuration,

HTTP, 92

connections, 107-108

content types, 103-106

NPH scripts, 102-103

request headers, 95

request methods, 97-99

response headers, 96,
101-102

security, 107-108

server commands,
94-95

server response codes,
99-101

server responses, 95

TCP connections,
93-96

NCSA HTTPD, 6
operating systems, 22

CERT
Intruder Detection
Checklist, 423
security breach recov-
ery information, 424
CGI public scripts on
Internet, 36
CGI::Application module,
167
cgi-lib.pl home page, 180
cgi-lib.pl to CGI.pm port-
ing information, 181
CGIL.pm module (Perl)
documentation site, 170
cgic, 196
content publishing. See
content publishing
CPAN, 159

445-446 UNIX, 22-23 Csh Programming
process, 444 Windows, 23 Considered Harmful arti-
SSI directives, 444, realms, 277 cle, 191

446 running your own, 20-21 FreeBSD, 23

time codes, 452
Web server configura-

scripts, 25-26
securing, 414-417

Gamespot, 427
Mason HQ, 336

tion, 444-445

Web server security
concerns, 445

XSSI, 457

conditional expres-
sions, 458

elif directive, 457-459

else directive, 457-459

endif directive,

disabling automatic
directory listings, 417

exec command, 417

root privileges,
414-415

setting file permissions,
416

storing CGI scripts,
415-416

MySQL, 394
NCSA HTTPD, 7
NTBugtraq, 423
Perl, 28, 183
CPAN access, 184
CPAN sites list, 185
downloading DBI
module/DBD, 367
Perl/Apache Integration

457-459 symbolic links, 417
if directive, 457-459 updating software, 415
printenv directive, 457 SSI configuration,
set directive, 457 444-445
Web servers, 19-20, 24 Apache, 445-446
Apache, 24 1IS, 446
advantages, 27 NCSA, 445-446
cqi-bin directory, 24 SSI security concerns, 445
htdocs directory, 24 Web sites
Apache Web server, con- Apache, 223
figuring for custom error Apache Software
documents, 428-429 Foundation, 27
directories, 24-25
guarding server informa-
tion, 421

Project, 223

Python, 15

Red Hat Content
Management Solution,
337

Security Focus, 423

Sun, 214

Thawte, 108

Ultimate Bulletin Board,
273

UNIX, 23

VeriSign, 108

Web Techniques, 184

Windows, 27
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World Wide Web
Consortium, 468
XHTML, 74
XML.com, 324
Zope.org, 337
WHERE clause
AND/OR operators,
358-359
BETWEEN operator, 360
IN operator, 359
LIKE command, 360-361
NOT operator, 360
SELECT statement, 357
while loop, 64-65
message board scripts, 262
wildcard characters, regular
expressions, 124-125. See
also meta-characters
7,361
Windows, 23
CGI script requests, 26-32
ODBC, 366
Windows NT
NTBugtraq Web site, 423
shell scripts, 208
Windows Web site, 27
World Wide Web. See Web
World Wide Web
Consortium (W3C) Web
site, 468, 476
wrap attribute, 114
writing
CGI programs, 54
CGI scripts, 19-20
libraries, 157
scripts, 150-151
form submission, 151
shell scripts, 191-192
WWW. See Web

XHTML, HTML tags, 74
XHTML Web site, 74
XML (Extensible Markup
Language), 324
content management sys-
tems, 337

XML.com Web site, 324

XSSI (Extended SSI), 457
conditional expressions,

458

elif directive, 457-459
else directive, 457-459
endif directive, 457-459
if directive, 457-459
printenv directive, 457
set directive, 457

Zope, 337
Zope.org Web site, 337



	Sams Teach Yourself CGI in 24 Hours, Second Edition
	Copyright © 2003 by Sams Publishing
	Contents at a Glance
	Contents
	About the Author
	We Want to Hear from You!
	Reader Services

	Introduction
	PART I An Introduction to CGI
	HOUR 1 Overview of CGI Programming
	Types of Web Applications
	A History of CGI
	What Is a CGI Program?
	How CGI Programs Work
	Pros and Cons of CGI
	CGI Programming Languages
	Summary
	Q&A
	Workshop

	HOUR 2 Setting Up Your CGI Environment
	The Web Server Itself
	Web-Server Operating Systems
	The CGI Environment
	Web Servers
	Setting Up Your CGI Development Environment
	Summary
	Q&A
	Workshop

	HOUR 3 Downloading, Installing, and Debugging CGI Scripts
	Downloading Scripts from the Internet
	Installing a Downloaded Script
	Example: Downloading and Installing a Guestbook Script
	Debugging CGI Scripts
	Tools and Techniques for Debugging Your Program Code
	Summary
	Q&A
	Workshop

	HOUR 4 Writing Your First CGI Program
	Parts of CGI Programs
	A URL-Redirection Program
	How File Redirection Works
	Working with Files in Perl
	Common Statements Used in Perl
	The if Statement
	Perl Expressions
	Summary
	Q&A
	Workshop


	PART II Capturing User Input
	HOUR 5 Creating HTML Forms
	The &lt;form&gt; Tag
	The &lt;input&gt; Tag
	Other Form Fields
	Workshop: Building an Entire Form
	Summary
	Q&A
	Workshop

	HOUR 6 Working with HTTP
	HTTP Basics
	What Takes Place During an HTTP Session
	Request Methods
	Server Response Codes
	Response Headers
	NPH Scripts
	Content Types
	Secure Connections
	Summary
	Q&A
	Workshop

	HOUR 7 Validating User Input
	Using JavaScript for Form Validation
	Designing Easily Validated Forms
	Incorporating Validation into the Form- Processing Code
	An Example of Form Processing
	Validating Values
	Summary
	Q&A
	Workshop

	HOUR 8 Creating an Email Feedback Form
	What Kinds of Applications Involve Sending Email?
	How Email Works
	Example: Sending Email from a CGI Script
	Summary
	Q&A
	Workshop


	PART III CGI Programming Languages and Tools
	HOUR 9 Web Application Architecture
	Application Design
	Round-trip Scripts
	Declarative Programming
	Handling Many Types of Requests
	Sharing Code Among Scripts
	Using CGI::Application
	Summary
	Workshop

	HOUR 10 Delving Further into Perl
	CGI.pm
	Accessing CGI.pm from Your Program
	Decoding Form Data via CGI.pm
	Generating HTTP Headers and HTML Tags via CGI.pm
	cgi-lib.pl
	Handling Errors with CGI::Carp
	Resources for Perl Programmers
	Summary
	Q&A
	Workshop

	HOUR 11 Other Popular CGI Programming Languages
	Will My Favorite Language Work for CGI?
	Writing CGI Programs Using the Bourne Shell
	Creating Gateways to UNIX Commands
	Working with Query Strings
	Writing CGI Programs in C
	The cgic Library
	A C Example
	Writing CGI Programs in Python
	A Python Example
	Summary
	Q&A
	Workshop

	HOUR 12 Pros and Cons of Alternate Technologies
	Looking Back
	J2EE
	PHP
	ASP.NET
	Macromedia ColdFusion
	The Apache mod_perl Module
	Summary
	Q&A
	Workshop


	PART IV Building Basic CGI Applications
	HOUR 13 Using Flat Files for Data Storage
	What Is a Database?
	Flat-File Databases
	File Operations
	Building a Database Application
	Summary
	Q&A
	Workshop

	HOUR 14 Creating a CGI-Based Message Board
	The Structure of the Application
	The File Format
	The Display Script
	The Posting Script
	Summary
	Q&A
	Workshop

	HOUR 15 Session Management
	Why Use Session Management?
	Basic Authentication
	Hidden Fields in Forms
	Hidden Form Fields Example
	Using Cookies
	Session Management with Cookies
	Summary
	Q&A
	Workshop

	HOUR 16 Building a Simple Shopping Cart
	How the Sample Shopping Cart Works
	The Catalog
	The Contents of the Shopping Cart
	Checkout
	Summary
	Q&A
	Workshop

	HOUR 17 Content Management with CGI
	Why Content Publishing?
	Types of Content Publishing Systems
	Data Storage for Content Publishing Systems
	A Content Publishing Example
	Free Content Management Systems
	Summary
	Q&A
	Workshop


	PART V Integrating Databases with CGI
	HOUR 18 Working with Relational Databases
	The Relational Database Model
	Structured Query Language
	Database Design
	Relational Data Types
	Summary
	Q&A
	Workshop

	HOUR 19 How to Use the Structured Query Language
	Structured Query Language
	Database Interfaces
	ODBC
	DBI and DBD
	Summary
	Q&A
	Workshop

	HOUR 20 Creating an Online Store
	The Database Design
	The Catalog Script
	The Shopping Cart Script
	The Checkout Script
	Summary
	Q&A
	Workshop


	PART VI Additional CGI Tips and Tricks
	HOUR 21 Handling Other Content Types
	Content Types
	Handling Binary Content
	An Authenticated Download Application
	Creating Your Own Ad Server
	Tracking User Activity
	Summary
	Q&A
	Workshop

	HOUR 22 Securing CGI Scripts
	Why Security?
	Securing Your Web Server
	Common CGI Security Holes
	Safe Programming
	Summary
	Q&A
	Workshop

	HOUR 23 Creating Custom Error Documents
	What Is an Error Document?
	Configuring Your Web Server for Custom Error Documents
	Using HTML to Create a Basic Error Document
	Using CGI to Create an Advanced Error Document
	Handling an “Unauthorized” Error
	Summary
	Q&A
	Workshop

	HOUR 24 Server Side Includes
	How Server Side Includes Work
	Setting Up Your Web Server for SSI
	Using SSI Directives
	Designing Pages Using SSI
	XSSI
	Summary
	Q&A
	Workshop


	PART VII Appendixes
	APPENDIX A MIME Types
	APPENDIX B Response Codes and Reason Phrases
	APPENDIX C Environment Variables and Request Headers
	CGI Environment Variables
	HTTP Request Headers

	APPENDIX D Summary of Regular Expressions
	APPENDIX E ASCII Table 

	INDEX

