
www.allitebooks.com

http://www.allitebooks.org

Sencha Touch
Cookbook
Second Edition

Over 100 hands-on recipes to help you understand
the complete Sencha Touch framework and solve
your day-to-day problems

Ajit Kumar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Sencha Touch Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Second edition: August 2013

Production Reference: 1130813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-918-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits
Author

Ajit Kumar

Reviewers
Joseph Khan

Michael McCurrey

Acquisition Editor
Usha Iyer

Lead Technical Editor
Anila Vincent

Technical Editors
Shali Sasidharan

Hardik Soni

Sharvari H. Baet

Copy Editors
Brandt D'Mello

Gladson Monteiro

Insiya Morbiwala

Aditya Nair

Alfida Paiva

Adithi Shetty

Laxmi Subramanian

Project Coordinator
Apeksha Chitnis

Proofreader
Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Valentina Dsilva

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ajit Kumar started his IT career with Honeywell, Bangalore in the field of embedded
systems and moved on to enterprise business applications (such as ERP) in his 13 years'
career. From day one, he has been a staunch supporter and promoter of open source and
believes strongly that open source is the way for a liberal, diversified, and democratic setup,
such as India. He dreams, and continuously strives to ensure, that architecture, frameworks,
and tools must facilitate software development at the speed of thought.

Ajit holds a Bachelor's degree in Computer Science and Engineering from the Bihar Institute
of Technology, Sindri. He co-founded Walking Tree, which is based out of Hyderabad, India
where he plays the role of CTO and works on fulfilling his vision.

Prior to writing this book, he worked on the following titles by Packt Publishing:

 f ADempiere 3.6 Cookbook

 f Sencha Touch Cookbook

 f Sencha MVC Architecture

I would like to thank my wife Priti for her untiring support, my family, and my
team at Walking Tree for their constant motivation, the readers of the first
edition of this book for their encouraging feedback, and the team behind
the Sencha Touch framework.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Joseph Khan is a Senior Web Developer at GoldSpot Media where he specializes in HTML5
standard mobile web apps, JavaScript/CSS3 standard rich media apps, and other Rich
Internet Applications (RIA). Before moving into mobile web development, he was working
with Adobe Flex, Action Script, and Flash technologies and developed data visualization and
enterprise dashboard-based applications for clients such as Cisco, The World Bank, AADI, and
other global organizations. His liking for mobile web development occurred recently and he
has been hooked ever since. He also likes Phonegap, PHP, Drupal, and Python.

He has a Bachelor's degree in Computer Science from N.I.T Silchar, India and has been
working on the Web and related technologies for six years.

Besides his regular work he also likes to design cars and motorbikes, ride his
Yamaha, and look for good food. Find out more about him and all his work at
http://jbkflex.wordpress.com/.

He is also the author of Instant Adobe Edge Inspect Starter, Packt Publishing.

I would like to dedicate this book to my parents and my wife Nilofer without
whom I would not have been here, and especially to my 5-month-old baby
boy Ayaan.

Michael McCurrey has been working in the software development industry for over
15 years. He has been party to the success of many notable software startups including
SalesLogix and Trans-soft. Besides technical editing titles, he works as the Software
Development Manager at Ping Golf in Phoenix, Arizona. He lives in Arizona with his wife,
Sunni, and their three children Mickie, Zachary, and Daimon.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Gear Up for the Journey 7

Introduction 7
Setting up the Android-based development environment 10
Setting up the iOS-based development environment 17
Setting up the BlackBerry-based development environment 22
Setting up a browser-based development environment 25
Detecting the device 26
Finding features that are supported in the current environment 28
Letting your application configure itself using profiles 30
Responding to orientation changes 32

Chapter 2: Catering to Your Form-related Needs 35
Introduction 36
Getting your form ready with form panels 37
Working with the search field 44
Applying custom validation in the e-mail field 46
Working with dates using the date picker 48
Making a field hidden 51
Working with the select field 53
Changing a value using slider 55
Spinning the number wheel using spinner 56
Toggling between your two choices 59
Checkbox and checkbox groups 60
Text and text area 62
Grouping fields with fieldset 65
Validating your form 67

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Containers and Layouts 71
Introduction 71
Keeping your container lightweight 74
Working with Panel 76
Adding items to a container at runtime 80
Building wizards using CardLayout 86
Docking items 92
Fitting into the container using FitLayout 94
Arranging your items horizontally using HBoxLayout 95
Arranging your items vertically using VBoxLayout 98
Mixing layouts 102
Easing view navigation with the NavigationView class 105

Chapter 4: Building Custom Views 111
Introduction 111
Basic HTML templating using Template 112
Using XTemplate for advanced templating 118
Conditional view rendering using XTemplate 121
Designing custom views using DataView 124
Showing the filtered data 128
Responding to user actions 133

Chapter 5: Dealing with Data and Data Sources 139
Introduction 140
Creating a model 141
Loading the form using a data model 145
Working with a store 150
Converting incoming JSON data into a model using JsonReader 155
Converting incoming XML data into the model using XmlReader 161
Validations in models 165
Defining your custom validation 169
Relating models using association 172
Persisting session-specific data using the SessionStorage proxy 177
Persisting data using the LocalStorage proxy 182
Accessing in-memory data using the Memory proxy 183
Loading data through AJAX using the Ajax proxy 186
Sorting data 189
Data grouping 192
Filtering data 193
Using a cross-domain URL in your application 195
Working with Web SQL databases 200

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 6: Adding Components 205
Introduction 206
Working with the button component 206
Creating a sheet of buttons with ActionSheet 211
Carousel 216
Managing a list of data using List 221
Grouping items in a list 224
Navigating through a list of data using IndexBar 226
Working with a list of nested data using NestedList 228
Picking up your choice using Picker 235
Switching between multiple views using SegmentedButton 240
Working with Tab panels 242
Getting quicker access to application features using Toolbar 245
Creating a new component 247
Extending an existing component's capability 250
Overriding a component's behavior 255
Adding behavior to an existing component using plugins 257

Chapter 7: Adding Audio/Visual Appeal 261
Introduction 262
Animating an element 262
Ding-dong! You have got a message 265
Working with videos 270
Creating your drawing 273
Working with an area chart 275
Working with a bar chart 280
Working with a column chart 284
Showing a group of bars and columns 286
Highlighting and displaying an item detail 289
Working with a gauge chart 292
Working with a line chart 294
Working with a pie chart 298
Rotating the pies 301
Highlighting a pie 302
Working with a 3D pie chart 303
Working with a radar chart 305
Working with a scatter chart 309
Working with a candlestick/OHLC chart 313

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Chapter 8: Taking Your Application Offline 317
Introduction 317
Detecting offline mode 318
Storing your data offline in localstorage 322
Storing your data offline using Sencha.io 328
Storing your images offline 333
Application caching 343

Chapter 9: Increased Relevance Using Geolocation 347
Introduction 347
Finding out your location 348
Finding out the location using native device APIs 351
Auto update of your location 353
Tracking direction and speed 354
Hooking up Google Maps with your application 356
Working with the Google Maps options 358
Mapping Geolocation on Google Maps 360

Chapter 10: Device Integration 365
Introduction 365
Capturing and managing photos using a camera 366
Pulling out those contacts 369
Working with orientation 372
Managing notifications 378
Reading a file 381
Handling the home button on Android, iOS, and BlackBerry 384
Handling the back button on Android and BlackBerry 386
Handling the menu button on Android and Blackberry 388
Handling the search button on Android 389
Navigating using the BlackBerry trackpad 390

Index 395

Preface
Sencha touch is a versatile HTML5-based framework for developing mobile web
applications that look and feel native on touchscreen devices; with it, you can write
your code once and deploy it to both iOS and Android, saving you both time and money.

The Sencha Touch Cookbook Second Edition has a comprehensive selection of recipes
covering everything from installation right through to HTML5 geolocation.

This book really is your one-stop resource for cross-platform HTML5 application
development. It covers the basics such as setting up an iOS, Android, and Blackberry
development environment right through to much more complex development issues
such as animation, rich media, geolocation, and device features. Every recipe is
practically focused. Maximum action. Minimum theory.

What this book covers
Chapter 1, Gear Up for the Journey, covers the steps required to set up the environment
to develop, deploy, and test Sencha Touch-based applications.

Chapter 2, Catering to Your Form-related Needs, explains how to create a form using Sencha
Touch and the different form fields that can be used to work effectively with the forms.

Chapter 3, Containers and Layouts, covers all the layouts that the framework offers and
how one can use them to structure their widgets on the screen.

Chapter 4, Building Custom Views, explains how one can create very custom-looking,
data-driven, interactive view, and which classes need to be used for the same.

Chapter 5, Dealing with Data and Data Sources, covers every aspect of loading data
from local or remote data sources, dealing with XML/JSON data, data translation,
building client-side caches, and sharing the data across different UI components.

Preface

2

Chapter 6, Adding Components, covers components such as lists, buttons, the picker,
action sheets, and tab panels. It also explains how to create new components or extend
the existing ones.

Chapter 7, Adding Audio/Visual Appeal, covers how to work with audio and video components.
Also, it covers the different charts that one can use to present data, visually, to the user.

Chapter 8, Taking Your Application Offline, introduces the concept of offline support and
covers the steps that an application developer shall take to make their application work in
online as well as offline mode.

Chapter 9, Increased Relevance Using Geolocation, covers how to get geolocation details
inside the application and integrate it with Google Map.

Chapter 10, Device Integration, explains the different device features across different devices
(for example, cameras, contacts, back button, and home button) and how one can integrate
them inside the application to give a better user experience to the device user.

What you need for this book
To run the samples, provided in the book, you need the following software:

 f Sun JDK Version 1.5 or above

 f Android Developer Tools (ADT) Bundled Eclipse

 f Apache Cordova 2.4.0

 f Apache Ant 1.8.4 or above

 f Sencha Touch 2.2.1 library

 f XCode 4

 f BlackBerry WebWorks SDK

Who this book is for
This book is ideal for anyone who wants to gain the practical knowledge involved in using
Sencha Touch mobile web application framework to make attractive web applications for
mobile phones. If you have some familiarity with HTML and CSS, then this book is for you.
This book will give designers the skills they need to implement their ideas and provide
developers with creative inspiration through practical examples. It is assumed that you
know how to use touchscreens, touch events, WebKit on mobile systems, Apple iOS,
Google Android for mobile phones, and BlackBerry.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text are shown as follows: "Create and open a new file ch01_05.js in the
ch01 folder and paste the following code in it."

A block of code is set as follows:

Ext.application({
 name: 'MyApp',
 launch: function() {

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Ext.application({
 name: 'MyApp',
 launch: function() {

Any command-line input or output is written as follows:

ant blackberry build

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Launch Xcode and
go to Preferences."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you. You can also find the code at:
https://github.com/ajit-kumar-azad/SenchaTouch2Cookbook

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

1
Gear Up for the Journey

In this chapter we will cover:

 f Setting up the Android-based development environment

 f Setting up the iOS-based development environment

 f Setting up the BlackBerry-based development environment

 f Setting up a browser-based development environment

 f Detecting the device

 f Finding features that are supported in the current environment

 f Letting your application configure itself using profiles

 f Responding to orientation changes

Introduction
As with any other development, the first and foremost thing that is required before we embark
on our journey is setting up the right environment so that development, deployment, and
testing become easier and effective. And this calls for a list of tools that are appropriate
in this context. In this chapter, we will cover topics related to setting up the environment
using the right set of tools. Sencha Touch is an HTML5-based JavaScript framework to build
applications for touch devices. An application built using Sencha Touch can be accessed from
a web browser or can be packaged for the target touch device and run on it. Sencha Touch 2.2
supports WebKit, the IE 10 browser on Windows 8, and the following platforms:

 f Android

 f iOS

 f BlackBerry

 f Windows Phone 8

Gear Up for the Journey

8

For each of these platforms, we will see what steps we need to follow to set up the complete
development and deployment environment. We will be packaging our Sencha Touch-based
application using Apache Cordova. Cordova is another JavaScript framework, which provides
two important capabilities:

 f The APIs needed to access the device features, such as camera and address book

 f A build mechanism for writing the code once (in the form of JS, HTML and CSS) and
packaging them for different platforms such as iOS and Android

Throughout the book we will be using the following software:

 f Sun JDK version 1.5 or above (required to run Eclipse)

 f Android Developer Tools (ADT-bundled Eclipse), which is required for Android
development

 f Apache Cordova 2.4.0 (required for using device features and packaging the
application for different platforms)

 f Apache Ant 1.8.4 or above (required to run a project build in Eclipse and Cordova
tools)

 f Sencha Touch 2.2.1 library (Sencha Touch SDK)

 f Xcode 4 (required for iOS development)

 f BlackBerry WebWorks SDK (required for BlackBerry development)

Before we get any further, you should download and install the following, which will act as a
common base for all our discussions:

 f Sun JDK 1.5 or above

 f Android Developer Tools (ADT-bundled Eclipse)

 f Sencha Touch 2.2.1 library

After downloading Sencha Touch library, extract it to a folder, say, C:\sencha-touch-
cookbook\softwares\touch-2.2.1. After the extraction, you should see the folders
as shown in the following screenshot:

Chapter 1

9

There are many files that are not required for the development and testing.

The docs folder contains the documentation for the library and is very
handy when it comes to referring to the properties, configs, methods, and
events supported by different classes. You may want to copy it to a different
folder so that you can refer to the documentation whenever needed.

Since there are many files inside the SDK, let us clean it up a bit so that we remove the
files that are not required for development. Delete the files and folders enclosed within
the rectangles in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Gear Up for the Journey

10

This prepares us to get started. Since Sencha Touch is a JavaScript library, you may want to
configure your Eclipse installation for JavaScript development. You may install the VJET and
Sencha Eclipse plugin, which comes with Sencha Complete, and configure it for Sencha Touch
development. Steps to do so are detailed on the VJET website (http://eclipse.org/
vjet/) and instructions are provided as part of the Sencha Complete package;
hence, they have been excluded from this book. To learn more about Sencha Complete,
visit http://www.sencha.com/products/complete.

Download and install Apache Ant from http://ant.apache.org/ to a folder of your
choice, say, C:\sencha-touch-cookbook\softwares\apache-ant-1.8.4, and
add this as the ANT_HOME environment variable. Also, add %ANT_HOME%\bin to the
PATH environment variable.

To learn about device and platform support, you may refer to
http://www.sencha.com/products/touch/features/
to see if your device and platform are listed.

Setting up the Android-based development
environment

This recipe describes the detailed steps we need to follow to set up the environment for the
Android-based development. The steps do not include setting up the production environment.

Getting ready
Install JDK and set the following environment variables correctly:

 f JAVA_HOME

 f PATH

Install Apache Ant and set the following environment variables correctly:

 f ANT_HOME

 f PATH

How to do it...
Follow these steps to set up your Android-based development environment:

1. Download Android SDK ADT Bundle for your platform from http://developer.
android.com/sdk/index.html and install it inside the softwares folder,
C:\sencha-touch-cookbook\softwares\adt-bundle-windows-x86_64.

Chapter 1

11

2. The installed folder contains two folders, sdk and eclipse. sdk contains Android
SDK whereas eclipse contains ADT-bundled Eclipse.

3. Add the following folder paths to the PATH environment variable:

 � platform-tools

 � tools

4. Download Apache Cordova from http://cordova.apache.org/ and extract
it to a folder or your choice, say, C:\sencha-touch-cookbook\softwares\
cordova-2.4.0. We will refer to this as CORDOVA_HOME.

5. Go to the CORDOVA_HOME folder and extract the following in it:

 � cordova-android: This is an Android application library that allows
for Cordova-based projects to be built for the Android platform

 � cordova-cli: This is the command-line tool to build, deploy, and manage
Cordova-based applications

 � cordova-js: This contains a unified JavaScript layer for Cordova-based
projects

6. Launch the command prompt and go to <CORDOVA_HOME>\cordova-android\bin.

7. Run the following command to create our project:
create c:\sencha-touch-cookbook\projects\SenchaTouch com.
senchatouch.book SenchaTouch

Gear Up for the Journey

12

You shall see the following messages, which shows that everything went well:

The syntax of the command create <project folder> <default package>
<project name>.

8. This will create a SenchaTouch folder inside the projects folder.

9. Go to the eclipse folder inside the ADT installed folder.

10. Launch Eclipse and use C:\sencha-touch-cookbook\workspace as the
workspace folder.

11. Click on the File menu and select Import. Select Existing Android Code Into
Workspace under the Android section.

12. Click on the Next button; this will take you to the Import Projects window. Click on
the Browse... button, next to Root Directory, and select the SenchaTouch project
that we created in the previous step.

Chapter 1

13

13. Click on the Finish button to import the project.

14. Expand the assets\www folder and delete the files as shown in the
following screenshot:

Gear Up for the Journey

14

15. Copy the www directory and located at C:\sencha-touch-cookbook\softwares\
touch-2.2.1 folder to the assets directory and rename it to touch.

16. Create and open a new file named ch01_01.js file in the assets/www/ch01
directory. Paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 Ext.Msg.alert("INFO", "Welcome to the world of Sencha
Touch!");
 }
});

17. Now create and open a new file named index.html in the assets\www directory.
Paste the following code in it:
<!DOCTYPE HTML>
<html>
<head>
<title>Sencha Touch Cookbook - Sample</title>
<link rel="stylesheet" href="touch/resources/css/sencha-touch.css"
type="text/css">
<script type="text/javascript" charset="utf-8" src="cordova-
2.4.0.js"></script>
<script type="text/javascript" charset="utf-8" src="touch/sencha-
touch-all-debug.js"></script>
<script type="text/javascript" charset="utf-8" src="ch01/ch01_01.
js"></script>
</head>
<body></body>
</html>

18. Deploy the project to the simulator:

1. Right-click the project, go to Run As, and click on Android Application.

2. Eclipse will ask you to select an appropriate AVD. If there isn't one,
you'll need to create it. To create an AVD, follow these steps:

1. In Eclipse, go to Window | Android Virtual Device Manager.

2. Select the Android Virtual Devices tab and click on the
New… button.

3. Enter your virtual device detail. For example, the following screenshot
shows the virtual device detail for the Samsung Galaxy Ace running
Android 2.2:

Chapter 1

15

4. Click on the OK button.

Gear Up for the Journey

16

19. Deploy the project to the device:

1. Make sure USB debugging is enabled on your device and plug it into
your system. You may enable it by going to Settings | Applications |
Development.

2. Right-click on the project, go to Run As, and click Android Application.
This will launch the Android Device Chooser window.

3. Select the device and click on the OK button.

With these steps, now you will be able to develop and test your application.

How it works...
From steps 1 to 5, we downloaded and installed Android SDK, the ADT-bundled Eclipse
plugin, and Apache Cordova, which are required for the development of the Android-based
application. The SDK contains the Android platform-specific files, an Android emulator, and
various other tools required for the packaging, deployment, and running of Android-based
applications. The ADT plugin for Eclipse allows us to create Android-based applications and
to build, test, and deploy them using Eclipse.

In steps 6 and 7, we created an Android project using Apache Cordova's command-line utility.
It creates a project that is completely compatible with the ADT plugin.

From steps 9 to 13, we imported the Cordova-created project into the ADT-bundled Eclipse.

Chapter 1

17

In steps 14 and 15, we removed the unwanted files and folders and copied Sencha Touch
SDK to the www folder of the project. This is required to run the touch-based applications. We
kept the Cordova JavaScript file, which contains the implementation of the Cordova APIs. You
shall do this if you intend to use the Cordova APIs in your application (for example, to get the
contacts list in your application). For this book, this is an optional step; however, interested
readers may find details about the API at http://docs.phonegap.com/en/2.4.0rc1/
index.html.

In step 16, we created the ch01_01.js JavaScript file that contains the entry point for our
Sencha Touch application. The Ext.application class registers the launch function as
the entry point to the application, which the framework calls during the application startup.

In step 17, we modified the index.html file to include the Sencha-Touch-related
JavaScript (sencha-touch-all-debug.js), CSS files (sencha-touch.css) and our
application-specific JavaScript files (ch01_01.js). sencha-touch-all-debug.js is
very useful during development as it contains well-formatted code, which can be used to
analyze application errors during development. You also need to include the Cordova JS file
in case you intend to use its APIs in your application. The Cordova-related JS and CSS files
need to be included first, then come Sencha-Touch-related JS and CSS files, and finally the
application-specific JS and CSS files.

In step 18, we created an Android virtual device (an emulator) and deployed and tested
the application on it.

Finally, in step 19, we deployed the application on a real Android 2.2-compatible device.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Setting up the iOS-based development
environment

This recipe outlines the steps to set up the development environment for the iOS-based
(for example, iPhone, iPad, and iPod) development.

Gear Up for the Journey

18

Getting ready
Install JDK and set the following environment variables correctly:

 f JAVA_HOME

 f PATH

Install Apache Ant and set the following environment variables correctly:

 f ANT_HOME

 f PATH

You should have created the ch01_01.js file as mentioned in the previous recipe.

Download and install Xcode from Apple Developer portal at http://developer.apple.com.
This requires you to have membership of the iOS and Mac developer programs.

How to do it...
Follow these steps to set up your iOS-based development environment:

1. Launch Xcode and go to Preferences. Click on the Downloads tab on the top
and install Command Line Tools, as shown in the following screenshot:

2. Exit Xcode.

Chapter 1

19

3. Download Apache Cordova from http://cordova.apache.org/ and extract
it to a folder or your choice, say, C:\sencha-touch-cookbook\softwares\
cordova-2.4.0. We will refer to this as CORDOVA_HOME.

4. Go to the CORDOVA_HOME folder and extract the following in it:

 � cordova-ios: This is an iOS application library that allows for
Cordova-based projects to be built for the iOS platform

 � cordova-cli: This is the command-line tool to build, deploy, and
manage Cordova-based applications

 � cordova-js: This contains a unified JavaScript layer for Cordova-based
projects

5. Launch the Terminal window and go to <CORDOVA_HOME>\cordova-ios\bin.

6. Run the following command to create your project:
create ~\sencha-touch-cookbook\projects\SenchaTouchiOS com.
senchatouch.book SenchaTouchiOS

This will create a project inside the ~\sencha-touch-cookbook\projects\
SenchaTouchiOS folder.

7. Use Finder and get to the SenchaTouchiOS folder created in the previous step.

8. Double-click on SenchaTouchiOs.xcodeproj to open the project in Xcode, as
shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Gear Up for the Journey

20

In Finder, you should see the www directory inside your project.

9. Copy the touch-2.2.1 folder inside www and rename it to touch.

10. Add the ch01 folder to www and copy the ch01_01.js file in it, which was created in
the previous recipe.

11. Open the folder named www and paste the following code in the index.html file:
<!DOCTYPE HTML>
<html>
<head>
<title>Sencha Touch Cookbook - Sample</title>
<link rel="stylesheet" href="touch/resources/css/sencha-touch.css"
type="text/css">
<script type="text/javascript" charset="utf-8" src="cordova-
2.4.0.js"></script>
<script type="text/javascript" charset="utf-8" src="touch/sencha-
touch-all-debug.js"></script>
<script type="text/javascript" charset="utf-8" src="ch01/ch01_01.
js"></script>
</head>
<body></body>
</html>

12. Deploy the project to simulator:

Make sure you change the simulator on the top-left menu and hit Run in your project
window header. This will build and run the project in the simulator, as shown in the
following screenshot:

Chapter 1

21

13. Deploy the project to a device:

1. Create a provisioning profile on http://developer.apple.com/
iphone/manage/overview/index.action.

2. Verify that the Code Signing Identity option in the Code Signing sections
of the SenchaTouchiOS Xcode project settings has been set with your
provisioning profile name.

3. Connect your device using USB or Thunderbolt.

4. Make sure to select the device on the top-left corner, as shown in the
following screenshot:

5. Hit Run in your project window header.

How it works...
In steps 2 and 3, we installed the required tools and libraries in Xcode. It is the IDE provided
by Apple for the iOS-based application development.

From steps 3 to 6, we created a Cordova-based iOS project using Cordova's command-line utility.

From steps 7 to 10, we prepared the www folder for the application. Its content is described in
the Setting up the Android-based development environment recipe.

In step 11, we included the Sencha Touch-related files and the application-specific JS file
(ch01_01.js) in the index.html file.

In step 12 and 13, we deployed and tested the application in the simulator as well as a real
iOS device (for example, iPhone).

See also
 f The Setting up the Android-based development environment recipe

Gear Up for the Journey

22

Setting up the BlackBerry-based
development environment

So far, we have seen how to set up the environments for Android and iOS development.
This recipe walks us through the steps required to set up the environment for
BlackBerry-based development.

Getting ready
Install JDK and set the following environment variables correctly:

 f JAVA_HOME

 f PATH

Install Apache Ant and set the following environment variables correctly:

 f ANT_HOME

 f PATH

You should have created the ch01_01.js file as mentioned in the previous recipe.

How to do it...
Follow these steps to set up your BlackBerry-based development environment:

1. Download BlackBerry WebWorks SDK from http://developer.blackberry.
com/html5/download/ and install it to, say, C:\sencha-touch-cookbook\
softwares\RIM\BlackBerry10WebWorksSDK1.0.4.11.

2. Download and install the BlackBerry simulator from http://developer.
blackberry.com/develop/simulator/simulator_installing.html.

3. Go to the CORDOVA_HOME folder and extract the following into it:

 � cordova-blackberry: This is a BlackBerry application library that allows
for Cordova-based projects to be built for the BlackBerry platform

 � cordova-cli: This is the command-line tool to build, deploy, and manage
Cordova-based applications

 � cordova-js: This contains a unified JavaScript layer for Cordova-based
projects

4. Launch the command prompt and go to <CORDOVA_HOME>\cordova-ios\bin.

Chapter 1

23

5. Run the following command to create your project:
create ~\sencha-touch-cookbook\projects\SenchaTouchBB com.
senchatouch.book SenchaTouchBB

This will create a project inside the ~\sencha-touch-cookbook\projects\
SenchaTouchBB folder.

6. Go to c:\sencha-touch-cookbook\projects\SenchaTouchBB, edit
project.properties in an editor of your choice, and set the following properties:
blackberry.bbwp.dir=C:\\sencha-touch-cookbook\\softwares\\RIM\\
BlackBerry10WebWorksSDK1.0.4.11

7. Copy the touch-2.2.1 folder inside www and rename it to touch.

8. Add the ch01 folder to www, and copy the ch01_01.js file inside it, which was
created in the previous recipe.

9. Open the folder named www and paste the following code in the index.html file:
<!DOCTYPE HTML>
<html>
<head>
<title>Sencha Touch Cookbook - Sample</title>
<link rel="stylesheet" href="touch/resources/css/sencha-touch.css"
type="text/css">
<script type="text/javascript" charset="utf-8" src="cordova-
2.4.0.js"></script>
<script type="text/javascript" charset="utf-8" src="touch/sencha-
touch-all-debug.js"></script>
<script type="text/javascript" charset="utf-8" src="ch01/ch01_01.
js"></script>
</head>
<body></body>
</html>

10. Run the command window and go to the SenchaTouchBB project folder.

11. Run the following command to build the project:
ant blackberry build

This will create the .bar file for the device as well as a simulator; these are kept
under the build folder inside the SenchaTouchBB folder.

12. Deploy the project to the simulator:

1. Download and install the VMware player from http://www.vmware.com/
products/player/.

Gear Up for the Journey

24

2. Run the simulator file, based on your platform, using the VMware player.
Make a note of the IP address of the simulator.

3. Go to C:\sencha-touch-cookbook\softwares\RIM\
BlackBerry10WebWorksSDK1.0.4.11\dependencies\tools\bin
and run the following command on the command prompt:
blackberry-deploy –installApp –device <ip address of
simulator> -package C:\sencha-touch-cookbook\projects\
SenchaTouchBB\build\simulator\SenchaTouchBB.bar

4. This will deploy the application on the simulator and you shall be able
to launch it by tapping on the icon.

13. Deploy the project to the device:

1. You have to have your signing keys from RIM.

2. Plug in your device to the computer.

3. While in your project directory, in the command prompt, type ant
blackberry load-device.

How it works...
In steps 1 and 2, we downloaded and installed the BlackBerry SDK and Apache Cordova,
required for the BlackBerry-based development.

In steps 3 to 5, we created a Cordova-based project for BlackBerry.

In step 6, we set up the BlackBerry SDK path, which will be used by the Cordova build
and deploy scripts.

From steps 7 to 9, we prepared the www folder by creating and copying our application-specific
folders and files. Also, we modified the index.html file to make it look exactly like the one
created in the Setting up the Android-based development environment recipe.

In steps 10 and 11, we built the project and created the deployable packages for the
BlackBerry simulator as well as the device.

In steps 12 and 13, we deployed and tested the application in the simulator as well as
a real BlackBerry device.

See also
 f The Setting up the Android-based development environment recipe

Chapter 1

25

Setting up a browser-based development
environment

In the previous recipes, we saw how we can make use of Cordova to build, package, and
deploy the Sencha Touch applications directly on the device. Another very popular kind of
application is the browser-based one. All the devices, which Sencha Touch supports come
along with Internet browsers. In this recipe, we will see how we can develop a Sencha Touch
application, access it, and test it using Internet browsers.

Sencha Touch is moving towards using HTML5 features and we will require a browser that
runs on WebKit engine: Opera, Safari, and Chrome or the IE 10 browser. We can also test
most of the things on a browser running on your desktop/workstation (except items such
as orientation change).

Sencha Touch applications do not work on the browsers using the Gecko
engine, which includes Mozilla Firefox.

We will be using this environment for this book to demonstrate the capabilities of Sencha Touch.

Getting ready
Make sure your device has a WebKit-compatible browser, such as Opera, Safari,
and Chrome or IE 10.

Verify that you have your GPRS or Wi-Fi enabled and working on your device so that
you are able to access the Internet.

You should have a web server (such as Apache or nginx) deployed on a server,
which is accessible on the Internet. For example, I have my web server running
on http://walkingtree.in.

How to do it...
Follow these steps to set up your browser-based development environment:

1. Create a folder touch-cookbook in your web server's deployment/root folder,
say, public_html or htdocs.

2. Copy the content of the assets\www folder, prepared in the Setting up the
Android-based development environment recipe, to the touch-cookbook folder.

Gear Up for the Journey

26

3. Go to the Internet browser on your device and enter the http://<your domain
or ip address>:<port>/touch-cookbook URL (for example, http://
walkingtree.in/touch-cookbook) in the address bar and hit Go.
You should have the application running inside the browser, as shown
in the following screenshot:

How it works...
In step 1, we created the touch-cookbook folder as a placeholder to keep our application
code inside it. This would help us avoid polluting the web server's root folder.

In step 2, we copied the contents from the assets\www folder, which we prepared in the
Setting up the Android-based development environment recipe. In step 3, we removed the
<script> tag including the Cordova JS file, as we are not going to use its APIs in this book.

See also
 f The Setting up the Android-based development environment recipe

Detecting the device
Different devices offer different capabilities; hence, for an application developer,
it becomes important to identify the exact device so that it can respond to the events
in the most appropriate way. Sencha Touch offers the Ext.os class to help us detect
the platform or device. This recipe describes how we can detect the device on which
the application is being run using this class.

Chapter 1

27

How to do it...
Follow these steps:

1. Create and open a new file ch01_02.js in the ch01 folder and paste the
following code into it:
Ext.application({
 name: 'MyApp',
 launch: function() {

 if (Ext.os.is.Android)
 Ext.Msg.alert("INFO", "Welcome Android user!");

 if (Ext.os.is.Blackberry)
 Ext.Msg.alert("INFO", "Welcome Blackberry user!");

 if (Ext.os.is.iPad)
 Ext.Msg.alert("INFO", "Welcome iPad user!");

 if (Ext.os.is.Windows) {
 var str = "Welcome Windows user!";
 if (Ext.os.deviceType === "Desktop")
 str += "Looks like you are running this sample on Desktop";

 Ext.Msg.alert("INFO", str);
 }
 }
});

2. Remove the following line from index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_01.
js"></script>

3. Include the following line in index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_02.
js"></script>

4. Deploy and run the application. Based on the device on which the application
is being run, you will see a corresponding message.

Gear Up for the Journey

28

How it works...
The Ext.os class is instrumental in detecting your target device platform on which
your application is being run. It uses the JavaScript's navigator object to detect the
browser details, including the platform/device. For example, if the platform property
in the navigator object has iPhone in it, the target platform is iPhone; whereas, if the
userAgent property in the navigator object has Android, the platform is Android.

See also
 f The Setting up a browser-based development environment recipe

Finding features that are supported in the
current environment

Each device and platform offers a rich set of functionality. However, it is difficult to identify a
set of features available across all devices and platforms. And even if we happen to find out a
list of common features, there may be reasons why you may want to use a feature on a device
that is not present on other devices; here, you would make your application work on those
devices by creating the best approximation of that specific feature. For example, on a device
where SVG is supported, you may want to make use of that feature in your application to
render the images so that they are scalable. However if another device does not support SVG,
you may want to fall back to rendering your image into JPEG/PNG so that the image will be
visible to the user. This recipe describes how an application can detect the different features
that a device supports. This comes in very handy to enable/disable certain application
features based on the device's supported features.

How to do it...
Follow these steps:

1. Create and open a new file ch01_03.js in the ch01 folder and paste the following
code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {

 var featuresStr = "";
 for (var key in Ext.feature.has) {
 if (Ext.feature.has.hasOwnProperty(key))
 featuresStr += key + " - " + Ext.feature.has[key] + "\n";
 }

Chapter 1

29

 var browserStr = "";
 for (var key in Ext.browser.is) {
 if (Ext.browser.is.hasOwnProperty(key))
 browserStr += key + " - " + Ext.browser.is[key] + "\n";
 }

 alert(featuresStr);
 alert(browserStr);
 }
});

2. Remove the following line from index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_02.
js"></script>

3. Include the following line in index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_03.
js"></script>

4. Deploy and run the application. Based on the device on which the application
is being run, you will see a corresponding message.

How it works...
Check that the support for different features is encapsulated inside the Sencha Touch's
Ext.feature class. This class applies various different mechanisms to find out whether a
requested feature is supported by the target platform/device. For example, to find out whether
the device supports geolocation, this class checks whether geolocation is present in the
window object. Another example to find out whether SVG is supported on the target platform
is that it tries to add an SVG element (removed after successful creation, setting the flag to
indicate that the device supports SVG) to the document.

The Ext.browser class helps us detect which browser we are running on.

In the code, we are iterating through the various properties of the Ext.feature and Ext.
browser class and showing the value of each property, based on the device that we are
running our application on.

See also
 f The Setting up a browser-based development environment recipe

www.allitebooks.com

http://www.allitebooks.org

Gear Up for the Journey

30

Letting your application configure itself
using profiles

This recipe describes how to set up multiple profiles for an application and let the application
configure itself using the profile.

How to do it...
Follow these steps:

1. Create and open a new file ch01_04.js in the ch01 folder and paste the following
code in it:
Ext.application({
 name: 'MyApp',
 profiles: ['Android', 'Desktop', 'TabletPortrait'],
 launch: function() {
 Ext.Viewport.add(Ext.create('Ext.Panel', {
 items : [
 {
 html: 'Welcome to My App!' + ' - profile - ' +
this.getCurrentProfile().getName()
 }
]
 }));
 }

});

2. Create an app folder inside the www folder and a profile folder under it.

3. Create and open a new file Android.js in the profile folder and paste the
following code in it:
Ext.define('MyApp.profile.Android', {
 extend: 'Ext.app.Profile',

 isActive: function() {
 return Ext.os.is.Android;
 }
});

Chapter 1

31

4. Create and open a new file Desktop.js in the profile folder and paste the
following code in it:
Ext.define('MyApp.profile.Desktop', {
 extend: 'Ext.app.Profile',

 isActive: function() {
 return Ext.os.deviceType === 'Desktop';
 }
});

5. Create and open a new file TabletPortrait.js in the profile folder and
paste the following code in it:
Ext.define('MyApp.profile.TabletPortrait', {
 extend: 'Ext.app.Profile',

 isActive: function() {
 return Ext.os.deviceType === 'Tablet' && Ext.viewport.
Default.getOrientation() === 'portrait';
 }
});

6. Remove the following line from index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_03.
js"></script>

7. Include the following line in index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_04.
js"></script>

8. Deploy and run the application. Based on the device profile, you shall see a message.

How it works...
The Application class provides a property profiles, which is used to set up multiple
profiles, as shown in the previous code. When the application is launched, the framework
calls the isActive method of each of the profile classes; whichever method returns
true, that profile becomes active and is used in the application.

In the previous code, we defined three profile classes Android, Desktop, and
TabletPortrait, where the isActive method does a profile-specific check
and returns true or false.

Gear Up for the Journey

32

The current profile can be fetched from the application; you can use the
getCurrentProfile() method, which returns the instance of Ext.app.Profile; then
we call the getName() method on it to print the name of the profile (for example, Android).
The name property is the name of the profile class name.

See also
 f The Setting up a browser-based development environment recipe

Responding to orientation changes
It is possible to change the orientation from portrait mode to landscape by turning your
device. Many applications make use of this to provide better usability to the user. For example,
when we are working with the virtual keyboard and change the orientation from portrait
to landscape, the keyboard gets bigger and it becomes easier to type. Most of the devices
support orientation change; based on your application, you may want to make use of this
feature to change your application layout or behavior. Sencha Touch automatically watches for
this and notifies all the application components by sending them the orientationchange
event. The framework fires the orientationchange event on the Ext.Viewport class
that needs to be handled in case we want to modify the behavior of our application when the
orientation of the device changes.

If the application or any component of it needs to change its behavior, the corresponding
component shall register a handler for the orientationchange event.

How to do it...
Follow these steps:

1. Create and open a new file ch01_05.js in the ch01 folder and paste the following
code in it:
Ext.application({
 name: 'MyApp',
 launch: function() {
 Ext.Viewport.add(Ext.create('Ext.Panel', {
 items : [
 {
 html: 'Welcome to My App!'
 }
],
 listeners: {
 orientationchange: function(vp, newOrientation, width, height,
eOpts) {

Chapter 1

33

 Ext.Msg.alert("INFO","Orientation: " + newOrientation + " :
width:" + width + ":height:" + height);
 }
 }
 }));
 }

});

2. Remove the following line from index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_04.
js"></script>

3. Include the following line in index.html:
<script type="text/javascript" charset="utf-8" src="ch01/ch01_05.
js"></script>

4. Deploy and run the application. Based on the device orientation, you shall see
a message.

How it works...
The Viewport class in Sencha Touch framework registers the orientationchange
event and resizes the event handler if the target platform supports it. These handlers are
invoked when the device orientation is changed. It also checks the autoMaximize property,
which is by default set to false, and auto maximizes the viewport (and the application) when
the orientation changes. The handlers, after resizing or maximizing the application, fire the
orientationchange event that is available to the application developers on the Viewport
class to handle and further modify the application behavior, if needed.

See also
 f The Setting up a browser-based development environment recipe

2
Catering to Your

Form-related Needs

In this chapter we will cover:

 f Getting your form ready with form panels

 f Working with the search field

 f Applying custom validation in the e-mail field

 f Working with dates using the date picker

 f Making a field hidden

 f Working with the select field

 f Changing a value using slider

 f Spinning the number wheel using spinner

 f Toggling between your two choices

 f Checkbox and checkbox groups

 f Text and text area

 f Grouping fields with fieldset

 f Validating your form

Catering to Your Form-related Needs

36

Introduction
Most of the useful applications not only present data but also accept inputs from their users.
And when we think of having a way to accept inputs from the user, send them to the server
for further processing, and allow the user to modify them, we think of forms and form fields.
If our application requires users to enter some information, we go about using the HTML form
fields, such as <input> and <select>, and wrap them inside a <form> element. Sencha
Touch uses these tags and provides convenient JavaScript classes to us to work with the form
and its fields. It provides classes, such as Url, Toggle, Select, and Text. Each of these
classes provides the properties to initialize the field and handle the events and utility methods
to manipulate the behavior and the values of the field. On the other side, the form takes care
of the rendering of the fields and also handles the data submission.

Each field can be created using the JavaScript Object Notation (JSON – http://www.json.
org) or by creating an instance of the class. For example, a text field can be constructed using
the following JSON notation:

{
xtype: 'textfield',
name: 'text',
label: 'My Text'
}

Alternatively, we can use the following class constructor:

var txtField = new Ext.form.Text({
name: 'text',
label: 'My Text'
});

The first approach relies on the xtype property, which is a type assigned to each of the
Sencha Touch components. It is used as shorthand for the component class. The basic
difference between the two is that the xtype approach is used more for lazy initialization
and rendering. The object gets created only when it is required. In any application, we would
use a combination of these two approaches.

In this chapter, we will go through all the form fields and understand how to make use of
them and learn about their specific behaviors. Also, we will see how to create a form using
one or more form fields, and handle form validation and submission.

Chapter 2

37

Getting your form ready with form panels
This recipe shows how to create a basic form using Sencha Touch and implement some
of the behaviors such as how to submit the form data and how to handle the errors during
the submission.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

How to do it...
Carry out the following steps to create a form panel:

1. Create a ch02 folder in the same folder where we had created the ch01 folder.

2. Create and open a new file ch02_01.js and paste the following code into it:
Ext.application({
 name: 'MyApp',

 requires: ['Ext.MessageBox'],

 launch: function() {
var form;

//form and related fields config
var formBase = {

//enable vertical scrolling in case the form exceeds the page
height

scrollable: 'vertical',
standardSubmit: false,
submitOnAction: true,
url: 'http://localhost/test.php',
items: [{//add a fieldset
xtype: 'fieldset',
title: 'Personal Info',
instructions: 'Please enter the information above.',

//apply the common settings to all the child items of the fieldset
defaults: {

Catering to Your Form-related Needs

38

required: true,//required field
labelAlign: 'left',
labelWidth: '40%'
},

items: [
{//add a text feild
xtype: 'textfield',
name : 'name',
label: 'Name',
clearIcon: true,//shows the clear icon in the field when user
types
autoCapitalize : true
},

{ //add a password field
 xtype: 'passwordfield',
 name : 'password',
 label: 'Password',
 clearIcon: false
 }, {
 xtype: 'passwordfield',
 name : 'reenter',
 label: 'Re-enter Password',
 clearIcon: true
 }, { //add an email field
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',
 placeHolder: 'you@sencha.com',
 clearIcon: true
 }]
}, {

//items docked to the bottom of the form
 xtype: 'toolbar',
 docked: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {
 form.reset(); //reset the fields

Chapter 2

39

 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {

 //sumbit the form data to the url
 form.submit({
success: function(form, result) {Ext.Msg.alert("INFO", "Form
submitted!");},
failure: function(form, result) {Ext.Msg.alert("INFO", "Form
submission failed!");}
 });
 }
 }
]
 }
]

 };

 if (Ext.os.is.Phone) {
 formBase.fullscreen = true;
 } else { //if desktop
 Ext.apply(formBase, {
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }
//create form panel
form = Ext.create('Ext.form.Panel', formBase);

Ext.Viewport.add(form);

 }
});

3. Include the following line of code in the index.html file:
<script type="text/javascript" charset="utf-8"
src="ch02/ch02_01.js"></script>

www.allitebooks.com

http://www.allitebooks.org

Catering to Your Form-related Needs

40

4. Deploy and access it from the browser. You will see a screen as shown in the
following screenshot:

How it works...
The code creates a form panel with a fieldset inside it. The fieldset has four fields specified
as part of its child items. The xtype config mentioned for each field tells the Sencha Touch
component manager which class to use to instantiate them.

form = new Ext.form.FormPanel(formBase); creates the form and the other field
components using the config defined as part of the formBase. The form.show(); code
renders the form to the body, and that's how it will appear on the screen. url contains the URL
where the form data will be posted upon submission. The form can be submitted in two ways:

 f By hitting Go on the virtual keyboard, or Enter on a field, which ends up generating
the action event

 f By clicking on the Save button, which internally calls the submit() method on the
form object

form.reset() resets the status of the form and its fields to the original state. So, if you had
entered the values in the fields and clicked on the Reset button, all the fields would be cleared.

form.submit() posts the form data to the specified URL. The data is posted as an Ajax
request using the POST method.

Use of useClearIcon on the field tells Sencha Touch whether it should show the clear
icon in the field when the user starts entering values in it. On clicking this icon, the value
in the field is cleared.

Chapter 2

41

There's more...
In the preceding code, we saw how to construct a form panel, add fields to it, and handle
events. Let us see what other non-trivial things we may have to do in the project and how
we can achieve these using Sencha Touch.

Standard submit
This is an old and traditional way for posting form data to the server URL. If your
application's need is to use the standard form submit rather than Ajax, you will have
to set the standardSubmit property to true on the form panel. This is set to false
by default. The following code snippet shows the usage of this property:

var formBase = {
 scroll: 'vertical',
 standardSubmit: true,
...

After this property is set to true on the form panel, form.submit() will load the complete
page specified in the url property.

Submitting on field action
As we saw earlier, the form data automatically gets posted to the URL if the action event
occurs (when the Go button or the Enter key is hit). In many applications, this default feature
may not be desirable. To disable this feature, you will have to set submitOnAction to false
on the form panel.

Post-submission handling
Say we posted our data to the URL. Now, either the call may fail or it may succeed.
To handle these specific conditions and act accordingly, we will have to pass additional
config options to the form's submit() method. The following code shows the enhanced
version of the submit call:

form.submit({
 success: function(form, result) {
 Ext.Msg.alert("INFO", "Form submitted!");
 },
 failure: function(form, result) {
 Ext.Msg.alert("INFO", "Form submission failed!");
 }
});

In case the Ajax call (to post form data) fails, the failure() callback function is called
and if it's successful, the success() callback function is called. This works only if the
standardSubmit property is set to false.

Catering to Your Form-related Needs

42

Reading form data
To read the values entered into a form field, form panel provides the getValues()method,
which returns an object with field names and their values. It is important that you set the
name property on your form field otherwise that field value will not appear in the object
returned by the getValues() method:

handler: function() {
 console.log('INFO', form.getValues());

 //sumbit the form data to the url
 form.submit({
...
...

Loading data in the form fields
To set the form field values, the form panel provides record config and two methods,
setValues() and setRecord(). The setValues() method expects a config
object with name-value pairs for the fields. The following code shows how to use
the setValues() method:

{
 text: 'Set Data',
 handler: function() {
 form.setValues({
 name:'Ajit Kumar',
 email: 'ajit@wtc.com'
 });
 }
 },
 {
 text: 'Reset',

...

...

Chapter 2

43

The preceding code adds a new button named Set Data; by clicking on it, the form field data
is populated as shown in the following screenshot. As we had passed values for the Name and
Email fields they are set:

The other method, setRecord(),expects an instance of the Ext.data.Model class.
The following code shows how we can create a model and use it to populate the form fields:

,
{
 text: 'Load Data',
 handler: function() {
 Ext.define('MyApp.model.User', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['name', 'email']
 }
 });
var ajit = Ext.create('MyApp.model.User', {
 name:'Ajit Kumar',
 email:'ajit@wtc.com'
 });
form.setRecord(ajit);
 }
},
{
 text: 'Reset',
...
...

Catering to Your Form-related Needs

44

We shall use setRecord() when our data is stored as a model, or we will construct it as
a model to use the benefits of the model (for example, loading from a remote data source,
data conversion, data validation, and so on) that are not available with the JSON presentation
of the data.

While the methods help us to set the field values at runtime the, record config allows us
to populate the form field values when the form panel is constructed. The following code
snippet shows how we can pass a model at the time of instantiation of the form panel:

var ajit = Ext.create('MyApp.model.User', {
 name:'Ajit Kumar',
 email:'ajit@wtc.com'
 });
var formBase = {
 scroll: 'vertical',
 standardSubmit: true,
 record: ajit,
...

More about the model will be discussed in Chapter 5, Dealing with Data and Data Sources.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

Working with the search field
In this and subsequent recipes in the chapter, we will go over each of the form fields
and understand how to work with them. This recipe describes the steps required to
create and use a search form field.

Chapter 2

45

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_02.js.

2. Open a new file ch02_02.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'searchfield',
 name: 'search',
 label: 'Search'
 }]
};

3. Include ch02_02.js in place of ch02_01.js in index.html.

4. Deploy and access the application in the browser. You will see a form panel
with a search field.

How it works...
A search field can be constructed using the Ext.field.Search class instance or using the
xtype: 'searchfield' approach. A search form field implements the HTML5 <input>
element with type="search". However, the implementation is very limited. For example,
the search field in HTML5 allows us to associate a data list that it can use during the search,
whereas this feature is not present in Sencha Touch. Similarly, the W3 search field defines
a pattern attribute to allow us to specify a regular expression against which a user agent
is meant to check the value, which is not supported yet in Sencha Touch. For more detail,
you may refer to the W3 search field (http://www.w3.org/TR/html-markup/input.
search.html) and the source code of the Ext.field.Search class.

Catering to Your Form-related Needs

46

There's more...
In the application, we often do not use a label for the search fields. Rather, we would like
to show text, such as Search…, inside the field that will disappear when the focus is on
the field. Let us see how we can achieve this.

Using a placeholder
Placeholders are supported by most of the form fields in Sencha Touch using the
placeholder property. Placeholder text appears in the field as long as there is no
value entered in it and the field does not have the focus. The following code snippet
shows the typical usage of it:

{
xtype: 'searchfield',
 name: 'search',
 label: 'Search',
 placeHolder: 'Search...'
}

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Applying custom validation in the e-mail
field

This recipe describes how to make use of the e-mail form field provided by Sencha Touch,
and how to validate the value entered into it to find out whether the entered e-mail passes
the validation rule or not.

Chapter 2

47

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_03.js.

2. Open a new file ch02_03.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',
 placeHolder: 'you@sencha.com',
 clearIcon: true,
 listeners: {
 blur: function(thisTxt, eventObj) {
 var val = thisTxt.getValue();

//validate using the pattern
if (val.search("[a-c]+@[a-z]+[.][a-z]+") == -1)
Ext.Msg.alert("Error", "Invalid e-mail address!!");
 else
 Ext.Msg.alert("Info", "Valid e-mail address!!");

 }
 }
}]
};

3. Include ch02_03.js in place of ch02_02.js in index.html.

4. Deploy and access the application in the browser.

Catering to Your Form-related Needs

48

How it works...
The Email field can be constructed using the Ext.field.Email class instance or using
the xtype value as emailfield. The e-mail form field implements the HTML5 <input>
element with type="email". However, similar to the search field, the implementation is
very limited. For example, the e-mail field in HTML5 allows us to specify a regular expression
pattern, which can be used to validate the value entered in the field.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Working with dates using the date picker
This recipe describes how to make use of the date picker form field provided by Sencha Touch,
which allows the user to select a date.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

Chapter 2

49

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_04.js.

2. Open a new file ch02_04.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date'
}]
};

3. Include ch02_04.js in place of ch02_03.js in index.html.

4. Deploy and access the application in the browser.

How it works...
The date picker field can be constructed using the Ext.field.DatePicker class instance
or using the xtype: datepickerfield approach. The date picker form field implements
the HTML <select> element. When the user tries to select an entry, it shows the date picker
component with the slots for the month, day, and year for selection. After selection, when the
user clicks on the Done button, the field is set with the selected value.

There's more...
Additionally, there are other things that can be done, such as setting a date to the current
date or a particular date, or changing the order of appearance of month, day, and year.
Let us see what it takes to accomplish this.

www.allitebooks.com

http://www.allitebooks.org

Catering to Your Form-related Needs

50

Setting the default date to the current date
To set the default value to the current date, the value property must be set to the current
date. The following code shows how to do it:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 value: new Date(),
…

Setting the default date to a particular date
The default date is January 01, 1970. Let's suppose that you need to set the date to a
different date but not the current date. To do so, you will have to set the value property
using the year, month, and day properties, as follows:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 value: {year: 2011, month: 6, day: 11},
…

Changing the slot order
By default, the slot order is month, day, and year. You can change it by setting the
slotOrder property of the picker property of date picker, as shown in the following code:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 picker: {slotOrder: ['day', 'month', 'year']}
 }]
};

Chapter 2

51

Setting the picker date range
By default, the date range shown by the picker is from 1970 till the current year. For our
application need, if we have to alter the year range to a different range, then we can do
so by setting the yearFrom and yearTo properties of the picker property of the date
picker, as follows:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 picker: {yearFrom: 2000, yearTo: 2013}
 }]
 };

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Making a field hidden
Often in an application, there would be a need to hide the fields that are not needed in
a particular context but are required, and hence they need to be shown. In this recipe,
we will see how to make a field hidden and show it conditionally.

Catering to Your Form-related Needs

52

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panel recipe.

How to do it...
Carry out the following steps:

1. Edit ch02_04.js and modify the code, as follows, by adding the hidden property:
var formBase = {
 items: [{
 xtype: 'datepickerfield',
 id: 'datefield-id',
 name: 'date',

 hidden: true,
 label: 'Date'}]
 };

2. Deploy and access the application in the browser.

How it works...
When a field is marked as hidden, Sencha Touch uses the DOM's hide() method on the
element to hide that particular field.

There's more...
Let's see how we can programmatically show/hide a field.

Showing/hiding a field at runtime
Each component in Sencha Touch supports two methods, show() and hide(). The show()
method shows the element and the hide() method hides the element. To call these
methods, first we will have to find the reference to the component, which can be achieved
by either using the object reference or by using the Ext.getCmp() method. Given a
component ID, the getCmp() method returns us the component. The following code
snippet demonstrates showing an element:

var cmp = Ext.getCmp('datefield-id');
cmp.show();

To hide an element, we will have to call cmp.hide().

Chapter 2

53

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Working with the select field
This recipe describes the use of the select form field, which allows the user to select a
value from a list of choices, such as a combobox.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.jsto ch02_05.js.

2. Open a new file ch02_05.js and replace the definition of formBase with the
following code:
 var formBase = {
 items: [{
 xtype: 'selectfield',
 name: 'select',
 label: 'Select',
 placeHolder: 'Select...',
options: [

Catering to Your Form-related Needs

54

 {text: 'First Option', value: 'first'},
 {text: 'Second Option', value: 'second'},
 {text: 'Third Option', value: 'third'}
]
 }]
 };

3. Include ch02_05.js in place of ch02_04.js in index.html.

4. Deploy and access the application in the browser.

How it works...
The preceding code creates a select form field with three options for selection. The select
field can be constructed using the Ext.field.Select class instance or using the xtype:
'selectfield' approach. The select form field implements the HTML <select> element.
By default, it uses the text property to show the text for selection.

There's more...
It may not always be possible or desirable to use text and value properties in the date
to populate the selection list. In case we have a different property in place of text, then how
do we make sure that the selection list is populated correctly without any further conversion?
Let's see how we can do this.

Using a custom display value
We shall use displayField to specify the field that will be used as text, as shown
in the following code:

{
 xtype: 'selectfield',
 name: 'select',
 label: 'Second Select',
 placeHolder: 'Select...',
 displayField: 'desc',
options: [
 {desc: 'First Option', value: 'first'},
 {desc: 'Second Option', value: 'second'},
 {desc: 'Third Option', value: 'third'}
]
}

Chapter 2

55

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Changing a value using slider
This recipe describes the use of the slider form field, which allows the user to change
the value by mere sliding.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_06.js.

2. Open a new file ch02_06.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [{
 xtype: 'sliderfield',
 name : 'height',

Catering to Your Form-related Needs

56

 label: 'Height',
 minValue: 0,
 maxValue: 100,
 increment: 10
 }]
 };

3. Include ch02_06.js in place of ch02_05.js in index.html.

4. Deploy and access the application in the browser.

How it works...
The preceding code creates a slider field with 0 to 100 as the range of values, with 10 as the
increment value; this means that, when a user clicks on the slider, the value will change by
10 on every click. The increment value must be a whole number.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Spinning the number wheel using spinner
This recipe describes the use of the spinner form field, which allows the user to change the
value by clicking on the wheel.

Chapter 2

57

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_07.js.

2. Open a new file ch02_07.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [{
 xtype: 'spinnerfield',
 name : 'spinner',
 label: 'Spinner',
 minValue: 0,
 maxValue: 100,
 stepValue: 10,
 cycle: true
}]
};

3. Include ch02_07.js in place of ch02_06.js in index.html.

4. Deploy and access the application in the browser.

How it works...
Spinner is a wrapper around the HTML5 number field. The spinner field can be constructed by
instantiating the Ext.field.Spinner class or using the xtype value as spinnerfield.
minValue sets the initial value, which will be displayed in the field when the field is rendered.
maxValue: 100 is the maximum value that will be displayed in this field. stepValue tells
the framework that, on every click, the value will be incremented/decremented by 10 based
on the direction in which the user is moving.

Catering to Your Form-related Needs

58

There's more...
In the spinner, it may be a more sensible thing to be able to recycle the value. The following
section shows how to do this.

Recycling the values
By default, when the user reaches maxValue or minValue, he/she cannot move further.
In this case, we may want to recycle the values. To do this, the Spinner class provides a
cycle property; setting its value to true will ensure that the value is set to minValue when
the user clicks after the field value has reached maxValue and vice versa. The following code
snippet shows how to set this property:

items: [{
 xtype: 'spinnerfield',
 name : 'spinner',
 label: 'Spinner',
 minValue: 0,
 maxValue: 100,
 stepValue: 10,
 cycle: true
 }]

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Chapter 2

59

Toggling between your two choices
This is a specialized slider with only two values. In this recipe we will see how to make
use of the toggle field.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_08.js.

2. Open a new file ch02_08.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [{
 xtype: 'togglefield',
 name : 'toggle',
 label: 'Toggle'
 }]
};

3. Include ch02_08.js in place of ch02_07.js in index.html.

4. Deploy and access the application in the browser.

How it works...
This creates a slider field with minValue set to 0 and maxValue set to 1.

www.allitebooks.com

http://www.allitebooks.org

Catering to Your Form-related Needs

60

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Checkbox and checkbox groups
Checkboxes permit the user to make multiple selections from a number of available options.
It is a convenient way to learn about user choices. For example, in an application we may have
a checkbox asking the user if he/she stayed in Hyderabad. And if we are capturing details
about multiple cities where the user had stayed, then we would group multiple checkboxes
under one name and use them as a checkbox group. In this recipe, we will see how we can
create a checkbox and a checkbox group using Sencha Touch, and how to handle the values
when you want to set them or when the form data is posted.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_09.js.

Chapter 2

61

2. Open a new file ch02_09.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [{
 xtype: 'checkboxfield',
 name: 'city',
 value: 'Hyderabad',
 label: 'Hyderabad',
 checked: true
 }, {
 xtype: 'checkboxfield',
 name: 'city',
 value: 'Mumbai',
 label: 'Mumbai'
}]
};

3. Include ch02_09.js in place of ch02_08.js in index.html.

4. Deploy and access the application in the browser. You shall see the checkboxes
as shown in the following screenshot:

Catering to Your Form-related Needs

62

How it works...
The preceding code creates two checkboxes inside the form panel. checked:true
checks the checkbox when it is rendered. When a form is submitted, the checkbox values
are returned as an array. For example, given the previous code, when the user clicks on the
Submit button, city would have two values, as follows:

city: ['Hyderabad', 'Mumbai']

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Text and text area
A text field is one of the initial fields that allows the user to enter data in a form.
Text area allows entering multiple lines of text. In this recipe we will make use of
the text and text-area-related classes.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

Chapter 2

63

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_10.js.

2. Open a new file ch02_10.js and replace the definition of formBase
with the following code:
var formBase = {
 items: [
 {
 xtype: 'textfield',
 name : 'firstName',
 label: 'First Name'
 },
 {
 xtype: 'textfield',
 name : 'lastName',
 label: 'Last Name'
 },
 {
 xtype: 'textareafield',
 name : 'detail',
 label: 'Detail'
 }]
};

3. Include ch02_10.js in place of ch02_09.js in index.html.

4. Deploy and access the application in the browser.

How it works...
In the preceding code, we created two text fields and a text area. A text field can be
constructed using the Ext.field.Text class instance or using the xtype value as
textfield. Similarly, a text area can be constructed using the Ext.field.TextArea
class instance or using xtype: textareafield. Internally, the text form field implements
the HTML <input> element with type="text" whereas text area implements the HTML
<textarea> element. There is no validation on these fields; hence, the user is allowed,
by default, to enter any kind of value.

Catering to Your Form-related Needs

64

There's more...
By default, a text field or a text area allows entering any number of characters. However,
in some specific scenario, we may have to limit this to a particular value in our application.
Let us see how we can limit this.

Limiting the number of input characters
Both text fields and text areas support a property named maxLength that controls
how many characters the user can enter. If this property is set to 20, the user can
only enter 20 characters. The following code snippet shows how to do this:

{
xtype: 'textfield',
name : 'firstName',
maxLength: 20,
label: 'First Name'
},
{
xtype: 'textareafield',
name : 'detail',
maxLength: 80,
label: 'Detail'
}

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Chapter 2

65

Grouping fields with fieldset
Fieldset is used to logically group together elements in a form, an example of which we saw
in the first recipe of this chapter. This recipe shows what Sencha Touch class can be used
to create and how it groups the items under a fieldset.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_11.js.

2. Open a new file ch02_11.js and replace the definition of formBase with the
following code:
var formBase = {
 items: [
 {
 xtype: 'fieldset',
 title: 'About Me',
 items: [
 {
 xtype: 'textfield',
 name : 'firstName',
 label: 'First Name'
 },
 {
 xtype: 'textfield',
 name : 'lastName',
 label: 'Last Name'
 }
]
 }
]

3. Include ch02_12.js in place of ch02_10.js in index.html.

4. Deploy and access the application in the browser.

Catering to Your Form-related Needs

66

How it works...
Fieldsets can be constructed using the Ext.field.FieldSet class instance or the xtype
value as fieldset. All the elements, which must be grouped under the fieldset, must
be added to the fieldset as its child items. The FieldSet class implements the HTML
<fieldset> tag and uses the legend element to show the title.

There's more...
Say, when you are grouping the elements under the fieldset, you also want a way to add some
instructions for it to give more information to the user. The FieldSet class supports this and
lets us see how to do it.

Adding instructions
The Ext.field.FieldSet class provides a property named instructions, which we can
use to add additional instructions. The following code snippet shows how to set this property:

xtype: 'fieldset',
title: 'About Me',
instructions: 'Fill in your personal detail',
…

The specified instruction gets added to the bottom of the fieldset, as shown in the
following screenshot:

Chapter 2

67

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

Validating your form
So far, we have looked at how to create a form and make use of the different form fields
offered by Sencha Touch. Different form fields provide different kinds of information a user
can enter. Now, some of them may be valid and some may not be. It is a common practice
to validate the form and the entered values at the time of posting. Now, based on your
application architecture, you may choose to apply all kinds of validations in the frontend UI
or you may choose to handle them in the backend server code, or a combination of the two.
All of them are valid approaches. However, for this chapter we would assume that we want to
validate the form on the frontend to make sure that the values entered are valid.

Sencha Touch does not offer a mechanism to do form validation. As of now, it has no direct
support for validating the inputs. If we intend to validate the form, the code has to be written to
do so. There are various approaches to building the form validation capability, depending upon
what level of abstraction and reusability we want to achieve. One can write specific code in each
form to carry out the validation, or one can enhance the Ext.Component class, which is the
base class for all the Sencha Touch components, or the Ext.field.Field classes to handle
the validation in a more generic way. Alternatively, one can enhance the form panel as well to
implement a nicely encapsulated form and field validation functionality. In this recipe, we will
see how we can write the specific validation code to take care of our need. The author hopes
that there will be a more streamlined validation in a future version of Sencha Touch.

Catering to Your Form-related Needs

68

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have followed the Getting your form ready with form panels recipe.

How to do it...
Carry out the following steps:

1. Copy ch02_01.js to ch02_12.js and modify the handler function with the
following code:
handler: function() {
var isValid = true;
var errors = new Array();

var fieldValMap = form.getValues();
var email = fieldValMap['email'];
var name = fieldValMap['name'];

//validate the name
if (name.search(/[0-9]/) > -1) {
isValid = false;
errors.push({field : 'name',
reason : 'Name must not contain numbers'});
}

//validate e-mail
if (email.search("@") == -1) {
isValid = false;
errors.push({field : 'email',
reason : 'E-mail address must contain @'});
}

//show error if the validation failed
if (!isValid) {
var errStr = "";

Ext.each(errors, function(error, index){
errStr += "[" + (index+1) + "] - " + error.reason + "\n";
});

Chapter 2

69

 Ext.Msg.alert("Error", errStr);
} else {//form is valid
form.submit();
}
}

2. Include ch02_13.js in place of ch02_12.js in index.html.

3. Deploy and access the application in the browser.

How it works...
The handler() function gets called when the user clicks on the Save button. The handler
validates the name and the e-mail address field values. name.search(/[0-9]/) checks
if the name entered contains any number and email.search("@") verifies if the e-mail
address contains @ or not. In case of any error, we add an error object to the errors array
with two properties, field and reason. The field property stores the field on which the
validation had failed and the corresponding reason is stored in the reason property. After
all the fields have been validated, we check the isValid flag to see if any of the field
validation had failed; if so, we show up a message box with the list of errors, as
shown in the following screenshot:

If there are no field validation errors, the form is submitted.

Another mechanism to validate form data is using a model, which we will see in
Chapter 5, Dealing with Data and Data Sources.

Catering to Your Form-related Needs

70

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Getting your form ready with form panels recipe

3
Containers and Layouts

In this chapter we will cover:

 f Keeping your container lightweight

 f Working with Panel

 f Adding items to a container at runtime

 f Building wizards using CardLayout

 f Docking items

 f Fitting into the container using FitLayout

 f Arranging your items horizontally using HBoxLayout

 f Arranging your items vertically using VBoxLayout

 f Mixing layouts

 f Easing view navigation with the NavigationView class

Introduction
Containers in Sencha Touch are components that can contain other components as their
child items. They handle the basic behavior of adding and removing items. In the previous
chapter we talked about the form panel and different form fields. FormPanel is a container
that contains form fields, buttons, toolbars, and so on. The other containers include Panel,
TabPanel, Sheet, NestedList, Carousel, FieldSet, Toolbar, and so on. All container
classes extend the Ext.Container class.

Containers and Layouts

72

The following diagram depicts the various container classes and their relationship
with each other:

Ext.Container

Map

Panel

SegmentedButton

TitleBar

Carousel

DataView

draw.Component

FieldSet

navigation.View

Slider

tab.Panel

viewport

Sheet

form.Panel

navigation.Bar

tab.Bar

carousel.Infinite

chart.Legend

dataview.List

picker.Slot

Toolbar

Ext.Container is the base class and provides the basic common functionalities related to a
container; it is extended further by different classes that implement certain specific behaviors.
For example, Toolbar takes care of showing various buttons in the form of a toolbar and
Media takes care of playing the audio/video.

In order to implement a new container, you may extend one of the
existing specific container classes, such as TabPanel extending
Panel, that is very close to your requirements. In the worst case
scenario, you will have to extend the Ext.Container class.

Chapter 3

73

When we go on adding items (fields, panels, and so on) to a container, an obvious question
that strikes our mind is, How will these items be rendered and positioned on the page? Will
they be rendered one after another, vertically? Will they be rendered horizontally? Will they
be resized when we resize the page? The answer to all these questions is layout. The layout
takes care of the sizing, resizing, and positioning of the child items of a container. Every
container in Sencha Touch has a config property, layout that accepts the name of the layout
that needs to be used to calculate the sizing and positioning of the child items. The following
are the predefined values and how they lay out the child items:

Layout Description
auto Renders one item after another
card Renders each item as a card; only one item is visible at any given time
fit Renders a single item and automatically expands to fill the layout's

container
hbox Arranges items horizontally across a container
vbox Arranges items vertically down a container

The following diagram depicts the different layout-related classes and how they are related
to each other:

Card Fit FloatBox

FlexBox

HBox VBox

Ext.layout.Default

The top-level layout, Default, is also referred to as the auto layout.

Ext.Container is the default container class used by Sencha
Touch if no xtype is specified, and the auto layout is used if no
layout property is specified on a container class.

Containers and Layouts

74

We have already used some of these containers in the previous chapter, and we will use the
other ones in this and subsequent chapters. In this chapter, we will look into the different
containers and use layouts to position the items inside the containers.

Keeping your container lightweight
We saw earlier in this chapter that Ext.Container is the base class for all the containers.
It gives the basic building block and the specific behaviors are implemented in the respective
containers. Ext.Panel acts as a generic container class with the support for overlay; they
can appear on top of an existing component. In case your application only needs a container
in which you can add items to be rendered, you should go for Ext.Container rather than
using Ext.Panel. In this recipe, we will see how to make use of Ext.Container to
contain our item.

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder named ch03 in the www folder. We will be using this new folder
to store the code.

How to do it...
Carry out the following steps to keep your container lightweight:

1. Create and open a new file named ch03_01.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Container', {
 fullscreen : true,
 items : [{
 style : 'background:grey;',
 html : '<p>Panel 1</p>'
 }, {
 xtype : 'textfield',
 name : 'first',
 label : 'First name'
 }, {
 xtype : 'textfield',
 name : 'last',

Chapter 3

75

 label : 'Last name'
 }, {
 xtype : 'numberfield',
 name : 'age',
 label : 'Age'
 }, {
 xtype : 'urlfield',
 name : 'url',
 label : 'Website'
 }]
 });
 }
});

2. Include the ch03_01.js file in the index.html file.

3. Deploy and access it from the browser. You will see the panel with the items
as shown in the following screenshot:

How it works...
The preceding code creates a container with a panel and four form fields. The following is
the code for adding the first child item to the container:

{
 style: 'background:grey;',
 html: '<p>Panel 1</p>'
}

As there is no xtype specified, Sencha Touch creates Ext.Container and sets style
and html on it.

The default layout used is auto; hence we see the items rendered one after another.

Containers and Layouts

76

There's more...
While we are using the Ext.Container class for its lightweight nature, we may need our
items to be laid out differently. Let's see how we can do this.

Using layout
The Ext.Container class supports the layout property, which we can set to request the
container to position and calculate sizing accordingly. The following are the layouts that can
be used with Ext.Container:

 f auto

 f fit

 f card

 f hbox

 f vbox

 f float

For example, adding the following additional properties on Ext.Container will show the
first panel on the whole screen:

layout: 'card',
activeItem: 0

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with form panel recipe of Chapter 2, Catering to
Your Form-related Needs

Working with Panel
The Ext.Panel is a specific implementation of a generic container by extending the Ext.
Container. The main functionality offered on top of Ext.Container is the support for
overlay, which makes it float over the application. This recipe describes how to make use
of the Ext.Panel class to create an application.

Chapter 3

77

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps to work with Panel:

1. Create and open a new file named ch03_02.js and copy-paste the following
code into it:
Ext.setup({
 onReady: function() {
 var pnl = new Ext.Panel({
 fullscreen: true,
 items: [{
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
 },{
 xtype: 'textfield',
 name : 'first',
 label: 'First name'
 },
 {
 xtype: 'textfield',
 name : 'last',
 label: 'Last name'
 },
 {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age'
 },
 {
 xtype: 'urlfield',
 name : 'url',
 label: 'Website'
 }]
});
 }
});

Containers and Layouts

78

2. Include the ch03_02.js file in the index.html file.

3. Deploy and access it from the browser.

How it works...
The preceding code creates a panel that contains four form fields. The default layout
used is auto.

There's more...
Additionally, we can use a different layout and also have docking items with a panel.
Let's see how we can make use of these features.

Docking items
As we discussed earlier, one of the major advantages of using Ext.Panel over Ext.
Container is that it can dock one or more items. This is driven by the config named docked.
The items that need to be docked must have this property set on it. This config property tells
Ext.Panel that these items need to be docked and it uses the docked value to position
them and calculate their sizing.

The following code is used for adding a toolbar with two buttons, Save and Reset, as the
dock items:

items: [
 {
 xtype: 'toolbar',
 docked: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {

 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "In real implementation, this
 will be saved!");

Chapter 3

79

 }
 }
]
 },
 {
 style : 'background:grey;',
...
... }
]

docked: 'bottom' is a dock-layout-specific property telling us that the toolbar needs to be
positioned at the bottom of the panel. In the dock panel, we have added two buttons, Reset
and Save. The following screenshot show how the screen will look:

Using layouts
Just as with Ext.Container, Ext.Panel supports the layout property, which can be used
to set the appropriate layout. The following are the layouts that can be used with Ext.Panel:

 f auto

 f fit

 f card

 f hbox

 f vbox

Containers and Layouts

80

Panel used as an overlay
Panel has a useful feature that we can use to show it as a floating panel so that it appears
as an overlay panel. The following code adds one more button, Help; on clicking it, the handler
shows the overlay panel.

{
 text: 'Help',
 handler: function(btn) {
 Ext.create('Ext.Panel', {
 html: 'This is a floating panel!',
 left: 0,
 padding: 10
 }).showBy(btn);
 }
}

The following screenshot shows how the floating panel will appear:

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Docking items recipe

Adding items to a container at runtime
In an application, there will be numerous scenarios where we will have to add components
(ranging from a simple field to a panel) at runtime as part of the response to a user event.
For example, your application may have a payment panel where you may want to show the
payment-specific detail panels, which depend on the payment method. If a user selects Credit
Card as the payment method, you may want to show a panel asking the user to enter their
credit card details. This requires us to add components dynamically to an existing container.
In this recipe, we will see how to work with the components at runtime.

Chapter 3

81

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps for adding items to a container at runtime:

1. Create and open a new file named ch03_03.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen : true,
 items : [{
 xtype: 'toolbar',
 docked: 'bottom',
 items: [{
 text: 'Reset',
 handler: function() {

 }
 },
 {
 text: 'Add',
 ui: 'confirm',
 handler: function() {
 pnl.add([{
 xtype: 'emailfield',
 name : 'email',
 label: 'E-mail'
 },
 {
 xtype : 'toolbar',
 docked: 'top',
 items: [{
 text: 'Dummy'
 }]
 }]);

Containers and Layouts

82

 }
 }]
 },
 {
 style : 'background:grey;',
 html : '<p>Panel 1</p>'
 },
 {
 xtype : 'textfield',
 name : 'first',
 label : 'First name'
 },
 {
 xtype : 'textfield',
 name : 'last',
 label : 'Last name'
 },
 {
 xtype : 'numberfield',
 name : 'age',
 label : 'Age'
 },
 {
 xtype : 'urlfield',
 name : 'url',
 label : 'Website'
 }]
 });
 }
});

2. Include the ch03_03.js file in the index.html file.

3. Deploy and access it from the browser.

How it works...
The code creates a panel with three form fields and two buttons, Add and Reset. When the
user clicks on the Add button, a new E-mail field is added to the panel and a new toolbar with
a Dummy button is added on the top as a docked item. The following code in the Add button
handler adds an E-mail field and a docked item to the panel:

pnl.add([{
 xtype: 'emailfield',
 id: 'email-id',

Chapter 3

83

 name : 'email',
 label: 'E-mail'
 }, {
 xtype : 'toolbar',
 docked: 'top',
 items: [{
 text: 'Dummy'
 }]
}]);

When the items are added to the panel, they get rendered immediately on the screen and we
can see the changes made to the panel. This is primarily due to the framework automatically
notifying the layout manager, which renders the new items. The following screenshot shows
how the screen will look before and after clicking on the Add button:

There's more...
Additionally, we can use a different layout and also have docking items with a panel.
Let's see how we can make use of these features.

Inserting at a specific position
The insert method allows us to insert a child item at a desired position. For example,
the following code will add the E-mail field before the Website field:

pnl.insert(5, [{
 xtype: 'emailfield',
 name : 'email',

Containers and Layouts

84

 label: 'E-mail'
 },
 {
 xtype : 'toolbar',
 docked: 'top',
 items: [{
 text: 'Dummy'
 }]
 }

]);

Removing an item
In order to remove an item, the container provides the remove and removeAll methods to
remove one or all components respectively. In order to remove a particular component, we
either need its ID or its object reference. In the following code snippet, we have added an ID,
email-id, to the E-mail field that we are creating; when the user clicks on the Reset button,
we are removing it from the panel:

items : [{
 xtype: 'toolbar',
 docked: 'bottom',
 items: [{
 text: 'Reset',
 handler: function() {
 pnl.remove(Ext.getCmp('email-id'));
 var tb = pnl.down('toolbar[docked=top]');
 pnl.remove(tb);
 }
 },
 {
 text: 'Add',
 ui: 'confirm',
 handler: function() {
 pnl.add([{
 xtype: 'emailfield',
 id: 'email-id',
 name : 'email',
 label: 'E-mail'
 },
 {
 xtype : 'toolbar',
 docked: 'top',

Chapter 3

85

 items: [{
 text: 'Dummy'
 }]
 }
]);
...
...

The Ext.getCmp method accepts a component ID and searches its component hierarchy
to return the matching component. In the preceding code, we used the ID of the E-mail field,
email-id, to get the object reference of the E-mail field and then used it to remove the field.

To find out the top toolbar that we want to remove from the panel, we use the following code:

var tb = pnl.down('toolbar[docked=top]');

The container's down method will go down searching in the component hierarchy of
the panel to find out the first descendant component matching the specified selector.
If a matching component is not found, the down API will return null. Hence, you may want
to check the returned value for null using the Ext.isEmpty method. Also, the selector
string is case-sensitive. You can read more about the selector in the Ext.ComponentQuery
class documentation.

Hiding/showing
Sometimes, the user will be seeing a field based on some condition. Moreover, if your
application was doing this repeatedly, add and remove may not be an efficient set of
methods to use. Rather, we should use the show and hide methods to control the
visibility of a component. The following code snippet shows how a component can be
hidden and shown again:

items : [{
 xtype: 'toolbar',
 docked: 'bottom',
 items: [{
 text: 'Reset',
 handler: function() {
 pnl.remove(Ext.getCmp('email-id'));
 var tb = pnl.down('toolbar[docked=top]');
 tb.hide();
 }
 },
 {
 text: 'Add',
 ui: 'confirm',

Containers and Layouts

86

 handler: function() {
 pnl.add([{
 xtype: 'emailfield',
 id: 'email-id',
 name : 'email',
 label: 'E-mail'
 },
 {
 xtype : 'toolbar',
 docked: 'top',
 items: [{
 text: 'Dummy'
 }]
 }]);
...
...

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe

 f The Docking items recipe

Building wizards using CardLayout
This recipe describes how to use a card layout as a container layout. CardLayout lays items
in the form of playing cards and shows only one item at a time. We will implement a wizard
application to understand the usage of this layout.

Getting ready
Make sure you have set up your development environment by following the recipes outlined in
Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

Chapter 3

87

How to do it...
Carry out the following steps for building wizards using CardLayout:

1. Create and open a new file named ch03_04.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 Ext.define('Wtc.tux.CardPanel', {
 extend: 'Ext.Panel',
 config: {
 layout: 'card'
 },
 getCurrentItemIdx: function() {
 var curr = this.getActiveItem();
 var items = this.getInnerItems();//exclude docked
 items
 var idx = -1;
 var l = items.length;
 for (var i=0; i<l; i++) {
 if (items[i].id == curr.id) {
 idx = i;
 break;
 }
 }
 return idx;
 },
 prev: function() {
 var idx = this.getCurrentItemIdx();
 var items = this.getInnerItems();
 var l = items.length;
 var o = {
 next:--idx<l-1,
 prev:idx>0
 };
 this.setActiveItem(items[idx]);
 return o;
 },

Containers and Layouts

88

 next: function() {
 var idx = this.getCurrentItemIdx();
 var items = this.getInnerItems();
 var l = items.length;
 var o = {
 next:++idx<l-1,
 prev:idx>0
 };
 this.setActiveItem(items[idx]);
 return o;
 }
 });
 var navigate = function(panel, direction){
 var o = panel[direction]();
 Ext.getCmp('move-prev').setDisabled(!o.prev);
 Ext.getCmp('move-next').setDisabled(!o.next);
 };
 var pnl = Ext.create('Wtc.tux.CardPanel', {
 title: 'Wizard',
 fullscreen: true,
 styleHtmlContent: true,
 items: [
 {
 docked : 'top',
 xtype: 'toolbar',
 items: [
 {
 id: 'move-prev',
 text: 'Back',
 ui: 'back',
 handler: function(btn) {
 navigate(btn.up("panel"), "prev");
 },
 disabled: true
 },{xtype: 'spacer'},
 {
 id: 'move-next',
 text: 'Next',
 ui: 'forward',
 handler: function(btn) {
 navigate(btn.up("panel"), "next");
 }
 }
]

Chapter 3

89

 },
 {
 id: 'card-0',
 html: '<h1>Welcome to the Wizard!</h1><p>Step 1 of
 3</p>'
 },
 {
 id: 'card-1',
 html: '<p>Step 2 of 3</p>'
 },
 {
 id: 'card-2',
 html: '<h1>Congratulations!</h1><p>Step 3 of 3 -
 Complete</p>'
 }
]
 });
 }
});

2. Include the ch03_04.js file in the index.html file.

3. Deploy and access it from the browser. You will see the following screens on clicking
on the Next buttons:

How it works...
The preceding code creates a panel with three child panels and a docked panel with
two buttons, Back and Next. The layout: 'card' property indicates that CardLayout
will be used to lay out the items.

Containers and Layouts

90

We defined a new class, Wtc.tux.CardPanel, to encapsulate the functionality of moving
to the next or previous item in the card by implementing the next() and prev() methods.
The class extends the existing Ext.Panel class, indicated by extend:'Ext.Panel', and
defaults the layout to card. It borrows all the behaviors from the Ext.Panel class and adds
the prev() and next() methods to it.

The navigation function, based on the specified direction value, moves to the next/
previous item in the card and enables and disables the appropriate panel.

var navigate = function(panel, direction){
 var o = panel[direction]();
 Ext.getCmp('move-prev').setDisabled(!o.prev);
 Ext.getCmp('move-next').setDisabled(!o.next);
};

Panel contains the next() and prev() methods that can set the active panel based on
the card stack. The panel[direction]() method calls next() or prev() depending on
the direction value. These methods return an object containing two properties, prev and
next, that indicate if there is any item after or before the currently set active item.

Let's take a look at the other two lines:

Ext.getCmp('move-prev').setDisabled(!o.prev);
Ext.getCmp('move-next').setDisabled(!o.next);

In these lines, we are disabling the Back button if we have reached the first panel;
otherwise it remains enabled. Similarly, we will disable the Next button if we have
reached the last panel.

There are different ways to access the Back and Next buttons and you may use them based
on your application design. For example, you may pass the button reference to the navigate
method or you may use the down API on the panel object with the appropriate selector, as
described in the previous recipe.

The button handler calls the navigate method, where it passes the reference of the
panel object, (btn.up("panel")), and the direction text, next, using the following line:

navigate(btn.up("panel"), "next");

There's more...
By default, CardLayout sets the first item as the active item and the user will see that
on the screen when the application comes up. However, there might be a situation where
we would like a different item to remain active by default. Let's see what functionality
CardLayout provides.

Chapter 3

91

Changing the default active item
CardLayout provides a property named activeItem that can be used to set the item that
will be active by default. The default value of this property is 0. To show the second item as
the default panel when the container is initialized, set activeItem to 1 on the container
panel. The following code snippet shows the use of this property:

var pnl = new Ext.Panel({
 title: 'Wizard',
 fullscreen: true,
 styleHtmlContent: true,
 layout: 'card',
 activeItem: 1,
})

Alternatively, you may call the setActiveItem method on the panel object reference,
which we have done inside the prev and next handlers, to set the active item at runtime.

Animating cards
When the card moves from one item to another, you can enable animation by setting the
animation property on the layout config as shown in the following code snippet:

Ext.define('Wtc.tux.CardPanel', {
 extend: 'Ext.Panel',
 config: {
 layout: {
 type: 'card',
 animation: 'reveal'
 }
 },
 getCurrentItemIdx: function() {
...

The following is the list of valid values that we can pass as animation:

 f cover

 f cube

 f fade

 f flip

 f pop

 f reveal

 f scroll

 f slide

Containers and Layouts

92

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe

 f The Docking items recipe

Docking items
The dock panel is used to position the child content along the edge of a layout container.
Sencha Touch provides the mechanism to dock items along any of the four edges, top, left,
bottom, or right. In this recipe we will see what needs to be done to use a docked property.

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps to dock items:

1. Create and open a new file named ch03_05.js and copy-paste the
following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 styleHtmlContent: true,
 items: [{
 docked : 'top',
 style: 'background:grey',
 html: '<p>Panel 1</p>'
 },
 {
 docked : 'bottom',
 style: 'background:blue',
 html: '<p>Panel 2</p>'

Chapter 3

93

 },
 {
 docked : 'right',
 style: 'background:green',
 html: '<p>Panel 3</p>'
 },
 {
 docked : 'left',
 style: 'background:yellow',
 html: '<p>Panel 4</p>'
 }]
 });
 }
});

2. Include the ch03_05.js file in the index.html file.

3. Deploy and access it from the browser. The following screenshot shows how
the view will look:

How it works...
The preceding code creates a panel with four docking panels along the four different edges
using the docked property. Also, irrespective of the value of the layout config, if a container
has items with the docked property defined, they will be rendered using the position
mentioned in the docked property.

Containers and Layouts

94

Docked items can be used with any layout.

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Working with Panel recipe

Fitting into the container using FitLayout
The FitLayout class is used for the container that contains a single item that automatically
expands to fill the layout's container. CardLayout utilizes FitLayout to fit an item into a
card. In this recipe, we will learn about the usage of the FitLayout class.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps to fit an item into the container using FitLayout:

1. Create and open a new file named ch03_06.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 styleHtmlContent: true,
 layout: 'fit',
 items: [{
 style: 'background:#E58A99',
 html: '<p>Panel 1</p>'
 }]
 });
 }
});

Chapter 3

95

2. Include the ch03_06.js file in the index.html file.

3. Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The layout:'fit' property initializes the FitLayout class and associates it with the
panel, which will then be used to render the child items. There is no other config specific
to FitLayout.

If the container with FitLayout has multiple panels,
only the first one will be displayed.

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Working with Panel recipe

Arranging your items horizontally using
HBoxLayout

The HBoxLayout class arranges items horizontally across a container. It optionally divides
the available horizontal space between child items containing a flex configuration, which is
a numeric. The flex option is a ratio that distributes the width after any items with explicit
widths have been accounted for. We can either use the width property to specify a fixed
width or use flex. This recipe describes how we can arrange our items using HBoxLayout.

Containers and Layouts

96

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps for arranging your items horizontally using HBoxLayout:

1. Create and open a new file named ch03_07.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 styleHtmlContent: true,
 layout: 'hbox',
 items: [{
 flex: 3,
 html: 'First',
 style: 'background:#E58A99'
 },
 {
 width: 100,
 html: 'Second',
 style: 'background:#65B9E0'
 },
 {
 flex: 2,
 html: 'Third',
 style: 'background:#B7E488'
 }]
 });
 }
});

2. Include the ch03_07.js file in the index.html file.

Chapter 3

97

3. Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The preceding code creates a panel of 400 pixels width and 300 pixels height. Also, it has
three child panels, where one panel has a fixed width of 100 px and others are using flex.
This is how the hbox layout will calculate the width of each item:

1. The fixed width item is subtracted, leaving us with 300 px width.

2. The total flex number is counted; in this case, it is 5.

3. The ratio is then calculated; 300/5 = 60.

4. The first item has a flex value of 3, so its width is set to 3*60 = 180 px.

5. The other remaining item is set to 2*60 = 120 px.

There's more...
Additionally, the HBoxLayout class provides options such as controlling the vertical and
horizontal alignment of the item.

Containers and Layouts

98

Aligning the component vertically
If there is no height specified for the items, you will notice that the items occupy the complete
container height. In some cases, you may have the need to make the item appear in the
middle of the container. To achieve this, set the align property to middle, as shown in
the following code snippet:

layout: {
 type: 'hbox',
 align: 'middle'
}

Refer to the hbox layout documentation for other valid values.

Aligning the component horizontally
While the align property represents the vertical axis for HBoxLayout and helps us align
the items with respect to it, the pack property represents the horizontal axis; we can align
the item in the center by setting the pack property to center, as shown in the following
code snippet:

layout: {
 type: 'hbox',
 pack: 'center'
}

Refer to the hbox layout documentation for other valid values.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe

Arranging your items vertically using
VBoxLayout

The VBoxLayout class arranges items vertically down a container. It optionally divides
available vertical space between child items containing a flex configuration, which is a
numeric. The flex option is a ratio that distributes height after any items with explicit heights
have been accounted for. We can either use the height property to specify a fixed height or
use flex. This recipe describes how we can arrange our items using the VBoxLayout class.

Chapter 3

99

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps for arranging your items vertically using VBoxLayout:

1. Create and open a new file named ch03_08.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 styleHtmlContent: true,
 layout: {
 type: 'vbox'
 },
 items: [{
 flex: 3,
 html: 'First',
 style: 'background:#E58A99'
 },
 {
 height: 100,
 html: 'Second',
 style: 'background:#65B9E0'
 },
 {
 flex: 2,
 html: 'Third',
 style: 'background:#B7E488'
 }]
 });
 }
});

2. Include the ch03_08.js file in the index.html file.

Containers and Layouts

100

3. Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The preceding code creates a panel of 400 pixels width and 400 pixels height. Also, it has
three child panels, where one panel has a fixed height of 100 px and the others are using
flex. This is how the vbox layout will calculate the height of each item:

1. The fixed height item is subtracted, leaving us with 300 px height.

2. The total flex number is counted; in this case, it is 3.

3. The ratio is then calculated; 300/3 = 100.

4. The first item has a flex value of 2, so its height is set to 2*100 = 200 px.

5. The other remaining item is set to 1*100 = 100 px.

Chapter 3

101

There's more...
Additionally, the vbox layout provides options such as controlling the vertical and horizontal
alignment of the item.

Aligning the component horizontally
If there is no width specified for the items, you will notice that the items occupy the complete
container width. In some cases, you may have a need to make the item appear in the middle
of the container width. To achieve this, set the align property to middle, as shown in the
following code snippet:

layout: {
 type: 'vbox',
 align: 'middle'
}

Refer to the vbox layout documentation for other valid values.

Aligning the component vertically
While the align property represents the horizontal axis for the VBox layout and helps
us align the items with respect to it, the pack property represents the vertical axis; we
can align the item in the center by setting the pack property to center, as shown in the
following code snippet:

layout: {
 type: 'vbox',
 pack: 'center'
}

Refer to the vbox layout documentation for other valid values.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe

Containers and Layouts

102

Mixing layouts
In the previous recipes we looked at the different container layouts that are available with
Sencha Touch. Given the variety of layouts, a question that arises is whether these layouts are
compatible with each other to an extent where they can be nested. For example, is it valid to
use the hbox layout at the parent container level but use vbox inside the subcontainer? The
answer is yes. Technically, it is feasible to combine multiple layouts to create complex-looking
views. For example, we can have a panel with a card layout in which each item has an hbox
layout, each of its items has a vbox layout, and the final container has an auto layout with
few docked items defined.

In this recipe we will see how we can mix different layouts and the important points that we
need to keep in mind when we use these combinations.

Getting ready
Make sure you have set up your development environment by following the recipes outlined in
Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps for mixing the layouts:

1. Create and open a new file named ch03_09.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 styleHtmlContent: true,
 layout: {
 type: 'vbox'
 },
 defaults: {
 styleHtmlContent: true
 },
 items: [{
 flex: 2,

Chapter 3

103

 style: 'background:#E58A99;',
 layout: {
 type: 'hbox'
 },
 items: [{
 flex: 2,
 style: 'background:#E58A99;',
 layout: 'fit',
 items: [{
 xtype: 'textareafield',
 name : 'url',
 label: 'Note'
 }]
 },
 {
 width: 100,
 html: 'Second',
 style: 'background:#65B9E0;'
 },
 {
 flex: 1,
 html: 'Third',
 style: 'background:#B7E488;'
 }]
 },
 {
 height: 100,
 html: 'Top-Second',
 style: 'background:#65B9E0;'
 },
 {
 flex: 1,
 html: 'Top-Third',
 style: 'background:#B7E488;'
 }]
 });
 }
});

2. Include the ch03_09.js file in the index.html file.

Containers and Layouts

104

3. Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The preceding code creates a top-level panel with the vbox layout and one of its items
having an hbox layout. The subitem of the panel with the hbox layout has an item with
the fit layout.

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Working with Panel recipe

Chapter 3

105

Easing view navigation with the
NavigationView class

In the Building wizards using CardLayout recipe, we saw how we can implement view navigation
by adding items to a container with CardLayout and using the setActiveItem method to
switch between the views. This is very handy when we have to implement a workflow, which
consists of multiple steps and user switches between the previous or next view to complete the
workflow. But all that was manual. Sencha Touch framework offers the new NavigationView
class, which combines a container with a card layout and allows us to go back to the previous
view by offering a default Back button. Using its push method, we push a new view to it and the
NavigationView class automatically shows it as the active item.

In this recipe, we will see how we can build a view navigation using the
NavigationView class.

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch03 folder inside the www folder.

How to do it...
Carry out the following steps to see how to perform easy navigation with the
NavigationView class:

1. Create and open a new file named ch03_10.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var cnt = 1;
 var view = Ext.create('Ext.navigation.View', {
 title : 'Wizard',
 fullscreen : true,
 items : [{
 title : 'Step ' + cnt,
 id : 'card-0',
 style : 'background:#E58A99',
 html : '<h1>Welcome!</h1><p>Step ' + cnt + '</p>'

Containers and Layouts

106

 },
 {
 docked : 'bottom',
 xtype: 'toolbar',
 items : [{
 text : 'Push a new view!',
 handler : function() {
 cnt++;
 view.push({
 title : 'Step ' + cnt,
 style : 'background:#65B9E0',
 html : '<h1>There is more...</h1><p>Step '
 + cnt + '</p>'
 });
 }
 }]
 }]
 });
 }
});

2. Include the ch03_10.js file in the index.html file.

3. Deploy and access it from the browser. The following screenshot shows the view:

How it works...
In the preceding code, we created a navigation view with a container as its child item
and also added a toolbar to it with a button. The handler of the Push a new view! button
pushes a container on the view by calling the push API of the NavigationView class.

Chapter 3

107

There's more...
In the preceding output, notice that the Back button appears automatically on the navigation
bar of views (except on the first one); on clicking the button, we were able to go back to the
previous item of the navigation view. These are offered by default. In some cases, we may
want to customize things, such as showing different text for the Back button and showing
more buttons on the navigation bar. Let us see how we can modify these defaults and do
more with the NavigationView class.

Doing some work when the Back button is tapped
When the Back button is tapped/clicked, the NavigationView class fires the back event.
Let us see how we can make use of it to build custom application logic.

In the preceding code, we have a logical issue where the cnt variable is not being set
correctly when the user switches to the previous view. So, when you go back and push another
view, you can see the cnt variable giving an undesired result. Therefore, let us register the
back event handler on the NavigationView class and decrement the cnt variable every
time the user clicks/taps on the Back button, as shown in the following code snippet:

listeners: {
 back: function() {
 cnt--;
 }
}

Randomly jumping to a particular view
Sometimes you may have the need to jump to a specific view that may not be the
immediate previous item. For example, you can show a Jump to first button that the
user can tap on to jump to the beginning of the navigation view from any stage of the
navigation. To achieve this, we will add another button to the bottom toolbar and inside
the handler we will use the pop method of the NavigationView class to jump to a
view using the specific index; this is shown here:

, {
 text: 'Jump to first',
 handler: function() {
 view.pop(cnt-1);
 cnt = 1;
 }
}

Containers and Layouts

108

Showing different text for the Back button
By default, the text used for the Back button is "Back". To show different text, we will
have to set the defaultBackButtonText config on the NavigationView instance;
this is shown here:

var view = Ext.create('Ext.navigation.View', {
 title : 'Wizard',
 defaultBackButtonText: '<<',
...

Showing the item title as Back button text
Rather than showing fixed text, Back, if we have to show the item title as the button
text, we will have to set the useTitleForBackButtonText config to true on the
NavigationView instance; this is shown here:

var view = Ext.create('Ext.navigation.View', {
 title : 'Wizard',
 useTitleForBackButtonText: true,
...

Customizing the navigation bar
The Ext.navigation.Bar class represents the bar that appears on top of the navigation
view and shows the Back button. Now, let us say we want to show a Home button on the
navigation bar; on tapping/clicking on it, the user should jump to the beginning of the
view navigation. To achieve this, we will have to pass the additional button configuration as
part of the navigationBar config on the NavigationView instance; this is shown here:

...
navigationBar: {
 items: [{
 text: 'Home',
 handler: function() {
 view.pop(cnt-1);
 cnt = 1;
 }
 }]
},
fullscreen : true,
...

In the preceding code, we added an additional Home button to the navigation bar, and in the
handler we are jumping to the first view by calling the pop method. The NavigationView
instance will show the Home button on the navigation bar after the Back button because the
navigation bar uses HBoxLayout to align the child items.

Chapter 3

109

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Working with Panel recipe

 f The Building wizards using CardLayout recipe

4
Building Custom Views

In this chapter we will cover:

 f Basic HTML templating using Template

 f Using XTemplate for advanced templating

 f Conditional view rendering using XTemplate

 f Designing custom views using DataView

 f Showing filtered data

 f Responding to user actions

Introduction
In Chapter 2, Catering to Your Form-related Needs, and Chapter 3, Containers and Layouts,
we saw how to make use of the different form fields, containers, and layouts to create a view
of our choice. The out of the box layouts provided by Sencha Touch have a predefined way
to position the components and calculate their sizes. Many a time, there may be situations
in the application where the view cannot be created directly using the available containers,
components, and layouts. For example, if we wanted to create a photo album where the view
shows the photos in a matrix based on the dimension of the device. Alternatively, suppose
we wanted to design a view similar to the Facebook feed. There is no out of box Sencha
Touch layout that supports these custom view needs. And if we were to try to achieve them
by mixing different layouts, it would become a heavy view that would use multiple containers.
We would have to work with the styles to do some tweaking on top of what the layouts provide
to align the information properly. Alternatively, Sencha Touch provides us with a way to create
templates using the HTML fragments and to use them along with the data set to render
custom views.

Building Custom Views

112

There are two types of templates provided: Template and XTemplate. Template provides
us with basic template functionality where we can use an HTML fragment with placeholders
for data. On the other hand, XTemplate is a more advanced template that allows us to use
logical operators and mathematical calculations, execute inline code, and so on, along with an
HTML fragment and data placeholders. Additionally, Sencha Touch provides DataView, which
uses XTemplate to render the view, and a store for the data. It also provides events that can
be used to respond to user actions.

In this chapter, we will learn about each one of these options to render the custom view
and understand their specific usage.

Basic HTML templating using Template
Template provides a way to create templates using HTML fragments. It contains the HTML
elements and various placeholders that are replaced with the values of the fields present
in the data that is given to the template API to use in conjunction with the template text. For
example, we may have a <div> element present in the body; based on the data, we may add
the and elements to it at runtime.

In this recipe we will look at typical usage of templates and understand what it takes to define
and use one.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder named ch04 in the same folder in which we created the ch01 and ch02
folders. We will be using this new folder to keep the code.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch04_01.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'

Chapter 4

113

 },
 {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-
 maroon3.jpg',
 title:'Rose 2',
 about:'Red'
 },
 {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-dark-
 pink.jpg',
 title:'Rose 3',
 about:'Pink'
 },
 {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-bright-
 orange.jpg',
 title:'Rose 4',
 about:'Orange'
 },
 {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil.jpg',
 title:'Daffodil 1',
 about:'Yellow'
 },
 {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil-
 yellow.jpg',
 title:'Daffodil 2',
 about:'Small'
 },
 {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil-white-
 orange.jpg',
 title:'Daffodil 2',
 about:'Orange'}, {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/winter_flowers_
 daffodil_white.jpg',

Building Custom Views

114

 title:'Daffodil 2',
 about:'Winter'}, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-
 peach.jpg',
 title:'Hibiscus 1',
 about:'Peach'
 },
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/
 hibiscusred.jpg',
 title:'Hibiscus 1',
 about:'Red'
 },
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'
 },
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 maroon.jpg',
 title:'Hibiscus 1',
 about:'Maroon'
 },
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'
 },
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'
 }];

Chapter 4

115

 var t = new Ext.Template('<div
 style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>');

 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 tplWriteMode: 'append',
 tpl: t
 });
 Ext.each(data, function(item, index, allItems) {
 pnl.setData(item);
 });
 }
});

2. Include ch04_01.js in the index.html file.

3. Deploy and access the index file from the browser. You may also run it using the
emulator. You will see the screen shown in the following screenshot:

Building Custom Views

116

How it works...
In the preceding code, we have a JSON object stored in data. Each item of the data
array has album, url, title, and about fields, which are referred to in the HTML
fragment given to the template.

{
 album:'rose',
 url:' 'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'
}

The following code instantiates Ext.Template with the HTML fragment containing
the placeholders {url}, {title},and {about}, which are then replaced with the
real values from the data set on the template. The placeholder used in the template
name must match the field name in the data array:

var t = new Ext.Template
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>');

In the following code, we are calling the panel's setData method to pass the data to the
template. The HTML fragment created after applying the data to the template is appended
to the panel's body, which is controlled by the tplWriteMode property. We have set the
property to append to instruct the framework that the HTML fragment needs to be appended:

Ext.each(data, function(item, index, allItems){
 pnl.setData(item);
});

There's more...
Template uses placeholders.These placeholders can either be a field name or an index in
the data. Internally, a template goes through the stage of compilation and then starts applying
the data to the template to get the final HTML fragment that is appended to the element (in
this case, the panel body). Additionally, it also provides us with a way to use different inbuilt
formats and apply them to the data before displaying.

Chapter 4

117

Compiling Template
Compilation of a template is a costly affair because, at this stage, the framework parses
the template string and replaces the placeholders with the appropriate function references
(that are generated at runtime) to get the values for the placeholders. If we are creating a
template once in our code and reusing it to render a view at different stages in the code, it
makes sense to minimize the time spent in the compilation because now the template can
be compiled only once and used multiple times. Ext.Template provides the option as well
as a method to compile the template. The property named compiled, when set to true at
the time of instantiating a template, will be instantiated and then compiled. However, if
we want to compile the template on demand, we can call the compile method on the
Template instance. The following code snippet shows the use of the property for an
immediate compilation:

var t = new Ext.Template
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>',
 {
 compiled: true // compile immediately
 }
);

The following code snippet shows the usage of the compile method:

t.compile();

Formatting values
In some cases, there may be a need to cook the incoming data before it is displayed on
the screen. For example, you may want to format the date properly or you may want to end
the long texts with ellipses. The Ext.Template class allows us to use the formats defined
in the Ext.util.Format class to format the values. The following code snippet shows
typical usage of a format:

var t = new Ext.Template([
 '<div name="{id}">',
 '{name:trim} {value:ellipsis(10)}',
 '</div>',
]);

Building Custom Views

118

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Using XTemplate for advanced templating
Conceptually, XTemplate provides functionality similar to what Template provides.
However, it also provides certain advanced functionalities to work with the template
and its data quickly. This recipe describes XTemplate and demonstrates the difference
between XTemplate and Template.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch04 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file ch04_02.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'},
 ...
 ...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'},
 {
 album:'hibiscus',

Chapter 4

119

 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];
 var t = new Ext.XTemplate('<tpl for=".">',
 '<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div></tpl>');

 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 tpl:t,
 data: data
 });
 }
});

2. Include ch04_02.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the screen shown in the following screenshot:

Building Custom Views

120

How it works...
The preceding code uses the same JSON data that we had used in the previous recipe.

We are then instantiating the Ext.XTemplate class with a similar HTML fragment that
we used with the Ext.Template class:

var t = new Ext.XTemplate('<tpl for=".">',
 '<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div></tpl>');

One difference is that, now, in the HTML fragment, we have enclosed the original HTML within
<tpl>, which is specific to XTemplate. <tpl for="."> is an XTemplate shortcut to say
that this HTML fragment inside this template will be evaluated for each item in the data
array that is passed to the template append method. As the looping construct is part of the
XTemplate class, we don't have to loop through the data array as compared to Template.

There's more...
Similar to Ext.Template, Ext.XTemplate also provides compilation and formatting
capabilities.

Compiling Template
XTemplate also has a property named compiled and a method, compile, to accomplish
the compilation task. The following code snippet shows the use of the property for immediate
compilation:

var t = new Ext.XTemplate
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>',
 {
 compiled: true // compile immediately

 }
);

The following code snippet shows the usage of the compile method:

t.compile();

Chapter 4

121

Formatting values
XTemplate has formatting functionality similar to that which is available with Template.
Refer to the Basic HTML templating using Template recipe for more details.

See also
 f The Setting up a browser-based development environment recipe in Chapter 1, Gear

Up for the Journey

 f The Basic HTML templating using Template recipe

Conditional view rendering using XTemplate
In the previous recipe, we saw how to use XTemplate but did not utilize its capabilities such
as using auto-filling arrays, conditional processing, and math functions to build the view by
making different decisions on the incoming data. For example, in the previous recipe, we
are showing all kind of flowers in our view. What if we just want to show roses? This is where
XTemplate helps us to put the constructs inside the template definition and not make any
change to the data.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch04 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch04_03.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'},
 {
 album:'rose',

Building Custom Views

122

 url:'http://images.flowers.vg/250x300/roses-
 maroon3.jpg',
 title:'Rose 2',
 about:'Red'},
 ...
 ...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'},
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}
];

 var pnl = Ext.create('Ext.Panel', {
 fullscreen: true,
 tpl: new Ext.XTemplate('<tpl>',
 '<tpl for="items">',
 '<tpl if="album==parent.filter &&
 this.matchFound()">',
 '<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div></tpl></tpl>',
 '<tpl if="this.isMatchNotFound()">',
 '<h1>No match found!!',
 '</tpl></tpl>',
 {
 found: false,
 matchFound: function(){
 this.found = true;
 return this.found;
 },
 isMatchNotFound: function(){
 return this.found ? false: true;
 }
 }),

Chapter 4

123

 data: {filter: 'rose', items: data}
 });
 }
});

2. Include ch04_03.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the screen shown in the following screenshot:

How it works...
The preceding code uses the additional capabilities, such as conditions, loops, inline
functions, and inbuilt variables, offered by XTemplate to show the filtered items. Based on
the value specified in the filter property of the data, which is passed to the template,
it checks whether there are images whose album name matches with the filter. The
matching ones are shown in the view; otherwise, the No match found!! message is displayed.

The data that is being passed to the template has the following structure:

{filter: 'rose', items: data}

<tpl for="items"> tells us that the content inside this <tpl> tag is applied to each item
of the items array passed as part of data.

Building Custom Views

124

Look at this line:

<tpl if="album==parent.filter && this.matchFound()">

We are comparing the album field on the incoming data with the filter value ('rose',
in this case) and calling an inline function matchFound() to set a member property, found,
to true indicating that a matching item has been found, as shown in the following code:

matchFound: function(){
 this.found = true;
 return this.found;
}

For the entire matching item, the following HTML fragment is used to render the item:

'<div style="float:left;margin:10px;border:solid;">',
'<img border="0" src={url} title={title} width="100" height="80"
 />',
'<p>{about}</p>',
'</div>'

The following template fragment checks whether there are any matches found. If not, it
displays No match found!!:

'<tpl if="this.isMatchNotFound()">',
 '<h1>No match found!!',
'</tpl>

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Designing custom views using DataView
Template and XTemplate provide the way to create elements using the template,
placeholders, and data. There is one thing that is not really straightforward and this is the
support for events. For example, if you want to handle the click on a rose to show a bigger
picture of it, this is not very straightforward. We will have to work with the elements and register
handlers for the different DOM events that we may be interested in. Also, there is no way to
leverage the store. A Store is covered in more detail in the next chapter. For now, we can say that
a store is a data structure that can hold a collection of records and that can be associated with
components, such as DataView, to provide it the required data to render their view. Sencha
Touch provides a convenient way to create views using XTemplate and link it with a data store.
It also provides events that can be handled to respond to the user action using DataView.

This recipe describes the steps to use DataView.

Chapter 4

125

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch04 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch04_04.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'},
 {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-
 maroon3.jpg',
 title:'Rose 2',
 about:'Red'},
 ...
 ...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

Building Custom Views

126

 var tpl = new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb">
 </div>',
 '{about}</div>',
 '<div class="x-clear"></div>');

 Ext.create('Ext.dataview.DataView', {
 id:'images-view',
 fullscreen: true,
 store: store,
 itemTpl: tpl,
 emptyText: 'No images to display'
 });
 }
});

2. Create and open a new file, ch04.css, and paste the following style code into it:
#images-view .thumb{
 background: #dddddd;
 padding: 3px;
}

#images-view .thumb img{
 height: 60px;
 width: 80px;
}

#images-view .thumb-wrap{
 float: left;
 margin: 4px;
 margin-right: 0;
 padding: 5px;
}

#images-view .thumb-wrap span{
 display: block;
 overflow: hidden;
 text-align: center;
}

#images-view .x-item-selected .thumb-wrap{
 background:#64C6FF;
}

Chapter 4

127

3. Update the index.html file by including the .css and .js files.

4. Deploy and access it from the browser. You may also run it using the emulator.
You will see the screen shown in the following screenshot:

How it works...
The preceding code uses the Ext.dataview.DataView class to create a custom view.
We have created a panel with DataView as its child item.

First, we created a JSON store to hold the data. You may refer to Chapter 5, Dealing with
Data and Data Sources for detailed discussion about different types of stores:

var store = new Ext.data.Store({
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
});

url, title, about, and album are the fields that will be present in the record stored
within store. The data property is used to pass the array to the store that is used to
replace the placeholder values used in XTemplate and produce the net HTML fragment.

Building Custom Views

128

Then we instantiated XTemplate in the following part of the code:

var tpl = new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"></div>',
 '{about}</div>',
 '<div class="x-clear"></div>'
);

The template is using title, url, and about as the placeholders. The CSS classes
used in the template are defined in the ch04.css file.

Next, we created DataView with fullscreen set to true so that it occupies the
complete viewport.

To the panel, we are adding DataView as follows:

Ext.create('Ext.dataview.DataView', {
 id:'images-view',
 fullscreen: true,
 store: store,
 itemTpl: tpl,
 emptyText: 'No images to display'
});

store:store is where we associated our store object with DataView. And the itemTpl
property helps us in associating XTemplate with DataView, which it will use to render the
items in the view. We have used the id attribute and used the same in the CSS definition.

See also
 f The Setting up a browser-based development environment recipe in Chapter 1, Gear

Up for the Journey

 f The Working with Panel recipe in Chapter 3, Containers and Layouts

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

Showing the filtered data
In the previous recipe, we saw how to create a DataView component and use XTemplate
and a store to generate the view. In this recipe, we will see whether we have to show only the
relevant items in the view, and how we go about approaching it.

Chapter 4

129

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch04 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch04_05.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'},
...
...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}
];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

 var filter = function(criteria) {
 store.clearFilter();
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;

Building Custom Views

130

 else
 return false;
 });
 };

 var tpl = new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb">
 </div>',
 '{about}</div>',
 '<div class="x-clear"></div>');

 Ext.create('Ext.dataview.DataView', {
 id:'images-view',
 fullscreen: true,
 store: store,
 itemTpl: tpl,
 emptyText: 'No images to display',
 items: [{
 xtype: 'toolbar',
 docked: 'top',
 items: [
 {
 text: 'Rose',
 id: 'rose-button',
 handler: function() {
 filter('rose');
 }
 },
 {
 text: 'Daffodil',
 id: 'daffodil-button',
 handler: function() {
 filter('daffodil');
 }
 },
 {
 text: 'Hibiscus',
 id: 'hibiscus-button',
 handler: function() {
 filter('hibiscus');
 }
 },
 {
 text: 'Reset',
 id: 'reset-button',
 ui: 'confirm',
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 filter('');

Chapter 4

131

 }
 },
 {
 text: 'Back',
 id: 'back-button',
 ui: 'back',
 hidden: true,
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 this.hide();
 Ext.getCmp('rose-button').show();
 Ext.getCmp('daffodil-button').show();
 Ext.getCmp('hibiscus-button').show();
 }
 }
]
 }]
 });
 }
});

2. Include ch04_05.js in the index.html file.

3. Deploy and access the index.html file from the browser. You may also run it using
the emulator. You will see the screen shown in the following screenshot:

Building Custom Views

132

4. Click on the Rose button. You will see roses on the screen as shown in the
following screenshot:

How it works...
In the preceding code, besides DataView, we have also added a docked toolbar with a button
for each album (Rose, Daffodil, and Hibiscus) and a Reset button. We have then registered
the click handler for all the buttons and each handler is calling the filter function with the
filter criteria as follows:

{
 text: 'Hibiscus',
 id: 'hibiscus-button',
 handler: function() {
 filter('hibiscus');
 }
}

In case of the Reset click handler, filter('') is called, which ensures that all the items
are displayed in the view as shown in the following code snippet:

var filter = function(criteria) {
 store.clearFilter();

Chapter 4

133

 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
};

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe in Chapter 3, Containers and Layouts

 f The Designing custom views using DataView recipe

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Filtering data recipe in Chapter 5, Dealing with Data and Data Sources

Responding to user actions
So far, we have seen how to create DataView, bind it to XTemplate and store, and apply
certain filtering on the data. In this recipe, we will see how to handle the events generated as
part of the user action, for example, when a user selects an item in the view.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch04 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch04_06.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 var data = [{
 album:'rose',

Building Custom Views

134

 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'},
...
...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

 var filter = function(criteria) {
 store.clearFilter();
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
 };

 var tpl = new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb">
 </div>',
 '{about}</div>',
 '<div class="x-clear"></div>');

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 layout: 'card',
 items: [Ext.create('Ext.dataview.DataView', {
 store: store,
 scrollable: 'vertical',

Chapter 4

135

 itemTpl: tpl,
 emptyText: 'No images to display',
 listeners: {
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').setHtml('<img
 src="' + recs[0].data.url + '">');
 Ext.getCmp('images-view').setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 }
 }
 }),
 Ext.create('Ext.Panel', {
 id: 'detail-panel',
 styleHtmlContent: true,
 scrollable: 'vertical'
 }),
 {
 xtype: 'toolbar',
 docked: 'top',
 items: [
 {
 text: 'Rose',
 id: 'rose-button',
 handler: function() {
 filter('rose');
 }
 },
 {
 text: 'Daffodil',
 id: 'daffodil-button',
 handler: function() {
 filter('daffodil');
 }
 },
 {
 text: 'Hibiscus',
 id: 'hibiscus-button',
 handler: function() {
 filter('hibiscus');

Building Custom Views

136

 }
 },
 {
 text: 'Reset',
 id: 'reset-button',
 ui: 'decline-round',
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 filter('');
 }
 },
 {
 text: 'Back',
 id: 'back-button',
 ui: 'back',
 hidden: true,
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 this.hide();
 Ext.getCmp('rose-button').show();
 Ext.getCmp('daffodil-button').show();
 Ext.getCmp('hibiscus-button').show();
 }
 }
]
 }]
 });
 }
});

2. Include ch04_06.js in the index.html file.

Chapter 4

137

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see screen shown in the following screenshot:

4. Click on an item. You will see the bigger image with the Reset and Back button on
the toolbar, as shown in the following screenshot:

Building Custom Views

138

How it works...
The preceding code makes changes on top of the functionality that we built in the previous
recipe. We changed the layout of the main container panel from fit to card and added
DataView to the first card and another panel to the second card to show the bigger image
of the selected flower. Also, we added a Back button to the docked toolbar so that users can
come back to the multiple images view from the detail view.

A selectionchange listener is registered to show the bigger image of the flower on the
second card panel, switch the active panel to the second, and show/hide the toolbar buttons,
appropriately, as follows:

emptyText: 'No images to display',
 listeners: {
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').setHtml('<img src="' +
 recs[0].data.url + '">');
 Ext.getCmp('images-view').setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 }
 }

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with Panel recipe in Chapter 3, Containers and Layouts

 f The Designing custom views using DataView recipe

 f The Building wizards using CardLayout recipe in Chapter 3, Containers and Layouts

5
Dealing with Data and

Data Sources

In this chapter we will cover:

 f Creating a model

 f Loading the form using a data model

 f Working with a store

 f Converting incoming JSON data into a model using JsonReader

 f Converting incoming XML data into the model using XmlReader

 f Validations in models

 f Defining your custom validation

 f Relating models using association

 f Persisting session-specific data using the SessionStorage proxy

 f Persisting data using the LocalStorage proxy

 f Accessing in-memory data using the Memory proxy

 f Loading data through AJAX using the Ajax proxy

 f Sorting data

 f Data grouping

 f Filtering data

 f Using a cross-domain URL in your application

 f Working with Web SQL databases

Dealing with Data and Data Sources

140

Introduction
Imagining an application without the need for data is impossible in today's world. Almost
every application has a need for data and some way to store and work with them effectively
and efficiently. Sencha Touch provides a rich set of classes to work with varied data sources,
represent structured data, and store it locally; it can then be fed to different data-centric
components, such as lists, forms, comboboxes, charts, and so on. It also provides classes
and APIs to validate, filter, sort, and group data. The following diagram depicts the different
classes that are part of the data infrastructure provided by Sencha Touch:

Reader

Proxy

Writer

ModelData
Source

list
form

combo
charts

Store

These classes are explained as follows:

 f Proxy: Proxies allow us to interface with different data sources such as REST
services, Servlet, in-memory array, HTML5-based storage, and so on to read
data from or save data to.

 f Reader: Readers are used when the data is being loaded. They interpret the
data into a model or a store. Based on the type of data we have to deal with,
the respective reader is used; for example, for JSON type data, JsonReader
is used whereas for XML data, XmlReader is used.

 f Writer: Writers are used when the data is being saved. Similar to readers, an
appropriate writer is used based on the type of data we deal with, JSON or XML.

 f Model: Models represent the object that our application uses and works with.
For example, a user, payment objects used by the application containing application
specific fields, and methods manipulating those fields. A store contains a collection
of such models.

Chapter 5

141

 f Store: Stores are the collection that contains the models, and are used by the
different components. This is the class that helps us reuse the collection across
multiple components. For example, the same store can be used for populating a
grid as well as a chart.

The following diagram depicts a typical flow involving different concepts to show how the
raw data from a data source is rendered in a grid:

In this chapter, we will learn about every aspect of the data infrastructure provided by Sencha
Touch. We will work through the models to represent our data structure, use it to render the
views, and also make use of the stores and different proxies to load and save data.

Creating a model
Let's start with understanding how we can represent a data structure using a model and
create objects using it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch05 in the www folder where we created the ch01 and ch02 folders.
We will be using this new folder in which the code will be kept.

Dealing with Data and Data Sources

142

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_01.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 }
 });

 var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in'
});

 Ext.Msg.alert('INFO',user.get('name'));

 }
});

2. Include ch05_01.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

Chapter 5

143

How it works...
Ext.define defines and registers a model with the model manager named ModelMgr.

Once registered, using the Ext.create method we created a model with specific data.
To the create method, we also passed the model name, User, that we had registered
with ModelMgr. Based on this, ModelMgr constructs an object for us, copies the field
values, and returns it to us.

Once a model is created, the class system, by default, provides getter and setter methods
for every field. user.get('name') returns the value stored in the name field of the model.
To set a field value, we call the setter method named user.set('age', 33).

Each field in the fields array represents Ext.data.Field. There are various useful
properties supported by the field. However, in the preceding code, we have used name, type,
and defaultValue. The type property, when specified, is used by the framework to do the
conversion and formatting of the incoming value based on the specified type. The Ext.data.
Field class supports various types such as auto, string, int, float, boolean, date,
and defaultValue.

auto allows every kind of value. If no type property is specified, auto is selected as the
default. defaultValue helps us to set the value that will be used as default for a field.

For the date type field, we can also use the dateFormat property to specify the format
in which the date will be converted.

Another important property on a field is convert. This accepts a function that can be used
to convert the value provided by Reader into an object that will be stored in the model.

There's more...
We can imagine a model as an object and, due to its very nature, it also allows us to define
methods inside it to implement certain logic. Additionally, it also allows us to create a
model by extending another model. Let's see how to make use of these functionalities.

Dealing with Data and Data Sources

144

Adding methods to a model
The following code snippet shows how a changeName method is defined inside the User
model, which is appending an additional text to the user's name:

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 },

 changeName: function() {
 var oldName = this.get('name'),
 newName = oldName + " Azad";

 this.set('name', newName);
 }
 });

Once the method is defined, calling it is as easy as calling a method on any object,
as shown in the following code snippet:

 user.changeName();
 Ext.Msg.alert('INFO', user.get('name'));

Extending a model
Sencha Touch follows object-oriented approaches and methodologies. As part of this,
it has also provided a mechanism to extend one class from another, though it is not something
offered by JavaScript directly. And the same has been applied to models as well, which allows
us to create a model by extending an existing model. The following code snippet shows that
we are defining a model named MyUser that is extending the User model and adding a new
field named dob:

Ext.define('MyUser', {
 extend: 'User',
 config: {
 fields: [
 {name: 'dob', type: 'string'}
]
 }
});

Chapter 5

145

The following code shows instantiating MyUser, which ensures that the properties from the
User class are available on MyUser as part of the extend mechanism:

 var myuser = Ext.create('MyUser', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in',
 dob: '04-04-1978'
 });
 Ext.Msg.alert('INFO', myuser.get('name') + ' : dob : ' +
 myuser.get('dob'));

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Loading the form using a data model
In this recipe, we will see how to make use of the model that we created in the previous
recipe to populate the fields in a form.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file ch05_02.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 Ext.define('User', {
 extend: 'Ext.data.Model',

Dealing with Data and Data Sources

146

 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 },

 changeName: function() {
 var oldName = this.get('name'),
 newName = oldName + " Azad";

 this.set('name', newName);
 }
 });

 var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in'
 });

 user.changeName();

 var form;

 var formBase = {
 scrollable: 'vertical',
 items: [{
 xtype: 'toolbar',
 docked: 'bottom',
 items: [
 {
 text: 'Load',
 handler: function() {
 form.setRecord(user);
 }
 },
 {
 text: 'Reset',
 ui: 'decline',
 handler: function() {
 form.reset();

Chapter 5

147

 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "In a real
 implementation,this will be saved!");
 }
 }
]
 },
 {
 xtype: 'fieldset',
 title: 'Personal Info',
 instructions: 'Please enter the information
 above.',
 defaults: {
 required: true,
 labelAlign: 'left',
 labelWidth: '40%'
 },
 items: [
 {
 xtype: 'textfield',
 name : 'name',
 label: 'Name',
 useClearIcon: true,
 autoCapitalize : false
 },
 {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age',
 useClearIcon: false
 },
 {
 xtype: 'textfield',
 name : 'phone',
 label: 'Phone',
 useClearIcon: true
 },
 {
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',

Dealing with Data and Data Sources

148

 placeHolder: 'you@sencha.com',
 useClearIcon: true
 },
 {
 xtype: 'checkboxfield',
 name : 'alive',
 label: 'Is Alive',
 useClearIcon: true
 }]
 }
],
 listeners : {
 submit : function(form, result){
 console.log('success', Ext.toArray(arguments));
 },
 exception : function(form, result){
 console.log('failure', Ext.toArray(arguments));
 }
 }
 };

 if (Ext.os.is.Phone) {
 //phone specific configuration
 formBase.fullscreen = true;
 }
 else
 {
 //desktop specific configuration
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);

 }
});

Chapter 5

149

2. Include ch05_02.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

4. Click on the Load button to load model data into the fields. You will see the screen
as shown in the following screenshot:

How it works...
In the preceding code, we created a model, a form panel with fields Name, Age, Phone,
Email, and Is Alive as well as buttons Load, Save, and Reset in the docked toolbar. On
clicking the Load button, the following handler code loads the form field with the values
from the user model:

form.setRecord(user);

For this to work, the field name in form must match with the field name in model.

There's more...
When we use the model to update a view, such as form, that has editable fields whose values
can be changed by the user, a natural need arises where we question whether the model will
be updated automatically The answer is, no. If we intend to get the updated model and then
work with it to, say, save, we need to do some work. Let's see what exactly we will have to do if
we have to use the model to save the updated form data.

Dealing with Data and Data Sources

150

Saving form data using the associated model
The getRecord method of Ext.form.FormPanel returns the model instance currently
loaded into the form. However, the model is not automatically updated when the field value
changes. If we want to get an updated model at any instance, the following piece of code
should be written inside the Save button handler:

var formValues = form.getValues();
user.set(formValues);
user.save();

Once we have updated our model, the save method takes care of saving it to the
appropriate data source. The detail about how it identifies which data source and how
it knows whether the data needs to be sent in XML or JSON format, and so on, will be
covered in the subsequent recipes.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with form panels recipe in Chapter 2, Catering to
Your Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Creating a model recipe

Working with a store
So far we saw how to define and create a model and use it to populate a form. There are
various other components that work with a collection of models that need to be saved in
a store. In this recipe, we will look at the steps required to define a store, use it to contain
models, and populate the data in a component.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Chapter 5

151

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_03.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 }
 });

 var store = Ext.create ('Ext.data.Store', {
 model: 'User',
 data : [{
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'
 },
 {
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 },
 {

Dealing with Data and Data Sources

152

 name : 'Pradeep Lavania',
 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }
]
 });

 var form;

 var formBase = {
 scrollable: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.os.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);

 }
});

Chapter 5

153

2. Include ch05_03.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the screen as shown in the following screenshot:

How it works...
In the preceding code, we created a form panel with a combobox that has a store
associated with it. The following code creates a store object using the inline data
containing the user information:

var store = Ext.create ('Ext.data.Store', {
 model: 'User',
 data : [{
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'
 }, {
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 }, {

Dealing with Data and Data Sources

154

 name : 'Pradeep Lavania',
 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }
]
});

The model property on store instructs the store that each item in the data array
will be converted into a User model. After this, we created a combobox using the store
in the following code:

items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
}]

valueField and displayField contain the model field names whose value will be
read to populate the combobox. While displayField is used to show the drop-down
values to the user, valueField is sent to the URL when a form containing the combobox
is posted. In our code, both the fields are using the name field, so we see the username
appearing in the selection list.

There's more...
In this recipe, we saw how to make use of the inline data to populate a store and subsequently
the combobox. In an application, we may have the need to add the records dynamically to the
store based on certain application logic. Let's see how we can do it.

Adding a record to the store at runtime
There are multiple options depending upon what exactly we want to do. Let's visit each of the
options and understand what their specific usage is.

To add a record at the end of the existing record set, we need to call the add method.

 store.add({
 name : 'Priti',
 age : 30,
 phone: '987-654-3210',
 email: 'priti@walkingtree.in'
 });

Chapter 5

155

In case we want to insert the new record at a specific position in store, then the insert
method can be used, as shown in the following code snippet, where we are adding the new
record at index 1:

 store.insert(1, {
 name : 'Priti',
 age : 30,
 phone: '987-654-3210',
 email: 'priti@walkingtree.in'
 });

Last but not the least, if we have models and want to use them to add records to store,
we will use the add method on store as follows:

 var user = Ext.create('User', {
 name : 'Pratyush Kumar',
 age : 5,
 phone: '987-654-3210'
 });

 store.add([user]);

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Get your form ready with form panels recipe in Chapter 2, Catering to
Your Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Creating a model recipe

Converting incoming JSON data into a
model using JsonReader

As we saw earlier in the chapter, a reader helps us in data loading and converting the incoming
data into a model, which can then be added to a store. Based on the type of data, Sencha Touch
provides two readers namely JsonReader and XmlReader. In this recipe, we will see how to
make use of the JsonReader to read the JSON data and prepare a model out of it.

Dealing with Data and Data Sources

156

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file users.json and paste the following code into it:
{"users": [{
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
 "phone": "555-555-5555",
 "email": "ajit@walkingtree.in"
 }, {
 "id": "2",
 "name" : "Alok Ranjan",
 "age" : "32",
 "phone": "123-456-7890",
 "email": "alok@walkingtree.in"
 }, {
 "id": "3",
 "name" : "Pradeep Lavania",
 "age" : "34",
 "phone": "987-654-3210",
 "email": "pradeep@walkingtree.in"
}]
}

2. Create and open a new file named ch05_04.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 'id',

Chapter 5

157

 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 }
 });

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scrollable: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.os.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,

Dealing with Data and Data Sources

158

 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 Ext.Viewport.add(form);
 }
});

3. Include users.json and ch05_04.js in the index.html file.

4. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The code creates a form panel with a selection field that shows the list of users loaded
by store from the users.json file. The users.json file contains the user information
in the JSON encoded form.

The following code creates a store using an Ajax proxy and url pointing to the
users.json file.

var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
});

The proxy uses the JSON reader, which is indicated by the type property of reader.
The other important property on reader is rootProperty, which needs to be set to the
property in the users.json file that contains the data array. Hence, it is set to users.

Once the proxy and reader are set up on store, the store knows from where it has to load
the data (proxy detail) and how the data needs to be interpreted (reader detail) to construct
the model. We also need to consider when to load the data. For this, we set the autoLoad
property on store to true. This will instruct the store to start loading the data as soon as
it is initialized.

More about the proxy and reader is covered in the recipes to follow.

Chapter 5

159

There's more...
There are different properties provided by proxy and reader to help us deal with different
incoming data structures. In the next section, we will see how to deal with some of the data
structures, such as nested data and metadata.

Fetching records from a nested data
Say our data contains some metadata about each data such that the actual record is
nested. This is shown in the following data format:

{"users": [
 {
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
 "phone": "555-555-5555",
 "email": "ajit@walkingtree.in"
 }
 }, {
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "2",
 "name" : "Alok Ranjan",
 "age" : "32",
 "phone": "123-456-7890",
 "email": "alok@walkingtree.in"
 }
 }, {
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "3",
 "name" : "Pradeep Lavania",
 "age" : "34",
 "phone": "987-654-3210",
 "email": "pradeep@walkingtree.in"
 }
 }]
}

Dealing with Data and Data Sources

160

To fetch the actual user information out from the preceding structure, we will have to make
use of the record property on reader to indicate the nested field that contains the user
information as follows:

reader: {
 type: 'json',
 rootProperty: 'users',
 record: 'user'
}

Working with response metadata
Sometimes the response contains the metadata and the actual data. These metadata
contain application-specific information, which can be used by the client-side code to
exhibit certain behaviors. For example, one of the important pieces of information that
helps our application to implement pagination is the total record count returned along with
the page data so that the frontend would be able to derive the number of pages of data it will
have to deal with and, accordingly, render the page information or handle the previous/next
functionality. Similarly, the server-side application may have to indicate whether the request
was processed successfully or if there was an error. This may be achieved on the server side
by returning a property in the metadata and setting it to true/false to indicate success/error.
The following code shows the record structure where totalRecords and success are two
metadata properties being returned from the server, besides the actual data, users:

{
 "totalRecords" : "20",
 "success" : "true",
 "users": [{
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
..
 }]
}

There are two additional properties provided by reader: totalProperty and
successProperty to map the field on the server response, which contains the total number
of records available with the server (although it is returning only three in a read) and the field
that would indicate whether there was any application level error while processing the request.
For example, if the application failed to get users from its database, it can make use of the
success field to convey the error to the frontend. The following code shows the changes that
we will have to make to reader to accommodate these two additional metadata properties:

Chapter 5

161

reader: {
 type: 'json',
 rootProperty: 'users',
 totalProperty: 'totalRecords',
 successProperty: 'success'
}

See also
 f The Setting up a browser-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Getting your form ready with form panels recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Creating a model recipe

 f The Working with a store recipe

 f The Loading data through AJAX using the Ajax proxy recipe

Converting incoming XML data into the
model using XmlReader

Similar to JsonReader, XmlReader exists for us to work with XML data efficiently. It provides
the XPath kind of notation to quickly access the elements of the incoming XML data.

In this recipe, we will see how to work with the XML data and use XmlReader to construct
the model, which can be used within the application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Dealing with Data and Data Sources

162

How to do it...
Carry out the following steps:

1. Create and open a new file named users.xml and paste the following code into it:
<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user>
 <id>1</id>
 <name>Ajit Kumar</name>
 <age>33</age>
 <phone>123-456-7890</phone>
 <email>ajit.kumar@walingtree.in</email>
 <alive>true</alive>
 </user>
 <user>
 <id>2</id>
 <name>Alok Ranjan</name>
 <age>34</age>
 <phone>123-456-7890</phone>
 <email>alok@walkingtree.in</email>
 <alive>true</alive>
 </user>
</users>

2. Create and open a new file named ch05_05.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 }
 });
 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {

Chapter 5

163

 type: 'ajax',
 url : 'users.xml',
 reader: {
 type: 'xml',
 record: 'user'
 }
 }
 });

 var form;

 var formBase = {
 scrollable: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.os.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);
 }
});

3. Include users.xml and ch05_05.js in the index.html file.

4. Deploy and access it from the browser. You may also run it using the emulator.

Dealing with Data and Data Sources

164

How it works...
The code loads the data from the users.xml file and populates the items in the
selection field of the form panel. The store is modified to use proxy with url set
to the users.xml file and reader is configured on proxy with type set to xml, so
that it can interpret the incoming XML data into the model.

var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.xml',
 reader: {
 type: 'xml',
 record: 'user'
 }
 }
});

For the XML reader, we have used the property record to tell which element in the
incoming XML represents the user information.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with form panels recipe in Chapter 2, Catering to
Your Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Working with a store recipe

 f The Loading data through AJAX using the Ajax proxy recipe

Chapter 5

165

Validations in models
A model definition represents the structure of the data that has one or more fields. For
example, a payment model containing a paymentDate field to store the date when the
payment was made. Now, when we construct the models using the incoming data, there
may be certain rules that we would like to apply to make sure that the model represents
a valid data. For example, on a payment model, it may be required to have a paymentDate
field and also it may be required that the value in this field is in the past (prior to today's date).
This kind of mechanism helps us to build robust applications.

Sencha Touch provides support for this using the validations on Model. There are predefined
lists of validations that we can use to set up the validation rules on our model. The following
are the predefined validations supported:

 f presence: It validates that a given property value is present, that is, it is not null

 f length: It validates whether the given value is between the specified min and max

 f inclusion: It validates that the value is present in the specified list

 f exclusion: It validates that the value is not present in the specified list

 f format: It validates that the value matches with the specified regular expression

 f email: It validates that the value is a valid e-mail format

In this recipe, we will see how to make use of these validations.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Dealing with Data and Data Sources

166

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_06.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2}
]
 }
 });

 var user = Ext.create('User', {
 name : '',
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in'
 });

 var errors = user.validate();
 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index,
 allErrors){
 errStr += error.getField() + ' : ' +
 error.getMessage() + '\n';
 });
 alert(errStr);
 }
 }
});

Chapter 5

167

2. Include ch05_06.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The preceding code sets up the validation rules on the model and validates the model
objects using them.

validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2}
]

Using the preceding code, we configured two validation rules: presence and length
on the age and name fields, respectively. The rules suggest that we want to make sure
that a model must have the age field in it and name must be at least two characters long.

 var errors = user.validate();

The preceding line validates the user model where it applies all the validations that we
had configured on the User model. The validate method returns Ext.data.Errors
as the error object. The errors.isValid() method returns true if the model had
passed the validations.

 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index, allErrors){
 errStr += error.getField() + ' : ' + error.getMessage() +
 '\n';
 });
 alert(errStr);
 }

In case of an error, the validate method returns an array of error items. Each will have a
field indicating the model field that has failed the validation and the corresponding message.
In the preceding code, we iterated through the errors.items array, concatenated all the
error fields and their messages, and displayed them, as shown in the following screenshot:

Dealing with Data and Data Sources

168

There's more...
In the following sections, we will see how to make use of the other validations.

Inclusion
Inclusion works with the list property, which contains an array of strings. The validation
logic for inclusion checks if the value is present in the specified list.

The following code shows the typical usage of the inclusion validation:

{type: 'inclusion', field: 'gender', list: ['Male',
 'Female']}

Exclusion
Exclusion works as a complement of inclusion, where it returns true (validation passed) if
the value does not belong to the specified list. The usage is exactly the same as inclusion,
except that the type will be 'exclusion'.

{type: 'exclusion', field: 'username', list: ['Admin',
 'Operator']}

Format
Format helps us to verify if the value matches with the specified regular expression.
We can use the JavaScript regular expressions to create any matchers. This validation
rule works on the matcher property. The following is a sample usage:

{type: 'format',field: 'username', matcher: /([a-z]+)[0-9]{2,3}/}

Changing the default message
By default, the Ext.data.validations class defines the messages for each type of
validation rules. For example, if the presence validation fails, must be present appears
for the field for which it had failed. If the default message is not the desired one, we can
change it by specifying the message property for the validation, as follows:

{type: 'presence', message: ' property not found', field: 'age'}

See also
 f The Setting up a browser-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Creating a model recipe

 f The Validating your form recipe in Chapter 2, Catering to Your Form-related Needs

Chapter 5

169

Defining your custom validation
In the previous recipe, we saw that the out of the box validations are available in Sencha
Touch. However, for various practical reasons we may have a need to create additional
validation rules and use them across the application. For example, the payment amount
must not be negative, the date must be prior to today's date, and so on.

In this recipe, we will go through the steps to create a new validation rule and use it in
the application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_07.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {

 Ext.apply(Ext.data.validations, {
 checkdate: function(config, value) {
 if (value === undefined) {
 return false;
 }
 var graceDays = Ext.isEmpty(config.grace) ? 1 :
 config.grace;
 var date = Ext.Date.parse(value, 'd-m-Y');
 var currDate = new Date();
 currDate = Ext.Date.clearTime(currDate);
 if (Ext.Date.between(date, currDate,
 Ext.Date.add(currDate, Ext.Date.DAY, graceDays)))
 return true;
 else
 return false;
 },
 getCheckdateMessage: function() {
 return 'date is not within the allowed range';

Dealing with Data and Data Sources

170

 }
 });

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'effectiveDate', type: 'string'},
 //format d-m-Y
 {name: 'alive', type: 'boolean', defaultValue:
 true}
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2},
 {type: 'checkdate', field: 'effectiveDate',
 grace: 2}
]
 }
 });

 var user = Ext.create('User', {
 name : '',
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 effectiveDate: '18-03-2013'
 });

 var errors = user.validate();
 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index,
 allErrors){
 errStr += error.getField() + ' : ' +
 error.getMessage() + '\n';
 });
 alert(errStr);
 }
 }
});

2. Include ch05_07.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

Chapter 5

171

How it works...
Consider the following code:

 Ext.apply(Ext.data.validations, {

Ext.data.validations contains all the six validation rules and is a singleton class.
Using Ext.apply, we are adding additional validation to it:

 getCheckdateMessage: function() {
 return 'date is not within the allowed range';
 }

getCheckdateMessage, once defined, will be used by the validate method to show the
message in the errors when a field with the new validation, checkdate, fails. The syntax for
this property is get<name of the validation rule with first character in
uppercase>Message. So, for our new validation rule, checkdate, this has been named
checkdateMessage.

 checkdate: function(config, value) {
 if (value === undefined) {
 return false;
 }

 var graceDays = Ext.isEmpty(config.grace) ? 1 :
 config.grace;

 var date = Ext.Date.parse(value, 'd-m-Y');
 var currDate = new Date();
 currDate = Ext.Date.clearTime(currDate);
 if (Ext.Date.between(date, currDate, Ext.Date.add(currDate,
 Ext.Date.DAY, graceDays)))
 return true;
 else
 return false;

 }

The preceding code defines the core logic of the new validation rule checkdate. All it is
doing is returning true if the passed date value is within the specified grace days from
today. If the function returns true, it means the validation has passed. If false is returned,
then the framework adds the field name and the corresponding message to the errors array.

Once the new validation rule is defined, we add it to the validations function:

{type: 'checkdate', field: 'effectiveDate', grace: 2}

Dealing with Data and Data Sources

172

Here we mentioned that the effectiveDate must be between today and today + 2 days,
and then we passed the effectiveDate on the model:

effectiveDate: '23-07-2011'

When the validation fails, the following errors show up:

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Creating a model recipe

 f The Validations in models recipe

Relating models using association
In an application we generally deal with multiple types of models, for example, user, address,
order, payment, account, and so on. Some models are self-sufficient. However, there will be
some models that are related to each other and there is an association that exists between
them. For example, a user can have one or more addresses, a user may place one or more
orders, an order may have one or more payments made against it, a user may have a marital
status, and so on. In a typical relational database, we have entities and the relationship between
them. The same can be achieved with models using the association mechanism provided by
Sencha Touch. This recipe will demonstrate how to define associations between
the models, which are used by the reader, internally, to populate nested models for us.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Chapter 5

173

How to do it...
Caryy out the following steps:

1. Create and open a new file ch05_08.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}

],
 hasMany: {model: 'Address', name: 'addresses'}
 }
 });

 Ext.define('Address', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['id', 'line1', 'line2', 'zipcode',
 'state', 'country']
 }
 });

 var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',

Dealing with Data and Data Sources

174

 line2: 'New SBH Colony, East Maredpally,
 Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {
 id: 2,
 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
 });

 alert('Number of addresses: ' +
 user.addresses().getCount());
 }

});

2. Include ch05_08.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
In the preceding code, we defined two models: User and Address and established
hasMany association between them such that a user can have multiple addresses.
The hasMany association helps us establish a one-to-many relationship:

hasMany: {model: 'Address', name: 'addresses'}

The preceding line in the User model definition indicates that the User model has the
hasMany association with the Address model where addresses is a reference with
which we can access the addresses associated with a particular user.

Then we added addresses to the user while creating an instance of the User model:

var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',

Chapter 5

175

 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {
 id: 2,
 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
});

user.addresses() returns the array of addresses associated with the User model.

There's more...
As with hasMany, Sencha Touch provides two more association mechanisms named
belongsTo and hasOne. Let's see what they are and where we can use them.

Many-to-one association
belongsTo is used to establish a many-to-one association. This is a way to access the
parent/owner model from the child. For example, a user can have multiple addresses.
For a user, if we have to get the addresses, we can do this by putting a hasMany association
between User and Address in the User model. However, if we want to get the corresponding
User for an address,we can define the belongsTo association in the Address model
with the User model. A point to remember in this association is that we must establish a
foreign key relationship with the parent/owner model. The following code shows the modified
Address model with the belongsTo association:

Ext.regModel('Address', {
 fields: ['id', 'line1', 'line2', 'zipcode', 'state',
 'country', 'user_id']
 ,belongsTo: 'User'
});

Dealing with Data and Data Sources

176

Moreover, when we instantiate the address, we will specify user_id, as shown in the
following code snippet:

{
 id: 1,
 user_id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
}

The framework is intelligent enough to generate the getter and setter methods for
us based on the association. On the address model, we can use the getUser() and
setUser() methods to work with the model; based on the proxy setup on the model,
it will load/save the user model for us.

One-to-one association
hasOne is used to establish one-to-one association between the models. Let us say there is
a Marital model that would represent the marital status of a user. The following code shows
how we can establish a one-to-one relationship between the User and Marital models:

Ext.define('Marital', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 'id',
 'status'
]
 }
});

Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 ...,
 hasMany: {model: 'Address', name: 'addresses'},
 hasOne: [
 {
 model: 'Marital'
 }
]

Chapter 5

177

 }
});

var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 addresses: [
...
...
],
 marital: {
 id: 1,
 status: 'Married'
 }
});

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Creating a model recipe

Persisting session-specific data using the
SessionStorage proxy

So far in this chapter, we have learned how to create a model, store it as a collection in a
store, establish relationships, and carry out the validations. However, all this was happening
in memory. One page refresh and all our models will be re-initialized and stores reconstructed.
It would be a lot better if we could persist them and use them for a longer interval. A proxy
provides this persistence capability. Now let's see how to work with the specific proxies to
load and save models. The following are types of proxies supported by Sencha Touch:

 f Client: It helps us to persist a model on the client browser and load it from
that storage. Following are the types of Client proxies offered by the framework:

 � Memory: It uses an in-memory storage

 � SessionStorage: It uses HTML5 session storage

 � LocalStorage: It uses HTML5 local storage

 � Sql: It helps us work with a database

Dealing with Data and Data Sources

178

 f Server: It helps us to persist a model on the server and load it from the
remote server. Following are the Server proxies offered by the framework:

 � Ajax: It is used with the server in the same domain where the application
is being accessed.

 � JsonP: It is used to connect to a server that is deployed in a domain
different from the application domain.

 � Direct: It is used to work with the remote functions/methods directly like
a remote procedure call. Considering the steps involved with the end-to-end
setup and demonstration of direct remoting, discussion of this proxy is out
of the scope of this book.

In this recipe, we will see how to make use of the SessionStorage proxy to persist the
model and restore it from the storage.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file ch05_09.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}

],

Chapter 5

179

 hasMany: {model: 'Address', name: 'addresses'},
 proxy: {
 type: 'sessionstorage',
 id : '9185ch05sessionkey'
 }
 }
 });

 Ext.define('Address', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['id', 'line1', 'line2', 'zipcode',
 'state', 'country', 'user_id'],

 belongsTo: 'User'
 }
 });

 var user = Ext.create('User', {
 id: 1,
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally,
 Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {
 id: 2,
 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
 });

 user.save({
 success: function() {

Dealing with Data and Data Sources

180

 console.log('The User was saved');
 }});

 User = Ext.ModelMgr.getModel('User');
 User.load(1, {
 success: function(record, operation) {
 console.log('The User was loaded');
 alert('Name: ' + record.get('name') + ' : Addresses
 : ' + record.addresses().getCount());
 }});
 }
});

2. Include ch05_09.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the following content in the Session Storage on the Resources tab
of Google Chrome:

How it works...
In the preceding code, we set up proxy on the model and configured sessionstorage
as the proxy type, which allows us to persist data in the browser provided HTML5-based
SessionStorage. id is an important property and the value in it must be unique within
the session. If the IDs are not unique, we will run into the risk of one part of the application
overwriting the data stored by some other part of the application.

proxy: {
 type: 'sessionstorage',
 id : '9185ch05sessionkey'
}

After proxy is set up on the model, it is persisted by calling the save method:

user.save({
 success: function() {
 console.log('The User was saved');
}});

Chapter 5

181

Then, we are loading the persisted model from the sessionstorage where the user ID is 1:

User.load(1, {
 success: function(record, operation) {
 console.log('The User was loaded');
 alert('Name: ' + record.get('name') + ' : Addresses : ' +
 record.addresses().getCount());
}});

On successful load of the model from sessionstorage, the callback registered for
success is called.

If this proxy is used in a browser where sessionstorage is not
supported, the constructor will throw an error.

There's more...
The code that we saw in the recipe uses the model and the associated proxy to save it in
the storage. However, alternatively, we can also use store to save the models contained
by store. In the following section, we will see how to make use of the store to do so.

Working through the Store
To go through the store, replace:

//save the model
 user.save({
 success: function() {
 console.log('The User was saved');
 }});

With the following:

store.add(user);
store.sync();

This will ensure that the user model is saved in the storage.

Similarly, to read the data from the storage, we can use store.load() to read all the
stored models:

store.load({
 callback: function(records, operation, success) {
 console.log(records);
 }
});

Dealing with Data and Data Sources

182

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Creating a model recipe

Persisting data using the LocalStorage
proxy

This recipe describes the usage of HTML5 provided localstorage. This persists the
data across sessions.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create a new file named ch05_10.js and copy the content of ch05_09.js into it

2. Replace the proxy configuration on the User model with the following:
proxy: {
 type: 'localstorage',
 id : '9185ch05localkey'
}

3. Include ch05_10.js in the index.html file.

4. Deploy and access it from the browser. You may also run it using the emulator.
For example, you will see the user information saved in the Local Storage on
the Resources tab of Google Chrome

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey
 f The Creating a model recipe
 f The Persisting session-specific data using the SessionStorage proxy recipe

Chapter 5

183

Accessing in-memory data using the
Memory proxy

The simplest form, yet very temporary, is to save and load data in an in-memory variable. In the
Working with Store recipe of this chapter, we used the inline data to load records in the store.
However, that does not utilize reader. In order to use the capabilities of the reader, we have
to use proxy and Memory for this purpose. This recipe shows how to use the Memory proxy.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_11.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 }
 });

 var data = {users: [{
 id: 1,
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'

Dealing with Data and Data Sources

184

 }, {
 id: 2,
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 }, {
 id: 3,
 name : 'Pradeep Lavania',
 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }]
 };

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 data: data,
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.os.is.Phone) {

Chapter 5

185

 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);
 }
});

2. Include ch05_11.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
Consider the following code:

var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 data: data,
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
});

Setting type to memory sets up the Memory proxy on the store. The Memory proxy works
only on the in-memory data, which we have stored in the data variable. As data represents
a JSON format of the data; we configured the json type reader and used the root to point
the property in the data that contains the actual user information.

Dealing with Data and Data Sources

186

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with form panels recipe in Chapter 2, Catering to
Your Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Working with a store recipe

Loading data through AJAX using the Ajax
proxy

In the last three recipes, we saw the usage of the different types of client-side proxies, which
help us persist the data on the client browser. Now, we will see how to work with the server
proxies to persist the data on a remote server.

In this recipe, we will see what it takes to use the Ajax proxy to persist and load the model.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_12.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},

Chapter 5

187

 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}
]
 }
 });

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.os.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,

Dealing with Data and Data Sources

188

 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);
 }
});

2. Include ch05_12.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
Consider the following code:

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

Setting type to ajax sets up the Ajax proxy on the store. The Ajax proxy works only
if the specified URL is in the domain in which the application is running. users.json
contains the JSON formatted data that we saw in the Converting incoming JSON data
into a model using JsonReader recipe in this chapter. As data represents a JSON format
of the data, we configured the json type reader and used root to point the property
in data which contains the actual user information.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with form panels recipe in Chapter 2, Catering to
Your Form-related Needs

Chapter 5

189

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Working with a store recipe

 f The Converting incoming JSON data into a model using JsonReader recipe

Sorting data
The store supports filters, sorting, and grouping. These are very important functionalities,
that make the Sencha Touch data classes so useful. One can sort data on one or more fields,
apply one or more filters, and group the data on certain fields. All this is available on the client
side as well as server side. On the client side, the framework applies the sorting, filtering, and
grouping on the models stored within a store whereas, on the server side, the information is
passed to the remote server so that the server side application/script can handle them and
provide the desired sorted, filtered, and grouped data.

In this recipe, we will see how to sort the data, send the sorting information to the server,
and customize the information sent to the server.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Add the following code to ch05_12.js after we have defined the User model:

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

Dealing with Data and Data Sources

190

store.sort([
 {
 property : 'age',
 direction: 'DESC'
 },
 {
 property : 'name',
 direction: 'ASC'
 }
]);

How it works...
The code in this recipe is based on the previous recipe, Loading data through AJAX using the
Ajax proxy. In the preceding code, we are using the Ajax proxy to load data from the users.
json file and using the sort method, we are sorting the data in the store:

 store.sort([
 {
 property : 'age',
 direction: 'DESC'
 },
 {
 property : 'name',
 direction: 'ASC'
 }
]);

The sort method accepts an object containing property and sort direction. property
instructs the model field on which record the sorting should be done and the direction
instructs whether the records should be sorted in ascending or descending order. The
direction name is optional and the framework sorts the data in ascending order if it is not
specified for a property. Also, the direction name is case-sensitive and we should always use
the uppercase versions.

As we have added sorting on two fields, age and name, the order of sorting is the order
in which the sorting information is added. Therefore, in our case, the records will be first
sorted on age and then on name.

Chapter 5

191

There's more...
Alternatively, the sorting can happen on the server side. This is generally done in case the
UI application does not have the complete data to apply the sorting on the client end or we
want to leverage the server capability for better performance. Let's see how to enable the
server-side sorting and send the sorting information to the server so that the server-side
code can return the sorted data using the specified information.

Sending the sorting information to the server
We send the sorting information to the server so that the server-side application can sort
the data before returning it to the client-side application. To ask the framework to send the
sorting information to the server, we will have to set remoteSort to true on the store.

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 remoteSort: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

We need to call the load method on store to send the sorting information to the
backend server.

store.load();

Once this is set, the sorting information will be passed as part of the query parameter
as shown in the following screenshot:

Dealing with Data and Data Sources

192

Customizing the sort information being sent to the server
By default, the sort information is sent to the server using the parameter named sort.
If we want to change this default, we shall use the sortParam property on proxy to set
it to the desired name, say, searchCritera.

In case we don't want the sorting information to be sent to the server, we can achieve it
by setting the sortParam property to undefined.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with a store recipe

 f The Loading data through AJAX using the Ajax proxy recipe

Data grouping
In this recipe, we will see how to group the data and how to send the grouping information
to the server application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Pass the additional properties to the store instance in ch05_12.js as highlighted in the
following code snippet:

 var store = Ext.create('Ext.data.Store', {
 model: 'User',
 autoLoad: true,
 remoteGroup: true,
 groupField: 'age',
 groupDir: 'DESC',

Chapter 5

193

 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 }
 }
 });

How it works...
The preceding code shows how to specify the grouping information and send it to the server.
The related properties are groupField and groupDir. The groupField property instructs
the model field on which the data needs to be grouped and the groupDir property instructs
the direction, ascending or descending. Grouping information is treated in a similar way to
sort operations. Grouping information is passed as the first sort information.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with a store recipe

 f The Loading data through AJAX using the Ajax proxy recipe

Filtering data
Filtering is a great way to remove unwanted records based on certain criteria. A store allows
us to specify the filters and additional properties to send the filter information to the server
application. One or more filters can be applied. In this recipe, we will see how to do this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Dealing with Data and Data Sources

194

How to do it...
Pass the additional properties to the store instance in ch05_12.js as highlighted in the
following code snippet:

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 rootProperty: 'users'
 },
 remoteFilter: true
 }
 });

 store.filter([
 {
 property: 'name',
 value : /Aj/
 }
]);

How it works...
The code in this recipe is based on the previous recipe, Loading data through AJAX using
Ajax proxy. In the preceding code, we are using the Ajax proxy to load data from the users.
json file and using the filter method, we are filtering the data in store:

 store.filter([
 {
 property: 'name',
 value : /Aj/
 }
]);

The filter method accepts an object containing property and value to compare
with. property instructs the model field on which the filtering should be done and value
instructs the value/pattern, which shall be used to filter the records.

Chapter 5

195

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with a store recipe

 f The Loading data through AJAX using the Ajax proxy recipe

Using a cross-domain URL in your
application

Besides Ajax, JsonP is the other server proxy that helps us to persist the model on a
remote server and load it from the same. The only catch is that this proxy is used only when
the domain where the server is running is different from the domain where the application
is running; for example, loading the search detail from the Google Custom search API. This
recipe outlines the usage of the JsonP proxy to make cross-domain URL calls.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

Get the API key for Google's Custom Search by following the instructions available at
https://developers.google.com/custom-search/v1/using_rest.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_13.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 Ext.define('SearchResult', {
 extend: 'Ext.data.Model',
 config: {
 fields : [{name : 'kind', type : 'string'},
 {name : 'title',type : 'string'},
 {name : 'htmlTitle',type : 'string'},

Dealing with Data and Data Sources

196

 {name : 'displayLink',type : 'string'},
 {name : 'snippet',type : 'boolean',defaultValue :
 true}
]
 }
 });

 var store = Ext.create('Ext.data.Store', {
 model : 'SearchResult',
 autoLoad : true,
 proxy : {
 type : 'jsonp',
 pageParam: null,
 startParam: null,
 limitParam: null,
 noCache: false,
 url : 'https://www.googleapis.com/customsearch/
 v1?key='+ 'AIzaSyD8nxb7bFwURb6gXqHWz9dFMQw8-
 bZCvPw'+ '&cx=013036536707430787589:
 _pqjad5hr1a&q=rose&alt=json',
 reader : {
 type : 'json',
 rootProperty : 'items'
 }
 }
 });

 var form;

 var formBase = {
 scrollable : 'vertical',
 items : [{
 xtype : 'selectfield',
 name : 'user',
 store : store,
 valueField : 'title',
 displayField : 'title'
 }]
 };

 if (Ext.os.is.Phone) {

Chapter 5

197

 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender : true,
 floating : true,
 modal : true,
 centered : true,
 hideOnMaskTap : false,
 height : 385,
 width : 480
 });
 }

 form = Ext.create('Ext.form.FormPanel', formBase);
 Ext.Viewport.add(form);
 }
});

2. Include ch05_13.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the screen as shown in the following screenshot:

Dealing with Data and Data Sources

198

How it works...
In the preceding code, we have used the jsonp proxy to read search data from Google's
search API.

 var store = Ext.create('Ext.data.Store', {
 model : 'SearchResult',
 autoLoad : true,
 proxy : {
 type : 'jsonp',
 pageParam: null,
 startParam: null,
 limitParam: null,
 noCache: false,
 url : 'https://www.googleapis.com/customsearch/v1?key='
 + 'AIzaSyD8nxb7bFwURb6gXqHWz9dFMQw8-bZCvPw'
 + '&cx=013036536707430787589:
 _pqjad5hr1a&q=rose&alt=json',
 reader : {
 type : 'json',
 rootProperty : 'items'
 }
 }
 });

By default, the proxy sends paging information: start, limit, and page, as part of the
query string, which causes issues with the Google's API. Also, in Sencha Touch, script caching
is disabled, by default. This causes a _dc parameter to be sent as part of the query string.
We set limitParam, startParam, and pageParam to null so that they are not sent to the
URL. And we, enable caching by setting noCache to false, which will instruct the framework
not to send the _dc parameter to the URL.

Chapter 5

199

Google API returns data in the form of JSON. The following screenshot shows the response
received from the Google API call:

items contains the actual response data that we are interested in. Hence, the reader is
configured with type set to json and items as rootProperty.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Getting your form ready with f orm panels recipe in Chapter 2, Catering to
Your Form-related Needs

 f The Working with the select field recipe in Chapter 2, Catering to Your
Form-related Needs

 f The Working with a store recipe

Dealing with Data and Data Sources

200

Working with Web SQL databases
Besides LocalStorage and SessionStorage, Sencha Touch offers an additional
client-side proxy named Sql, to manage the data in a JavaScript relational database such
as Sqllite. The proxy provides the same APIs to save or load a model. However, internally,
it creates the appropriate SQL query to carry out its task. In this recipe, we will see how to
work with the Sql proxy.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch05 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch05_14.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {

 Ext.define('User', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue:
 true}

],
 hasMany: {model: 'Address', name: 'addresses'},
 proxy: {
 type: 'sql',

Chapter 5

201

 database: 'Cookbook',
 model : 'User'
 }
 }
 });

 Ext.define('Address', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['id', 'line1', 'line2', 'zipcode',
 'state', 'country', 'user_id'],

 belongsTo: 'User',
 proxy: {
 type: 'sql',
 database: 'Cookbook',
 model : 'Address'
 }
 }
 });

 var user = Ext.create('User', {
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in'
 });

 //create a user in the database
 user.save({
 success: function(record) {
 console.log('The User was saved');

 var userId = record.get('id');

 //create an address in the database for the created
 user
 var addr = Ext.create('Address', {
 user_id: userId,
 line1: 'Flat# 101, Plot# 101, Elegance
 Apartment',

Dealing with Data and Data Sources

202

 line2: 'New SBH Colony, East Maredpally,
 Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 });

 addr.save({
 success: function() {
 console.log('The Address was saved');
 User = Ext.ModelMgr.getModel('User');
 //load the recently added user from database
 User.load(userId, {
 success: function(record, operation) {
 console.log('The User was loaded');
 alert('Name: ' + record.get('name') + ' :
 Addresses : ' + record.addresses()
 .getCount());
 }});
 }
 });
 }});
 }
});

2. Include ch05_14.js in the index.html file.

3. Deploy and access it from the browser.

4. Go to the Resources tab on the Chrome Developer to see that the Cookbook
database is created under Web SQL with two tables namely User and Address;
the data is stored in those tables, as shown in the following screenshot:

Chapter 5

203

How it works...
In the preceding code, we have used the sql proxy to save data in the JavaScript database.
The proxy uses the browser supported Web SQL implementation of the W3 specification
outline available at http://www.w3.org/TR/webdatabase/.

The proxy, by default, creates a database by the name Sencha. As we wanted to have
a different database name, we set the database config on the proxy. Also, the proxy
creates tables and columns based on the model that we set on it.

You must verify the support for the Web SQL standard in your
browser/emulator/device before testing this.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Creating a model recipe

6
Adding Components

In this chapter we will cover:

 f Working with the button component

 f Creating a sheet of buttons with ActionSheet

 f Carousel

 f Managing a list of data using List

 f Grouping items in a list

 f Navigating through a list of data using IndexBar

 f Working with a list of nested data using NestedList

 f Picking up your choice using Picker

 f Switching between multiple views using SegmentedButton

 f Working with Tab panels

 f Getting quicker access to application features using Toolbar

 f Creating a new component

 f Extending an existing component's capability

 f Overriding a component's behavior

 f Adding behavior to an existing component using plugins

Adding Components

206

Introduction
So far, we have seen the usage of various components such as FormPanel, DataView,
and Panel. There were some components that we had used in the previous recipes, such
as toolbar, but not discussed in detail. Besides, there are some more components that
are worth discussing to understand the purpose of their existence and use them accordingly.
Also, this chapter goes beyond the existing components and covers how to create a new
component, extend an existing component, and build plugins and use them in enhancing
the capabilities of a component.

Working with the button component
This recipe introduces the button component and shows how to make use of the button
in our applications, how to have a different look and feel, and handle user action.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Create a new folder, ch06, in the www folder where we had created the ch01 and ch02
folders. We will be using this new folder in which the code will be kept.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_01.js and copy-paste the following code
into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 var buttons = [
 {
 text: 'Normal',
 handler: function() {
 Ext.Msg.alert('Info', 'You have clicked: ' +
 this.getText());
 }
 },

Chapter 6

207

 {
 ui : 'round',
 text: 'Round'
 },
 {
 ui : 'small',
 text: 'Small'
 }
];

 Ext.create('Ext.Panel', {
 fullscreen: true,
 layout: {
 type : 'hbox',
 pack : 'center',
 align: 'middle'
 },
 defaults: {
 xtype: 'button'
 },
 items: buttons
 });
 }
});

2. Include ch06_01.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The preceding code creates a panel with three buttons laid out using the hbox layout.
The following code sets the xtype property for all the items of the panel to button:

defaults: {
 xtype: 'button'
},

This shortcut allows us to set xtype for all the child items in one go.

The ui property defines the look and feel of a button. This acts as a shortcut to a group
of CSS styles in the Sencha Touch theme.

We have specified an inline function as handler on the button. This function is called
when a button is clicked or tapped.

Adding Components

208

There's more...
Additionally, the button component provides the mechanism to specify the badge and
also use the icons along with the text. The following section describes how to make use
of these functionalities.

Using badges
A badge is the text that appears on top of the button. This may be useful to highlight a
button; for example, if the badge has the text New, it will indicate to the user that this
button is newly added. This helps us grab the user's attention. The following code snippet
shows how to render a badge with the text New on the button:

{
 ui : 'round',
 text: 'Round',
 badgeText: 'New'
}

When we run the code, we will see the Round button with a badge having the text New,
as shown in the following screenshot:

The framework uses the predefined CSS to show the badge. In case you want to define
and use a different style, you can do so by setting the badgeCls property on the button.

Using icons
It is generally considered good practice to use an icon along with the text while creating a
button, as it gives both textual as well as visual meaning to it icon. People who have difficulty
in reading and understanding text may find it easier to remember the. For this, the button
component supports multiple properties: icon, iconCls, and iconAlign. In case you want
to use an image directly as an icon, you can do it by setting the icon property. However, it is
better if we define a CSS class and use it. For this, we shall use the iconCls property. The
following code snippet shows the usage of these properties:

{
 ui : 'normal',
 text: 'Normal',
 //icon: 'ch06/delete.png',
 iconCls: 'cancel-icon',
 iconAlign: 'right'
}

Chapter 6

209

iconAlign allows us to align the icon with respect to the text. The valid values are top,
bottom, right, and left; left is the default alignment. The following screenshot shows
how the icon will appear on the button:

cancel-icon is defined in the ch06.css file as shown in the following code snippet:

.cancel-icon {
 background: url(images/delete.png) no-repeat;
}

Make sure ch06.css is included in the index.html file before ch06_01.js.

Using pictos icons
Pictos icons are a great way to show icons because they gel very well with the application
theme. It works using webkit-mask-image. The black parts of the image hides what
it is over, the white parts of the image show what is underneath, and the gray is partially
transparent.

You will have to use the iconMask property along with the iconCls property to use one
of the predefined pictos icons.

{
 ui : 'normal',
 text: 'Normal',
 iconCls: 'delete',
 iconMask: true,
 iconAlign: 'right'
}

The list of supported iconCls properties is documented in the API documentation of the
Ext.Button class. The following shows the output that we will see when the iconMask
property is used:

Adding Components

210

Using custom HTML as button content
In the preceding example, we have used the text property to specify the label for the button,
which is used to render the button body. Along with that, we have the icon-related properties
and their positions, which we can use to show a button. If you want to show custom content
inside the button body, we can use the html config available on the button component.
The following code snippet shows how we have created a button with two lines of text
using the html config:

{
 ui : 'normal',
 //text: 'Normal',
 html: 'Normal<p></p><span
class="second-line">This is a normal button with Html'
}

The following screenshot shows how the button will look:

The CSS first-line and second-line classes are defined in ch06.css as shown in
the following code snippet:

.first-line {
 font-size: 2.1em;
 text-shadow: 0px 2px 0px rgba(255,255,255,.5);
}

.second-line {
 font-size: 0.6em;
 color:#555;
}

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Chapter 6

211

Creating a sheet of buttons with
ActionSheet

In an application, multiple actions can be performed on an entity. For example, on an inbox
item, a user can reply to the sender, reply to all, delete the e-mail, and view the complete mail.
Moreover, these actions may vary based on the entity in the context. To handle this kind of
scenario, the Sencha Touch framework provides the ActionSheet component, which allows
us to show a sheet of buttons that can help the user trigger different actions. This recipe
shows us how to create ActionSheet and use it in an application.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_02.js and copy the contents of
ch04/ch04_07.js inside it.

2. Add the following code at before the launch function:
 var actionSheet = Ext.create('Ext.ActionSheet', {
 hidden: true,
 items: [
 {
 text: 'Cancel',
 ui : 'decline',
 handler: function() {
 actionSheet.hide();
 }
 },
 {
 text: 'Detail',
 handler: function() {

Adding Components

212

 var recs = selRecs;
 Ext.getCmp('detail-panel').setHtml('<img src="' +
 recs[0].data.url + '" title="' +
 recs[0].data.title + '">');
 Ext.getCmp('images-view').setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 actionSheet.hide();
 }
 },
 {
 text: 'Delete',
 ui : 'confirm',
 handler: function(){
 Ext.Msg.confirm("Confirmation", "Are you sure you
 want to delete the picture?", function(btn){
 if (btn == "yes") {
 var dview = Ext.getCmp('images-data-view');
 var recs = selRecs;
 dview.getStore().remove(recs);
 }
 actionSheet.hide();
 });
 }
 }
]
 });

3. Change the selectionchange handler as per the following code:
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 selRecs = recs;
 actionSheet.show();
 }
 },

4. Include the ch04/ch04.css file in the index.html file.

5. Include the ch06_02.js file in the index.html file.

Chapter 6

213

6. Deploy and access it from the browser. You can also run it using the emulator. You will
see the flowers on the screen; when you click/tap on a particular flower, you will see
the buttons docking in from the bottom, as shown in the following screenshot:

How it works...
The preceding code creates a sheet of three buttons, namely, Cancel, Detail, and
Delete. The DataView component shows the photos; when a user selects a photo,
the selectionchange event is fired and its handler shows the button sheet to the
user by calling the show method on the ActionSheet instance.

When the Cancel button is clicked on, we will hide the button sheet by calling the hide
method. When the user clicks on the Delete button, the following handler code seeks user
confirmation; upon confirmation, it removes the selected photo from the view's store.

 Ext.Msg.confirm("Confirmation", "Are you sure you want to
 delete the picture?", function(btn){
 if (btn == "yes") {
 var dview = Ext.getCmp('images-data-view');
 var recs = selRecs;
 dview.getStore().remove(recs);
 }
 actionSheet.hide();
 });

When the user clicks on the Detail button, the handler shows the bigger image of the selected
photo, updates the toolbar to show the appropriate buttons, and hides the sheet.

Adding Components

214

There's more...
By default, the sheet appears at the bottom of the viewport and it slides in and out when
it is shown or hidden. Let's see how to change these defaults.

Changing the position and animation
The ActionSheet container provides different properties to control these defaults.

 f enter: It is the viewport side from which the sheet is anchored.

 f exit: It is the viewport side used as the exit point when the sheet is hidden.
This is applicable only for the slide animation, which is the default animation.

 f showAnimation: The animation to be used when the sheet is being shown.

 f hideAnimation: The animation to be used when the sheet is being hidden.

The following code snippet shows the usage of these fields to make sure that the sheet
enters from the left-hand side and the animation it uses is "fade":

 var actionSheet = Ext.create('Ext.ActionSheet', {
 hidden: true,
 enter: 'left',
 showAnimation: 'fadeIn',
 hideAnimation: 'fadeOut',
 items: [
 {
...
...
 }]
 });

ActionSheet as a cross-cut menu
To display the ActionSheet container as a cross-cut menu, we will set the following
additional configs on ActionSheet:

 var actionSheet = Ext.create('Ext.ActionSheet', {
 hidden: true,
 width: 150,
 top: 0,
 enter: 'left',
 exit : 'left',
 hideOnMaskTap : true,

Chapter 6

215

 items: [
 {
...
...
 }]
 });

The enter and exit configs indicate the position of the sheet when it is being shown
and hidden. We set top to 0 so that the sheet occupies the complete container height.
We fixed the width property to 150 so that it does not occupy the complete container
width. hideOnMaskTap is set to true so that the sheet is hidden even if the user taps
anywhere outside the ActionSheet container.

If you want to align the button in the middle, you can set the layout config in ActionSheet
as follows:

layout: {
 type: 'vbox',
 pack: 'middle'
}

Adding Components

216

Using items other than buttons
By default, the xtype property for child items of ActionSheet is button. We can use
other xtype properties as the default type by setting the defaultType config. For example,
defaultType: 'panel' will indicate that every child item is of type panel. This is useful
only if we pass the configuration object as the child item. If we pass the instances of objects as
the child items, defaultType is ignored and the type property of the object instance is used
instead. This allows us to use components other than buttons as the child items of the sheet.

See also
 f The Setting up a browser based-development environment recipe of

Chapter 1, Gear Up for the Journey

 f Chapter 4, Building Custom Views

Carousel
The carousel is an extension of Ext.Container and provides the ability to slide back and
forth between different child items. The carousel, internally, uses the card layout to render
items and allows the user to slide back and forth by setting the active item appropriately.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_03.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 var selRecs;

 var actionSheet = Ext.create('Ext.ActionSheet', {

Chapter 6

217

 //code is same as the one in - Creating a
 sheet of buttons with ActionSheet - recipe
 });

 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'
 },
 //code is same as the one in - Creating a
 sheet of buttons with ActionSheet - recipe
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'
 }];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

 var filter = function(criteria) {
 store.clearFilter();
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
 };

 var tpl = new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',

Adding Components

218

 '<div class="x-clear"></div>');
);
 var carousel = Ext.create('Ext.carousel.Carousel', {
 items: [{
 id: 'detail-panel',
 styleHtmlContent: true,
 scrollable: 'vertical'
 },
 {
 styleHtmlContent: true,
 html: '<h1 style="font-size:16px;">About
 Roses</h1><p>The leaves are borne alternately
 on the stem. In most species they are 5 to 15
 centimetres (2.0 to 5.9 in) long, pinnate, with
 (3ñ) 5ñ9 (ñ13) leaflets and basal stipules;
 the leaflets usually have a serrated
 margin, and often a few small prickles on
 the underside of the stem. Most roses
 are deciduous but a few (particularly
 from South east Asia) are evergreen
 or nearly so.</p>'
 },
 {
 styleHtmlContent: true,
 html: '<h1 style="font-size:16px;">Uses
 </h1><p>Roses are best known as ornamental plants
 grown for their flowers in the garden and
 sometimes indoors. They have been also used
 for commercial perfumery and commercial cut
 flower crops. Some are used as landscape
 plants, for hedging and for other
 utilitarian purposes such as game
 cover and slope stabilization. They
 also have minor medicinal uses.</p>'
 }]
 });

 Ext.create('Ext.Panel', {
 id:'images-view',
 fullscreen: true,
 layout: 'card',
 items: [actionSheet, Ext.create
 ('Ext.dataview.DataView', {

Chapter 6

219

 id: 'images-data-view',
 ... //code is same as the one in - Creating a
 sheet of buttons with ActionSheet - recipe
 }), carousel, {
 xtype: 'toolbar',
 docked: 'top',
 items: [
 ... //code is same as the one in - Creating a
 sheet of buttons with ActionSheet - recipe
]
 }]
 });

 }
});

2. Include ch06_03.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot on the screen:

Adding Components

220

How it works...
The preceding code modifies the code in the previous recipe in such a way that the
panel to show the large photo is moved from the main panel to the Carousel class.
The Carousel class has two more panels: About and Uses, which contain more
information about the topic at hand.

The Ext.carousel.Carousel class implements the complete Carousel functionality.
Internally, it uses the card layout to render its children.

There's more...
Different applications may have different needs based on orientation. Some may like it
to be horizontal whereas some may like it to be vertical. In the next section, we will see
how to achieve this.

Changing direction
By default, the Carousel class's direction is horizontal. Alternatively, if required, we can set
it to vertical as well. This behavior is provided by the direction property of the Carousel
class. The following code snippet shows how to set this property on Carousel:

 var carousel = Ext.create('Ext.carousel.Carousel', {
 direction: 'vertical',
 items: [

Turning off the indicator
By default, the Carousel class's components shows dots as indicators, and the number of
dots are shown based on the number of child items inside the Carousel. Sometimes, we may
want to hide the indicator. This can be achieved by setting the indicator config to false
while instantiating Carousel.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f Chapter 4, Building Custom Views

Chapter 6

221

Managing a list of data using List
Let us assume that there is a data set in your application that needs to be presented
to the user in the form of a list that the user can scroll through and make their selection.
For example, a list of contacts, places, or matching words. Sencha Touch provides a List
component to handle any list-related needs. This recipe shows how to use it to present the
contact list to the user.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_04.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 Ext.define('MyApp.model.Contact', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['firstName', 'lastName']
 }
 });

 var store = Ext.create('Ext.data.Store', {
 model : 'MyApp.model.Contact',

 data: [
 {firstName: 'Ajit', lastName: 'Kumar'},
 {firstName: 'Alok', lastName: 'Ranjan'},
 {firstName: 'Pradeep',lastName: 'Lavania'},
 {firstName: 'Sunil', lastName: 'Kumar'},
 {firstName: 'Sujit', lastName: 'Kumar'},
 {firstName: 'Pratyush',lastName: 'Kumar'},

Adding Components

222

 {firstName: 'Piyush', lastName: 'Kumar'},
 {firstName: 'Priti', lastName: ''},
 {firstName: 'Seema', lastName: 'Singh'},
 {firstName: 'Ayush', lastName: 'Kumar'},
 {firstName: 'Ayush', lastName: 'Ranjan'},
 {firstName: 'Alisha', lastName: 'Lavania'},
 {firstName: 'Deepak', lastName: 'Sinha'},
 {firstName: 'Sheela', lastName: 'Kejawani'},
 {firstName: 'Srikanth', lastName: 'Reddy'},
 {firstName: 'Suman', lastName: 'Ravuri'},
 {firstName: 'Ranjit', lastName: ''},
 {firstName: 'Jay', lastName: 'Sharma'}
]
 });
 var list = Ext.create('Ext.dataview.List', {
 fullscreen: true,
 itemTpl: '<div>{firstName} {lastName}</div>',
 store: store
 });
 }
});

2. Include ch06_04.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

Chapter 6

223

How it works...
The preceding code creates a list of contact names and allows the user to select an entry.

Ext.define('MyApp.model.Contact', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['firstName', 'lastName']
 }
});

This code defines and registers a Contact model with the model manager. The model
is used on the store in conjunction with the data array to convert the data array into the
model and populate the store.

Since List extends DataView, it inherits the capabilities and behaviors of DataView.
The view is refreshed as soon as the models are loaded into the store, which is associated
with the list. Each record in the list is rendered using the template defined as itemTpl.

There's more...
Sorting is one need that arises naturally when we are dealing with information in a list.
Let us see how we can have sorted data inside a list.

Sorting the entries
The list does not provide any method to sort the entries in it. Rather, we shall set up sorters
on the associated store component, as shown in the following code snippet:

var store = Ext.create('Ext.data.Store', {
 model : 'MyApp.model.Contact',
 sorters: 'firstName',

sorters: 'firstName' will sort the records by their first name and in ascending
order. In case we want to sort the data on multiple fields and stipulate the specific way
(ascending/descending) the data needs to be sorted, we will expand the sorters
property value as follows:

sorters: [{property: 'firstName', direction: 'ASC'},
 {property: 'lastName', direction: 'DESC'}],

Adding Components

224

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with a store recipe of Chapter 5, Dealing with Data and Data Sources

Grouping items in a list
In a list, you may want to see the items grouped based on certain criteria; for example,
in our contact list, we may want to see the names grouped alphabetically. For this, the List
class allows us to group data using on criteria and this recipe is going to show exactly how this
can be achieved.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_05.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {

 Ext.define('MyApp.model.Contact', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['firstName', 'lastName']
 }
 });

 var store = Ext.create('Ext.data.Store', {

Chapter 6

225

 model : 'MyApp.model.Contact',
 grouper: {
 groupFn: function(record) {
 return record.get('firstName')[0];
 }
 },
 data: [
 ... //code from ch06_04.js of - Managing a list of
 data using List - recipe
]
 });

 var list = Ext.create('Ext.dataview.List', {
 fullscreen: true,
 grouped: true,
 itemTpl: '<div>{firstName} {lastName}</div>',
 store: store
 });
 }
});

2. Include ch06_05.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

Adding Components

226

How it works...
The preceding code builds on top of the code mentioned in the previous recipe. It adds
the grouping capability to the list by setting the grouped property on the List class to true
and implementing the method groupFn on the store class, which is called by the framework
to group the information as per the specified field; in this case, firstName. In the code,
we are returning the first character of the first name from groupFn and hence the data
will be grouped on the returned character. However, we can group the data using the entire
first name by returning the value of the firstName field by changing the function body to
return record.get('firstName').

See also
 f The Setting up a browser-based development environment recipe of Chapter 1, Gear

Up for the Journey

 f The Working with a store recipe of Chapter 5, Dealing with Data and Data Sources

 f The Data grouping recipe of Chapter 5, Dealing with Data and Data Sources

 f The Managing a list of data using List recipe

Navigating through a list of data using
IndexBar

Imagine there is big book that we are reading and we want to quickly locate the topic
of our interest. The very first thing we look for will be the index page, which can tell us
the topics and their page numbers. Similarly, in the list, if the items are huge, we can
use the index bar functionality to quickly go to the item of our choice. And this recipe
will walk us through how to do that.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

Chapter 6

227

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_06.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {
 ... //code from ch06_05.js of - Grouping items in a
 List - recipe
 var list = Ext.create('Ext.dataview.List', {
 fullscreen: true,
 grouped: true,
 indexBar : true,//use IndexBar
 itemTpl: '<div>{firstName} {lastName}</div>',
 store: store
 });
 }
});

2. Include ch06_06.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

Adding Components

228

How it works...
In the preceding code, the index bar is enabled by setting the indexBar property to true
on List. This property tells the framework to generate an index bar (similar to the index at
the end of the book) with letters from A-Z, and allows the user to jump to the matching entries
when he/she clicks on a particular index.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Working with a store recipe of Chapter 5, Dealing with Data and Data Sources

 f The Managing a list of data using List recipe

Working with a list of nested data using
NestedList

Imagine you have a nested data structure that you would like to present to the user
in the form of a list and allow him/her to drill down it. In this recipe, we will understand
how to achieve this using the NestedList component.

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_07.js and copy-paste the following
code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 var data = {
 items: [{

Chapter 6

229

 text: 'Flowers',
 items: [{
 text: 'Roses',
 items: [{
 text: 'Red',
 leaf: true
 },{
 text: 'Peach',
 leaf: true
 },{
 text: 'Yellow',
 leaf: true
 }]
 },{
 text: 'Daffodils',
 leaf: true
 },{
 text: 'Hibiscus',
 leaf: true
 }]
 },{
 text: 'Animals',
 items: [{
 text: 'Lion',
 leaf: true
 },{
 text: 'Elephant',
 leaf: true
 }]
 },{
 text: 'Birds',
 items: [{
 text: 'Eagle',
 leaf: true
 },{
 text: 'Hamsa',
 leaf: true
 },{
 text: 'Pegion',
 leaf: true
 }]
 }]
 };

Adding Components

230

 Ext.define('MyApp.model.ListItem', {
 extend: 'Ext.data.Model',
 config: {
 fields: [{name: 'text', type: 'string'}]
 }
 });
 var store = Ext.create('Ext.data.TreeStore', {
 model: 'MyApp.model.ListItem',
 root: data,
 defaultRootProperty: 'items'
 });
 var nestedList = Ext.create('Ext.dataview.NestedList',
 {
 fullscreen: true,
 title: 'Fauna & Flora',
 store: store
 });
 }
});

2. Include ch06_07.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

Chapter 6

231

How it works...
The preceding code creates a NestedList component using the data array. The
NestedList component uses TreeStore, which expects the data to follow a particular
tree structure. The data structure shows that, at the top level, data has three nodes: Flowers,
Animals, and Birds. Each one of them has child items. For example, Flowers has immediate
children Roses, Daffodils, and Hibiscus. For Daffodils and Hibiscus, the leaf property is set
to true, indicating they are the leaf nodes of the tree and will not have any child items. The
nesting can go up to any level. Each node has a property text that TreeStore uses to show
them on the screen.

NestedList extends the container; based on the nesting of data and at what level
the user is, it creates a docked toolbar on the top and displays the buttons on the toolbar
to allow the user to navigate through the hierarchy. The button labels are generated using
the text property of the nodes.

There's more...
There are additional features available with a tab panel and the subsequent sections
cover them.

Using a property other than text
By default, NestedList uses the text property of the node to display it on the screen
and generate the button labels. In case our data has a different property (say, label), we
shall use the displayField property on NestedList and set it to 'label' as follows:

var nestedList = Ext.create('Ext.dataview.NestedList', {
 fullscreen: true,
 title: 'Fauna & Flora',
 displayField: 'label',
 store: store
});

Showing the Back button
Say that, in our application, we want to have the Back label for the button rather than
the text of the parent node of the current level. This can be achieved by setting the
useTitleAsBackText property to false.

No toolbar, please!
By default, NestedList generates a top toolbar, adds a Back button to it, and handles
its click event. In case we do not want to see this toolbar, we shall set the useToolbar
property on NestedList to false.

Adding Components

232

Using different text for the Back button
Rather than showing Back as the button label, if we want to show custom text (say, Prev),
we will have to set useTitleAsBackText to false and backText to your custom text;
that is, Prev.

Showing leaf node detail
By default, NestedList stops drilling down when it reaches the leaf node. In some cases,
you may want to go down one more level and show detail for the leaf node. For example,
when the user taps on the Red leaf node under Roses, we want to show details about red
roses in text. To achieve this, we will have to use the detailCard config of NestedList.
The following code shows that we have used detailCard as the container and then we are
handling the leafitemtap event on NestedList, fired when a leaf node is tapped, to show
the details related to the tapped leaf node:

var nestedList = Ext.create('Ext.dataview.NestedList', {
 fullscreen: true,
 title: 'Fauna & Flora',
 detailCard: {
 styleHtmlContent: true
 },
 store: store,
 listeners: {
 leafitemtap: function(list, subList, idx, t, rec, e, eOpts) {
 var parentTxt = rec.parentNode.data.text;
 var detailCard = list.getDetailCard();
 detailCard.setHtml(Ext.String.format('<h1 style="font-
 size:16px;">About {0} {1}</h1><p>This is where you
 can show more detail about - {0} {1}</p>',
 rec.data.text, parentTxt));
 }
 }
});

Chapter 6

233

When we run the example and tap on the Red leaf node under Roses, we will see the
following output:

Using disclosure
A user will never be able to discover that there are child items under Roses unless they tap on
it. Sometimes, this may cause a usability issue, and you may want to show explicit indicators
hinting to the user that there is more under an item. This can be enabled on a list using the
onItemDisclosure config, which shows a disclosure arrow icon on the right-hand side of a
list item and also offers the disclose event for us to implement the behavior. The following
code shows how we have set the onItemDisclosure config and handled the disclose
event to have the same behavior that we had on tapping:

var nestedList = Ext.create('Ext.dataview.NestedList', {
 fullscreen: true,
 title: 'Fauna & Flora',
 onItemDisclosure: true,

Adding Components

234

 listConfig: {
 listeners: {
 disclose: function(list, record, target, index, e, eOpts) {
 nestedList.onItemTap(list, index, target, record, e);
 }
 }
 },
 detailCard: {
...
});

Note that we have passed listConfig and inside it we have
specified the listener for the disclose event. This is required
because each stage of the view in NestedList is rendered
as List, which offers the onItemDisclosure property and
also the disclose event. The disclose event is not fired on
NestedList. onItemDisclosure is set on NestedList,
which sets this config on each of the inner lists.

When we run the example with these changes, we see the disclosure icon appearing;
tapping on the icon will result in the same behavior as tapping on the item, as shown
in the following screenshot:

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Chapter 6

235

Picking up your choice using Picker
In Chapter 2, Catering to Your Form-related Needs, we had talked about DatePicker, which
shows the dates in the form of slots and allows us to pick a date. DatePicker is a specialized
version of the Picker class. In this recipe we will see how to make use of this class.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_08.js and copy-paste the following
code into it:
Ext.application({
 launch: function() {
 var picker = Ext.create('Ext.picker.Picker', {
 slots: [{
 name : 'color',
 data : [
 {text: 'Red', value: 'red'},
 {text: 'Peach', value: 'peach'},
 {text: 'Yellow', value: 'yellow'},
 {text: 'White', value: 'white'}
]
 }],
 listeners: {
 pick: function(picker, pickedObj, slot) {
 Ext.Msg.alert('Info', 'Value picked is: ' +
 pickedObj.color);
 }
 }
 });
 Ext.Viewport.add(picker);
 picker.show();
 }
});

Adding Components

236

2. Include ch06_08.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

How it works...
The preceding code creates a Picker class to allow the user to choose a color of their choice.
Each color detail is added as a slot to the picker. Every slot contains two properties, text and
value. The text property is used to display the name in the slot and the value property is
given back to the program when the user picks up a slot.

We then register a handler for the pick event on the picker. The handler is fired when the
user selects a slot. The parameter pickerObj contains information about the slot that
is selected. This object contains the name of the slots as its property and the value of the
selected slot is set as its value. For example, in our case the pickerObj parameter will
look like the following when the user selects the Peach slot:

{
 color: "peach"
}

Chapter 6

237

There's more...
As with any other component, there are certain defaults defined by Picker. However,
we may have to deviate from them; for example, the position, animation, and alignment.
The following section shows how to do this.

Changing the position and animation
The Picker class extends Sheet and inherits the positioning and animation properties from
it. We can use the four properties, enter, exit, showAnimation, and hideAnimation, to
indicate the position of the picker with regard to the viewport when it is shown or hidden and
what kind of animation shall be used. The following code snippet shows the usage of these
properties to show the picker component on the top of the screen and uses the fadeIn
animation when it is being shown and the fadeOut animation when it is being hidden:

var picker = Ext.create('Ext.picker.Picker', {
 enter: 'top',
 showAnimation: 'fadeIn',
 exit: 'top',
 hideAnimation: 'fadeOut',

By default, the picker uses the bottom position and the slide animation.

Aligning the slot text
By default, the slot shows the text in the center. However, by using the align property on
the slots, we can align the text to the left or right as follows:

 slots: [
 {
 name : 'color',
 align: 'left',

Using title
To show the title for a slot, we need to specify the title config on the slot and set
useTitles to true on the picker object, as shown in the following code snippet:

 var picker = Ext.create('Ext.picker.Picker', {
 useTitles: true,
 slots: [{
 title: 'Choose color',
 name : 'color',

Adding Components

238

The following screenshot shows how the title will appear:

Overriding the button text
By default, the Cancel and Done buttons appear on the picker component. Using
the cancelButton and doneButton configs on the picker object, we can replace the
default button text with our text. The following code snippet shows the usage of these configs:

 var picker = Ext.create('Ext.picker.Picker', {
 cancelButton: 'Skip',
 doneButton: "I'm Done!",
 slots: [{
 name : 'color',

Hiding buttons
Sometimes, you may want to hide the Cancel or Done buttons. Setting cancelButton
to false will not show the Cancel button and setting doneButton to false will not
show the Done button. The following shows how we can do this:

 var picker = Ext.create('Ext.picker.Picker', {
 cancelButton: false,
 doneButton: false,
 slots: [{
 name : 'color',

Customizing the toolbar
If we want to customize the toolbar at the top to show additional items, we set the toolbar
config on the picker object as shown in the following code snippet, where we are adding
one more button to the toolbar:

 var picker = Ext.create('Ext.picker.Picker', {
 toolbar: {
 items: [{
 text: 'Reset'
 }]
 },

Chapter 6

239

 slots: [{
 name : 'color',

Showing multiple slots
The slots config accepts an array, and each entry represents a slot. Slots are arranged
horizontally and their order is determined based on the order in which they have been added
to the slots config. The following code shows how we can add one more slot to select a
flower, in addition to the slot to select a color:

var picker = Ext.create('Ext.picker.Picker', {
 slots: [
 {
 title: 'Choose flower',
 name : 'flower',
 data : [
 {text: 'Rose', value: 'rose'},
 {text: 'Hibiscus', value: 'hibiscus'},
 {text: 'Daffodil', value: 'daffodil'},
 {text: 'Daisy', value: 'daisy'}
]
 },{
 itle: 'Choose color',
 name : 'color',
 Ext.Msg.alert('Info', 'Value picked is: ' +
 pickedObj.flower + ' : ' + pickedObj.color);

Adding Components

240

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Switching between multiple views using
SegmentedButton

This recipe describes the usage of the SegmentedButton component, which is generally
a part of the toolbar and is useful in switching between different views.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_09.js and copy-paste the following
code into it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var segmentedButton = Ext.create('Ext.SegmentedButton',
 {
 items: [
 {
 text: 'Album'
 },
 {
 text : 'About',
 pressed: true
 },
 {
 text: 'Help'

Chapter 6

241

 }
],
 listeners: {
 toggle: function(container, button, pressed){
 console.log("User toggled the '" +
 button.getText() + "' button: " + (pressed ?
 'on' : 'off'));
 }
 }
 });
 Ext.Viewport.add({
 xtype: 'container',
 padding: 10,
 items: [segmentedButton]
 });
 }
});

2. Include ch06_09.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

How it works...
The preceding code creates SegmentedButton with three buttons, Album, About, and
Help, and allows the user to select one of them. Setting pressed: true on the About
button ensures that it will be selected by default. A selected button is deselected only if
the user selects another button.

The SegmentedButton component fires the toggle event every time a button is selected
and deselected. Our handler for the toggle event shows a message informing us which
button is selected/deselected. For example, when the Album button is pressed, we see
two messages appearing on the console: one saying About button: off and other one
saying Album button: on.

Finally, we added the SegmentedButton instance to a container, which is added to
the viewport.

Adding Components

242

There's more...
SegmentedButton also allows us to press multiple buttons. Let's see how to do it.

Keeping multiple buttons pressed
If we need the capability of keeping multiple buttons pressed, we set the allowMultiple
property to true. Setting this property allows us to deselect an already selected button.

Aligning buttons in the middle
By default, the buttons are aligned to the left. To change their alignment and show them
in the middle, we will have to set the pack property on the layout config as shown in
the following code snippet:

var segmentedButton = Ext.create('Ext.SegmentedButton', {
 layout: {
 type: 'hbox',
 pack: 'middle'
 },
 items: [
...

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Working with Tab panels
The Tab panel is a popular UI component that can hold other components and be accessed
in a tabbed fashion using a tab bar. In this recipe, we will learn about the tab panel and the
different options that we may use to build our application.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

Chapter 6

243

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_10.js and copy-paste the following
code into it:
Ext.application({
 name: 'MyApp',
 launch: function() {
 Ext.create('Ext.tab.Panel', {
 fullscreen: true,
 items: [
 {
 title: 'Album',
 styleHtmlContent: true,
 html: 'Contains the photos!',
 cls: 'tab1'
 },
 {
 title: 'Help',
 styleHtmlContent: true,
 html: '<h1 style="font-size:16px;">Help
 </h1><p>This application shows the album of
 flower pictures. You can filter the flowers
 based on their category, e.g. Rose, and view
 the additional detail about them.</p>',
 cls : 'tab2'
 },
 {
 title: 'About',
 styleHtmlContent: true,
 html : '<h1 style="font-size:16px;">About this
 app!</h1><p>Version 0.1</p>',
 cls : 'tab3'
 }
]
 });
 }
});

2. Include ch06_10.js in the index.html file.

Adding Components

244

3. Add the following styles to the ch06.css file:
.tab1 {
 background-color: #E58A99;
}

.tab2 {
 background-color: #65B9E0;
}

.tab3 {
 background-color: #B7E488;
}

4. Deploy and access it from the browser. You may also run it using the emulator.
You should see something similar to the following screenshot:

How it works...
The preceding code creates a tab panel with three panels. Internally, the tab panel
generates a tab bar using the title property of each panel item; with that it allows
the user to switch between different tabs.

Chapter 6

245

There's more...
There are a few more interesting options available with the tab panel. The following section
describes one of them.

Positioning the tab bar at the bottom
By default, the tab bar is positioned on the top. To show it at the bottom, we shall set the
tabBarPosition property to bottom.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Getting quicker access to application
features using Toolbar

The Toolbar class is a great way of getting single-click access to application features.
It can have buttons, dropdowns, a text field, and so on. Sencha Touch provides a Toolbar
component and this recipe will show us how to use it and work with its options.

Getting ready
Make sure you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_11.js and copy-paste the following
code into it:
Ext.application({
 launch: function() {
 var myToolbar = Ext.create('Ext.Toolbar', {
 items: [{
 text: 'Rose'
 },
 {

Adding Components

246

 text: 'Daffodil'
 },{
 text: 'Hibiscus'
 },{
 text: 'Reset',
 ui: 'decline-round'
 }, {
 text: 'Back',
 ui: 'back'
 }
]
 });

 var myPanel = Ext.create('Ext.Panel', {
 items: [myToolbar],
 styleHtmlContent: true,
 fullscreen : true,
 html : 'Test Panel'
 });
 }
});

2. Include ch06_11.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

How it works...
The preceding code creates a toolbar with five buttons inside it and the toolbar is added to
the panel. The Reset button is using decline-round as the value for the ui property and
the Back button is using back as the value for the ui property for a different look and feel.

There's more...
What if we want to have non-button components in our toolbar? Well, let us see.

Chapter 6

247

Adding non-button components
The defaultType config property on the toolbar defines the xtype property that shall be
used for each item being added to it. Unless xtype is specified on an item, xtype defaults
to button, which is the default value for defaultType. That's the reason we did not have to
specify xtype for buttons in the preceding code. To add a component of some other xtype,
we will have to set the xtype property on the particular item. For example, the following code
shows adding a search field to the toolbar:

items: [{
 xtype: 'searchfield'
}, {
 text: 'Rose'
}]

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

Creating a new component
So far, we have seen the various components the Sencha Touch framework offers and how to
use them to model our application. However, there may be a need to create new components
or extend the capability of an existing component. This recipe walks us through the steps to
create a new component.

Getting ready
Make sure you have set up your development environment by following the recipes outlined in
Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

Adding Components

248

How to do it...
Carry out the following steps:

1. Create and open a new file named PhotoAlbum.js and copy-paste the following
code into it:
Ext.define('Touch.book.ux.PhotoAlbum', {
 extend: 'Ext.dataview.DataView',
 xtype: 'photoalbum',
 config: {
 store: null,
 itemTpl : new Ext.XTemplate(
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',
 '<div class="x-clear"></div>'
),
 scrollable: 'vertical',
 emptyText: 'No images to display'
 },

 initialize: function() {
 this.callParent(arguments);

 this.on('selectionchange', function(dv, recs) {

 if (recs.length > 0) {
 Ext.Msg.alert('Info', 'Selected: ' +
 recs[0].data.album + ' : ' + recs[0].data.about);
 }
 });
 }
});

2. Create and open a new file named ch06_12.js and copy-paste the following
code into it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var data = [{
 album:'rose',

Chapter 6

249

 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'
 },
 ...
 ...
 {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'
 }];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

 Ext.create('Touch.book.ux.PhotoAlbum', {
 id: 'images-view',
 fullscreen: true,
 store: store
 });

 }
});

3. Include PhotoAlbum.js and ch06_12.js in the index.html file.

4. Deploy and access it from the browser. You may also run it using the emulator.

How it works...
In the preceding code, we defined a new component named PhotoAlbum in the Touch.
book.ux namespace. PhotoAlbum extends the DataView component and defines its own
template to render its items, and other common properties are defined inside it. The Ext.
define method provides us with a way to define a new component by extending an existing
one. You may also extend Object using this method. Additionally, one method that has
been added to it is initialize. This method acts as a hook into the overall component
management lifecycle of Sencha Touch, discussion of which is beyond the scope of this book.

Adding Components

250

The initialize method is called by the component manager to give a chance
to the component to take care of its specific initialization. This is called during the
initialization of a component. Our PhotoAlbum component registers the handlers
for the selectionchange event.

this.callParent(arguments) calls the corresponding method of the super class,
which is DataView. This is required for the parent class to be initialized properly.

The Ext.Component class contains the code related to the
component lifecycle; understanding that may give you more
insight into writing your own component.

The properties itemTpl, scrollable, and others that are being set inside the component,
can be overridden by the value specified by the user at the time of constructing an instance of
PhotoAlbum. For example, if you want to have a different template for PhotoAlbum, you can
pass the itemTpl property during the instantiation as follows:

Ext.create('Touch.book.ux.PhotoAlbum', {itemTpl: ….});

See also
 f The Setting up a browser-based development environment recipe of Chapter 1,

Gear Up for the Journey

 f The Working with a store recipe of Chapter 5, Dealing with Data and Data Sources

Extending an existing component's
capability

In the previous recipe, we defined a new component and used it in our application. However,
in some cases, the choice may not be to define a new component. Rather, we may have to see
if we can add the capability to the existing component. For example, String is a standard
object in JavaScript and we would like to add a new method, formatWithWordBreak, in
such a way that, once it is added, it is available to the complete application code to make
use of this new method without defining a MyString class and using it wherever we need
the formatWithWordBreak method. This recipe will take us through the steps to achieve
this requirement.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

Chapter 6

251

How to do it...
Carry out the following steps:

1. Create and open a new file named ch06_13.js and copy-paste the following
code into it:
Touch.book.ux.PhotoAlbum.prototype.loadData =
 function(data) {
 this.getStore().setData(data);
};

Ext.application({
 name: 'MyApp',

 launch: function() {
 var data = [{
 album:'rose',
 url:'http://images.flowers.vg/250x300/rdroses01.jpg',
 title:'Rose 1',
 about:'Peach'
 }, {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-
 maroon3.jpg',
 title:'Rose 2',
 about:'Red'
 }, {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-dark-
 pink.jpg',
 title:'Rose 3',
 about:'Pink'
 }, {
 album:'rose',
 url:'http://images.flowers.vg/250x300/roses-bright-
 orange.jpg',
 title:'Rose 4',
 about:'Orange'
 }, {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil.jpg',
 title:'Daffodil 1',
 about:'Yellow'

Adding Components

252

 }, {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil-
 yellow.jpg',
 title:'Daffodil 2',
 about:'Small'}, {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/daffodil-white-
 orange.jpg',
 title:'Daffodil 2',
 about:'Orange'
 }, {
 album:'daffodil',
 url:'http://images.flowers.vg/250x300/winter_
 flowers_daffodil_white.jpg',
 title:'Daffodil 2',
 about:'Winter'
 }];

 var newData = [{
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-
 peach.jpg',
 title:'Hibiscus 1',
 about:'Peach'
 }, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/
 hibiscusred.jpg',
 title:'Hibiscus 1',
 about:'Red'
 }, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'
 }, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 maroon.jpg',
 title:'Hibiscus 1',

Chapter 6

253

 about:'Maroon'
 }, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-pink-
 pink.jpg',
 title:'Hibiscus 1',
 about:'Pink'
 }, {
 album:'hibiscus',
 url:'http://images.flowers.vg/250x300/hibiscus-red-
 bright.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = Ext.create('Ext.data.Store', {
 data: data,
 fields: [
 'url', 'title','about', 'album'
]
 });

 var photoPnl = Ext.create('Touch.book.ux.PhotoAlbum', {
 id: 'images-view',
 fullscreen: true,
 store: store,
 items: [{
 xtype: 'toolbar',
 docked: 'top',
 items:[{
 text: 'Load New Data',
 handler: function() {
 photoPnl.loadData(newData);
 }
 }]
 }]
 });
 }
});

2. Include ch06_13.js in the index.html file.

Adding Components

254

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

How it works...
prototype is the standard JavaScript mechanism to extend an existing JavaScript object.
For example, adding the printWithLineBreak method to the exiting String object so
that the new method is accessible across the application code. JavaScript: The Good Parts,
a book by Douglas Crockford, is an excellent resource on JavaScript. The preceding code uses
the same mechanism to add a new method named loadData to the existing PhotoAlbum,
which loads data into the DataView store. When the user clicks on the Load New Data
button, photoPnl is loaded with the new data array by calling the newly added loadData
method on the PhotoAlbum class.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Creating a new component recipe

Chapter 6

255

Overriding a component's behavior
This recipe will show us how to override the existing behavior of a component and use
the modified behavior in the code.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named PhotoAlbumOverride.js and copy-paste
the following code into it:
Ext.define('Touch.book.ux.PhotoAlbumOverride', {
 override: 'Touch.book.ux.PhotoAlbum',
 loadData : function(data) {
 if (this.getStore().getCount() > 0) {
 Ext.Msg.alert('Info', 'The view is already loaded
 with data. No action will be performed.');
 } else {
 this.getStore().setData(data);
 }
 }
});

2. Update the index.html file to include the PhotoAlbumOverride.js
file. We will use the existing ch06_13.js file. Make sure you include the
PhotoAlbumOverride.js file after ch06_13.js.

Adding Components

256

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

How it works...
Ext.define with the override config allows us to override the existing behavior of a class.
It allows us to override class properties and/or methods in a convenient way using the Touch
API programming model. The good part is that you don't have to use the newly defined class,
PhotoAlbumOverride. Rather, you can override a property or method of the class and
continue to use it with different behavior. The method checks whether there is data already
loaded into the view; if so, it shows a message to the user and skips the loading of new data.
Otherwise, it loads the new data.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Creating a new component recipe

 f The Extending an existing component's capability recipe

Chapter 6

257

Adding behavior to an existing component
using plugins

Plugins are another mechanism through which we can enhance/customize the behavior
of an existing component. The new behavior is effective only if the plugin is added to the
component. Otherwise, the base behavior remains intact. In this recipe, we will understand
how to create a new plugin and use that on an existing component.

Getting ready
Make sure you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey.

Make sure you have created the ch06 folder inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file named PhotoAlbumPlugIn.js and copy-paste the
following code into it:
Ext.define('Touch.book.ux.PhotoAlbumPlugIn', {
 extend: 'Ext.Component',
 alias: 'plugin.photoalbum-view',

 init: function(viewCmp) {
 viewCmp.setItemTpl(new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{title}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
));
 }
});

Adding Components

258

2. Copy ch06_12.js as ch06_14.js and make the following change to the photo
album instantiation code:
 Ext.create('Touch.book.ux.PhotoAlbum', {
 id: 'images-view',

 plugins: ['photoalbum-view'],
 fullscreen: true,
 store: store
 });

3. Include PhotoAlbumPlugIn.js and ch06_14.js in the index.html file.

4. Deploy and access it from the browser. You may also run it using the emulator.
You will see something similar to the following screenshot:

Chapter 6

259

How it works...
The Sencha Touch framework provides support for plugins and most of the components
have a plugins property that can accept one or more plugins that need to be initialized
for the component. Plugins are a great way to enhance the capabilities of a component
without modifying its core behavior; for example, using a plugin to make the label
editable for a DataView component. In the preceding code, we defined a plugin named
PhotoAlbumPlugIn within the Touch.book.ux namespace. The plugin extends the Ext.
Component class so that, in case we have to deal with events, our plugin will be capable of
doing it. However, it is not mandatory to extend Component. You may also extend Object to
define a plugin. The important thing is that a plugin must have an init method defined, that
accepts the component reference to which the plugin was added in its plugins property. In
our case, the plugin gets the reference to PhotoAlbum and sets itemTpl to
a new template. The alias name is defined as a name for the plugin that we can use in
our code instead of using the class instance. It is important to use plugin as a prefix for
the alias name. This way, the class is registered as a plugin in the framework and will
load the class if the plugin name were used in the code.

After the plugin is defined, plugins: ['photoalbum-view'] associates the plugin with
PhotoAlbum; thus, when the application runs, we see the template set by the plugin used.

A plugin initializes after the initialize method of the component
is called. So you can rest assured that, when your plugin code is
running, the complete component has been initialized.

See also
 f The Setting up a browser-based development environment recipe of

Chapter 1, Gear Up for the Journey

 f The Creating a new component recipe

7
Adding Audio/Visual

Appeal

In this chapter we will cover:

 f Animating an element

 f Ding-dong! You have got a message

 f Working with videos

 f Creating your drawing

 f Working with an area chart

 f Working with a bar chart

 f Working with a column chart

 f Showing a group of bars and columns

 f Highlighting and displaying an item detail

 f Working with a gauge chart

 f Working with a line chart

 f Working with a pie chart

 f Rotating the pies

 f Highlighting a pie

 f Working with a 3D pie chart

 f Working with a radar chart

 f Working with a scatter chart

 f Working with a candlestick/OHLC chart

Adding Audio/Visual Appeal

262

Introduction
So far we have worked with components that present data either in the form of lists, form
fields, or custom views. However, there is always a need in an application to present the
information visually. Also, notification is another key need in an application where you may
want to notify the user that a certain event has occurred in the system; for example, a new
sales inquiry has arrived and a request has come for your approval. This chapter starts with
introducing how to animate elements in Sencha Touch and the different types of in-built
animations supported by the framework. Next, we will see how to use the audio control in our
application to get notifications, audio help, and more. After audio, we will look into the video
components and see how to use them in our application. In subsequent recipes, we will learn
how to set up the chart support in our application, what different types of charts are available
with the framework, how to use them, and also understand ways to build interactive charts
that can respond to user actions.

Animating an element
A Sencha Touch application is built using the elements, represented by Ext.dom.Element,
and every element of it can be animated. In this recipe, we will see how to animate an element,
what different types of animations are available, and how to change animation properties.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to store the code.

How to do it...
Perform the following steps to animate an element:

1. Create and open a new file, ch07_01.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var ct = Ext.create('Ext.Container', {
 fullscreen: true,
 style: 'background-color:gold;',

Chapter 7

263

 height: 100,
 width: 100
 });

 Ext.Anim.run(ct.element, 'cube', {});
 }
});

2. Include ch07_01.js in the index.html file.

3. Deploy and access it from the browser or the device of your choice.

How it works...
In the preceding code, we created a container instance that was rendered to the document
body. After the instantiation of it, we animated the container by calling the run method of
the Ext.Anim class. The first argument to the run method indicates what element needs
to be animated; the second argument, 'cube', indicates the type of animation that needs
to be applied to the element; and the third argument is used to pass the animation-specific
configuration object that is, in this case, empty. That means the default configuration will be
applied. You may pass a Sencha Touch component instance, an HTML element, or an Ext.
Element instance as the first parameter to the run method.

The following is the list of animations supported by Sencha Touch and is defined in the Ext.
anims class:

 f cube

 f fade

 f flip

 f pop

 f slide

 f wipe

Internally, each animation type corresponds to some calculation and then uses
the appropriate WebKit CSS properties to animate the element. A list of WebKit CSS
properties can be found at http://css-infos.net/properties/webkit.php.

There's more...
In the preceding code, we saw that the third argument to the run method is the
animation-specific configuration. There are various options that can be passed and
they are outlined in the Ext.Anim class. Let us look at some of the important ones.

Adding Audio/Visual Appeal

264

Working with different animation durations
By default, the animation lasts for 250 milliseconds. If this is not the desired length, then
we can change it by passing the duration config option to the run method. It accepts
a value in milliseconds. The following code snippet shows how to pass the duration value:

 Ext.Anim.run(pnl.getEl(), 'cube', {
 duration : 2000
 });

Setting the direction of animation
Most of the animations use a default direction. It is useful in deciding the side from
which the element shall enter into the scene. For example, cube animation uses left
direction, by default. We can change this by passing the direction config to the run
method. The following are the possible values:

 f left

 f right

 f up

 f down

Reversing the animation
If you want to reverse the direction of animation, setting the reverse property to true
and passing the same to the run method can do it. The following code snippet shows
how to pass this configuration:

Ext.Anim.run(pnl.getEl(), 'cube', {
 reverse: true,
 duration : 2000
 });

Postponing animation
If you do not want the animation to start immediately (but rather after a certain time),
we can achieve it by using the delay option. This option accepts a value in milliseconds.
The following code snippet shows how to pass this configuration:

Ext.Anim.run(pnl.getEl(), 'cube', {
 delay: 2000,
 ...
 });

Chapter 7

265

Calling a function after the animation is over
Let's say you want to execute a piece of code as soon as the animation is over. For example, in
the famous word game, Hangman, you would like to present a word to the user to complete as
soon as the animation of the hangman is over. To achieve this, the class provides an after
property to which we can pass a function and it will be called as soon as the animation is over.
The following code snippet shows how we can do this:

 Ext.Anim.run(pnl.getEl(), 'cube', {
 after : function() {
 alert('Animation is over!');
 }
 });

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Ding-dong! You have got a message
Say we are building an application for the Sales force that allows them to look at the orders
placed in the ERP system from their touch device. And, you want to notify your user by playing
a notification sound as soon as a new order arrives in the system. This can be achieved using
the audio component provided by Sencha Touch. In this recipe we will see how to use the
audio component to play a sound.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the mentioned steps to use the audio component:

1. Create and open a new file, ch07_02.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

Adding Audio/Visual Appeal

266

 launch: function() {
 var pnl = Ext.create('Ext.Container', {
 fullscreen: true,
 items: [
 {
 id: 'audio-pnl',
 xtype: 'audio',
 url : "ch07/here-it-is.mp3"
 }, {
 xtype: 'toolbar',
 docked: 'bottom',
 items: [
 {
 text: 'Resume',
 ui: 'confirm',
 handler: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.play();
 }
 },
 {
 text: 'Stop',
 handler: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.pause();
 }
 }
]
 }],
 listeners: {
 painted: function() {
 //auto-play the audio as soon as the component is rendered
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.play();
 }
 }
 });

 }
});

Chapter 7

267

2. Save your MP3 file inside the ch07 folder and update the url property based
on the MP3 filename.

3. Include ch07_02.js in place of ch07_01.js in the index.html file.

4. Deploy and access it from the browser or the device of your choice. You shall
see the following screen when it is run:

How it works...
The preceding code creates an audio component using xtype:'audio' and the important
property, url, is set to the path of the MP3 file that needs to be played. This, internally, uses
the HTML5 audio field. By default, the audio component does not play the MP3 file. To get that
working, we registered a handler for the painted event on the container panel and called the
play method, explicitly, on the audio component.

Additionally, we create a docked toolbar with the Resume and Stop buttons to play and
stop the audio.

The recommended file types are: uncompressed WAV and AIF audio,
MP3 audio, and AAC-LC or HE-AAC audio.

Adding Audio/Visual Appeal

268

There's more…
The audio component offers various other functionalities to control the way the audio
component is rendered and the audio is played. For example, how to disable the default
controls and use our own controls, how to play the audio in a loop, and so on. Let us see
how we can do these things.

Hiding controls
In the previous screenshot we saw that, by default, the component shows the controls to
play/pause the audio and also a slider bar that shows the audio timeline. In case you do
not want these controls to appear because you want to play the audio in the background,
you can set the enableControls config to false, as shown in the following code snippet:

...
xtype: 'audio',
enableControls: false,
...

Looping
Say you have an audio that you want to play as a background score as long as the user is
working with your application. Since, the duration for which the user would use the application
is not determined and hence you cannot create audios of that duration, you may want to play
that audio in a loop. To do that, you need to set the loop config to true, as shown in the
following code snippet:

...
xtype: 'audio',
enableControls: false,
loop: true,
...

Letting the user control the volume
In case you need to have controls in your application by which the user can play/pause the
audio or control the volume level, and you do not want to use the default controls because
their position and their style do not match with your application requirement, then we can
use the Sencha Touch components and link them with the actions on the audio. For example,
the following code snippet shows that we are adding a slider for the volume control. When
the slider value changes, the handler calculates the volume value using the slider's current
position and sets it on the audio component by calling the setVolume method:

...
xtype: 'audio',
enableControls: false,

Chapter 7

269

loop: true,
volume: 0.5, //default volume level
...
{
 text: 'Stop',
 handler: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.pause();
 }
}, {
 xtype: 'sliderfield',
 width: 200,
 value: 5, //to match it with the volume config value
 minValue: 0,
 maxValue: 10,
 listeners: {
 change: function(thisSl, sl, thumb, newVal, oldVal) {
 var audioPnl = Ext.getCmp('audio-pnl');

 audioPnl.setVolume(newVal/10);
 }
 }
}
...

This is demonstrated in the following screenshot:

Adding Audio/Visual Appeal

270

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Working with videos
In this recipe, we will look at the video component to see how to use it to add video-playing
capability to our application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps to use the video component for adding video-playing capability
in our application:

1. Create and open a new file, ch07_03.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var pnl = Ext.create('Ext.Container', {
 fullscreen: true,
 items: [
 {
 xtype : 'video',
 id : 'video-pnl',
 enableControls: false,
 url : "ch07/space.mp4",
 posterUrl: "ch07/Screenshot.png"
 }, {
 xtype: 'toolbar',
 docked: 'bottom',
 items: [
 {

Chapter 7

271

 text: 'Resume',
 ui: 'confirm',
 handler: function() {
 var videoPnl = Ext.getCmp('video-pnl');
 videoPnl.play();
 }
 },
 {
 text: 'Stop',
 handler: function() {
 var videoPnl = Ext.getCmp('video-pnl');
 videoPnl.pause();
 }
 }
]
 }]
 });

 }
});

2. Save your MP4 file inside the ch07 folder and update the url property based
on the MP4 filename.

3. Include the ch07_03.js file in the index.html file.

4. Deploy and access it from the browser or the device of your choice and you shall
see the following screen:

Adding Audio/Visual Appeal

272

How it works...
The preceding code creates a video component using xtype:'video' and the important
property, url, is set to the path of the MP4 file that needs to be played. This, internally,
uses the HTML5 video field.

Additionally, we created a docked toolbar with the Resume and Stop buttons to play and
stop the video.

enableControls allows us to control whether the control panel (with play/pause button,
slider and sound buttons) shall be displayed or not. Since, in our case, we play and pause the
video on a click of the toolbar buttons, Resume and Stop, we have set the property to false.
By default, the controls are enabled. When the controls are enabled, they can be seen as
shown in the following screenshot:

The video component offers other capabilities, similar to the audio component, to loop
and link Sencha Touch components to the actions on the video component (for example,
using slider for volume control).

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Ding-dong! You have got a message recipe

Chapter 7

273

Creating your drawing
Sencha Touch offers a drawing surface that one can use to draw any arbitrary drawing using
sprites. Sprites are the basic drawing constructs—circle, rectangle, path, text and more—using
which we can create any drawing. Subclasses of Ext.draw.sprite.Sprite are the list of
sprites supported in Sencha Touch that we will use to create a drawing in this chapter.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps to create your drawing:

1. Create and open a new file, ch07_04.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 Ext.create('Ext.draw.Component', {
 fullscreen: true,
 items: [{
 type: 'circle',
 cx: 100,
 cy: 100,
 r: 25,
 fillStyle: 'blue'
 }, {
 type: 'circle',
 cx: 200,
 cy: 100,
 r: 25,
 fillStyle: 'blue'
 }, {

Adding Audio/Visual Appeal

274

 type: 'rect',
 x: 140,
 y: 150,
 width: 25,
 height: 80,
 fillStyle: 'blue'
 }, {
 type: 'ellipticalArc',
 cx: 150,
 cy: 250,
 rx: 40,
 ry: 25,
 fillStyle: 'blue',
 startAngle: 0,
 endAngle: Math.PI,
 anticlockwise: false //shows the arc upside down
 }]
 });

 }
});

2. Include ch07_04.js in the index.html file.

3. Deploy and access it from the browser or the device of your choice and you
shall see the following screen:

Chapter 7

275

How it works...
The preceding code creates a simple face by adding two circle, one rectangle, and one elliptic
arc sprites to the drawing surface. Each sprite has got its specific config that we set while
instantiating them. For example, a circle requires us to set the radius, a rectangle requires
us to specify the width and height, and an elliptic arc requires us to specify the x radius (rx)
and y radius (ry). We used cx and cy as the center co-ordinates to position the circle and the
elliptic arc, whereas we used x and y as the top-left corner co-ordinates of the rectangle to
position it on the screen.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

Working with an area chart
In this recipe, we will learn about the area chart provided by Sencha Touch. This creates a
stacked area chart and is useful in displaying multiple aggregated layers of information.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

In all the chart-related recipes, we will be using the following store definition to feed the data
to our charts:

var store = Ext.create('Ext.data.Store', {
 fields: ['name', 'data1', 'data2', 'data3', 'data4',
'data5'],
 data: [
 {'name':'House Rent', 'data1':10, 'data2':12,
'data3':14, 'data4':8, 'data5':13},
 {'name':'Books', 'data1':7, 'data2':8, 'data3':16,
'data4':10, 'data5':3},
 {'name':'Petrol', 'data1':5, 'data2':2, 'data3':14,
'data4':12, 'data5':7},
 {'name':'Grocery', 'data1':2, 'data2':14, 'data3':6,
'data4':1, 'data5':23},
 {'name':'Loans & Deposits', 'data1':27, 'data2':38,
'data3':36, 'data4':13, 'data5':33}
]
 });

Adding Audio/Visual Appeal

276

How to do it...
Follow the ensuing steps to create an area chart:

1. Create and open a new file ch07_05.js and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined above

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 insetPadding: 30,
 axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1'],
 title: {
 text: 'Expense Amount',
 fontSize: 15
 },
 grid: {
 odd: {
 opacity: 1,
 fill: '#ddd',
 stroke: '#bbb',
 'stroke-width': 1
 }
 },
 minimum: 0
 }, {
 type: 'category',
 position: 'bottom',
 fields: ['name'],
 title: {
 text: 'Categories',
 fontSize: 15
 },
 label: {
 rotate: {
 degrees: 315
 }
 }

Chapter 7

277

 }],
 series: [{
 type: 'area',
 title:['Month 1','Month 2','Month 3','Month
 4','Month 5'],
 subStyle: {
 fill: ['blue', 'green', 'red', 'orange',
 'gold']
 },
 xField: 'name',
 yField: ['data1', 'data2', 'data3', 'data4',
 'data5']
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_05.js in the index.html file.

3. Deploy and access it from the browser or the device of your choice. You will see
the following screen:

Adding Audio/Visual Appeal

278

How it works...
The preceding code creates the high-level Ext.chart.CartesianChart instance, which
provides the capability to visualize the data using the Cartesian co-ordinate system based
on the x and y coordinates. This object accepts four important properties—store, legend,
axes, and series. store binds a data source to the chart so that the chart can be updated
dynamically. legend displays a list of legend items, each of them related to a series being
rendered (this is optional). axes contains the definition of the Cartesian axis and the field
from the dataset shall be used to render the x and y axes. series indicates the kind of
chart that needs to be rendered using the data stored in the store and axes definitions.

In the code, we have defined two axes: one of type numeric and the other of type category.
The Ext.chart.axis.Axis class represents each entry in the axes.

For the numeric axis, we defined the grid as a config object containing the information
about how the odd rows in the grid shall be rendered.

The other property that the axes property supports is label, which allows us to provide the
information about how the label shall be displayed. In the preceding code, we have mentioned
that the label shall be displayed at a 315 degree angle with respect to the value for the
category axis.

Then we added the series of type area to create an area chart. The xField and yField
properties provide the mapping of the field in the data to the axis where they should be
displayed. subStyle is used to specify the style that needs to be applied to each sample in
the series. For example, in the preceding code we have specified the color that shall be used
to render each sample.

There's more...
Having the legend property in a chart is almost a necessity and Sencha Touch does support
this in its chart functionality. In the previous discussion, we talked about the optional property
on the legend chart object. Let us see how to use it.

Showing a legend
To show a legend on a chart, we need to do the following:

1. Add the legend config to the CartesianChart object as shown in the following
code snippet:
legend: {
 docked: Ext.os.is.Phone?'bottom':'right'
},

Chapter 7

279

In the preceding code, we have defined a legend metadata where the name field
from the dataset will be used to generate the legend and, if the view is in the Phone
mode, the legend will be displayed at the bottom of the chart; otherwise, the legend
will be displayed on the right-hand side of the chart.

2. Set the showInLegend property to true in the series.

Though true is the default value set by the framework, I have mentioned it here
to indicate what config can be used to indicate on a series whether it shall appear
in the legend or not.

These changes to the code will ensure that the legend is generated for the chart
as shown in the following screenshot:

Changing the legend text
By default, the chart library uses the field name mentioned in the yField property in the
series. In order to have a different legend text, add the title config to the series as shown
in the following code line:

title:['Sample 1','Sample 2','Sample 3','Sample 4','Sample 5'],

Adding Audio/Visual Appeal

280

In the preceding code, we have defined a title for each sample data that the chart library will
use to show the legend text as shown in the following screenshot:

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

Working with a bar chart
Bar chart is another series that can be used to help a user visualize and compare data.
In this recipe, we will see how to use the bar series to get a bar chart generated.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

Chapter 7

281

How to do it...
Follow these steps to generate a bar chart:

1. Create and open a new file, ch07_06.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart
 recipe

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 flipXY: true,
 legend: {
 docked: Ext.os.is.Phone?'bottom':'right'
 },
 axes: [{
 type: 'numeric',
 position: 'bottom',
 fields: ['data1'],
 title: 'Expense Amount',
 grid: true,
 minimum: 0
 }, {
 type: 'category',
 position: 'left',
 fields: ['name'],
 title: 'Categories',
 label: {
 rotate: {
 degrees: 315
 }
 }
 }],
 series: [{

Adding Audio/Visual Appeal

282

 type: 'bar',
 xField: 'name',
 yField: ['data1'],
 subStyle: {
 fill: ['blue']
 }

 }]
 });

 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_06.js in the index.html file.

3. Deploy and access it from the browser or the device of your choice. You will see
the following screen:

How it works...
In the preceding code, we created an instance of the CartesianChart object with the
axis and series information. In the series, we set the type value to bar to get the bar chart
generated from the dataset. By default, the framework produces a column chart when a bar
series is used where the bars are shown vertically. To show a column chart, we have to set
flipXY to true on the chart; this will flip the x and y axis to show horizontal bars.

Chapter 7

283

There's more...
The default spacing between the bars is derived by the bar series. However, if there is a need
to increase or decrease the gap between them, here is the way to do that.

Limiting the bar width
The bar's minimum width is defaulted to 2 pixels and the maximum width is defaulted to
100 pixels. In case we want to modify these defaults, we can do that by setting minBarWidth
and maxBarWidth on the bar series as part of the style config, as shown in the following
code snippet:

 series: [{
 type: 'bar',
 xField: 'name',
 yField: ['data1'],
 subStyle: {
 fill: ['blue']
 },
 style: {
 maxBarWidth: 30
 }
 }]

Using rounded corners
In case you want to show rounded corners for the bars, you can do so by specifying the radius
on the style config of the series. It accepts a numeric value in pixels. For example, if radius
is set to 5 in the series' style configuration, the corners of the bar are rounded to 5 pixels.

Changing the spacing between the bars
By default, 5 pixels is the minimum gap between the two bars. To increase/decrease the gap
between the bars, you can set the minGapWidth property in the series' style configuration.
It accepts a numeric value in pixels. For example, if minGapWidth:2 is set in the series
configuration, the spacing between two bars will be 2 pixels.

You may refer to the Bar sprite class (Ext.chart.series.sprite.Bar) to learn more
about the different configurations that you can pass as part of the style config in the series.

Adding Audio/Visual Appeal

284

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Working with a column chart
Column chart is extended from the bar series and displays the chart in the form of vertical
bars. In this recipe, we will see how to create a column chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps to create a column chart:

1. Create and open a new file, ch07_07.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1'],
 title: 'Expense Amount',
 grid: true,
 minimum: 0
 }, {

Chapter 7

285

 type: 'category',
 position: 'bottom',
 fields: 'name',
 title: 'Categories',
 label: {
 rotate: {
 degrees: 315
 }
 }
 }],
 series: [{
 type: 'bar',
 xField: 'name',
 yField: ['data1'],
 colors: ['blue']
 }]

 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include the ch07_07.js in the index.html file.

3. Deploy and access it from the browser or the device of your choice. You will then
see the following screen:

Adding Audio/Visual Appeal

286

How it works...
The preceding code creates an instance of a chart with the axis and a series of type column.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Showing a group of bars and columns
Our dataset contains the data1, data2, data3, data4, and data5 fields, besides the name
field. Suppose, for every month for your monthly expenses, data1 represents the actual
expense, whereas data2 represents the estimated expense, and we want to see the visuals
for both the values being presented for each of the expense categories. That is, we need to
show a group of bars for each category. In the bar and column charts, Sencha Touch supports
showing a group of bars in the place of a single bar. This recipe will show you how to do that.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey. Also, complete the Working with a column
chart recipe.

How to do it…
Follow the ensuing steps to show a group of bars and columns:

1. Edit the ch07_07.js file and add the properties, highlighted in bold, as mentioned
in the following code snippet:
axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1'],
 title: 'Expense Amount',
 grid: true,
 minimum: 0
 }, {

Chapter 7

287

 type: 'category',
 position: 'bottom',
 fields: 'name',
 title: 'Categories',
 label: {
 rotate: {
 degrees: 315
 }
 }
 }],
 series: [{
 type: 'bar',

 stacked: false,
 xField: 'name',

 yField: ['data1', 'data2'],
 colors: ['blue', 'crimson']

 }]

2. Deploy and access the application from the browser or the device of your choice.
You will see the following screen:

Adding Audio/Visual Appeal

288

How it works...
In the preceding code, we set the stacked property to false so that the bars appear as
a group rather than stacked. We had to list the additional sample data2 to the yField
property so that the bars are generated for this sample. And finally, we added crimson as
the color for the bar representing the data2 sample.

There's more...
The default spacing between the bars is derived by the bar series. However, if there is
a need to increase or decrease the gapping between them, here is the way to do that.

Changing the spacing between grouped bars
The bar sprite provides an inGroupGapWidth config to specify the gap that we would like to
have between the bar groups. The value can be specified as numeric in pixels. The following
code snippet shows how to set the gap to 0 pixel:

series: [{
 ...
 },
 style: {
 inGroupGapWidth: 0
 }

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

 f The Working with a column chart recipe

Chapter 7

289

Highlighting and displaying an item detail
The next level of interaction is that, when the user clicks on a chart item, we may want to
highlight that item and show the item detail corresponding to it. In this recipe, we will see
how to achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey. Also, complete the Working with a column
chart recipe.

How to do it...
Follow these steps to highlight and display an item detail:

1. Edit the ch07_07.js file.

2. Add the following interactions to the chart's interactions array:
interactions: [{
 type: 'iteminfo',
 gesture: 'itemtaphold',
 listeners: {
 show: function(me, item, panel) {
 var rec = item.record;

 var str = '<span style="font-weight:
bold">Name: ' + rec.get('name') + '';
 str += 'Value: ' + rec.get(item.field) + '</
li>';
 panel.setHtml([str].join(''));
 }
 }
},
 'itemhighlight']

3. Save the change.

4. Deploy and access it from the browser or the device of your choice.

Adding Audio/Visual Appeal

290

5. Perform a single tap on a bar. This will highlight the bar.

6. Tap on the bar and hold it for a while. You will see a pop up showing the item
detail as shown in the following screenshot:

How it works...
The code uses two of the in-built interactions—itemhighlight and iteminfo.
The default handler of the iteminfo interaction shows a pop-up panel with Item Detail
as the title. This panel is passed to the show event handler as the third argument, which
we updated with the selected item detail. The field property on the item contains the bar
on which the itemtaphold event has occurred. For example, it will contain data1 or data2
as values, based on the bar where the event has occurred. We used this field information to
fetch the value from the record.

There's more...
The panel object that is passed to the show event, in the preceding code, has the default
title, style, items, and dimension. Say we want to show a different title or we want to show
some other component inside the body of the panel. Let us see how we can customize this
panel configuration.

Chapter 7

291

Customizing the Item Detail panel
The iteminfo interaction supports the panel config that allows us to specify our own
configuration for the panel and it is merged with the default configuration. The following code
snippet shows how we can set a different title and override the default height of the panel:

interactions: [
 {
 type: 'iteminfo',
 gesture: 'itemtaphold',
 panel: {height: 150, items: [{docked: 'top',
 xtype: 'toolbar', title: 'Info'}]},
 listeners: {

This is demonstrated in the following screenshot:

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

 f The Working with a column chart recipe

Adding Audio/Visual Appeal

292

Working with a gauge chart
Gauge charts are used to show progress in a certain variable. In this recipe, we will walk
through the steps to create a gauge chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a gauge chart:

1. Create and open a new file, ch07_08.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.SpaceFillingChart', {
 fullscreen: true,
 store: store,
 series: [{
 type: 'gauge',
 maximum: 20,
 field: 'data3',
 colors: ['crimson', 'gold']
 }]
 });

 }
});

2. Include ch07_08.js in the index.html file.

Chapter 7

293

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

How it works...
The preceding code creates a SpaceFillingChart object with series of type gauge.

In the series, after the type property, the next important property is field, which contains
the field name of the record that is used for the gauge angles. The value must be a positive
real number. colors is used to specify the colors that will be used to render the sections/
pies of the gauge chart.

There's more...
There are some more useful properties of the gauge chart that are worth a discussion.

Showing a needle
On a gauge, sometimes you may want to see a needle to show something like a dial chart.
This can be achieved by setting the needle property to true on the gauge series.

Adding Audio/Visual Appeal

294

The donut effect
The donut effect can be created by setting the donut property on the gauge series to a value
that is used as the radius of the inner circle. For example, this is how the gauge will look if we
set the donut property to 50:

See also
 f The Setting up a browser-based development environment recipe in Chapter 1, Gear

Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Working with a line chart
This recipe is all about creating a line chart using the Sencha Touch chart library.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a line chart:

1. Create and open a new file, ch07_09.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

Chapter 7

295

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1', 'data2'],
 title: {
 text: 'Sample Values',
 fontSize: 15
 },
 grid: true,
 minimum: 0
 }, {
 type: 'category',
 position: 'bottom',
 fields: ['name'],
 title: {
 text: 'Categories',
 fontSize: 15
 }
 }],
 series: [{
 type: 'line',
 style: {
 stroke: 'blue'
 },
 xField: 'name',
 yField: 'data1',
 marker: {
 type: 'path',
 path: ['M', -2, 0, 0, 2, 2, 0, 0, -2, 'Z'],
 stroke: 'blue',
 lineWidth: 0
 }
 }, {
 type: 'line',
 highlightCfg: {
 size: 7,
 radius: 7
 },

Adding Audio/Visual Appeal

296

 style: {
 stroke: 'crimson'
 },
 xField: 'name',
 yField: 'data2',
 marker: {
 type: 'circle',
 radius: 4,
 lineWidth: 0
 }
 }],
 interactions: ['itemhighlight']
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_09.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

Chapter 7

297

How it works...
The preceding code creates a CartesianChart object with a line type series with various
interactions. In the series, the highlightCfg config object defines the configuration, which
is used to highlight the line and the nodes when the user taps on a particular line series. It will
show the circle with a radius of 7 pixels. We configured the itemhightlight interaction to
highlight the series.

We used the marker config to set up different markers for the nodes on each series.
On one series we used a path sprite to create a marker, whereas on the other one
we used a circle sprite to create the marker.

There's more...
Let us look at some of the additional useful properties of the line chart.

Filling the area
To fill the area under a line series, we shall set the fill property to true on that particular
line series. For example, if we want to show the color under our first line series, we will set
the property on it as shown in the following code snippet:

series: [{
 type: 'line',
 fill: true,
 highlight: {
 size: 7,
 radius: 7
 …
 }

Smoothing curves
By default, curves will have edges. In case we want smooth curves resembling the ones drawn
by Bezier or B-Spline curves, we must set the property smooth to true on the desired line
series. The following code snippet shows how to set this property:

series: [{
 type: 'line',
 fill: true,
 smooth: true,
 highlight: {
 size: 7,
 radius: 7
 …
 }

Adding Audio/Visual Appeal

298

Once these properties are set, you will see the chart as shown in the following screen:

Using cross-zoom to see more detail
To enable cross-zoom on the line chart, we need to add crosszoom to the interactions
array since it is offered as one of the interactions.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Working with a pie chart
This recipe shows how to create a pie chart and work with some interesting features
offered by the framework.

Chapter 7

299

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a pie chart:

1. Create and open a new file, ch07_10.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.PolarChart', {
 store: store,
 colors: ["#115fa6", "#94ae0a", "#a61120",
 "#ff8809", "#ffd13e"],
 legend: {
 docked: Ext.os.is.Phone ? 'bottom' : 'right'
 },
 series: [{
 type: 'pie',
 labelField: 'name',
 xField: 'data1',
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_10.js in the index.html file.

Adding Audio/Visual Appeal

300

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

How it works...
The preceding code creates a PolarChart object with the series of type pie. The xField
property is the record field, which is used to calculate the angle. To show the legend, the
legend configuration is specified in the chart. labelField is the record field name whose
value shall be used as the label text.

There's more...
Let us look at some of the other properties that might be of interest.

The donut effect
Similar to the gauge chart, setting the donut property on the pie series with a positive
numeric value can create the donut effect.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Chapter 7

301

Rotating the pies
Coming to interactions with a pie chart, rotation allows the user to rotate the pie chart to
view a pie from a particular position. In this recipe, we will learn how to achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey. Also, complete the Working with a pie chart recipe.

How to do it...
Follow these steps to rotate a pie chart:

1. Edit the ch07_10.js file.

2. Add the following interaction item to it:
interactions: ['rotate']

3. Save the changes.

4. Deploy and access the application from the browser. You may also run it using
the emulator.

5. Use single-finger or mouse drag, based on your device, around the center
of the series. You will see the pie chart rotating.

How it works...
This is taken care of by the default rotate interaction of the Sencha Touch chart framework.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with store recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

 f The Working with a pie chart recipe

Adding Audio/Visual Appeal

302

Highlighting a pie
One cool feature the pie chart supports is highlighting a pie; when it is selected, it actually
stands out distinctly from other pies. In this recipe, we will see how to make use of this feature.

Getting ready
Make sure that you have set up your development environment by following the recipes outlined
in Chapter 1, Gear Up for the Journey. Also, complete the Working with a pie chart recipe.

How to do it…
Follow these steps to highlight a pie chart:

1. Edit the ch07_10.js file.

2. Add the following interaction item to it:
interactions: ['itemhighlight']

3. Set the following config on the pie series:
highlightCfg: {
 margin: 20
 }

4. Save the changes.

5. Deploy and access the application from the browser. You may also run it using
the emulator.

6. Tap a particular pie. This will show the pie highlighted and standing out from the rest
of the chart as shown in the following screenshot:

Chapter 7

303

How it works...
This is taken care of by the default itemhighlight interaction on the pie series of the Sencha
Touch chart framework. Setting the margin value on the highlightCfg config will tell the
framework how much the margin of the pie should be from the center when it is highlighted.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

 f The Working with a pie chart recipe

Working with a 3D pie chart
This recipe shows how to create a pie chart and work with some interesting features offered
by the framework.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a 3D pie chart:

1. Create and open a new file, ch07_11.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.PolarChart', {
 store: store,
 innerPadding: 45,

Adding Audio/Visual Appeal

304

 colors: ["#115fa6", "#94ae0a", "#a61120", "#ff8809",
"#ffd13e"],
 interactions: ['rotatePie3d'],
 series: [{
 type: 'pie3d',
 labelField: 'name',
 field: 'data1',
 donut: 30
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_11.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will see the following screen:

How it works...
The preceding code creates a PolarChart object with series of type pie3d. The field
property is the record field, which is used to calculate the angle. The legend configuration
is specified on the chart to show the legend.

The labelField config contains the information about how the label for each pie shall be
generated. labelField is the record field name whose value shall be used as the label text.
donut is set in the series to create a donut effect and rotatePie3d is set as the interaction,
which allows the user to rotate the pie with a drag/swipe.

Chapter 7

305

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Working with a radar chart
A radar chart is a useful visualization technique for comparing different quantitative values
for a constrained number of categories and this recipe is going to show us how to create one.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a radar chart:

1. Create and open a new file, ch07_12.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.PolarChart', {
 store: store,
 axes: [{
 type: 'numeric',
 position: 'radial',
 fields: 'data1',
 style: {
 estStepSize: 10
 },
 grid: true
 }, {

Adding Audio/Visual Appeal

306

 type: 'category',
 position: 'angular',
 fields: 'name',
 grid: true
 }],
 legend: {
 docked: 'bottom'
 },
 series: [{
 type: 'radar',
 title: 'Series 1',
 xField: 'name',
 yField: 'data1',
 style: {
 'stroke-width': 2,
 fill: 'red',
 opacity: 0.4
 }
 },{
 type: 'radar',
 title: 'Series 2',
 xField: 'name',
 yField: 'data2',
 style: {
 'stroke-width': 2,
 fill: 'purple',
 opacity: 0.4
 }
 },{
 type: 'radar',
 title: 'Series 3',
 xField: 'name',
 yField: 'data4',
 style: {
 'stroke-width': 4,
 fill: 'crimson',
 opacity: 0.4
 }
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

Chapter 7

307

2. Include ch07_12.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

How it works...
The preceding code creates a PolarChart object with the series of type radar. xField
and yField are the record field names that are used to render the radar. style is used to
style each of the series using the properties defined in it. In the style config object we set
the fill color and the transparency level.

There's more...
By default, the series does not show markers. In case we want to show markers and use
different markers for different series, following is how we will do it:

Adding Audio/Visual Appeal

308

Using a different marker
The kind of marker to be used is derived from the type property of the marker object.
The following code, in bold, shows using the ellipse, rect, and circle as different
markers on different series:

series: [{
 type: 'radar',
 title: 'Series 1',
 xField: 'name',
 yField: 'data1',
 marker: {
 type: 'ellipse',
 rx: 10,
 ry: 5,
 fillStyle: 'red'
 },
 ...
 },{
 type: 'radar',
 title: 'Series 2',
 ...,
 marker: {
 type: 'rect',
 width:10,
 height:10,
 fillStyle: 'purple'
 },
 ...
 },{
 type: 'radar',
 title: 'Series 3',
 ...,
 marker: {
 type: 'circle',
 r:5,
 stroke: 'crimson'
 },
 ...
 }]

Chapter 7

309

Once set, the following screenshot shows what the new marker will look like:

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Working with a scatter chart
The scatter chart is useful when trying to display more than two variables in the same
visualization. This recipe will show us how to work with a scatter chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

Adding Audio/Visual Appeal

310

How to do it...
Follow these steps to create a scatter chart:

1. Create and open a new file, ch07_13.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1', 'data2', 'data3'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'category',
 position: 'bottom',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 legend: {
 docked: 'bottom'
 },
 series: [{
 type: 'scatter',
 xField: 'name',
 yField: 'data1',
 fill: true,
 marker: {
 type: 'circle',
 fillStyle: 'blue',
 radius: 10,
 lineWidth: 0
 }

Chapter 7

311

 }, {
 type: 'scatter',
 marker: {
 type: 'rect',
 width: 10,
 height: 10,
 fillStyle: 'crimson'
 },
 axis: 'left',
 xField: 'name',
 yField: 'data2'
 }, {
 type: 'scatter',
 marker: {
 type: 'circle',
 radius: 10,
 fillStyle: 'green'
 },
 axis: 'left',
 xField: 'name',
 yField: 'data3'
 }],
 interactions: [{
 type: 'panzoom',
 zoomOnPanGesture: true
 },
 {
 type: 'iteminfo',
 gesture: 'itemtaphold'
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_13.js in the index.html file.

Adding Audio/Visual Appeal

312

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

How it works...
The preceding code creates a CartesianChart object with a series of type scatter.
Each series contains the xField and yField properties, which are set to record data
fields. marker contains the markers that need to be used for each scatter series.

Also, there are two interactions added—panzoom and iteminfo. Since there is no handler
written for the show event in case of iteminfo, itemtaphold will show a blank pop up
with the title Item Detail.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

Chapter 7

313

Working with a candlestick/OHLC chart
Candlestick or OHLC (Open-High-Low-Close) are typically used to describe price movements of
a security, derivative, or currency over time. This is a new chart introduced in Sencha Touch 2,
and that we will cover in this recipe.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch07, in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow these steps to create a candlestick/OHLC chart:

1. Create and open a new file, ch07_14.js, and paste the following code in it:
Ext.application({
 name: 'MyApp',

 launch: function() {
 var store = Ext.create(...); //defined in Area Chart recipe

 var chart = Ext.create('Ext.chart.CartesianChart', {
 store: store,
 axes: [{
 type: 'numeric',
 position: 'left',
 fields: ['data1', 'data2', 'data3', 'data4',
 'data5'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'category',
 position: 'bottom',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 series: [{
 type: 'candlestick',
 xField: 'name',
 openField: 'data1',
 highField: 'data2',

Adding Audio/Visual Appeal

314

 lowField: 'data3',
 closeField: 'data4',
 fill: true,
 style: {
 dropStyle: {
 fill: 'rgb(237, 123, 43)',
 stroke: 'rgb(237, 123, 43)'
 },
 raiseStyle: {
 fill: 'rgb(55, 153, 19)',
 stroke: 'rgb(55, 153, 19)'
 }
 }
 }]
 });
 Ext.Viewport.setLayout('fit');
 Ext.Viewport.add(chart);

 }
});

2. Include ch07_14.js in the index.html file.

3. Deploy and access it from the browser. You may also run it using the emulator.
You will then see the following screen:

Chapter 7

315

How it works...
The preceding code creates a chart object with a series of type scatter. Each series
contains the xField and yField properties, which are set to the record data fields.
markerConfig contains the markers that need to be used for each scatter series.

Also, there are two interactions added—panzoom and iteminfo. Since there is no handler
written for the show event in case of iteminfo, taphold will show a blank pop up with the
title Item Detail.

dropStyle is used to style the candle if the security closed lower than it opened (drop) and
raiseStyle is used to style the candle if the security closed higher than it opened (raise).

There's more…
Let us see what needs to be done to show the OHLC chart and how we can control the width
of the candle bar.

Using OHLC charts
The OHLC chart is used to show the price movement of a financial instrument over time.
It is very similar to the candlestick chart but shows a tick on the left-hand side for the
opening prices and a tick on the right-hand side for the closing prices. Also, the body is
rendered as a line rather than a bar.

To show the OHLC chart, set the ohlcType config to ohlc in the style property of the
candlestick series, as shown in the following code snippet:

style: {
 ohlcType: 'ohlc',
 dropStyle: {
 fill: 'rgb(237, 123, 43)',
...

Adding Audio/Visual Appeal

316

The following screenshot shows what the OHLC chart will look like:

Changing the bar width
To change the width of the candlestick body bar, we must set the barWidth config on
the style config of the series. It accepts a numeric value in pixels.

See also
 f The Setting up a browser-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Working with stores recipe in Chapter 5, Dealing with Data and Data Sources

 f The Working with an area chart recipe

8
Taking Your Application

Offline

In this chapter, we will cover:

 f Detecting offline mode

 f Storing your data offline in localstorage

 f Storing your data offline using Sencha.io

 f Storing your images offline

 f Application caching

Introduction
When it comes to building mobile applications, there is a special case that makes the
mobile application different from today's desktop applications: Offline mode or the Flight
mode. Though this Offline mode was used on desktop applications for some time, we had
intermittent or slow network connections. However, they are now more common to the mobile
world. This mode means the mobile is not on the network and does not have access to the
WLAN or GPRS data connection.

There are various cases where the user will need to use the application without network
connectivity. For example, imagine that you are a field maintenance staff and you work in
areas where there is no network coverage. However, you need to carry the list of customers,
their orders, and the detail containing the list of products the customer has ordered, the
quantity, prices, and so on. As field maintenance staff, you are expected to fulfill the order,
collect the payment, and issue a receipt to customers. And in your company, the order is
created in a centralized ERP system.

Taking Your Application Offline

318

In this case, it would be impossible to manage things electronically if the offline application
to enable the field maintenance staff were not there. A typical offline application can help
maintenance staff to download the orders for a day on their mobiles. It enables them to
update the order status locally on their mobile and create and issue a receipt to the customer
after the order is completed. And when they come back to their office, they can sync the
updated orders and the receipts and other updates with the centralized system. I am sure
there can be many more interesting scenarios where offline applications would be useful. The
bottom line is that having an offline capability in our application makes lot of sense, and it is a
powerful feature to have in a mobile application.

A typical touch application consists of one or more JavaScript files, one or more CSS files,
and work with the data and images. Taking this application offline means all these things
need to be available on the local device and should be stored in such a way that the absence
of the network does not make any difference to the application. In this chapter, we will see
how to take our application completely offline and learn how to model our application for
online and offline mode support.

Detecting offline mode
The life of an offline application starts with identifying whether the device/browser is
online or offline and, based on that, taking the appropriate action. In this recipe we will see
the different ways in which we can identify whether the device or the browser is online or
offline, which will help us make decisions in the subsequent recipes. We will start with
using Cordova API to detect the mode and then later look at other alternatives.

We have already set up our project with Cordova support as part of the setup in Chapter 1,
Gear Up for the Journey. You may refer to http://cordova.apache.org/docs/en/ for
more details on its APIs.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder, ch08, inside the www folder. We will be using this new folder to keep
the code.

Chapter 8

319

How to do it...
Carry out the following steps for detecting offline mode:

1. Create and open a new file, ch08_01.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 function onDeviceReady() {
 checkConnection();
 }
 function checkConnection() {
 var networkState = navigator.connection.type;
 var states = {};
 states[Connection.UNKNOWN] = 'Unknown connection';
 states[Connection.ETHERNET] = 'Ethernet connection';
 states[Connection.WIFI] = 'WiFi connection';
 states[Connection.CELL_2G] = 'Cell 2G connection';
 states[Connection.CELL_3G] = 'Cell 3G connection';
 states[Connection.CELL_4G] = 'Cell 4G connection';
 states[Connection.NONE] = 'No network connection';
 var str = (navigator.onLine ? 'ONLINE' : 'OFFLINE') +
 ' - '+ states[networkState];
 Ext.Msg.alert('INFO', str);
 }
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }
});

2. Include the ch08_01.js file in the index.html file.

3. Deploy and access it from the device of your choice.

Taking Your Application Offline

320

How it works...
navigator.connection.type gets the connection type from the navigator JavaScript
object and is used to compare the network status values defined in Cordova's Connection
object to determine whether the device is online or offline. Additionally, the Connection
object gives more information about the kind of network available in the online case.
Connection.NONE indicates the offline mode of the device. navigator.onLine allows us
to check whether the browser is in online or offline mode. This is different from the device's
online or offline mode. Many browsers would say they are online even if there is no network.

At the time of writing this chapter, the Connection API supports the
following platforms:

 f iOS
 f Android
 f BlackBerry WebWorks (OS 5.0 and higher)

There's more...
The preceding code works well as long as we are using compatible browsers (that support
the property on the navigator object) and the Cordova APIs. However, using Cordova is
not mandatory for creating Sencha Touch-based applications. There is one more technique
that we can use to identify the offline mode. Let us see how to use that technique. Also,
Sencha's Device APIs have added a similar API to check the connection status and related
information. We will see what those APIs are and how to use them.

Using aggressive timeout
In Chapter 5, Dealing with Data and Data Sources, we saw how to use the stores and the
proxies to connect to the data sources and load the data. Proxy is configured on a model
or a store. To figure out whether we are in online or offline mode, we can use the timeout
property on the proxy and set a very short timeout. If the connection fails, the exception
handler will take care of using the offline data for the application, as shown in the following
code snippet:

 proxy: {
 type: 'ajax',
 url : 'orders.json',
 reader: {
 type: 'json',
 rootProperty: 'orders',
 totalProperty: 'totalRecords',
 successProperty: 'success'
 },

Chapter 8

321

 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation) {
 //we are offline
 }
 }
 }

Using Sencha's Device API
Every mobile device has various features and data worth using in an application; for example,
accessing the device contact list, capturing photos and videos using the device camera,
notification, and so on. Since, Sencha is a JavaScript framework, direct access to the platform
(Android/iOS/WebOS) APIs is not available. The framework implements different approaches
to integrate with device features based on whether you are packaging for Cordova native or
simulator. Sencha's Device APIs offer the Ext.device.Connection class, which can be
used to detect the connectivity and find out the type of connection. The following code shows
how to use this class:

Ext.require('Ext.device.Connection');
Ext.application({
 name : 'MyApp',
 launch : function() {
 var isOnline = Ext.device.Connection.isOnline();
 var type = Ext.device.Connection.getType();
 alert('Connection status is: ' +
 (isOnline?'ONLINE':'OFFLINE') + ' and type is: ' + type);
 }
});

In the preceding code, we had to add Ext.require so that the Connection class is
loaded as it is not packaged with the sencha-touch-all[-debug].js files. The static
method, isOnline, tells whether the device is online or offline by returning true or false,
respectively. getType returns a string describing the kind of connection that the device has,
for example, Wi-Fi, and ethernet.

If we do a native packaging of the application using the Sencha Cmd tool, the Connection
class also fires an event, named onlinechange, whenever the connection status of the
device changes. This could be very handy when we want to monitor the connection status
change and execute some application logic. The following code snippet shows how to register
the handler for the onlinechange event:

Ext.device.Connection.on('onlinechange', function(isOnline, type,
 eOpts) {

Taking Your Application Offline

322

 alert('Connection status is: ' + (isOnline?'ONLINE':'OFFLINE')
 + ' and type is: ' + type);
});

The current status of the connection and type information is passed to the handler.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Loading data through AJAX using the Ajax proxy recipe in Chapter 5, Dealing
with Data and Data Sources

Storing your data offline in localstorage
Any application has to deal with data to provide a rich set of functionalities. Moreover, when
the application goes offline, the data that's required to work with also needs to be available
locally. In this recipe we will look at how to take our data offline and use it in the application.

We have taken the example of an application that will download the list of orders and their
details on the device and uses it to allow the user to look at the list of orders and their details.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch08 folder created inside the www folder.

Chapter 8

323

How to do it...
Carry out the following steps:

1. Create and open a new file, ch08_02.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 var orderList, onlineStore, offlineStore;
 Ext.define('OrderLine', {
 extend: 'Ext.data.Model',
 config: {
 fields: ['id', 'product', 'description',
 'orderedQty', 'uom', 'price', 'lineNo']
 }
 });
 Ext.define('Order', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 'id',
 {name: 'orderNbr', type: 'int', mapping:
 'documentNo'},
 {name: 'description', type: 'string'},
 {name: 'dateOrdered', type: 'string'},
 {name: 'customer', type: 'string'},
 {name: 'customerLocation', type: 'string'},
 {name: 'isNewOrder', type: 'boolean',
 defaultValue: true}
],
 //association with order lines
 hasMany: {model: 'OrderLine', name: 'orderlines',
 associationKey:'orderlines'},
 proxy: {
 type: 'ajax',
 url : 'ch08/orders.json',
 reader: {
 type: 'json',
 rootProperty: 'orders',

Taking Your Application Offline

324

 totalProperty: 'totalRecords',
 successProperty: 'success'
 },
 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation)
 {
 //fall back to the offline store
 orderList.setStore(offlineStore);
 offlineStore.load();
 }
 }
 }
 }
 });

 onlineStore = Ext.create('Ext.data.Store', {
 model: 'Order'
 });
 offlineStore = Ext.create('Ext.data.Store', {
 model: 'Order',
 autoSync: true,
 proxy: {
 type: 'localstorage',
 id: 'yapps-01' //unique id
 }
 });
 //populate the offline store with the data read from
 the online store
 onlineStore.addListener('load', function (store,
 records, successful) {
 if (successful) {
 //clear old records
 offlineStore.getProxy().clear();
 //since id is already populated on the
 //records, mark the records dirty otherwise
 //they will not be saved
 for(var i=0; i<records.length; i++)
 records[i].setDirty();

Chapter 8

325

 offlineStore.add(records);
 //save records in localstorage
 offlineStore.sync();
 orderList.setStore(offlineStore);
 }
 });
 orderList = Ext.create('Ext.List', {
 title: 'Orders',
 itemTpl: '<tpl for="."><div>{orderNbr}
 {description}</div></tpl>',

 //show order lines when disclose icon is tapped on an
 order entry
 onItemDisclosure: function(){
 var orderTabPnl = Ext.getCmp('ordertab-pnl-id');
 var orderLinesPnl = Ext.getCmp('orderlines-pnl-
 id');
 //we might have already shown the order line tab.
 if so, destroy it
 if (!Ext.isEmpty(orderLinesPnl))
 orderTabPnl.remove(orderLinesPnl);
 //get order lines from the order object, which we
 had loaded from json file
 var ols = [];
 arguments[0].orderlines().each(function(ol) {
 ols.push(ol);
 });
 orderLinesPnl = Ext.create('Ext.List', {
 id: 'orderlines-pnl-id',
 title: 'Order Lines',
 itemTpl: '<tpl for="."><div style="padding-
 left:10px;">{lineNo} - {product}
 {orderedQty}</div></tpl>',
 store: Ext.create('Ext.data.Store', {
 model: 'OrderLine',
 data : ols
 })
 });
 //show the Order Lines tab to the user
 orderTabPnl.insert(1, orderLinesPnl);

Taking Your Application Offline

326

 orderTabPnl.setActiveItem(1);
 },
 store: onlineStore
 });
 //Order tab panel with Order and Order Lines tabs
 var orderTab = Ext.create('Ext.TabPanel', {
 id: 'ordertab-pnl-id',
 title: 'List',
 ui : 'light',
 items: [orderList]
 });

 //Main tab panel
 Ext.create('Ext.TabPanel', {
 id: 'tab-pnl-id',
 fullscreen: true,
 ui : 'light',
 sortable : true,
 items: [orderTab,
 {
 title: 'Help',
 html: '<h1 style="font-size:16px;">Help
 </h1><p>This application shows the orders and
 their line items.</p>',
 styleHtmlContent: true
 },
 {
 title: 'About',
 html : '<h1 style="font-size:16px;">About this
 app!</h1><p>Version 0.1</p>',
 styleHtmlContent: true
 }
]
 });

 onlineStore.load();
 }
});

Chapter 8

327

2. Include ch08_02.js in place of ch08_01.js in the index.html file.

3. Deploy and access it from the device of your choice.

4. Rename orders.json to something else so that the proxy throws an error
as it cannot find the file on the specified URL.

5. Reload the application. Though the proxy does not find the JSON file, it falls back to
offlineStore and we still see Orders populated. Since, we have not stored Order
Lines in localStorage, the Order Lines tab will not be loaded with the data.

How it works...
In the preceding code, we defined two models, Order and OrderLine; the association
between them is one-to-many, which is indicated by hasMany. Then we created two stores:
onlineStore and offlineStore. onlineStore is of type ajax and loads the order data
from the orders.json file. offlineStore is bound to the HTML5 localStorage instance.

onlineStore is bound to orderList and we registered a handler for the load event
on onlineStore. The handler function saves all the orders in the local storage and binds
orderList to offlineStore. So, we first download all the orders from the remote system,
save them locally, and work with the local data.

To switch to the offline mode, we have used the timeout technique and the exception handler
binds orderList with offlineStore and then loads the data from there.

Taking Your Application Offline

328

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Loading data through AJAX using the Ajax proxy recipe in Chapter 5, Dealing
with Data and Data Sources

 f The Creating a model recipe in Chapter 5, Dealing with Data and Data Sources

 f The Relating models using association recipe in Chapter 5, Dealing with Data
and Data Sources

 f The Managing a list of data using List recipe in Chapter 6, Adding Components

 f The Working with Tab panels recipe in Chapter 6, Adding Components

Storing your data offline using Sencha.io
The previous recipe is useful for any hosted application. Let us say you are using Sencha's
cloud service, Sencha.io, to store your data and you want to have the data available for
offline usage as well. For this purpose, Sencha.io comes with a syncstorage proxy that
helps us manage the data on the cloud and also offers the offline capability for which it saves
the data in localStorage. In this recipe, we will see how to set up our application to use
Sencha.io APIs and use the syncstorage proxy to manage the application data.

At the time of writing this book, Sencha.io was in beta and the final APIs
may differ from what have been used in this chapter.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch08 folder created inside the www folder.

Chapter 8

329

How to do it...
Carry out the following steps to store data offline using Sencho.io:

1. Download the Sencha.io SDK from http://www.sencha.com/products/io/.

2. Extract the ZIP files and keep the SDK files under www/sencha-io-<version>
folder; for example, www/sencha-io-0.7.15.

3. Open https://manage.sencha.io/#!/dashboard in your browser. Register
yourself or log in to the Dashboard.

4. Create a new application and take a note of the values populating ID and Secret,
as shown in the following screenshot:

5. Create and open a new file, ch08_03.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 io: {
 appId:'5edf1ccb-d658-480d-ac29-0039a9096f55',
 appSecret: 'ddlTwUKn3e3TXeMW'
 },
 launch: function() {
 var orderList, syncStore;
 Ext.define('Order', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 'id',
 {name: 'orderNbr', type: 'int', mapping:
 'documentNo'},
 {name: 'description', type: 'string'},

Taking Your Application Offline

330

 {name: 'dateOrdered', type: 'string'},
 {name: 'customer', type: 'string'},
 {name: 'customerLocation', type: 'string'},
 {name: 'isNewOrder', type: 'boolean',
 defaultValue: true}
]
 }
 });

 syncStore = Ext.create('Ext.data.Store', {
 model: 'Order',
 autoLoad: true,
 autoSync: false, //manual sync
 proxy: {
 type: 'syncstorage',
 owner: 'user',
 access: 'private',
 id: 'ioorders'
 }
 });

 orderList = Ext.create('Ext.List', {
 title: 'Orders',
 itemTpl: '<tpl for="."><div>{orderNbr}
 {description}</div></tpl>',
 store: syncStore
 });

 Ext.create('Ext.TabPanel', {
 id: 'ordertab-pnl-id',
 fullscreen: true,
 title: 'List',
 ui : 'light',
 items: [orderList, {
 docked: 'bottom',
 xtype: 'titlebar',
 items: [{
 text: 'Load Data',
 align:'right',

Chapter 8

331

 handler: function() {
 var rec = Ext.create('Order', {
 orderNbr: 1,
 documentNo: '80001',
 description: 'Order for 2 Patio furniture
 sets',
 customer: 'Ajit Kumar',
 customerLocation: ''
 });
 syncStore.add(rec);
 syncStore.sync();
 }
 }]
 }]
 });
 }
});

6. Include ch08_03.js in place of ch08_02.js in the index.html file.

7. Include the following script in index.html, before ch08_03.js, to add the
Sencha.io framework file:
<script type="text/javascript" charset="utf-8" src="sencha-
 io-0.7.15/sencha-io-debug.js"></script>

8. Deploy and access it from the browser/simulator.

9. Click on the Load Data button to load the record in the list.

10. Disconnect your computer where the app is hosted and reload the application.
This time you will see the following error in developer tool, which shows the
Sencha.io API is not able to contact the cloud:

Taking Your Application Offline

332

You will still see the records loaded in the list, as shown in the following screenshot:

How it works...
In the recipe, we first registered with Sencha.io and created an application to get appID
and appSecret. Using appID and appSecret, we configured io on the application,
which will be used to validate the access from our application.

In the preceding code, we defined a model, Order. Then we created a store named
syncStore. syncStore uses the syncstorage type proxy offered by Sencha.io.

syncStore is bound to orderList, which has got a bottom toolbar with the Load Data
button. The handler function creates a new Order model, adds it to syncStore, and
calls sync on the store to save the data.

To switch to offline mode, we did not have to use the timeout technique and the exception
handler as the syncstorage proxy takes care of this switching automatically for us.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1, Gear Up
for the Journey

 f The Setting up the BlackBerry-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

Chapter 8

333

 f The Loading data through AJAX using the Ajax proxy recipe in Chapter 5, Dealing
with Data and Data Sources

 f The Creating a model recipe in Chapter 5, Dealing with Data and Data Sources

 f The Managing a list of data using List recipe in Chapter 6, Adding Components

 f The Working with Tab panels recipe in Chapter 6, Adding Components

Storing your images offline
In the previous recipe, we talked about storing data offline. Images are used extensively
in applications and enhance the overall presentation. Typically, an image is accessed as a
URL. These URLs will not be accessible when the device or the browser goes offline. To some
extent, this can be managed by using the image-caching feature of the browser and by giving
it a long period of validity before it expires. But this may not be honored all the time by the
browsers. We need a better mechanism to contain the images that is under the complete
control of our application. In this recipe, we will see what it takes to persist the images locally
and use them in the application.

For the demonstration, we will enhance the application that we built in Chapter 4, Building
Custom Views, where we used images from a third-party website to show the album of flowers
shown in the following screenshot:

Taking Your Application Offline

334

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch08 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, ch08_04.js, and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 Ext.define('Flower', {
 extend: 'Ext.data.Model',
 config: {
 fields: [
 'id','album','url','title', 'about'
],
 proxy: {
 type: 'ajax',
 url : 'ch08/flowers.json',
 reader: {
 type: 'json',
 rootProperty: 'flowers',
 totalProperty: 'totalRecords',
 successProperty: 'success'
 },
 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation)
 {
 var dv = Ext.getCmp('dataview-id');
 dv.setStore(offlineStore);
 offlineStore.load();
 }
 }
 }
 },

Chapter 8

335

 setUrl: function() {
 var script = document.createElement("script");
 script.setAttribute("src",
 "http://src.sencha.io/data.setPhotoUrl-" +
 this.getId() +"/" + this.get('url')
);
 script.setAttribute("type","text/javascript");
 document.body.appendChild(script);
 }
});

setPhotoUrl = function (id, dataUrl) {
 var flower = this.offlineStore.getById(id);
 flower.set('url', dataUrl);
 offlineStore.sync();
};

onlineStore = Ext.create('Ext.data.Store', {
 model: 'Flower'
});

 onlineStore.addListener('load', function (store, records,
 successful) {
 if (successful) {
 offlineStore.getProxy().clear();
 this.each(function (record) {
 var flower = offlineStore.add(record.data)[0];
 flower.setUrl();
 });
 offlineStore.sync();
 var dv = Ext.getCmp('dataview-id');
 dv.setStore(offlineStore);
 }
 });

 offlineStore = Ext.create('Ext.data.Store', {
 model: 'Flower',
 proxy: {
 type: 'localstorage',
 id: 'yapps-02'
 }
 });

Taking Your Application Offline

336

 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

 var filter = function(criteria) {
 var dv = Ext.getCmp('dataview-id');
 var store = dv.getStore();
 store.clearFilter();
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 turn false;
 });
 }

 var pnl = Ext.create('Ext.Panel', {
 id:'images-view',
 fullscreen: true,
 scroll: false,
 monitorOrientation: true,
 layout: 'card',
 defaults: {
 border: false
 },
 items: [Ext.create('Ext.DataView', {
 id: 'dataview-id',
 store: onlineStore,
 scroll: 'vertical',
 itemTpl: tpl,
 autoHeight:true,
 singleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display',
 monitorOrientation: true,
 listeners: {

Chapter 8

337

 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').setHtml('<img src="'
 + recs[0].data.url + '" title="' +
 recs[0].data.title + '">');
 Ext.getCmp('images-view').setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 },
 orientationchange: function(pnl, orientation,
 width, height){
 pnl.refresh();
 }
 }
 }),
 Ext.create('Ext.Panel', {
 id: 'detail-panel',
 styleHtmlContent: true,
 scroll: 'vertical',
 cls: 'htmlcontent'
 }),
 {
 xtype: 'toolbar',
 docked: 'top',
 items: [
 {
 text: 'Rose',
 id: 'rose-button',
 handler: function() {
 filter('rose');
 }
 },
 {
 text: 'Daffodil',
 id: 'daffodil-button',
 handler: function() {
 filter('daffodil');
 }
 },{
 text: 'Hibiscus',
 id: 'hibiscus-button',

Taking Your Application Offline

338

 handler: function() {
 filter('hibiscus');
 }
 },{
 text: 'Reset',
 id: 'reset-button',
 ui: 'decline-round',
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 filter('');
 }
 }, {
 text: 'Back',
 id: 'back-button',
 ui: 'back',
 hidden: true,
 handler: function() {
 Ext.getCmp('images-view').setActiveItem(0);
 this.hide();
 Ext.getCmp('rose-button').show();
 Ext.getCmp('daffodil-button').show();
 Ext.getCmp('hibiscus-button').show();
 }
 }
]
 }]
 });

 onlineStore.load();
 }
});

2. Create and open a new file, flowers.json, in the ch08 folder and paste
the following code into it:
{
 "totalRecords": "20",
 "success": "true",
 "flowers": [
 {
 "id": "1",
 "album": "rose",
 "url": "http://images.flowers.vg/
 250x300/rdroses01.jpg",

Chapter 8

339

 "title": "Rose1",
 "about": "Peach"
 },
 {
 "id": "2",
 "album": "rose",
 "url": "http://images.flowers.vg/250x300/roses-
 maroon3.jpg",
 "title": "Rose2",
 "about": "Red"
 },
 {
 "id": "3",
 "album": "rose",
 "url": "http://images.flowers.vg/250x300/roses-dark-
 pink.jpg",
 "title": "Rose3",
 "about": "Pink"
 },
 {
 "id": "4",
 "album": "rose",
 "url": "http://images.flowers.vg/250x300/roses-
 bright-orange.jpg",
 "title": "Rose4",
 "about": "Orange"
 },
 {
 "id": "5",
 "album": "daffodil",
 "url": "http://images.flowers.vg/250x300/
 daffodil.jpg",
 "title": "Daffodil1",
 "about": "Yellow"
 },
 {
 "id": "6",
 "album": "daffodil",
 "url": "http://images.flowers.vg/250x300/daffodil-
 yellow.jpg",
 "title": "Daffodil2",
 "about": "Small"
 },
 {

Taking Your Application Offline

340

 "id": "7",
 "album": "daffodil",
 "url": "http://images.flowers.vg/250x300/daffodil-
 white-orange.jpg",
 "title": "Daffodil2",
 "about": "Orange"
 },
 {
 "id": "8",
 "album": "daffodil",
 "url": "http://images.flowers.vg/250x300/
 winter_flowers_daffodil_white.jpg",
 "title": "Daffodil2",
 "about": "Winter"
 },
 {
 "id": "9",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/hibiscus-
 peach.jpg",
 "title": "Hibiscus1",
 "about": "Peach"
 },
 {
 "id": "10",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/
 hibiscusred.jpg",
 "title": "Hibiscus1",
 "about": "Red"
 },
 {
 "id": "11",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/hibiscus-
 pink-pink.jpg",
 "title": "Hibiscus1",
 "about": "Pink"
 },
 {
 "id": "12",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/hibiscus-
 red-maroon.jpg",

Chapter 8

341

 "title": "Hibiscus1",
 "about": "Maroon"
 },
 {
 "id": "13",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/hibiscus-
 pink-pink.jpg",
 "title": "Hibiscus1",
 "about": "Pink"
 },
 {
 "id": "14",
 "album": "hibiscus",
 "url": "http://images.flowers.vg/250x300/hibiscus-
 red-bright.jpg",
 "title": "Hibiscus1",
 "about": "BrightRed"
 }
]
}

3. Create and open a new file, ch08.css, inside the ch08 folder and paste the
following code inside it:
#images-view .x-panel-body{
 background: white;
 font: 11px Arial, Helvetica, sans-serif;
}
#images-view .thumb{
 background: #dddddd;
 padding: 3px;
}
#images-view .thumb img{
 height: 60px;
 width: 80px;
}
#images-view .thumb-wrap{
 float: left;
 margin: 4px;
 margin-right: 0;
 padding: 5px;
}

Taking Your Application Offline

342

#images-view .thumb-wrap span{
 display: block;
 overflow: hidden;
 text-align: center;
}

#images-view .x-view-over{
 border:1px solid #dddddd;
 background: #efefef url(images/row-over.gif) repeat-x
 left top;
 padding: 4px;
}
#images-view .x-item-selected{
 background: #eff5fb url(images/selected.gif) no-repeat
 right bottom;
 border:1px solid #99bbe8;
 padding: 4px;
}
#images-view .x-item-selected .thumb{
 background:transparent;
}

4. Include ch08_04.js in place of ch08_03.js in the index.html file.

5. Include ch08.css in the index.html file.

6. Deploy and access it from the device of your choice.

How it works...
In the preceding code, we defined a model, Flower. Then we created two stores,
namely, onlineStore and offlineStore. onlineStore is of type ajax and
loads the flower data from the flowers.json file. offlineStore is bound to
the HTML5 localStorage instance.

onlineStore is bound to DataView, and we registered a handler for the load event on
onlineStore. The handler function saves all the orders into the local storage and binds
DataView to offlineStore. While adding a model to the local storage, we called the
setUrl method on the model to set the Sencha.io cloud service to get the dataUrl method
corresponding to an image URL. Another alternative to using Sencha.io is to have our own
server-side implementation that can convert an image URL to a data URL. After the image
is loaded, id and dataUrl are passed to the setPhotoUrl callback method. The callback
method then sets the URL on a model to the dataUrl method received from the Sencha.io
service and updates the model in the local storage. The dataUrl mechanism allows us to
persist the image locally without worrying about browser caching, expiry time, and so on.

Chapter 8

343

To switch to offline mode, we have used the timeout technique and the exception handler
binds the DataView with offlineStore and then loads the data from there.

You may learn more about Sencha.io at:
 f http://www.sencha.com/products/io/

 f http://www.sencha.com/learn/how-to-use-src-
sencha-io/

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Loading data through AJAX using the Ajax proxy recipe in Chapter 5, Dealing
with Data and Data Sources

 f The Creating model recipe in Chapter 5, Dealing with Data and Data Sources

 f The Designing custom views using DataView recipe in Chapter 4, Building
Custom Views

 f The Using XTemplate for advanced templating recipe in Chapter 4, Building
Custom Views

 f The Storing your data offline in localstorage recipe

 f The Storing your data offline using Sencha.io recipe

Application caching
So far, we have seen how to detect the online or offline modes and store data and images
locally. The last thing to do is to cache the application code so that they are downloaded
locally and are available for offline use. In this recipe we will go through the steps to achieve it.

Taking Your Application Offline

344

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch08 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Create and open a new file, touch.manifest, inside the ch08 folder, and paste the
following code into it:
CACHE MANIFEST

#version 0.1

../index.html

../touch/resources/css/sencha-touch.css

../touch/sencha-touch-all-debug.js
ch08.css
ch08_04.js

2. Modify the index.html file to include the manifest file:
<html manifest="ch08/touch.manifest">

3. Add the following to the mime.types file of the Apache web server:
text/cache-manifest manifest

4. Deploy and access it from the device of your choice. If you access the file from
a browser, you will see an entry created in Application Cache, as shown in the
following screenshot:

Chapter 8

345

5. Reload the application. If you are accessing the user file from the browser, you will
see the following messages showing that the files are being loaded from the cache:

6. Disconnect the device from the network or stop the web server.

7. Reload the application. You will still see the complete UI rendered with the
data loaded.

How it works...
The steps outlined use Cache Manifest to tell the browser to cache the resources listed
in the touch.manifest file. To the manifest file, we added a #version line, which we
update whenever we make any changes to the code. This is added to overcome the problem
of resources (JavaScript files) not being reloaded when there are no changes in the manifest
file. Afterwards, we added a new MIME type support to our Apache web server by extending
the mime.types file. You may have to check the specifics related to your web server and
configure the MIME type accordingly.

Once the manifest file was created and the support was added to the web server, we added
the manifest attribute to <html> where we specified our manifest file. This way, the browser
will load the manifest file and all the resources listed inside it.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up a browser-based development environment recipe in Chapter 1,
Gear Up for the Journey

9
Increased Relevance

Using Geolocation

In this chapter, we will cover:

 f Finding out your location

 f Finding out the location using native device APIs

 f Auto update of your location

 f Tracking direction and speed

 f Hooking up Google Maps with your application

 f Working with the Google Maps options

 f Mapping Geolocation on Google Maps

Introduction
Imagine how good it would be to build an application that can automatically determine the
user mobile location and provide local searches such as suggesting places of interest, hotels,
the nearest police station, and so on. Imagine how the user would feel if, after determining
the location, we display the relevant information and the routes on a map that give clear
directions on how to reach a place. Another example could be providing an application that
can tell my average speed while I am jogging or an application that can help track a fleet of
trucks, provide a route map that is less congested, send an SOS message to a friend with
your location detail, and so on.

All of this is feasible and possible with the newly introduced Geolocation specification from
the W3 Consortium (http://dev.w3.org/geo/api/spec-source.html).

Increased Relevance Using Geolocation

348

This specification provides us with the required objects, methods, and events to get the
location detail and work with it.

In this chapter, we will look at the classes provided by the Sencha Touch framework to work
with Geolocation. The classes implement the W3C Geolocation specification. Additionally,
we will see how to work with Google Maps and complement it with Geolocation.

Sencha Touch wraps the Google Map JavaScript APIs, outlined in http://code.google.
com/apis/maps/documentation/javascript/, into a convenient class that we will
be making use of in this chapter.

Finding out your location
W3C's Geolocation specification is implemented by the Ext.util.GeoLocation class
in Sencha Touch. In this recipe, we will look into the class and see how to learn about our
device location.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch09 in the www folder. We will be using this new folder to keep the code.

How to do it...
Carry out the following steps to find out your location:

1. Create and open a new file ch09_01.js and paste the following code into it:
Ext.application({
 name : 'MyApp',
 launch: function() {
 var geo = Ext.create('Ext.util.GeoLocation', {
 autoUpdate: true,
 listeners: {
 locationupdate: function (geo) {
 alert('New latitude: ' + geo.getLatitude() + ' :
 longitude : ' + geo.getLongitude() + ' @ ' +
 geo.getTimestamp());

Chapter 9

349

 },
 locationerror: function (geo,
 bTimeout,
 bPermissionDenied,
 bLocationUnavailable,
 message) {
 if(bTimeout){
 alert('Timeout occurred.');
 }
 if (bPermissionDenied){
 alert('Permission denied.');
 }
 if (bLocationUnavailable) {
 alert('Location unavailable.');
 }
 }
 }
 });

 geo.updateLocation();

 }
});

2. Include ch09_01.js in the index.html file.

3. Deploy and access it from the device of your choice. You will see a message showing
the longitude and latitude of your location as shown in the following screenshot:

Increased Relevance Using Geolocation

350

How it works...
In the preceding code, we created an instance of the Ext.util.GeoLocation class
with autoUpdate set to false. This means that the browser will not watch for a change in
location. The update is fired manually by calling the updateLocation method on the geo
object. Additionally, on the geo object, listeners have been set up for the locationupdate
and locationerror events. The locationupdate event is fired when the location is
updated. The framework passes the object representing the location information at that
instance of time. The geo object contains the following fields:

 f latitude

 f longitude

 f timestamp

 f accuracy

 f altitude

 f altitudeAccuracy

 f heading

 f speed

Out of the preceding listed properties, latitude, longitude, timestamp, and accuracy
will be provided. However, other properties can be null based on the device on which we are
using the API.

In case any errors occur while trying to get the updated location information, the framework
fires the locationerror event where it indicates the following three types of errors:

 f The operation timed-out

 f User does not have permission

 f Location information is not available

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

Chapter 9

351

Finding out the location using native
device APIs

In some applications, manual updating of the location may not be desirable. For example, if
your application is expected to update the location periodically to show the path in which a
vehicle is moving. In this recipe, we will see how to configure the Ext.util.GeoLocation
class to have the location automatically updated and how to control the frequency with which
the location update should be attempted.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

How to do it...
Carry out the following steps for finding out the location using native device APIs:

1. Create and open a new file ch09_02.js and paste the following code into it:
Ext.require('Ext.device.Geolocation');
Ext.application({
 name : 'MyApp',

 launch: function() {
 Ext.device.Geolocation.getCurrentPosition({
 success: function(position) {
 alert('Latitude: ' + position.coords.latitude + '
 Longitude: ' + position.coords.longitude);
 },
 failure: function() {
 console.log('Could not get the location!');
 }
 });
 }
});

2. Include ch09_02.js in place of ch09_01.js in the index.html file.

3. Deploy and access it from the device of your choice. You will see a pop up with
the latitude and longitude information.

Increased Relevance Using Geolocation

352

How it works...
Unlike the Ext.util.Geolocation class, Ext.device.Geolocation uses native device
APIs to get the current location detail. What native device API is used is determined based
on the device from which the application is accessed. If the application were packaged with
Cordova, it would use Cordova APIs whereas if it was packaged using Sencha Cmd, which we
will discuss in Chapter 10, Device Integration, it would work with WebView to get the location
information. If the application is accessed from a simulator or a browser, the Ext.device.
Geolocation class uses the Ext.util.Geolocation class.

The position.coords object contains the same information as the geo class.

There's more…
We saw in the earlier recipe how setting autoUpdate to true instructs the framework to
monitor the location update and fire the locationupdate event. Let's see how we can
achieve a similar functionality using the Ext.device.Geolocation class.

Watch for the location update
Ext.device.Geolocation offers the watchPosition method, which can be called to get
regular location updates at the configured frequency. The following code snippet shows the
usage of this method:

Ext.device.Geolocation.watchPosition({
 callback: function(position) {
 alert('New Latitude: ' + position.coords.latitude + '
 Longitude: ' + position.coords.longitude);
 },
 failure: function() {
 Ext.Msg.alert('Error', 'Could not get the location!');
 }
});

The update frequency is controlled using the frequency configuration, which defaults
to 10 seconds. The following code snippet shows how you can specify the frequency:

Ext.device.Geolocation.watchPosition({
 frequency: 3000,
 callback: function(position) {..

Chapter 9

353

See also
 f The Setting up the Android-based development environment recipe

in Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Setting up the Blackberry-based development environment recipe
in Chapter 1, Gear Up for the Journey

Auto update of your location
In some applications, manual updating of location may not be desirable. For example, if your
application is expected to update the location periodically to show the path in which a vehicle
is moving. In this recipe, we will see how to configure the Ext.util.GeoLocation class
to have the location automatically updated and how to control the frequency with which the
location update should be attempted.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

How to do it...
Carry out the following steps:

1. Set the following properties on the Ext.util.GeoLocation class
while instantiating:
autoUpdate: true,
timeout: 5000,

2. Deploy and access it from the device of your choice.

Increased Relevance Using Geolocation

354

How it works...
Setting autoUpdate to true no longer requires the application code to call the
updateLocation method explicitly. The location is updated automatically and the
locationupdate or locationerror event is fired based on whether the update
operation was successful or a failure. True is the default value for autoUpdate.

The timeout property allows us to control how frequently the location update will be attempted.
It accepts the time in milliseconds. For example, in the preceding code snippet we set the value
to 5000 milliseconds (5 seconds). This is a useful property if you want to save your mobile's
battery as frequent updates will eat it up. The default value is set to 10 seconds.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the Blackberry-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Finding out your location recipe

Tracking direction and speed
The Geolocation object in Sencha Touch provides properties that we can use to figure out
the direction and speed at which we are moving. This could be useful in applications where
you may want to suggest to the user the nearest petrol pump based on his direction. In this
recipe, we will look at the use of related properties.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

Chapter 9

355

How to do it...
Carry out the following steps:

1. In the locationupdate event handler, add the following line of code:
alert('Heading:' + geo.getHeading() + ': Speed:' +
 geo.getSpeed());

2. Deploy and access it from the device of your choice.

How it works...
The preceding code uses the two important properties of the Geolocation class: heading
and speed. The heading property gives the direction of travel of the device. It is specified in
nonnegative degrees between 0 and 359. The angular degree is returned with respect to the
real North. If the device is stationary, the value of this property is undefined.

The speed property gives the current ground speed of the device and the value will be in
metres per second. If the device is stationary, the value of this property is 0.

These two properties are optional and may not be available on every device. If these
properties are not supported on a device, their value will be null. For example, in
Android, the values returned are null. On such devices, we can derive these values
using the longitude, latitude, and timestamp attributes.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Finding out your location recipe

Increased Relevance Using Geolocation

356

Hooking up Google Maps with your
application

Google provides the Map service and also the APIs to integrate it into our application. Sencha
Touch has wrapped it inside a component Ext.Map, which provides the complete map-related
functionality. It, internally, uses the Google Maps' JavaScript APIs to provide us with a working
map component. In this recipe, we will see how to make use of the Map class.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

How to do it...
Carry out the following steps to hook up Google maps with your application:

1. Create and open a new file ch09_03.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 Ext.Viewport.add({
 xtype: 'map'
 });

 }
});

2. Include ch09_03.js in place of ch09_02.js in the index.html file.

3. Add the following to the index.html file to include the Google Maps'
JavaScript APIs:
<script type="text/javascript" src="http://
 maps.google.com/maps/api/js?sensor=true"></script>

Chapter 9

357

4. Deploy and access it from the device of your choice. You will see a screen showing
Google Maps with its default longitude and latitude set to Palo Alto as shown in the
following screenshot:

How it works...
In the preceding code, we created a panel and added a map component to it using the
xtype: 'map' property. Usage of this xtype attribute leads to the instantiation of the
Ext.Map class, which wraps Google Maps inside it. It initializes the Google Maps class
with the following default map options:

 f Map center is set to the location of Palo Alto (latitude – 37.381592,
longitude – 122.135672)

 f Map type is set to ROADMAP

 f Zoom level is set to 12

There's more…
What if you want to set the center of the map to your current location? Let's see how
we can do this.

Increased Relevance Using Geolocation

358

Using the current location as the map center
To use the device's current location as the map center, you need to set
useCurrentLocation configuration on the map instance to true.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

Working with the Google Maps options
In the previous recipe, we looked at the default map options set by the Ext.Map class.
In your application, say you are building an application to show the forest, mountains,
and rivers around a particular place. In this case, you will have to set the map options
according to your application needs. This recipe will show us how to achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

How to do it...
Carry out the following steps for working with the Google Maps options:

1. Edit the ch09_03.js file and add the mapOptions property as shown in the
following code:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 items : [
 {

Chapter 9

359

 xtype : 'map',
 mapOptions: {
 center: new google.maps.LatLng(17.22, 78.28),
 mapTypeId: google.maps.MapTypeId.TERRAIN,
 zoom: 10
 }

 }
]
 });
 }
});

2. Deploy and access it from the device of your choice. You will see a screen showing
Google Maps with its default longitude and latitude set to 78.28 and 17.22,
respectively, as shown in the following screenshot:

Increased Relevance Using Geolocation

360

How it works...
In the preceding code, we set the mapOptions property on the Ext.Map class, which
accepts the mapOptions configuration that the Google Maps API can take. We specified
three properties: center, mapTypeId, and zoom. To the center property, we set the
latitude and longitude of a location that will be used to center the map. The longitude and
latitude specified here are of Hyderabad, India. The mapTypeId property is set to TERRAIN
so that in our application we can show the mountains, forest, and rivers around the center
location. Using zoom we set the map zoom level to 10.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Hooking up Google Maps with your application recipe

Mapping Geolocation on Google Maps
So far in this chapter, we have looked at the Ext.util.GeoLocation and Ext.Map
classes of Sencha Touch to see how to get the location and how to display a map. In this
recipe, we will put these two pieces together so that the location information read from the
Geolocation class can be used on the Map class in rendering the information on the map.
This can then be used, for example, based on the current location to highlight the nearest
restaurants on the map.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Make sure that you have the ch09 folder created inside the www folder.

Chapter 9

361

How to do it...
Carry out the following steps:

1. Create and open a new file ch09_04.js and paste the following code into it:
Ext.application({
 name : 'MyApp',

 launch: function() {

 var geo = Ext.create('Ext.util.GeoLocation', {
 autoUpdate: true,
 listeners: {
 locationupdate: function (geo) {
 var map = Ext.getCmp('google-map-id');
 map.setGeo(geo);
 },
 locationerror: function (geo,
 bTimeout,
 bPermissionDenied,
 bLocationUnavailable,
 message) {
 if(bTimeout){
 alert('Timeout occurred.');
 }
 if (bPermissionDenied){
 alert('Permission denied.');
 }
 if (bLocationUnavailable) {
 alert('Location unavailable.');
 }
 }
 }
 });

 Ext.Viewport.add({
 xtype: 'map',
 id: 'google-map-id',
 geo: geo,
 mapOptions: {
 mapTypeId: google.maps.MapTypeId.TERRAIN,
 zoom: 10
 }
 });

 }
});

Increased Relevance Using Geolocation

362

2. Include ch09_04.js in place of ch09_03.js in the index.html file.

3. Deploy and access it from the device of your choice. You will see a screen showing
the Google map with the location set as per the longitude and latitude values
returned by the Geolocation API as shown in the following screenshot:

Chapter 9

363

How it works...
In the preceding code, we created the Geolocation instance with autoUpdate set to true
and also a panel with a map. We have given an ID to the map component, google-map-id,
which we use in the locationupdate event listener on the GeoLocation object. This then
gets the map component and calls the setGeo method on it to update the map with the new
location information. Though the complete geo object is passed to the update method, it
only uses the longitude and latitude properties of it. This way, the location information is
fetched from GeoLocation and is passed on to the Map attribute to get them working together.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

 f The Finding out your location recipe

 f The Hooking up Google Maps with your application recipe

10
Device Integration

In this chapter, we will cover:

 f Capturing and managing photos using a camera
 f Pulling out those contacts
 f Working with orientation
 f Managing notifications
 f Reading a file
 f Handling the home button on Android, iOS, and BlackBerry
 f Handling the back button on Android and BlackBerry
 f Handling the menu button on Android and BlackBerry
 f Handling the search button on Android
 f Navigating using the BlackBerry trackpad

Introduction
Sencha Touch offers neat widgets and functionalities to build enterprise applications
compatible with different platforms. In spite of all that Sencha Touch offers, there is one
important aspect where support is still not very well encapsulated inside the framework
and we have to go out of the framework to support them in our application. And this aspect
is integration with various device features. For example, using a camera, pulling out the
photos from the filesystem and linking the application behavior with the home, back,
and search buttons on the device.

In this chapter, we will look at the recipes related to the integration of Sencha Touch with
different device features, either using the Sencha APIs or Cordova.

All the device APIs are packaged under Ext.device. You may refer to the API documentation
to see which APIs are available and learn more about them.

Device Integration

366

Capturing and managing photos using a
camera

This recipe is going to show how you can pull out the photos from your phone or capture
a live photo and use it in your application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 inside the www folder. We will be using this new folder to keep
the code.

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_01.js and paste the following code in it:
Ext.application({
 name : 'MyApp',

 //this is a must as it is not part of the standard package
 requires: ['Ext.device.Camera'],

 launch: function() {
 //template to show the photos
 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb">
 </div>',
 '</tpl>'
);

 var data = [];

 var store = Ext.create('Ext.data.Store', {
 fields: ['url'],
 data: data
 });
 var dv = Ext.create('Ext.DataView', {
 store: store,

Chapter 10

367

 scrollable: 'vertical',
 itemTpl: tpl,
 singleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display'
 });

 Ext.create('Ext.Panel', {
 id:'images-view',
 fullscreen: true,
 layout: 'fit',
 items: [dv, {
 xtype: 'toolbar',
 docked: 'bottom',
 items: [{
 text: 'Capture Photo',
 handler: function() {
 Ext.device.Camera.capture({
 success: function(image) {
 Ext.Msg.alert('Url', image);
 data.push({url: image});
 store.applyData(data);
 },
 failure: function(msg) {
 Ext.Msg.alert('Error', 'Failed to
 capture photo: ' + msg);
 },
 quality: 75,
 destination: 'file',
 source: 'camera'
 });
 }
 }, {
 text: 'Select Media',
 handler: function() {
 Ext.device.Camera.capture({
 success: function(image) {
 Ext.Msg.alert('Url', image);
 data.push({url: image});
 store.applyData(data);
 },

Device Integration

368

 failure: function(msg) {
 Ext.Msg.alert('Error', 'Failed to fetch
 photo: ' + msg);
 },
 quality: 75,
 destination: 'file',
 source: 'library'
 });
 }
 }]
 }]
 });

 }
});

2. Include ch10_01.js in the index.html file.

3. Deploy and access it from the device of your choice. When you tap on Capture Photo,
it shall open the camera and allow you to take a photo, whereas when you tap on the
Select Media button, it shall prompt you to select a photo from the library.

How it works...
In the preceding code, we created a data view and added it to a panel. We added a toolbar
to the panel with two buttons: Capture Photo and Select Media. When the user clicks on
the buttons, the handler calls the capture method of the camera device API offered by the
Sencha Touch framework. The capture method accepts a config where we have specified
two callbacks—success and failure—that are called to check whether the API carried
out the capture operation successfully or not. Other important configs are source and
destination. The source config tells you what the source for the photo is. The Capture
Photo handler passes camera as the source to indicate that the user wants to capture a live
photo using the camera, whereas the Select Media handler passes library as the source to
indicate that the user will select a photo from the phone's photo library. Another valid value is
album; it indicates that the user is going to select a photo from a photo album on their phone.

The destination config indicates the format in which you would like to get the image
transferred to your success callback. Set it to file to indicate that you want the file URL
to be passed to the success callback. Another valid value is data, if you want to receive
the Base64 encode image (as a data URL) in your success callback.

Chapter 10

369

The API offers three different implementations:

 f Sencha – If your application has been packaged using Sencha Cmd,
which we will learn about in the next chapter, this implementation will be
used. It achieves functionality by communicating with the WebView and
sending different camera-related commands to it.

 f Cordova – If your application has been packaged with Cordova, this implementation
will use the underlying Cordova APIs to provide camera integration. The application's
behavior is consistent with the one packaged for Sencha.

 f Simulator – If you have packaged your application to run in a simulator, this
implementation will return a fixed Sencha icon.

Currently, the implementation supports only photos. For videos, you will
have to directly interface with Cordova's Camera API where you need to
set the media type accordingly.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

Pulling out those contacts
Every phone has its contacts list, and we would have to interface with the native device APIs
to fetch the contact information. In this recipe, we will see how to integrate with the Cordova
API as Sencha does not provide the Cordova version of their Contact API, and you would not
be able to get the contacts working if you packaged your application using Cordova.

We will revisit Sencha's Contact API in the next chapter when we talk about packaging.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. We will be using this new folder to keep the code.

Device Integration

370

How to do it...
Follow the ensuing steps to integrate with the Cordova API:

1. Create and open a new file ch10_02.js and paste the following code in it:
Ext.application({
 name: 'MyApp',
 requires: 'Ext.device.Contacts',
 launch: function() {

 document.addEventListener("deviceready", this.onDeviceReady,
false);

 },
 onDeviceReady : function() {
 var options = new ContactFindOptions();
 options.filter="";
 options.multiple = true;

 var fields = ["displayName"];

 navigator.contacts.find(fields, function(contacts) {

 var data = [];
 for (var i=0; i<contacts.length; i++) {
 data.push({name: contacts[i].displayName});
 }

 Ext.Viewport.add({
 xtype: 'list',
 itemTpl: '{name}',
 store: {
 fields: ['name'],
 data: data
 }
 });

 }, function(msg) {
 alert('onError: ' + msg);
 }, options);
 }
});

Chapter 10

371

2. Include ch10_02.js in place of ch10_01.js in the index.html file.

3. Deploy and access it from the device of your choice. You will see all the contact
names as shown in the following screenshot:

How it works...
Cordova requires us to first watch for the deviceready event that will indicate that
the Cordova framework has loaded. In the deviceready event handler, first we initialized
the ContactFilterOption where we set a filter to "" (an empty string) to indicate that
no filtering needs to be applied on the contacts, and we set multiple to true to tell the
API that we want to get all the contacts. If this property is not set, the API returns the first
contact only. In the fields array, we listed only displayName. However, if you want you can
list out any number of contact fields that you want the API to return. After that, we called the
contacts.find API to get the contacts. For each contact, we pushed the name on the
data array that we used to show the list of contacts in a data view.

You may refer to the Contact object detail on the Cordova Contact API documentation
page to learn about the various fields that it can return.

Device Integration

372

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry based development environment recipe in
Chapter 1, Gear Up for the Journey

Working with orientation
If you have looked at car game applications on mobile phones and liked the idea of using
the phone as a way to steer your car, you will know that one of the uses of interfacing with the
device's orientation API, using which you can get to know about the current orientation and
also the device, is that it tells you about the new orientation as soon as it detects the change.

Sencha supports two implementations of orientation APIs, one using HTML 5 APIs as outlined
in http://dev.w3.org/geo/api/spec-source-orientation.html, the specification
of W3C, and the second where it works with the WebView.

In this recipe, we will see how to use the orientation APIs in our application. And since it
has not been packaged using Sencha Cmd, it is going to use the HTML 5 version of the
implementation.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps to use the orientation APIs in our application:

1. Create and open a new file ch10_03.js and paste the following code in it:
Ext.application({
 name: 'MyApp',
 requires: 'Ext.device.Orientation',

 launch: function() {

Chapter 10

373

 //defined a new class
 Ext.define('MyOrientation', {
 extend: 'Ext.Container',
 config: {
 items: [
 {
 xtype: 'titlebar',
 docked: 'top',
 ui: 'light',
 items: [
 {
 text: 'Reset',
 align: 'right'
 }
]
 },
 {
 id: 'information',
 styleHtmlContent: true,
 html: 'no information received'
 },
 {
 id: 'cube',
 html: '<div></div><div></div><div><
 /div><div></div><div></div><div></div>',
 centered: true
 }
]
 },
 initialize: function() {
 this.on({
 painted: 'onPainted',
 erased : 'onErased'
 });
 this.on({
 delegate: 'button',
 tap: 'onReset'
 });
 if (!Ext.feature.has.Css3dTransforms) {
 Ext.getCmp('cube').hide();
 }
 },
 onReset: function() {

Device Integration

374

 this.originalOrientation = null;
 },
 onPainted: function() {
 Ext.device.Orientation.on('orientationchange',
'onDeviceOrientation', this);
 },
 onErased: function() {
 Ext.device.Orientation.un('orientationchange',
'onDeviceOrientation', this);
 this.originalOrientation = null;
 },
 onDeviceOrientation: function(e) {
 var alpha = Math.round(e.alpha),
 beta = Math.round(e.beta),
 gamma = Math.round(e.gamma),
 origin;

 if (!this.originalOrientation) {
 this.originalOrientation = {
 alpha: alpha,
 beta: beta,
 gamma: gamma
 };
 return;
 }
 else {
 origin = this.originalOrientation;
 alpha -= origin.alpha;
 beta -= origin.beta;
 gamma -= origin.beta;
 }
 Ext.getCmp('information').setHtml([
 'This example is best viewed when your phone is
on a flat surface.

',
 'alpha: ' + alpha,
 '
beta: ' + beta,
 '
gamma: ' + gamma
].join(''));
 if (!this.originalOrientation) {
 this.originalOrientation = {

Chapter 10

375

 alpha: alpha,
 beta: beta,
 gamma: gamma
 };
 return;
 }
 else {
 origin = this.originalOrientation;
 alpha -= origin.alpha;
 beta -= origin.beta;
 gamma -= origin.beta;
 }
 if (Ext.feature.has.Css3dTransforms) {
 Ext.getCmp('cube').element.dom.style.
webkitTransform = 'rotateX('+beta+'deg) rotateY('+alpha+'deg)';
 }
 }
 });
 Ext.Viewport.add(Ext.create('MyOrientation', {}));

 }
});

2. Add the following CSS to the ch10.css file:
#cube {
 -webkit-transform-style: preserve-3d;
 width: 200px;
 height: 200px;
 overflow: visible;
 opacity: .3
}

#cube .x-innerhtml {
 position: absolute;
 width: 100%;
 height: 100%;
 overflow: visible
}

Device Integration

376

#cube .x-innerhtml>div {
 width: 100%;
 height: 100%;
 background-color: #000;
 position: absolute;
 border: 1px solid #FFF
}
#cube .x-innerhtml>div:first-child {
 -webkit-transform: rotateX(90deg) translateZ(100px);
 background-color: red
}

#cube .x-innerhtml>div:nth-child(2) {
 -webkit-transform: translateZ(100px);
 background-color: green
}

#cube .x-innerhtml>div:nth-child(3) {
 -webkit-transform: rotateY(90deg) translateZ(100px);
 background-color: blue
}

#cube .x-innerhtml>div:nth-child(4) {
 -webkit-transform: rotateY(180deg) translateZ(100px);
 background-color: orange
}

#cube .x-innerhtml>div:nth-child(5) {
 -webkit-transform: rotateY(-90deg) translateZ(100px);
 background-color: cyan
}

#cube .x-innerhtml>div:nth-child(6) {
 -webkit-transform: rotateX(-90deg) rotate(180deg)
 translateZ(100px)
}

3. Include ch10_03.js in place of ch10_02.js and include ch10.css in
the index.html file.

Chapter 10

377

4. Deploy and access it from the device of your choice. You will see the
orientation data and cube rotating based on the mobile's orientation,
as shown in the following screenshot:

How it works...
In the preceding code, we created a container with two items: we created one to show the
orientation information and the other to show a cube. The cube is created by styling six divs.

The orientation-related magic starts when we register the handler for the
orientationchange event as follows:

Ext.device.Orientation.on('orientationchange', 'onDeviceOrientation',
this);

Device Integration

378

The handler receives the event object; it has three properties, as follows, that give information
about the current orientation of the device:

 f alpha – The angle by which the device frame was rotated around the z axis

 f beta – The angle by which the device frame was rotated around the x axis

 f gamma – The angle by which the device frame was rotated around the y axis

Based on the alpha, beta, and gamma values, we applied CSS 3D transformation to the
cube on the following line:

Ext.getCmp('cube').element.dom.style.webkitTransform =
'rotateX('+beta+'deg) rotateY('+alpha+'deg)';

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry based development environment recipe in
Chapter 1, Gear Up for the Journey

Managing notifications
In various examples, we used Ext.Msg.alert() to show a notification message to the user.
The thing to note is that it is a Sencha Touch component that shows a message in the form
of a pop-up dialog. It looks similar on every platform unless you apply platform-specific styles.
This recipe will explain how to show notifications with a complete native look and feel and
behavior, and also how we can vibrate the phone to notify the user of some application event.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. We will be using this new folder to keep the code.

Chapter 10

379

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_04.js and paste the following code in it:
Ext.application({
 name : 'MyApp',
 requires : 'Ext.device.Notification',

 launch : function() {

 Ext.device.Notification.show({
 title : 'Verification',
 message : 'Are you a human?',
 buttons : [Ext.MessageBox.YES,
 Ext.MessageBox.CANCEL],
 callback : function(button) {
 if (button === "yes") {
 alert('Verified');
 } else {
 alert('Nope');
 }
 }
 });

 Ext.device.Notification.vibrate();
 }
});

2. Include ch10_04.js in place of ch10_03.js in the index.html file.

Device Integration

380

3. Deploy and access it from the device of your choice. You will see a native notification
message as shown in the following screenshot:

How it works...
In the preceding code, we have used Sencha's Notification API to show the native
notification message. The API provides three different implementations:

 f Sencha – This uses the native API to show the notification

 f Cordova – This uses Cordova APIs to show the notification

 f Simulator – This uses the Ext.MessageBox class to show the notification

The buttons config accepts an array or one or more button objects/configs where we
added the Yes and Cancel buttons. When a button is tapped, the callback function
receives the name of the button that was tapped by the user.

Chapter 10

381

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry based development environment recipe in
Chapter 1, Gear Up for the Journey

Reading a file
On a phone, there are various types of files and folders that we create in storage. In the
Capturing and managing photos using the camera recipe, we saw how to fetch a photo from a
library/album or capture a live photo. The limitation with this API is that it works well with photos
but not with other files. Also, it allows us to select a single photo at a time. If you are building
an e-mail kind of application where you want to be able to attach one or more different types of
documents, the File API is something that can help you implement this functionality. It is based
on the HTML 5 File API specification outline described at the following URLs:

 f http://www.w3.org/TR/FileAPI/

 f http://www.w3.org/TR/file-upload/

In this recipe, we will see how we can read one or more photos/images from the system
using the HTML 5 APIs.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. You will be using this new folder to keep the code.

Device Integration

382

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_05.js and paste the following code in it:
Ext.application({
 name: 'MyApp',
 requires: 'Ext.device.Contacts',

 launch: function() {

 var me = this;

 Ext.Viewport.add(Ext.create('Ext.Container', {
 html: '<input type="file" id="files" name="files[]"
multiple />' +
 '<output id="list"></output>',
 listeners: {
 painted: function() {
 Ext.get('files').dom.
addEventListener('change', me.handleFileSelect, false);
 }
 }
 }));

 },
handleFileSelect: function(evt) {
 var files = evt.target.files; // FileList object

 // Loop through the FileList and render image files as
thumbnails.
 for (var i = 0, f; f = files[i]; i++) {

 // Only process image files.
 if (!f.type.match('image.*')) {
 continue;
 }

 var reader = new FileReader();

 // capture the file information.
 reader.onload = (function(theFile) {
 return function(e) {
 // Render thumbnail
 var span = document.
createElement('span');

Chapter 10

383

 span.innerHTML = ['<img class="thumb"
src="', e.target.result,
 '" title="',
escape(theFile.name), '"/>'].join('');
 Ext.get('list').dom.
insertBefore(span);
 };
 })(f);

 // Read in the image file as a data URL.
 reader.readAsDataURL(f);
 }
 }

});

2. Include ch10_05.js in place of ch10_04.js in the index.html file.

3. Deploy and access it from a device of your choice.

4. Tap on the Choose Files button to select one or more photos. Once the
photos/images are uploaded, you will see the images appended to the
container as shown in the following screenshot:

Device Integration

384

How it works...
In the preceding code, we created a container with an input and an output element.
The type-"file" input on the input element discloses that you are using the file upload
functionality of the input element. So, when this element is rendered on the screen, it
appears as a button with the label Choose Files. Clicking on this button allows the user to
upload one or more files. As soon as the user confirms the upload, the change event is fired
on the input element. We registered the handler for this inside the painted event handler as
soon as the container was shown to the user.

The change event handler iterates through all the files and picks up the image files. We then
registered the onload event on the FileReader object, which is called when the file data is
uploaded. The handler adds the file's thumbnail to the container.

After registering the event handler, we called readAsDataURL to read the file's content.

The kind of storage that is accessible to a File API varies from one platform
to another. For example, on an iPhone and iPad it only allows us to select
photos and videos, whereas on Android it allows us to pick up files from
Dropbox and files on the device storage as well. So you may have to review
the kind of storage access that you require and whether the File API
implementation on that platform allows the implementation or not.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey
 f The Setting up the iOS-based development environment recipe in Chapter 1,

Gear Up for the Journey
 f The Setting up the BlackBerry based development environment recipe in

Chapter 1, Gear Up for the Journey

Handling the home button on Android, iOS,
and BlackBerry

Imagine if you have a scheduled task in your application that periodically reads the new
messages from a remote data source. Now, the battery is a very critical resource on a mobile
device and must be managed well by any application. So when the home button is clicked,
which puts the application in the background, you may want to shut down this activity to
save resources; conversely, when the application becomes active, you may want to resume it.
In this recipe, we will see how we can track when the application was sent to the background
(that is, when the home button was pressed) and when it becomes active.

Chapter 10

385

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. We will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_06.js and paste the following code in it:
Ext.application({
 name : 'MyApp',

 launch : function() {
 //Home button
 document.addEventListener("deviceready", function() {
 var counter = 0;
 document.addEventListener("pause", function() {
 counter++;
 }, false);

 document.addEventListener("resume", function() {
 alert('Value is: ' + counter);
 }, false);

 }, false);

 }
});

2. Include ch10_06.js in place of ch10_05.js in the index.html file.

3. Deploy and access it from a device of your choice.

4. Tap the home button. This will send the application to the background.

5. Bring the application to the foreground. This is done differently on different platforms.
For example, on an iPhone, you need to tap the home button twice to view the
running tasks and tap on our task. You will see an alert showing Value is: 1.

6. Repeat steps 4 and 5 and you will see the counter incrementing.

Device Integration

386

How it works...
In the preceding code, we have used Cordova to detect when the application is sent to
the background and foreground. It gives us the following two events:

 f pause – This is fired when the home button is pressed to send the application to
the background

 f resume – This is fired when the application becomes active

Both the events are available on the document. So, we registered the handlers for the
pause and resume events inside the deviceready event handler. The pause event
handler increments the value of counter. This will keep track of how many times the
application was sent to the background. This is where you will put your code to suppress/
stop/unregister any functionality that needs to be active only if the application is active.
The resume handler is just showing the value of counter.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the iOS-based development environment recipe in Chapter 1,
Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

Handling the back button on Android and
BlackBerry

Android and BlackBerry devices have a back button that helps us to get back to the
previous state of the application. When we are building a Sencha Touch application where
we have multiple screens and one is shown after the other, it becomes necessary to link our
application state with the device's back button for the sake of usability. In this recipe, we will
see how to detect if the user has pressed the back button.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. You will be using this new folder to keep the code.

Chapter 10

387

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_07.js and paste the following code in it:
Ext.application({
 name : 'MyApp',
 launch : function() {
 //Back button
 document.addEventListener("deviceready", function() {
 var i = 0;
 document.addEventListener("backbutton", function() {
 alert('Back button pressed!');
 }, false);
 }, false);

 }
});

2. Include ch10_07.js in place of ch10_06.js in the index.html file.

3. Deploy and access it from a device of your choice.

4. Press the back button.

How it works...
In the preceding code, we have used the backbutton event offered by Cordova.
This is a platform-neutral way to detect if the back button was pressed on the device.
It is the handler where your application-specific logic should go.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in Chapter 1,
Gear Up for the Journey

Device Integration

388

Handling the menu button on Android and
Blackberry

On Android and BlackBerry devices, we find a menu button; clicking on it brings up the
application menu. Say you have a menu created in your Sencha Touch application using action
sheet and would like to show the action sheet when the user clicks on the menu button; this
recipe will show you how to detect whether the menu button was pressed and how to handle it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. You will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_08.js and paste the following code in it:
Ext.application({
 name : 'MyApp',

 launch : function() {

 //Menu button
 document.addEventListener("deviceready", function() {
 var i = 0;
 document.addEventListener("menubutton", function() {
 alert('Menu button pressed!');
 }, false);
 }, false);

 }
});

2. Include ch10_08.js in place of ch10_07.js in the index.html file.

3. Deploy and access it from a device of your choice.

4. Press the menu button. You will see the alert message.

Chapter 10

389

How it works...
The preceding code uses the menubutton event fired by Cordova. The event is available
on the document.

See also
 f The Setting up the Android-based development environment recipe in

Chapter 1, Gear Up for the Journey

 f The Setting up the BlackBerry-based development environment recipe in
Chapter 1, Gear Up for the Journey

Handling the search button on Android
While the back, home, and menu buttons are listed as the mandatory buttons that every Android
device must support, there is an additional optional button called search that may be present on
some devices. For example, HTC Android models have the search button whereas some devices,
such as Samsung Galaxy models, do not have it. In case you have a need to support the search
button, this recipe will show you how to detect whether the search button was pressed.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. You will be using this new folder to keep the code.

How to do it...
Follow the ensuing steps:

1. Create and open a new file ch10_09.js and paste the following code in it:
Ext.application({
 name : 'MyApp',

 launch : function() {

 //Search button
 document.addEventListener("deviceready", function() {
 var i = 0;
 document.addEventListener("searchbutton", function() {

Device Integration

390

 alert('Search button pressed!');
 }, false);
 }, false);

 }
});

2. Include ch10_09.js in place of ch10_08.js in the index.html file.

3. Deploy and access it from a device of your choice.

4. Press the search button. You will see the alert message.

How it works...
In the preceding code, we have used the Cordova API; it fires the searchbutton event
when the search button is pressed.

See also
 f The Setting up the Android-based development environment recipe in Chapter 1,

Gear Up for the Journey

Navigating using the BlackBerry trackpad
Sencha Touch supports the WebOS 6+ version, and many of you may have a need to support
BlackBerry devices in your application. Some of these devices are not touch devices, and it
expects the applications to respond to their trackpad events. A trackpad is used to scroll as
well as click/tap. But, Sencha Touch does not provide in-built support for a trackpad. In this
recipe, we will see how we can implement scrolling on the containers and tap on the list item
using a trackpad.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear Up for the Journey.

Create a new folder ch10 in the www folder. You will be using this new folder to keep the code.

Chapter 10

391

How to do it...
Follow the ensuing steps to implement scrolling on the containers and tapping on the
list item using a trackpad:

1. Create and open a new file ch10_10.js and paste the following code in it:
Ext.application({
 name : 'MyApp',

 launch : function() {
 //this is where rest of the code will go
 }
});

2. To handle the autoscrolling for a container, add the following code inside
the launch method:
 Ext.define('Wtc.tux.ContainerOverride', {
 override : 'Ext.Container',

 initConfig : function() {
 Ext.apply(this.initialConfig, {});
 this.callParent(arguments);

 //If it is BlackBerry, register the handler for mousemove
to handle scrolling
 if (Ext.os.is.BlackBerry) {
 var task = Ext.create('Ext.util.DelayedTask', function()
{
 TrackPadUtils.handleScroller(this.event, this);
 });

 this.element.on('mousemove', function(event) {
 this.event = event;
 task.delay(30);
 task.setScope(this);
 }, this);
 }
 }

 });

Device Integration

392

3. The preceding code calls the handlerScroller method on TrackPadUtils.
Add the following code to the launch method:
Ext.define('TrackPadUtils', {
 statics : {
 handleScroller: function(evt, view, el) {
 var element = evt;
 var margin = null;
 var scrollerSize = null;
 var containerSize = null;
 if(view.getScrollable()) {
 view.scroller = view.getScrollable().getScroller();
 margin = view.element.getHeight()+25;
 scrollerSize = view.scroller.getSize();
 containerSize = view.scroller.getContainerSize();
 if(!view.initialScroll) {
 view.initialScroll = 0;
 }

 if(evt.pageY >= margin && ((scrollerSize.y-
containerSize.y)>view.initialScroll)) {
 view.initialScroll = view.initialScroll+8;
 view.scroller.scrollTo(containerSize.x,
 view.initialScroll,true);
 }else if (evt.pageY < 70 && view.initialScroll > 0)
{
 view.initialScroll = view.initialScroll - 8;
 view.scroller.scrollTo(containerSize.x,
view.initialScroll,true);
 }
 }
 }
 }
});

4. To support the list of item tap and disclosure features using a trackpad, add the
following code:

Ext.define('Wtc.tuc.bb.List', {
 xtype : 'bblist',
 extend : 'Ext.dataview.List',

 initialize : function() {

Chapter 10

393

 this.callParent();
 if(Ext.os.is.BlackBerry) {
 //list item tap handling
 this.element.on({
 mouseup : this.handleListTap,
 delegate: '.' + Ext.baseCSSPrefix + 'list-item-body',
 scope : this
 });

 //item disclosure icon tap handling
 this.element.on({
 mouseup : this.handleItemDisclosure,
 delegate: '.' + this.getBaseCls() + '-disclosure',
 scope : this
 });
 }
 },
 handleListTap: function(event,target,e) {
 this.onItemTap(this,target,index,e);
 }
 });

How it works...
The BlackBerry trackpad fires mouse events, out of which we have handled the following
two events:

 f mousemove – This is handled to implement scrolling

 f mouseup – This is handled to implement item tap and list disclosure

In the preceding code, we first defined an override class Wtc.tux.ContainerOverride
to register the mousemove event handler for the BlackBerry device. You may want to check
specifically for the model number that supports the trackpad, which you can do by looking into
the UserAgent string. A typical UserAgent string for BlackBerry applications is as follows:

Mozilla/5.0 (BlackBerry; U; BlackBerry AAAA; en-US)
AppleWebKit/534.11+ (KHTML, like Gecko) Version/X.X.X.X Mobile
Safari/534.11+

The letters AAAA represent the BlackBerry model number from which the request
was initiated, for example, 9800. The letter X.X.X.X represents the version of the
OS running on the device, for example, 6.0.0.141.

Device Integration

394

The override class relies on TrackPadUtils.handleScroller to handle the mousemove
event and implement the required scrolling on a container. The TrackPadUtils class
implements handleScroller as a static method. The method detects the direction
in which the user is trying to scroll by working with the following variables:

 f The container's height

 f The height of the scroller function associated with the container

 f The (x,y) coordinate where the mousemove event had occurred

 f The vertical margin that you want to consider before deciding to scroll up/down—we
have used 25 for bottom scrolling and 70 for upward scrolling

Based on the determined scrolling direction, we scrolled by 8 pixels. Note that this method
only scrolls vertically. However, it will be extended to support horizontal scrolling.

To try out this code, you can now create a container and add any number of items to it with
scrolling enabled.

We then defined a new class Wtc.tux.bb.List where we extended Sencha Touch's list
component to add support for item tap and item disclosure using a trackpad. We registered
the mouseup event handler on the list item, which calls handleListTap. The handler, in
turn, calls the existing method onItemTap that handles the tap behavior on the list. For the
disclosure, we registered the existing list method handleItemDisclosure as a mouseup
event handler on the disclosure icon.

See also
 f The Setting up the BlackBerry-based development environment recipe in

Chapter 1, Gear Up for the Journey

Index
Symbols
3D pie chart

about 303
creating 303, 304

<fieldset> element 66

A
ActionSheet component

as cross-cut menu 214, 215
buttons sheet, creating 211-213
enter property 214
exit property 214
hideAnimation property 214
showAnimation property 214

aggressive timeout
using 320

AJAX
data loading through, Ajax proxy used 186,

188
Ajax proxy

used, for loading data through AJAX 186-188
album field 124
allowMultiple property 242
alpha value 378
Android

home button, handling 385
Android-based development environment

setting up 10-16
Android Developer Tools (ADT) Bundled

Eclipse 8

Android SDK ADT Bundle
URL, for downloading 10
URL, for installing 10

animation
controls, hiding 268
direction 264
duration 264
function, calling 265
looping 268
postponing 264
reversing 264
volume, controlling by user 268, 269

Apache Ant
URL, for downloading 10
URL, for installing 10

Apache Ant 1.8.4 8
Apache Cordova

about 8
extracting 11
URL, for downloading 11

Apache Cordova 2.4.0 8
application

configuring itself, profile used 30-32
Google Map, connecting with 356, 357
offline mode, detecting 318-320

Application class 31
area chart

about 275
creating 276-278
legend config, adding 278
legend text, changing 279

audio component
used, for playing sound 265-268

396

B
back button

on Android, handling 386, 387
on BlackBerry, handling 386, 387

badge 208
bar chart

about 280-282
creating 281, 282
rounded corners, using 283
spacing between bars, changing 283
width, limiting 283

behavior
adding to existing component, plug-ins used

257-259
beta value 378
BlackBerry

home button, handling 385, 386
BlackBerry-based development environment

setting up, steps for 22-24
BlackBerry simulator

URL, for downloading 22
URL, for installing 22

BlackBerry trackpad
used, for navigating 390-394

BlackBerry WebWorks SDK
URL, for downloading 22

browser-based development environment
setting up, steps for 25, 26

button component
badge, using 208
custom HTML, using as button content 210
icon, using 208
pictos icon, using 209
using 207
working with 206

C
caching

offline application 343-345
camera

used, for capturing photos 366-369
used, for managing photos 366-369

candlestick
about 313-315
bar width, changing 316

CardLayout
used, for building wizards 86-90

cards
animating 91, 92

Carousel
about 216
direction, changing 220
implementing 216-219
indicator, turning off 220
working 220

CartesianChart object 312
change event handler 384
checkbox group 60-62
Choose Files button 383
column chart

creating 284-286
component

behavior, overriding 255, 256
existing component capability, extending 250,

254
new component, creating 247-249

component horizontal alignment 98, 101
component vertical alignment 98, 101
Connection class 321
Connection object 320
contacts

pulling out 369-371
contacts.find API 371
container

about 71
fitting into, FitLayout used 94, 95
items, adding at runtime 80-83
items, adding at specific position 83
keeping lightweight 74, 75
layout used 76

cordova-android command 11
Cordova APIs 17
cordova-blackberry command 22
cordova-cli command 11, 19, 22
cordova-ios command 19
cordova-js command 19, 22
cross-domain URL

using, in application 195-199

397

D
data

filtering 193, 194
loading through AJAX, Ajax proxy used 186,

188
persisting, LocalStorage proxy used 182
sorting 189-191
storing offline, in localstorage 322, 327
storing offline, Sencha.io used 328-332

data grouping 192, 193
data list

managing, List component used 221-223
navigating, indexBar used 226-228

data model
used, for loading form 145, 149

DataView
about 112, 213, 249
used, for designing custom view 124-128

DatePicker
used, for working with date picker form field

48
date picker form field

default date, setting to current date 50
default date, setting to particular date 50
picker date range, setting 51
slot order, changing 50
working with, DatePicker used 48

default active item
changing 91

defaultType config property 247
development environment

Android-based development environment, set-
ting up 10-17

BlackBerry-based development environment,
setting up 22-24

browser-based development environment, set-
ting up 25, 26

iOS-based development environment, setting
up 18-20

device
detecting 26-28

device location
searching 348-350

deviceready event handler 371
direction

tracking 354

direction config 264
displayField 54
docked property 93
docs folder 9
donut effect 304 294, 300
down method 85
drawing surface

creating 273, 275
dropStyle 315
Dummy button 82

E
elements, Sencha Touch application

animating 262, 263
e-mail form field

custom validation, applying 47, 48
enableControls 272
enter property 214, 237
errors.isValid() method 167
exclusion 168
exit property 214, 237
Ext.Anim class 263
Ext.anims class 263
Ext.browser class 29
Ext.Carousel class 220
Ext.Container class 71-74, 76
Ext.create method 143
Ext.data.Model class 43
Ext.data.validations class 168, 171
Ext.dataview.DataView class 127
Ext.define method 143, 249
Ext.device.Geolocation 352
Ext.dom.Element 262
Ext.field.DatePicker class instance 49
Ext.field.FieldSet class 66
Ext.field.Search class 45
Ext.field.Spinner class 57
Ext.field.TextArea class instance 63
Ext.getCmp method 85
Ext.getCmp() method 52
Ext.os class 28
Ext.Panel class 74, 76, 90
Ext.Template 117
Ext.util.GeoLocation class 348, 353, 360
Ext.util.Map class 360

398

F
failure() callback function 41
features

finding 28, 29
field

grouping, FieldSet used 65, 66
hiding/showing 51, 52
hiding/showing, at runtime 52

field property 69
FieldSet

about 65, 66
instructions, adding 66
used, for grouping fields 65, 66

file
reading 381-384

FileReader object 384
filtered data

displaying 128-132
FitLayout

used, for fitting into container 94, 95
flight mode 317
form

creating, FormPanel used 37
data saving, associated models used 150
loading, data model used 145, 149
validating 67, 69

format 168
form data

saving, associated model used 150
FormPanel

checkbox 60-62
checkbox group 60-62
data, loading in form fields 42, 44
e-mail form field 46, 48
form data, reading 42
hide/show field 51, 52
post-submission handling 41
search field 44, 45
select field 53, 54
standardSubmit 41
submitOnAction, setting to false 41
toggle field 59
used, for creating form 37

FormPanel container 71
form.reset() 40
form.submit() 40

G
gamma value 378
gauge chart

about 292
creating 292, 293
donut effect 294
needle, displaying 293

Geolocation
mapping, on Google Map 360-363

GeoLocation object 354
geo object

about 363
fields 350

getCheckdateMessage 171
getCmp() method 52
getCurrentProfile() method 32
getType 321
getValues() method 42
Google Map

connecting, with application 356, 357
Geolocation, mapping 360-363
options 358-360

Google Map Javascript APIs
URL 348

grouped bars
displaying 286-288
spacing, changing 288

grouped columns
displaying 286-288

H
handler() function 69
handlerScroller method 392
hasMany association 174
HBoxLayout

used, for arranging items horizontally 95-97
heading property 355
hideAnimation property 214, 237
hide() method 52
home button

on Android, handling 384-386
on BlackBerry, handling 384-386
on iOS, handling 384-386

399

HTML
custom HTML, using as button content 210

HTML templating
template used 112-116

I
icon 208
iconAlign 208
iconCls 208
images

storing offline 333-342
inclusion 168
indexBar

used, for navigating data list 226, 228
initialize method 250
in-memory data

accessing, memory proxy used 183-185
insert method 83
iOS

home button, handling 385, 386
iOS-based development environment

setting up, steps for 17-21
isActive method 31
item detail

displaying 289, 290
highlighting 289, 290
panel, customizing 291

items
adding, at specific position 83
adding to container, at runtime 80
docking 78, 79, 92, 93
horizontal arrangement, HBoxLayout used

95-97
in list, grouping 224-226
removing 84, 85
titles, displaying as back button text 108
vertical arrangement, VBoxLayout used 98,

99

J
JavaScript Object Notation (JSON)

URL 36
JSON data

converting in model, JsonReader
used 155-158

JsonReader
used, for converting incoming JSON data in

model 155
used, for converting JSON data in model 158

L
labelField 304
labelField config 304
layout

about 73
auto 73
card 73
fit 73
hbox 73
mixing 102, 104
vbox 73

layout property 79
line chart

area, filling 297
creating 294-297
cross-zoom, enabling 298
curves, smoothing 297, 298

List component
about 221
entries, sorting 223
used, for managing data list 221-223

Load Data button 331
localstorage

data, storing offline 322, 327
proxy, used for persisting data 182

location
finding, native device API used 351, 352
searching 348-350
updates 352
updating automatically 353, 354

locationerror event 350
locationupdate event 350, 352

M
Many-to-one association 175
mapOptions property 360
mapTypeId property 360
memory proxy

used, for accessing in-memory data 183-185

400

menu button
on Android, handling 388, 389
on BlackBerry, handling 388, 389

methods
adding, to model 144
hiding 85
showing 85

model
about 140
creating 141-143
extending 144
incoming XML data converting, XmlReader

used 161, 163
methods, adding 144
relating, association used 172-175
validations 165-167

mousemove 393
mouseup 393

N
native device API

used, for finding location 351, 352
navigation bar

customizing 108
navigation function 90
NavigationView class

used, for easing view navigation 105-107
navigator.connection.type 320
navigator object 320
navigator.onLine 320
nested data

record, fetching from 159, 160
nested data list

working with, NestedList used 228-231
NestedList component

back button, displaying 231
disclosure, using 233, 234
leaf node detail, displaying 232
other property, using 231
other text, using 232
used, for working with nested data

list 228-231
new component

creating 249

notifications
managing 378, 380

number
spininng, spinner form field used 56, 57

O
offline application

aggressive timeout, using 320
caching 343-345
images, storing offline 333-342
offline mode, detecting 318, 320

offline mode
about 317
detecting 318, 320

offlineStore 327
OHLC chart 313-316
One-to-one association 176
onlinechange event 321
onlineStore 327
orientation 372, 375, 377, 378
orientation change

responding to 32
orientationchange event 377

P
panel

about 80
working with 76, 78

panel[direction]() method 90
panel object 290
PhotoAlbum component 249
photos

capturing, camera used 366-369
managing, camera used 366-369

Picker component
align property 237
animation, changing 237
buttons, hiding 238
button text, overriding 238
multiple shots, displaying 239
position, changing 237
slot text, aligning 237
title, using 237
toolbar, customizing 238
using 235, 236
working 236

401

pictos icon 209
pie chart

about 298
creating 299, 300
pie, highlighting 302, 303
rotating 301

placeholder 46
plug-in

about 257, 259
used, for adding behavior to existing compo-

nent 257-259
pop method 108
position.coords object 352
profile

used, for application configuring itself 30, 31
Provisioning Profile

creating 21
proxy 140
push method 105

R
radar chart

about 305
creating 305, 307
different marker, using 308, 309

reader 140
reason property 69
record

adding to store, at runtime 154, 155
fetching, from nested data 159, 160

response metadata 160

S
scatter chart

about 309, 312
creating 310, 312

search button
on Android, handling 389, 390

search form field
creating 45
placeholder, using 46

SegmentedButton component
about 240
buttons, aligning in middle 242

multiple pressed buttons 242
toggle event 241
used, for switching between multiple views

240, 241
working 241

select field
custom display value, using 54
working with 53, 54

selectionchange event 213, 250
selectionchange handler 212
selectionchange listener 138
Select Media button 368
Sencha Cmd tool 321
Sencha Complete

URL 10
Sencha.io

URL 343
used, for storing data offline 328-332

Sencha.io SDK
URL, for downloading 329

Senchas Device API
using 321

Sencha Touch
about 7, 10, 365
ActionSheet component 211
button component 206
Carousel 216
component behavior, overriding 255, 256
existing component capability, extending 250,

254
form, validating 67, 69
Geolocation, working with 348
List component 221
mobile applications, building 317, 318
new component, creating 247-249
Picker component 235
SegmentedButton component 240
Tab panel 242
toolbar component 245

Sencha Touch 2.2.1 library 8
Sencha Touch application

about 262
area chart 275
area chart, creating 276-278
bar chart, creating 280, 282

402

column chart, creating 284- 286
elements, animating 262, 263
gauge chart, creating 292, 293
grouped bars, displaying 286, 288
grouped columns, displaying 286, 288
item detail, displaying 289, 290
item detail, highlighting 289, 290
line chart, creating 294-297
radar chart, creating 305-307
scatter chart 309-312

Sencha Touch library
extracting 8

session specific data
persisting, SessionStorage proxy

used 177-181
SessionStorage. id 180
SessionStorage proxy

used, for persisting session specific
data 177-181

setGeo method 363
setRecord() method 42
setValues() method 42
showAnimation property 214, 237
show() method 52
Slider form field

used, for changing value 55, 56
sort information

sending, to server 191
sent to server, customizing 192

sorting
information, sending to server 191

sort method 190
sound

playing, audio component used 265-268
SpaceFillingChart object 293
speed

tracking 354
speed property 355
spinner form field

used, for spinning number 56, 57
values, cycling 58

standardSubmit 41
store

about 141
working with 150-154

submit() method 40
Sun JDK version 1.5 8

T
Tab panel

about 242
tab bar, positioning at bottom 245
working with 243, 244

Template
about 112
advanced templating, XTemplate

used 118, 120
compiling 117, 120
used, for HTML templating 112-116

text area
about 62, 63
input characters, limiting 64

text fields
about 62, 63
input characters, limiting 64

timeout property 354
toggle field

using 59
toolbar component

about 245
defaultType config property 247
non-button components, adding 247
using 245, 246
xtype 247

touch.manifest file 345
type property 143, 293
typical offline application 318

U
update method 363
useClearIcon 40
user action

responding to 133-138
userAgent property 28

V
validate method 167
validations

custom validation, applying in e-mail
form field 47, 48

custom validations, defining 169, 171
default message, changing 168

403

email 165
exclusion 165, 168
format 165, 168
inclusion 165, 168
in models 165, 166
length 165
presence 165

value
changing, Slider form field used 55, 56
formatting 117-121

VBoxLayout
used, for arranging items vertically 98, 100

video component
about 270-272
using 272

videos
working with 270-272

view
multiple views switching between,

SegmentedButton used 240, 241
view navigation

easing, with NavigationView class 105-107
Viewport class 32
view rendering

XTemplate used 121-124
VMware player

URL, for downloading 23
URL, for installing 23

W
W3 Consortium

URL 347
W3 Search field

URL 45
watchPosition method 352
WebKit CSS

URL 263
Web SQL database 200-203
wizards

building, CardLayout used 86-90
writer 140

X
Xcode

URL, for downloading 18
URL, for installing 18

XML data
incoming incoming XML data, converting

into model 164
incoming XML data, converting into

model 161
XmlReader

used, for converting incoming XML data
in model 161-163

XTemplate
about 112
used, for conditional view rendering 121-124
using, for advanced templating 118-120

xtype approach 36
xtype property 207, 216

Y
yField property 279

Thank you for buying

Sencha Touch Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Sencha Touch Cookbook
ISBN: 978-1-84951-544-3 Paperback: 350 pages

Over 100 recipes for creating HTML5-based
cross-platform apps for touch devices

1. Master cross platform application development

2. Incorporate geo location into your apps

3. Develop native looking web apps

Sencha Touch Mobile
JavaScript Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google
Android touchscreen devices with this first HTML5
mobile framework

1. Learn to develop web applications that look
and feel native on Apple iOS and Google Android
touchscreen devices using Sencha Touch through
examples

2. Design resolution-independent and graphical
representations like buttons, icons, and tabs
of unparalleled flexibility

3. Add custom events like tap, double tap, swipe,
tap and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

Sencha MVC Architecture
ISBN: 978-1-84951-888-8 Paperback: 126 pages

A practical guide for designers and developers to create
scalable enterprise-class web applications in ExtJS and
Sencha Touch using the Sencha MVC architecture

1. Map general MVC architecture concept to the
classes in ExtJS 4.x and Sencha Touch

2. Create a practical application in ExtJS as well
as Sencha Touch using various Sencha MVC
Architecture concepts and classes

3. Dive deep into the building blocks of the Sencha
MVC Architecture including the class system,
loader, controller, and application

Creating Mobile Apps with
Sencha Touch 2
ISBN: 978-1-84951-890-1 Paperback: 348 pages

Learn to use the Sencha Touch programming
language and expand your skills by building 10
unique applications

1. Effectively administer your MySQL databases with
phpMyAdmin

2. Manage users and privileges with MySQL Server
Administration tools

3. Get to grips with the hidden features and
capabilities of phpMyAdmin

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Gear Up for the Journey
	Introduction
	Setting up the Android-based development environment
	Setting up the iOS-based development environment
	Setting up the BlackBerry-based development environment
	Setting up a browser-based development environment
	Detecting the device
	Finding features that are supported in the current environment
	Letting your application configure itself using profiles
	Responding to orientation changes

	Chapter 2: Catering to Your Form-related Needs
	Introduction
	Getting your form ready with form panels
	Working with search
	Applying custom validation in the e-mail field
	Working with dates using the date picker
	Making a field hidden
	Working with the select field
	Changing a value using slider
	Spinning the number wheel using spinner
	Toggling between your two choices
	Checkbox and checkbox groups
	Text and text area
	Grouping fields with fieldset
	Validating your form

	Chapter 3: Containers and Layouts
	Introduction
	Keeping your container lightweight
	Working with Panel
	Adding items to a container at runtime
	Building wizards using CardLayout
	Docking items
	Fitting into the container using FitLayout
	Arranging your items horizontally using HBoxLayout
	Arranging your items vertically using VBoxLayout
	Mixing layouts
	Easing view navigation with the NavigationView class

	Chapter 4: Building Custom Views
	Introduction
	Basic HTML templating using Template
	Using XTemplate for advanced templating
	Conditional view rendering using XTemplate
	Designing custom views using DataView
	Showing the filtered data
	Responding to user actions

	Chapter 5: Dealing with Data and Data Sources
	Introduction
	Creating a model
	Loading the form using a data model
	Working with a store
	Converting incoming JSON data into a model using JsonReader
	Converting incoming XML data into the model using XmlReader
	Validations in models
	Defining your custom validation
	Relating models using association
	Persisting session-specific data using the SessionStorage proxy
	Persisting data using the LocalStorage proxy
	Accessing in-memory data using the Memory proxy
	Loading data through AJAX using the Ajax proxy
	Sorting data
	Data grouping
	Filtering data
	Using a cross-domain URL in your application
	Working with Web SQL databases

	Chapter 6: Adding Components
	Introduction
	Working with the button component
	Creating a sheet of buttons with ActionSheet
	Carousel
	Managing a list of data using List
	Grouping items in a list
	Navigating through a list of data using IndexBar
	Working with a list of nested data using NestedList
	Picking up your choice using Picker
	Switching between multiple views using SegmentedButton
	Working with Tab panels
	Getting quicker access to application features using Toolbar
	Creating a new component
	Extending an existing component's capability
	Overriding a component's behavior
	Adding behavior to an existing component using plugins

	Chapter 7: Adding Audio/Visual Appeal
	Introduction
	Animating an element
	Ding-dong! You have got a message
	Working with videos
	Creating your drawing
	Working with an area chart
	Working with a bar chart
	Working with a column chart
	Showing a group of bars and columns
	Highlighting and displaying an item detail
	Working with a gauge chart
	Working with a line chart
	Working with a pie chart
	Rotating the pies
	Highlighting a pie
	Working with a 3D pie chart
	Working with a radar chart
	Working with a scatter chart
	Working with a candlestick/OHLC chart

	Chapter 8: Taking Your Application Offline
	Introduction
	Detecting offline mode
	Storing your data offline in localstorage
	Storing your data offline using Sencha.io
	Storing your images offline
	Application caching

	Chapter 9: Increased Relevance Using Geolocation
	Introduction
	Finding out your location
	Finding out the location using native device APIs
	Auto update of your location
	Tracking direction and speed
	Hooking up Google Maps with your application
	Working with the Google Maps options
	Mapping Geolocation on Google Maps

	Chapter 10: Device Integration
	Introduction
	Capturing and managing photos using a camera
	Pulling out those contacts
	Working with orientation
	Managing notifications
	Reading a file
	Handling the home button on Android, iOS, and BlackBerry
	Handling the back button on Android and BlackBerry
	Handling the menu button on Android and Blackberry
	Handling the search button on Android
	Navigating using the BlackBerry trackpad

	Index

