
www.allitebooks.com

http:///
http://www.allitebooks.org


Storm Blueprints: Patterns 

for Distributed Real-time 

Computation

Use Storm design patterns to perform distributed,  

real-time big data processing, and analytics for  

real-world use cases

P. Taylor Goetz

Brian O'Neill

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org


Storm Blueprints: Patterns for Distributed Real-time 

Computation

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1200314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-829-4

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org


Credits

Authors

P. Taylor Goetz

Brian O'Neill

Reviewers

Vincent Gijsen

Sonal Raj

James Xu

Acquisition Editors

Usha Iyer 

James Jones

Lead Technical Editor

Arun Nadar

Technical Editors

Kapil Hemnani

Monica John 

Edwin Moses

Copy Editors

Roshni Banerjee

Sarang Chari

Brandt D'Mello

Mradula Hegde 

Gladson Monteiro

Project Coordinator

Mary Alex

Proofreaders

Simran Bhogal

Maria Gould

Graphics

Ronak Dhruv

Valentina Dsilva

Disha Haria

Yuvraj Mannari

Abhinash Sahu

Indexer

Tejal Soni

Production Coordinator

Conidon Miranda

Cover Work

Conidon Miranda

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Authors

P. Taylor Goetz is an Apache Storm committer and release manager and has been 
involved with the usage and development of Storm since it was irst released as open 
source in October of 2011. As an active contributor to the Storm user community, 
Taylor leads a number of open source projects that enable enterprises to integrate 
Storm into heterogeneous infrastructure.

Presently, he works at Hortonworks where he leads the integration of Storm into 
Hortonworks Data Platform (HDP). Prior to joining Hortonworks, he worked 
at Health Market Science where he led the integration of Storm into HMS' next 
generation Master Data Management platform with technologies including 
Cassandra, Kafka, Elastic Search, and the Titan graph database.

I would like to thank my amazing wife, children, family, and friends 
whose love, support, and sacriices made this book possible. I owe 
you all a debt of gratitude.

www.allitebooks.com

http:///
http://www.allitebooks.org


Brian O'Neill is a husband, hacker, hiker, and kayaker. He is a isherman and 
father as well as big data believer, innovator, and distributed computing dreamer.

He has been a technology leader for over 15 years and is recognized as an authority 
on big data. He has experience as an architect in a wide variety of settings, from 
start-ups to Fortune 500 companies. He believes in open source and contributes 
to numerous projects. He leads projects that extend Cassandra and integrate the 
database with indexing engines, distributed processing frameworks, and analytics 
engines. He won InfoWorld's Technology Leadership award in 2013. He authored 
the Dzone reference card on Cassandra and was selected as a Datastax Cassandra 
MVP in 2012 and 2013.

In the past, he has contributed to expert groups within the Java Community Process 
(JCP) and has patents in artiicial intelligence and context-based discovery. He is 
proud to hold a B.S. in Computer Science from Brown University.

Presently, Brian is Chief Technology Oficer for Health Market Science (HMS), 
where he heads the development of their big data platform focused on data 
management and analysis for the healthcare space. The platform is powered by 
Storm and Cassandra and delivers real-time data management and analytics as  
a service.

For my family...To my wife Lisa, We put our faith in the wind.  
And our mast has carried us to the clouds. Rooted to the earth by  
our children, and fastened to the bedrock of those that have gone 
before us, our hands are ever entwined by the fabric of our family. 
Without all of you, this ink would never have met this page.

www.allitebooks.com

http:///
http://www.allitebooks.org


About the Reviewers

Vincent Gijsen is essentially a people's person, and he is passionate about any 
stuff related to technology. His background and area of interest broadly lies in 
Embedded Systems Engineering and Information Science. He started his career 
at a marketing -research company as an IT Manager. After that, he started his 
own company, and specialized in VOIP communications. Currently, he works at 
ScienceRockstars, a start-up, which is all about persuasive proiling and large data. 
In his spare time, he likes to get his hands dirty with lasers, quad-copters, eBay 
purchases, hacking stuff, and beers.

Sonal Raj is a geek, a "Pythonista", and a technology enthusiast. He is the founder 
and Executive Head at Enfoss. He holds a bachelor's degree in Computer Science and 
Engineering from National Institute of Technology, Jamshedpur. He was a Research 
Fellow at SERC, IISc Bangalore, and he pursued projects on distributed computing 
and real-time operations. He also worked as an intern at HCL Infosystems, Delhi.

He has given talks at PyCon India on Storm and Neo4J and has published articles 
and research papers in leading magazines and international journals.

James Xu is a committer of Apache Storm and a Java/Clojure programmer working 
in e-commerce. He is passionate about new technologies such as Storm and Clojure. 
He works in Alibaba Group, which is the leading e-ecommerce platform in China.

www.allitebooks.com

http:///
http://www.allitebooks.org


www.PacktPub.com

Support iles, eBooks, discount offers 
and more
You might want to visit www.PacktPub.com for support iles and downloads related to your 
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on  
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org


www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents

Preface 1

Chapter 1: Distributed Word Count 9

Introducing elements of a Storm topology – streams, spouts, and bolts 10
Streams 10

Spouts 10

Bolts 11

Introducing the word count topology data low 11
Sentence spout 12

Introducing the split sentence bolt 12

Introducing the word count bolt 12

Introducing the report bolt 12

Implementing the word count topology 13

Setting up a development environment 13

Implementing the sentence spout 14

Implementing the split sentence bolt 15

Implementing the word count bolt 16

Implementing the report bolt 17

Implementing the word count topology 19

Introducing parallelism in Storm 22

WordCountTopology parallelism 23
Adding workers to a topology 23

Coniguring executors and tasks 24
Understanding stream groupings 26

Guaranteed processing 30
Reliability in spouts 30

Reliability in bolts 31

Reliable word count 32

Summary 34

www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents

[ ii ]

Chapter 2: Coniguring Storm Clusters 35
Introducing the anatomy of a Storm cluster 36

Understanding the nimbus daemon 36

Working with the supervisor daemon 37

Introducing Apache ZooKeeper 38

Working with Storm's DRPC server 38

Introducing the Storm UI 39

Introducing the Storm technology stack 40
Java and Clojure 40

Python 40

Installing Storm on Linux 40
Installing the base operating system 41

Installing Java 41

ZooKeeper installation 42

Storm installation 42

Running the Storm daemons 43

Coniguring Storm 46
Mandatory settings 46

Optional settings 47

The Storm executable 49

Setting up the Storm executable on a workstation 49

The daemon commands 49
Nimbus 50

Supervisor 50

UI 50

DRPC 50

The management commands 50
Jar 50

Kill 51

Deactivate 51

Activate 51

Rebalance 51

Remoteconfvalue 52

Local debug/development commands 52
REPL 52

Classpath 53

Localconfvalue 53

Submitting topologies to a Storm cluster 53
Automating the cluster coniguration 56
A rapid introduction to Puppet 56

Puppet manifests 56

Puppet classes and modules 58

Puppet templates 59

http:///


Table of Contents

[ iii ]

Managing environments with Puppet Hiera 60

Introducing Hiera 60

Summary 63

Chapter 3: Trident Topologies and Sensor Data 65
Examining our use case 66

Introducing Trident topologies 67

Introducing Trident spouts 69

Introducing Trident operations – ilters and functions 75
Introducing Trident ilters 76
Introducing Trident functions 78

Introducing Trident aggregators – Combiners and Reducers 82

CombinerAggregator 82

ReducerAggregator 82

Aggregator 83

Introducing the Trident state 85
The Repeat Transactional state 89

The Opaque state 90

Executing the topology 93

Summary 94

Chapter 4: Real-time Trend Analysis 95
Use case 96

Architecture 96

The source application 97

The logback Kafka appender 97

Apache Kafka 97

Kafka spout 97

The XMPP server 98

Installing the required software 98

Installing Kafka 98

Installing OpenFire 99

Introducing the sample application 99

Sending log messages to Kafka 100

Introducing the log analysis topology 106
Kafka spout 107

The JSON project function 108

Calculating a moving average 109

Adding a sliding window 110

Implementing the moving average function 114

Filtering on thresholds 115

Sending notiications with XMPP 117

http:///


Table of Contents

[ iv ]

The inal topology 120
Running the log analysis topology 123

Summary 124

Chapter 5: Real-time Graph Analysis 125
Use case 126

Architecture 126

The Twitter client 127

Kafka spout 127

A titan-distributed graph database 128

A brief introduction to graph databases 129

Accessing the graph – the TinkerPop stack 130

Manipulating the graph with the Blueprints API 131

Manipulating the graph with the Gremlin shell 132

Software installation 133

Titan installation 133

Setting up Titan to use the Cassandra storage backend 135
Installing Cassandra 135

Starting Titan with the Cassandra backend 136

Graph data model 136

Connecting to the Twitter stream 138

Setting up the Twitter4J client 139

The OAuth coniguration 139
The TwitterStreamConsumer class 139

The TwitterStatusListener class 140

Twitter graph topology 142

The JSONProjectFunction class 143

Implementing GraphState 144

GraphFactory 144

GraphTupleProcessor 145

GraphStateFactory 145

GraphState 146

GraphUpdater 147

Implementing GraphFactory 148

Implementing GraphTupleProcessor 148

Putting it all together – the TwitterGraphTopology class 149

The TwitterGraphTopology class 149

Querying the graph with Gremlin 151
Summary 152

http:///


Table of Contents

[ v ]

Chapter 6: Artiicial Intelligence 153
Designing for our use case 154
Establishing the architecture 158

Examining the design challenges 158

Implementing the recursion 159
Accessing the function's return values 160

Immutable tuple ield values 160
Upfront ield declaration 160
Tuple acknowledgement in recursion 160

Output to multiple streams 161

Read-before-write 161

Solving the challenges 162

Implementing the architecture 164

The data model 164

Examining the recursive topology 167

The queue interaction 169

Functions and ilters 171
Examining the Scoring Topology 173

Addressing read-before-write 175

Enumerating the game tree 178

Distributed Remote Procedure Call (DRPC) 178
Remote deployment 183

Summary 184

Chapter 7: Integrating Druid for Financial Analytics 185
Use case 186

Integrating a non-transactional system 187

The topology 191

The spout 192

The ilter 194
The state design 195

Implementing the architecture 199

DruidState 200

Implementing the StormFirehose object 204

Implementing the partition status in ZooKeeper 209

Executing the implementation 211

Examining the analytics 212

Summary 215
Chapter 8: Natural Language Processing 217

Motivating a Lambda architecture 218

Examining our use case 220

http:///


Table of Contents

[ vi ]

Realizing a Lambda architecture 221

Designing the topology for our use case 223

Implementing the design 224

TwitterSpout/TweetEmitter 225

Functions 225
TweetSplitterFunction 226

WordFrequencyFunction 226

PersistenceFunction 228

Examining the analytics 230
Batch processing / historical analysis 235
Hadoop 236

An overview of MapReduce 236

The Druid setup 237
HadoopDruidIndexer 238

Summary 245
Chapter 9: Deploying Storm on Hadoop for Advertising Analysis 247

Examining the use case 248

Establishing the architecture 249

Examining HDFS 251

Examining YARN 252

Coniguring the infrastructure 254
The Hadoop infrastructure 255

Coniguring HDFS 255
Coniguring the NameNode 256
Coniguring the DataNode 258
Coniguring YARN 259
Coniguring the NodeManager 261

Deploying the analytics 261

Performing a batch analysis with the Pig infrastructure 262

Performing a real-time analysis with the Storm-YARN infrastructure 263

Performing the analytics 268

Executing the batch analysis 269

Executing real-time analysis 270

Deploying the topology 276

Executing the topology 276

Summary 277

Chapter 10: Storm in the Cloud 279

Introducing Amazon Elastic Compute Cloud (EC2) 280
Setting up an AWS account 280

The AWS Management Console 281
Creating an SSH key pair 282

http:///


Table of Contents

[ vii ]

Launching an EC2 instance manually 283
Logging in to the EC2 instance 285

Introducing Apache Whirr 285
Installing Whirr 286

Coniguring a Storm cluster with Whirr 287
Launching the cluster 288

Introducing Whirr Storm 289

Setting up Whirr Storm 289
Cluster coniguration 290
Customizing Storm's coniguration 291
Customizing irewall rules 292

Introducing Vagrant 294

Installing Vagrant 294

Launching your irst virtual machine 294
The Vagrantile and shared ilesystem 296
Vagrant provisioning 297

Coniguring multimachine clusters with Vagrant 298
Creating Storm-provisioning scripts 299

ZooKeeper 299

Storm 299

Supervisord 301
The Storm Vagrantile 301
Launching the Storm cluster 304

Summary 305
Index 307

http:///


http:///


Preface
The demand for timely, actionable information is pushing software systems to 
process an increasing amount of data in a decreasing amount of time. Additionally, 
as the number of connected devices increases and as these devices are applied 
to a broadening spectrum of industries, that demand is becoming increasingly 
pervasive. Traditional enterprise operational systems are being forced to operate on 
scales of data that were originally associated only with Internet-scale companies. 
This monumental shift is forcing the collapse of more traditional architectures and 
approaches that separated online transactional systems and ofline analysis. Instead, 
people are reimagining what it means to extract information from data. Frameworks 
and infrastructure are likewise evolving to accommodate this new vision.

Speciically, data generation is now viewed as a series of discrete events. Those event 
streams are associated with data lows, some operational and some analytical, but 
processed by a common framework and infrastructure.

Storm is the most popular framework for real-time stream processing. It provides 
the fundamental primitives and guarantees required for fault-tolerant distributed 
computing in high-volume, mission-critical applications. It is both an integration 
technology as well as a data low and control mechanism. Many large companies  
are using Storm as the backbone of their big data platforms.

Using design patterns from this book, you will learn to develop, deploy, and operate 
data processing lows capable of processing billions of transactions per hour/day.

Storm Blueprints: Patterns for Distributed Real-time Computation covers a broad range 
of distributed computing topics, including not only design and integration patterns 
but also domains and applications to which the technology is immediately useful 
and commonly applied. This book introduces the reader to Storm using real-world 
examples, beginning with simple Storm topologies. The examples increase in 
complexity, introducing advanced Storm concepts as well as more sophisticated 
approaches to deployment and operational concerns.

http:///


Preface

[ 2 ]

What this book covers
Chapter 1, Distributed Word Count, introduces the core concepts of distributed stream 
processing with Storm. The distributed word count example demonstrates many of 
the structures, techniques, and patterns required for more complex computations. 
In this chapter, we will gain a basic understanding of the structure of Storm 
computations. We will set up a development environment and understand  
the techniques used to debug and develop Storm applications.

Chapter 2, Coniguring Storm Clusters, provides a deeper look into the Storm 
technology stack and the process of setting up and deploying to a Storm cluster.  
In this chapter, we will automate the installation and coniguration of a multi-node 
cluster using the Puppet provisioning tool.

Chapter 3, Trident Topologies and Sensor Data, covers Trident topologies. Trident 
provides a higher-level abstraction on top of Storm that abstracts away the details  
of transactional processing and state management. In this chapter, we will apply  
the Trident framework to process, aggregate, and ilter sensor data to detect a  
disease outbreak.

Chapter 4, Real-time Trend Analysis, introduces trend analysis techniques using  
Storm and Trident. Real-time trend analysis involves identifying patterns in data  
streams. In this chapter, you will integrate with Apache Kafka and will implement  
a sliding window to compute moving averages.

Chapter 5, Real-time Graph Analysis, covers graph analysis using Storm to persist data 
to a graph database and query that data to discover relationships. Graph databases 
are databases that store data as graph structures with vertices, edges, and properties 
and focus primarily on relationships between entities. In this chapter, you will 
integrate Storm with Titan, a popular graph database, using Twitter as a data source.

Chapter 6, Artiicial Intelligence, applies Storm to an artiicial intelligence algorithm 
typically implemented using recursion. We expose some of the limitations of Storm, 
and examine patterns to accommodate those limitations. In this chapter, using 
Distributed Remote Procedure Call (DRPC), you will implement a Storm topology 
capable of servicing synchronous queries to determine the next best move in  
tic-tac-toe.

Chapter 7, Integrating Druid for Financial Analytics, demonstrates the complexities  
of integrating Storm with non-transactional systems. To support such integrations, 
the chapter presents a pattern that leverages ZooKeeper to manage the distributed 
state. In this chapter, you will integrate Storm with Druid, which is an open source 
infrastructure for exploratory analytics, to deliver a conigurable real-time system  
for analysis of inancial events.

http:///


Preface

[ 3 ]

Chapter 8, Natural Language Processing, introduces the concept of Lambda 
architecture, pairing real time and batch processing to create a resilient system  
for analytics. Building on the Chapter 7, Integrating Druid for Financial Analytics  
you will incorporate the Hadoop infrastructure and examine a MapReduce job  
to backill analytics in Druid in the event of a host failure.

Chapter 9, Deploying Storm on Hadoop for Advertising Analysis, demonstrates 
converting an existing batch process, written in Pig script running on Hadoop, 
into a real-time Storm topology. To do this, you will leverage Storm-YARN, which 
allows users to leverage YARN to deploy and run Storm clusters. Running Storm 
on Hadoop allows enterprises to consolidate operations and utilize the same 
infrastructure for both real time and batch processing.

Chapter 10, Storm in the Cloud, covers best practices for running and deploying Storm 
in a cloud-provider hosted environment. Speciically, you will leverage Apache 
Whirr, a set of libraries for cloud services, to deploy and conigure Storm and its 
supporting technologies to infrastructure provisioned via Amazon Web Services 
(AWS) Elastic Compute Cloud (EC2). Additionally, you will leverage Vagrant to 
create clustered environments for development and testing.

What you need for this book
The following is a list of software used in this book:

Chapter number Software required

1 Storm (0.9.1)

2 Zookeeper (3.3.5)

Java (1.7)

Puppet (3.4.3)

Hiera (1.3.1)

3 Trident (via Storm 0.9.1)

4 Kafka (0.7.2)

OpenFire (3.9.1)

5 Twitter4J (3.0.3)

Titan (0.3.2)

Cassandra (1.2.9)

6 No new software

7 MySQL (5.6.15)

Druid (0.5.58)

www.allitebooks.com

http:///
http://www.allitebooks.org


Preface

[ 4 ]

Chapter number Software required

8 Hadoop (0.20.2)

9 Storm-YARN (1.0-alpha)

Hadoop (2.1.0-beta)

10 Whirr (0.8.2)

Vagrant (1.4.3)

Who this book is for
Storm Blueprints: Patterns for Distributed Real-time Computation beneits both beginner 
and advanced users, by describing broadly applicable distributed computing 
patterns grounded in real-world example applications. The book presents the 
core primitives in Storm and Trident alongside the crucial techniques required for 
successful deployment and operation.

Although the book focuses primarily on Java development with Storm, the patterns 
are applicable to other languages, and the tips, techniques, and approaches described 
in the book apply to architects, developers, systems, and business operations.

Hadoop enthusiasts will also ind this book a good introduction to Storm. The book 
demonstrates how the two systems complement each other and provides potential 
migration paths from batch processing to the world of real-time analytics.

The book provides examples that apply Storm to a broad range of problems and 
industries, which should translate to other domains faced with problems associated 
with processing large datasets under tight time constraints. As such, solution 
architects and business analysts will beneit from the high-level system architectures 
and technologies introduced in these chapters.

Conventions
In this book, you will ind a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

http:///


Preface

[ 5 ]

Code words in text, database table names, folder names, ilenames, ile extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"All the Hadoop coniguration iles are located in $HADOOP_CONF_DIR. The three  
key coniguration iles for this example are: core-site.xml, yarn-site.xml,  
and hdfs-site.xml."

A block of code is set as follows:

<configuration>

    <property>

        <name>fs.default.name</name>

        <value>hdfs://master:8020</value>

    </property>

</configuration>

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

13/10/09 21:40:10 INFO yarn.StormAMRMClient: Use NMClient to launch 
supervisors in container.  

13/10/09 21:40:10 INFO impl.ContainerManagementProtocolProxy: Opening 
proxy : slave05:35847 

13/10/09 21:40:12 INFO yarn.StormAMRMClient: Supervisor 
log: http://slave05:8042/node/containerlogs/
container_1381197763696_0004_01_000002/boneill/supervisor.log 

13/10/09 21:40:14 INFO yarn.MasterServer: HB: Received allocated 
containers (1) 13/10/09 21:40:14 INFO yarn.MasterServer: HB: 
Supervisors are to run, so queueing (1) containers... 

13/10/09 21:40:14 INFO yarn.MasterServer: LAUNCHER: Taking container 
with id (container_1381197763696_0004_01_000004) from the queue. 

13/10/09 21:40:14 INFO yarn.MasterServer: LAUNCHER: 
Supervisors are to run, so launching container id 
(container_1381197763696_0004_01_000004) 

13/10/09 21:40:16 INFO yarn.StormAMRMClient: Use NMClient to 
launch supervisors in container.  13/10/09 21:40:16 INFO impl.
ContainerManagementProtocolProxy: Opening proxy : dlwolfpack02.
hmsonline.com:35125 

13/10/09 21:40:16 INFO yarn.StormAMRMClient: Supervisor 
log: http://slave02:8042/node/containerlogs/
container_1381197763696_0004_01_000004/boneill/supervisor.log

Any command-line input or output is written as follows:

hadoop fs -mkdir /user/bone/lib/

hadoop fs -copyFromLocal ./lib/storm-0.9.0-wip21.zip /user/bone/lib/

http:///


New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "From the 
Filter drop-down menu at the top of the page select Public images."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the iles e-mailed directly to you.

http:///


Preface

[ 7 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form 
link, and entering the details of your errata. Once your errata are veriied, your 
submission will be accepted and the errata will be uploaded on our website, or 
added to any list of existing errata, under the Errata section of that title. Any existing 
errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http:///


http:///


Distributed Word Count
In this chapter, we will introduce you to the core concepts involved in creating 
distributed stream processing applications with Storm. We do this by building a 
simple application that calculates a running word count from a continuous stream of 
sentences. The word count example involves many of the structures, techniques, and 
patterns required for more complex computation, yet it is simple and easy to follow.

We will begin with an overview of Storm's data structures and move on to 
implementing the components that comprise a fully ledged  Storm application. By 
the end of the chapter, you will have gained a basic understanding of the structure 
of Storm computations, setting up a development environment, and techniques for 
developing and debugging Storm applications.

This chapter covers the following topics:

• Storm's basic constructs – topologies, streams, spouts, and bolts

• Setting up a Storm development environment

• Implementing a basic word count application

• Parallelization and fault tolerance

• Scaling by parallelizing computation tasks

http:///


Distributed Word Count

[ 10 ]

Introducing elements of a Storm  

topology – streams, spouts, and bolts
In Storm, the structure of a distributed computation is referred to as a topology and 
is made up of streams of data, spouts (stream producers), and bolts (operations). 
Storm topologies are roughly analogous to jobs in batch processing systems such as 
Hadoop. However, while batch jobs have clearly deined beginning and end points, 
Storm topologies run forever, until explicitly killed or undeployed.

Spout

Data
Source

Bolt

Spout

Data
Source

Bolt

Bolt

Bolt

A Storm topology

Streams
The core data structure in Storm is the tuple. A tuple is simply a list of named values 
(key-value pairs), and a Stream is an unbounded sequence of tuples. If you are familiar 
with complex event processing (CEP), you can think of Storm tuples as events.

Spouts
Spouts represent the main entry point of data into a Storm topology. Spouts act as 
adapters that connect to a source of data, transform the data into tuples, and emit  
the tuples as a stream.

As you will see, Storm provides a simple API for implementing spouts. Developing 
a spout is largely a matter of writing the code necessary to consume data from a raw 
source or API. Potential data sources include:

http:///


Chapter 1

[ 11 ]

• Click streams from a web-based or mobile application

• Twitter or other social network feeds

• Sensor output

• Application log events

Since spouts typically don't implement any speciic business logic, they can often  
be reused across multiple topologies.

Bolts
Bolts can be thought of as the operators or functions of your computation. They take 
as input any number of streams, process the data, and optionally emit one or more 
streams. Bolts may subscribe to streams emitted by spouts or other bolts, making it 
possible to create a complex network of stream transformations.

Bolts can perform any sort of processing imaginable and like the Spout API,  
the bolt interface is simple and straightforward. Typical functions performed  
by bolts include:

• Filtering tuples

• Joins and aggregations

• Calculations

• Database reads/writes

Introducing the word count topology data 

low
Our word count topology (depicted in the following diagram) will consist of a single 
spout connected to three downstream bolts.

Sentence
Spout

Split
Sentence

Bolt

Word Count
Bolt

Report Bolt

Word count topology

http:///


Distributed Word Count

[ 12 ]

Sentence spout
The SentenceSpout class will simply emit a stream of single-value tuples  
with the key name "sentence" and a string value (a sentence), as shown  
in the following code:

{ "sentence":"my dog has fleas" }

To keep things simple, the source of our data will be a static list of sentences that we 
loop over, emitting a tuple for every sentence. In a real-world application, a spout 
would typically connect to a dynamic source, such as tweets retrieved from the 
Twitter API.

Introducing the split sentence bolt
The split sentence bolt will subscribe to the sentence spout's tuple stream. For each 
tuple received, it will look up the "sentence" object's value, split the value into 
words, and emit a tuple for each word:

{ "word" : "my" }

{ "word" : "dog" }

{ "word" : "has" }

{ "word" : "fleas" }

Introducing the word count bolt
The word count bolt subscribes to the output of the SplitSentenceBolt class, 
keeping a running count of how many times it has seen a particular word. Whenever 
it receives a tuple, it will increment the counter associated with a word and emit a 
tuple containing the word and the current count:

{ "word" : "dog", "count" : 5 }

Introducing the report bolt
The report bolt subscribes to the output of the WordCountBolt class and maintains a 
table of all words and their corresponding counts, just like WordCountBolt. When it 
receives a tuple, it updates the table and prints the contents to the console.

http:///


Chapter 1

[ 13 ]

Implementing the word count topology
Now that we've introduced the basic Storm concepts, we're ready to start developing 
a simple application. For now, we'll be developing and running a Storm topology in 
local mode. Storm's local mode simulates a Storm cluster within a single JVM instance, 
making it easy to develop and debug Storm topologies in a local development 
environment or IDE. In later chapters, we'll show you how to take Storm topologies 
developed in local mode and deploy them to a fully clustered environment.

Setting up a development environment
Creating a new Storm project is just a matter of adding the Storm library and its 
dependencies to the Java classpath. However, as you'll learn in Chapter 2, Coniguring 
Storm Clusters, deploying a Storm topology to a clustered environment requires 
special packaging of your compiled classes and dependencies. For this reason, it is 
highly recommended that you use a build management tool such as Apache Maven, 
Gradle, or Leinengen. For the distributed word count example, we will use Maven.

Let's begin by creating a new Maven project:

$ mvn archetype:create -DgroupId=storm.blueprints 

-DartifactId=Chapter1 -DpackageName=storm.blueprints.chapter1.v1

Next, edit the pom.xml ile and add the Storm dependency:

<dependency>

    <groupId>org.apache.storm</groupId>

    <artifactId>storm-core</artifactId>

    <version>0.9.1-incubating</version>

</dependency>

Then, test the Maven coniguration by building the project with the following 
command:

$ mvn install

Downloading the example code

You can download the example code iles for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/ support and register to have the iles e-mailed directly to you.

Maven will download the Storm library and all its dependencies. With the project  
set up, we're now ready to begin writing our Storm application.

www.allitebooks.com

http:///
http://www.allitebooks.org


Distributed Word Count

[ 14 ]

Implementing the sentence spout
To keep things simple, our SentenceSpout implementation will simulate a data 
source by creating a static list of sentences that gets iterated. Each sentence is emitted 
as a single ield tuple. The complete spout implementation is listed in Example 1.1.

Example 1.1: SentenceSpout.java

public class SentenceSpout extends BaseRichSpout {

    private SpoutOutputCollector collector;

    private String[] sentences = {

        "my dog has fleas",

        "i like cold beverages",

        "the dog ate my homework",

        "don't have a cow man",

        "i don't think i like fleas"

    };

    private int index = 0;

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("sentence"));

    }

    public void open(Map config, TopologyContext context, 

            SpoutOutputCollector collector) {

        this.collector = collector;

    }

    public void nextTuple() {

        this.collector.emit(new Values(sentences[index]));

        index++;

        if (index >= sentences.length) {

            index = 0;

        }

        Utils.waitForMillis(1);

    }

}

The BaseRichSpout class is a convenient implementation of the ISpout and 
IComponent interfaces and provides default implementations for methods we don't 
need in this example. Using this class allows us to focus only on the methods we need.

http:///


Chapter 1

[ 15 ]

The declareOutputFields() method is deined in the IComponent interface that all 
Storm components (spouts and bolts) must implement and is used to tell Storm what 
streams a component will emit and the ields each stream's tuples will contain. In 
this case, we're declaring that our spout will emit a single (default) stream of tuples 
containing a single ield ("sentence").

The open() method is deined in the ISpout interface and is called whenever 
a spout component is initialized. The open() method takes three parameters: a 
map containing the Storm coniguration, a TopologyContext object that provides 
information about a components placed in a topology, and a SpoutOutputCollector 
object that provides methods for emitting tuples. In this example, we don't need to 
perform much in terms of initialization, so the open() implementation simply stores 
a reference to the SpoutOutputCollector object in an instance variable.

The nextTuple() method represents the core of any spout implementation. Storm 
calls this method to request that the spout emit tuples to the output collector. Here, 
we just emit the sentence at the current index, and increment the index.

Implementing the split sentence bolt
The SplitSentenceBolt implementation is listed in Example 1.2.

Example 1.2 – SplitSentenceBolt.java

public class SplitSentenceBolt extends BaseRichBolt{

    private OutputCollector collector;

    public void prepare(Map config, TopologyContext context,

 OutputCollector collector) {

        this.collector = collector;

    }

    public void execute(Tuple tuple) {

        String sentence = tuple.getStringByField("sentence");

        String[] words = sentence.split(" ");

        for(String word : words){

            this.collector.emit(new Values(word));

        }

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("word"));

    }

}

http:///


Distributed Word Count

[ 16 ]

The BaseRichBolt class is another convenience class that implements both the 
IComponent and IBolt interfaces. Extending this class frees us from having to 
implement methods we're not concerned with and lets us focus on the functionality 
we need.

The prepare() method deined by the IBolt interface is analogous to the 
open() method of ISpout. This is where you would prepare resources such as 
database connections during bolt initialization. Like the SentenceSpout class, the 
SplitSentenceBolt class does not require much in terms of initialization, so the 
prepare() method simply saves a reference to the OutputCollector object.

In the declareOutputFields() method, the SplitSentenceBolt class declares a 
single stream of tuples, each containing one ield ("word").

The core functionality of the SplitSentenceBolt class is contained in the execute() 
method deined by IBolt. This method is called every time the bolt receives a 
tuple from a stream to which it subscribes. In this case, it looks up the value of the 
"sentence" ield of the incoming tuple as a string, splits the value into individual 
words, and emits a new tuple for each word.

Implementing the word count bolt
The WordCountBolt class (Example 1.3) is the topology component that actually 
maintains the word count. In the bolt's prepare() method, we instantiate an 
instance of HashMap<String, Long> that will store all the words and their 
corresponding counts. It is common practice to instantiate most instance variables 
in the prepare() method. The reason behind this pattern lies in the fact that when 
a topology is deployed, its component spouts and bolts are serialized and sent 
across the network. If a spout or bolt has any non-serializable instance variables 
instantiated before serialization (created in the constructor, for example) a 
NotSerializableException will be thrown and the topology will fail to deploy. 
In this case, since HashMap<String, Long> is serializable, we could have safely 
instantiated it in the constructor. However, in general, it is best to limit constructor 
arguments to primitives and serializable objects and instantiate non-serializable 
objects in the prepare() method.

In the declareOutputFields() method, the WordCountBolt class declares a stream 
of tuples that will contain both the word received and the corresponding count. In 
the execute() method, we look up the count for the word received (initializing it to 
0 if necessary), increment and store the count, and then emit a new tuple consisting 
of the word and current count. Emitting the count as a stream allows other bolts in 
the topology to subscribe to the stream and perform additional processing.

http:///


Chapter 1

[ 17 ]

Example 1.3 – WordCountBolt.java

public class WordCountBolt extends BaseRichBolt{

    private OutputCollector collector;

    private HashMap<String, Long> counts = null;

    public void prepare(Map config, TopologyContext context, 

            OutputCollector collector) {

        this.collector = collector;

        this.counts = new HashMap<String, Long>();

    }

    public void execute(Tuple tuple) {

        String word = tuple.getStringByField("word");

        Long count = this.counts.get(word);

        if(count == null){

            count = 0L;

        }

        count++;

        this.counts.put(word, count);

        this.collector.emit(new Values(word, count));

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("word", "count"));

    }

}

Implementing the report bolt
The purpose of the ReportBolt class is to produce a report of the counts for each 
word. Like the WordCountBolt class, it uses a HashMap<String, Long> object  
to record the counts, but in this case, it just stores the count received from the  
counter bolt.

One difference between the report bolt and the other bolts we've written so far  
is that it is a terminal bolt—it only receives tuples. Because it does not emit any 
streams, the declareOutputFields() method is left empty.

The report bolt also introduces the cleanup() method deined in the IBolt 
interface. Storm calls this method when a bolt is about to be shutdown. We exploit 
the cleanup() method here as a convenient way to output our inal counts when 
the topology shuts down, but typically, the cleanup() method is used to release 
resources used by a bolt, such as open iles or database connections.

http:///


Distributed Word Count

[ 18 ]

One important thing to keep in mind about the IBolt.cleanup() method when 
writing bolts is that there is no guarantee that Storm will call it when a topology 
is running on a cluster. We'll discuss the reasons behind this when we talk about 
Storm's fault tolerance mechanisms in the next chapter. But for this example,  
we'll be running Storm in a development mode where the cleanup() method is 
guaranteed to be called.

The full source for the ReportBolt class is listed in Example 1.4.

Example 1.4 – ReportBolt.java

public class ReportBolt extends BaseRichBolt {

    private HashMap<String, Long> counts = null;

    public void prepare(Map config, TopologyContext context, 
OutputCollector collector) {

        this.counts = new HashMap<String, Long>();

    }

    public void execute(Tuple tuple) {

        String word = tuple.getStringByField("word");

        Long count = tuple.getLongByField("count");

        this.counts.put(word, count);

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        // this bolt does not emit anything

    }

    public void cleanup() {

        System.out.println("--- FINAL COUNTS ---");

        List<String> keys = new ArrayList<String>();

        keys.addAll(this.counts.keySet());

        Collections.sort(keys);

        for (String key : keys) {

            System.out.println(key + " : " + this.counts.get(key));

        }

        System.out.println("--------------");

    }

}

http:///


Chapter 1

[ 19 ]

Implementing the word count topology
Now that we've deined the spout and bolts that will make up our computation, 
we're ready to wire them together into a runnable topology (refer to Example 1.5).

Example 1.5 – WordCountTopology.java

public class WordCountTopology {

    private static final String SENTENCE_SPOUT_ID = "sentence-spout";

    private static final String SPLIT_BOLT_ID = "split-bolt";

    private static final String COUNT_BOLT_ID = "count-bolt";

    private static final String REPORT_BOLT_ID = "report-bolt";

    private static final String TOPOLOGY_NAME = "word-count-topology";

    public static void main(String[] args) throws Exception {

        SentenceSpout spout = new SentenceSpout();

        SplitSentenceBolt splitBolt = new SplitSentenceBolt();

        WordCountBolt countBolt = new WordCountBolt();

        ReportBolt reportBolt = new ReportBolt();

        TopologyBuilder builder = new TopologyBuilder();

        builder.setSpout(SENTENCE_SPOUT_ID, spout);

        // SentenceSpout --> SplitSentenceBolt

        builder.setBolt(SPLIT_BOLT_ID, splitBolt)

                .shuffleGrouping(SENTENCE_SPOUT_ID);

        // SplitSentenceBolt --> WordCountBolt

        builder.setBolt(COUNT_BOLT_ID, countBolt)

                .fieldsGrouping(SPLIT_BOLT_ID, new Fields("word"));

        // WordCountBolt --> ReportBolt

        builder.setBolt(REPORT_BOLT_ID, reportBolt)

                .globalGrouping(COUNT_BOLT_ID);

        Config config = new Config();

        LocalCluster cluster = new LocalCluster();

        cluster.submitTopology(TOPOLOGY_NAME, config, builder.
createTopology());

        waitForSeconds(10);

        cluster.killTopology(TOPOLOGY_NAME);

        cluster.shutdown();

    }

}

http:///


Distributed Word Count

[ 20 ]

Storm topologies are typically deined and run (or submitted if the topology is 
being deployed to a cluster) in a Java main() method. In this example, we begin 
by deining string constants that will serve as unique identiiers for our Storm 
components. We begin the main() method by instantiating our spout and bolts  
and creating an instance of TopologyBuilder. The TopologyBuilder class provides 
a luent-style API for deining the data low between components in a topology.  
We start by registering the sentence spout and assigning it a unique ID:

builder.setSpout(SENTENCE_SPOUT_ID, spout);

The next step is to register SplitSentenceBolt and establish a subscription  
to the stream emitted by the SentenceSpout class:

builder.setBolt(SPLIT_BOLT_ID, splitBolt)

                .shuffleGrouping(SENTENCE_SPOUT_ID);

The setBolt() method registers a bolt with the TopologyBuilder class and 
returns an instance of BoltDeclarer that exposes methods for deining the 
input source(s) for a bolt. Here we pass in the unique ID we deined for the 
SentenceSpout object to the shuffleGrouping() method establishing the 
relationship. The shuffleGrouping() method tells Storm to shufle tuples emitted 
by the SentenceSpout class and distribute them evenly among instances of the 
SplitSentenceBolt object. We will explain stream groupings in detail shortly  
in our discussion of parallelism in Storm.

The next line establishes the connection between the SplitSentenceBolt class  
and the WordCountBolt class:

builder.setBolt(COUNT_BOLT_ID, countBolt)

                .fieldsGrouping(SPLIT_BOLT_ID, new  
                                Fields("word"));

As you'll learn, there are times when it's imperative that tuples containing certain 
data get routed to a speciic instance of a bolt. Here, we use the fieldsGrouping() 
method of the BoltDeclarer class to ensure that all tuples containing the same 
"word" value get routed to the same WordCountBolt instance.

The last step in deining our data low is to route the stream of tuples emitted by the 
WordCountBolt instance to the ReportBolt class. In this case, we want all tuples 
emitted by WordCountBolt routed to a single ReportBolt task. This behavior is 
provided by the globalGrouping() method, as follows:

builder.setBolt(REPORT_BOLT_ID, reportBolt)

                .globalGrouping(COUNT_BOLT_ID);

http:///


Chapter 1

[ 21 ]

With our data low deined, the inal step in running our word count computation is 
to build the topology and submit it to a cluster:

Config config = new Config();

LocalCluster cluster = new LocalCluster();

        cluster.submitTopology(TOPOLOGY_NAME, config, builder.
createTopology());

        waitForSeconds(10);

        cluster.killTopology(TOPOLOGY_NAME);

        cluster.shutdown();

Here, we're running Storm in local mode using Storm's LocalCluster class to 
simulate a full-blown Storm cluster within our local development environment. 
Local mode is a convenient way to develop and test Storm applications without the 
overhead of deploying to a distributed cluster. Local mode also allows you to run 
Storm topologies within an IDE, setting breakpoints, halting execution, inspecting 
variables and proiling the application in ways that are much more time consuming 
or near impossible when deploying to a Storm cluster.

In this example, we create a LocalCluster instance and call the submitTopology() 
method with the topology name, an instance of backtype.storm.Config, and 
the Topology object returned by the TopologyBuilder class' createTopology() 
method. As you'll see in the next chapter, the submitTopology() method used to 
deploy a topology in local mode has the same signature as the method to deploy a 
topology in remote (distributed) mode.

Storm's Config class is simply an extension of HashMap<String, Object>, 
which deines a number of Storm-speciic constants and convenience methods for 
coniguring a topology's runtime behavior. When a topology is submitted, Storm will 
merge its predeined default coniguration values with the contents of the Config 
instance passed to the submitTopology() method, and the result will be passed to 
the open() and prepare() methods of the topology spouts and bolts respectively. 
In this sense, the Config object represents a set of coniguration parameters that are 
global to all components in a topology.

We're now ready to run the WordCountTopology class. The main() method will 
submit the topology, wait for ten seconds while it runs, kill (undeploy) the topology, 
and inally shut down the local cluster. When the program run is complete, you 
should see console output similar to the following:

http:///


Distributed Word Count

[ 22 ]

--- FINAL COUNTS ---

a : 1426

ate : 1426

beverages : 1426

cold : 1426

cow : 1426

dog : 2852

don't : 2851

fleas : 2851

has : 1426

have : 1426

homework : 1426

i : 4276

like : 2851

man : 1426

my : 2852

the : 1426

think : 1425

-------------- 

Introducing parallelism in Storm
Recall from the introduction that Storm allows a computation to scale horizontally 
across multiple machines by dividing the computation into multiple, independent 
tasks that execute in parallel across a cluster. In Storm, a task is simply an instance  
of a spout or bolt running somewhere on the cluster.

To understand how parallelism works, we must irst explain the four main 
components involved in executing a topology in a Storm cluster:

• Nodes (machines): These are simply machines conigured to participate in 
a Storm cluster and execute portions of a topology. A Storm cluster contains 
one or more nodes that perform work.

• Workers (JVMs): These are independent JVM processes running on a node. 
Each node is conigured to run one or more workers. A topology may request 
one or more workers be assigned to it.

• Executors (threads): These are Java threads running within a worker JVM 
process. Multiple tasks can be assigned to a single executor. Unless explicitly 
overridden, Storm will assign one task for each executor.

• Tasks (bolt/spout instances): Tasks are instances of spouts and bolts whose 
nextTuple() and execute() methods are called by executor threads.

http:///


Chapter 1

[ 23 ]

WordCountTopology parallelism
So far in our word count example, we have not explicitly used any of Storm's 
parallelism APIs; instead, we allowed Storm to use its default settings. In most cases, 
unless overridden, Storm will default most parallelism settings to a factor of one.

Before changing the parallelism settings for our topology, let's consider how our 
topology will execute with the default settings. Assuming we have one machine 
(node), have assigned one worker to the topology, and allowed Storm to one task  
per executor, our topology execution would look like the following:

Node

Worker (JVM)

Executor

(Thread)

Task
(Sentence

Spout)

Executor

(Thread)

Task
(Split

Sentence
Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Executor

(Thread)

Task
(Report
Bolt)

Topology execution

As you can see, the only parallelism we have is at the thread level. Each task runs on 
a separate thread within a single JVM. How can we increase the parallelism to more 
effectively utilize the hardware we have at our disposal? Let's start by increasing the 
number of workers and executors assigned to run our topology.

Adding workers to a topology
Assigning additional workers is an easy way to add computational power to a 
topology, and Storm provides the means to do so through its API as well as pure 
coniguration. Whichever method we choose, our component spouts and bolts do not 
have to change, and can be reused as is.

In the previous version of the word count topology, we introduced the Config 
object that gets passed to the submitTopology() method at deployment time but 
left it largely unused. To increase the number of workers assigned to a topology, we 
simply call the setNumWorkers() method of the Config object:

    Config config = new Config();

    config.setNumWorkers(2);

www.allitebooks.com

http:///
http://www.allitebooks.org


Distributed Word Count

[ 24 ]

This assigns two workers to our topology instead of the default of one. While this 
will add computation resources to our topology, in order to effectively utilize those 
resources, we will also want to adjust the number of executors in our topology as 
well as the number of tasks per executor.

Coniguring executors and tasks
As we've seen, Storm creates a single task for each component deined in a topology, 
by default, and assigns a single executor for each task. Storm's parallelism API offers 
control over this behavior by allowing you to set the number of executors per task as 
well as the number of tasks per executor.

The number of executors assigned to a given component is conigured by setting 
a parallelism hint when deining a stream grouping. To illustrate this feature, let's 
modify our topology deinition to parallelize SentenceSpout such that it is assigned 
two tasks and each task is assigned its own executor thread:

builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);

If we're using one worker, the execution of our topology now looks like the following:

Node

Worker (JVM)

Executor

(Thread)

Task
(Sentence

Spout)

Executor

(Thread)

Task
(Split

Sentence
Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Executor

(Thread)

Task
(Report
Bolt)

Executor

(Thread)

Task
(Sentence

Spout)

Two spout tasks

http:///


Chapter 1

[ 25 ]

Next, we will set up the split sentence bolt to execute as four tasks with two executors. 
Each executor thread will be assigned two tasks to execute (4 / 2 = 2). We'll also 
conigure the word count bolt to run as four tasks, each with its own executor thread:

builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2)

              .setNumTasks(4)

                .shuffleGrouping(SENTENCE_SPOUT_ID);

builder.setBolt(COUNT_BOLT_ID, countBolt, 4)

                .fieldsGrouping(SPLIT_BOLT_ID, new  
                 Fields("word"));

With two workers, the execution of the topology will now look like the following 
diagram:

Node

Worker (JVM)

Executor

(Thread)

Task
(Sentence

Spout)

Executor

(Thread)

Task
(Split

Sentence
Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Executor

(Thread)

Task
(Report
Bolt)

Task
(Split

Sentence
Bolt)

Worker (JVM)

Executor

(Thread)

Task
(Sentence

Spout)

Executor

(Thread)

Task
(Split

Sentence
Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Executor

(Thread)

Task
(Word

Count Bolt)

Task
(Split

Sentence
Bolt)

Parallelism with multiple workers

http:///


Distributed Word Count

[ 26 ]

With the topology parallelism increased, running the updated WordCountTopology 
class should yield higher total counts for each word:

--- FINAL COUNTS ---

a : 2726

ate : 2722

beverages : 2723

cold : 2723

cow : 2726

dog : 5445

don't : 5444

fleas : 5451

has : 2723

have : 2722

homework : 2722

i : 8175

like : 5449

man : 2722

my : 5445

the : 2727

think : 2722

--------------

Since spout emits data indeinitely and only stops when the topology is killed, the 
actual counts will vary depending on the speed of your computer and what other 
processes are running on it, but you should see an overall increase in the number  
of words emitted and processed.

It's important to point out that increasing the number of workers has no effect when 
running a topology in local mode. A topology running in local mode always runs 
in a single JVM process, so only task and executor parallelism settings have any 
effect. Storm's local mode offers a decent approximation of cluster behavior and is 
very useful for development, but you should always test your application in a true 
clustered environment before moving to production.

Understanding stream groupings
Based on the previous example, you may wonder why we did not bother increasing 
the parallelism of ReportBolt. The answer is that it does not make any sense to do 
so. To understand why, you need to understand the concept of stream groupings  
in Storm.

http:///


Chapter 1

[ 27 ]

A stream grouping deines how a stream's tuples are distributed among bolt tasks 
in a topology. For example, in the parallelized version of the word count topology, 
the SplitSentenceBolt class was assigned four tasks in the topology. The stream 
grouping determines which one of those tasks will receive a given tuple.

Storm deines seven built-in stream groupings:

• Shufle grouping: This randomly distributes tuples across the target bolt's 
tasks such that each bolt receives an equal number of tuples.

• Fields grouping: This routes tuples to bolt tasks based on the values of the 
ields speciied in the grouping. For example, if a stream is grouped on the 
"word" ield, tuples with the same value for the "word" ield will always  
be routed to the same bolt task.

• All grouping: This replicates the tuple stream across all bolt tasks such that 
each task will receive a copy of the tuple.

• Global grouping: This routes all tuples in a stream to a single task, choosing 
the task with the lowest task ID value. Note that setting a parallelism hint 
or number of tasks on a bolt when using the global grouping is meaningless 
since all tuples will be routed to the same bolt task. The global grouping 
should be used with caution since it will route all tuples to a single JVM 
instance, potentially creating a bottleneck or overwhelming a speciic JVM/
machine in a cluster.

• None grouping: The none grouping is functionally equivalent to the shufle 
grouping. It has been reserved for future use.

• Direct grouping: With a direct grouping, the source stream decides which 
component will receive a given tuple by calling the emitDirect() method.  
It and can only be used on streams that have been declared direct streams.

• Local or shufle grouping: The local or shufle grouping is similar to the 
shufle grouping but will shufle tuples among bolt tasks running in the same 
worker process, if any. Otherwise, it will fall back to the shufle grouping 
behavior. Depending on the parallelism of a topology, the local or shufle 
grouping can increase topology performance by limiting network transfer.

In addition to the predeined groupings, you can deine your own stream grouping 
by implementing the CustomStreamGrouping interface:

public interface CustomStreamGrouping extends Serializable {
    
void prepare(WorkerTopologyContext context, 
GlobalStreamId stream, List<Integer> targetTasks);
    
List<Integer> chooseTasks(int taskId, List<Object> values); 
}

http:///


Distributed Word Count

[ 28 ]

The prepare() method is called at runtime to initiate the grouping with information 
the grouping implementation can use to make decisions on how to group tuples 
to receiving tasks. The WorkerTopologyContext object provides contextual 
information about the topology, and the GlobalStreamId object provides metadata 
about the stream being grouped on. The most useful parameter is targetTasks, 
which is a list of all the task identiiers the grouping needs to take into account.  
You will usually want to store the targetTasks parameter as an instance variable  
for reference in the implementation of the chooseTasks() method.

The chooseTasks() method returns a list of task identiiers to which a tuple should 
be sent. Its parameters are the task identiier of the component emitting the tuple and 
the values of the tuple.

To illustrate the importance of stream groupings, let's introduce a bug into our 
topology. Begin by modifying the nextTuple() method of SentenceSpout so it only 
emits each sentence once:

public void nextTuple() {

        if(index < sentences.length){

            this.collector.emit(new Values(sentences[index]));

            index++;

        }

        Utils.waitForMillis(1);

    }

Now run the topology to get the following output:

--- FINAL COUNTS ---

a : 2

ate : 2

beverages : 2

cold : 2

cow : 2

dog : 4

don't : 4

fleas : 4

has : 2

have : 2

homework : 2

i : 6

like : 4

man : 2

my : 4

the : 2

think : 2

--------------

http:///


Chapter 1

[ 29 ]

Now change the ield grouping on the CountBolt parameter to a shufle grouping 
and rerun the topology:

builder.setBolt(COUNT_BOLT_ID, countBolt, 4)

                .shuffleGrouping(SPLIT_BOLT_ID);

The output should look like the following:

--- FINAL COUNTS ---

a : 1

ate : 2

beverages : 1

cold : 1

cow : 1

dog : 2

don't : 2

fleas : 1

has : 1

have : 1

homework : 1

i : 3

like : 1

man : 1

my : 1

the : 1

think : 1

--------------

Our counts are off because the CountBolt parameter is stateful: it maintains a count 
for each word it's seen. In this case, the accuracy of our computation depends on the 
ability to group based on a tuple's content when components have been parallelized. 
The bug we introduced will only be manifested if the parallelism of the CountBolt 
parameter is greater than one. This underscores the importance of testing topologies 
with various parallelism conigurations.

In general, you should avoid storing state information in a bolt 
since any time a worker fails and/or has its tasks reassigned, that 
information will be lost. One solution is to periodically take a 
snapshot of state information to a persistent store, such as a database, 
so it can be restored if a task is reassigned.

http:///


Distributed Word Count

[ 30 ]

Guaranteed processing
Storm provides an API that allows you to guarantee that a tuple emitted by a spout is 
fully processed. So far in our example, we've not worried about failures. We've seen 
that a spout stream can be split and can generate any number of streams in a topology, 
depending on the behavior of downstream bolts. What happens in the event of a 
failure? As an example, consider a bolt that persists information to tuple data based on 
a database. How do we handle situations where the database update fails?

Reliability in spouts
In Storm, guaranteed message processing begins with the spout. A spout that 
supports guaranteed processing needs a way to keep track of tuples it has emitted 
and be prepared to re-emit a tuple if downstream processing of that tuple, or any 
child tuples, fails. A child tuple can be thought of as any tuple emitted as a result of 
a tuple originating from a spout. Another way to look at it is to consider the spout's 
stream(s) as the trunk of a tuple tree (shown in the following diagram):

Spout

Bolt
Bolt

Bolt

Bolt

Bolt

Bolt

Bolt Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Tuple tree

In the preceding diagram, the solid lines represent the original trunk tuples emitted 
by a spout, and the dotted lines represent tuples derived from the original tuple. 
The resulting graph represents the tuple tree. With guaranteed processing, each 
bolt in the tree can either acknowledge (ack) or fail a tuple. If all bolts in the tree 
acknowledge tuples derived from the trunk tuple, the spout's ack method will be 
called to indicate that message processing is complete. If any of the bolts in the tree 
explicitly fail a tuple, or if processing of the tuple tree exceeds the time-out period, 
the spout's fail method will be called.

http:///


Chapter 1

[ 31 ]

Storm's ISpout interface deines three methods involved in the reliability API: 
nextTuple, ack, and fail.

public interface ISpout extends Serializable {

    void open(Map conf, TopologyContext context, SpoutOutputCollector 
collector);

    void close();

    void nextTuple();

    void ack(Object msgId);

    void fail(Object msgId);

}

As we've seen before, when Storm requests that a spout emit a tuple, it calls the 
nextTuple() method. The irst step in implementing guaranteed processing is to 
assign the outbound tuple a unique ID and pass that value to the emit() method  
of SpoutOutputCollector:

collector.emit(new Values("value1", "value2") , msgId);

Assigning the tuple a message ID tells Storm that a spout would like to receive 
notiications either when the tuple tree is completed or if it fails at any point. If 
processing succeeds, the spout's ack() method will be called with the message ID 
assigned to the tuple. If processing fails or times out, the spout's fail method will  
be called.

Reliability in bolts
Implementing a bolt that participates in guaranteed processing involves two steps:

1. Anchoring to an incoming tuple when emitting a derived tuple.

2. Acknowledging or failing tuples that have been processed successfully or 
unsuccessfully, respectively.

Anchoring to a tuple means that we are creating a link between an incoming tuple 
and derived tuples such that any downstream bolts are expected to participate in the 
tuple tree by acknowledging the tuple, failing the tuple, or allowing it to time out.

You can anchor to a tuple (or a list of tuples) by calling one of the overloaded emit 
methods of OutputCollector:

collector.emit(tuple, new Values(word));

http:///


Distributed Word Count

[ 32 ]

Here, we're anchoring to the incoming tuple and emitting a new tuple that 
downstream bolts should acknowledge or fail. An alternative form of the emit 
method will emit unanchored tuples:

collector.emit(new Values(word));));

Unanchored tuples do not participate in the reliability of a stream. If an unanchored 
tuple fails downstream, it will not cause a replay of the original root tuple.

After successfully processing a tuple and optionally emitting new or derived tuples, 
a bolt processing a reliable stream should acknowledge the inbound tuple:

this.collector.ack(tuple);

If tuple processing fails in such a way that the spout must replay (re-emit) the tuple, 
the bolt should explicitly fail the tuple:

this.collector.fail(tuple)

If tuple processing fails as a result of a time out or through an explicit call, the 
OutputCollector.fail() method, the spout that emitted the original tuple,  
will be notiied, allowing it to re-emit the tuple, as you'll see shortly.

Reliable word count
To further illustrate reliability, let's begin by enhancing the SentenceSpout class to 
make it support guaranteed delivery. It will need to keep track of all tuples emitted 
and assign each one a unique ID. We'll use a HashMap<UUID, Values> object to store 
the tuples that are pending. For each tuple we emit, we'll assign a unique identiier 
and store it in our map of pending tuples. When we receive an acknowledgement, 
we'll remove the tuple from our pending list. On failure, we'll replay the tuple:

public class SentenceSpout extends BaseRichSpout {

    

    

    private ConcurrentHashMap<UUID, Values> pending;

    private SpoutOutputCollector collector;

    private String[] sentences = {

        "my dog has fleas",

        "i like cold beverages",

        "the dog ate my homework",

        "don't have a cow man",

        "i don't think i like fleas"

    };

http:///


Chapter 1

[ 33 ]

    private int index = 0;

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("sentence"));

    }

    public void open(Map config, TopologyContext context, 

            SpoutOutputCollector collector) {

        this.collector = collector;

        this.pending = new ConcurrentHashMap<UUID, Values>();

    }

    public void nextTuple() {

        Values values = new Values(sentences[index]);

        UUID msgId = UUID.randomUUID();

        this.pending.put(msgId, values);

        this.collector.emit(values, msgId);

        index++;

        if (index >= sentences.length) {

            index = 0;

        }

        Utils.waitForMillis(1);

    }

    public void ack(Object msgId) {

        this.pending.remove(msgId);

    }

    public void fail(Object msgId) {

        this.collector.emit(this.pending.get(msgId), msgId);

    }    

}

Modifying the bolts to provide guaranteed processing simply involves anchoring 
outbound tuples to the incoming tuple and then acknowledging the inbound tuple:

public class SplitSentenceBolt extends BaseRichBolt{

    private OutputCollector collector;

    public void prepare(Map config, TopologyContext context, 
OutputCollector collector) {

        this.collector = collector;

    }

www.allitebooks.com

http:///
http://www.allitebooks.org


Distributed Word Count

[ 34 ]

    public void execute(Tuple tuple) {

        String sentence = tuple.getStringByField("sentence");

        String[] words = sentence.split(" ");

        for(String word : words){

            this.collector.emit(tuple, new Values(word));

        }

        this.collector.ack(tuple);

    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {

        declarer.declare(new Fields("word"));

    }

}

Summary
In this chapter, we've built a simple distributed computation application using 
Storm's core API and covered a large part of Storm's feature set, all without even 
installing Storm or setting up a cluster. Storm's local mode is powerful in terms of 
productivity and ease of development, but to see Storm's true power and horizontal 
scalability, you'll want to deploy applications to a real cluster.

In the next chapter, we'll walk through the process of installing and setting up a 
clustered Storm environment and deploying topologies in a distributed environment.

http:///


Coniguring Storm Clusters
In this chapter, you'll take a deeper look at the Storm technology stack, its software 
dependencies, and the process of setting up and deploying it to a Storm cluster.

We will begin by installing Storm in the pseudo-distributed mode where all 
components are collocated on the same machine, rather than distributed across 
multiple machines. Once you have an understanding of the basic steps involved in 
installing and coniguring Storm, we will move on to automating these processes 
using the Puppet provisioning tool, which will greatly reduce the time and effort 
required to set up a multi-node cluster.

Speciically, we will cover:

• The various components and services that compose a cluster

• The Storm technology stack

• Installing and coniguring Storm on Linux
• Storm's coniguration parameters
• Storm's command-line interface

• Using the Puppet provisioning tool to automate the installation

http:///


Coniguring Storm Clusters

[ 36 ]

Introducing the anatomy of a Storm 

cluster
Storm clusters follow a master/slave architecture similar to distributed computing 
technologies such as Hadoop but with slightly different semantics. In a master/slave 
architecture, there is typically a master node that is either statically assigned through 
coniguration or dynamically elected at runtime. Storm uses the former approach. 
While the master/slave architecture can be criticized as a setup that introduces a 
single point of failure, we'll show that Storm is semi-tolerant of a master node failure.

A Storm cluster consists of one master node (called nimbus) and one or more worker 
nodes (called supervisors). In addition to the nimbus and supervisor nodes, Storm 
also requires an instance of Apache ZooKeeper, which itself may consist of one or 
more nodes as shown in the following diagram:

Nimbus Zookeeper

Supervisor Supervisor Supervisor Supervisor

Both the nimbus and supervisor processes are daemon processes provided by Storm 
and do not need to be isolated from individual machines. In fact, it is possible to 
create a single-node pseudo-cluster with the nimbus, supervisor, and ZooKeeper 
processes all running on the same machine.

Understanding the nimbus daemon
The nimbus daemon's primary responsibility is to manage, coordinate, and monitor 
topologies running on a cluster, including topology deployment, task assignment, 
and task reassignment in the event of a failure.

http:///


Chapter 2

[ 37 ]

Deploying a topology to a Storm cluster involves submitting the prepackaged 
topology JAR ile to the nimbus server along with topology coniguration 
information. Once nimbus has received the topology archive, it in turn distributes 
the JAR ile to the necessary number of supervisor nodes. When the supervisor nodes 
receive the topology archive, nimbus then assigns tasks (spout and bolt instances) 
to each supervisor and signals them to spawn the necessary workers to perform the 
assigned tasks.

Nimbus tracks the status of all supervisor nodes and the tasks assigned to each.  
If nimbus detects that a speciic supervisor node has failed to heartbeat or has 
become unavailable, it will reassign that supervisor's tasks to other supervisor  
nodes in the cluster.

As mentioned earlier, nimbus is not a single point of failure in the strictest sense. 
This quality is due to the fact that nimbus does not take part in topology data 
processing, rather it merely manages the initial deployment, task assignment,  
and monitoring of a topology. In fact, if a nimbus daemon dies while a topology is 
running, the topology will continue to process data as long as the supervisors and 
workers assigned with tasks remain healthy. The main caveat is that if a supervisor 
fails while nimbus is down, data processing will fail since there is no nimbus daemon  
to reassign the failed supervisor's tasks to another node.

Working with the supervisor daemon
The supervisor daemon waits for task assignments from nimbus and spawns and 
monitors workers (JVM processes) to execute tasks. Both the supervisor daemon 
and the workers it spawns are separate JVM processes. If a worker process spawned 
by a supervisor exits unexpectedly due to an error (or even if the process is being 
forcibly terminated with the UNIX kill -9 or Windows taskkill command), the 
supervisor daemon will attempt to respawn the worker process.

At this point, you may be wondering how Storm's guaranteed delivery features  
it into its fault tolerance model. If a worker or even an entire supervisor node fails, 
how does Storm guarantee the delivery of the tuples that were in process at the  
time of failure?

The answer lies in Storm's tuple anchoring and acknowledgement mechanism.  
When reliable delivery is enabled, tuples routed to the task on the failed node will 
not be acknowledged, and the original tuple will eventually be replayed by the spout 
after it is timed out. This process will repeat until the topology has recovered and 
normal processing has resumed.

http:///


Coniguring Storm Clusters

[ 38 ]

Introducing Apache ZooKeeper
ZooKeeper provides a service for maintaining centralized information in a distributed 
environment using a small set of primitives and group services. It has a simple yet 
powerful distributed synchronization mechanism that allows client applications to 
watch or subscribe to individual data or sets of data and receive notiications when 
that data is created, updated, or modiied. Using common ZooKeeper patterns 
or recipes, developers can implement a number of different constructs needed by 
distributed applications such as leader election, distributed locks and queues.

Storm uses ZooKeeper primarily to coordinate state information such as task 
assignments, worker status, and topology metrics between nimbus and supervisors 
in a cluster. Nimbus and supervisor node communication is largely handled through 
a combination of ZooKeeper's state modiications and watch notiications.

Storm's use of ZooKeeper is relatively lightweight by design and does not incur  
a heavy resource burden. For heavier-weight data transfer operations, such as a 
one-time (at deployment time) transfer of topology JAR iles, Storm relies on Thrift 
for communication. And as we'll see, data transfer operations between components 
in a topology—where performance matters most—is handled at a low level and 
optimized for performance.

Working with Storm's DRPC server
A common pattern among Storm applications involves the desire to leverage Storm's 
parallelization and distributed computation capabilities within a request-response 
paradigm where a client process or application submits a request and waits for a 
response synchronously. While such a paradigm may seem to counter the highly 
asynchronous, long-lived nature of a typical Storm topology, Storm includes a 
transactional capability that enables such a use case.

DRPC
Server

DRPC
Server

DRPC
Spout

DRPC
Bolt

Topology

"args"
"result"

[ request-id , result ]" " " "

[ request-id , args , return-info ]" " " " " "

http:///


Chapter 2

[ 39 ]

To enable this functionality, Storm uses the combination of an extra service (Storm 
DRPC) and a specialized spout and bolt that work together to provide a highly 
scalable Distributed RPC capability.

The use of Storm's DRPC capability is entirely optional. DRPC server nodes are only 
necessary when a Storm application leverages this functionality.

Introducing the Storm UI
Storm UI is an optional, but very useful, service that provides a web-based GUI to 
monitor Storm clusters and manage the running topologies to a certain degree. The 
Storm UI provides statistics for a given Storm cluster and its deployed topologies 
and is very useful when monitoring and tuning cluster and topology performance.

http:///


Coniguring Storm Clusters

[ 40 ]

Storm UI only reports information gleaned from the nimbus thrift API and does not 
impart any other functionality to a Storm cluster. The Storm UI service can be started 
and stopped at any time without affecting any topology or cluster functionality and 
is in that respect completely stateless. It can also be conigurated to start, stop, pause, 
and rebalance topologies for easy management.

Introducing the Storm technology stack
Before we jump into installing Storm, let's take a look at the technologies with which 
Storm and topologies are built.

Java and Clojure
Storm runs on the Java Virtual Machine and is written with a roughly equal 
combination of Java and Clojure. Storm's primary interfaces are deined in Java, with 
the core logic being implemented mostly in Clojure. In addition to JVM languages, 
Storm uses Python to implement the Storm executable. Beyond those languages, 
Storm is a highly polyglot-friendly technology due in part to the fact that a number 
of its interfaces use Apache Thrift.

The components of Storm topologies (spouts and bolts) can be written in 
virtually any programming language supported by the operating system on 
which it's installed. JVM language implementations can run natively, and other 
implementations are possible through JNI and Storm's multilang protocol.

Python
All Storm daemons and management commands are run from a single executable ile 
written in Python. This includes the nimbus and supervisor daemons, and as we'll 
see, all the commands to deploy and manage topologies. It is for this reason that a 
properly conigured Python interpreter be installed on all machines participating in a 
Storm cluster as well as any workstation used for management purposes.

Installing Storm on Linux
Storm was originally designed to run on Unix-style operating systems, but as of 
Version 0.9.1, it supports deployment on Windows as well.

For our purposes, we will be using Ubuntu 12.04 LTS for its relative ease of use. We'll 
use the server version which by default does not include a graphical user interface 
since we won't need or use it. The Ubuntu 12.04 LTS server can be downloaded from 
http://releases.ubuntu.com/precise/ubuntu-12.04.2-server-i386.iso.

http:///


Chapter 2

[ 41 ]

The instructions that follow the command work equally well on both the actual 
hardware as well as virtual machines. For the purpose of learning and development, 
you will likely ind it much more convenient to work with virtual machines, 
especially if you don't have several networked computers readily available.

Virtualization software is readily available for OSX, Linux, and Windows.  
We recommend any one of the following software options:

• VMWare (OSX, Linux, and Windows)

This software would need to be purchased. It is available at http://www.
vmware.com.

• VirtualBox (OSX, Linux, and Windows)

This software is available for free.  It is available at https://www.
virtualbox.org.

• Parallels Desktop (OSX)

This software would need to be purchased. It is available at http://www.
parallels.com.

Installing the base operating system
You can begin by booting from the Ubuntu installation disk (or disk image) and 
follow the onscreen instructions for a basic installation. When the Package Selection 
screen comes up, choose the option to install OpenSSH Server. This package will 
allow you to use ssh to remotely log into the server. In all other cases, you can 
simply accept the default options unless you choose to make modiications speciic  
to your hardware.

By default, the primary user under Ubuntu will have administrative (sudo) 
privileges. If you are using a different user account or Linux distribution,  
make sure your account has administration privileges.

Installing Java
First, install a JVM. Storm is known to work with Java 1.6 and 1.7 JVMs from both  
the open source OpenJDK and Oracle. In this example, we'll update the apt 
repository information and install the OpenJDK distribution of Java 1.6:

sudo apt-get update

sudo apt-get --yes install openjdk-6-jdk

http:///


Coniguring Storm Clusters

[ 42 ]

ZooKeeper installation
For our single-node pseudo-cluster, we'll install ZooKeeper alongside all other Storm 
components. Storm currently requires Version 3.3.x, so we'll install that version 
rather than the latest one using the following command:

sudo apt-get --yes install zookeeper=3.3.5* zookeeperd=3.3.5*

This command will install both the ZooKeeper binaries as well as the service scripts 
to start and stop ZooKeeper. It will also create a cron job that will periodically purge 
old ZooKeeper transaction logs and snapshot iles, which will quickly consume  
large amounts of disk space if not purged on a regular basis as this is ZooKeeper's 
default behavior.

Storm installation
Storm's binary release distributions can be downloaded from the Storm website 
(http://storm.incubator.apache.org). The layout of the binary archives is 
geared more toward development activities than running a production system,  
so we'll make a few modiications to more closely follow UNIX conventions  
(such as logging to /var/log rather than Storm's home directory).

We begin by creating a Storm user and group. This will allow us to run the Storm 
daemons as a speciic user rather than the default or root users:

sudo groupadd storm

sudo useradd --gid storm --home-dir /home/ 
storm --create-home --shell /bin/bash storm

Next, download and unzip the Storm distribution. We'll install Storm in /usr/share 
and symlink the version-speciic directory to /usr/share/storm. This approach will 
allow us to easily install other versions and activate (or revert) the new version by 
changing a single symbolic link. We'll also link the Storm executable to /usr/bin/
storm:

sudo wget [storm download URL]

sudo unzip -o apache-storm-0.9.1-incubating.zip -d /usr/share/

sudo ln -s /usr/share/apache-storm-0.9.1-incubating /usr/share/storm

sudo ln -s /usr/share/storm/bin/storm /usr/bin/storm

http:///


Chapter 2

[ 43 ]

By default, Storm will log information to $STORM_HOME/logs rather than the /var/
log directory that most UNIX services use. To change this, execute the following 
commands to create the storm directory under /var/log/ and conigure Storm to 
write its log data there:

sudo mkdir /var/log/storm

sudo chown storm:storm /var/log/storm

sudo sed -i 's/${storm.home}\/logs/\/var\/log\/storm/ 
  g' /usr/share/storm/log4j/storm.log.properties

Finally, we'll move Storm's coniguration ile to /etc/storm and create a symbolic 
link so Storm can ind it:

sudo mkdir /etc/storm

sudo chown storm:storm /etc/storm

sudo mv /usr/share/storm/conf/storm.yaml /etc/storm/

sudo ln -s /etc/storm/storm.yaml /usr/share/storm/conf/storm.yaml

With Storm installed, we're now ready to conigure Storm and set up the Storm 
daemons so they start automatically.

Running the Storm daemons
All of the Storm daemons are fail-fast by design, meaning the process will halt 
whenever an unexpected error occurs. This allows individual components to safely 
fail and successfully recover without affecting the rest of the system.

This means that the Storm daemons need to be restarted immediately whenever 
they die unexpectedly. The technique for this is known as running a process under 
supervision, and fortunately there are a number of utilities available to perform 
this function. In fact, ZooKeeper is also a fail-fast system, and the upstart-based 
init scripts included in the ZooKeeper Debian distributions (Ubuntu is a Debian-
based distribution) provide just that functionality—if the ZooKeeper process exits 
abnormally at any time, upstart will ensure it is restarted so the cluster can recover.

While the Debian upstart system is perfect for this situation, there are simpler 
options that are also available on other Linux distributions. To keep things simple, 
we'll use the supervisor package that's readily available on most distributions. 
Unfortunately, the supervisor name collides with the name of Storm's supervisor 
daemon. To clarify this distinction, we'll refer to the non-Storm process supervision 
daemon as supervisord (note the added d at the end) in the text, even though sample 
code and commands will use the proper name without the added d.

www.allitebooks.com

http:///
http://www.allitebooks.org


Coniguring Storm Clusters

[ 44 ]

Under Debian-based Linux distributions, the supervisord package is named 
supervisor, while other distributions such as Red Hat use the name supervisord.  
To install it on Ubuntu, use the following command:

sudo apt-get --yes install supervisor

This will install and start the supervisord service. The main coniguration ile will 
be located at /etc/supervisor/supervisord.conf. Supervisord's coniguration 
ile will automatically include any iles matching the pattern *.conf in the /etc/
supervisord/conf.d/ directory, and this is where we'll place our config iles for  
to run the Storm daemons under supervision.

For each Storm daemon command we want to run under supervision, we'll create  
a coniguration ile that contains the following:

• A unique (within the supervisord coniguration) name for the service  
under supervision.

• The command to run.

• The working directory in which to run the command.

• Whether or not the command/service should be automatically restarted  
if it exits. For fail-fast services, this should always be true.

• The user that will own the process. In this case, we will run all Storm 
daemons with the Storm user as the process owner.

Create the following three iles to set up the Storm daemons to be automatically 
started (and restarted in the event of unexpected failure) by the supervisord service:

• /etc/supervisord/conf.d/storm-nimbus.conf

Use the following code to create the ile:

[program:storm-nimbus]

command=storm nimbus

directory=/home/storm

autorestart=true

user=storm

• /etc/supervisord/conf.d/storm-supervisor.conf

Use the following code to create the ile:

[program:storm-supervisor]

command=storm supervisor

directory=/home/storm

autorestart=true

user=storm

http:///


Chapter 2

[ 45 ]

• /etc/supervisord/conf.d/storm-ui.conf

Use the following code to create the ile:

[program:storm-ui]

command=storm ui

directory=/home/storm

autorestart=true

user=storm

Once those iles have been created, stop and start the supervisord service with the 
following commands:

sudo /etc/init.d/supervisor stop

sudo /etc/init.d/supervisor start

The supervisord service will load the new conigurations and start the Storm 
daemons. Wait a moment or two for the Storm services to start and then verify the 
Storm pseudo-cluster is up and running by visiting the following URL in a web 
browser (replace localhost with the host name or IP address of the actual machine):

http://localhost:8080

This will bring up the Storm UI graphical interface. It should indicate that the cluster 
is up with one supervisor node running with four available worker slots and no 
topologies are running (we'll deploy a topology to the cluster later).

If for some reason the Storm UI does not come up or fails to show an active 
supervisor in the cluster, check the following log iles for errors:

• Storm UI: Check the ui.log ile under /var/log/storm to check for errors

• Nimbus: Check the nimbus.log ile under /var/log/storm to check for errors

• Supervisor: Check the supervisor.log ile under /var/log/storm to check 
for errors

So far, we've relied on the default Storm coniguration that defaults to using 
localhost for many cluster hostname parameters such as the ZooKeeper hosts as 
well as the location of the nimbus master. This is ine for a single-node pseudo-cluster 
where everything runs on the same machine, but setting up a real multi-node cluster 
requires overriding the default values. Next, we'll explore the various coniguration 
options Storm provides and how they affect the behavior of a cluster and  
its topologies.

http:///


Coniguring Storm Clusters

[ 46 ]

Coniguring Storm
Storm's coniguration consists of a series of YAML properties. When a Storm daemon 
starts, it loads the default values and then loads the storm.yaml (which we've 
symlinked to /etc/storm/storm.yaml) ile under $STORM_HOME/conf/, substituting 
any values found there with the defaults.

The listing below provides a minimal storm.yaml ile with entries that you must 
override:

# List of hosts in the zookeeper cluster

storm.zookeeper.servers:

    - "localhost"

# hostname of the nimbus node

nimbus.host: "localhost"

# supervisor worker ports

supervisor.slots.ports:

    - 6700

    - 6701

    - 6702

    - 6703

# where nimbus and supervisors should store state data

storm.local.dir: "/home/storm"

# List of hosts that are Storm DRPC servers (optional)

# drpc.servers:

#    - "localhost"

Mandatory settings
The following settings are mandatory for coniguring working, multihost Storm 
clusters.

• storm.zookeeper.servers: This setting is a list of the hostnames in the 
ZooKeeper cluster. Since we're running a single node ZooKeeper on the  
same machine as the other Storm daemons, the default value of localhost  
is acceptable.

http:///


Chapter 2

[ 47 ]

• nimbus.host: This is the hostname of the cluster's nimbus node. Workers 
need to know which node is the master in order to download topology JAR 
iles and conigurations.

• supervisor.slots.ports: This setting controls how many worker processes 
run on a supervisor node. It is deined as a list of port numbers that the 
workers will listen on, and the number of port numbers listed will control 
how many worker slots are available on the supervisor node. For example,  
if we have a cluster with three supervisor nodes, and each node is conigured 
with three ports, the cluster will have a total of nine (3 * 3 = 9) worker  
slots. By default, Storm will use ports 6700-6703, a total of four slots per 
supervisor node.

• storm.local.dir: Both the nimbus and supervisor daemons store a small 
amount of transient state information as well as JAR and coniguration 
iles required by workers. This setting determines where the nimbus and 
supervisor processes will store that information. The directory speciied 
here must exist with appropriate permissions so the process owner (in our 
case, the Storm user) can read and write to the directory. The contents of this 
directory must persist as long as the cluster is running, so it is best to avoid 
using /tmp where the contents might be deleted by the operating system.

Optional settings
In addition to the settings that are mandatory for an operational cluster, there are 
several other settings that you may ind necessary to override. Storm coniguration 
settings follow a dotted naming convention where the preix identiies the category 
of the setting; this is shown in the following table:

Prefix Category

storm.* General configuration

nimbus.* Nimbus configuration

ui.* Storm UI configuration

drpc.* DRPC server configuration

supervisor.* Supervisor configuration

worker.* Worker configuration

zmq.* ZeroMQ configuration

topology.* Topology configuration

http:///


Coniguring Storm Clusters

[ 48 ]

For a complete list of the default coniguration settings that are available, take a 
look at the defaults.yaml ile in the Storm source code (https://github.com/
nathanmarz/storm/blob/master/conf/defaults.yaml). Some of the more 
frequently overridden settings are outlined as follows:

• nimbus.childopts (default: "-Xmx1024m"): This setting is a list of JVM 
options that will be added to the Java command line when starting the 
nimbus daemon.

• ui.port (default: 8080): This speciies the listening port for the Storm UI web 
server.

• ui.childopts (default: "-Xmx1024m"): This speciies the JVM options that 
will be added to the Java command line when starting the Storm UI service.

• supervisor.childopts (default: "-Xmx1024m"): This speciies the JVM 
options that will be added to the Java command line when starting the 
supervisor daemon.

• worker.childopts (default: "-Xmx768m"): This speciies the JVM options 
that will be added to the Java command line when starting worker processes.

• topology.message.timeout.secs (default: 30): This conigures the 
maximum amount of time (in seconds) for a tuple's tree to be acknowledged 
(fully processed) before it is considered failed (timed out). Setting this value 
too low may cause tuples to be replayed repeatedly. For this setting to take 
effect, a spout must be conigured to emit anchored tuples.

• topology.max.spout.pending (default: null): With the default value of null, 
Storm will stream tuples from a spout as fast as the spout can produce them. 
Depending on the execute latency of downstream bolts, the default behavior 
can overwhelm the topology, leading to message timeouts. Setting this value 
to a non-null number greater than 0 will cause Storm to pause streaming 
tuples from spouts until the number of outstanding tuples falls below that 
number, essentially throttling the spout. This setting, along with topology.
message.timeout.secs, are two of the most important parameters when 
tuning a topology for performance.

• topology.enable.message.timeouts (default: true): This sets the timeout 
behavior for anchored tuples. If false, anchored tuples will not time out. Use 
this setting with care. Consider altering topology.message.timeout.secs 
before setting this to false. For this setting to take effect, a spout must be 
conigured to emit anchored tuples.

http:///


Chapter 2

[ 49 ]

The Storm executable
The Storm executable is a multipurpose command used for everything from 
launching Storm daemons to performing topology management functions, such as 
deploying new topologies to a cluster, or simply running a topology in local mode 
during development and testing phases.

The basic syntax for the Storm command is as follows:

storm [command] [arguments...]

Setting up the Storm executable on a 

workstation
For running Storm commands that connect to a remote cluster, you will need to have 
the Storm distribution installed locally. Installing the distribution on a workstation 
is simple; just unzip the Storm distribution archive and add the Storm bin directory 
($STORM_HOME/bin) to your PATH environment variable. Next, create the storm.yaml 
ile under ~/.storm/ with a single line that tells Storm where to ind the nimbus 
server for the cluster with which you want to interact:

Sample: ~/.storm/storm.yaml file.

nimbus.host: "nimbus01."

In order for a Storm cluster to operate properly, it is imperative that the 
IP address name resolution be set up properly, either through the DNS 
system or entries in the hosts ile under /etc.

While it is possible to use IP addresses instead of hostnames throughout 
Storm's coniguration, using the DNS system is preferred.

The daemon commands
Storm's daemon commands are used to launch Storm services, and should be run 
under supervision so they are relaunched in the event of unexpected failures. When 
starting, Storm daemons read coniguration from $STORM_HOME/conf/storm.yaml. 
Any coniguration parameters in this ile will override Storm's built-in defaults.

http:///


Coniguring Storm Clusters

[ 50 ]

Nimbus
Usage: storm nimbus

This launches the nimbus daemon.

Supervisor
Usage: storm supervisor

This launches the supervisor daemon.

UI
Usage: storm ui

This launches the Storm UI daemon that provides a web-based UI for monitoring  
Storm clusters.

DRPC
Usage: storm drpc

This launches the DRPC daemon.

The management commands
Storm's management commands are used to deploy and manage topologies running 
in a cluster. Management commands typically, but not necessarily, run from a 
workstation outside of the Storm cluster. They communicate to the nimbus Thrift 
API and thus need to know the hostname of the nimbus node. The management 
commands look for coniguration from the ~/.storm/storm.yaml ile, and Storm's 
jars are appended to the classpath. The only required coniguration parameter is the 
hostname of the nimbus node:

nimbus.host: "nimbus01"

Jar
Usage: storm jar topology_jar topology_class [arguments...]

The jar command is used to submit a topology to a cluster. It runs the main() 
method of topology_class with the speciied arguments and uploads the 
topology_jar ile to nimbus for distribution to the cluster. Once submitted,  
Storm will activate the topology and start processing.

http:///


Chapter 2

[ 51 ]

The main() method in the topology class is responsible for calling the 
StormSubmitter.submitTopology() method and supplying a unique (within the 
cluster) name for the topology. If a topology with that name already exists on the 
cluster, the jar command will fail. It is common practice to specify the topology 
name in the command-line arguments so that the topology can be named at the  
time of submission.

Kill
Usage: storm kill topology_name [-w wait_time]

The kill command is used to undeploy. It kills the topology with the name 
topology_name. Storm will irst deactivate the topology's spouts for the duration 
of the topology's conigured topology.message.timeout.secs to allow all tuples 
actively being processed to complete. Storm will then halt the workers and attempt 
to clean up any saved states. Specifying a wait time with the -w switch will override 
topology.message.timeout.secs with the speciied interval.

The functionality of the kill command is also available in the Storm UI.

Deactivate
Usage: storm deactivate topology_name

The deactivate command tells Storm to stop streaming tuples from the speciied 
topology's spouts.

Topologies can also be deactivated from the Storm UI.

Activate
Usage: storm activate topology_name

The activate command tells Storm to resume streaming tuples from the speciied 
topology's spouts.

Topologies can also be reactivated from the Storm UI.

Rebalance
Usage: storm rebalance topology_name [-w wait_time] [-n worker_count] 
[-e component_name=executer_count]...

http:///


Coniguring Storm Clusters

[ 52 ]

The rebalance command instructs Storm to redistribute tasks among workers in a 
cluster without killing and resubmitting the topology. For example, this might be 
necessary when a new supervisor node has been added to a cluster—since it is a new 
node, none of the tasks of existing topologies would have been assigned to workers 
on that node.

The rebalance command also allows you to alter the number of workers assigned to 
a topology and change the number of executors assigned to a given task with the -n 
and -e switches respectively.

When the rebalance command is run, Storm will irst deactivate the topology, wait 
for the conigured time for outstanding tuples to inish processing, then redistribute 
workers evenly among supervisor nodes. After rebalancing, Storm will return 
the topology to its previous activation state (that is, if it was activated, Storm will 
reactivate it and vice versa).

The following example will rebalance the topology with the name wordcount-
topology with a waiting time of 15 seconds, assign ive workers to the topology, and 
set sentence-spout and split-bolt to use 4 and 8 executor threads respectively:

storm rebalance wordcount-topology -w 15 -n 5 -e  
  sentence-spout=4 -e split-bolt=8

Remoteconfvalue
Usage: storm remoteconfvalue conf-name

The remoteconfvalue command is used to look up a coniguration parameter on a 
remote cluster. Note that this applies to the global cluster coniguration and does not 
take into account individual overrides made at the topology level.

Local debug/development commands
Storm's local commands are utilities for debugging and testing. Like the 
management commands, Storm's debug commands read ~/.storm/storm.yaml  
and use those values to override Storm's built-in defaults.

REPL
Usage: storm repl

The repl command opens a Clojure REPL session conigured with Storm's  
local classpath.

http:///


Chapter 2

[ 53 ]

Classpath
Usage: storm classpath

The classpath command prints the classpath used by the Storm client.

Localconfvalue
Usage: storm localconfvalue conf-name

The localconfvalue command looks up a coniguration key from the consolidated 
coniguration, that is, from ~/.storm/storm.yaml and Storm's built-in defaults.

Submitting topologies to a Storm cluster
Now that we have a running cluster, let's revisit our earlier word count example and 
modify it so we can deploy it to a cluster as well as run it in local mode. The previous 
example used Storm's LocalCluster class to run in local mode:

LocalCluster cluster = new LocalCluster();

            cluster.submitTopology(TOPOLOGY_NAME, config, builder.
createTopology());

Submitting a topology to a remote cluster is simply a matter of using Storm's 
StormSubmitter class, which exposes a method with the same name and signature:

StormSubmitter.submitTopology(TOPOLOGY_NAME, config,  
  builder.createTopology());

When developing Storm topologies, you usually aren't going to want to change code 
and recompile them to switch between running in local mode and deploying to a 
cluster. The standard way to handle this is to add an if/else block that makes that 
determination based on a command-line argument. In our updated example, if there 
are no command line arguments, we run the topology in local mode; otherwise, we 
use the irst argument as the topology name and submit it to the cluster, as shown in 
the following code:

public class WordCountTopology {

    private static final String SENTENCE_SPOUT_ID =  
    "sentence-spout";

    private static final String SPLIT_BOLT_ID = "split-bolt";

    private static final String COUNT_BOLT_ID = "count-bolt";

    private static final String REPORT_BOLT_ID = "report-bolt";

www.allitebooks.com

http:///
http://www.allitebooks.org


Coniguring Storm Clusters

[ 54 ]

    private static final String TOPOLOGY_NAME =  
    "word-count-topology";

    public static void main(String[] args) throws Exception {

        SentenceSpout spout = new SentenceSpout();

        SplitSentenceBolt splitBolt = new SplitSentenceBolt();

        WordCountBolt countBolt = new WordCountBolt();

        ReportBolt reportBolt = new ReportBolt();

        TopologyBuilder builder = new TopologyBuilder();

        builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);

        // SentenceSpout --> SplitSentenceBolt

        builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2)

                .setNumTasks(4)

                .shuffleGrouping(SENTENCE_SPOUT_ID);

        // SplitSentenceBolt --> WordCountBolt

        builder.setBolt(COUNT_BOLT_ID, countBolt, 4)

                .fieldsGrouping(SPLIT_BOLT_ID,  
                new Fields("word"));

        // WordCountBolt --> ReportBolt

        builder.setBolt(REPORT_BOLT_ID, reportBolt)

                .globalGrouping(COUNT_BOLT_ID);

        Config config = new Config();

        config.setNumWorkers(2);

        if(args.length == 0){

            LocalCluster cluster = new LocalCluster();

            cluster.submitTopology(TOPOLOGY_NAME, config,  
            builder.createTopology());

            waitForSeconds(10);

            cluster.killTopology(TOPOLOGY_NAME);

            cluster.shutdown();

        } else{

            StormSubmitter.submitTopology(args[0],  
            config, builder.createTopology());

        }

    }

}

http:///


Chapter 2

[ 55 ]

To deploy the updated word count topology to a running cluster, irst perform a 
Maven build in the Chapter 2 source code directory:

mvn clean install

Next, run the storm jar command to deploy the topology:

storm jar ./target/Chapter1-1.0-SNAPSHOT.jar  
  storm.blueprints.chapter1.WordCountTopology wordcount-topology

When the command completes, you should see the topology become active in the 
Storm UI and be able to click on the topology name to drill down and view the 
topology statistics.

http:///


Coniguring Storm Clusters

[ 56 ]

Automating the cluster coniguration
So far, we've conigured a single-node pseudo-cluster manually from the command 
line. While this approach certainly works with small clusters, it will quickly become 
untenable as the cluster size increases. Consider the situation where one needs to 
conigure clusters consisting of tens, hundreds, or even thousands of nodes. The 
coniguration tasks can be automated using shell scripts, but even a shell script-
based automation solution is questionable in terms of scalability.

Fortunately, there are a number of technologies available to help address the issue 
of coniguration and provisioning of large numbers of managed servers. Both Chef 
and Puppet offer a declarative approach to coniguration that allows you to deine 
states (that is, what packages are installed and how they are conigured) as well as 
classes of machines (for example, an Apache web server class machine needs to have 
the Apache httpd daemon installed).

Automating the process of provisioning and coniguring servers is a very broad 
topic that is far beyond the scope of this book. For our purposes, we will use Puppet 
and leverage a subset of its functionality in the hope that it will provide a basic 
introduction to the topic and encourage further exploration.

A rapid introduction to Puppet
Puppet (https://puppetlabs.com) is an IT automation framework that helps 
system administrators manage large network infrastructure resources using a 
lexible, declarative approach to IT automation.

At the heart of Puppet is the concept of a manifest that describes the desired state  
of an infrastructure resource. In Puppet terms, a state can include the following:

• Which software packages are installed

• Which services are running and which aren't

• Software coniguration details

Puppet manifests
Puppet uses a declarative Ruby-based DSL to describe system coniguration  
in collections of iles known as manifests. An example Puppet manifest for 
ZooKeeper is listed as follows:

    package { 'zookeeper':

        ensure => "3.3.5*",

    }

http:///


Chapter 2

[ 57 ]

    package { 'zookeeperd':

        ensure => "3.3.5*",

        require => Package["zookeeper"],

    }

    

    service { 'zookeeperd':

        ensure => 'running',

        require => Package["zookeeperd"],

    }

This simple manifest can be used to make sure ZooKeeper is installed as a service 
and that the service is running. The irst package block tells Puppet to use the 
operating system's package manager (for example, apt-get for Ubuntu/Debian, yum 
for Red Hat, and so on) to ensure that the Version 3.3.5 of the zookeeper package is 
installed. The second package block ensures that the zookeeperd package is installed; 
it requires that the zookeeper package is already installed. Finally, the service block 
tells Puppet that it should ensure that the zookeeperd system service is running and 
that the service requires the zookeeperd package to be installed.

To illustrate how Puppet manifests translate to installed software and system's  
state, let's install Puppet and use the preceding example to install and start the 
zookeeperd service.

To get the latest version of Puppet, we need to conigure apt-get to use the Puppet 
labs repository. Execute the following commands to do so and install the latest 
version of puppet:

wget http://apt.puppetlabs.com/puppetlabs-release-precise.deb

sudo dpkg -i puppetlabs-release-precise.deb

sudo apt-get update 

Next, save the preceding example manifest to a ile named init.pp and use Puppet 
to apply the manifest:

sudo puppet apply init.pp

When the command completes, check to see whether the zookeeper service is in  
fact running:

service zookeeper status

If we were to manually stop the zookeeper service and rerun the puppet apply 
command, Puppet would not install the packages again (since they are already 
there); however, it would restart the zookeeper service since the state deined  
in the manifest deines the service as running.

http:///


Coniguring Storm Clusters

[ 58 ]

Puppet classes and modules
While standalone Puppet manifests make it easy to deine the state of an individual 
resource, such an approach can quickly become unwieldy when the number of 
resources you're managing increases.

Fortunately, Puppet has the concept of classes and modules that can be leveraged  
to better organize and isolate speciic coniguration details.

Consider a situation with Storm where we have multiple classes of nodes. For 
example, a node in a Storm cluster may be a nimbus node, a supervisor node, or 
both. Puppet classes and modules provide a way to distinguish between multiple 
coniguration roles that you can mix and match to easily deine a network resource 
that performs multiple roles.

To illustrate this capability, let's revisit the manifest we used to install the zookeeper 
package and redeine it as a class that can be reused and included in multiple class 
types and manifests:

class zookeeper {

    include 'jdk'

    package { 'zookeeper':

        ensure => "3.3.5*",

    }

    package { 'zookeeperd':

        ensure => "3.3.5*",

        require => Package["zookeeper"],

    }

    service { 'zookeeperd':

        ensure => 'running',

        require => Package["zookeeperd"],

    }

}

In the preceding example, we've redeined the zookeeper manifest to be a puppet 
class that can be used in other classes and manifests. On the second line, the 
zookeeper class includes another class, jdk, which will include the class deinition 
for a resource that will include the state necessary for a machine that requires  
a Java JDK.

http:///


Chapter 2

[ 59 ]

Puppet templates
Puppet also leverages the Ruby ERB templating system that allows you to deine 
templates for various iles that will be populated when Puppet applies a manifest 
ile. Placeholders in Puppet ERB templates are Ruby expressions and constructs that 
will be evaluated and replaced when Puppet runs. The Ruby code in ERB templates 
has full access to the Puppet variables deined in manifest iles.

Consider the following Puppet ile declaration that's used to generate the storm.
yaml coniguration ile:

    file { "storm-etc-config":

        path => "/etc/storm/storm.yaml",

        ensure => file,

        content => template("storm/storm.yaml.erb"),

        require => [File['storm-etc-config-dir'],  
          File['storm-share-symlink']],

    }

This declaration tells Puppet to create the ile, storm.yaml, under /etc/storm/ from 
the storm.yaml.erb template:

storm.zookeeper.servers:

<% @zookeeper_hosts.each do |host| -%>

     - <%= host %>

<% end -%>

nimbus.host: <%= @nimbus_host %>

storm.local.dir: <%= @storm_local_dir %>

<% if @supervisor_ports != 'none' %>

supervisor.slots.ports:

<% @supervisor_ports.each do |port| -%>

    - <%= port %>

<% end -%>

<% end %>

<% if @drpc_servers != 'none' %>

<% @drpc_servers.each do |drpc| -%>

    - <%= drpc %>

<% end -%>

<% end %>

http:///


Coniguring Storm Clusters

[ 60 ]

The conditional logic and variable expansion in the template allow us to deine a 
single ile that can be used for many environments. For example, if the environment 
we're coniguring does not have any Storm DRPC servers, then the drpc.servers 
section of the generated storm.yaml ile will be omitted.

Managing environments with Puppet Hiera
We've briely introduced the concepts of Puppet manifests, classes, and templates.  
At this point, you're probably wondering how to deine variables in a puppet class  
or manifest. Deining a variable within a puppet class or manifest is easy; simply 
deine it at the beginning of the manifest or class deinition as follows:

$java_version = "1.6.0"

Once deined, the java_version variable will be available throughout the class or 
manifest deinition as well as any ERB templates; however, there is a drawback here 
in terms of reusability. If we hard-code information such as version numbers, we're 
effectively limiting the reuse of our class by pinning it to a hard-coded value. It 
would be better if we could externalize all potentially frequently changing variables 
to make coniguration management more maintainable. This is where Hiera comes 
into play.

Introducing Hiera
Hiera is a key-value lookup tool that has been integrated into the latest version  
of the Puppet framework. Hiera allows you to deine key-value hierarchies  
(hence the name) such that keys in a parent deinition source can be overridden  
by child deinition sources.

For example, consider a situation where we are deining coniguration parameters 
for a number of machines that will participate in a Storm cluster. All machines  
will share a common set of key-values such as the version of Java we'd like to use.  
So, we'd deine those values in a ile called "common.yaml."

From there on, things start to diverge. We may have environments that are  
single-node pseudo-clusters, and we may have environments that are multi-node.  
For that, we'd like to store environment-speciic coniguration values in separate  
iles such as "single-node.yaml" and "cluster.yaml."

Finally, we'd like to store true host-speciic information in iles that follow  
the naming convenion "[hostname].yaml."

http:///


Chapter 2

[ 61 ]

common.yaml

${environment}.yaml

${hostname}.yaml

Puppet's Hiera integration allows you to do just that and use built-in Puppet 
variables to resolve ilenames appropriately.

The examples in the Chapter 2 source code directory demonstrate how to 
implement this type of organization.

A typical common.yaml ile might deine global properties common to all hosts  
and looks like the following :

storm.version: apache-storm-0.9.1-incubating

# options are oracle-jdk, openjdk

jdk.vendor: openjdk

# options are 6, 7, 8

jdk.version: 7

http:///


Coniguring Storm Clusters

[ 62 ]

At the environment level, we may want to distinguish between standalone and  
cluster conigurations, in which case a cluster.yaml ile might look like this:

# hosts entries for name resolution (template params for /etc/hosts)

hosts:

   nimbus01: 192.168.1.10

   zookeeper01: 192.168.1.11

   supervisor01: 192.168.1.12

   supervisor02: 192.168.1.13

   supervisor04: 192.168.1.14

storm.nimbus.host: nimbus01

storm.zookeeper.servers:

     - zookeeper01

storm.supervisor.slots.ports:

     - 6700

     - 6701

     - 6702

     - 6703

     - 6705

Finally, we may want to deine host-speciic parameters in iles that use the naming 
convention [hostname].yaml, and deine the Puppet classes that should be applied 
for that node.

For nimbus01.yaml, use the following code:

# this node only acts as a nimus node

classes:

    - nimbus

For zookeeper01.yaml, use the following code:

# this node is strictly a zookeeper node

classes:

    - zookeeper

http:///


Chapter 2

[ 63 ]

We've only scratched the surface of what's possible with Puppet and Hiera. The 
Chapter 2 source code directory contains additional examples and documentation 
on how to use Puppet to automate deployment and coniguration tasks.

Summary
In this chapter, we've covered the steps necessary to install and conigure Storm in 
both a single-node (pseudo-distributed) coniguration as well as a fully distributed 
multi-node coniguration. We've also introduced you to the Storm daemons and 
command line utilities used to deploy and manage running topologies.

Finally, we offered a brief introduction to the Puppet framework and showed how it 
can be used to manage multiple environment conigurations.

We'd encourage you to explore the additional code and documentation included in 
the accompanied downloads.

In the next chapter, we will introduce Trident, which is a high-level abstraction layer 
on top of Storm for transactions and state management.

http:///


http:///


Trident Topologies and 

Sensor Data
In this chapter, we will explore Trident topologies. Trident provides a higher-level 
abstraction on top of Storm. Trident abstracts away the details of transactional 
processing and state management. Speciically, Trident provides batching of tuples 
into a discrete set of transactions. Additionally, Trident provides abstractions  
that allow topologies to perform operations on the data such as functions, ilters,  
and aggregations.

We will use the sensor data as an example to gain a better understanding of Trident. 
Often, the sensor data forms streams that are read from many different locations. 
Some traditional examples include the weather or trafic information, but the pattern 
extends to a wide range of sources. For example, applications that run on cell phones 
generate a plethora of event information. Processing event streams from phones  
is another instance of sensor data processing.

The sensor data contains events emitted by many devices, often forming  
a never-ending stream. This is a perfect use case for Storm.

In this chapter, we will cover:

• Trident topologies

• Trident spouts

• Trident operations – ilters and functions
• Trident aggregators – Combiners and Reducers

• The Trident state

http:///


Trident Topologies and Sensor Data

[ 66 ]

Examining our use case
To better understand both the Trident topologies, as well as using Storm with sensor 
data, we will implement a Trident topology that collects medical reports to identify 
the outbreak of a disease.

The topology will process diagnosis events that contain the following pieces  
of information:

Latitude Longitude Timestamp Diagnosis Code (ICD9-CM)

39.9522 -75.1642 03/13/2013 at 3:30 PM 320.0 (Hemophilus meningitis)

40.3588 -75.6269 03/13/2013 at 3:50 PM 324.0 (Intracranial abscess)

Each event will include the Global Positioning System (GPS) coordinates of the 
occurrence. The latitude and longitude are speciied in the decimal format. The event 
also contains the ICD9-CM code, which indicates the diagnosis and a timestamp for 
the event. A complete list of ICD-9-CM codes are available at:

http://www.icd9data.com/.

To detect an outbreak, the system will count the occurrences of speciic disease  
codes within a geographic location over a speciied period of time. To simplify  
things for this example, we will map every diagnosis event to the closest city.  
In a real system, you would most likely perform more sophisticated geospatial 
clustering of the events.

Also, for the example, we will group the occurrences by hour since epoch. In a  
real-world system, you would most likely use a sliding window and calculate  
a trend against the moving average.

Finally, we will use a simple threshold to determine if there is an outbreak. If the 
count of occurrences for the hour is greater than some threshold, the system will 
send an alert and dispatch the National Guard.

To maintain a historical record, we will also persist the number of occurrences  
for each city, hour, and disease.

http:///


Chapter 3

[ 67 ]

Introducing Trident topologies
To fulill these requirements, we will need to count the occurrences in our topologies. 
This can be challenging while using standard Storm topologies because tuples can 
get replayed, which leads to double counting. As we will see in the next few sections, 
Trident provides primitives to solve this problem.

We will use the following topology:

DiseaseFilter

Function

DiagnosisEvent

Spout

CityAssignment

Function

HourAssignment

Function

Count

Dispatch Alert

Function

Outbreak Detector

Function

Outbreak Trend

State

.groupBy(key)

.each().each()
.each()

The code for the preceding topology is as follows:

public class OutbreakDetectionTopology {

    public static StormTopology buildTopology() {

    TridentTopology topology = new TridentTopology();

    DiagnosisEventSpout spout = new DiagnosisEventSpout();

    Stream inputStream = topology.newStream("event", spout);

    inputStream

    // Filter for critical events.

.each(new Fields("event"), new DiseaseFilter()))

            // Locate the closest city

         .each(new Fields("event"),

               new CityAssignment(), new Fields("city"))

http:///


Trident Topologies and Sensor Data

[ 68 ]

         // Derive the hour segment

         .each(new Fields("event", "city"),

               new HourAssignment(), new Fields("hour",

               "cityDiseaseHour"))

         // Group occurrences in same city and hour

         .groupBy(new Fields("cityDiseaseHour"))

         // Count occurrences and persist the results.

         .persistentAggregate(new OutbreakTrendFactory(),

                              new Count(),

                              new Fields("count"))

         .newValuesStream()

         // Detect an outbreak

         .each(new Fields("cityDiseaseHour", "count"),

               new OutbreakDetector(), new Fields("alert"))

         // Dispatch the alert

         .each(new Fields("alert"),

               new DispatchAlert(), new Fields());

          

}

}

The preceding code shows the wiring between the different Trident functions. First, 
the DiagnosisEventSpout function emits the events. The events are then iltered by 
the DiseaseFilter function, which ilters out occurrences of diseases that we are not 
concerned with. After that, the event is associated with a city in the CityAssignment 
function. Then, the HourAssignment function assigns an hour to the event and 
adds a key to the tuple, which comprises the city, hour, and disease code. We then 
group by this key, which enables the counting and persisting of those counts in the 
persistAggregate function step in the topology. The counts are then passed along 
to the OutbreakDetector function, which thresholds the count, emitting an alert 
when the threshold is exceeded. Finally, the DispatchAlert function receives the 
alert, logs a message, and terminates the program. In the following section, we will 
take a deeper look into each of these steps.

http:///


Chapter 3

[ 69 ]

Introducing Trident spouts
Let's irst take a look at the spout in the topology. In contrast to Storm, Trident 
introduces the concept of batches. Unlike Storm spouts, Trident spouts must  
emit tuples in batches.

Each batch is given its own unique transaction identiier. A spout determines  
the composition of a batch based on the constraints of its contract. There are three  
types of contracts for spouts: Non-transactional, Transactional, and Opaque.

Non-transactional spouts provide no guarantee on the composition of the 
batches and might overlap. Two different batches might contain the same tuples. 
Transactional spouts guarantee that batches are non-overlapping and that the same 
batch always contains the same tuples. Opaque spouts guarantee that batches are 
non-overlapping, but the contents of a batch may change.

This is depicted in the following table:

Spout type Batches may overlap Batch contents may change

Non-transactional X X

Opaque X

Transactional

The interface for a spout looks like the following code snippet:

public interface ITridentSpout<T> extends Serializable {

 

   BatchCoordinator<T> getCoordinator(String txStateId,

                              Map conf, TopologyContext context);

   Emitter<T> getEmitter(String txStateId, Map conf,

                         TopologyContext context);

   

   Map getComponentConfiguration();

   Fields getOutputFields();

}

In Trident, the spout does not actually emit the tuples. Instead, the work is broken 
down between the BatchCoordinator and Emitter functions. The Emitter function 
is responsible for emitting the tuples, and the BatchCoordinator function is 
responsible for batch management and metadata such that the Emitter function  
can properly replay batches.

http:///


Trident Topologies and Sensor Data

[ 70 ]

The TridentSpout function simply provides accessor methods to the 
BatchCoordinator and Emitter functions and declares the ields that the spout  
will emit. The following is the listing of the DiagnosisEventSpout function for  
our example:

public class DiagnosisEventSpout implements ITridentSpout<Long> {

 private static final long serialVersionUID = 1L;

 SpoutOutputCollector collector;

 BatchCoordinator<Long> coordinator = new DefaultCoordinator();

 Emitter<Long> emitter = new DiagnosisEventEmitter();

 @Override

 public BatchCoordinator<Long> getCoordinator(

         String txStateId, Map conf, TopologyContext context) {

     return coordinator;

 }

 @Override

 public Emitter<Long> getEmitter(String txStateId, Map conf,

                                TopologyContext context) {

     return emitter;

 }

 @Override

 public Map getComponentConfiguration() {

     return null;

 }

 @Override

 public Fields getOutputFields() {

     return new Fields("event");

 }

}

As shown in the getOutputFields() method in the preceding code, in our 
example topology, the spout emits a single ield called event, which contains the 
DiagnosisEvent class.

http:///


Chapter 3

[ 71 ]

The BatchCoordinator class implements the following interface:

public interface BatchCoordinator<X> {

   X initializeTransaction(long txid, X prevMetadata);

   void success(long txid);

   boolean isReady(long txid);

   void close();

}

The BatchCoordinator class is a generic class. The generic class is the metadata that 
is required to replay a batch. In our example, the spout emits random events and 
thus the metadata is ignored. However, in real-world systems, the metadata might 
contain the identiiers of the messages or objects that comprise a batch. With that 
information, the opaque and transactional spouts can abide to their contracts and 
ensure that the contents of batches do not overlap, and in the case of the transactional 
spout, the batch contents do not change.

The BatchCoordinator class is implemented as a Storm Bolt operating in a single 
thread. Storm persists the metadata in Zookeeper. It notiies the coordinator when 
each transaction is complete.

For our example, if we do no coordination, the following is the coordination used in 
the DiagnosisEventSpout class:

public class DefaultCoordinator implements BatchCoordinator<Long>,

                                              Serializable {

   private static final long serialVersionUID = 1L;

private static final Logger LOG = 

             LoggerFactory.getLogger(DefaultCoordinator.class);

@Override

public boolean isReady(long txid) {

   return true;

}

@Override

public void close() {

}

http:///


Trident Topologies and Sensor Data

[ 72 ]

@Override

public Long initializeTransaction(long txid,

                                  Long prevMetadata) {

   LOG.info("Initializing Transaction [" + txid + "]");

   return null;

   }

@Override

public void success(long txid) {

   LOG.info("Successful Transaction [" + txid + "]");

}

}

The second component in a Trident spout is the Emitter function. The Emitter 
function performs the function of the Storm spout using a collector to emit tuples. 
The only distinction is that it uses a TridentCollector class, and the tuples must  
be included in a batch that was initialized by the BatchCoordinator class. 

The interface for an Emitter function looks like the following code snippet:

public interface Emitter<X> {

void emitBatch(TransactionAttempt tx, X coordinatorMeta,

               TridentCollector collector);

void close();

}

As shown in the preceding code, the Emitter function has only one job—to emit the 
tuples for a given batch. To do this, the function is passed the metadata for the batch 
(which was constructed by the coordinator), information about the transaction, and 
the collector, which is what the Emitter function uses to emit the tuples. The listing 
for the DiagnosisEventEmitter class is as follows:

public class DiagnosisEventEmitter implements Emitter<Long>, 
Serializable {

private static final long serialVersionUID = 1L;

AtomicInteger successfulTransactions = new AtomicInteger(0);

@Override

public void emitBatch(TransactionAttempt tx, Long

                coordinatorMeta, TridentCollector collector) {

   for (int i = 0; i < 10000; i++) {

       List<Object> events = new ArrayList<Object>();

       double lat = 

http:///


Chapter 3

[ 73 ]

             new Double(-30 + (int) (Math.random() * 75));

       double lng = 

             new Double(-120 + (int) (Math.random() * 70));

       long time = System.currentTimeMillis();

       String diag = new Integer(320 + 

                       (int) (Math.random() * 7)).toString();

       DiagnosisEvent event = 

                    new DiagnosisEvent(lat, lng, time, diag);

       events.add(event);

       collector.emit(events);

   }

}

@Override

public void success(TransactionAttempt tx) {

   successfulTransactions.incrementAndGet();

}

@Override

public void close() {

}

}

The work is performed in the emitBatch() method. For this example, we will 
randomly assign a latitude and longitude, keeping it roughly within the United 
States, and we will use the System.currentTimeMillis() method for the 
timestamp on the diagnosis.

In real life, ICD-9-CM codes sparsely populate a range between 000 and 999.  
For this example, we will only use diagnosis codes between 320 and 327.  
These codes are listed as follows:

Code Description

320 Bacterial meningitis

321 Meningitis due to other organisms

322 Meningitis of unspecified cause

323 Encephalitis myelitis and encephalomyelitis

324 Intracranial and intraspinal abscess

325 Phlebitis and thrombophlebitis of intracranial venous sinuses

326 Late effects of intracranial abscess or pyogenic infection

327 Organic sleep disorders

One of these diagnosis codes is randomly assigned to the event.

http:///


Trident Topologies and Sensor Data

[ 74 ]

In this example, we will use an object to encapsulate the diagnosis event. Just as 
easily, we could have emitted each of the components as a separate ield in the tuple. 
There is a balancing act between object encapsulation and use of ields in the tuple. 
Often, it is a good idea to keep the number of ields down to a manageable number, 
but it also makes sense to include data used for the control low and/or grouping as 
ields in the tuple.

In our example, the DiagnosisEvent class is the key piece of data on which the 
topology is operating. That object looks like the following code snippet:

public class DiagnosisEvent implements Serializable {

    private static final long serialVersionUID = 1L;

    public double lat;

    public double lng;

    public long time;

    public String diagnosisCode;

    public DiagnosisEvent(double lat, double lng,

                       long time, String diagnosisCode) {

   super();

   this.time = time;

   this.lat = lat;

   this.lng = lng;

   this.diagnosisCode = diagnosisCode;

    }

}

The object is a simple JavaBean. Time is stored as a long variable, which is the  
time since the epoch. The latitude and longitude are each stored as doubles.  
The diagnosisCode class is stored as a string, just in case the system needs  
to be able to process other types of codes that are not based on ICD-9, such  
as alphanumeric codes.

At this point, the topology is able to emit events. In a real implementation, we might 
integrate the topology into a medical claims processing engine or an electronic health 
records system at the point of practice.

http:///


Chapter 3

[ 75 ]

Introducing Trident operations – ilters 
and functions
Now that we have events being generated, the next step is to add the logic 
components that implement the business process. In Trident, these are known as 
operations. In our topology, we are using two different types of operations: ilters 
and functions.

Operations are applied to streams via methods on the Stream object. In this example, 
we use the following methods on the Stream object:

public class Stream implements IAggregatableStream {

public Stream each(Fields inputFields, Filter filter) {

...

}

public IAggregatableStream each(Fields inputFields,

Function function,

Fields functionFields){

   ...

}

   

public GroupedStream groupBy(Fields fields) {

   ...

   }

public TridentState persistentAggregate(

StateFactory stateFactory,

CombinerAggregator agg, 

Fields functionFields) {

        ...

}

}

Note that the methods in the preceding code return forms of the Stream objects or 
TridentState that can be used to create additional streams. With this, operations 
can be chained together using luent-style Java.

http:///


Trident Topologies and Sensor Data

[ 76 ]

Let's take another look at the critical lines in our example topology:

   inputStream.each(new Fields("event"), new DiseaseFilter())

      .each(new Fields("event"), new CityAssignment(),

               new Fields("city"))

      .each(new Fields("event", "city"),

               new HourAssignment(),

             new Fields("hour", "cityDiseaseHour"))

      .groupBy(new Fields("cityDiseaseHour"))

      .persistentAggregate(new OutbreakTrendFactory(),

              new Count(), new Fields("count")).newValuesStream()

      .each(new Fields("cityDiseaseHour", "count"),

               new OutbreakDetector(), new Fields("alert"))

      .each(new Fields("alert"), new DispatchAlert(),

               new Fields());

Typically, operations are applied by declaring a set of input ields and a set of output 
ields also known as function ields. The second line of the topology in the preceding 
code declares that we want CityAssignment to execute on each tuple in the stream. 
From that tuple, CityAssignment will operate on the event ield and emit a function 
ield labelled city, which is appended to the tuple.

Each operation has slightly different luent-style syntax, which depends on what 
information the operation requires. In the following sections, we will cover the 
details of the syntax and the semantics of the different operations.

Introducing Trident ilters
The irst piece of logic in our topology is a ilter, which ignores disease events that 
are not of concern. In this example, the system will focus on meningitis. From the 
previous table, the only meningitis codes are 320, 321, and 322.

To ilter events based on codes, we will leverage a Trident ilter. Trident makes this 
easy by providing a BaseFilter class that we can subclass to ilter tuples that the 
system does not care about. The BaseFilter class implements the Filter interface, 
which looks like the following code snippet:

public interface Filter extends EachOperation {

    boolean isKeep(TridentTuple tuple);

}

http:///


Chapter 3

[ 77 ]

To ilter tuples in a stream, the application simply implements this interface by 
extending the BaseFilter class. In the example, we will ilter events using the 
following ilter:

public class DiseaseFilter extends BaseFilter {

private static final long serialVersionUID = 1L;

private static final Logger LOG = 

LoggerFactory.getLogger(DiseaseFilter.class);

@Override

public boolean isKeep(TridentTuple tuple) {

   DiagnosisEvent diagnosis = (DiagnosisEvent) tuple.getValue(0);

   Integer code = Integer.parseInt(diagnosis.diagnosisCode);

   if (code.intValue() <= 322) {

       LOG.debug("Emitting disease [" + 

diagnosis.diagnosisCode + "]");

       return true;

   } else {

       LOG.debug("Filtering disease [" + 

diagnosis.diagnosisCode + "]");

       return false;

   }

}

}

In the preceding code, we will extract the DiagnosisEvent class from the tuple and 
examine the disease code. Since all the meningitis codes are less than or equal to 322, 
and we are not emitting any other codes, we simply check to see if the code is less 
than 322 to determine if the event relates to meningitis.

Returning True from a Filter operation will result in the tuple lowing along to 
downstream operations. If the method returns False, the tuple will not low to 
downstream operations.

In our topology, we apply the ilter to each tuple in the stream using the 
each(inputFields, filter) method on the stream. The following line in our 
topology applies the ilter to the stream:

   inputStream.each(new Fields("event"), new DiseaseFilter())

http:///


Trident Topologies and Sensor Data

[ 78 ]

Introducing Trident functions
In addition to ilters, Storm provides an interface for generic functions. Functions 
are similar to Storm bolts in that they consume tuples and optionally emit new 
tuples. One distinction is that Trident functions are additive. The values emitted 
by functions are ields that are added to the tuple. They do not remove or mutate 
existing ields.

The interface for a function looks like the following code snippet:

public interface Function extends EachOperation {

void execute(TridentTuple tuple, TridentCollector collector);

}

Similar to a Storm bolt, the function implements a single method that contains 
the logic for that function. The function implementation can optionally use the 
TridentCollector to emit the tuple passed into the function. In this way,  
functions can also be used to ilter tuples.

The irst function in our topology is the CityAssignment function that looks like  
the following code snippet:

public class CityAssignment extends BaseFunction {

private static final long serialVersionUID = 1L;

private static final Logger LOG = LoggerFactory.
getLogger(CityAssignment.class);

private static Map<String, double[]> CITIES = 

                        new HashMap<String, double[]>();

    { // Initialize the cities we care about.

        double[] phl = { 39.875365, -75.249524 };

        CITIES.put("PHL", phl);

        double[] nyc = { 40.71448, -74.00598 };

        CITIES.put("NYC", nyc);

        double[] sf = { -31.4250142, -62.0841809   };

        CITIES.put("SF", sf);

        double[] la = { -34.05374, -118.24307 };

        CITIES.put("LA", la);

    }

    @Override

    public void execute(TridentTuple tuple, 

TridentCollector collector) {

       DiagnosisEvent diagnosis = 

http:///


Chapter 3

[ 79 ]

                           (DiagnosisEvent) tuple.getValue(0);

       double leastDistance = Double.MAX_VALUE;

       String closestCity = "NONE";

       

       // Find the closest city.

       for (Entry<String, double[]> city : CITIES.entrySet()) {

          double R = 6371; // km

          double x = (city.getValue()[0] - diagnosis.lng) * 

             Math.cos((city.getValue()[0] + diagnosis.lng) / 2);

          double y = (city.getValue()[1] - diagnosis.lat);

          double d = Math.sqrt(x * x + y * y) * R;

          if (d < leastDistance) {

          leastDistance = d;

          closestCity = city.getKey();

          }

      }

      // Emit the value.

      List<Object> values = new ArrayList<Object>();

      Values.add(closestCity);

      LOG.debug("Closest city to lat=[" + diagnosis.lat + 

                "], lng=[" + diagnosis.lng + "] == ["

                + closestCity + "], d=[" + leastDistance + "]");

      collector.emit(values);

    }

}

In this function, we use a static initializer to create a map of the cities we care  
about. For sample data, the function has a map that contains the coordinates  
for Philadelphia (PHL), New York City (NYC), San Francisco (SF), and Los  
Angeles (LA).

In the execute() method, the function loops through the cities and calculates the 
distance between the event and the city. In a real system, a geospatial index is likely 
more eficient.

Once the function determines the closest city, it emits the code for that city in the last 
few lines of the method. Remember that in Trident, instead of the function declaring 
what ields it will emit, the ields are declared when the operation is attached to the 
stream as the third parameter in the function call.

The number of function ields declared must align with the number of 
values emitted by the function. If they do not align, Storm will throw an 
IndexOutOfBoundsException.

http:///


Trident Topologies and Sensor Data

[ 80 ]

The next function in our topology, HourAssignment, is used to convert  
the timestamp into an hour since epoch, which can then be used to group 
occurrences temporally. The code for HourAssignment looks as follows:

public class HourAssignment extends BaseFunction {

private static final long serialVersionUID = 1L;

private static final Logger LOG =    

               LoggerFactory.getLogger(HourAssignment.class);

@Override

public void execute(TridentTuple tuple,

                   TridentCollector collector) {

   DiagnosisEvent diagnosis = (DiagnosisEvent) tuple.getValue(0);

   String city = (String) tuple.getValue(1);

   long timestamp = diagnosis.time;

   long hourSinceEpoch = timestamp / 1000 / 60 / 60;

   LOG.debug("Key =  [" + city + ":" + hourSinceEpoch + "]");

   String key = city + ":" + diagnosis.diagnosisCode + ":" + 

                hourSinceEpoch;

   

   List<Object> values = new ArrayList<Object>();

   values.add(hourSinceEpoch);

   values.add(key);

   collector.emit(values);

}

}

We overload this function slightly by emitting both the hours as well as a composite 
key comprising the city, diagnosis code, and the hour. Effectively, this acts as a 
unique identiier for each aggregate count, which we will discuss more in detail.

The inal two functions in our topology detect the outbreak and alert us about it.  
The code for the OutbreakDetector class is as follows:

public class OutbreakDetector extends BaseFunction {

    private static final long serialVersionUID = 1L;

    public static final int THRESHOLD = 10000;

    @Override

    public void execute(TridentTuple tuple,

http:///


Chapter 3

[ 81 ]

                         TridentCollector collector) {

   String key = (String) tuple.getValue(0);

   Long count = (Long) tuple.getValue(1);

   

   if (count > THRESHOLD) {

       List<Object> values = new ArrayList<Object>();

       values.add("Outbreak detected for [" + key + "]!");

       collector.emit(values);

   }

}

}

This function extracts the count for the speciic city, disease, and hour and sees if 
it has exceeded the threshold. If it has, it emits a new ield that contains an alert. 
In the preceding code, notice that this function effectively acts as a ilter but was 
implemented as a function because we wanted to add an additional ield to the tuple 
that contains the alert. Since ilters do not mutate the tuple, we must use a function 
that allows us to not only ilter but also add new ields.

The inal function in our topology simply dispatches the alert (and terminates the 
program). The listing for this topology is as follows:

public class DispatchAlert extends BaseFunction {

    private static final long serialVersionUID = 1L;

    @Override

    public void execute(TridentTuple tuple, 

                     TridentCollector collector) {

   String alert = (String) tuple.getValue(0);

   Log.error("ALERT RECEIVED [" + alert + "]");

   Log.error("Dispatch the national guard!");

   System.exit(0);

   }

}

This function is straightforward. It simply extracts the alert, logs the message,  
and terminates the program.

http:///


Trident Topologies and Sensor Data

[ 82 ]

Introducing Trident aggregators – 

Combiners and Reducers
Akin to functions, aggregators allow topologies to combine tuples. Unlike functions, 
they replace tuple ields and values. There are three different types of aggregators: 
CombinerAggregator, ReducerAggregator, and Aggregator.

CombinerAggregator
A CombinerAggregator is used to combine a set of tuples into a single ield. It has 
the following signature:

public interface CombinerAggregator {

   T init (TridentTuple tuple);

   T combine(T val1, T val2);

   T zero();

}

Storm calls the init() method with each tuple, and then repeatedly calls the 
combine() method until the partition is processed. The values passed into the 
combine() method are partial aggregations, the result of combining the values 
returned by calls to init(). Partitions are discussed more in the following sessions, 
but a partition is effectively a subset of a stream of tuples that resides on the same 
host. After combing the values from processing the tuples, Storm emits the result 
of combining those values as a single new ield. If a partition is empty, then Storm 
emits the value returned by the zero()method.

ReducerAggregator
The ReducerAggregator has a slightly different signature:

public interface ReducerAggregator<T> extends Serializable {

    T init();

    T reduce(T curr, TridentTuple tuple);

}

Storm calls the init() method to retrieve the initial value. Then reduce() is called 
with each tuple until the partition is fully processed. The irst parameter into the 
reduce() method is the cumulative partial aggregation. The implementation should 
return the result of incorporating the tuple into that partial aggregation.

http:///


Chapter 3

[ 83 ]

Aggregator
The most general aggregation operation is the Aggregator. The signature for 
Aggregator is as follows:

public interface Aggregator<T> extends Operation {

    T init(Object batchId, TridentCollector collector);

    void aggregate(T val, TridentTuple tuple,

TridentCollector collector);

 void complete(T val, TridentCollector collector);

}

The Aggregator interface's aggregate() method is similar to the execute() 
method of a Function interface, but it also includes a parameter for the value. This 
allows the Aggregator to accumulate a value as it processes the tuples. Notice that 
with an Aggregator, since the collector is passed into both the aggregate() method 
as well as the complete() method, you can emit any arbitrary number of tuples.

In our example topology, we leveraged a built-in aggregator named Count. The 
implementation for Count looks like the following code snippet:

public class Count implements CombinerAggregator<Long> {

    @Override

    public Long init(TridentTuple tuple) {

        return 1L;

    }

    @Override

    public Long combine(Long val1, Long val2) {

        return val1 + val2;

    }

    @Override

    public Long zero() {

        return 0L;

    }

}

We apply both grouping and counting in our example topology to count the 
occurrences of a disease during a speciic hour near a particular city. The speciic 
lines that accomplish this are as follows:

.groupBy(new Fields("cityDiseaseHour"))

.persistentAggregate(new OutbreakTrendFactory(), 

   new Count(), new Fields("count")).newValuesStream()

http:///


Trident Topologies and Sensor Data

[ 84 ]

Recall that Storm partitions the stream across the available hosts. This is shown in 
the following diagram:

SF:321:378911

SF:321:378911

NYC:322:378911

PHL:321:378911

Partition 1 on Host A

SF:321:378911

NYC:322:378911

PHL:321:378911

Partition 2 on Host B

The groupBy() method forces a repartitioning of the data. It groups all the tuples 
that share the same value for the named ield into the same partition. To do this, 
Storm must send the like tuples to the same host. The following diagram shows the 
repartitioning of the preceding data based on our groupBy() method:

Count() = 2

Partition 1' on Host A

NYC:322:378911

NYC:322:378911

Partition 2' on Host B

Count() = 3

SF:321:378911

SF:321:378911

SF:321:378911

Count() = 2

PHL:321:378911

PHL:321:378911

After repartitioning, the aggregate function is run on each group within each 
partition. In our example, we are grouping by city, hour, and disease code (using the 
key). Then, the Count aggregator is executed on each group, which in turn emits the 
occurrence count for downstream consumers.

http:///


Chapter 3

[ 85 ]

Introducing the Trident state
Now that we have the counts for each aggregation, we want to persist with that 
information for further analysis. In Trident, persistence irst starts with state 
management. Trident has a irst-level primitive for state, but like the Storm API,  
it makes a few assumptions about what is being stored as state or how that state  
is persisted. At the highest level, Trident exposes a State interface as follows:

public interface State {

   void beginCommit(Long transactionId); 

   void commit(Long transactionId);

}

As mentioned previously, Trident groups tuples into batches. Each batch has its own 
transaction identiier. In the preceding interface, Trident informs the State object 
when the state is being committed and when the commit should complete.

Like functions, there are methods on the Stream objects that introduce state-based 
operations into a topology. More speciically, there are two types of streams in 
Trident: Stream and GroupedStream. A GroupedStream is the result of performing 
a groupBy operation. In our topology, we group by the key generated by the 
HourAssignment function.

On the Stream object, the following methods allow the topology to read and write 
state information:

public class Stream implements IAggregatableStream {

    ...

    public Stream stateQuery(TridentState state, Fields inputFields,

            QueryFunction function, Fields functionFields) {

   ...

 }

public TridentState partitionPersist(StateFactory stateFactory,

Fields inputFields, StateUpdater updater,

Fields functionFields) {

   ...

}

public TridentState partitionPersist(StateSpec stateSpec,

Fields inputFields, StateUpdater updater,

Fields functionFields) {

   ...

}

http:///


Trident Topologies and Sensor Data

[ 86 ]

public TridentState partitionPersist(StateFactory stateFactory,

Fields inputFields, StateUpdater updater) {

   ...

   }

    

public TridentState partitionPersist(StateSpec stateSpec,

Fields inputFields, StateUpdater updater) {

    ...

}

...

}

The stateQuery() method creates an input stream from state, and the various 
lavors of the partitionPersist() method allow a topology to update state 
information from tuples in a stream. The partitionPersist() method operates  
on each partition.

In addition to the methods on the Stream object, the GroupedStream object allows a 
topology to aggregate statistics from a set of tuples and simultaneously persist with 
the collected information to state. The following are the state-related methods on a 
GroupedStream class:

public class GroupedStream implements IAggregatableStream,

GlobalAggregationScheme<GroupedStream> {

...

   public TridentState persistentAggregate(

StateFactory stateFactory, CombinerAggregator agg,

Fields functionFields) {

...

}

    

public TridentState persistentAggregate(StateSpec spec,

CombinerAggregator agg, Fields functionFields) {

...

}

public TridentState persistentAggregate(

StateFactory stateFactory, Fields inputFields,

CombinerAggregator agg, Fields functionFields) {

...

}

http:///


Chapter 3

[ 87 ]

public TridentState persistentAggregate(StateSpec spec,

Fields inputFields, CombinerAggregator agg,

Fields functionFields) {

...

}

public TridentState persistentAggregate(

StateFactory stateFactory, Fields inputFields,

ReducerAggregator agg, Fields functionFields) {

...

}

    

public TridentState persistentAggregate(StateSpec spec, Fields 
inputFields, ReducerAggregator agg, Fields functionFields) {

...

}

public Stream stateQuery(TridentState state, Fields inputFields,

QueryFunction function, Fields functionFields) {

...

}    

    

public TridentState persistentAggregate(

StateFactory stateFactory, ReducerAggregator agg,

Fields functionFields) {

...

}

    

public TridentState persistentAggregate(StateSpec spec,

ReducerAggregator agg, Fields functionFields) {

...

}    

public Stream stateQuery(TridentState state,

   QueryFunction function, Fields functionFields) {

...

}

}

Like the base Stream object, the stateQuery() method creates an input stream  
from state. The various lavors of persistAggregate() allow a topology to update 
state information from tuples in a stream. Notice that the GroupedStream methods 
take an Aggregator, which it irst applies before writing that information to the 
State object.

http:///


Trident Topologies and Sensor Data

[ 88 ]

Now let's consider applying these functions to our example. In our system, we 
would like to persist with the occurrence counts by city, disease code, and hour.  
This would enable a report similar to the following table:

Disease City Date Time Occurrence Count

Bacterial meningitis San Francisco 3/12/2013 3:00 PM 12

Bacterial meningitis San Francisco 3/12/2013 4:00 PM 50

Bacterial meningitis San Francisco 3/12/2013 5:00 PM 100

Smallpox New York 3/13/2013 5:00 PM 6

To achieve this, we want to persist with the counts that we generate in the 
aggregation. We can use the GroupedStream interface (shown previously) returned 
by the groupBy function and call the persistAggregate method. Speciically,  
the following is the call we make in the example topology:

 persistentAggregate(new OutbreakTrendFactory(), 

   new Count(), new Fields("count")).newValuesStream()

To understand persistence, we will irst focus on the irst parameter to this 
method. Trident uses a factory pattern to generate instances of State. The 
OutbreakTrendFactory is the factory our topology provides to Storm. The listing 
for OutbreakTrendFactory is as follows:

public class OutbreakTrendFactory implements StateFactory {

private static final long serialVersionUID = 1L;

@Override

public State makeState(Map conf, IMetricsContext metrics,

int partitionIndex, int numPartitions) {

   return new OutbreakTrendState(new OutbreakTrendBackingMap());

}

}

The factory returns the State object that Storm uses to persist with information. In 
Storm, there are three types of state. Each type is described in the following table:

State type Description  

Non-Transactional For persistence mechanisms that do not have rollback 
capabilities and where updates are permanent and commits 
are ignored.

Repeat Transactional For persistence that is idempotent, provided the batch contains 
the same tuples.

http:///


Chapter 3

[ 89 ]

State type Description  

Opaque Transactional Updates are based on the previous value, which makes the 
persistence resilient to changes in batch composition.

To support counting and state updates in a distributed environment where batches 
can be replayed, Trident sequences state updates and uses different state update 
patterns to tolerate replays and faults. These are described in the following sections.

The Repeat Transactional state
For the Repeat Transactional state, the last committed batch identiier is stored  
with the data. The state is updated if and only if the batch identiier being applied  
is the next in sequence. If it is equal to or lower than the persisted identiier, then  
the update is ignored because it has already been applied.

To illustrate this approach, consider the following sequence of batches where  
the state update is an aggregate count of the occurrences of that key as it is in  
our example:

Batch # State Update

1 {SF:320:378911 = 4}

2 {SF:320:378911 = 10}

3 {SF:320:378911 = 8}

The batches then complete processing in the following order:

1 à 2 à 3 à 3 (replayed)

This would result in the following state modiications, where the middle column is 
the persistence of the batch identiier indicating the most recent batch incorporated 
in the state:

Completed Batch # State

1 { Batch = 1 } { SF:320:378911 = 4 }

2 { Batch = 2 } { SF:320:378911 = 14 }

3 { Batch = 3 } { SF:320:378911 = 22 }

3 (Replayed) { Batch = 3 } { SF:320:378911 = 22 }

Notice that when batch #3 completes the replay, it has no effect on the state because 
Trident has already incorporated its update in the state. For the Repeat Transactional 
state to function properly, batch contents cannot change between replays.

http:///


Trident Topologies and Sensor Data

[ 90 ]

The Opaque state
The approach used in the Repeat Transactional state relies on the batch composition 
remaining constant, which may not be possible if a system encounters a fault. If the 
spout is emitting from a source that may have a partial failure, some of the tuples 
emitted in the initial batch might not be available for re-emission. The Opaque state 
allows the changing of batch composition by storing both current and previous states.

Assume that we have the same batches as in the previous example, but this time 
when Batch 3 is replayed, the aggregate count will be different since it contains a 
different set of tuples as shown in the following table:

Batch # State update

1 {SF:320:378911 = 4}

2 {SF:320:378911 = 10}

3 {SF:320:378911 = 8}

3 (Replayed) {SF:320:378911 = 6}

With Opaque state, the state would update as follows:

Completed 
batch #

Batch 
committed

Previous state Current state

1 1 {} { SF:320:378911 = 4 }

2 2 { SF:320:378911 = 4 } { SF:320:378911 = 14 }

3 (Applies) 3 { SF:320:378911 = 14 } { SF:320:378911 = 22 }

3 (Replayed) 3 { SF:320:378911 = 14 } { SF:320:378911 = 20 }

Notice that Opaque state stores the previous state information. Thus, when batch #3 
is replayed, it can retransition the state using the new aggregate count.

You may wonder why we would reapply the batch if it had already been committed. 
The scenario we are concerned with is one whereby the state update succeeded, but 
the downstream processing failed. In our example topology, perhaps the alert failed 
to dispatch. Under such circumstances, Trident would retry the batch. Now, in the 
worst-case scenario, when the spout was asked to re-emit the batch, one or more 
sources of data may be unavailable.

http:///


Chapter 3

[ 91 ]

In the case of a Transactional spout, it would need to wait until all the sources were 
again available. An Opaque Transactional spout would be able to emit the portion 
of the batch that was available, and processing could continue. Since Trident relies 
on sequential application of batches to state, it is imperative that no single batch be 
delayed, because that delays all processing in the system.

Given this approach, the choice of state should be based on the spout so as to 
guarantee idempotent behavior and not over-count or corrupt the state. The 
following table shows the possible pairings to guarantee idempotent behavior:

Type of Spout Non-Transactional 
state

Opaque State Repeat 
Transactional state

Non-Transactional 
spout

Opaque spout X

Transactional spout X X

Fortunately, Storm provides map implementations that shield the persistence  
layer from the complexities of the state management. Speciically, Trident provides 
State implementations that maintain the additional information to adhere 
to the guarantees outlined previously. The objects are named appropriately: 
NonTransactionalMap, TransactionalMap, and OpaqueMap.

Returning to our example, since we have no transactional guarantees, we chose  
to use a NonTransactionalMap as our State object.

The OutbreakTrendState object looks like the following code snippet:

public class OutbreakTrendState extends NonTransactionalMap<Long> {

protected OutbreakTrendState(

OutbreakTrendBackingMap outbreakBackingMap) {

   super(outbreakBackingMap);

}

}

http:///


Trident Topologies and Sensor Data

[ 92 ]

As shown in the preceding code, to leverage the MapState objects, we simply pass  
a backing map. In our example, this is the OutbreakTrendBackingMap. The code  
for that object is as follows:

public class OutbreakTrendBackingMap implements IBackingMap<Long> {

    private static final Logger LOG = 

LoggerFactory.getLogger(OutbreakTrendBackingMap.class);

 Map<String, Long> storage = 

new ConcurrentHashMap<String, Long>();

 @Override

 public List<Long> multiGet(List<List<Object>> keys) {

    List<Long> values = new ArrayList<Long>();

    for (List<Object> key : keys) {

        Long value = storage.get(key.get(0));

        if (value==null){

            values.add(new Long(0));

        } else {

            values.add(value);

        }

    }

    return values;

}

@Override

public void multiPut(List<List<Object>> keys, List<Long> vals) {

    for (int i=0; i < keys.size(); i++) {

        LOG.info("Persisting [" + keys.get(i).get(0) + "] ==> [" 

+ vals.get(i) + "]");

        storage.put((String) keys.get(i).get(0), vals.get(i));

    }

}

}

In our example topology, we do not actually persist with the values. We simply put 
them in a ConcurrentHashMap. Obviously, that would not work across multiple 
hosts. The BackingMap is a clever abstraction, however. Simply changing the backing 
map instance that we pass into the constructor of the MapState object changes the 
persistence layer. We will see this in action in later chapters.

http:///


Chapter 3

[ 93 ]

Executing the topology
The OutbreakDetectionTopology class has the following main method:

public static void main(String[] args) throws Exception {

    Config conf = new Config();

    LocalCluster cluster = new LocalCluster();

    cluster.submitTopology("cdc", conf, buildTopology());

    Thread.sleep(200000);

    cluster.shutdown();

}

Executing this method will submit the topology to a local cluster. The spout will 
immediately start emitting diagnosis events, which the Count aggregator will collect. 
The threshold in the OutbreakDetector class is set such that the count will quickly 
exceed the threshold, at which point the program terminates with the following set 
of commands:

INFO [Thread-18] DefaultCoordinator.success(31) | Successful Transaction 
[8]

INFO [Thread-18] DefaultCoordinator.initializeTransaction(25) | 
Initializing Transaction [9]

...

INFO [Thread-24] OutbreakTrendBackingMap.multiPut(34) | Persisting 
[SF:320:378951] ==> [10306]

INFO [Thread-24] OutbreakTrendBackingMap.multiPut(34) | Persisting 
[PHL:320:378951] ==> [893]

INFO [Thread-24] OutbreakTrendBackingMap.multiPut(34) | Persisting 
[NYC:322:378951] ==> [1639]

INFO [Thread-24] OutbreakTrendBackingMap.multiPut(34) | Persisting 
[SF:322:378951] ==> [10254]

INFO [Thread-24] OutbreakTrendBackingMap.multiPut(34) | Persisting 
[SF:321:378951] ==> [10386]

...

00:04 ERROR: ALERT RECEIVED [Outbreak detected for [SF:320:378951]!]

00:04 ERROR: Dispatch the National Guard!

Notice that the coordinator is notiied upon successful completion of the batches,  
and within a few batches, the threshold is exceeded, and the system instructs us  
with an error message, Dispatch the National Guard!.

http:///


Trident Topologies and Sensor Data

[ 94 ]

Summary
In this chapter, we created a topology that processes diagnosis information to 
identify anomalies, which would indicate an outbreak. This same data low could 
be applied to any type of data, including weather, seismic information, or trafic 
data. We exercised the fundamental primitives in Trident to construct a system that 
is capable of counting events even if batches are replayed. Later on in this book, we 
will leverage these same constructs and patterns to perform similar functions.

http:///


Real-time Trend Analysis
In this chapter, we will introduce you to trend analysis techniques using Storm and 
Trident. Real-time trend analysis involves identifying patterns in data streams, such 
as recognizing when the occurrence rate or count of certain events reaches a certain 
threshold. Common examples include trending topics in social media, such as when 
a speciic hashtag becomes popular on Twitter or identifying trending search terms  
in a search engine. Storm originated as a project to perform real-time analytics  
on Twitter data, and it provides many of the core primitives required for  
analytical computation.

In the previous chapters, the spout implementations used were primarily simulations 
that used static sample data or randomly generated data. In this chapter, we will 
introduce an open source spout that emits data from a queue (Apache Kafka) and 
supports all three types of the Trident spout transaction (Non-transaction, Repeat 
Transaction, and Opaque Transactional). We will also implement a simple, generic 
method to populate the Kafka queue using a popular logging framework that will 
enable you to quickly begin real-time analysis of the existing applications and data 
with little or no source code modiications.

In this chapter, we will cover the following topics:

• Logging data to Apache Kafka and streaming it to Storm

• Streaming an existing application's log data to Storm for analysis

• Implementing an exponentially weighted moving average Trident function

• Using the XMPP protocol with Storm to send alerts and notiications

http:///


Real-time Trend Analysis

[ 96 ]

Use case
In our use case, we have an application or set of applications (websites, enterprise 
applications, and so on) that use the popular logback framework (http://logback.
qos.ch) for logging structured messages to disk (access logs, errors, and so on). 
Currently, the only way to perform analytics on that data is to process the iles 
in batches using something like Hadoop. The latency introduced by that process 
dramatically slows down our reaction time; patterns gleaned from the log data only 
emerge hours, sometimes days, after a particular event occurred and the opportunity 
to take responsive action has passed. It is much more desirable to be actively notiied 
of patterns as they emerge, rather than after the fact.

This use case represents a common theme and has a broad range of applications 
across many business scenarios, including the following applications:

• Application Monitoring: For example, to notify system administrators when 
certain network errors reach a certain frequency

• Intrusion Detection: For example, to detect suspicious activity such as an 
increase in failed login attempts

• Supply Chain Management: For example, to identify spikes in sales of 
speciic products and adjusting just-in-time delivery accordingly

• Online Advertising: For example, to recognize popular trends and 
dynamically changing ad delivery

Architecture
The architecture of our application is depicted in the following diagram, and it will 
include the following components:

!

Loback Kafka
Appender

Kafka
Spout

Storm
Topology

XMPP
Server

Application

Kafka
Queue

Log Messages XMPP Message IM
Notification

http:///


Chapter 4

[ 97 ]

The source application
The source application component is any application that uses the logback 
framework for logging arbitrary log messages. For our purposes, we will create a 
simple application that logs structured messages at certain intervals. However, as 
you'll see, any existing application that uses either the logback or slf4j frameworks 
can be substituted with a simple coniguration change.

The logback Kafka appender
The logback framework has an extension mechanism that allows you to add 
additional appenders to its coniguration. A logback appender is simply a Java class 
that receives logging events and does something with them. The most commonly 
used appenders are one of several FileAppender subclasses that simply format and 
write log messages to a ile on disk. Other appender implementations write log data 
to network sockets, relational databases, and to SMTP for e-mail notiications. For 
our purposes, we will implement an appender that writes log messages to an Apache 
Kafka queue.

Apache Kafka
Apache Kafka (http://kafka.apache.org) is an open source distributed publish-
subscribe messaging system. Kafka is speciically designed and optimized for high-
throughput, persistent real-time streams. Like Storm, Kafka is designed to scale 
horizontally on commodity software to support hundreds of thousands of messages 
per second.

Kafka spout
The Kafka spout reads data from a Kafka queue and emits it to a Storm or Trident 
topology. The Kafka spout was originally authored by Nathan Marz, and it is still 
a part of the storm-contrib project on GitHub (https://github.com/nathanmarz/
storm-contrib). Prebuilt binaries of the Kafka spout are available from the 
clojars.org Maven repository (https://clojars.org/storm/storm-kafka). We 
will use the Kafka spout to read messages from the Kafka queue and stream them 
into our topology.

Our topology will consist of a collection of both built-in and custom Trident 
components (functions, ilters, state, and so on) that detect patterns in the source data 
stream. When a pattern is detected, the topology will emit a tuple to a function that 
will send an XMPP message to an XMPP server to notify end users via an instant 
message (IM).

http:///


Real-time Trend Analysis

[ 98 ]

The XMPP server
Extensible Messaging and Presence Protocol (XMPP) (http://xmpp.org) is an 
XML-based standard for instant messaging, presence information, and contact list 
maintenance. Many IM clients such as Adium (for OSX) (http://adium.im) and 
Pidgin (for OSX, Linus, and Windows) (http://www.pidgin.im) support the XMPP 
protocol, and if you have ever used Google Talk for instant messaging, you have 
used XMPP.

We will use the open source OpenFire XMPP server (http://www.igniterealtime.
org/projects/openfire/) for its ease of setup and compatibility with OSX, Linux, 
and Windows.

Installing the required software
We'll begin by installing the necessary software: Apache Kafka and OpenFire. 
Although Kafka is a distributed messaging system, it will work just ine installed as 
a single node, or even locally as part of a development environment. In a production 
environment, you will need to set up a cluster of one or more machines depending 
on your scaling requirements. The OpenFire server is not a clustered system and can 
be installed on a single node or locally.

Installing Kafka
Kafka depends on ZooKeeper for storing certain state information, much like 
Storm. Since Storm imposes a relatively light load on ZooKeeper, in many cases it is 
acceptable to share the same ZooKeeper cluster between both Kafka and Storm. Since 
we've already covered ZooKeeper installation in Chapter 2, Coniguring Storm Clusters, 
here we'll just cover the running of the local ZooKeeper server that ships with Kafka 
and is suitable for a development environment.

Begin by downloading the 0.7.x release of Apache Kafka from the following website:

http://kafka.apache.org/downloads.html

Next, unpack the source distribution and change the existing directory to the 
following directory:

tar -zxf kafka-0.7.2-incubating-src.tgz

cd kafka-0.7.2-incubating-src

http:///


Chapter 4

[ 99 ]

Kafka is written in the Scala JVM language (http://www.scala-lang.org) and uses 
sbt (Scala Build Tool) (http://www.scala-sbt.org) for compiling and packaging. 
Fortunately, the Kafka source distribution includes sbt and can be  
built with the following command:

./sbt update package

Before starting Kafka, unless you already have a ZooKeeper service running,  
you will need to start the ZooKeeper service bundled with Kafka using the  
following command:

./bin/zookeeper-server-start.sh ./config/zookeeper.properties

Finally, in a separate terminal window, start the Kafka service with the  
following command:

./bin/kafka-server-start.sh ./config/server.properties

The Kafka service is now ready to use.

Installing OpenFire
OpenFire is available as an installer for OSX and Windows as well as a package for 
various Linux distributions, and it can be downloaded from the following website:

http://www.igniterealtime.org/downloads/index.jsp

To install OpenFire, download the installer for your operating system and follow  
the appropriate installation instructions that can be found at the following website:

http://www.igniterealtime.org/builds/openfire/docs/latest/
documentation/index.html

Introducing the sample application
The application component is a simple Java class that uses the Simple Logging 
Facade for Java (SLF4J) (http://www.slf4j.org) to log messages. We will simulate 
an application that begins by generating warning messages at a relatively slow rate, 
then switches to a state where it generates warning messages at a much faster rate, 
and inally returns to the slow state as follows:

• Log a warning message every 5 seconds for 30 seconds (slow state)

• Log a warning message every second for 15 seconds (rapid state)

• Log a warning message every 5 seconds for 30 seconds (slow state)

http:///


Real-time Trend Analysis

[ 100 ]

The goal of the application is to generate a simple pattern that our storm topology 
can recognize and react to by sending notiications when certain patterns emerge  
and state changes occur as shown in the following code snippet:

public class RogueApplication {

    private static final Logger LOG = LoggerFactory.
getLogger(RogueApplication.class);

    

    public static void main(String[] args) throws Exception {

        int slowCount = 6;

        int fastCount = 15;

        // slow state

        for(int i = 0; i < slowCount; i++){

            LOG.warn("This is a warning (slow state).");

            Thread.sleep(5000);

        }

        // enter rapid state

        for(int i = 0; i < fastCount; i++){

            LOG.warn("This is a warning (rapid state).");

            Thread.sleep(1000);

        }

        // return to slow state

        for(int i = 0; i < slowCount; i++){

            LOG.warn("This is a warning (slow state).");

            Thread.sleep(5000);

        }

    }

}

Sending log messages to Kafka
The logback framework provides a simple extension mechanism that allows you to 
plug in additional appenders. In our case, we want to implement an appender that 
can write log message data to Kafka.

Logback includes the ch.qos.logback.core.AppenderBase abstract class that 
makes it easy to implement the Appender interface. The AppenderBase class deines 
a single abstract method as follows:

  abstract protected void append(E eventObject);

The eventObject parameter represents a logging event and includes properties such 
as the date of the event, the log level (DEBUG, INFO, WARN, and so on), as well as the 
log message itself. We will override the append() method to write the eventObject 
data to Kafka.

http:///


Chapter 4

[ 101 ]

In addition to the append() method, the AppenderBase class deines two additional 
lifecycle methods that we will need to override:

 public void start();

 public void stop();

The start() method is called during the initialization of the logback framework, 
and the stop() method is called upon deinitialization. We will override these 
methods to set up and tear down our connection to the Kafka service.

The source code for the KafkaAppender class is listed as follows:

public class KafkaAppender extends AppenderBase<ILoggingEvent> {

    private String topic;

    private String zookeeperHost;

    private Producer<String, String> producer;

    private Formatter formatter;

    // java bean definitions used to inject

    // configuration values from logback.xml

    public String getTopic() {

        return topic;

    }

    public void setTopic(String topic) {

        this.topic = topic;

    }

    public String getZookeeperHost() {

        return zookeeperHost;

    }

    public void setZookeeperHost(String zookeeperHost) {

        this.zookeeperHost = zookeeperHost;

    }

    public Formatter getFormatter() {

        return formatter;

    }

    public void setFormatter(Formatter formatter) {

        this.formatter = formatter;

    }

http:///


Real-time Trend Analysis

[ 102 ]

    // overrides

    @Override

    public void start() {

        if (this.formatter == null) {

            this.formatter = new MessageFormatter();

        }

        super.start();

        Properties props = new Properties();

        props.put("zk.connect", this.zookeeperHost);

        props.put("serializer.class", "kafka.serializer.
StringEncoder");

        ProducerConfig config = new ProducerConfig(props);

        this.producer = new Producer<String, String>(config);

    }

    @Override

    public void stop() {

        super.stop();

        this.producer.close();

    }

    @Override

    protected void append(ILoggingEvent event) {

        String payload = this.formatter.format(event);

        ProducerData<String, String> data = new ProducerData<String, 
String>(this.topic, payload);

        this.producer.send(data);

    }

}

As you will see, the JavaBean-style accessors in this class allow us to conigure the 
associated values via dependency injection at runtime when the logback framework 
initializes. The setters and getters for the zookeeperHosts property are used to 
initialize the KafkaProducer client, coniguring it to discover Kafka hosts that have 
registered with ZooKeeper. An alternative method would be to supply a static list of 
Kafka hosts, but for simplicity's sake it is easier to use an auto-discovery mechanism. 
The topic property is used to tell the KafkaConsumer client from which Kafka topic 
it should read.

http:///


Chapter 4

[ 103 ]

The Formatter property is somewhat special. It is an interface we've deined that 
provides an extension point for handling structured (that is, parseable) log messages 
as shown in the following code snippet:

public interface Formatter {

    String format(ILoggingEvent event);

}

A Formatter implementation's job is to take an ILoggingEvent object and turn 
it into a machine-readable string that can be processed by a consumer. A simple 
implementation listed in the following code snippet simply returns the log message, 
discarding any additional metadata:

public class MessageFormatter implements Formatter {

    public String format(ILoggingEvent event) {

        return event.getFormattedMessage();

    }

}

The following logback coniguration ile illustrates the usage of the appender. 
This example does not deine a custom Formatter implementation, so the 
KafkaAppender class will default to using the MessageFormatter class and just 
write the log message data to Kafka and discard any additional information 
contained in the logging event, as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

    <appender name="KAFKA"

        class="com.github.ptgoetz.logback.kafka.KafkaAppender">

        <topic>mytopic</topic>

        <zookeeperHost>localhost:2181</zookeeperHost>

    </appender>

    <root level="debug">

        <appender-ref ref="KAFKA" />

    </root>

</configuration>

The Storm application we're building is time sensitive: if we're tracking the rate  
at which each event occurs, we need to know exactly when an event occurs.  
A naïve approach would be to simply assign the event a time using the System.
currentTimeMillis() method when the data enters our topology. However, 
Trident's batching mechanism doesn't guarantee that tuples will be delivered  
to a topology at the same rate with which they were received.

http:///


Real-time Trend Analysis

[ 104 ]

In order to account for this situation, we need to capture the time of the event when 
it occurs and include it in the data when we write to the Kafka queue. Fortunately, 
the ILoggingEvent class includes a timestamp, in milliseconds since the epoch,  
that the event occurred.

To include the metadata included in ILoggingEvent, we'll create a custom 
Formatter implementation that encodes the log event data in JSON format  
as follows:

public class JsonFormatter implements Formatter {

    private static final String QUOTE = "\"";

    private static final String COLON = ":";

    private static final String COMMA = ",";

    private boolean expectJson = false;

    public String format(ILoggingEvent event) {

        StringBuilder sb = new StringBuilder();

        sb.append("{");

        fieldName("level", sb);

        quote(event.getLevel().levelStr, sb);

        sb.append(COMMA);

        fieldName("logger", sb);

        quote(event.getLoggerName(), sb);

        sb.append(COMMA);

        fieldName("timestamp", sb);

        sb.append(event.getTimeStamp());

        sb.append(COMMA);

        fieldName("message", sb);

        if (this.expectJson) {

            sb.append(event.getFormattedMessage());

        } else {

            quote(event.getFormattedMessage(), sb);

        }

        sb.append("}");

        return sb.toString();

    }

    private static void fieldName(String name, StringBuilder sb) {

        quote(name, sb);

        sb.append(COLON);

    }

http:///


Chapter 4

[ 105 ]

    private static void quote(String value, StringBuilder sb) {

        sb.append(QUOTE);

        sb.append(value);

        sb.append(QUOTE);

    }

    public boolean isExpectJson() {

        return expectJson;

    }

    public void setExpectJson(boolean expectJson) {

        this.expectJson = expectJson;

    }

}

The bulk of the JsonMessageFormatter class code uses a java.lang.
StringBuilder class to create JSON from the ILoggingEvent object. While we could 
have used a JSON library to do the work, the JSON data we're generating is simple 
and adding an additional dependency just to generate JSON would be overkill.

The one JavaBean property exposed by JsonMessageFormatter is the expectJson 
Boolean used to specify whether the log message passed to the Formatter 
implementation should be treated as JSON. If set to False, the log message will  
be treated as a string and wrapped in double quotes, otherwise the message will  
be treated as a JSON object ({...}) or array ([...]).

The following is a sample logback coniguration ile that illustrates the usage of  
the KafkaAppender and JsonFormatter classes:

<?xml version="1.0" encoding="UTF-8" ?>

<configuration>

    <appender name="KAFKA"

        class="com.github.ptgoetz.logback.kafka.KafkaAppender">

        <topic>foo</topic>

        <zookeeperHost>localhost:2181</zookeeperHost>

        <!-- specify a custom formatter -->

        <formatter class="com.github.ptgoetz.logback.kafka.formatter.
JsonFormatter">

            <!-- 

            Whether we expect the log message to be JSON encoded or 
not.

            If set to "false", the log message will be treated as 
a string, and wrapped in quotes. Otherwise it will be treated as a 
parseable JSON object.

            -->

http:///


Real-time Trend Analysis

[ 106 ]

            <expectJson>false</expectJson>

        </formatter>

    </appender>

 <root level="debug">

  <appender-ref ref="KAFKA" />

 </root>

</configuration>

Since the analytics topology we are building is more concerned with event timing 
than message content, the log messages we generate will be strings, so we set the 
expectJson property to False.

Introducing the log analysis topology
With the means to write our log data to Kafka, we're ready to turn our attention to 
the implementation of a Trident topology to perform the analytical computation. The 
topology will perform the following operations:

1. Receive and parse the raw JSON log event data.

2. Extract and emit necessary ields.
3. Update an exponentially-weighted moving average function.

4. Determine if the moving average has crossed a speciied threshold.
5. Filter out events that do not represent a state change (for example, rate 

moved above/below threshold).

6. Send an instant message (XMPP) notiication.

The topology is depicted in the following diagram with the Trident stream 
operations at the top and stream processing components at the bottom:

Threshold
Filter

Function

each project

Kafka
Stream

JSON
Project

Function

Moving
Average
Function

Boolean
Filter

XMPP
Function

each each each each

http:///


Chapter 4

[ 107 ]

Kafka spout
The irst step in creating the log analysis topology is to conigure the Kafka spout to 
stream data received from Kafka into our topology as follows:

        TridentTopology topology = new TridentTopology();

        StaticHosts kafkaHosts = KafkaConfig.StaticHosts.
fromHostString(Arrays.asList(new String[] { "localhost" }), 1);

        TridentKafkaConfig spoutConf = new 
TridentKafkaConfig(kafkaHosts, "log-analysis");

        spoutConf.scheme = new StringScheme();

        spoutConf.forceStartOffsetTime(-1);

        OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(s
poutConf);

        Stream spoutStream = topology.newStream("kafka-stream", 
spout);

This code irst creates a new TridentTopology instance, and then uses the Kafka 
Java API to create a list of Kafka hosts with which to connect (since we're running  
a single, unclustered Kafka service locally, we specify a single host: localhost). 
Next, we create the TridentKafkaConfig object, passing it the host list and a  
unique identiier.

The data our application writes to Kafka is a simple Java string, so we use Storm-
Kafka built-in StringScheme class. The StringScheme class will read data from 
Kafka as a string and output it in a tuple ield named str.

By default, upon deployment the Kafka spout will attempt to read from the Kafka 
queue where it last left off by querying ZooKeeper for state information. This 
behavior can be overridden by calling the forceOffsetTime(long time) method  
of the TridentKafkaConfig class. The time parameter can be one of the following 
three values:

• -2 (earliest offset): The spout will rewind and start reading from the 
beginning of the queue

• -1 (latest offset): The spout will fast forward and read from the end of  
the queue

• Time in milliseconds: Given a speciic date in milliseconds (for example, 
java.util.Date.getTime()), the spout will attempt to begin reading  
from that point in time

After setting up the spout coniguration, we create an instance of the Opaque 
Transactional Kafka spout and set up a corresponding Trident stream.

http:///


Real-time Trend Analysis

[ 108 ]

The JSON project function
The data stream coming from the Kafka spout will contain a single ield (str) 
containing the JSON data from the log event. We'll create a Trident function to parse 
the incoming data and output, or project requested ields as tuple values as shown  
in the following code snippet:

public class JsonProjectFunction extends BaseFunction {

    private Fields fields;

    public JsonProjectFunction(Fields fields) {

        this.fields = fields;

    }

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

        String json = tuple.getString(0);

        Map<String, Object> map = (Map<String, Object>)  

            JSONValue.parse(json);

        Values values = new Values();

        for (int i = 0; i < this.fields.size(); i++) {

            values.add(map.get(this.fields.get(i)));

        }

        collector.emit(values);

    }

}

The JsonProjectFunction constructor takes a Fields object parameter that will 
determine what values to emit as a list of key names to look up from the JSON. When 
the function receives a tuple, it will parse the JSON in the tuple's str ield, iterate the 
Fields object's values, and emit the corresponding value from the input JSON.

The following code creates a Fields object with a list of ield names to extract from 
the JSON. It then creates a new Stream object from the spout stream, selects the str 
tuple ield as the input to the JsonProjectFunction constructor, constructs the 
JsonProjectFunction constructor, and speciies that the ields selected from the 
JSON will also be output from the function:

        Fields jsonFields = new Fields("level", "timestamp", 
"message", "logger");

        Stream parsedStream = spoutStream.each(new Fields("str"), new 
JsonProjectFunction(jsonFields), jsonFields);

http:///


Chapter 4

[ 109 ]

Consider that the following JSON message is received from the Kafka spout:

{

  "message" : "foo",

  "timestamp" : 1370918376296,

  "level" : "INFO",

  "logger" : "test"

}

This would mean that the function would output the following tuple values:

[INFO, 1370918376296, test, foo]

Calculating a moving average
In order to calculate the rate at which log events occur, without the need to store 
an inordinate amount of state, we will implement a function that performs what is 
known in statistics as an exponentially weighted moving average.

A moving average calculation is often used to smooth out short-term luctuations 
and expose long-term trends in time series data. One of the most common examples 
of a moving average is its use in graphing the luctuation of prices in the stock 
market, as shown in the following screenshot:

http:///


Real-time Trend Analysis

[ 110 ]

The smoothing effect of a moving average is achieved by taking into account 
historical values in the calculation. A moving average calculation can be performed 
with a very minimal amount of state. For a time series, we need only keep the time  
of the last event and the last calculated average.

In pseudo code, the calculation would look something like the following code 
snippet:

diff = currentTime - lastEventTime

currentAverage = (1.0 - alpha) * diff + alpha * lastAverage

The alpha value in the preceding calculation is a constant value between 0 and 
1. The alpha value determines the amount of smoothing that occurs over time. 
The closer the alpha value is to 1, the more the historical values affect the current 
average. In other words, an alpha value closer to 0 will result in less smoothing 
and the moving average will be closer to the current value. An alpha value closer 
to 1 will have the opposite effect. The current average will be less affected by wild 
luctuations and the historical values will have more weight in determining the 
current average.

Adding a sliding window
In some cases, we may want to discount historical values to reduce their effects on 
the moving average, for example, to reset the smoothing effect if a large amount of 
time has passed between receiving events. In case of a low alpha value, this may 
not be necessary since the smoothing effect is minimal. In the event of a high alpha, 
however, it may be desirable to counteract the smoothing effect.

Consider the following example.

We have an event (such as a network error and so on) that occurs infrequently. 
Occasionally, small spikes in frequency occur, but that's usually okay. So,  
we want to smooth out the small spikes. What we want to be notiied of is  
if a sustained spike occurs.

If the event occurs once a week on average (well below our notiication threshold), 
but one day spikes to many occurrences within an hour (above our notiication 
threshold), the smoothing effect of the high alpha may negate the spike such that  
a notiication is never triggered.

To counteract this effect, we can introduce the concept of a sliding window into  
our moving average calculation. Since we're already keeping track of both the time  
of the last event, and the current average, implementing a sliding window is simple 
as illustrated in the following pseudo code:

http:///


Chapter 4

[ 111 ]

if (currentTime - lastEventTime) > slidingWindowInterval

    currentAverage = 0

end if

An implementation of an exponentially weighted moving average is listed as follows:

public class EWMA implements Serializable {

    public static enum Time {

        MILLISECONDS(1), SECONDS(1000), MINUTES(SECONDS.getTime() * 
60), HOURS(MINUTES.getTime() * 60), DAYS(HOURS

                .getTime() * 24), WEEKS(DAYS.getTime() * 7);

        private long millis;

        private Time(long millis) {

            this.millis = millis;

        }

        public long getTime() {

            return this.millis;

        }

    }

    // Unix load average-style alpha constants

    public static final double ONE_MINUTE_ALPHA = 1 - Math.exp(-5d / 
60d / 1d);

    public static final double FIVE_MINUTE_ALPHA = 1 - Math.exp(-5d / 
60d / 5d);

    public static final double FIFTEEN_MINUTE_ALPHA = 1 - Math.exp(-5d 
/ 60d / 15d);

    private long window;

    private long alphaWindow;

    private long last;

    private double average;

    private double alpha = -1D;

    private boolean sliding = false;

    public EWMA() {

    }

    public EWMA sliding(double count, Time time) {

        return this.sliding((long) (time.getTime() * count));

    }

http:///


Real-time Trend Analysis

[ 112 ]

    public EWMA sliding(long window) {

        this.sliding = true;

        this.window = window;

        return this;

    }

    public EWMA withAlpha(double alpha) {

        if (!(alpha > 0.0D && alpha <= 1.0D)) {

            throw new IllegalArgumentException("Alpha must be between 
0.0 and 1.0");

        }

        this.alpha = alpha;

        return this;

    }

    public EWMA withAlphaWindow(long alphaWindow) {

        this.alpha = -1;

        this.alphaWindow = alphaWindow;

        return this;

    }

    public EWMA withAlphaWindow(double count, Time time) {

        return this.withAlphaWindow((long) (time.getTime() * count));

    }

    public void mark() {

        mark(System.currentTimeMillis());

    }

    public synchronized void mark(long time) {

        if (this.sliding) {

            if (time - this.last > this.window) {

                // reset the sliding window

                this.last = 0;

            }

        }

        if (this.last == 0) {

            this.average = 0;

            this.last = time;

        }

        long diff = time - this.last;

        double alpha = this.alpha != -1.0 ? this.alpha : Math.exp(-1.0 
* ((double) diff / this.alphaWindow));

http:///


Chapter 4

[ 113 ]

        this.average = (1.0 - alpha) * diff + alpha * this.average;

        this.last = time;

    }

    public double getAverage() {

        return this.average;

    }

    public double getAverageIn(Time time) {

        return this.average == 0.0 ? this.average : this.average / 
time.getTime();

    }

    public double getAverageRatePer(Time time) {

        return this.average == 0.0 ? this.average : time.getTime() / 
this.average;

    }

}

The EWMA implementation deines three useful constant alpha values: ONE_MINUTE_
ALPHA, FIVE_MINUTE_ALPHA, and FIFTEEN_MINUTE_ALPHA. These correspond to the 
standard alpha values used to calculate load averages in UNIX. The alpha value  
can also be speciied manually, or as a function of an alpha window.

The implementation uses a luent-style builder API. For example, you can create an 
EWMA instance with a sliding window of one minute and an alpha value equivalent  
to the UNIX one-minute interval, as shown in use the following code snippet:

EWMA ewma = new EWMA().sliding(1.0, Time.MINUTES).withAlpha(EWMA.ONE_
MINUTE_ALPHA);

The mark() methods are used to update the moving average. Without arguments, 
the mark() method will use the current time to calculate the average. Because we 
want to use the original timestamp from the log event, we overload the mark() 
method to allow the speciication of a speciic time.

The getAverage() method returns the average time between calls to mark() in 
milliseconds. We also added the convenient getAverageIn()method, which will 
return the average in the speciied time unit of measure (seconds, minutes, hours, 
and so on). The getAverageRatePer() method returns the rate of calls to mark()  
in a speciic time measurement.

http:///


Real-time Trend Analysis

[ 114 ]

As you'll probably notice, using an exponentially weighted moving average can be 
somewhat tricky. Finding the right set of values for an alpha as well as the optional 
sliding window varies quite a bit depending on the speciic use case, and inding  
the right value is largely a matter of trial and error.

Implementing the moving average function
To use our EWMA class in a Trident topology, we'll create a subclass of Trident's 
BaseFunction abstract class named MovingAverageFunction that wraps an  
instance of EWMA, as shown in the following code snippet:

public class MovingAverageFunction extends BaseFunction {

    private static final Logger LOG = LoggerFactory.
getLogger(BaseFunction.class);

    

    private EWMA ewma;

    private Time emitRatePer;

    

    public MovingAverageFunction(EWMA ewma, Time emitRatePer){

        this.ewma = ewma;

        this.emitRatePer = emitRatePer;

    }

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

        this.ewma.mark(tuple.getLong(0));

        LOG.debug("Rate: {}", this.ewma.getAverageRatePer(this.
emitRatePer));

        collector.emit(new Values(this.ewma.getAverageRatePer(this.
emitRatePer)));

    }

}

The MovingAverage.execute() method gets the Long value of the incoming tuple's 
irst ield, uses the value to call the mark() method to update the current average, 
and emits the current average rate. Functions in Trident are additive, meaning they 
add values to the tuples in a stream. So, for example, consider that the tuple coming 
into our function looks like the following code snippet:

[INFO, 1370918376296, test, foo]

This means that after processing, the tuple might look like the following  
code snippet:

[INFO, 1370918376296, test, foo, 3.72234]

http:///


Chapter 4

[ 115 ]

Here, the new value represents the new average rate.

To use the function, we create an instance of the EWMA class and pass it to the 
MovingAverageFunction constructor. We apply the function to the stream with the 
each() method, selecting the timestamp ield as the input, as shown in the following 
code snippet:

        EWMA ewma = new EWMA().sliding(1.0, Time.MINUTES).
withAlpha(EWMA.ONE_MINUTE_ALPHA);

        Stream averageStream = parsedStream.each(new 
Fields("timestamp"),

                new MovingAverageFunction(ewma, Time.MINUTES), new 
Fields("average"));

Filtering on thresholds
For our use case, we want to be able to deine a rate threshold that triggers a 
notiication when exceeded. We also want notiications when the average rate 
falls back below that threshold (that is, returns to normal). We can accomplish this 
functionality using a combination of an additional function and a simple Trident ilter.

The job of the function will be to determine whether the new value of the average 
rate ield crosses a threshold, and if that represents a change from the previous value 
(that is, whether it has changed from below threshold to above threshold or vice versa). 
If the new average represents a state change, the function will emit the Boolean value 
True, otherwise it will emit False. We will leverage that value to ilter out events 
that do not represent a state change. We'll implement the threshold tracking function 
in the ThresholdFilterFunction class as shown in the following code snippet:

public class ThresholdFilterFunction extends BaseFunction {

    private static final Logger LOG = LoggerFactory.getLogger(Threshol
dFilterFunction.class);

    

    private static enum State {

        BELOW, ABOVE;

    }

    

    private State last = State.BELOW;

    private double threshold;

    

    public ThresholdFilterFunction(double threshold){

        this.threshold = threshold;

    }

http:///


Real-time Trend Analysis

[ 116 ]

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

        double val = tuple.getDouble(0);

        State newState = val < this.threshold ? State.BELOW : State.
ABOVE;

        boolean stateChange = this.last != newState;

        collector.emit(new Values(stateChange, threshold));

        this.last = newState;

        LOG.debug("State change? --> {}", stateChange);

    }

}

The ThresholdFilterFunction class deines an inner enumeration to represent 
the state (above threshold or below). The constructor takes a double argument that 
establishes the threshold we compare against. In the execute() method, we get  
the current rate value and determine whether it is below or above the threshold.  
We then compare it to the last state to see if it has changed and emit that value  
as a Boolean. Finally, we update the internal above/below state to the newly 
calculated value.

After passing through the ThresholdFilterFunction class, tuples in the input 
stream will contain a new Boolean value that we can use to easily ilter out events 
that don't trigger a state change. To ilter out non-state-change events, we'll use a 
simple BooleanFilter class as shown in the following code snippet:

public class BooleanFilter extends BaseFilter {

    public boolean isKeep(TridentTuple tuple) {

        return tuple.getBoolean(0);

    }

}

The BooleanFilter.isKeep() method simply reads a ield from a tuple as a 
Boolean value and returns that value. Any tuples containing False for the input 
value will be iltered out of the resulting stream.

The following code fragment illustrates the usage of the 
ThresholdFilterFuncation class and the BooleanFilter class:

        ThresholdFilterFunction tff = new 
ThresholdFilterFunction(50D);

        Stream thresholdStream = averageStream.each(new 
Fields("average"), tff, new Fields("change", "threshold"));

http:///


Chapter 4

[ 117 ]

        Stream filteredStream = thresholdStream.each(new 
Fields("change"), new BooleanFilter());

The irst line creates a ThresholdFilterFunction instance with a threshold 
of 50.0. We then create a new stream using the averageStream as input to the 
threshold function, and select the average tuple ield as input. We also assign names 
(change and threshold) to the ields added by the function. Finally, we apply 
the BooleanFilter class to create a new stream that will only contain tuples that 
represent a change in threshold comparison.

At this point, we have everything necessary to implement notiications. The 
filteredStream we've created will only contain tuples that represent a threshold 
state change.

Sending notiications with XMPP
The XMPP protocol provides all the typical features you would expect in an instant 
messaging standard:

• Rosters (contact lists)

• Presence (knowing when others are online and their availability status)

• User-to-user instant messaging

• Group chats

The XMPP protocol uses an XML format for its communication protocol, but there 
are numerous high-level client libraries that handle most of the low-level details 
with a simple API. We will use the Smack API (http://www.igniterealtime.
org/projects/smack/) as it is one of the most straightforward XMPP client 
implementations.

The following code snippet demonstrates the usage of the Smack API to send  
a simple instant message to another user:

        // connect to XMPP server and login

        ConnectionConfiguration config = new

            ConnectionConfiguration("jabber.org");

        XMPPConnection client = new XMPPConnection(config);

        client.connect();

        client.login("username", "password");

        

http:///


Real-time Trend Analysis

[ 118 ]

        // send a message to another user

        Message message =

           new Message("myfriend@jabber.org", Type.normal);

        message.setBody("How are you today?");

        client.sendPacket(message);

The code connects to the XMPP server at jabber.org and logs in with a username 
and password. Behind the scenes, the Smack library handles the low-level 
communications with the server. When the client connects and authenticates, it also 
sends a presence message to the server. This allows a user's contacts (other users 
listed in their XMPP roster) to receive a notiication that the person is now connected. 
Finally, we create and send a simple message addressed to "myfriend@jabber.org".

Based on this simple example, we will create a class named XMPPFunction that 
sends XMPP notiications when it receives a Trident tuple. The class will establish 
a long-lived connection to an XMPP server in the prepare() method. Also, in the 
execute() method it will create an XMPP message based on the tuple received.

To make the XMPPFunction class more reusable, we'll introduce the MessageMapper 
interface that deines a method to format the data from a Trident tuple to a string 
suitable for an instant message notiication, as shown in the following code snippet:

public interface MessageMapper extends Serializable {

    public String toMessageBody(TridentTuple tuple);

}

We'll delegate message formatting to an instance of MessageMapper in the 
XMPPFunction class as shown in the following code snippet:

public class XMPPFunction extends BaseFunction {

    private static final Logger LOG = LoggerFactory.
getLogger(XMPPFunction.class);

    public static final String XMPP_TO = "storm.xmpp.to";

    public static final String XMPP_USER = "storm.xmpp.user";

    public static final String XMPP_PASSWORD = "storm.xmpp.password";

    public static final String XMPP_SERVER = "storm.xmpp.server";

    private XMPPConnection xmppConnection;

    private String to;

    private MessageMapper mapper;

http:///


Chapter 4

[ 119 ]

    public XMPPFunction(MessageMapper mapper) {

        this.mapper = mapper;

    }

    @Override

    public void prepare(Map conf, TridentOperationContext context) {

        LOG.debug("Prepare: {}", conf);

        super.prepare(conf, context);

        this.to = (String) conf.get(XMPP_TO);

        ConnectionConfiguration config = new ConnectionConfiguration((
String) conf.get(XMPP_SERVER));

        this.xmppConnection = new XMPPConnection(config);

        try {

            this.xmppConnection.connect();

            this.xmppConnection.login((String) conf.get(XMPP_USER), 
(String) conf.get(XMPP_PASSWORD));

        } catch (XMPPException e) {

            LOG.warn("Error initializing XMPP Channel", e);

        }

    }

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

        Message msg = new Message(this.to, Type.normal);

        msg.setBody(this.mapper.toMessageBody(tuple));

        this.xmppConnection.sendPacket(msg);

    }

}

The XMPPFunction class begins by deining several string constants that are used to 
look up values from the Storm coniguration passed to the prepare() method, and 
it follows with the declaration of the instance variables that we'll populate when the 
function becomes active. The class' constructor takes a MessageMapper instance as 
a parameter that will be used in the execute() method to format the body of the 
notiication message.

In the prepare() method, we look up the coniguration parameters (server, 
username, to address, and so on) for the XMPPConnection class and open the 
connection. When a topology that uses this function is deployed, the XMPP client will 
send a presence packet and other users who have the conigured user in their roster 
(buddy list) will receive a notiication indicating that the user is now online.

http:///


Real-time Trend Analysis

[ 120 ]

The inal necessary piece of our notiication mechanism is to implement a 
MessageMapper instance to format the contents of a tuple into a human-readable 
message body as shown in the following code snippet:

public class NotifyMessageMapper implements MessageMapper {

    public String toMessageBody(TridentTuple tuple) {

        StringBuilder sb = new StringBuilder();

        sb.append("On " + new Date(tuple.getLongByField("timestamp")) 
+ " ");

        sb.append("the application \"" + tuple.
getStringByField("logger") + "\" ");

        sb.append("changed alert state based on a threshold of " + 
tuple.getDoubleByField("threshold") + ".\n");

        sb.append("The last value was " + tuple.
getDoubleByField("average") + "\n");

        sb.append("The last message was \"" + tuple.
getStringByField("message") + "\"");

        return sb.toString();

    }

}

The inal topology
We now have all the components necessary to build our log analysis topology  
as follows:

public class LogAnalysisTopology {

    public static StormTopology buildTopology() {

        TridentTopology topology = new TridentTopology();

        StaticHosts kafkaHosts = KafkaConfig.StaticHosts.
fromHostString(Arrays.asList(new String[] { "localhost" }), 1);

        TridentKafkaConfig spoutConf = new 
TridentKafkaConfig(kafkaHosts, "log-analysis");

        spoutConf.scheme = new StringScheme();

        spoutConf.forceStartOffsetTime(-1);

        OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(s
poutConf);

        Stream spoutStream = topology.newStream("kafka-stream", 
spout);

http:///


Chapter 4

[ 121 ]

        Fields jsonFields = new Fields("level", "timestamp", 
"message", "logger");

        Stream parsedStream = spoutStream.each(new Fields("str"), new 
JsonProjectFunction(jsonFields), jsonFields);

        // drop the unparsed JSON to reduce tuple size

        parsedStream = parsedStream.project(jsonFields);

        EWMA ewma = new EWMA().sliding(1.0, Time.MINUTES).
withAlpha(EWMA.ONE_MINUTE_ALPHA);

        Stream averageStream = parsedStream.each(new 
Fields("timestamp"),

                new MovingAverageFunction(ewma, Time.MINUTES), new 
Fields("average"));

        ThresholdFilterFunction tff = new 
ThresholdFilterFunction(50D);

        Stream thresholdStream = averageStream.each(new 
Fields("average"), tff, new Fields("change", "threshold"));

        Stream filteredStream = thresholdStream.each(new 
Fields("change"), new BooleanFilter());

        

        filteredStream.each(filteredStream.getOutputFields(), new 
XMPPFunction(new NotifyMessageMapper()), new Fields());

        return topology.build();

    }

    public static void main(String[] args) throws Exception {

        Config conf = new Config();

        conf.put(XMPPFunction.XMPP_USER, "storm@budreau.local");

        conf.put(XMPPFunction.XMPP_PASSWORD, "storm");

        conf.put(XMPPFunction.XMPP_SERVER, "budreau.local");

        conf.put(XMPPFunction.XMPP_TO, "tgoetz@budreau.local");

        

        conf.setMaxSpoutPending(5);

        if (args.length == 0) {

            LocalCluster cluster = new LocalCluster();

            cluster.submitTopology("log-analysis", conf, 
buildTopology());

http:///


Real-time Trend Analysis

[ 122 ]

        } else {

            conf.setNumWorkers(3);

            StormSubmitter.submitTopology(args[0], conf, 
buildTopology());

        }

    }

}

Then, the buildTopology() method creates all the stream connections between the 
Kafka spout and our Trident functions and ilters. The main() method then submits 
the topology to a cluster: a local cluster if the topology is being run in the local mode 
or a remote cluster when run in the distributed mode.

We begin by coniguring the Kafka spout to read from the same topic that our 
application is conigured to write log events. Because Kafka persists all the messages 
it receives, and because our application may have been running for some time (and 
thus logging many events), we tell the spout to fast-forward to the end of the Kafka 
queue by calling the forceStartOffsetTime() method with a value of -1. This will 
avoid the replay of all the old messages that we may not be interested in. Using a 
value of -2 will force the spout to rewind to the beginning of the queue, and using 
a speciic date in milliseconds will force it to rewind to a speciic point in time. If 
the forceFromStartTime() method is not called, the spout will attempt to resume 
where it last left off by looking up an offset in ZooKeeper.

Next, we set up the JsonProjectFunction class to parse the raw JSON received 
from Kafka and emit the values that we're interested in. Recall that the Trident 
functions are additive. This means that our tuple stream, in addition to all the values 
extracted from the JSON, will also contain the original unparsed JSON string. Since 
we no longer need that data, we call the Stream.project() method with a list of 
ields we want to keep. The project() method is useful for paring down tuple 
streams to just the essential ields, and it is especially important while repartitioning 
streams that have large amounts of data.

The resulting stream now contains just the data we need. We set up an EWMA instance 
with a sliding window of one minute and conigure the MovingAverageFunction 
class to emit the current rate in minutes. We create the ThresholdFunction class 
with a value of 50.0, so we'll receive a notiication any time the average rate goes 
above or falls below 50 events per minute.

Finally, we apply the BooleanFilter class and connect the resulting stream to the 
XMPPFunction class.

The main() method of the topology simply populates a Config object with the 
properties needed by the XMPPFunction class and submits the topology.

http:///


Chapter 4

[ 123 ]

Running the log analysis topology
To run the analysis topology, irst make sure that ZooKeeper, Kafka, and OpenFire 
are all up and running by using the procedures outlined earlier in the chapter. Then, 
run the main() method of the topology.

When the topology activates, the storm XMPP user will connect to the XMPP server 
and trigger a presence event. If you are logged into the same server with an XMPP 
client and have the storm user in your buddy list, you will see it become available. 
This is shown in the following screenshot:

Next, run the RogueApplication class and wait for a minute. You should receive an 
instant message notiication indicating that the threshold has been exceeded, which 
will be followed by one indicating a return to normal (below threshold), as shown in 
the following screenshot:

http:///


Real-time Trend Analysis

[ 124 ]

Summary
In this chapter, we've introduced you to real-time analytics by creating a simple 
yet powerful topology that can be adapted to a wide range of applications. The 
components we've built are generic and can easily be reused and extended in  
other projects. Finally, we introduced a real-world spout implementation that  
can be used for a multitude of purposes.

While the topic of real-time analytics is very broad, and admittedly we've only 
been able to scratch the surface in this chapter, we encourage you to explore the 
techniques presented in other chapters of this book and consider how they may  
be incorporated into your analytics toolbox.

In the next chapter, we'll introduce you to Trident's distributed state mechanism  
by building an application that continuously writes Storm-processed data to a  
graph database.

http:///


Real-time Graph Analysis
In this chapter, we will introduce you to graph analysis using Storm to persist data 
to a graph database and query that data to discover relationships. Graph databases 
are databases that store data as graph structures with vertices, edges, and properties, 
and focus primarily on relationships between the entities.

With the advent of social media sites such as Twitter, Facebook, and LinkedIn, 
social graphs have become ubiquitous. Analyzing relationships between people, 
the products they buy, the recommendations they make, and even the words they 
use can be analyzed to reveal patterns that would be dificult with traditional data 
models. For example, when LinkedIn shows that you are four steps away from 
another person based on your network, when Twitter offers suggestions of people 
to follow, or when Amazon suggests products you may be interested in, they are 
leveraging what they know about your relationship graph. Graph databases are 
designed for this type of relationship analysis.

In this chapter, we will build an application that ingests a subset of the Twitter 
irehose (the real-time feed of all tweets made by Twitter users) and based on the 
content of each message, creates nodes (vertices) and relationships (edges) in a graph 
database that we can then analyze. The most obvious graph structure within Twitter 
is based on the follows / followed by relationship between users, but we can infer 
additional relationships by looking beyond these explicit relationships. By looking at 
the content of messages, we can use message metadata (hashtags, user mentions, and 
so on) to identify, for example, users who mention the same subjects or tweet related 
hashtags. In this chapter, we will cover the following topics:

• Basic graph database concepts

• The TinkerPop graph APIs

• Graph data modeling

• Interacting with the Titan-distributed graph database

• Writing a Trident state implementation backed by a graph database

http:///


Real-time Graph Analysis

[ 126 ]

Use case
Today's social media websites capture a wealth of information. Many social media 
services such as Twitter, Facebook, and LinkedIn are based largely on relationships: 
who you follow, are friends with, or have a business connection to. Beyond the 
obvious and explicit relationships, social media interactions also create a persistent 
set of implicit connections that can be easily taken for granted. With Twitter, for 
example, the obvious relationships consist of those one follows and who one is 
followed by. The less obvious relationships are the connections created, perhaps 
unknowingly, just by using the service. Have you directly messaged someone on 
Twitter? If yes, then you've formed a connection. Tweeted a URL? If yes, again a 
connection. Liked a product, service, or comment on Facebook? Connection. Even 
the act of using a speciic word or phrase in a tweet or post can be thought of as 
creating a connection. By using that word, you are forming a connection with it, and 
by using it repeatedly, you are strengthening that connection.

If we look at data as "everything is a connection," then we can build a structured 
dataset and analyze it to expose broader patterns. If Bob does not know Alice, but 
both Bob and Alice have tweeted the same URL, we can infer a connection from this 
fact. As our dataset grows, its value will also grow as the number of connections in 
the network increases (similar to Metcalfe's law: http://en.wikipedia.org/wiki/
Metcalfe's_law).

When we begin querying our dataset, the value for storing data in a graph database 
will quickly become evident as we glean patterns from the growing network of 
connections. The graph analysis we perform is applicable to a number of real-world 
use cases that include the following:

• Targeted advertising

• Recommendation engines

• Sentiment analysis

Architecture
The architecture for our application is relatively simple. We will create a Twitter 
client application that reads a subset of the Twitter irehose and writes each message 
to a Kafka queue as a JSON data structure. We'll then use the Kafka spout to feed 
that data into our storm topology. Finally, our storm topology will analyze the 
incoming messages and populate the graph database.

http:///


Chapter 5

[ 127 ]

Twitter

Firehose

Tweets

Titan DB
Kafka

Queue
Twitter4J Client

Strom

Topology
Kafka

Spout

The Twitter client
Twitter provides a comprehensive RESTful API that in addition to a typical 
request-response interface also provides a streaming API that supports long-lived 
connections. The Twitter4J Java library (http://twitter4j.org/) offers full 
compatibility with the latest version of the Twitter API and takes care of all the  
low-level details (connection management, OAuth authentication, and JSON parsing) 
with a clean Java API. We will use Twitter4J to connect to the Twitter-streaming API.

Kafka spout
In the previous chapter, we developed a Logback Appender extension that allowed 
us to easily publish data to a Kafka queue, and we used Nathan Marz's Kafka 
spout (https://github.com/nathanmarz/storm-contrib) to consume the data 
in a Storm topology. While it would be easy enough to write a Storm spout using 
Twitter4J and the Twitter streaming API, using Kafka and the Kafka Spout gives 
us transactional, exactly-once semantics, and built-in fault tolerance that we would 
otherwise have to implement ourselves. For more information on installing and 
running Kafka refer to Chapter 4, Real-time Trend Analysis.

http:///


Real-time Graph Analysis

[ 128 ]

A titan-distributed graph database
Titan is a distributed graph database optimized for storing and querying graph 
structures. Like Storm and Kafka, Titan databases can run as a cluster and can scale 
horizontally to accommodate increasing data volume and user load. Titan stores its 
data in one of the three conigurable storage backends: Apache Cassandra, Apache 
HBase, and Oracle Berkely Database. The choice of storage backend depends on 
which two properties of the CAP theorem are desired. In respect to a database, the 
CAP theorem stipulates that a distributed system cannot simultaneously make all  
of the following guarantees:

• Consistency: All clients see the current data regardless of modiications
• Availability: The system continues to operate as expected despite  

node failures

• Partition Tolerance: The system continues to operate as expected  
despite network or message failure

Berkely DB

Availability
Cassandra

Partition

Tolerance

HBase

Consistency

For our use case, consistency is not critical to our application. We are far more 
concerned with scalability and fault tolerance. If we look at the CAP theorem 
triangle, shown in the preceding diagram, it becomes clear that Cassandra is the 
storage backend of choice.

http:///


Chapter 5

[ 129 ]

A brief introduction to graph databases
A graph is a network of objects (vertices) with directed connections (edges) between 
them. The following diagram illustrates a simple social graph similar to what one 
might ind on Twitter:

Follows

Follows

Alice

TedBob

Follows

In this example, users are represented by vertices (nodes), and relationships are 
expressed as edges (connection). Note that the edges in the graph are directed, 
allowing an additional degree of expressiveness. This allows, for example, to express 
the fact that Bob and Alice follow one another, and Alice follows Ted but Ted does 
not follow Alice. This relationship would be more cumbersome to model without 
directed edges.

Many graph databases follow a property graph model. A property graph extends the 
basic graph model by allowing a set of properties (key-value pairs) to be assigned to 
vertices and edges as shown in the following diagram:

Follows

Since: 2012

Follows

Since: 2010

Alice

TedBob

Follows

Since: 2011

born: 1965

state: New York

born: 1970

state: Texas

born: 1980

state: Vermont

The ability to associate property metadata to objects and relationships in a graph 
model provides powerful support metadata for graph algorithms and queries. For 
example, adding the since property to the Follows edge would enable us to eficiently 
query for all the users who started following a particular user in a given year.

http:///


Real-time Graph Analysis

[ 130 ]

In contrast to relational databases, relationships in a graph database are explicit as 
opposed to implicit. Relationships in a graph database are full-blown data structures 
rather than implied connections (that is, foreign keys). Under the hood, graph 
databases' underlying data structures are heavily optimized for graph traversal. 
While it is entirely possible to model a graph in a relational database, it is often less 
eficient than a graph-centric model. In a relational data model, traversing a graph 
structure can be computationally expensive as it involves joining many tables. In a 
graph database, it is a more natural process of traversing links between nodes.

Accessing the graph – the TinkerPop stack
TinkerPop is a group of open source projects focused on graph technologies such 
as database access, data low, and graph traversal. Blueprints, the foundation of 
the TinkerPop stack, is a generic Java API for interacting with property graphs in 
much the same way JDBC provides a generic interface to relational databases. Other 
projects in the stack add additional functionalities on top of that foundation so that 
they can be used with any graph database that implements the Blueprints API.

Rexster

Furnace

Frames

Gremlin

Pipes

Blueprints

The components of the TinkerPop stack include the following:

• Blueprints: Graph API Blueprints is a collection of interfaces that provide 
access to a property graph data model. Implementations are available for 
graph databases including Titan, Neo4J, MongoDB, and many others.

http:///


Chapter 5

[ 131 ]

• Pipes: Datalow Processing Pipes is a datalow framework for deining and 
connecting various data operations as a process graph. Manipulating data 
with Pipes' primitives closely resembles data processing in Storm. Pipes 
datalow are directed acyclic graphs (DAG), much like a Storm topology.

• Gremlin: Gremlin is a graph traversal language. It is a Java-based 
domain speciic language (DSL) for graph traversal, query, analysis, and 
manipulation. The Gremlin distribution comes with a Groovy-based shell that 
allows the use of interactive analysis and modiication of a Blueprints graph.

• Frames: Frames is an object-to-graph mapping framework analogous to an 
ORM but tailored for graphs.

• Furnace: The Furnace project aims to provide implementations of many 
common graph algorithms for Blueprints property graphs.

• Rexster: Rexster is a graph server that exposes Blueprints graphs through a 
REST API, as well as a binary protocol.

For our purposes, we will be focusing on the Blueprints API for populating a graph 
from a Storm topology and Gremlin for graph queries and analysis.

Manipulating the graph with the Blueprints 

API
The Blueprints API is very straightforward. The following code listing uses  
the Blueprints API to create the graph depicted in the previous diagram:

    Graph graph = new TinkerGraph();

   

    Vertex bob = graph.addVertex(null);

    bob.setProperty("name", "Bob");

    bob.setProperty("born", 1980);

    bob.setProperty("state", "Vermont");

   

    Vertex alice = graph.addVertex(null);

    alice.setProperty("name", "Alice");

    alice.setProperty("born", 1965);

    alice.setProperty("state", "New York");

   

    Vertex ted = graph.addVertex(null);

    ted.setProperty("name", "Ted");

    ted.setProperty("born", 1970);

    ted.setProperty("state", "Texas");

   

http:///


Real-time Graph Analysis

[ 132 ]

    Edge bobToAlice = graph.addEdge(null, bob, alice, "Follows");

    bobToAlice.setProperty("since", 2012);

   

    Edge aliceToBob = graph.addEdge(null, alice, bob, "Follows");

    aliceToBob.setProperty("since", 2011);

   

    Edge aliceToTed = graph.addEdge(null, alice, ted, "Follows");

    aliceToTed.setProperty("since", 2010);

   

    graph.shutdown();

The irst line of code instantiates an implementation of the com.tinkerpop.
blueprints.Graph interface. In this case, we're creating an in-memory, toy graph 
(com.tinkerpop.blueprints.impls.tg.TinkerGraph) for exploration. Later, we 
will demonstrate how to connect to a distributed graph database.

You may be wondering why we are passing null as a parameter to 
the addVertex() and addEdge() methods at the irst argument. 
This argument is essentially a suggestion to the underlying 
Blueprints implementation for a unique ID for the object. Passing 
in null as the ID simply has the effect of letting the underlying 
implementation assign an ID to the new object.

Manipulating the graph with the Gremlin shell
Gremlin is a high-level Java API built on the top of the Pipes and Blueprints APIs. In 
addition to the Java API, Gremlin also includes a Groovy-based API and ships with 
an interactive shell (or REPL) that allows you to directly interact with a Blueprints 
graph. The Gremlin shell allows you to create and/or connect to the shell and query 
virtually any Blueprints graph. The following code listing illustrates the process of 
executing the Gremlin shell:

./bin/gremlin.sh

         \,,,/
         (o o)
-----oOOo-(_)-oOOo-----
gremlin>
gremlin> g.V('name', 'Alice').outE('Follows').count()
==>2

http:///


Chapter 5

[ 133 ]

In addition to querying a graph, it is also easy to create and manipulate graphs using 
Gremlin. The following code listing consists of Gremlin Groovy code that will create 
the same graph illustrated in the previous diagram and is the Groovy equivalent of 
the Java code:

g = new TinkerGraph()

bob = g.addVertex()

bob.name = "Bob"

bob.born = 1980

bob.state = "Vermont"

alice = g.addVertex()

alice.name = "Alice"

alice.born=1965

alice.state = "New York"

ted = g.addVertex()

ted.name = "Ted"

ted.born = 1970

ted.state = "Texas"

bobToAlice = g.addEdge(bob, alice, "Follows")

bobToAlice.since = 2012

aliceToBob = g.addEdge(alice, bob, "Follows")

aliceToBob.since = 2011

aliceToTed = g.addEdge(alice, ted, "Follows")

aliceToTed.since = 2010

You will learn more about using the Gremlin API and DSL later in the chapter once 
we've built a topology to populate a graph and are ready to analyze the graph data.

Software installation
The application we're building will utilize Apache Kafka and its dependencies (Apache 
ZooKeeper). If you haven't done so already, set up ZooKeeper and Kafka according 
to the instructions in the ZooKeeper installation section in Chapter 2, Coniguring Storm 
Clusters, and the Installing Kafka section in Chapter 4, Real-time Trend Analysis.

Titan installation
To install Titan, download the Titan 0.3.x complete package from Titan's downloads 
page (https://github.com/thinkaurelius/titan/wiki/Downloads), and extract 
it to a convenient location by using the following command:

wget http://s3.thinkaurelius.com/downloads/titan/titan-all-0.3.2.zip

unzip titan-all-0.3.2.zip

http:///


Real-time Graph Analysis

[ 134 ]

Titan's complete distribution package includes everything that is necessary for 
running Titan with any of the supported storage backends: Cassandra, HBase, and 
BerkelyDB. There are also backend-speciic distributions if you are only interested  
in using a speciic storage backend.

Both Storm and Titan use the Kryo (https://code.google.
com/p/kryo/) library for Java object serialization. At the time of 
writing, Storm and Titan use different versions of the Kryo library, 
which will cause problems when the two are used in conjunction.

To patch Titan in order to properly enable serialization between Storm and Titan, 
replace the kryo.jar ile in the Titan distribution with the kryo.jar ile that comes 
with Storm:

cd titan-all-0.3.2/lib

rm kryo*.jar

cp $STORM_HOME/lib/kryo*.jar ./

At this point, you can test the installation by running the Gremlin shell:

$ cd titan

$ ./bin/gremlin.sh

          \,,,/

         (o o)

-----oOOo-(_)-oOOo-----

gremlin> g = GraphOfTheGodsFactory.create('/tmp/storm-blueprints')

==>titangraph[local:/tmp/storm-blueprints]

gremlin> g.V.map

==>{name=saturn, age=10000, type=titan}

==>{name=sky, type=location}

==>{name=sea, type=location}

==>{name=jupiter, age=5000, type=god}

==>{name=neptune, age=4500, type=god}

==>{name=hercules, age=30, type=demigod}

==>{name=alcmene, age=45, type=human}

==>{name=pluto, age=4000, type=god}

==>{name=nemean, type=monster}

==>{name=hydra, type=monster}

==>{name=cerberus, type=monster}

==>{name=tartarus, type=location}

gremlin>

http:///


Chapter 5

[ 135 ]

GraphOfTheGodsFactory is a class included with Titan that will create and populate 
a Titan database with a sample graph that represents the relationships between 
the characters and places in the Roman pantheon. Passing a directory path to the 
create() method will return a Blueprints graph implementation, speciically a com.
thinkaurelius.titan.graphdb.database.StandardTitanGraph instance that 
uses a combination of BerkelyDB and Elasticsearch for a storage backend. Since the 
Gremlin shell is a Groovy REPL, we can easily verify this by looking at the class of 
the g variable:

gremlin> g.class.name

==>com.thinkaurelius.titan.graphdb.database.StandardTitanGraph

Setting up Titan to use the Cassandra 

storage backend
We've seen that Titan supports different storage backends. Exploring all three 
options is beyond the scope of this chapter (you can learn more about Titan and its 
coniguration options at http://thinkaurelius.github.io/titan/), so we will 
focus on using the Cassandra (http://cassandra.apache.org) storage backend.

Installing Cassandra
In order to download and run Cassandra, we need to execute the following 
commands:

wget http://www.apache.org/dyn/closer.cgi?path=/cassandra/1.2.9/apache-
cassandra-1.2.9-bin.tar.gz

tar -zxf ./cassandra-1.2.9.bin.tar.gz

cd cassandra-1.2.9

./bin/cassandra -f

The default ile that comes with the Cassandra distribution will create a single-node 
Cassandra database running locally. If there is an error during the startup, you may 
need to conigure Cassandra by editing the ${CASSANDRA_HOME}/conf/cassandra.
yaml and/or ${CASSANDRA_HOME}/conf/log4j-server.properties iles. The 
most common problems are usually related to the lack of ile-write permissions on /
var/lib/cassandra (where, by default, Cassandra stores its data) and /var/log/
cassandra (the default Cassandra log location).

http:///


Real-time Graph Analysis

[ 136 ]

Starting Titan with the Cassandra backend
To run Titan with Cassandra, we need to conigure it to connect to our Cassandra 
server. Create a new ile called storm-blueprints-cassandra.yaml with the 
following contents:

storage.backend=cassandra

storage.hostname=localhost

As you can probably surmise, this conigures Titan to connect to the Cassandra 
instance running locally.

For this project, we may not need to actually run the Titan server. Since 
we're using Cassandra, Storm and Gremlin should be able to share the 
backend without any issues.

With the Titan backend conigured, we are ready to create our data model.

Graph data model
The primary entity in our data model is a Twitter user. A Twitter user can perform 
the following relationship-forming actions when posting a tweet:

• Use a word

• Mention a hashtag

• Mention another user

• Mention a URL

• Retweet another user

Hash

Tag

URL

Word

User

mentions_hashtag

mentions_url

Uses_word

retweets_user

follows_user

mentions_user

http:///


Chapter 5

[ 137 ]

This concept maps very naturally into a graph model. In the model, we will have 
four different entity types (vertices):

• User: This represents a Twitter user account

• Word: This represents any word contained in a tweet

• URL: This represents any URL contained in a tweet

• Hashtag: This represents any hashtag contained in a tweet

Relationships (edges) will consist of the following actions:

• mentions_user: Using this action, a user mentions another user

• retweets_user: Using this action, a user retweets another user's post

• follows_user: Using this action, a user follows another user

• mentions_hashtag: Using this action, a user mentions a hashtag

• uses_word: Using this action, the user uses a speciic word in a tweet
• mentions_url: Using this action, a user tweets a speciic URL

The user vertex models a user's Twitter account information, which is shown in the 
following table:

User [vertex]

type String "user"

user String Twitter screen name

name String Twitter name

location String Twitter location

The URL vertex provides a reference point for unique URLs:

URL [vertex]

type String "url"

value String URL

The hashtag vertex allows us to store unique hashtags:

Hashtag [vertex]

type String "hashtag"

value String

http:///


Real-time Graph Analysis

[ 138 ]

We store individual words in the word vertex:

Word [vertex]

type String "word"

value String

The mentions_user edge is used for relationships between user objects:

mentions_user [edge]

user String The ID of the user mentioned

The mentions_url edge represents a relationship between the User and URL objects:

mentions_url [edge]

user String The ID of the user mentioned

Connecting to the Twitter stream
In order to connect to the Twitter API, we must irst generate a set of OAuth tokens 
that will enable our application to authenticate with Twitter. This is done by creating 
a Twitter application that is associated with your account and then authorizing that 
application to access your account. If you do not already have a Twitter account, 
create one now and log in to it. Once you are logged in to Twitter, generate the 
OAuth tokens by following these steps:

1. Go to https://dev.twitter.com/apps/new and log in if necessary.

2. Enter a name and description for your application.

3. Enter a URL for your application. In our case, the URL is unimportant since 
we're not creating an app that will be distributed like a mobile app. Entering 
a placeholder URL here is ine.

4. Submit the form. The next page will display the details of the OAuth settings 
for your application. Note the Consumer key and Consumer secret values 
since we will need those for our application.

5. At the bottom of the page, click on the Create my access token button. This 
will generate an OAuth Access token and a secret key that will allow an 
application to access your account on your behalf. We will also need these 
values for our application. Do not share these values as they would allow 
someone else to authenticate as you.

http:///


Chapter 5

[ 139 ]

Setting up the Twitter4J client
The Twitter4J client is broken down into a number of different modules that can 
be pieced together depending on our needs. For our purposes, we need the core 
module that provides essential functionalities such as HTTP transport, OAuth, and 
access to the basic Twitter API. We will also use the stream module for accessing the 
streaming API. These modules can be included in the project by adding the following 
Maven dependencies:

    <dependency>

      <groupId>org.twitter4j</groupId>

      <artifactId>twitter4j-core</artifactId>

      <version>3.0.3</version>

    </dependency>

    <dependency>

      <groupId>org.twitter4j</groupId>

      <artifactId>twitter4j-stream</artifactId>

      <version>3.0.3</version>

    </dependency>

The OAuth coniguration
By default, Twitter4J will search the classpath for a twitter4j.properties ile and 
load OAuth tokens from that ile. The easiest way to do this is to create the ile in the 
resources folder of your Maven project. Add the tokens you generated earlier to 
this ile:

oauth.consumerKey=[your consumer key]

oauth.consumerSecret=[your consumer secret]

oauth.accessToken=[your access token]

oauth.accessTokenSecret=[your access token secret]

We're now ready to use the Twitter4J client to connect to Twitter's streaming API to 
consume tweets in real time.

The TwitterStreamConsumer class
The purpose of our Twitter client is straightforward; it will perform the following 
functions:

• Connect to the Twitter streaming API

• Request a stream of tweets iltered by a set of keywords
• Create a JSON data structure based on the status message

• Write the JSON data to Kafka for consumption by the Kafka spout

http:///


Real-time Graph Analysis

[ 140 ]

The main() method of the TwitterStreamConsumer class creates a TwitterStream 
object and registers an instance of StatusListener as a listener. The 
StatusListener interface is used as an asynchronous event handler that is notiied 
whenever a stream-related event occurs:

    public static void main(String[] args) throws TwitterException, 
IOException {

        StatusListener listener = new TwitterStatusListener();

        TwitterStream twitterStream = new TwitterStreamFactory().
getInstance();

        twitterStream.addListener(listener);

        FilterQuery query = new FilterQuery().track(args);

        twitterStream.filter(query);

    }

After registering the listener, we create a FilterQuery object to ilter the stream 
based on a set of keywords. For convenience, we use the program arguments as the 
list of keywords so the ilter criteria can be easily changed from the command line.

The TwitterStatusListener class
The TwitterStatusListener class performs most of the heavy lifting in our 
application. The StatusListener class deines several callback methods for events 
that can occur during the lifetime of a stream. The onStatus() method is our 
primary interest, since it is the method that gets calls whenever a new Tweet arrives. 
The following is the code for the TwitterStatusListener class:

    public static class TwitterStatusListener implements 
StatusListener {

        public void onStatus(Status status) {

            JSONObject tweet = new JSONObject();

            tweet.put("user", status.getUser().getScreenName());

            tweet.put("name", status.getUser().getName());

            tweet.put("location", status.getUser().getLocation());

            tweet.put("text", status.getText());

            HashtagEntity[] hashTags = status.getHashtagEntities();

            System.out.println("# HASH TAGS #");

            JSONArray jsonHashTags = new JSONArray();

            for (HashtagEntity hashTag : hashTags) {

http:///


Chapter 5

[ 141 ]

                System.out.println(hashTag.getText());

                jsonHashTags.add(hashTag.getText());

            }

            tweet.put("hashtags", jsonHashTags);

            System.out.println("@ USER MENTIONS @");

            UserMentionEntity[] mentions = status.
getUserMentionEntities();

            JSONArray jsonMentions = new JSONArray();

            for (UserMentionEntity mention : mentions) {

                System.out.println(mention.getScreenName());

                jsonMentions.add(mention.getScreenName());

            }

            tweet.put("mentions", jsonMentions);

            URLEntity[] urls = status.getURLEntities();

            System.out.println("$ URLS $");

            JSONArray jsonUrls = new JSONArray();

            for (URLEntity url : urls) {

                System.out.println(url.getExpandedURL());

                jsonUrls.add(url.getExpandedURL());

            }

            tweet.put("urls", jsonUrls);

            if (status.isRetweet()) {

                JSONObject retweetUser = new JSONObject();

                retweetUser.put("user", status.getUser().
getScreenName());

                retweetUser.put("name", status.getUser().getName());

                retweetUser.put("location", status.getUser().
getLocation());

                tweet.put("retweetuser", retweetUser);

            }

            KAFKA_LOG.info(tweet.toJSONString());

        }

        public void onDeletionNotice(StatusDeletionNotice 
statusDeletionNotice) {

        }

        public void onTrackLimitationNotice(int 
numberOfLimitedStatuses) {

http:///


Real-time Graph Analysis

[ 142 ]

            System.out.println("Track Limitation Notice: " + 
numberOfLimitedStatuses);

        }

        public void onException(Exception ex) {

            ex.printStackTrace();

        }

        public void onScrubGeo(long arg0, long arg1) {

        }

        public void onStallWarning(StallWarning arg0) {

        }

    }

In addition to the raw text of the status message, the Status object includes 
convenient methods for accessing all the associated metadata, such as user 
information, the hashtags, URLs, and user mentions contained in the tweet. The bulk 
of our onStatus() method builds up the JSON structure before inally logging it to 
the Kafka queue via the Logback Kafka Appender.

Twitter graph topology
The Twitter graph topology will read raw tweet data from the Kafka queue, parse 
out the relevant information, and then create nodes and relationships in the Titan 
graph database. Instead of writing to the graph database individually for each 
tuple received, we will implement a trident state implementation for performing 
persistence operations in bulk using Trident's transaction mechanism.

This approach offers several beneits. First, for graph databases, such as Titan that 
supports transactions, we can leverage this capability to provide additional exactly-
once processing guarantees. Second, it allows us to perform a bulk-write followed 
by a bulk-commit (when supported) for an entire batch of tuples rather than a write-
commit operation for each individual tuple. Finally, by using the generic Blueprints 
API, our Trident state implementation will be largely agnostic to the underlying 
graph database implementation, allowing any Blueprints graph database backend to 
be easily swapped in and out.

http:///


Chapter 5

[ 143 ]

each

Kafka

Stream

JSON

Project

Function

GraphState
TweetGraph

TupleProcessor

Project PartitionPersist

The irst component of the topology consists of JSONProjectFunction,which 
we developed in Chapter 7, Integrating Druid for Financial Analytics, which simply 
parses the raw JSON data to extract only the information we are interested in. In 
this case, we are mainly interested in the timestamp of the message and the JSON 
representation of the Twitter status message.

The JSONProjectFunction class
The following is a code snippet explaining the JSONProjectFunction class:

public class JsonProjectFunction extends BaseFunction {

    private Fields fields;

    public JsonProjectFunction(Fields fields) {
        this.fields = fields;
    }

    public void execute(TridentTuple tuple, TridentCollector 
collector) {
        String json = tuple.getString(0);
        Map<String, Object> map = (Map<String, Object>) JSONValue.
parse(json);
        Values values = new Values();
        for (int i = 0; i < this.fields.size(); i++) {
            values.add(map.get(this.fields.get(i)));
        }
        collector.emit(values);
    }

}

http:///


Real-time Graph Analysis

[ 144 ]

Implementing GraphState
The heart of the topology will be a Trident state implementation responsible for 
translating Trident tuples into graph structures and persisting them. Recall that  
a Trident state implementation consists of three components:

• StateFactory: The StateFactory interface deines the method Trident  
uses to create the persistent State objects.

• State: The Trident State interface deines the beginCommit() and 
commit() methods that are called before and after a Trident batch partition 
is written to the backing store. If the write succeeds (that is, all tuples are 
processed without error), Trident will call the commit() method.

• StateUpdater: The StateUpdater interface deines the updateState() 
method that is called to update the state, given that there is a batch of tuples. 
Trident passes three arguments to this method: the State object to be 
updated, a list of TridentTuple objects that represents a batch partition, and 
a TridentCollector instance that can be used to optionally emit additional 
tuples as a result of the state update.

In addition to these abstractions provided by Trident, we will introduce 
two additional interfaces that will support the use of any Blueprints graph 
database (GraphFactory) and isolate any use-case-speciic business logic 
(GraphTupleProcessor). Before diving in to the Trident state implementation, let's 
quickly look at these interfaces.

GraphFactory
The GraphFactory interface contract is simple: given a Map object that represents 
the Storm and topology coniguration, return a com.tinkerpop.blueprints.Graph 
implementation.

GraphFactory.java

public interface GraphFactory {

    public Graph makeGraph(Map conf);

}

This interface allows us to plug in any Blueprints-compatible graph implementation 
simply by providing an implementation of the makeGraph() method. Later, we will 
implement this interface to return a connection to a Titan graph database.

http:///


Chapter 5

[ 145 ]

GraphTupleProcessor
The GraphTupleProcessor interface provides an abstraction between the Trident 
state implementation and any use-case-speciic business logic.

public interface GraphTupleProcessor {

    public void process(Graph g, TridentTuple tuple, TridentCollector 
collector);

}

Given a graph object, TridentTuple, and TridentCollector, manipulating 
the graph and optionally emitting additional tuples is the job of a 
GraphTupleProcessor. Later in the chapter, we will implement this interface to 
populate a graph based on the content of a Twitter status message.

GraphStateFactory
Trident's StateFactory interface represents the entry point for a state 
implementation. When a Trident topology using state components (via the Stream.
partitionPersist() and Stream.persistentAggregate() methods) initializes, 
Storm calls the StateFactory.makeState() method to create a State instance for 
each batch partition. The number of batch partitions is determined by the parallelism 
of the stream. Storm passes this information to the makeState() method via the 
numPartitions and partitionIndex parameters, allowing state implementations to 
perform partition-speciic logic if necessary.

In our use case, we're not concerned with partitions, so the makeState() method 
just uses a GraphFactory instance to instantiate a Graph instance used to construct a 
GraphState instance.

GraphStateFactory.java

public class GraphStateFactory implements StateFactory {

   

    private GraphFactory factory;

   

    public GraphStateFactory(GraphFactory factory){

        this.factory = factory;

    }

http:///


Real-time Graph Analysis

[ 146 ]

    public State makeState(Map conf, IMetricsContext metrics, int 
partitionIndex, int numPartitions) {

        Graph graph = this.factory.makeGraph(conf);

        State state = new GraphState(graph);

        return state;

    }

}

GraphState
Our GraphState class provides implementations for State.beginCommit() and 
State.commit() methods that will be called when a batch partition is about to take 
place and when it has successfully completed, respectively. In our case, we override 
the commit() method to check if the internal Graph object supports transactions, and 
if so, call the TransactionalGraph.commit() method to complete the transaction.

The State.beginCommit() method may be called multiple times 
if there are failures within a Trident batch and the batch is replayed, 
while the State.commit() method will only get called once when 
all partition state updates have completed successfully.

The code snippet of the GraphState class is as follows:

GraphState.java

public class GraphState implements State {

   

    private Graph graph;

   

    public GraphState(Graph graph){

        this.graph = graph;

    }

    @Override

    public void beginCommit(Long txid) {}

    @Override

    public void commit(Long txid) {

        if(this.graph instanceof TransactionalGraph){

            ((TransactionalGraph)this.graph).commit();

        }

    }

   

http:///


Chapter 5

[ 147 ]

    public void update(List<TridentTuple> tuples, TridentCollector 
collector, GraphTupleProcessor processor){

        for(TridentTuple tuple : tuples){

            processor.process(this.graph, tuple, collector);

        }

    }

}

The GraphState.update() method does the core processing of the transaction 
between the calls to the State.beginCommit() and State.commit() methods. If 
the update() method succeeds for all batch partitions, the Trident transaction will 
complete and the State.commit() method will be called.

Notice that the update() method that actually updates the graph state is simply 
a public method of the GraphState class and not overridden. As you will see, 
we will have the opportunity to call this method directly in our StateUpdater 
implementation.

GraphUpdater
The GraphUpdater class implements the updateState() method that Storm will 
call (potentially repeatedly in the case of batch failures/replays) just after the call to 
State.beginCommit(). The irst argument to the StateUpdater.updateState() 
method is a Java generics-typed instance of our state implementation that we use to 
call our GraphState.update() method.

GraphUpdater.java

public class GraphUpdater extends BaseStateUpdater<GraphState> {

    private GraphTupleProcessor processor;

   

    public GraphUpdater(GraphTupleProcessor processor){

        this.processor = processor;

    }

   

    public void updateState(GraphState state, List<TridentTuple> 
tuples, TridentCollector collector) {

        state.update(tuples, collector, this.processor);

    }

}

http:///


Real-time Graph Analysis

[ 148 ]

Implementing GraphFactory
The GraphFactory interface we deined earlier creates a TinkerPop Graph 
implementation, where  a Map object represents a Storm coniguration.  
The following code illustrates how to create TitanGraph backed by Cassandra:

TitanGraphFactory.java

public class TitanGraphFactory implements GraphFactory {

   

    public static final String STORAGE_BACKEND = "titan.storage.
backend";

    public static final String STORAGE_HOSTNAME = "titan.storage.
hostname";

    public Graph makeGraph(Map conf) {

        Configuration graphConf = new BaseConfiguration();

        graphConf.setProperty("storage.backend", conf.get(STORAGE_
BACKEND));

        graphConf.setProperty("storage.hostname", conf.get(STORAGE_
HOSTNAME));

       

        return TitanFactory.open(graphConf);

    }

}

Implementing GraphTupleProcessor
In order to populate the graph database with relationships gleaned from Twitter 
status messages, we need to implement the GraphTupleProcessor interface. The 
following code illustrates parsing the Twitter status message's JSON object and 
creating "user" and "hashtag" vertices with "mentions" relationships.

TweetGraphTupleProcessor.java

public class TweetGraphTupleProcessor implements GraphTupleProcessor {

    @Override

    public void process(Graph g, TridentTuple tuple, TridentCollector 
collector) {

        Long timestamp = tuple.getLong(0);

        JSONObject json = (JSONObject)tuple.get(1);

        Vertex user = findOrCreateUser(g, (String)json.get("user"), 
(String)json.get("name"));

http:///


Chapter 5

[ 149 ]

        JSONArray hashtags = (JSONArray)json.get("hashtags");

        for(int i = 0; i < hashtags.size(); i++){

            Vertex v = findOrCreateVertex(g, "hashtag", ((String)
hashtags.get(i)).toLowerCase());

            createEdgeAtTime(g, user, v, "mentions", timestamp);

        }

    }

}

Putting it all together – the 

TwitterGraphTopology class
Creating our inal topology consists of the following steps:

• Consume raw JSON from the Kafka spout

• Extract and project only the data we are interested in

• Build and connect the Trident GraphState implementation to our stream

The TwitterGraphTopology class
Let's look at the TwitterGraphTopology class in detail. 

public class TwitterGraphTopology {

    public static StormTopology buildTopology() {

        TridentTopology topology = new TridentTopology();

        StaticHosts kafkaHosts = StaticHosts.fromHostString(Arrays.
asList(new String[] { "localhost" }), 1);

        TridentKafkaConfig spoutConf = new 
TridentKafkaConfig(kafkaHosts, "twitter-feed");

        spoutConf.scheme = new StringScheme();

        spoutConf.forceStartOffsetTime(-2);

        OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(s
poutConf);

        Stream spoutStream = topology.newStream("kafka-stream", 
spout);

       

        Fields jsonFields = new Fields("timestamp", "message");

        Stream parsedStream = spoutStream.each(spoutStream.
getOutputFields(), new JsonProjectFunction(jsonFields), jsonFields);

        parsedStream = parsedStream.project(jsonFields);

http:///


Real-time Graph Analysis

[ 150 ]

        // Trident State

        GraphFactory graphFactory = new TitanGraphFactory();

        GraphUpdater graphUpdater = new GraphUpdater(new 
TweetGraphTupleProcessor());

        StateFactory stateFactory = new GraphStateFactory(graphFacto
ry);

        parsedStream.partitionPersist(stateFactory, parsedStream.
getOutputFields(), graphUpdater, new Fields());

        return topology.build();

    }

   

   

    public static void main(String[] args) throws Exception {

        Config conf = new Config();

        conf.put(TitanGraphFactory.STORAGE_BACKEND, "cassandra");

        conf.put(TitanGraphFactory.STORAGE_HOSTNAME, "localhost");

       

        conf.setMaxSpoutPending(5);

        if (args.length == 0) {

            LocalCluster cluster = new LocalCluster();

            cluster.submitTopology("twitter-analysis", conf, 
buildTopology());

        } else {

            conf.setNumWorkers(3);

            StormSubmitter.submitTopology(args[0], conf, 
buildTopology());

        }

    }

}

To run the application, begin by executing the TwitterStreamConsumer class, 
passing in a list of keywords you want to use to query the Twitter irehose. For 
example, if we want to build a graph of users discussing big data, we might use 
bigdata and hadoop as query parameters:

java TwitterStreamConsumer bigdata hadoop

The TwitterStreamConsumer class will connect to the Twitter Streaming API 
and begin queuing data to Kafka. With the TwitterStreamConsumer application 
running, we can then deploy TwitterGraphTopology to begin populating the  
Titan database.

http:///


Chapter 5

[ 151 ]

Let TwitterStreamConsumer and TwitterGraphTopology run for a while. 
Depending on the popularity of the keywords used for the query, it may take some 
time for the dataset to grow to a meaningful level. We can then connect to Titan with 
the Gremlin shell to analyze the data with graph queries.

Querying the graph with Gremlin
To query the graph, we need to launch the Gremlin shell and create a TitanGraph 
instance connected to the local Cassandra backend:

$ cd titan

$ ./bin/gremlin.sh

          \,,,/

         (o o)

-----oOOo-(_)-oOOo-----

gremlin> conf = new BaseConfiguration()

gremlin> conf.setProperty('storage.backend', 'cassandra')

gremlin> conf.setProperty('storage.hostname', 'localhost')

gremlin> g = TitanFactory.open(conf)

The g variable now contains a Graph object we can use to issue graph traversal 
queries. The following are a few sample queries you can use to get started:

• To ind all the users who have tweeted #hadoop hashtag and to show the 
number of times they have done this, use the following code:

gremlin> g.V('type', 'hashtag').has('value', 'hadoop').in.userid.
groupCount.cap

• To count the number of times the #hadoop hashtag has been tweeted, use 
the following code:

gremlin> g.V.has('type', 'hashtag').has('value', 'java').inE.
count()

The Gremlin DSL is very powerful; covering the complete API could ill an 
entire chapter (if not a whole book). To further explore the Gremlin language, we 
encourage you to explore the following online documentation:

• The oficial Gremlin Wiki at https://github.com/tinkerpop/gremlin/
wiki

• GremlinDocs reference guide at http://gremlindocs.com

• SQL2Gremlin (sample SQL queries and their Gremlin equivalents) at 
http://sql2gremlin.com

http:///


Real-time Graph Analysis

[ 152 ]

Summary
In this chapter, we introduced you to graph databases by creating a topology that 
monitors a subset of the Twitter irehose and persists that information to the Titan 
graph database for further analysis. We've also demonstrated the reuse of generic 
components by using generic building blocks from earlier chapters such as the 
Logback Kafka appender.

While graph databases are not perfect for every use case, they represent a powerful 
weapon in your arsenal of polyglot persistence tools. Polyglot persistence is a term 
often used to describe a software architecture that involves multiple types of data 
stores such as relational, key-value, graph, document, and so on. Polyglot persistence 
is all about choosing the right database for the right job. In this chapter, we 
introduced you to graph data models, and have hopefully inspired you to explore 
situations where a graph may be the best data model to support a given use case. 
Later in the book, we will create a Storm application that persists data to multiple 
data stores, each for a speciic purpose.

http:///


Artiicial Intelligence
In earlier chapters, we saw a pattern that combined real-time analytics using  
Storm with batch processing using Hadoop. In this chapter, we will go in the  
other direction. We will incorporate Storm into an operational system that must 
respond in real time to end user queries.

Typical applications of Storm focus on a never-ending stream of data. The data  
is often queued and processed as fast as possible by persistent topologies. The 
system includes a queue to accommodate varying amounts of load. At times  
of light load, the queue is empty. During heavy load, the queue will persist  
the data for eventual processing.

Even the untrained eye will recognize that such a system does not provide true  
real-time data processing. Storm monitors tuple timeouts, but it is focused on  
the processing time of tuple(s) after the spout emits the data.

To support real-time scenarios more completely, timeouts and Service Level 
Agreements (SLA) must be monitored from the reception of the data to the  
delivery of the response. These days, requests are often received via an  
HTTP-based API and response time SLAs must be subsecond.

HTTP is a synchronous protocol. It often introduces an asynchronous mechanism 
like a queue, complicates the system, and introduces added latency. For this reason, 
when exposing features and functions via HTTP, we typically prefer synchronous 
integrations with components involved.

http:///


Artiicial Intelligence

[ 154 ]

In this chapter, we will explore Storm's place in an architecture that exposes  
a web services API. Speciically, we will construct the world's best tic-tac-toe  
Artiicial Intelligence (AI) system. Our system will include both synchronous  
and asynchronous subsystems. The asynchronous portion of the system will  
work continually, exploring the best options for game states. The synchronous 
component exposes a web services interface that, given a game state, returns  
the best move possible.

This chapter covers the following topics:

• Recursion in Storm

• Distributed Remote Procedure Call (DRPC)

• Distributed Read-before-write paradigm

Designing for our use case
The "hello world" of the artiicial intelligence world is tic-tac-toe. Sticking to the 
tradition, we will also use this as our subject game, although the architecture 
and approach extend well beyond this simple example (for example, Global 
Thermonuclear War; for other use cases, refer to John Badham's War Games).

Tic-tac-toe is a two-player game of Xes and Os. The board is a 3 x 3 grid. One player 
has the symbol O and the other has the symbol X, and the play alternates. On a turn, 
a player places their symbol in any open cell in the grid. If by placing their symbol,  
it completes a horizontal, vertical, or diagonal line of three contiguous symbols,  
that player wins. If all cells are illed without forming a line of three, then the game  
is a tie.

A common approach to developing Artiicial Intelligence programs for games with 
alternating turns is to explore the game tree recursively searching for the game state 
that evaluates best for the current player (or worse for the opposition). A game tree is 
a tree structure whose nodes are game states. A node's immediate children are game 
states that can be achieved by making a legal move from that node's game state.

A sample game tree for tic-tac-toe is shown in the following diagram:

http:///


Chapter 6

[ 155 ]

x

x

...

x x xo o

o

x x xo

ox

o

o

x x

o

x

x

o o

o

o

x

o

o x

xx

x

...

x

The simplest of algorithms that traverses a game tree searching for the best move is 
the Minimax algorithm. The algorithm scores each board recursively and returns the 
best score found. For this algorithm, we assume that a good score for the opposition 
is a bad score for the current player. Thus, the algorithm actually alternates between 
maximizing and minimizing the score of the current board. The Minimax algorithm 
can be summarized with the following pseudocode:

miniMax (board, depth, maximizing)

   if (depth <= 0) 

      return score (board)

   else

      children = move(board)

      if (maximizing)

         bestValue = -∞

      for (child : children)

         value = miniMax (child, depth-1, false)

         if (value > bestValue)

            bestValue = value

         end

http:///


Artiicial Intelligence

[ 156 ]

end

return bestValue

      else // minimizing

         bestValue = ∞

      for (child : children)

         value = miniMax (child, depth-1, false)

         if (value < bestValue)

            bestValue = value

         end

end

return bestValue

end

end

A client invokes the algorithm with a game state, a depth, and a Boolean variable 
that indicates whether or not the algorithm should seek to maximize or minimize  
the score. In our use case, the game state is fully encapsulated by the board, which  
is a 3 x 3 grid partially illed with Xes and Os.

The algorithm is recursive. The irst few lines of the code are the base case. This 
ensures that the algorithm does not recurse endlessly. This conditions on the depth 
variable. In a game of alternating turns, the depth indicates how many turns the 
algorithm should explore.

In our use case, the Storm topology need not track the depth. We will let the Storm 
topology explore endlessly (or until there are no new boards returned from the  
move method).

Typically, each player is given a set amount of time and must make his or her 
move within the allotted time. Since we will more likely have antsy human players 
competing against the AI, let's assume the system needs to respond in fewer than  
200 milliseconds.

After the algorithm checks for the base case, it calls the move() method, which returns 
boards for all possible moves. The algorithm then cycles through all possible child 
boards. If maximizing, the algorithm inds the child board that leads to the highest 
score. If minimizing, the algorithm inds the board that leads to the least score.

http:///


Chapter 6

[ 157 ]

The Negamax algorithm accomplishes the same more succinctly 
by alternating the sign of the score. Additionally, in a real-world 
scenario, we might apply Alpha-Beta pruning, which attempts to 
trim the branches of the tree that are explored. The algorithm only 
considers branches that fall within a threshold. In our use case, this 
is not necessary because the search space is small enough to explore 
in its entirety.

In our simple use case, it is possible to enumerate the entire game tree. In more 
complicated games such as Chess, the game tree is impossible to enumerate. In an 
extreme case such as Go, experts have calculated the number of legal boards to be  
in excess of 2 x 10170.

The goal of the Minimax algorithm is to traverse the game tree and assign a score  
to each node. In our Storm topology, which is not beholden to any SLA, the score  
of any non-leaf node is simply the maximum (or minimum) of its descendants. For  
a leaf node, we must interpret the game state into a corresponding score. In our 
simple use case, there are three possible outcomes: we win, our opponent wins,  
or the game is a tie.

In our synchronous system, however, we might very well run out of time before we 
reach a leaf node. In this case, we need to calculate the score from the current state  
of the board. Scoring heuristics are often the most dificult aspect of developing an 
AI application.

For our simple use case, we will compute the score for any board by considering the 
lines in the grid. There are eight lines to consider: three horizontal, three vertical, and 
two diagonals. Each line contributes to the score according to the following table:

Status Score

Three in a row for the current player +1000

Two in a row for the current player +10

One in a row for current player +1

Three in a row for an opponent -1000

Two in a row for an opponent -10

One in a row for an opponent -1

http:///


Artiicial Intelligence

[ 158 ]

The preceding table applies only if the remaining cells in the line are empty. 
Although there are improvements to the preceding heuristic, it sufices for this 
example. And, since we expect Storm to work continually on our game tree, we  
hope not to rely on the heuristic all that much. Instead, we would rely directly  
on the minimum (or maximum) of the leaf scores, which will always be a win 
(+1000), loss (-1000), or draw (0).

Finally, armed with an approach, our algorithm and a scoring function, we are  
able to move on to the architecture and design.

Establishing the architecture
Examining the preceding algorithm, there are a number of interesting design 
and architectural considerations, especially given the current state of Storm. The 
algorithm requires recursion. We also need a means of synchronously processing 
requests. Recursion within Storm is an evolving topic, and while Storm provides  
a means of interacting with topologies synchronously, when combined with a 
demand for recursion, this presents some unique and interesting challenges.

Examining the design challenges
Originally, native Storm provided a mechanism to service asynchronous procedure 
calls. The feature is Distributed Remote Procedure Call (DRPC). DRPC allowed a 
client to make requests of a topology by submitting data directly to the topology. 
With DRPC, a simple RPC client acts as a spout.

With the advent of Trident, DRPC was deprecated in native Storm and is now 
oficially supported only in Trident.

Although there has been some exploratory work into recursive/nonlinear  
DRPC, which is what we would require here, it is not a mainstream functionality 
(https://groups.google.com/forum/#!topic/storm-user/hk3opTiv3Kc).

Additionally, that work would rely on the deprecated classes within the native 
Storm. Thus, we need to ind alternative means to create a recursive structure 
without relying on Storm.

Once we ind a construct to implement the recursion, we need to be able to invoke 
the same functionality synchronously. Seeking to leverage what Storm provides 
means incorporating DRPC calls into our architecture.

http:///


Chapter 6

[ 159 ]

Implementing the recursion
If we map our algorithm directly to Storm constructs, we would expect a means of 
allowing a stream to feed back data into itself. We can imagine a topology similar to 
the following logical data low:

Board

Spout

currentBoard, parents[]

GenerateBoards isNewMax?

ScoreFunctionisLeaf?

GameTree

State

State Query

(Parent)

no

.each(child)

(replace currentBoard,

add self as parent)

yes

persist (score, currentBoard)

.each(parent) persist (childScore, parent)

oldMax

The BoardSpout function emits a board (for example, the 3 x 3 array) in the 
currentBoard ield with a second ield named parents that will be used to store all 
parent nodes. The parents ield will be empty initially.

The isLeaf ilter decides whether this is an end state (for example, win, loss, or 
draw). If the currentBoard ield is not an end state, the GenerateBoards function 
emits all the new boards, replacing the value of the currentBoard ield with the 
child board and adding the currentBoard ield to the list of nodes in the parents 
ield. The GenerateBoards function could emit the tuple back through the spout or 
directly into the isLeaf ilter, bypassing the spout.

If the isLeaf ilter determines that this is an end state, we need to score the 
currentBoard ield and then update all the parents to relect that new score. The 
ScoreFunction computes the score of the board and persists that to the GameTree 
State.

To update the parents, we iterate over each of the parents and query the current 
maximum (or minimum) for that node. If the child's score is a new maximum (or 
minimum), then we would persist the new values.

http:///


Artiicial Intelligence

[ 160 ]

This is only a logical data low. Constructing such a topology is not 
only impossible, but also not recommended for reasons described 
in the following sections.

You can already see that this data low is not as straightforward as our pseudocode. 
There are a few constraints within Trident and Storm that force us to introduce 
additional complexities, and furthermore, not all the operations articulated in the 
data low are available in Storm/Trident. Let's examine this data low more closely.

Accessing the function's return values
Firstly, notice that we are forced to maintain our own call stack in the form of a list 
of parents because Storm and Trident do not have any mechanisms to access the 
results of functions downstream in the topology. In classic recursion, the results of 
the recursive method call are immediately available within the function and can be 
incorporated into the results of that method. Thus, the preceding data low resembles 
a more iterative approach to the problem.

Immutable tuple ield values
Secondly, in the preceding data low, we invoke a magical ability to replace the 
value of a ield. We do that in the recursive emit from the GenerateBoards function. 
Replacing the currentBoard ield with the new board is not possible. Additionally, 
adding the currentBoard ield to the parents list would require updating the value 
of the parents ield. In Trident, tuples are immutable.

Upfront ield declaration
To get around tuple immutability, we could always add additional ields to the 
tuple—one for each layer of the recursion—but Trident requires that all ields be 
declared prior to deployment.

Tuple acknowledgement in recursion
We have additional problems when we consider tuple acknowledgement in this 
data low. At what point do we acknowledge the initial tuple that triggered the 
processing? From a logical data low perspective, that initial tuple shouldn't be 
acknowledged until all the children for that node have been considered and the 
game tree state relects those scores. Surely, however, the processing time to  
compute large subsections of the game tree for any non-trivial game would  
most likely exceed any tuple timeouts.

http:///


Chapter 6

[ 161 ]

Output to multiple streams
Another issue with topology is the multiple paths that emit from the isLeaf 
ilter. Presently, there is no way to output to multiple streams within Trident. 
The enhancement can be found at https://issues.apache.org/jira/browse/
STORM-68.

As we will see, you can work around this by forking the stream and affecting the 
decision as ilters on both streams.

Read-before-write
Lastly, because we do not have access to the return values, updating the parent 
scores requires a read-before-write paradigm. This is an anti-pattern in any 
distributed system. The following sequence diagram demonstrates the issues  
that arise in read-before-write constructs in the absence of locking mechanisms:

Read-Before-Write

chieldScore=15

updateMaxScore(7)

Thread1 Thread2 State

www.websequencediagrams.com

15 > 5?

currentMaxScore=5

chieldScore=7

7 > 5?

currentMaxScore=7!

maxScore?(node1)

Thread1 Thread2 State

maxScore?(node1)

updateMaxScore(15)

http:///


Artiicial Intelligence

[ 162 ]

In the preceding diagram, there are two threads operating independently. In our use 
case, this occurs when multiple children complete simultaneously and attempt to 
resolve the maximum score of a parent node at the same time.

The irst thread is resolving a child score of 7. The second thread is resolving a child 
score of 15. They are both resolving the same node. At the end of the process, the 
new maximum should be 15, but because there was no coordination between the 
threads, the maximum score becomes 7.

The irst thread reads the current maximum score for the node, which returns 5. 
Then, the second thread reads from the state and also receives 5. Both threads 
compare the current maximum to their respective child scores and update the 
maximum with new values. Since the second thread's update takes place after the 
irst, the result is an incorrect maximum value for the parent node.

In the next section, we will see how to properly address the preceding constraints  
to produce a functional system.

Solving the challenges
To accommodate the constraints outlined in the preceding section, we will break the 
topology into two parts. The irst topology will perform the actual recursion. The 
second topology will resolve the scores. This is shown in the following diagram:

Work

Queue

Queuer

Function

Generate

Boards

Recursion Topology

Work

Spout
IsEndGame?

Queuer

Function
Scoring

Queue

yes

State Updater ScoreFunction
Scoring

Queue
.each(parent)

Scoring Topology

http:///


Chapter 6

[ 163 ]

The system is broken down into two topologies: the Recursion Topology and the 
Scoring Topology. The Recursion Topology attempts to enumerate all the boards in 
the system. The Scoring Topology attempts to score all of the boards enumerated by 
the Recursion Topology.

To affect the recursion, we introduce two queues in the system. The irst queue, 
Work Queue, contains a list of nodes that we need to visit. The Recursion Topology 
consumes from that queue via the Work Spout. If the node is not a leaf, the topology 
queues the child boards. The format of the messages on the Work Queue is as follows:

(board, parents[])

Each board is a 3 x 3 array. The parents array contains all of the parent boards.

If the node is a leaf node, the board is queued on the Scoring Queue using the same 
message format. The Scoring Topology reads from the Scoring Queue via the Scoring 
Spout. The Scoring Function scores the node. The board is necessarily a leaf node 
because that is the only type of node queued for scoring. Then, the Scoring Function 
emits a tuple for the current node and each parent.

We then need to update the state. The query-and-write paradigms are encapsulated 
in a single function because of the race condition we outlined previously. In the 
following design, we will demonstrate how we accommodate the race condition 
introduced by read-before-write.

However, before we move on to the design, notice that because we introduced 
queues, we clearly delineated lines along which we can acknowledge tuples. In the 
irst topology, a tuple is acknowledged when either of the cases is true:

• The topology has enumerated and queued the descendants of a node

• The topology has queued the node for scoring

In the second topology, a tuple is acknowledged when the current board and all of 
its parents have been updated to relect the value in the leaf node.

Also notice that we do not need to introduce new ields or mutate existing ields 
during processing. The only ields used in the irst topology are board and parents. 
The second topology is the same but adds a single additional ield to capture the score.

Notice also that we forked the stream coming out of the Work Spout. This was done to 
accommodate the fact that we cannot emit to multiple streams from a single function. 
Instead, both GenerateBoards and IsEndGame must determine whether the game 
has ended and react accordingly. In GenerateBoards, the tuple is iltered to avoid an 
ininite recursion. In IsEndGame, the tuple is passed along for scoring. When functions 
are able to emit to different streams, we will be able to collapse this function into a 
single "decision" ilter that choses which stream a tuple should proceed with.

http:///


Artiicial Intelligence

[ 164 ]

Implementing the architecture
Let's now delve into the details of the implementation. For example purposes, the 
following code assumes the topology is running locally. We use an in-memory queue 
instead of a persistent queue, and a hash map as our storage mechanism. In a real 
production implementation, we would most likely use a durable queuing system 
such as Kafka and a distributed storage mechanism such as Cassandra.

The data model
We will look at each of the topologies in depth, but irst, let's have a look at the data 
model. To simplify things, we've encapsulated the game logic and the data model 
into two classes: Board and GameState.

The following is a listing of the Board class:

public class Board implements Serializable {

public static final String EMPTY = ' ';

   public String[][] board = { { EMPTY, EMPTY, EMPTY },

{ EMPTY, EMPTY, EMPTY }, { EMPTY, EMPTY, EMPTY } };

    

public List<Board> nextBoards(String player) {

        List<Board> boards = new ArrayList<Board>();

        for (int i = 0; i < 3; i++) {

            for (int j = 0; j < 3; j++) {

                if (board[i][j].equals(EMPTY)) {

                    Board newBoard = this.clone();

                    newBoard.board[i][j] = player;

                    boards.add(newBoard);

                }

            }

        }

        return boards;

    }

    public boolean isEndState() {

        return (nextBoards('X').size() == 0 

|| Math.abs(score('X')) > 1000);

    }

    public int score(String player){

        return scoreLines(player) – 

            scoreLines(Player.next(player));

    }

    

http:///


Chapter 6

[ 165 ]

    public int scoreLines(String player) {

        int score = 0;

        // Columns

        score += scoreLine(board[0][0], board[1][0], board[2][0], 
player);

        score += scoreLine(board[0][1], board[1][1], board[2][1], 
player);

        score += scoreLine(board[0][2], board[1][2], board[2][2], 
player);

        // Rows

        score += scoreLine(board[0][0], board[0][1], board[0][2], 
player);

        score += scoreLine(board[1][0], board[1][1], board[1][2], 
player);

        score += scoreLine(board[2][0], board[2][1], board[2][2], 
player);

        

       // Diagonals

        score += scoreLine(board[0][0], board[1][1], board[2][2], 
player);

        score += scoreLine(board[2][0], board[1][1], board[0][2], 
player);

        return score;

    }

    public int scoreLine(String pos1, String pos2, String pos3, String 
player) {

        int score = 0;

        if (pos1.equals(player) && pos2.equals(player) && pos3.
equals(player)) {

            score = 10000;

        } else if ((pos1.equals(player) && pos2.equals(player) && 
pos3.equals(EMPTY)) ||

                (pos1.equals(EMPTY) && pos2.equals(player) && pos3.
equals(player)) ||

                (pos1.equals(player) && pos2.equals(EMPTY) && pos3.
equals(player))) {

            score = 100;

        } else {

            if (pos1.equals(player) && pos2.equals(EMPTY) && pos3.
equals(EMPTY) ||

                    pos1.equals(EMPTY) && pos2.equals(player) && pos3.
equals(EMPTY) ||

                    pos1.equals(EMPTY) && pos2.equals(EMPTY) && pos3.
equals(player)){

http:///


Artiicial Intelligence

[ 166 ]

                score = 10;

            }

        }

        return score;

    }

...

    public String toKey() {

        StringBuilder sb = new StringBuilder();

        for (int i = 0; i < 3; i++) {

            for (int j = 0; j < 3; j++) {

                sb.append(board[i][j]);

            }

        }

        return sb.toString();

    }

}

The Board class provides three main functions. The Board class encapsulates 
the board itself in a multidimensional string array as a member variable. It then 
provides functions that will generate the child boards (for example, nextBoards()), 
determines whether the game has ended (for example, isEndState()), and inally, 
provides a method to compute the score of the board when a player is provided  
(for example, nextBoards(player), and its supporting methods). 

Notice also that the Board class provides a toKey() method. This key uniquely 
represents the board and is what we will use as a unique identiier when accessing 
our persistence mechanism. In this case, the unique identiier is just a concatenation 
of the values from the board grid.

To completely represent the game state, we also need to know which player is 
currently taking their turn. Thus, we have one higher-level object that encapsulates 
the board and the current player. This is the GameState object whose listing is shown 
in the following code snippet:

public class GameState implements Serializable {

private Board board;

    private List<Board> history;

    private String player;

    

...

    

    public String toString(){

        StringBuilder sb = new StringBuilder('GAME [');

http:///


Chapter 6

[ 167 ]

        sb.append(board.toKey()).append(']');

        sb.append(': player(').append(player).append(')\n');

        sb.append('   history [');

        for (Board b : history){

            sb.append(b.toKey()).append(',');

        }

        sb.append(']');

        return sb.toString();

    }

}

There is nothing terribly surprising in this class except for the history variable. This 
member variable tracks all the previous board states for this path through the game 
tree. This is the breadcrumb trail required to update the game tree with the score 
from the leaf node.

Finally, we represent the player in the game with the Player class, which is shown 
in the following code snippet:

public class Player {

    public static String next(String current){

        if (current.equals('X')) return 'O';

        else return 'X';

    }

}

Examining the recursive topology
With the data model outlined previously, we can create a topology that recurses 
down the game tree. In our implementation, this is the RecursiveTopology class. 
The code for the topology is shown in the following code snippet:

public class RecursiveTopology {

    public static StormTopology buildTopology() {

        LOG.info('Building topology.');

        TridentTopology topology = new TridentTopology();

        // Work Queue / Spout

        LocalQueueEmitter<GameState> workSpoutEmitter = 

new LocalQueueEmitter<GameState>('WorkQueue');

        LocalQueueSpout<GameState> workSpout = 

http:///


Artiicial Intelligence

[ 168 ]

new LocalQueueSpout<GameState>(workSpoutEmitter);

        GameState initialState = 

new GameState(new Board(),

new ArrayList<Board>(), 'X');

        workSpoutEmitter.enqueue(initialState);

        

        // Scoring Queue / Spout

        LocalQueueEmitter<GameState> scoringSpoutEmitter = 

new LocalQueueEmitter<GameState>('ScoringQueue');

        

        Stream inputStream = 

topology.newStream('gamestate', workSpout);

        

        inputStream.each(new Fields('gamestate'),

new isEndGame())

                .each(new Fields('gamestate'),

                    new LocalQueuerFunction<GameState>(scoringSpoutEmi
tter),                     new Fields(''));

        

        inputStream.each(new Fields('gamestate'),

new GenerateBoards(),

new Fields('children'))

            .each(new Fields('children'),

                    new LocalQueuerFunction<GameState>(workSpoutEmitt
er),

                    new Fields());

        

        return topology.build();

    }

...

}

The irst section conigures the in-memory queues for work and scoring. The input 
stream is conigured from a single spout working off of the Work Queue. This queue 
is seeded with the initial game state.

The stream is then forked. The irst prong of the fork is iltered for only endgame 
boards, which are then passed along to the Scoring Queue. The second prong of  
the fork generates new boards and queues the descendants.

http:///


Chapter 6

[ 169 ]

The queue interaction
For this example implementation, we used an in-memory queue. In a real production 
system, we would rely on the Kafka spout. The listing for the LocalQueueEmitter 
class is shown in the following code snippet. Note that queues are instances 
of a BlockingQueue instance within a map, which links a queue name to the 
BlockingQueue instance. This is a handy class when testing topologies that  
use a single queue as the input and output (that is, recursive topologies):

public class LocalQueueEmitter<T> implements Emitter<Long>, 
Serializable {

public static final int MAX_BATCH_SIZE=1000;

public static AtomicInteger successfulTransactions = 

new AtomicInteger(0);

    private static Map<String, BlockingQueue<Object>> queues =

 new HashMap<String, BlockingQueue<Object>>();

private static final Logger LOG = 

LoggerFactory.getLogger(LocalQueueEmitter.class);

    private String queueName;

    public LocalQueueEmitter(String queueName) {

        queues.put(queueName, new LinkedBlockingQueue<Object>());

        this.queueName = queueName;

    }

    @Override

    public void emitBatch(TransactionAttempt tx,

 Long coordinatorMeta, TridentCollector collector) {

        int size=0;

        LOG.debug('Getting batch for [' +

 tx.getTransactionId() + ']');

        while (getQueue().peek() != null && 

size <= MAX_BATCH_SIZE) {

            List<Object> values = new ArrayList<Object>();

            try {

                LOG.debug('Waiting on work from [' +

 this.queueName + ']:[' + 

getQueue().size() + ']');

                values.add(getQueue().take());

                LOG.debug('Got work from [' + 

this.queueName + ']:[' + 

getQueue().size() + ']');

            } catch (InterruptedException ex) {

                // do something smart

            }

http:///


Artiicial Intelligence

[ 170 ]

            collector.emit(values);

            size++;

        }

        LOG.info('Emitted [' + size + '] elements in [' + 

            tx.getTransactionId() + '], [' + getQueue().size()

+ '] remain in queue.');

    }

...

    public void enqueue(T work) {

        LOG.debug('Adding work to [' + this.queueName +

 ']:[' + getQueue().size() + ']');

        if (getQueue().size() % 1000 == 0)

            LOG.info('[' + this.queueName + '] size = [' + 

   getQueue().size() + '].');

        this.getQueue().add(work);

    }

    public BlockingQueue<Object> getQueue() {

        return LocalQueueEmitter.queues.get(this.queueName);

    }

...

}

The main method in this class is the emitBatch implementation for the Emitter 
interface. This simply reads from the queue while it has data and while the 
maximum batch size has not been reached.

Also, note that the class provides an enqueue() method. The enqueue() method  
is used by our LocalQueueFunction class to complete the recursion. The listing  
for the LocalQueueFunction class is shown in the following code snippet:

public class LocalQueuerFunction<T>  extends BaseFunction {

    private static final long serialVersionUID = 1L;

    LocalQueueEmitter<T> emitter;

    

    public LocalQueuerFunction(LocalQueueEmitter<T> emitter){

        this.emitter = emitter;

    }

    

    @SuppressWarnings('unchecked')

    @Override

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

http:///


Chapter 6

[ 171 ]

        T object = (T) tuple.get(0);

        Log.debug('Queueing [' + object + ']');

        this.emitter.enqueue(object);

    }

}

Note that the function is actually instantiated with the emitter function used by 
the spout. This allows the function to enqueue data directly into the spout. Again, 
this construct is useful when developing recursive topologies, but real production 
topologies would most likely use durable storage. Without durable storage, there is a 
chance for data loss since tuples are acknowledged before the processing (recursion) 
is complete.

Functions and ilters
Now, we turn our attention to the functions and ilters speciic to this topology. 
The irst is a simple ilter used to ilter out the endgame boards. The code for the 
IsEndGame ilter is shown in the following code snippet:

public class IsEndGame extends BaseFilter {

...

    @Override

    public boolean isKeep(TridentTuple tuple) {

        GameState gameState = (GameState) tuple.get(0);

        boolean keep = (gameState.getBoard().isEndState());

        if (keep){

            LOG.debug('END GAME [' + gameState + ']');

        }

        return keep;

    }

}

Note that this class is not necessary if Trident had support for emitting tuples to 
different streams from a single function. In the following listing for the IsEndGame 
function, it performs the same check/ilter function:

public class GenerateBoards extends BaseFunction {

    @Override

    public void execute(TridentTuple tuple,

TridentCollector collector) {

        GameState gameState = (GameState) tuple.get(0);

        Board currentBoard = gameState.getBoard();

        List<Board> history = new ArrayList<Board>();

http:///


Artiicial Intelligence

[ 172 ]

        history.addAll(gameState.getHistory());

        history.add(currentBoard);

        if (!currentBoard.isEndState()) {

            String nextPlayer = 

   Player.next(gameState.getPlayer());

            List<Board> boards = 

   gameState.getBoard().nextBoards(nextPlayer);

            Log.debug('Generated [' + boards.size() + 

'] children boards for [' + gameState.toString() +

']');

            for (Board b : boards) {

                GameState newGameState = 

new GameState(b, history, nextPlayer);

                List<Object> values = new ArrayList<Object>();

                values.add(newGameState);

                collector.emit(values);

            }

        } else {

            Log.debug('End game found! [' + currentBoard + ']');

        }

    }

}

The function adds the current board to the history list, and then queues a new 
GameState object, with the child board position.

Alternatively, we could have implemented IsEndGame as a function, 
adding another ield to capture the results; however, it was more 
constructive to use this as an example to motivate having multiple 
stream capabilities within functions.

The following is a sample output from the Recursive Topology:

2013-12-30 21:53:40,940-0500 | INFO [Thread-28] IsEndGame.isKeep(20) | 
END GAME [GAME [XXO X OOO]: player(O)

   history [         ,      O  ,    X O  ,    X OO ,X   X OO ,X O X OO 
,XXO X OO ,]]

2013-12-30 21:53:40,940-0500 | INFO [Thread-28] IsEndGame.isKeep(20) | 
END GAME [GAME [X OXX OOO]: player(O)

   history [         ,      O  ,    X O  ,    X OO ,X   X OO ,X O X OO 
,X OXX OO ,]]

2013-12-30 21:53:40,940-0500 | INFO [Thread-28] LocalQueueEmitter.
enqueue(61) | [ScoringQueue] size = [42000]

http:///


Chapter 6

[ 173 ]

Examining the Scoring Topology
The Scoring Topology is more straightforward in that it is linear. The complicated 
aspect is the state's update to avoid the read-before-write race condition.

The code for the topology is as follows:

public static StormTopology buildTopology() {

TridentTopology topology = new TridentTopology();

GameState exampleRecursiveState =

 GameState.playAtRandom(new Board(), 'X');

LOG.info('SIMULATED STATE : [' + exampleRecursiveState + ']');

// Scoring Queue / Spout

LocalQueueEmitter<GameState> scoringSpoutEmitter = 

new LocalQueueEmitter<GameState>('ScoringQueue');

scoringSpoutEmitter.enqueue(exampleRecursiveState);

LocalQueueSpout<GameState> scoringSpout = 

new LocalQueueSpout<GameState>(scoringSpoutEmitter);

Stream inputStream = 

topology.newStream('gamestate', scoringSpout);

inputStream.each(new Fields('gamestate'), new IsEndGame())

                .each(new Fields('gamestate'),

                        new ScoreFunction(),

                        new Fields('board', 'score', 'player'))

                .each(new Fields('board', 'score', 'player'), 

new ScoreUpdater(), new Fields());

return topology.build();

}

There are only two functions: ScoreFunction and ScoreUpdater. The 
ScoreFunction scores the current board and emits that score for each board  
in the history.

The listing for ScoreFunction is shown in the following code snippet:

public class ScoreFunction extends BaseFunction {

@Override

public void execute(TridentTuple tuple, 

TridentCollector collector) {

http:///


Artiicial Intelligence

[ 174 ]

        GameState gameState = (GameState) tuple.get(0);

        String player = gameState.getPlayer();

        int score = gameState.score();

        List<Object> values = new ArrayList<Object>();

        values.add(gameState.getBoard());

        values.add(score);

        values.add(player);

        collector.emit(values);

        for (Board b : gameState.getHistory()) {

            player = Player.next(player);

            values = new ArrayList<Object>();

            values.add(b);

            values.add(score);

            values.add(player);

            collector.emit(values);

        }

    }

}

The function simply scores the current board and emits a tuple for the current 
board. Then, the function loops through the player emitting tuples for each board, 
swapping the player with each turn.

Lastly, we have the ScoreUpdater function. Again, we kept it simple for the 
example. The following is the code for this class:

public class ScoreUpdater extends BaseFunction {

...

private static final Map<String, Integer> scores =

 new HashMap<String, Integer>();

private static final String MUTEX = 'MUTEX';

@Override

public void execute(TridentTuple tuple,

TridentCollector collector) {

    Board board = (Board) tuple.get(0);

    int score = tuple.getInteger(1);

    String player = tuple.getString(2);

    String key = board.toKey();

    LOG.debug('Got (' + board.toKey() + ') => [' + score +

 '] for [' + player + ']');

        

http:///


Chapter 6

[ 175 ]

    // Always compute things from X's perspective

    // We'll flip things when we interpret it if it is O's turn.

    synchronized(MUTEX){

         Integer currentScore = scores.get(key);

         if (currentScore == null ||

(player.equals('X') && score > currentScore)){

                updateScore(board, score);

            } else if (player.equals('O') &&

score > currentScore){

                updateScore(board, score);

            }

        }

    }

    

    public void updateScore(Board board, Integer score){

        scores.put(board.toKey(), score);

        LOG.debug('Updating [' + board.toString() + 

']=>[' + score + ']');

    }

}

Addressing read-before-write
Notice in the preceding code that we used a mutex to sequence the updates to scores, 
thereby eliminating the race condition mentioned earlier. This only works because 
we are operating in a single/local JVM. When this topology is deployed to a real 
cluster, this will not work; however, we do have a few options to address the issue.

Distributed locking
As we see in other chapters, it is possible to leverage a distributed locking 
mechanism such as ZooKeeper. In this approach, ZooKeeper provides a mechanism 
for maintaining a mutex across multiple hosts. This is certainly a viable approach, 
but distributed locks come at a cost to performance. Every operation incurs overhead 
to accommodate what in reality might be an infrequent occurrence.

Retry when stale
Another pattern that might be useful is the retry when stale approach. In this scenario, 
along with the data, we also pull back a version number, timestamp, or checksum. 
Then, we perform a conditional update, including the version/timestamp/checksum 
information in a clause that will fail the update if that metadata has changed 
(for example, adding the WHERE clause to the UPDATE statement in the SQL/CQL 
paradigm). If the metadata has changed, it indicates that the value on which we 
based our decision is now stale and we should reselect the data.

http:///


Artiicial Intelligence

[ 176 ]

Obviously, there are trade-offs between these approaches. With retries, in the 
extreme case where there is a tremendous amount of contention, a thread may 
have to be retried a number of times in order to commit an update. However, with 
distributed locking, you may run into timeout issues if a single thread gets stuck, 
loses communication with the server, or fails entirely.

Recently, there have been advances in this area. I suggest that you 
should look at Paxos and Cassandra's use of that algorithm to affect 
conditional updates at the following URLs:

• http://research.microsoft.com/en-us/um/people/
lamport/pubs/paxos-simple.pdf

• http://www.datastax.com/dev/blog/lightweight-
transactions-in-cassandra-2-0

In our simple case, we are extremely lucky, and we can actually incorporate the logic 
into the update directly. Consider the following SQL statement:

UPDATE gametree SET score=7 WHERE

boardkey = '000XX OXX' AND score <=7;

As we have resolved our read-before-write issues, the topology is suitable to score 
all of the boards queued by the Recursive Topology. The topology assigns a value to 
the endgame state and propagates that value up the game tree, persisting the proper 
score with the respective game state. In a real production system, we would access 
that state from our DRPC topology to be able to look ahead multiple turns.

Executing the topology
The following is sample output for the Scoring Topology:

2013-12-31 13:19:14,535-0500 | INFO [main] ScoringTopology.
buildTopology(29) | SIMULATED LEAF NODE : [

---------

|X||O||X|

---------

|O||O||X|

---------

|X||X||O|

---------

] w/ state [GAME [XOXOOXXXO]: player(O)

   history [         ,  X      , OX      , OX  X   , OX  X  O, OX  XX O, 
OXO XX O, OXO XXXO, OXOOXXXO,]]

http:///


Chapter 6

[ 177 ]

2013-12-31 13:19:14,536-0500 | INFO [main] LocalQueueEmitter.enqueue(61) 
| [ScoringQueue] size = [0].

2013-12-31 13:19:14,806-0500 | INFO [main] ScoringTopology.main(52) | 
Topology submitted.

2013-12-31 13:19:25,566-0500 | INFO [Thread-24] DefaultCoordinator.
initializeTransaction(25) | Initializing Transaction [1]

2013-12-31 13:19:25,570-0500 | DEBUG [Thread-30] LocalQueueEmitter.
emitBatch(37) | Getting batch for [1]

2013-12-31 13:19:25,570-0500 | DEBUG [Thread-30] LocalQueueEmitter.
emitBatch(41) | Waiting on work from [ScoringQueue]:[1]

2013-12-31 13:19:25,570-0500 | DEBUG [Thread-30] LocalQueueEmitter.
emitBatch(43) | Got work from [ScoringQueue]:[0]

2013-12-31 13:19:25,571-0500 | DEBUG [Thread-30] LocalQueueEmitter.
emitBatch(41) | Waiting on work from [ScoringQueue]:[0]

2013-12-31 13:19:25,571-0500 | INFO [Thread-28] IsEndGame.isKeep(20) | 
END GAME [GAME [XOXOOXXXO]: player(O)

   history [         ,  X      , OX      , OX  X   , OX  X  O, OX  XX O, 
OXO XX O, OXO XXXO, OXOOXXXO,]]

...

 ScoreUpdater.updateScore(43) | Updating [

---------

| ||O||X|

---------

|O|| ||X|

---------

|X||X||O|

---------

]=>[0]

2013-12-31 13:19:25,574-0500 | DEBUG [Thread-28] ScoreUpdater.execute(27) 
| Got ( OXOOXXXO) => [0] for [X]

2013-12-31 13:19:25,574-0500 | DEBUG [Thread-28] ScoreUpdater.
updateScore(43) | Updating [

---------

| ||O||X|

---------

|O||O||X|

---------

|X||X||O|

---------

]=>[0]

http:///


Artiicial Intelligence

[ 178 ]

It is resolving a tie-game leaf node, shown at the beginning of the listing. You can see 
that the value propagates through the parents after that, updating the current score 
for those nodes.

Enumerating the game tree
The inal result of combining the Recursive Topology with the Scoring Topology is a 
set of topologies working together continually to enumerate as much of the problem 
space as possible. Most likely, this process would be combined with heuristics that 
would only store key nodes. Also, we would prune the search space using heuristics 
to reduce the number of boards we need to evaluate. Regardless, however, we will 
need to interact with the system through an interface in order to determine the best 
move, given a current game state. This is what we will tackle in the next section.

Distributed Remote Procedure Call (DRPC)
Now that we have a functioning Recursive Topology that will continually seek to 
compute the entire game tree, let's take a look at a synchronous invocation. The 
DRPC capabilities that Storm provided were ported to Trident and deprecated in 
Storm. This was the major motivation for using Trident in this example.

With DRPC, you construct a topology much like you would in the asynchronous 
case. The following diagram show our DRPC topology:

DRPC Topology

DRPC

Client
FindBestMove

Args

Function
ScoreFunction

Generate

Boards

project(bestMove)

.groupBy(state)

The DRPC client acts as a spout. The output of the client passes through the 
ArgsFunction, which normalizes the input so we can reuse the existing functions: 
GenerateBoards and ScoreFunction. Then, we use .groupBy(state) and 
aggregate the results using an Aggregator class's FindBestMove. We then perform  
a simple projection to return only the best move to the client.

http:///


Chapter 6

[ 179 ]

You might also want to take a look at Spring Breeze, which allows 
you to wire POJOs together into a Storm topology. This is another 
approach to gain reuse, because those same POJOs could be exposed 
via web services without introducing DRPC.

https://github.com/internet-research-network/breeze

First, we will have a look at the code for the topology:

public static void main(String[] args) throws Exception {

final LocalCluster cluster = new LocalCluster();

final Config conf = new Config();

LocalDRPC client = new LocalDRPC();

TridentTopology drpcTopology = new TridentTopology();

        

drpcTopology.newDRPCStream('drpc', client)

                .each(new Fields('args'),

new ArgsFunction(),

new Fields('gamestate'))

                .each(new Fields('gamestate'),

new GenerateBoards(),

new Fields('children'))

                .each(new Fields('children'),

new ScoreFunction(),

new Fields('board', 'score', 'player'))

                .groupBy(new Fields('gamestate'))

                .aggregate(new Fields('board', 'score'),

new FindBestMove(), new Fields('bestMove'))

                .project(new Fields('bestMove'));

        

cluster.submitTopology('drpcTopology', conf,

         drpcTopology.build());

        

Board board = new Board();

board.board[1][1] = 'O';

board.board[2][2] = 'X';

board.board[0][1] = 'O';

board.board[0][0] = 'X';

LOG.info('Determining best move for O on:' + 

               board.toString());

LOG.info('RECEIVED RESPONSE [' + 

client.execute('drpc', board.toKey()) + ']');

}

http:///


Artiicial Intelligence

[ 180 ]

For this example, we use a LocalDRPC client. This is passed in as an argument to 
the newDRPCStream call, which is the crux of a DRPC topology. From there on, the 
topology functions as a normal topology.

You can see the actual remote procedure call takes place via the client.execute() 
method. Presently, the signature for that method takes and returns only strings. 
There is an outstanding enhancement request to change this signature. You can  
ind that enhancement at https://issues.apache.org/jira/browse/STORM-42.

Since the current signature only accepts strings, we need to marshal the input.  
This takes place in the ArgsFunction as shown in the following code snippet:

    @Override

    public void execute(TridentTuple tuple, 

TridentCollector collector) {

        String args = tuple.getString(0);

        Log.info('Executing DRPC w/ args = [' + args + ']');

        Board board = new Board(args);

        GameState gameState = 

new GameState(board, new ArrayList<Board>(), 'X');

        Log.info('Emitting [' + gameState + ']');

        

        List<Object> values = new ArrayList<Object>();

        values.add(gameState);

        collector.emit(values);

    }

The second parameter to the call we made to client.execute() was a string  
that contained our input. In this case, you can see it in the topology code that we 
passed in the key for the board. This was the 3 x 3 grid, with the cells concatenated  
as a string. In order to marshal that string into a board, we added a constructor  
to the Board class that parses the string into a board as shown in the following  
code snippet:

    public Board(String key) {

        for (int i = 0; i < 3; i++) {

            for (int j = 0; j < 3; j++) {

                this.board[i][j] = '' + key.charAt(i*3+j);

            }

        }

    }

http:///


Chapter 6

[ 181 ]

The next two functions applied in the DRPC topology demonstrate the reuse that 
you can achieve by leveraging DRPC as a synchronous interface. In this case, we are 
leveraging the functions in isolation, but you can imagine that you could reuse more 
complicated data lows as well.

Using the GenerateBoard function, we emit all the children for the current board. 
Then, the ScoreFunction scores each of those boards.

As it was in the Scoring Topology, the output of the ScoreFunction is a triple of 
board, score, and player. These are the scores for each of the children boards. To 
determine our next best move, we simply need to maximize (or minimize) the value. 
This can be done using a simple Aggregator. We created an aggregating function 
named FindBestMove as shown in the following code snippet:

public class FindBestMove extends BaseAggregator<BestMove> {

    private static final long serialVersionUID = 1L;

    @Override

    public BestMove init(Object batchId, 

TridentCollector collector) {

        Log.info('Batch Id = [' + batchId + ']');

        return new BestMove();

    }

    @Override

    public void aggregate(BestMove currentBestMove, 

TridentTuple tuple, TridentCollector collector) {  

        Board board = (Board) tuple.get(0);

        Integer score = tuple.getInteger(1);

        if (score > currentBestMove.score){

            currentBestMove.score = score;

            currentBestMove.bestMove = board;

        }

    }

    @Override

    public void complete(BestMove bestMove, 

TridentCollector collector) {

        collector.emit(new Values(bestMove));        

    }

}

http:///


Artiicial Intelligence

[ 182 ]

This aggregation extends BaseAggregator, which is a Java generic. In this case, we 
want to emit the best possible move, combined with its score. Thus, we parameterize 
the BaseAggregator class with a BestMove class, which is simply as follows:

public class BestMove {

    public Board bestMove;

    public Integer score = Integer.MIN_VALUE;

    

    public String toString(){

        return bestMove.toString() + '[' + score + ']';

    }

}

If you recall, for aggregation, Trident initially calls the init() method, which 
returns the initial aggregate value. In our case, we simply seed the BestMove class 
with the worst move. Note that the score variable of the BestMove class is seeded 
with the absolute minimum value. Then, Trident makes subsequent calls to the 
aggregate() method, which allows the function to incorporate the tuple into the 
aggregate value. An aggregation can also emit values here, but since we are only 
concerned with the inal best move, we do not emit anything form the aggregate() 
method. Finally, Trident calls the complete() method when all values of tuples have 
been aggregated. It is in this method that we emit the inal best move.

The following is the output from the topology:

2013-12-31 13:53:42,979-0500 | INFO [main] DrpcTopology.main(43) | 
Determining best move for O on:

---------

|X||O|| |

---------

| ||O|| |

---------

| || ||X|

---------

00:00  INFO: Executing DRPC w/ args = [XO  O   X]

00:00  INFO: Emitting [GAME [XO  O   X]: player(X)

   history []]

00:00  INFO: Batch Id = [storm.trident.spout.RichSpoutBatchId@1e8466d2]

http:///


Chapter 6

[ 183 ]

2013-12-31 13:53:44,092-0500 | INFO [main] DrpcTopology.main(44) | 
RECEIVED RESPONSE [[[

---------

|X||O|| |

---------

| ||O|| |

---------

| ||O||X|

---------

[10000]]]]

In this example, it is O's turn, and he or she has a scoring opportunity. You can see 
that the topology correctly identiies the scoring opportunity and returns it as the 
best possible move (with the appropriate score value).

Remote deployment
What we showed is local invocation of a DRPC topology. To invoke a remote 
topology, you need to launch the DRPC server. You do this, just like any other Storm 
service, by executing the Storm script with drpc as the parameter as shown in the 
following code snippet:

bin/storm drpc

The Storm cluster will connect to the DRPC server to receive invocations. In order for 
it to do that, it needs to know the location(s) of the DRPC servers. These are speciied 
in the storm.yaml ile as follows:

drpc.servers:   

- 'drpchost1 '   

- 'drpchost2'

With the servers conigured and the DRPC server started, the topology is submitted 
like any other topology, and the DRPC client can be used from any Java application 
that requires large-scale synchronous distributed processing. To switch from a local 
DRPC client to a remote, the only line that needs to change is the instantiation of 
the DRPC client. Instead of instantiating a local DRPC client, you need to use the 
following line:

DRPCClient client = new DRPCClient('drpchost1', 3772);

The parameters specify the host and port of the DRPC server and should match the 
coniguration in the YAML ile.

http:///


Artiicial Intelligence

[ 184 ]

Summary
In this chapter, we took on an AI use case. There are many problems within that 
domain that leverage tree and graph data structures, and the algorithms most 
appropriate for those data structures are often recursive. To demonstrate how those 
algorithms translate to Storm, we took the Minimax algorithm and implemented it 
using Storm's constructs.

Along the way, we noted a few constraints within Storm that make it more 
complicated than expected, and we saw patterns and approaches that work around 
those constraints to produce a working/scalable system.

Additionally, we introduced DRPC. DRPC can be used to expose a synchronous 
interface to clients. DRPC also allows the design to reuse code and data lows 
between synchronous and asynchronous interfaces.

Combining synchronous and asynchronous topologies, with shared state, is a 
powerful pattern not only for AI applications, but also for analytics. Often, new 
data arrives in the background continuously, but users interrogate that data 
through synchronous interfaces. When you combine DRPC with the Trident state 
capabilities covered in other chapters, you should be able to build a system that can 
accommodate the real-time analytics' use cases.

In the next chapter, we integrate Storm with a non-transactional real-time analytics 
system, Druid. We will also look deeper into distributed state management with 
Trident and ZooKeeper.

http:///


Integrating Druid for  

Financial Analytics
In this chapter, we will extend the use of Trident to create a real-time inancial 
analytics dashboard. The system will process inancial messages to provide  
stock pricing information over time at various levels of granularity. The system  
will demonstrate integration with a non-transactional system using custom  
state implementations.

In the previous example, we used Trident to tally running totals of events over time. 
It was suficient for the simple use case that analyzed only a single dimension of the 
data, but the architectural design was not lexible. To introduce a new dimension 
would have required Java development and the deployment of new code.

Traditionally, data warehousing techniques and business intelligence platforms are 
used to compute and store dimensional analytics. The warehouses are deployed as 
part of an On-line Analytics Processing (OLAP) system, which is separated out 
from the On-line Transaction Processing (OLTP). Data propagates down to the 
OLAP system, but typically after some lag. This is a suficient model for retrospective 
analytics, but does not sufice in situations that require real-time analytics.

Similarly, other approaches use batch-processing techniques to empower data 
scientists. Data scientists use languages such as PIG to express their queries. Then, 
these queries compile down into jobs that run over large sets of data. Fortunately, 
they run on platforms such as Hadoop that distribute the processing across many 
machines, but this still introduces a substantial delay.

Both of these approaches fall short for inancial systems, which cannot afford  
such a lag in the availability of the analytics. The overhead alone of spinning up  
a batch-processing job might be too much of a delay for the real-time demands  
of a inancial system.

http:///


Integrating Druid for Financial Analytics

[ 186 ]

In this chapter, we will extend our use of Storm to deliver a lexible system that 
requires only minimal effort to introduce new dimensions, while simultaneously 
providing real-time analytics. By that, we mean only a short delay between data 
ingestion and availability of the dimensional analytics.

In this chapter, we will cover the following topics:

• Custom state implementations

• Integration with non-transactional storage

• Use of ZooKeeper for distributed state

• Druid and real-time aggregate analytics

Use case
In our use case, we will tap into orders for shares of stock in a inancial system.  
Using this information, we will deliver pricing information over time, which is 
available via a REpresentational State Transfer (REST) interface.

The canonical message format in the inancial industry is the Financial  
Information eXchange (FIX) format. The speciication for this format can be  
found at http://www.fixprotocol.org/.

An example FIX message is shown as follows:

23:25:1256=BANZAI6=011=135215791235714=017=520=031=032=037=538=1
000039=054=155=SPY150=2151=010=2528=FIX.4.19=10435=F34=649=BANZ
AI52=20121105-

FIX messages are essentially streams of key-value pairs. The ASCII character 01, 
which is Start of Header (SOH), delimits the pairs. FIX refers to the keys as tags. 
As shown in the preceding message, tags are identiied by integers. Each tag has an 
associated ield name and data type. For a full reference of tag types go to http://
www.fixprotocol.org/FIXimate3.0/en/FIX.4.2/fields_sorted_by_tagnum.

html.

The important ields for our use case are shown in the following table:

Tag ID Field name Description Data type

11 CIOrdID This is the unique identifier for 
message.

String

35 MsgType This is the type of the FIX 
message.

String

44 Price This is the stock price per share. Price

http:///


Chapter 7

[ 187 ]

Tag ID Field name Description Data type

55 Symbol This is the stock symbol. String

FIX is a layer on top of the TCP/IP protocol. Thus, in a real system, these messages 
are received over TCP/IP. For ease of integration with Storm, the system could 
queue those messages in Kafka. However, for our example, we will simply ingest 
a ile illed with the FIX messages. FIX supports multiple message types. Some are 
used for control messages (for example, Logon, Heartbeat, and so on). We will ilter 
out those messages, passing only the types that include price information to the 
analytics engine.

Integrating a non-transactional system
To extend on our previous example, we could develop a framework for the 
coniguration that would allow the user to specify the dimensions along which 
they would like to aggregate events. Then, we could use that coniguration in our 
topology to maintain a set of in-memory data sets to accumulate the aggregations, 
but any in-memory store is susceptible to faults. To address fault-tolerance,  
we could then make those aggregations persist in a database.

We would need to anticipate and support all the different types of aggregations  
the user would like to perform (for example, sum, average, geospatial, and so on). 
This seems like a substantial endeavor.

Fortunately, there are options for real-time analytics engines. One popular  
open-source option is Druid. The following article is taken from their whitepaper 
found at http://static.druid.io/docs/druid.pdf:

Druid is an open source, real-time analytical data store that supports fast ad-hoc 
queries on large-scale data sets. The system combines a column-oriented data 
layout, a shared-nothing architecture, and an advanced indexing structure to 
allow for the arbitrary exploration of billion-row tables with sub-second latencies. 
Druid scales horizontally and is the core engine of the Metamarkets data analytics 
platform.

From that excerpt, Druid exactly its our requirements. Now, the challenge is 
integrating it with Storm.

http:///


Integrating Druid for Financial Analytics

[ 188 ]

Druid's technology stack its naturally into a Storm-based ecosystem. Like Storm, 
it uses ZooKeeper to coordinate between its nodes. Druid also supports direct 
integration with Kafka. For some cases, this may be appropriate. In our example,  
to demonstrate integration of a non-transactional system, we will integrate Druid 
with Storm directly.

We will include a brief description of Druid here. However, for more detailed 
information on Druid, refer to the following website:

https://github.com/metamx/druid/wiki

Druid collects information via its Real-time nodes. Based on a conigurable 
granularity, the Real-time nodes collect the event information into segments that 
are persisted permanently in a deep storage mechanism. Druid persistently stores 
the metadata for those segments in MySQL. The Master node recognizes the new 
segment, identiies Compute nodes for that segment based on rules, and notiies the 
Compute nodes to pull the new segment. A Broker node sits in front of the Compute 
nodes, receives REST queries from consumers, and distributes those queries to the 
appropriate Compute nodes.

Thus, an architecture that integrates Storm with Druid looks similar to what is 
shown in the following diagram:

User Interface

MySQL

ZooKeeperDeep

Storage

Druid
Compute

(1)

Druid
Compute

(2)

Druid

Broker

Storm
Druid

Master

Druid

Real-time

Segment

single

Metadata
ephemeral node

single

Segment

Segment

http:///


Chapter 7

[ 189 ]

As depicted in the preceding diagram, there are three data storage mechanisms 
involved. The MySQL database is a simple metadata repository. It contains all the 
metadata information for all of the segments. The Deep Storage mechanism contains 
the actual segment information. Each segment contains a merged index of the events 
for a speciic time period based on the dimensions and aggregations deined in a 
coniguration ile. As such, segments can be large (for example, 2 GB blobs). In our 
example, we will use Cassandra as our deep storage mechanism.

Finally, the third data storage mechanism is ZooKeeper. The storage in ZooKeeper is 
transient and is used for control information only. When a new segment is available, 
the Master node writes an ephemeral node in ZooKeeper. The Compute Node is 
subscribed to the same path, and the ephemeral node triggers the Compute node to 
pull the new segment. After the segment is successfully retrieved, the Compute node 
removes the ephemeral node from ZooKeeper.

For our example, the entire sequence of events is as follows:

Segment Propagation

write(metadata)

writes(ephemeral node)

reads(ephemeral node)

delete(ephemeral node)

query

analytics

www.websequencediagrams.com

Realtime MySQL Deep Storage Master ZooKeeper Compute Broker User

Realtime MySQL Deep Storage Master ZooKeeper Compute Broker User

query

analytics

rules select segment owner

segments?

metadata

Push(segment)

pull(segment)

transfer(segment)

The preceding diagram lays out the event processing downstream from Storm.  
What is important to recognize in many real-time analytics engines is the inability  
to revert a transaction. The analytics systems are highly optimized to process speed 
and aggregation. The sacriice is transactional integrity.

http:///


Integrating Druid for Financial Analytics

[ 190 ]

If we re-examine Trident's state classiications, there are three different lavors of 
state: Transactional, Opaque, and Non-Transactional. A Transactional state requires 
the contents of each batch to be constant over time. An Opaque Transactional state 
can tolerate batch composition changing over time. Finally, a Non-Transactional state 
cannot guarantee exactly one semantic at all.

Summarizing the Javadoc for the storm.trident.state.State object, there are 
three different kinds of state:

Non-Transactional state In this state, commits are ignored.

No rollback can be done.

Updates are permanent.

Repeat Transactional 
state

The system is idempotent as long as all batches are identical.

Opaque Transactional 
state

State transitions are incremental. The previous state is stored 
along with the batch identifier to tolerate changing batch 
composition in the event of replay.

It is important to realize that introducing state into a topology effectively sequences 
any writes to storage. This can impact performance dramatically. When possible, 
the best approach is to ensure the entire system is idempotent. If all writes are 
idempotent, then you need not introduce transactional storage (or state) at all, 
because the architecture naturally tolerates tuple replay.

Often, if state persistence is backed by a database over which you control the 
schema, you can adjust the schema to add the additional information to participate 
in transactions: last committed batch identiier for repeat transactional and previous 
state for opaque transactional. Then, in the state implementation, you can leverage 
this information to ensure that your state object aligns with the type of spout you  
are using.

However, this is not always the case, especially in systems that perform aggregations 
such as counting, summing, averaging, and so on. Counter mechanisms in Cassandra 
have exactly this constraint. It is impossible to undo an addition to a counter, and 
it is impossible to make the addition idempotent. If a tuple is replayed, the counter 
is again incremented, and you have most likely overcounted elements in the 
system. For this reason, any state implementation backed by Cassandra counters is 
considered non-transactional.

http:///


Chapter 7

[ 191 ]

Likewise, Druid is non-transactional. Once Druid consumes an event, the event 
cannot be undone. Thus, if a batch within Storm is partially consumed by Druid  
and then the batch is replayed, or the composition changes, there is no way for  
the aggregate dimensional analytics to recover. For this reason, it is interesting  
to consider integration between Druid and Storm, the steps we can take to address 
replays, and the power of such a coupling.

In short, to connect Storm to Druid, we will leverage the characteristics of a 
transactional spout to minimize the risk of overcounting when connecting to  
a non-transactional state mechanism like Druid.

The topology
With the architectural concepts in place, let's return to the use case. To keep things 
focused on the integration, we will keep the topology simple. The following diagram 
depicts the topology:

FIX

Spout
Type

Filter DruidState

The FIX Spout emits tuples containing simple FIX messages. Then the ilter checks the 
type of the message, iltering for stock orders that contain pricing information. Then, 
those iltered tuples low to the DruidState object, which is the bridge to Druid.

The code for this simple topology is as follows:

public class FinancialAnalyticsTopology {

    public static StormTopology buildTopology() {

    TridentTopology topology = new TridentTopology();

    FixEventSpout spout = new FixEventSpout();

    Stream inputStream = 

topology.newStream("message", spout);

    inputStream.each(new Fields("message"),

new MessageTypeFilter())

        .partitionPersist(new DruidStateFactory(),

new Fields("message"), new DruidStateUpdater());

    return topology.build();

    }

}

http:///


Integrating Druid for Financial Analytics

[ 192 ]

The spout
There are many parsers for the FIX message format. In the spout, we will use the FIX 
Parser, which is a Google project. For more information on this project, you can refer 
to https://code.google.com/p/fixparser/.

Just like the previous chapter, the spout itself is straightforward. It simply returns 
references to a coordinator and an emitter, as shown in the following code:

package com.packtpub.storm.trident.spout;

@SuppressWarnings("rawtypes")

public class FixEventSpout implements ITridentSpout<Long> {

    private static final long serialVersionUID = 1L;

    SpoutOutputCollector collector;

    BatchCoordinator<Long> coordinator = new DefaultCoordinator();

    Emitter<Long> emitter = new FixEventEmitter();

    ...

    @Override

    public Fields getOutputFields() {

        return new Fields("message");

    }

}

As shown in the preceding code, the Spout declares a single output ield: message. 
This will contain the FixMessageDto object that is generated by the Emitter, as 
shown in the following code:

package com.packtpub.storm.trident.spout;

public class FixEventEmitter implements Emitter<Long>,

Serializable {

    private static final long serialVersionUID = 1L;

    public static AtomicInteger successfulTransactions = 

new AtomicInteger(0);

    public static AtomicInteger uids = new AtomicInteger(0);

    @SuppressWarnings("rawtypes")

    @Override

    public void emitBatch(TransactionAttempt tx,

    Long coordinatorMeta, TridentCollector collector) {

    InputStream inputStream = null;

    File file = new File("fix_data.txt");

    try {

        inputStream = 

new BufferedInputStream(new FileInputStream(file));

http:///


Chapter 7

[ 193 ]

        SimpleFixParser parser = new SimpleFixParser(inputStream);

        SimpleFixMessage msg = null;

        do {

        msg = parser.readFixMessage();

        if (null != msg) {

            FixMessageDto dto = new FixMessageDto();

            for (TagValue tagValue : msg.fields()) {

                if (tagValue.tag().equals("6")) { // AvgPx

                    // dto.price = 

//Double.valueOf((String) tagValue.value());

                    dto.price =  
                    new Double((int) (Math.random() * 100));

                } else if (tagValue.tag().equals("35")) {

                    dto.msgType = (String)tagValue.value();

                } else if (tagValue.tag().equals("55")) {

                   dto.symbol = (String) tagValue.value();

                } else if (tagValue.tag().equals("11")){

                   // dto.uid = (String) tagValue.value();

                   dto.uid =  
                   Integer.toString(uids.incrementAndGet());

                }

            }

            new ObjectOutputStream(

            new ByteArrayOutputStream()).writeObject(dto);

                List<Object> message = new ArrayList<Object>();

                message.add(dto);

                collector.emit(message);

        }

    } while (msg != null);

    } catch (Exception e) {

        throw new RuntimeException(e);

    } finally {

        IoUtils.closeSilently(inputStream);

    }

    }

    @Override

    public void success(TransactionAttempt tx) {

        successfulTransactions.incrementAndGet();

    }

    @Override

    public void close() {

    }

}

http:///


Integrating Druid for Financial Analytics

[ 194 ]

From the preceding code, you can see that we reparse the ile for each batch. As we 
stated previously, in a real-time system we will probably receive the messages via 
TCP/IP and queue them in Kafka. Then, we would use the Kafka spout to emit the 
messages. It is a matter of preference; but, to fully encapsulate the data processing  
in Storm, the system would most likely queue the raw message text. In that design, 
we would parse the text in a function rather than the spout.

Although this Spout is only suficient for this example, note that the composition  
of each batch is the same. Speciically, each batch contains all messages from the ile. 
Since our state design relies on this characteristic, in a real system, we would need  
to use TransactionalKafkaSpout.

The ilter
Like the spout, the ilter is straightforward. It examines the msgType object and ilters 
messages that are not ill orders. Fill orders are effectively stock purchase receipts. 
They contain the average price executed for that trade and the symbol for the stock 
purchased. The following code is the ilter for this message type:

package com.packtpub.storm.trident.operator;

public class MessageTypeFilter extends BaseFilter {

    private static final long serialVersionUID = 1L;

    @Override

    public boolean isKeep(TridentTuple tuple) {

        FixMessageDto message = (FixMessageDto) tuple.getValue(0);

    if (message.msgType.equals("8")) {

        return true;

    }

    return false;

    }

}

This provides a good opportunity to point out the importance of serializability in 
Storm. Note that in the preceding code the ilter is operating on a FixMessageDto 
object. It would have been easier to simply use the SimpleFixMessage object, but 
SimpleFixMessage is not serializable. This will not cause any problems when 
running on a local cluster. However, since tuples are exchanged between hosts 
during data processing in Storm, all the elements within a tuple must be serializable.

http:///


Chapter 7

[ 195 ]

Developers often commit changes to data objects within tuples that 
are not serializable. This causes downstream deployment issues. To 
ensure that all objects in a tuple remain serializable, add unit tests 
that verify that objects are serializable. The test is a simple one; use 
the following code:

new ObjectOutputStream(

new ByteArrayOutputStream()).

writeObject(YOUR_OBJECT);

The state design
Now, let us proceed to the most interesting aspects of this example. In order to 
integrate Druid with Storm, we will embed a real-time Druid server into our 
topology and implement the necessary interfaces to connect the tuple stream to it. To 
mitigate the inherent risks of connecting to a non-transactional system, we leverage 
ZooKeeper to persist state information. That persistence will not prevent anomalies 
due to failures, but it will help identify what data is at risk when a failure occurs.

The high-level design is shown as follows:

Storm Topology

Firehose

Real-Time

Node

State Buffer

Single Host / JVM

Disk

Deep

Storage

ZooKeeper

Current

[txId]

Limbo

(txId  )

Completed

(txId  )

http:///


Integrating Druid for Financial Analytics

[ 196 ]

At a high level, Storm creates state objects within worker JVM processes by using 
a factory. A state object is created for every partition in the batch. The state factory 
object ensures that the real-time server is running before it returns any state objects 
and starts the server if it is not running. The state object then buffers those messages 
until Storm calls commit. When Storm calls commit, the state object unblocks 
the Druid Firehose. This sends the signals to Druid that the data is ready for 
aggregation. Then, we block Storm in the commit method, while the real-time  
server begins pulling the data via the Firehose.

To ensure that every partition is processed at most once, we associate a partition 
identiier with each partition. The partition identiier is a combination of the batch 
identiier and the partition index, which uniquely identiies a set of data since we  
are using a transactional spout.

The Firehose persists the identiier in ZooKeeper to maintain the state of the 
partition.

There are three states in ZooKeeper:

State Description

inProgress This Zookeeper path contains the partition identifiers that Druid is 
processing.

Limbo This Zookeeper path contains the partition identifiers that Druid 
consumed in their entirety, but which may not be committed.

Completed This Zookeeper path contains the partition identifiers that Druid 
successfully committed.

While a batch is in process, the Firehose writes the partition identiier to the 
inProgress path. When Druid has pulled the entirety of a Storm partition, the 
partition identiier is moved to Limbo, and we release Storm to continue processing 
while we wait for the commit message from Druid.

Upon receiving the commit message from Druid, the Firehose moves the partition 
identiier to the Completed path. At this point, we assume the data has been written 
to disk. We are still susceptible to losing data in the event of a disk failure. However, 
if we assume that we can reconstruct the aggregations using batch processing, then 
this is most likely an acceptable risk.

http:///


Chapter 7

[ 197 ]

The following state machine captures the different phases of processing:

 

Buffering

Messages

Storm

updater.updateState()

Druid

firehose.nextRow()

Aggregating

Messages

Complete

Batches

batch

aggregated Druid

firehose.commit().run()

Storm

state.commit()

As depicted in the diagram, there is a loop between Buffering Messages and 
Aggregating Messages. The main control loop switches rapidly between these 
two states, splitting its time between the Storm processing loop and the Druid 
aggregation loop. The states are mutually exclusive: either the system is aggregating 
a batch, or it is buffering the next batch.

The third state is triggered when Druid has written the information to disk. When 
that happens (as we will see later), the Firehose is notiied and we can update our 
persistence mechanism to indicate that the batch was safely processed. Until that 
commit is called, the batches consumed by Druid must remain in Limbo.

While in Limbo, no assumptions can be made about the data. Druid may or may not 
have aggregated the records.

In the event of a failure, Storm may leverage other TridentState instances to 
complete the processing. Thus, for every partition, the Firehose must execute the 
following steps:

1. The Firehose must check to see if the partition was already completed. If 
so, the partition is a replay, probably due to a downstream failure. Since 
the batch is guaranteed to have the same contents as before, it can safely be 
ignored since Druid has already aggregated its contents. The system may log 
a warning message.

http:///


Integrating Druid for Financial Analytics

[ 198 ]

2. The Firehose must check to see if the partition is in limbo. If this is the 
case, then Druid fully consumed the partition, but never called commit or 
the system failed after commit was called but before the Firehose updated 
ZooKeeper. The system should raise an alert. It should not attempt to 
complete the batch since it was fully consumed by Druid and we do not 
know the status of the aggregation. It simply returns, enabling Storm to 
continue to the next batch.

3. The Firehose must check to see if the partition is in progress. If this is the 
case, then for some reason, somewhere on the network, the partition is being 
processed by another instance. This should not happen during ordinary 
processing. In this case, the system should raise an alert for this partition. 
In our simple system, we will simply proceed, leaving it to our ofline batch 
processing to correct the aggregation.

In many large scale real-time systems, the users are willing to tolerate slight 
discrepancies in the real-time analytics as long as the skews are infrequent and can 
be remedied fairly quickly.

It is important to note that this approach succeeds because we are using a 
transactional spout. The transactional spout guarantees that each batch has the same 
composition. Furthermore, for this approach to work, each partition within the 
batch must have the same composition. This is true if and only if the partitioning 
in the topology is deterministic. With deterministic partitioning and a transactional 
spout, each partition will contain the same data, even in the event of a replay. Had 
we used shufle grouping, this approach would not work. Our example topology 
is deterministic. This guarantees that a batch identiier, when combined with a 
partition index, represents a consistent set of data over time.

http:///


Chapter 7

[ 199 ]

Implementing the architecture
With the design in place, we can turn our attention to the implementation.  
The sequence diagram for the implementation is shown as follows:

Storm:Druid Integration

Storm DruidState StormFirehose Druid
ZooKeeper

(via PartitionState)
Runnable

row1

row2

row3

commit

notify(UNBLOCK)

nextRow

commit()

Runnable

run

complete(partitionId)

www.websequencediagrams.com

Storm DruidState StormFirehose Druid
ZooKeeper

(via PartitionState)
Runnable

BLOCK

hasMore?

row1

nextRow

row2

nextRow

row3

BLOCK

putInLimbo(partitionId)

putInProgress(partitionId)

notify(UNBLOCK)

http:///


Integrating Druid for Financial Analytics

[ 200 ]

The preceding diagram implements the state machine shown in the design. Once 
the real-time server is started, Druid polls the StormFirehose object using the 
hasMore() method. The contract with Druid speciies that the Firehose object's 
implementation should block until data is available. While Druid is polling and the 
Firehose object is blocking, Storm delivers tuples into the DruidState object's 
message buffer. When the batch is complete, Storm calls the commit() method on  
the DruidState object. At that point, the PartitionStatus is updated. The partition  
is put in progress and the implementation unblocks the StormFirehose object.

Druid begins pulling data from the StormFirehose object via the nextRow() 
method. When the StormFirehose object exhausts the contents of the partition,  
it places the partition in limbo, and releases control back to Storm.

Finally, when the commit method is called on the StormFirehose, the implementation 
returns a Runnable, which is what Druid uses to notify a Firehose that the partition 
is persisted. When Druid calls run(), the implementation moves the partition  
to completion.

DruidState
First, we will look at the Storm side of the equation. In the previous chapter, we 
extended the NonTransactionalMap class to persist a state. That abstraction 
shielded us from the details of sequential batch processing. We simply implemented 
the IBackingMap interface to support the multiGet and multiPut calls, and the 
superclass took care of the rest.

In this scenario, we need more control over the persistence process than what the 
default implementations provide. Instead, we need to implement the base State 
interfaces ourselves. The following class diagram depicts the class hierarchy:

prepare()

cleanup()

updateState()

StateUpdater StateFactory

makeState()

State

beginCommit()

commit()

updateState()

DruidStateUpdater

_realTimeNode

makeState()

startRealtimeNode()

DruidStateFactory

_messages

commit()

aggregateMessages()

DruidState

http:///


Chapter 7

[ 201 ]

As evident in the diagram, the DruidStateFactory class manages the embedded 
real-time node. An argument could be made for the updater managing the 
embedded server. However, since there should be only a single instance of the  
real-time server per JVM and that instance needs to exist before any state objects,  
the lifecycle management of the embedded server seemed to it more naturally in  
the factory.

The following code snippet contains the relevant sections of the DruidStateFactory 
class:

public class DruidStateFactory implements StateFactory {

    private static final long serialVersionUID = 1L;

    private static final Logger LOG = 

LoggerFactory.getLogger(DruidStateFactory.class);

    private static RealtimeNode rn = null;

    private static synchronized void startRealtime() {

    if (rn == null) {

        final Lifecycle lifecycle = new Lifecycle();

        rn = RealtimeNode.builder().build();

        lifecycle.addManagedInstance(rn);

        rn.registerJacksonSubtype(

        new NamedType(StormFirehoseFactory.class, "storm"));

        try {

            lifecycle.start();

        } catch (Throwable t) {

        }

    }

    }

    @Override

    public State makeState(Map conf, IMetricsContext metrics,

        int partitionIndex, int numPartitions) {

            DruidStateFactory.startRealtime();

            return new DruidState(partitionIndex);

    }

}

Without going into too much detail, the preceding code starts a real-time node if one 
had not been started already. Also, it registers the StormFirehoseFactory class with 
that real-time node.

http:///


Integrating Druid for Financial Analytics

[ 202 ]

The factory also implements the StateFactory interface from Storm, which allows 
Storm to use this factory to create new State objects. The State object itself is  
fairly simple:

public class DruidState implements State {

private static final Logger LOG = 

LoggerFactory.getLogger(DruidState.class);

private Vector<FixMessageDto> messages = 

new Vector<FixMessageDto>();

    private int partitionIndex;

public DruidState(int partitionIndex){

    this.partitionIndex = partitionIndex;

}

@Override

    public void beginCommit(Long batchId) {

}

@Override

public void commit(Long batchId) {

    String partitionId = batchId.toString() + "-" +  
                         partitionIndex;

    LOG.info("Committing partition [" + 

        partitionIndex + "] of batch [" + batchId + "]");

    try {

        if (StormFirehose.STATUS.isCompleted(partitionId)) {

        LOG.warn("Encountered completed partition [" 

            + partitionIndex + "] of batch [" + batchId 

                + "]");

        return;

    } else if (StormFirehose.STATUS.isInLimbo(partitionId)) {

        LOG.warn("Encountered limbo partition [" + partitionIndex 

                 + "] of batch [" + batchId + 

                 "] : NOTIFY THE AUTHORITIES!");

        return;

    } else if (StormFirehose.STATUS.isInProgress(partitionId)) {

              LOG.warn("Encountered in-progress partition [\" + 

              partitionIndex + \"] of batch [" + batchId + 

              "] : NOTIFY THE AUTHORITIES!");

        return;

    }

http:///


Chapter 7

[ 203 ]

    StormFirehose.STATUS.putInProgress(partitionId);

    StormFirehoseFactory.getFirehose()

        .sendMessages(partitionId, messages);

    } catch (Exception e) {

            LOG.error("Could not start firehose for [" + 

                      partitionIndex + "] of batch [" + 

                      batchId + "]", e);

    }

    }

public void aggregateMessage(FixMessageDto message) {

    messages.add(message);

}

}

As you can see in the preceding code, the State object is a message buffer.  
It delegates the actual commit logic to the Firehose object, which we will  
examine shortly. However, there are a few critical lines in this class that  
implement the failure detection we outlined earlier.

The conditional logic in the commit() method on the State object checks 
the ZooKeeper status to determine if this partition was already successfully 
processed (inCompleted), failed to commit (inLimbo), or failed during processing 
(inProgress). We will dive deeper into the state storage when we examine the 
DruidPartitionStatus object.

It is also important to note that the commit() method is called by Storm directly, but 
the aggregateMessage() method is called by the updater. Even though Storm should 
never call those methods concurrently, we chose to use a thread-safe vector anyway.

The DruidStateUpdater code is as follows:

public class DruidStateUpdater implements StateUpdater<DruidState> {

...

@Override

public void updateState(DruidState state, 

List<TridentTuple> tuples, TridentCollector collector) {

for (TridentTuple tuple : tuples) {

       FixMessageDto message = (FixMessageDto) tuple.getValue(0);

      state.aggregateMessage(message);

   }

}

}

As shown in the preceding code, the updater simply loops through the tuples and 
passes them to the state object to buffer.

http:///


Integrating Druid for Financial Analytics

[ 204 ]

Implementing the StormFirehose object
Before we turn our attention to the Druid side of the implementation, we should 
probably take a step back and discuss Druid in more detail. Druid feeds are 
conigured via a spec ile. In our example, this is realtime.spec, as shown in the 
following code:

[{

    "schema": {

        "dataSource": "stockinfo",

        "aggregators": [

            { "type": "count", "name": "orders"},

            { "type": "doubleSum", "fieldName": "price", "name": 
              "totalPrice" }

        ],

        "indexGranularity": "minute",

        "shardSpec": {"type": "none"}

    },

    "config": {

        "maxRowsInMemory": 50000,

        "intermediatePersistPeriod": "PT30s"

    },

    "firehose": {

        "type": "storm",

        "sleepUsec": 100000,

        "maxGeneratedRows": 5000000,

        "seed": 0,

        "nTokens": 255,

        "nPerSleep": 3

    },

    "plumber": {

        "type": "realtime",

        "windowPeriod": "PT30s",

        "segmentGranularity": "minute",

        "basePersistDirectory":  
        "/tmp/example/rand_realtime/basePersist"

    }

}]

http:///


Chapter 7

[ 205 ]

For our example, the important elements in the preceding spec ile are schema and 
firehose. The schema element deines the data and the aggregations that Druid 
should perform on that data. In our example, Druid will count the number of 
times we see a stock symbol in the orders ield and track the total price paid in the 
totalPrice ield. The totalPrice ield will be used to calculate the running stock 
price average over time. Additionally, you need to specify an indexGranularity 
object that speciies the temporal granularity of the index.

The firehose element contains the coniguration for the Firehose object. As we 
saw in the StateFactory interface, an implementation registers a FirehoseFactory 
class with Druid when the real-time server is started. That factory is registered as a 
Jackson subtype. When the real-time spec ile is parsed, the type in the firehose 
element of the JSON is used to link back to the appropriate FirehoseFactory for a 
stream of data.

For more information on the JSON polymorphism, refer to the following website:

http://wiki.fasterxml.com/JacksonPolymorphicDeserialization

For more information on the spec ile, refer to the following website:

https://github.com/metamx/druid/wiki/Realtime

Now, we can turn our attention to the Druid side of the implementation. Firehose 
is the main interface one must implement to contribute data into a Druid real-time 
server.

The code for our StormFirehoseFactory class is as follows:

@JsonTypeName("storm")

public class StormFirehoseFactory implements FirehoseFactory {

    private static final StormFirehose FIREHOSE = 

    new StormFirehose();

    @JsonCreator

    public StormFirehoseFactory() {

    }

    @Override

    public Firehose connect() throws IOException {

        return FIREHOSE;

    }

    public static StormFirehose getFirehose(){

        return FIREHOSE;

    }

}

http:///


Integrating Druid for Financial Analytics

[ 206 ]

The factory implementation is straightforward. In this case, we simply return a 
static singleton object. Note that the object is annotated with @JsonTypeName and 
@JsonCreator. As stated in the preceding code, Jackson is the means through 
which FirehoseFactory objects are registered. Thus, the name speciied as the @
JsonTypeName must align with the type speciied in the spec ile.

The meat of the implementation is in the StormFirehose class. Within this class, 
there are four critical methods that we will examine one by one: hasMore(), 
nextRow(), commit(), and sendMessages().

The sendMessages() method is the entry point into the StormFirehose class. It is 
effectively the handoff point between Storm and Druid. The code for this method is 
as follows:

public synchronized void sendMessages(String partitionId, 

                     List<FixMessageDto> messages) {

    BLOCKING_QUEUE = 

    new ArrayBlockingQueue<FixMessageDto>(messages.size(), 

    false, messages);

    TRANSACTION_ID = partitionId;

    LOG.info("Beginning commit to Druid. [" + messages.size() + 

    "] messages, unlocking [START]");

    synchronized (START) {

        START.notify();

    }

    try {

        synchronized (FINISHED) {

        FINISHED.wait();

        }

    } catch (InterruptedException e) {

        LOG.error("Commit to Druid interrupted.");

    }

    LOG.info("Returning control to Storm.");

}

This method is synchronized to prevent concurrency issues. Note that it does not  
do anything more than copy the message buffer into a queue and notify the 
hasMore() method to release the batch. Then, it blocks waiting for Druid to fully 
consume the batch.

http:///


Chapter 7

[ 207 ]

Then, the low proceeds to the nextRow() method, which is shown as follows:

    @Override

    public InputRow nextRow() {

        final Map<String, Object> theMap = 

        Maps.newTreeMap(String.CASE_INSENSITIVE_ORDER);

        try {

        FixMessageDto message = null;

        message = BLOCKING_QUEUE.poll();

        if (message != null) {

        LOG.info("[" + message.symbol + "] @ [" +

         message.price + "]");

        theMap.put("symbol", message.symbol);

        theMap.put("price", message.price);

        }

        if (BLOCKING_QUEUE.isEmpty()) {

        STATUS.putInLimbo(TRANSACTION_ID);

        LIMBO_TRANSACTIONS.add(TRANSACTION_ID);

        LOG.info("Batch is fully consumed by Druid. " 

        + "Unlocking [FINISH]");

        synchronized (FINISHED) {

            FINISHED.notify();

        }

        }

    } catch (Exception e) {

        LOG.error("Error occurred in nextRow.", e);

        System.exit(-1);

    }

    final LinkedList<String> dimensions = 

    new LinkedList<String>();

    dimensions.add("symbol");

    dimensions.add("price");

    return new MapBasedInputRow(System.currentTimeMillis(), 

                                dimensions, theMap);

    }

http:///


Integrating Druid for Financial Analytics

[ 208 ]

This method pulls a message off of the queue. If it is not null, the data is added to a 
map that is passed along to Druid as a MapBasedInputRow method. If there are no 
remaining messages in the queue, the sendMessages() method that we examined 
in the preceding code is released. From Storm's perspective, the batch is complete. 
Druid now owns the data. However, from a system perspective, the data is in limbo 
because Druid may not have persisted the data to disk. We are at a risk of losing the 
data entirely in the event of a hardware failure.

Druid will then poll the hasMore() method, which is shown in the following code:

@Override

public boolean hasMore() {

    if (BLOCKING_QUEUE != null && !BLOCKING_QUEUE.isEmpty())

        return true;

    try {

        synchronized (START) {

        START.wait();

        }

    } catch (InterruptedException e) {

        LOG.error("hasMore() blocking interrupted!");

    }

    return true;

}

Since the queue is empty, the method will block until sendMessage() is called again.

This leaves only one remaining piece of the puzzle, the commit() method. It is 
shown in the following code:

    @Override

    public Runnable commit() {

 List<String> limboTransactions = new ArrayList<String>();

 LIMBO_TRANSACTIONS.drainTo(limboTransactions);

 return new StormCommitRunnable(limboTransactions);

    }

This method returns Runnable, which is called by Druid after it's inished persisting 
the messages. Although all the other methods in the Firehose object are called from 
a single thread, the Runnable is called from a different thread and, therefore, must be 
thread-safe. For that reason, we copy the transactions in limbo into a separate list and 
pass it into the Runnable object's constructor. As you can see in the following code, 
the Runnable does nothing but moves the transactions into the completed state 
in Zookeeper.

http:///


Chapter 7

[ 209 ]

public class StormCommitRunnable implements Runnable {

    private List<String> partitionIds = null;

    

    public StormCommitRunnable(List<String> partitionIds){

        this.partitionIds = partitionIds;

    }

    

    @Override

    public void run() {

    try {

        StormFirehose.STATUS.complete(partitionIds);

    } catch (Exception e) {

        Log.error("Could not complete transactions.", e);

    }

}

}

Implementing the partition status in 

ZooKeeper
Now that we have examined all of the code, we can take a look at how the state 
is persisted in ZooKeeper. This enables the system to coordinate the distributed 
processing, especially in the event of a failure.

The implementation leverages ZooKeeper to persist the partition-processing status. 
ZooKeeper is another open source project. For more information, you can refer to 
http://zookeeper.apache.org/.

ZooKeeper maintains a tree of nodes. Each node has an associated path, much like 
a ile system. The implementation uses ZooKeeper through a framework called 
Curator. For more information, you can refer to http://curator.incubator.
apache.org/.

When connecting to ZooKeeper through Curator, you supply a namespace. 
Effectively, this is the top-level node under which the application data is stored. In 
our implementation, the namespace is stormdruid. The application then maintains 
three paths underneath that, where it stores batch status information.

The paths correspond to the states described in the design and are as follows:

• /stormdruid/current: This corresponds to the current state

• /stormdruid/limbo: This corresponds to the limbo state

• /stormdruid/completed: This corresponds to the completed state

http:///


Integrating Druid for Financial Analytics

[ 210 ]

In our implementation, all ZooKeeper's interactions for partition status are run 
through the DruidPartitionStatus class.

The code for this class is as follows:

public class DruidBatchStatus {

    private static final Logger LOG = 

LoggerFactory.getLogger(DruidBatchStatus.class);

    final String COMPLETED_PATH = "completed";

    final String LIMBO_PATH = "limbo";

    final String CURRENT_PATH = "current";

    private CuratorFramework curatorFramework;

    public DruidBatchStatus() {

    try {

curatorFramework = 

    CuratorFrameworkFactory.builder()

    .namespace("stormdruid")

    .connectString("localhost:2181")

    .retryPolicy(new RetryNTimes(1, 1000))

    .connectionTimeoutMs(5000)

            .build();

        curatorFramework.start();

        if (curatorFramework.checkExists()

    .forPath(COMPLETED_PATH) == null) {

        curatorFramework.create().forPath(COMPLETED_PATH);

        }

    }catch (Exception e) {

        LOG.error("Could not establish connection to Zookeeper", 

                  e);

    }

    }

    public boolean isInLimbo(String paritionId) throws Exception {

        return (curatorFramework.checkExists().forPath(LIMBO_PATH  
        + "/" + paritionId) != null);

    }

http:///


Chapter 7

[ 211 ]

    public void putInLimbo(Long paritionId) throws Exception {

    curatorFramework.inTransaction().

        delete().forPath(CURRENT_PATH + "/" + paritionId)

        .and().create().forPath(LIMBO_PATH + "/" + 

                                paritionId).and().commit();

    }

}

In the interest of space, we have only shown the constructor and the methods related 
to the limbo status. In the constructor, the client connects to ZooKeeper and creates 
the three base paths as described in the preceding code. Then, it provides query 
methods to test if a transaction is in progress, limbo, or completed. It also provides 
methods that move a transaction between those states.

Executing the implementation
Enough with the code, let's get on with the demo! We start the topology using  
the main method of the FinancialAnalyticsTopology class. For a better demo,  
we introduce random prices between zero and one hundred. (Refer back to the 
Emitter code.)

Once the topology is started, you will see the following output:

2014-02-16 09:47:15,479-0500 | INFO [Thread-18]  
DefaultCoordinator.initializeTransaction(24) | Initializing  
Transaction [1615]

2014-02-16 09:47:15,482-0500 | INFO [Thread-22]  
DruidState.commit(28) | Committing partition [0] of batch [1615]

2014-02-16 09:47:15,484-0500 | INFO [Thread-22]  
StormFirehose.sendMessages(82) | Beginning commit to Druid. [7996]  
messages, unlocking [START]

2014-02-16 09:47:15,511-0500 | INFO [chief-stockinfo]  
StormFirehose.nextRow(58) | Batch is fully consumed by Druid.  
Unlocking [FINISH]

2014-02-16 09:47:15,511-0500 | INFO [Thread-22]  
StormFirehose.sendMessages(93) | Returning control to Storm.

2014-02-16 09:47:15,513-0500 | INFO [Thread-18]  
DefaultCoordinator.success(30) | Successful Transaction [1615] 

You can interrogate the processing from multiple dimensions.

http:///


Integrating Druid for Financial Analytics

[ 212 ]

Using the ZooKeeper client, you can examine the status of transactions. Take a look 
at the following listing; it shows the transaction/batch identiiers and their statuses:

[zk: localhost:2181(CONNECTED) 50] ls /stormdruid/current

[501-0]

[zk: localhost:2181(CONNECTED) 51] ls /stormdruid/limbo

[486-0, 417-0, 421-0, 418-0, 487-0, 485-0, 484-0, 452-0, ...

[zk: localhost:2181(CONNECTED) 82] ls /stormdruid/completed

[zk: localhost:2181(CONNECTED) 52] ls /stormdruid/completed

[59-0, 321-0, 296-0, 357-0, 358-0, 220-0, 355-0,

For alerting and monitoring, please note the following:

• If ever there is more than one batch in the current path, then alerts should 
go out

• If ever there are batch identiiers in limbo that are not sequential, or 
substantially behind the current identiier, alerts should go out

To clean up the state in ZooKeeper, you can execute the following code:

zk: localhost:2181(CONNECTED) 83] rmr /stormdruid

To monitor the segment propagation, you can use the MySQL client. Using the 
default schema, you will ind segments by selecting them out of the prod_segments 
table with the following code:

mysql> select * from prod_segments;

Examining the analytics
Now, the moment we have all been waiting for; we can see average stock prices  
over time by using the REST API that Druid provides. To use the REST API, it is  
not necessary to run a full-blown Druid cluster. You will only be able to query the 
data seen by the singular embedded real-time node, but each node is capable of 
servicing requests and this makes testing easier. Using curl, you can issue a query  
of a real-time node using the following command:

curl -sX POST "http://localhost:7070/druid/v2/?pretty=true" -H  
'content-type: application/json'  -d @storm_query

http:///


Chapter 7

[ 213 ]

The inal parameter of the curl statement references a ile, the contents of which will 
be included as the body of the POST request. The ile contains the following details:

{

    "queryType": "groupBy",

    "dataSource": "stockinfo",

    "granularity": "minute",

    "dimensions": ["symbol"],

    "aggregations":[

        { "type": "longSum", "fieldName": "orders",

         "name": "cumulativeCount"},

        { "type": "doubleSum", "fieldName": "totalPrice",

         "name": "cumulativePrice" }

    ],

    "postAggregations":[

    {  "type":"arithmetic",

        "name":"avg_price",

        "fn":"/",

        "fields":[ {"type":"fieldAccess","name":"avgprice",

        "fieldName":"cumulativePrice"},

                   {"type":"fieldAccess","name":"numrows",

        "fieldName":"cumulativeCount"}]}

    ],

    "intervals":["2012-10-01T00:00/2020-01-01T00"]

}

There are two types of aggregations happening in Druid. There are aggregations that 
happen as part of the indexing and there are aggregations that happen at query time. 
The aggregations that happen during indexing are deined in the spec ile. If you 
recall, we had two aggregations in the spec ile:

"aggregators": [

{ "type": "count", "name": "orders"},

   { "type": "doubleSum", "fieldName": "price",

"name": "totalPrice" }

],

The events we are aggregating have two ields: symbol and price. The preceding 
aggregations are applied at indexing time, and introduce two additional ields: 
totalPrice and orders. Recall that totalPrice is the sum of the prices on each 
event for that slice of time. The orders ield contains the total count of events in that 
slice of time.

http:///


Integrating Druid for Financial Analytics

[ 214 ]

Then, when we perform the query, Druid applies a second set of aggregations based 
on the groupBy statement. In our query, we group by symbol at a granularity of a 
minute. The aggregations then introduce two new ields: cumulativeCount and 
cumulativePrice. These ields contain the sums of the previous aggregations.

Finally, we introduce a postaggregation method to calculate the average for that 
slice of time. The postaggregation method divides (""fn":"/") the two cumulative 
ields to yield a new avg_price ield.

Issuing the curl statement to a running server results in the following response:

[ {

  "version" : "v1",

  "timestamp" : "2013-05-15T22:31:00.000Z",

  "event" : {

    "cumulativePrice" : 3464069.0,

    "symbol" : "MSFT",

    "cumulativeCount" : 69114,

    "avg_price" : 50.12108979367422

  }

}, {

  "version" : "v1",

  "timestamp" : "2013-05-15T22:31:00.000Z",

  "event" : {

    "cumulativePrice" : 3515855.0,

    "symbol" : "ORCL",

    "cumulativeCount" : 68961,

    "avg_price" : 50.98323690201708

  }

...

 {

  "version" : "v1",

  "timestamp" : "2013-05-15T22:32:00.000Z",

  "event" : {

    "cumulativePrice" : 1347494.0,

    "symbol" : "ORCL",

    "cumulativeCount" : 26696,

    "avg_price" : 50.47550194785736

  }

}, {

http:///


Chapter 7

[ 215 ]

  "version" : "v1",

  "timestamp" : "2013-05-15T22:32:00.000Z",

  "event" : {

    "cumulativePrice" : 707317.0,

    "symbol" : "SPY",

    "cumulativeCount" : 13453,

    "avg_price" : 52.576897346316805

  }

} ]

Since we updated the code to generate random prices between zero and one 
hundred, it is no surprise that the averages are approximately ifty. (Woo hoo!)

Summary
In this chapter, we gained a deeper appreciation for the Trident State API. We 
created a direct implementation of the State and StateUpdater interfaces instead of 
relying on default implementations. Speciically, we implemented these interfaces to 
bridge the gap between a transactional spout and a non-transactional system, namely 
Druid. Although it is impossible to establish exactly-once semantics into a non-
transactional store, we put mechanisms in place to alert when the system encounters 
issues. Ostensibly, upon failure we could then use a batch processing mechanism to 
reconstruct any suspect aggregation segments.

For future investigation, it would be beneicial to establish an idempotent interface 
between Storm and Druid. To do this, we could publish a single segment for each 
batch within Storm. Since segment propagation is atomic within Druid, this would 
give us a mechanism to commit each batch atomically to Druid. Additionally, 
batches could then be processed in parallel, improving throughput. Druid supports 
an ever-expanding set of query types and aggregation mechanisms. It is incredibly 
powerful, and the marriage of Storm and Druid is a powerful one.

http:///


http:///


Natural Language Processing
Some people believe Storm will eventually replace Hadoop as demand increases  
for real-time analytics and data processing. In this chapter, we will see how Storm 
and Hadoop actually complement each other.

Although Storm blurs the lines between traditional On-Line Transactional 
Processing (OLTP) and On-Line Analytical Processing (OLAP), it can handle a high 
volume of transactions while performing aggregations and dimensional analysis 
typically associated with data warehouses. It is often the case that you still need 
additional infrastructure to perform historical analysis and to support ad hoc queries 
across the entire dataset. Additionally, batch processing is often used to correct 
anomalies where the OLTP system cannot ensure consistency in the event of failures. 
This is exactly what we encountered in the Storm-Druid integration.

For these reasons, batch processing infrastructure is often paired with real-time 
infrastructure. Hadoop provides us with such a batch processing framework. In 
this chapter, we will implement an architecture that supports historical and ad hoc 
analyses via batch processing.

This chapter covers the following topics:

• The CAP theorem

• Lambda architectures

• OLTP and OLAP integration

• An introduction to Hadoop

http:///


Natural Language Processing

[ 218 ]

Motivating a Lambda architecture
First, from a logical perspective, let's take a look at the Storm-Druid integration. 
Storm, and more speciically Trident, is able to perform distributed analytics because 
it isolates state transitions. To do this, Storm makes certain assumptions about the 
underlying persistence mechanisms for state. Storm assumes that the persistence 
mechanism is both consistent and available. Speciically, Storm assumes that once a 
state transition is made, that new state is shared, consistent across all nodes, and 
immediately available.

From the CAP theorem, we know that it is dificult for any distributed system to 
provide all three of the following guarantees simultaneously:

• Consistency: The state is the same across all nodes

• Availability: The system can respond to a query with either success or failure

• Partition Tolerance: The system continues to respond despite loss of 
communication or partial system failure

More and more, web-scale architectures integrate persistence mechanisms that take a 
relaxed approach to Consistency in order to meet Availability and Partition Tolerance 
requirements. Often, these systems do so because the coordination required to 
provide transactional consistency across the entire system becomes untenable in large 
distributed systems. Performance and throughput are more important.

Druid made these same trade-offs. If we take a look at the persistence model for 
Druid, we see a few different stages:

Storm:Druid Integration

Storm DruidState StormFirehose Zoo eeperK Runnable Deep StorageDruid

Storm DruidState StormFirehose Zoo eeperK Runnable Deep StorageDruid

commit

rows

notify(UNBLOCK)

State in Memory

www.websequencediagrams.com

nextRow

row(s)

commit()

Runnable

State On Disk

complete(txld)

putInProgress(txld)

putInLinux(txld)

run

push segment

State Consistent and Available

http:///


Chapter 8

[ 219 ]

First, Druid consumes the data via the Firehose interface and places that data in the 
memory. Second, the data is persisted to the disk and the Firehose implementation 
is notiied via the Runnable interface. Finally, this data is pushed to Deep Storage, 
which makes the data available to other parts of the system.

Now, if we consider the implications of inconsistent data to fault tolerance, we see 
that the data is at risk until it is persisted in Deep Storage. If we lose that node, we 
lose the analytics for all the data on that node we have consumed thus far via Storm, 
because we have already acknowledged the tuples.

One obvious solution to this problem is to push the segment to Deep Storage prior 
to acknowledging the tuples in Storm. This would be acceptable, but it would 
create a tenuous relationship between Storm and Druid. Speciically, batch sizes 
and timeouts would need to align with segment sizes and the timing of Druid's 
segment push to Deep Storage. If described in another way, the throughput of our 
transactional processing system would be limited and intimately tied to the system 
we are using for analytical processing. In the end, that is a dependency we most 
likely do not want.

However, we still want real-time analytics and are willing to tolerate those analytics 
missing some portion of the data in the unlikely event of a partial system failure. 
From this perspective, this integration is satisfactory. Ideally though, we would have 
a mechanism to correct and recover from any fault. To do this, we will introduce  
an ofline batch processing mechanism to recover and correct data in the event of  
a failure.

For this to work, we will irst persist the data prior to sending the data to Druid.  
Our batch processing system will read the data from that persistence mechanism 
ofline. The batch processing system will be able to correct/update any data that the 
system may have lost during real-time processing. Combining these approaches, 
we can achieve the throughput we need during real-time processing with analytics 
that are accurate until there is a system failure and a mechanism that corrects those 
analytics if/when a failure occurs.

http:///


Natural Language Processing

[ 220 ]

The de facto standard for distributed batch processing is Hadoop. Thus, we will 
incorporate the use of Hadoop for historical (that is, non-real-time) analytics.  
The following diagram depicts the pattern we will use here:

Storm: Druid: Hadoop Integration

persist(data)

www.bsequencediagrams.com

Druid Hadoop Deep StorageStorm Persistence

Druid Hadoop Deep StorageStorm Persistence

persist(real-time metrics)

update(historical metrics)

read(data)

aggregate(data)

The preceding pattern shows how we can integrate OLTP and OLAP systems 
successfully while mostly providing consistent and complete analytics in real time 
with high throughput, availability, and partitioning. It also simultaneously provides 
mechanisms to account for partial system failures.

The other gap that this approach ills is the ability to introduce new analytics into  
the system. Since the Storm-Druid integration focuses on the real-time problem, 
there is no easy way to introduce new analyses into the system. Hadoop closes  
that gap since it can run over the historical data to populate new dimensions  
or perform additional aggregations.

Nathan Marz, the original author of Storm, refers to this approach as a Lambda 
architecture.

Examining our use case
Now, let's apply this pattern to the ield of Natural Language Processing (NLP).  
In this use case, we will search Twitter for relevant tweets for a phrase (for example, 
"Apple Jobs"). The system will then process those tweets trying to ind the most 
relevant words. Using Druid to aggregate the terms, we will be able to trend the 
most relevant words over time.

Let's deine the problem a little more. Given a search phrase p, using the Twitter API, 
we will ind the most relevant sets of Tweets, T. For each tweet, t in T, we will count 
the occurrences of each word, w. We will compare the frequency of that word in the 
tweets with the frequency of that word in a sample of English text, E. The system  
will then rank those words and display the top 20 results.

http:///


Chapter 8

[ 221 ]

Mathematically, this equates to the following:

Here, the frequency of a word w in a corpus C is as follows:

Since we are only concerned with the relative frequency, and the total count of  
words in T and words in E are constant across all words, we can ignore them in  
the equations, reducing the complexity of the problem to the following:

For the denominator, we will use a freely available word frequency list from the 
following link:

http://invokeit.wordpress.com/frequency-word-lists/

We will use Storm to process the results of the Twitter search and enrich the 
tuple with the count information for the denominator. Druid will then count the 
occurrences for the numerator, and we will use a post-aggregation function to 
perform the actual relevance calculation.

Realizing a Lambda architecture
For this use case, we are focusing on a distributed computing pattern that integrates 
a real-time processing platform (that is, Storm) with an analytics engine (that is, 
Druid); we then pair it with an ofline batch processing mechanism (that is, Hadoop) 
to ensure we have accurate historical metrics.

While that remains the focus, the other key goal we are trying to achieve is 
continuous availability and fault tolerance. More speciically, the system should 
tolerate the permanent loss of a node or even a data center. To achieve this kind  
of availability and fault tolerance, we need to focus a bit more on the persistence.

http:///


Natural Language Processing

[ 222 ]

In a live system, we would use a distributed storage mechanism for persistence, 
ideally a storage mechanism that supported replication across data centers. Thus, 
even in a disastrous scenario, whereby a data center is entirely lost, the system can 
recover without losing data. When interacting with the persistent store, the client 
will demand a consistency level that replicates data across multiple data centers 
within the transaction.

For this discussion, assume we are using Cassandra as our persistence mechanism. 
With Cassandra, which has tunable consistency, writes will use a consistency level of 
EACH_QUORUM. This ensures that a copy of the data is written consistently to all data 
centers. Of course, this introduces the overhead of interdata center communication 
on each write. For less critical applications, LOCAL_QUORUM is most likely acceptable, 
which avoids the latency of interdata center communication.

Another beneit of using a distributed storage engine such as Cassandra is that a 
separate ring/cluster could be set up for ofline / batch processing. Hadoop could then 
use that ring as the input, allowing the system to reingest the historical data without 
impacting transactional processing. Consider the following architecture diagram:

Cassandra

(Node 1)

Cassandra

(Node 2)

Cassandra

(Node 3)

Transactional

Processing

(Ring 1)

Cassandra

(Node 7)

Cassandra

(Node 8)

Cassandra

(Node 9)

Transactional

Processing

(Ring 3)

Cassandra

(Node 4)

Cassandra

(Node 5)

Cassandra

(Node 6)

Transactional

Processing

(Ring 2)

Data Center 1 Data Center 2

Replication
Storm

Hadoop

Replication

In the preceding diagram, we have two physical data centers, each with a Cassandra 
cluster servicing the transactional processing within Storm. This ensures that any 
write from the topology will replicate in real time to the data center, either before 
the tuple is acknowledged, if we use EACH_QUORUM consistency, or lazily, if we use 
LOCAL_QUORUM.

http:///


Chapter 8

[ 223 ]

Additionally, we have a third virtual data center supporting the ofline batch 
processing. Ring 3 is a Cassandra cluster that is physically collocated with Ring 1 but 
is conigured as a second data center within Cassandra. When we run the Hadoop 
job to process the historical metrics, we can use a LOCAL_QUORUM. Since local quorum 
seeks to gain consensus within the local data center, read trafic from Hadoop will 
not cross over into our transactional processing cluster.

In general, this is a great pattern to deploy if your organization has data scientists/
stewards that are running analyses on your data. Often, these jobs are data intensive. 
Isolating this workload from the transactional system is important.

Additionally, and arguably just as important as our ability to tolerate faults in the 
system, this architecture allows us to introduce new analytics into the system that 
we did not have at the time of data ingestion. Hadoop can run over all the relevant 
historical data using a new analytics coniguration to populate new dimensions or 
perform additional aggregations.

Designing the topology for our use case
For this example, we will again use Trident and build on the topology that we 
constructed in the previous chapter. The Trident topology is depicted as follows:

TweetSplitter

Function

Persistence

Function

DruidState

Druid

WordFrequency

Function
Twitter

Spout

.partionPersist()

.aggregatePersist()

each()

each()
.each()

The TwitterSpout performs the search against the Twitter API periodically, emitting 
the tweets that it returns into a Trident stream. The TweetSplitterFunction 
then parses the tweets and emits a tuple for each word in the tweets. The 
WordFrequencyFunction enriches each tuple with the count for that word from 
a random sample of the English language. Finally, we let Druid consume that 
information to perform the aggregations over time. Druid partitions the data into 
temporal slices and persists that data as described previously.

http:///


Natural Language Processing

[ 224 ]

In this case, because the persistence mechanism is our means of addressing fault 
tolerance/system failure, the persistence mechanism should distribute storage and 
provide both consistency and high-availability. Additionally, Hadoop should be 
capable of using the persistence mechanism as an input into a map/reduce job.

With its tunable consistency and support for Hadoop, Cassandra makes for an ideal 
persistence mechanism for this pattern. Since Cassandra and polyglot persistence are 
covered elsewhere, we will keep this example simple and use the local ile storage.

Implementing the design
Let's irst examine the real-time portion of the system beginning with the spout 
through to the Druid persistence. The topology is straightforward and mimics 
topologies we have written in previous chapters.

The following are the critical lines of the topology:

TwitterSpout spout = new TwitterSpout();

Stream inputStream = topology.newStream("nlp", spout);

try {

inputStream.each(new Fields("tweet"), new TweetSplitterFunction(), new 
Fields("word"))

          .each(new Fields("searchphrase", "tweet", "word"), new 
WordFrequencyFunction(), new Fields("baseline"))

          .each(new Fields("searchphrase", "tweet", "word", 
"baseline"), new PersistenceFunction(), new Fields()) 

          .partitionPersist(new DruidStateFactory(), new 
Fields("searchphrase", "tweet", "word", "baseline"), new 
DruidStateUpdater());

} catch (IOException e) {

throw new RuntimeException(e);

}

return topology.build();

In the end, after parsing and enrichment, the tuples have four ields as shown  
in the following table:

Field name Use

searchphrase This field contains the search phrase being ingested. This is the 
phrase sent to the Twitter API. In reality, the system would most 
likely be monitoring multiple search phrases at a time. In this 
system, the value is hardcoded.

http:///


Chapter 8

[ 225 ]

Field name Use

tweet This field contains tweets that are returned when searching 
the Twitter API for searchphrase. There is a 1:n relationship 
between searchphrase and tweet.

word After parsing, this field contains the words found in the tweets. 
There is a 1:n relationship between tweet and word.

baseline This field contains the count associated with the word in an 
ordinary sampled text. There is a 1:1 relationship between word 
and baseline.

TwitterSpout/TweetEmitter
Now, let's take a look at the spout/emitter. For this example, we will use the 
Twitter4J API, and the Emitter function is not much more than a thin glue layer 
between that API and the Storm API. As shown previously, it simply invokes the 
Twitter API using Twitter4J and emits all the results as a single batch within Storm.

In a more complex scenario, one might also tap into the Twitter Firehose and use  
a queue to buffer the live updates before emitting them into Storm. The following  
are the key lines in the Emitter portion of the spout:

   query = new Query(SEARCH_PHRASE);

   query.setLang("en");

   result = twitter.search(query);

   ...

   for (Status status : result.getTweets()) {

       List<Object> tweets = new ArrayList<Object>();

       tweets.add(SEARCH_PHRASE);

       tweets.add(status.getText());

       collector.emit(tweets);

   }

Functions
This section covers the functions used in the topology. In this example, all the 
functions can either have side effects (for example, persistence) or they add ields 
and values to the tuple.

http:///


Natural Language Processing

[ 226 ]

TweetSplitterFunction
The irst function that the tweet passes through is the TweetSplitterFunction.  
This function simply parses the tweet and emits one tuple per word in the tweet.  
The code for this function is as follows:

@Override

public void execute(TridentTuple tuple, TridentCollector collector) {

String tweet = (String) tuple.getValue(0);

LOG.debug("SPLITTING TWEET [" + tweet + "]");

Pattern p = Pattern.compile("[a-zA-Z]+");

Matcher m = p.matcher(tweet);

List<String> result = new ArrayList<String>();

   while (m.find()) {

       String word = m.group();

       if (word.length() > 0) {

         List<Object> newTuple = new ArrayList<Object>();

         newTuple.add(word);

         collector.emit(newTuple);

       }

   }

}

In a more sophisticated NLP system, this function will do more than simply split 
the tweet by whitespace. An NLP system would most likely try to parse the tweet, 
assigning parts of speech to the words and associating them with one another. 
Although, instant messages and tweets typically lack the traditional grammatical 
constructs that parsers are trained on, the system might still use elementary 
associations such as the distance between the words. In such systems, instead of 
word frequencies, systems use n-gram frequencies where each n-gram comprises 
multiple words.

To learn about the use of n-grams, visit http://books.google.com/ngrams.

WordFrequencyFunction
Now we move on to the WordFrequencyFunction. This function enriches the tuple 
with the baseline count. This is the number of times the word was encountered  
in a random sampled text.

http:///


Chapter 8

[ 227 ]

The key code for this function is shown as follows:

public static final long DEFAULT_BASELINE = 10000;

private Map<String, Long> wordLikelihoods = 

new HashMap<String, Long>();

    

public WordFrequencyFunction() throws IOException {

File file = new File("src/main/resources/en.txt");

BufferedReader br = new BufferedReader(new FileReader(file));

String line;

while ((line = br.readLine()) != null) {

String[] pair = line.split(" ");

   long baseline = Long.parseLong(pair[1]);

   LOG.debug("[" + pair[0] + "]=>[" + baseline + "]");

   wordLikelihoods.put(pair[0].toLowerCase(), baseline);

   i++;

}

br.close();

}

    

@Override

public void execute(TridentTuple tuple,

TridentCollector collector) {

String word = (String) tuple.getValue(2);

Long baseline = this.getLikelihood(word);

List<Object> newTuple = new ArrayList<Object>();

newTuple.add(baseline);

collector.emit(newTuple);

}

    

public long getLikelihood(String word){

Long baseline = this.wordLikelihoods.get(word);

if (baseline == null)

return DEFAULT_BASELINE;

else

   return baseline;

}

http:///


Natural Language Processing

[ 228 ]

The constructor in the code loads the word counts into the memory. The ile format 
of en.txt is as follows:

you 4621939

the 3957465

i 3476773

to 2873389

...

of 1531878

that 1323823

in 1295198

is 1242191

me 1208959

what 1071825

Each line contains the word and the frequency count for that word. Again, since 
we are only worried about relative counts, we need not consider the total counts in 
the corpus. However, if we were calculating a true likelihood, we would need to 
consider the overall total word count as well.

The execute method of the function is straightforward and simply adds the baseline 
count to the tuple. However, if we examine the method that retrieves the count from 
the HashMap class, notice that it includes a DEFAULT_BASELINE. This is the value used 
when the system encounters a word that was not in the original corpus.

Since Twitter feeds contain many abbreviations, acronyms, and other terms that are 
not found typically in standard text, the DEFAULT_BASELINE becomes an important 
coniguration parameter. In some cases, unique words are important and unique 
because they pertain to the searchphrase ield. Others are anomalies because the 
sample corpus differs from the target corpus.

Ideally, the raw baseline counts would be drawn from the same source that the 
analytics are targeting. In this case, it would be ideal to have both word and n-gram 
counts calculated using the entire Twitter Firehose.

PersistenceFunction
We will not go into the details of a full multidata center Cassandra deployment here. 
Instead, for this example, we will keep it simple and use the local ile storage. The 
code for the PersistenceFunction is as follows:

@Override

public void execute(TridentTuple tuple, 

   TridentCollector collector) {

writeToLog(tuple);

http:///


Chapter 8

[ 229 ]

collector.emit(tuple);

}

synchronized public void writeToLog(TridentTuple tuple) {

DateTime dt = new DateTime();

DateTimeFormatter fmt = ISODateTimeFormat.dateTime();

StringBuffer sb = new StringBuffer("{ ");

sb.append(String.format("\"utcdt\":\"%s\",", fmt.print(dt)));

sb.append(String.format("\"searchphrase\":\"%s\",", tuple.
getValue(0)));

sb.append(String.format("\"word\":\"%s\",", tuple.getValue(2)));

sb.append(String.format("\"baseline\":%s", tuple.getValue(3)));

sb.append("}");

BufferedWriter bw;

try {

bw = new BufferedWriter(new FileWriter("nlp.json", true));

bw.write(sb.toString());

   bw.newLine();

   bw.close();

} catch (IOException e) {

   throw new RuntimeException(e);

}

}

In the preceding code, the function simply persists the tuple in the native format 
that Druid expects to consume in the Hadoop indexing job. This code is ineficient in 
that we are opening up the ile for writing each time. Alternatively, we could have 
implemented additional StateFactory and State objects that persisted the tuples; 
however, since this is just an example, we can tolerate the ineficient ile access.

Additionally, notice that we generate a timestamp here that is not re-emitted with 
the tuple. Ideally, we would generate a timestamp and add it to the tuple, which 
would then be used downstream by Druid to align the temporal partitioning. For 
this example, we will accept the discrepancy.

Even though this function does not enrich the tuple at all, it must 
still re-emit the tuple. Since functions can also act as ilters, it is 
the obligation of the function to declare which tuples are passed 
downstream.

http:///


Natural Language Processing

[ 230 ]

The function writes the following lines to the nlp.json ile:

{ "utcdt":"2013-08-25T14:47:38.883-04:00","searchphrase":"apple jobs",
"word":"his","baseline":279134}

{ "utcdt":"2013-08-25T14:47:38.884-04:00","searchphrase":"apple jobs",
"word":"annual","baseline":839}

{ "utcdt":"2013-08-25T14:47:38.885-04:00","searchphrase":"apple jobs",
"word":"salary","baseline":1603}

{ "utcdt":"2013-08-25T14:47:38.886-04:00","searchphrase":"apple jobs",
"word":"from","baseline":285711}

{ "utcdt":"2013-08-25T14:47:38.886-04:00","searchphrase":"apple jobs",
"word":"Apple","baseline":10000}

Examining the analytics
The Druid integration is the same that was used in the previous chapter. As a 
brief recap, this integration comprises the StateFactory, StateUpdater, and 
State implementations. The State implementation then communicates with a 
StormFirehoseFactory implementation and a StormFirehose implementation for 
Druid. At the heart of this implementation is the StormFirehose implementation, 
which maps the tuples into input rows for Druid. The listing for this method is 
shown as follows:

@Override

public InputRow nextRow() {

   final Map<String, Object> theMap =

Maps.newTreeMap(String.CASE_INSENSITIVE_ORDER);

try {

TridentTuple tuple = null;

   tuple = BLOCKING_QUEUE.poll();

   if (tuple != null) {

String phrase = (String) tuple.getValue(0);

      String word = (String) tuple.getValue(2);

      Long baseline = (Long) tuple.getValue(3);

      theMap.put("searchphrase", phrase);

      theMap.put("word", word);

      theMap.put("baseline", baseline);

}

   if (BLOCKING_QUEUE.isEmpty()) {

      STATUS.putInLimbo(TRANSACTION_ID);

      LIMBO_TRANSACTIONS.add(TRANSACTION_ID);

      LOG.info("Batch is fully consumed by Druid. Unlocking 
[FINISH]");

http:///


Chapter 8

[ 231 ]

      synchronized (FINISHED) {

          FINISHED.notify();

      }

   }

} catch (Exception e) {

LOG.error("Error occurred in nextRow.", e);

}

final LinkedList<String> dimensions = new LinkedList<String>();

dimensions.add("searchphrase");

dimensions.add("word");

return new MapBasedInputRow(System.currentTimeMillis(), 

dimensions, theMap); 

}

Looking at this method, there are two key data structures: theMap and dimensions. 
The irst contains the data values for the row. The second contains the dimensions 
for that row, which is what Druid will use to perform the aggregations, and 
determines what queries you can run against the data. In this case, we will use the 
searchphrase and word ields as dimensions. This will allow us to perform counts 
and groupings in our queries, as we will see in a moment.

First, let's look at the Druid coniguration for ingesting the data. We will largely 
use the same coniguration for the embedded real-time server that we used in the 
previous chapter. Segments will be pushed to Cassandra for Deep Storage, while 
MySQL is used to write the segment metadata.

The following are the key coniguration parameters from runtime.properties:

druid.pusher.cassandra=true

druid.pusher.cassandra.host=localhost:9160 

druid.pusher.cassandra.keyspace=druid

druid.zk.service.host=localhost

druid.zk.paths.base=/druid

druid.host=127.0.0.1

druid.database.segmentTable=prod_segments

druid.database.user=druid

druid.database.password=druid

druid.database.connectURI=jdbc:mysql://localhost:3306/druid

druid.zk.paths.discoveryPath=/druid/discoveryPath

druid.realtime.specFile=./src/main/resources/realtime.spec

druid.port=7272

druid.request.logging.dir=/tmp/druid/realtime/log

http:///


Natural Language Processing

[ 232 ]

This coniguration points to the realtime.spec ile, which is what speciies the 
details of the analytics performed by the real-time server. The following is the 
realtime.spec ile for this use case:

[{

    "schema": {

        "dataSource": "nlp",

        "aggregators": [

            { "type": "count", "name": "wordcount" },

            { "type": "max", "fieldName": "baseline", 

name" : "maxbaseline" }

        ],

        "indexGranularity": "minute",

        "shardSpec": {"type": "none"}

    },

    "config": {

        "maxRowsInMemory": 50000,

        "intermediatePersistPeriod": "PT30s"

    },

    "firehose": {

        "type": "storm",

        "sleepUsec": 100000,

        "maxGeneratedRows": 5000000,

        "seed": 0,

        "nTokens": 255,

        "nPerSleep": 3

    },

    "plumber": {

        "type": "realtime",

        "windowPeriod": "PT10s",

        "segmentGranularity": "minute",

        "basePersistDirectory": "/tmp/nlp/basePersist"

    }

}]

In addition to the temporal granularities, we also specify the aggregators in this ile. 
This tells Druid how to aggregate metrics between rows. Without aggregators, Druid 
cannot collapse the data. In this use case, there are two aggregators: wordcount and 
maxbaseline.

http:///


Chapter 8

[ 233 ]

The wordcount ield counts instances of rows that have the same values along the 
dimensions provided. Referring back to the StormFirehose implementation, the  
two dimensions are searchphrase and word. Thus, Druid can collapse the rows, 
adding a ield named wordcount, which will contain the total count of the number  
of instances of that word found for that searchphrase and for that temporal slice.

The maxbaseline ield contains the baseline for that word. In reality, the value  
for this is the same for each row. We simply use max as a convenient function  
to propagate the value into an aggregation that we can then use when we query  
the system.

Now, let's look at the query. The following is the query we use to retrieve the most 
relevant words:

{

     "queryType": "groupBy",

     "dataSource": "nlp",

     "granularity": "minute",

     "dimensions": ["searchphrase", "word"],

     "aggregations":[

        { "type": "longSum", "fieldName":"wordcount", 

"name": "totalcount"},

        { "type": "max", "fieldName":"maxbaseline", 

"name": "totalbaseline"}

     ],

     "postAggregations": [{

       "type": "arithmetic",

       "name": "relevance",

       "fn": "/",

       "fields": [

            { "type": "fieldAccess", "fieldName": "totalcount" },

            { "type": "fieldAccess", "fieldName": "totalbaseline" }

       ]

     }],

     "intervals":["2012-10-01T00:00/2020-01-01T00"]

 }

The query needs to align with the realtime.spec ile. At the bottom of the query, 
we specify the time interval in which we are interested. At the top of the ile, we 
specify the dimensions in which we are interested, followed by the aggregations 
that allow Druid to collapse the rows to match the granularity requested. In this use 
case, the aggregations exactly match the aggregations that we are performing when 
indexing the data in real time.

http:///


Natural Language Processing

[ 234 ]

Speciically, we introduce the totalcount ield, which contains the sum of 
wordcount. This will therefore contain the total number of instances observed  
for that word and searchphrase combination. Additionally, we perform the  
same trick with baseline to pass that value through.

Finally, in this query, we include a post aggregation, which will combine the 
aggregations into a relevant score. The post aggregation divides the total count 
observed in the tweets by the baseline frequency.

The following is a simple Ruby ile that processes the results of the query and  
returns the top 20 words:

...

url="http://localhost:7272/druid/v2/?pretty=true"

response = RestClient.post url, File.read("realtime_query"), :accept 
=> :json, :content_type => 'appplication/json'

#puts(response)

result = JSON.parse(response.to_s)

word_relevance = {}

result.each do |slice|

  event = slice['event']

  word_relevance[event['word']]=event['relevance']

end

count = 0

word_relevance.sort_by {|k,v| v}.reverse.each do |word, relevance|

  puts("#{word}->#{relevance}")

  count=count+1

  if(count == 20) then

    break

  end

end

Notice that the URL we are using to access the server is the port of the embedded 
real-time server. In production, the queries go through a broker node.

Executing this script results in the following code snippet:

claiming->31.789579158316634

apple->27.325982081323225

purchase->20.985449735449734

Jobs->20.618

Steve->17.446

http:///


Chapter 8

[ 235 ]

shares->14.802238805970148

random->13.480033984706882

creation->12.7524115755627

Apple->12.688

acts->8.82582081246522

prevent->8.702687877125618

farmer->8.640522875816993

developed->8.62642740619902

jobs->8.524986566362172

bottles->8.30523560209424

technology->7.535137701804368

current->7.21418826739427

empire->6.924050632911392

If you change the dimensions or metrics you are capturing, be sure 
to delete the local directory that the real-time server is using to cache 
the data. Otherwise, the real-time server may re-read old data that 
does not have the dimensions and/or metrics needed to fulill the 
query; additionally, the query will fail because Druid is unable to 
ind requisite metrics or dimensions.

Batch processing / historical analysis
Now, let's turn our attention to the batch processing mechanism. For this, we  
will use Hadoop. Although a complete description of Hadoop is well beyond  
the scope of this section, we will give a brief overview of Hadoop alongside the 
Druid-speciic setup.

Hadoop provides two major components: a distributed ile system and a distributed 
processing framework. The distributed ile system is aptly named the Hadoop 
Distributed Filesystem (HDFS). The distributed processing framework is known  
as MapReduce. Since we chose to leverage Cassandra as our storage mechanism  
in the hypothetical system architecture, we will not need HDFS. We will, however, 
use the MapReduce portion of Hadoop to distribute the processing across all of  
the historical data.

In our simple example, we will run a local Hadoop job that will read the local ile 
written in our PersistenceFunction. Druid comes with a Hadoop job that we  
will use in this example.

http:///


Natural Language Processing

[ 236 ]

Hadoop
Before we jump to loading data, a quick overview of MapReduce is warranted. 
Although Druid comes prepackaged with a convenient MapReduce job to 
accommodate historical data, generally speaking, large distributed systems will  
need custom jobs to perform analyses over the entire data set.

An overview of MapReduce
MapReduce is a framework that breaks processing into two phases: a map phase and 
a reduce phase. In the map phase, a function is applied to the entire set of input data, 
one element at a time. Each application of the map function results in a set of tuples, 
each containing a key and a value. Tuples with similar keys are then combined via 
the reduce function. The reduce function emits another set of tuples, typically by 
combining the values associated with the key.

The canonical "Hello World" example for MapReduce is the word count. Given a set 
of documents that contain words, count the occurrences of each word. (Ironically, 
this is very similar to our NLP example.)

The following are Ruby functions that express the map and reduce functions for the 
word count example. The map function looks like the following code snippet:

def map(doc)

   result = []

doc.split(' ').each do |word|

result << [word, 1]

   end

   return result

end

The map function yields the following output, given the supplied input is as follows:

map("the quick fox jumped over the dog over and over again")

 => [["the", 1], ["quick", 1], ["fox", 1], ["jumped", 1], ["over", 
1], ["the", 1], ["dog", 1], ["over", 1], ["and", 1], ["over", 1], 
["again", 1]]

The corresponding reduce function looks like the following code snippet:

def reduce(key, values)

   sum = values.inject { |sum, x| sum + x }

   return [key, sum]

end

http:///


Chapter 8

[ 237 ]

The MapReduce function would then group the values for each key and pass them  
to the preceding reduce function as follows, resulting in the total word count:

reduce("over", [1,1,1])

 => ["over", 3]

The Druid setup
With Hadoop as the background, let's take a look at our setup for Druid. In order  
for Druid to consume data from a Hadoop job, we need to start Master and Compute 
nodes (also known as Historical nodes). To do this, we will create a directory 
structure that has the Druid self-contained job at its root, with subdirectories that 
contain the coniguration iles for both the Master and Compute servers.

This directory structure looks like the following code snippet:

druid/druid-indexing-hadoop-0.5.39-SNAPSHOT.jar

druid/druid-services-0.5.39-SNAPSHOT-selfcontained.jar

druid/config/compute/runtime.properties

druid/config/master/runtime.properties

druid/batchConfig.json

The runtime properties for the Master and Compute nodes are largely the same  
as the real-time node with a few notable differences. They both include settings  
to cache segments as shown in the following code snippet:

# Path on local FS for storage of segments; 

# dir will be created if needed

druid.paths.indexCache=/tmp/druid/indexCache

# Path on local FS for storage of segment metadata; 

# dir will be created if needed

druid.paths.segmentInfoCache=/tmp/druid/segmentInfoCache

Also, note that if you are running the Master and Compute servers on the same 
machine, you will need to change the ports so that they do not conlict as follows:

druid.port=8082

Druid packages all the server components and their dependencies into a single  
self-contained JAR ile. Using this JAR ile, you can start the Master and Compute 
servers with the following commands.

http:///


Natural Language Processing

[ 238 ]

For the Compute node, we use the following code snippet:

java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \

-classpath ./druid-services-0.5.39-SNAPSHOT-selfcontained.jar:config/
compute \

com.metamx.druid.http.ComputeMain

For the Master node, we use the following code snippet:

java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \

-classpath ./druid-services-0.5.39-SNAPSHOT-selfcontained.jar:config/
compute \

com.metamx.druid.http.ComputeMain

Once both nodes are running, we are ready to load data with the Hadoop job.

HadoopDruidIndexer
With our servers up and running, we can examine the internals of the Druid 
MapReduce job. The HadoopDruidIndexer function uses a JSON coniguration ile 
much like the realtime.spec ile.

The ile is speciied on the command line when the Hadoop job is started, as shown 
in the following code snippet:

java -Xmx256m -Duser.timezone=UTC -Dfile.encoding=UTF-8 \

-Ddruid.realtime.specFile=realtime.spec -classpath druid-services-
0.5.39-SNAPSHOT-selfcontained.jar:druid-indexing-hadoop-0.5.39-
SNAPSHOT.jar \

com.metamx.druid.indexer.HadoopDruidIndexerMain batchConfig.json

The following is the batchConfig.json ile we used in this example:

{

  "dataSource": "historical",

  "timestampColumn": "utcdt",

  "timestampFormat": "iso",

  "dataSpec": {

    "format": "json",

    "dimensions": ["searchphrase", "word"]

  },

  "granularitySpec": {

    "type":"uniform",

    "intervals":["2013-08-21T19/PT1H"],

    "gran":"hour"

  },

http:///


Chapter 8

[ 239 ]

  "pathSpec": { "type": "static",

                "paths": "/tmp/nlp.json" },

  "rollupSpec": {

            "aggs": [ { "type": "count", "name": "wordcount" },

                         { "type": "max", "fieldName": "baseline", 

                                       "name" : "maxbaseline" } ],

      "rollupGranularity": "minute"},

      "workingPath": "/tmp/working_path",

  "segmentOutputPath": "/tmp/segments",

  "leaveIntermediate": "false",

  "partitionsSpec": {

    "targetPartitionSize": 5000000

  },

  "updaterJobSpec": {

    "type":"db",

    "connectURI":"jdbc:mysql://localhost:3306/druid",

    "user":"druid",

    "password":"druid",

    "segmentTable":"prod_segments"

  }

}

Much of the coniguration will look familiar. The two ields of particular interest are 
the pathSpec and rollupSpec ields. The pathSpec ield contains the location of the 
ile that was written by the PersistenceFunction. The rollupSpec ield contains 
the same aggregation functions that we included in the realtime.spec ile during 
transactional processing.

Additionally, notice that the timestamp column and format are speciied, which 
aligns with the ield that we are outputting in the persisted ile:

{ "utcdt":"2013-08-25T14:47:38.883-04:00","searchphrase":"apple jobs",
"word":"his","baseline":279134}

{ "utcdt":"2013-08-25T14:47:38.884-04:00","searchphrase":"apple jobs",
"word":"annual","baseline":839}

{ "utcdt":"2013-08-25T14:47:38.885-04:00","searchphrase":"apple jobs",
"word":"salary","baseline":1603}

{ "utcdt":"2013-08-25T14:47:38.886-04:00","searchphrase":"apple jobs",
"word":"from","baseline":285711}

{ "utcdt":"2013-08-25T14:47:38.886-04:00","searchphrase":"apple jobs",
"word":"Apple","baseline":10000}

http:///


Natural Language Processing

[ 240 ]

The HadoopDruidIndexer function loads the preceding coniguration ile and 
performs the map/reduce functions to construct the index. If we look more closely  
at that job, we can see the speciic functions it is running.

Hadoop jobs are started using the Hadoop job class. Druid runs a couple of 
jobs to index the data, but we will focus on the IndexGeneratorJob. In the 
IndexGeneratorJob, Druid conigures the job with the following lines:

job.setInputFormatClass(TextInputFormat.class);

job.setMapperClass(IndexGeneratorMapper.class);

job.setMapOutputValueClass(Text.class);

...

job.setReducerClass(IndexGeneratorReducer.class);

job.setOutputKeyClass(BytesWritable.class);

job.setOutputValueClass(Text.class);

job.setOutputFormatClass(IndexGeneratorOutputFormat.class);

FileOutputFormat.setOutputPath(job,config.makeIntermediatePath());

config.addInputPaths(job);

config.intoConfiguration(job);

...

job.setJarByClass(IndexGeneratorJob.class);

job.submit();

The preceding properties are set on nearly all Hadoop jobs. They set the input and 
output classes for each phase of the processing and the classes that implement the 
Mapper and Reducer interfaces.

For a complete description of Hadoop job conigurations, visit the following 
URL: http://hadoop.apache.org/docs/r0.18.3/mapred_tutorial.
html#Job+Configuration

The job coniguration also speciies the input paths, which specify the iles or other 
data sources for processing. Within the call to config.addInputPaths, Druid adds 
the iles from the pathSpec ield to the Hadoop coniguration for processing, as 
shown in the following code snippet:

  @Override

  public Job addInputPaths(HadoopDruidIndexerConfig config, 

Job job) throws IOException {

    log.info("Adding paths[%s]", paths);

    FileInputFormat.addInputPaths(job, paths);

    return job;

  }

http:///


Chapter 8

[ 241 ]

You can see that out-of-the-box, Druid only supports instances of FileInputFormat. 
As an exercise for the reader, it might be fun to enhance the DruidHadoopIndexer 
function to support direct reads from Cassandra, as envisioned in the hypothetical 
architecture.

Looking back at the job coniguration, the Mapper class used by Druid is the 
IndexGeneratorMapper class, and the Reducer class is the IndexGeneratorReducer 
class.

Let's irst have a look at the map function within the IndexGeneratorMapper 
class. The IndexGeneratorMapper class actually subclasses from 
HadoopDruidIndexerMapper, which contains the implementation of the map method, 
delegating it to the IndexGeneratorMapper class to emit the actual values, as we see 
in the following code.

Within HadoopDruidIndexerMapper, we see the map method implementation  
as follows:

@Override

protected void map(LongWritable key, Text value, Context context

  ) throws IOException, InterruptedException

  {

    try {

      final InputRow inputRow;

      try {

        inputRow = parser.parse(value.toString());

      }

      catch (IllegalArgumentException e) {

        if (config.isIgnoreInvalidRows()) {

          context.getCounter(HadoopDruidIndexerConfig.
IndexJobCounters.INVALID_ROW_COUNTER).increment(1);

          return; // we're ignoring this invalid row

        } else {

          throw e;

        }

      }

      if(config.getGranularitySpec().bucketInterval(new 
DateTime(inputRow.getTimestampFromEpoch())).isPresent()) {

        innerMap(inputRow, value, context);

      }

    }

    catch (RuntimeException e) {

      throw new RE(e, "Failure on row[%s]", value);

    }

  }

http:///


Natural Language Processing

[ 242 ]

We can see that the superclass map method handles rows that do not parse, marking 
them invalid, and checks to see if the row contains the necessary data to carry out the 
map. Speciically, the superclass ensures that the row contains a timestamp. The map 
requires the timestamp because it partitions the data into time slices (that is, buckets) 
as we see in the abstract method call to innerMap, which is shown as follows:

@Override

protected void innerMap(InputRow inputRow,

        Text text,

        Context context

    ) throws IOException, InterruptedException{

 // Group by bucket, sort by timestamp

final Optional<Bucket> bucket = getConfig().getBucket(inputRow);

if (!bucket.isPresent()) {

throw new ISE("WTF?! No bucket found for row: %s", inputRow);

}

context.write(new SortableBytes(

              bucket.get().toGroupKey(),

              Longs.toByteArray(inputRow.getTimestampFromEpoch())

          ).toBytesWritable(),text);

}

The key line in this method and in any Hadoop-based map function is the call to 
context.write that emits the tuple from the map function. In this case, the map 
function is emitting a key of the type SortableBytes, which represents the bucket 
for the metric and the actual text read from the input source as the value.

At this point, after the map phase completes, we have parsed the ile, constructed 
our buckets, and partitioned the data into those buckets, sorted by timestamp. Each 
bucket is then processed via calls to the reduce method, which is shown as follows:

@Override

protected void reduce(BytesWritable key, Iterable<Text> values,

final Context context

    ) throws IOException, InterruptedException{

SortableBytes keyBytes = SortableBytes.fromBytesWritable(key);

Bucket bucket = Bucket.fromGroupKey(keyBytes.getGroupKey()).lhs;

final Interval interval =

config.getGranularitySpec().bucketInterval(bucket.time).get();

final DataRollupSpec rollupSpec = config.getRollupSpec();

http:///


Chapter 8

[ 243 ]

final AggregatorFactory[] aggs = rollupSpec.getAggs().toArray(

          new AggregatorFactory[rollupSpec.getAggs().size()]);

IncrementalIndex index = makeIncrementalIndex(bucket, aggs);

...

for (final Text value : values) {

context.progress();

   final InputRow inputRow =

index.getSpatialDimensionRowFormatter()

.formatRow(parser.parse(value.toString()));

        allDimensionNames.addAll(inputRow.getDimensions());

      ...

IndexMerger.persist(index, interval, file, 

index = makeIncrementalIndex(bucket, aggs);

      ...

   }

   ...

);

...

serializeOutIndex(context, bucket, mergedBase,

 Lists.newArrayList(allDimensionNames));

...

}

As you can see, the reduce method contains the meat of the analytics. It constructs 
the index based on the aggregations in the roll up speciication and dimensions 
speciied in the batch coniguration ile. The inal lines of the method write the 
segment to a disk.

In the end, when you run the DruidHadoopIndexer class, you will see something 
similar to the following code snippet:

2013-08-28 04:07:46,405 INFO [main] org.apache.hadoop.mapred.JobClient 
-   Map-Reduce Framework

2013-08-28 04:07:46,405 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Reduce input groups=1

2013-08-28 04:07:46,405 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Combine output records=0

2013-08-28 04:07:46,405 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Map input records=201363

2013-08-28 04:07:46,405 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Reduce shuffle bytes=0

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Reduce output records=0

http:///


Natural Language Processing

[ 244 ]

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Spilled Records=402726

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Map output bytes=27064165

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Combine input records=0

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Map output records=201363

2013-08-28 04:07:46,406 INFO [main] org.apache.hadoop.mapred.JobClient 
-     Reduce input records=201363

2013-08-28 04:07:46,433 INFO [main] com.metamx.druid.indexer.
IndexGeneratorJob - Adding segment historical_2013-08-
28T04:00:00.000Z_2013-08-28T05:00:00.000Z_2013-08-28T04:07:32.243Z to 
the list of published segments

2013-08-28 04:07:46,708 INFO [main] com.metamx.druid.indexer.
DbUpdaterJob - Published historical_2013-08-28T04:00:00.000Z_2013-08-
28T05:00:00.000Z_2013-08-28T04:07:32.243Z

2013-08-28 04:07:46,754 INFO [main] com.metamx.druid.indexer.
IndexGeneratorJob - Adding segment historical_2013-08-
28T04:00:00.000Z_2013-08-28T05:00:00.000Z_2013-08-28T04:07:32.243Z to 
the list of published segments

2013-08-28 04:07:46,755 INFO [main] com.metamx.druid.indexer.
HadoopDruidIndexerJob - Deleting path[/tmp/working_path/
historical/2013-08-28T040732.243Z]

Notice that the segment added is named historical. To query the data loaded 
by the historical / batch processing mechanism, update the query to specify the 
historical data source and use the port of the Compute node. Provided everything  
is loaded properly, you will receive the aggregations we saw originally with the  
real-time server; an example of this is shown as follows:

{

  "version" : "v1",

  "timestamp" : "2013-08-28T04:06:00.000Z",

  "event" : {

    "totalcount" : 171,

    "totalbaseline" : 28719.0,

    "searchphrase" : "apple jobs",

    "relevance" : 0.005954246317768724,

    "word" : "working"

  }

}

Now, if we schedule the Hadoop job to run periodically, the historical index will  
lag the real-time index but will continually update the index, correcting errors  
and accounting for any system failures.

http:///


Chapter 8

[ 245 ]

Summary
In this chapter, we saw that pairing a batch processing mechanism with a  
real-time processing engine such as Storm provides a more complete and  
robust overall solution.

We examined an approach to implementing a Lambda architecture. Such an 
approach delivers real-time analytics supported by a batch processing system 
retroactively correcting the analytics. Additionally, we saw how to conigure  
a multidata center system architecture to isolate the ofline processing from  
the transactional system while also providing continuous availability and fault 
tolerance via distributed storage.

The chapter also included an introduction to Hadoop, using Druid's implementation 
as an example.

In the next chapter, we will take an existing batch process that leverages Pig and 
Hadoop and demonstrate what it takes to convert that into a real-time system. 
At the same time, we will demonstrate how to deploy Storm onto the Hadoop 
infrastructure using Storm-YARN.

http:///


http:///


Deploying Storm on Hadoop 

for Advertising Analysis
In the previous two chapters, we saw how we might integrate Storm with a real-time 
analytics system. We then extended that implementation, supporting the real-time 
system with batch processing. In this chapter, we will explore the reverse.

We will examine a batch processing system that computes the effectiveness  
of an advertising campaign. We will take the system that was built on Hadoop  
and convert it into a real-time processing system.

To do this, we will leverage the Storm-YARN project out of Yahoo! The Storm-YARN 
project allows users to leverage YARN to deploy and run Storm clusters. The running 
of Storm on Hadoop allows enterprises to consolidate operations and utilize the same 
infrastructure for both real time and batch processing.

This chapter covers the following topics:

• An introduction to Pig

• YARN (resource management with Hadoop v2)

• Deploying Storm using Storm-YARN

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 248 ]

Examining the use case
In our use case, we will process the logs of an advertising campaign to determine 
the most effective campaigns. The batch processing mechanism will process a single 
large lat ile using a Pig script. Pig is a high-level language that allows users to 
perform data transformation and analysis. Pig is similar to SQL and compiles down 
into map/reduce jobs that typically deploy and run on Hadoop infrastructure.

In this chapter, we will convert the Pig script into a topology and deploy that 
topology using Storm-YARN. This allows us to transition from a batch processing 
approach to one that is capable of ingesting and reacting to real-time events (for 
example, clicks on a banner advertisement).

In advertising, an impression is an advertising event that represents an 
advertisement displayed in front of a user, regardless of whether or not it was 
clicked. For our analysis, we will track each impression and use a ield to indicate 
whether the user clicked on the advertisement.

Each row in the lat ile contains four ields that are described as follows:

Field Description

cookie This is a unique identifier from the browser. We will use this 
to represent users in the system.

campaign This is a unique identifier that represents a specific set of 
advertising content.

product This is the name of the product being advertised.

click-thru This is the Boolean field that represents whether or not the 
user clicked on the advertisement: true if the user clicked on 
the ad; otherwise, false.

Typically, advertisers will run campaigns for products. A campaign may have a 
speciic set of content associated with it. We want to calculate the most effective 
campaign per product.

In this context, we will calculate the effectiveness of a campaign by counting distinct 
click-thrus as a percentage of the overall impressions. We will deliver a report in the 
following format:

Product Campaign Distinct click-thrus Impressions

X Y 107 252

http:///


Chapter 9

[ 249 ]

The number of impressions is simply the total count of impressions for the product 
and campaign. We do not distinct the impressions because we may have shown the 
same advertisement to the same user multiple times to attain a single click-thru. 
Since we are most likely paying per impression, we want to use the total number  
of impressions as a means of calculating the cost required to drive interest. Interest  
is represented as a click-thru.

Establishing the architecture
We touched on Hadoop in the previous chapter, but we focused mainly on the map/
reduce mechanism within Hadoop. In this chapter, we will do the opposite and focus 
on the Hadoop File System (HDFS) and Yet Another Resource Negotiator (YARN). 
We will leverage HDFS to stage the data, and leverage YARN to deploy the Storm 
framework that will host the topology.

The recent componentization within Hadoop allows any distributed system to use it 
for resource management. In Hadoop 1.0, resource management was embedded into 
the MapReduce framework as shown in the following diagram:

Hadoop 1.0

Pig

(ETL / Analysis Scripts)

MapReduce
(resource management + data processing)

HDFS
(distributed, redundant storage)

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 250 ]

Hadoop 2.0 separates out resource management into YARN, allowing other 
distributed processing frameworks to run on the resources managed under the 
Hadoop umbrella. In our case, this allows us to run Storm on YARN as shown  
in the following diagram:

Hadoop 2.0

Pig

(ETL / Analysis Scripts)

MapReduce
(data processing)

Topology

(ETL / Analysis)

Storm
(data processing)

YARN
(resource management)

HDFS
(distributed, redundant storage)

As shown in the preceding diagram, Storm fulills the same function as MapReduce. 
It provides a framework for the distributed computation. In this speciic use case,  
we use Pig scripts to articulate the ETL/analysis that we want to perform on the 
data. We will convert that script into a Storm topology that performs the same 
function, and then we will examine some of the intricacies involved in doing  
that transformation.

To understand this better, it is worth examining the nodes in a Hadoop cluster  
and the purpose of the processes running on those nodes. Assume that we have  
a cluster as depicted in the following diagram:

http:///


Chapter 9

[ 251 ]

job

submission
Client

Master

Resource

Manager
Name

Node

Node

Manager Data

Node

Application

Master Container 1

Slave 1

Node

Manager Data

Node

Container 2
Container n

Slave n

statusresource

request

status

There are two different components/subsystems shown in the diagram. The irst is 
YARN, which is the new resource management layer introduced in Hadoop 2.0. The 
second is HDFS. Let's irst delve into HDFS since that has not changed much since 
Hadoop 1.0.

Examining HDFS
HDFS is a distributed ilesystem. It distributes blocks of data across a set of slave 
nodes. The NameNode is the catalog. It maintains the directory structure and the 
metadata indicating which nodes have what information. The NameNode does not 
store any data itself, it only coordinates create, read, update, and delete (CRUD) 
operations across the distributed ilesystem. Storage takes place on each of the slave 
nodes that run DataNode processes. The DataNode processes are the workhorses  
in the system. They communicate with each other to rebalance, replicate, move,  
and copy data. They react and respond to the CRUD operations of clients.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 252 ]

Examining YARN
YARN is the resource management system. It monitors the load on each of the  
nodes and coordinates the distribution of new jobs to the slaves in the cluster.  
The ResourceManager collects status information from the NodeManagers.  
The ResourceManager also services job submissions from clients.

One additional abstraction within YARN is the concept of an ApplicationMaster. 
An ApplicationMaster manages resource and container allocation for a speciic 
application. The ApplicationMaster negotiates with the ResourceManager for the 
assignment of resources. Once the resources are assigned, the ApplicationMaster 
coordinates with the NodeManagers to instantiate containers. The containers are 
logical holders for the processes that actually perform the work.

The ApplicationMaster is a processing-framework-speciic library. Storm-YARN 
provides the ApplicationMaster for running Storm processes on YARN. HDFS 
distributes the ApplicationMaster as well as the Storm framework itself. Presently, 
Storm-YARN expects an external ZooKeeper. Nimbus starts up and connects to  
the ZooKeeper when the application is deployed.

The following diagram depicts the Hadoop infrastructure running Storm via  
Storm-YARN:

Master

Resource

Manager
Storm-

YARN

HDFS

storm.zip AppMaster.jar

Slave n

Slave 1

Node

Manager

Node

Manager

Container

Worker(s) Supervisor

Container

Storm

AppMaster

UI

Container

Nimbus

(Container)

ZooKeeper

http:///


Chapter 9

[ 253 ]

As shown in the preceding diagram, YARN is used to deploy the Storm application 
framework. At launch, Storm Application Master is started within a YARN 
container. That, in turn, creates an instance of Storm Nimbus and the Storm UI.

After that, Storm-YARN launches supervisors in separate YARN containers. Each  
of these supervisor processes can spawn workers within its container.

Both Application Master and the Storm framework are distributed via HDFS. Storm-
YARN provides command-line utilities to start the Storm cluster, launch supervisors, 
and conigure Storm for topology deployment. We will see these facilities later in  
this chapter.

To complete the architectural picture, we need to layer in the batch and real-time 
processing mechanisms: Pig and Storm topologies, respectively. We also need to 
depict the actual data.

Often a queuing mechanism such as Kafka is used to queue work for a Storm 
cluster. To simplify things, we will use data stored in HDFS. The following depicts 
our use of Pig, Storm, YARN, and HDFS for our use case, omitting elements of the 
infrastructure for clarity. To fully realize the value of converting from Pig to Storm, 
we would convert the topology to consume from Kafka instead of HDFS as shown  
in the following diagram:

Storm-

YARN

pig

Master

Resource

Manager

click_thru_data.txt

HDFS(1)

(1)

MapTask or

ReduceTask

Slave n

Supervisor

Container

Worker(s)

topology

Container

Strom

AppMaster

MapReduce

AppMaster

Slave 1

Container

(3)

(4)

(3.1)
(2)

(2) (4)

(3.2)

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 254 ]

As the preceding diagram depicts, our data will be stored in HDFS. The dashed 
lines depict the batch process for analysis, while the solid lines depict the real-time 
system. In each of the systems, the following steps take place:

Step Purpose Pig Equivalent Storm-Yarn 
Equivalent

1 The processing frameworks are 
deployed

The MapReduce 
Application Master 
is deployed and 
started

Storm-YARN 
launches Application 
Master and 
distributes Storm 
framework

2 The specific analytics are 
launched

The Pig script 
is compiled to 
MapReduce jobs 
and submitted as 
a job

Topologies are 
deployed to the 
cluster

3 The resources are reserved Map and reduce 
tasks are created in 
YARN containers

Supervisors are 
instantiated with 
workers

4 The analyses reads the data 
from storage and performs the 
analyses

Pig reads the data 
out of HDFS

Storm reads the 
work, typically from 
Kafka; but in this 
case, the topology  
reads it from a flat 
file

Another analogy can be drawn between Pig and Trident. Pig scripts compile down 
into MapReduce jobs, while Trident topologies compile down into Storm topologies.

For more information on the Storm-YARN project, visit the following URL:

https://github.com/yahoo/storm-yarn

Coniguring the infrastructure
First, we need to conigure the infrastructure. Since Storm will run on the YARN 
infrastructure, we will irst conigure YARN and then show how to conigure  
Storm-YARN for deployment on that cluster.

http:///


Chapter 9

[ 255 ]

The Hadoop infrastructure
To conigure a set of machines, you will need a copy of Hadoop residing on them or 
a copy that is accessible to each of them. First, download the latest copy of Hadoop 
and unpack the archive. For this example, we will use Version 2.1.0-beta.

Assuming that you have uncompressed the archive into /home/user/hadoop,  
add the following environment variables on each of the nodes in the cluster:

export HADOOP_PREFIX=/home/user/hadoop

export HADOOP_YARN_HOME=/home/user/hadoop

export HADOOP_CONF_DIR=/home/user/hadoop/etc/Hadoop

Add YARN to your execute path as follows:

export PATH=$PATH:$HADOOP_YARN_HOME/bin

All the Hadoop coniguration iles are located in $HADOOP_CONF_DIR. The three  
key coniguration iles for this example are: core-site.xml, yarn-site.xml,  
and hdfs-site.xml.

In this example, we will assume that we have a Master node named master and  
four slave-nodes named slave01-04.

Test the YARN coniguration by executing the following command line:

$ yarn version

You should see output similar to the following:

Hadoop 2.1.0-beta

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1514472

Compiled by hortonmu on 2013-08-15T20:48Z

Compiled with protoc 2.5.0

From source with checksum 8d753df8229fd48437b976c5c77e80a

This command was run using /Users/bone/tools/hadoop-2.1.0-beta/share/
hadoop/common/hadoop-common-2.1.0-beta.jar

Coniguring HDFS
As per the architecture diagram, to conigure HDFS you need to start the  
NameNode and then connect one or more DataNode.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 256 ]

Coniguring the NameNode
To start the NameNode, you need to specify a host and port. Conigure the host  
and port in the core-site.xml ile by using the following elements:

<configuration>

    <property>

        <name>fs.default.name</name>

        <value>hdfs://master:8020</value>

    </property>

</configuration>

Additionally, conigure where the NameNode stores its metadata. This coniguration 
is stored in the hdfs-site.xml ile, in the dfs.name.dir variable.

To keep the example simple, we will also disable security on the distributed 
ilesystem. To do this, we set dfs.permissions to False. After these edits,  
the HDFS coniguration ile looks like the following code snippet:

<configuration>

   <property>

       <name>dfs.name.dir</name>

       <value>/home/user/hadoop/name/data</value>

   </property>

   <property>

       <name>dfs.permissions</name>

       <value>false</value>

   </property>

</configuration>

The inal step before starting the NameNode is the formatting of the distributed 
ilesystem. Do this with the following command:

hdfs namenode -format <cluster_name>

Finally, we are ready to start the NameNode. Do so with the following command:

$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script 
hdfs start namenode

The last line of the startup will indicate where the logs are located:

starting namenode, logging to /home/user/hadoop/logs/hadoop-master.
hmsonline.com.out

http:///


Chapter 9

[ 257 ]

Despite the message, the logs will actually be located in another ile 
with the same name but with the sufix log instead of out.

Also, ensure that the name directory you declared in the coniguration 
exists; otherwise, you will receive the following error in the logile:

org.apache.hadoop.hdfs.server.common.
InconsistentFSStateException: Directory /home/user/
hadoop-2.1.0-beta/name/data is in an inconsistent 
state: storage directory does not exist or is not 
accessible.

Verify that the NameNode has started with the following code snippet:

boneill@master:~-> jps

30080 NameNode

Additionally, you should be able to navigate to the UI in a web browser. By default, 
the server starts on port 50070. Navigate to http://master:50070 in a browser.  
You should see the following screenshot:

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 258 ]

Clicking on the Live Nodes link will show the nodes available and the space 
allocation per node, as shown in the following screenshot:

Finally, from the main page, you can also browse the ilesystem by clicking on 
Browse the ilesystem.

Coniguring the DataNode
In general, it is easiest to share the core coniguration ile between nodes in the 
cluster. The data nodes will use the host and port deined in the core-site.xml  
ile to locate the NameNode and connect to it.

Additionally, each DataNode needs to conigure the location for local storage.  
This is deined in the following element within the hdfs-site.xml ile:

<configuration>

   <property>

       <name>dfs.datanode.data.dir</name>

       <value>/vol/local/storage/</value>

   </property>

</configuration>

http:///


Chapter 9

[ 259 ]

If this location is consistent across slave machines, then this coniguration ile  
can be shared as well. With this set, you can start the DataNode with the following 
command:

$HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script 
hdfs start datanode

Once again, verify that the DataNode is running using jps and monitor the logs for 
any errors. In a few moments, the DataNode should appear in the Live Nodes screen 
of the NameNode as previously shown.

Coniguring YARN
With HDFS up and running, it is now time to turn our attention to YARN. Similar  
to what we did with HDFS, we will irst get the ResourceManager running and then 
we will attach slave nodes by running NodeManager.

Coniguring the ResourceManager
The ResourceManager has various subcomponents, each of which acts as a server 
that requires a host and port on which to run. All of the servers are conigured 
within the yarn-site.xml ile.

For this example, we will use the following YARN coniguration:

<configuration>

   <property>

       <name>yarn.resourcemanager.address</name>

       <value>master:8022</value>

   </property>

   <property>

       <name>yarn.resourcemanager.admin.address</name>

       <value>master:8033</value>

   </property>

   <property>

       <name>yarn.resourcemanager.resource-tracker.address</name>

        <value>master:8025</value>

   </property>

   <property>

       <name>yarn.resourcemanager.scheduler.address</name>

       <value>master:8030</value>

   </property>

   <property>

       <name>yarn.acl.enable</name>

       <value>false</value>

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 260 ]

   </property>

   <property>

       <name>yarn.nodemanager.local-dirs</name>

       <value>/home/user/hadoop_work/mapred/nodemanager</value>

       <final>true</final>

   </property>

   <property>

     <name>yarn.nodemanager.aux-services</name>

     <value>mapreduce.shuffle</value>

   </property>

</configuration>

The irst four variables in the preceding coniguration ile assign host and ports for 
the subcomponents. Setting the yarn.acl.enable variable to False disables security 
on the YARN cluster. The yarn.nodemanager.local-dirs variable speciies the 
place on the local ilesystem where YARN will place the data.

Finally, the yarn.nodemanager.aux-services variable starts an auxiliary service 
within the NodeManager's runtime to support MapReduce jobs. Since our Pig scripts 
compile down into MapReduce jobs, they depend on this variable.

Like the NameNode, start the ResourceManager with the following command line:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start 
resourcemanager

Again, check for the existence of the process with jps, monitor the logs for 
exceptions, and then you should be able to navigate to the UI which by default runs 
on port 8088.

The UI is shown in the following screenshot:

http:///


Chapter 9

[ 261 ]

Coniguring the NodeManager
The NodeManager uses the same coniguration ile (yarn-site.xml) to locate  
the respective servers. Thus, it is safe to copy or share that ile between the nodes  
in the cluster.

Start the NodeManager with the following command:

$HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start 
nodemanager

After all NodeManagers register with the ResourceManager, you will be able to  
see them in the ResourceManager UI after clicking on Nodes, as shown in the 
following screenshot:

Deploying the analytics
With Hadoop in place, we can now focus on the distributed processing frameworks 
that we will use for analysis.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 262 ]

Performing a batch analysis with the Pig 

infrastructure
The irst of the distributed processing frameworks that we will examine is Pig. Pig 
is a framework for data analysis. It allows the user to articulate analysis in a simple 
high-level language. These scripts then compile down to MapReduce jobs.

Although Pig can read data from a few different systems (for example, S3), we will 
use HDFS as our data storage mechanism in this example. Thus, the irst step in our 
analysis is to copy the data into HDFS.

To do this, we issue the following Hadoop commands:

hadoop fs -mkdir /user/bone/temp

hadoop fs -copyFromLocal click_thru_data.txt /user/bone/temp/

The preceding commands create a directory for the data ile and copy the click-thru 
data ile into that directory.

To execute a Pig script against that data, we will need to install Pig. For this, we 
simply download Pig and expand the archive on that machine conigured with 
Hadoop. For this example, we will use Version 0.11.1.

Just like we did with Hadoop, we will add the following environment variables to 
our environment:

export PIG_CLASSPATH=/home/user/hadoop/etc/hadoop

export PIG_HOME=/home/user/pig

export PATH=PATH:$HOME/bin:$PIG_HOME/bin:$HADOOP_YARN_HOME/bin

The PIG_CLASSPATH variable tells Pig where to ind Hadoop.

Once you have those variables in your environment, you should be able to test your 
Pig installation with the following commands:

boneill@master:~-> pig

2013-10-07 23:35:41,179 [main] INFO  org.apache.pig.Main - Apache Pig 
version 0.11.1 (r1459641) compiled Mar 22 2013, 02:13:53

...

2013-10-07 23:35:42,639 [main] INFO  org.apache.pig.backend.hadoop.
executionengine.HExecutionEngine - Connecting to hadoop file system at: 
hdfs://master:8020

grunt>

http:///


Chapter 9

[ 263 ]

By default, Pig will read the Hadoop coniguration and connect to the distributed 
ilesystem. You can see that in the previous output. It is connected to our distributed 
ilesystem at hdfs://master:8020.

Via Pig, you can interact with HDFS in the same way as you would with  
a regular ilesystem. For example, ls and cat both work as shown in the  
following code snippet:

grunt> ls /user/bone/temp/

hdfs://master:8020/user/bone/temp/click_thru_data.txt<r 3> 157

grunt> cat /user/bone/temp/click_thru_data.txt

boneill campaign7 productX true

lisalis campaign10 productX false

boneill campaign6 productX true

owen campaign6 productX false

collin campaign7 productY true

maya campaign8 productY true

boneill campaign7 productX true

owen campaign6 productX true

olive campaign6 productX false

maryanne campaign7 productY true

dennis campaign7 productY true

patrick campaign7 productX false

charity campaign10 productY false

drago campaign7 productY false

Performing a real-time analysis with the 

Storm-YARN infrastructure
Now that we have infrastructure working for batch processing, let's leverage the 
exact same infrastructure for real-time processing. Storm-YARN makes it easy to 
reuse the Hadoop infrastructure for Storm.

Since Storm-YARN is a new project, it is best to build from source and create the 
distribution using the instructions in the README ile found at the following URL:

https://github.com/yahoo/storm-yarn

After building the distribution, you need to copy the Storm framework into HDFS. 
This allows Storm-YARN to deploy the framework to each of the nodes in the 
cluster. By default, Storm-YARN will look for the Storm library as a ZIP ile in the 
launching user's directory on HDFS. Storm-YARN provides a copy of a compatible 
Storm in the lib directory of its distribution.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 264 ]

Assuming that you are in the Storm-YARN directory, you can copy the ZIP ile into 
the correct HDFS directory with the following commands:

hadoop fs -mkdir /user/bone/lib/

hadoop fs -copyFromLocal ./lib/storm-0.9.0-wip21.zip /user/bone/lib/

You can then verify that the Storm framework is HDFS by browsing the ilesystem 
through the Hadoop administration interface. You should see the following screenshot:

With the Storm framework staged on HDFS, the next step is to conigure the 
local YAML ile for Storm-YARN. The YAML ile used with Storm-YAML is the 
coniguration for both Storm-YAML and Storm. The Storm-speciic parameters  
in the YAML ile get passed along to Storm.

An example of the YAML ile is shown in the following code snippet:

master.host: "master"

master.thrift.port: 9000

master.initial-num-supervisors: 2

master.container.priority: 0

master.container.size-mb: 5120

master.heartbeat.interval.millis: 1000

master.timeout.secs: 1000

yarn.report.wait.millis: 10000

nimbusui.startup.ms: 10000

http:///


Chapter 9

[ 265 ]

ui.port: 7070

storm.messaging.transport: "backtype.storm.messaging.netty.Context"

storm.messaging.netty.buffer_size: 1048576

storm.messaging.netty.max_retries: 100

storm.messaging.netty.min_wait_ms: 1000

storm.messaging.netty.max_wait_ms: 5000

storm.zookeeper.servers:

     - "zkhost"

Many of the parameters are self-descriptive. However, take note of the last variable 
in particular. This is the location of the ZooKeeper host. Although it might not be the 
case always, for now Storm-YARN assumes you have a pre-existing ZooKeeper.

To monitor whether Storm-YARN will continue to require a pre-
existing ZooKeeper instance, go through the information available 
at the following link:

https://github.com/yahoo/storm-yarn/issues/22

With the the Storm framework in HDFS and the YAML ile conigured, the command 
line to launch Storm on YARN is the following:

storm-yarn launch ../your.yaml --queue default -appname storm-yarn-2.1.0-
deta-demo --stormZip lib/storm-0.9.0-wip21.zip

You specify the location of the YAML ile, the queue for YARN, a name for the 
application, and the location of the ZIP ile, which is relative to the user directory 
unless a full path is speciied.

Queues in YARN are beyond the scope of this discussion, but by 
default YARN is conigured with a default queue that is used in 
the preceding command line. If you are running Storm on a pre-
existing cluster, examine capacity-scheduler.xml in the YARN 
coniguration to locate potential queue names.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 266 ]

After executing the preceding command line, you should see the application 
deployed in the YARN administration screen, as shown in the following screenshot:

Clicking on the application shows where the application master is deployed. 
Examine the node value for the Application Master. This is where you will  
ind the Storm UI as shown in the following screenshot:

Drilling down one more level, you will be able to see the logiles for Storm,  
as shown in the following screenshot:

http:///


Chapter 9

[ 267 ]

With any luck, the logs will show a successful startup of Nimbus and the UI. 
Examining the standard output stream, you will see Storm-YARN launching  
the supervisors:

13/10/09 21:40:10 INFO yarn.StormAMRMClient: Use NMClient to launch 
supervisors in container.  

13/10/09 21:40:10 INFO impl.ContainerManagementProtocolProxy: Opening 
proxy : slave05:35847 

13/10/09 21:40:12 INFO yarn.StormAMRMClient: Supervisor 
log: http://slave05:8042/node/containerlogs/
container_1381197763696_0004_01_000002/boneill/supervisor.log 

13/10/09 21:40:14 INFO yarn.MasterServer: HB: Received allocated 
containers (1) 13/10/09 21:40:14 INFO yarn.MasterServer: HB: 
Supervisors are to run, so queueing (1) containers... 

13/10/09 21:40:14 INFO yarn.MasterServer: LAUNCHER: Taking container 
with id (container_1381197763696_0004_01_000004) from the queue. 

13/10/09 21:40:14 INFO yarn.MasterServer: LAUNCHER: 
Supervisors are to run, so launching container id 
(container_1381197763696_0004_01_000004) 

13/10/09 21:40:16 INFO yarn.StormAMRMClient: Use NMClient to 
launch supervisors in container.  13/10/09 21:40:16 INFO impl.
ContainerManagementProtocolProxy: Opening proxy : dlwolfpack02.
hmsonline.com:35125 

13/10/09 21:40:16 INFO yarn.StormAMRMClient: Supervisor 
log: http://slave02:8042/node/containerlogs/
container_1381197763696_0004_01_000004/boneill/supervisor.log

The key lines in the preceding output are highlighted. If you navigate to those URLs, 
you will see the supervisor logs for the respective instances. Looking back at the 
YAML ile we used to launch Storm-YARN, notice that we speciied the following:

 master.initial-num-supervisors: 2

Navigate to the UI using the node that hosts the ApplicationMaster, and then 
navigate to the UI port speciied in the YAML ile used for launch (ui.port: 7070).

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 268 ]

In a browser, open http://node:7070/, where node is the host for the Application 
Master. You should see the familiar Storm UI as shown in the following screenshot:

The infrastructure is now ready for use. To kill the Storm deployment on YARN,  
you can use the following command:

./storm-yarn shutdown -appId application_1381197763696_0002

In the preceding statement, the appId parameter corresponds to the appId parameter 
assigned to Storm-YARN, and it is visible in the Hadoop administration screen.

Storm-YARN will use the local Hadoop coniguration to locate the 
master Hadoop node. If you are launching from a machine that is not 
a part of the Hadoop cluster, you will need to conigure that machine 
with the Hadoop environment variables and coniguration iles. 
Speciically, it launches through the ResourceManager. Thus, you will 
need the following variables conigured in yarn-site.xml:

yarn.resourcemanager.address

Performing the analytics
With both the batch and real-time infrastructure in place, we can focus on the 
analytics. First, we will take a look at the processing in Pig, and then we will 
translate the Pig script into a Storm topology.

http:///


Chapter 9

[ 269 ]

Executing the batch analysis
For the batch analysis, we use Pig. The Pig script calculates the effectiveness of a 
campaign by computing the ratio between the distinct numbers of customers that 
have clicked-thru and the total number of impressions.

The Pig script is shown in the following code snippet:

click_thru_data = LOAD '../click_thru_data.txt' using PigStorage(' ')

  AS (cookie_id:chararray,

      campaign_id:chararray,

      product_id:chararray,

      click:chararray);

click_thrus = FILTER click_thru_data BY click == 'true';

distinct_click_thrus = DISTINCT click_thrus;

distinct_click_thrus_by_campaign = GROUP distinct_click_thrus BY 
campaign_id;

count_of_click_thrus_by_campaign = FOREACH distinct_click_thrus_by_
campaign GENERATE group, COUNT($1);

-- dump count_of_click_thrus_by_campaign;

impressions_by_campaign = GROUP click_thru_data BY campaign_id;

count_of_impressions_by_campaign = FOREACH impressions_by_campaign 
GENERATE group, COUNT($1);

-- dump count_of_impressions_by_campaign;

joined_data = JOIN count_of_impressions_by_campaign BY $0 LEFT OUTER, 
count_of_click_thrus_by_campaign BY $0 USING 'replicated';

-- dump joined_data;

result = FOREACH joined_data GENERATE $0 as campaign, ($3 is null 
? 0 : $3) as clicks, $1 as impressions, (double)$3/(double)$1 as 
effectiveness:double;

dump result;

Let's take a closer look at the preceding code.

The irst LOAD statement speciies the location of the data and a schema with which 
to load the data. Typically, Pig loads denormalized data. The location for the data is 
a URL. When operating in local mode, as previously shown, this is a relative path. 
When running in MapReduce mode, the URL will most likely be a location in HDFS. 
When running a Pig script against Amazon Web Services (AWS), this will most 
likely be an S3 URL.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 270 ]

In the subsequent lines after the Load statement, the script calculates all the distinct 
click-thru. In the irst line, it ilters the dataset for only the rows that have True 
in the column, which indicates that the impression resulted in a click-thru. After 
iltering, the rows are iltered for only distinct entries. The rows are then grouped 
by campaign and each distinct click-thru is counted by campaign. The results of this 
analysis are stored in the alias count_of_click_thrus_by_campaign.

The second dimension of the problem is then computed in the subsequent lines.  
No ilter is necessary since we simply want a count of the impressions by campaign. 
The results of this are stored in the alias count_of_impressions_by_campaign.

Executing the Pig script yields the following output:

(campaign6,2,4,0.5)

(campaign7,4,7,0.5714285714285714)

(campaign8,1,1,1.0)

(campaign10,0,2,)

The irst element in the output is the campaign identiier. The number of all the 
distinct click-thru and the total number of impressions follow that. The last element 
is the effectiveness, which is the ratio of all the distinct click-thru to total number  
of impressions.

Executing real-time analysis
Now, let's translate the batch analysis into real-time analysis. A strict interpretation 
of the Pig script might result in the following topology:

Stream inputStream = topology.newStream("clickthru", spout);

Stream click_thru_stream = inputStream.each(

new Fields("cookie", "campaign", "product", "click"), 

new Filter("click", "true"))

.each(new Fields("cookie", "campaign", "product", "click"), 

new Distinct())

                .groupBy(new Fields("campaign"))              

                .persistentAggregate(

new MemoryMapState.Factory(), new Count(), 

new Fields("click_thru_count"))

                .newValuesStream();

                

http:///


Chapter 9

[ 271 ]

Stream impressions_stream = inputStream.groupBy(

new Fields("campaign"))

                .persistentAggregate(

new MemoryMapState.Factory(), new Count(), 

new Fields("impression_count"))

                .newValuesStream();

                

topology.join(click_thru_stream, new Fields("campaign"),

impressions_stream, new Fields("campaign"), 

  new Fields("campaign", "click_thru_count", "impression_count"))

                .each(new Fields("campaign", 

"click_thru_count", "impression_count"), 

new CampaignEffectiveness(), new Fields(""));

In the preceding topology, we fork the stream into two separate streams: click_
thru_stream and impressions_stream. The click_thru_stream contains the 
count of distinct impressions. The impressions_stream contains the total count of 
impressions. Those two streams are then joined using the topology.join method.

The issue with the preceding topology is the join. In Pig, since the sets are static they 
can easily be joined. Joins within Storm are done on a per batch basis. This would 
not necessarily be a problem. However, the join is also an inner join, which means 
records are only emitted if there are corresponding tuples between the streams. In 
this case, we are iltering records from the click_thru_stream because we only 
want distinct records. Thus, the cardinality of that stream is smaller than that of  
the impressions_stream, which means that tuples are lost in the join process.

Operations such as join are well deined for discrete sets, but it is 
unclear how to translate their deinitions into a real-time world of 
ininite event streams. For more on this, visit the following URLs:

• https://cwiki.apache.org/confluence/display/
PIG/Pig+on+Storm+Proposal

• https://issues.apache.org/jira/browse/PIG-
3453

Instead, we will use Trident's state construct to share the counts between the streams.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 272 ]

This is shown in the corrected topology in the following diagram:

Filter

(click_thru = true)
Distinct

groupBy

(campaign)
ClickThru

State

Impressions

State

groupBy

(campaign)
ClickThru

Spout

Campaign

Effectiveness

count()

stateQuery

(campaign)

The code for this topology is as follows:

StateFactory clickThruMemory = new MemoryMapState.Factory();

ClickThruSpout spout = new ClickThruSpout();

Stream inputStream = topology.newStream("clithru", spout);

TridentState clickThruState = inputStream.each(

new Fields("cookie", "campaign", "product", "click"),

new Filter("click", "true"))

   .each(new Fields("cookie", "campaign", "product", "click"),

new Distinct())

   .groupBy(new Fields("campaign"))

   .persistentAggregate(clickThruMemory, new Count(),

new Fields("click_thru_count"));

                

inputStream.groupBy(new Fields("campaign"))

.persistentAggregate(new MemoryMapState.Factory(),

new Count(), new Fields("impression_count"))

.newValuesStream()

.stateQuery(clickThruState, new Fields("campaign"),

new MapGet(), new Fields("click_thru_count"))

.each(new Fields("campaign", "impression_count",

      "click_thru_count"),

new CampaignEffectiveness(), new Fields(""));

http:///


Chapter 9

[ 273 ]

Let's irst take a look at the spout. It simply reads the ile, parses the rows, and emits 
the tuples, as shown in the following code snippet:

public class ClickThruEmitter

implements Emitter<Long>, Serializable {

...

@Override

public void emitBatch(TransactionAttempt tx,

Long coordinatorMeta, TridentCollector collector) {

     File file = new File("click_thru_data.txt");

     try {

         BufferedReader br = 

new BufferedReader(new FileReader(file));

         String line = null;

         while ((line = br.readLine()) != null) {

          String[] data = line.split(" ");

          List<Object> tuple = new ArrayList<Object>();

          tuple.add(data[0]); // cookie

          tuple.add(data[1]); // campaign

          tuple.add(data[2]); // product

          tuple.add(data[3]); // click

          collector.emit(tuple);

         }

         br.close();

     } catch (Exception e) {

         throw new RuntimeException(e);

     }

}

     ...

}

In a real system, the preceding spout would most likely read from a Kafka queue. 
Alternatively, a spout could read directly from HDFS if we sought to recreate exactly 
what the batch processing mechanism was doing.

There is some preliminary work on a spout that can read from 
HDFS; check out the following URL for more information:

https://github.com/jerrylam/storm-hdfs

To compute the distinct count of all the click-thru, the topology irst ilters the stream 
for only those impressions that resulted in a click-thru.

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 274 ]

The code for this ilter is as follows:

public class Filter extends BaseFilter {

    private static final long serialVersionUID = 1L;

    private String fieldName = null;

    private String value = null;

        

    public Filter(String fieldName, String value){

        this.fieldName = fieldName;

        this.value = value;        

    }

    

    @Override

    public boolean isKeep(TridentTuple tuple) {

        String tupleValue = tuple.getStringByField(fieldName); 

        if (tupleValue.equals(this.value)) {

          return true;

        }

        return false;

    }

}

Then, the stream ilters for only distinct click-thrus. In this example, it uses an in-
memory cache to ilter for distinct tuples. In reality, this should use distributed 
state and/or a grouping operation to direct like tuples to the same host. Without 
persistent storage, the example would eventually run out of memory in the JVM.

There is active work on algorithms to approximate distinct sets 
against data streams. For more information on Streaming Quotient 
Filter (SQF), check out the following URL:

http://www.vldb.org/pvldb/vol6/p589-dutta.pdf

For our example, the Distinct function is shown in the following code snippet:

public class Distinct extends BaseFilter {

    private static final long serialVersionUID = 1L;

    private Set<String> distincter = Collections.synchronizedSet(new 
HashSet<String>());

    

    @Override

    public boolean isKeep(TridentTuple tuple) {        

        String id = this.getId(tuple);

http:///


Chapter 9

[ 275 ]

   return distincter.add(id);

    }

    

    public String getId(TridentTuple t){

        StringBuilder sb = new StringBuilder();

        for (int i = 0; i < t.size(); i++){

           sb.append(t.getString(i));

        }

        return sb.toString();

    }

}

Once it has all the distinct click-thru, Storm persists that information into Trident 
state using a call to persistAggregate. This collapses the stream by using the  
Count operator. In the example, we use a MemoryMap. However, in a real system 
we would most likely apply a distributed storage mechanism such as Memcache  
or Cassandra.

The result of processing the initial stream is a TridentState object that contains the 
count of all the distinct click-thru grouped by the campaign identiier. The critical 
line that joins the two streams is shown as follows:

.stateQuery(clickThruState, new Fields("campaign"),

new MapGet(), new Fields("click_thru_count"))

This incorporates the state developed in the initial stream into the analysis developed 
by the second stream. Effectively, the second stream queries the state mechanism for 
the distinct count of all the click-thru for that campaign and adds it as a ield to the 
tuples processed in this stream. That ield can then be leveraged in the effectiveness 
computation, which is encapsulated in the following class:

public class CampaignEffectiveness extends BaseFunction {

    private static final long serialVersionUID = 1L;

    @Override

    public void execute(TridentTuple tuple, TridentCollector 
collector) {

   String campaign = (String) tuple.getValue(0);

        Long impressions_count = (Long) tuple.getValue(1);

        Long click_thru_count = (Long) tuple.getValue(2);

        if (click_thru_count == null) 

            click_thru_count = new Long(0);

        double effectiveness = (double) click_thru_count / (double) 
impressions_count;

http:///


Deploying Storm on Hadoop for Advertising Analysis

[ 276 ]

   Log.error("[" + campaign + "," + String.valueOf(click_thru_count) + 
"," + impressions_count + ", " + effectiveness + "]");

   List<Object> values = new ArrayList<Object>();

   values.add(campaign);

   collector.emit(values);

    }

}

As shown in the preceding code, this class computes effectiveness by computing the 
ratio between the ield that contains the total count and the ield introduced by the 
state query.

Deploying the topology
To deploy the preceding topology, we must irst retrieve the Storm-YAML 
coniguration using the following command:

storm-yarn getStormConfig ../your.yaml --appId 
application_1381197763696_0004 --output output.yaml

The preceding command interacts with the speciied instance of the Storm-YARN 
application to retrieve a storm.yaml ile that can be used to deploy topologies 
by using the standard mechanisms. Simply copy the output.yaml ile into the 
appropriate location (typically, ~/.storm/storm.yaml) and deploy using the 
standard storm jar command as follows:

storm jar <appJar>

Executing the topology
Executing the preceding topology results in the following output:

00:00 ERROR: [campaign10,0,2, 0.0]

00:00 ERROR: [campaign6,2,4, 0.5]

00:00 ERROR: [campaign7,4,7, 0.5714285714285714]

00:00 ERROR: [campaign8,1,1, 1.0]

http:///


Chapter 9

[ 277 ]

Notice that the values are the same as those emitted by Pig. If we let the  
topology run, we eventually see decreasing effectiveness scores as shown  
in the following output:

00:03 ERROR: [campaign10,0,112, 0.0]

00:03 ERROR: [campaign6,2,224, 0.008928571428571428]

00:03 ERROR: [campaign7,4,392, 0.01020408163265306]

00:03 ERROR: [campaign8,1,56, 0.017857142857142856]

This stands to reason because we now have a real-time system, which is continually 
consuming the same impression events. Since we are only counting all the distinct 
click-thru and the entire set of click-thru has already been accounted for in the 
calculation, the effectiveness will continue to drop.

Summary
In this chapter, we saw a few different things. First, we saw the blueprint for 
converting a batch processing mechanism that leverages Pig into a real-time system 
that is implemented in Storm. We saw how a direct translation of that script would 
not work due to the limitations of joins in a real-time system, because traditional join 
operations require inite set of data. To overcome this problem, we used a shared 
state pattern with the forked streams.

Secondly, and perhaps most importantly, we examined Storm-YARN; it allows a 
user to reuse the Hadoop infrastructure to deploy Storm. Not only does this provide 
a means for existing Hadoop users to quickly transition to Storm, it also allows a 
user to capitalize on cloud mechanisms for Hadoop such as Amazon's Elastic Map 
Reduce (EMR). Using EMR, Storm can be deployed quickly to cloud infrastructure 
and scaled to meet demand.

Finally, as future work, the community is exploring methods to run Pig scripts 
directly on Storm. This would allow users to directly port their existing analytics 
over to Storm.

To monitor this work, visit https://cwiki.apache.org/confluence/display/
PIG/Pig+on+Storm+Proposal.

In the next chapter, we will explore automated Storm deployment to the cloud  
using Apache Whirr. Although not speciically addressed, the techniques in the  
next  chapter can be used in cloud deployments.

http:///


http:///


Storm in the Cloud
In this chapter, we will introduce you to deploying and running Storm in a hosted 
environment of a cloud provider.

In Chapter 2, Coniguring Storm Clusters, you were introduced to the steps necessary 
to set up Storm in a clustered environment, and the subsequent chapters covered 
the installation and coniguration of complementary technologies such as Kafka, 
Hadoop, and Cassandra. While most installations are relatively straightforward, 
the cost to maintain even a modestly sized cluster—in terms of the physical 
asset requirements as well as the time necessary to conigure and maintain the 
environment—can easily become a burden, if not an outright blocker to the  
adoption of distributed computing technologies.

Fortunately, today there are a number of cloud hosting providers that offer services 
for on-demand dynamic provisioning of multimachine computing environments. 
Most cloud hosting providers offer a wide range of services and options to it 
most users' needs, ranging from a single small footprint server to a large-scale 
infrastructure consisting of hundreds or even thousands of machines. In fact,  
a common trend among high-proile Internet content providers is to choose  
a cloud hosting provider over an in-house data center.

One of the key beneits of using a cloud provider is the ability to deploy and 
undeploy computing resources as necessary, and on demand. An online retailer,  
for example, might provision additional servers and resources during the lead up 
to the holiday season in order to meet demand, scaling back later when the rush 
subsides. Also, as we'll see, cloud providers offer a cost-effective method for  
testing and prototyping distributed applications.

http:///


Storm in the Cloud

[ 280 ]

We'll start by provisioning a Storm cluster with a cloud provider. Later in the 
chapter, we'll show you how to provision and manage local, virtualized Storm 
instances for testing Storm applications in a fully clustered environment on  
your workstation.

In this chapter, we will cover the following topics:

• Provisioning virtual machines using the Amazon Web Services (AWS) 
Elastic Compute Cloud (EC2)

• Using Apache Whirr to automate the provisioning and deployment of Storm 
clusters to EC2

• Using Vagrant to launch and provision virtualized Storm clusters in a local 
environment for development and testing

Introducing Amazon Elastic Compute 

Cloud (EC2)
Amazon EC2 is the central part of many remote compute services offered by 
Amazon. EC2 allows users to rent virtual compute resources hosted on Amazon's 
network infrastructure on demand.

We'll begin by setting up an EC2 account and manually launching a virtual machine 
on Amazon's EC2 infrastructure.

Setting up an AWS account
Establishing an AWS account is easy but requires an Amazon account. If you don't 
already have an Amazon account, sign up for one at http://www.amazon.com/.

With your Amazon account established, you can set up an AWS account at  
http://aws.amazon.com/.

http:///


Chapter 10

[ 281 ]

The AWS Management Console
The AWS Management Console acts as the main administrative interface to all the 
cloud services that Amazon offers. We're primarily interested in the EC2 service,  
so let's begin by logging in to the EC2 Management Console as shown in the 
following screenshot:

http:///


Storm in the Cloud

[ 282 ]

Creating an SSH key pair
Before you can launch any EC2 instances, you will need a key pair. To create a new 
key pair, click on the Key Pairs link to open the key pair manager, as shown in the 
following screenshot:

You will be prompted to give the key pair a name. Enter a name and click on  
the Yes button. At this point, depending on which browser you are using, you  
will be prompted to download your private certiicate ile or the ile will be 
downloaded automatically.

It's very important that you keep this ile safe since the key will give you full 
administrator access to any EC2 images launched with that key. Immediately after 
downloading your private key, you should change its ile permissions so it is not 
publicly readable; for example, with UNIX, use the following command:

chmod 400 my-keyfile.pem

http:///


Chapter 10

[ 283 ]

Many SSH clients will look at the permissions of the key ile and issue a warning  
or refuse to use a key ile that is publicly readable.

Launching an EC2 instance manually
Once you have created a key pair, you are ready to launch an EC2 instance.

The irst step in launching an EC2 machine is to select an Amazon Machine Image 
(AMI). An AMI is a virtual appliance template that can be run as a virtual machine 
on Amazon EC2.

Amazon provides a number of AMIs for popular operating system distributions such 
as Red Hat, Ubuntu, and SUSE. For our purposes, we will be using an Ubuntu Server 
instance as shown in the following screenshot:

http:///


Storm in the Cloud

[ 284 ]

Once you've selected an AMI, you will be prompted to select an instance type. 
Instance types represent virtual hardware proiles with varying memory (RAM), 
CPU cores, storage, and I/O performance. Amazon charges by the hour for running 
instances, with prices ranging from a few cents per hour for its weakest instance 
type (t1.micro) to several dollars per hour for its most powerful instance type 
(hs1.8xlarge). The type you select will depend on your use case and budget. For 
example, a t1.micro instance (one CPU, 0.6 GB RAM, and low I/O performance) can 
be useful for testing purposes but is clearly not suited for heavy production loads.

After selecting an instance type, you are ready to launch the virtual machine by 
clicking on the Review and Launch button, reviewing the instance details, and then 
clicking on Launch. You will then be prompted to select a key pair for remote login 
and management of the instance. After a few minutes, your instance will be up and 
running as shown in the following screenshot:

http:///


Chapter 10

[ 285 ]

Logging in to the EC2 instance
When you launch an instance, EC2 will preconigure SSH with the key pair you 
selected during the setup, allowing you to remotely log in to the machine. To log in 
to the instance remotely, you will need the private key ile you downloaded earlier 
as well as the public DNS name (or public IP address) assigned to the instance. You 
can ind this information in the EC2 Management Console by clicking on the instance 
and viewing the details.

You can now connect to the instance with the following command:

ssh -i [keypair] [username]@[public DNS or IP]

For example, to connect as the "ubuntu" user using the my-keypair.pem private  
key ile:

ssh -i my-keypair.pem ubuntu@ec2-54-200-221-254.us-west-2.compute.
amazonaws.com

The Ubuntu user has administrator permissions on the remote host, giving you the 
ability to conigure the machine the way you like.

At this point, you could install Storm or any other services you like. However, 
manually coniguring instances for anything larger than a trivially sized cluster 
will quickly become time-consuming and unmanageable. In the next section, we'll 
introduce a way to automate this process as part of a more scalable worklow.

Introducing Apache Whirr
The Apache Whirr project (http://whirr.apache.org) provides a Java API and set 
of shell scripts for installing and running various services on cloud providers such 
as Amazon EC2 and Rackspace. Whirr allows you to deine the layout of a cluster 
in terms of the number of nodes as well as control which services run on each node. 
Whirr also comes with a set of scripts for performing management operations such 
as launching new clusters, starting and stopping clusters, and terminating clusters.

Whirr began as a set of shell scripts for running Hadoop on Amazon EC2, and later 
matured to include a Java API based on the Apache jclouds (http://jclouds.
apache.org) project, which allowed it to support multiple cloud providers. 
Whirr has also expanded beyond Hadoop to support many additional distributed 
computing services such as Cassandra, Elastic Search, HBase, Pig, and others.

http:///


Storm in the Cloud

[ 286 ]

Installing Whirr
Begin by downloading a recent release and unpacking it on the computer you  
will use to launch and manage your clusters:

wget http://www.apache.org/dist/whirr/whirr-0.8.2/whirr-0.8.2.tar.gz

tar -zxf whirr-0.8.2.tar.gz

For convenience, add Whirr's bin directory to your system's PATH environment 
variable so you can run the Whirr command from any directory as follows:

WHIRR_HOME=/Users/tgoetz/whirr-0.8.2

export PATH=$PATH:$WHIRR_HOME/bin

Whirr uses SSH to communicate with cloud instances, so we will create a dedicated 
key pair for using it with Whirr. Whirr requires that the key has an empty 
passphrase as shown in the following command:

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa_whirr

In order for Whirr to interact with your cloud provider account, it needs to know 
your credentials. For EC2, this consists of your EC2 Access Key ID and your EC2 
Secret Access Key. If your AWS account is new, you will need to generate new 
credentials; otherwise, you should already have downloaded your credentials to a 
safe location. To generate a new set of EC2 credentials, perform the following steps:

1. Log in to the AWS Management Console.

2. Click on the name in the top-right section of the navigation bar and select 
Security Credentials.

3. Expand the section titled Access Keys (Access Key ID and Secret Access 
Key) and click on the Create New Access Key button.

4. Click on the Download Key File to download your credentials to a safe 
location.

The key ile you downloaded will contain your Access Key ID and Secret Access  
Key in the following format:

AWSAccessKeyId=QRIXIUUTWRXXXXTPW4UA

AWSSecretKey=/oA7m/XW+x1eGQiyxxxTsU+rxRSIxxxx3EbM1yg6

http:///


Chapter 10

[ 287 ]

Whirr gives you three options for specifying your cloud credentials: command-
line parameters, cluster coniguration ile, or a local credentials ile (~/.whirr/
credentials). We'll use the last option as it is the most convenient as follows:

mkdir ~/.whirr

echo "PROVIDER=aws-ec2" > ~/.whirr/credentials

echo "IDENTITY=[your EC2 Access Key ID]" >> ~/.whirr/credentials

echo "CREDENTIAL=[your EC2 Secret Access Key]" >> ~/.whirr/credentials

Coniguring a Storm cluster with Whirr
Now that we have Whirr installed, let's turn our attention toward cluster 
coniguration. Whirr's coniguration iles, or recipes, are just Java property iles  
that contain Whirr properties which deine the layout of nodes and services  
within a cluster.

Let's start by looking at the minimum coniguration necessary to launch a 3-node 
ZooKeeper cluster:

whirr.cluster-name=zookeeper

whirr.instance-templates=3 zookeeper

The whirr.cluster-name property simply assigns a unique identiier to the cluster 
and is used when running management commands such as listing the hosts in a 
cluster or destroying a cluster.

The whirr.instance-template property deines the number of nodes in a cluster 
and the services that run on each node. In the preceding example, we've deined a 
cluster of three nodes, with each node assigned with the ZooKeeper role.

With just these two properties deined, we have enough to tell Whirr how to launch 
and manage a ZooKeeper cluster. Whirr will use default values for everything 
else. However, there are a few options that you will typically want to override. For 
example, we'll want Whirr to use the dedicated key pair we created earlier as shown 
in the following code snippet:

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa_whirr

whirr.public-key-file=${whirr.private-key-file}.pub

Next, we'll conigure Whirr with the hardware speciication we want and the region 
in which our cluster should be hosted, as shown in the following code snippet:

whirr.image-id=us-east-1/ami-55dc0b3c

whirr.hardware-id=t1.micro

whirr.location=us-east-1

http:///


Storm in the Cloud

[ 288 ]

The whirr.image-id property is provider speciic and speciies which machine 
image to use. Here, we've speciied an Ubuntu 10.04 64-bit AMI.

Since we're just testing Whirr, we've chosen the smallest (and least expensive) 
instance type: t1.micro. Finally, we've speciied that we want our cluster deployed 
in the us-east-1 region.

For a complete list of public AMIs, perform the following steps:

1. From the EC2 Management Console, select a region from the drop-down 
menu in the upper-right corner.

2. In the left navigation pane, click on AMIs.

3. From the Filter drop-down menu at the top of the page, select Public images.

Whirr is most thoroughly tested with Ubuntu Linux images. While other operating 
systems may work, if you run into problems, try again with an Ubuntu image.

Launching the cluster
Our coniguration ile for a ZooKeeper cluster now looks like the following  
code snippet:

whirr.cluster-name=zookeeper

whirr.instance-templates=3 zookeeper

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa_whirr

whirr.public-key-file=${whirr.private-key-file}.pub

whirr.image-id=us-east-1/ami-55dc0b3c

whirr.hardware-id=t1.micro

whirr.location=us-east-1

If we save those properties to a ile named zookeeper.properties, we can then 
launch the cluster with the following command:

whirr launch-cluster --config zookeeper.properties

When the command completes, Whirr will output the list of instances created  
as well as the SSH command that can be used to connect to each instance.

You can log in to instances using the following SSH commands:

[zookeeper]: ssh -i /Users/tgoetz/.ssh/id_rsa_whirr -o 
"UserKnownHostsFile /dev/null" -o StrictHostKeyChecking=no 
storm@54.208.197.231

http:///


Chapter 10

[ 289 ]

[zookeeper]: ssh -i /Users/tgoetz/.ssh/id_rsa_whirr -o 
"UserKnownHostsFile /dev/null" -o StrictHostKeyChecking=no 
storm@54.209.143.46

[zookeeper]: ssh -i /Users/tgoetz/.ssh/id_rsa_whirr -o 
"UserKnownHostsFile /dev/null" -o StrictHostKeyChecking=no 
storm@54.209.22.63

To destroy a cluster, run whirr destroy-cluster with the same options used  
to launch it.

When you are inished with the cluster, you can terminate all instances with the 
following command:

whirr destroy-cluster --config zookeeper.properties

Introducing Whirr Storm
The Whirr Storm project (https://github.com/ptgoetz/whirr-storm) is a Whirr 
service implementation for coniguring Storm clusters. Whirr Storm supports the 
coniguration of all Storm daemons as well as full control over Storm's storm.yaml 
coniguration ile.

Setting up Whirr Storm
To install the Whirr Storm service, simply place the JAR ile in the $WHIRR_HOME/lib 
directory as follows:

wget http://repo1.maven.org/maven2/com/github/ptgoetz/whirr-
storm/1.0.0/whirr-storm-1.0.0.jar -P $WHIRR_HOME/lib

Next, verify the installation by running the Whirr command without arguments  
to print a list of instance roles available to Whirr. The list should now include the 
roles provided by Whirr Storm as shown in the following code snippet:

$ whirr

…

  storm-drpc

  storm-logviewer

  storm-nimbus

  storm-supervisor

  storm-ui

http:///


Storm in the Cloud

[ 290 ]

Cluster coniguration
In our previous Whirr example, we created a cluster of three nodes where each 
node had only the ZooKeeper role. Whirr allows you to assign multiple roles to 
a node, which we'll need to do for a Storm cluster. Before we get into the details 
of coniguring Whirr for Storm, let's take a look at the different roles Whirr Storm 
deines as shown in the following table:

Role Description

storm-nimbus This is the role for running the Nimbus daemon. Only one node 
per cluster should be assigned with this role.

storm-
supervisor

This is the role for running the supervisor daemon.

storm-ui This is the role for running the Storm UI web service.

storm-
logviewer

This is the role for running the Storm logviewer service. This 
role should only be assigned to nodes that also have the storm-
supervisor role.

storm-drpc This is the role for running the Storm DRPC service.

zookeeper This role is provided by Whirr. Nodes with this role will be part of 
a ZooKeeper cluster. You must have at least one ZooKeeper node 
in a Storm cluster, and for multi-node ZooKeeper clusters, the 
number of nodes should be odd.

To use these roles in a Whirr coniguration, we specify them in the whirr.instance-
template property in the following format:

whirr.instance-templates=[# of nodes] [role 1]+[role 2],[# of nodes] 
[role 3]+[role n]

For example, to create a single-node pseudocluster, where all Storm's daemons 
are run on one machine, we would use the following value for whirr.instance-
template:

whirr.instance-template=1 storm-nimbus+storm-ui+storm-logviewer+storm-
supervisor+zookeeper

If we wanted to create a multinode cluster with one node running Nimbus and 
Storm UI, three nodes running the supervisor and logviewer daemons, and a 3-node 
ZooKeeper cluster, we would use the following coniguration:

whirr.instance-templates=1 storm-nimbus+storm-ui,3 storm-
supervisor+storm-logviewer, 3 zookeeper

http:///


Chapter 10

[ 291 ]

Customizing Storm's coniguration
Whirr Storm will generate a storm.yaml coniguration ile with values for nimbus.
host, storm.zookeeper.servers, and drpc.servers that are automatically 
calculated based on the hostnames of nodes in the cluster and which roles they have 
been assigned with. All other Storm coniguration parameters will inherit default 
values unless speciically overridden. Note that if you attempt to override values 
for nimbus.host, storm.zookeeper.servers, or drpc.servers, Whirr Storm will 
ignore it and log a warning message.

Although Whirr Storm will automatically calculate and conigure 
the nimbus.host value for the cluster, you will still need to tell the 
Storm executable the host name of the Nimbus host when running the 
command locally. The easiest way to do this, and the most convenient if 
you have multiple clusters, is to specify a hostname for nimbus with the 
–c lag as follows:

Storm <command> [arguments] –c nimbus.host=<nimbus 
hostname>

Other Storm coniguration parameters can be speciied in the Whirr coniguration  
ile by adding a property with a key preixed with whirr-storm. For example,  
to set a value for the topology.message.timeout.secs parameter, we would  
add it to the Whirr coniguration ile as follows:

whirr-storm.topology.message.timeout.secs=30

The preceding code would result in the following line in storm.yaml:

topology.message.timeout.secs: 30

Coniguration parameters that accept a list of values can be expressed in the Whirr 
coniguration ile as a comma-separated list, such as the following coniguration  
for supervisor.slots.ports:

whirr-storm.supervisor.slots.ports=6700,6701,6702,6703

The preceding code would produce the following YAML:

supervisor.slots.ports:

    - 6700

    - 6701

    - 6702

    - 6703

http:///


Storm in the Cloud

[ 292 ]

Customizing irewall rules
When a new machine instance is launched on EC2, most of its network ports are 
blocked by a irewall by default. To enable network communication between 
instances, you must explicitly conigure irewall rules to allow ingress and egress  
on speciic ports between hosts.

By default, Whirr Storm will automatically create the security groups and irewall 
rules necessary for Storm components to communicate, such as opening the Nimbus 
Thrift port for topology submission and opening port 2181 between Nimbus and 
Supervisor nodes, and ZooKeeper nodes as shown in the following diagram:

Whirr

Host

ZooKeeper

Supervisor

Nimbus
Port

6627

Port 2181

Port 2181

However, in many cases, Storm's worker processes will need to communicate with 
other services on arbitrary ports. For example, if you have a spout that consumes 
data from an external queue or a bolt that writes to a database, you will need 
additional irewall rules to enable that interaction.

Consider a scenario where we have a spout reading data from a Kafka queue and 
streaming data to a bolt that writes to a Cassandra database. In such scenarios, we 
would set up our cluster with the following whirr.instance-template value:

whirr.instance-templates=3 kafka,3 cassandra,1 storm-nimbus,3 storm-
supervisor, 3 zookeeper

http:///


Chapter 10

[ 293 ]

With this setup, we need a irewall coniguration that allows each of the Supervisor/
worker nodes to connect to each of the Kafka nodes on port 9092 and each of the 
Cassandra nodes on port 9126, as shown in the following diagram:

Whirr

Host

ZooKeeper

Supervisor

Nimbus
Port

6627

Port 2181

Port 2181

Kafka Cassandra

Port 9092 Port 9160

For this situation, Whirr Storm has the coniguration property whirr.storm.
supervisor.firewall-rules that allows you to open arbitrary ports on other 
nodes in the cluster. The property value is a comma-delimited list of role-port pairs 
as shown in the following code snippet:

whirr.storm.supervisor.firewall-rules=[role1]:[port1],[role2]:[port2]

For example, to set up the rules for our scenario, we would use the following setting:

whirr.storm.supervisor.firewall-rules=cassandra:9160,kafka:9092

This coniguration will instruct Whirr Storm to create irewall rules that allow 
each Supervisor node to connect to each Cassandra node on port 9160 and each 
Supervisor node to connect to each Kafka node on port 9092.

http:///


Storm in the Cloud

[ 294 ]

Introducing Vagrant
Vagrant (http://www.vagrantup.com) is a tool similar to Apache Whirr in that 
it's designed to help provision virtual machine instances in an easy and repeatable 
manner. However, Whirr and Vagrant differ in a key way. While Whirr's primary 
purpose is to enable cloud-based provisioning, Vagrant focuses more on local 
virtualization with virtualization software such as VirtualBox and VMWare.

Vagrant supports several virtual machine providers, including VirtualBox  
(https://www.virtualbox.org) and VMWare (http://www.vmware.com).  
In this chapter, we'll cover the use of Vagrant with VirtualBox since it is free  
and well supported by Vagrant.

Prior to using Vagrant, you must install a 4.x Version of VirtualBox (Vagrant does 
not yet support Version 5.x). We covered the VirtualBox installation in Chapter 2, 
Coniguring Storm Clusters, and will not repeat those instructions here. Installing 
VirtualBox is largely just a matter of running an installer, but if you run into issues, 
please refer to the instructions in Chapter 2, Coniguring Storm Clusters.

Installing Vagrant
Linux packages and Vagrant installers for OS X and Windows are available on the 
Vagrant website (http://www.vagrantup.com/downloads.html). Be sure to install 
the latest version of Vagrant as it will include the most recent updates and bug 
ixes. The installation process will update your system's PATH variable to include the 
Vagrant executable. You can verify the installation by opening a terminal and typing 
vagrant --version as follows:

$ vagrant --version

Vagrant 1.3.5

If the command fails for any reason, consult the Vagrant website for solutions to 
common problems.

Launching your irst virtual machine
Launching a virtual machine with Vagrant involves two steps. First, you initialize a 
new Vagrant project with the vagrant init command as follows:

$ vagrant init precise64 http://files.vagrantup.com/precise64.box

http:///


Chapter 10

[ 295 ]

A `Vagrantfile` has been placed in this directory. You are now

ready to `vagrant up` your first virtual environment! Please read

the comments in the Vagrantfile as well as documentation on

`vagrantup.com` for more information on using Vagrant.

The two arguments to the vagrant init command are name and URL for a Vagrant 
box. A Vagrant box is a virtual machine image that is specially packaged for use with 
Vagrant. Since Vagrant boxes can be quite large (over 300 MB), Vagrant will store 
them locally on the disk rather than download them every time. The name parameter 
simply provides an identiier for the box, so it can be reused in other Vagrant 
conigurations, while the URL parameter tells Vagrant about the download location 
for the box.

The next step is to launch the virtual machine as follows:

$ vagrant up

If the Vagrant box speciied in the vagrant init command is not found on the local 
disk, Vagrant will download it. Vagrant will then clone the virtual machine, boot it, 
and conigure networking so it is easily accessible from the host machine. When the 
command completes, a VirtualBox virtual machine running Ubuntu 12.04 LTS 64-bit 
will be running in the background.

You can then log in to the machine using SSH commands:

$ vagrant ssh

Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

 * Documentation:  https://help.ubuntu.com/

Welcome to your Vagrant-built virtual machine.

Last login: Fri Sep 14 06:23:18 2012 from 10.0.2.2

vagrant@precise64:~$

The Vagrant user has administrative privileges so you are free to do anything you 
like with the virtual machine, such as install software packages and modify iles. 
When you are inished with the virtual machine, you can shut it down and remove 
all traces of it with the vagrant destroy command:

$ vagrant destroy

Are you sure you want to destroy the 'default' VM? [y/N] y

[default] Forcing shutdown of VM...

[default] Destroying VM and associated drives...

http:///


Storm in the Cloud

[ 296 ]

Vagrant provides additional management commands for operations such as 
suspending, resuming, and halting the virtual machine. For an overview of the 
commands Vagrant provides, run the vagrant --help command.

The Vagrantile and shared ilesystem
When we ran the vagrant init command, Vagrant created a ile named 
Vagrantfile in the directory where we ran the command. This ile describes the 
type of machine(s) a project requires and how to provision and set up the machines. 
Vagrantiles are written using a Ruby syntax that is easy to learn even if you are 
not a Ruby developer. The initial content of the Vagrantfile will be minimal and 
largely made up of documentation comments. With the comments removed, our 
Vagrant ile looks like the following code snippet:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  config.vm.box = "precise64"

  config.vm.box_url = "http://files.vagrantup.com/precise64.box"

end

As you can see, the ile simply contains the box name and URL that we passed to the 
vagrant init command. We will expand on this later as we build out a Vagrant 
project to provision a virtualized Storm cluster.

When you launch a machine with vagrant up, by default Vagrant will create a 
shared folder on the virtual machine (/vagrant) that will be synchronized with the 
contents of the project directory (the directory containing the Vagrantfile). You can 
verify this functionality by logging in to the virtual machine and listing the contents 
of that directory

$ vagrant ssh

vagrant@precise64:~$ ls /vagrant/

Vagrantfile

This is where we will store all our provisioning scripts and data iles. While the 
vagrant destroy command removes all traces of a virtual machine, it leaves the 
contents of the project directory untouched. This allows us to store persistent project 
data that will always be available to our virtual machines.

http:///


Chapter 10

[ 297 ]

Vagrant provisioning
Vagrant supports provisioning with shell scripts as well Puppet and Chef. We'll  
use the shell provisioner since it is the easiest to start with as it does not require  
any additional knowledge aside from basic shell scripting.

To illustrate how Vagrant shell provisioning works, we'll modify our Vagrant project 
to install the Apache web server in the Vagrant virtual machine. We will begin 
by creating a simple shell script to install Apache2 using Ubuntu's APT package 
manager. Save the following script as install_apache.sh in the same directory  
as the Vagrantfile:

#!/bin/bash

apt-get update

apt-get install -y apache2

Next, we'll modify our Vagrantfile to execute our script when Vagrant provisions 
our virtual machine by adding the following line:

config.vm.provision "shell", path: "install_apache.sh"

Finally, conigure port forwarding so requests to port 8080 on the host machine are 
forwarded to port 8080 on the guest (virtual) machine:

config.vm.network "forwarded_port", guest: 80, host: 8080

Our complete Vagrantile should now look like the following:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  config.vm.box = "precise64"

  config.vm.box_url = "http://files.vagrantup.com/precise64.box"

  config.vm.provision "shell", path: "install_apache.sh"

  config.vm.network "forwarded_port", guest: 80, host: 8080

end

If your virtual machine is still running, kill it now by running vagrant destroy, 
then execute vagrant up to bring up a new virtual machine. When Vagrant 
completes, you should be able to view the default Apache page by pointing your 
browser to http://localhost:8080 on the host machine.

http:///


Storm in the Cloud

[ 298 ]

Coniguring multimachine clusters with Vagrant
In order to model a virtualized Storm cluster with Vagrant, we need a way to 
conigure multiple machines within a single Vagrant project. Fortunately, Vagrant 
supports multiple machines with a syntax that makes it easy to convert our existing 
single-machine project into a multimachine coniguration.

For our multimachine setup, we'll deine two virtual machines named www1 and 
www2. To avoid port conlicts on the host machine, we'll forward the host port 8080 to 
port 80 on www1 and the host port 7070 to port 80 on www2, as shown in the following 
code snippet:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  

  config.vm.define "www1" do |www1|

    www1.vm.box = "precise64"

    www1.vm.box_url = "http://files.vagrantup.com/precise64.box"

    www1.vm.provision "shell", path: "apache.sh"

    www1.vm.network "forwarded_port", guest: 80, host: 8080

  end

  

  config.vm.define "www2" do |www2|

    www2.vm.box = "precise64"

    www2.vm.box_url = "http://files.vagrantup.com/precise64.box"

    www2.vm.provision "shell", path: "apache.sh"

    www2.vm.network "forwarded_port", guest: 80, host: 7070

  end

end

With a multimachine setup, running vagrant up without arguments will bring 
up every machine deined in the Vagrantfile. This behavior applies to Vagrant's 
other management commands as well. To control an individual machine, add that 
machine's name to the command. For example, if we want to launch just the www1 
machine, we would use the following command:

vagrant up www1

Likewise, to destroy virtual machine, we would use the following command:

vagrant destroy www1

http:///


Chapter 10

[ 299 ]

Creating Storm-provisioning scripts
In Chapter 2, Coniguring Storm Clusters, we covered the manual installation of Storm 
and its dependencies on Ubuntu Linux. We can leverage the commands we used in 
Chapter 2, Coniguring Storm Clusters, by using them to create Vagrant provisioning 
scripts to automate what would otherwise be a manual process. If you don't 
understand some of the commands used in the provisioning scripts, refer to Chapter 
2, Coniguring Storm Clusters, for a more in-depth explanation.

ZooKeeper
ZooKeeper is available pre-packaged for most Linux platforms, which makes our 
installation script simple, letting the package manager do most of the work. The 
following is the command line to install ZooKeeper:

install-zookeeper.sh

And the commands to install ZooKeeper are as follows:

apt-get update

apt-get --yes install zookeeper=3.3.5* zookeeperd=3.3.5*

Storm
The Storm installation script is a little more complicated since it is not pre-packaged 
and must be installed manually. We'll take the commands we used in Chapter 2, 
Coniguring Storm Clusters, assemble them into a script, and parameterize them to the 
script so it expects a Storm version string as an argument. This will allow us to easily 
switch between different Storm versions without having to modify the installation 
script as shown in the following code snippet:

install-storm.sh

apt-get update

apt-get install -y unzip supervisor openjdk-6-jdk

/etc/init.d/supervisor stop

groupadd storm

useradd --gid storm --home-dir /home/storm --create-home --shell /bin/
bash storm

http:///


Storm in the Cloud

[ 300 ]

unzip -o /vagrant/$1.zip -d /usr/share/

chown -R storm:storm /usr/share/$1

ln -s /usr/share/$1 /usr/share/storm

ln -s /usr/share/storm/bin/storm /usr/bin/storm

mkdir /etc/storm

chown storm:storm /etc/storm

rm /usr/share/storm/conf/storm.yaml

cp /vagrant/storm.yaml /usr/share/storm/conf/

cp /vagrant/cluster.xml /usr/share/storm/logback/

ln -s /usr/share/storm/conf/storm.yaml /etc/storm/storm.yaml 

mkdir /var/log/storm

chown storm:storm /var/log/storm

The install-storm.sh script leverages the existence of the Vagrant shared 
directory (/vagrant). This allows us to keep the storm.yaml and logback.xml  
iles in a convenient location right next to the Vagrantfile.

In the storm.yaml ile, we will use hostnames instead of IP addresses and let 
Vagrant conigure the name resolution as shown in the following code snippet:

storm.yaml

storm.zookeeper.servers:

    - "zookeeper"

nimbus.host: "nimbus"

# netty transport

storm.messaging.transport: "backtype.storm.messaging.netty.Context"

storm.messaging.netty.buffer_size: 16384

storm.messaging.netty.max_retries: 10

storm.messaging.netty.min_wait_ms: 1000

storm.messaging.netty.max_wait_ms: 5000

drpc.servers:

  - "nimbus"

http:///


Chapter 10

[ 301 ]

Supervisord
The supervisord service is installed by the install-storm.sh script, but we  
still need to conigure it to manage the Storm daemons. Instead of creating  
separate coniguration iles for each service, we'll write a script that generates  
the supervisord coniguration with a service name as a parameter, as shown  
in the following code snippet:

configure-supervisord.sh

echo [program:storm-$1] | sudo tee -a /etc/supervisor/conf.d/storm-$1.
conf

echo command=storm $1 | sudo tee -a /etc/supervisor/conf.d/storm-$1.
conf

echo directory=/home/storm | sudo tee -a /etc/supervisor/conf.d/
storm-$1.conf

echo autorestart=true | sudo tee -a /etc/supervisor/conf.d/storm-$1.
conf

echo user=storm | sudo tee -a /etc/supervisor/conf.d/storm-$1.conf

The configure-supervisord.sh script expects a single argument representing 
the name of the Storm service to manage. For example, to generate a supervisord 
coniguration for the Nimbus daemon, you would invoke the script using the 
following command:

sh configure-supervisord.sh nimbus

The Storm Vagrantile
For our Storm cluster, we will create a cluster with one ZooKeeper node, one Nimbus 
node, and one or more Supervisor nodes. Because the Vagrantfile is written in 
Ruby, we have access to many of Ruby's language features, which will allow us to 
make the coniguration ile more robust. We will, for example, make the number of 
Supervisor nodes easily conigurable.

In the storm.yaml ile, we used hostnames rather than IP addresses, which means 
our machines must be able to resolve names to IP addresses. Vagrant does not come 
with a facility for managing entries in the /etc/hosts ile, but fortunately, there 
is a Vagrant plugin that does. Before we delve into the Vagrantfile for the Storm 
cluster, install the vagrant-hostmanager plugin (https://github.com/smdahlen/
vagrant-hostmanager) using the following command:

vagrant plugin install vagrant-hostmanager

http:///


Storm in the Cloud

[ 302 ]

The vagrant-hostmanager plugin will set up hostname resolution for all the 
machines in our cluster. It also has an option to add the name resolution between  
the host machine and virtual machines.

Next, let's look at the complete Vagrantfile and walk through it line by line:

require 'uri'

# Configuration

STORM_DIST_URL = "https://dl.dropboxusercontent.com/s/dj86w8ojecgsam7/
storm-0.9.0.1.zip"

STORM_SUPERVISOR_COUNT = 2

STORM_BOX_TYPE = "precise64"

# end Configuration

STORM_ARCHIVE = File.basename(URI.parse(STORM_DIST_URL).path)

STORM_VERSION = File.basename(STORM_ARCHIVE, '.*')

# Vagrantfile API/syntax version. Don't touch unless you know what 
you're doing!

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

  

  config.hostmanager.manage_host = true

  config.hostmanager.enabled = true

  config.vm.box = STORM_BOX_TYPE

  if(!File.exist?(STORM_ARCHIVE))

    `wget -N #{STORM_DIST_URL}`

  end

  

  config.vm.define "zookeeper" do |zookeeper|

    zookeeper.vm.network "private_network", ip: "192.168.50.3"

    zookeeper.vm.hostname = "zookeeper"

    zookeeper.vm.provision "shell", path: "install-zookeeper.sh"

  end

  config.vm.define "nimbus" do |nimbus|

    nimbus.vm.network "private_network", ip: "192.168.50.4"

    nimbus.vm.hostname = "nimbus"

    nimbus.vm.provision "shell", path: "install-storm.sh", args: 
STORM_VERSION

http:///


Chapter 10

[ 303 ]

    nimbus.vm.provision "shell", path: "config-supervisord.sh", args: 
"nimbus"

    nimbus.vm.provision "shell", path: "config-supervisord.sh", args: 
"ui"

    nimbus.vm.provision "shell", path: "config-supervisord.sh", args: 
"drpc"

    nimbus.vm.provision "shell", path: "start-supervisord.sh"

  end

  (1..STORM_SUPERVISOR_COUNT).each do |n|

    config.vm.define "supervisor#{n}" do |supervisor|

      supervisor.vm.network "private_network", ip: "192.168.50.#{4 + 
n}"

      supervisor.vm.hostname = "supervisor#{n}"

      supervisor.vm.provision "shell", path: "install-storm.sh", args: 
STORM_VERSION

      supervisor.vm.provision "shell", path: "config-supervisord.sh", 
args: "supervisor"

      supervisor.vm.provision "shell", path: "config-supervisord.sh", 
args: "logviewer"

      supervisor.vm.provision "shell", path: "start-supervisord.sh"

    end

  end

end

The irst line of the ile tells the Ruby interpreter to require the uri module, which 
we will use for URL parsing.

Next, we set up some variables representing the URL of the Storm distribution 
archive, the number of Supervisor nodes we want, and the name of the Vagrant  
box type for our virtual machines. These variables are intended to be changed by  
the user.

The STORM_ARCHIVE and STORM_VERSION values are set to the ilename and  
version name of the Storm distribution by parsing the distribution URL using  
Ruby's File and URI classes. These values will be passed as arguments to the 
provisioning scripts.

Next, we enter the main Vagrant coniguration section. We begin by coniguring  
the vagrant-hostmanager plugin as follows:

  config.hostmanager.manage_host = true

  config.hostmanager.enabled = true

http:///


Storm in the Cloud

[ 304 ]

Here, we are telling the vagrant-hostmanager plugin to manage the hostname 
resolution between the host machine and virtual machines and that it should  
manage the /etc/hosts iles on the virtual machines as well.

The next block checks to see whether the Storm distribution archive has already  
been downloaded; if not, it uses the wget command to download it as shown in  
the following code snippet:

  if(!File.exist?(STORM_ARCHIVE))

    `wget -N #{STORM_DIST_URL}`

  end

The preceding code will download the Storm archive to the same directory as the 
Vagrantfile, thus making it accessible to the provisioning scripts in the /vagrant 
shared directory.

The next two code blocks conigure ZooKeeper and Nimbus and are relatively 
straightforward. They contain two new directives we have not seen before:

    zookeeper.vm.network "private_network", ip: "192.168.50.3"

    zookeeper.vm.hostname = "zookeeper"

The zookeeper.vm.network directive signals Vagrant to assign a speciic IP address 
to the virtual machine using the VirtualBox host-only network adapter. The next line 
tells Vagrant to set the hostname on the virtual machine to a speciic value. Finally, 
we invoke the provisioning scripts appropriate for each node.

The inal block conigures the Supervisor node(s). The Ruby code creates a loop 
iterating from 1 to the value of STORM_SUPERVISOR_COUNT and allows you to set 
the number of Supervisor nodes in the cluster. It will dynamically set the virtual 
machine name, hostname, and IP address based on the number of Supervisor nodes 
speciied by the STORM_SUPERVISOR_COUNT variable.

Launching the Storm cluster
With our cluster deined in the Vagrantfile and our provisioning scripts in place, 
we're ready to launch the Vagrant cluster with vagrant up. With four machines and 
a considerable amount of software to install on each, this will take a while.

Once Vagrant has inished launching the cluster, you should be able to view the 
Storm UI from the host machine at http://nimbus:8080. To submit a topology to 
the cluster, you can do so with the following command:

storm jar myTopology.jar com.example.MyTopology my-topology -c nimbus.
host=nimbus

http:///


Chapter 10

[ 305 ]

Summary
In this chapter, we've just scratched the surface of deploying Storm in a cloud 
environment but hopefully introduced you to the many possibilities available, from 
deploying it to a hosted cloud environment such as Amazon EC2 to deploying it to  
a local cloud provider on your workstation or even an in-house hypervisor server.

We encourage you to explore both cloud hosting providers such as AWS as well 
as virtualization options such as Vagrant in more depth to better equip your Storm 
deployment options. Between the manual installation procedures introduced in 
Chapter 2, Coniguring Storm Clusters, and the technology introduced in this chapter, 
you should be well equipped to ind the development, test, and deployment solution 
that best its your needs.

http:///


http:///


Index

A

activate command  51
Adium

URL  98
Aggregator  83, 84
aggregators, Trident

about  82
Aggregator  83, 84
CombinerAggregator  82
ReducerAggregator  82

all grouping  27
Amazon

URL, for account signing up  280
Amazon EC2 (Amazon Elastic Compute 

Cloud)  280
Amazon Web Services (AWS)  269
AMI (Amazon Machine Image)  283
anatomy, Storm cluster  36
Apache jclouds

URL  285
Apache Kafka

about  97
URL  97

Apache Whirr
about  285
installing  286
Storm cluster, coniguring with  287
URL  285

append() method  100
application architecture

components  96
ApplicationMaster  252
application monitoring  96

architecture implementation
about  164
data model  164-167
ilters  171, 172
functions  171, 172
queue interaction  169, 170
recursive topology, examining  167, 168

architecture, Twitter client application
Kafka spout  127
titan-distributed graph database  128
Twitter client  127

Artiicial Intelligence (AI) system
about  154
use case, designing  154, 155

AWS account
setting up  280

AWS Management Console
about  281
SSH key pair, creating  282

B

base operating system
installing  41

BaseRichSpout class  14
batch analysis

performing, with Pig infrastructure  262
BatchCoordinator class  71
BatchCoordinator function  69
batches  69
batch processing mechanism  235
Blueprints API

about  130
used, for manipulating graph  131, 132

BoardSpout function  159

http:///


[ 308 ]

bolts
about  11
functionalities  11

Broker node  188
buildTopology() method  122

C

CAP theorem
about  128, 218
availability  128
consistency  128
partition tolerance  128

Cassandra
about  164
installing  135

Cassandra backend
Titan, starting with  136

Cassandra storage backend
Titan, setting up for  135

classes, Puppet  58
classpath command  53
clojars.org

URL  97
Clojure  40
cluster coniguration

automating  56
cluster coniguration, Whirr Storm  290
CombinerAggregator  82
complex event processing (CEP)  10
components, application architecture

Apache Kafka  97
Kafka spout  97
Logback Kafka appender  97
source application  97
XMPP server  98

components, TinkerPop stack
blueprints  130
frames  131
Furnace project  131
Gremlin  131
pipes  131
Rextser  131

components, topology in Storm cluster
executors (threads)  22
nodes (machines)  22

tasks (bolt/spout instances)  22
workers (JVMs)  22

components, Trident state implementation
StateFactory interface  144
State interface  144
StateUpdater interface  144

Compute nodes  188, 189, 237
coniguration, HDFS

DataNode, coniguring  258, 259
NameNode, starting  256, 258

coniguration, OAuth
about  139
TwitterStatusListener class  140, 142
TwitterStreamConsumer class  139

coniguration, YARN
about  259
ResourceManager, coniguring  259, 260

containers  252
create, read, update and delete (CRUD)  251
Curator

about  209
URL, for info  209

D

daemon commands, Storm
storm drpc  50
storm nimbus  50
storm supervisor  50
storm ui  50

DataNode
coniguring  258, 259

deactivate command  51
debug commands, Storm

classpath  53
localconfvalue  53
repl  52

declareOutputFields() method  15, 16
Deep Storage mechanism  189
DiagnosisEventSpout function  68, 70
directed acyclic graphs (DAG)  131
direct grouping  27
distributed locking mechanism  175

Distributed Remote Procedure Call. See  
DRPC

domain speciic language (DSL)  131

http:///


[ 309 ]

DRPC
about  158, 178
remote-deployment  183
working with  38

DRPC topology
about  178
code  179-182

Druid
about  187
setting up  237
Storm, integrating with  189
URL, for info  188

Druid MapReduce job
internals, examining  238-244

DruidState  200-203

E

EC2 instance
launching, manually  283, 284
logging in to  285

elements, Storm topology
bolts  11
spouts  10
streams  10

emitBatch() method  73
emitDirect() method  27
Emitter function  69, 72
environments

managing, with Puppet Hiera  60
events  10
exponentially weighted moving  

average  109
Extensible Messaging and Presence  

Protocol. See  XMPP

F

ields grouping  27
ilter  194
ilters, Trident  76, 77
Firehose  196
irewall rules, Whirr Storm

customizing  292, 293
FIX format (Financial Information eX-

change)  186
FIX messages  186

FIX Spout  191
forceStartOffsetTime() method  122
frames  131
function ields  76
functions, Trident  78-81
Furnace  131

G

game tree
enumerating  178

GenerateBoards function  160
getAverageIn()method  113
getAverage() method  113
getAverageRatePer() method  113
global grouping  27
Global Positioning System (GPS)  66
graph

about  129
accessing  130
manipulating, with Blueprints API  131, 132
manipulating, with Gremlin shell  132, 133
querying, with Gremlin  151

graph databases  129
graph data model  136, 137
GraphFactory

implementing  148
GraphFactory interface  144
GraphOfTheGodsFactory class  135
GraphState

GraphFactory interface  144
GraphStateFactory interface  145
GraphTupleProcessor interface  145
implementing  144

GraphState class  146
GraphStateFactory interface  145
GraphTupleProcessor

implementing  148
GraphTupleProcessor interface  145
GraphUpdater class  147
Gremlin

about  131
used, for querying graph  151

Gremlin Reference
URL  151

Gremlin shell
used, for manipulating graph  132, 133

http:///


[ 310 ]

Gremlin Wiki
URL  151

groupBy() method  84
guaranteed processing

about  30
reliability, in bolts  31, 32
reliability, in spouts  30, 31
reliability, in word count  32, 33

H

Hadoop
about  10, 236
Druid, setting up  237
MapReduce overview  236

HadoopDruidIndexer function  238-240
Hadoop infrastructure

coniguring  255
HDFS (Hadoop Distributed Filesystem)

about  235, 249
coniguring  255
examining  251

Hiera  60-62
Historical nodes  237
HTTP  153

I

ICD-9-CM
codes  73
URL, for codes  66

immutable tuple ield values  160
installation, Apache Whirr  286
installation, base operating system  41
installation, Cassandra  135
installation, Java  41
installation, Kafka  98, 99
installation, OpenFire  99
installation, Storm

about  42
on Linux  40

installation, Titan  133
installation, Vagrant  294
installation, ZooKeeper  42
install-storm.sh script   300
instance type  284
instant message (IM)  97

intrusion detection  96

J

jar command  50
Java

about  40
installing  41

JSON project function  108
JSONProjectFunction class  143

K

Kafka
installing  98, 99
log messages, sending to  100-105
URL, for downloading  98

Kafka spout  97, 107, 127
kill command  51
Kryo

URL  134

L

Lambda architecture
motivating  218, 219
realizing  221-223

Limbo  196
Linux

Storm, installing on  40
localconfvalue command  53
local/shufle grouping  27
log analysis topology

about  106
completing  120-122
iltering, on thresholds  115-117
JSON project function  108
Kafka spout  107
moving average, calculating  109, 110
moving average function, implementing  

114
notiications, sending with XMPP protocol  

117-119
running  123
sliding window, adding  110, 113

Logback Appender extension  127
logback framework  96

http:///


[ 311 ]

logback Kafka appender  97
log messages

sending, to Kafka  100-105

M

management commands, Storm
activate  51
deactivate  51
jar  50
kill  51
rebalance  52
remoteconfvalue  52

mandatory settings, Storm cluster
nimbus.host  47
storm.local.dir  47
storm.zookeeper.servers  46
supervisor.slots.ports  47

manifests, Puppet  56, 57
map function  236
MapReduce  236
mark() method  113
Master node  188, 237
Metcalfe's law

URL  126
Minimax algorithm

about  155, 156
goal  157

modules, Puppet  58
move() method  156
moving average

calculating  109, 110
moving average function

implementing  114
multimachine clusters

coniguring, with Vagrant  298
MySQL  189

N

NameNode
coniguring  256-258

Natural Language Processing (NLP)
about  220
analytics, examining  230-234

Negamax algorithm  157
nextTuple() method  15

n-grams
URL, for info  226

nimbus.childopts setting  48
nimbus daemon  36

overview  36
nimbus.host setting  47
nimbus node  292
NodeManager

about  252
coniguring  261

none grouping  27
non-transactional spouts  69
non-transactional state  190
non-transactional system

integrating  187-190
notiications

sending, with XMPP  117-119

O

OAuth
coniguring  139

online advertising  96
On-Line Analytical Processing (OLAP)  185, 

217
On-Line Transactional Processing (OLTP)  

185, 217
opaque spouts  69
Opaque state  90, 92
Opaque Transactional state  190
OpenFire

about  99
installing  99

OpenFire XMPP server
URL  98

operations, Trident
about  75
ilters  76, 77
functions  78-81

optional settings, Storm cluster  47
OutbreakDetectionTopology class  93
OutbreakTrendState object  91

P

parallelism
in Storm  22

http:///


[ 312 ]

Parallels Desktop
URL, for downloading  41

partitionPersist() method  86
partition status

implementing, in ZooKeeper  209, 211
PersistenceFunction  228, 229
Pidgin

URL  98
Pig  248
Pig infrastructure

batch analysis, performing with  262
Pipes  131
Puppet

about  56
classes  58
manifests  56, 57
modules  58
templates  59
URL  56

Puppet Hiera
used, for managing environments  60

Python  40

Q

queue interaction  169, 170

R

read-before-write paradigm
about  161, 162
addressing  175

read-before-write, Scoring Topology
distributed locking  175
retry when stale approach  175, 176

real-time aggregate analytics
examining  212-215

real-time analysis
performing, with Storm-YARN infrastruc-

ture  263-268
Real-time nodes  188
real-time trend analysis

about  95
use case  96

rebalance command  52
recursion implementation

immutable tuple ield values  160

output to multiple streams  161
read-before-write paradigm  161, 162
return values, accessing for function  160
tuple acknowledgement, in recursion  160
upfront ield declaration  160

Recursion Topology  163
recursive topology

implementing  167, 168
reduce function  236
ReducerAggregator  82
reliability, in bolts  31, 32
reliability, in spouts  30, 31
reliability, in word count  32, 33
remoteconfvalue command  52
remote-deployment, DRPC  183
Repeat Transactional state  89, 190
repl command  52
report bolt

about  12
implementing  17

REpresentational State Transfer (REST)  186
ResourceManager  252

coniguring  259, 260
retry when stale approach  175, 176
Rextser  131

S

sample application
about  99
log messages, sending to Kafka  100-105

sbt (Scala Build Tool)
about  99
URL  99

Scoring Function  163
Scoring Queue  163
Scoring Topology

about  163
examining  173, 174
executing  176, 178
game tree, enumerating  178
read-before-write, addressing  175

sensor data  65
sentence spout

implementing  14, 15
SentenceSpout class

about  12

http:///


[ 313 ]

report bolt  12
split sentence bolt  12
word count bolt  12

Service Level Agreements (SLA)  153
setNumWorkers() method  23
shufle grouping  27
SLF4J (Simple Logging Facade for Java)

URL  99
sliding window  110
social media use case  126
software installation, Twitter client  

application
Titan  133-135

split sentence bolt
about  12
implementing  15

spouts
about  10, 192, 194
potential data sources  10

spouts, Trident
about  69
BatchCoordinator class  71
Emitter function  72
interface  69
non-transactional  69
opaque  69
transactional  69

SQL2Gremlin
URL  151

SSH key pair
creating  282

Start of Header (SOH)  186
StateFactory interface  144
State interface  144
stateQuery() method  86, 87
states, Trident

about  85-87
Opaque state  90-92
Repeat Transactional state  89

states, Zookeeper
Completed  196
inProgress  196
Limbo  196

StateUpdater interface  144
Storm

about  65, 299, 300
coniguring  46

daemon commands  49
installing  42
installing, on Linux  40
integrating, with Druid  189
local debug/development commands  52
management commands  50
stream groupings  26-28
technology stack  40

Storm, and Druid integration
architecture, implementing  200
implementation, examining  211, 212

Storm architecture
challenges, solving  162, 163
design challenges, examining  158
establishing  158
recursion, implementing  159

Storm cluster
anatomy  36
coniguring, with Apache Whirr  287
launching  288, 304
mandatory settings  46
optional settings  47
topologies, submitting to  53, 55

Storm daemons
running  43-45

storm drpc command  50
Storm executable

about  49
setting up, on workstation  49

StormFirehose object
implementing  204-208

storm.local.dir setting  47
storm nimbus command  50
Storm, on Hadoop for advertising analysis

architecture, establishing  249-251
batch analysis, executing  269, 270
deploying  261, 276
executing  276
infrastructure, coniguring  254-261
performing  268
real-time analysis, executing  270-275
use case, examining  248

Storm provisioning scripts
creating  299
Storm  299, 300
supervisord service  301
ZooKeeper  299

http:///


[ 314 ]

storm supervisor command  50
Storm UI  39, 40
storm ui command  50
Storm Vagrantile  301-304
Storm-YARN infrastructure

real-time analysis, performing with  263-268
Storm-YARN project

about  247
URL  254

storm.zookeeper.servers setting  46
stream groupings, Storm

about  26
all grouping  27
direct grouping  27
ields grouping  27
global grouping  27
local/shufle grouping  27
none grouping  27
shufle grouping  27

Streaming Quotient Filter (SQF)  274
submitTopology() method  23
supervisor.childopts setting  48
supervisor daemon

about  36
working with  37

supervisord service
about  301
Storm Vagrantile  301-304

supervisor node  292
supervisor.slots.ports setting  47
supply chain management  96

T

technology stack, Storm
about  40
Clojure  40
Java  40
Python  40

templates, Puppet  59
tic-tac-toe game

about  154
sample tree  155

TinkerPop  130
TinkerPop stack

components  130, 131

Titan
about  128
installing  133
setting up, for Cassandra storage backend  

135
starting, with Cassandra backend  136

titan-distributed graph database  128
topologies

submitting, to Storm cluster  53-55
topologies, Trident

about  67
code  67, 68
executing  93

topology  10
topology.enable.message.timeouts setting  

48
topology, inancial analytics

about  191
code  191
ilter  194
spout  192, 194
state design  195-198

topology.max.spout.pending setting  48
topology.message.timeout.secs setting  48
transactional spouts  69
Trident  65
Trident aggregators

about  82
Aggregator  83, 84
CombinerAggregator  82
ReducerAggregator  82

Trident ilters  76, 77
Trident functions  78-81
Trident operations

about  75
ilters  76, 77
functions  78-81

TridentSpout function  70
Trident spouts

about  69
BatchCoordinator class  71
Emitter function  72
interface  69
non-transactional  69
opaque  69
transactional  69

http:///


[ 315 ]

Trident state  85-87
Trident topologies

about  65, 67
code  67, 68
executing  93

tuple  10
TweetEmitter  225
TweetSplitterFunction  226
Twitter4J Client

setting up  139
Twitter4J java library

URL  127
Twitter client  127
Twitter client application

architecture  126
software installation  133

Twitter graph topology
about  142
JSONProjectFunction class  143

TwitterGraphTopology class  149, 150
TwitterSpout  225
TwitterStatusListener class  140, 142
Twitter stream

connecting to  138
TwitterStreamConsumer class  139

U

ui.childopts setting  48
ui.port setting  48
upfront ield declaration  160
use case

designing  223, 224
designing, for artiicial intelligence  154, 155
examining  220

use case design
implementing  224

use case, real-time trend analysis  96
use case, Trident topologies

examining  66

V

Vagrant
about  294
installing  294
multimachine clusters, coniguring  

with  298

shared ilesystem  296
URL  294
virtual machine, launching  294, 295

Vagrantile  296
vagrant-hostmanager plugin  302, 303
vagrant init command  296
Vagrant provisioning  297
VirtualBox

URL  294
URL, for downloading  41

virtual machine, Vagrant
launching  294, 295

VMWare
URL  294
URL, for downloading  41

W

whirr.cluster-name property  287
whirr destroy-cluster command  289
whirr.image-id property  288
whirr.instance-template property  287
Whirr Storm

about  289
cluster coniguration  290
coniguration, customizing  291
irewall rules, customizing  292, 293
setting up  289
URL  289

word count bolt
about  12
implementing  16

word count topology
development environment, setting up  13
implementing  13, 19-21
report bolt, implementing  17
sentence spout, implementing  14, 15
split sentence bolt, implementing  16
word count bolt, implementing  16

word count topology data low
about  11
Sentence spout  12

WordCountTopology parallelism
about  23
executors, coniguring  24-26
tasks, coniguring  24-26
workers, adding to topology  23

http:///


[ 316 ]

WordFrequencyFunction  226, 228
worker.childopts setting  48
Work Queue  163
Work Spout  163
workstation

Storm executable, setting up on  49

X

XMPP
about  98, 117
URL  98
used, for sending notiications  117-119

Y

YARN (Yet Another Resource Negotiator)
about  249
coniguring  259
examining  252-254

Z

ZooKeeper
about  38, 175, 189. 299
installing  42
partition status, implementing  209, 211

http:///


Thank you for buying  

Storm Blueprints: Patterns for Distributed 

Real-time Computation

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more speciic and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licenses, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

http:///


Storm Real-time Processing 

Cookbook 
ISBN: 978-1-78216-442-5             Paperback: 254 pages

Eficiently process unbounded streams of data in real 
time

1. Learn the key concepts of processing data in 
real time with Storm.

2. Concepts ranging from Log stream processing 
to mastering data management with Storm.

3. Written in a Cookbook style, with plenty of 
practical recipes with well-explained code 
examples and relevant screenshots and 
diagrams.

Hadoop MapReduce Cookbook
ISBN: 978-1-84951-728-7            Paperback: 300 pages

Recipes for analyzing large and complex datasets 
with Hadoop MapReduce

1. Learn to process large and complex data sets, 
starting simply, then diving in deep

2. Solve complex big data problems such as 
classiications, inding relationships, online 
marketing, and recommendations

3. More than 50 Hadoop MapReduce recipes, 
presented in a simple and straightforward 
manner, with step-by-step instructions and real 
world examples

Please check www.PacktPub.com for information on our titles

http:///


Big Data Analytics with R and 

Hadoop
ISBN: 978-1-78216-328-2            Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop 
to turn your data analytics into big data analytics

1. Write Hadoop MapReduce within R 

2. Learn data analytics with R and the Hadoop 
platform 

3. Handle HDFS data within R

4. Understand Hadoop streaming with R 

Scaling Big Data with Hadoop and 

Solr
ISBN: 978-1-78328-137-4            Paperback: 144 pages

Learn exciting new ways to build eficient, high 
performance enterprise search repositories for big 
data using Hadoop and Solr

1. Understand the different approaches of making 
Solr work on Big Data as well as the beneits 
and drawbacks

2. Learn from interesting, real-life use cases for 
big data search along with sample code

3. Work with the Distributed Enterprise Search 
without prior knowledge of Hadoop and Solr

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Distributed Word Count
	Introducing elements of a Storm 
topology – streams, spouts, and bolts
	Streams
	Spouts
	Bolts

	Introducing the word count topology data flow
	Sentence spout
	Introducing the split sentence bolt
	Introducing the word count bolt
	Introducing the report bolt


	Implementing the word count topology
	Setting up a development environment
	Implementing the sentence spout
	Implementing the split sentence bolt
	Implementing the word count bolt
	Implementing the report bolt
	Implementing the word count topology

	Introducing parallelism in Storm
	WordCountTopology parallelism
	Adding workers to a topology
	Configuring executors and tasks


	Understanding stream groupings
	Guaranteed processing
	Reliability in spouts
	Reliability in bolts
	Reliable word count

	Summary

	Chapter 2: Configuring Storm Clusters
	Introducing the anatomy of a Storm cluster
	Understanding the nimbus daemon
	Working with the supervisor daemon
	Introducing Apache ZooKeeper
	Working with Storm's DRPC server
	Introducing the Storm UI

	Introducing the Storm technology stack
	Java and Clojure
	Python

	Installing Storm on Linux
	Installing the base operating system
	Installing Java
	ZooKeeper installation
	Storm installation
	Running the Storm daemons
	Configuring Storm
	Mandatory settings
	Optional settings
	The Storm executable
	Setting up the Storm executable on a workstation
	The daemon commands
	Nimbus
	Supervisor
	UI
	DRPC

	The management commands
	Jar
	Kill
	Deactivate
	Activate
	Rebalance
	Remoteconfvalue

	Local debug/development commands
	REPL
	Classpath
	Localconfvalue


	Submitting topologies to a Storm cluster
	Automating the cluster configuration
	A rapid introduction to Puppet
	Puppet manifests
	Puppet classes and modules
	Puppet templates
	Managing environments with Puppet Hiera
	Introducing Hiera

	Summary

	Chapter 3: Trident Topologies and Sensor Data
	Examining our use case
	Introducing Trident topologies
	Introducing Trident spouts
	Introducing Trident operations – filters and functions
	Introducing Trident filters
	Introducing Trident functions

	Introducing Trident aggregators – Combiners and Reducers
	CombinerAggregator
	ReducerAggregator
	Aggregator

	Introducing the Trident state
	The Repeat Transactional state
	The Opaque state

	Executing the topology
	Summary

	Chapter 4: Real-time Trend Analysis
	Use case
	Architecture
	The source application
	The logback Kafka appender
	Apache Kafka
	Kafka spout
	The XMPP server

	Installing the required software
	Installing Kafka
	Installing OpenFire

	Introducing the sample application
	Sending log messages to Kafka

	Introducing the log analysis topology
	Kafka spout
	The JSON project function
	Calculating a moving average
	Adding a sliding window
	Implementing the moving average function
	Filtering on thresholds
	Sending notifications with XMPP

	The final topology
	Running the log analysis topology
	Summary

	Chapter 5: Real-time Graph Analysis
	Use case
	Architecture
	The Twitter client
	Kafka spout
	A titan-distributed graph database

	A brief introduction to graph databases
	Accessing the graph – the TinkerPop stack
	Manipulating the graph with the Blueprints API
	Manipulating the graph with the Gremlin shell

	Software installation
	Titan installation

	Setting up Titan to use the Cassandra storage backend
	Installing Cassandra
	Starting Titan with the Cassandra backend

	Graph data model
	Connecting to the Twitter stream
	Setting up the Twitter4J client
	The OAuth configuration
	The TwitterStreamConsumer class
	The TwitterStatusListener class


	Twitter graph topology
	The JSONProjectFunction class

	Implementing GraphState
	GraphFactory
	GraphTupleProcessor
	GraphStateFactory
	GraphState
	GraphUpdater

	Implementing GraphFactory
	Implementing GraphTupleProcessor
	Putting it all together – the TwitterGraphTopology class
	The TwitterGraphTopology class

	Querying the graph with Gremlin
	Summary

	Chapter 6: Artificial Intelligence
	Designing for our use case
	Establishing the architecture
	Examining the design challenges
	Implementing the recursion
	Accessing the function's return values
	Immutable tuple field values
	Upfront field declaration
	Tuple acknowledgement in recursion
	Output to multiple streams
	Read-before-write

	Solving the challenges

	Implementing the architecture
	The data model
	Examining the recursive topology
	The queue interaction
	Functions and filters
	Examining the Scoring Topology
	Addressing read-before-write
	Enumerating the game tree

	Distributed Remote Procedure Call (DRPC)
	Remote deployment


	Summary

	Chapter 7: Integrating Druid for  Financial Analytics
	Use case
	Integrating a non-transactional system
	The topology
	The spout
	The filter
	The state design

	Implementing the architecture
	DruidState
	Implementing the StormFirehose object
	Implementing the partition status in ZooKeeper

	Executing the implementation
	Examining the analytics
	Summary

	Chapter 8: Natural Language Processing
	Motivating a Lambda architecture
	Examining our use case
	Realizing a Lambda architecture
	Designing the topology for our use case
	Implementing the design
	TwitterSpout/TweetEmitter
	Functions
	TweetSplitterFunction
	WordFrequencyFunction
	PersistenceFunction


	Examining the analytics
	Batch processing / historical analysis
	Hadoop
	An overview of MapReduce
	The Druid setup
	HadoopDruidIndexer


	Summary

	Chapter 9: Deploying Storm on Hadoop for Advertising Analysis
	Examining the use case
	Establishing the architecture
	Examining HDFS
	Examining YARN

	Configuring the infrastructure
	The Hadoop infrastructure
	Configuring HDFS
	Configuring the NameNode
	Configuring the DataNode
	Configuring YARN
	Configuring the NodeManager


	Deploying the analytics
	Performing a batch analysis with the Pig infrastructure
	Performing a real-time analysis with the Storm-YARN infrastructure

	Performing the analytics
	Executing the batch analysis
	Executing real-time analysis

	Deploying the topology
	Executing the topology
	Summary

	Chapter 10: Storm in the Cloud
	Introducing Amazon Elastic Compute Cloud (EC2)
	Setting up an AWS account
	The AWS Management Console
	Creating an SSH key pair

	Launching an EC2 instance manually
	Logging in to the EC2 instance


	Introducing Apache Whirr
	Installing Whirr

	Configuring a Storm cluster with Whirr
	Launching the cluster

	Introducing Whirr Storm
	Setting up Whirr Storm
	Cluster configuration
	Customizing Storm's configuration
	Customizing firewall rules


	Introducing Vagrant
	Installing Vagrant
	Launching your first virtual machine
	The Vagrantfile and shared filesystem
	Vagrant provisioning
	Configuring multimachine clusters with Vagrant


	Creating Storm-provisioning scripts
	ZooKeeper
	Storm
	Supervisord
	The Storm Vagrantfile
	Launching the Storm cluster


	Summary

	Index

