
■
■
■

■
■

■

■
■

Jonathon Manning,
Paris Buttield-Addison & Tim Nugent

 Swift
Development
with Cocoa
DEVELOPING FOR THE MAC AND IOS APP STORES

www.allitebooks.com

http://www.allitebooks.org

MACINTOSH/IPAD & IPHONE

Swift Development with Cocoa

ISBN: 978-1-491-90894-5

US $39.99 CAN $41.99

Twitter: @oreillymedia

facebook.com/oreilly

Ready to build apps for iPhone, iPad, and Mac now that Swift has landed? If

you’re an experienced programmer who’s never touched Apple developer

tools, this hands-on book shows you how to use the Swift language to

make incredible iOS and OS X apps, using Cocoa and Cocoa Touch.

Learn how to use Swift in a wide range of real-world situations, with

Cocoa features such as EventKit and Core Animation. You’ll pick up Swift

language features and syntax along the way, and understand why using

Swift (instead of Objective-C) makes iOS and Mac app development easier,

faster, and safer. You’ll also work with several exercises to help you practice

as you learn.

 ■ Learn the OS X and iOS application lifecycle

 ■ Use storyboards to design adaptive interfaces

 ■ Explore graphics systems, including the built-in 2D and 3D

game frameworks

 ■ Display video and audio with AVFoundation

 ■ Store data locally with the ilesystem, or on the network with

iCloud

 ■ Display lists or collections of data with table views and

collection views

 ■ Build apps that let users create, edit, and work with documents

 ■ Use MapKit, Core Location, and Core Motion to interact with

the world

Jonathon Manning , cofounder of Secret Lab, is a mobile software engineer,

game designer, and computing researcher. Follow him on Twitter at @desplesda.

Paris Buttield-Addison, also a cofounder of Secret Lab, is a mobile software engineer,

game designer, and computing researcher. Follow him on Twitter at @parisba.

Tim Nugent, not a cofounder of Secret Lab, is a mobile app developer, game

designer, PhD student, and author. Follow him on Twitter at @The_McJones.

www.allitebooks.com

http://www.allitebooks.org

Jonathon Manning, Paris Buttfield-Addison,

and Tim Nugent

Swift Development with Cocoa

www.allitebooks.com

http://www.allitebooks.org

Swift Development with Cocoa

by Jonathon Manning, Paris Buttfield-Addison, and Tim Nugent

Copyright © 2015 Secret Lab. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis

Production Editor: Matthew Hacker

Copyeditor: Jasmine Kwityn

Proofreader: Charles Roumeliotis

Indexer: Wendy Catalano

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Illustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition:

2014-12-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491908945 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Swift Development with Cocoa, the cover
image of an Australasian gannet, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-491-90894-5

[M]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491908945
http://www.allitebooks.org

Table of Contents

Preface. xi

1. Cocoa Development Tools. 1
The Mac and iOS Developer Programs 1

Registering for a Developer Program 2
Downloading Xcode 3

Creating Your First Project with Xcode 4
The Xcode Interface 7

Developing a Simple Swift Application 13
Designing the Interface 13
Connecting the Code 15

Using the iOS Simulator 17
Testing iOS Apps with TestFlight 19

2. Programming with Swift. 21
The Swift Programming Language 21
Playgrounds 23
Variables and Constants 24
Types 26

Tuples 28
Arrays 28
Dictionaries 29

Control Flow 30
Switches 33

Functions and Closures 35
Using Functions as Variables 37
Closures 39

Objects 40
Inheritance 42

iii

www.allitebooks.com

http://www.allitebooks.org

Initialization and Deinitialization 42
Properties 44
Protocols 46
Extensions 47
Access Control 49
Operators 50
Generics 51

Interoperating with Objective-C 52
Using Objective-C and Swift in the Same Project 52

Using Swift Objects in Objective-C 53
Using Objective-C Objects in Swift 53

Modules 54
Memory Management 54
Working with Strings 55

Comparing Strings 56
Searching Strings 57

Data 57
Loading Data from Files and URLs 57
Serialization and Deserialization 58

Design Patterns in Cocoa 59
Model-View-Controller 59
Delegation 60

3. Applications on OS X and iOS. 63
What Is an Application? 63

Applications, Frameworks, Utilities, and More 64
What Are Apps Composed Of? 65
Using NSBundle to Find Resources in Applications 67

The Application Life Cycle 68
OS X Applications 68
iOS Applications 70

The Application Sandbox 75
Application Restrictions 76

Notifications with NSNotification 78

4. Graphical User Interfaces. 81
Interfaces in OS X and iOS 81
MVC and Application Design 82
Nib Files and Storyboards 82

Structure of a Nib File 83
Storyboards 86
Outlets and Actions 87

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

How Nib Files and Storyboards Are Loaded 88
Constructing an Interface 89

Guidelines and Constraints 90
Building an App with Nibs and Constraints 91
Interfaces on iOS 95

Launch Screen Files 97
UI Dynamics 98

UI and Gravity 98
Snapping UI 99

Core Animation 100
Layers 101
Animations 102

5. Closures and Operation Queues. 105
Closures in Cocoa 106
Concurrency with Operation Queues 107
Operation Queues and NSOperation 108
Performing Work on Operation Queues 108
Putting It All Together 109

6. Drawing Graphics in Views. 115
How Drawing Works 115
The Pixel Grid 117

Retina Displays 118
Pixels and Screen Points 119

Drawing in Views 120
Frame Rectangles 120
Bounds Rectangles 121

Building a Custom View 122
Filling with a Solid Color 123
Working with Paths 124
Creating Custom Paths 126
Multiple Subpaths 128
Shadows 129
Gradients 132
Transforms 135

7. SpriteKit. 139
SpriteKit’s Architecture 139
Making an App That Uses SpriteKit 140
Working with SpriteKit Scenes 141
SpriteKit Nodes 143

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Putting Sprites in Scenes 145
Responding to Touches 146
Working with Textures 147
Texture Atlases 148
Working with Text 149
Animating Content with Actions 150
Using Shape Nodes 151
Using Image Effect Nodes 153
Adding Physics to SpriteKit Objects 154
Adding Joints to SpriteKit Objects 155
Lighting SpriteKit Scenes 156
Constraints 157
Using Shaders in SpriteKit 157
Using SpriteKit Editor 160

8. SceneKit. 163
SceneKit Structure 164
Working with SceneKit 165
Adding a SceneKit View 165
Adding a Scene 166
Adding a Camera 167
Adding a 3D Object 168
Adding Lights 169
Animating Content in the Scene 170
Creating Text Geometry 172

Combining Animations 173
Working with Materials 174

Normal Mapping 176
Hit Testing 178
Constraints 181
Loading Data from COLLADA Files 182
Adding Physics to the Scene 185

9. Audio and Video. 189
AV Foundation 189
Playing Video with AVPlayer 190

AVPlayerLayer 191
Putting It Together 191
AVKit 195
AVKit on iOS 197
Playing Sound with AVAudioPlayer 199

Speech Synthesis 200

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Working with the Photo Library 201
Capturing Photos and Video from the Camera 202
Building a Photo Application 204
The Photo Library 207

10. iCloud and Data Storage. 209
Preferences 209

Registering Default Preferences 210
Accessing Preferences 211
Setting Preferences 211

Working with the Filesystem 212
Using NSFileManager 213
File Storage Locations 217

Working with the Sandbox 217
Enabling Sandboxing 217
Open and Save Panels 218
Security-Scoped Bookmarks 219

iCloud 220
What iCloud Stores 221
Setting Up for iCloud 222
Testing Whether iCloud Works 222
Storing Settings 223

Handling External Changes 224
The iOS Counterpart 225

iCloud Storage 228
iCloud Storage on OS X 228
iCloud Storage on iOS 233

Document Pickers 235
Using iCloud Well 239

11. Cocoa Bindings. 241
Binding Views to Models 241
A Simple Bindings App 242
Binding to Controllers 245
Array and Object Controllers 246
A More Complex Bindings App 247

12. Table Views and Collection Views. 255
Data Sources and Delegates 255
Table Views 256

UITableView on iOS 256
NSTableView on OS X 264

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Collection Views 270
UICollectionView on iOS 270

13. Document-Based Applications. 275
The NSDocument and UIDocument Classes 276
Document Objects in MVC 276

Kinds of Documents 277
The Role of Documents 278

Document-Based Applications on OS X 278
Autosaving and Versions 279
Representing Documents with NSDocument 279
Saving Simple Data 280
Saving More Complex Data 282

Document-Based Applications on iOS 286

14. Networking. 293
Connections 293

NSURL 294
NSURLRequest 295
NSURLSession 296
NSURLResponse and NSHTTPURLResponse 296

Building a Networked Application 297
Bonjour Service Discovery 299

Browsing for Shared iTunes Libraries 299
Multipeer Connectivity 301

15. Working with the Real World. 307
Working with Location 307

Location Hardware 308
The Core Location Framework 310
Working with Core Location 311

Geocoding 314
Region Monitoring and iBeacons 317
Locations and Privacy 320
Maps 320

Using Maps 320
Annotating Maps 321
Maps and Overlays 322

Device Motion 324
Working with Core Motion 325
Using the Built-in Altimeter 329
Using the Pedometer 330

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Printing Documents 331
Printing on OS X 332
Printing on iOS 333

Game Controllers 334
App Nap 336
Authenticating Using Touch ID 338
Handoff 342

16. EventKit. 349
Understanding Events 349
Accessing the Event Store 350
Accessing Calendars 351
Accessing Events 352
Working with Events 353
Building an Events Application 354
User Privacy 359

17. Instruments and the Debugger. 361
Getting Started with Instruments 362

The Instruments Interface 364
Observing Data 365
Adding Instruments from the Library 366

Fixing Problems Using Instruments 368
Retain Cycles and Leaks 372
Using the Debugger 374

Setting Breakpoints 374
Inspecting Memory Contents 377
Working with the Debugger Console 378

View Debugging 378
The Testing Framework 381

Writing Tests 381
Writing Asynchronous Tests 383
Performance-Testing Blocks with Tests 383

Debug Gauges 384
Performance Optimization 384

18. Sharing and Notifications. 387
Sharing 387
Sharing on iOS 390
Sharing on OS X 393
Notifications 393

Registering Notification Settings 394

Table of Contents | ix

Push Notifications 400
What Happens When a Notification Arrives 401

Sending Push Notifications 402
Setting Up to Receive Push Notifications 403
Receiving Push Notifications 404
Local Notifications 406

19. Nonstandard Apps. 409
Command-Line Tools 409
Preference Panes 410

How Preference Panes Work 411
Preference Domains 412
Building a Sample Preference Pane 413

Status Bar Items 415
Building a Status Bar App 415

iOS Apps with Multiple Windows 417

20. Working with Text. 421
Internationalization and Localization 421

Strings Files 421
Creating a Sample Localized Application 422

Formatting Data with NSFormatter 430
Testing Different Locales 432

Formatting Numbers, Lengths, Mass, Energy, and Data 433
NSNumberFormatter 433
NSEnergyFormatter, NSMassFormatter, and NSLengthFormatter 434
NSByteCountFormatter 435

Detecting Data with NSDataDetector 436
TextKit 438

Index. 441

x | Table of Contents

Preface

We’ve been developing for the Cocoa framework since Mac first supported it. In that
time, we’ve seen the ecosystem evolve from a small programming niche to one of the
most important and influential development environments in the world. In our earlier
books—which focused on Apple’s other programming language, Objective-C—with
each revised edition, we’d boast about how Objective-C was climbing the language
charts, hovering around the third most popular programming language in the TIOBE
index.

We can’t yet boast that Swift, the language used in this book, has reached the top five
languages (or even the top ten), but it’s definitely climbing the charts, and will almost
certainly ascend to similarly lofty heights in the future.

When Apple announced Swift during its Worldwide Developers Conference (WWDC)
in June 2014, we were amazed and quite excited. Because Apple keynotes take place in
the middle of the night, Australian time, we hurriedly organized a 6 a.m. Skype meeting
with our ever-patient editor, Rachel, and kicked off planning for this book. In the months
that followed, we built a number of projects in Swift, to become familiar with the lan‐
guage and the way it was designed to be used.

Over the years, we’ve built a lot of large, complex iOS and OS X software, shipping it to
millions upon millions of users along the way. We’ve picked up a deep understanding
of the toolset, frameworks, and programming language—an understanding that is cru‐
cial to building the best possible software for iOS and OS X. Becoming familiar with the
Swift way of doing things with Cocoa and Cocoa Touch was important, so we took a
few months to work it all out. We wanted to make sure the book didn’t just explain Swift,
but explained how to do things the right way with Swift and Cocoa/Cocoa Touch.

Apple constantly changes things, as evidenced by Swift, as well as the recent introduction
of the powerful iPhone 6 and 6 Plus, and the ever-increasing power of iPads. This book
will give you the knowledge, confidence, and appreciation for iOS and OS X develop‐
ment with Cocoa, Cocoa Touch, and Swift, and the current way things work.

xi

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Objective-C to Swift
The original Macintosh computers were mostly programmed in C, using a library called
Toolbox. When Apple acquired NeXT Computer, Inc., and replaced its operating system
with Mac OS X, Toolbox was replaced with Cocoa, which was written using the
Objective-C programming language.

Objective-C was designed around the same time as its chief competitor, C++. Both
languages are descendants of the C programming language, and are object-oriented
programming languages. This means that, while C has separate functions and data
structures, object-oriented languages like C++ and Objective-C combine related func‐

tions and data into objects. For example, an object named Car might contain information
about its color, its speed, and the number of doors; it might also contain functions like

drive, stop, and openDoor. This close connection of data to functions that work with
that data lets you think about your software as a collection of modular tools, rather than
thinking about the software as a single large entity.

Objective-C is a very powerful language. Its primary difference from C++ is that it is a
dynamic language. In any object-oriented language, the binding of functions to the
specific data that they work with needs to either happen when the code is compiled
(static binding), or at runtime (dynamic binding). C++ uses static binding, which makes
runtime performance faster, but reduces flexibility. Objective-C uses dynamic binding,
which is slightly slower, but dramatically increases the flexibility of the language.

However, Objective-C has its own problems. Because it’s based on C, it inherited a
number of quirks from its parent language, such as the preprocessor and pointer arith‐
metic (to name only a couple examples). These features, though powerful, tend to make
code less readable and safe. Apple has done a good job of keeping the language up to
date, but even die-hard fans of the language (which your humble authors consider
themselves to be) see the language as getting a bit rusty.

This is where Swift comes in. Swift is a new language, designed to make programming
iOS and Mac applications easier, faster, and safer. It’s designed to be easier to learn and
more resilient to programmer error than Objective-C; indeed, Apple described it as
“Objective-C without the C.” Because Swift is built and compiled with LLVM (the same
toolset used by Objective-C), and uses the Objective-C runtime, you can write an app
that uses C, Objective-C, and Swift.

Swift has a lot of very modern programming language features, including things like
generics, type inference, type safety, closures, tuples, and automatic memory manage‐
ment. Swift is an evolving language, and will change over time, but it is the future of
software development for Apple’s platforms! In this book, you’ll learn how to use Swift
in real-world situations, and take advantage of the features in iOS and OS X to make
your apps amazing.

xii | Preface

Audience
This book is solely focused on Swift, and does not cover the use of Objective-C. We
might mention it occasionally, but we don’t expect you to know how to use it.

We assume that you’re a reasonably capable programmer, but we don’t assume you’ve
ever developed for iOS or OS X, or used Swift or Objective-C before. We assume that
you’re fairly comfortable navigating OS X and iOS as a user, though.

Organization of This Book
In this book, we’ll be talking about Cocoa and Cocoa Touch, the frameworks used on
OS X and iOS, respectively. Along the way, we’ll also be covering Swift, including its
syntax and features.

Pretty much every chapter contains practical exercises that you can follow along with.
The early chapters cover general topics, such as setting up a development environment
and coming to grips with the Swift language, while later chapters cover specific features
of Cocoa and Cocoa Touch.

Here is a concise breakdown of the material each chapter covers:

Chapter 1, Cocoa Development Tools
This chapter introduces Cocoa and Cocoa Touch, the frameworks used on OS X
and iOS. It introduces Xcode, the integrated development environment (IDE) that
you’ll be using while coding for these platforms. This chapter also covers the Apple
Developer Programs, which are necessary if you want to distribute software on the
Mac or iTunes App Stores.

Chapter 2, Programming with Swift
This chapter introduces and explores the Swift programming language, the features
of the language, and the design patterns used for Swift development with Cocoa
and Cocoa Touch. It also explores the basic data types (like strings, arrays, and
dictionaries).

Chapter 3, Applications on OS X and iOS
This chapter discusses how applications are assembled and operate on Mac and iOS
devices. In this chapter, we’ll talk about the application life cycle on both platforms,
as well as how sandboxing affects application access to data and resources.

Chapter 4, Graphical User Interfaces
This chapter demonstrates how user interfaces are loaded and presented to the user.
It introduces two of the most powerful concepts provided by Cocoa, nibs and
storyboards, which are predesigned and preconfigured user interfaces, and which
can be directly connected to your code. This chapter also touches on Core

Preface | xiii

Animation, the animation system used on OS X and iOS, and UI Dynamics, used
for adding physics to your user interfaces.

Chapter 5, Closures and Operation Queues
This chapter introduces closures, which are an incredibly powerful feature of the
Swift language that allows you to store code in variables. Closures are functions that
can be stored in variables and passed around like values. This makes things like
callbacks very simple to implement. This chapter also introduces operation queues,
which are a straightforward way to work with concurrency without having to deal
with threads.

Chapter 6, Drawing Graphics in Views
In this chapter, you’ll learn about the drawing system used on both OS X and iOS,
as well as how to draw custom graphics. We’ll also cover the Retina display, and
how view geometry works.

Chapter 7, SpriteKit
This chapter explores SpriteKit, a framework available on both iOS and OS X that
is designed for making fast and efficient 2D games and graphics.

Chapter 8, SceneKit
This chapter explores SceneKit, a framework available on both iOS and OS X that
is designed for making fast and efficient 3D scenes and graphics. You’ll learn about
materials, constraints, physics, camera, and lights.

Chapter 9, Audio and Video
This chapter covers audio and video playback using AVFoundation, the audio and
video engine. You’ll also learn how to use speech synthesis, access the iOS photo
library, and get access to the user’s photos.

Chapter 10, iCloud and Data Storage
This chapter covers a range of data storage options available on OS X and iOS. The
filesystem, preferences, and iCloud are all covered. In addition, you’ll learn how to
make security-scoped bookmarks, which allow sandboxed apps to retain access to
locations that the user has granted your apps permission to use.

Chapter 11, Cocoa Bindings
This chapter covers Cocoa bindings, a tremendously powerful system that allows
you to connect your application’s user interface to an application’s data without the
need for intermediary glue code. Bindings are an OS X-only feature.

Chapter 12, Table Views and Collection Views
This chapter covers table views (an effective way to display multiple rows of data
to your user) and collection views, which allow you to display a collection of items
to the user.

xiv | Preface

Chapter 13, Document-Based Applications
This chapter discusses the document systems on both iOS and OS X, which are
instrumental in creating applications that work with multiple documents. Here we
discuss the differences in how the two platforms handle documents.

Chapter 14, Networking
Cocoa and Cocoa Touch provide straightforward tools for accessing networked
resources, and this chapter demonstrates how to retrieve information from the
Internet while keeping the application responsive. This chapter also covers the net‐
work service discovery system, Bonjour, and multipeer connectivity.

Chapter 15, Working with the Real World
This chapter covers a variety of technologies used to work with the physical world:
Core Location, for getting access to the GPS; Core Motion, for learning about how
the hardware is moving and oriented; and the printing systems on both iOS and
OS X. Beacons, game controllers, and maps are also discussed.

Chapter 16, EventKit
This chapter discusses the calendaring system used on iOS and OS X, and demon‐
strates how to get access to the user’s calendar. We also discuss considerations for
user privacy.

Chapter 17, Instruments and the Debugger
This chapter covers Instruments, the profiler and analysis tool for Mac and iOS
applications. An example of a crashing application is discussed, and the cause of
the crash is diagnosed and fixed using the application. Additionally, this chapter
covers Xcode’s built-in debugger.

Chapter 18, Sharing and Notifications
This chapter discusses how applications can share text, images, and other content
with various services like Twitter and Facebook, using the built-in sharing systems
(which don’t require your application to deal with authenticating to these services).
Additionally, we’ll cover both push notifications and local notifications, which allow
your application to display information to the user without running.

Chapter 19, Nonstandard Apps
Not every program you write will be an app that sits on the user’s home screen, and
this chapter tells you how to write four different kinds of nontraditional apps:
command-line tools, menu bar apps, multiscreen iOS apps, and preference panes.

Chapter 20, Working with Text
This chapter covers TextKit, as well as the string localization system available on
iOS and OS X. Here we also discuss data extraction from text using the built-in data
detectors.

Preface | xv

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, errata, etc.) is available for download
at http://www.secretlab.com.au/books/swift-development-with-cocoa.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does

xvi | Preface

http://www.secretlab.com.au/books/swift-development-with-cocoa

not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Swift Development with Cocoa by Jonathon
Manning, Paris Buttfield-Addison, and Tim Nugent (O’Reilly). Copyright 2015 Secret
Lab, 978-1-491-90894-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government
agencies, education, and individuals. Members have access to thousands of books,
training videos, and prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professio‐
nal, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apr‐
ess, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/swift_dev_with_cocoa.

Preface | xvii

mailto:permissions@oreilly.com
http://safaribooksonline.com
http://www.safaribooksonline.com/explore/
http://www.safaribooksonline.com/pricing/
http://www.safaribooksonline.com/enterprise/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/government/
http://www.safaribooksonline.com/academic-public-library/
http://www.safaribooksonline.com/our-library/
http://www.safaribooksonline.com/
http://bit.ly/swift_dev_with_cocoa

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Jon thanks his mother, father, and the rest of his crazily extended family for their tre‐
mendous support.

Paris thanks his mother, without whom he wouldn’t be doing anything nearly as inter‐
esting, let alone writing books.

Tim thanks his parents and family for putting up with his rather lackluster approach
to life.

We’d all like to thank our editors, Brian Jepson and Rachel Roumeliotis—their skill and
advice were invaluable to completing the book. Likewise, all the O’Reilly Media staff
we’ve interacted with over the course of writing the book have been the absolute gurus
of their fields.

A huge thank you to Tony Gray and the Apple University Consortium (AUC) for the
monumental boost they gave us and others listed on this page. We wouldn’t be writing
this book if it weren’t for them.

Thanks also to Neal Goldstein, who deserves full credit and/or blame for getting us into
the whole book-writing racket.

We’re thankful for the support of the goons at MacLab (who know who they are and
continue to stand watch for Admiral Dolphin’s inevitable apotheosis), as well as Pro‐
fessor Christopher Lueg, Dr. Leonie Ellis, and the rest of the staff at the University of
Tasmania for putting up with us.

Additional thanks to Nic W., Andrew B., Jess L., and Ash J., for a wide variety of reasons.
Finally, very special thanks to Steve Jobs, without whom this book (and many others
like it) would not have reason to exist.

xviii | Preface

www.allitebooks.com

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.auc.edu.au
http://www.allitebooks.org

CHAPTER 1

Cocoa Development Tools

Developing applications using Cocoa and Cocoa Touch involves using a set of tools
developed by Apple. In this chapter, you’ll learn about these tools, where to get them,
how to use them, how they work together, and what they can do.

These development tools have a long and storied history. Originally a set of standalone
application tools for the NeXTSTEP OS, they were eventually adopted by Apple for use
as the official OS X tools. Later, Apple largely consolidated them into one application,
known as Xcode, though some of the applications (such as Instruments and the iOS
Simulator) remain somewhat separate, owing to their relatively peripheral role in the
development process.

In addition to the development applications, Apple offers memberships in its Developer
Programs (formerly Apple Developer Connection), which provide resources and sup‐
port for developers. The programs allow access to online developer forums and speci‐
alized technical support for those interested in talking to the framework engineers.

Now, with the introduction of Apple’s curated application storefronts for OS X and iOS,
these developer programs have become the official way for developers to provide their
credentials when submitting applications to the Mac App Store or iTunes App Store—
in essence, they are your ticket to selling apps through Apple. In this chapter, you’ll learn
how to sign up for these programs, as well as how to use Xcode, the development tool
used to build apps for OS X and iOS.

The Mac and iOS Developer Programs
Apple runs two developer programs, one for each of the two platforms you can write
apps on: iOS and OS X.

You need to have a paid membership to the iOS Developer Program if you want to run
code on your iOS devices, because signing up is the only way to obtain the necessary

1

https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/programs/ios/

code-signing certificates. (At the time of writing, membership in this program costs $99
USD per year.) It isn’t as necessary to be a member of the Mac Developer Program if
you don’t intend to submit apps to the Mac App Store (you may, for example, prefer to
sell your apps yourself). However, the Mac Developer Program includes useful things
like early access to the next version of the OS, so it’s worth your while if you’re serious
about making apps. Downloading Xcode is free, even if you aren’t a member of either
developer program.

Both programs provide the following, among a host of other smaller features:

• Access to the Apple Developer Forums, which are frequented by Apple engineers
and designed to allow you to ask questions of your fellow developers and the people
who wrote the OS.

• Access to beta versions of the OS before they are released to the public, which
enables you to test your applications on the next version of OS X and iOS and make
necessary changes ahead of time. You also receive beta versions of the development
tools.

• A digital signing certificate (one each for OS X and iOS) used to identify you to the
App Stores. Without this, you cannot submit apps to the App Store, making the
programs mandatory for anyone who wants to release software either for free or
for sale via the App Store.

As a developer, you can register for one or both of the developer programs. They don’t
depend on each other.

Finally, registering for a developer program isn’t necessary to view the documentation
or to download the current version of the developer tools, so you can play around with
writing apps without opening your wallet.

Registering for a Developer Program
To register for one of the developer programs, you’ll first need an Apple ID. It’s quite
likely that you already have one, as the majority of Apple’s online services require one
to identify you. If you’ve ever used iCloud, the iTunes store (for music or for apps),
MobileMe, or Apple’s support and repair service, you already have an ID. You might
even have more than one (one of the authors of this book has four). If you don’t yet have
an ID, you’ll create one as part of the registration process. When you register for a
program, it gets added to your Apple ID.

To get started, visit the Apple site for the program you want to join.

• For the Mac program, go to http://developer.apple.com/programs/mac/.

• For the iOS program, go to http://developer.apple.com/programs/ios/.

2 | Chapter 1: Cocoa Development Tools

https://developer.apple.com/devforums/
http://developer.apple.com/programs/mac/
http://developer.apple.com/programs/ios/

Simply click through the steps to enroll.

You can choose to register as an individual or as a company. If you register as an indi‐
vidual, your apps will be sold under your name. If you register as a company, your apps
will be sold under your company’s legal name. Choose carefully, as it’s very difficult to
convince Apple to change your program’s type.

If you’re registering as an individual, you’ll just need your credit card. If you’re regis‐
tering as a company, you’ll need your credit card as well as documentation that proves
you have authority to bind your company to Apple’s terms and conditions.

For information on code signing, and using Xcode to test and run
your apps on your own physical devices, see Apple’s App Distribu‐
tion Guide.

Apple usually takes about 24 hours to activate an account for individuals, and longer
for companies. Once you’ve received confirmation from Apple, you’ll be emailed a link
to activate your account; when that’s done, you’re a full-fledged developer!

Downloading Xcode
To develop apps for either platform, you’ll use Xcode, Apple’s integrated development
environment. Xcode combines a source code editor, debugger, compiler, profiler, iPhone
and iPad simulator, and more into one package, and it’s where you’ll spend the majority
of your time when developing applications.

Xcode is only available for Mac.

You can get Xcode from the Mac App Store. Simply open the App Store application and
search for “Xcode,” and it’ll pop up. It’s a free download, though it’s rather large (several
gigabytes at the time of writing).

Once you’ve downloaded Xcode, it’s straightforward enough to install it. The Mac App
Store gives you an installer to double-click. Follow the prompts to install.

The Mac and iOS Developer Programs | 3

http://bit.ly/app_dist_guide
http://bit.ly/app_dist_guide

Swift is only available if you’re using Xcode 6 or later. Make sure you’re
using the latest version of Xcode.

Creating Your First Project with Xcode
Xcode is designed around a single window. Each of your projects will have one window,
which adapts to show what you’re working on.

To start exploring Xcode, you’ll first need to create a project by following these steps:

1. Launch Xcode. You can find it by opening Spotlight (by pressing ⌘-Spacebar) and
typing Xcode. You can also find it by opening the Finder, going to your hard drive,
and opening the Applications directory. If you had any projects open previously,
Xcode will open them for you. Otherwise, the Welcome to Xcode screen appears
(see Figure 1-1).

Figure 1-1. The Welcome to Xcode screen

2. Create a new project. Do this simply by clicking “Create a new Xcode project” or
go to File→New→Project.

You’ll be asked what kind of application to create. The template selector is divided
into two areas. On the lefthand side, you’ll find a collection of categories that ap‐

4 | Chapter 1: Cocoa Development Tools

plications can be in. You can choose to create an iOS or Mac project template, which
sets up a project directory that will get you started in the right direction.

Because we’re just poking around Xcode at the moment, it doesn’t really matter, so
choose Application under the iOS header and select Single View Application. This
creates an empty iOS application.

3. Enter information about the project. Depending on the kind of project template
you select, you’ll be asked to provide different information about how the new
project should be configured.

At a minimum, you’ll be asked for the following information, no matter which
platform and template you choose:

The product’s name
This is the name of the project and is visible to the user. You can change this
later.

Your organization identifier
This is used to generate a bundle ID, a string that looks like a reverse domain
name (e.g., if O’Reilly made an application named MyUsefulApplication, the
bundle ID would be com.oreilly.MyUsefulApplication).

Bundle IDs are the unique identifier for an application, and
are used to identify that app to the system and to the App
Store. Because each bundle ID must be unique, the same ID
can’t be used for more than one application in either of the
iOS or Mac App Stores. That’s why the format is based on
domain names—if you own the site usefulsoftware.com, all
of your bundle IDs would begin with com.usefulsoftware,
and you won’t accidentally use a bundle ID that someone
else is using or wants to use because nobody else owns the
same domain name.

If you don’t have a domain name, enter anything you like, as long as it looks
like a backwards domain name (e.g., com.mycompany will work).

If you plan on releasing your app, either to the App Store or
elsewhere, it’s very important to use a company identifier
that matches a domain name you own. The App Store re‐
quires it, and the fact that the operating system uses the
bundle ID that it generates from the company identifier
means that using a domain name that you own eliminates
the possibility of accidentally creating a bundle ID that con‐
flicts with someone else’s.

Creating Your First Project with Xcode | 5

If you’re writing an application for the Mac App Store, you’ll also be prompted for
the App Store category (whether it’s a game, an educational app, a social networking
app, or something else).

Depending on the template, you may also be asked for other information (e.g., the
file extension for your documents if you are creating a document-aware application,
such as a Mac app). You’ll also be asked which language you want to use; because
this book is about Swift, you should probably choose Swift! The additional infor‐
mation needed for this project is in the following steps.

4. Name the application. Enter “HelloCocoa” in the Product Name section.

5. Make the application run on the iPhone. Choose iPhone from the Devices drop-
down list.

iOS applications can run on the iPad, iPhone, or both. Applica‐
tions that run on both are called “universal” applications and run
the same binary but have different user interfaces. For this exer‐
cise, just choose iPhone.

6. Click Next to create the project. Leave the rest of the settings as shown in Figure 1-2.

Figure 1-2. The project settings

7. Choose where to save the project. You’ll be asked where to save the project. Select
a location that suits you.

6 | Chapter 1: Cocoa Development Tools

Once you’ve done this, Xcode will open the project and you can now start using the
entire Xcode interface, as shown in Figure 1-3.

Figure 1-3. The entire Xcode interface

The Xcode Interface
As mentioned, Xcode shows your entire project in a single window, which is divided
into a number of sections. You can open and close each section at will, depending on
what you want to see.

Let’s take a look at each of these sections and examine what they do.

The editor

The Xcode editor (Figure 1-4) is where you’ll be spending most of your time. All source
code editing, interface design, and project configuration take place in this section of the
application, which changes depending on which file you currently have open.

If you’re editing source code, the editor is a text editor, with code completion, syntax
highlighting, and all the usual features that developers have come to expect from an
integrated development environment. If you’re modifying a user interface, the editor
becomes a visual editor, allowing you to drag around the components of your interface.
Other kinds of files have their own specialized editors as well.

Creating Your First Project with Xcode | 7

Figure 1-4. Xcode’s editor

The editor can also be split into a main editor and an assistant editor. The assistant shows
files that are related to the file currently open in the main editor. It will continue to show
files that have that relationship to whatever is open, even if you open different files.

For example, if you open an interface file and then open the assistant, the assistant will,
by default, show related code for the interface you’re editing. If you open another in‐
terface file, the assistant will show the code for the newly opened files.

You can also jump directly from one file in the editor to its counterpart—for example,
from an interface file to the corresponding implementation file. To do this, hit Control-
⌘-Up Arrow to open the current file’s counterpart in the current editor. You can also hit
Control-⌘-Option-Up Arrow to open the current file’s counterpart in an assistant pane.

8 | Chapter 1: Cocoa Development Tools

The toolbar

The Xcode toolbar (Figure 1-5) acts as mission control for the entire interface. It’s the
only part of Xcode that doesn’t significantly change as you develop your applications,
and it serves as the place where you can control what your code is doing.

Figure 1-5. Xcode’s toolbar

From left to right, after the OS X window controls, the toolbar features the following
items:

Run button
Clicking this button instructs Xcode to compile and run the application. Depending
on the kind of application you’re running and your currently selected settings, this
button will have different effects:

• If you’re creating a Mac application, the new app will appear in the Dock and
will run on your machine.

• If you’re creating an iOS application, the new app will launch in either the iOS
Simulator or on a connected iOS device, such as an iPhone or iPad. Addition‐
ally, if you click and hold this button, you can change it from Run to another
action, such as Test, Profile, or Analyze. The Test action runs any unit tests that
you have set up; the Profile action runs the application Instruments (see Chap‐
ter 17); and the Analyze action checks your code and points out potential
problems and bugs.

Stop button
Clicking this button stops any task that Xcode is currently doing—if it’s building
your application, it stops, and if your application is currently running in the de‐
bugger, it quits it.

Scheme selector
Schemes are what Xcode calls build configurations—that is, what’s being built and
how. Your project can contain multiple targets, which are the final build products
created by your application. Targets can share resources like code, sound, and im‐
ages, allowing you to more easily manage a task like building an iOS version of a
Mac application. You don’t need to create two projects, but rather have one project
with two targets that can share as much code as you prefer. To select a target, click
on the lefthand side of the scheme selector. You can also choose where the appli‐
cation will run. If you are building a Mac application, you will almost always want
to run the application on your current Mac. If you’re building an iOS application,
however, you have the option of running the application on an iPhone simulator

Creating Your First Project with Xcode | 9

or an iPad simulator. (These are in fact the same application; it simply changes shape
depending on the application that is run inside it.) You can also choose to run the
application on a connected iOS device if it has been set up for development.

Status display
The status display shows what Xcode is currently doing—building your application,
downloading documentation, installing an application on an iOS device, and so on.
If there is more than one task currently in progress, a small button will appear on
the lefthand side, which cycles through the current tasks when clicked.

Editor selector
The editor selector determines how the editor is laid out. You can choose to display
either a single editor, the editor with the assistant, or the versions editor, which
allows you to compare different versions of a file if you’re using a revision control
system like Git or Subversion.

We don’t have anywhere near the space needed to talk about using
version control in your projects in this book, but it’s an important
topic. We recommend Jon Loeliger and Matthew McCullough’s Ver‐
sion Control with Git, 2nd Edition (O’Reilly).

View selector
The view selector controls whether the navigator, debug, and detail views appear
on screen. If you’re pressed for screen space or simply want less clutter, you can
quickly summon and dismiss these parts of the screen by clicking each of the
elements.

The navigator

The lefthand side of the Xcode window is the navigator, which presents information
about your project (Figure 1-6).

Figure 1-6. The navigator pane

10 | Chapter 1: Cocoa Development Tools

www.allitebooks.com

http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920022862.do
http://www.allitebooks.org

The navigator is divided into eight tabs, from left to right:

• The project navigator gives you a list of all the files that make up your project. This
is the most commonly used navigator, as it determines what is shown in the editor.
Whatever is selected in the project navigator is opened in the editor.

• The symbol navigator lists all the classes and functions that exist in your project. If
you’re looking for a quick summary of a class or want to jump directly to a method
in that class, the symbol navigator is a handy tool.

• The search navigator allows you to perform searches across your project if you’re
looking for specific text. (The shortcut is ⌘-Shift-F. Press ⌘-F to search the current
open document.)

• The issue navigator lists all the problems that Xcode has noticed in your code. This
includes warnings, compilation errors, and issues that the built-in code analyzer
has spotted.

• The test navigator shows all the unit tests associated with your project. Unit tests
used to be an optional component of Xcode, but are now built into Xcode directly.
Unit tests are discussed in “The Testing Framework” on page 381.

• The debug navigator is activated when you’re debugging a program, and it allows
you to examine the state of the various threads that make up your program.

• The breakpoint navigator lists all of the breakpoints that you’ve currently set for use
while debugging.

• The report navigator lists all the activity that Xcode has done with your project (such
as building, debugging, and analyzing). You can go back and view previous build
reports from earlier in your Xcode session, too.

Utilities

The Utilities pane (Figure 1-7) shows additional information related to what you’re
doing in the editor. If you’re editing an interface, for example, the Utilities pane allows
you to configure the currently selected user interface element.

Creating Your First Project with Xcode | 11

Figure 1-7. The Utilities pane

The Utilities pane is split into two sections: the inspector, which shows extra details and
settings for the currently selected item, and the library, which is a collection of items
that you can add to your project. The inspector and the library are most heavily used
when building user interfaces; however, the library also contains a number of useful
items such as file templates and code snippets, which you can drag and drop into place.

The debug area

The debug area (Figure 1-8) shows information reported by the debugger when the
program is running. Whenever you want to see what the application is reporting while
running, you can view it in the debug area.

12 | Chapter 1: Cocoa Development Tools

Figure 1-8. The debug area

The area is split into two sections: the lefthand side shows the values of local variables
when the application is paused; the righthand side shows the ongoing log from the
debugger, which includes any logging that comes from the debugged application.

Developing a Simple Swift Application
Let’s jump right into working with Xcode. We’ll begin by creating a simple iOS appli‐
cation and then connect it together. If you’re more interested in Mac development, don’t
worry—the same techniques apply.

This sample application will display a single button that, when tapped, will pop up an
alert and change the button’s label to “Test!” We’re going to build on the project we
created earlier, so make sure you have that project open.

It’s generally a good practice to design the interface first and then add code. This means
that your code is written with an understanding of how it maps to what the user sees.

To that end, we’ll start by designing the interface for the application.

Designing the Interface
When building an application’s interface using Cocoa and Cocoa Touch, you have two
options. You can either design your application’s screens in a storyboard, which shows
how all the screens link together, or you can design each screen in isolation. This book
covers storyboards in more detail later; for now, this first application has only one screen,
so it doesn’t matter much either way.

Developing a Simple Swift Application | 13

Start by opening the interface file and adding a button. These are the steps you’ll need
to follow:

1. First, open the main storyboard. Because newly created projects use storyboards
by default, your app’s interface is stored in the Main.storyboard file.

Open it by selecting it in the project navigator. The editor will change to show the
application’s single, blank screen.

2. Next, drag in a button. We’re going to add a single button to the screen. All user
interface controls are kept in the object library, which is at the bottom of the Utilities
pane on the righthand side of the screen.

To find the button, you can either scroll through the list until you find Button, or
type “button” in the search field at the bottom of the library.

Once you’ve located it, drag it into the screen.

3. At this point, we need to configure the button. Every item that you add to an in‐
terface can be configured. For now, we’ll only change the label.

Select the new button by clicking it, and select the Attributes Inspector, which is
the third tab from the right at the top of the Utilities pane. You can also reach it by
pressing ⌘-Option-4.

Change the button’s Title to “Hello!”

You can also change the button’s title by double-clicking it in the
interface.

Our simple interface is now complete (Figure 1-9). The only thing left is to connect it
to code.

14 | Chapter 1: Cocoa Development Tools

Figure 1-9. Our completed simple interface

Connecting the Code
Applications aren’t just interfaces—as a developer, you also need to write code. To work
with the interface you’ve designed, you need to create connections between your code
and your interface.

There are two kinds of connections that you can make:

• Outlets are variables that refer to objects in the interface. Using outlets, you can
instruct a button to change color or size, or hide itself. There are also outlet collec‐
tions, which allow you to create an array of outlets and choose which objects it
contains in the Interface Builder.

• Actions are methods in your code that are run in response to the user interacting
with an object. These interactions include the user touching a finger to an object,
dragging a finger, and so on.

To make the application behave as we’ve just described—tapping the button displays a
label and changes the button’s text—we’ll need to use both an outlet and an action. The
action will run when the button is tapped, and will use the outlet connection to the
button to modify its label.

To create actions and outlets, you need to have both the interface editor and its corre‐
sponding code open. Then hold down the Control key and drag from an object in the
interface editor to your code (or to another object in the interface editor, if you want to
make a connection between two objects in your interface).

We’ll now create the necessary connections:

Developing a Simple Swift Application | 15

1. First, open the assistant. To do this, select the second tab in the editor selector in
the toolbar.

The assistant should show the corresponding code for interface View‐
Controller.swift. If it doesn’t, click the interwining circles icon (which represents
the assistant) and navigate to Automatic→ViewController.swift.

If you’re using OS X 10.9 Mavericks, the assistant button looks
like a tuxedo, and not a pair of circles.

2. Create the button’s outlet. Hold down the Control key and drag from the button

into the space below the first { in the code.

A pop-up window will appear. Leave everything as the default, but change the Name
to “helloButton.” Click Connect.

A new line of code will appear: Xcode has created the connection for you, which
appears in your code as a property in your class.

3. Create the button’s action. Hold down the Control key, and again drag from the
button into the space below the line of code we just created. A pop-up window will
again appear.

This time, change the Connection from Outlet to Action. Set the Name to showA

lert. Click Connect.

A second new line of code will appear. Xcode has created the connection, which is

a method inside the ViewController class.

4. In the showAlert method you just created, add in the new code:

@IBAction func showAlert(sender: AnyObject) {

 var alert = UIAlertController(title: "Hello!", message: "Hello, world!",

 preferredStyle: UIAlertControllerStyle.Alert)

 alert.addAction(UIAlertAction(title: "Close",

 style: UIAlertActionStyle.Default, handler: nil))

 self.presentViewController(alert, animated: true, completion: nil)

 self.helloButton.setTitle("Clicked", forState: UIControlState.Normal)

}

This code creates a UIAlertController, which displays a message to the user in a pop-
up window. It prepares it by setting its title to “Hello!” and the text inside the window
to “Hello, world!” The alert is then shown to the user. Finally, an action (doing nothing
but dismissing the alert in this case) is added with the text “Click.” It then sets the title
of the button to “Clicked.”

16 | Chapter 1: Cocoa Development Tools

The application is now ready to run. Click the Run button in the upper-left corner. The
application will launch in the iPhone simulator.

If you happen to have an iPhone or iPad connected to your comput‐
er, Xcode will by default try to launch the application on the device
rather than in the simulator. To make Xcode use the simulator, go to
the Scheme menu in the upper left corner of the window and change
the currently selected scheme to the simulator.

When the app finishes launching in the simulator, tap the button. An alert will appear;
when you close it, you’ll notice that the button’s text has changed.

Using the iOS Simulator
The iOS Simulator (Figure 1-10) allows you to test out iOS applications without having
to mess around with devices. It’s a useful tool, but keep in mind that the simulator
behaves very differently compared to a real device.

For one thing, the simulator is a lot faster than a real device and has a lot more memory.
That’s because the simulator makes use of your computer’s resources—if your Mac has
8 GB of RAM, so will the simulator, and if you’re building a processor-intensive appli‐
cation, it will run much more smoothly on the simulator than on a real device.

The iOS Simulator can simulate many different kinds of devices: everything from the
iPad 2 to the latest iPads, and from the Retina display 3.5- and 4-inch iPhone-sized
devices to the latest 4.7-inch and 5.5-inch iPhones.

To change the device, open the Hardware menu, choose Device, and select the device
you want to simulate. You can also change which simulator to use via the scheme selector
in Xcode.

You can also simulate hardware events, such as the home button being pressed or the
iPhone being locked. To simulate pressing the home button, you can either click the
virtual button underneath the screen, choose Hardware→Home, or press ⌘-Shift-H. To
lock the device, press ⌘-L or choose Hardware→Lock.

Using the iOS Simulator | 17

Figure 1-10. The iOS Simulator

If there’s no room on the screen, the simulator won’t show the virtu‐
al hardware buttons. So if you want to simulate the home button being
pressed, you need to use the keyboard shortcut ⌘-Shift-H.

There are a number of additional features in the simulator, which we’ll examine more
closely as they become relevant to the various parts of iOS we’ll be discussing.

18 | Chapter 1: Cocoa Development Tools

Testing iOS Apps with TestFlight
TestFlight is a service operated by Apple that allows you to send copies of your app to
people for testing. Using TestFlight, you can send builds of your app to people in your
organization and up to 1,000 external testers.

TestFlight allows you to submit testing builds to up to 25 people who are members of
your Developer Program account. Additionally, you can send the app to up to a thousand
additional people for testing, once the app is given a preliminary review by Apple.

To use TestFlight, you configure the application in iTunes Connect by providing infor‐
mation like the app’s name, icon, and description. You also create a list of users who
should receive the application. You then upload a build of the app through Xcode, and
Apple emails them a link to download and test it.

For more information on how to use TestFlight, see the iTunes Connect documentation.

Testing iOS Apps with TestFlight | 19

http://bit.ly/testing_w_testflight

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Programming with Swift

The Swift programming language is a new language for writing software for both iOS
and OS X. Introduced in June 2014 at Apple’s Worldwide Developers Conference
(WWDC), Swift was a surprise to everyone: Apple had managed to develop an entire
language (as well as all of the supporting libraries, developer tools, and documentation),
and made it work seamlessly with the existing Objective-C language. And on top of
that, it’s a really good language.

Swift draws upon an extensive history of language design, and has a number of very
cool design features that make developing software easier, simpler, and safer.

In this chapter, you’ll learn how to code in Swift.

The Swift Programming Language
The Swift programming language aims for the following goals:

Safety
Swift is designed to be a safe language. Many of the pitfalls of C, such as accidentally
working with null pointers, are much harder to encounter. Swift is very strongly
typed, and objects aren’t allowed to be null except under very specific circumstances.

Modernity
Swift contains a large number of modern language features designed to make it easy
to express the logic of your code. These include features like pattern-matching
switch statements (see “Switches” on page 33), closures (“Closures” on page 39), and
the concept of all values being objects that you can attach properties and functions
to (“Extensions” on page 47).

Power
Swift has access to the entire Objective-C runtime, and is seamlessly bridged to
Objective-C’s classes. This means that you can use Swift right away to write full iOS

21

and OS X apps—you don’t need to wait for anyone to port any features from
Objective-C to Swift.

So, what does Swift look like? Here’s an example:

func sumNumbers(numbers: Int...) -> Int {

 var total = 0

 for number in numbers {

 total += number

 }

 return total

}

let sum = sumNumbers(2,3,4,5)

println(sum)

This code snippet does the following things:

First, a function called sumNumbers is defined. This function takes one or more

Int values, which are integers (whole numbers), and returns a single Int.

The ... denotes that the function takes a variable number of Int values.

Inside the function, the variable total is declared. Note that the type isn’t given—

the compiler knows that it stores an Int, because it’s being set to the integer value
of zero.

Next, a for-in loop starts up, which loops over every number that was sent to

the method. Notice again that the type of the number variable isn’t defined—

the compiler infers that, given that numbers is an array of Int values, number

should itself be an Int.

The value of number is added to total.

When the loop is complete, total is returned.

The function sumNumbers is called with a collection of integers, and the result is

stored in the new variable sum. This variable is constant: by defining it with the

let keyword, the compiler is being told that its value never changes. Attempting
to change the value of a constant is an error.

Finally, the value is displayed using the println function, which prints values
out to the console.

There are a few interesting things to note here:

22 | Chapter 2: Programming with Swift

• You usually don’t need to define the type of variables. The compiler will do that for
you, based on what values you’re using.

• Even though the sumNumbers function takes a variable number of parameters,
there’s no weird syntax to deal with it (if you’re a C or C++ programmer, you might

remember struggling with va_start and friends).

• Variables that are declared with the let keyword are constants. The language is
designed so that any variables that can be a constant should be one, in order to
prevent accidental changes later. Importantly, constants in Swift don’t have to be
known at compile time. Instead, you can think of them as variables that are only
set once.

Playgrounds
The easiest way to learn Swift is to use a playground. Playgrounds are environments that
let you write Swift code, and see its results instantly. You don’t need to build and run
your code to see the results, and the code doesn’t need to be a part of a larger app. This
means that if you want to play around with the language, a function, or even with a piece
of a larger app, you don’t need to make it part of an entire app.

A lot of this book is written assuming that the code is being run in a
playground. You should get used to working in one if you want to
follow along!

To start using a playground, you can create one from the “Welcome to Xcode” screen
that appears when Xcode starts up (see Figure 2-1).

You can also choose File → New → New Playground and create a new playground from
there.

When you create a playground, you’ll end up seeing something that looks like
Figure 2-2. On the lefthand side of the window, you can type Swift code. On the right‐
hand side of the window, the result of each line of code that you write will appear.

Playgrounds | 23

Figure 2-1. The Welcome to Xcode screen (click “Get started with a playground” to cre‐
ate a new playground)

Figure 2-2. An empty playground

Variables and Constants
You define a variable in Swift using either the let or var keywords:

24 | Chapter 2: Programming with Swift

var myVariable = 123

let myConstantVariable = 123

Comments in Swift are nonexecutable text. You can use comments as
a note or reminder to yourself. We use comments often in sample
code in this book. They are ignored by the compiler. You can begin a

single-line comment with two forward slashes (//), or open a multi‐

line comment using a forward slash and an asterisk (/*) and close it

using an asterisk followed by a foward slash (*/).

When you define a variable using var, you’re allowed to change its value. If you define

one using let, it’s never allowed to change. Swift encourages you to use constants as
much as possible, because they’re safer—if you know that a value can never change, it
won’t cause a bug by changing without you knowing about it:

myVariable += 5

// (ERROR: can't change a constant variable)

myConstantVariable += 2

In addition to letting the compiler infer the type of your variables, you can also explicitly
tell the compiler what value it should have:

// Explicit type of integer

let anExplicitInteger : Int = 2

Constants in Swift are required to have values. If you define a constant, but don’t give
it a value at the time it’s created, the compiler will give you an error:

 let someConstant : Int

 // ERROR: constants must contain values when they're declared

Variables (the nonconstant kind, that is) are allowed to not have a value, as long as you
never try to access it. In other words, if you create a variable and don’t give it a value,
the only thing you can do with it is to give it a value. After that, you can use it as normal:

 var someVariable : Int

 someVariable += 2

 // ERROR: someVariable doesn't have a value, so can't add 2 to it

 someVariable = 2

 someVariable += 2

 // WORKS, because someVariable has a value to add to

Variables and Constants | 25

Unlike many popular languages, Swift doesn’t require that you end
your lines of code with a semicolon. However, if you want to, that’s
totally OK.

You can also break your lines of code over multiple lines without
problems, like this:

var someVariable =

 "Yes"

The single exception to the rule of not needing to use semicolons is
when you want to put multiple statements on a single line. In those
cases, you separate the statements with a semicolon:

someVariable = "No"; println(someVariable)

Types
You don’t need to define what type the variable is. Swift will infer its type from its initial

value. This means that when you define a variable and set it to the value 2, that variable

will be an Int:

// Implicit type of integer

var anInteger = 2

Most types can’t be combined, because the compiler doesn’t know what the result would

be. For example, you can’t add a String to an Int value, because the result is meaningless:

// ERROR: Can't add a string to an integer

anInteger += "Yes"

It’s often very useful to have variables that can sometimes have no value. For example,
you might have a variable that stores a number to display to the user, but you don’t know
what that number is yet. As we’ve seen already, Swift variables need to have a value. One
solution might be to use the number zero to represent “no value”; indeed, many lan‐
guages, including C, C++, Java, and Objective-C do just this. However, this creates a
problem: there is no way to distinguish between the value zero and no value at all. What
if the value you want to show is actually zero?

To deal with this issue, Swift makes a very clear distinction between “no value” and all

other values. “No value” is referred to as nil, and is a different type to all others.

In Objective-C, nil is actually defined as a void pointer to 0. This
makes it technically a number, which means you can do things
like this:

int i = (int)(nil)+2;

// equals 2 (because 0 + 2 = 2)

This isn’t allowed in Swift, because nil and Int are different types.

26 | Chapter 2: Programming with Swift

However, recall that all variables in Swift are required to have values. If you want a

variable to be allowed to sometimes be nil, you make it an optional variable. Optional

variables are defined by using a question mark (?) as part of their type:

// Optional integer, allowed to be nil

var anOptionalInteger : Int? = nil

anOptionalInteger = 42

Only optional variables are allowed to be set to nil. If a variable isn’t defined as nil, it’s

not allowed to be set to the nil value:

// Nonoptional (regular), NOT allowed to be nil

var aNonOptionalInteger = 42

aNonOptionalInteger = nil

// ERROR: only optional values can be nil

You can check to see if an optional variable has a value, by using an if statement:

if anOptionalInteger != nil {

 println("It has a value!")

} else {

 println("It has no value!")

}

When you have an optional variable, you can unwrap it to get at its value. You do this

using the ! character.

Note that if you unwrap an optional variable, and it has no value,
your program will throw a runtime error, and the program will crash:

// Optional types must be unwrapped using !

anOptionalInteger = 2

1 + anOptionalInteger! // = 3

anOptionalInteger = nil

1 + anOptionalInteger!

// CRASH: anOptionalInteger = nil, can't use nil data

If you don’t want to unwrap your optional variables every time you
want to use them, you can declare them as unwrapped, like this:

var unwrappedOptionalInteger : Int!

unwrappedOptionalInteger = 1

1 + unwrappedOptionalInteger // = 2

This lets you use their values directly, but can be unsafe (because it
lets you get away with not unwrapping them when needed, which

can make you forget that they can sometimes be nil). Use this with
caution.

You can convert between different types in Swift. For example, to convert an Int to a

String, you do this:

Types | 27

let aString = String(anInteger)

// = "2"

Note that not all types can be converted to other types. It depends on the specific types
you’re trying to convert between, and the precise value of the thing you’re trying to

convert. For example, the string “2” can be converted to an Int, but the string
“Hello” can’t.

You also can’t convert types by directly assigning variables—you must explicitly cast.
Attempting to assign a value of one type to a variable with another produces an error:

 // ERROR: Can't directly convert between types

 let aString = anInteger

Tuples
A tuple is a simple collection of data. Tuples let you bundle multiple values together into
a single value:

let aTuple = (1, "Yes")

Once you have a tuple, you can get values out of it:

let theNumber = aTuple.0 // = 1

In addition to using numbers to get the values out of a tuple, you can also apply labels
to values inside tuples:

let anotherTuple = (aNumber: 1, aString: "Yes")

let theOtherNumber = anotherTuple.aNumber // = 1

Arrays
Arrays are very easy in Swift. To create an array, you use square brackets ([and]):

// Array of integers

let arrayOfIntegers : [Int] = [1,2,3]

Swift can also infer the type of the array:

// Type of array is implied

let implicitArrayOfIntegers = [1,2,3]

You can create an empty array as well, though you need to manually specify its type if
you do this:

// You can also create an empty array, but you must provide the type

let anotherArray = [Int]()

28 | Chapter 2: Programming with Swift

If you define an array with the let keyword, its contents become
immutable (i.e., it’s not allowed to change its contents):

let immutableArray = [42,24]

Once you have an array, you can work with its contents. For example, you can append

objects to the end of the array using the append function:

var myArray = [1,2,3]

myArray.append(4)

// = [1,2,3,4]

In addition to appending to the end of the array, you can also insert objects at any point
in the array:

myArray.insert(5, atIndex: 0)

// = [5,1,2,3,4]

You can’t insert items into an array beyond its bounds. For exam‐

ple, if you tried to insert an item at element 99, it wouldn’t work, and
would throw a runtime error (i.e., your program would crash).

You can also remove items from an array. To do this, you indicate the index of the item
that should be removed. In Swift, arrays start at index 0, which means that removing
the fifth element from the array looks like this:

myArray.removeAtIndex(4)

// = [5,1,2,3]

You can also quickly reverse the contents of an array using the reverse function.

myArray.reverse()

// = [3,2,1,5]

Finally, it’s often useful to know how many items are in an array. You can work this out

using the array’s count property:

myArray.count

// = 4

Dictionaries
A dictionary is a type that maps keys to values. Dictionaries are useful for when you
want to represent a collection of related information.

In a dictionary, you associate a key with a related value. For example, to store information
about the crew of the USS Enterprise-D, you could use a dictionary like this:

Types | 29

var crew = [

 "Captain": "Jean-Luc Picard",

 "First Officer": "William Riker",

 "Second Officer": "Data"

];

When you have a dictionary, you can access its contents through subscripting. Sub‐

scripting is where you use square brackets ([and]) after a variable’s name to describe
what you want to get at the contents of that variable. For example, to get the “Captain”

value from the crew variable, you do this:

crew["Captain"]

// = "Jean-Luc Picard"

You can also set values in a dictionary using subscripting. For example, to register the
fact that “Wesley Crusher” is the ship’s intern:

crew["Intern"] = "Wesley Crusher"

In the previous example, we’ve been talking about a dictionary that uses String values
for both its keys and its values. However, it doesn’t have to be set up this way—diction‐
aries can actually contain almost any value. For example, you can make a dictionary use

Int values for both keys and values:

// This dictionary uses integers for both keys and values

var aNumberDictionary = [1: 2]

aNumberDictionary[21] = 23

If you mix and match different types in your arrays and dictionaries
(e.g., if you make a dictionary that contains both strings and inte‐
gers as values), then Swift will handle it.

Control Flow
In every program you write, you’ll want control over what code gets executed and when.

For this, we’ll make use of if statements, loops, and so on. The syntax for this in Swift
is very straightforward, and includes some handy additional features as well.

if statements in Swift are pretty much the same as in any other language, though in
Swift there’s no need to wrap the expression you’re checking in parentheses:

if 1+1 == 2 {

 println("The math checks out")

}

// Prints "The math checks out", which is a relief

30 | Chapter 2: Programming with Swift

www.allitebooks.com

http://www.allitebooks.org

In Swift, the body of all if statements—as well as all loops—is re‐

quired to be put between two braces ({ and }). In C, C++, Java, and
Objective-C, you can omit these braces if you just want to have a single

statement in your loop or if statement, like this:

if (something)

 do_something();

However, this has led to all kinds of bugs and security problems caused
by programmers forgetting to include braces. So, in Swift, they’re
mandatory.

When you have a collection of items, such as an array, you can use a for-in loop to
iterate over every item:

let loopingArray = [1,2,3,4,5]

var loopSum = 0

for number in loopingArray {

 loopSum += number

}

loopSum // = 15

The number variable used in the for-in loop is implicitly created. You

don’t need to define a variable called number to make it work.

You can also use a for-in loop to iterate over a range of values. For example:

var firstCounter = 0

for index in 1 ..< 10 {

 firstCounter++

}

// Loops 9 times

Note the ..< operator on the first line. This is a range operator, which Swift uses to
describe a range of numbers from one value to another. There are actually two range

operators: two dots and a left-angle-backet (..<) means a range that starts at the first

value, and goes up to but does not include the last value. For example, the range 5..<9
contains the numbers 5, 6, 7, and 8.

If you want to create a range that does include the last number, you use three dots and

no angle bracket (...). The range 5...9 contains the numbers 5, 6, 7, 8, and 9. You can

use an inclusive range operator in for-in loops like so:

var secondCounter = 0

for index in 1 ... 10 { // note the three dots, not two

 secondCounter++

Control Flow | 31

}

// Loops 10 times

Finally, for loops can be used in the same way as other languages—that is, you create
an initial state, a condition to test against, and an increment:

var sum = 0

for var i = 0; i < 3; i++ {

 sum += 1

}

sum // = 3

A while loop lets you repeatedly run code while a certain condition remains true. For
example:

var countDown = 5

while countDown > 0 {

 countDown--

}

countDown // = 0

while loops check to see if the condition at the start of the loop evaluates to true, and

if it does, runs the code (and then returns to the start). In addition to while loops, the

do-while loop runs the code at least once, and then checks the condition:

var countUp = 0

do {

 countUp++

} while countUp < 5

countUp // = 5

When working with optional values (see “Types” on page 26 for more on this), you can

use an if-let statement to check to see if an optional variable has a value, and if it does,
assign that value to a constant variable, and then run some code. This can save you quite
a few lines of code, while preserving the safety of first checking to see if an optional
variable actually has a value to work with.

An if-let statement looks like this:

var conditionalString : String? = "a string"

if let theString = conditionalString? {

 println("The string is '\(theString)'")

} else {

 println("The string is nil")

}

// Prints "The string is 'a string'"

32 | Chapter 2: Programming with Swift

You can include the values of variables in strings by using the follow‐
ing syntax:

let myNumber = 3

let myString = "My number is \(myNumber)"

// = "My number is 3"

You can also include the results of expressions, as well:

let myOtherString = "My number plus one is \(myNumber + 1)"

// = "My number plus one is 4"

Switches
A switch is a powerful way to run code depending on the value of a variable. Switches
exist in other languages, but Swift kicks them into high gear.

To run different code based on the value of an integer, you can use a switch statement
like this:

let integerSwitch = 3

switch integerSwitch {

case 0:

 println("It's 0")

case 1:

 println("It's 1")

case 2:

 println("It's 2")

default: // note: default is mandatory if not all

 // cases are covered (or can be covered)

 println("It's something else")

}

// Prints "it's something else"

In Swift, you can use the switch statement to handle more than just integers. You can

switch on many things, including String values:

let stringSwitch = "Hello"

switch stringSwitch {

case "Hello":

 println("A greeting")

case "Goodbye":

 println("A farewell")

default:

 println("Something else")

}

// Prints "A greeting"

You can also switch on tuples. This is especially powerful, as you can write cases that
run when only one of the components matches your condition:

Control Flow | 33

let tupleSwitch = ("Yes", 123)

switch tupleSwitch {

case ("Yes", 123):

 println("Tuple contains 'Yes' and '123'")

case ("Yes", _):

 println("Tuple contains 'Yes' and something else")

default:

 break

}

// Prints "Tuple contains 'Yes' and '123'"

Finally, you can also use ranges in switches, to create code that runs when the value
you’re testing falls between certain ranges:

var someNumber = 15

switch someNumber {

case 0...10:

 println("Number is between 0 and 10")

case 11...20:

 println("Number is between 11 and 20")

default:

 println("Number is something else")

}

// Prints "Number is between 11 and 20"

Switches in Swift work a little differently to switches in C and

Objective-C. In Swift, the execution of a section in a switch state‐
ment doesn’t automatically “fall through” into the next section, which

means you don’t need to include a break keyword at the end of your
section.

Additionally, switch statements are required to be exhaustive. This

means that the switch statement must cover all possible values. If

you’re switching using a Bool type, which can either be true or false,
you must provide handlers for both values. If you don’t, it’s a com‐
piler error.

However, it’s sometimes not possible to cover all cases. In the case of
integers, for example, it’s impossible to write a case for all possible

numbers. In these cases, you provide a default case, which is short‐
hand for “every other possible value.” So, to recap: in Swift, you ei‐
ther provide a case for all possible values, or you provide a

default case.

34 | Chapter 2: Programming with Swift

Functions and Closures
In Swift, you define functions to perform tasks with data. Functions let you organize
your code into small, repeatable chunks:

func firstFunction() {

 println("Hello")

}

firstFunction()

Functions can return a value to the code that calls them. When you define a function
that returns a type, you must indicate the type of the data that it returns, by using the

arrow (->) symbol:

func secondFunction() -> Int {

 return 123

}

secondFunction()

You can pass parameters to a function, which it’s able to use to do work. When you
define parameters for a function, it is also necessary to define the type of those
parameters:

func thirdFunction(firstValue: Int, secondValue: Int) -> Int {

 return firstValue + secondValue

}

thirdFunction(1, 2)

A function can return a single value, as we’ve already seen, but they can also return
multiple values, in the form of a tuple. In addition, you can attach names to the values
in the tuple, making it easier to work with the returned value:

func fourthFunction(firstValue: Int, secondValue: Int)

 -> (doubled: Int, quadrupled: Int) {

 return (firstValue * 2, secondValue * 4)

}

fourthFunction(2, 4)

When you call a function that returns a tuple, you can access its value by number, or by
name (if it has them):

// Accessing by number:

fourthFunction(2, 4).1 // = 16

// Same thing but with names:

fourthFunction(2, 4).quadrupled // = 16

When defining a function, you can give names to the parameters. This is very useful
when it might not be immediately obvious what each parameter is meant to be used for.
To define parameter names, you do this:

func addNumbers(firstNumber num1 : Int, toSecondNumber num2: Int) -> Int {

 return num1 + num2

}

Functions and Closures | 35

addNumbers(firstNumber: 2, toSecondNumber: 3) // = 5

When you create names for parameters, you define an external name for the parameter,
as well as an internal name. The internal name is how the function refers to the param‐
eter, and the external name is used by the code that calls the function. If you make a
function that doesn’t have named parameters, each parameter only has an internal name.

You’ll often find situations where the internal name of a parameter should be the same
as the external one. There’s nothing stopping you from typing the same name out twice,
but there’s a shorthand that you can use to define a parameter with an external name

that’s the same as its internal name—simply place a pound sign (#) in front of the pa‐
rameter name:

func multiplyNumbers(#firstNumber: Int, #multiplier: Int) -> Int {

 return firstNumber * multiplier

}

multiplyNumbers(firstNumber: 2, multiplier: 3) // = 6

When you define an external name for a function parameter, you
must use that external name when calling the function. Your code
will fail to compile if you don’t.

You can also create functions whose parameters have default values. This means that
you can call these functions and omit certain parameters; if you do, those parameters
will use the value used in the function’s definition:

func multiplyNumbers2 (firstNumber: Int, multiplier: Int = 2) -> Int {

 return firstNumber * multiplier;

}

// Parameters with default values can be omitted

multiplyNumbers2(2) // = 4

Sometimes, you’ll want to use functions with a variable number of parameters. A pa‐
rameter with a variable number of values is called a variadic parameter. In these cases,
you want a function to handle any number of parameters, ranging from 0 to an unlimited

number. To do this, use three dots (...) to indicate that a parameter has a variable
number of values. Inside the body of the function, the variadic parameter becomes an
array, which you can use like any other:

func sumNumbers(numbers: Int...) -> Int {

 // in this function, 'numbers' is an array of Ints

 var total = 0

 for number in numbers {

 total += number

 }

 return total

36 | Chapter 2: Programming with Swift

}

sumNumbers(2,3,4,5) // = 14

When using variable parameters, you can have as many non-
variadic parameters as you like. However, note that only the very last
parameter in the list can be variadic.

Normally, functions use parameters as input by value, and return values as output.

However, if you define a parameter with the inout keyword, you can pass the parameter
by reference, and directly change the value that’s stored in the variable. You can use this
to swap two variables using a function, like so:

func swapValues(inout firstValue: Int, inout secondValue: Int) {

 let tempValue = firstValue

 firstValue = secondValue

 secondValue = tempValue

}

var swap1 = 2

var swap2 = 3

swapValues(&swap1, &swap2)

swap1 // = 3

swap2 // = 2

When you pass in a variable as an inout parameter, you preface it with an ampersand

(&). This is done so that you’re reminded that its value is going to change when you call
the function.

Using Functions as Variables
Functions can be stored in variables. To do this, you first declare a variable as capable
of storing a function that takes certain parameters, and returns a value. Once that’s done,
you can store any function that takes those types of parameters and returns the same
type of value in the variable:

var numbersFunc: (Int, Int) -> Int;

// numbersFunc can now store any function that takes two ints and returns an int

// Using the 'addNumbers' function from before, which takes two numbers

// and adds them

numbersFunc = addNumbers

numbersFunc(2, 3) // = 5

Functions can also receive other functions as parameters, and use them. This means
that you can combine functions together:

func timesThree(number: Int) -> Int {

 return number * 3

Functions and Closures | 37

}

func doSomethingToNumber(aNumber: Int, thingToDo: (Int)->Int) -> Int {

 // we've received some function as a parameter, which we refer to as

 // 'thingToDo' inside this function.

 // call the function 'thingToDo' using 'aNumber', and return the result

 return thingToDo(aNumber);

}

// Give the 'timesThree' function to use as 'thingToDo'

doSomethingToNumber(4, timesThree) // = 12

Functions can also return other functions. This means that you can use a function that
creates a new function, which you can use in your code:

func createAdder(numberToAdd: Int) -> (Int) -> Int {

 func adder(number: Int) -> Int {

 return number + numberToAdd

 }

 return adder

}

var addTwo = createAdder(2)

addTwo(2) // = 4

A function can also “capture” a value, and use it multiple times. This is a tricky concept,
so we’ll go into it in a bit of detail. Consider the following example code:

func createIncrementor(incrementAmount: Int) -> () -> Int {

 var amount = 0

 func incrementor() -> Int {

 amount += incrementAmount

 return amount

 }

 return incrementor

}

var incrementByTen = createIncrementor(10)

incrementByTen() // = 10

incrementByTen() // = 20

var incrementByFifteen = createIncrementor(15)

incrementByFifteen() // = 15

This example does the following things:

The createIncrementor function takes an Int parameter, and returns a function

that takes no parameters and returns an Int.

Inside the function, a variable called amount is created and set to 0.

A new function is created inside the createIncrementor function, which takes

no parameters and returns an Int.

38 | Chapter 2: Programming with Swift

Inside this new function, the amount variable has the incrementAmount

parameter added to it, and then returned. Notice that the amount variable is
outside of this function.

The incrementor function is then returned.

The createIncrementor function can then be used to create a new incrementor

function. In the first example, one is created with the incremementAmount
parameter set to 10.

Each time this function is called, it will return a value that’s 10 higher than the
last time it was called. The reason it’s doing this is because the function that

createIncrementor returned captured the variable amount; every time it’s called,

that variable goes up by incrementAmount.

The amount variable is not shared between individual functions, however. When

a new incrementor is created, it has its own separate amount variable.

The second function goes up by 15.

This feature of Swift allows you to create functions that act as generators—functions
that return different values each time they’re called.

Closures
Another feature of Swift is that of closures—small, anonymous chunks of code that you
can use like functions. Closures are great for passing to other functions in order to tell
them how they should carry out a certain task.

To give you can example of how closures work, consider the built-in sorted function.
This function takes an array and a closure, and uses that closure to determine how two
individual elements of that array should be ordered (i.e., which one should go first in
the array).

In addition to the sorted function, which takes an array and returns a sorted version

of that same array, there’s also a sort function, which takes an array and changes it into
a sorted version:

var sortingInline = [2, 5, 98, 2, 13]

sort(&sortingInline)

sortingInline // = [2, 2, 5, 13, 98]

Note that the variable has an ampersand (&) in front of it.

To sort an array so that small numbers go before large numbers, you can do this:

var numbers = [2,1,56,32,120,13]

var numbersSorted = sorted(numbers, { (n1: Int, n2: Int) -> Bool in

 // Sort so that small numbers go before large numbers

Functions and Closures | 39

 return n2 > n1

}) // = [1, 2, 13, 32, 56, 120]

A closure, like a function, takes parameters. In the preceding example, the closure
specifies the name and type of the parameters that it works with. However, you don’t
need to be quite so verbose—the compiler can infer the type of the parameters for you,
much like how it can with variables. Notice the lack of types in the parameters for the
closure:

var numbersSortedReverse = sorted(numbers, {n1, n2 in

 return n1 > n2

}) // = [120, 56, 32, 13, 2, 1]

You can make it even more terse, if you don’t especially care what names the parameters
should have. If you omit the parameter names, you can just refer to each parameter by

number (the first parameter is called $0, the second is called $1, etc.).

Additionally, if your closure only contains a single line of code, you can omit the return
keyword:

var numbersSortedAgain = sorted(numbers, {

 $1 > $0

}) // = [1, 2, 13, 32, 56, 120]

Finally, if a closure is the last parameter in a function call, you can put it outside the
parentheses. This is purely something that improves readibility, and doesn’t change how
the closure works:

var numbersSortedReversedAgain = sorted(numbers) {

 $0 > $1

} // = [120, 56, 32, 13, 2, 1]

The line breaks in this code are optional, too. You could also do this:

var numbersSortedReversedOneMoreTime = sorted(numbers) { $0 > $1 }

// = [120, 56, 32, 13, 2, 1]

Just like functions, closures can be stored in variables. Once you do that, you can call
them, just like a function:

var comparator = {(a: Int, b:Int) in a < b}

comparator(1,2) // = true

Objects
In Swift, as with Objective-C, Java, and C++, you define classes as the templates for your
object. Classes in Swift look like this:

40 | Chapter 2: Programming with Swift

www.allitebooks.com

http://www.allitebooks.org

class Vehicle {

 var color: String?

 var maxSpeed = 80

 func description() -> String {

 return "A \(self.color) vehicle"

 }

 func travel() {

 println("Traveling at \(maxSpeed) kph")

 }

}

Classes contain both properties and methods. Properties are variables that are part of a
class, and methods are functions that are part of a class.

The Vehicle class in this example contains two properties: an optional String called

color, and an Int called maxSpeed. Property declarations look the same as variable
declarations do in other code:

 var color: String?

 var maxSpeed = 80

Methods in a class look the same as functions anywhere else. Code that’s in a method

can access the properties of a class by using the self keyword, which refers to the object
that’s currently running the code:

 func description() -> String {

 return "A \(self.color) vehicle"

 }

 func travel() {

 println("Traveling at \(maxSpeed) kph")

 }

When you’ve defined a class, you can create instances of the class to work with. In‐
stances have their own copies of the class’s properties and functions to work with.

For example, to define an instance of the Vehicle class, you define a variable and call
the class’s initializer. Once that’s done, you can work with the class’s functions and
properties:

var redVehicle = Vehicle()

redVehicle.color = "Red"

redVehicle.maxSpeed = 90

redVehicle.travel() // prints "Traveling at 90 kph"

redVehicle.description() // = "A Red vehicle"

Objects | 41

Inheritance
When you define a class, you can create one that inherits from another. When a class
inherits from another (called the parent class), it incorporates all of its parent’s functions
and properties.

In Swift, classes are allowed to have only a single parent class. This is
the same as Objective-C, but is different to C++, which allows classes
to have multiple parents (known as multiple inheritance).

To create a class that inherits from another, you put the name of the class you’re inher‐
iting from after the name of the class you’re creating, like so:

class Car: Vehicle {

 // Inherited classes can override functions

 override func description() -> String {

 var description = super.description()

 return description + ", which is a car"

 }

}

Classes that inherit from other classes can override functions in their parent class. This
means that you can create subclasses that inherit most of their functionality, but can
specialize in certain areas.

To override a function, you re-declare it in your subclass and add the override keyword
to let the compiler know that you aren’t accidentally creating a method with the same
name as one in the parent class.

In an overridden function, it’s often very useful to call back to the parent class’s version

of that function. You can do this through the super keyword, which lets you get access
to the superclass’s functions:

 override func description() -> String {

 var description = super.description()

 return description + ", which is a car"

 }

Initialization and Deinitialization
When you create an object in Swift, a special method known as its initializer is called.
The initializer is the method that you use to set up the initial state of an object.

In addition to initializers, you can run code when an object is going away, in a method
called its deinitializer. This runs when the retain count of an object drops to zero (see
“Memory Management” on page 54), and is called right before the object is removed

42 | Chapter 2: Programming with Swift

from memory. This is your object’s final opportunity to do any necessary cleanup before
it goes away forever:

class InitAndDeinitExample {

 // Designated (i.e., main) initializer

 init () {

 println("I've been created!")

 }

 // Convenience initializer, required to call the

 // designated initializer (above)

 convenience init (text: String) {

 self.init() // this is mandatory

 println("I was called with the convenience initializer!")

 }

 // Deinitializer

 deinit {

 println("I'm going away!")

 }

}

var example : InitAndDeinitExample?

// using the designated initializer

example = InitAndDeinitExample() // prints "I've been created!"

example = nil // prints "I'm going away"

// using the convenience initializer

example = InitAndDeinitExample(text: "Hello")

// prints "I've been created!" and then

// "I was called with the convenience initializer"

An initializer can also return nil. This can be useful when your initializer isn’t able to

usefully construct an object. For example, the NSURL class has an initializer that takes a

string and converts it into a URL; if the string isn’t a valid URL, the initializer returns nil.

To create an initializer that can return nil—also known as a failable initializer—put a

question mark after the init keyword, and return nil if the initializer decides that it
can’t successfully construct the object:

 // This is a convenience initializer that can sometimes fail, returning nil

 // Note the ? after the word 'init'

 convenience init? (value: Int) {

 self.init()

 if value > 5 {

 // We can't initialize this object; return nil to indicate failure

 return nil

 }

 }

When you use a failable initializer, any variable you store the result in will be optional:

Objects | 43

let failableExample = InitAndDeinitExample(value: 6)

// = nil

Properties
Classes store their data in properties. Properties, as previously mentioned, are variables
or constants that are attached to instances of classes. Any property that you’ve added to
a class can be accessed:

class Counter {

 var number: Int = 0

}

let myCounter = Counter()

myCounter.number = 2

In the previous example, the property is a simple value stored in the object. This is
known in Swift as a stored property. However, you can do more with properties, in‐
cluding creating properties that use code to figure out their value. These are known as
computed properties, and you can use them to provide a simpler interface to information
stored in your classes.

For example, consider a class that represents a rectangle, which has both a width and a

height property. It’d be useful to have an additional property that contains the area, but
you don’t want that to be a third stored property. Instead, you can use a computed
property, which looks like a regular property from the outside, but on the inside is really
a function that figures out the value when needed.

To define a computed property, you declare a variable in the same way as you do for a

stored property, but add braces ({ and }) after it. Inside these braces, you provide a get

section, and optionally a set section:

class Rectangle {

 var width: Double = 0.0

 var height: Double = 0.0

 var area : Double {

 // computed getter

 get {

 return width * height

 }

 // computed setter

 set {

 // Assume equal dimensions (i.e., a square)

 width = sqrt(newValue)

 height = sqrt(newValue)

 }

 }

}

44 | Chapter 2: Programming with Swift

In the previous example, the area is computed by multiplying the width and height
together. The property is also settable—if you set the area of the rectangle, the code
assumes that you want to create a square, and updates the width and height to both the
square root of the area.

Working with computed properties looks identical to working with stored properties:

var rect = Rectangle()

rect.width = 3.0

rect.height = 4.5

rect.area // = 13.5

rect.area = 9 // width & height now both 3.0

When working with properties, you often want to run some code whenever a property
changes. To support this, Swift properties let you add observers to your properties. These
are small chunks of code that can run just before or after a property’s value changes. To
create a property observer, add braces after your property (much like you do with com‐

puted properties), and include willSet and didSet blocks. These blocks each get passed

a parameter—willSet, which is called before the property’s value changes, is given the

value that is about to be set, and didSet is given the old value:

class PropertyObserverExample {

 var number : Int = 0 {

 willSet(newNumber) {

 println("About to change to \(newNumber)")

 }

 didSet(oldNumber) {

 println("Just changed from \(oldNumber) to \(self.number)!")

 }

 }

}

Property observers don’t change anything about how you actually work with the prop‐
erty—they just add additional behavior before and after the property changes:

var observer = PropertyObserverExample()

observer.number = 4

// prints "About to change to 4", then "Just changed from 0 to 4!"

You can also make a property lazy. A lazy property is one that doesn’t get set up until
the first time it’s accessed. This lets you defer some of the more time-consuming work
of setting up a class to later on, when it’s actually needed. To define a property as lazy,

you put the lazy keyword in front of it.

You can see lazy properties in action in the following example. In this code, there are
two properties, both of the same type, but one of them is lazy:

class SomeExpensiveClass {

 init(id : Int) {

 println("Expensive class \(id) created!")

 }

Objects | 45

}

class LazyPropertyExample {

 var expensiveClass1 = SomeExpensiveClass(id: 1)

 // note that we're actually constructing a class,

 // but it's labeled as lazy

 lazy var expensiveClass2 = SomeExpensiveClass(id: 2)

 init() {

 println("First class created!")

 }

}

var lazyExample = LazyPropertyExample()

// prints "Expensive class 1 created", then "First class created!"

lazyExample.expensiveClass1 // prints nothing, it's already created

lazyExample.expensiveClass2 // prints "Expensive class 2 created!"

In this example, when the lazyExample variable is created, it immediately creates the

first instance of SomeExpensiveClass. However, the second instance isn’t created until
it’s actually used by the code.

Protocols
A protocol can be thought of as a list of requirements for a class. When you define a
protocol, you’re creating a list of properties and methods that classes can declare that
they have.

A protocol looks very much like a class, with the exception that you don’t provide any
actual code—you just define what kinds of properties and functions exist, and how they
can be accessed.

For example, if you wanted to create a protocol that describes any object that can blink
on and off, you could use this:

protocol Blinking {

 // This property must be (at least) gettable

 var isBlinking : Bool { get }

 // This property must be gettable and settable

 var blinkSpeed: Double { get set }

 // This function must exist, but what it does is up to the implementor

 func startBlinking(blinkSpeed: Double) -> Void

}

Once you have a protocol, you can create classes that conform to a protocol. When a
class conforms to a protocol, it’s effectively promising to the compiler that it implements

46 | Chapter 2: Programming with Swift

all of the properties and methods listed in that protocol. It’s allowed to have more stuff
besides that, and it’s also allowed to conform to multiple protocols.

To continue this example, you could create a specific class called Light that implements

the Blinking protocol. Remember, all a protocol does is specify what a class can do—
the class itself is responsible for determining how it does it:

class Light : Blinking {

 var isBlinking: Bool = false

 var blinkSpeed : Double = 0.0

 func startBlinking(blinkSpeed : Double) {

 println("I am now blinking")

 isBlinking = true

 // We say self.blinkSpeed here to help the compiler tell

 // the difference between the parameter 'blinkSpeed' and the property

 self.blinkSpeed = blinkSpeed

 }

}

The advantage of using protocols is that you can use Swift’s type system to refer to any
object that conforms to a given protocol. This is useful, because you get to specify that
you only care about whether an object conforms to the protocol—the specific type of
the class doesn’t matter:

var aBlinkingThing : Blinking?

// can be ANY object that has the Blinking protocol

aBlinkingThing = Light()

// Using ? after the variable name checks to see

// if aBlinkingThing has a value before trying to work with it

aBlinkingThing?.startBlinking(4.0) // prints "I am now blinking"

aBlinkingThing?.blinkSpeed // = 4.0

Extensions
In Swift, you can extend existing types, and add additional methods and computed
properties. This is very useful in two situations:

• You’re working with a type that someone else wrote, and you want to add funci‐
tonality to it but either don’t have access to its source code or don’t want to mess
around with it.

• You’re working with a type that you wrote, and you want to divide up its function‐
ality into different sections, for readibility.

Objects | 47

Extensions let you do both with ease. In Swift, you can extend any type—that is, you

can extend both classes that you write, as well as built-in types like Int and String.

To create an extension, you use the extension keyword, followed by the name of the
type you want to extend. For example, to add methods and properties to the built-in

Int type, you can do this:

extension Int {

 var doubled : Int {

 return self * 2

 }

 func multiplyWith(anotherNumber: Int) -> Int {

 return self * anotherNumber

 }

}

Once you extend a type, you can call the additional functions and properties that you’ve
added. Note that when you extend a type, the functions and properties you define in
the extension are added to every instance of that type:

2.doubled // = 4

4.multiplyWith(32) // = 128

You can only add computed properties in an extension. You can’t add
your own stored properties.

You can also use extensions to make a type conform to a protocol. For example, you can

make the Int type conform to the Blinking protocol described earlier:

extension Int : Blinking {

 var isBlinking : Bool {

 return false;

 }

 var blinkSpeed : Double {

 get {

 return 0.0;

 }

 set {

 // Do nothing

 }

 }

 func startBlinking(blinkSpeed : Double) {

 println("I am the integer \(self). I do not blink.")

 }

}

48 | Chapter 2: Programming with Swift

2.isBlinking // = false

2.startBlinking(2.0) // prints "I am the integer 2. I do not blink."

Access Control
Swift defines three levels of access control, which determines what information is ac‐
cessible to which parts of the application:

Public
Public classes, methods, and properties are accessible by any part of the app. For
example, all of the classes in UIKit that you use to build iOS apps are public.

Internal
Internal data is only accessible to the module in which they’re defined. A module is
an application, library, or framework. This is why you can’t access the inner work‐
ings of UIKit—it’s defined as internal to the UIKit framework. Internal is the default
level of access control: if you don’t specify the access control level, it’s assumed to
be internal.

Private
Private data is only accessible to the file in which it’s declared. This means that you
can create classes that hide their inner workings from other classes in the same
module, which helps to keep the amount of surface area that those classes expose
to each other to a minimum.

The kind of access control that a method or property can have depends on the access
level of the class that it’s contained in. You can’t make a method more accessible than
the class in which it’s contained. For example, you can’t define a private class that has a
public method:

public class AccessControl {

By default, all properties and methods are internal. You can explicity define a member

as internal if you want, but it isn’t necessary:

 // Accessible to this module only

 // 'internal' here is the default and can be omitted

 internal var internalProperty = 123

The exception is for classes defined as private—if you don’t declare

an access control level for a member, it’s set as private, not internal.

When you declare a method or property as public, it becomes visible to everyone in
your app:

Objects | 49

 // Accessible to everyone

 public var publicProperty = 123

If you declare a method or property as private, it’s only accessible from within the
source file in which it’s declared:

 // Only accessible in this source file

 private var privateProperty = 123

Finally, you can render a property as read-only by declaring that its setter is private.
This means that you can freely read and write the property’s value within the source file
that it’s declared in, but other files can only read its value:

 // The setter is private, so other files can't modify it

 private(set) var privateSetterProperty = 123

Operators
When you add two integers together in Swift using the + symbol, you’re using an oper‐
ator. There are a wide variety of different operators built into Swift, and the most com‐

mon ones are the arithmetic operators (+, -, /, *, etc.). An operator is actually a function
that takes one or two values, and returns a value. For example, you could represent the

+ function like this:

func +(left: Int, right: Int) -> Int {

 return left + right

}

The preceding example actually calls itself in an infinitely recursive
way, which hangs your app.

Swift lets you define new operators, and overload existing ones for your new types. This
means that, if you have a new type of data, you can operate on that data using both
existing operators, as well as new ones you invent yourself.

For example, imagine you have an object called Vector2D, which stores two floating-
point numbers:

class Vector2D {

 var x : Float = 0.0

 var y : Float = 0.0

 init (x : Float, y: Float) {

 self.x = x

 self.y = y

 }

}

50 | Chapter 2: Programming with Swift

www.allitebooks.com

http://www.allitebooks.org

If you want to allow adding these two objects together using the + operator, all you need

to do is provide an implementation of the + function:

func +(left : Vector2D, right: Vector2D) -> Vector2D {

 let result = Vector2D(x: left.x + right.x, y: left.y + right.y)

 return result

}

You can then use it as you’d expect:

let first = Vector2D(x: 2, y: 2)

let second = Vector2D(x: 4, y: 1)

let result = first + second

// = (x:6, y:3)

For information on how to create your own custom operators, see the
“Advanced Operators” section of The Swift Programming Language.

Generics
Swift is a statically typed language. This means that the Swift compiler needs to defin‐
itively know what type of information your code is dealing with. This means that you
can’t pass a string to code that expects to deal with a date, which is something that can
happen in Objective-C.

However, this rigidity means that you lose some flexibility. It’s annoying to have to write
a chunk of code that does some work with strings, and another that works with dates.

This is where generics come in. Generics allow you to write code that doesn’t need to
know precisely what information it’s dealing with. An example of this kind of use is in
arrays: they don’t actually do any work with the data they store, but instead just store it
in an ordered collection. Arrays are, in fact, generics.

To create a generic type, you name your object as normal, and then specify any generic

types between angle brackets. T is traditionally the term used, but you can put anything

you like. For example, to create a generic Tree object, which contains a value and any

number of child Tree objects, you’d do the following:

class Tree <T> {

 // 'T' can now be used as a type

 var value : T

 var children : [Tree <T>] = []

Objects | 51

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AdvancedOperators.html

 init(value : T) {

 self.value = value

 }

 func addChild(value : T) -> Tree <T> {

 let newChild = Tree<T>(value: value)

 children.append(newChild)

 return newChild

 }

}

Once a generic type is defined, you can create a specific, nongeneric type from it. For

example, the Tree generic type just defined can be used to create a version that works

with Ints and one that works with Strings:

// Tree of integers

let integerTree = Tree<Int>(value: 5)

// Can add children that contain Ints

integerTree.addChild(10)

integerTree.addChild(5)

// Tree of strings

let stringTree = Tree<String>(value: "Hello")

stringTree.addChild("Yes")

stringTree.addChild("Internets")

Interoperating with Objective-C
Fortunately, this is very easy to do. For example, to use the UIView class (which is the
main focus of Chapter 4), which is written in Objective-C, you can construct an instance
just like any other Swift class:

var view = UIView(frame: CGRect(x: 0,y: 0,width: 100,height: 100))

Accessing the properties of an object that’s defined in Objective-C is easy, and works
the same way as a Swift object:

view.bounds

Methods in Objective-C get translated from their original form into Swift:

view.pointInside(CGPoint(x: 20, y: 20), withEvent:nil) // = true

Using Objective-C and Swift in the Same Project
If you’re making a new project from scratch, you’ll likely have the opportunity to write
all of your code in Swift. However, if you have an existing project written in Objective-
C, and want to write code in Swift, you need a way to bridge the two. The same thing

52 | Chapter 2: Programming with Swift

applies in reverse, for when you have a project written in Swift and need to add some
Objective-C code.

Using Swift Objects in Objective-C
To make objects written in Swift available in Objective-C, you need to add the @objc

tag in front of them. For example, if you have a class written in Swift called Cat, you

write the class as normal, and prepend @objc in front of its name:

@objc class Cat : NSObject {

 var name : String = ""

 func speak() -> String {

 return "Meow"

 }

}

In your Objective-C code, you import an Xcode-generated header file that makes all of

your @objc-tagged Swift code available to Objective-C:

#import "MyAppName-Swift.h"

Once it’s imported, you can use the class as if it had originally been written in
Objective-C:

Cat* myCat = [[Cat alloc] init];

myCat.name = "Fluffy";

[myCat speak];

Using Objective-C Objects in Swift
To use classes and other code written in Objective-C in your Swift code, you fill out a
bridging header. When you add an Objective-C file to a project containing Swift files,
or vice versa, Xcode will offer to create and add a bridging header to your project.

Inside this header, you add #import statements for all of the Objective-C files you want
to export to Swift. Then, inside your Swift code, you can use the Objective-C classes as
if they had been originally written in Swift.

This method is actually how your code accesses the majority of the
Cocoa and Cocoa Touch APIs, which are mostly written in
Objective-C.

For example, consider a class written in Objective-C, like so:

@interface Elevator

Using Objective-C and Swift in the Same Project | 53

- (void) moveUp;

- (void) moveDown;

@property NSString* modelName;

@end

All you need to do is import the class’s header file into the bridging header that Xcode
generates for you:

#import "Elevator.h"

Once that’s done, you can use the class in Swift as if it was originally written in Swift:

let theElevator = Elevator()

theElevator.moveUp()

theElevator.moveDown()

theElevator.modelName = "The Great Glass Elevator"

Interoperation between Swift and Objective-C is a large and com‐
plex topic, and there are several details that you should know if you
plan on making the two work together. Apple’s written an entire book
on the topic, Using Swift with Cocoa and Objective-C, which is avail‐
able for free both online and on the iBooks Store.

Modules
In Swift, just like in Objective-C, code is grouped into modules. When you define a
framework or application, all of the code that’s added to it is placed within that target’s

module. To get access to the code, you use the import keyword:

import AVFoundation

Memory Management
Objects in Swift are memory managed. When an object is being used, Swift keeps it in
memory; when it’s no longer being used, it’s removed from memory.

The technique that Swift uses to keep track of which objects are being used and which
are not is called reference counting. When an object is assigned to a variable, a counter
called the retain count goes up by 1. When the object is no longer assigned to that
variable, the retain count goes down. If the retain count ever reaches 0, that means that
no variables are referring to that object, and the object is then removed from memory.

54 | Chapter 2: Programming with Swift

https://itunes.apple.com/us/book/usingswift-cocoa-objective/id888894773?mt=11

The nice thing about Swift is that this all happens at the compiler level. As the compiler
reads your code, it keeps track of when objects get assigned to variables, and adds code
that increments and decrements the retain count.

However, this automatic memory management has one potential snag that you need to
keep an eye out for: retain cycles.

A retain cycle is where you have two objects that refer to each other, but are otherwise
not referred to by any other part of the application. Because those objects refer to each
other, their retain count is not zero, which means they stay in memory; however, because
no variable in the rest of the application refers to them, they’re inaccessible (and con‐
sequently useless).

Swift solves this using the concept of weak references. A weak reference is a variable
that refers to an object, but doesn’t change the retain count of that object. You use weak
references when you don’t particularly care whether an object stays in memory or not
(i.e., your code isn’t the owner of that object).

To declare a weak reference in Swift, you use the weak keyword, like so:

class Class1 {

 init() {

 println("Class 1 being created!")

 }

 deinit {

 println("Class 1 going away!")

 }

}

class Class2 {

 // Weak vars are implicitly optional

 weak var weakRef : Class1?

}

Working with Strings
In Swift, strings are sequences of Unicode characters. This means that they’re able to
store pretty much any character that has ever been a part of a human language, which
is great news for making your app translatable to other languages.

Creating a string in Swift is easy. Creating an empty string can be done by creating a
string literal with nothing in it:

let emptyString = ""

You can also create an empty string by using the String type’s initializer:

let anotherEmptyString = String()

Working with Strings | 55

Checking to see if a string is empty can be done using the isEmpty property:

emptyString.isEmpty // = true

Strings can be combined together, using the + and += operators:

var composingAString = "Hello"

composingAString += ", World!" // = "Hello, World!"

A string is actually a sequence of Character objects, each representing a Unicode char‐

acter. To loop over every character in a string, you can use a for-in loop:

var reversedString = ""

for character in "Hello" {

 reversedString = String(character) + reversedString

}

reversedString // = "olleH"

To work out how many characters are in a string, you use the countElements function:

countElements("Hello") // = 5

The countElements function actually works on any collection, in‐
cluding arrays and dictionaries.

Note that the number of characters in a String is not the same as the
number of bytes. Unicode characters can range in size from 1 byte to
4 bytes, depending on their type (emoji, for example, are 4 bytes).

Comparing Strings
To compare two different strings, you just use the == operator. This operator checks the
contents of two strings to see if they contain the same characters:

let string1 : String = "Hello"

let string2 : String = "Hel" + "lo"

if string1 == string2 {

 println("The strings are equal")

}

In other languages like C and Objective-C, the == operator checks to
see if two values are equal, or if two variables refer to the same loca‐
tion in memory. If you really do want to see if two string variables

refer to the same object, you use the === operator (note that it’s three
equals signs, instead of two):

if string1 as AnyObject === string2 as AnyObject {

 println("The strings are the same object")

}

56 | Chapter 2: Programming with Swift

To change the case of a string, you use the uppercaseString and lowercaseString
properties, which return modified versions of the original string:

string1.uppercaseString // = "HELLO"

string2.lowercaseString // = "hello"

Searching Strings
You can check to see if a string has a given suffix or prefix by using the hasPrefix and

hasSuffix methods:

if string1.hasPrefix("H") {

 println("String begins with an H")

}

if string1.hasSuffix("llo") {

 println("String ends in 'llo'")

}

Data
In Cocoa, you’ll frequently find yourself working with chunks of arbitrary data that you
need to save to or load from disk, or that you’ve downloaded from the network. Cocoa

represents these as NSData objects.

You can get an NSData object in a variety of ways. For example, if you have a string that

you want to convert to an NSData, you can use the string’s dataUsingEncoding method,
like so:

let stringToConvert = "Hello, Swift"

let data = stringToConvert.dataUsingEncoding(NSUTF8StringEncoding)

Loading Data from Files and URLs
You can also load data from a URL or from a file location on disk. If the file is one of
the resources built into your project, you first need to work out where on disk it’s being
stored; once you have that, you can load its contents into memory.

To get the location of a built-in file, you first use the NSBundle class to determine where

a given file is being stored on disk. Once you’ve done that, you construct an NSData
object by providing it either a URL or a file path:

// Loading from URL

if let fileURL = NSBundle.mainBundle()

 .URLForResource("SomeFile", withExtension: "txt") {

 let loadedDataFromURL = NSData(contentsOfURL:fileURL)

}

// Loading from a file

if let filePath = NSBundle.mainBundle()

Data | 57

 .pathForResource("SomeFile", ofType: "txt") {

 let loadedDataFromPath = NSData(contentsOfFile:filePath)

}

Serialization and Deserialization
You can also convert an object to data. To do this, you first make an object conform to

the NSObject and NSCoding protocols, and then add two methods: encodeWithCoder,

and an initializer that takes an NSCoder:

class SerializableObject : NSObject, NSCoding {

 var name : String?

 func encodeWithCoder(aCoder: NSCoder) {

 aCoder.encodeObject(name!, forKey:"name")

 }

 override init() {

 self.name = "My Object"

 }

 required init(coder aDecoder: NSCoder) {

 self.name = aDecoder.decodeObjectForKey("name") as? String

 }

}

An object that conforms to NSCoding can be converted to an NSData object, and also be

loaded from one, via the NSKeyedArchiver and NSKeyedUnarchiver classes. The trick

to it is in the encodeWithCoder method, and in the special initializer: in the encode

WithCoder method, you take the NSCoder that’s passed in as a parameter, and store any
values that you want to keep in it. Later, in the initializer, you pull those values out.

Converting these objects to and from data is very straightforward, and looks like this:

let anObject = SerializableObject()

anObject.name = "My Thing That I'm Saving"

// Converting it to data

let objectConvertedToData =

 NSKeyedArchiver.archivedDataWithRootObject(anObject)

// Converting it back

// Note that the conversion might fail, so 'unarchiveObjectWithData' returns

// an optional value. So, use 'as?' to check to see if it worked.

let loadedObject =

 NSKeyedUnarchiver.unarchiveObjectWithData(objectConvertedToData)

 as? SerializableObject

loadedObject?.name

// = "My Thing That I'm Saving"

58 | Chapter 2: Programming with Swift

Design Patterns in Cocoa
Cocoa is built around a number of design patterns, whose purpose is to make your life
as a developer more consistent and (one hopes) more productive. Three key patterns
are the model-view-controller (MVC) pattern, upon which most of Cocoa and Cocoa
Touch is built; the delegation pattern, which allows both your code and Cocoa to be
highly flexible in determining what code gets run by whom; and notifications, which
allow your code to watch for important events that happen within your app.

Model-View-Controller
The model-view-controller design pattern is one of the fundamental design patterns in
Cocoa. Let’s take a look at what each of these parts mean:

• Models are objects that contain data or otherwise coordinate the storing, manage‐
ment, and delivery of data to other objects. Models can be as simple as a string or
as complicated as an entire database—their purpose is to store data and provide it
to other objects. They don’t care what happens to the data once they give it to
someone else; their only concern is managing how the data is stored.

• Views are objects that work directly with the user, providing information to them
and receiving input back. Views do not manage the data that they display—they
only show it to the user. Views are also responsible for informing other objects when
the user interacts with them. Likewise with data and models, views do not care what
happens next—their responsibility ends with informing the rest of the application.

• Controllers are objects that mediate between models and views, and contain the
bulk of what some call the “business logic” of an application—the actual logic that
defines what the application is and how it responds to user input. At a minimum,
the controller is responsible for retrieving information from the model and pro‐
viding it to the view; it is also responsible for providing information to the model
when it is informed by the view that the user has interacted with it.

For an illustration of the model-view-controller design pattern in action, imagine a
simple text editor. In this example, the application loads a text file from disk and presents
its contents to the user in a text field. The user makes changes in the text field and saves
those changes back to disk.

We can break this application down into model, view, and controller objects:

• The model is an object that is responsible for loading the text file from disk and
writing it back out to disk. It is also responsible for providing the text as a string to
any object that asks for it.

• The view is the text field, which asks another object for a string to display, and then
displays the text. It also accepts keyboard input from the user; whenever the user

Design Patterns in Cocoa | 59

types, it informs another object that the text has changed. It is also able to tell another
object when the user has told it to save changes.

• The controller is the object responsible for instructing the model object to load a
file from disk, and passes the text to the view. It receives updates from the view
object when the text has changed, and passes those changes to the model. Finally,
it can be told by the view that the user has asked to save the changes; when that
happens, it instructs the model to do the work of actually writing the file out to disk.

By breaking the application into these areas of responsibility, it becomes easier to make
changes to the application.

For example, if the developer decides that the next version of the application should add
the ability to upload the text file to the Internet whenever the file is saved, the only thing
that must be changed is the model class—the controller can stay the same, and the view
never changes.

Likewise, by clearly defining which objects are responsible for which features, it’s easier
to make changes to an application while maintaining a clear structure in the project. If
the developer decides to add a spellchecking feature to the application, that code should
clearly be added to the controller, as it has nothing to do with how the text is presented
to the user or stored on disk. (You could, of course, add some features to the view that
would allow it to indicate which words are misspelled, but the bulk of the code would
need to be added in the controller.)

The majority of the classes described in this chapter, such as NSData, arrays, and dic‐
tionaries, are model classes; all they do is store and present information to other classes.

NSKeyedArchiver is a controller class; it takes information and performs logical oper‐

ations on it. NSButton and UITextField are examples of view objects; they present
information to the user and do not care about how the data is managed.

The model-view-controller paradigm becomes very important when you start looking
at the more advanced Cocoa features, like the document architecture (see Chapter 13)
and bindings (see Chapter 11).

Delegation
Delegation is Cocoa’s term for passing off some responsibilities of an object to another.

An example of this in action is the UIApplication object, which represents an appli‐
cation on iOS. This application needs to know what should happen when the application
moves to the background. Many other languages handle this problem by subclassing—

for example, in C++, the UIApplication class would define an empty placeholder

method for applicationDidEnterBackground, and then you as a developer would sub‐

class UIApplication and override the applicationDidEnterBackground method.

60 | Chapter 2: Programming with Swift

1. C++’s answer to this problem is multiple inheritance, which has its own problems.

However, this is a particularly heavy-handed solution and causes additional problems--
it increases the complexity of your code, and also means that if you want to override
the behavior of two classes, you need two separate subclasses for each one.1 Swift’s an‐
swer to this problem is built around the fact that an object can determine, at runtime,
whether another object is capable of responding to a message.

An object that wants to let another object know that something is going to happen, or
has happened, stores a reference to that object as an instance variable. This object is
known as the delegate. When the event happens, it checks to see if the delegate object

implements a method that suits the event—for delegates of the UIApplication class,

for example, the application delegate is asked if it implements the applicationDidEn

terBackground method. If it does, that method is called. An object can also be the
delegate for multiple objects.

Because of this loose coupling, it’s possible for an object to be the delegate for multiple
objects. For example, an object could become the delegate of both an audio playback
object and an image picker, and be notified both when audio playback completes and
when an image has been captured by the camera.

Because the model-view-controller pattern is built around a very loose coupling of ob‐
jects, it helps to have a more rigidly defined interface between objects so that your
application can know with more certainty how one object expects others to behave.

The specific messages used by delegates are often listed in protocols. For example, if

your object wants to be the delegate of an AVAudioPlayer object, it should conform to

the AVAudioPlayerDelegate protocol.

Working with delegates in Swift is easy. Imagine you have two classes, and you want
one of them to act as the delegate for another:

// Define a protocol that has a function called handleIntruder

protocol HouseSecurityDelegate {

 // We don't define the function here, but rather

 // indicate that any class that is a HouseSecurityDelegate

 // is required to have a handleIntruder() function

 func handleIntruder()

}

class House {

 // The delegate can be any object that conforms to the HouseSecurityDelegate

 // protocol

 var delegate : HouseSecurityDelegate?

 func burglarDetected() {

 // Check to see if the delegate is there, then call it

Design Patterns in Cocoa | 61

 delegate?.handleIntruder()

 }

}

class GuardDog : HouseSecurityDelegate {

 func handleIntruder() {

 println("Releasing the hounds!")

 }

}

let myHouse = House()

myHouse.burglarDetected() // does nothing

let theHounds = GuardDog()

myHouse.delegate = theHounds

myHouse.burglarDetected() // prints "Releasing the hounds!"

In Swift, you can check to see if an optional variable is nil by using the ? operator. You

can also check to see if an object contains a property or method using the same ?
operator.

62 | Chapter 2: Programming with Swift

CHAPTER 3

Applications on OS X and iOS

As far as users are concerned, applications are the only thing on their computers besides
their files. After all, a computer is defined by what it can do for the user, and what it can
do is defined by the applications that are installed.

As a developer, it’s easy to get drawn into the details of how an app is put together—the
individual classes, methods, and structures. However, the application as a whole is what’s
sold to the user, and that’s all users care about.

In this chapter, you’ll learn how applications are structured on OS X and iOS, how they
differ from other kinds of distributable code, what they can do on the system, and what
they’re prevented from doing by the built-in security measures provided by the OS.

What Is an Application?
Applications on iOS and OS X are packaged differently from applications on other
platforms, most notably Windows. On other platforms, the end result of compiling your
project is a binary file that contains the compiled code. It’s then up to you as a developer
to package that binary file up with the resources it needs. On Linux, you generate a
package file (which can vary depending on the distribution you’re using), and on Win‐
dows, it’s traditional to create an “installer,” which is an additional application that un‐
packs the binary and resources.

OS X and iOS take a different approach to applications. This approach stems from the
concept of a “package”—a folder that contains a number of items but is presented to the
user as a single file. Many document formats use packages as a convenient way to store
and organize their data, because storing different chunks of data as separate files means
that the program doesn’t have to implement logic that unpacks a single file.

63

If you’re coming from a Linux background, note that “package,” in
this context, means something different. A package file is just a fold‐
er that’s presented as a single file, while on Linux “package” means a
redistributable file used to install software. OS X also uses the word
“package” in this way—you can generate .pkg files that contain soft‐
ware, which when opened install the software onto your machine.
When you upload an app to the Mac App Store, for example, you
upload a package.

And just to add to the confusion, the Cocoa framework doesn’t call
folders that are presented as single files “packages,” but rather calls
them “bundles.”

Applications, therefore, are actually folders that contain the compiled binary, plus any
resources they may need. The structure of applications differs slightly between OS X
and iOS, but the fundamental philosophy of how an application is packaged remains
the same. You can take a look inside an application by right-clicking one in the Finder
and choosing Show Package Contents.

When you compile a project in Xcode and generate an application, Xcode creates the
application package, and copies in any necessary resources. If you’re creating a Mac
application, you can then just zip it up and send it to anyone for them to run it. On iOS,
it’s a little different, because apps must be code-signed and provisioned before being run
on the device.

One advantage to this is that applications are entirely self-contained and can be moved
anywhere on a Mac.

Because applications can be moved, it used to be commonplace to add
code to an application that detected if the app was not in the Appli‐
cations folder and offered to move itself there to keep the user’s
Downloads folder tidy.

This is less common in the days of the App Store, which installs all
applications directly into the Applications folder. However, if your
application is being distributed by means other than the Mac App
Store, it’s worthwhile to include this logic anyway.

Applications, Frameworks, Utilities, and More
Applications aren’t the only products that you can produce from Xcode. You can also
generate frameworks, which are loadable bundles of code and resources that other ap‐
plications (including your own) can use. Frameworks are actually very similar to ap‐
plications in structure—they contain a binary file and any resources—but they’re not
standalone and are designed to be used by other apps.

64 | Chapter 3: Applications on OS X and iOS

One prime example of a framework is AppKit.framework, which is used by every Mac

application. On iOS, the equivalent framework is UIKit.framework.

“Cocoa” is the term used by Apple to refer to the collection of libra‐
ries used by applications on OS X. On iOS, the equivalent term is
“Cocoa Touch,” as it’s adapted for touchscreen devices.

What Are Apps Composed Of?
In order to function as an application on iOS or OS X, an application must have two
things at a minimum:

• The compiled binary

• An information file describing the app to the system

The compiled binary is simply the end result of Xcode compiling all of your source code
and linking it together.

Information describing the app to the system is saved in a file called Info.plist. Among
other things, Info.plist contains:

• The name of the application’s icon file

• What kinds of documents the application can open

• The name of the compiled binary

• The name of the interface file to load when the application starts up

• What languages the application supports (such as French, English, etc.)

• Whether the application supports multitasking (for iOS apps)

• The Mac App Store category the application is in (for OS X apps)

Info.plist is really important—in fact, if you remove it from the application bundle, the
app can’t launch.

Applications also contain every resource that was compiled in—all the images, files,
sounds, and other items that were added to the project via Xcode. The application can
refer to these resources at runtime.

You can take a look at the structure of an OS X application by following these steps:

1. Open Xcode, and create a new OS X application. Don’t bother changing any settings
when Xcode asks—just name the app whatever you like and save it somewhere.

2. Build the application. Press ⌘-B, or choose Product→Build.

What Is an Application? | 65

3. Open the Products group in the project navigator. It will now contain the .app,
which is the end result of the build process. Right-click it and choose Show in Finder.
The Finder will open, revealing where Xcode put the app.

4. Right-click the application and choose Show Package Contents. The Finder will
show the contents of the bundle.

The structures of OS X and iOS application bundles are different: on iOS, everything is
contained at the root of the package’s folder, but on OS X, the structure is more rigorous.

The structure of a Mac application named MyApp looks like this:

MyApp.app
The top level of the package

Contents
A folder that contains the application itself

Info.plist
The file that describes the application to the system

MacOS
A folder that contains the app’s compiled binary

MyApp
The app’s compiled binary

PkgInfo
A legacy file that describes the app’s maker and what the app is

Resources
A folder that contains all of the compiled-in resources

The structure of an iOS application named MyApp looks like this:

MyApp
The app’s compiled binary

Info.plist
The file that describes the application to the system

Default.png
The image that is shown while the app is launching

Default@2x.png
The double-resolution version of Default.png, used on certain high-resolution de‐
vices (e.g., the iPhone 6 or the iPad Air)

66 | Chapter 3: Applications on OS X and iOS

Default@3x.png
The triple-resolution version of Default.png, used on higher resolution devices (e.g.,
the iPhone 6 Plus)

Embedded.mobileprovision
The provisioning profile that identifies the app as able to run on a device

Entitlements.plist
A file that describes what the application may or may not do

Because your application could be anywhere on the system, your code can’t use absolute
paths to determine the location of resources. Thankfully, Cocoa already knows all about
packages and how to work with them.

Using NSBundle to Find Resources in Applications
As far as your code goes, your application works the same regardless of which platform

it’s running on, thanks to a useful class called NSBundle. This class allows your code to
know where it is on the disk and how to get at the compiled resources.

This is especially important for iOS applications, as these apps are placed in arbitrary
folders by the OS when they’re installed. This means that your code cannot depend upon
being in a single place, and you can’t hardcode paths. Of course, doing that is a bad idea
anyway, but on iOS, it’s guaranteed to cause failures.

You can use NSBundle to determine the location of the application’s package on disk,
but most of the time you only need to know about the location of the individual
resources.

NSBundle allows you to determine both URLs and plain file paths for resources on the
disk. All you need to know is the name and type of the resource.

For example, the following code returns an NSString that contains the absolute path
for a resource called SomeFile.txt:

let resourcePath = NSBundle.mainBundle()

 .pathForResource("SomeFile", ofType: "txt")

// resourcePath is now a string containing the

// absolute path reference to SomeFile.txt, or nil

Note that this code snippet calls NSBundle.mainBundle()—it’s possible to have more
than one bundle around. Remember that Cocoa refers to packages (i.e., folders con‐
taining app resources) as bundles.

You can also get URLs to resources as well:

let resourceURL = NSBundle.mainBundle()

 .URLForResource("SomeFile", withExtension: "txt")

// resourceURL is now an NSURL, or nil

What Is an Application? | 67

This method looks inside the Resources folder in the application bundle for the named
file. (On iOS, it looks inside the root folder of the application bundle.)

Absolute paths and URLs are functionally the same when referring to files stored on
disk, but using URLs is preferred—a string could theoretically contain anything, where‐
as a URL always points to a location. This includes file URLs, which look like this: file:///
Applications/Xcode.app/. You can therefore use URLs in any case where you’d normally
use a file path.

If you add an image or other resource to your project, it is copied into the application
bundle when the project is built. For Mac apps, the resources are copied into the Re‐
sources folder, and for iOS apps, the resources are copied into the root folder of the
application.

The Application Life Cycle
Every program starts, runs, and quits. What’s interesting is what it does in between. For
the most part, applications on OS X and iOS behave similarly, with the exception that
iOS handles multitasking in a different way from standard desktop applications.

In this section, we’ll walk through the life cycle of both kinds of applications, and discuss
what happens at various stages of an app’s life.

OS X Applications
When an application is launched, the first thing the system does is open the application’s
Info.plist. From this file, the system determines where the compiled binary is located,
and launches it. From this point on, the code that you write is in control.

In addition to the compiled code, applications almost always have a collection of objects
that were prepared at design time and bundled with the application. These are usually
interface objects—pre-prepared windows, controls, and screens—which are stored in‐
side a nib file when the application is built. When the application runs, these nib files
are opened, and the premade objects are loaded into memory.

For more information on nib files, as well as the related storyboards
and how they’re built, see Chapter 4.

The first thing an application does is open the nib file and deserialize its contents. This
means that the application unpacks the windows, controls, and anything else stored in
it and links them together. The main nib also contains the application delegate object,
which is unpacked with all the rest.

68 | Chapter 3: Applications on OS X and iOS

When an object is unpacked from a nib, it is sent the awakeFromNib message. This is
the moment at which that object can begin to run code.

Objects that are unpacked from a nib are not sent an init message
because they were already initialized when the developer dragged and
dropped them into the interface. This is different from objects that
are created by calling their constructor in code.

When working with nib files, it’s important to understand that when
you add an object to a nib file, that object is created at that mo‐
ment, and “freeze-dried” when the nib file is saved. When the nib file
is opened, the object is “rehydrated” and gets back to work. After the

object is rehydrated, it is sent the awakeFromNib message to let it know
that it’s awake.

To summarize: objects that are loaded from a nib receive the awakeFromNib message.

Objects that are created by your code receive the init method.

At this point, the application is ready to start running properly. The first thing it does

is to send the application delegate the applicationDidFinishLaunching method. After
that method completes, the application enters the run loop.

The run loop continues looping until the application quits. The purpose of the run loop
is to listen for events—keyboard input, mouse movement and clicks, timers going off,
etc.—and send those events to the relevant destinations. For example, say you have a
button hooked up to a method that should be run when the button is clicked. When the
user clicks the button, the mouse-click event is sent to the button, which then causes its
target method to get run.

On OS X, applications continue to run when the user selects another app. When the

user changes applications, the application delegate receives the applicationWillRe

signActive message, indicating that the application is about to stop being the active

one. Soon after, the app delegate receives the applicationDidResignActive method.

The reason these two methods are separate is to let your code manage what happens to
the screen’s contents when the home button is tapped on iOS, or when the user switches

to another app on OS X. When applicationWillResignActive is called, your appli‐
cation is still present on the screen. When the application is no longer visible, the ap‐

plication delegate receives applicationDidResignActive.

When the user comes back to the app, the application delegate receives a pair of similar

methods: applicationWillBecomeActive and applicationDidBecomeActive. These
are sent immediately before and after the application returns to being the active one.

The event loop is terminated when the application quits. When this happens, the ap‐

plication delegate receives the applicationWillTerminate message, which is sent

The Application Life Cycle | 69

immediately before the app quits. This is the last opportunity an app has to save files
before quitting.

iOS Applications
iOS applications behave in a broadly similar manner to OS X applications, with a few
differences. The main one is that iOS applications are presented differently from desktop
apps, and the tighter memory constraints on an iOS device mean that there are more
stringent rules about multitasking.

On iOS, only one application is on the screen at a time—any other applications are
completely hidden. The visible application is known as the foreground application, and
any apps also running are background applications. There are strict limits on how long
an application may run in the background, which we’ll discuss shortly.

When using an application on iOS, a user may be interrupted by something else—an
incoming phone call, for example—which replaces the app with which the user was
interacting. The application is still technically considered to be in the foreground, but
it is now inactive. If the user accepts the phone call, the phone application becomes the
foreground application, and the previous app moves to the background.

There are other methods by which an application can become inactive, such as when
the user pulls down the notifications tray (by swiping down from the top of the screen),
or opens the task switcher (by double-tapping on the home button). When an applica‐
tion becomes inactive, it’s a signal that it may be exited, so your app should make sure
to save any work.

The iOS application life cycle is almost identical to that of an OS X application. When
the app is launched, the Info.plist file is checked, the compiled binary is found and
loaded, and the application begins running code, starting by unpacking the contents of
the main storyboard.

When the application completes loading, the application delegate receives the applica

tionDidFinishLaunching(_, withOptions:) method. This is similar to the OS X
counterpart, but adds an additional parameter—a dictionary, which contains informa‐
tion about why and how the application was launched.

Applications are most commonly launched directly by the user tapping on the icon.
They can also be launched by other applications, such as when an app passes a file to

another or is opened through a custom URL. The options dictionary contains infor‐
mation that describes the circumstances under which the application launched.

Just as with OS X applications, iOS applications also receive applicationWillResignAc

tive and applicationDidBecomeActive messages (with one difference—on OS X, the

parameter to these methods is an NSNotification object, whereas on iOS the parameter

is a UIApplication).

70 | Chapter 3: Applications on OS X and iOS

When an application is quit by the user on OS X, we have seen that the application

delegate receives the applicationWillTerminate method. This was also the case for
iOS applications, until iOS 4. At this point, multitasking was introduced, and the life
cycle of iOS applications changed.

Multitasking on iOS

Applications on iOS are permitted to run in the background, but only under certain
very limited conditions. That’s because iOS devices are much more constrained than
OS X devices in the areas of CPU power, memory space, and battery capacity. A Mac‐
Book Pro is expected to run for around 7 hours on battery, with a full set of applications
(e.g., a word processor, web browser, etc.) loaded and running. An iPhone 6 Plus, by
contrast, is expected to last for greater than 8 hours on WiFi while browsing the Internet
—on a battery with a fraction of the capacity of a full-size laptop battery. Additionally,
a MacBook Pro (at the time of writing) ships with 8 GB of memory, while an iPhone 6
Plus has only 1 GB, and an iPad Air 2 has only 2 GB.

There’s simply no room to fit all the applications at once, so iOS is forced to make some
decisions about what applications can run in the background and for how long.

When an application exits (e.g., when the user hits the home button or another appli‐
cation launches), the application is suspended—it hasn’t quit, but it stops executing code
and its memory is locked. When the application resumes, it simply picks up where it
left off.

This means that the application remains in memory, but stops consuming the system’s
power-draining resources such as the CPU and location hardware. However, memory
is still tight on the iPhone, so if another app needs more memory, the application is
simply terminated without notice.

Note that an application that is suspended doesn’t get to run any code, and therefore
can’t get notified that it’s being terminated while suspended. This means that any critical
data must be saved when the application delegate is told that the application is being
moved to the background.

Applications are not told when they are suspended or when they are woken up. They
are told when they move into and out of the background, however, through the following
delegate methods:

func applicationDidEnterBackground(_ application: UIApplication)

and

func applicationWillEnterForeground(_ application: UIApplication)

applicationDidEnterBackground is called immediately after the application has
moved to the background state. The application will be suspended after the method has

The Application Life Cycle | 71

run, which means that the app needs to save any data it’s working on because it may be
terminated while suspended.

applicationWillEnterForeground is called just before the application comes back on
screen, and is your application’s opportunity to get set up to work again.

As mentioned earlier, applications that are suspended are candidates for termination if
the new foreground app needs more memory. As an application developer, you can
reduce the chances of this happening by reducing the amount of memory your appli‐
cation is using—by freeing large objects, unloading images, and so on.

If possible, try to reduce the amount of memory being used to un‐
der 16 MB. When the application is suspended and the memory us‐
age is under 16 MB, the system will store the application’s memory
on the flash chips and remove it from memory entirely. When the
application is resumed, the application’s memory state is reloaded
from the stored memory on the flash chips—meaning that the appli‐
cation won’t be evicted from memory due to another application’s
memory demands. We’ll look at how to measure memory usage in
“Fixing Problems Using Instruments” on page 368.

An application can request to run in the background for a short period of time. This
background period can be no longer than 10 minutes, and it exists to allow your appli‐
cation to complete a long-running process—writing large files to disk, completing a
download, or some other lengthy process. At the end of the 10 minutes, your application
must indicate to the OS that it is done or it will be terminated (not suspended, but
terminated—gone from memory completely).

To run tasks in the background, you need to add code that looks like this to your ap‐
plication delegate:

func applicationDidEnterBackground(application : UIApplication) {

 var backgroundTask : UIBackgroundTaskIdentifier! = nil

 // Register a background task, and provide a block to run when

 // time runs out

 backgroundTask = application

 .beginBackgroundTaskWithExpirationHandler() {

 // This block is called when we're out of time; if we haven't

 // called endBackgroundTask before this block returns,

 // the application is terminated

 application.endBackgroundTask(backgroundTask)

 backgroundTask = UIBackgroundTaskInvalid

 }

72 | Chapter 3: Applications on OS X and iOS

 let backgroundQueue = NSOperationQueue()

 backgroundQueue.addOperationWithBlock() {

 // Do some work. You have a few minutes to complete it; by the end,

 // you must call endBackgroundTask.

 NSLog("Doing some background work!")

 application.endBackgroundTask(backgroundTask)

 backgroundTask = UIBackgroundTaskInvalid

 }

}

There is no guarantee that the extra time to perform background tasks will be in one
contiguous chunk; the time may be broken up into multiple chunks to improve battery
life. Introduced with iOS 7 were two means of running tasks in the background: back‐
ground fetching and background notifications.

Background fetching is designed for applications that require periodic updates, such as
weather applications or social networking applications like Twitter. With background
fetching enabled, an application can be woken up in the background to retrieve up-to-
date information in the background to have ready to immediately display when the user
brings the application to the foreground.

To use background fetching, there are a few things you need to do:

• Select the project in the project navigator, open the Capabilities tab, and enable
Background Fetch from the Background Modes section.

• In your code, you need to call the setMinimumBackgroundFetchInterval function
to let iOS know approximately how often to wake your application so it can fetch
updates. If you do not set a minimum interval, iOS will default to never waking
your application for performing fetches.

To actually perform the fetching when iOS wakes your application, you will have to add
code to your application delegate that looks like this:

func application(application: UIApplication,

 performFetchWithCompletionHandler completionHandler:

 (UIBackgroundFetchResult) -> Void) {

 // We have 30 seconds to download some data and process it

 var error : NSError? = nil

 let data = downloadSomeData(&error)

 // Once done, let the OS know whether or not new data was

 // retrieved or not, or if there was an error

The Application Life Cycle | 73

 if error != nil {

 completionHandler(UIBackgroundFetchResult.Failed)

 return

 }

 // This is a very simple check—your application would

 // do something more involved, like compare this data against

 // the most recently downloaded data to determine if it's 'new'

 if data?.length > 0 {

 completionHandler(UIBackgroundFetchResult.NewData)

 return

 } else {

 completionHandler(UIBackgroundFetchResult.NoData)

 return

 }

}

Background notifications allow your application to receive notifications and process
them in the background. Background notifications could be used in an instant mes‐
saging application to automatically update the conversation while the application is in
the background or to alert your application when new content is available to be fetched.

Background notifications operate in a manner very similar to background fetching, and
require a similar setup before being available for use in your application. Your applica‐
tion will need to be able to handle notifications, which are discussed in “Notifica‐
tions” on page 393, and you’ll need to enable remote notifications in your project.

To enable remote notifications, select the project in the project navigator, open the
Capabilities tab, and enable “Remote notifications” from the Background Modes
section.

Much like background fetch, an application method that handles the notifications is
called whenever your application receives a notification. The code to receive this noti‐
fications looks like this:

func application(application: UIApplication,

 didReceiveRemoteNotification userInfo: [NSObject : AnyObject])

This method functions in a manner very similar to the method for handling background
fetching and even requires the same results to be passed into the callback handler when

completed. The main difference is the userInfo parameter, which is a dictionary con‐
taining the data that the remote notification contained.

74 | Chapter 3: Applications on OS X and iOS

Keep in mind that despite letting you set a minimum interval for
fetching in the background, iOS will wake your application at what
it determines is the best time without causing unnecessary drain on
the device’s battery. In a similar manner, Apple will limit how many
remote notifications are sent to the device for the same reasons. If
your application isn’t behaving exactly as you set it, this might be the
cause.

There are other cases in which an application can run in the background for longer
periods of time, all of which are geared toward more specialized applications:

• Applications that play audio in the background can remain active for as long as they
like, until the user starts playing audio from another app. For example, the Pandora
Internet radio app can run in the background until the user starts playing music
from the Music application.

• Applications that track the user’s location in the background can run for as long as
they like.

• Voice over IP (VoIP) applications like Skype are allowed to run periodically to check
in with their server, but aren’t allowed to run indefinitely except when a call is active.

In summary, if you’re writing an application for iOS, you can only expect to be running
on the device when the user is directly accessing your app. When the user can’t see your
application, it quite literally becomes a case of “out of sight, out of mind.”

The Application Sandbox
OS X and iOS implement a number of features to improve the overall level of security
for the user. One of these features is the application sandbox, a tool that restricts what
an application is allowed to do. The application exists inside the sandbox, and may not
try to access any system resources (hardware, user data, etc.) that is outside the sandbox.
Sandboxes are somewhat optional for Mac applications, and mandatory for iOS
applications.

A sandbox improves the security of the system by preventing an app from doing some‐
thing that either Apple or the user does not want it to do. This is specifically useful for
improving the security of apps, because the majority of hacks take the form of exploiting
a bug in an existing application. Adobe’s Acrobat Reader and Microsoft’s Internet Ex‐
plorer 6 are two applications through which malicious people have been able to com‐
promise other users’ systems (install extra software, retrieve private data, etc.). These
exploits take the form of modifying the compromised application to make it perform
the intruder’s bidding.

The Application Sandbox | 75

Sandboxes solve this problem by preventing (at a kernel level) an application from
accessing user data, communicating with the network, accessing hardware like the
camera and microphone, and so on. Even if the software has an exploitable bug, the
intruder cannot access user data because the application is not permitted to reach out‐
side of its sandbox.

Applications that are downloaded from the iOS App Store are automatically placed in
a sandbox; we will discuss this in more detail in “Working with the Sandbox” on page
217. Applications that are distributed via the Mac App Store require being sandboxed as
well; however, apps that you distribute yourself do not.

Application Restrictions
As mentioned earlier, a sandbox restricts what an application can do. The restrictions
vary significantly between iOS and OS X, because applications on OS X have tradition‐
ally been less restricted in terms of what they’re allowed to do.

For example, a Mac application can request read/write access to any of the user’s files.
An iOS application can only work with its own documents, and can’t open any files
outside of its sandbox.

iOS application restrictions

When an iOS app is installed on the device, it’s given a container to store its information
in. This folder contains the following items:

Documents
Stores all documents belonging to the application

Library
Stores all settings and configuration info

Caches
Contains data that is useful to have on disk, but could be regenerated; items in this
folder are deleted by the system if it needs to free some space

Preferences
Stores settings and preferences

tmp
Stores files temporarily; items in this folder are periodically deleted by the system

An iOS application is not allowed to work with any file outside of its folder. This prevents
the bundle from reading private information (like phone call logs) or modifying any
system files.

76 | Chapter 3: Applications on OS X and iOS

Mac application restrictions

The idea of putting restrictions on what Mac apps can do only arrived with the release
of the Mac App Store in 2011, which means that Apple had quite a bit of time to figure
out how to implement it.

When you decide to make your application sandboxed, Xcode presents you with a
number of options that determine what your application is allowed to do. These options
are called entitlements.

The available entitlements that your Mac application can request are:

Filesystem
You can determine whether the application has read/write, read-only, or no access
to the filesystem. You can also control whether the application can work with certain
folders, such as the Downloads folder.

Network
You can determine whether the application is allowed to make outgoing connec‐
tions and accept incoming connections.

Hardware
You can determine whether the application is allowed to access the built-in camera
and microphone, communicate with devices via USB, and print.

App communication
You can determine whether the application is allowed to work with the data man‐
aged by the Address Book or Calendar, and whether it is allowed to work with the
user’s location information.

Music, movies, and pictures folder access
You can determine whether the application can work with the user’s music, photos,
and movies by controlling whether the app has read/write, read-only, or no access
to these folders. You can set each folder’s access permissions separately.

Private APIs

One of the rules that Apple imposes on applications that are sold via the iTunes App
Store or the Mac App Store is that apps are only allowed to communicate with the system
via the classes and methods that Apple has documented and indicated as being for
developer use.

There are many “private” classes and methods that Apple uses behind the scenes. For
example, the code that determines whether an iOS device is locked with a passcode is
undocumented; Apple uses it (such as in the Find My Friends app), but developers like
us may not.

The Application Sandbox | 77

Apple scans all submitted applications as part of the App Store review process. This
happens automatically, before a human being sits down to review your application. If
your application is rejected for using a private API, you must remove the private API
usage and resubmit. If Apple notices that your app uses private APIs after the app has
gone live in the App Store, they’ll simply take down the app.

The point is clear: Apple does not like developers using undocumented APIs. This is
because documented APIs are known by Apple to be safe and (mostly) bug-free. Doc‐
umented APIs are also features that Apple has committed to, and won’t change under‐
neath you. Undocumented APIs, on the other hand, are often still under active devel‐
opment, or may provide access to parts of the OS that Apple considers out of bounds
for app developers.

Notifications with NSNotification
It’s often useful to broadcast notifications to any interested application when something
of relevance happens. For example, when the user presses the home button on an iOS
device, the only object that receives a notification by default is the application delegate,

which receives the applicationDidEnterBackground message. However, objects in the
application may wish to be notified of events like this, and while it’s possible for the
application delegate to do something like maintain an array of objects to send messages
to when an app-wide event takes place, it can be cumbersome.

Enter the NSNotification class. NSNotification objects, or notifications for short, are
broadcast messages sent by an object to any other object that has registered to be notified

of such notifications. Notifications are managed by the NSNotificationCenter, which
is a singleton object that manages the delivery of notifications.

Notifications are created by the object that wants to broadcast, or post, the notification.

The NSNotification object is given to the notification center, which then delivers the
notification to all objects that have registered for that notification type.

When an object wants to start receiving notifications, it first needs to know the
name of the notification it wants to be told about. There are hundreds of
different notification types; to continue with our earlier example, the specific
notification posted when the application enters the background is

UIApplicationDidEnterBackgroundNotification.

Notification types are actually just strings, so you can also define your
own notification types.

78 | Chapter 3: Applications on OS X and iOS

Therefore, to register for this notification, all an object needs to do is this:

// Get the notification center to use (in this and almost all

// cases, use the default center)

let notificationCenter = NSNotificationCenter.defaultCenter()

// Get the operation queue to run the notification handler on

// (in this case, the main operation queue)

let operationQueue = NSOperationQueue.mainQueue()

// Register for the notification UIApplicationDidEnterBackgroundNotification

let applicationDidEnterBackgroundObserver =

 notificationCenter.addObserverForName(

 UIApplicationDidEnterBackgroundNotification,

 object: nil, queue: operationQueue) {

 (notification: NSNotification!) in

 println("Hello!")

}

The addObserverForName method returns an object, called the observer, which you need
to keep around. You use this object when unregistering for notifications, like this:

notificationCenter.removeObserver(applicationDidEnterBackgroundObserver)

If you don’t unregister for notifications, you’ll leave behind dan‐
gling notification handlers, which can cause wasted memory and
crashes. Always unregister your notification handlers!

Once you’ve registered for a notification, your notification handler block will run every
time the notification is fired.

You’ll notice that the handler block receives one parameter: an NSNotification object.
This object contains information about the notification itself, which varies between
different notification types.

You can also post your own notifications, if you’ve defined a notification type:

let MyNotificationType = "MyNotificationType"

// the 'object' parameter is the object responsible for sending the

// notification, and can be nil

notificationCenter.postNotificationName(MyNotificationType, object: nil)

Notifications with NSNotification | 79

CHAPTER 4

Graphical User Interfaces

The graphical user interface (GUI) is one of the defining features of modern computers.
No personal computer sold to consumers these days lacks a GUI, and the only time
people work with a machine that doesn’t present information graphically is when they’re
working with a server, supercomputer, or other specialized tool. Displaying a graphical
interface to your user is fundamental to developing with Cocoa, and understanding
both how to design an appealing and usable GUI and how to implement that GUI are
critical skills for Cocoa developers.

This chapter covers the user interface system available in Cocoa and Cocoa Touch, in
addition to implementing a UI. You’ll also learn about Core Animation, the animation
system on both OS X and iOS. Designing a usable and pleasant UI is a huge topic that
wouldn’t fit in this chapter (let alone in this book!), so if you’re interested in learning
how to make a great user interface, take a look at Tapworthy by Josh Clark (O’Reilly).

Interfaces in OS X and iOS
While both iOS and OS X devices use a screen to present their interfaces, there are
distinct differences in how they accept user input and in how they display output back
to the user.

On OS X, the top-level object is the window. Windows contain controls, such as buttons,
labels, and text fields, and can be moved around the screen to suit the user. More than
one window is displayed on the screen at a time. Some windows can be resized, which
means that windows need to know how to present their layout when the window grows
larger or smaller. Finally, some windows can take up the entire screen; this feature has
become increasingly common in OS X since the introduction of OS X 10.7 (Lion), which
added a standard way for windows to become fullscreen and for more than one window
to be fullscreen at once.

81

http://shop.oreilly.com/product/0636920001133.do

iOS also deals with windows, but presents them in a different way. In iOS, the user only
deals with one screenful of content at a time. Each screen is managed by an object called
a view controller, which manages the presentation of screen-sized views. View control‐
lers are embedded into the application’s window, and there is only one window displayed
on the screen at any one time. Almost every application on iOS only ever has one win‐
dow. Some exceptions include applications that display content on multiple screens
(such as when the device is connected to a television); in these cases, each screen has a
window.

As mentioned in “OS X Applications” on page 68, applications load their user interfaces
from files called nib files. Nib files take their name from an acronym that dates back to
the days when Cocoa was being designed by NeXT, the company that Steve Jobs founded
after leaving Apple in the late 1980s. NIB stands for “NeXT Interface Builder,” the name
of the program that designed the interfaces.

Interface Builder continued to be distributed as a separate application as part of the
developer tools until the release of Xcode 4, at which point it was embedded in Xcode.

MVC and Application Design
In Chapter 3, we discussed how the model-view-controller paradigm shapes a lot of the
design decisions in Cocoa. To recap, the MVC design pattern divides the responsibilities
of an app into three categories: the model, which handles data storage; the view, which
presents the user interface and accepts input such as mouse movement or touches on
the screen; and the controller, which mediates between the view and the model and
provides the main operating logic for the application.

The Interface Builder in Xcode deals exclusively with views. The rest of Xcode handles
the model and controller parts of your application, allowing you to concentrate on
building the interface in relative isolation.

Nib Files and Storyboards
At the broadest level, nib files contain objects, and a storyboard is an organized grouping
of interlinked nib files. In almost all cases, nib files and storyboards contain only inter‐
faces, but it’s possible to (mis)use nib files as a generic container for objects.

Nib files have the extension .nib or .xib. An .xib file is a nib file that’s
stored in an XML-based format. Unless you are working with lega‐
cy code, you will rarely see .nib files anymore. Regardless of the file
extension, they’re referred to as “nibs.”

82 | Chapter 4: Graphical User Interfaces

Nib files work by “freeze-drying” (Apple’s terminology) objects and storing them in a
serialized form inside the file. All of the properties of the objects (e.g., in the case of a
button, its position, label text, and other information) are stored in the nib file. When
an application needs to display a window, it loads the nib file, “rehydrates” the stored
objects, and presents them to the user.

Effectively, views and screens assembled in Interface Builder are the exact same objects
that appear on screen in your software.

Because nib files simply contain objects, they can also contain objects that are instances
of your own class. You can therefore create an instance of a class that is created when a
nib is loaded, and connect it to your views.

On their own, views aren’t terribly useful unless you want to create an application that
does nothing more than present some buttons that can be clicked on or a text field that
does nothing with the text that is entered. If you want to create an application that
actually responds to user input, you must connect the views to your controllers (i.e.,
your application code).

The Interface Builder provides two ways to connect views to code: outlets and actions.
We will discuss both in more detail later in this chapter.

Structure of a Nib File
Nib files contain a tree structure of objects. This tree can have many roots—for example,
a nib file could contain two windows, each with its own collection of buttons and con‐
trols. These objects at the top level of the tree are known as “top-level objects.”

Top-level objects are usually the visible things that are presented to users—windows on
OS X and view controllers on iOS. However, any object can be a top-level object in
a nib.

On OS X, anything that’s shown on screen is placed in a window. There are many dif‐
ferent kinds of windows available in the Interface Builder:

Standard windows
The common, garden-variety windows shown on the screen. They have a full-size
title bar, and are usually the primary window for an application.

Panel windows
These have a reduced-height title bar and are usually hidden when the application
is not active. “Inspector” windows and other accessory windows usually use panels.

Textured windows
Identical to standard windows, but have a different background color. These have
changed quite a bit over the years; they’ve been pin-striped, brushed-metal, a plain
gradient, and now a simple, dark gray background (as of OS X 10.10).

Nib Files and Storyboards | 83

HUD (heads-up display)
These windows are dark gray, translucent, and designed to show information about
something that’s currently selected or to contain auxiliary controls for your appli‐
cations. These are most often seen in media applications like QuickTime, Logic,
and Final Cut.

Windows can contain any view at all. For more information on views, see Chapter 6.

On iOS, as previously mentioned, there is only one window on the screen at any one
time. In contrast to OS X, this window stays on the screen for as long as the app is in
the foreground, and replaces its contents when the user moves from one screen of con‐
tent to the next.

In order to manage the various screens of content, iOS uses a category of object called
a view controller. View controllers are classes that manage a single view as well as its
subviews. We’ll discuss them in more detail later in this chapter, but for practical pur‐
poses, you can think of view controllers as a screen’s worth of content.

View controllers also exist on OS X, but their role is less important,
as multiple windows can be shown on the screen at once.

Much like OS X’s windows, view controllers on iOS come in a variety of different flavors.
These variations are more functionally different than the styles of windows on OS X,
which are primarily cosmetic. On iOS, the different categories of view controllers define
the structure and behavior of the application and each kind of view controller is designed
for a different style of presenting information to the user:

Standard view controllers
These present a view, and nothing more. It is most often subclassed to add logic to
the screen—in fact, being subclassed is the primary purpose of this view controller.

Navigation controllers
These present a stack of view controllers, onto which the application can push
additional view controllers. When a new view controller is pushed onto the stack,
the navigation controller animates the view controller’s view into being visible with
a sideways scrolling motion. When the navigation controller is instructed to pop a
view controller from the stack, the view animates off with a reverse sliding motion.
A good example of this type of view controller is the Settings application.

Table view controllers
These present a list of cells that can be individually configured, stylized, ordered,
and grouped. Despite being named a table view controller, it only shows a single
column of cells. Table view controllers are used to display a list of items, and are

84 | Chapter 4: Graphical User Interfaces

often used in conjunction with a navigation controller to list the available views to
the user (an example of this is in the Settings app on the iPhone). They’re also seen
in the Phone app, where the screens with Favorites, Recents, Contacts, and Voice‐
mail all use table view controllers.

Tab bar controllers
These present a set of view controllers, selectable through a tab bar at the bottom
of the screen. When a button on the tab bar is tapped by the user, the tab bar
controller hides the currently shown view controller and displays another. An ex‐
ample of this style of interface is the Music application. Tab bar controllers are best
for presenting multiple ways of viewing the application interface. For example, the
App Store is all about finding and purchasing applications, and the tabs presented
to the user are simply different views of the same information. Other applications
may have more specific angles of presenting the key info that the app is designed
around. For example, a chat application could use a tab bar that shows three dif‐
ferent tabs: one that shows the list of contacts, one that shows the list of active chats,
and one that shows information about the user’s profile.

Split view controllers
These present a side-by-side parent and child view structure, allowing you to see
an overview in the parent view and detailed information in the child view. Prior to
iOS 8, split view controllers were only available on iPads, as the side-by-side nature
generally does not work particularly well on iPhones. Now in iOS 8, when you use
a split view controller, the system determines what appearance the controller will
take; based on the available space, it will either show the views side by side, hide the
parent view when viewing the child, or present the parent as an overlay. An example
of the split view controller is in the Settings app on an iPad.

Page controllers
These present view controllers in a “page-turning” interface, similar to the iBooks
application on the iPad and iPhone. Each “page” in the book is a view controller,
and the user can drag a finger across the screen to turn the page. These are best
used when creating a book or magazine-style application where there is a need to
present sequential information.

GLKit controllers
These allow you to present 3D graphics to the user using OpenGL. These are a
particularly specialized kind of view controller and we won’t be discussing them
here—the topic of OpenGL graphics is way outside the scope of a book about Cocoa.

Collection view controllers
These present a customizable and configurable grid of views in a manner similar
to a table view controller but with flexible items instead of individual cells. An
example of this is the Photos app on the iPhone.

Nib Files and Storyboards | 85

AVKit player view controllers
These present a full screen video player and are designed, obviously, for playing
video content. For more on how to play video and audio, see “AVKit” on page 195.

Windows and view controllers are simply containers that present controls to the user.
Controls are the visible items on the screen that the user interacts with: buttons, text
fields, sliders, and so forth. To build an interface in Xcode, you drag and drop the con‐
trols you want from the object library in the Utilities pane onto the window or view
controller. You can then reposition or resize the control.

View controllers can contain other view controllers on iOS. For ex‐
ample, a navigation controller is a view controller that manages the
appearance of the navigation bar at the top of the screen, as well as
one or more additional view controllers.

View controller containment can be a complex topic. For more in‐
formation, see “View Controller Basics” in the View Controller Pro‐
gramming Guide for iOS in the Xcode developer documentation.

Storyboards
Originally introduced in iOS 5, storyboards are now the default way of creating your
iOS UI in Interface Builder. When you create a new iOS application in Xcode, there will
be a Main.storyboard created automatically for you to use in place of a nib. Starting with
OS X 10.10, you can now use storyboards for your Mac apps as well. Nibs are still
common for OS X apps, because you often don’t need to manage and chain together
multiple windows in a Mac app.

In a nutshell, a storyboard is a collection of view controllers all linked together via
segues. It is easy enough to think of a storyboard as a collection of nibs inside a single
file. They are composed of the same elements and are interpreted by the system and
Xcode in the same way. The only significant difference is that a nib generally contains
a single view controller whereas a storyboard contains multiple view controllers (al‐
though it can only contain one if you want).

One of the nicest features of storyboards are segues, which can be thought of as a link
between two view controllers that allows you to transition, or segue, between view con‐
trollers without any code. Creating a segue is straightforward. Any element inside a view
controller that can perform an action (see “Outlets and Actions” on page 87) can have its
action turned into a segue. Simply Control-drag from the element inside the first view
controller onto the second view controller and an appropriate segue will be created.

Once a segue has been created in the Interface Builder, it can also be triggered progra‐
matically through its identifier. If you select a segue and select the attribute inspector,
you can set an identifier for that segue. Your view controller can then use the

86 | Chapter 4: Graphical User Interfaces

https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html

performSegueWithIdentifier(_, sender:) method to force that segue to run. Shortly

before the segue occurs, your view controller’s prepareForSegue(_, sender:) method
will be called giving you a chance for final preparations before you transition into the
next view controller.

Outlets and Actions
Objects can exist in isolation, but this means that they don’t participate in the application
as a whole. A button can look very pretty, but unless it triggers some kind of action
when clicked, it won’t do anything but look pretty.

In most cases, an object in an application needs to work with other objects in order to
do something useful. For example, a table view, which displays information in a list or
grid, needs to be able to contact another object in order to ask it what information should
be displayed. The table view does not store the information itself—to do so would violate
the model-view-controller pattern. Views should not know anything about the data they
are presenting; they should ask their controller about it.

Another kind of relationship is the one between a button and the application—when a
button is pressed or tapped, the application should be informed of it and then run code
as a response. If there are multiple buttons on the screen, which is common, the appli‐
cation should know which code to run when a particular button is tapped.

In Cocoa, this kind of relationship is known as a target–action relationship. When you
add a button to a window or view controller, you can specify two things: what object
should be contacted when the button is clicked or tapped, and what message the object
should receive when this happens. The object that is contacted is known as the target,
and the message that is sent is called the action. This is shown in Figure 4-1.

Figure 4-1. The target–action pattern

To allow these relationships between objects to be set up, Xcode allows you to make
connections between objects in the interface. There are two kinds of connections:

• Outlets are relationships in which one object “plugs in” to another to communicate.
An example is the table view that needs to contact another object to know what data
to display.

• Actions are relationships that describe what method another object should run
when an event occurs.

Nib Files and Storyboards | 87

These connections are defined in the nib file, and are used when reconstructing the
objects as the nib file loads.

How Nib Files and Storyboards Are Loaded
When a nib file is loaded, usually as part of application startup, every object it contains
is re-created based on information stored in the nib: its class, position, label, size, and
all its other relevant properties.

Once all objects exist in memory, every outlet defined in the nib file is connected. A nib
file effectively describes a source object, a destination object, and the name of a property
on the destination object. To connect the objects together, then, the nib file loading
process sets the value of the destination object’s property to the source object.

After all outlets are connected, every single object that was loaded receives the awake

FromNib() message. By the time this method is called, every outlet has been connected,
and all relationships between the objects have been reestablished.

Actions are a slightly different matter. An action is represented as a target object and an
action message that is sent to that object. When a button is clicked, for example, it sends
the action message to the target object.

Outlets and actions are independent of each other. Having an outlet connection doesn’t
imply that an action is sent, and vice versa. If you want to receive a message from a
button and also have a variable that points to that button, you’ll need both an outlet and
an action.

The process for creating actions and outlets is the same for both: you make sure that
you have the code for your view controller open in the assistant, and then hold down
the Control key on your keyboard and drag from the view into your code. Once you do
that, a dialog box will appear that lets you choose what the connection should be called,
and whether the connection should be an outlet or an action. The dialog box is shown
in Figure 4-2.

Figure 4-2. The connection creation box

88 | Chapter 4: Graphical User Interfaces

It’s very easy to accidentally create an outlet when you meant to create
an action, and vice versa. If you do this, you need to both remove
the line of code that the connection creation box inserts, and re‐
move the connection itself from your interface. If you delete just the
code, the connection itself remains—and your app may crash on
launch, because the relevant property no longer exists.

Deleting the code is straightforward: simply remove it from your
source code.

Removing the offending connection is slightly more complex. First,
you need to go into your interface file and select the view that you
accidentally added the connection for. Then go to the Connections
Inspector, which is at the far right, and locate the connection you
want to remove. Click the x that appears next to it, and you’re done.

If your app is crashing on launch, and the console mentions some‐
thing about not being key-value coding compliant, you probably have
this issue. Check to make sure that all of your connections are valid!

Constructing an Interface
All interfaces in the Interface Builder are built by dragging components out of the object
library and into a container. For windows, and view controllers that have no container,
you just drag them out into the canvas.

The objects library, shown in Figure 4-3, is in the lower-right corner of the Xcode win‐
dow. It lists every single object that can be dragged into an interface file—windows,
controls, and hidden objects like view controllers are all available. If you are building
an OS X interface, Mac controls appear; if you are building an iOS interface, iOS controls
appear.

Figure 4-3. The objects library

Constructing an Interface | 89

You can filter the list by typing in the text field at the bottom of the list. This filter searches
for the name of the object as well as its class name, so you can search for “NSButton” as
well as just “button.” If you know exactly what you’re searching for, searching by class
name is often faster—over time, you’ll come to recognize objects by class name and start
thinking in those terms.

Guidelines and Constraints
Cocoa tries to keep your views and windows laid out nicely. When you drag a button
into a view, for example, Cocoa will offer guides as to where the button can be placed
based on Apple’s UI recommendations. If you drag in a button and place it next to
another button, Cocoa will help you line them up and place the right amount of space
between them. The same applies to resizing views—the Interface Builder will try to
dissuade you from creating a layout that doesn’t match up to Cocoa’s standard sizes and
margins.

The relationships between a view, its container view, and the other views around it are
preserved in the form of constraints. You can view the constraints on an object by click‐
ing on it and noting the blue lines that extend from it to other views or to the container
view’s edges.

Prior to the release of Xcode 5, constraints were quite tricky to get correct, and very easy
to do incorrectly, leading to a variety of bizarre appearances and layouts in your appli‐
cation. With the introduction of Xcode 5, however, constraints have changed. Now when
an object is added to a view, it has no visible constraints and Xcode will invisibly create
constraints to glue that object at the exact position and size you placed it, because most
objects won’t need to move or resize. This lets you ignore most objects and focus on
adding constraints only for the ones that actually need them.

Constraints are a new system of laying out a user interface, available
from OS X 10.7 Lion and iOS 6 onwards. They replace an earlier
model called springs and struts, sometimes referred to as autosizing
masks. For more information on this older system, see “Reposition‐
ing and Resizing Views” in the View Programming Guide, included
in the Xcode developer documentation.

A constraint defines a relationship between a property of a view, like its height or the
position of its left edge, and a property of another view. This means that you can define
constraints like this:

The left position of the Add button is equal to the left position of the table view above it.

You can also create constraints that are based on constant values:

The width of the Delete button is equal to 50 screen points.

90 | Chapter 4: Graphical User Interfaces

http://bit.ly/view_programming_guide

Constraints can work together. If you have multiple constraints on a view, or constraints
that affect multiple views, the layout system will attempt to resolve them simultaneously:

The width of the Delete button is equal to 50 screen points, and its left edge is equal to
10 screen points from the right edge of the Add button.

Constraints allow you to create simple rules that define the position and size of all the
views on your screen. When the window that contains those views resizes, the layout
system will update to satisfy all of the constraints.

You can add your own constraints, called user constraints, via the constraints menu in
the lower right of the Interface Builder (Figure 4-4) or through the Editor menu.

Figure 4-4. The constraints menu

The constraints menu has four parts:

• Align defines how different views should line up relative to one another.

• Pin defines width, height, and spacing.

• Resolve Auto Layout Issues provides some solutions to common constraint issues.

• Resizing Behavior defines how constraints should be applied when resizing views.

Building an App with Nibs and Constraints
To demonstrate how to work with nibs and constraints, let’s build a simple interface that
makes use of different kinds of constraints. This application won’t have any code—we’ll
only be looking at the constraint system. In this example we will be making an OS X
application, but constraints work exactly the same way in iOS.

This interface will be for an application that lists a bunch of text documents and provides
a text field for editing that text. We’ll also include some buttons to add, remove, and
publish these documents. Let’s jump right in:

1. Create a new Cocoa application and name it Constraints.

2. Open the interface file (i.e., MainMenu.xib) and select the window in the Outline
pane to make it appear.

3. Add the UI elements. Start by dragging an NSTextView into the window and placing
it to take up most of the space in the window.

Building an App with Nibs and Constraints | 91

Drag in three gradient buttons: place two beneath the lefthand side of the table side
by side, and the other on the bottom lefthand side.

4. Customize the UI elements. Select the button at the bottom left, and open the At‐
tributes Inspector. Set the button’s Title to nothing (i.e., select all the text and delete

it). Then change the Image of the button to NSAddTemplate, which will make the
button contain a plus image.

Do the same for the button immediately to the right, but set the image to

NSRemoveTemplate.

Finally, select the button in the lower right of the window, and set its Title to Publish.

When you’re done, the window should look like Figure 4-5.

If you resize the window, the screen’s carefully constructed layout breaks, and it looks
ugly. So we’re going to add constraints that make the layout look good at any size:

Figure 4-5. Our unconstrained interface

1. First, we’ll add constraints to the text view. We want the text view to resize properly
when the window is resized. For now, we want the view to resize to however large
or small we make the window.

Select the text view and click the Pin button, which is the second button inside the
constraints menu. A small window will pop up with a bunch of different controls

92 | Chapter 4: Graphical User Interfaces

and options. To pin the position, select the small dotted red spacers for the Top,
Right, and Left distance positions and leave the default values.

Now when you select the text view, you will see small blue lines jutting out from it
to the borders of the window (these are the constraints we just added). You can
select them like any other element in Interface Builder.

2. Next, we’ll add constraints to the + and - button.

We want the + and - buttons to remain pinned to the bottom left of the screen and
to keep their distance from the table view. Select the + button and click the Pin
button. Select the spacers for the Left, Right, Top, and Bottom distance positions,
with the default values. Also check the Width and Height boxes to force the button
to remain its current size.

Select the - button and click the Pin button. Select the spacers for the Left and
Bottom distance positions, again leaving the default values.

Now select both the + and - buttons and click on the Pin button. Select Equal Widths
and Equal Heights.

Now both the + and - button are pinned to the lower-left corner, and they also
maintain the current sizes and distances away from each other and the table view.

3. Finally, add constraints to the Publish button. We want the Publish button to be
aligned with the right edge of the window and to maintain its spacing to the table
view and the window edge.

Select the Publish button and click the Pin button. Select the spacers for the Top,
Bottom, and Right distance positions and also check the Height and Width to force
it to remain its current size.

Now if you run the app, the table will resize and all elements will maintain their correct
spacing. However, the app will also let you make the window so small that our careful
layout won’t look all that nice, so we need to stop the window from going too small.
There are a variety of ways we could do this; we could set the width and height of the
text view to have a minimum size, or we could set the distance between other elements
to have a mimimum distance from each other:

1. Add a new button into the window, center it horizontally, and position it vertically
in line with the other three buttons. Finally, set the button’s title to Save.

2. Now we want this button to always be horizontally centered, which means that we
need to add a constraint for it. Select the new button and open the Align constraints
menu, using the first button in the constraints list, and select Horizontal Center in
Container.

3. Select the Save button, open the Pin menu, and set the Width and Height to be the
default values. Now our button has a size and a horizontal position.

Building an App with Nibs and Constraints | 93

4. Select the Save button, open the Pin menu, and set the Top distance position.

5. Now we can use this new button to restrict the size of the window. Select the button,
click the Pin button, and select the spacers for the Left and Right positions, with
the default values.

6. Select the Right distance spacer, and open the Attributes Inspector. Set the Relation
of the spacer to be Greater Than or Equal.

Now we have a resizable window that has an effective minimum width, but not height.
To do this, select the text view, open the Pin menu, and select Height, with the default
values. Again, like with the distance spacers, select the Height constraint, open the At‐
tributes Inspector and set the Relation to be Greater Than or Equal.

The window will now resize correctly while preserving the layout and correct dimen‐
sions: the + and = buttons pinned to the left, the Publish button to the right, and the
Save button always dead center (see Figure 4-6).

Figure 4-6. Our completed interface

94 | Chapter 4: Graphical User Interfaces

You can also add constraints to UI elements in other ways. In the
Xcode menu bar, under the Editor menu, there are options to add and
remove constraints. You can also add constraints by selecting a UI
element, holding down the Control key, and dragging to another UI
element you want the constraint to be relative to. So to get our + and
- buttons to have equal width and height, we could have instead se‐
lected the - button and Control-dragged onto the + button. A small
constraints menu will pop up allowing us to select Equal Width and
Equal Height from there. This menu is context sensitive and will
change depending on what elements you select and in which direc‐
tion you drag.

Interfaces on iOS
When you design interfaces on iOS, you use the exact same interface building tools as
you do on OS X: you drag and drop items into a canvas, add constraints to define their
size and position, and connect them to your code.

In iOS, however, you need to take into account the fact that there are several different
kinds of iOS device. The various iPhones and iPads are all different shapes and sizes,
and it’s often not feasible to create a whole new interface for each different one. This is
made even more complex when you consider that iOS devices can be held in both
portrait and landscape modes. Taking all this into account, you could be looking at close
to a dozen different interfaces to design.

To address this, the interface builder in Xcode has a concept called size classes. Size
classes describe, in very general terms, whether the width and height of the current
device’s orientation is either regular sized or compact sized. For example:

• On an iPhone 5S and 6 in portrait orientation, the height is regular, and the width
is compact.

• On an iPhone 5S and 6 in landscape orientation, both the height and width are
compact.

• On an iPhone 6 Plus in landscape orientation, the height is compact, and the width
is regular.

• On an iPad, the width and height are both regular.

When you design your interfaces, you can specify whether a view should appear in all
size classes, or in only some. You can also specify whether a certain constraint should
only appear when running under certain size classes.

Interfaces on iOS | 95

If a view controller is entirely filling the screen, it uses the screen’s size
classes. For example, a view controller that fills an entire iPad screen
has regular width and regular height.

However, a view controller might be presented in another view con‐
troller, which might alter its size class. For example, the split view
controller presents two view controllers, side by side—one narrow
and one wide. You can see an example in Figure 4-7. In a split view
controller on an iPad, the view controller on the left uses a compact
width and regular height, while the view controller on the right uses
a regular width and regular height.

Figure 4-7. The Settings application, which uses a split view controller

Designing with size classes is surprisingly straightforward. At the bottom of the screen,
you select which size class you want to view the interface in (Figure 4-8). By default, this
is set to “Any” for both width and height, which means that views and constraints that
you add will appear in any width and height configuration. In practical terms, this means
that they’ll appear on both the iPhone and the iPad, and in both orientations.

96 | Chapter 4: Graphical User Interfaces

If you change this setting, however, any views and constraints that you add will only
apply in the size class that you’ve selected. If you change the size class to “compact” for
the height, for example, views and constraints that you add will only appear when the
height of the size class is compact.

Figure 4-8. The size class picker

Launch Screen Files
When an application starts up, the first thing that iOS does is display a launch image.
This image is the thing that you see as you transition from the home screen into an app.
While you look at the launch image, the application is busily starting itself up, and getting
ready to present itself to the user; once it’s loaded, the launch image goes away, and you
start looking at the application itself.

The purpose of the launch image is to create an impression that the app is launching
faster than it actually is. Launch images aren’t meant to be “splash images” (i.e., images
that contain a big logo and company name, as is the case in some desktop apps like
Photoshop). Instead, launch images should present a partial view of the loaded appli‐
cation—all of the toolbars and general shapes should be present, but nothing that looks
like a button you can tap on. Once the app loads, the user sees the launch image replaced
with buttons and controls that can actually be tapped.

Prior to iOS 8, you had to generate your own images for each of the possible resolutions
that your app could be presented as, which could get laborious. Now, however, you use
a launch screen file—a XIB file, instead of pictures.

When you create a new project, you get a launch screen file as part of the initial set of
files that Xcode creates for you. It’s named LaunchScreen.xib; if you open it, you can
begin designing the view that appears on launch.

Interfaces on iOS | 97

UI Dynamics
UI Dynamics are a new part of UIKit that provides physics-related capabilities and
animations to views in iOS, which lets you impart forces and physical properties to
views, allowing you to make your views bounce, swing, be affected by gravity, and more.
This might seem a little silly and gimmicky at first glance, but creating interfaces with
natural feeling elements and movements makes your users more willing to use your app

long term. The workhorse of UI Dynamics is the UIDynamicAnimator class, which is

responsible for actually animating the dynamic behavior. You pass multiple UIDynamic

Behavior objects to the animator that describe how you want the animation to play out.
You can create your own custom behaviors, but luckily for us, Apple has included some
useful prebuilt ones you can use.

UI and Gravity
To demonstrate some of the capabilities of UI Dynamics, let’s build a simple app with
some gravity applied to the views:

1. Create a new single view iPhone application and call it DynamicGravity.

2. Next, create the interface. Open Main.storyboard and add an image view to the
interface. Insert an image.

When you are done, the interface should look like Figure 4-9.

3. Then create the image views outlet. Open ViewController.swift in the assistant.
Control-drag from the image view to the view controller, and name the outlet

imageView.

4. Finally, implement the dynamic behavior. Replace ViewController.swift with the
following:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!

 var dynamicAnimator = UIDynamicAnimator()

 override func viewDidAppear(animated: Bool) {

 super.viewDidAppear(animated)

 dynamicAnimator =

 UIDynamicAnimator(referenceView: self.view)

 // creating and adding a gravity behavior

 let gravityBehavior = UIGravityBehavior(items: [self.imageView])

 dynamicAnimator.addBehavior(gravityBehavior)

 // creating and adding a collision behavior

 let collisionBehavior =

98 | Chapter 4: Graphical User Interfaces

 UICollisionBehavior(items: [self.imageView])

 collisionBehavior.translatesReferenceBoundsIntoBoundary = true

 dynamicAnimator.addBehavior(collisionBehavior)

 }

}

If you run the app, you should see the image drop down and hit the bounds of the screen.

Figure 4-9. The completed interface for the UI Dynamics app

Snapping UI
Gravity is pretty awesome, but it isn’t that often that we want our views to fall from the
virtual sky. However, there are many situations where we want UI elements to move
around with a bit of physical momentum without having to manually animate that
movement. To quickly show this off, let’s create another iPhone app to demonstrate:

1. Create a new single view iPhone application, and call it DynamicSnap.

UI Dynamics | 99

2. Next, create the interface. Open Main.storyboard and add an image view into the
interface. Then add an image to that view.

When you are done, the interface should look similar to Figure 4-9.

3. Then create the image views outlet. Open ViewController.swift in the assistant.
Control-drag from the image view to the view controller, and name the outlet

imageView.

4. At this point, create a tap recognizer. Open Main.storyboard and drag in a Tap
Gesture Recognizer. Open ViewController.swift in the assistant, Control-drag from
the tap recognizer to the view controller, select Action from the menu, and name

the action tapped.

5. Finally, implement the snapping dynamic. Replace ViewController.swift with the
following:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var imageView: UIImageView!

 var dynamicAnimator:UIDynamicAnimator?

 var snap:UISnapBehavior?

 override func viewDidLoad() {

 super.viewDidLoad()

 self.dynamicAnimator = UIDynamicAnimator(referenceView: self.view)

 }

 @IBAction func tapped(sender: AnyObject) {

 // getting the tap location

 let tap = sender as UITapGestureRecognizer

 let point = tap.locationInView(self.view)

 // removing the previous snapping and adding the new one

 self.dynamicAnimator?.removeBehavior(self.snap)

 self.snap = UISnapBehavior(item: self.imageView, snapToPoint: point)

 self.dynamicAnimator?.addBehavior(self.snap)

 }

}

Run the app and the little image will dynamically move around to wherever you tap.

Core Animation
At its most basic Core Animation level, a view is a picture drawn in a rectangle, which
is then displayed to the user alongside other views. Prior to modern computing hard‐
ware’s ubiquitous graphics acceleration hardware, this involved carefully calculating

100 | Chapter 4: Graphical User Interfaces

how views overlapped and making sure that they didn’t overlap or intersect other views.
This made it challenging to create smooth animations for interfaces.

To address this, Apple developed Core Animation, which is a compositing and anima‐
tion system for interfaces. Originally devised for iOS, it was ported to OS X in
version 10.5.

Core Animation, like many frameworks developed on iOS and later brought to OS X,
has an almost identical API on both platforms. This makes it straightforward to port
interface code that uses Core Animation between the platforms.

Despite its name, Core Animation is not simply an animation tool, though it is tre‐
mendously good at that. Core Animation also provides the rendering architecture for
displaying views, which allows for very fast transparency and effects.

Core Animation and UI Dynamics are not mutually exclusive; you can, and will, use
both in your applications. When you are after natural feeling motions and behaviors,
UI Dyamics is the way to go. When you want precise control over exactly what and how
your elements animate, Core Animation will be a better fit. Core Animation also allows
you to animate nongeometric properties of your elements, such as color or opacity.

Core Animation is optional, though recommended, on OS X. On iOS,
it’s integral, and therefore required—but you rarely need to deal with
it directly unless you want to.

Layers
Core Animation works with layers, which are rectangular regions of space rendered by
the graphics card. Layers are what the user actually sees; when a view needs to show
something, it renders it onto a layer.

Core Animation layers are instances of the CALayer class, and work like NSView and

UIView in that you can add a layer as a sublayer of another layer. Unlike the view classes,
however, a layer object does nothing more than display content.

Working with any of the CA classes and methods requires that you

import the QuartzCore framework at the top of your files, like this:

import QuartzCore

View objects handle layers differently on OS X and iOS:

Core Animation | 101

• On OS X, NSView objects manage a CALayer, which they keep separate from them‐
selves. This is because on OS X, views are optionally allowed to have layers.

• On iOS, UIView objects are actually just thin wrappers around CALayer. When you

set the position of a view on the screen, you’re actually moving its CALayer.

In the background, CALayers are actually just graphics quadrangles
and textures. The reason for Core Animation’s performance improve‐
ments is that graphics hardware is very good at quickly drawing such
quadrangles.

To access a view’s layer, use the layer property (on both UIView and NSView):

 // aView is an NSView or UIView

 var layer = aView.layer

Animations
As its name suggests, Core Animation is useful for animating visual content. For the
most part, your animations will involve moving views around, or animating changes in
parameters like background color or opacity.

Unfortunately, animations work differently on iOS and OS X.

Animations on OS X

On OS X, if you want to animate a view, you need to create a CAPropertyAnimation (a

subclass of the general CAAnimation class) that describes what exactly you want the

animation to do. This is done by setting the keyPath property of the animation. This

keyPath corresponds to a property on the layer, such as opacity, cornerRadius, or

bounds.

There are a great deal of different layer properties you can animate
through Core Animation. For a full list, see Apple’s Core Animation
Programming Guide.

After deciding what property to change, you need to set the toValue property to what‐

ever value you need to animate; it is also a good idea to set the fromValue property
as well.

Finally, you set the duration of the animation, in seconds, to represent how long you

want the animation to last. Once the animation is fully configured, you call addAnima

102 | Chapter 4: Graphical User Interfaces

http://bit.ly/abt_core_animation
http://bit.ly/abt_core_animation

tion(_:, keyPath:) on the layer you want to animate. After creating and adding the
animation to the layer, it is good practice to set the layer’s properties to match the

toValue set in the animation.

If you don’t set the properties of your layer to match the values set
in the animation, the final state of the layer might not be what you
think it is!

The following code demonstrates how to create a CABasicAnimation that animates the
background color of a layer over 1.5 seconds:

 // creating the animation

 var colorAnim = CABasicAnimation(keyPath: "backgroundColor")

 colorAnim.fromValue = NSColor.redColor().CGColor

 colorAnim.toValue = NSColor.greenColor().CGColor

 colorAnim.duration = 1.5

 // getting the views layer

 var layer = myView.layer!

 layer.addAnimation(colorAnim, forKey: "backgroundColor")

 // setting the final value after the animation

 layer.backgroundColor = NSColor.greenColor().CGColor

This is a simple example, and while CABasicAnimation is obviously designed for simple
animations, the principles are the same for building up more complex animations using

CAKeyframeAnimation.

In OS X, it is generally bad practice to move a view by changing its

CALayer, and it very likely won’t do what you expect. If you want to

move an NSView, it is worth looking at the NSViewAnimation class.

Animations on iOS

The animation API on iOS is much more straightforward, and is based on closures,
which are discussed in more detail in “Functions and Closures” on page 35. To animate

a view, call UIView.animateWithDuration(_, animations:), and provide the duration
of the animation and a closure that contains the actual state changes you want to have
animated.

For example, to animate a change in position that lasts 0.25 seconds, you do this:

 UIView.animateWithDuration(0.25) { () -> Void in

 myView.center = CGPointMake(200, 200)

Core Animation | 103

 }

 }

When you call this code, an animation will be created for you that transitions from the
view’s current state to the state you specified.

If you want to chain up a number of different animations to all occur within a certain
sequence and with specific timing, such as move a view’s position multiple times over
1 second, you do this:

// an example of a keyframe animation

 UIView.animateKeyframesWithDuration(2.0, delay: 0.0,

 options: UIViewKeyframeAnimationOptions.LayoutSubviews,

 animations: { () -> Void in

 UIView.addKeyframeWithRelativeStartTime(0.0, relativeDuration: 1,

 animations: { () -> Void in

 myView.center = CGPointMake(100, 100)

 })

 UIView.addKeyframeWithRelativeStartTime(0.0, relativeDuration: 0.5,

 animations:

 { () -> Void in

 var rotation:CGFloat = CGFloat(45 * M_PI / 180.0)

 myView.transform = CGAffineTransformMakeRotation(rotation)

 })

 UIView.addKeyframeWithRelativeStartTime(0.0, relativeDuration: 0.5,

 animations:

 { () -> Void in

 myView.backgroundColor = UIColor.greenColor()

 })

 }, completion:

 { (finished:Bool) -> Void in

 // completion handler, in this case we are doing nothing

 println("Animation completed:\(finished)")

 })

As with OS X, when animating changes in iOS, you can change many
of the properties, including the color, the shadow, the corner radii,
and the position (and you can change any number of these in a sin‐
gle animation).

However, just because you can do all this does not mean that you
should. A little animation goes a long way; too much, and you can
give the users of your app motion sickness.

Core Animation is hugely powerful, giving you amazing control over how your apps
will move and look. However, it is another of those topics that’s large and complex, and,
as always, the Apple documentation on the subject is vast and comprehensive. To learn
more about using Core Animation, a great place to start is Apple’s Core Animation
Programming Guide, which is included in the Xcode documentation.

104 | Chapter 4: Graphical User Interfaces

http://bit.ly/abt_core_animation
http://bit.ly/abt_core_animation

CHAPTER 5

Closures and Operation Queues

The Swift language allows you to store code in variables. When you do this, the code is
known as a closure, and Cocoa provides a number of tools that allow you to work with
closures. One of the most important tools is called an operation queue, which lets you
schedule closures to run in the future.

Closures allow code to do some very interesting things, including the following:

• Provide code to a function that should be run when that function is complete, such
as a download or a long-running computation

• Enumerate over a collection of objects, and run some code on each one

• Provide code for objects to call when they feel it’s necessary (e.g., event handlers)

Closures are discussed in detail in “Functions and Closures” on page 35. From a language
perspective, they’re identical to functions—they take parameters and return values.
From a code-writing perspective, the only real difference between functions and clo‐
sures is that closures don’t have parameter names, while functions do.

To quickly refresh your memory, this is what closures look like:

let aClosure : Void -> Int = { return 1 }

aClosure() // returns 1

Because code can be divided up into chunks using closures, you can also give closures
to the system for it to run. The mechanism that you use to do this is called operation
queues, and they’re tremendously powerful tools for managing how the system does the
work that you need to do.

105

In Objective-C, closures are known as blocks. For this reason, sever‐
al methods that belong to Cocoa and Cocoa Touch contain the word
block, where you should provide a closure.

For example, the NSOperationQueue class has a method called

addOperationWithBlock, which takes a single closure parameter. Just
remember to keep in mind that the terms block and closure are effec‐
tively identical.

In this chapter, you’ll learn how to use closures effectively in your apps, what they’re
good for, and how to use them in conjunction with operation queues, a powerful tool
for performing tasks in the background.

Closures in Cocoa
Many classes in Cocoa have methods that make use of closures. These are typically
methods that use a closure as a completion handler—that is, the method will perform
some action that might take a moment (e.g., an animation), and once that action is
complete, the completion handler closure is called:

// In this code, aViewController and anotherViewController

// are both UIViewControllers.

// Slide up a view controller, and then when the slide animation is

// finished, change its view's background color to yellow.

aViewController.presentViewController(anotherViewController, animated: true) {

 // This closure is run after the animation is finished

 anotherViewController.view.backgroundColor = UIColor.yellowColor()

}

Closures allow you to defer the execution of something until you need it to actually
happen. This makes them very useful in the context of animations (“when the anima‐
tion’s done, do this thing”), for networking (“when the download’s done, do something
else”), or in general user interface manipulation (“when I return from this new screen,
do some work”).

They also allow you to keep related pieces of code close together. For example, before
the introduction of closures, the only way that it was possible to filter an array was to
create a function elsewhere in your code that was called for each element in the array.
This made for a lot of scrolling around your source code. Now you can do this:

// Filter an array of strings down to only strings that begin with the word

// "Apple"

let array = ["Orange", "Apple", "Apple Juice"]

let filteredArray = array.filter() {

 return $0.hasPrefix("Apple")

106 | Chapter 5: Closures and Operation Queues

}

// filteredArray now contains "Apple", "Apple Juice"

In this case, the code that actually performs the processing of the objects is very close
to the line that instructs the array to be filtered. This means that your code isn’t scattered
in as many places, which makes it clearer and less confusing. The less confusing your
code is, the less likely it is that bugs will be introduced.

Concurrency with Operation Queues
In many cases, your application will need to do more than one thing at the same time.
At least one of those things is responding to the user and ensuring that the user interface
is responsive; other things could include talking to the network, reading and writing
large amounts of data, or processing a chunk of data.

The highest priority of your application is to be responsive at all times. Users are willing
to wait a few seconds for a task to complete, as long as they get feedback that work is
happening. When the application stops responding to input, users perceive that the
application, and by extension the device it’s running on, is slow.

The second priority of your application is to make sure that all of the resources available
are being used, so that the task completes quickly.

Operation queues allow you to achieve both goals. Operation queues are instances of

the NSOperationQueue class. They manage a list, or queue, of operations, which are
closures containing code to perform a chunk of work.

More than one operation queue can exist at the same time, and there is always at least
one operation queue, known as the main queue. So far, all the code in this book has been
run on the main queue. All work that is done with the GUI is done on the main queue,
and if your code takes up too much time in processing something, the main queue slows
down and your GUI starts to lag or freeze up.

Operation queues are not quite the same thing as threads, but they share some similar‐
ities. The operation queue system manages a pool of threads, which are activated when‐
ever work needs to be done. Because threads are a rather resource-intensive way of doing
work concurrently (to say nothing of the development complexity involved in managing
them properly), operation queues provide a much simpler and more efficient way of
dealing with them.

Operation queues are also aware of the computing resources available on whatever
hardware your application is running on. If you create an operation queue and add
operations to it, the operation queue will attempt to balance those operations across as
many CPU cores as are available on your computer. Every single device that Apple ships
now has two or more CPU cores, which means that code that uses operation queues
automatically gains an increase in speed when performing concurrent work.

Concurrency with Operation Queues | 107

Operation Queues and NSOperation
At its simplest, an operation queue runs operations in a first-in-first-out order. Oper‐

ations are instances of the NSOperation class, which define exactly how the work will

be done. NSOperations can be added to an NSOperationQueue; once they are added,
they will perform whatever task they have been designed to do.

The simplest way to add an operation to an operation queue is to provide a closure to

the queue by sending the addOperationWithBlock message to an NSOperationQueue
object:

 var mainQueue = NSOperationQueue.mainQueue()

 mainQueue.addOperationWithBlock() {

 // Add code here

 }

There are other kinds of operations, including invocation operations and concrete sub‐

classes of the NSOperation base class, but they’re very similar to closure operations—
they offer more flexibility and features at the cost of having to write more setup code.

If you don’t deliberately choose to run code on another queue, it will run on the main
queue. You can also explicitly instruct the main queue to perform an operation; when
you do this, the work for this operation is scheduled to take place at some point in the
future.

Performing Work on Operation Queues
To add things to an operation queue, you need an NSOperationQueue instance. You can
either ask the system for the main queue, or you can create your own. If you create your
own queue, it will run asynchronously. If you add multiple operations to a background
queue, the operation queue will run as many as possible at the same time, depending
on the available computing hardware:

 // Getting the main queue (will run on the main thread)

 var mainQueue = NSOperationQueue.mainQueue()

 // Creating a new queue (will run on a background thread, probably)

 var backgroundQueue = NSOperationQueue()

Queues aren’t the same as threads, and creating a new queue doesn’t
guarantee that you’ll create a new thread—the operating system will
reuse an existing thread if it can, because creating threads is expen‐
sive. The only thing using multiple queues guarantees is that the
operations running on them won’t block each other from running at
the same time.

108 | Chapter 5: Closures and Operation Queues

Once you have a queue, you can put an operation on it:

 mainQueue.addOperationWithBlock() {

 println("This operation ran on the main queue!")

 }

 backgroundQueue.addOperationWithBlock() {

 println("This operation ran on another queue!")

 }

If your code is running on a background queue and you want to update the GUI, you
need to run the GUI updating code on the main queue. One way to do this is to add a
closure to the main queue:

 backgroundQueue.addOperationWithBlock() {

 // Do some work in the background

 println("I'm on the background queue")

 // Schedule a block on the main queue

 mainQueue.addOperationWithBlock() {

 println("I'm on the main queue")

 // GUI work can safely be done here.

 }

 }

Any work involving the GUI can only be done from the main queue.
If you access it from any other queue, your application will crash.

Putting It All Together
We’ll now write an application that downloads the favicons from a number of websites
asynchronously. To do this, it will create a table view that has a list of websites, and each
cell in the table view will show both the website’s name as well as download its favicon.
It will also contact a server when the application exits.

We’ll need to create a subclass of UITableViewCell that has a NSURL property, and uses
operation queues to download the favicon whenever that property changes.

The steps to create the new app are as follows:

1. Create a new, single view iOS application and call it OperationQueues.

2. Create a new Cocoa Touch subclass:

• Set the “Subclass Of ” to UITableViewCell.

• Set the name of the class to FaviconTableViewCell.

Putting It All Together | 109

3. Because this table view cell downloads in the background, we should give it an

NSOperationQueue that it should use to manage the download. This means that we
need to give it a property to store it in.

Add the following code to FaviconTableViewCell.swift:

 // The operation queue to run the download's completion handler

 var operationQueue : NSOperationQueue?

4. The next step is to implement the property that stores the URL that the cell is
showing. When this property is changed, we want the cell to download the appro‐

priate favicon, and then display the image. To do this, we’ll use the NSURLConnec

tion class’s sendAsynchronousRequest method, which takes an NSURLRequest, an

NSOperationQueue, and a closure; it then performs the download specified in the

NSURLRequest, and runs the provided closure on the specified NSOperationQueue.

The closure itself takes three parameters: an NSURLResponse, which describes the

response that the server sent back; an NSData, which contains the data that was

delivered (if any); and an NSError, which contains information about any problem
that the download might have encountered. Potential problems include issues with
reaching the server (such as the user being in airplane mode), as well as problems
on the server’s end (such as the file not being found).

Add the following code to FaviconTableViewCell:

// The URL that this cell shows.

var url : NSURL? {

// When the URL changes, run this code.

didSet {

 // We've just been given a URL, so create a request

 var request = NSURLRequest(URL: self.url!)

 // Display this text

 self.textLabel.text = self.url?.host

 // Fire off the request, and give it a completion handler

 // plus a queue to run on

 NSURLConnection.sendAsynchronousRequest(request,

 queue: self.operationQueue!,

 completionHandler: {

 (response: NSURLResponse!, data: NSData!, error: NSError!) in

 // The 'data' variable now contains the loaded data;

 // turn it into an image

 var image = UIImage(data: data)

 // Updates to the UI have to be done on the main queue.

 NSOperationQueue.mainQueue().addOperationWithBlock() {

110 | Chapter 5: Closures and Operation Queues

 // Give the image view the loaded image

 self.imageView.image = image

 // The image view has probably changed size because of

 // the new image, so we need to re-layout the cell.

 self.setNeedsLayout()

 }

 })

}

}

We’re now done setting up the table view cell. It’s time to make a table view that uses
this cell! Here are the steps to accomplish this:

1. Add a table view to the view controller.

2. Add a prototype cell to the table view by selecting it and changing the Prototype
Cells number from 0 to 1.

3. Change the table view’s new prototype cell style to Basic.

4. Select the prototype cell and change its identifier to FaviconCell.

5. Switch to the Identity Inspector for the table view cell, and change its class to

FaviconTableViewCell.

6. Change the table’s Selection style to No Selection.

7. Make the view controller the table view’s data source and delegate by holding the
Control key, dragging from the table view to the View Controller, and choosing

dataSource.

8. Repeat the process and choose delegate.

9. Open ViewController.swift in the assistant.

10. The first thing to do is to define the list of websites that the app should show. We’ll
store this an an array of strings.

Create the hosts property, by adding the following code:

 let hosts = ["google.com", "apple.com", "secretlab.com.au",

 "oreilly.com", "yahoo.com", "twitter.com", "facebook.com"]

Putting It All Together | 111

11. Next, we need an NSOperationQueue to give to the FaviconTableViewCell instan‐
ces that this class will be displaying.

Create the queue property, by adding the following code:

 let queue = NSOperationQueue()

12. As with all table views, we need to provide information about how many sections
it has, and how many rows are in each section. In this application, there is only one
section, and the number of rows in that section is equal to the number of websites

in the hosts array.

Implement the numberOfSectionsInTableView and tableView(tableView: num

berOfRowsInSection) methods:

 func numberOfSectionsInTableView(tableView: UITableView!) -> Int {

 return 1

 }

 func tableView(tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return hosts.count

 }

13. The last thing to do is to make the table view use the FaviconTableViewCell class
for its table view cells, and for each cell to use the right website. It does this by using

the table view’s dequeueReusableCellWithIdentifier method to retrieve the cell,

and then uses the hosts array to create an NSURL to give it.

Implement the tableView(tableView: cellForRowAtIndexPath:) method:

func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCellWithIdentifier("FaviconCell")

 as FaviconTableViewCell

 var host = hosts[indexPath.row]

 var url = NSURL(string: "http://\(host)/favicon.ico")

 cell.operationQueue = queue

 cell.url = url

 return cell

}

112 | Chapter 5: Closures and Operation Queues

14. Run the application.

The app will start up, and you’ll see the list of websites; after a moment, website icons
will start appearing next to them.

Finally, we’ll make the application run some code in the background when the appli‐
cation quits.

15. Open AppDelegate.swift.

16. Replace applicationWillEnterBackground: with the following method:

 var backgroundTask : UIBackgroundTaskIdentifier?

 func applicationDidEnterBackground(application: UIApplication) {

 // Register a background task. This keeps the app from being

 // terminated until we tell the system that the task is complete.

 self.backgroundTask =

 application.beginBackgroundTaskWithExpirationHandler {

 () -> Void in

 // When this method is run, we're out of time.

 // Clean up, and then run endBackgroundTask.

 application.endBackgroundTask(self.backgroundTask!)

 }

 // Make a new background queue to run our background code on.

 var backgroundQueue = NSOperationQueue()

 backgroundQueue.addOperationWithBlock() {

 // Send a request to the server.

 // Prepare the URL

 var notificationURL = NSURL(string: "http://www.oreilly.com/")

 // Prepare the URL request

 var notificationURLRequest = NSURLRequest(URL: notificationURL!)

 // Send the request, and log the reply

 var loadedData =

 NSURLConnection.sendSynchronousRequest(

 notificationURLRequest,

 returningResponse: nil,

 error: nil)

 if let theData = loadedData {

 // Convert the data to a string

 var loadedString = NSString(data: theData,

Putting It All Together | 113

 encoding: NSUTF8StringEncoding)

 println("Loaded: \(loadedString)")

 }

 // Signal that we're done working in the background

 application.endBackgroundTask(self.backgroundTask!)

 }

 }

17. Run the application.

The application will now perform tasks when it quits.

114 | Chapter 5: Closures and Operation Queues

CHAPTER 6

Drawing Graphics in Views

The fundamental class for showing any kind of graphical image to the user is the view.
Graphical images are things like buttons, photos, and text—anything that the user
can see.

Cocoa and UIKit provide a wide variety of controls that suit almost all needs—you can
display text, images, buttons, and more. However, some data needs to be drawn in a
specific way: you might want to draw a chart for data, or create a custom button class
that displays exactly the way you want it to. If you’re making a graphics app, you’ll need
to be able to display any kind of graphical content, which means that your code will
need to know how to draw it.

In this chapter, you’ll learn how to create custom view objects that display any kind of
image to the user. You’ll learn how to use the high-level APIs for drawing, and create a
custom view class that will scale up to any size at all without losing quality. Finally, you’ll
learn how to design your graphics to take advantage of the Retina display on iOS and
OS X hardware.

How Drawing Works
Before we start writing code that draws content for the user to see, it’s helpful to review
how graphics work in OS X and iOS. Note that the same terminology and techniques
apply for both OS X and iOS, but the specific API is different.

When an application draws graphics, it does so by first creating a canvas for drawing
in. Cocoa calls this the graphics context. The context defines, among other things, the
size of the canvas and how color information is used (e.g., you can have a black-and-
white canvas, a grayscale canvas, a 16-bit color canvas, etc.).

Once you have a graphics context to draw in, you start asking Cocoa to begin drawing
content.

115

The fundamental drawing unit is the path. A path is just the name for any kind of shape:
circles, squares, polygons, curves, and anything else you can imagine.

Paths can be stroked or filled. Stroking a path means drawing a line around its edge
(Figure 6-1). Filling a path means filling it with a color (Figure 6-2).

Figure 6-1. A stroked path

Figure 6-2. A filled path

116 | Chapter 6: Drawing Graphics in Views

When you stroke or fill a path, you tell the drawing system which color you want to use.
You can also use gradients to stroke and fill paths. The color that you use to stroke and
fill can be partially transparent, which means that you can build up a complex graphic
by combining different paths and colors (Figure 6-3).

Figure 6-3. A stroked and filled path

The Pixel Grid
Every display system in iOS and OS X is based on the idea of a grid of pixels. The specific
number of pixels on the display varies from device to device, as does the physical size
of each pixel. The trend is toward larger numbers of smaller pixels, because the smaller
the pixels get, the smoother the image looks.

When you create a graphics context, you indicate what size that context should be. So,
for example, if you create a context that is 300 pixels wide by 400 pixels high, the canvas
is set to that size. Any drawing that takes place outside the canvas is ignored, and doesn’t
appear on the canvas (Figure 6-4).

Creating a context defines a coordinate space where the drawing happens. This coordi‐
nate space puts the coordinate (0,0) in either the upper-left corner (on iOS) or the lower-
left corner (on OS X). When you build a path, you specify the points that define it. So,
for example, a line that goes from the upper-left corner (on iOS) to 10 pixels below and
to the right looks like Figure 6-5.

The Pixel Grid | 117

Figure 6-4. Content that is drawn outside of the context’s canvas doesn’t appear

Retina Displays
The newest devices sold by Apple feature a Retina display. A Retina display, according
to Apple, is a screen where the pixels are so small that you can’t make out the individual
dots. This means that curves and text appear much smoother, and the end result is a
better visual experience for the user.

Retina displays are available on the MacBook Pro with Retina display, iPod touch 4th
generation and later, iPhone 4 and later, Retina iPad Mini and later, and iPad third-
generation and later.

Retina displays are so named because, according to Apple, a 300 dpi (dots per inch)
display held at a distance of about 12 inches from the eye is the maximum amount of
detail that the human retina can perceive.

Apple achieves this resolution by using displays that are the same physical size as more
common displays, but double or triple the resolution. For example, the screen on the
iPhone 3GS (and all previous iPhone and iPod touch models) measures 3.5 inches di‐
agonally and features a resolution of 320 pixels wide by 480 pixels high. When this
resolution is doubled in the iPhone 4’s Retina display, the resolution is 640 by 960.

118 | Chapter 6: Drawing Graphics in Views

Figure 6-5. Drawing a line from (0,0) to (10,10) on iOS

This increase in resolution can potentially lead to additional complexities for application
developers. In all other cases where the resolution of a display has increased, everything
on the screen appears smaller (because the drawing code only cares about pixel
distances, not physical display size). However, on a double-resolution Retina display,
everything remains the same size, because even though the pixels are twice as small,
everything on the screen is drawn twice as large. The net result is that the graphics on
the screen look the same size, but much smoother.

Pixels and Screen Points
Of course, we application developers don’t want to write code for both Retina and non-
Retina displays. Writing a chunk of code twice for the two resolutions would lead to
twice the potential bugs!

To solve this problem, don’t think about pixels when you’re writing your graphics code
and thinking about the positions of the points your paths are constructed with. Instead,
think in terms of screen points.

A pixel is likely to change between different devices, but a screen point does not. When
you construct a path, you specify the position of each screen point that defines the path.
On a non-Retina display, one screen point is equal to one pixel. On a double-resolution
Retina display, one screen point is equal to four pixels—a square, two pixels wide and

The Pixel Grid | 119

two high. On a triple-resolution Retina display, one screen point is nine pixels—a three-
by-three box. This scaling is done for you automatically by the operating system.

The end result is that you end up with drawing code that doesn’t need to be changed for
different resolutions.

Drawing in Views
As discussed earlier, objects that display graphics to the user are called views. Before we
talk about how to make your own view objects that display your pixels before the user’s
very eyes, let’s take a closer look at how views work.

A view is defined by a rectangle inside its content window. If a view isn’t inside a window,
the user can’t see it.

Even though only one app is displayed at a time on iOS, all views
shown on the screen are technically inside a window. The difference
is that only one window is shown on the screen at a time, and it fills
the screen.

Frame Rectangles
The rectangle that defines the view’s size and position is called its frame rectangle.

Views can contain multiple subviews. When a view is inside another view (its super‐
view), it moves when the superview moves. Its frame rectangle is defined relative to its
superview (Figure 6-6).

On OS X, all views are instances of NSView (or one of NSView ’s subclasses). On iOS,

they’re instances of UIView. There are some minor differences in how they work, but

nothing that affects what we’re talking about here. For now, we’ll talk about NSView, but

everything applies equally to UIView.

When the system needs to display a view, it sends the drawRect(rect:) message to the

view. The drawRect method looks like the following:

 override func drawRect(rect: NSRect) {

 }

(This method is the same on iOS, but CGRect is used instead of NSRect.)

120 | Chapter 6: Drawing Graphics in Views

Figure 6-6. The frame rectangle for the view defines its position and size relative to its
superview

When this method is called, a graphics context has already been prepared by the OS,
leaving the method ready to start drawing. When the method returns, the OS takes the
contents of the graphics context and shows it in the view.

The single parameter that drawRect receives is the dirty rectangle. This eyebrow-raising
term is actually a lot more tame than it sounds—“dirty” is simply the term for “something
that needs updating.” The dirty rectangle is the region of the view that actually needs
updating. This concept becomes useful in cases where you have a view that was previ‐
ously covered up by another view—there’s no need to redraw content that was previously

visible, and so the dirty rectangle that’s passed to drawRect will be a reduced size.

Bounds Rectangles
The frame rectangle defines the size and position of its view, but it’s also helpful for a
view to know about its size and position relative to itself. To support this, view objects
also provide a bounds rectangle. While the frame rectangle is the view’s size and position
relative to its superview’s coordinate space, the bounds rectangle is the view’s position
and size relative to its own coordinate space. This means that the (0,0) coordinate always
refers to the upper-left corner on iOS (the lower-left on OS X).

Drawing in Views | 121

While the bounds rectangle is usually the same size as the frame
rectangle, it doesn’t have to be. For example, if the view is rotated, the
frame rectangle will change size and position, but the bounds will
remain the same.

Building a Custom View
We’ll now create a custom view that displays a solid color inside its bounds. This will

be a Mac playground, so we’ll be using NSView. Later in the chapter, we’ll see how the

same techniques apply to iOS and the UIView class. Here are the steps you’ll need
to take:

1. Create the view class. To follow along with the code shown in this chapter, create a
new playground for OS X. Next, add the following code to it:

class MyView : NSView {

 override func drawRect(rect: NSRect) {

 }

}

2. Once you’ve defined the class, create an instance of it:

let viewRect = NSRect(x: 0, y: 0, width: 100, height: 100)

let myEmptyView = MyView(frame: viewRect)

3. Create an instance of the class. At this point, you can preview the view. In the
righthand pane of the playground, you’ll see the result of creating that instance (it
will appear as the text “MyView”).

To the right of that, you’ll see a circle. Click on that, and a new pane will open on
the right, showing a preview (Figure 6-7). Now, when you make changes to your
class, you’ll see the view update live. It’s blank for now, but you’ll be changing that
very shortly.

122 | Chapter 6: Drawing Graphics in Views

1. Almost any color, that is. All displays have physical limits that restrict their range of colors, and no displays
currently on the market are capable of displaying impossible colors.

Figure 6-7. Previewing a view

Filling with a Solid Color
Let’s start by making the view fill itself with the color green. Afterward, we’ll start making
the view show more complex stuff.

Replace the drawRect method of MyClass with the following code:

 override func drawRect(rect: NSRect) {

 NSColor.greenColor().setFill()

 let path = NSBezierPath(rect: self.bounds)

 path.fill()

 }

This view code creates an NSBezierPath object, which represents the path that you’ll

be drawing. In this code, we create the Bézier path with the bezierPath(rect:) method,
which creates a rectangular path. We use the view’s bounds to create a rectangle that fills
the entire view.

Once the path is created, we can fill it. Before we do that, however, we tell the graphics

system to use green as the fill color. Colors in Cocoa are represented by the NSColor

class, which is capable of representing almost any color you can think of.1 NSColor
provides a number of convenience methods that return simple colors, like green, red,
and blue, which we use here.

So, we create the path, set the color, and then fill the path. The end result is a giant green
rectangle.

Building a Custom View | 123

http://en.wikipedia.org/wiki/Impossible_colors

The exact same code works on iOS, with two changes: NSBezier

Path becomes UIBezierPath, and NSColor becomes UIColor:

 override func drawRect(rect: CGRect) {

 UIColor.greenColor().setFill()

 let path = UIBezierPath(rect: self.bounds)

 path.fill()

 }

Now run the application. The view you added will display as green, as shown in
Figure 6-8.

Figure 6-8. A green view

Working with Paths
Let’s now update this code and create a slightly more complex path: a rounded rectangle.
We’ll also stroke the path, drawing an outline around it.

Replace the drawRect method with the following code:

 override func drawRect(rect: NSRect) {

 var pathRect = NSInsetRect(self.bounds, 1, 1);

 var path = NSBezierPath(roundedRect:pathRect, xRadius:10, yRadius:10);

 path.lineWidth = 4

 NSColor.greenColor().setFill();

124 | Chapter 6: Drawing Graphics in Views

 NSColor.blackColor().setStroke();

 path.fill()

 path.stroke()

 }

The first change you’ll notice is a call to the NSInsetRect function. This function takes

an NSRect and shrinks it while preserving its center point. In this case, we’re insetting
the rectangle by one point on the x-axis and one point on the y-axis. This causes the
rectangle to be pushed in by one point from the left and one point from the right, as
well as one pixel from the top and bottom.

We do this because when a path is stroked, the line is drawn around the outside—and
because the bounds are the size of the view, some parts of the line are trimmed away.
This can look ugly, so we shrink the rectangle a bit to prevent the problem.

We then create another NSBezierPath, this time using the newly shrunk rectangle. This

path is created by calling the bezierPath(roundedRect:xRadius:yRadius:) method,
which lets you specify how the corners of the rounded rectangle are shaped.

The final change to the code is setting black as the stroke color, and then stroking the
path after it’s been filled.

Now run the application. You’ll see a green rounded rectangle with a black line around
it (Figure 6-9).

Figure 6-9. A stroked rounded rectangle

Building a Custom View | 125

All drawing operations take place in the order in which you call them.
In this code, we stroke the rectangle after filling it. If we instead

swapped the order of the calls to path.fill() and path.stroke(),
we’d get a slightly different effect, with the green fill overlapping the
black stroke slightly.

Creating Custom Paths
Creating paths using rectangles or rounded rectangles is useful, but you often want to
create a shape that’s entirely your own—a polygon, perhaps, or an outline of a character.

The NSBezierPath class is capable of representing any shape that can be defined using
Bézier curves. You can create your own custom curves by creating a blank curve and
then adding the control points that define the curve. Once you’re done, you can use the

finished NSBezierPath object to fill and stroke, just like any other path.

To create a custom path, you first create an empty path, and then start issuing commands
to build it. As you build the path, you can imagine a virtual pen that you move around
the canvas. You can:

• Move the pen to a point

• Draw a line from where the pen currently is to another point

• Draw a curve from where the pen currently is to another point, using two additional
control points that define how the curve bends

• Close the path by drawing a line from where the pen currently is to the first point

We’ll now update our drawing code to draw a custom shape by replacing the drawRect
method with the code below. This code works out how to draw the path by calculating
the points that lines should be drawn between by first calculating a rectangle to draw
with, and then asking that rectangle about where to find its leftmost edge, rightmost
edge, and so on:

 override func drawRect(rect: NSRect) {

 var bezierPath = NSBezierPath()

 // Create a rectangle that's inset by 5% on all sides

 var drawingRect = CGRectInset(self.bounds,

 self.bounds.size.width * 0.05,

 self.bounds.size.height * 0.05);

 // Define the points that make up the drawing

 var topLeft = CGPointMake(CGRectGetMinX(drawingRect),

 CGRectGetMaxY(drawingRect));

 var topRight = CGPointMake(CGRectGetMaxX(drawingRect),

126 | Chapter 6: Drawing Graphics in Views

 CGRectGetMaxY(drawingRect));

 var bottomRight = CGPointMake(CGRectGetMaxX(drawingRect),

 CGRectGetMinY(drawingRect));

 var bottomLeft = CGPointMake(CGRectGetMinX(drawingRect),

 CGRectGetMinY(drawingRect));

 var center = CGPointMake(CGRectGetMidX(drawingRect),

 CGRectGetMidY(drawingRect))

 // Start drawing

 bezierPath.moveToPoint(topLeft)

 bezierPath.lineToPoint(topRight)

 bezierPath.lineToPoint(bottomLeft)

 bezierPath.curveToPoint(bottomRight,

 controlPoint1: center,

 controlPoint2: center)

 // Finish drawing by closing the path

 bezierPath.closePath()

 // Set the colors and draw them

 NSColor.redColor().setFill()

 NSColor.blackColor().setStroke()

 bezierPath.fill()

 bezierPath.stroke()

 }

Now run the application. The window will show a red shape (Figure 6-10).

Figure 6-10. A filled custom path, showing a shape

Building a Custom View | 127

Multiple Subpaths
So far, the paths that we’ve been drawing have contained only one subpath. A subpath
is a connected series of points in a Bézier path. This means that you can have a path that
contains two circles—every time you issued a stroke or fill command, you would be
drawing those two circles.

Using subpaths is also a great way to create complex shapes. In this next example, we’ll
create a circle that combines a rounded rectangle with a circle. We’ll do this by first
creating a rounded rectangle path, and then adding a circular path to it. Replace the

drawRect method with the following code:

 override func drawRect(rect: NSRect) {

 // Create an empty Bézier path

 let bezierPath = NSBezierPath()

 // Define the rectangles for the two components

 let squareRect = CGRectInset(rect,

 rect.size.width * 0.45,

 rect.size.height * 0.05)

 let circleRect = CGRectInset(rect,

 rect.size.width * 0.3,

 rect.size.height * 0.3)

 let cornerRadius : CGFloat = 20

 // Create the paths

 var circlePath = NSBezierPath(ovalInRect: circleRect);

 var squarePath = NSBezierPath(roundedRect: squareRect,

 xRadius: cornerRadius,

 yRadius: cornerRadius)

 // Add them to the main path

 squarePath.appendBezierPath(circlePath)

 bezierPath.appendBezierPath(squarePath)

 // Set the color and draw them

 NSColor.redColor().setFill()

 // Draw the path

 bezierPath.fill()

 }

In this code, we’re creating a new empty Bézier path. We then create an additional Bézier
path that defines a circle, and append it to the first path. Next, we create a rounded
rectangle path, and append it as well. This combined path is then drawn, as shown in
Figure 6-11.

128 | Chapter 6: Drawing Graphics in Views

Figure 6-11. Multiple subpaths

Shadows
Shadows are a great way to imply depth in your graphics. If a shape casts a shadow, it
appears “closer” than one that does not.

On OS X, shadows are drawn using the NSShadow class (on iOS, the technique is similar

but not identical; see “Drawing shadows on iOS” on page 131). An NSShadow object stores
all of the information needed to draw a shadow. Three pieces of information are needed:

• The color to use for the shadow (an NSColor)

• How many points the shadow should be offset by (an NSSize struct)

• How blurry the shadow should be (a CGFloat)

To draw a shadow, you create an NSShadow object, provide it with the drawing settings

you want to use, and then send it the set message:

 let shadow = NSShadow()

 shadow.shadowColor = NSColor.blackColor()

 shadow.shadowOffset = NSSize(width: 3, height: -3)

 shadow.shadowBlurRadius = 10

 shadow.set()

This code does the following things:

Creates the shadow object.

Sets the color to black.

Sets the shadow offset to be drawn three pixels to the right, and three pixels
down from what’s drawn.

Sets the blur radius to be 10 points.

Sets the shadow. Anything drawn after this call will cast a shadow.

Building a Custom View | 129

Saving and restoring graphics contexts

The set method causes the shadow to be applied to anything that you ask Cocoa to
draw. This lasts until another shadow is set or the context is closed by the graphics system

(which is what happens after the drawRect call returns). This means that once you set
a shadow, it could stay around forever.

However, you might want to draw an object with a shadow followed by an object that
doesn’t have one. To support this, and to help deal with similar cases where the graphics
context itself is changed (such as when you set the stroke and fill color, or change the
current transformation matrix or CTM—more on that in the section “Transforms” on
page 135), the drawing system allows you to save the state of the context and restore it
later.

In order to save the graphics context, you send the saveGraphicsState message to the

NSGraphicsContext class. This saves all of your drawing settings and pushes the context
state onto a stack for you to retrieve later. It doesn’t affect the pixels you’ve drawn, though:

 NSGraphicsContext.saveGraphicsState()

When you’re done, you can retrieve the saved context state by sending the NSGraphics

Context class the restoreGraphicsState message. This pops the most recently saved
state from the stack, and restores its settings (such as the shadow and colors):

 NSGraphicsContext.restoreGraphicsState()

Always make sure to balance every call to saveGraphicsState with

a call to restoreGraphicsState, or unusual behavior such as crash‐
es may occur.

Drawing a shadow

We’ll now update the drawing code to draw a rectangle with a shadow. Replace the

drawRect(rect:) method with the following code:

 override func drawRect(rect: NSRect) {

 let drawingRect = CGRectInset(rect,

 rect.size.width * 0.1,

 rect.size.height * 0.1);

 let cornerRadius : CGFloat = 20

 let bezierPath = NSBezierPath(roundedRect: drawingRect,

 xRadius: cornerRadius,

 yRadius: cornerRadius)

 NSGraphicsContext.saveGraphicsState()

130 | Chapter 6: Drawing Graphics in Views

 let shadow = NSShadow()

 shadow.shadowColor = NSColor.blackColor()

 shadow.shadowOffset = NSSize(width: 3, height: -3)

 shadow.shadowBlurRadius = 10

 shadow.set()

 NSColor.redColor().setFill()

 bezierPath.fill()

 NSGraphicsContext.restoreGraphicsState()

 }

This code starts by creating the NSShadow object and prepares it much like we saw

previously. A rounded rectangle NSBezierPath object is also created. The code then
saves the graphics state, sets the shadow, and fills the rectangle path. Once the drawing
is done, the graphics state is restored. Any further drawing that’s done won’t include a
shadow.

Now run the application. You’ll see a box with a shadow (Figure 6-12).

Figure 6-12. Drawing a shadow

Drawing shadows on iOS

The NSShadow class exists only in OS X. The techniques for drawing shadows on iOS
are similar, but instead of using Objective-C classes to draw the shadows, you use some
C functions that belong to Core Graphics, the C-based drawing API that Cocoa wraps.

Here’s the equivalent drawing code for drawing a shadow on iOS:

 // Get the drawing context

 var context = UIGraphicsGetCurrentContext()

 // Work out a rectangle to draw in

 var pathRect = CGRectInset(self.bounds,

Building a Custom View | 131

 self.bounds.size.width * 0.1,

 self.bounds.size.height * 0.1)

 // Create a rounded rect path

 var rectanglePath = UIBezierPath(roundedRect: pathRect, cornerRadius: 20)

 // Equivalent to NSGraphicsContext.saveGraphicsState()

 CGContextSaveGState(context)

 // Prepare the shadow

 var shadow = UIColor.blackColor().CGColor

 var shadowOffset = CGSize(width: 3, height: 3)

 var shadowBlurRadius : CGFloat = 5.0

 // This function creates and applies the shadow

 CGContextSetShadowWithColor(context,

 shadowOffset,

 shadowBlurRadius,

 shadow)

 // Draw the path; it will have a shadow

 UIColor.redColor().setFill()

 rectanglePath.fill()

 // Equivalent to NSGraphicsContext.restoreGraphicsState()

 CGContextRestoreGState(context)

You’ll note that instead of creating an Objective-C object, we instead store the settings

in separate variables and then call the CGContextSetShadowWithColor function. Also,

instead of calling saveGraphicsState and restoreGraphicsState like we do on OS X,

we call CGContextSaveGState and CGContextRestoreGState. Otherwise, it’s almost
exactly the same.

The shadow offset used on iOS is (3, 3) while on OS X it’s (3, -3).
That’s because the coordinate system on iOS is flipped from that of
OS X: on iOS, (0, 0) is the upper-left corner and positive y-values
advance down the screen, while on OS X, (0, 0) is the lower-left corner
and positive y-values advance up the screen.

Gradients
So far, we’ve worked entirely with solid colors when filling our shapes. However, the
human eye quickly tires of seeing large blocks of solid color, and adding a gradient
between two colors is a great way to add visual interest.

Drawing a gradient on OS X is similar to drawing a shadow—that is, you create an

NSGradient object, and then set it up. However, instead of setting the gradient as a color,

132 | Chapter 6: Drawing Graphics in Views

you instruct the gradient object to fill itself into a path object you provide. This is nec‐
essary because the gradient needs to know precisely where to start blending.

A gradient has at least two colors; when the gradient is drawn into an area, the area is
filled with a smooth shade that blends between the gradient’s colors. Each color also has
a location, which controls how the blending is performed.

When you draw the gradient, you also specify the angle at which you want the gradient
to be drawn. If you provide an angle of zero, the gradient draws from left to right, using
each color you provide in sequence. If you provide an angle of 90 degrees, the gradient
draws from bottom to top.

Drawing gradients on iOS is different, because you use Core Graphics C functions in‐

stead of using the NSGradient class. See “Drawing gradients on iOS” on page 134.

When constructing the gradient, the only information you need to provide is the colors.

You do this with the NSGradient(startingColor: endingColor:) method, which

takes a pair of NSColor objects:

 let startColor = NSColor.blackColor()

 let endColor = NSColor.whiteColor()

 let gradient = NSGradient(startingColor:startColor, endingColor:endColor)

Do not actually use these colors in a real app. Black-to-white gradi‐
ents look terrible on screens.

Then, when you want to draw the gradient, give it the shape you want it to fill (you can
also stroke shapes with gradients):

 gradient.drawInBezierPath(bezierPath, angle: 90)

We’ll now update the code to draw a gradient inside the custom view. Replace the

drawRect method with the following code:

 override func drawRect(rect: NSRect) {

 // Defining the shape

 let drawingRect = CGRectInset(rect,

 rect.size.width * 0.1,

 rect.size.height * 0.1);

 let cornerRadius : CGFloat = 20

 let bezierPath = NSBezierPath(roundedRect: drawingRect,

 xRadius: cornerRadius,

 yRadius: cornerRadius)

Building a Custom View | 133

 // Define the gradient

 let startColor = NSColor.blackColor()

 let endColor = NSColor.whiteColor()

 let gradient = NSGradient(startingColor:startColor, endingColor:endColor)

 // Draw the gradient in the path

 gradient.drawInBezierPath(bezierPath, angle: 90)

 }

Now run the application. You’ll see a black-to-white gradient (Figure 6-13).

Figure 6-13. Drawing a gradient

Drawing gradients on iOS

On iOS, the process of drawing gradients is a little more verbose but conceptually the
same. You still create an object, but it’s done via the Core Graphics C function calls.

Instead of providing a path object to a gradient and asking the gradient to draw itself,
you instead clip the current graphics context, and then draw the gradient from one point
on the screen to another. Clipping means to restrict the drawing to a shape, which
prevents the view from being completely filled with the gradient.

In addition, instead of providing an angle at which the gradient should be drawn, you
pass in the coordinates converted into the coordinate space of the view that the gradient
should be drawn from and to.

Here’s the equivalent drawing code for iOS:

 override func drawRect(rect: CGRect) {

 let colorSpace = CGColorSpaceCreateDeviceRGB()

 let context = UIGraphicsGetCurrentContext()

 let gradientStartColor = UIColor(red: 0.1, green: 0.1, blue: 0.8,

 alpha: 1)

134 | Chapter 6: Drawing Graphics in Views

 let gradientEndColor = UIColor(red: 1, green: 0.6, blue: 0.8, alpha: 1)

 let gradientColors : CFArray = [gradientStartColor.CGColor,

 gradientEndColor.CGColor]

 let gradientLocations : [CGFloat] = [0.0, 1.0]

 let gradient = CGGradientCreateWithColors(colorSpace,

 gradientColors, gradientLocations)

 let pathRect = CGRectInset(self.bounds, 20, 20)

 let topPoint = CGPointMake(self.bounds.size.width / 2, 20)

 let bottomPoint = CGPointMake(self.bounds.size.width / 2,

 self.bounds.size.height - 20)

 let roundedRectanglePath = UIBezierPath(roundedRect: pathRect,

 cornerRadius: 4)

 CGContextSaveGState(context)

 roundedRectanglePath.addClip()

 CGContextDrawLinearGradient(context, gradient, bottomPoint, topPoint, 0)

 CGContextRestoreGState(context)

 }

Transforms
Drawing shapes is fine, but sometimes you want to be able to handle something slightly
more complex, like rotating or stretching a shape. It’s certainly possible to simply create
a new path by providing a different set of coordinates, but it’s often better to just ask the
OS to do the rotation for you.

To do this, you use transforms, which are representations of transformation matrices.
We won’t go into the math of them in this book, but they’re tools that can be used to
translate, rotate, scale, skew, and generally perform any kind of distortion or manipu‐
lation of content.

All drawing that’s done by your code is affected by the current transform matrix (CTM),
which transforms every path and drawing operation that’s performed. By default, the
transform matrix is the identity matrix —that is, it doesn’t do anything at all. However,
the CTM can be modified to affect your drawing.

To modify the CTM, you first need a reference to the low-level drawing context. This

context, which is set up for you by Cocoa before your drawRect(rect:) method is called,

is of type CGContextRef. On OS X, you get the context with the following code:

 var context = NSGraphicsContext.currentContext()?.CGContext

Building a Custom View | 135

On iOS, you get the context with this code:

 var context = UIGraphicsGetCurrentContext()

Once you have the context, you can change the CTM. In the following example, we’ll
change the CTM so that everything that gets drawn is rotated around the origin (the
lower-left corner on OS X) by a few degrees.

If you change the CTM, that change will stick around until the con‐
text’s state is restored. If you only want to rotate part of your draw‐
ing, save the context’s state before changing the CTM, and restore the
state when you’re done. See “Saving and restoring graphics con‐
texts” on page 130.

Replace the drawRect method with the following code:

 override func drawRect(rect: NSRect) {

 var pathRect = CGRectInset(self.bounds,

 self.bounds.size.width * 0.1,

 self.bounds.size.height * 0.1)

 let cornerRadius : CGFloat = 20.0

 var rotationTransform =

 CGAffineTransformMakeRotation(CGFloat(M_PI) / 4.0)

 var rectanglePath = NSBezierPath(roundedRect:pathRect,

 xRadius:cornerRadius,

 yRadius:cornerRadius)

 var context = NSGraphicsContext.currentContext()!.CGContext

 CGContextSaveGState(context)

 CGContextConcatCTM(context, rotationTransform)

 NSColor.redColor().setFill()

 rectanglePath.fill()

 CGContextRestoreGState(context)

 }

Now run the application. You’ll see a rectangle that’s been rotated slightly
(Figure 6-14).

136 | Chapter 6: Drawing Graphics in Views

Figure 6-14. A rotated rounded rectangle

Building a Custom View | 137

CHAPTER 7

SpriteKit

The SpriteKit framework was first introduced in iOS 7 and OS X 10.9, and because it is
designed purposely for creating games, it is heavily optimized for rendering and ani‐
mating 2D graphics.

At its core, SpriteKit is a simple, object-oriented toolkit for drawing sprites (i.e., images
and text) that provides you with significantly more flexibility and performance than
using UIKit for the same purposes, while at the same time not forcing you to go down
to the level of writing OpenGL code.

In addition to its graphical features, SpriteKit also comes with a built-in 2D physics
engine, which handles collision detection, collision resolution, and rigid-body
simulation.

In this chapter, you’ll learn how to create SpriteKit scenes, how to work with sprites and
shape nodes, as well as how to take advantage of new features added in iOS 8.

SpriteKit’s Architecture
At the high level, SpriteKit is all about nodes. There are three things to know about
nodes:

• Nodes are contained within a SpriteKit view.

• Nodes can have other nodes as their children.

• Nodes render graphics into the view (depending on their type).

SpriteKit nodes are all instances of SKNode, or one of its subclasses. There are a lot of

different subclasses: at its base, the empty SKNode class represents an empty, invisible

node, while SKSpriteNode represents an image or colored rectangle, SKShapeNode

139

draws a Bézier path, SKEffectNode applies image effects like blurs or tints on its children,
and more.

When you want to make a game that uses SpriteKit, you assemble a scene full of these
nodes, and add them to a scene. Scenes can be thought of as different screens in your
game—you might have a main menu scene, a settings scene, and a scene for each of

your game’s different levels. Scenes are represented by the SKScene class.

Each scene is presented in a SpriteKit view. This view, which is an instance of SKView,
is the context in which all of your game’s graphics are presented. The SpriteKit view is

a subclass of UIView, and is mananged in a view controller much like any other view in
an app.

Making an App That Uses SpriteKit
Xcode comes with a template for SpriteKit games, but the framework is seriously simple
to add. Additionally, it’s easier to pick up the technology when you build it from scratch;
with that in mind, we’ll build a simple little app that uses SpriteKit. Once you’ve built
it, you can use it as a playground for testing out different techniques and features in
SpriteKit:

1. Create a new, single view application and name it SpriteKit.

2. Add the SpriteKit framework. Select the project at the top of the project navigator,
and then scroll down in the main editor until you find the Linked Frameworks and
Libraries section. Click the + button, and select “SpriteKit.framework” from the list
that appears.

Once you’ve added the SpriteKit framework, you get access to all of its classes. One of

those is the SKView class, which we need to make the app’s main view controller use.

3. To make the main view controller use a SpriteKit view, open the main storyboard
and go to the single view controller that comes as part of the template.

Select the view by clicking on it, and go to the Identity inspector.

Change the view’s class from UIView to SKView.

We’ll now add code that presents an empty SpriteKit scene in the view. To prove that
what we’re adding is actually new, custom content, we’ll make the empty scene use a
bright green background. (This means that if you’re not seeing a bright green screen
when you’re done with this part of the exercise, something’s gone wrong!)

4. At this point, open the ViewController.swift file and add the following code to the

viewDidLoad method:

140 | Chapter 7: SpriteKit

 let scene = SKScene(size: self.view.bounds.size)

 scene.backgroundColor = UIColor.greenColor()

 let skView = self.view as SKView

 skView.presentScene(scene)

5. Run the application. When it loads, you should see a green screen (Figure 7-1).

Figure 7-1. The empty scene

Working with SpriteKit Scenes
A SpriteKit game is composed of scenes. Each scene contains all of the graphical elements
that make up a part of your game. For example, you could have a scene that contains
your main menu, a scene that shows the high scores, and a scene for each of your game’s
levels.

Depending on the type of your game, you could also have a single
scene for all levels, and customize that based on the specifics of each
level. Puzzle games tend to do this, as they have a number of com‐
mon elements in each level (like the score display, a back button, etc.),
and only change the contents of the puzzle itself.

Working with SpriteKit Scenes | 141

In SpriteKit, you can think of scenes as being similar to view controllers in a regular
application. Both scenes and view controllers are responsible for the visible parts of the
app, and handle the behavior of these elements on the screen—a view controller is in
charge of providing data to views and responding to user actions, and a scene is in charge
of creating the appropriate sprites and responding to user input.

To make a SpriteKit scene, you create a subclass of the SKScene class, and then make

your game’s SKView present it. Presenting a scene can be done directly, or with a
transition.

When you present a scene directly, the scene immediately appears in the view. Presenting

a scene directly is done using the presentScene method:

 skView.presentScene(scene)

You generally present the first scene of your game directly, without
using a transition.

You can also present a screen using a transition, which is an animation that the SpriteKit
view uses to indicate that the game is moving to a new scene. These include things like
fading from one to the other, fading down to black and then back up to the new scene,
or sliding the old scene off-screen and the new one on.

There’s a wide variety of different transitions available. For the full

list, check out the documentation for the SKTransition class in the
Xcode documentation.

To present a transition, you create an instance of the SKTransition class. The specific
animation that the transition uses depends on the method you use to create the transi‐
tion, as well as the parameters you provide to that method. For example, to create a
transition that slides the new scene in from the right over half a second, you call the

moveInWithDirection(_, duration:) method, which returns your SKTransition
object.

Once you’ve created the transition, you then give it to the SKView along with the new
scene, like so:

 let transition = SKTransition.moveInWithDirection(

 SKTransitionDirection.Right, duration: 0.5)

 self.view?.presentScene(game, transition: transition)

142 | Chapter 7: SpriteKit

http://bit.ly/sktransition

Once a scene is presented, or begins appearing through a transition, it receives the

didMoveToView message. This is the scene’s opportunity to prepare its content so that
it’s ready for the user to see it. This is your chance to add sprites, set the scene’s back‐
ground, and do other necessary setup tasks.

To demonstrate this, we’re going to extend the SpriteKit example to use our own custom

subclass of SKScene:

1. First, create the new SKScene subclass. Go to the File menu, and choose New →
New File.

Create a new Cocoa Touch class called GameScene. Make it a subclass of SKScene.

2. Add the didMoveToView method. Open GameScene.swift, and add the following
method to the class:

 override func didMoveToView(view: SKView!) {

 self.scaleMode = .AspectFill

 let label = SKLabelNode(text: "Hello")

 label.position = CGPoint(x: size.width / 2.0, y: size.height / 2.0)

 self.addChild(label)

 }

3. Make the view controller present the new scene on startup. Open View‐

Controller.swift, and replace the code for viewDidLoad with the following:

 let scene = GameScene(size: self.view.bounds.size)

 let skView = self.view as SKView

 scene.scaleMode = .AspectFill

 scene.backgroundColor = UIColor.blackColor()

 skView.presentScene(scene)

SpriteKit Nodes
SpriteKit scenes contain nodes. Nodes, on their own, don’t do anything at all except

exist; however, the base SKNode class has a number of important subclasses, each of
which does something specific to the scene.

SpriteKit Nodes | 143

All nodes have the concept of parenting. When a node is in a scene, it’s a child of another

node. That other node may itself be a child of another, and so on, right up to the SKScene.

To add a node as a child of another node, you use the addChild method:

 self.addChild(label)

A node can only have a single parent, though it can have any number of children. If you
want to move a node from one parent to another (also known as re-parenting), you use

the removeFromParent method on the node:

 label.removeFromParent()

If you try to add one node to another node, and the first node al‐

ready has a parent, you’ll throw an exception. Always call remove

FromParent before moving a node from one parent to another.

It’s OK for a node to have no parent. It just won’t be visible to the
user unless it’s attached to a node in the scene.

Different nodes do different things. For example:

• SKSpriteNode shows an image, or a colored rectangle. It’s the most common type
of node.

• SKLabelNode shows text.

• SKShapeNode renders any UIBezierPath, such as rounded rectangles, circles, or any
other kind of shape.

• SKEffectNode applies image effects, such as blurs or color shifts, to all of its child
nodes.

• Empty SKNode objects, even though they don’t actually display anything in the scene,
are useful for grouping multiple nodes together.

144 | Chapter 7: SpriteKit

1. Jon’s getting pretty close to finally beating this game.

Putting Sprites in Scenes
The SKSpriteNode class is the main workhorse of SpriteKit. Given that pretty much
every game will be displaying graphics of some kind, even if it’s just a button labeled
“win the game,”1 you need a way to put those graphics into the game.

Sprite nodes are designed for just this purpose, and are very simple to use. All you need

is an image to show; once you’ve added that to your project, you create an SKSprite

Node instance that uses it.

In this section, the name of the image that we’re using will be
called BlockSquareBlue, but you can use any image you want. The
BlockSquareBlue image, along with some other images, are con‐
tained in the source code that accompanies this book.

Here are the steps you’ll need to take:

1. First, add the image. To begin working with images, simply drag and drop the image
into the project navigator. Xcode will ask you if you want to copy the image in; you
generally want to do this.

2. Then create the sprite node and make it use the image. Open GameScene.swift, and

add the following code to the didMoveToView method:

 // Create the sprite

 let spriteNode = SKSpriteNode(imageNamed: "BlockSquareBlue")

 // Position the sprite right in the center of the scene

 spriteNode.position = CGPoint(x: size.width / 2.0,

 y: size.height / 2.0)

 // Add the sprite

 self.addChild(spriteNode)

Once you’re done, the sprite will be visible in the scene, as seen in Figure 7-2.

Putting Sprites in Scenes | 145

2. A notable exception is David O’Reilly’s Mountain, which is described by the author as a relax-em-up, in which
the player is a mountain and therefore doesn’t need to do anything at all.

Figure 7-2. The sprite, added to the scene

Responding to Touches
Most games require input of some kind.2 SpriteKit makes it very easy to add code that
runs when something on the screen is touched.

Just like a UIView, SKNode objects can respond to touches. When this happens, they

receive the touchesBegan(_, withEvent:) message, which indicates that a touch lan‐
ded on the node.

Scenes are nodes, which means they also have the ability to detect when the user is
touching them. Because scenes fill the entire screen, this means that a scene can detect
a touch anywhere on the screen.

To demonstrate this, we’re going to add an additional scene to the game, which will
show a main menu (really, some text); when it’s tapped, the game scene will appear:

1. First, create a new scene. Create a new SKScene subclass, and call it MenuScene.

2. Then add code that sets up the new scene. Add the didMoveToView method to the

MenuScene class:

146 | Chapter 7: SpriteKit

http://bit.ly/mtn_by_oreillly

 override func didMoveToView(view: SKView) {

 let label = SKLabelNode(text: "Welcome to My Awesome Game")

 label.fontSize = 20

 label.position = CGPoint(x: self.size.width / 2.0,

 y: self.size.height / 2.0)

 self.addChild(label)

 }

3. Next, add code that responds to the user touching the screen. Add the touchesBe

gan(_, withEvent:) method:

 override func touchesBegan(touches: NSSet, withEvent event: UIEvent) {

 let game = GameScene(size: self.size)

 let transition = SKTransition.moveInWithDirection(

 SKTransitionDirection.Right, duration: 0.5)

 self.view?.presentScene(game, transition: transition)

 }

4. Finally, make the app start with this scene. Open ViewController.swift, and change

the code for the view controller so that it starts out with a MenuScene, like so:

 let menuScene = MenuScene(size: self.view.bounds.size)

 let skView = self.view as SKView

 menuScene.scaleMode = .AspectFill

 skView.presentScene(menuScene)

A node won’t respond to touches unless its userInteractionEnabled

property is set to true. Only SKScene objects have this turned on by
default; everything else, you’ll need to manually enable.

Working with Textures
A texture is a chunk of image data that SpriteKit can use. If you’ve been following along

with the examples in this chapter, you’ve already used textures: the SKSpriteNode au‐
tomatically converts images into textures as part of setting up.

Textures are generally the biggest consumers of memory that any game has, and Spri‐
teKit automatically takes steps to minimize the memory usage of the textures in your

Working with Textures | 147

app. If you create two sprite notes that use the same image, SpriteKit will notice this and
make them share the same image.

Most textures are loaded from images, with a few being generated at runtime by code.
You can either do this automatically, such as when a sprite node is created, or you can

directly create an SKTexture object to store and manage the texture memory.

You can also create subtextures—textures that use a subsection of another texture’s im‐
age. This is useful for creating sprites in a game that need to be divided into smaller
sections. For example:

 let texture = SKTexture(imageNamed: "BlockSquareRed")

 let rect = CGRect(x: 0.25, y: 0.25, width: 0.5, height: 0.5)

 let subTexture = SKTexture(rect: rect, inTexture: texture)

Texture Atlases
Another way to save texture memory and improve performance is to bundle as many
different pictures as possible into a single texture. This is more efficient for graphics
cards, as each individual texture has its own overhead. It’s better to have a hundred small
pictures packed into a single texture than it is to have a hundred small pictures stored
in individual textures.

One way you could do this in your game could be to load an SKTexture, and then
manually create subtextures. However, this is a very tedious process, and would require
massive amounts of work if the layout of the texture ever changed.

Instead, Xcode provides built-in support for generating texture atlases. All you need to
do is create a folder whose name ends in .atlas, and put the individual images into it; at
compile time, Xcode packs all of the images into one or more larger images and writes
out a file indicating where each individual image can be found in the larger atlas image.

(((“SKTextureAtlas objectusing the SKTextureAtlas object. You create an SKTextur

eAtlas by providing the name of the folder you added to your project. Once you have
a texture atlas, you can ask it to provide you with specific named textures:

 let atlas = SKTextureAtlas(named: "Sprites")

 let textureInAtlas = atlas.textureNamed("BlockSquareBlue")

You can also ask a texture atlas to provide an array of all the texture names that it
contains:

 let textureNames = atlas.textureNames as [String]

148 | Chapter 7: SpriteKit

If you have an image stored in a texture atlas, you don’t need to use

the SKTextureAtlas class to access it. The SKTexture(image

Named:) method actually searches all texture atlases to find the im‐

age you specify. The SKTextureAtlas class is designed to make it
easier to group different textures together.

Working with Text
Sprites aren’t the only things that the player wants to see. Sometimes, you’ve just got to
show them text.

The SKLabelNode class is designed to show text to the user. SKLabelNode works just like

SKSpriteNode, only it uses text that you specify in conjunction with a font that you
provide to render an image that contains the text that you want (Figure 7-3).

The fonts available to display your text in vary between versions of iOS. Certain fonts
are only available in certain versions of iOS; to our knowledge, fonts have never been
removed from iOS, only added, but it pays to check to see if the font you want to use is
available.

To that end, a great resource for checking this is the website http://iosfonts.com, which
lists all fonts currently available in iOS, along with when they were added.

If you’d prefer to go straight to the source to find out which fonts you can use, you can

ask iOS directly, using the UIFont class. Fonts are grouped into family names (e.g., the
Helvetica font family contains Helvetica Bold Oblique, Helvetica Light, etc.). Each of
these individual fonts have their own name, which you use when preparing an

SKLabelNode.

To find out which fonts are available to use, you can use the UIFont class’s family

Names method, like so:

 for familyName in UIFont.familyNames() as [String] {

 for fontName in UIFont.fontNamesForFamilyName(familyName)

 as [String] {

 println(fontName)

 }

 }

Once you have a font you want to use, you simply create the SKLabelNode instance with
the text you want to use:

 let textLabel = SKLabelNode(text: "This is some text")

Once you’ve created it, prepare it with the font, size, and color you want to use:

 textLabel.fontName = "Zapfino"

 textLabel.fontSize = 30

 textLabel.fontColor = UIColor.blueColor()

Working with Text | 149

http://iosfonts.com

Label nodes can be aligned in different ways. By default, the center point of the label
(i.e., the node’s position in the scene) is equal to the baseline and the horizontal center

of the text. However, you can change this by changing the node’s verticalAlignment

Mode and horizontalAlignmentMode properties:

 textLabel.verticalAlignmentMode = .Top

 textLabel.horizontalAlignmentMode = .Left

Figure 7-3. Text in the scene

Animating Content with Actions
The content of your game’s scene is likely to need some animation. Animations in Spri‐

teKit are done using the SKAction class, which represent changes in a node’s state.

An SKAction represents a movement, rotation, change in color, or just about any other
change that a node can have applied to it. Importantly, actions take place over time, and
can be arranged into sequences and groups.

To use an SKAction, you first create one.

There’s a huge number of possible actions that you can use. For full

details, see the class reference for SKAction in the Xcode
documentation.

150 | Chapter 7: SpriteKit

For example, to create an action that moves a node upwards by 50 pixels, you do this:

 // Move upwards by 50 pixels

 let moveAction = SKAction.moveBy(CGVector(dx: 0, dy:50), duration: 1.0)

Most actions can be reversed (i.e., they can be asked to generate an action that performs
the opposite of what they do). Not all actions can be reversed, but all actions that have
an obvious way of reversing themselves can. For example, to make an action that moves
a node down by 50 pixels, you could simply reverse the action that was just
demonstrated:

 // Move down by 50 pixels

 let moveBackAction = moveAction.reversedAction()

You can use actions to rotate a node, by creating a rotation action and giving it an angle.
Note that this is measured in radians—while there are 360 degrees in a circle, there are
2π radians in a circle:

 // Rotate by half a circle (π radians) over 1 second

 let rotateAction = SKAction.rotateByAngle(CGFloat(M_PI), duration: 1.0)

You can also scale a node using actions:

 // Scale to double normal size over half a second

 let scaleAction = SKAction.scaleTo(2.0, duration: 0.5)

Actions can be grouped together, using the group method. This method takes an array
of actions, and returns a single action; when this action is run, all of the actions in the
array are started at the same time:

 // Grouping actions means the actions run together

 let rotateWhileScaling = SKAction.group([rotateAction, scaleAction])

If you want to run actions one after another, you use a sequence. These are created in a
similar way to groups, in that you provide an array of actions; the resulting action, when
started, kicks off each action one at a time, and waits for the current action to finish
before starting the next:

 // Sequences mean the actions run one after the other

 let rotateThenScale = SKAction.sequence([rotateAction, scaleAction])

Finally, to actually run actions on a node, you use the node’s runAction method:

 // Run an action on a node using runAction

 textLabel.runAction(repeatingMoveAction)

Using Shape Nodes
While sprite nodes show pictures and label nodes show text, you often want to quickly
show some kind of generic shape (e.g., a rectangle, a circle, a triangle, etc.). This is where
shape nodes come in (Figure 7-4).

Using Shape Nodes | 151

To create a shape node that draws a rectangle, you can use the ShapeNode(rectOf

Size:) method, like so:

 let shapeNode = SKShapeNode(rectOfSize: CGSize(width: 50.0, height: 50.0))

Shape nodes can also use a UIBezierPath to draw a shape. The advantages of Beziér
paths include the fact that they can describe almost any shape you want, which means
you can display them using a shape node. Bézier paths are discussed in detail in “Creating
Custom Paths” on page 126:

 // Can also provide a custom path

 let path = UIBezierPath(ovalInRect: CGRect(x: 0,

 y: 0,

 width: 50,

 height: 70))

 let shapeNodeWithPath = SKShapeNode(path: path.CGPath,

 centered: true)

Once you’ve created a shape node, you configure its various properties. These include
the colors used to both fill the shape as well as to draw its outline, how thick the lines
should be, and whether or not the shape should have a glow:

 shapeNode.lineWidth = 4.0

 shapeNode.lineCap = kCGLineCapRound

 shapeNode.strokeColor = UIColor.whiteColor()

 shapeNode.fillColor = UIColor.redColor()

 shapeNode.glowWidth = 4.0

Figure 7-4. A shape node in the scene

152 | Chapter 7: SpriteKit

Using Image Effect Nodes
Image effect nodes allow you to create sophisticated visual effects with SpriteKit—things
like blurring, color shifting, and other nifty effects.

Image effect nodes, which are implemented using the SKEffectNode class, work in a
different way to the other kinds of nodes previously discussed in this chapter. While the
other nodes add something new to the scene, like images or text, image effect nodes
instead change their children. This means that you could create, say, a blur effect, and
then add nodes underneath it; all of its children would then be blurred (Figure 7-5).

Image effects get their power through the CIFilter API. CIFilter objects are Core
Image filters, which have been a part of iOS and OS X for some time. They’re best known
for their use in Instagram, where they provide the color shifting and tinting effects; now,
thanks to SpriteKit, you can use them to modify your game in real time.

To create an image effect node, we’re going to use a Gaussian blur filter as an example.
Before you can create an image effect node, you first have to create the image effect

itself. In the case of a Gaussian blur, this means asking the CIFilter class to create a

CIGaussianBlur filter, and then configuring that filter’s blurring radius:

 let blurFilter = CIFilter(name: "CIGaussianBlur")

 blurFilter.setDefaults()

 blurFilter.setValue(5.0, forKey: "inputRadius")

Once you’ve created your image effect, you then create the image effect node, and pro‐
vide it with your effect:

 let blurEffectNode = SKEffectNode()

 blurEffectNode.filter = blurFilter

 blurEffectNode.shouldEnableEffects = true

 self.addChild(blurEffectNode)

By default, an image effect node will not apply its CIFilter unless

you set shouldEnableEffects to true.

Once you’ve added the image effect node to the scene, you then add nodes underneath

it. Those nodes will then have the CIFilter applied to them.

Using Image Effect Nodes | 153

Figure 7-5. A blurred sprite, using an SKEffectNode

It’s worth pointing out that SKScenes are image effect nodes. This

means that you can just give the scene a CIFilter, and the whole
scene will be affected by it:

 self.filter = blurFilter

Note that image effects might impact the performance of your game.

Adding Physics to SpriteKit Objects
SpriteKit comes bundled with a built-in 2D physics engine. This means that your sprites
get physical interactions for free—they get affected by gravity, collide with each other,
and can be attached to each other. This gives you a lot of power for very little develop‐
ment effort.

To enable physics in your game, all you need to do is create a SKPhysicsBody object and
attach it to each node that you want to have physical properties. Once attached to a
node, it will start being affected by gravity, and collide with other objects that have their
own bodies.

When you create a body, you also specify its collision shape. This can be different to the
overall shape of the sprite—for example, you could have a basketball sprite with a rec‐
tangular physics body, which wouldn’t be able to roll:

154 | Chapter 7: SpriteKit

 let body = SKPhysicsBody(rectangleOfSize: shapeNode.frame.size)

 shapeNode.physicsBody = body

Once you’ve got a physics body, you’ll likely want to configure its mass. In SpriteKit,
mass is measured in kilograms. So, to set a body’s mass to 1 kilogram, you do this:

 body.mass = 1.0

When working with physics in SpriteKit, it’s very useful to see the behind-the-scenes
outlines of where your physics bodies are. This allows you to work out if you’ve got a
problem with objects appearing to bounce off things that don’t appear to be there, and
other annoying bugs. To enable physics debugging in SpriteKit, you simply turn on

showsPhysics on your SKView:

 self.view?.showsPhysics = true

Usually, physics bodies represent complete, enclosed shapes—rectangles, polygons, cir‐
cles, and the like. However, you can also create physics bodies that are composed entirely
of disconnected edges. These are useful for, among other things, creating boundary
walls for your game.

To create a physics body that represents a connected loop of edges, you use the SKPhy

sicsBody(edgeLoopFromRect:) method. Bodies made up of edges are never affected
by gravity:

 let wallsBody = SKPhysicsBody(edgeLoopFromRect: self.frame)

Because the scene is a node, you can attach physics bodies to the scene itself. So, to attach
this edge loop to the scene, you simply do this:

 self.physicsBody = wallsBody

Adding Joints to SpriteKit Objects
When nodes have physics bodies, they can be attached to each other. This is accom‐
plished using joints, which describe a relationship between two physics bodies.

Joints in SpriteKit are represented by subclasses of the SKPhysicsJoint class. There are
several different kinds of joints built into SpriteKit. For example:

SKPhysicsJointFixed

The two bodies are fixed, and cannot move relative to each other. They’re still al‐
lowed to move around, but they’re tied together.

SKPhysicsJointSpring

The two bodies are allowed to move relative to each other, but if they get too far
apart, a force will be applied to push them back together.

Adding Joints to SpriteKit Objects | 155

SKPhysicsJointSliding

The two bodies are allowed to move relative to each other, but only along a single
axis.

SKPhysicsJointPin

One object is pinned to another—it can rotate, but can’t move.

To create a joint, you simply create an instance of the type of joint you want to create,

and then add it to your scene’s physicsWorld. When you create a joint, you specify the

two SKPhysicsBody objects that the joint should constrain:

let pinJoint = SKPhysicsJointPin.jointWithBodyA(hingeNode.physicsBody,

 bodyB: shapeNode.physicsBody,

 anchor: hingeNode.position)

self.physicsWorld.addJoint(pinJoint)

Lighting SpriteKit Scenes
Lighting a scene can bring a game to life. SpriteKit has built-in support for lights and
shadowing, and you don’t have to do much work to get great results.

Lights in SpriteKit are represented by the SKLightNode class. This node is invisible on
its own, but causes lighting effects to get applied to nearby sprite nodes.

Lights are only applied to sprite nodes. They won’t apply to label
nodes, for example.

To create a light node, you create it and configure it with a color:

 let light = SKLightNode()

 light.enabled = true

 light.lightColor = UIColor.yellowColor()

The position of the light node determines where the light is shining from. Once you’ve
got it set up, you simply add it to your scene.

Lighting a sprite is expensive, which means you need to specify what nodes should get
lit up by your lights. This is done through bitmasks: if the result of a logical AND between

the bitmask of a light and a sprite node results in a true value, the sprite is lit up.

This means that you need to specify both a category bitmask for the light, as well as a
lighting bitmask for the node that you want to be lit:

 // Light all nodes

 light.categoryBitMask = 0xFFFFFFFF

156 | Chapter 7: SpriteKit

 // This node will be lit, because 0xFFFFFFFF AND 0x1 = true

 spriteNode.lightingBitMask = 0x1

Constraints
Nodes can be constrained to each other: you can tell SpriteKit to ensure that one node
is always at the same position as another, or that it should always be pointing at a node.
Constraints are significantly cheaper than full-on physics, and are easier to set up.
They’re also a lot less prone to annoying problems; however, they’re nowhere near as
powerful.

To create a constraint, you create an instance of the SKConstraint class, and provide
information on how the constraint should work. Once you have that, you apply it to the
node that you want to constrain.

For example, to make one node point at another, you create an SKConstraint using the

orientToNode(_, offset:) method:

 let pointAtConstraint = SKConstraint.orientToNode(

 shapeNode, offset: SKRange(constantValue: 0.0))

 pointingNode.constraints = [pointAtConstraint]

Using Shaders in SpriteKit
A shader is a custom program that lets you completely customize how SpriteKit should
draw a node’s contents. By default, SpriteKit handles everything in a fairly sane way: a
texture is loaded and displayed, taking into account lighting where applicable.

However, custom shaders let you take things far beyond this. Using a custom shader,
you have total control over the final color result of every pixel in a node. This means
you can create refraction effects, reflection, generative textures, and more.

When you write shaders, you write a program in a language called GLSL, which is the
OpenGL Shading Language. In addition to this written program, you provide data to it
through special variables called uniforms.

To demonstrate this, we’ll create a custom shader that renders the contents of a sprite
as red. We’ll then customize it to make chunks of the sprite transparent:

1. First, create the shader. Create a new empty file called CustomShader.fsh, and add
it to your project.

2. Then add the shader code. Put the following code in the CustomShader.fsh file:

void main()

{

 // Get the original color

Constraints | 157

 vec4 color = SKDefaultShading();

 // Set the color to red

 color = vec4(1.0, 0.0, 0.0, color.a);

 // Multiply this by alpha to preserve transparency

 color.rgb *= color.a;

 // Return the finished color

 gl_FragColor = color;

}

.fsh stands for Fragment SHader. In computer graphics, a frag‐
ment is effectively another term for a pixel. The purpose of a
fragment shader is to shade (i.e., determine the color of) each
fragment that makes up the content of a sprite.

3. Next, create the SKShader object. Open GameScene.swift, and add the following

code to the end of the didMoveToView method:

 let shader = SKShader(fileNamed: "CustomShader")

 spriteNode.shader = shader

When you run the application, the entire sprite will be bright red.

The main() function of your shader needs to return a color that’s
premultiplied against the alpha channel. This means that if you’re
providing your own colors, you’ll need to multiply them against the
alpha channel that SpriteKit’s already calculated.

This shader is very simple, and doesn’t do much—it’s hardcoded to use a red color. It
would be significantly nicer if our code could configure the shader, so we’ll add support
for this now.

You provide data to your shaders through uniforms, which are represented by instances

of the SKUniform class. Uniforms can be textures, floats, or arrays of floats (also known
as vectors).

To provide a texture to your shader, you first acquire a texture from somewhere, and

then put that in an SKUniform. You then provide that SKUniform to the SKShader. Once
you’ve done that, you can modify your shader code to make use of the new uniform:

1. First, add the uniforms. Add the following code to the end of the didMoveToView
method:

158 | Chapter 7: SpriteKit

 let noiseTexture = SKTexture(noiseWithSmoothness: 0.5,

 size: CGSize(width: 256, height: 256),

 grayscale: true)

 let textureUniform = SKUniform(name: "noiseTexture",

 texture: noiseTexture)

 let thresholdUniform = SKUniform(name: "threshold", float: 0.5);

 shader.addUniform(textureUniform)

 shader.addUniform(thresholdUniform)

2. Then update the shader code. Replace the contents of CustomShader.fsh with the
following code:

void main()

{

 // Get the original color for this pixel

 vec4 color = SKDefaultShading();

 // Get the corresponding point in the noise shader

 vec4 noiseSample = texture2D(noiseTexture, v_tex_coord);

 // If the noise value is below the threshold,

 // then set the alpha value to 0

 if (noiseSample.a < threshold) {

 color.a = 0.0;

 }

 // Premultiply the color channels (red, green, and blue)

 // with the alpha channel

 color.rgb *= color.a;

 // Return the finished color

 gl_FragColor = color;

}

When you run the application, the sprite will have holes in it (Figure 7-6). Try playing

with the threshold uniform to vary the size of the holes.

Using Shaders in SpriteKit | 159

Figure 7-6. Using a custom shader

Using SpriteKit Editor
The SpriteKit editor is a feature built into Xcode that lets you visually compose a Spri‐
teKit scene. This means that you don’t have to manually type in the position and image
name of each of your sprites—all you have to do is drag and drop them into place, just
like you do with the Interface Builder.

The files that the SpriteKit editor creates can be loaded using the SKScene class’s

SKScene(fileName:) constructor. This loads the file, unpacks all of the nodes, and
prepares the scene for launch. You still get to run your own setup code after this happens,

using the didMoveToView method. Here’s how it’s done:

1. First, create a new SpriteKit scene file. Go to the File menu, and choose New → New
File. Select the Resource section, and create a new SpriteKit scene. Name it

GameScene.

The file will be created, and when you select it in the project navigator, you’ll be
treated to a delightfully boring and empty scene.

2. Then drag in a Color Sprite. Find the Color Sprite, and drag it into the scene. A red
box will appear.

3. Finally, make the game load the scene from the file. Open ViewController.swift, and

replace the viewDidLoad method with the following code:

160 | Chapter 7: SpriteKit

 let scene = GameScene(fileNamed: "GameScene")

 let skView = self.view as SKView

 skView.presentScene(scene)

Run the app again. It’ll look the same, but with the addition of the red box—this is

because the scene first starts up with the red box, and then the code in didMoveTo

View sets the background color, and adds the label.

Using SpriteKit Editor | 161

CHAPTER 8

SceneKit

The SceneKit framework is a collection of classes that let you compose and present a
3D scene in your app. It works on both iOS and OS X, and is an incredibly simple way
of drawing 3D graphics.

SceneKit is great for both games and apps that need to show some kind of 3D content.
It also interacts seamlessly with Core Animation and SpriteKit, which means that you
can use SceneKit in a variety of different contexts.

For example:

• You can make your entire app centered around SceneKit, and have all of your user
interactions take place using a 3D view. Most games are likely to do this, to some
extent.

• You can embed a 3D view as part of a larger document. The 3D graphs in Numbers,
Apple’s spreadsheet app, are an example of this kind of usage.

• You can render a SpriteKit scene on top of 3D graphics in a SceneKit scene, as an
overlay.

• You can render SpriteKit scenes as textures inside a SceneKit scene. This means you
can do things like render a 2D GUI in SpriteKit, and display them on a computer
monitor in a 3D game.

SceneKit is also capable of loading 3D content from COLLADA, an industry-standard
format for exchanging 3D graphics information. If you have any kind of 3D modeling
program, it probably supports exporting 3D content in the COLLADA format, which
you can import into your SceneKit scenes. If you don’t have any 3D models to use, you
can also use SceneKit to generate basic 3D objects, like cubes, spheres, and capsules.

163

SceneKit Structure
SceneKit presents everything through an SCNView, which is a subclass of either UI

View or NSView, depending on your platform. Inside your SCNView, you create and

prepare a scene, which is represented by the SCNScene class. Scenes contain nodes, which
are composed into a scene graph: a node has zero or more children, and has a single
parent.

On their own, nodes are invisible—all they do is exist in a scene. To make things visible
to the user, you attach items to nodes. The items you can attach include:

Geometry
These are 3D objects, such as cubes, text, or models loaded from disk.

Cameras
These determine the position and the angle from which the user can view the scene.

Lights
These cast light into the scene, and illuminate objects.

Physics bodies
These cause physical effects to be applied to the objects in your scene, such as col‐
lisions and gravity.

A scene, therefore, is composed of a collection of these nodes, with multiple different
items attached to them.

In addition to these attached items, geometry objects have materials attached to them.
Materials define how the geometry is rendered—what color to use, what textures to
apply, and how the surface should react to light. You define these materials either
through code or by loading them from a COLLADA file; SceneKit then takes your
settings, and turns them into the appropriate GLSL shader.

This chapter discusses using SceneKit inside an SCNView, but this isn’t
the only way you can use SceneKit in your apps. If you have a Core

Animation layer hierarchy, you can create and use an SCNLayer; ad‐
ditionally, if you’ve written your own OpenGL renderer, you can take

advantage of SceneKit’s functionality through the SCNRenderer class,
which emits OpenGL commands at a time that you control. This is a
bit outside of the scope of this chapter, but it’s worth knowing that it’s

there; check the class documentation for SCNLayer and SCNRender

er in the Xcode documentation for more details.

164 | Chapter 8: SceneKit

Working with SceneKit
To demonstrate how SceneKit works, this chapter will walk through a simple tutorial
app that shows how the different parts of SceneKit fit together.

To get started, we’ll create a simple iOS app, and configure a SceneKit view. We’ll then
start adding more and more stuff to it.

SceneKit works on OS X as well as iOS. If you’d prefer to do this on
the Mac, just make a Cocoa application, add a SceneKit view to your
window, connect it to your App Delegate, and continue from there.

Adding a SceneKit View
The first thing to do will be to create the app and make it use an SCNView:

1. Create a new, single view iOS application, and call it SceneKit.

2. Next, add the SceneKit framework. Select the project at the top of the project nav‐
igator, and the project settings will appear. Scroll down to the Linked Frameworks

and Libraries section, and click the + button below the list.

Select “SceneKit.framework” from the list that appears.

3. The next step is to make the application create a SceneKit scene when the app starts
up.

We want to make the storyboard use an SCNView. Open the application’s storyboard
file, and select the view inside the main view controller.

Open the Identity Inspector, and change the view’s class from UIView to SCNView.

The storyboard will now use a SceneKit view as its main view.

Once you’ve got a SceneKit view, you can begin configuring it. The first thing we’ll do
in this example is set its background color; later, we’ll add 3D graphics to it. To set the
background color of the scene view, open ViewController.swift and add the following

code to the viewDidLoad method:

 let sceneView = self.view as SCNView

 sceneView.backgroundColor = UIColor.grayColor()

The first step in working with the SceneKit view is to cast it to the apporiate type, using

the as operator. Once you’ve done that, changing the background ensures that you’ve
got a visible result. You can see the result in Figure 8-1.

Working with SceneKit | 165

Figure 8-1. An empty SceneKit view

Adding a Scene
The next step is to add a scene to the SceneKit view. To create the scene, add the following

code to the end of viewDidLoad:

 let scene = SCNScene()

 sceneView.scene = scene

An SCNScene object is the container for all of your SceneKit objects. Anything that you
want to show to the user will be placed inside the scene. Note that while you can have
multiple scenes, only one is visible in the view at a time.

On its own, an empty scene is kind of boring. To improve this, we’re going to add two
things: a 3D capsule shape, and a camera to view it with.

166 | Chapter 8: SceneKit

Adding a Camera
Cameras in SceneKit are your portals into the 3D scene. They’re your virtual eyes into
the 3D world; what you see depends on their position, their angle, and a few other
parameters that you’ve configured, such as their field of view or whether they’re a per‐
spective or orthographic camera.

We’ll start by adding a camera first, and then add the capsule shape. To add the camera,

include the following code at the end of the viewDidLoad method:

 let camera = SCNCamera()

 camera.xFov = 45

 camera.yFov = 45

This code creates an SCNCamera object, and indicates to it that its field of view is 45
degrees both horizontally and vertically.

The human eye has a field of vision that’s roughly 180 degrees hori‐
zontally and 90 degrees vertically. However, because an iPhone or iPad
takes up only a part of the user’s field of vision, your 3D scene won’t
look correct if you use too wide an angle. Play around with differ‐
ent numbers and see what works best for your app or game.

On its own, however, an SCNCamera does nothing—it isn’t in the scene, and it has no

position from which the player can see the 3D scene. It needs to be added to an SCNNode
first, because nodes are the objects that have positions and attachments to the scene.

To that end, the next step is to attach the camera to a node. To do that, add the following

code to the end of the viewDidLoad method:

 let cameraNode = SCNNode()

 cameraNode.camera = camera

 cameraNode.position = SCNVector3(x: 0, y: 0, z: 20)

 scene.rootNode.addChildNode(cameraNode)

An SCNNode is empty on its own. You need to add items to it, such as the camera, in
order to make it do useful work.

Once you create the node, it’s given a position in 3D space. In this example, we’re setting
it to the location (0, 0, 20), which means that it’s centered on the x- and y-axes, but
moved back by about 20 meters.

The final step with any node is to add it to the scene. You do this by adding it as a child
node of any other node that’s also in the scene. If there aren’t any nodes in the scene yet,
you can add it to the scene’s root node, which is the top level of the scene.

Adding a Camera | 167

If you run the application, you’ll see no difference from before, because the camera has
nothing to look at—there’s just the featureless gray void. To address this stark nihilistic
horror, we’ll add an object.

Adding a 3D Object
The object that we’re adding to the scene will be a capsule. There are two stages to this:
first, we create the capsule’s geometry, which defines the shape. Next, we attach that

geometry to an SCNNode, so that it’s located somewhere in the scene:

1. To create the capsule’s geometry, add the following code to the end of viewDidLoad:

 let capsule = SCNCapsule(capRadius: 2.5, height: 10)

The SCNCapsule class is a subclass of the more generic . There are a wide va

riety of other types of geometries you can use, including boxes

(`SCNBox), pyramids (SCNPyramid), toruses (SCNTorus), as well as text (SCNText),
which we’ll be spending some more time talking about later in this chapter.

Once you’ve created some geometry, you attach it to a node and place that node in
the scene somewhere.

2. Then add the geometry to a node. To do so, include the following code at the end

of the viewDidLoad method:

 let capsuleNode = SCNNode(geometry: capsule)

 capsuleNode.position = SCNVector3(x: 0, y: 0, z: 0)

 scene.rootNode.addChildNode(capsuleNode)

Setting the node’s position to (0,0,0) doesn’t actually change any‐
thing, as that’s the default position of all nodes. It’s included here just
for clarity.

Now, when you run the application, you’ll see a capsule shape, as seen in Figure 8-2.
However, the first thing you’ll notice about it is that it’s entirely white—there’s no lights
in the scene, so SceneKit is simply displaying every part of the object as full-brightness
white.

168 | Chapter 8: SceneKit

Figure 8-2. The capsule shape

Adding Lights
To improve the picture, we’re going to add some lights. In 3D graphics, there are a
number of different types of lights that can be used:

• Ambient lights, which cast an even light across the entire scene

• Omni lights, also known as point lights, which radiate light in all directions from a
single point

• Directional lights, which cast light in a single direction

• Spotlights, which cast light from a single position in a given direction

We’re going to add two lights to the scene: an omni light, which will provide the main
light of the scene, as well as an ambient light, which will fill in the rest of the scene:

Adding Lights | 169

Lights in SceneKit are represented by the SCNLight class. Just like SCNCamera objects,

lights need to be attached to an SCNNode before they’re part of the scene.

1. To create the ambient light, add the following code to the end of viewDidLoad:

 let ambientLight = SCNLight()

 ambientLight.type = SCNLightTypeAmbient

 ambientLight.color = UIColor(white: 0.25, alpha: 1.0)

 let ambientLightNode = SCNNode()

 ambientLightNode.light = ambientLight

 scene.rootNode.addChildNode(ambientLightNode)

The light is configured with two main properties. The first is its type, which we’re

setting to SCNLightTypeAmbient to make it an ambient light. The next is its color;
we’re setting that to be a 25% brightness white light.

When you attach an SCNLight to an SCNNode’s light property, that node begins
emitting light.

2. The next step is to add the omni light, which is a very similar process to that of
adding the omni light.

To create the omni light, add the following code to the end of viewDidLoad:

 let omniLight = SCNLight()

 omniLight.type = SCNLightTypeOmni

 omniLight.color = UIColor(white: 1.0, alpha: 1.0)

 let omniLightNode = SCNNode()

 omniLightNode.light = omniLight

 omniLightNode.position = SCNVector3(x: -5, y: 8, z: 5)

 scene.rootNode.addChildNode(omniLightNode)

This creates an omni light, attaches it to a node, and positions it up and to the left
a little. The result is shown in Figure 8-3.

Animating Content in the Scene
Content in an SCNScene can be animated: you can move it around, fade colors up and
down, rotate, and more. Importantly, you can also combine animations, and take ad‐
vantage of node parenting: if you apply a movement animation to a node, it will move
all of its child nodes along with it.

In SceneKit, animations are represented using the CAAnimation class. This means that
if you’re familiar with using Core Animation to animate content in your apps, you
already know how to animate your 3D scenes.

170 | Chapter 8: SceneKit

Figure 8-3. The lit capsule

Each thing in your scene has different properties that can be anima‐
ted. Most of the obviously animatable properties can be animated,
such as position and orientation; to see if a specific property can be
animated, check out the class documentation for the item you want
to animate. Anything that can be animated in SceneKit is marked with
a little “Animatable” comment.

We’re going to add an animation that makes the capsule smoothly move up and down:

1. To create the animation object, add the following code to the end of viewDidLoad:

 // This animation changes the 'position' property

 let moveUpDownAnimation = CABasicAnimation(keyPath: "position")

 // Move 5 units on the y-axis (i.e., up)

Animating Content in the Scene | 171

 moveUpDownAnimation.byValue =

 NSValue(SCNVector3: SCNVector3(x: 0, y: 5, z: 0))

 // Accelerate and decelerate at the ends, instead of

 // mechanically bouncing

 moveUpDownAnimation.timingFunction =

 CAMediaTimingFunction(name: kCAMediaTimingFunctionEaseInEaseOut)

 // Animation automatically moves back at the end

 moveUpDownAnimation.autoreverses = true

 // Animation repeats an infinite number of times (i.e., loops forever)

 moveUpDownAnimation.repeatCount = Float.infinity

 // The animation takes 2 seconds to run

 moveUpDownAnimation.duration = 2.0

2. Once an animation object has been created, you add it to a node, using the addAni

mation(_, forKey:) method. Add the following code to the end of viewDidLoad:

 capsuleNode.addAnimation(moveUpDownAnimation, forKey: "updown")

When you run the application, the capsule will be slowly moving up and down.

Creating Text Geometry
When we created the capsule, we created an instance of the SCNCapsule class, which
represents the geometry of a capsule. There are many other types of geometry classes
available, and one of them in particular is especially interesting to graphics program‐

mers: SCNText.

The SCNText class is a subclass of the SCNGeometry class that generates geometry that
represents text. All you need to do is to give it your text and a font to use, and it creates
geometry that you can attach to a node. Once you’ve done that, you’ve got 3D text.

When configuring your SCNText object on iOS, you provide a UIFont.

On OS X, you provide an NSFont.

We’ll now add some text to the scene. This will be added as a child node of the capsule,
which means that it will move with the capsule without us having to add any new logic
to support it. To create the text geometry, add the following code to the end of

viewDidLoad:

 let text = SCNText(string: "SceneKit!", extrusionDepth: 0.2)

 // text will be 2 units (meters) high

172 | Chapter 8: SceneKit

 text.font = UIFont.systemFontOfSize(2)

 let textNode = SCNNode(geometry: text)

 // Positioned slightly to the left, and above the

 // capsule (which is 10 units high)

 textNode.position = SCNVector3(x: -2, y: 6, z: 0)

 // Add the text node to the capsule node (not the scene's root node!)

 capsuleNode.addChildNode(textNode)

When you run the app, you’ll see text hovering above the capsule, and moving with it
(see Figure 8-4).

Figure 8-4. The text hovers above the capsule

Combining Animations
When a node is a child of another node, it inherits all animations of the parent. This is
why the text moves with the capsule—the animation is changing the position of the
capsule, and the text’s position is defined relative to the capsule’s position.

Creating Text Geometry | 173

1. This is a different concept from SCNLight objects. When an object has an emissive material, it doesn’t cast
light onto other nearby objects, but rather it looks to the camera like the surface is glowing.

You can add animations to child nodes, and they won’t affect the parent node. Instead,
the animations will be combined together. For example, if you add a rotation animation
to the text node (which is, as you’ll remember, a child of the capsule), the text node will
rotate and move up and down.

You can see this in action by creating an animation of your own. To add the rotation

animation, include the following code at the end of viewDidLoad:

 // Rotate one full circle (2π) around the Y (up) axis

 let rotate = CABasicAnimation(keyPath: "eulerAngles")

 rotate.byValue =

 NSValue(SCNVector3: SCNVector3(x: Float(0.0),

 y: Float(M_PI * 2.0),

 z: Float(0.0)))

 // Do it forever

 rotate.repeatCount = Float.infinity

 // Take 4 seconds doing it

 rotate.duration = 4.0

 textNode.addAnimation(rotate, forKey: "rotation")

When you run the animation, you’ll see the text spinning and moving at the same time.

Working with Materials
A material defines how an object is rendered. By default, all objects are made of a plain,
white, nonshiny material. However, you can change pretty much every aspect of this.
Among other things, you can change:

The diffuse component
The material’s base color, its texture, and so on

The specular component
How shiny the material is, and how light should reflect off it

The emissive component
Whether the material should appear to be emitting light1

The normal component
Whether the surface of the material should have additional detail for light to
bounce off

174 | Chapter 8: SceneKit

A material in SceneKit is represented by the SCNMaterial class. Each material object
has a variety of material properties, which map to the items in the preceding list.

Material properties are represented by the SCNMaterialProperty class, which each have

a contents property. You can assign a variety of different things to this property:

• Colors

• Images (either NSImage, UIImage, or CGImageRef objects)

• SpriteKit textures (SKTexture)

• SpriteKit scenes (SKScene)

To demonstrate, we’re going to apply a texture to the text node, and a shiny metallic
surface to the capsule. To create the capsule’s red surface, add the following code to the

end of viewDidLoad:

 let redMetallicMaterial = SCNMaterial()

 redMetallicMaterial.diffuse.contents = UIColor.redColor()

 redMetallicMaterial.specular.contents = UIColor.whiteColor()

 redMetallicMaterial.shininess = 1.0

 capsule.materials = [redMetallicMaterial]

When you want to apply a material to an object, you apply it to its geometry. Geometries
can have multiple materials—for example, a car might be composed of its main chassis,
which should be opaque and metallic, and its windows, which should be semi-
transparent. For this reason, when you apply materials to geometry, you actually provide
an array of materials.

In the preceding example, the contents property of both the diffuse and specular ma‐

terial properties were set to a UIColor. This has the effect of using a uniform color over

the entire surface. However, if you provide an image to the contents property, the color
that’s used on the surface will be taken from the image.

You can provide any image you like. However, one useful thing in SceneKit is the ability

to use SpriteKit textures (i.e., SKTexture objects) as contents for material properties.

This means that you can use SpriteKit’s SKTexture(noiseWithSmoothness:, size:,

grayscale:) method to generate a texture filled with random noise, and then use that
in your scene. In this next example, we’ll do just that:

1. To generate the texture, add the following code to the viewDidLoad method:

 let noiseTexture = SKTexture(noiseWithSmoothness: 0.25,

 size: CGSize(width: 512, height: 512), grayscale: true)

Once the texture is generated, it can then be used in a material.

2. Then create a material for the text node. You’ll need to add the following code to

the end of the viewDidLoadMethod:

Working with Materials | 175

 let noiseMaterial = SCNMaterial()

 noiseMaterial.diffuse.contents = noiseTexture

 text.materials = [noiseMaterial]

When you run the application, the capsule should be bright red, and the text should
have a noise pattern applied over it, as seen in Figure 8-5.

Figure 8-5. The materials, applied to the objects in the scene

Normal Mapping
When a light hits a surface, the light waves bounce off the surface and and enter the
camera. The amount of light that’s reflected back at the camera depends on the angle at
which the light hit the surface. This is described by Lambert’s cosine law, which states
that the apparent brightness of a surface depends on the cosine of the angle between the
light’s direction and the normal of the surface.

176 | Chapter 8: SceneKit

The normal of a surface is the direction that’s perpendicular to the surface. For example,
if you closed this book and put it down on the table, the normal of the book’s front cover
would point straight up.

For each polygon that you want to light in a SceneKit scene, the normal of that polygon
needs to be calculated. SceneKit does this behind the scenes for you, and it does a decent
job of it. However, if you want more detail in your lighting, you’d need to have more
polygons. This can lead to performance problems, as it’s more effort for a graphics chip
to process a large number of polygons.

Instead, 3D graphics use a technique called normal mapping. Normal mapping involves
taking a texture, and using it to work out how light should bounce off the surface at any
given point.

Normal mapping means that you get to fake having a higher detail model than you
actually do. It’s also very easy to implement: all you need to do is to get a normal map,

which is just an image, and apply that to the normal property of your material.

Normal maps are usually generated by other software, such as 3D
modeling tools. However, SpriteKit has support for generating an
approximate normal map from any given texture.

To implement a rough normal map that makes the capsule look very slightly beaten up,
we’re going to first create a normal map from the noise texture, and then apply that to
the capsule’s material:

1. To create the normal map texture, the noise texture needs to generate a normal-

mapped version of itself. Add the following code to the end of the viewDidLoad
method:

 let noiseNormalMapTexture =

 noiseTexture.textureByGeneratingNormalMapWithSmoothness(0.1,

 contrast: 1.0)

2. Apply the normal map to the capsule’s material:

 redMetallicMaterial.normal.contents = noiseNormalMapTexture

When you run the app, the capsule will appear very slightly deformed. You can see the
result in Figure 8-6.

Working with Materials | 177

Figure 8-6. The normal-mapped capsule

Hit Testing
Hit testing is the process of taking a position in the view and working out which objects
in the 3D are underneath that point in the view. In practical terms, it’s an answer to the
question, “What objects am I clicking on or touching?”

When you hit test a SceneKit view, you get back an array of SCNHitTestResult objects,
which describe the objects that were found, as well as information like the exact point
in 3D space at which the touch or click was, relative to the object.

Hit testing is one of the primary ways in which you interact with a 3D scene, and it
allows you to implement things like buttons, object selection, and more. To demonstrate
this, we’re going to extend the application to make any object that’s tapped on
briefly glow.

178 | Chapter 8: SceneKit

The glow effect will be achieved by animating the emission property of the object from

black (invisible) to yellow. To detect the taps themselves, we’re going to use a UITap

GestureRecognizer:

1. To create and add the tap gesture recognizer, add the following code to the view

DidLoad method:

 let tapRecognizer

 = UITapGestureRecognizer(target: self, action: "tapped:")

 sceneView.addGestureRecognizer(tapRecognizer)

 sceneView.userInteractionEnabled = true

By default, SceneKit views don’t have user interaction enabled. You

need to manually turn on the userInteractionEnabled property for
gesture recognizers to work.

2. Next, you need to add the method that responds to the user tapping the view. To

implement the tap handler method, add the following method to the View

Controller class:

 func tapped(tapRecognizer: UITapGestureRecognizer) {

 // If a tap has happened:

 if tapRecognizer.state == UIGestureRecognizerState.Ended {

 // Find the object that was tapped

 let sceneView = self.view as SCNView

 let hits = sceneView.hitTest(tapRecognizer.locationInView(

 tapRecognizer.view),

 options: nil) as [SCNHitTestResult]

 // Make all selected items highlight

 for hit in hits {

 // Get the first material, if one exists

 if let theMaterial =

 hit.node.geometry?.materials?[0] as? SCNMaterial {

 // Animate from black to yellow

 let highlightAnimation =

 CABasicAnimation(keyPath: "contents")

 highlightAnimation.fromValue = UIColor.blackColor()

 highlightAnimation.toValue = UIColor.yellowColor()

 highlightAnimation.autoreverses = true

 highlightAnimation.repeatCount = 0

 highlightAnimation.duration = 0.3

 // Apply this animation to the material's

Hit Testing | 179

 // emission property

 theMaterial.emission.addAnimation(

 highlightAnimation, forKey: "highlight")

 }

 }

 }

 }

Run the application. Tap on the capsule, and marvel at the wonder of it briefly high‐
lighting, as seen in Figure 8-7.

Figure 8-7. The capsule, highlighting yellow

180 | Chapter 8: SceneKit

Constraints
You can add constraints to nodes. Constraints are rules that affect a node’s position and
orientation; for example, you can add a rule that says, in effect, “your orientation should
always be pointing toward another node.” Constraints, in conjunction with animations,
physics, or user input, allow you to quickly set up complex scenes and relationships

between nodes. Constraints are implemented using the SCNConstraint class, and there
are a variety of different subclasses available for you to use.

To demonstrate constraints, we’re going to add a little pyramid, and make it rotate to
watch the capsule going up and down:

1. Adding the pyramid is simple: it involves creating some pyramid geometry, attach‐
ing it to a node, and then attaching the node to the scene. Add the following code

to the end of the viewDidLoad method:

 let pointer = SCNPyramid(width: 0.5, height: 0.9, length: 4.0)

 let pointerNode = SCNNode(geometry: pointer)

 pointerNode.position = SCNVector3(x: -5, y: 0, z: 0)

 scene.rootNode.addChildNode(pointerNode)

2. To implement the constraint, add the following code:

 let lookAtConstraint = SCNLookAtConstraint(target: capsuleNode)

 // When enabled, the constraint will try to rotate

 // around only a single axis

 lookAtConstraint.gimbalLockEnabled = true

 pointerNode.constraints = [lookAtConstraint]

Run the application. You’ll see something similar to Figure 8-8—a pyramid will be visible
to the left of the capsule, and rotates to look at the capsule as it moves.

Constraints | 181

Figure 8-8. The pyramid, constrained to look toward the capsule

Loading Data from COLLADA Files
The COLLADA file format is an industry-standard XML format for exchanging 3D
graphics information. COLLADA files can contain a wide variety of useful things, in‐
cluding geometry info (i.e., meshes), materials, textures, and even complete scenes with
a node hierarchy.

It’s not fun having to build your scenes entirely in code, and SceneKit is able to make
use of COLLADA files to simplify the process.

Pretty much any modern 3D modeling tool out there can export to
the COLLADA file format. If you don’t have one, or don’t want to get
one, you’ll find a simple COLLADA file that contains a squid… thing
that Jon made in the sample code provided with this book. Jon is very
proud of his squid thing.

182 | Chapter 8: SceneKit

COLLADA files are similar to libraries—you can reach into them and pull out only the
items that you want, such as materials, or specific models. Alternatively, you can treat
them as entire scenes, and give them to SceneKit to render. In this example, we’re going
to take the example Critter COLLADA file and pull a node out of it, and then display it
in the scene.

The first step when working with any file in your project is adding it. Find your COL‐
LADA file (it has the extension .dae) and drag and drop it into the project navigator. In
the pop-up box that appears, ensure that the “Copy items if needed” checkbox is selected.

Xcode has built-in support for viewing and modifying COLLADA files. If you select the
file Critter.dae in the project navigator, the COLLADA editor will open, and you can
view the contents of the file, as shown in Figure 8-9.

Figure 8-9. The SceneKit COLLADA editor

COLLADA files are arranged in a tree-like structure, much like your SceneKit scenes.
If you look at the Outline view at the left of the editor, you’ll notice that the scene graph
contains a single node, called Critter (see Figure 8-10). This node can be loaded by your
code and inserted into your scene.

Loading Data from COLLADA Files | 183

Figure 8-10. The scene graph

You can ask Cocoa to give you an NSURL that refers to the location of this file. Once you
have that, you can construct a COLLADA file loader.

The file loader is represented by the SCNSceneSource class; all you need to do is to give
it a URL to load from:

1. First, load the data into an SCNSceneSource object. Add the following code to the

end of the viewDidLoad method.

 let critterDataURL =

 NSBundle.mainBundle().URLForResource("Critter",

 withExtension: "dae")

 let critterData = SCNSceneSource(URL: critterDataURL!, options: nil)

2. COLLADA files contain named objects. As we saw earlier, there’s a node called

Critter in the scene graph; this can be accessed and inserted into the SKScene. To
include the Critter node in the scene, add the following code to the end of the

viewDidLoad method:

 // Find the node called 'Critter'; if it exists, add it

 let critterNode = critterData?.entryWithIdentifier("Critter",

 withClass: SCNNode.self) as? SCNNode

 if critterNode != nil {

 critterNode?.position = SCNVector3(x: 5, y: 0, z: 0)

 scene.rootNode.addChildNode(critterNode!)

 }

Run the game. The critter will be visible to the right of the capsule, as seen in Figure 8-11.

184 | Chapter 8: SceneKit

Figure 8-11. The critter, visible in the scene

Adding Physics to the Scene
SceneKit comes equipped with a 3D physics engine. Physics engines add physical sim‐
ulation to your scene (i.e., they apply gravitational forces, detect and handle collisions,
and generally add realism to the scene).

To add physics to a node in SceneKit, you create an instance of SCNPhysicsBody, and
attach it to the node. Once the object has a physics body, it begins being affected by
physics.

Physics bodies have their own requirements. In order to know how objects should col‐
lide with each other, the physics system needs to know about the object’s physical shape.
This is kept deliberately separate from the node’s visible geometry, as you’ll often have
cases where you have a very high-detail object (like a super-sci-fi crate), but only need
to represent that as a simple six-sided box. If you need to, though, you can create a
physics shape with arbitrary geometry.

Adding Physics to the Scene | 185

We’ll start by creating the shape, and then use that to create the physics body. We can
then add that to the critter mesh, which will make it start falling due to gravity. Here
are the steps you’ll need to follow:

1. To create the physics shape, add the following code to the end of viewDidLoad:

 var critterPhysicsShape : SCNPhysicsShape?

 if let geometry = critterNode?.geometry {

 critterPhysicsShape =

 SCNPhysicsShape(geometry: geometry,

 options: nil)

 }

2. Then, once the physics shape is ready, you can construct the physics body, and give
it to the node. Add the following code:

 let critterPhysicsBody =

 SCNPhysicsBody(type: SCNPhysicsBodyType.Dynamic,

 shape: critterPhysicsShape)

 critterNode?.physicsBody = critterPhysicsBody

3. At this point, you can run the application. The critter object will begin falling, and
will move off-screen.

When you create a physics body, you provide a type. There are three
different possible types:

• Static bodies never move. They’re not affected by gravity, but
objects collide with them. They’re perfect for terrain and other
fixed items in your scene.

• Kinematic bodies aren’t affected by physical forces, but if an ani‐
mation is running on them, they’ll push other physics bodies out
of the way. This means that they can be used, for example, as
elevators.

• Dynamic bodies are affected by gravity and by other objects. If
another object collides, they’ll move.

There’s one last thing to add: a floor for things to land on. The SCNFloor class, which
defines the geometry of a floor, is perfect for this. We’ll also create a physics body for
this floor, and make it static, so that it stays locked in place and lets the critter land on

it. To include a floor, add the following code to the end of the viewDidLoad method:

 let floor = SCNFloor()

 let floorNode = SCNNode(geometry: floor)

 floorNode.position = SCNVector3(x: 0, y: -5, z: 0)

 scene.rootNode.addChildNode(floorNode)

186 | Chapter 8: SceneKit

 let floorPhysicsBody =

 SCNPhysicsBody(type: SCNPhysicsBodyType.Static,

 shape: SCNPhysicsShape(geometry: floor, options: nil))

 floorNode.physicsBody = floorPhysicsBody

Run the application. You’ll see a nice, shiny, reflective floor, like the one you see in
Figure 8-12.

Figure 8-12. The final SceneKit scene

Adding Physics to the Scene | 187

CHAPTER 9

Audio and Video

As we’ve seen, Cocoa and Cocoa Touch have a lot of support for displaying still images
and text. The APIs also have great support for displaying video and audio—either sep‐
arately or at the same time.

OS X and iOS have historically had APIs for displaying audiovisual (AV) content, but
only recently did Apple introduce a comprehensive API for loading, playing, and other‐
wise working with AV content. This API, AV Foundation, is identical on both OS X and
iOS, and is the one-stop shop for both AV playback and editing.

In this chapter, you’ll learn how to use AV Foundation to display video and audio. We’ll
demonstrate how to use the framework in OS X, but the same API also applies to iOS.

You’ll also learn how to access the user’s photo library on iOS, as well as how to capture
photos and videos using the built-in camera available on iOS and OS X.

AV Foundation is a large and powerful framework, capable of per‐
forming very complex operations with audio and video. Final Cut Pro,
Apple’s professional-level video editing tool, uses AV Foundation for
all of the actual work involved in editing video. Covering all the fea‐
tures of this framework is beyond the scope of this book, so we ad‐
dress only audio and video playback in this chapter. If you want to
learn about the more advanced features in AV Foundation, check out
the AV Foundation Programming Guide in the Xcode documentation.

AV Foundation
AV Foundation is designed to load and play back a large number of popular audiovisual
formats. The formats supported by AV Foundation are:

• QuickTime (.mov files)

189

http://bit.ly/abt_av_foundation

• MPEG4 audio (including .mp4, .m4a, and .m4v)

• Wave, AIFF, and CAF audio

• Apple Lossless audio

• MP3 and AAC audio

From a coding perspective, there’s no distinction between these formats—you simply
tell AV Foundation to load the resource and start playing.

AV Foundation refers to media that can be played as an asset. Assets can be loaded from
URLs (which can point to a resource on the Internet or a file stored locally), or they can
be created from other assets (content creation apps, like iMovie, do this). In this chapter,
we’ll be looking at media loaded from URLs.

When you have a file you want to play—such as an H.264 movie or an MP3 file—you

can create an AVPlayer to coordinate playback.

Playing Video with AVPlayer
The AVPlayer class is a high-level object that can play back any media that AV Foun‐

dation supports. AVPlayer is capable of playing both audio and video content, though
if you only want to play back audio, AV Foundation provides an object dedicated to

sound playback (AVAudioPlayer, discussed later). In this section, we talk about playing
videos.

When you want to play back media, you create an AVPlayer and provide it with the
URL of the video you want to play back:

let contentURL = NSURL(fileURLWithPath:"/Users/jon/Desktop/AVFile.m4v")

let player = AVPlayer(URL: contentURL)

When you set up a player with a content URL, the player will take a moment to get ready
to play back the content. The amount of time needed depends on the content and where
it’s being kept. If it’s a video file, the decoder will take longer to get ready than for an
audio file, and if the file is hosted on the Internet, it will take longer to transfer enough
data to start playing.

AVPlayer acts as the controller for your media playback. At its simplest, you can tell the
player to just start playing:

player.play()

190 | Chapter 9: Audio and Video

In the background, the play method actually just sets the playback
rate to 1.0, which means that it should play back at normal speed. You

could also start playback at half-speed by saying player.rate = 0.5.
In the same vein, setting the rate to 0 pauses playback—which is

exactly what the pause method does.

AVPlayerLayer
AVPlayer is only responsible for coordinating playback, not for displaying the video
content to the user. If you want video playback to be visible, you need a Core Animation
layer to display the content on.

AV Foundation provides a Core Animation layer called AVPlayerLayer that presents

video content from the AVPlayer. Because it’s a CALayer, you need to add it to an existing
layer tree in order for it to be visible. We’ll recap how to work with layers later in this
chapter.

You create an AVPlayerLayer with the AVPlayerLayer(player:) method:

var playerLayer = AVPlayerLayer(player: player)

(Yes, we are now in tongue-twister territory.)

Once created, the player layer will display whatever image the AVPlayer you provided
tells it to. It’s up to you to actually size the layer appropriately and add it to the layer tree:

var view = UIView(frame: CGRectMake(0, 0, 640, 360))

playerLayer.frame = view.bounds

view.layer.addSublayer(playerLayer)

Once the player layer is visible, you can forget about it—all of the actual work involved

in controlling video playback is handled by the AVPlayer.

Putting It Together
To demonstrate how to use AVPlayer and AVPlayerLayer, we’ll build a simple video
player application for OS X.

The same API applies to iOS and OS X.

Before you start building this project, download the sample video from the book’s ex‐
amples. Here are the steps you’ll need to take to build the video player application:

Playing Video with AVPlayer | 191

http://bit.ly/swift_dev_w_cocoa_ex
http://bit.ly/swift_dev_w_cocoa_ex

1. First, create a new Cocoa application named VideoPlayer, and drag the sample video
into the project navigator.

The interface for this project will consist of an NSView, which will play host to the

AVPlayerLayer, as well as buttons that make the video play back at normal speed,
play back at one-quarter speed, and rewind.

In order to add the AVPlayerLayer into the view, that view must be backed by a

CALayer. This requires checking a checkbox in the Interface Builder—once that’s

done, the view will have a layer to which we can add the AVPlayerLayer as a sublayer.

On OS X, NSViews do not use a CALayer by default. This is not the

case in iOS, where all UIViews have a CALayer.

2. Next, create the interface. Open MainMenu.xib and drag a custom view into the
main window. Make it fill the window, but leave some space at the bottom. This
view will contain the video playback layer.

Drag in three buttons and place them underneath the video playback view. Label

them Play, Play Slow Motion, and Rewind.

To add an AVPlayerLayer to the window, the view that it’s being inserted into must have

its own CALayer. To make this happen, you tell either the video playback view or any of

its superviews that it should use a CALayer. Once a view has a CALayer, it and all of its

subviews each use a CALayer to display their content.

3. Make the window use a CALayer. Click inside the window and open the View Effects
Inspector, which is the last button at the top of the inspector.

The Core Animation Layer section of the inspector will list the selected view. Check
the checkbox to give it a layer; once this is done you should have an interface looking
like Figure 9-1.

192 | Chapter 9: Audio and Video

Figure 9-1. The interface layout for the VideoPlayer app

4. Finally, connect the code to the interface. Now that the interface is laid out correctly,
we’ll make the code aware of the view that the video should be displayed in, and
create the actions that control playback.

Open AppDelegate.swift in the assistant.

Control-drag from the video container view into AppDelegate. Create an outlet

called playerView.

Control-drag from each of the buttons under the video container view into App

Delegate, and create actions for each of them. Name these actions play, playSlow

Motion, and rewind.

Now we’ll write the code that loads and prepares the AVPlayer and AVPlayerLayer.
Because we want to control the player, we’ll keep a reference to it around by adding a

class extension that contains an instance variable to store the AVPlayer. We don’t need

to keep the AVPlayerLayer around in the same way, because once we add it to the layer

tree, we can forget about it—it will just display whatever the AVPlayer needs to show.

We’ll also need to import the AV Foundation and Quartz Core framework headers in
order to work with the necessary classes:

1. To import the headers, add the following code to the import statements at the top
of AppDelegate.swift:

Playing Video with AVPlayer | 193

import AVFoundation

import QuartzCore

2. To include the class extension, add a new property to AppDelegate.swift:

var player: AVPlayer?

Next, we’ll create and set up the AVPlayer and AVPlayerLayer. To set up the AVPlay

er, you need something to play. In this case, we’ll make the application determine the
location of the test video that was compiled into the application’s folder, and give that

to the AVPlayer.

Once the AVPlayer is ready, we can create the AVPlayerLayer. The AVPlayerLayer
needs to be added to the video player view’s layer and resized to fill the layer. Setting the

frame property of the layer accomplishes this. As a final touch, we’ll also make the layer
automatically resize when its superlayer resizes.

Finally, we’ll tell the AVPlayer that it should pause when it reaches the end of playback:

1. To set up the AVPlayer, replace the applicationDidFinishLaunching() method
in AppDelegate.swift with the following code:

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 let contentURL = NSBundle.mainBundle().URLForResource("TestVideo",

 withExtension: "m4v")

 player = AVPlayer(URL: contentURL)

 var playerLayer = AVPlayerLayer(player: player)

 self.playerView.layer?.addSublayer(playerLayer)

 playerLayer.frame = self.playerView.bounds

 playerLayer.autoresizingMask =

 CAAutoresizingMask.LayerHeightSizable |

 CAAutoresizingMask.LayerWidthSizable

 self.player!.actionAtItemEnd = AVPlayerActionAtItemEnd.None

2. The last step in coding the application is to create the control methods, which are

run when the buttons are clicked. These controls—Play, Play Slow Motion, and

Rewind—simply tell the AVPlayer to set the rate of playback. In the case of rewind‐
ing, it’s a matter of telling the player to seek to the start.

To add the control methods, replace the play(), playSlowMotion(), and re

wind() methods in AppDelegate.swift with the following code:

 @IBAction func play(sender: AnyObject) {

 self.player!.play()

 }

 @IBAction func playSlowMotion(sender: AnyObject) {

 self.player!.rate = 0.25

 }

 @IBAction func rewind(sender: AnyObject) {

194 | Chapter 9: Audio and Video

 self.player!.seekToTime(kCMTimeZero)

 }

It’s time to test the app, so go ahead and launch it. Play around with the buttons and
resize the window. Video should be visible in the window, as seen in Figure 9-2.

Figure 9-2. The completed interface for our VideoPlayer app

AVKit
The preceding example is a good way of loading media into a layer, but it is also a little
clunky. Your users are already used to a particular way of how videos and audio and
their controls should be displayed. Luckily, new in OS X 10.9, there is a dedicated sub‐

class of NSView called AVPlayerView specifically designed for playing audio and video.

AVPlayerView is the same view that QuickTime Player uses when it wants to play audio

or video and is part of the AVKit framework. It is designed to work with an AVPlayer

and allows your code to pass any messages to the AVPlayer it is displaying. Starting with

iOS 8, AVKit is also available for iOS; instead of an AVPlayerView it uses an AVPlayer

ViewController, but it works in a very similar manner to its OS X cousin.

Playing Video with AVPlayer | 195

The desktop version of AVKit is only available on OS X 10.9 and
later, and the mobile version is only for iOS 8 and later. Sorry iOS 7
and Mountain Lion users!

Hooking an AVPlayerView up to an existing AVPlayer is straightforward. To demon‐
strate, let’s make a few changes to our VideoPlayer app:

1. First, to modify the interface, open MainMenu.xib and delete the custom view and
all buttons.

Drag an AVPlayerView onto the main window, and resize it to be the full size of the
window.

At this stage, your interface should look similar to Figure 9-3.

Figure 9-3. The updated interface for our app

2. Then, to connect the code, open AppDelegate.swift in the assistant.

Control-drag from the AVPlayerView into the AppDelegate, and create an outlet

called playerView.

Delete or comment out the previous playerView outlet.

3. Next, to import the headers, add the following code to the top of AppDelegate.swift:

import AVKit

196 | Chapter 9: Audio and Video

4. Finally, we need to set up the AVPlayerView. Replace the applicationDidFinish

Launching() method in AppDelegate.swift with the following code:

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 let contentURL = NSBundle.mainBundle().URLForResource("TestVideo",

 withExtension: "m4v")

 self.playerView.player = AVPlayer(URL: contentURL)

 }

Now when you run the application, you should see an app which is very similar to the
QuickTime Player.

Finally, it is good practice to delete the methods for handling the play, slow motion, and
rewind options, and remove the Quartz Core framework as it is no longer needed.

AVKit on iOS
AVKit behaves a little bit differently on iOS than it does on OS X. In OS X, you use an

NSView subclass to present the player, its content, and its controls. In iOS, you instead

use an AVPlayerViewController, a subclass of UIViewController, which despite being
an entire view controller works in a very similar fashion. Just like AVKit in OS X, it is

very simple to start using an AVPlayerViewController in your code. To demonstrate
this, lets create a simple iOS video app:

1. Create a new, single view iOS application, and call it AVKit-iOS.

Drag a video into the project navigator to add it to the project.

2. Then create the interface, which for this application will use an AVPlayerViewCon

troller and a container view. A container view is a specialized UIView subclass
that can embed an entire view controller within it and will let us display the

AVPlayerViewController and its content.

Open Main.storyboard. In the object library search for a container view, and drag
it into the view controller. Resize the container view to be as large or as small as you
want; in our app we made it take up about a third of the screen but you can make
it as big or small as you want.

Delete the additional view controller. By default, adding a container view to an app
will also include an additional view controller that will be the contents for the con‐
tainer view to show; we don’t want this.

Add an AVPlayerViewController to the interface. Place the new view controller
off to the side of the main view controller.

Connect the AVPlayerViewController to the container view. Control-drag from

the container view to the AVPlayerViewController and select the embed segue

Playing Video with AVPlayer | 197

option from the list of segues that appears. This will embed the AVPlayerViewCon

troller and its content into the container view.

The final step is to give this new segue an identifier. Select the segue in the Interface
Builder and open the Attributes Inspector in the Utilities tab on the right of Xcode.

Change the identifier of the segue to videoSegue; we will be using this identifier
later to configure the video content.

Once complete the interface should look similar to Figure 9-4.

Figure 9-4. The interface for our AVKit app

3. To import the frameworks, open ViewController.swift and add the following to the
top of the file:

import AVKit

import AVFoundation

It is very important to remember to import the AV Founda‐
tion framework as well as AVKit, as AVKit only provides the

AVPlayerViewController and does not come with any of the
classes needed to actually configure the view controller.

4. The last thing we need to do is configure what content we want the AVPlayerView

Controller to show.

Inside ViewController.swift, add the following function:

override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?)

{

 if segue.identifier == "videoSegue"

 {

198 | Chapter 9: Audio and Video

 // set up the player

 let videoURL = NSBundle.mainBundle().URLForResource("TestVideo",

 withExtension: "m4v")

 let videoViewController =

 segue.destinationViewController as AVPlayerViewController

 videoViewController.player = AVPlayer(URL: videoURL)

 }

}

This code is waiting for the VideoSegue we named earlier to be called. Once this is

called we are getting a reference to our sample video and configuring the player

property of the AVPlayerViewController to play this video.

Now if you run the app you should see a small window in the app playing the video. It
has the default iOS video controls and as an added bonus, the fullscreen button will also
automagically expand the video to full size and will also support landscape!

Playing Sound with AVAudioPlayer
AVPlayer is designed for playing back any kind of audio or video. AV Foundation also

provides a class specifically designed for playing back sounds, called AVAudioPlayer.

AVAudioPlayer is a simpler choice than AVPlayer for playing audio. It’s useful for play‐
ing back sound effects and music in apps that don’t use video, and has a couple of

advantages over AVPlayer:

• AVAudioPlayer allows you to set volumes on a per-player basis (AVPlayer uses the
system volume).

• AVAudioPlayer is easier to loop.

• You can query an AVAudioPlayer for its current output power, which you can use
to show volume levels over time.

AVAudioPlayer is the simplest way to play back audio files, but it’s not
the only option. If you need more control over how the audio is played
back (e.g., you might want to generate audio yourself, or apply ef‐

fects to the audio), then you should use the more powerful AVAu

dioEngine API. For more information on this, see the Xcode docu‐

mentation for the AVAudioEngine class.

AVAudioPlayer works in the same way as AVPlayer. Given an NSURL that points to a

sound file that OS X or iOS supports, you create an AVAudioPlayer, set it up the way
you want (by setting balance, volume, and looping), and then play it:

Playing Video with AVPlayer | 199

http://bit.ly/avaudioengine
http://bit.ly/avaudioengine

 let soundFileURL = NSBundle.mainBundle().URLForResource("TestSound",

 withExtension: "wav")

 var error: NSError?

 audioPlayer = AVAudioPlayer(contentsOfURL: soundFileURL, error: &error)

You need to keep a reference to your AVAudioPlayer, or it will be
removed from memory and stop playing. Therefore, you should keep
an instance variable around that stores a reference to the player to
keep it from being freed.

Telling an AVAudioPlayer to play is a simple matter:

 audioPlayer.play()

You can also set the volume and indicate how many times the sound should loop. The
volume is a number between 0 and 1. The number of loops defaults to 0 (play once); if
you set it to 1, it will play twice. Set the number of loops to –1 to make the sound loop
until stopped:

 audioPlayer.volume = 0.5

 audioPlayer.numberOfLoops = -1

To seek to a point in the sound, set the currentTime property. This property is measured

in seconds, so to seek to the start of the sound, set currentTime to 0:

 audioPlayer.currentTime = 0

Seeking to a point in the sound doesn’t affect whether the sound is playing or not. If you
seek while the sound is playing, the sound will jump.

In this chapter, we’ve focused on media playback. However, AV Foun‐
dation has full support for capturing media as well, including audio
and video. For information on how this works, see the “Media Cap‐
ture” section in the AV Foundation Programming Guide, available in
the Xcode documentation.

Speech Synthesis
A feature introduced in iOS 7 within AV Foundation is the ability to synthesize speech:
you can now have your application say almost any text that you want. There are two

main components to synthesizing speech. The first is an AVSpeechUtterance, which
represents the text you want to have synthesized. This includes the rate at which you
want it to be spoken, the volume, pitch, any delay, and the voice to use when synthesizing

the text. The second component, an AVSpeechSynthesizer, is the object responsible
for actually synthesizing, speaking, and controlling any utterances passed to it:

200 | Chapter 9: Audio and Video

http://bit.ly/programming_guide_media_capture

 // creating a synthesizer

 var synthesizer = AVSpeechSynthesizer()

 // creating an utterance to synthesize

 let utteranceString = "I am the very model of a modern major general"

 var utterance = AVSpeechUtterance(string: utteranceString)

 // setting a rate to speak at

 utterance.rate = 0.175

 // synthesizing and speaking the utterance

 synthesizer.speakUtterance(utterance)

Should you want to pause the utterance, call pauseSpeakingAtBoundary() on your

AVSpeechSynthesizer, which takes in a AVSpeechBoundary as a parameter for control‐

ling when to pause the utterance. Passing in AVSpeechBoundary.Immediate will pause

the utterance immediately, whereas AVSpeechBoundary.Word will pause the utterance

at the completion of the current word. Call continueSpeaking() to continue the ut‐
terance. To fully stop a speech synthesizer and all utterances associated with it, call

stopSpeakingAtBoundary(), which also takes in a speech boundary to inform the syn‐
thesizer when to stop.

Working with the Photo Library
In addition to playing back video and audio, iOS and OS X allow you to access the built-
in camera system to capture video and audio. Similar hardware is available on both
systems—in fact, Apple refers to the front-facing camera on the iPhone, iPad, and all
Mac machines as the “FaceTime camera,” suggesting that users are meant to treat the
camera the same way across all devices. The camera can record still images as well as
video.

The APIs for accessing the camera are different on OS X and iOS. The camera was
introduced on the Mac well before iOS was released, and iOS’s implementation is some‐
what easier to use and cleaner, as the API benefited from several years of development
experience.

If you really need a consistent API for recording camera content
across both iOS and OS X, AV Foundation provides a set of classes

for capturing content—the key ones being AVCaptureSession, AVCap

tureInput, and AVCaptureOutput. However, this system is designed
for more finely grained control over data flows from the camera to
consumers of that data, and isn’t terribly convenient for simple uses
like recording video and saving it to a file. In this chapter, therefore,
we’ll only be covering the iOS implementation. For OS X develop‐
ers, please refer to the QTKit Application Tutorial included in the
Xcode documentation.

Working with the Photo Library | 201

http://bit.ly/qtkit_tutorial

Capturing Photos and Video from the Camera
To capture video and photos from the camera on iOS, you use a view controller called

UIImagePickerController.

At its simplest, UIImagePickerController allows you to present an interface almost
identical to the built-in camera application on the iPhone and iPad. Using this interface,

the user can take a photo that is delivered to your application as a UIImage object.

You can also configure the UIImagePickerController to capture video. In this case, the
user can record up to 30 minutes of video and deliver it to your application as an

NSString that contains the path to where the captured video file is kept.

UIImagePickerController can be set up to control which camera is used (front-side
or back-side camera), whether the LED flashlight is available (on devices that have
them), and whether the user is allowed to crop or adjust the photo he took or trim the
video he recorded.

UIImagePickerController works like this:

1. You create an instance of the class.

2. You optionally configure the picker to use the settings that you want.

3. You provide the picker with a delegate object that conforms to the UIImagePicker

ControllerDelegate protocol.

4. You present the view controller, usually modally, by having the current view con‐

troller call presentViewController(animated:, completion:).

5. The user takes a photo or records a video. When they’re done, the delegate object

receives the imagePickerController(didFinishPickingMediaWithInfo:)

message.

This method receives a dictionary that contains information about the media that
the user captured, which you can query to retrieve data like the original or edited
photos, the location of the video file, and other useful information.

In this method, your view controller must dismiss the image picker controller, by

calling the dismissViewControllerAnimated(:completion:) method on the cur‐
rent view controller.

6. If the user chooses to cancel the image picker (by tapping the Cancel button that

appears), the delegate object receives the imagePickerControllerDidCancel()
message.

In this method, your view controller must also dismiss the image picker by calling

dismissViewControllerAnimated(completion). If this method isn’t called, the

202 | Chapter 9: Audio and Video

Cancel button won’t appear to do anything when tapped, and the user will think
that your application is buggy.

When using UIImagePickerController, it’s important to remember that the hardware
on the device your app is running on may vary. Not all devices have a front-facing
camera, which was only introduced in the iPhone 4 and the iPad 2; on earlier devices,
you can only use the rear-facing camera. Some devices don’t have a camera at all, such
as the early iPod touch models and the first iPad. As time goes on, devices are getting
more and more capable, but it is always good practice to make sure a camera is there
before you use it.

You can use UIImagePickerController to determine which features are available and
adjust your app’s behavior accordingly. For example, to determine if any kind of camera

is available, you use the isSourceTypeAvailable() class method:

 let sourceType = UIImagePickerControllerSourceType.Camera

 if (UIImagePickerController.isSourceTypeAvailable(sourceType))

 {

 // we can use the camera

 }

 else

 {

 // we can't use the camera

 }

You can further specify if a front- or rear-facing camera is available by using the class

method isCameraDeviceAvailable():

 let frontCamera = UIImagePickerControllerCameraDevice.Front

 let rearCamera = UIImagePickerControllerCameraDevice.Rear

 if (UIImagePickerController.isCameraDeviceAvailable(frontCamera))

 {

 // the front camera is available

 }

 if (UIImagePickerController.isCameraDeviceAvailable(rearCamera))

 {

 // the rear camera is available

 }

The iOS simulator does not have a camera, and UIImagePicker

Controller reports this. If you want to test out using the camera, you
must test your app on a device that actually has a built-in camera.

This doesn’t stop you from using UIImagePickerController itself,
because you can still access the user’s photo library. We’ll be talking
about this in more detail in the next section.

Working with the Photo Library | 203

Building a Photo Application
To demonstrate how to use UIImagePickerController, we’ll build a simple application
that allows the user to take a photo, which is then displayed on the screen. The image
picker will be configured to take only photos, and will use the front-facing camera if it’s
available and the rear-facing camera if it’s not:

1. Create a single view iPhone application and name it Photos.

2. The interface for this application will be deliberately simple: a button that brings
up the camera view, and an image view that displays the photo that the user took.

To create the interface, open Main.storyboard and drag a UIImageView into the main
screen. Resize it so that it takes up the top half of the screen.

Drag a UIButton into the main screen and place it under the image view. Make the

button’s label read Take Photo.

When you’re done, the interface should look like Figure 9-5.

3. Next, connect the interface to the code. Open ViewController.swift in the assistant.

Control-drag from the image view into ViewController. Create an outlet called

imageView.

Control-drag from the button into ViewController. Create an action called

takePhoto.

4. Then make the view controller conform to the UIImagePickerController

Delegate and UINavigationControllerDelegate protocols. Update View‐
Controller.swift to look like the following code:

class ViewController: UIViewController,

 UIImagePickerControllerDelegate,

 UINavigationControllerDelegate {

204 | Chapter 9: Audio and Video

Figure 9-5. The photo-picking app’s interface

5. Then add the code that shows the image picker. When the button is tapped, we need

to create, configure, and present the image picker view. Replace the takePhoto()
method with the following code:

 @IBAction func takePhoto(sender: AnyObject) {

 var picker = UIImagePickerController()

 let sourceType = UIImagePickerControllerSourceType.Camera

 if (UIImagePickerController.isSourceTypeAvailable(sourceType))

 {

 // we can use the camera

 picker.sourceType = UIImagePickerControllerSourceType.Camera

 let frontCamera = UIImagePickerControllerCameraDevice.Front

 let rearCamera = UIImagePickerControllerCameraDevice.Rear

Working with the Photo Library | 205

 //use the front-facing camera if available

 if (UIImagePickerController.isCameraDeviceAvailable(frontCamera))

 {

 picker.cameraDevice = frontCamera

 }

 else

 {

 picker.cameraDevice = rearCamera

 }

 // make this object be the delegate for the picker

 picker.delegate = self

 self.presentViewController(picker, animated: true,

 completion: nil)

 }

 }

6. We now need to add the UIImagePickerControllerDelegate methods—specifi‐
cally, the one called when the user finishes taking a photo, and the one called when
the user cancels taking a photo.

Add the following methods to ViewController.swift:

 func imagePickerController(picker: UIImagePickerController!,

 didFinishPickingMediaWithInfo info: [NSObject : AnyObject]!)

 {

 let image: UIImage =

 info[UIImagePickerControllerOriginalImage] as UIImage

 self.imageView.image = image

 picker.dismissViewControllerAnimated(true, completion: nil)

 }

 func imagePickerControllerDidCancel(picker: UIImagePickerController!) {

 picker.dismissViewControllerAnimated(true, completion: nil)

 }

Now run the application and test it out on an iPhone or iPad. Take a photo of yourself,
and see that it appears in the image view.

If you try to test out the application on the iOS Simulator, the button won’t appear to

do anything at all. That’s because the if statement in the takePhoto() method keeps
the image picker from trying to work with hardware that isn’t there.

If you ask UIImagePickerController to work with a camera and
there isn’t one present on the device, an exception will be thrown
and your application will crash. Always test to see if the camera
device that you intend to use is actually available.

206 | Chapter 9: Audio and Video

The Photo Library
Capturing a photo with the camera is useful, but the user will likely also want to work
with photos that he’s previously taken or downloaded from the Internet. For example,
a social networking application should include some method of sharing photos from
the user’s photo collection.

To let the user access his photo library from within your app, you use UIImagePicker

Controller again. If you want to present the photo library instead of the camera, set

the sourceType property of the image picker to UIImagePickerControllerSource

Type.PhotoLibrary or UIImagePickerControllerSourceType.SavedPhotosAlbum.

UIImagePickerControllerSourceType.PhotoLibrary makes the

UIImagePickerController display the entire photo library, while

UIImagePickerControllerSourceType.SavedPhotosAlbum makes

the UIImagePickerController display only the Camera Roll album
on devices that have a camera, or the Saved Photos album on devi‐
ces that don’t.

When you present an image picker controller that has been set up to use a noncamera
source, the photo library interface used in the built-in Photos application appears. The
user then browses for and selects a photo, at which point the image picker’s delegate

receives the imagePickerController(didFinishPickingMediaWithInfo:) message,
just like if the image picker had been set up to use the camera.

To demonstrate this, we’ll update the application to include a button that displays the
Saved Photos album:

1. To update the interface, add a new button to the application’s main screen and make

its label read Photo Library.

2. Then connect the interface to the code. Open ViewController.swift in the Assistant

again. Control-drag from the new button into ViewController, and create a new

action called loadFromLibrary.

3. Replace the loadFromLibrary() method in ViewController.swift with the following
code:

 @IBAction func loadFromLibrary(sender: AnyObject) {

 var picker = UIImagePickerController()

 picker.sourceType =

 UIImagePickerControllerSourceType.SavedPhotosAlbum

 picker.delegate = self

 self.presentViewController(picker, animated: true, completion: nil)

 }

Working with the Photo Library | 207

Test the application by running the app and tapping the Photo Library button. Select a
photo to make it appear on the screen.

If you’re testing this in the simulator, you won’t have access to a large array of user-taken
photos, but since Xcode 6, the iOS Simulator does come with a few photos in the library
for testing purposes.

208 | Chapter 9: Audio and Video

CHAPTER 10

iCloud and Data Storage

Unless your application is a trivial one, it will need to work with data at some point.
This data could be as simple as a list of high scores that the user has achieved, or as
complex as a multimedia document like a presentation.

This information needs to be accessible to other parts of your application, such as the
controller objects, so that work can be done on it. The information needs to be stored
somewhere—either in memory, on disk, or on the network.

OS X and iOS provide tools for storing information on disk and on the network. One
of the more recent additions to the APIs available to developers is iCloud, a network-
based storage system that is designed to allow users to keep the same information on
all their devices, without having to do any work to enable this.

In this chapter, you will learn how to work with the filesystem to store your information
on disk, and how to store simple data in the built-in user preferences database. You’ll
also learn how to work with iCloud storage to store data and files in the cloud. Finally,
you’ll learn how the sandbox works on OS X, and how to use security-scoped bookmarks
to allow your application to access data outside its sandbox across multiple launches.

While iCloud provides the means for storing files and folders in the
cloud, you also need to know how to present documents to the user.
This chapter only covers the mechanics of storing the data; to learn
more about how to write a document-based application on OS X and
iOS, head to Chapter 13.

Preferences
Most applications need to store some information about the user’s preferences. For

example, if you open the Safari web browser and go to its preferences (by pressing ⌘-,
[comma] or choosing Safari→Preferences), you’ll see a rather large collection of settings

209

that the user can modify. Because these settings need to remain set when the application
exits, they need to be stored somewhere.

The NSUserDefaults class allows you to store settings information in a key-value based
way. You don’t need to handle the process of loading and reading in a settings file, and
preferences are automatically saved.

To access preferences stored in NSUserDefaults, you need an instance of the NSUser

Defaults class. To get one, you must ask the NSUserDefaults class for the

standardUserDefaults:

let defaults = NSUserDefaults.standardUserDefaults()

It’s also possible to create a new NSUserDefaults object instead of
using the standard user defaults. You only need to do this if you want
more control over exactly whose preferences are being accessed. For
example, if you are creating an application that manages multiple
users on a Mac and accesses their preferences, you can create an

NSUserDefaults object for each user’s preferences.

Registering Default Preferences
When your application obtains a preferences object for the first time (i.e., on the first
launch of your application), that preferences object is empty. In order to create default
values, you need to provide a dictionary containing the defaults to the defaults object.

The word default gets tossed around quite a lot when talking about
the defaults system. To clarify:

• A defaults object is an instance of the class NSUserDefaults.

• A default is a setting inside the defaults object.

• A default value is a setting used by the defaults object when no
other value has been set. (This is the most common meaning of
the word when talking about non-Cocoa environments.)

To register default values in the defaults object, you first need to create a dictionary. The
keys of this dictionary are the same as the names of the preferences, and the values
associated with these keys are the default values of these settings. Once you have the

dictionary, you provide it to the defaults object with the registerDefaults method:

// Create the default values dictionary

let myDefaults = [

 "greeting": "hello",

 "numberOfItems": 1

]

210 | Chapter 10: iCloud and Data Storage

// Provide this dictionary to the defaults object

defaults.registerDefaults(myDefaults)

Once this is done, you can ask the defaults object for values.

The defaults that you register with the registerDefaults method are
not saved on disk, which means that you need to call this every time
your application starts up. Defaults that you set in your application
(see “Setting Preferences” on page 211) are saved, however.

Accessing Preferences
Once you have a reference to one, an NSUserDefaults object can be treated much like
a dictionary, with a few restrictions. You can retrieve a value from the defaults object by

using the objectForKey method:

// Retrieve a string with the key "greeting" from the defaults object

let greeting = defaults.objectForKey("greeting") as? String

Only a few kinds of objects can be stored in a defaults object. The only objects that can
be stored in a defaults object are property list objects, which are:

• Strings

• Numbers

• NSData

• NSDate

• Arrays and dictionaries (as long as they only contain items in this list)

If you need to store any other kind of object in a defaults object, you should first convert

it to an NSData by archiving it (see “Serialization and Deserialization” on page 58 in
Chapter 2).

Additional methods exist for retrieving values from an NSUser

Defaults object. For more information, see the Preferences and Set‐
tings Programming Guide, available in the Xcode documentation.

Setting Preferences
In addition to retrieving values from a defaults object, you can also set values. When

you set a value in an NSUserDefaults object, that value is kept around forever (until the
application is removed from the system).

Preferences | 211

http://bit.ly/abt_prefs_and_settings
http://bit.ly/abt_prefs_and_settings

To set an object in an NSUserDefaults object, you use the setObject(_,forKey:)
method:

let newGreeting = "hi there"

defaults.setObject(newGreeting, forKey: "greeting")

Working with the Filesystem
Most applications work with data stored on disk, and data is most commonly organized
into files and folders. An increasing amount of data is also stored in cloud services, like
Dropbox and Google Drive.

All Macs and iOS devices have access to iCloud, Apple’s data synchronization and stor‐
age service. The idea behind iCloud is that users can have the same information on all
the devices and computers they own, and don’t have to manually sync or update
anything—all synchronization and updating is done by the computer.

Because the user’s documents can exist as multiple copies spread over different cloud
storage services, it’s now more and more the case that working with the user’s data means
working with one of potentially many copies of that data. This means that the copy of
the data that exists on the current machine may be out of date or may conflict with
another version of the data. iCloud works to reduce the amount of effort required to
solve these issues, but they’re factors that your code needs to be aware of.

Cocoa provides a number of tools for working with the filesystem and with files stored
in iCloud, which is discussed later in this chapter in “iCloud” on page 220.

This chapter deals with files in the filesystem, which is only half the
story of making a full-fledged, document-based application. To learn
how to create an application that deals with documents, turn to
Chapter 13.

Files may be stored in one of two places: either inside the application’s bundle or else‐
where on the disk.

Files that are stored in the application’s bundle are kept inside the .app folder and dis‐
tributed with the app. If the application is moved on disk (e.g., if you were to drag it to
another location on your Mac), the resources move with the app.

When you add a file to a project in Xcode, it is added to the current target (though you
can choose for this not to happen). Then, when the application is built, the file is copied
into the relevant part of the application bundle, depending on the OS—on OS X, the
file is copied into the bundle’s Resources folder, while on iOS, it is copied into the root
folder of the bundle.

212 | Chapter 10: iCloud and Data Storage

Files copied into the bundle are mostly resources used by the application at runtime—
sounds, images, and other things needed for the application to run. The user’s docu‐
ments aren’t stored in this location.

If a file is stored in the application bundle, it’s part of the code-
signing process—changing, removing, or adding a file to the bundle
after it’s been code-signed will cause the OS to refuse to launch the
app. This means that files stored in the application bundle are
read-only.

Retrieving a file from the application’s bundle is quite straightforward, and is covered
in more detail in “Using NSBundle to Find Resources in Applications” on page 67. This
chapter covers how to work with files that are stored elsewhere.

Some files are processed when they’re copied into the application
bundle. For example, .xib files are compiled from their XML source
into a more quickly readable binary format, and on iOS, PNG im‐
ages are processed so that the device’s limited GPU can load them
more easily (though this renders them unopenable with apps like
Preview). Don’t assume that files are simply copied into the bundle!

Using NSFileManager
Applications can access files almost anywhere on the system. The “almost anywhere”
depends on which OS your application is running on, and whether the application exists
within a sandbox.

Sandboxes, which are discussed later in this chapter in “Working with
the Sandbox” on page 217, restrict what your application is allowed to
access. So even if your application is compromised by malicious code,
for example, it cannot access files that the user does not want it to.

By default, the sandbox is limited to the application’s private work‐
ing space, and cannot access any user files. To gain access to these
files, you make requests to the system, which handle the work of
presenting the file-selection box to the user and open holes in the
sandbox for working with the files the user wants to let your appli‐
cation access (and only those files).

Your interface to the filesystem is the NSFileManager object, which allows you to list
the contents of folders; create, rename, and delete files; modify attributes of files and
folders; and generally perform all the filesystem tasks that the Finder does.

To access the NSFileManager class, you use the shared manager object:

Working with the Filesystem | 213

let fileManager = NSFileManager.defaultManager()

NSFileManager allows you to set a delegate on it, which receives mes‐
sages when the file manager completes operations like copying or
moving files. If you are using this feature, you should create your own

instance of NSFileManager instead of using the shared object:

let fileManager = NSFileManager()

// we can now set a delegate on this new file manager to be

// notified when operations are complete

fileManager.delegate = self

You can use NSFileManager to get the contents of a folder, using the following method:

contentsOfDirectoryAtURL(_,includingPropertiesForKeys:options:error:).

This method can be used to simply return NSURLs for the contents of a folder, but also
to fetch additional information about a file:

let folderURL = NSURL.fileURLWithPath("/Applications/")

var error : NSError? = nil

let folderContents = fileManager.contentsOfDirectoryAtURL(folderURL!,

 includingPropertiesForKeys:nil, options:NSDirectoryEnumerationOptions(),

 error:&error)

After this call, the array folderContents contains NSURLs that point to each item in the

folder. If there was an error, the method returns nil, and the error variable contains

an NSError object that describes exactly what went wrong.

You can also ask the individual NSURL objects for information about the file that they

point to. You can do this via the resourceValuesForKeys(_,error:) method, which
returns a dictionary that contains the attributes for the item pointed to by the URL:

// anURL is an NSURL object

// Pass in an array containing the attributes you want to know about

let attributes = [NSURLFileSizeKey, NSURLContentModificationDateKey]

// In this case, we don't care about any potential errors, so we

// pass in 'nil' for the error parameter.

let attributesDictionary = anURL.resourceValuesForKeys(attributes, error: nil)

// We can now get the file size out of the dictionary:

let fileSizeInBytes = attributesDictionary?[NSURLFileSizeKey] as NSNumber

// And the date it was last modified:

let lastModifiedDate =

 attributesDictionary?[NSURLContentModificationDateKey] as NSDate

214 | Chapter 10: iCloud and Data Storage

Checking each attribute takes time, so if you need to get attributes for

a large number of files, it makes more sense to instruct the NSFile

Manager to pre-fetch the attributes when listing the directory’s
contents:

let attributes =

 [NSURLFileSizeKey, NSURLContentModificationDateKey]

fileManager.contentsOfDirectoryAtURL(folderURL,

 includingPropertiesForKeys: attributes,

 options: NSDirectoryEnumerationOptions(), error: nil)

Getting a temporary directory

It’s often very convenient to have a temporary directory that your application can put
files in. For example, if you’re downloading some files, and want to save them somewhere
temporarily before moving them to their final location, a temporary directory is just
what you need.

To get the location of a temporary directory that your application can use, you use the

NSTemporaryDirectory function:

let temporaryDirectoryPath = NSTemporaryDirectory()

This function returns a string, which contains the path of a directory you can store files

in. If you want to use it as an NSURL, you’ll need to use the fileURLWithPath method to
convert it.

Files in a temporary directory are subject to deletion without warn‐
ing. If the operating system decides it needs more disk space, it will
begin deleting the contents of temporary directories. Don’t put any‐
thing important in the temporary directory!

Creating directories

Using NSFileManager, you can create and remove items on the filesystem. To create a
new directory, for example, use:

let newDirectoryURL = NSURL.fileURLWithPath(temporaryDirectoryPath +

 "/MyNewDirectory")

var error : NSError? = nil

var didCreate = fileManager.createDirectoryAtURL(newDirectoryURL!,

 withIntermediateDirectories: false, attributes: nil, error: &error)

if (didCreate) {

 // The directory was successfully created

} else {

 // The directory wasn't created (maybe one already exists at the path?)

 // More information is stored in the 'error' variable

}

Working with the Filesystem | 215

Note that you can pass in an NSDictionary containing the desired attributes for the new
directory.

If you set a YES value for the withIntermediateDirectories param‐
eter, the system will create any additional folders that are necessary
to create the folder. For example, if you have a folder named Foo, and

want to have a folder named Foo/Bar/Bas, you would create an NSURL

that points to the second folder and ask the NSFileManager to cre‐
ate it. The system would create the Bar folder, and then create the Bas
folder inside that.

Creating files

Creating files works the same way. You provide a path in an NSString, the NSData that
the file should contain, and an optional dictionary of attributes that the file should have:

// Note that the first parameter is the path (as a string), NOT an NSURL!

fileManager.createFileAtPath(newFilePath!,

 contents: newFileData,

 attributes: nil)

Removing files

Given a URL, NSFileManager is also able to delete files and directories. You can only
delete items that your app has permission to delete, which limits your ability to write a
program that accidentally erases the entire system.

To remove an item, you do this:

fileManager.removeItemAtURL(newFileURL!, error: nil)

There’s no undo for removing files or folders using NSFile

Manager. Items aren’t moved to the Trash—they’re immediately
deleted.

Moving and copying files

To move a file, you need to provide both an original URL and a destination URL. You
can also copy a file, which duplicates it and places the duplicate at the destination URL.

To move an item, you do this:

fileManager.moveItemAtURL(sourceURL!, toURL: destinationURL, error: nil)

To copy an item, you do this:

fileManager.copyItemAtURL(sourceURL!, toURL: destinationURL, error: nil)

216 | Chapter 10: iCloud and Data Storage

Just like all the other file manipulation methods, these methods return true on success,

and false if there was a problem.

File Storage Locations
There are a number of existing locations where the user can keep files. These include
the Documents directory, the Desktop, and common directories that the user may not
ever see, such as the Caches directory, which is used to store temporary files that the
application would find useful to have around but could regenerate if needed (like
downloaded images).

Your code can quickly determine the location of these common directories by asking

the NSFileManager class. To do this, you use the URLsForDirectory(_,inDomains:)

method in NSFileManager, which returns an array of NSURL objects that point to a di‐

rectory that matches the kind of location you asked for. For example, to get an NSURL
that points to the user’s Documents directory, you do this:

let URLs = fileManager.URLsForDirectory(NSSearchPathDirectory.DocumentDirectory,

 inDomains: NSSearchPathDomainMask.UserDomainMask) as [NSURL]

let documentURL = URLs[0]

You can then use this URL to create additional URLs. For example, to generate a URL

that points to a file called Example.txt in your Documents directory, you can use URL

ByAppendingPathComponent:

let fileURL = documentURL.URLByAppendingPathComponent("Example.txt")

Working with the Sandbox
An application that runs in a sandbox may only access files that exist inside that sandbox,
and is allowed to read and write without restriction inside its designated sandbox con‐
tainer. In addition, if the user has granted access to a specific file or folder, the sandbox
will allow your application to read and/or write to that location as well.

If you want to put your application in the Mac App Store, it must be
sandboxed. Apple will reject your application if it isn’t. All iOS apps
are automatically sandboxed by the system.

Enabling Sandboxing
To turn on sandboxing, follow these steps.

1. Select your project at the top of the navigation pane.

Working with the Sandbox | 217

2. In the Capabilities tab, scroll to App Sandbox.

3. Turn on App Sandboxing.

Your application will then launch in sandboxed mode, which means that it won’t be able
to access any resources that the system does not permit it to.

To use the sandbox, you need to have a Mac developer identity. To
learn more about getting one, see Chapter 1.

In the sandbox setup screen, you can specify what the application should have access
to. For example, if you need to be able to read and write files in the user’s Music folder,
you can change the Music Folder Access setting from None (the default) to Read Access
or Read/Write Access.

If you want to let the user choose which files and folders should be accessible, change
User Selected File Access to something other than None.

Open and Save Panels
One way that you can let the user indicate that your app is allowed to access a file is to

use an NSOpenPanel or NSSavePanel. These are the standard open and save windows
that you’ve seen before; however, when your application is sandboxed, the panel being
displayed is actually not being shown by your application, but rather by a built-in system
component called Powerbox. When you display an open or save panel, Powerbox han‐
dles the process of selecting the files; when the user chooses a file or folder, it grants
your application access to the specified location and then returns information about the
user’s selection to you.

Here’s an example of how you can get access to a folder that the user asks for:

let panel = NSOpenPanel()

panel.canChooseDirectories = true

panel.canChooseFiles = false

panel.beginWithCompletionHandler() {

 (result : Int) in

 let theURL = panel.URL

 // Do something with the URL that the user selected;

 // we now have permission to work with this location

}

218 | Chapter 10: iCloud and Data Storage

Security-Scoped Bookmarks
One downside to this approach of asking for permission to access files is that the system
will not remember that the user granted permission. It’s a potential security hole to
automatically retain permissions for every file the user has ever granted an app access
to, so OS X instead provides the concept of security-scoped bookmarks. Security-scoped
bookmarks are like the bookmarks in your web browser, but for files; once your appli‐
cation has access to a file, you can create a bookmark for it and save it. On application
launch, your application can load the bookmark and have access to the file again.

There are two kinds of security-scoped bookmarks: app-scoped bookmarks, which allow
your application to retain access to a file across launches, and document-scoped book‐
marks, which allow your app to store the bookmark in a file that can be given to another
user on another computer. In this book, we’ll be covering app-scoped bookmarks.

To use security-scoped bookmarks, you need to explicitly indicate that your app uses
them in its entitlements file. This is the file that’s created when you turn on the Enable
Entitlements option: it’s the file with the extension .entitlements in your project. To
enable app-scoped bookmarks, you open the Entitlements file and add the following

entitlement: com.apple.security.files.bookmarks.app-scope. Set this entitlement

to YES.

You can then create a bookmark file and save it somewhere that your application has
access to. When your application later needs access to the file indicated by your user,
you load the bookmark file and retrieve the URL from it; in doing this, your application
will be granted access to the location that the bookmark points to.

To create and save bookmark data, you do this:

// Get the location in which to put the bookmark;

// documentURL is determined by asking the NSFileManager for the

// user's documents folder; see earlier in this chapter

var bookmarkStorageURL =

 documentURL.URLByAppendingPathComponent("savedbookmark.bookmark")

// selectedURL is a URL that the user has selected using an NSOpenPanel

let bookmarkData = selectedURL.bookmarkDataWithOptions(

 NSURLBookmarkCreationOptions.WithSecurityScope,

 includingResourceValuesForKeys: nil, relativeToURL: nil, error: nil)

// Save the bookmark data

bookmarkData?.writeToURL(bookmarkStorageURL, atomically: true)

To retrieve a stored bookmark, you do this:

let loadedBookmarkData = NSData(contentsOfURL: bookmarkStorageURL)

var loadedBookmark : NSURL? = nil

if loadedBookmarkData?.length > 0 {

Working with the Sandbox | 219

 var isStale = false

 var error : NSError? = nil

 loadedBookmark = NSURL(byResolvingBookmarkData:loadedBookmarkData!,

 options: NSURLBookmarkResolutionOptions.WithSecurityScope,

 relativeToURL: nil, bookmarkDataIsStale: nil, error: nil)

 // We can now use this file

}

When you want to start accessing the file pointed to by the bookmarked URL, you need

to call startAccessingSecurityScopedResource on that URL. When you’re done, call

stopAccessingSecurityScopedResource.

You can find a full working project that demonstrates this behavior in this book’s source
code.

iCloud
Introduced in iOS 5, iCloud is a set of technologies that allow users’ documents and
settings to be seamlessly synchronized across all the devices that they own.

iCloud is heavily promoted by Apple as technology that “just works”—simply by owning
a Mac, iPhone, or iPad, your documents are everywhere that you need them to be. In
order to understand what iCloud is, it’s worth taking a look at Apple’s advertising and
marketing for the technology. In the ads, we see users working on a document, and then
just putting it down, walking over to their Macs, and resuming work. No additional
effort is required on the part of the user, and users are encouraged to think of their
devices as simply tools that they use to access their omnipresent data.

This utopian view of data availability is made possible by Apple’s growing network of
massive data centers, and by a little extra effort on the part of you, the developer.

iCloud also supports syncing Core Data databases. However, Core
Data and iCloud syncing is a huge issue, and implementing and han‐
dling this is beyond what we could cover in this chapter. If you’re
interested in learning more about this, take a look at Marcus S. Zar‐
ra’s excellent Core Data, 2nd Edition (Pragmatic Bookshelf).

In this chapter, you’ll learn how to create applications that use iCloud to share settings
and documents across the user’s devices.

220 | Chapter 10: iCloud and Data Storage

http://shop.oreilly.com/product/9781937785086.do

What iCloud Stores
Simply put, iCloud allows your applications to store files and key-value pairs on Apple’s
servers. Apps identify which file storage container or key-value pair database they want
to access, and the operating system takes care of the rest.

In the case of files, your application determines the location of a container folder, the
contents of which are synced to the network. When you copy a file into the container
or update a file that’s already in the container, the operating system syncs that file across
all other applications on devices that have access to the same container.

For settings, you access an instance of NSUbiquitousKeyValueStore, which works al‐

most identically to NSUserDefaults with the exception that it syncs to all other devices.

The word “ubiquitous” appears a lot when working with iCloud. So often, in fact, that
it’s used instead of the marketing term “iCloud.” This is intended to reinforce what
iCloud should be used for—it’s not just a storage space on the Internet, like Box.net or
similar “cloud file storage” services, but rather a tool for making users’ data ubiquitous,
so they can access it from anywhere.

Users are limited in the amount of data they can store. By default, iCloud users get 5 GB
of space for free, and can pay for more. There aren’t any per-application limits on the
amount of data that your application can store, but the user isn’t allowed to exceed their
total limit (though they can purchase more space). For the key-value store, you can store
64 KB of information per application.

This means that when you’re working out how iCloud fits into your application, you
have to choose where you’re going to put the data. Storing files in an iCloud container
is a good option if your application works with documents—image editors or word
processors are good examples. Files are also useful for storing more structured infor‐
mation, such as to-do lists or saved game files. If you want to store simple, application-
wide state, such as the most recently opened document, then the key-value store works
well.

More than one application can access the same iCloud container or key-value store. All
that’s required is that the same developer writes both, and that the bundle IDs have the
same team prefix.

iCloud works on both the Mac, iOS devices, and on the iOS Simula‐
tor. However, when you’re developing using the iOS Simulator, you
need to manually indicate when iCloud should synchronize the lo‐
cal data with the data stored on the server.

You do this by opening the Debug menu, and choosing Trigger iCloud
Sync. You can also do this by pressing Command-Shift-I.

What iCloud Stores | 221

Setting Up for iCloud
In order to use any of Apple’s online services, an application needs to identify itself and
the developer who created it. This means that if you want to work with iCloud, you must
have a paid developer account for each platform that you want to develop on. So if you
want to make iCloud apps for the Mac, you need a paid Mac developer account. And if
you want to make iOS apps at all, of course, you need a paid iOS developer account.

To get started, we’ll create an application in Xcode, and then configure it so that it has
access to iCloud:

1. Create a new Cocoa application and name it Cloud. When you create the applica‐
tion, write down the application’s bundle identifier somewhere.

2. When Xcode has finished creating the application, select the project at the top of
the project navigator. In the application’s Capabilities tab, scroll down to iCloud.

3. Turn on the switch next to iCloud. Xcode will begin configuring the application,
by creating files that indicate that the app needs access to iCloud, as well as by letting
Apple know that the app needs access.

4. Turn on the “Key-value storage” checkbox, as well as the “iCloud documents”
checkbox.

To access iCloud storage and store files, you indicate which iCloud container your ap‐
plication should use. The examples in this chapter will cover both the key-value store
and iCloud file containers, and both are identified with the same style of identifier. For
now, leave the Container setting as “Use default container”:

By default, Xcode configures your application to use an iCloud con‐
tainer with the same identifier as your application. If you have mul‐
tiple apps that should share data through iCloud, they need to be
configured to use the same iCloud container. This will become im‐
portant later in the chapter, when we create an iOS app that uses
iCloud.

The application is now set up to use iCloud. To get started working with the system,
we’ll first make sure that everything’s working as it’s supposed to.

Testing Whether iCloud Works
In order to determine whether the application has access to iCloud, we’ll run a quick

test to make sure that our setup is working. To do this, we’ll ask the NSFileManager class
for the “ubiquity container” URL. This is the location on the filesystem that is used for

222 | Chapter 10: iCloud and Data Storage

storing iCloud files; if the system returns the URL, we’re in business. If it returns nil,
then the app hasn’t been set up for iCloud properly.

The ability of the app to access the ubiquity container isn’t affected
by the device’s ability to talk to the iCloud servers. If you’re offline,
you can store information in iCloud—it just won’t get synced until
you’re back online.

To add the test, replace applicationDidFinishLaunching in AppDelegate.swift with
the following code:

 // We run this on a new background queue because it might take some time

 // for the app to determine this URL

 let backgroundQueue = NSOperationQueue()

 backgroundQueue.addOperationWithBlock() {

 // Pass 'nil' to this method to get the URL for the first iCloud

 // container listed in the app's entitlements

 let ubiquityContainerURL = NSFileManager.defaultManager()

 .URLForUbiquityContainerIdentifier(nil)

 println("Ubiquity container URL: \(ubiquityContainerURL)")

 }

Run the application. Take a look at the console output. If you see a URL, then iCloud is

configured correctly. If the app reports that the ubiquity container URL is nil, then
iCloud isn’t set up correctly, and you should double-check your code signing and
settings.

Storing Settings
The first thing that we’ll do is use the key-value store to cause a setting to be stored in
iCloud, which will be accessible via both an iOS application and a Mac application.

The key-value store, accessed via NSUbiquitousKeyValueStore, works very much like

the NSUserDefaults object. You can store strings, numbers, arrays, and dictionaries in
the store. As we mentioned before, the total amount of data that your app can store in
the key-value store is 64KB, and each item can be no larger than 64KB.

In this example, we’re going to start by storing a single string in iCloud. First, we’ll

update the AppDelegate object to store and retrieve this value from the key-value store.
To accomplish this, open AppDelegate.swift and add the following computed property

to the AppDelegate class:

 var cloudString : String? {

 get {

Storing Settings | 223

 return NSUbiquitousKeyValueStore

 .defaultStore()

 .stringForKey("cloud_string")

 }

 set {

 NSUbiquitousKeyValueStore.defaultStore()

 .setString(newValue, forKey: "cloud_string")

 NSUbiquitousKeyValueStore.defaultStore().synchronize()

 }

 }

The getter of this computed property retrieves the value from the ubiquitous key-value
store, while the setter stores the value and then immediately syncs the in-memory local
copy to the disk. This also indicates to iCloud that there are new changes to push up.

When you synchronize the key-value store, your changes aren’t im‐
mediately uploaded to iCloud. In fact, iCloud limits the upload rate
to several per minute.

This means that you can’t assume that your changes will appear
immediately—iCloud might decide to just wait a while before send‐
ing your changes. This is on top of any delays caused by the network.

Handling External Changes
This method here works fine when we’re the only application accessing the data, but
the whole point of iCloud is that it’s designed for multiple applications accessing the
same data. It’s therefore possible that, while the application is running, another instance
of the application (perhaps running on another device that the user owns) changes the
same value. Our application needs to know that the change has taken place, so that both
apps show the same information.

When the key-value store is changed externally (i.e., by another application) the noti‐

fication NSUbiquitousKeyValueStoreDidChangeExternallyNotification is posted.

So to be informed of these changes, we’ll make the AppDelegate class receive this no‐

tification, and then let the rest of the application know that the cloudString property
changed (which will in turn make the UI update).

First, we’ll add a property that stores the observer for the notifications, and then we’ll
register to run a block when the key-value store is changed:

1. Add the following property to the AppDelegate class:

 var storeChangeObserver : AnyObject? = nil

2. Add the following method to AppDelegate.swift:

storeChangeObserver =

NSNotificationCenter.defaultCenter()

224 | Chapter 10: iCloud and Data Storage

 .addObserverForName(

 NSUbiquitousKeyValueStoreDidChangeExternallyNotification,

 object: self,

 queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.willChangeValueForKey("cloudString")

 self.didChangeValueForKey("cloudString")

}

We’re now done with the code. It’s time to create the interface, which will consist of a

text field that’s bound to the application delegate’s cloudString property. This way,

whenever the user changes the contents of the text field, the setter for the cloud

String property will be run, which stores the new string in iCloud. Additionally, because

the store change observer calls willChangeValueForKey and didChangeValueForKey,
the text field will automatically get updated when new data is received from iCloud:

3. Open MainWindow.xib, and open the window.

4. Drag in an NSTextField.

5. With the text field selected, open the Bindings Inspector, which is the second tab
to the right at the top of the Utilities pane.

6. Open the Value property and choose App Delegate in the “Bind to” drop-down

menu. Set the Model Key Path to self.cloudString.

We’re all set—the interface is prepared and will show the value stored in iCloud. Go
ahead and run the app: you can enter text, and it will be saved.

The iOS Counterpart
This is all well and good, but iCloud only gets impressive when there’s more than one
device that has access to the same information. We’ll now create an iOS application that
shows what you type in the Mac application; the app will also allow you to make changes,
which will automatically show up in the Mac app.

You can develop iCloud applications on both the iOS Simulator as
well as a real device. In either case, you need to make sure your device
is signed into an iCloud account—your phone is probably signed into
one already, but your iOS Simulator almost definitely isn’t.

Signing into the simulator is easy, though: simply go to the Settings
application, scroll down to “iCloud,” and sign in, just as you would
on a real phone.

To keep the project manageable, we’re going to make the iOS app be an additional part
of the Mac app’s project. Instead of creating a new project, we’ll create a new target for

Storing Settings | 225

the iOS app. This will keep everything in the same window, and has some additional
advantages like making it easier to share source code between the two apps:

1. Create a new target by choosing File→New→Target. Name it Cloud-iOS.

2. Make the new target a single view iOS application. Make sure the bundle identifier
is the same as the app ID that you just created for the iOS application.

Once the project is created, the application needs to be configured to use iCloud, just
like the Mac application. Specifically, the iOS app must be configured to use the same
iCloud resources as the Mac app, which will make it possible for the two apps to share
data. Here are steps you’ll need to follow:

1. Select the project at the top of the project navigator. Select the iOS application that
you just added. Open the Capabilities tab.

2. Scroll down to the iCloud section and turn on the switch.

3. Turn on the “Key-value storage” checkbox, as well as the “iCloud documents”
checkbox.

The iOS application needs to access the same key-value store, as well as the same iCloud
documents container. To set this up, follow these steps:

1. Change the Containers option to “Specify custom containers.” Then, make sure that
only one iCloud container is selected (i.e., the container used by the OS X
application).

2. Next, open the .entitlements file, which Xcode should have just created for you.

Change the iCloud Key-Value Store setting to read $(TeamIdentifierPrefix)
followed by the bundle ID of your OS X application. This will ensure that both apps
are accessing the same key-value store.

The iOS application is now ready to work with iCloud, just like the Mac app. We’ll now
set up its interface, which will consist of a single text field.

In order to be notified of when the user is done editing, we’ll make the view controller

used in this iOS application a UITextFieldDelegate. When the user taps the Return
key (which we’ll convert to a Done button), the application will store the text field’s
contents in iCloud:

1. Open Main.storyboard. Drag in a UITextField and place it near the top of the
screen.

2. Select the text field and open the Attributes Inspector. Scroll down to the “Return
key” drop-down item, and choose Done.

226 | Chapter 10: iCloud and Data Storage

The interface is done, but we still need to make it so the view controller is notified when
the user taps the Done button:

1. Control-drag from the text field to the view controller, and choose “delegate” from
the pop-up menu that appears.

2. Open ViewController.swift in the inspector.

3. Control-drag from the text field into the ViewController class. Create a new outlet

called textField.

4. Make the class conform to UITextFieldDelegate by changing its class definition
line to look like this:

class ViewController: UIViewController, UITextFieldDelegate {

Now we can make the application draw its data from iCloud. We’ll do this by setting the

text of the textField to whatever’s in the iCloud key-value store when the view loads.

We’ll also register the ViewController class as one that receives notifications about
when the key-value store is updated externally.

iCloud updates its contents both when the application is running and
when it’s not. This means that if you make a change to a setting in the
key-value store on your iPhone and then later open the same app on
your iPad, the data may have already arrived.

1. Add the following property to the ViewController class:

 var keyValueStoreDidChangeObserver : AnyObject?

2. Next, add the following code to the viewDidLoad method:

 self.textField.text =

 NSUbiquitousKeyValueStore.defaultStore()

 .stringForKey("cloud_string")

 keyValueStoreDidChangeObserver = NSNotificationCenter.defaultCenter()

 .addObserverForName(

 NSUbiquitousKeyValueStoreDidChangeExternallyNotification,

 object: nil, queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.textField.text =

 NSUbiquitousKeyValueStore.defaultStore()

 .stringForKey("cloud_string")

 }

Storing Settings | 227

Next, we’ll add the method that runs when the user taps the Done button. This works

because the class is the delegate of the text field; textFieldShouldReturn is called by
the text field to find out what happens when the Return button is tapped.

In this case, we’ll make the keyboard go away by making the text field resign first-
responder status, and then store the text field’s contents in iCloud.

Add the following method to ViewController:

 func textFieldShouldReturn(textField: UITextField!) -> Bool {

 self.textField.resignFirstResponder()

 NSUbiquitousKeyValueStore.defaultStore(

).setString(self.textField.text,

 forKey: "cloud_string")

 return false;

 }

We can now see this in action! Run the iOS app and the Mac app together. Change a
value on one of the apps and watch what happens.

Be patient—it might take a few seconds before the change appears on
the other device.

iCloud Storage
Storing keys and values in iCloud is extremely useful for persisting user preferences
across all their devices, but if you want to make the user’s files just as ubiquitous through
iCloud, you need to use iCloud storage.

In this section, we’ll make an app that allows the user to store stuff in iCloud storage.
The Mac app will let you add items to iCloud and list everything in storage. Its iOS
counterpart will be simpler and show a list of files currently in iCloud storage, which
updates as files are added or removed.

iCloud Storage on OS X
Before we can get to work, we need to give the Mac application permission to access the
user’s files. By default, when you enable iCloud, Xcode helpfully marks the application
as sandboxed.

Sandboxing an application restricts what it’s allowed to access. Before sandboxing, all
applications were allowed to access any file that belonged to the user, which caused
problems if the app was compromised by a remote attacker. Apple requires any appli‐

228 | Chapter 10: iCloud and Data Storage

cation that’s submitted to the Mac App Store to be sandboxed. (All iOS applications are
sandboxed—it’s a requirement of running on the device.)

By default, the application will be sandboxed to the point where it can’t access any user
files at all. Because we’re making an application that lets the user take files and move
them into iCloud, we’ll need access to those files:

1. Open the project settings for the Mac application and open the Capabilities tab.

2. Scroll to the App Sandbox section, and turn on the switch next to it. Next, change
the User Selected File setting from “None” to “Read/Write” (you’ll find this setting
in the File Access section).

With that out of the way, we can begin working with iCloud storage in the Mac app.

The way that our implementation will work is this: we’ll have a property on the App

Delegate class that is an array containing NSURLs of each path of the files in the storage
container. This array will be displayed in a table view so that you can see what’s included.
We’ll also add a button that, when clicked, will prompt the user for a file to move into
iCloud storage.

In real life, you’d likely do something more interesting with the files than just show that
they’re there, but this will get us started.

Open AppDelegate.swift and add the following code to the AppDelegate class:

 dynamic var filesInCloudStorage : [NSURL] = []

Marking a property as dynamic allows Cocoa bindings to work
with it.

Next, we’ll create and set up the table view that displays the list of files. To keep things
simpler, we’ll use bindings to make the table view show its content:

1. Open MainWindow.xib and drag in an NSTableView into the main window. Make
it fill the rest of the window.

2. Select the table view and make it have one column.

3. Drag in an NSButton and change its label to Add File....

With the interface laid out, we can begin to connect it to the code. We’ll start by making
the button run an action method when clicked, and then bind the table view to the
application. Because we’re working with an array, we’ll use an array controller to manage
the link between the array of files stored in the app delegate and the table view:

iCloud Storage | 229

1. Open AppDelegate.swift in the assistant.

2. Control-drag from the button into AppDelegate and create a new action called

addFile.

We’ll now bind the table to the app delegate via an array controller:

1. Drag an array controller into the outline.

2. Select the array controller and open the Bindings tab.

3. Open the Content Array property, and choose App Delegate from the “Bind to”
drop-down menu.

4. Set the Model Key Path to self.filesInCloudStorage.

5. Select the table view column, and bind its Value to the Array Controller. Set the

controller key to arrangedObjects and the model key path to description.

We’re using description because it’s a convenient way to simply display a string version
of the contents of the array.

Next, we need to load the list of files that are in iCloud into the array, and then keep an
eye out for new things arriving. To check the contents of the iCloud container, we first
get its URL with this code:

let documentsDirectory = NSFileManager.defaultManager()

 .URLForUbiquityContainerIdentifier(nil)?

 .URLByAppendingPathComponent("Documents", isDirectory: true)

The ubiquity container is the folder that contains all of the information that’s synced to
iCloud. Inside this is another folder called Documents, which is where your application
should put all synced documents. It’s technically possible to store information outside
this folder, but the advantage of using the Documents folder is that, on iOS, the user
can delete individual documents in order to free space, whereas anything outside that
folder is considered internal data and can’t be individually deleted by users—they can
only remove it by deleting the entire iCloud container.

To work out what’s inside the iCloud container and to be informed of when its contents

change, we use the NSMetadataQuery class. This class, once configured with information
about what you’re looking for, runs continuously and sends notifications whenever its
contents change.

To use this, we’ll add an instance variable to store the query object, and when the ap‐
plication launches, we’ll configure and start the query:

1. Open AppDelegate.swift and add the following properties to the class:

230 | Chapter 10: iCloud and Data Storage

 var metadataQuery : NSMetadataQuery!

 var metadataQueryDidUpdateObserver : AnyObject?

 var metadataQueryDidFinishGatheringObserver : AnyObject?

2. Add the following code to the end of the applicationDidFinishLaunching meth‐
od:

metadataQuery = NSMetadataQuery()

metadataQuery.searchScopes =

 [NSMetadataQueryUbiquitousDocumentsScope]

metadataQuery.predicate =

 NSPredicate(format: "%K LIKE '*'", NSMetadataItemFSNameKey)

self.metadataQueryDidUpdateObserver =

 NSNotificationCenter.defaultCenter()

 .addObserverForName(NSMetadataQueryDidUpdateNotification,

 object: nil, queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.queryDidUpdate()

}

self.metadataQueryDidFinishGatheringObserver =

 NSNotificationCenter.defaultCenter()

 .addObserverForName(NSMetadataQueryDidFinishGatheringNotification,

 object: nil, queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.queryDidUpdate()

}

metadataQuery.startQuery()

This code starts by creating the metadata query object, and instructs it to limit its results
to only include items found inside the Documents folder in the ubiquity container. We
also give it a predicate, which is a description of what to look for—in this case, we’re
saying “find all objects whose filenames are anything,” which translates to “all files in
the Documents folder.”

We then register the app delegate to receive notifications whenever the metadata finishes
its initial sweep of the folder, and also whenever the folder changes contents. In both
cases, the same method will be called.

Finally, the query is started.

We now need to add the queryDidUpdate method, which will prepare the filesIn

CloudStorage property and fill it with the paths that it found.

Add the following method to AppDelegate:

 func queryDidUpdate() {

 var urls : [NSURL] = []

iCloud Storage | 231

 for item in metadataQuery.results {

 if let metadataItem = item as? NSMetadataItem {

 let url =

 metadataItem

 .valueForAttribute(NSMetadataItemURLKey) as NSURL

 urls.append(url)

 }

 }

 self.filesInCloudStorage = urls

 }

This code loops over every result in the query and retrieves the path for it. The paths

are then stored in an array, which is used to update the filesInCloudStorage property.
Because we’re using bindings, the act of updating this property will update the contents
of the table view.

Next, we add the method that actually adds an item to iCloud storage. This method
presents a file-open panel that lets the user choose which item to move into storage.

The process of moving a file into storage is the following. First, you work out the URL

of the file you want to move. Then, you ask the NSFileManager to generate a destination
URL. Finally, you perform the move by asking the file manager to make the file ubiq‐
uitous, passing in the source and destination URLs.

Moving files into storage is just that—moving the file. If you want to
copy a file into storage, duplicate it and move the copied file.

Add the following method to AppDelegate:

 @IBAction func addFile(sender : AnyObject?) {

 let panel = NSOpenPanel()

 panel.beginSheetModalForWindow(self.window) {

 (result) in

 if (result == NSOKButton) {

 let containerURL = NSFileManager.defaultManager()

 .URLForUbiquityContainerIdentifier(nil)?

 .URLByAppendingPathComponent("Documents",

 isDirectory: true)

 if let sourceURL = panel.URL {

 let destinationURL = containerURL?

232 | Chapter 10: iCloud and Data Storage

 .URLByAppendingPathComponent(

 sourceURL.lastPathComponent)

 var error : NSError?

 // Move the file into iCloud (AKA "ubiquitous storage")

 NSFileManager.defaultManager().setUbiquitous(true,

 itemAtURL: sourceURL,

 destinationURL: destinationURL!,

 error: &error)

 if error != nil {

 println("Couldn't make the file ubiqitous: \(error)")

 }

 }

 }

 }

 }

Run the app. You can now add stuff to iCloud.

iCloud Storage on iOS
Now we’ll make the same thing work on iOS. First, we’ll update the UI to include a text

field that displays the list of files, and then we’ll add the same NSMetadataQuery that lets
the app know what’s in the container:

1. Open the main storyboard and add a text view. Make it not editable.

2. Open ViewController.swift in the assistant.

Control-drag from the text field into the ViewController class section, and connect

it to a new outlet called fileList.

Now we’ll make the code work. This is almost identical to the Mac version—we create
the metadata query, prepare it, and set it running. When the query finds files, we’ll
update the text field and display the list of items.

We first need to create properties that store the NSMetadataQuery, along with observers
for notifications that will fire when the contents of the iCloud container get updated.

1. Add the following properties to the ViewController class:

 var queryDidFinishGatheringObserver : AnyObject?

 var queryDidUpdateObserver: AnyObject?

 var metadataQuery : NSMetadataQuery!

iCloud Storage | 233

2. Next, add the following code to the end of the viewDidLoad method:

 metadataQuery = NSMetadataQuery()

 metadataQuery.searchScopes =

 [NSMetadataQueryUbiquitousDocumentsScope]

 metadataQuery.predicate = NSPredicate(format: "%K LIKE '*'",

 NSMetadataItemFSNameKey)

 queryDidUpdateObserver = NSNotificationCenter.defaultCenter()

 .addObserverForName(NSMetadataQueryDidUpdateNotification,

 object: metadataQuery,

 queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.queryUpdated()

 }

 queryDidFinishGatheringObserver = NSNotificationCenter.defaultCenter()

 .addObserverForName(NSMetadataQueryDidFinishGatheringNotification,

 object: metadataQuery,

 queue: NSOperationQueue.mainQueue()) {

 (notification) in

 self.queryUpdated()

 }

 metadataQuery.startQuery()

 self.fileList.text = ""

This code is pretty much identical to the Mac version. The only difference is that we’re
directly updating the text view instead of using bindings.

Next, we’ll add the method that updates when the metadata query finds files.

Add the following method to ViewController:

 func queryUpdated() {

 var files : [NSURL] = []

 for item in metadataQuery.results {

 if let metadataItem = item as? NSMetadataItem {

 let url =

 metadataItem

 .valueForAttribute(NSMetadataItemURLKey) as NSURL

 files.append(url)

 }

 }

234 | Chapter 10: iCloud and Data Storage

 self.fileList.text = files.description

 }

Now run the app, and add a file to iCloud via the Mac app. It’ll appear in the iOS app.

It’s important to note that items that show up in the iCloud container aren’t necessarily
fully downloaded, particularly if the file is large. Likewise, an item that’s uploading to
iCloud might take some time.

You can determine the status of a file at a given URL by using NSURL’s valueForAttri

bute method. For example, to work out if a file is completely available, you do this:

// metadataItem is an NSMetadataItem describing an item in the

// ubiquity container

var downloadStatus =

 metadataItem.valueForAttribute(

 NSMetadataUbiquitousItemDownloadingStatusKey) as NSString

if downloadStatus == NSMetadataUbiquitousItemDownloadingStatusDownloaded {

 // it's downloaded!

}

Document Pickers
Document pickers are an iOS feature that allow the user to select files, either from iCloud
or from an external provider (such as a cloud file storage service). Document pickers
allow your app to work with any files that the user wants to access, including files stored
in other applications.

Document pickers are a fairly large topic, and we don’t have room to
go into them in very much detail here. We’ll be covering how to set
up a document picker, and how to configure it to let the user select a
file, and to make your app create a copy of that file for its own use.

However, document pickers can go beyond this. For example, you can
make a document picker that opens a file that’s stored in another app’s
container, make changes, and save it back to that container. For more
information on how to do this, see the Document Picker Program‐
ming Guide, located in the Xcode documentation.

A document picker works like this: the user lets your app know that she wants to access

a document, and your app creates and configures a UIDocumentPickerViewControl

ler, and then presents it. The user navigates to the file they want—which may be inside
another application’s container—and selects it. Once that happens, your app is granted
temporary permission to access that file, and can do some work with it. This work can

Document Pickers | 235

http://bit.ly/abt_doc_picker
http://bit.ly/abt_doc_picker

include things like making a copy of the file, or opening the file and presenting it to the
user for editing.

When you create a UIDocumentPickerViewController, you specify two things:

• The types of the files you want to select

• What mode the picker should operate in

The type of the file is a Uniform Type Identifier, which is a standard string that defines
file types. For example, public.text means any file that contains text, while org.gnu.gnu-
zip-archive means a gzipped archive. To indicate what kinds of files you want the user
to select, you provide an array of these strings.

The mode of the document picker defines what the app intends to do with the file that
the user has selected. There are four available modes:

Open
The app intends to open the file for editing, and will put it back when changes are
done.

Move
The app intends to move the file from its current location into the app’s container.

Import
The app intends to make a new copy of the file, and store that copy in its container.

Export
The app has a new file to place in a third-party storage provider.

This chapter discusses the import mode, because it’s the easiest and most direct way to
get data into your app. However, the other three modes have their own uses, and you
should check out the documentation to see more about how they’re used.

Before we get started in building an app that uses document pick‐
ers, it’s good to ensure that there’s actually content in iCloud for you
to use.

To quickly add a file to iCloud, follow these steps:

1. Open the TextEdit application on your Mac.

2. Write some text—go on, it can be anything.

3. Save the file. When prompted for a location, choose iCloud. The
file will now be stored in iCloud storage.

To implement document pickers, we first need to add a button that triggers the appear‐
ance of one:

236 | Chapter 10: iCloud and Data Storage

http://bit.ly/abt_doc_picker

1. Open your iOS application’s storyboard. Add a button to the screen, and make its

label read Select File.

2. Connect the button to a new action method in ViewController, called selectFile.

3. Add the following property to the ViewController class:

 var documentSelector : UIDocumentPickerViewController?

4. Make the ViewController class conform to the UIDocumentPickerDelegate pro‐
tocol, by adding it to the list of protocols at the top of the class.

When the button is tapped, we need to create and configure the document picker, and
then present it to the user.

5. Implement the selectFile method using the following code:

 @IBAction func selectFile(sender: UIButton) {

 // We want to select any file; 'public.data' means 'any data'

 documentSelector = UIDocumentPickerViewController(documentTypes:

 ["public.data"],

 inMode: UIDocumentPickerMode.Import)

 documentSelector?.delegate = self

 // Show the picker

 self.presentViewController(documentSelector!,

 animated: true,

 completion: nil)

 }

The public.data type identifier means any item that has data—in other words,
any file. (This type excludes folders, which don’t actually contain data themselves—
they’re just containers.)

When the user selects a file, the document picker contacts its delegate, and provides it

with an NSURL object that points to the file that the user selected.

What you do with this NSURL depends on the mode of the document picker. In the case
of importing a file, the file pointed to is a temporary file, which will go away when the
app closes. In this example, we want to copy any file that the user selects into the app’s
iCloud container. This means that we need to first copy the file into a temporary position,

and then use the NSFileManager class to move that copy into ubiquitous storage.

There’s one potential snag, though—if the file that was selected happens to be inside
another app’s iCloud container, the app must first indicate to the system that it wants

permission to access the file. You do this using the startAccessingSecurityScopedRe

source and stopAccessingSecurityScopedResource methods, which were discussed
in “Security-Scoped Bookmarks” on page 219.

Document Pickers | 237

When you’re done working with the URL, you then need to dismiss the document picker.

There’s one last thing to note: if the user doesn’t select a file, and instead dismisses the
picker without picking anything, your application also needs to handle this. Usually, all
you need to do is to just dismiss the picker, but you might have some additional logic
that you need to run. Add the following methods to ViewController.swift:

 func documentPicker(controller: UIDocumentPickerViewController,

 didPickDocumentAtURL url: NSURL) {

 // This picker was set up to use the UIDocumentPickerMode.Import mode

 // That means that 'url' points to a temporary file that we can move

 // into our container

 // Let the system know that we're about to start using this—it might

 // be in some other app's container, which means we need to get the

 // system to temporarily unlock it

 url.startAccessingSecurityScopedResource()

 let fileName = url.lastPathComponent

 // Copy it to a temporary location

 let temporaryURL = NSURL.fileURLWithPath(NSTemporaryDirectory(),

 isDirectory:true)?

 .URLByAppendingPathComponent(fileName)

 var copyError : NSError? = nil

 NSFileManager.defaultManager().copyItemAtURL(url,

 toURL: temporaryURL!, error: ©Error)

 if let theError = copyError {

 println("Error copying: \(theError)")

 }

 // We're done—let the system know that we don't

 // need access permission anymore

 url.stopAccessingSecurityScopedResource()

 // Now, move that item into ubiquitous storage

 let destinationURL = NSFileManager.defaultManager()

 .URLForUbiquityContainerIdentifier(nil)?

 .URLByAppendingPathComponent("Documents")

 .URLByAppendingPathComponent(fileName)

 var makeUbiquitousError : NSError? = nil

 NSFileManager.defaultManager().setUbiquitous(true,

 itemAtURL: temporaryURL!,

 destinationURL: destinationURL!,

 error: &makeUbiquitousError)

238 | Chapter 10: iCloud and Data Storage

 if let theError = makeUbiquitousError {

 println("Error making ubiquitous: \(theError)")

 }

 // Finally, dismiss the view controller

 self.dismissViewControllerAnimated(true, completion: nil)

 }

 func documentPickerWasCancelled(controller: UIDocumentPickerViewController!)

 {

 // Nothing got selected, so just dismiss it

 self.dismissViewControllerAnimated(true, completion: nil)

 }

You’re all done. Run the application, and tap the Select File button. Find the file you
want to add, and select it. If you have the OS X application running as well, you’ll see
the file you just added on your iOS device appear in the file list.

Using iCloud Well
In order to be a good citizen in iCloud, there are a number of things that your application
should do in order to provide the best user experience:

• Don’t store some documents in iCloud and some outside. It’s easier for users to
choose to store all their data in iCloud or to not store anything there.

• Only store user-created content in iCloud. Don’t store caches, settings, or anything
else—iCloud is meant for storing things that cannot be re-created by the app.

• If you delete an item from iCloud, the file is removed from all the user’s devices
and computers. This means that you should confirm a delete operation with the
user before performing it, as users might not understand the implications and may
think that they’re only deleting the local copy of the file.

Using iCloud Well | 239

CHAPTER 11

Cocoa Bindings

So far in this book, we’ve talked at length about how the model-view-controller para‐
digm works in Cocoa and Cocoa Touch, and how dividing up your application’s code
into these separate areas of responsibility leads to easier-to-manage codebases.

However, sometimes it may seem like overkill to write separate models, views, and
controllers, especially when all the controller needs to do is pass information directly
from the model to the view and vice versa. In many cases, the only behavior you want
is for a label to display information stored in a model object.

To solve this problem, Apple introduced bindings in OS X. Bindings are connections
between views and objects, where the contents of the object are used to directly drive
what the view displays. Bindings mean you can write less code for the same excellent
features.

In this chapter, you’ll learn how to use bindings to connect your interface directly to
data. You’ll also learn how to use the built-in controller classes that Apple provides to
manage collections of objects. By the end of the chapter, you’ll have created a sophisti‐
cated note-taking application while writing minimal code.

Bindings are only available on OS X. Sorry, iOS developers!

Binding Views to Models
A binding is simply an instruction that you give to a view about where its content comes
from. The instruction is along the lines of, OK, text field, the text that you should show

241

comes from this object over here. If it ever changes, update yourself. Likewise, when you
change, tell the object to update the text it’s storing.

You bind views to objects by indicating which property on the object the view should

show. For example, imagine that the app delegate has a property called myString. If you

bound a label to that object’s property, the two would be linked—whatever the my

String property contains, the label would display.

Bindings know about what data to display. More importantly, they also know about
when that display should be updated. When the value of a property is changed, the
bindings system informs every view bound to it that they should update themselves.

Bindings also work in reverse. If you have an editable view, such as a text field, the
bindings system updates the object with updated content when the user makes changes.

You can bind many different properties of views to model object properties. The most
common property you bind is the view’s value, which in most cases is the text that the
view displays (for labels, text, views, etc.). You can also bind properties to things like
whether the view should be enabled or hidden, what font or color the view should use,
which image should be used, and so on. The specific view properties that can be bound
vary from view to view.

Because bindings largely remove the work of mediating between your model code and
your views, you can focus on simply building the user-facing features of your app. Simply
put, using bindings means writing less code, which means that you get to make your
end product faster and also reduce the potential for bugs.

A Simple Bindings App
To demonstrate how to bind views directly to model objects, let’s build a simple appli‐
cation that connects a slider and a text field to a property that we’ll add to the app delegate
object:

1. Create a new Cocoa application and call it SimpleBindings.

2. We’ll start by adding the property to the AppDelegate object. This property will
simply store a number. Open AppDelegate.swift and add the following property
to it:

 var numberValue : Int = 0

We’re now ready to create the interface. This application will show both a text field and
a horizontal slider:

1. Open the interface and add the interface components.

First, open MainMenu.xib and then open the main window.

242 | Chapter 11: Cocoa Bindings

Drag in a text field and place it on the lefthand side of the window.

Next, drag in a horizontal slider, and place it on the right of the text field.

When you’re done, the interface should look like Figure 11-1.

Figure 11-1. The interface for this application

2. Next, we need to make both controls continuous (i.e., we want both views to update
the application as the user works with them). The controls will send their infor‐
mation out to the application the moment the user moves the mouse or types a key.
If a control isn’t continuous, it waits until the user is done interacting with it before
sending its new value (which can save work for the application).

To make the controls continuous, select both the text field and the slider and then
open the Attributes Inspector, which is the fourth tab from the left in the Inspector
pane. Turn the Continuous checkbox on.

Now that the interface has been set up, it’s time to create bindings.

Remember that the AppDelegate object now has a property, called

numberValue, which stores an integer. We’re going to bind both of
these controls to this property, which will cause the property’s value
to be displayed in the controls. Having both controls bound to the
same thing also has the effect of making them control each other—
by dragging the slider from left to right, the text field will update.

Here are the steps you’ll need to follow:

1. To bind the text field to the app delegate, you’ll need to start by selecting the text
field and then the Bindings Inspector (it’s the second tab from the right, at the top
of the Inspector pane—its icon looks like a little knot).

A Simple Bindings App | 243

The Bindings Inspector displays the list of all possible bindable properties in the
text field. In this case, we want to bind the text field’s value, which is the text that is

displayed, so open the Value property.

When binding to an object, we need to provide two things: the object that we are
binding to, and the key that we want to bind to. The key is simply the name of the
property, method, or instance variable that has the content that we want to display.

In this case, the object that we want to bind to is the app delegate. The Bindings
Inspector lists all top-level objects in the nib as things that you can bind to, which

means you can easily select it. The key that we want to bind to is numberValue,
because that’s the name of the property in the app delegate object.

You’ll notice that there are two “key” fields shown: the control‐
ler key and the model key path. The controller key refers to the
property exposed by the object that you’re binding to, while the
model key path refers to the property inside the object that’s
returned by accessing the controller key from the bound ob‐
ject. Because we’re not working with a controller object in this
case, we provide a model key path that points directly to the
property we want.

2. Next, bind the text field’s Value.

To accomplish this, select App Delegate in the “Bind to” drop-down list and set the

model key path to numberValue.

A little red alert icon may appear next to the word numberValue. This
is because the text field usually expects a string to be provided, and

the numberValue property is an Int. This is fine, because the bind‐
ings system knows how to convert integers to strings. However, if you
see the red alert icon appear, double-check to make sure that you’re
binding properties of the correct data types.

3. Just as the text field updates continuously, we want the binding to also update the
rest of the application continuously.

To do this, turn on the Continuously Updates Value checkbox.

4. Now that the text field has been bound, we’ll do the same thing for the slider. Keep
the Bindings inspector open and select the horizontal slider.

Open the Value binding.

244 | Chapter 11: Cocoa Bindings

Select App Delegate in the “Bind to” drop-down list, and set the model key path to

numberValue.

You can now see the binding in action. Run the app, and note what happens when you
drag the slider back and forth—the text field updates to show the current value of

numberValue. If you change the text in the text field, the slider will update.

Binding to Controllers
In the previous example, we’ve bound views directly to properties that are stored in an
object, bypassing a controller object. This works just fine for simple cases, but bindings
are also capable of much more powerful work.

For example, it’s possible to bind views to data stored in the user defaults system (i.e.,

within the NSUserDefaults database). This has a number of useful results, such as being
able to quickly and easily build a “settings” screen that binds the controls directly to the
data stored in the user preferences system.

However, NSUserDefaults is simply a data storage system, and you can’t bind directly
to it because its content isn’t directly observable by the key-value observing system that
bindings rely on. To work with it, you need an object mediating between your views
and the model. Sound familiar? That’s right—you need a controller object!

Apple provides just such an object to let you work with NSUserDefaults in bindings:

NSUserDefaultsController. This object provides mechanisms for binding views to

defaults stored in NSUserDefaults. It also provides a few more advanced features, such
as the ability to make changes and then let the user cancel or apply them—so if you want
the user to be able to cancel his changes in your preferences window, you can!

Because NSUserDefaultsController is such a common control, you don’t even need
to create one to start using it. Simply binding a control to the defaults makes it appear
in the Interface Builder’s outline.

To demonstrate how you can use this controller in your app, we’ll adapt our application
to store user preferences:

1. First, we’ll add a checkbox whose value is stored in the user defaults system, which
will also control whether the text field and horizontal slider are enabled (i.e., wheth‐
er the user can interact with them). To do this, simply add a checkbox to the window

and change its label to Enabled.

2. Next, bind the checkbox to the user defaults. You’ll need to select the checkbox and
open the Bindings Inspector.

Bind its value to the Shared User Defaults Controller, which appears in the list of
bindable objects.

Binding to Controllers | 245

Set the controller key to values and the model key path to controlsEnabled.

We haven’t set up a property in the code called controlsEnabled, but that’s OK—

remember, when you use NSUserDefaults, you just set values for preferences you
want to store.

3. Now that the checkbox has been set up, we’ll make the text field and horizontal

slider become enabled or disabled based on the value of the controlsEnabled
property stored in the user defaults. To accomplish this, we’ll bind the controls’

Enabled property.

To do this, select the text field and bind the Enabled property to the Shared User

Defaults Controller. Set the controller key to values and the model key path to

controlsEnabled.

Repeat this process for the horizontal slider.

When you’re done, the interface should looks like Figure 11-2.

Figure 11-2. The updated interface, with the checkbox and text field added

We can now see it in action. Launch the app, and note that changing the state of the
checkbox makes the text field and slider become enabled and disabled. Quit and re‐
launch the application, and note that the checkbox remembers its state.

Quietly marvel at the fact that you wrote no code at all for this feature!

Array and Object Controllers
As we’ve seen, controllers mediate between views and models, and allow you to make
bindings that keep you from having to write lots of laborious code.

We’ve just seen NSUserDefaultsController in action, which allows you to bind views

to the user preferences system. In this case, the model object is the NSUserDefaults
object.

Other controllers exist, which you can use to mediate access to other data in your ap‐
plication. If you want your application to display a collection of data, you need parts of

246 | Chapter 11: Cocoa Bindings

your interface to display the entire collection and other parts to display specific infor‐
mation about the currently selected item in the collection.

This is where NSArrayController comes in. NSArrayController is a controller object
that manages an array, and provides access to the contents of the array. The array con‐
troller also provides the concept of “selected” objects, meaning that your code can dis‐
play content relevant for only the items that have been selected by the user. Finally, the

NSArrayController is also capable of adding and removing items from the array that
it manages.

Another example of a controller object is NSObjectController, which acts as a con‐
troller for a single object. The typical use case for this class is where you bind your

interface to the NSObjectController, and then your code gives an object to that con‐
troller. The moment the content object of the controller changes, the interface updates.

A More Complex Bindings App
Controllers allow you to create extremely sophisticated applications with minimal code.
To demonstrate how this works, we’re going to create an application that lets the user
create, edit, view, and delete small text notes, all while doing most of the work with
bindings.

The application will work with a class that we’ll create called Note. This class will contain
a number of properties: the note’s title, the text contained within it, and the date and
time that the note was created and edited. The application will display a list of all notes
that the user has created, as well as displaying and allowing the user to edit notes. When
the user edits a note, the note will update itself to reflect the date and time that the note
was changed.

Let’s get started on our app:

1. Create a new Cocoa application and call it ControllerBindings.

2. Create a new class by choosing File→New→File or by pressing ⌘-N.

Create a new Cocoa class called Note. Make this class a subclass of NSObject.

3. Now that the class has been created, we’ll add the following properties:

• title, a String

• text, an NSAttributedString

• created, an NSDate

• edited, an NSDate

A More Complex Bindings App | 247

Additionally, we want sensible defaults to be set when a new note is created.

Specifically, the title should be “New Note,” the text should be the text “New
Note,” and the created and edited date should both be the current date.

Additionally, when either the title or the text is changed, we want the edited date

to be updated to be the current date. This can be done with Swift’s didSet syntax,
which lets you add code that should run when a property changes.

NSAttributedString is a type of string that stores additional infor‐

mation like font, style, and color. You can use NSAttributedString
to store rich text.

Open Note.swift, and add the following code to the Note class:

class Note: NSObject {

 // Created date is a constant—it's set upon creation, and never changes

 var created : NSDate = NSDate()

 // Edited date defaults to the current date

 var edited : NSDate = NSDate()

 // Title is a string that, when changed, updates the edited date

 var title : String = "New Note" {

 didSet {

 edited = NSDate()

 }

 }

 // Text is an NSAttributed string that does a similar thing

 var text : NSAttributedString = NSAttributedString(string: "New Note") {

 didSet {

 edited = NSDate()

 }

 }

}

We’re now done with the Note class. It contains the data that we need it to, and will
behave the way we want when it’s created and updated.

We now need a place to store the instances of the Note class. Because we don’t want to
deal with the challenges of storing content on disk, this example project will simply store

the Note objects in an array inside the application delegate object. This means that no
information will be kept around when the app exits.

248 | Chapter 11: Cocoa Bindings

The array will be stored in a property. This is important because it means that the array
controller object that we’ll create later will be able to bind to it.

To add the notes property to AppDelegate, open AppDelegate.swift. Add the following

code to the AppDelegate class:

 // An empty array of Note objects

 var notes = [Note]()

This syntax, where a property is defined as the result of a construc‐
tor, effectively tells the compiler two things:

• The property is an array of Notes.

• The array should be created when the instance is created.

We’re now completely done with all the code for this application. From here on out, it’s
bindings all the way.

The first thing that we want to do is display a list of notes that the user has created, and
provide a way to add and remove notes from the list. We need a way to provide access

to the Note instances. Unlike in our first application, we can’t bind the controls directly

to the notes property in the app delegate because that’s an array, and we want to be able
to display individual notes.

To enable this, we use an NSArrayController. This class acts as the gateway to the

contents of the array. It will be bound to the notes property, and other views will be
bound to it.

The list view itself will be an NSTableView. This class is traditionally tricky to set up and
requires that your code act as a data source, implementing several methods and pro‐
viding all kinds of information to the class. Not so with bindings—in this case, we’ll be
binding the table view’s contents directly to the array controller that manages the notes
collection.

First, let’s create and set up the array controller:

1. Open MainWindow.xib. We’re going to start by adding the NSArrayController
instance, which lives in the object library. Search for array controller, and you’ll find
it. Drag one into the outline.

2. We’ll now instruct the array controller to access the notes property when it wants
to know where the data it’s managing is stored.

Select the array controller, and open the Bindings Inspector.

Open the Content Array property, and bind it to the App Delegate. Set the model

key path to notes.

A More Complex Bindings App | 249

3. We also need to let the array controller know about what class of object the array
will contain. This is important because when the array controller is asked to add a
new item to the array, it needs to know which class to instantiate.

With the array controller selected, open the Attributes Inspector. Set the Class Name

to ControllerBindings.Note.

When you set the Class Name in an array controller, you have to
specify both the class’s name as well as the name of the module that
the class can be found in. Because this example is called Controller‐

Bindings, you set the Class Name to ControllerBindings.Note, but
if the project was named something else, you’d change the part of the
class name before the dot.

When you provide a content array to an array controller, the array controller can be
bound to other objects. Some useful bindable properties include:

arrangedObjects

The total collection of objects in the array, arranged based on the array controller’s
settings (such as any filters or sorting options that may have been applied).

selection

The currently selected object.

canAdd and canRemove

Bool properties that indicate whether the array controller is currently able to add

or remove items. For example, canRemove will be false if there is no object selected.

These properties can be accessed by using them as controller keys in the Bindings
Inspector.

The array controller is now set up, and we can start creating the interface. We’ll begin
by adding the table view that lists all notes, as well as buttons that allow adding and
removing items:

1. Drag in a table view and place it on the lefthand side of the window. Resize it so
that it’s about a third of the width of the window.

When you add a table view, it’s placed inside a scroll view. We’re going to want to
set up several different aspects of the table view, so expand the entire tree by holding
down the Option key and clicking the arrow next to Scroll View—Table View in
the outline. Select Table View in the items that appear.

Set the Columns counter in the Attributes Inspector to 1.

2. We want the table view controller to display note titles in the list. Select the Table
Column in the outline and open the Bindings Inspector.

250 | Chapter 11: Cocoa Bindings

Bind the Value property to the array controller. Set the controller key to

arrangedObjects and the model key path to title.

The table view will now show the value of the title property for all items in the

notes array. Additionally, the table view will control which item is selected.

3. We’ll now add two buttons to the view to allow adding and removing items.

Drag in a gradient button from the object library. Resize it to a smallish square
shape, and place it underneath the table view.

In the Attributes Inspector, set the button’s title to nothing (i.e., delete all the text).

Set the image to NSAddTemplate, which will make the button show a plus icon.

Hold down the Option key and drag the button to the right. A copy will be made;

place it next to the first button. Set the image of this new button to NSRemoveTem

plate, which shows a minus icon.

4. We can now make these buttons instruct the array controller to add and remove
items.

Control-drag from the add button to the array controller. Choose add: from the
menu that appears.

Control-drag from the remove button to the array controller. Choose remove: from
the menu that appears.

Now when these buttons are clicked, the array controller will add a new item to the
array that it’s managing or delete the currently selected item.

5. For a finishing touch, we’re going to disable the remove button if there’s nothing to
remove or if there’s no selected object. The array controller exposes a property called

canRemove, to which we can bind the button’s Enabled property.

Select the remove button and open the Bindings Inspector.

Bind the Enabled property to the array controller, using the controller key

canRemove.

When you’re done, the app’s interface should look like Figure 11-3.

You can now see this in action by launching the app. Clicking on the add and remove
buttons will add and remove items from the list, and when nothing is selected, the
remove button is disabled.

A More Complex Bindings App | 251

Figure 11-3. The initial interface for the new controller-based application

We’ll now make the notes work. All we need to do here is set up views and bind them
to the selected object, which is provided to us by the array controller:

1. To create the interface, add a text field to the right side of the window and place it

at the top. This text field will show the title property in the notes.

Add a text view underneath the text field. Make it rather tall to allow for plenty of

room for adding text. This text view will show the text property.

2. Next, bind the controls: select the text field and bind its value to the array controller.

Set the controller key to selection and the model key path to title. Turn Con‐
tinuously Updates Value on.

Select the text view (note that it’s kept inside a scroll view, so you’ll need to expand
it in the outline to get to it), and bind its attributed string to the array controller.

Set the controller key to selection and the model key path to text. Turn Contin‐
uously Updates Value on here, too.

3. Finally, we’ll create the interface that shows the date and bind it. Add a label to the

window. Set its text to Created: and place it under the text view.

252 | Chapter 11: Cocoa Bindings

Add another label and set its text to Edited:. Place it under the Created label.

Add a third label and put it to the right of the Created label. Resize it to the right
edge of the window. This label will display the date that the note was created on.

Add a fourth label to the right of the Edited label. Resize it like the last one.

When you’re done, the user interface should look liker Figure 11-4.

Figure 11-4. The completed user interface

4. Select the empty label to the right of the Created label and bind it to the array

controller. Set the controller key to selection and the model key path to created.

Select the other label and bind it similarly, but with the model key path set to edited.

5. By default, when you bind a label to an NSDate property, that label will show the
full date—down to the seconds and time zone. This can get a little huge, and it’d be
better if we showed this as a shorter, more succinct version. You can do this by
adding a date formatter to the label, which gives you control over how the date that’s
being shown in the label is represented.

Search for “date formatter” in the object library, and drag one from the library to
the Created date label.

A More Complex Bindings App | 253

A Date Formatter will appear in the outline. Select it, and configure it so that the
Date Style is set to Medium Style, and the Time Style is set to Short Style. This will
result in the label showing the date along the lines of “7 Jul 2014 3:21 pm.”

Repeat the same process with the Edited date label.

We’re done. You can now see the entire app in action! You can add and remove items,
and store any text you like in the text field. Renaming the note updates live in the list,
and changing the note’s contents updates the Edited label.

254 | Chapter 11: Cocoa Bindings

CHAPTER 12

Table Views and Collection Views

One of the most common tasks for any app, regardless of platform, is displaying lists or
collections of data. iOS and OS X provide a number of tools for viewing data, and in
this chapter you’ll learn how to use them.

Both iOS and OS X feature table views and collection views. A table view is designed to
provide a list of data, while a collection view is designed to show a grid of data. Both
table views and collection views can be customized to provide different layouts.

Table views are used all over OS X—Finder and iTunes both use it to show lists of files
and songs. Table views are used even more heavily in iOS—any time you see a vertically
scrolling list, such as the list of messages in Messages or the options in Settings, you’re
seeing a table view.

Collection views are used a little less frequently, as they’re a newer addition to both
platforms. Collection views can be seen (again) in Finder and iTunes, as well as in
Launchpad. On the iPad, a collection view appears in the Clock application, which was
added in iOS 6.

Data Sources and Delegates
Despite their differences in layout, table and collection views have very similar APIs.
When a data display view prepares to show content, it has to know the answers to at
least two questions:

• How many items am I showing?

• For each item, what do I need to do to display it?

These questions are asked of the view’s data source, which is an object that conforms to
the table view’s data source protocol. The data source protocol differs based on the type
of view that you’re using.

255

There are other questions that a data view may need to know the answer to, including
“How tall should each row in the list be?” and “How many sections should the list
contain?” These questions are also answered by the data source, but the view can fall
back to some default values in case the data source isn’t able to provide this information.

Sometimes displaying information is all you want, but your application usually needs
to respond to the user interacting with the view’s content. The specific things that the
user can do vary depending on the platform, the kind of data view, and how you’ve
configured the view. Some possible interactions include:

• Clicking (or tapping) on an item

• Rearranging content

• Deleting or modifying content

These actions are sent by the view to its delegate.

Table Views
Table views are designed for showing lists of information. On OS X, a table view shows
data with multiple columns, which can be rearranged and resized, and is generally used
to show data. On iOS, table views only show one column and are useful for any kind of
vertically scrolling list, as seen in the Settings application.

UITableView on iOS
Table views are implemented on iOS using the UITableView class. This is one of the
most versatile view classes on iOS: with it, you can create interfaces that range from
simple lists of data to complex, multipart, scalable interfaces.

On iOS, the term “table view” is somewhat of a misnomer. The word “table” usually
brings to mind a grid with multiple rows and columns, but on iOS the table view is
actually a single column with multiple rows. The reason for this is that the size of the
iPhone’s screen is too narrow for more than one column to make sense, but the API

design for UITableViewController was based on NSTableViewController, which we’ll
discuss later in this chapter.

If you want to create a multiple-column table view on iOS, you ei‐

ther need to build it yourself, or use a UICollectionView (which we
discuss in “Collection Views” on page 270).

Table views on iOS present a scrolling list of table view cells, which are views that can

contain any data you like. UITableView is designed for speed: one of the most common

256 | Chapter 12: Table Views and Collection Views

gestures that the user performs on an iOS device is to flick a finger up and down a
scrolling list, which means that the application needs to be able to animate the scrolling
of that list at high frame rates (ideally, 60 frames per second, which is the maximum
frame rate of iOS).

Sections and Rows

Table views can be divided into multiple sections, each of which contains one or more
rows. Sections allow you to divide your content in a manner that makes sense to you.
For example, the Contacts application uses a table view that divides rows by surname,
and the Settings application uses a table view that divides rows into categories.

Because table views are divided into sections, specific locations in the table view are
identified not by row, but by index path. An index path is nothing more complex than

a section number and a row number, and is represented using the NSIndexPath class:

let indexPath = NSIndexPath(forRow: 2, inSection: 1)

(Note that you don’t usually create NSIndexPath’s yourself—this example just shows
how they’re composed.)

Let’s imagine that we’ve got a table view that’s divided into two sections: the first section
has two rows, and the second section has three (Figure 12-1).

Figure 12-1. A table view, divided into sections

Using index paths, you can refer to the very first cell as section 0, row 0. The second cell
is section 0, row 1, and the third cell is section 1, row 0. This allows row numbers to be
independent of their sections, which can be very handy indeed.

Table Views | 257

Table View Controllers

If you add a UITableView to an interface without doing any additional work, you’ll see

an empty list. By default, UITableViews rely on a data source object to provide them
with information on what content to show.

Any object can be a data source for a UITableView; the only requirement is that it must

conform to the UITableViewDatasource protocol (for more information on protocols,
see “Protocols” on page 46).

The object is almost always a UIViewController, and almost always the view controller
of the view that contains the table view. There’s nothing stopping you from doing it
differently, though.

The two critical methods that the UITableViewDatasource protocol defines are:

func tableView(tableView: UITableView!,

 numberOfRowsInSection section: Int) -> Int

func tableView(tableView: UITableView!,

 cellForRowAtIndexPath indexPath: NSIndexPath!) -> UITableViewCell!

The first, numberOfRowsInSection, returns the number of rows in the specified table

section (see “Sections and Rows” on page 257). The second, cellForRowAtIndexPath,

returns a UITableViewCell for the specified index path.

For example, here’s how to indicate that every section in the table has two rows:

func tableView(tableView: UITableView!,

 numberOfRowsInSection section: Int) -> Int {

 return 2

}

This method is the easier of the two. Here’s an example of an implementation of table

View(_, cellForRowAtIndexPath:) (we’ll talk about exactly what it does in the next
section):

 override func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("StringCell",

 forIndexPath: indexPath) as UITableViewCell

 cell.textLabel.text = "Hello!"

 return cell

 }

258 | Chapter 12: Table Views and Collection Views

Table View Cells

A table view cell represents a single item in the table view. Table view cells are UITable

ViewCells, a subclass of UIView. Just like any other UIView, table view cells can have

any other UIViews included as subviews.

When the table view needs to show data, it needs the answer to two questions: how
many rows are there to show, and what should be shown for each row. The first question

is answered by the numberOfRowsInSection method; the second is answered by table

View(_, cellForRowAtIndexPath:).

cellForRowAtIndexPath is called for every visible row in the table view as it comes into
view. This last part is important because it enables the table view to not have to worry
about displaying content that isn’t visible. If, for example, you have a table view that
contains 1,000 objects, fewer than 10 of those objects are likely to be visible. Because it
makes no sense for the table view to attempt to display table view cells for rows that may

never be shown, tableView(_, cellForRowAtIndexPath:) is called only as a cell is
about to come onto the screen.

tableView(_, cellForRowAtIndexPath:) is responsible for returning a configured

UITableViewCell. “Configured,” in this case, means making sure that the table view cell
is displaying the right content. That content depends on what the table view is being
used for: if you’re making a shopping list application, each table view cell would contain
an item in the shopping list.

Cell reuse. As the user scrolls the table view, some items in the list will go off screen while

others come on screen. When a table view cell in the list scrolls off screen, it is removed

from the table view and placed in a reuse queue. This reuse queue stores UITableView

Cell objects that have been created but are not currently visible. When a cell is scrolled

into view, the table view retrieves an already created UITableViewCell object from the

reuse queue.

The advantage of this method is that the time taken to allocate and set up a new object
is completely removed. All memory allocations take time, and if the user is quickly
scrolling through a long list, he would see a noticeable pause as each new cell appeared.

UITableViewCell objects are automatically placed into the reuse queue by the table view

as the cells scroll off screen; when the table view’s data source receives the table

View(cellForRowAtIndexPath:) message, it fetches a cell from the reuse queue and
prepares that, rather than creating an entirely new cell.

A table view can have many different kinds of cells—for example, you might have a table
view with two sections that show entirely different cells in each section. However, there’s

only one tableView(cellForRowAtIndexPath:) method, which is called for all rows

Table Views | 259

in all sections. To differentiate, you can use the index path that is passed to this method
to figure out which section and row the table view wants a cell for.

Anatomy of a UITableViewCell. A table view cell is a UIView, which can contain any addi‐

tional UIView s that you want to include. In addition to this flexibility, UITableView

Cell objects also support a few basic styles, which are similar to the table view cells seen

in other parts of iOS. There are four basic table view styles:

Default
A black, bold, left-aligned text label, with an optional image view. As the name
suggests, this is the default style for table view cells.

Right Detail
A black, left-aligned text label, with a smaller, blue-colored, right-aligned text label
on the righthand side. This cell style can be seen in the Settings application.

Left Detail
A blue, right-aligned label on the lefthand side, with a black, left-aligned label on
the righthand side. This cell style can be seen in the Phone and Contacts
applications.

Subtitle
A black, left-aligned label, with a smaller, gray label underneath it. This cell style
can be seen in the Music application.

The common theme is that all table view cells have at least one primary text label, and

optionally a secondary text label and an image view. These views are UILabel and

UIImageView objects, and can be accessed through the textLabel, detailTextLabel,

and imageView properties of the table view cell.

You can see examples of all four built-in table view cell styles in Figure 12-2.

Preparing table views in Interface Builder. Prior to iOS 5, constructing table views and

table view cells was a largely programmatic affair, with developers writing code that

manually instantiated and laid out the contents of any nonstandard table view cells in

code. This wasn’t a great idea, because layout code can get tricky. So, from iOS 5 onward,

table views and their cells can be designed entirely in Interface Builder.

When you add a table view to an interface, you can also create prototype cells. The
contents of these cells can be designed by you and completely customized (from chang‐
ing the colors and fonts to completely changing the layout and providing a custom

subclass of UITableViewCell). These prototype cells are marked with a cell identifier,
which allows your code to create instances of the prototypes.

260 | Chapter 12: Table Views and Collection Views

Figure 12-2. The different table view cell styles (from top to bottom: Basic, Right Detail,
Left Detail, and Subtitle)

Analyzing tableView(_, cellForRowAtIndexPath:). With all of this in mind, we can now take

a closer look at the tableView(_, cellForRowAtIndexPath:) implementation that we

looked at earlier. Here it is again:

 override func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("StringCell",

 forIndexPath: indexPath) as UITableViewCell

 cell.textLabel.text = "Hello!"

 return cell

 }

The method performs three actions:

The table view is asked to dequeue a table view cell that has a cell identifier of

StringCell. This causes the table view to either create an instance of the
prototype cell that has this identifier, or dequeue one from the reuse queue if a
cell with this identifier has been previously created and is not currently visible.

The cell’s primary text label is set to display the text “Hello!”

Finally, the cell is returned to the table view, which will display it to the user.

Table Views | 261

Responding to actions. The most common thing that the user does with table view cells

is to tap them. When this happens, the table view will contact its delegate and inform it

that a cell was selected.

An object must conform to the UITableViewDelegate protocol in order to be a delegate.
The table view’s delegate can be different from its data source, but in practice the delegate
is the same object as the data source (i.e., the view controller that manages the table view

conforms to both the UITableViewDelegate and UITableViewDatasource protocols).

There are several methods that UITableViewDelegate specifies, all of which are op‐

tional. The most important and commonly used method is tableView(_, didSelec

tRowAtIndexPath:), which is called when a row is tapped. This is the delegate’s oppor‐
tunity to perform an action like moving to another screen:

 override func tableView(tableView: UITableView, didSelectRowAtIndexPath

 indexPath: NSIndexPath) {

 println("Selected \(data[indexPath.row])")

 }

Implementing a Table View

To put it all together, we’ll build a simple table view application that displays the contents

of an array of NSString objects:

1. Create a new, single view iOS application named iOSTableView.

2. Delete the ViewController.swift file. We’ll be creating a replacement for it shortly.

3. Create and set up the table view. In this example, the view controller will be a

UITableViewController, which is a subclass of UIViewController that manages

a single UITableView.

Open Main.storyboard and delete the existing view controller. Then drag in a table
view controller from the objects library. Select the new view controller, and open
the Attributes Inspector. Turn on the Is Initial View Controller checkbox.

4. Set up the prototype cell. By default, a UITableViewController that’s been dragged
into the storyboard contains a single prototype cell. We’re going to configure that
to be the cell that we want.

Select the single cell that appears at the top of the table view.

Make sure the Attributes Inspector is open, and change its identifier to StringCell.

Change the cell’s style from Custom to Basic, by using the drop-down menu at the
top of the Attributes Inspector.

The table view is fully configured; it’s now time to write the code that will provide the
table view with the information it needs:

262 | Chapter 12: Table Views and Collection Views

1. Create the new table view controller class. Create a new Cocoa Touch class by

choosing File→New→File… and selecting Cocoa Touch class. Name it TableView

Controller and make it a subclass of UITableViewController.

2. Make the table view controller use the new class. Go back to the storyboard and
select the view controller.

Note that clicking on the table view won’t select the view controller—it’ll select the
table view. You can select the table view controller itself from the Outline view on
the lefthand side of the Interface Builder.

Go to the Identity Inspector and change the class from UITableViewController to

TableViewController.

3. Open TableViewController.swift and add the array of strings.

We can now write the code that drives the table view. First, we need to create an
array that contains the strings that will be displayed.

Add the following property to TableViewController:

 var data = ["Once", "upon", "a", "time"]

4. Make the table view data source return one section. The table view will contain one

section, and this section will contain as many rows as there are entries in the data
array.

To determine how many sections are present, the table view sends its data source

object the numberOfSectionsInTableView message. This method is already im‐
plemented in the template code, but returns zero. We just need to change this to
return 1.

Find the numberOfSectionsInTableView method in TableViewController.swift
and replace it with the following code:

 override func numberOfSectionsInTableView(tableView: UITableView)

 -> Int {

 return 1

 }

5. Make the table view data source indicate the correct number of rows for the section.
We need to tell the table view that the section has as many rows as there are objects

in the data array. This is handled by the tableView(_, numberOfRowsInSec

tion:) method.

Find the tableView(_, numberOfRowsInSection:) method in TableViewControl‐
ler.swift and replace it with the following code:

 override func tableView(tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return data.count

 }

Table Views | 263

6. Implement the tableView(_, cellForRowAtIndexPath:) method. We need to
prepare the table view cells for each of the rows that the table view will ask for.

Find the tableView(_, cellForRowAtIndexPath:) method in TableViewControl

ler.swift and replace it with the following code:

 override func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCellWithIdentifier("StringCell",

 forIndexPath: indexPath) as UITableViewCell

 let string = data[indexPath.row]

 cell.textLabel.text = string

 return cell

 }

7. Implement the tableView(_, didSelectRowAtIndexPath:) method. Finally, we’ll
make the code log the string corresponding to the text that was selected.

Add the tableView(_, didSelectRowAtIndexPath:) method in TableViewCon‐
troller.swift:

 override func tableView(tableView: UITableView, didSelectRowAtIndexPath

 indexPath: NSIndexPath) {

 println("Selected \(data[indexPath.row])")

 }

NSTableView on OS X
The process of displaying tables of data on OS X is slightly more complex than on iOS.
Tables on OS X are capable of displaying multiple columns of data, which can be rear‐

ranged and resorted by the user. Table views on OS X are instances of the NSTable

View class. However, the fundamental idea behind table views on OS X is the same as
on iOS—a table view uses a data source object to determine how many rows exist and
what content should be shown for each row.

The only significant difference in terms of programming for NSTableView is that the
method that returns the content that should be shown for a table view cell needs to take
into account both the row number and column for the data.

The method for returning the view that should be shown in a cell is tableView(view

ForTableColumn:row:). This method’s parameters are the NSTableView that wants to
show content, and the column and row number that are being displayed. The row
number is represented as a simple integer, while the table column is an

264 | Chapter 12: Table Views and Collection Views

NSTableColumn. This is because columns can be rearranged, and it therefore doesn’t

make sense to have “column numbers.” Rather, NSTableColumn objects have identifi‐
ers, which are used by your code to figure out what specific piece of information needs
to be shown.

To demonstrate how table views work on OS X, we’ll build an application that displays
multiple columns of data. This app will display a list of songs, along with their running
times.

1. Create a new Cocoa application called CocoaTableView.

2. Create the Song class. The first thing we’ll do is create the data source. Each song

that the application displays will be an instance of the class Song, which we’ll create

ourselves. Each Song object has a title string, as well as a duration represented as

an NSTimeInterval (which is just another way of saying float—it’s a typedef de‐
fined by Cocoa).

To create the class, go to File→New→File… and choose Cocoa class. Create a new

class called Song and make it a subclass of NSObject.

Once it’s been created, open Song.swift and make it look like the following code:

class Song: NSObject {

 var title : String = "A Song"

 var duration : NSTimeInterval = 0.0

}

This class only contains properties and no methods—it’s only for
storing data.

3. Next, we’ll make AppDelegate store a list of Song objects. This list will be an

NSMutableArray, which is managed by an NSArrayController.

This controller won’t be used immediately, but instead will be
used as part of the bindings used to drive the table view, later in
this chapter.

Open AppDelegate.swift and add the following properties to the class:

 var songs : [Song] = []

 @IBOutlet var songsController: NSArrayController!

Table Views | 265

4. Finally, we need to make the object populate this list when it appears.

Add the following method to the AppDelegate class:

 override func awakeFromNib() {

 if self.songs.count == 0 {

 var aSong : Song!

 aSong = Song()

 aSong.title = "Gaeta's Lament"

 aSong.duration = 289

 self.songsController.addObject(aSong)

 aSong = Song()

 aSong.title = "The Signal";

 aSong.duration = 309

 self.songsController.addObject(aSong)

 aSong = Song()

 aSong.title = "Resurrection Hub";

 aSong.duration = 221

 self.songsController.addObject(aSong)

 aSong = Song()

 aSong.title = "The Cult of Baltar";

 aSong.duration = 342

 self.songsController.addObject(aSong)

 }

 }

Bonus points for those who get the reference!

We’ll now prepare the interface for the application:

1. Open MainMenu.xib, and drag an array controller into the outline.

Open the Bindings Inspector, and bind the Content Array to the App Delegate. Set

the model key path to self.songs.

Hold down the Control key and drag from the app delegate to the array controller.

Choose songsController from the menu that appears.

266 | Chapter 12: Table Views and Collection Views

2. Create the table view. Open MainMenu.xib and select the window. It’s empty, but
we’ll soon fix that.

Drag a table view from the objects library into the window. Make it fill the window.

Select the table header view at the top of the table view. Double-click the first col‐

umn’s header and rename it Title. Rename the second column header Duration.

3. We now need to set up the columns to have the correct identifiers, and to use

NSViews as their content rather than old-style NSCells (which was the previous
method prior to OS X 10.7 Lion).

Select the “Title” table column object in the outline. Switch to the Identity Inspector
and set the Restoration ID to “Title.”

Then, select the “Duration” table column in the outline and change its Restoration
ID to “Duration.”

Finally, select the table view in the outline and change its content mode from Cell
Based to View Based.

4. Next, we need to set up the table view’s data source and delegate. Control-drag from
the table view to the app delegate, and choose “dataSource” from the menu that
appears. Then Control-drag from the table view to the app delegate again, and
choose “delegate.”

5. The AppDelegate class needs to conform to the NSTableViewDataSource and NSTa

bleViewDelegate protocols in order to satisfy the compiler.

Open AppDelegate.swift, and make the class conform to two new protocols:

class AppDelegate: NSObject, NSApplicationDelegate,

 NSTableViewDelegate, NSTableViewDataSource {

6. Add the numberOfRowsInTableView method to AppDelegate. This method indi‐
cates to the table view how many rows should appear:

 func numberOfRowsInTableView(tableView: NSTableView!) -> Int {

 return self.songs.count

 }

7. Add the tableView(viewForTableColumn:row:) method to AppDelegate. This

method returns an NSView that will appear in the table view cell, based on the row
number and column used:

 func tableView(tableView: NSTableView!, viewForTableColumn

 tableColumn: NSTableColumn!, row: Int) -> NSView! {

 let cell =

 tableView.makeViewWithIdentifier(tableColumn.identifier,

 owner: self) as NSTableCellView

 let textField = cell.textField

 let song = self.songs[row]

Table Views | 267

 if tableColumn.identifier == "Title" {

 textField?.stringValue = song.title

 } else if tableColumn.identifier == "Duration" {

 let durationText = NSString(format: "%i:%02i",

 Int(song.duration) / 60,

 Int(song.duration) % 60)

 textField?.stringValue = durationText

 }

 return cell

 }

In this method, the table view is asked to dequeue a reusable view based on the identifier

of the table column. This is returned as a NSTableCellView, which will contain the text
field that should show the text.

Then, depending on the specific column, the text of the text field is set to either the
song’s title or a string representation of the song’s duration.

Finally, run the application. Behold the songs!

Sorting a Table View

When you click a table view header, you’re indicating to the table view that it should re-
sort the contents of the table. To do this, the table columns need to know what specific
property they’re responsible for showing.

This is implemented by providing sort keys to each of the columns. Sort keys indicate
what property should be used for sorting.

To add sort keys, select the “Title” table column in the outline. Open the Attributes

Inspector and set the sort key to title. Leave the selector as compare: and the order as
Ascending. Then, select the “Duration” table column in the outline, and change the sort

key to duration.

When a table column header is clicked, the table view’s data source receives a table

View(sortDescriptorsDidChange:) message. A sort descriptor is an instance of the

NSSortDescriptor class, which provides information on how a collection of objects
should be sorted.

To sort an array using sort descriptors, you take the array, and use the sort method.
This method takes a closure that it uses to work out how a pair of objects is ordered;

you can simple take each sort descriptor, and use its compareObject(toObject:)
method to work out this ordering.

To implement the tableView(sortDescriptorsDidChange:) method, add the follow‐

ing method to AppDelegate:

268 | Chapter 12: Table Views and Collection Views

 func tableView(tableView: NSTableView!,

 sortDescriptorsDidChange oldDescriptors: [AnyObject]!) {

 // Apply each sort descriptor, in reverse order

 for sortDescriptor in tableView.sortDescriptors.reverse()

 as [NSSortDescriptor] {

 songs.sort() {

 (item1, item2) in

 return sortDescriptor.compareObject(item1, toObject: item2)

 == NSComparisonResult.OrderedAscending

 }

 }

 tableView.reloadData()

 }

Now launch the application. Click one of the headings, and note the table view
re-sorting.

NSTableView with Bindings

The NSTableView class is quite straightforward to use with a code-driven data source,
but it’s often a lot simpler to use Cocoa bindings (see Chapter 11). So to cap off our

coverage of NSTableView, we’re going to adapt the code to use Cocoa bindings.

When using bindings, we bind both the table view and the specific views in each table
view cell. The table view is bound to the array controller so that it knows how many
rows exist, and the views in the cells are bound to the specific property that should be
displayed.

To bind the table view to the array controller:

1. Select the table view in the outline. Go to the Connections Inspector and remove

the dataSource and delegate links.

2. Go to the Bindings Inspector, and bind the table view’s Content to Array Controller.

3. Select the text field in the table view cell in the Title column. Bind its value to Table

Cell View and set the model key path to objectValue.title. This will make the

cell display the title of the Song object that this row is displaying.

4. Select the text field in the table view cell in the Title column. Bind its value to Table

Cell View” and set the model key path to objectValue.durationString. This a
method that we’re about to create.

We want to display a human-readable representation of the Song object’s duration

property, and the best way to do that is to add a durationString method that formats

the underlying NSTimeInterval appropriately. To add this method to the Song class,
add the following to Song.swift:

Table Views | 269

 func durationString() -> String {

 return NSString(format: "%i:%02i", Int(self.duration) / 60,

 Int(self.duration) % 60)

 }

Now run the application; you can continue to see the songs.

Collection Views
A collection view is a tool for displaying a collection of objects. While table views are
great for tabular displays of data, you often want to display a collection of items in a way
that isn’t a list.

Collection views exist on both iOS and OS X, though the implementation is better on

iOS. In this section, you’ll learn how to use UICollectionView, the iOS class that allows
you to display a collection of views.

We aren’t covering NSCollectionView, the OS X counterpart to UI

CollectionView, in this book, mostly because the API is a little cum‐
bersome and also because there aren’t as many use cases for it. If you

need more information on NSCollectionView, take a look at the Col‐
lection View Programming Guide, included as part of the Xcode de‐
veloper documentation.

UICollectionView on iOS
UICollectionView lets you present a collection of items in a way that doesn’t require

each item to know how it’s being positioned or laid out. UICollectionView behaves

rather like UITableView, but it doesn’t just lay content out in a vertical list—rather, it
supports customizable layout handlers called layout objects.

The UICollectionView class makes use of a data source and delegate, much like the

UITableView and NSTableView classes. The UICollectionView displays a collection of

UICollectionViewCell objects, which are UIViews that know how to be laid out in a
collection view. Generally, you create subclasses of these cells and fill them with content.

By default, a UICollectionView displays its content in a grid-like

fashion. However, it doesn’t have to—by creating a UICollection

ViewLayout subclass and providing it to the collection view, you can

lay out the UICollectionViewCell objects in any way you want. UI

CollectionViewLayout subclassing is a little beyond the scope of this
chapter, but there’s plenty of interesting discussion in the documen‐
tation for this class.

270 | Chapter 12: Table Views and Collection Views

http://bit.ly/abt_collection_views
http://bit.ly/abt_collection_views

To demonstrate collection views in use, we’re going to create an application that displays
a collection of numbers in a grid:

1. Create a single view application for iPad called AwesomeGrid.

2. Create the collection view controller. Delete the ViewController.swift file. We’ll be
replacing it shortly.

Create a new UICollectionViewController subclass by choosing

File→New→File… and creating a new Cocoa Touch object named GridViewCon

troller. Make it a subclass of UICollectionViewController.

3. Prepare the collection view. Open Main.storyboard and delete the view controller.
Drag in a collection view controller. With the new view controller selected, open

the Identity Inspector and change its class from UICollectionViewController to

GridViewController.

We’ll now create our own subclass of the UICollectionViewCell class, which will con‐

tain a label. Unlike UITableViewCell objects, the UICollectionViewCell doesn’t pro‐
vide standard styles for cells, as it doesn’t make assumptions about the content your
application will be showing.

The actual contents of the UICollectionViewCell will be designed in the Interface
Builder.

Create the collection view subclass and use it in the collection view. Create a new UI

CollectionViewCell subclass by choosing File→New→File… and creating a new Co‐

coa Touch object named GridCell. Make it a subclass of UICollectionViewCell.

Go back to Main.storyboard and select the collection view cell at the upper left of the

collection view. Go to the Identity Inspector and change its class from UICollection

ViewCell to GridCell.

Go to the Attributes Inspector and change the collection view item’s identifier to Cell.

Resize the cell to be about twice the size. Drag a label into the cell. Using the Attributes
Inspector, make its font larger, and change its color to white. Resize the label to fill the
cell and make the text centered. Add constraints to center it horizontally and vertically
within the cell.

Open GridCell.swift in the assistant. Control-drag from the label into the GridCell class,

and create a new outlet called label.

Having set up the collection view, we can now set up the view controller to display the
content. The actual “content” to be displayed will be the numbers from 1 to 200, which

will be stored as numbers objects in an array. For each GridCell that the collection view
needs to display, the view controller will convert the number to an string and display it

in the UILabel.

Collection Views | 271

The first step in this process is to store the array of numbers:

1. Prepare the data. Open GridViewController.swift.

Add the following property to the GridViewController class:

 var numbers : [Int] = []

Next, replace the viewDidLoad method with the following code (removing all other
code):

 override func viewDidLoad() {

 super.viewDidLoad()

 for i in 1...200 {

 numbers.append(i)

 }

 }

2. Add the methods that indicate the number of items in the collection view. The

methods for providing data to a UICollectionView are very similar to those for

working with a UITableView: you provide the number of sections, the number of

items in each section, and a UICollectionViewCell object for each item.

Add the following methods to GridViewController. If they already exist, replace
the code for them:

 override func numberOfSectionsInCollectionView

 (collectionView: UICollectionView) -> Int {

 return 1

 }

 override func collectionView(collectionView: UICollectionView,

 numberOfItemsInSection section: Int) -> Int {

 return self.numbers.count

 }

3. Implement the collectionView(cellForItemAtIndexPath:) method. Displaying
a cell in a collection view is just as simple. Because we have already prototyped the

GridCell in the Interface Builder, the only thing that needs to happen is for the
view controller to prepare the cell when it appears in the collection view.

Add the following method to GridViewController:

override func collectionView(collectionView: UICollectionView,

 cellForItemAtIndexPath indexPath: NSIndexPath)

 -> UICollectionViewCell

{

 let cell =

 collectionView.dequeueReusableCellWithReuseIdentifier(reuseIdentifier,

 forIndexPath: indexPath) as UICollectionViewCell

 if let gridCell = cell as? GridCell {

272 | Chapter 12: Table Views and Collection Views

 gridCell.label.text = String(self.numbers[indexPath.row])

 }

 return cell

}

Run the application—you should see a scrolling grid of numbers.

Note that when you rotate the iPad (if you’re using the simulator, use the ⌘-← and ⌘-→
keys), the collection view lays itself out correctly.

Collection Views | 273

CHAPTER 13

Document-Based Applications

For the user, a computer and its applications are simply ways to access and work with
their documents (e.g., their spreadsheets, images, music, etc.). The designers of OS X
and iOS understand this, and provide a number of tools for making apps designed
around letting the user create, edit, and work with documents.

The idea of a document-based application is simple: the application can create docu‐
ments, and open previously created documents. The user edits the document and saves
it to disk. The document can then be stored, sent to another user, duplicated, or anything
else that a file can do.

While both OS X and iOS provide technologies that allow you to make document-based
applications, the way in which documents are presented to the user differs.

On OS X, as with other desktop-based OSes, users manage their documents through
the Finder, which is the dedicated file management application. The entire filesystem is
exposed to the user through the Finder.

On iOS, the filesystem is still there, but the user rarely sees it. Instead, all documents
are presented to the user and managed by the application. All the tasks involved in
managing documents—creating new files, renaming files, deleting files, copying files,
and so on—must be done by your application.

The user has some access to the filesystem through document picker
view controllers, which are discussed in “Document Pickers” on page
235.

More than one application may be able to open a document. For example, JPEG images
can be opened by both the built-in Preview application and by Photoshop for different

275

purposes. Both OS X and iOS provide ways for applications to specify that they are able
to open certain kinds of documents.

In this chapter, you’ll learn how to create apps that work with documents on both iOS
and OS X.

The NSDocument and UIDocument Classes
In iOS and OS X, documents are represented in your application with the UIDocument

and NSDocument classes, respectively. These classes represent the document and store
its information. Every time a new document is created, a new instance of your appli‐

cation’s NSDocument or UIDocument subclass is created.

Document Objects in MVC
Document objects participate in the model-view-controller paradigm. In your app,
document objects are model objects—they handle the reading and writing of informa‐
tion to disk, and provide that information to other parts of the application.

All document objects, at their core, provide two important methods: one to save the
information by writing it to disk, and one to load the information by reading it from
disk. The document object, therefore, is in charge of converting the document infor‐
mation that’s held in memory (i.e., the objects that represent the user’s data) into a data
representation that can be stored on disk.

For NSDocument, the methods are these:

func dataOfType(typeName: String?,

 error outError: NSErrorPointer) -> NSData?

func readFromData(data: NSData?,

 ofType typeName: String?, error outError: NSErrorPointer) -> Bool

And for UIDocument, the methods are these:

func contentsForType(typeName: String!,

 error outError: NSErrorPointer) -> AnyObject!

func loadFromContents(contents: AnyObject!,

 ofType typeName: String!, error outError: NSErrorPointer) -> Bool

The first set of methods is responsible for producing an object that can be written to

disk, such as an NSData object. The second is the opposite—given an object that repre‐
sents one or more files on the disk, the document object should prepare itself for use by
the application.

276 | Chapter 13: Document-Based Applications

Kinds of Documents
OS X and iOS support three different ways of representing a document on disk:

• Flat files, such as JPEG images and text documents, which are loaded into memory
wholesale.

• File packages, which are folders that contain multiple files, but are presented to the
user as a single file. Xcode project files are file packages.

• Databases, which are single files that are partially loaded into memory as needed.

All three of these methods are used throughout OS X and iOS, and there’s no single
“correct” way to represent files. Each one has strengths and weaknesses:

• A flat file is easy to understand from a development point of view, where you simply

work with a collection of bytes in an NSData object. It is also very easy to upload to
the Web and send via email. However, a flat file must be read entirely into memory,
which can lead to performance issues if the file is very large.

• File packages are a convenient way to break up a large or complex document into
multiple pieces. For example, Keynote presentations are file packages that contain
a single file describing the presentation’s contents (its slides, text, layout, etc.), and
include all images, movies, and other resources as separate files next to the de‐
scription file. This reduces the amount of data that must be kept in memory, and
allows your application to treat each piece of the document as a separate part.

The downside is that other operating systems besides OS X and iOS don’t have very
good support for file packages. Additionally, you can’t upload a file package to a
website without first converting it to a single file (such as by zipping it).

• Databases combine the advantages of single-file simplicity with the random-access
advantage of file packages. However, making your application work with databases
requires writing more complex code. Some of this is mitigated by the existence of
tools and frameworks like SQLite and Core Data, but your code will still be more
complex.

The current trend in OS X and iOS is toward flat files and databases, because these are
easier to archive and upload to iCloud.

In this book, we’ll be covering flat files, because they’re simpler to
work with. The same overall techniques apply to file packages and
databases, however, and if you want to learn more about using them,
check out the Document-Based Programming Guide in the Xcode
documentation.

Document Objects in MVC | 277

http://bit.ly/abt_cocoa_doc_architecture

The Role of Documents
A document object (i.e., a subclass of NSDocument or UIDocument) is both a model and
a model-controller in the model-view-controller paradigm. For simpler applications,
the document object is simply a model—it loads and saves data, and provides methods
to let controller objects access that information.

For more complex applications, a document object may operate as a model-controller
(i.e., it would be responsible for loading information from disk and creating a number
of subobjects that represent different aspects of the document). For example, a drawing
and painting application’s documents would include layers, color profiles, vector shapes,
and so on.

Document-Based Applications on OS X
OS X was designed around document manipulation, and there is correspondingly
strong support for building document-based applications in Cocoa and Xcode.

When creating a document-based application, you specify the name of the NSDocu

ment class used by your application. You also create a nib file that contains the user
interface for your document, including the window, controls, toolbars, and other views
that allow the user to manipulate the contents of the document.

Both the document class and the document nib file are used by the NSDocumentCon

troller to manage the document-related features of your app:

• When you create a new document, a new instance of your document class is created,
and copies of the view objects in the document nib file are instantiated. The new
document object is placed in charge of the view.

• When the user instructs the application to save the current document, the document
controller displays a dialog box that asks the user where she wants to save her work.
When the user selects a location, the document controller asks the frontmost docu‐

ment object to store its contents in either an NSData or NSFileWrapper object (for
flat files and file packages, respectively; if the document is a database, it saves its
contents via its own mechanisms). The document controller then takes this re‐
turned object and writes it to disk.

• When the application is asked to open a document, the document controller de‐
termines which class is responsible for handling the document’s contents. An in‐
stance of the document class is instantiated and asked to load its data from disk;
the controls are also instantiated from the nib as previously discussed, and the user
starts working on the document.

278 | Chapter 13: Document-Based Applications

Autosaving and Versions
Starting with OS X 10.7 Lion and iOS 5, the system autosaves users’ work as they go,

even if they haven’t previously saved it. This feature is built into the NSDocumentCon

troller class (and on iOS, the UIDocument class), which means that no additional work
needs to be done by your application.

Autosaving occurs whenever the user switches to another application, when the user
quits your application, and also periodically. From your code’s perspective, it’s the same
behavior as the user manually saving the document; however, the system keeps all pre‐
vious versions of the document.

The user can ask to see all the previous versions, which the system handles for you
automatically. The user is then able to compare two versions of the document, and copy
and paste content from past versions.

Representing Documents with NSDocument
To demonstrate how to make a document-based application in OS X, we’ll make an
application that works with its own custom document format. This application will start
out as a simple text editor, and we’ll move on to more sophisticated data manipulation
from there.

The first thing to do is create a new Cocoa app for OS X. Name it CocoaDocuments,
and make sure that Use Core Data is off.

Turn Create a Document-Based Application on, and set the document extension to

sampleDocument. When you create the application, it will load and save files named
along the lines of MyFile.sampleDocument.

When you create a document-based application in Xcode, the structure of the applica‐
tion is different from non-document-based applications. For example, Xcode assumes
that the majority of your application’s work will be done in the document class, and
therefore doesn’t bother to create or set up an application delegate class.

It does, however, create a Document class, which is a subclass of NSDocument. This is used

as the document class for the “sampleDocument” type. By default, the Document class
does nothing except indicate to the application that the interface for manipulating it

should be loaded from the Document nib file (see the windowNibName property in
Document.swift), which Xcode has also already created when setting up the application.

Stubs of dataOfType(typeName:error:) and readFromData(data:ofType:error:)

are also provided, although they do nothing except create an NSError object, which lets
the document system gracefully display an alert box that lets the user know that there
was a problem working with the data.

Document-Based Applications on OS X | 279

If you open Document.xib, you’ll find the window that contains the interface that will
represent each document that the user has open. If you select the file’s owner in the
outline and go to the Identity Inspector (the third button from the left at the top of the

Utilities pane), you’ll note that the object that owns the file is a Document object

(Figure 13-1). This means you can create actions and outlets between your Document
class and the interface.

Figure 13-1. The class of the file’s owner object can be set using the Identity Inspector

Saving Simple Data
The first version of this application will be a plain text editor. We’ll now modify the

interface for the document to display a text field, and make the Document class save and
load plain text:

1. Open Document.xib and delete the label in the window.

By default, the interface contains a window that has a label inside it. We’ll keep the
window, but lose the label.

2. Add a wrapping text field to the window.

Open the objects library and scroll until you find “Wrapping text field.” Alterna‐
tively, search for “wrapping” at the bottom of the library.

Drag the text field into the window and resize it to make it fill the entire window.

When you’re done, the interface should look like Figure 13-2.

3. Open the assistant and connect the text field to the class. Once the interface has
been built, you need to connect the interface to the document class. Open the as‐
sistant and Document.swift should open. If it doesn’t, use the jump bar at the top of
the assistant editor to select it.

Control-drag from the text field into the Document class, and create a new outlet

called textField.

280 | Chapter 13: Document-Based Applications

In addition to having a variable that connects the document class to the text field,
we need a variable that contains the document’s text. This is because the document

loading and interface setup take place at different times. When your readFromDa

ta(data:ofType:error:) method is called, the textField won’t yet exist, so you
must store the information in memory. This is also a better design as far as model-
view-controller goes, because it means that your data and your views are kept
separate.

4. Add a string property called text by adding the following code to Document:

 var text = ""

Figure 13-2. The final UI for the document window

5. Now we’ll update the loading and saving methods, and make them load and save

the text. We’ll also update the windowControllerDidLoadNib method, which is
called when the interface for this document has been loaded and is your code’s
opportunity to prepare the interface with your loaded data.

Replace methods dataOfType(type:, error:), readFromData(data:, ofType:,

error:), and windowControllerDidLoadNib with the following code:

override func windowControllerDidLoadNib(aController: NSWindowController) {

 // The window has loaded, and is ready to display.

 // Take the text that we loaded earlier and display

 // it in the text field

 super.windowControllerDidLoadNib(aController)

Document-Based Applications on OS X | 281

 self.textField.stringValue = self.text

}

override func dataOfType(typeName: String?,

 error outError: NSErrorPointer) -> NSData? {

 // Convert the contents of the text field into data,

 // and return it

 self.text = self.textField.stringValue

 return self.text.dataUsingEncoding(NSUTF8StringEncoding,

 allowLossyConversion: false)

}

override func readFromData(data: NSData?, ofType typeName: String?,

 error outError: NSErrorPointer) -> Bool {

 // Attempt to load a string from the data; if it works, store it

 // in self.text

 if data?.length > 0 {

 let string = NSString(data: data, encoding: NSUTF8StringEncoding)

 self.text = string

 } else {

 self.text = ""

 }

 return true

}

Now run the application and try creating, saving, and opening documents. You can also
use Versions to look at previous versions of the documents you work with. If you quit
the app and relaunch it, all open documents will reopen.

Saving More Complex Data
Simple text is easy to read and write, but more complex applications need more struc‐
tured information. While you could write your own methods for serializing and de‐
serializing your model objects, it’s often the case that the data you want to save is no
more complex than a dictionary or an array of strings and numbers.

JavaScript Object Notation (JSON) is an ideal method for representing data like this.
JSON is a simple, human-readable, lightweight way to represent arrays, dictionaries,
numbers, and strings, and both OS X and iOS provide tools for converting certain useful
objects into JSON and back.

The NSJSONSerialization class allows you to provide a property list class, and get back

an NSData object that contains the JSON data that describes that class. A property list
class is one of these classes:

282 | Chapter 13: Document-Based Applications

• Strings

• Numbers

• NSDate

• NSURL

• NSData

• Arrays and dictionaries, as long as they only contain objects in this list

In the case of the container classes (dictionaries and arrays), these objects are only
allowed to contain other property list classes.

To get JSON data for an object, you do this:

let dictionary = ["One": 1, "Two":2]

var error : NSError? = nil

let serializedData = NSJSONSerialization.dataWithJSONObject(dictionary,

 options: NSJSONWritingOptions(), error: &error)

// After this call, 'serializedData' is either nil or full of JSON data.

// If there was a problem, the 'error' variable is set to point to an

// NSError object that describes the problem.

You can pass other values for the options parameter as well—check the documentation

for NSJSONSerialization. If you don’t want to pass an option in, just provide an empty

NSJSONWritingOptions().

To load JSON data in and get back an object, you do this:

let loadedDictionary =

 NSJSONSerialization.JSONObjectWithData(serializedData,

 options: NSJSONReadingOptions(), error: &error) as? [String:Int]

// loadedDictionary is now either a dictionary that maps

// strings to ints, or is nil

We’ll now modify the application to store both a block of text and a Boolean value in a
JSON-formatted document. To do this, we’ll include a checkbox control in the appli‐

cation’s UI, and a Bool property in the Document:

1. Open Document.xib.

2. Resize the text field to make some room at the bottom of the window.

3. Drag a checkbox into the window. The interface should now look something like
Figure 13-3.

Document-Based Applications on OS X | 283

Figure 13-3. The updated interface, with the checkbox at the bottom of the window

4. Open Document.swift in the assistant.

5. Control-drag from the checkbox into the Document class, and create a new outlet

called checkbox.

6. Add a Bool property called checked to Document.

7. Replace the methods dataOfType(type:error:), readFromData(data:ofType:er

ror:), and windowControllerDidLoadNib with the following code:

override func windowControllerDidLoadNib(aController: NSWindowController) {

 // The window has loaded, and is ready to display.

 // Take the text that we loaded earlier and display

 // it in the text field

 super.windowControllerDidLoadNib(aController)

 self.textField.stringValue = self.text

 self.checkbox.integerValue = Int(self.checked)

}

override func dataOfType(typeName: String?,

 error outError: NSErrorPointer) -> NSData? {

 self.text = self.textField.stringValue

 self.checked = Bool(self.checkbox.integerValue)

 let dictionary = ["checked": self.checked,

 "text": self.text]

284 | Chapter 13: Document-Based Applications

 var error : NSError? = nil

 let serializedData = NSJSONSerialization.dataWithJSONObject(dictionary,

 options: NSJSONWritingOptions.PrettyPrinted, error: &error)

 if serializedData == nil || error != nil {

 outError.memory = error

 return nil;

 } else {

 return serializedData

 }

}

override func readFromData(data: NSData, ofType typeName: String?,

 error outError: NSErrorPointer) -> Bool {

 var error : NSError? = nil

 let data = NSJSONSerialization.JSONObjectWithData(data,

 options: NSJSONReadingOptions(), error: &error) as? NSDictionary

 if data == nil || error != nil {

 outError.memory = error

 return false

 }

 if let text = data!["text"] as? String {

 self.text = text

 }

 if let checked = data!["checked"] as? Bool {

 self.checked = checked

 }

 return true

}

This new code stores the document information in an NSDictionary, and returns the

JSON in the NSData.

If you’re curious, the JSON representation of this dictionary looks like
this:

{

 "checked" : true,

 "text" : "Hello!!"

}

Document-Based Applications on OS X | 285

The loading code does the same in reverse—it takes the NSData that contains the JSON,

and converts it to an NSDictionary. The loaded dictionary then has the data copied out
of it.

Now run the application and create, load, and save some new documents!

Document-Based Applications on iOS
In contrast to apps on OS X, apps on iOS generally only have one document open at a

time. This means that the document API is simpler, as an NSDocumentController is not
needed—the concept of “frontmost document” doesn’t apply.

In iOS, instead of using NSDocument, you use UIDocument. However, instead of users
selecting which document to open via the Finder, you instead present a list of the user’s
documents and allow the user to select a file. When she chooses a file, you create an
instance of your document class and instruct the document object to load from the
appropriate URL.

You also provide the interface for letting the user create a new document; when she does
so, you again create an instance of your document class and immediately save the new
document. Generally, you then immediately open the newly created file.

We’re going to create an iPhone application that acts as a simple text editor. Creating
document-based applications on iOS is less automated than on OS X, but is still fairly
straightforward.

This application will present its interface with two view controllers: a master view con‐
troller that lists all available documents, and a detail view controller that displays the
contents of the currently open document and allows the user to edit it.

The built-in master-detail application template for iOS is ideal for this, and we’ll use

that. We’ll also have to create our UIDocument subclass manually:

1. Create a new master-detail app for iOS. Make this application designed for iPhone
and name it iOSDocuments.

2. We’ll start by creating the interface. Open Main.storyboard and locate the master
view controller.

3. Update the segues. We need to replace the default segues that come with the appli‐
cation template that Xcode provides.

Delete the segue that connects the master view controller.

Then, hold down the Control key, and drag from the master view controller to the
detail view controller, and choose Push from the menu that appears.

Finally, select the newly created segue, and set its identifier to showDetail.

286 | Chapter 13: Document-Based Applications

4. Add a bar button item to the navigation bar.

This button will be the “create new document” button. Select it
and set its identifier to Add to make it display a + symbol.

5. Open MasterViewController.swift in the assistant.

6. Connect the button. Control-drag from the button to the MasterViewController

class, and create an action named createDocument.

7. Update the prototype cell. Select the prototype cell that now appears in the table

view. Set its style to Basic and its identifier to FileCell. Set its accessory to Dis‐
closure Indicator.

8. Open the detail view controller and delete the label in the middle of the view.

9. Add a text view. Drag a UITextView into the view controller’s view. Make the text
view fill the entire screen.

10. Open DetailViewController.swift in the assistant.

11. Connect the text view to the detail view controller. Control-drag from the text view

into the DetailViewController class. Create a new outlet called textView.

12. Add a Done button to the navigation bar in the detail view controller. Drag a bar
button item into the lefthand side of the navigation bar and set its identifier to

Done. (We’ll make the code not display the Back button.)

When you’re done, the interface should look like Figure 13-4.

13. Make the view controller the delegate for the text view. We want the detail view
controller to be notified when the user makes changes. Control-drag from the text
view to the view controller, and select “delegate” from the menu that pops up.

We’ll now make the code for our UIDocument subclass, called SampleDocument. This
document class will manage its data in a flat file, which means that it will work by loading

and saving its content in an NSData:

Document-Based Applications on iOS | 287

Figure 13-4. The application’s interface

1. Create a new Cocoa Touch class. Name the new class SampleDocument and make it

a subclass of UIDocument.

2. Update SampleDocument.swift so that it reads as follows:

import UIKit

class SampleDocument: UIDocument {

 var text = ""

 // Called when a document is opened.

 override func loadFromContents(contents: AnyObject,

 ofType typeName: String, error outError: NSErrorPointer) -> Bool {

 self.text = ""

 if let data = contents as? NSData {

288 | Chapter 13: Document-Based Applications

 if data.length > 0 {

 // Attempt to decode the data into text; if it's successful

 // store it in self.text

 if let theText =

 NSString(data: data, encoding: NSUTF8StringEncoding) {

 self.text = theText

 }

 }

 }

 return true

 }

 // Called when the system needs a snapshot of the current state of

 // the document, for autosaving.

 override func contentsForType(typeName: String,

 error outError: NSErrorPointer) -> AnyObject? {

 return self.text.dataUsingEncoding(NSUTF8StringEncoding)

 }

}

We’ll now update the code for MasterViewController.swift to display a list of files:

import UIKit

class MasterViewController: UITableViewController {

 var documentURLs : [NSURL] = []

 func URLForDocuments() -> NSURL {

 return NSFileManager.defaultManager()

 .URLsForDirectory(NSSearchPathDirectory.DocumentDirectory,

 inDomains: NSSearchPathDomainMask.UserDomainMask).last as NSURL

 }

 func updateFileList() {

 documentURLs = NSFileManager.defaultManager()

 .contentsOfDirectoryAtURL(self.URLForDocuments(),

 includingPropertiesForKeys: nil,

 options: NSDirectoryEnumerationOptions(), error: nil) as [NSURL]

 self.tableView.reloadData()

 }

 override func viewWillAppear(animated: Bool) {

 self.updateFileList()

Document-Based Applications on iOS | 289

 }

 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {

 return 1

 }

 override func tableView(tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return documentURLs.count

 }

 override func tableView(tableView: UITableView,

 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 let cell = tableView

 .dequeueReusableCellWithIdentifier("FileCell") as UITableViewCell

 let URL = documentURLs[indexPath.row]

 cell.textLabel.text = URL.lastPathComponent

 return cell

 }

 override func tableView(tableView: UITableView,

 didSelectRowAtIndexPath indexPath: NSIndexPath) {

 let URL = documentURLs[indexPath.row]

 let documentToOpen = SampleDocument(fileURL: URL)

 documentToOpen.openWithCompletionHandler() {

 (success) in

 if success == true {

 self.performSegueWithIdentifier("showDetail",

 sender: documentToOpen)

 }

 }

 }

 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject!) {

 if segue.identifier == "showDetail" {

 let detailViewController =

 segue.destinationViewController as DetailViewController

 let document = sender as? SampleDocument

 detailViewController.detailItem = document

 }

 }

290 | Chapter 13: Document-Based Applications

 @IBAction func createDocument(sender: AnyObject) {

 let dateFormatter = NSDateFormatter()

 dateFormatter.dateFormat = "yyyy-MM-dd HH:mm:ssZZZ"

 let dateString = dateFormatter.stringFromDate(NSDate())

 let fileName = "Document \(dateString).sampleDocument"

 let url = self.URLForDocuments().URLByAppendingPathComponent(fileName)

 let documentToCreate = SampleDocument(fileURL: url)

 documentToCreate.saveToURL(url,

 forSaveOperation: UIDocumentSaveOperation.ForCreating) {

 (success) in

 if success == true {

 self.performSegueWithIdentifier("showDetail",

 sender: documentToCreate)

 }

 }

 }

}

Finally, we’ll update the code for DetailViewController to make it display the content

from the loaded SampleDocument object and send the user’s changes to the document.

The DetailViewController will also notice when the user taps the Done button that
was added earlier, and signal to the document that it should be saved and closed.

We also want to make the class conform to the UITextViewDelegate protocol, so that
we receive changes from the user as she types them.

To make DetailViewController conform to UITextController, go to DetailView‐
Controller.swift and update it with the following code:

import UIKit

class DetailViewController: UIViewController, UITextViewDelegate {

 @IBOutlet weak var textView: UITextView!

 @IBAction func done(sender: AnyObject) {

 if let document : SampleDocument = self.detailItem {

 document.saveToURL(document.fileURL,

 forSaveOperation: UIDocumentSaveOperation.ForOverwriting)

 {

 (success) in

 self.navigationController?.popViewControllerAnimated(true)

Document-Based Applications on iOS | 291

 return

 }

 }

 }

 var detailItem: SampleDocument? {

 didSet {

 self.configureView()

 }

 }

 func configureView() {

 if let document: SampleDocument = self.detailItem {

 self.textView?.text = document.text

 }

 }

 func textViewDidChange(textView: UITextView!) {

 if let document : SampleDocument = self.detailItem {

 document.text = self.textView.text

 document.updateChangeCount(UIDocumentChangeKind.Done)

 }

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 self.configureView()

 self.navigationItem.hidesBackButton = true

 }

}

In this code, the DetailViewController object has received the SampleDocument object

loaded by the MasterViewController, and makes the text view display the text that it

contains. Every time the user makes a change to the text field, the text in the SampleDo

cument is updated; the SampleDocument will automatically save the document’s contents
in order to prevent data loss if something bad happens (like a crash or the device running
out of battery).

When the Done button is tapped, the document is told to close, which saves any unsaved
changes. Once this process is complete, the view controller dismisses itself.

292 | Chapter 13: Document-Based Applications

CHAPTER 14

Networking

Many chapters in books like this begin with something like, “The ability to talk to com‐
puters over the network is an increasingly popular feature.” We won’t bore you with
that. Suffice to say—it’s the 21st century, networking is huge, and your app needs to send
and receive data. Let’s learn how.

In this chapter, you’ll learn how to make connections over the network and access
resources with URLs. You’ll also learn how to use Bonjour to discover nearby network
services so that you can connect to them. Finally, you’ll learn how to create your own
network service and receive connections from other devices.

All of the content in this chapter applies to both OS X and iOS.

Connections
At the lowest level, network connections in Cocoa are the same as in every other popular
OS. The Berkeley sockets API, the fundamental networking and connectivity API used
on Windows and Unix OSes (which includes OS X and iOS), is available, allowing you
to make connections to any computer on the network and send and receive data.

However, working with such a low-level API can be cumbersome, especially when you
want to use popular, higher level protocols like HTTP. To make things more fun for
developers like us, Cocoa provides a higher level API that provides a simple interface
for accessing content via URLs on the Internet.

293

A URL is a uniform resource locator. It’s a location on the Internet,
and specifies the location of the server to connect to, the protocol to
use, and the location of the resource on the server. Consider the
following URL: http://oreilly.com/iphone/index.html.

In this case, oreilly.com is the location of the computer on the Inter‐
net, http is the scheme (here, the Hypertext Transfer Protocol),
and /iphone/index.html is the location of the specific resource hos‐
ted by this computer.

When working with web-based network requests, there are three primary classes that

you interact with: NSURL, NSURLRequest, and NSURLSession.

NSURL
The NSURL class represents a URL. NSURLs are just model objects—they contain infor‐
mation about the location of the resource they point to, and provide a number of useful
methods for retrieving specific components of the URL, as well as creating URLs relative
to other URLs.

The easiest way to create an NSURL is to use a string, like this:

let myURL = NSURL(string: "http://oreilly.com")

If you use NSURL(string:), the string you provide must be a well

formed URL. If it isn’t well formed, you’ll get a nil value.

Because calling NSURL’s constructor can result in nil, it always re‐

turns an optional. You’ll need to use ? and ! to unwrap it.

You can also create URLs that are relative to other URLs:

let relativeURL = NSURL(string: "resources/index.html",

 relativeToURL: NSURL(string: "http://oreilly.com/"))

Once you have an NSURL, you can retrieve information about it. For example, to retrieve
the host (the computer name), you can do the following:

let host = relativeURL?.host // = "oreilly.com"

NSURL is an immutable class. If you want to create a URL object that

you can later modify the properties of, use NSMutableURL.

294 | Chapter 14: Networking

URLs are also useful for indicating the location of a file or folder on the local disk, and
both iOS and OS X are increasingly trending toward using them instead of strings that
contain paths.

A file URL is a regular NSURL, but uses the scheme file:. A file URL, therefore, looks
like this:

file://localhost/Applications/

There are special methods in NSURL that make it easier to create file URLs. For example,

you can create one using the fileURLWithPath: method:

let myFileURL = NSURL(fileURLWithPath:"/Applications/")

NSURLRequest
Once you have an NSURL object that points to where your resource is located, you con‐

struct an NSURLRequest. While NSURL points to where the resource is on the network,

NSURLRequest describes how it should be accessed.

NSURLRequest takes an NSURL and adds information about things like how long the
request should go without an answer before timing out, whether (and how) to use

caching, and, if the request is an HTTP request, which request method (GET, POST,

PUT, etc.) to use and what the HTTP request’s body should be.

For most cases, you can use the NSURLRequest(URL:) method to create an NSURLRe

quest given an NSURL:

let urlRequest = NSURLRequest(URL:myURL!)

If you want to have more control over how the request is performed, you can use

NSURLRequest(URL:cachePolicy:timeoutInterval:). This method is the same as the
previous one, but you specify how the request should cache content that it downloads
and how long the request should wait before giving up.

NSURLRequest(URL:) creates a request that caches content accord‐
ing to the default caching policy of the protocol you’re using (e.g.,
HTTP caches depending on whether the server instructs it to, while
FTP never caches) and times out after 60 seconds.

If you want to send a POST request or make changes to the request, you can use NSMuta

bleURLRequest. This is the mutable version of the NSURLRequest class, and allows you

to configure the request after you create it. To create a POST request, for example, you

use the HTTPMethod property:

let mutableRequest = NSMutableURLRequest(URL: myURL!)

mutableRequest.HTTPMethod = "POST"

Connections | 295

NSURLSession
Once you have an NSURLRequest to use, you can go ahead and execute that request on
the network. Because network requests aren’t instant, your code needs to be able to

manage the life cycle of the connection. This is done for you by the NSURLSession object,
which represents a connection in progress.

NSURLSession was introduced into OS X 10.9 and iOS 7 as a replacement for the older

NSURLConnection API, and is the new and recommended way to handle any URL-
related tasks, both uploading and downloading. It is comprised of four major objects:

NSURLSession, NSURLSessionDelegate, NSURLSessionConfiguration, and

NSURLSessionTask.

NSURLSessionConfiguration is the object representing a configuration to be used by

a session. An NSURLSessionConfiguration handles, among other things, cache, cookie
policy, proxies, and timeouts. Each configuration object created is mutable and designed
to be shared by multiple sessions. Apple has also provided some predefined configura‐
tions for common situations.

NSURLSessionTask represents an individual task to be handled by the session. In some

ways, it is the closest object to NSURLConnection in that it contains the state of the task

being performed. The NSURLSessionTask also has methods to let you cancel, suspend,
and resume the task.

Finally, NSURLSession and its delegate NSURLSessionDelegate is responsible for per‐

forming any tasks sent to it. In general, when using an NSURLSession you will not need
to deal with its delegate; just use completion blocks when the session finishes a task.

When you wish to use NSURLSession for background downloading in iOS in your ap‐
plication, you will have to handle the session delegate methods as well as implement the

application(_, handleEventsForBackgroundURLSession:, completionHandler:)

in your application’s delegate.

NSURLSession is a large and complex class; however, to get it up and running is generally
quite straightforward. We’ll cover how it works in the sample code in the section
“Building a Networked Application” on page 297.

NSURLResponse and NSHTTPURLResponse
The response classes describe the initial response from the server about the request.
This information includes the expected size of the downloaded file (in bytes) and the
suggested filename that the server wants to call it. If you’re making an HTTP request,

the server response is an instance of the NSHTTPURLResponse, which also includes the
HTTP status code and the headers that the server sends down.

296 | Chapter 14: Networking

You don’t generally create your own NSURLResponse instances, but rather get them from

an NSURLSession or NSURLConnection object when it first successfully gets a response
from the server and starts downloading content.

Think of it like this:

• NSURL is a finger pointing at the moon.

• NSURLRequest is a blueprint for a Saturn V rocket.

• NSURLSession is an Apollo mission to the moon.

Building a Networked Application
To put all of this together, we’ll build a simple application that downloads an image from

the Internet and displays it in an NSImageView.

The exact same networking code will work on iOS, but using UIImageView rather than

NSImageView.

This application downloads an image from Placekitten, the world’s
most adorable placeholder image service. Of course, web services
come and go, so if you’re living in the World of Tomorrow and Pla‐
cekitten is long since history, find another image URL to use in‐
stead. And then eat another meal in pill form and catch a space-taxi
to the moon.

1. Make a new Cocoa application called Networking.

2. Build the interface. Open MainWindow.xib, and select the main window. Drag in

an NSImageView.

3. Connect the interface. Open AppDelegate.swift in the assistant.

Control-drag from the image view to AppDelegate ’s interface. Create a new outlet

called imageView.

4. Add the code that performs the network request. Replace the applicationDidFi

nishLaunching method with the following code:

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 // PlaceKitten.com URLs work like this:

 // http://placekitten.com/<width>/<height>

 let width = self.imageView.bounds.size.width

 let height = self.imageView.bounds.size.height

Building a Networked Application | 297

 let urlString = "http://placekitten.com/\(Int(width))/\(Int(height))"

 if let url = NSURL(string:urlString) {

 // Using this URL, make an NSURLSesssion and then create a data

 // request task.

 let session = NSURLSession(

 configuration: NSURLSessionConfiguration

 .defaultSessionConfiguration())

 let dataTask = session.dataTaskWithURL(url) {

 (data: NSData?,

 response: NSURLResponse?,

 error: NSError?) in

 if data == nil {

 self.imageView.image = nil

 } else {

 if let image = NSImage(data: data!) {

 self.imageView.image = image;

 }

 }

 }

 // Call resume() on the data request to start it

 dataTask.resume()

 }

 }

It is very important to call resume on any NSURLSessions after giv‐

ing them a task. As NSURLSession is designed to handle enqueing of
multiple tasks, it needs to be told to start.

This code creates a URL based on the size of the image view, and then creates and

configures an NSURLSession (using the predefined defaultSessionConfiguration

class) to handle the URL. Finally, the code asks the NSURLSession to download the URL;

the completion block then takes the loaded data, converts it to an NSImage, and provides
the image to the image view.

Now test the application. Run the app, and feel free to squeal in delight when you see a
cute kitten.

298 | Chapter 14: Networking

Bonjour Service Discovery
If you’re writing networking code that deals with resources on the local network, your
code needs a way to figure out where they are.

Bonjour is a protocol based on multicast DNS that allows a network service to advertise
its presence on a network, and provides a method for clients to find services. Bonjour
doesn’t handle the actual connection, just the discovery.

When you want to find local services via Bonjour, you use an NSNetServiceBrowser
object. This object, once created and started, looks for network services that match the

description that you provide it. Because network services come and go, the NSNet

ServiceBrowser continuously notifies its delegate object when services become avail‐
able and when they stop being available.

Once NSNetServiceBrowser locates a network service, you can ask for additional in‐
formation about the service such as the hostname of the computer providing the service
and the port number that the service is running on. This is called resolving the service,
and takes a bit of extra time (which is why the service browser doesn’t do it for every

service it discovers). When the service resolves (or fails to resolve), the NSNetService
object informs its delegate.

To be notified of when NSNetServiceBrowser notices when services appear and disap‐

pear, your object needs to conform to the NSNetServiceBrowserDelegate protocol. To

be notified of when an NSNetService resolves, your object also needs to conform to the

NSNetServiceDelegate protocol.

Browsing for Shared iTunes Libraries
If you have “Share my library on the local network” turned on in iTunes, iTunes will
broadcast the library via Bonjour. Specifically, it will advertise that your computer is
hosting a DAAP (Digital Audio Access Protocol) server.

To discover services of this type, you get an NSNetServiceBrowser to search for

_daap._tcp services. We’ll make a simple application that browses for, resolves, and
logs any shared iTunes libraries it finds.

All you need to do is create a new Cocoa application called iTunesDetector and update
AppDelegate.swift so that it looks like the following code:

import Cocoa

class AppDelegate: NSObject, NSApplicationDelegate, NSNetServiceDelegate,

 NSNetServiceBrowserDelegate {

 @IBOutlet var window: NSWindow!

Bonjour Service Discovery | 299

 let browser = NSNetServiceBrowser()

 var services = [NSNetService]()

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 browser.delegate = self;

 // Search for DAAP services that use TCP, in the default domains

 browser.searchForServicesOfType("_daap._tcp", inDomain:"")

 }

 func netServiceBrowser(aNetServiceBrowser: NSNetServiceBrowser,

 didFindService aNetService: NSNetService, moreComing: Bool) {

 services.append(aNetService)

 println("Found a service: \(aNetService)")

 aNetService.delegate = self

 aNetService.resolveWithTimeout(5.0)

 }

 func netServiceBrowser(aNetServiceBrowser: NSNetServiceBrowser,

 didRemoveService aNetService: NSNetService, moreComing: Bool) {

 services = services.filter({ $0 != aNetService})

 println("A service was removed: \(aNetService)")

 }

 func netServiceDidResolveAddress(sender: NSNetService) {

 let serviceURL = NSURL(string:"http://\(sender.hostName):\(sender.port)")

 println("Resolved address for service \(sender): \(serviceURL)")

 }

 func netService(sender: NSNetService,

 didNotResolve errorDict: NSDictionary) {

 println("Couldn't resolve address for service \(sender), \(errorDict)")

 }

}

This code does the following things:

1. It adds a class extension to the AppDelegate class, which makes the class conform

to the NSNetServiceBrowserDelegate and NSNetServiceDelegate protocols, and

adds two instance variables: an NSNetServiceBrowser and an NSMutableArray.
The net service browser variable is needed to keep the net service browser in mem‐

300 | Chapter 14: Networking

ory while it does its work; the array will be used to keep the discovered network
services around.

2. In the applicationDidFinishLaunching method, the NSNetServiceBrowser is

created and told to start browsing for _daap._tcp services.

3. The rest of the methods handle the cases of services being discovered, removed,
resolved, or failing to be resolved.

Now run the application and watch the log to see your iTunes library get discovered. If
you don’t see anything appear, make sure that iTunes is open and that you’re sharing
your library. Do this by opening Preferences, going to Sharing, and turning on “Share
my library on my local network.”

Multipeer Connectivity
Multipeer Connectivity is a means of identifying and connecting services together, and
allows for very easy passing back and forth of data with minimal setup. If you are think‐
ing that this seems similar to Bonjour, you are correct; however, Bonjour is for service
discovery, not connection or transmission. Multipeer Connectivity handles everything
in one neat package.

Multipeer Connectivity is comprised of a few different components, but it works by
having applications advertise their services and asking if anyone is available to connect.
The service browser listens for these advertisements and can request to create a con‐
nection between the devices. If the connection is accepted, a session is created with
everyone inside the session being represented by a peer object.

To demonstrate how this works, we’ll make a simple chat application (this exercise is
written for iOS, but the Multipeer Connectivity framework also works on OS X):

1. Create a new, single view iPhone application called MultipeerChat.

2. Open the project in the project navigator and the add the Multipeer Connectivity
framework into the project from the Linked Frameworks and Libraries section.

3. Open the Main.storyboard, and add a UITextView. Make it take up most of the
space, and set its editable field to be false in the Atrributes Inspector.

4. Add a UITextField and add two buttons. Label one Browse and the other Send.

5. Connect the UITextView up to a property called chatView.

6. Connect the UITextField up to a property called messageField.

7. Connect the browse button up to an action called showBrowser, and the Send button

up to an action called sendChat.

When complete, your interface should look like Figure 14-1.

Multipeer Connectivity | 301

Figure 14-1. The interface for your chat program

Modify the ViewController so that it looks like the following:

import UIKit

import MultipeerConnectivity

class ViewController: UIViewController, MCBrowserViewControllerDelegate,

 MCSessionDelegate {

 let serviceType = "LCOC-Chat"

 var browser : MCBrowserViewController!

 var assistant : MCAdvertiserAssistant!

 var session : MCSession!

 var peerID: MCPeerID!

 @IBOutlet var chatView: UITextView!

 @IBOutlet var messageField: UITextField!

302 | Chapter 14: Networking

 override func viewDidLoad() {

 super.viewDidLoad()

 self.peerID = MCPeerID(displayName: UIDevice.currentDevice().name)

 self.session = MCSession(peer: peerID)

 self.session.delegate = self

 // create the browser view controller with a unique service name

 self.browser = MCBrowserViewController(serviceType:serviceType,

 session:self.session)

 self.browser.delegate = self;

 self.assistant = MCAdvertiserAssistant(serviceType:serviceType,

 discoveryInfo:nil, session:self.session)

 // tell the assistant to start advertising our fabulous chat

 self.assistant.start()

 }

 @IBAction func sendChat(sender: UIButton) {

 // Bundle up the text in the message field, and send it off to all

 // connected peers

 let msg = self.messageField.text.dataUsingEncoding(NSUTF8StringEncoding,

 allowLossyConversion: false)

 var error : NSError?

 self.session.sendData(msg, toPeers: self.session.connectedPeers,

 withMode: MCSessionSendDataMode.Unreliable, error: &error)

 if error != nil {

 print("Error sending data: \(error?.localizedDescription)")

 }

 self.updateChat(self.messageField.text, fromPeer: self.peerID)

 self.messageField.text = ""

 }

 func updateChat(text : String, fromPeer peerID: MCPeerID) {

 // Appends some text to the chat view

 // If this peer ID is the local device's peer ID, then show the name

 // as "Me"

 var name : String

 switch peerID {

 case self.peerID:

 name = "Me"

Multipeer Connectivity | 303

 default:

 name = peerID.displayName

 }

 // Add the name to the message and display it

 let message = "\(name): \(text)\n"

 self.chatView.text = self.chatView.text + message

 }

 @IBAction func showBrowser(sender: UIButton) {

 // Show the browser view controller

 self.presentViewController(self.browser, animated: true, completion: nil)

 }

 func browserViewControllerDidFinish(

 browserViewController: MCBrowserViewController!) {

 // Called when the browser view controller is dismissed (i.e., the Done

 // button was tapped)

 self.dismissViewControllerAnimated(true, completion: nil)

 }

 func browserViewControllerWasCancelled(

 browserViewController: MCBrowserViewController!) {

 // Called when the browser view controller is cancelled

 self.dismissViewControllerAnimated(true, completion: nil)

 }

 func session(session: MCSession!, didReceiveData data: NSData!,

 fromPeer peerID: MCPeerID!) {

 // Called when a peer sends an NSData to us

 // This needs to run on the main queue

 dispatch_async(dispatch_get_main_queue()) {

 if let msg = NSString(data: data, encoding: NSUTF8StringEncoding) {

 self.updateChat(msg, fromPeer: peerID)

 }

 }

 }

 // The following methods do nothing, but the MCSessionDelegate protocol

 // requires that we implement them.

 func session(session: MCSession!,

 didStartReceivingResourceWithName resourceName: String!,

 fromPeer peerID: MCPeerID!, withProgress progress: NSProgress!) {

 // Called when a peer starts sending a file to us

 }

304 | Chapter 14: Networking

 func session(session: MCSession!,

 didFinishReceivingResourceWithName resourceName: String!,

 fromPeer peerID: MCPeerID!,

 atURL localURL: NSURL!, withError error: NSError!) {

 // Called when a file has finished transferring from another peer

 }

 func session(session: MCSession!, didReceiveStream stream: NSInputStream!,

 withName streamName: String!, fromPeer peerID: MCPeerID!) {

 // Called when a peer establishes a stream with us

 }

 func session(session: MCSession!, peer peerID: MCPeerID!,

 didChangeState state: MCSessionState) {

 // Called when a connected peer changes state (e.g., if it goes offline)

 }

}

This code does the following things:

1. It adds a class extension to the ViewController class, which makes it conform to

the MCBrowserViewControllerDelegate and MCSessionDelegate protocols, as
well as creating four new properties, including one to handle the multicast peer
components:

• The MCBrowserViewController is a prebuilt view controller that handles and
negotiates browsing for connections.

• The MCAdvertiserAssistant is another prebuilt class that advertises and nego‐
tiates creating a connection and session.

• The MCSession is the object holding the sessions once it has been negotiated.

• MCPeerID represents your peer ID for the session.

2. In the viewDidLoad method, the code initializes all the multicast peer objects before
telling the advertiser to start advertising its availability.

3. In the sendChat method, the sendData(toPeers:error:) message on the session
is the real meat of the application. This is the method used to send data—in our
application, a string from the text field.

4. Finally, session(didReceiveData:fromPeer:) is the delegate method that is called
when the session receives any data—in the case of our application, it appends the
new data to the text view, showing the received text to the text view.

Now if you and another friend both run the application, you should have an amazing
chat app!

Multipeer Connectivity | 305

1. Unless, of course, you’re taking your iPhone to space.

CHAPTER 15

Working with the Real World

Desktops, laptops, iPhones, and iPads are all physical devices existing in the real world—
either on your desk, on your lap, or in your hand. For a long time, your apps were largely
confined to your computer, and weren’t able to do much with the outside world besides
instructing a printer to print a document.

Starting with iOS and OS X 10.6, however, things began to change, and your code is
now able to learn about the user’s location, how the device is moving and being held,
and how far away the computer is from landmarks.

In this chapter, you’ll learn about how your programs can interact with the outside
world. Specifically, you’ll learn how to use Core Location to determine where your
computer or device is on the planet, how to use MapKit to show and annotate maps,
how to use Core Motion to learn about how the user is holding the device, how to use
the printing services available on OS X and iOS to work with printers, how to connect
game controllers into your apps, and how to make sure your apps don’t excessively drain
the user’s battery.

Most of the technology discussed in this chapter works on both OS
X and iOS. Some of the technologies have identical APIs on both
platforms (Core Location, MapKit, and Game Controllers), some have
different APIs on the two platforms (print services), and some are
only available on iOS (Core Motion) or OS X (App Nap). We’ll let you
know which technology is available where.

Working with Location
Almost every user of your software will be located on Earth.1

307

http://bit.ly/phones_on_iss

2. Because you asked, it stands for GLObalnaya NAvigatsionnaya Sputnikovaya Sistema.

Knowing where the user is on the planet is tremendously useful because it enables you
to provide more relevant information. For example, while the business review and social
networking site Yelp works just fine as a search engine for businesses and restaurants,
it only becomes truly useful when it limits its results to businesses and restaurants near
the user.

Location awareness is a technology that is at its most helpful on mobile devices (like an
iPhone or iPad), because their locations are more likely to change. However, it’s also
applicable to a more fixed-location device (like a desktop) to know where it is in the
world. A great example of this is the time-zone system in OS X—if you move your
computer from one country to another, your time zone will have likely changed, and
OS X uses its built-in location systems to work out how to set the clock to local time.

Location Hardware
There are a number of different techniques for determining where a computer is on the
planet, and each requires different hardware. The ones in use by iOS and OS X are:

• GPS, the Global Positioning System

• WiFi base station lookups

• Cell tower lookups

• iBeacons

GPS

GPS devices first became popular as navigation assistants for cars, and later as features
built into smartphones. Initially developed by the U.S. military, GPS is a constellation
of satellites that contain extremely precise clocks and continuously broadcast time in‐
formation. A GPS receiver can listen for these time signals and compare them to de‐
termine where the user is.

Depending on how many satellites the GPS receiver can see, GPS is capable of working
out a location to less than one meter of accuracy.

The GPS receiver is only included on the iPhone, and on iPad models that contain 3G
or 4G cellular radios. It’s not included on any desktop, laptop, or iPod touch, or on WiFi-
only iPads.

Since the introduction of the iPhone 4S and later models, iOS devices capable of re‐
ceiving GPS signals are also capable of receiving signals from GLONASS,2 a Russian

308 | Chapter 15: Working with the Real World

satellite navigation system, all transparently handled and combined with GPS to give
you a better location.

WiFi base station lookups

While a device that uses WiFi to access the Internet may move around a lot, the base
stations that provide that connection generally don’t move around at all. This fact can
be used to determine the location of a user if a GPS receiver isn’t available.

Apple maintains a gigantic database of WiFi hotspots, along with rough coordinates
that indicate where those hotspots are. If a device can see WiFi hotspots and is also
connected to the Internet, it can tell Apple’s servers, “I can see hotspots A, B, and C.”
Apple’s servers can then reply, “If you can see them, then you must be near them, and
therefore you must be near location X.” The device keeps a subset of this database locally,
in case a WiFi lookup is necessary when the device has no access to the Internet.

Usually, this method of locating the user isn’t terribly precise, but it can get within 100
meters of accuracy in urban areas (where there’s lots of WiFi around). Because it uses
hardware that’s built into all devices that can run OS X and iOS, this capability is available
on every device.

Cell tower lookups

If a device uses cell towers to communicate with the Internet, it can perform a similar
trick with the towers as with WiFi base stations. The exact same technique is used,
although the results are slightly less accurate—because cell towers are less numerous
than WiFi stations, cell tower lookups can only get within a kilometer or so of accuracy.

Cell tower lookups are available on any device that includes a cell radio, meaning the
iPhone, and all models of the iPad that have a cell radio. They’re not available on iPods,
because they don’t have any cell radio capability.

iBeacons

iBeacons are a new means of determining location using low-energy Bluetooth devices.
By constantly broadcasting their existence via a unique identifier, they can be detected
by an iOS device, allowing you to determine where you are based on the iBeacon’s
location. iBeacon location and accuracy is much more subjective than any of the other
location methods: instead of pinpointing your position on the planet, iBeacons can tell
you when you are near or far from them. iBeacons are designed more to determine the
store you’re near in a shopping mall or the artwork you’re close to in a museum, rather
than to work out where you are for navigation or tracking.

iBeacons are available on any device capable of running iOS 7 or later. Additionally,
these devices can also be set up to act as an iBeacon themselves.

Working with Location | 309

The Core Location Framework
As you can see, not every piece of location-sensing hardware is available on all devices.
Because it would be tremendously painful to have to write three different chunks of
code for three different location services and then switch between them depending on
hardware availability, OS X and iOS provide a single location services API that handles
all the details of working with the location hardware.

Core Location is the framework that your applications use to work out where they are
on the planet. Core Location accesses whatever location hardware is available, puts the
results together, and lets your code know its best guess for the user’s location. It’s also
able to determine the user’s altitude, heading, and speed.

When you work with Core Location, you work with an instance of CLLocation

Manager. This class is your interface to the Core Location framework—you create a
manager, optionally provide it with additional information on how you want it to behave
(such as how precise you want the location information to be), and then provide it with
a delegate object. The location manager will then periodically contact the delegate object
and inform it of the user’s changing location.

CLLocationManager is actually a slightly incomplete name for the class, because it
doesn’t just provide geographic location information. It also provides heading infor‐
mation (i.e., the direction the user is facing relative to magnetic north or true north).
This information is only available on devices that contain a magnetometer, which acts
as a digital compass. At the time of writing, all currently shipping iOS devices contain
one, but devices older than the iPhone 3GS, iPod touch 3rd generation, and iPad 2 don’t.

To work with Core Location, you create the CLLocationManager delegate, configure it,

and then send it the startUpdatingLocation() message. When you’re done needing

to know about the user’s location, you send it the stopUpdatingLocation() message.

You should always turn off a CLLocationManager when you’re done,
as location technologies are CPU-intensive and can require the use of
power-hungry hardware. Think of the user’s battery!

To work with Core Location, you provide it with an object that conforms to the

CLLocationManagerDelegate protocol. The key method in this protocol is location

Manager(manager: didUpdateLocations:), which is sent periodically by the location
manager.

This method receives both the user’s current location (as far as Core Location can tell)

and his previous location. These two locations are represented as CLLocation objects,
which contain information like the latitude and longitude, altitude, speed, and accuracy.

310 | Chapter 15: Working with the Real World

Core Location may also fail to get the user’s location at all. If, for example, GPS is un‐
available and neither WiFi base stations nor cell towers can be found, no location in‐

formation will be available. If this happens, the CLLocationManager will send its delegate

the locationManager(manager: didFailWithError:) message.

Working with Core Location
To demonstrate Core Location, we’ll create a simple application that attempts to display
the user’s location. This will be an OS X application, but the same API applies to iOS.

To get started with Core Location, create a new Cocoa application called Location.

Now that we have a blank application we’ll build the interface. The interface for this app
will be deliberately simple—it will show the user’s latitude and longitude coordinates,
as well as the radius of uncertainty that Core Location has about the user.

No location technology is completely precise, so unless you’re willing to spend millions
of dollars on (probably classified) technology, the best any consumer GPS device will
get is about 5 to 10 meters of accuracy. If you’re not using GPS, which is the case when
using a device that doesn’t have it built in, Core Location will use less-accurate tech‐
nologies like WiFi or cell tower triangulation.

This means that Core Location is always inaccurate to some extent. When Core Location
updates its delegate with the location, the latitude and longitude provided are actually

the center of a circle that the user is in, and the value of the CLLocation property

horizontalAccuracy indicates the radius of that circle, represented in meters.

The interface of this demo application, therefore, will show the user’s location as well
as how accurate Core Location says it is:

1. Open MainMenu.xib and select the window.

2. Now add the latitude, longitude, and accuracy labels. Drag in three labels and make

them read Latitude, Longitude, and Accuracy. Lay them out vertically.

3. Drag in another three labels, and lay them out vertically next to the first three.

4. Finally, drag in a circular progress indicator and place it below the labels.

When you’re done, your interface should look like Figure 15-1.

You’ll now connect the interface to the app delegate. Open AppDelegate.swift in the
assistant and Control-drag from each of the labels on the right. Create outlets for each

of them called longitudeLabel, latitudeLabel, and accuracyLabel, respectively.

Control-drag from the progress indicator, and create an outlet for it called spinner.

Working with Location | 311

Figure 15-1. The completed interface for our Location app

Now make the app delegate conform to the CLLocationManagerDelegate protocol and
finally, but very importantly, import the Core Location framework. When you’re done,
the top of AppDelegate.swift should look like the following code:

import Cocoa

import CoreLocation

class AppDelegate: NSObject, NSApplicationDelegate,CLLocationManagerDelegate {

 @IBOutlet weak var window: NSWindow!

 @IBOutlet weak var longitudeLabel: NSTextField!

 @IBOutlet weak var latitudeLabel: NSTextField!

 @IBOutlet weak var accuracyLabel: NSTextField!

 @IBOutlet weak var spinner: NSProgressIndicator!

 var locationManager = CLLocationManager()

Now we need to tell the CLLocationManager to start finding the users location. Update

the applicationDidFinishingLaunching method in AppDelegate.swift to look like the
following:

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 self.locationManager.delegate = self

 self.locationManager.startUpdatingLocation()

 self.spinner.startAnimation(nil)

 }

This code does the following things:

• Sets the delegate for the CLLocationManager; in this case we are setting the delegate
to be the app delegate.

• Tells the location manager to start updating the user’s location.

• Finally, it instructs the progress indicator to start animating.

312 | Chapter 15: Working with the Real World

Now we need to implement two CLLocationManagerDelegate methods—location

Manager(manager: didUpdateLocations:) and locationManager(manager: did

FailWithError:)—to handle when we get a location and when we fail to get a location.

Add the following code to the app delegate:

 func locationManager(manager: CLLocationManager!,

 didUpdateLocations locations: [AnyObject]!)

 {

 // collecting the most recent location from the array of locations

 if let newLocation = locations.last as? CLLocation

 {

 self.longitudeLabel.stringValue = NSString(format: "%.2f",

 newLocation.coordinate.longitude)

 self.latitudeLabel.stringValue = NSString(format: "%.2f",

 newLocation.coordinate.latitude)

 self.accuracyLabel.stringValue = NSString(format: "%.1fm",

 newLocation.horizontalAccuracy)

 self.spinner.stopAnimation(nil);

 }

 else

 {

 println("No location found")

 }

 }

 func locationManager(manager: CLLocationManager!,

 didFailWithError error: NSError!)

 {

 // locationManager failed to find a location

 self.longitudeLabel.stringValue = "-"

 self.latitudeLabel.stringValue = "-"

 self.accuracyLabel.stringValue = "-"

 self.spinner.startAnimation(nil)

 }

These two methods do the following:

• Inside locationManager(manager: didUpdateLocations:), a CLLocation object
holding all the user’s location information is created from the array of locations the
location manager found. Then the labels are updated with the relevant information
and the spinner is stopped.

• Inside locationManager(manager: didFailWithError:), the labels are updated
to show dashes, and the spinner is started again.

It’s possible for the location manager to successfully determine the user’s location and
then later fail (or vice versa). This means that a failure isn’t necessarily the end of the
line—the location manager will keep trying, so your application should keep this
in mind.

Working with Location | 313

3. This is the case in most Western locales, but isn’t the case everywhere on the planet. Japanese addresses, for
example, often go from widest area to smallest area.

Now run the application. On its first run, it will ask the user if it’s allowed to access his
location. If the user grants permission, the application will attempt to get the user’s
location. If it can find it, the labels will be updated to show the user’s approximate
location, and how accurate Core Location thinks it is.

Geocoding
When you get the user’s location, Core Location returns a latitude and longitude coor‐
dinate pair. This is useful inside an application and great for showing on a map, but isn’t
terribly helpful for a human being. Nobody looks at the coordinates “-37.813611,
144.963056” and immediately thinks, “Melbourne, Australia.”

Because people deal with addresses, which in America are composed of a sequence of
decreasingly precise place names3 (“1 Infinite Loop,” “Cupertino,” “Santa Clara,” “Cali‐
fornia,” etc.), Core Location includes a tool for converting coordinates to addresses and
back again. Converting an address to coordinates is called geocoding; converting coor‐
dinates to an address is called reverse geocoding.

Core Location implements this via the CLGeocoder class, which allows for both forward
and reverse geocoding. Because geocoding requires contacting a server to do the con‐
version, it will only work when an Internet connection is available.

To geocode an address, you create a CLGeocoder and then use one of its built-in geo‐
coding methods. You can provide either a string that contains an address (like “1 Infinite
Loop Cupertino California USA”) and the geocoder will attempt to figure out where
you mean, or you can provide a dictionary that contains more precisely delineated
information. Optionally, you can restrict a geocode to a specific region (to prevent con‐
fusion between, say, Hobart, Minnesota and Hobart, Tasmania).

We’re going to add reverse geocoding to the application, which will show the user her

current address. To do this, we’ll add a CLGeocoder to the AppDelegate class. When
Core Location gets a fix on the user’s location, we’ll ask the geocoder to perform a reverse

geocode with the CLLocation provided by Core Location.

When you reverse geocode, you receive an array that contains a number of CLPlace

mark objects. An array is used because it’s possible for the reverse geocode to return with

a number of possible coordinates that your address may resolve to. CLPlacemark objects
contain a number of properties that contain address information. Note that not all of
the properties may contain information; for example, if you reverse geocode a location
that’s in the middle of a desert, you probably won’t receive any street information.

The available properties you can access include:

314 | Chapter 15: Working with the Real World

• The name of the location (e.g., “Apple Inc.”)

• The street address (e.g., “1 Infinite Loop”)

• The locality (e.g., “Cupertino”)

• The sublocality—that is, the neighborhood or name for that area (e.g., “Mission
District”)

• The administrative area—that is, the state name or other main subdivision of a
country (e.g., “California”)

• The subadministrative area—that is, the county (e.g., “Santa Clara”)

• The postal code (e.g., “95014”)

• The two- or three-letter ISO country code for that country (e.g., “US”)

• The country name (e.g., “United States”)

Some placemarks may contain additional data, if relevant:

• The name of the inland body of water that the placemark is located at or very near
to (e.g., “Derwent River”)

• The name of the ocean where the placemark is located (e.g., “Pacific Ocean”)

• An array containing any additional areas of interest (e.g., “Golden Gate Park”)

You can use this information to create a string that can be shown to the user.

We’ll start by creating a label that will display the user’s address.

Open MainMenu.xib and drag in a new label under the current set of labels. The updated
interface should look like Figure 15-2. Then open AppDelegate.swift in the assistant and
Control-drag from the new label into the app delegate. Create a new outlet for the label

called addressLabel.

Figure 15-2. The completed interface for our Location app with geocoding

Geocoding | 315

Then add CLGeocoder to the app delegate by updating AppDelegate.swift to have the
following property:

 @IBOutlet weak var addressLabel: NSTextField!

 var geocoder = CLGeocoder()

When the user’s location is determined, perform a reverse geocode by updating the

locationManager(manager: didUpdateLocations:) method with the following code:

 func locationManager(manager: CLLocationManager!,

 didUpdateLocations locations: [AnyObject]!)

 {

 // collecting the most recent location from the array of locations

 if let newLocation = locations.last as? CLLocation

 {

 self.longitudeLabel.stringValue = NSString(format: "%.2f",

 newLocation.coordinate.longitude)

 self.latitudeLabel.stringValue = NSString(format: "%.2f",

 newLocation.coordinate.latitude)

 self.accuracyLabel.stringValue = NSString(format: "%.1fm",

 newLocation.horizontalAccuracy)

 self.spinner.stopAnimation(nil);

 self.geocoder.reverseGeocodeLocation(newLocation)

 {

 (placemarks, error) in

 if error == nil

 {

 let placemark = placemarks[0] as CLPlacemark

 let address = NSString(format: "%@ %@, %@, %@ %@",

 placemark.subThoroughfare,

 placemark.thoroughfare,

 placemark.locality,

 placemark.administrativeArea,

 placemark.country)

 self.addressLabel.stringValue = address

 }

 else

 {

 // failed to reverse geocode the address

 self.addressLabel.stringValue = "Failed to find an address"

 }

 }

 }

 else

 {

 NSLog("No location found")

 }

 }

316 | Chapter 15: Working with the Real World

Now run the application. Shortly after the user’s location is displayed, the approximate
address of your location will appear. If it doesn’t, check to make sure that you’re con‐
nected to the Internet.

Region Monitoring and iBeacons
Depending on what your app’s goals are, it might be more useful to know when your
user enters an area as opposed to knowing their precise location. To help with this, Core
Location provides region monitoring.

There are two types of region monitors: geographical and iBeacon. Region monitoring
lets you set up virtual boundaries around the Earth and be informed via delegate call‐
backs when the user enters or exits one of the regions; iBeacon monitoring lets your
app be informed when a user is near an iBeacon region represented by a low energy
Bluetooth signal.

Currently iBeacons are only available on iOS. Sorry, Mac developers.

Monitoring when the user enters and exits a geographical region is straightforward. If
you wanted to add region monitoring to our existing location app, all you’d need to do

is add the following to the bottom of the applicationDidFinishLaunching method:

 let location = CLLocationCoordinate2DMake(-42.883317, 147.328277)

 let region = CLCircularRegion(center: location,

 radius: 1000,

 identifier: "Hobart")

 locationManager.startMonitoringForRegion(region)

This does several things: first, it creates a location to use as the center of the region (in
this case, the city of Hobart, in Australia). It then creates a region around this center
point with a radius of 1,000 meters, and gives it an identifier to help you differentiate it
later. Finally, it tells the location manager to start monitoring whether a user has entered
or exited a region.

The way CLRegion works on OS X is a little bit different than on iOS.

CLRegion is an abstract class in iOS that is meant to be subclassed for
the specific different types of regions. So to get the same functional‐

ity in iOS, we would instead use the CLRegion subclass CLCircular

Region, the region subclass designed for monitoring circular regions.

Region Monitoring and iBeacons | 317

To know when a user has entered or exited a region, there are two delegate methods:

locationManager(manager: didExitRegion:) and locationManager(manager: di

dEnterRegion:). Both of these callbacks pass in a CLRegion with a string identifier
property that you can use to determine the region that the user has entered or exited:

 func locationManager(manager: CLLocationManager!, didEnterRegion

 region: CLRegion!) {

 // have entered the region

 NSLog("Entered %@", region.identifier)

 }

 func locationManager(manager: CLLocationManager!, didExitRegion

 region: CLRegion!) {

 // have exited the region

 NSLog("Exited %@", region.identifier)

 }

iBeacon regions function a little bit differently when working with circular regions.
Because of the nature of Bluetooth radio devices, you will never be able to guarantee a
radius for each beacon. Additionally, a device might encounter multiple beacons within
a single area that might not all be relevant to your app. Therefore, a radius and an
identifier are not enough to be able to use iBeacons. The principle is the same though

—you create a region to represent the beacon and you tell your CLLocationManager to
start looking for that region. Say you wanted to create an iBeacon region for a particular
painting in a gallery:

 // the UUID string was generated using the uuidgen command

 let uuid = NSUUID(UUIDString:"F7769B0E-BF97-4485-B63E-8CE121988EAF")

 let beaconRegion = CLBeaconRegion(proximityUUID: uuid,

 major: 1,

 minor: 2,

 identifier: "Awesome painting");

This code does several things. First, it creates a CLBeaconRegion with both an identifier
string that works exactly the same as it does in the circular region, and a proximity
UUID. The proximity UUID is a unique identifier to be used by all the beacons in your
app. In the case of a gallery, the UUID would be the same for all iBeacons in the gallery
or any other gallery that your app works in. The major and minor properties are numbers
that can be used to help identify exactly which beacon the user is near. In the case of a
gallery, the major property could represent a section of the museum and the minor
property a particular artwork.

The UUID and major and minor properties of the beacon region must
match the settings you put into your actual hardware iBeacons. How
to set these will change from iBeacon to iBeacon.

318 | Chapter 15: Working with the Real World

Just like with geographical regions, your app gets delegate callbacks for any beacon
regions that your app enounters. Unlike geographical regions, however, you have a
couple of options when using iBeacons; your app can receive the delegate callbacks for

circular regions locationManager(manager: didEnterRegion:) and locationManag

er(manager: didExitRegion:) by calling the standard startMonitoringForRe

gion(region:) on your CLLocationManager. Alternatively, you can call startRanging

BeaconsInRegion(region:) on your location manager. This will result in the delegate

method locationManager(manager: didRangeBeacons: inRegion:) being called,

with all the beacons in range being passed in as an array of CLBeacon objects as well as
the region object that was used to locate the beacons. The closest beacon will have a

proximity property equal to the system-defined CLProximityNear value.

When testing your iBeacon apps, you need an iBeacon to make sure that your app is
doing what it needs to do when it finds a beacon. Buying lots of iBeacons just for testing
is going to be a bit expensive, but Apple has thankfully provided a way to turn your iOS

devices into iBeacons. It is quite easy to do this, but first you need to add a CBPeripher

alManager, an object for managing Bluetooth peripherals, to your app and make your

app conform to the CBPeripheralDelegate protocol:

import CoreLocation

import CoreBluetooth

class ViewController: UIViewController,CBPeripheralManagerDelegate{

 var bluetoothManager : CBPeripheralManager?

 override func viewDidLoad() {

 super.viewDidLoad()

 self.bluetoothManager = CBPeripheralManager(delegate: self, queue: nil)

 }

Then to create an iBeacon for a specific region, you need to create a CLBeaconRegion
that matches the beacon you want to simulate. Finally you need to tell the Bluetooth
manager to start advertising the iBeacon:

 func peripheralManagerDidUpdateState(peripheral: CBPeripheralManager!) {

 if (self.bluetoothManager?.state == CBPeripheralManagerState.PoweredOn)

 {

 // the UUID string was generated using the uuidgen command

 let uuid = NSUUID(UUIDString:"F7769B0E-BF97-4485-B63E-8CE121988EAF")

 let beaconRegion = CLBeaconRegion(proximityUUID: uuid,

 major: 1,

 minor: 2,

 identifier: "Awesome painting");

 var beaconData = beaconRegion.peripheralDataWithMeasuredPower(nil)

 self.bluetoothManager?.startAdvertising(beaconData)

Region Monitoring and iBeacons | 319

 }

 }

Locations and Privacy
The user’s location is private information, and your application must be granted explicit
permission by the user on at least the first occasion that it tries to access it.

People are understandably wary about software knowing where they are—it’s a privacy
issue and potentially a safety risk. To avoid problems, follow these guidelines in your
application:

• Be very clear about what your application is using location information for.

• Never share the user’s location with a server or other users unless the user has
explicitly given permission.

• The user can always see when an application is accessing location information be‐
cause a small icon appears at the top of the screen (on both iOS and OS X). Once
your app has performed the task that location information is needed for, turn off
Core Location—both to save power and to let the user know that they are no longer
being tracked.

Maps
The MapKit framework provides an everything-but-the-kitchen-sink approach to
maps, allowing you to create, annotate, overlay, and adjust maps as needed for your
applications. It plays very well with the location tracking and region monitoring tech‐
nology that Apple provides.

Previously, MapKit was only available on iOS, but since the release of OS X 10.9, MapKit
is now available on OS X as well and the framework functions in virtually the same way
on both platforms.

The base of all maps is the MKMapView, which is the actual view containing map data that
your application can use. The map data that the map view displays comes from Apple
Maps data, although in the past the view used Google Maps data.

Using Maps
Getting a map up and running is quite straightforward, so let’s get cracking!

1. Create a new, single view iPhone application and call it Maps.

2. Next, create the interface. Open the Main.storyboard file. Drag in a map view and
make it take up the entire view.

320 | Chapter 15: Working with the Real World

3. Then connect the interface. Open ViewController.swift in the assistant. Control-
drag from the map view to the view controller and make a new outlet for the map

view. Call it mapView.

4. You then need to extend the view controller. Open ViewController.swift, import the
MapKit framework, and set the controller to be a map view delegate. Finally, add
the MapKit framework into the project.

When you are done, ViewController.swift should look like this:

import MapKit

class ViewController: UIViewController,MKMapViewDelegate {

 @IBOutlet weak var mapView: MKMapView!

5. Finally, configure the map. By default, the map view will be centered over Apple’s
headquarters in Cupertino, so we want to move that somewhere a bit different.

Update viewDidLoad() to look like this:

 override func viewDidLoad() {

 super.viewDidLoad()

 self.mapView.delegate = self;

 let center = CLLocationCoordinate2DMake(-37.813611, 144.963056)

 let span = MKCoordinateSpanMake(2, 2);

 self.mapView.region = MKCoordinateRegionMake(center, span)

Now if you run the app, your map should be centered over Melbourne. The span is how
many degrees of longitudinal and latitudinal delta the view should cover.

Annotating Maps
Just having a map all by itself isn’t a lot of fun. What if we want to see where something
interesting is? Luckily for us, Apple has included an easy way of annotating the map,
which you may have seen in the built-in Maps app as little red, green, and purple pins.
These additions to the map are called annotations.

The annotations are broken up into two object types: MKAnnotation, which represents
the annotation data, including its location and any other data such as a name; and

MKAnnotationView, which will be the view that the map displays when needed.

Maps | 321

Apple has provided a built-in annotation class for when all you need is a simple pin

called MKPointAnnotation. This class has built-in properties for a title and subtitle, and
will automatically draw a pin view when needed, making it very easy to use. MapKit on
both OS X and iOS supports custom annotation and custom views for the annotations,
but for this example we will stick to the built-in pin annotations.

So let’s start dropping those little pins. Open ViewController.swift and add the following

to the bottom of the viewDidLoad method:

 // creating an new annotation

 var annotation = MKPointAnnotation()

 annotation.coordinate = center

 annotation.title = "Melbourne"

 annotation.subtitle = "Victoria"

 // adding the annotation to the map

 self.mapView.addAnnotation(annotation);

This code creates a new point annotation at Melbourne, sets a title and subtitle string,
and then finally adds it to the map. If you run the app, a red pin will be on top of
Melbourne and if you tap it, you’ll get a little window with the title and subtitle strings.

Maps and Overlays
Annotations are good and all, but sometimes you need a bit more than what a pin can
provide. This is where overlays come in handy. Unlike an annotation, they don’t rep‐
resent a single point but instead cover an area on the map.

Overlays, much like annotations, are broken up into two parts: an MKOverlay object

representing the data, and a view object called MKOverlayRender. Also much like an‐
notations, Apple has provided some prebuilt overlays to make life simpler, including
overlays and associated renderers for circles, lines, and polygons—and if you want, you
can build your own.

With that understood, let’s add a 100 km circle around the pin we dropped before. Add

the following to the bottom of the viewDidLoad() method:

 // creating and adding a new circle overlay to the map

 var overlay = MKCircle(centerCoordinate: center, radius: 50000)

 self.mapView.addOverlay(overlay)

This creates a circular region with a radius of 50 km around the same location where
we added the pin, and then it adds the overlay to the map. Nothing will be displayed,
though, until the map view’s delegate provides an appropriate renderer for that overlay.

322 | Chapter 15: Working with the Real World

Add the following map view delegate method to ViewController.swift:

 func mapView(

 mapView: MKMapView!, rendererForOverlay

 overlay: MKOverlay!) -> MKOverlayRenderer! {

 if (overlay.isKindOfClass(MKCircle))

 {

 var circleRenderer = MKCircleRenderer(overlay: overlay)

 circleRenderer.strokeColor = UIColor.greenColor()

 circleRenderer.fillColor = UIColor(

 red: 0,

 green: 1.0,

 blue: 0,

 alpha: 0.5)

 return circleRenderer

 }

 return nil

 }

Terra, as you might know, is a sphere, and your screen is a rectan‐
gle, so there are going to be some issues when trying to squish the
planet into a rectangle. Apple has used what is known as the Merca‐
tor projection to overcome this. The Mercator projection is just one
of many different projections, and they all have their own strengths
and weaknesses.

One of the side effects of the Mercator projection is if you add a lot
of overlays spread all over the place, they might look different if you
zoom the map all the way out than they do up close. Thankfully, most
of the time you are using maps, you will likely be zoomed close enough
in that you won’t notice this.

Now if you run the app, you should see a rather large green circle hovering ominously
over Melbourne, as seen in Figure 15-3.

Maps | 323

Figure 15-3. The map, with an overlay drawn over it

Device Motion
An iOS device is often held in the user’s hands, which means that it’s subject to movement
and rotation. iOS allows your code to receive information about how the device is mov‐
ing, how it’s being rotated, and how it’s oriented. All of this information is available
through the Core Motion framework, which provides a unified interface to the various
relevant sensors built into the device.

324 | Chapter 15: Working with the Real World

Core Motion is only available on iOS, as laptops and desktops don’t
generally get shaken around while being used. While some Mac lap‐
tops include an accelerometer, it isn’t available to your code through
any publicly accessible APIs.

Core Motion provides device motion information to your application by measuring data
from the sensors available to the device:

• The accelerometer, which measures forces applied to the device

• The gyroscope, which measures rotation

• The magnetometer, which measures magnetic fields

The first iOS devices only included an accelerometer, which is actually sufficient for
getting quite a lot of information about device motion. For example, based on the forces
being applied to the device over time, you can determine the direction of gravity, which
gives you information about how the device is being held, as well as determine if the
device is being shaken. If a gyroscope is available, you can refine this information and
determine if the device is rotating around an axis of gravity. If a magnetometer is avail‐
able, it’s possible to determine a frame of reference, so that it can determine which way
north is—something that’s not possible when all you have is relative rotation
information.

Core Motion collects data from all the available sensors and provides direct access to
the sensor information. You can therefore ask Core Motion to give you the angles that
define the device’s orientation in space, as well as get raw accelerometer information.

Raw sensor data can lead to some very cool tricks. For example, the
magnetometer measures magnetic fields, which means that the de‐
vice can actually be used as a metal detector by measuring changes in
the magnetic field.

Working with Core Motion
Core Motion works in a very similar manner to Core Location: it uses a manager object
that provides periodic updates on device motion. However, the means by which the

manager object provides these updates differs from how CLLocationManager does—
instead of providing a delegate object, you instruct the motion manager to call a block
that you provide. In this block, you handle the movement event.

Device Motion | 325

The iOS Simulator doesn’t simulate any of the motion hardware that
Core Motion uses. If you want to test Core Motion, you need to use
a real iOS device.

The motion manager class is called CMMotionManager. To start getting motion infor‐
mation, you create an instance of this class and instruct it to begin generating motion
updates. You can also optionally ask for only accelerometer, gyroscope, or magneto‐
meter information.

You can also get information from the CMMotionManager by querying it at any time. If
your application doesn’t need to get information about device motion very often, it’s
more efficient to simply ask for the information when it’s needed. To do this, you send

the CMMotionManager object the startDeviceMotionUpdates() method (or the

startAccelerometerUpdates() or startGyroUpdates() methods), and then, when

you need the data, you access the CMMotionManager’s accelerometerData, gyroData,

or deviceMotion properties.

The fewer devices that Core Motion needs to activate in order to give
you the information you need, the more power is saved. As always,
consider the user’s battery!

Core Motion separates out “user motion” from the sum total of forces
being applied to the device. There’s still only one accelerometer in
there, though, so what Core Motion does is use a combination of low-
and high-pass filtering to separate out parts of the signal, with the
assistance of the gyroscope, to determine which forces are gravity and
which forces are “user motion”—forces like shaking or throwing your
device. (Note: The authors do not recommend throwing your de‐
vice, no matter how much fun it is. The authors specifically do not
recommend making an awesome app that takes a photo at the peak
of a throw. You will break your phone.)

You can also configure how often the CMMotionManager updates the
accelerometer and gyro—the less often it uses it, the more power you
save (and, as a trade-off, the more imprecise your measurements
become).

To work with Core Motion, you’ll need to add the Core Motion framework to your
project. We’ll now build a small iPhone app that reports on how it’s being moved and
how the device is oriented:

1. Create a new, single view iPhone application and call it Motion.

326 | Chapter 15: Working with the Real World

2. Add the Core Motion framework. Select the project at the top of the project navi‐

gator. The project settings will appear in the main editor; select the Motion target.

Scroll down to Linked Frameworks and Libraries, and click the + button.

The frameworks sheet will appear; browse or search for CoreMotion.framework
and add it to the project.

3. Once the framework has been added, we’ll begin building the interface for the app.
This will be similar to the Core Location app: it will report on the numbers being
sent by Core Motion. However, you can (and should!) use the information for all
kinds of things—game controls, data logging, and more. The authors once used
Core Motion to build an app that tracks human sleeping activity. It’s a tremendously
flexible framework.

Open Main.storyboard. First, we’ll create the labels that display the user motion.

Drag in three labels and lay them out vertically on the lefthand side of the screen.

Make their text X, Y, and Z, respectively.

Drag in another three labels and lay them out vertically to the right of the first three.
Next, we’ll create the labels that display orientation.

Drag in another three labels and lay them out vertically on the lefthand side of the

screen, under the existing set of labels. Make their text Pitch, Yaw, and Roll,
respectively.

Drag in a final set of three labels and lay them out vertically and to the right.

Once you’re done, your interface should look like Figure 15-4.

4. Connect the interface to the view controller. Open ViewController.swift in the
assistant.

Control-drag from each of the labels on the right and create outlets for each of them.

From top to bottom, the labels should be called xLabel, yLabel, zLabel, pitchLa

bel, yawLabel, and rollLabel.

While you have ViewController.swift open, import CoreMotion.

Device Motion | 327

Figure 15-4. The interface for the accelerometer application

When you’re done, the top of ViewController.swift should look like the following:

import UIKit

import CoreMotion

class ViewController: UIViewController {

 @IBOutlet weak var xLabel: UILabel!

 @IBOutlet weak var yLabel: UILabel!

 @IBOutlet weak var zLabel: UILabel!

 @IBOutlet weak var pitchLabel: UILabel!

 @IBOutlet weak var yawLabel: UILabel!

 @IBOutlet weak var rollLabel: UILabel!

5. Now that the view controller’s header file has been set up, we’ll write the code that
actually creates the motion manager and then starts updating the labels as device
motion updates arrive.

328 | Chapter 15: Working with the Real World

We’ll store a reference to the CMMotionManager as an instance variable in the class,
and start and stop the device motion updates when the view controller appears and
disappears.

Update ViewController.swift so that it looks like the following code:

override func viewDidAppear(animated: Bool) {

 self.motionManager.startDeviceMotionUpdatesToQueue(

 NSOperationQueue.mainQueue(),

 withHandler: { (motion: CMDeviceMotion!, error: NSError!) -> Void in

 let xString = NSString(format:"%.1f", motion.userAcceleration.x)

 let yString = NSString(format:"%.1f", motion.userAcceleration.y)

 let zString = NSString(format:"%.1f", motion.userAcceleration.z)

 self.xLabel.text = xString

 self.yLabel.text = yString

 self.zLabel.text = zString

 //convert the pitch, yaw and roll to degrees

 let pitchDegrees = motion.attitude.pitch * 180 / M_PI

 let yawDegress = motion.attitude.yaw * 180 / M_PI

 let rollDegress = motion.attitude.roll * 180 / M_PI

 let pitchString = NSString(format: "%.1f", pitchDegrees)

 let yawString = NSString(format: "%.1f", yawDegress)

 let rollString = NSString(format: "%.1f", rollDegress)

 self.pitchLabel.text = pitchString

 self.yawLabel.text = yawString

 self.rollLabel.text = rollString

 })

}

Finally, connect an iOS device and run the application on it. Watch the numbers on the
screen change as you shake and rotate the device.

Using the Built-in Altimeter
Some iOS devices have a built-in barometer, which can be used to get information about
the current atmospheric pressure. This data can be analyzed to work out relative alti‐
tude (i.e., the change in altitude since recording began).

Not all devices have the hardware needed to use the altimeter. To find out, you

ask the CMAltimeter class whether altitude data is available, using the

isRelativeAltitudeAvailable method:

 if CMAltimeter.isRelativeAltitudeAvailable() {

 println("Altimeter is available")

 } else {

 println("Altimeter is not available")

 }

Device Motion | 329

To use the altimeter, you create an instance of the CMAltimeter class:

 let altimeter = CMAltimeter()

 var currentAltitude : Float = 0.0

Once that’s done, you ask it to begin sending you information about changes in the
user’s altitude:

 let mainQueue = NSOperationQueue.mainQueue()

 altimeter.startRelativeAltitudeUpdatesToQueue(mainQueue) { (data, error) in

 // data.relativeAltitude is the change in

 // altitude since the last time this closure

 // ran, measured in meters.

 // For example, you can keep track of the total

 // change in altitude, relative to where we started:

 self.currentAltitude += Float(data.relativeAltitude)

 self.altitudeLabel.text = "\(self.currentAltitude)m"

 }

Using the Pedometer
A pedometer is a piece of hardware that keeps track of the number of steps the user has
walked or run. Your apps can access live updates from the pedometer (i.e., they can be
updated in near real time as the user moves around) or they can ask the system for
information about how the user has moved around over the last seven days.

Before you can access the pedometer, you need to first check to see if pedometer infor‐
mation is available:

 if CMPedometer.isStepCountingAvailable() {

 println("Pedometer is available")

 } else {

 println("Pedometer is not available")

 }

If the pedometer is available, you create an instance of the CMPedometer class:

 let pedometer = CMPedometer()

To query the system to find information about how many steps the user has taken over

a date range—for example, in the last day—you use the queryPedometerDataFrom

Date(_,toDate:) method, and provide the date range as well as a handler closure that
runs when data is available:

 // Create NSDate objects that refer to 1. right now

 // and 2. one day ago

 let calendar = NSCalendar.currentCalendar()

 let now = NSDate()

 let oneDayAgo = calendar.dateByAddingUnit(NSCalendarUnit.DayCalendarUnit,

330 | Chapter 15: Working with the Real World

 value: -1,

 toDate: now,

 options: NSCalendarOptions())

 // Ask the pedometer to give us info about that date range

 pedometer.queryPedometerDataFromDate(oneDayAgo, toDate: now) {

 (pedometerData, error) in

 // This closure is called on a background queue,

 // so run any changes to the GUI on the main queue

 NSOperationQueue.mainQueue().addOperationWithBlock() {

 if let data = pedometerData {

 self.stepsSinceLastDayLabel.text =

 "\(data.numberOfSteps) steps"

 }

 }

 }

If you want to receive live updates on the user’s step count, use the startPedometerUp

datesFromDate method instead:

 // Start getting live updates on step count, starting from now

 pedometer.startPedometerUpdatesFromDate(now) { (pedometerData, error) in

 if let data = pedometerData {

 // Run the update on the background

 NSOperationQueue.mainQueue().addOperationWithBlock() {

 self.stepsSinceAppStartLabel.text =

 "\(data.numberOfSteps) steps"

 }

 }

 }

Printing Documents
Despite decades of promises, the “paperless office” has never really materialized. Users
like having documents on paper, and both OS X and iOS provide ways of getting stuff
printed on dead trees.

The APIs and methods for printing on OS X and iOS are completely different. On OS

X, individual NSViews are printed, either directly or via an intermediary system. On
iOS, you print via a separate system of print renderer and formatter objects.

We’ll build two demo apps that show how to print documents on OS X and iOS.

Printing Documents | 331

Printing on OS X
One of the happy quirks of OS X’s development is that the entire graphics system traces
its lineage to PostScript, the language of printers. On OS X, drawing graphics is very
easily translatable to printer commands—so much so, in fact, that the translation is done
for you by the OS.

Given any NSView, you can print it by sending it the print() message. OS X takes over
from that point—the print panel appears, the user chooses which printer to use and
how, and the printer prints the document.

When a view is printed, its drawRect() method is called—however, the graphics context
that is prepared before the method is called is designed for generating printer commands

(specifically EPS or PDF content). This means that any custom NSView subclass that you
make is already set up for printing.

To demonstrate printing, we’ll build a small sample application that prints an

NSTextView:

1. Create a new Cocoa application named OSXPrinting.

2. Then create the interface. Open MainMenu.xib.

Drag an NSTextView into the app’s main window. Make it fill the window, but leave
some room at the bottom.

Drag in an NSButton and place it at the lower right of the window. Change its label

to Print.

3. Next, connect the interface. We don’t need to write any code for this, since the button

can be directly connected to the print function of the view.

Select the text view.

Open the Connections Inspector in the righthand sidebar.

Drag from the print: in Received Actions onto the button.

4. Finally, test the application. Run the application and type some text into the text
view. Click the Print button and try printing the document. (If you don’t want to
waste paper, you can print to PDF by choosing “Save as PDF” in the PDF menu,
just like in all applications on OS X.)

You can also choose Print from your application’s File menu, or press
⌘-P. The reason this works without having connected the views is that
the Print menu item is connected to the First Responder, which is the
object that corresponds to whichever view is currently responding to
user input.

332 | Chapter 15: Working with the Real World

Printing on iOS
While OS X machines are often permanently connected to a printer (usually via USB,
and sometimes over the network), iOS printing is much more ad hoc and on the fly. In
iOS, all printing is done over AirPrint, the WiFi-based printer discovery system. When
you print a document, iOS shows you a list of nearby printers, and you send your
document to the printer you want to use.

The printing system is more complex than on OS X, but more flexible. When you want

to print a document, you ask iOS for the shared instance of the UIPrintInteraction

Controller, which is a view controller that allows the user to configure the print job
and works in the same way as the print panel on OS X. You then provide the print
interaction controller with the items you want to have printed.

There are several ways you can indicate to the print interaction controller what should

be printed. If you have a UIImage, or an NSData that contains PDF or image data, you

can give it directly to the print controller. You can also provide an NSArray of these
objects if you have multiple things you want to print.

If you want to print content like text, markup, or custom views, you create a UIPrint

Formatter object for each piece of content. For example, if you have a block of text, you

can create an instance of UISimpleTextPrintFormatter, give it the NSString that con‐
tains your text, and then provide the print formatter to the print controller.

If you want to have total control over what gets printed, you can also use the UIPrint

PageRenderer class, which allows for advanced customization and drawing.

In this section, we’ll create a simple iOS application that does the same thing as the OS
X application in the previous section—a simple text box, plus a print button:

1. Create a new single view application for iOS named PrintingiOS.

2. Next, we’ll create the inteface. Open Main.storyboard.

Drag a UINavigationBar into the window and place it at the top.

Drag a UIBarButtonItem into the navigation bar. Change its label to Print.

Finally, drag in a UITextView and make it fill the rest of the space.

3. Now, we’ll connect the interface to the view controller. Open ViewController.swift
in the assistant.

Control-drag from the text view into ViewController, and create an outlet called

textView.

Control-drag from the Print button into ViewController, and create an action

called print.

Printing Documents | 333

We’re done with the interface. The next step is to make the Print button actually
print.

4. Add the printing code. Open ViewController.swift. Replace the print: method with
the following code:

 @IBAction func print(sender: AnyObject) {

 var printInteraction =

 UIPrintInteractionController.sharedPrintController()

 var textFormatter =

 UISimpleTextPrintFormatter(text: self.textView.text)

 printInteraction?.printFormatter = textFormatter

 printInteraction?.presentAnimated(true,

 completionHandler: {

 (printController:UIPrintInteractionController!,

 completed:Bool!,

 error:NSError!) -> Void in

 })

 }

In order to test the printing system without using actual paper, Xcode provides a tool
called the Printer Simulator that simulates printers on the network. It’s not a substitute
for actually printing on paper—if you’re doing anything with graphics, for example, the
colors will likely be quite different, and a simulated printer won’t demonstrate effects
like ink bleed—but it’s sufficient for demonstrating that it actually works.

5. Launch the Printer Simulator. To do so, open the iOS Simulator if it isn’t open
already, and choose Open Printer Simulator from the File menu.

6. Finally, test the application. Launch the application and hit the Print button. Choose
one of the simulated printers and tap Print. The Print Simulator will simulate print‐
ing and show you the final result.

Game Controllers
Game Controller is another new framework included with the release of iOS 7 and OS
X 10.9 and the implementation is the same on both platforms. Each controller is rep‐

resented by a GCController object and the operating system handles the discovery and
connection of controllers automatically, leaving you free to just use them.

Apple requires you to make controllers an optional interface of a
game. You must provide a fallback option of mouse and keyboard in
OS X, or touch controls in iOS if the user doesn’t have a game
controller.

334 | Chapter 15: Working with the Real World

There are two profiles for game controllers, called gamepad and extendedGamepad. The

standard gamepad has a four-way directional pad, four front-facing buttons in a dia‐

mond pattern, and two shoulder buttons. The extendedGamepad not only has all the

elements of a gamepad (and can be detected as one by the application), but also has a
left and right trigger to accompany the shoulder buttons and two joysticks to go along
with the d-pad.

To demonstrate how to connect to and use the controllers, we’ll create a simple OS X
application (it is worth noting that if you don’t have a controller, this app will be a little
unexciting):

1. Create a new Cocoa application and call it Controllers.

2. Include the framework. Open the project inside the project navigator. In the General

tab, scroll down to the Linked Frameworks and Libraries section and add the Game

Controller.framework into the project.

3. If you haven’t already done so, now would be a great time to connect any controllers
you have—either plug it into your device, or pair it over Bluetooth as per the in‐
structions that come with the controller.

Open applicationDidFinishLaunching() and add the following:

 var controllers = GCController.controllers()

 if (controllers.count != 0)

 {

 // grabbing a reference to the first controller

 self.myController = controllers[0] as GCController

 // un-set the player number

 self.myController.playerIndex = GCControllerPlayerIndexUnset

 if ((self.myController.extendedGamepad) != nil)

 {

 NSLog("This is an extended controller")

 // adding a callback handler for when a value has changed

 var profile = self.myController.extendedGamepad

 profile.valueChangedHandler =

 {(gamepad: GCExtendedGamepad!,

 element:GCControllerElement!) -> Void in

 if (element == gamepad.rightTrigger)

 {

 if (gamepad.rightTrigger.pressed)

 {

 NSLog("Right trigger pressed")

 }

 }

 }

 profile.leftTrigger.valueChangedHandler =

 {(input:GCControllerButtonInput!,

Game Controllers | 335

 value:Float!,

 pressed:Bool!) -> Void in

 if((pressed) != nil)

 {

 NSLog("left trigger pressed")

 }

 }

 }

 else

 {

 NSLog("controller is a simple controller")

 }

 }

 else

 {

 NSLog("There are no controllers connected")

 }

This code does a few things. First, it creates a property to hold the controller as soon as

we can access one. Then applicationDidFinishLaunching() uses the class method on

GCController to get access to all currently connected controllers. We then store the first
controller in our previously defined property and set its player index to be unset, as we
are not going to be using more than one player at a time.

Then we set up two callback handlers: one that responds to every element on the con‐
troller and one that responds only to the left trigger.

If you run the application and have an extended game controller connected when you
press in either of the triggers, you will get a log message.

App Nap
App Nap is a feature for OS X apps that’s designed to improve battery life without
impinging upon an app’s responsiveness. It accomplishes this through a bunch of dif‐
ferent heuristics to determine what apps should be suspended. The heuristics that de‐
termine if your app may be suspended by the OS are as follows:

• The app is not visible.

• The app is not making any noise.

• The app has not disabled automatic termination.

• The app has not made any power management assertions.

When asleep, your app is put in a scheduling queue that rarely gets any processing time.
Any user activity that brings your app to the foreground or the receipt of an OS event
will awaken your app and return it to normal processing priority. App Nap is essentially
trying to keep your computer’s CPU idling for a long as possible, only leaving the idle

336 | Chapter 15: Working with the Real World

state when necessary before returning to the idle state as quickly as possible. With this
goal in mind, Apple has provided three new APIs:

Application visibility
Application visibility is a simple idea: when your app isn’t visible, it is likely that it
doesn’t need to be doing as much as if it were in the foreground. Since the release
of 10.9, a new application delegate method is called when your app’s visibility
changes. To detect this change, add something similar to the following in your
application’s delegate:

 func applicationDidChangeOcclusionState(notification: NSNotification!)

 {

 if (NSApp.occlusionState & NSApplicationOcclusionState.Visible != nil)

 {

 println("You are in the foreground, go nuts")

 }

 else

 {

 println("You are in the background, best slow down")

 }

 }

Timer tolerance
Timers are a great source of causing the system to leave idle state—even two timers
mere milliseconds apart cause the system to switch to normal running from idle.
Timer tolerances allows the OS to slightly shift your timers to be in sync with other
timers that are also running, which allows the system to keep itself idle longer. To

use timer tolerance, simply call the setTolerance method on your timers before
starting them. Apple recommends a default of 10% of a timer’s interval, but this will
need to change on an app-by-app basis.

User actvities
User activities are a way of declaring to the system what you are doing and how
important it is. When your app declares these activities, the system can begin to
optimize the heuristics it uses to know when to nap apps. To declare one of these
activities, implement code similar to the following:

 let queue = NSOperationQueue.mainQueue()

 var token = NSProcessInfo.processInfo()

 token.beginActivityWithOptions(NSActivityOptions.UserInitiated,

 reason: "Important stuff")

 queue.addOperationWithBlock { () -> Void in

 // do important stuff in here

 }

 NSProcessInfo.processInfo().endActivity(token)

App Nap | 337

The option parameter allows you to declare to the system what kind of work it is. This
example is saying that it is user-initiated activity, and as such is very important and
should stop the app from being napped while it is occurring. By contrast, specifying the

option NSActivityBackground indicates to the system that it is low priority, and nap‐
ping the app won’t affect the user.

Authenticating Using Touch ID
Many apps need to ensure that the user has given permission to do certain things. The
most common example is purchasing—an app needs to make super-sure that the users
really do want to spend their money on a virtual kitten app. Other examples include
password managers, where you need to ensure that the user attempting to look at the
stored information is the owner of the device.

Several iOS devices, starting with the iPhone 5S, include the Touch ID sensor, which is
a fingerprint scanner that iOS uses to unlock the device. The Touch ID sensor stores its
fingerprint information in a secure area of the device’s CPU, where it cannot be directly
accessed—the device may only store new information and query whether a scan matches
the existing data. Additionally, because scanned fingerprint information can never be
read from the chip, the device has no way to send fingerprint information to a third
party.

Your app has access to the Touch ID sensor, through the Local Authentication frame‐
work. This framework is designed to provide a general way to ask the system to au‐
thenticate the user.

As of iOS 8, the only authentication system available through Local
Authentication is the Touch ID fingerprint scanner. However, the API
is designed so that additional methods can be added in future relea‐
ses of iOS.

To use the LocalAuthentication framework, you first import LocalAuthentication:

import LocalAuthentication

Once you’ve done that, create and store an LAContext object. The context is the envi‐
ronment in which you check to see whether the user is authenticated or not:

 let authenticationContext = LAContext()

When your code needs to determine whether the device’s owner has granted authori‐
zation, you need to do two things. First, you need to determine whether the app has the
ability to authenticate the user or not. For example, your app may be running on a device
that doesn’t have the Touch ID sensor, which means that Local Authentication won’t be
able to authenticate the user at all.

338 | Chapter 15: Working with the Real World

Local Authentication refers to the different methods of authenticating the user as poli‐
cies. Asking the system to authenticate the user via a policy is referred to as evaluating
the policy.

As of iOS 8, Local Authentication currently only supports a single policy: the Touch ID

scanner. Local Authentication refers to this policy as LAPolicy.DeviceOwnerAuthenti

cationWithBiometrics.

Using Local Authentication means doing three things:

1. Selecting a policy to use (in iOS 8, this will always be LAPolicy.DeviceOwnerAu

thenticationWithBiometrics).

2. Asking the LAContext if it’s possible to evaluate that policy.

3. If it is possible, evaluate the policy, and proceed from there.

If a policy isn’t available, your app will need to use an alternative
method of authenticating the user. The specifics will depend on your
app—if you’re making an app that’s tied to a web-based login sys‐
tem, ask the user to enter a username and password manually. Nev‐
er rely on just Local Authentication, because it might not be available.

In order to check to see whether Local Authentication can evaluate a policy, you call the

canEvaluatePolicy method. This method returns true or false to indicate whether
evaluating the policy is possible, and also supports passing back detailed information

on why it’s not possible through an NSError:

 // Specify how we want to authenticate. (As of iOS 8.0, the only option

 // is with the Touch ID biometric fingerprint scanner.)

 let policy = LAPolicy.DeviceOwnerAuthenticationWithBiometrics

 // Ask the system if it's possible for this authentication check to

 // succeed. (The device might not have a fingerprint scanner, or

 // the user may not have enrolled their fingerprints, for example.)

 var error : NSError? = nil

 let canAuthenticate =

 authenticationContext.canEvaluatePolicy(policy, error: &error)

 if canAuthenticate == false {

 // If we can't use it, bail out and present an alternative way of

 // authenticating.

 println("Can't use the authentication system! \(error)")

 return

 }

Authenticating Using Touch ID | 339

The LAPolicy.DeviceOwnerAuthenticationWithBiometrics policy

is not available on the iOS Simulator. Calling canEvaluatePolicy

when running on the iOS Simulator will always return false.

If Local Authentication indicates that it’s possible to evaluate a policy, you can then
proceed to the third and final stage: actually evaluating it.

To evaluate the policy, you call the evaluatePolicy method. You provide the policy you
want to evaluate, a string of text that explains to users why you want them to authenticate
themselves, and a closure to run when the evaluation is done:

 // Explain why they need to authenticate; for example:

 let authenticationReason = "You're about to spend money."

 // Fire off the authenticator!

 authenticationContext.evaluatePolicy(policy,

 localizedReason: authenticationReason) {

 (succeeded, error) -> Void in

 if succeeded {

 // We're in! Go ahead and perform the sensitive transaction.

 println("Authenticated!")

 } else {

 // Didn't work! This can happen for a number of reasons,

 // including the user canceling an incoming phone call,

 // or choosing to enter a password instead.

 // Check the error code in the 'error' variable to determine

 // what the app should do next.

 println("Not authenticated! \(error)")

 // Some possible error codes:

 if error.code == LAError.UserFallback.rawValue {

 // The user decided to enter a password instead of scanning

 // her fingerprint; present a different way to authenticate.

 }

 if error.code == LAError.UserCancel.rawValue {

 // The user cancelled authentication.

 }

 }

 }

340 | Chapter 15: Working with the Real World

This is the stage at which users are presented with instructions on how to authenticate
themselves: the Touch ID window will appear, and they’ll be prompted to scan their
fingerprint (see Figure 15-5)

Figure 15-5. The Touch ID window, which is presented when you call evaluatePolicy;
the user may either scan her fingerprint, enter a password, or cancel

It’s important to note that users can choose to not scan their fingerprint, and enter a
password instead. They might do this for several reasons: it might be impractical or

Authenticating Using Touch ID | 341

impossible to scan their finger, or the fingerprint scanner might not be working properly
(wet fingers are a lot more difficult to scan, for example.)

If the user decides to manually enter a password, the closure provided to the evaluate

Policy method will receive a false value, to indicate that scanning failed, and the

NSError passed to the closure will have an error code that indicates that choice.

Handoff
Handoff is a feature available from iOS 8 that allows the user to begin an activity on one
device, and continue it from another. One of the simplest examples of how this can be
useful is in email: imagine you start writing an email on your iPhone, and decide that
you want to finish writing it on your laptop. When you look at your laptop’s screen, a
little icon appears on the dock—when you click it, Mail appears, with your half-finished
draft all ready for you to finish up and send.

The Handoff system is designed to make it simple for your app to make this kind of
story possible. Handoff works by getting apps to tell the operating system when they’re
doing an activity that can be handed off to another device, such as drafting an email, or
looking at a web page. In addition, the Handoff system uses the multipeer connectivity
system (discussed in “Multipeer Connectivity” on page 301) to make the operating
system aware of nearby computers that have the ability to have the activity handed off
to them.

To demonstrate Handoff, we’ll build an app for iOS that allows the user to hand off an
activity from one device to another.

This example app is designed for iOS. However, handoffs work on OS
X as well—you can hand off activities from one Mac to another, as
well as handing off from a Mac to an iOS device and back. For infor‐
mation, see the Handoff Programming Guide in the Xcode docu‐
mentation.

Handoff doesn’t work in the iOS Simulator. To use Handoff, you need
at least two iPhones, iPads, iPod touches, or Macs. Additionally, all of
the devices need to be using the same iCloud account.

The app’s “activity” will be a collection of switches; you can flip them on and off, and if
you have another device in range, you can hand off the state of the switches to that
device. You can see the app in action in Figure 15-6.

342 | Chapter 15: Working with the Real World

http://bit.ly/handoff_programming_guide
http://bit.ly/handoff_programming_guide

Figure 15-6. The Handoff demo app

Here are the steps you’ll need to follow:

1. Create a new, single view iOS application and call it Handoffs.

2. Create the interface, which will consist of three switches, all connected to their own
outlets.

Open Main.storyboard, and drag in three UISwitches.

3. Connect the interface to the code.

Open ViewController.swift in the assistant editor. Then hold down the Control key,

and drag from each of the switches into the ViewController class. Create a new

outlet for each one. Name the first one switch1, the second switch2, and the third

switch3.

We also want to know when each of the switches changes state, so that we can let

the Handoff system know. Control-drag from the first switch into the View

Controller class, and make a new action. Make sure that the Event is “Value

Changed.” Name the action switchUpdated.

Once you’ve done that, Control-drag from the other two switches onto the newly

created switchUpdated method.

The interface is now complete. The rest of the work is accomplished via the code.

In Handoff, the state of the activity that the user is performing is stored inside an

NSUserActivity object. This object is responsible for both broadcasting to nearby de‐
vices that the user is performing an activity that can be handed off, as well as storing all
of the information that another device would need to resume the activity. For example,

if the activity was drafting an email, the NSUserActivity object would store the text of
the draft.

In order for the Handoff system to work, you need to tell the system what type of activity
you’re dealing with. Activity types are string that look like a reverse domain name, much

Handoff | 343

like bundle identifiers. For example: com.oreilly.MyAmazingApplication.writing-

email. Your app needs to register each different activity type that it supports with the
system.

To do this, you add each activity type to your application’s Info.plist file (in this example,

the app will have a single activity type: com.oreilly.Handoffs.switches):

1. Register the activity type. Select the project at the top of the project navigator.

Select the Info tab, and insert a new row into the list of “Custom iOS Target Prop‐

erties.” Set the name of the new row to be NSUserActivityTypes, and set its type
to be Array.

With the new row selected, press Enter. A new entry in this array will appear. Set

the new row’s type to String, and set its value to be com.oreilly.Hand

offs.switches.

The application will now register with the operating system that it’s capable of accepting

incoming activities with the com.oreilly.Handoffs.switches type. The next step is
to make the application actually broadcast these.

To do this, we’ll create a property on the ViewController class that stores an instance

of the NSUserActivity.

2. Open the ViewController.swift file.

3. Add the NSUserActivity property to the ViewController class:

 var activity : NSUserActivity?

The next step is to add a method that takes the current state of the switches, and stores
it in a dictionary. This will be used a couple of times in the app, so it pays to make it a
method that can be called repeatedly.

4. Add the activityInfoDictionary method to ViewController.swift:

 // Creates and returns a dictionary containing the state of the activity

 func activityInfoDictionary() -> [String: Bool] {

 return [

 "switch1": switch1.on,

 "switch2": switch2.on,

 "switch3": switch3.on

]

 }

Next, the activity itself will be created and set up. This is done inside the viewWillAp

pear method, so that when the view appears, it indicates to the system that the user is
participating in an activity.

344 | Chapter 15: Working with the Real World

5. Add the viewWillAppear method to ViewController.swift:

 override func viewWillAppear(animated: Bool) {

 // When the view appears, create and set up the activity

 activity =

 NSUserActivity(activityType: "com.oreilly.Handoffs.switches")

 activity?.userInfo = activityInfoDictionary()

 activity?.title = "Switches"

 activity?.delegate = self

 // Becoming current means that this activity will be broadcast

 // to all other nearby devices that have the same iCloud account

 activity?.becomeCurrent()

 }

We also need to make sure that the activity is turned off if the view disappears. This

frees up system resources that are used by the NSUserActivity, and stops the app from

broadcasting. We’ll do this by calling the invalidate method on the activity when the
view disappears.

6. Add the viewWillDisappear method to ViewController.swift:

 override func viewWillDisappear(animated: Bool) {

 // When the view disappears, turn off the activity

 activity?.invalidate()

 activity = nil

 }

As part of being set up, the activity is told to use self as the delegate. This is important,
because it allows the activity to contact the view controller when it needs to get the most
recent state of the activity. To make this work properly, you need to make the class
conform to the correct protocol.

7. At the top of the class’s definition, add the NSUserActivityDelegate protocol, like
so:

class ViewController: UIViewController, NSUserActivityDelegate {

When the user changes the state of the switches, we need to indicate to NSUserActivi

ty that the activity’s state has changed. However, you don’t update the activity directly.
Instead, you indicate to the activity that something’s changed, and that it needs to get
in touch with its delegate (in this example, the view controller) to get the latest state.

Doing this means that the system can be more efficient. Instead of updating every time
the user does anything, which could be as often as every time the user types a new
character on the keyboard, the system can check in every so often and get the latest
information.

Handoff | 345

You indicate to the activity object that new information is available by setting its needs

Save property to true. Later, the activity will call the userActivityWillSave method,
which is responsible for actually giving the activity new information.

8. Notify the activity when the state changes. To do that, add the following code to the

switchUpdated method:

 // A switch has changed state, so we need to update activity

 @IBAction func switchUpdated(sender: UISwitch) {

 self.activity?.needsSave = true

 }

9. Store the activity information by adding the following method to the View

Controller class:

 // Called at some point after you set needsSave on the activity to true

 func userActivityWillSave(userActivity: NSUserActivity) {

 userActivity.userInfo = activityInfoDictionary()

 }

If you run your app on two devices, and then lock one of them, you’ll see a small icon
in the lower-left corner of the screen. If you swipe up from this icon, your app will
launch. You’re half done!

Unfortunately, the app isn’t actually handing information about the activity off from
one device to the next. The final piece is to implement the functionality that receives the
Handoff.

You do this by implementing a method in the application delegate, called applica

tion(_, continueUserActivity:, restorationHandler:). This method is called
when the user swipes up from that icon on the lock screen, and receives both the

NSUserActivity object that contains the activity state, as well as a closure that needs to
be run.

10. Implement the continuation method by opening AppDelegate.swift and adding the

following method to the AppDelegate class:

 func application(application: UIApplication,

 continueUserActivity userActivity: NSUserActivity,

 restorationHandler: ([AnyObject]!) -> Void) -> Bool {

 // Any objects we pass to the restorationHandler function will

 // have restoreUserActivityState called on them, in which they'll

 // get data out of the activity and make themselves ready for the

 // user to resume the activity

 // In this example, we only have a single view controller,

 // so pass that in

 if let rootViewController = self.window?.rootViewController {

346 | Chapter 15: Working with the Real World

 restorationHandler([rootViewController])

 return true

 } else {

 return false

 }

 }

The last step is to add the restoreUserActivityState method, which is called by the
system to restore the state from the activity object.

11. Open ViewController.swift, and add the restoreUserActivityState method to

the ViewController class:

 // Called by the system when we need to

 // restore from an incoming activity

 override func restoreUserActivityState(activity: NSUserActivity) {

 if activity.activityType == "com.oreilly.Handoffs.switches" {

 let userInfo = activity.userInfo as [String : Bool]

 switch1.on = userInfo["switch1"] as Bool!

 switch2.on = userInfo["switch2"] as Bool!

 switch3.on = userInfo["switch3"] as Bool!

 }

 }

You’re done! You can now hand off the state of the activity from one device to another.

Handoff | 347

CHAPTER 16

EventKit

The user’s life isn’t confined to the use of computers and phones, and many people even
use technology to manage real-life interactions with other human beings. One capability
of Apple devices is calendaring and scheduling, which is usually managed through built-
in applications (the Calendar app on iOS and OS X).

However, it can be very useful for third-party applications to be able to access the cal‐
endar, either to create new appointments or to view what the user has lined up for the
day. This information is exposed via EventKit, the calendar data store API.

In this chapter, you’ll learn how to work with EventKit to access the user’s calendar. The
same API applies to both OS X and iOS; in this chapter, the sample code will be written
for OS X.

Understanding Events
All of the information that relates to the user’s calendars comes from the EventKit event
store. This is the database of the user’s calendars, which themselves contain calendar

events. The event store is represented by the EKEventStore class, and you create an
instance of this class to begin working with the calendar.

The event store contains multiple calendars, which are EKCalendar objects. Each cal‐
endar has information like its name, whether it’s editable, whether it’s a subscribed
calendar, and so on.

An “event” is an entry in the user’s calendar, and is represented as an EKEvent object.
Events contain several key pieces of information, including:

• A text label describing what the event is

• The date and times that the event begins and ends

• The location of the event

349

• When the event was created and last modified

EKEvent is actually a subclass of the EKCalendarItem class, because EKCalendars can
contain not only events, but also reminders, which are scheduled alerts.

Reminders are available only on OS X and iOS 6 and later.

Events can also be set to repeat, and the rules for this repetition can be complex. For
example, you can have an event that repeats every day, every second day, on the second
Tuesday of every month, and so on.

In addition to this repeating behavior, it’s possible to detach a specific instance of a
repeating event. For example, imagine you have an event on the calendar that repeats
every week on Monday morning, and one week you need to push it back. However, you
only want to move this one instance, not the entire repeating set. When you move the
event, your calendaring application asks if you want to move all future events, or just
the specific one you just moved. Your answer indicates to the system whether you want
to create a detached event or modify the entire repeating event.

Accessing the Event Store
To get access to the calendar system, you create an instance of EKEventStore, indicating
what kinds of calendar items you want to get from the store (either events or reminders).

To connect to the store, you create an EKEventStore object:

var store = EKEventStore()

Once you create the EKEventStore, you must ask the user for permission to access the

calendars by using the requestAccessToEntityType(entityType:completion:)

method. If the user hasn’t already granted permission to access calendar events of that
type, an alert box will pop up asking the user if it’s OK for your application to access the

calendar. Until the user grants permission, any requests for data will return nil.

The second parameter of the requestAccessToEntityType(entityType:comple

tion:) method is a closure, which takes two parameters of its own: a Bool that indicates

whether the user granted permission or not, and an optional NSError that, if the Bool

is false, describes why permission wasn’t granted. This could be for a variety of reasons,
including the user having parental permissions that disallow calendar access, or the user
simply saying no:

350 | Chapter 16: EventKit

store.requestAccessToEntityType(EKEntityTypeEvent) {

 (success: Bool, error: NSError!) in

 println("Got permission = \(success); error = \(error)")

}

The alert box is only shown once. When you run the app for a sec‐
ond time, the system will remember the user’s decision. When you

call requestAccessToEntityType(entityType:completion:), the
completion handler will be called immediately.

On the first launch, the event store might not have permission at the moment you create

the EKEventStore object, but it might gain permission later. When the user grants (or

revokes) permission, an EKEventStoreChangedNotification is broadcast by the object.
This notification is also sent when the contents of the event store changes; in both cases,
it’s a signal to refresh whatever views you have that are displaying the contents of the
calendar.

The alert box is only presented once. If the user revokes access later,

the next time requestAccessToEntityType is called, it will immedi‐
ately fail.

The alert box will only be displayed again if the user deletes and then
reinstalls the app. The idea behind this is that the app should never
pester the user for permission through the alert box—if your app
really, really needs access to the calendar, then tell them that through
your app’s interface.

Accessing Calendars
To get the list of calendars available to the user, simply ask the event store. Because a
calendar can support only events, or only reminders, you need to specify what you want
the calendars that you get back to support.

To get the calendars that support storing events, you use the calendarsForEntity

Type method, and pass in the EKEntityTypeEvent value as the type parameter:

var eventCalendars =

 store.calendarsForEntityType(EKEntityTypeEvent) as [EKCalendar]

This returns an array of EKCalendars, which you can get events out of.

Getting the array of calendars that support reminders is just as easy—you just pass in

the EKEntityTypeReminder parameter:

var reminderCalendars =

 store.calendarsForEntityType(EKEntityTypeReminder) as [EKCalendar]

Accessing Calendars | 351

Once you have a calendar, you can start working with events inside it.

Accessing Events
A calendar is a potentially infinitely large collection of data. If a calendar contains any
repeating events that don’t have an end date, such as a weekly meeting or someone’s
birthday, then it’s not possible to ask for “all events,” as that collection is of an infinite
size. Instead, you need to specify the date range that you’re interested in receiving
events for.

While you’re filtering based on date range, it’s also useful to filter based on other prop‐
erties as well, including time of day, event name, and so on. The standard filtering tool

in Cocoa and Cocoa Touch is NSPredicate, which allows you to specify parameters for
finding events in a data set.

NSPredicate is also useful outside of EventKit. For example, you can

use an NSPredicate to filter an array to only contain objects that
match certain parameters. For more information on this useful class,
check out its Xcode documentation.

To construct an event-finding predicate, ask your EKEventStore to provide you with a
predicate that finds events between a start date and an end date, as well as the calendars

that the events should be in. This is done with the predicateForEventsWithStart

Date method:

var startDate : NSDate = ...

var endDate : NSDate = ...

var predicate = self.store.predicateForEventsWithStartDate(self.date,

 endDate: endDate,

 calendars: eventCalendars)

The startDate and endDate variables in the preceding code are pla‐
ceholders. We’ll be working with dates in “Building an Events Appli‐
cation” on page 354.

Once you have this NSPredicate, you can give it back to the EKEventStore and it will
retrieve all matching calendar items:

var events = store.eventsMatchingPredicate(predicate) as [EKEvent]

This array contains all matching events, from which you can extract information.

352 | Chapter 16: EventKit

http://bit.ly/nspredicate

Working with Events
Modifying an event or reminder is as simple as modifying its properties. For example,

to modify an event’s title, you just change its title property:

var event : EKEvent = events[0]

event.title = "Party Times"

title is actually a property on EKCalendarItem, the superclass of

EKEvent. This means that it exists in both EKEvent and EKReminder.

However, changing properties on an event or reminder does not update the shared
calendar system immediately. When the calendar item has finished being modified, it
must be explicitly saved back to the event store. You do this by using the method

saveEvent, which takes as its parameters the event that you’re saving, the span of time

that the changes should apply for, and a reference to an NSError variable that the method
will store error information in if anything goes wrong.

The span of time is represented as an EKSpan, which is simply an enumeration with two
options: this event or future events. When you modify a repeating event and choose to
make those changes apply only to one specific instance, the instance will become
detached:

var theEvent = EKEvent()

var error : NSError? = nil

store.saveEvent(theEvent, span: EKSpanThisEvent, commit: true, error: &error)

The EKEventStore that you use to save the event needs to be the

same as the one you got the event from. If you get an EKEvent from

one EKEventStore and try to save it in a different one, your app will
throw an exception.

If you want to copy an event from one place to another, you need to

create your own new EKEvent, provide it with the information you

want (from another EKEvent), and then save it into the destination
event store.

It’s possible that an EKEvent that you’re working with might have changed while your

code was modifying it. Whenever the calendar changes, the EKEventStore that you’re

working with posts an EKEventStoreChangedNotification to let you know that the

contents of the event store have been modified. To ensure that an EKEvent is up to date

with the most recent information inside the calendar, use the refresh method:

Working with Events | 353

var event : EKEvent = ...

event.refresh()

Refreshing an event means that properties that have changed since you got the event
from the event store will be updated to match the most recent version. Note that any
properties that you have changed will not.

For example, say you get an EKEvent and change its title to “Excellent Party Times,” but
don’t save it. You then modify the title of that same event using the Calendar application,

and then save your modified EKEvent object. In this case, it will be your version that is
written to the event store.

This means that if you want to revert any changes that you’ve made

to an EKEvent, all you have to do is not save them.

You can also call the reset method on your EKEventStore to reset
the entire event store to its last saved state.

You can also delete events. Removing an event is straightforward: all you need to do is

call the removeEvent method on your EKEventStore. This behaves much like the meth‐
od used for saving events—you simply provide the event to be removed, indicate wheth‐
er you want to remove a single event or all future events (if the event is a repeating one),

and provide a reference to a variable for an NSError to be placed in if something goes
wrong:

var theEvent : EKEvent = ...

var error : NSError? = nil

store.removeEvent(theEvent, span: EKSpanFutureEvents,

 commit: true, error: &error)

Building an Events Application
To wrap things up, we’re going to build an app that displays events for the user, de‐
pending on which day they’ve selected.

This app presents a date picker and a list of events. When the date picker’s selected date
changes, the list updates to show the user’s events for that day:

1. Create a new Cocoa application called Events.

To work with EventKit, we need to add the EventKit framework.

2. Add EventKit.framework to the project. Open AppDelegate.swift, and add the fol‐
lowing code at the top:

import EventKit

354 | Chapter 16: EventKit

First, we’ll write the code that will expose the calendar information. We’re going to create
several properties, some of which will be backed by instance variables and some of which
will not.

Specifically, the application will keep track of the following information:

• The currently selected date

• The event store used to access the calendar

• The available calendars

• The events for the currently selected date

The event store and date properties will be backed by an instance variable, while the
available calendars and events properties will be dynamically computed when needed
(based on the selected date and event store).

When the user selects a date, the app will query the calendar and ask for all events that
fall between that date and one day following that. This means that the time of that first
date should be midnight, in order to catch all events that happen within one day
after that.

We’ll first set up the event store, and then add the properties for the date, the list of
events, and the list of calendars that contain those events:

1. Set up the EKEventStore. The next step is to set up the event store, which is kept

in the store property, which will be lazily loaded. That is, the first time the property

is accessed, an EKEventStore object will be created and assigned to the property.

This keeps us from having to do any deliberate setup in the application’s init or

awakeFromNib methods.

This can be done through Swift’s support for lazy properties. By declaring a property

as lazy, the object will only be created when the property is accessed for the first
time by your code:

 lazy var store : EKEventStore = EKEventStore()

 func applicationDidFinishLaunching(notification: NSNotification!) {

 self.store.requestAccessToEntityType(EKEntityTypeEvent) {

 (success: Bool, error: NSError!) in

 println("Got permission = \(success); error = \(error)")

 }

 }

2. Add the date property, by adding the following code to AppDelegate:

 var date : NSDate = NSDate() {

 willSet {

 // Convert the provided date to one at midnight on the same day

 var dateComponents =

Building an Events Application | 355

 NSCalendar.currentCalendar().components(NSCalendarUnit.DayCalendarUnit |

 NSCalendarUnit.MonthCalendarUnit |

 NSCalendarUnit.YearCalendarUnit, fromDate: newValue)

 if let dateResult =

 NSCalendar.currentCalendar().dateFromComponents(dateComponents) {

 self.date = dateResult

 }

 }

 }

NSDateComponents is a class that can perform calculations on dates, given a calendar.
In this case, we’re asking the class to get the day, month, and year from a date, and then

create a date from that—thereby creating an NSDate object on the same date as the
provided one, but with a time value set to midnight on that day.

Additionally, we want to disregard the time information from the date; when you ask

NSDate for the current date, it returns an NSDate corresponding to the current date and
time. We don’t want that, so we need to do some calendar calculation to make the time
value correspond to midnight on the provided day, thus ensuring that the time value is
consistent no matter which date we select.

We can now add the calendars and events properties. These don’t have any instance
variables, because all they’ll do is retrieve information from the event store.

3. First, to add the calendars property, add the following code to AppDelegate:

 var calendars : [EKCalendar] {

 get {

 return self.store.calendarsForEntityType(EKEntityTypeEvent)

 as [EKCalendar];

 }

 }

Next, add the following code to add the events property:

 var events : [EKEvent] {

 get {

 var endDate = date.dateByAddingTimeInterval(24 * 60 * 60)

 var predicate =

 self.store.predicateForEventsWithStartDate(self.date,

 endDate: endDate, calendars: self.calendars)

 return self.store.eventsMatchingPredicate(predicate) as [EKEvent]

 }

 }

The calendars method simply returns the array of calendars that support events.

356 | Chapter 16: EventKit

The events method is a little more complex. Because a request to the event store requires
that we provide a start date and an end date for our query, we need to create an end date
that’s one day after our start date (which we’ll set up in a moment).

Because there are 24 hours in a day, 60 minutes in an hour, and 60 seconds in a minute,

we can create an NSDate that’s one day after the start date with the dateByAddingTi

meInterval method on NSDate. This method takes as its sole parameter the number of
seconds in the future that the new date should be; thus, we want a date that’s 86,400
seconds in the future, which is 24 times 60 times 60.

Given these two dates, we call predicateForEventsWithStartDate and provide the
start date, end date, and the calendars to check. We then get the array of events that
matched that predicate, and return it.

There’s one last method to create: one that will be used to indicate to the system that
when the date changes, the list of events will also change.

4. Add the keyPathsForValuesAffectingEvents method to AppDelegate:

 class func keyPathsForValuesAffectingEvents() -> NSSet! {

 return NSSet(object: "date")

 }

This method returns an NSSet containing the list of properties that, when modified,

cause the events property to change. This method is checked by the Cocoa bindings

system whenever a property changes on the AppDelegate object, and helps us bind the
code to the view with minimal additional work.

With all of that out of the way, it’s finally time to create the interface. Fortunately, because
of the work we’ve done in the code, it’s very simple to set up.

1. Open MainMenu.xib. Drag an array controller into the outline. Bind its content

array to the app delegate, with the model key path self.events. Open the Identity

Inspector, and change its label to Events.

Drag in a date picker and a table view. Select the date picker, and change its style to
Graphical. This creates a nice calendar control.

When you’re done, the finished interface should look something like Figure 16-1.

Building an Events Application | 357

Figure 16-1. The finished interface

2. Bind the date picker. The date picker needs to control the date property on the app
delegate. To make this happen, select the date picker, open the Bindings Inspector,

and bind the Value property to the app delegate, with the model key path self.date.

All we need to do now is bind the table view to the list of events for the selected date.

Because this is exposed as the events property on the app delegate, and this property
will automatically update its contents as the date is changed, the table view will always
show the events for the selected date, even as the user changes it.

3. Bind the table view. Select the table view in the outline (it’s inside the scroll view),

and bind its content to the Events array controller that you set up earlier. Set the

controller key to arrangedObjects.

Select the table column (inside the table view in the outline), and bind its Value to

the Events array controller. Set the controller key to arrangedObjects and the

model key path to self.title.

You’re done! Run the app, and try selecting different dates in the date picker.

358 | Chapter 16: EventKit

If nothing is appearing in the table view, you should double-check to
make sure that there is actually an event on the date you’re trying to
look at. One of the authors, who shall remain nameless (although it
was Jon), spent more than 10 minutes trying to debug the app be‐
fore realizing his mistake.

User Privacy
Just like a user’s location (see “Working with Location” on page 307) and contacts, the
events on the user’s calendar are considered private and sensitive information. Apps
aren’t allowed to access the calendar unless the user explicitly grants them permission,
and they are expected to behave properly when they don’t receive this permission—if
your app can’t access the calendar, it should handle this gracefully. Additionally, the user
can revoke access to the calendar (or any of the other private data stores) at any time.

This means that you can’t write code and assume that you’ll get access to the information
your application needs. Instead, your code needs to gracefully fail—if your app can get
any useful work done without access to the calendar, it should go ahead and do so, and
if it is rendered inoperable by not having access, it should tell the user in a friendly
manner (don’t pop up a scary “error!” dialog box).

If you’re writing an application to be submitted to the App Store, you can expect that
whoever reviews your application will disallow calendar access to determine how the
app behaves without it. If your application doesn’t cope, expect it to be rejected.

User Privacy | 359

CHAPTER 17

Instruments and the Debugger

As anyone who’s written software knows, designing and implementing the features of
an application is only a fraction of the work. Once the app’s done and performs all the
tasks it’s meant to do, you need to make sure that it runs well.

Performance is a feature that many developers neglect, but it’s something that influences
people’s decisions to use your software or not. Many of our friends and family prefer to
use Pages instead of Microsoft Word, because despite the relative lack of features in
Pages, it’s a more nimble and zippy application.

Not paying attention to performance also has more tangible implications for your code.
For example, an application that is careless with memory will end up being force-quit
by the system on iOS, and an app that consumes lots of CPU time will exhaust your
user’s battery and make the system run hot. There are other resources as well that your
application needs to be careful with, including network bandwidth and disk space.

To help monitor your application’s performance and use of resources, the developer
tools include Instruments, an application that’s able to inspect and report on just about
every aspect of an application.

Instruments works by inserting diagnostic hooks into a running application. These
hooks can do things like analyze the memory usage of an application, monitor how
much time the app spends in various methods, and examine other data. This informa‐
tion is then collected, analyzed, and presented to you, allowing you to figure out what’s
going on inside your application.

In this chapter, you’ll learn how to get around in Instruments, how to analyze an ap‐
plication, and how to spot and fix memory issues and performance problems using the
information that Instruments gives you. You’ll also learn how to use Xcode’s debugger
to track down problems and fix them.

361

Getting Started with Instruments
To get started with Instruments, we’ll load a sample application and examine how it
works.

The application that we’ll be examining is TextEdit, which is the built-in text editor that
comes with OS X. TextEdit is a great sample app to modify because it’s a rather complex
little app—it’s effectively an entire word processor, with support for images, Microsoft
Word import and export, and a lot more. You’ve probably used it before; if you haven’t,
you can find it by either searching Spotlight for “TextEdit” or by looking in the Appli‐
cations folder.

The source code to TextEdit is available from the Apple Mac Developer site and you can
find it by going to http://bit.ly/textedit_src.

TextEdit is written in Objective-C, not Swift. The reason we’re in‐
cluding it in a book about Swift is that this is one of the more com‐
plex pieces of sample code available, as well as being a real-world
application that millions of people use every day.

The Developer site also contains a great deal of other example code and resources in
the Mac Developer Library.

Here are the steps you should follow:

1. Double-click the TextEdit.xcodeproj file to open it in Xcode.

2. Run the application. Click the Run button or press ⌘-R.

The app will launch. Play around with it by writing some text, and saving and
opening some documents.

We’ll now use Instruments to examine what TextEdit is doing in memory as it runs.

3. Quit TextEdit. You can do this by pressing ⌘-Q or choosing Quit from the TextEdit
menu.

362 | Chapter 17: Instruments and the Debugger

http://bit.ly/textedit_src
https://developer.apple.com/library/mac/navigation

4. Tell Xcode to profile the application. To do this, choose Profile from the Product
menu. You can also press ⌘-I.

Xcode will rebuild the application, and then launch Instruments. When Instru‐
ments launches, it presents a window that lets you choose which aspects of the app
you’d like to inspect (Figure 17-1).

Figure 17-1. The Instruments template chooser

5. Select the Allocations instrument, and click Choose. Instruments will launch
TextEdit; you can start recording memory usage information from the application
by clicking the Record button. You can also press ⌘-R or choose Record Trace from
the File menu.

At this point, you’re in Instruments proper, so it’s worthwhile to stop and take a
look around (Figure 17-2).

Getting Started with Instruments | 363

Figure 17-2. The Instruments window

The Instruments Interface
When you work with Instruments, you’re working with one or more individual modules
that are responsible for analyzing different parts. Each module is also called an instru‐
ment—so, for example, there’s the Allocations instrument (for measuring memory per‐
formance), the Time Profiler instrument (for measuring runtime performance), the VM
Tracker instrument (for measuring memory consumption), and so on.

Each instrument is listed in the Instruments pane at the top of the window. As an ap‐
plication runs, information from each instrument is shown in the Track pane. If you
select an instrument in the Instruments pane, more detailed information is shown in
the Detail pane at the bottom of the window. The Track pane is useful for giving you a
high-level overview of the information that is being reported, but the majority of useful
information is kept in the Detail pane.

The Detail pane shows different kinds of information, depending on the instrument.
To choose which information to present, you can use the navigation bar, which separates
the window horizontally.

To configure how an instrument collects its data, you can change options in the In‐
spector at the bottom-right of the window. From there, you can set the various options
that affect what information the instrument collects.

364 | Chapter 17: Instruments and the Debugger

In addition to allowing you to control how an instrument works, you can access addi‐
tional information about any selected information through the Inspector. You do this
by clicking the rightmost icon at the top of the Inspector to open the Extended Detail
Inspector. This pane, as its name suggests, displays extended detail information on
whatever is selected in the Detail pane. For example, if you’re using the Allocations
instrument, the Detail pane could be showing the objects currently active in your ap‐
plication. You could then select a specific object, and the Extended Detail Inspector
would show exactly where that object was created in your code.

You can also control what Instruments is doing through the Record buttons. The large
red button in the center is the main one that we care about—clicking on it will launch
the application that’s currently under investigation, and start recording data. Clicking
it again will quit the application and stop recording, though the data that was collected
remains. If you click Record again, a new set of data will be recorded—if you want to
see past runs, you can navigate among them by clicking on the arrows in the display in
the middle of the toolbar.

To open and close the various panes, click on the view buttons at the
righthand side of the toolbar.

Observing Data
We’ll now do some work inside TextEdit and watch how the data is collected:

1. Start recording, if the app isn’t open already. If TextEdit isn’t running, hit the Record
button to launch it again.

When the application starts up, it immediately allocates some memory as it gets
going. When it needs to store more information, it allocates more. We’ll now cause
the app to start allocating more memory by adding text to the document.

2. Enter some text in the document. Go to the TextEdit window and start typing.
Because text isn’t very large, we won’t see much of a difference in what’s being
displayed unless we enter quite a lot of text.

So, to quickly enter lots of text, type something, select it all, copy, and paste. Then
select all again, and copy and paste again. Repeat until you’ve got a huge amount of
text in the document.

3. Observe the memory usage of TextEdit climbing. Go back to Instruments, and you’ll
notice that the amount of memory used by the application has increased quite a lot
(Figure 17-3).

Getting Started with Instruments | 365

Figure 17-3. Instruments records an increase in memory usage as the application
is used

Here, the consumption of memory is OK, because we deliberately stress-tested the ap‐
plication. However, if you see similar spikes in memory usage in your application from
regular use, you probably have a problem to solve.

Adding Instruments from the Library
While Instruments provides a selection of templates that you can use to get started (such
as the Allocations template we used earlier), you can add more instruments to your trace
to help hunt down issues.

To add an instrument to your trace document, select the instrument you want to use
from the Library. To open the Library, click the Library button, choose Library from
the Window menu, or press ⌘-L (see Figure 17-4).

366 | Chapter 17: Instruments and the Debugger

Figure 17-4. The Instruments Library

The Library lists all of the available instruments that you can use, as well as information
on what each one does. To add an instrument to your trace, drag and drop an instrument
into the Instruments pane, or double-click the instrument.

Getting Started with Instruments | 367

Not all instruments work on all platforms. For example, the Open‐
GL ES analyzer instrument only works on iOS.

Combining different kinds of instruments allows you to zoom in on specific problems.
For example, if your application is being slow and you think it’s because it’s loading and
processing lots of information at once, you can use a Reads/Writes instrument alongside
a Time Profiler. If the slowdowns occur while both of these instruments indicate heavy
activity, then your slowdowns are being caused by your application working the disk
too hard while using lots of CPU time.

Fixing Problems Using Instruments
To demonstrate how to detect and solve problems using Instruments, we’ll create an
application that has a large memory problem, and then use Instruments to find and
fix it.

This iOS application will create and display a large gallery of images and let the user
smoothly scroll between them. We’ll develop and run it on the iOS Simulator, and then
see how well it does on a real device.

The application will consist of a single scroll view, which will have a number of image
views added to it. The user will be able to scroll around inside the view to see the different
images. Here are the steps you should follow to create the application:

1. Create a new, single view iOS application and call it MemoryDemo.

2. Open Main.storyboard in the project navigator.

3. Add a scroll view to the window. Make it fill the entire screen. While you have it
selected, turn Paging Enabled on. This means that the scroll view will behave much
like the home screen on the iPhone, where all scrolling snaps to the width of the
scroll view.

4. Connect the scroll view to the view controller class. Open the assistant, and Control-

drag from the scroll view into ViewController. Create a new outlet called

imagesContainer.

5. Add the code that sets up the application. Add the following code to View‐
Controller.swift:

 func loadPageWithNumber(number:NSInteger) {

 // If an image view already exists for this page, don't do anything

 if self.imagesContainer.viewWithTag(number) != nil {

 return

368 | Chapter 17: Instruments and the Debugger

 }

 // Get the image for this page

 let image = self.imageWithNumber(number)

 // Create and prepare the image view for this page

 let imageView = UIImageView(image: image)

 var imageViewFrame = self.imagesContainer.bounds

 imageViewFrame.origin.x = imageViewFrame.size.width * CGFloat(number - 1)

 imageView.frame = imageViewFrame

 // Add it to the scroll view

 self.imagesContainer.addSubview(imageView)

 // Mark this new image view with a tag so that we can

 // easily refer to it later

 imageView.tag = number

 }

 func imageWithNumber(number: Int) -> UIImage {

 // Inset the image by 30px so that we can see the rounded corners

 var imageRect = self.imagesContainer.frame

 imageRect.inset(dx: 30, dy: 30)

 UIGraphicsBeginImageContext(imageRect.size)

 // Draw a rounded rectangle

 let path = UIBezierPath(roundedRect: imageRect, cornerRadius: 10)

 path.lineWidth = 20

 UIColor.darkGrayColor().setStroke()

 UIColor.lightGrayColor().setFill()

 path.fill()

 path.stroke()

 // Draw the number

 let label = "\(number)"

 let font = UIFont.systemFontOfSize(50)

 let labelPoint = CGPoint(x: 50, y: 50)

 UIColor.whiteColor().setFill()

 let labelAttributes = [NSFontAttributeName: font]

 label.drawAtPoint(labelPoint, withAttributes:labelAttributes)

 // Get the finished image and return it

 let returnedImage = UIGraphicsGetImageFromCurrentImageContext()

 UIGraphicsEndImageContext()

Fixing Problems Using Instruments | 369

 return returnedImage

 }

 override func viewDidLayoutSubviews () {

 // Create 10,000 images

 let pageCount = 10000

 // Load them into the scroll view

 for i in 1...pageCount {

 self.loadPageWithNumber(i)

 }

 // Tell the scroll view about its new content size

 var contentSize = CGSize()

 contentSize.height = self.imagesContainer.bounds.size.height

 contentSize.width = self.imagesContainer.bounds.size.width

 * CGFloat(pageCount)

 self.imagesContainer.contentSize = contentSize

 }

6. Run the application. The application runs fine on the simulator, but if you try to
run it on the device, it will appear to hang for a while and finally exit without
showing the app.

To find out why this happens, we’ll run this inside Instruments:

1. Set the Scheme to launch on your iOS device. We want Instruments to run on the
device, not the simulator. (If you don’t have an iOS device to test on, that’s OK—
you can still use the simulator, but the numbers you see in Instruments won’t be
representative of how it would work on a real iPhone or iPad.)

2. Launch the application inside Instruments. Do this by choosing Profile from the
Product menu, or pressing ⌘-I.

3. Select the Allocations template. We want to keep an eye on how memory is being
used. Select the Allocations template, and click Choose.

4. Click the Record button, and watch the results. Instruments will plot the memory
usage of the application as it attempts to start up (and then crashes).

As the application launches, you’ll notice that the amount of memory used by the app
steadily increase. After a while, the app will start receiving memory warnings (you’ll see
a bunch of black flags pop up in the timeline), and will then quit.

Clearly, the problem is that the application consumes too much memory. There’s an
additional problem—the number of images being drawn during startup is causing a
huge slowdown. The application is creating and inserting a thousand image views onto

370 | Chapter 17: Instruments and the Debugger

the screen. Each image displayed by the image views needs to be kept in memory, which
means that the app rapidly runs out of space and is forced to exit.

A better way to handle this is to only display the images that the user can see, rather
than loading all of them at once. At minimum, there are only three images that need to
be present—the one currently being shown, and the two on either side of it. Because of
the size of the image views, it’s possible for this app to be showing one or two images at
the same time, but never three.

To fix the problem, therefore, we need to make the application update the image views
while the user is scrolling. If an image view isn’t visible by the user, the app should remove
it from the screen, which frees up memory.

To do this, we’ll add a method that makes sure that the image views for the previous,
current, and next pages are present, and then removes all other image views. This
method will be called every time the scroll view scrolls, meaning that as far as the user
is concerned, every image is on the screen when she needs to see it.

First, we’ll set up the view controller to be notified when the scroll view scrolls, and then

add the code that checks the image views. Finally, we’ll update the viewDidLoad method
to make it only display the first set of image views:

1. Open the storyboard and make the scroll view use the view controller as its delegate.

Control-drag from the scroll view onto the view controller’s icon. Choose “delegate”
from the list that pops up.

2. Open ViewController.swift. We now need to make the class conform to the

UIScrollViewDelegate protocol. Replace the class’s definition with the following
line of code:

class ViewController: UIViewController, UIScrollViewDelegate {

3. Next, we’ll update the code to update the collection of image views when the scroll
view scrolls.

Add the following methods to ViewController.swift:

func updatePages() {

 var pageNumber = Int(imagesContainer.contentOffset.x /

 imagesContainer.bounds.size.width + 1)

 // Load the image previous to this one

 self.loadPageWithNumber(pageNumber - 1)

 // Load the current page

 self.loadPageWithNumber(pageNumber)

 // Load the next page

 self.loadPageWithNumber(pageNumber+1)

Fixing Problems Using Instruments | 371

 // Remove all image views that aren't on

 // this page or the pages adjacent to it

 for imageView in imagesContainer.subviews {

 if imageView.tag < pageNumber - 1 ||

 imageView.tag > pageNumber + 1 {

 imageView.removeFromSuperview()

 }

 }

}

func scrollViewDidScroll(scrollView: UIScrollView!) {

 self.updatePages()

}

4. Replace the viewDidLayoutSubviews method with the following code:

override func viewDidLayoutSubviews () {

 // Create 10,000 images

 let pageCount = 10000

 self.updatePages();

 // Tell the scroll view about its new content size

 var contentSize = CGSize()

 contentSize.height = self.imagesContainer.bounds.size.height

 contentSize.width = self.imagesContainer.bounds.size.width

 * CGFloat(pageCount)

 self.imagesContainer.contentSize = contentSize

}

Once you’ve made these changes, try running the app on the device again. You’ll find
that its behavior is identical to how it used to run, with the added bonus that the appli‐
cation doesn’t run out of memory and crash on launch.

Retain Cycles and Leaks
The Automatic Reference Counting feature built into the compiler is also great at re‐
ducing problems caused by memory leaks, but it’s not foolproof.

Automatic Reference Counting releases an object from memory when the last strong
reference to that object goes away. However, if two or more objects have strong refer‐
ences to each other, the number of strong references to each object will never be zero,
and the objects will stay in memory—even if nothing else in the application has a ref‐
erence to those objects. This is called a retain cycle, so named because if you were to
draw a graph showing how each object refers to each other, you’d end up drawing a
circle.

372 | Chapter 17: Instruments and the Debugger

You can figure out if you have a retain cycle by using Instruments. When you have a
retain cycle, objects will remain in memory, which means that if you repeat the process
that creates the retain cycle, your app will increase in memory and never go down.

To find out if this is happening, follow these steps:

1. Launch your app in Instruments, and use the Allocations template.

2. Use your app for a bit. Go in and out of screens, tap buttons, and generally use the
app as it’s meant to be used.

3. Click the Mark Generation button (see Figure 17-5) in the Display Inspector, which
you can access by pressing Command-2. Instruments will record how much mem‐
ory is currently being used.

Figure 17-5. The Mark Generation button

4. Perform a task in the app, and then return to the point that you were at when you
marked the generation. The idea here is that you’ve performed some task, and ev‐
erything should have cleaned up after itself, so there shouldn’t be any growth in the
amount of memory that the app is using.

5. Click Mark Generation again. Instruments will again record how much memory is
being used, and compare it to the previous generation. In the Growth column,
Instruments shows the difference between this generation and the previous gener‐
ation (see Figure 17-6).

If this number is not zero, then the act of performing that task and returning to the
starting point meant that the app was left with more memory.

Figure 17-6. The Growth column, showing a rise in memory since the last
generation

6. Expand the generation by clicking on the arrow at the left, and you’ll see the list of
objects that are left behind (see Figure 17-7). You can double-click on these to see
the point in your code at which they were created.

Retain Cycles and Leaks | 373

Figure 17-7. The list of objects created in this generation that are still in memory

Using the Debugger
Xcode includes a source debugger called LLDB. Like all debuggers, LLDB allows you to
observe your code as it runs, set breakpoints and watchpoints, and inspect the contents
of memory.

The debugger is deeply integrated into Xcode, and Xcode lets you create very specific
actions to run when your code does certain things. You can, for example, ask Xcode to
speak some text the third time that a specific line of code gets run.

Setting Breakpoints
There are a few ways to set a breakpoint in Xcode. The most common method is to set
a breakpoint on a line of code—when execution reaches that point, the debugger stops
the program.

To set a breakpoint at a line, click the gray gutter at the left of the code editor. A blue
breakpoint arrow will appear (Figure 17-8).

It’s easier to add breakpoints, and navigate your code in general, if you
turn on line numbers in Xcode. To do this, open Preferences by
pressing ⌘-, and open the Text Editing tab. Turn on the Line Num‐
bers checkbox.

374 | Chapter 17: Instruments and the Debugger

Figure 17-8. A breakpoint

After a breakpoint has been added to your code, you can drag the arrow to move the
breakpoint. To remove the breakpoint, drag it out of the gutter.

When the program hits a breakpoint, Xcode shows the backtrace of all threads in the
debug navigator. From there, you can see how a breakpoint was hit, and what functions
were called that led to the program hitting that breakpoint.

Controlling program flow

When the program execution hits a breakpoint, you can choose to simply resume exe‐
cution, or step through the code line by line.

To control program flow, you use the buttons in the debugger bar. The debugger bar is
at the top of the debug area, which you can open and close by clicking the middle
segment of the View control, at the top right of the toolbar (Figure 17-9).

Figure 17-9. The debugger bar

From left to right, the buttons in the debugger bar perform the following actions:

• Close the debug area

• Pause or resume execution

• Step Over (continue to the next line of code)

• Step Into (if the current line of code is a method call, continue into it)

• Step Out (continue until execution leaves the current method)

When you add a breakpoint, it appears in the breakpoints navigator. From there, you
can see all of the currently set breakpoints—you can also jump directly to a breakpoint,
disable it, or delete it.

Custom breakpoints

Normally, a breakpoint just pauses execution when hit. However, you can customize
your breakpoints to perform specific actions.

Using the Debugger | 375

To customize a breakpoint, right-click the arrow or the breakpoint’s entry in the break‐
points navigator, and choose Edit Breakpoint. The Edit Breakpoint window will appear
(Figure 17-10).

Figure 17-10. Editing a breakpoint

The Edit Breakpoint window allows you to customize when the breakpoint should trig‐
ger and what happens when it does. You can also indicate how many times the break‐
point should be ignored, what actions the breakpoint should run, and whether the
breakpoint should pause the execution of the program.

Adding actions to a breakpoint allows you to run some AppleScript, speak a line of text,
play a sound, or other actions. To add an action, click the “Click to add an action” button
and choose the action that should be run.

This is a tremendously flexible feature, as it allows you to get additional information
about how your program is running without the program stopping and starting.

Special breakpoints

The breakpoints navigator also allows you to add special breakpoints for exceptions,
symbols, OpenGL ES Errors, and Test Failures.

An exception breakpoint stops the program when an exception is thrown. For example,

if you have an NSArray with two items and you try to access the third one, an exception
is thrown and your program exits. Normally, Xcode stops the program at the point
where the exception is caught, which isn’t often the place where it is thrown. This makes
it difficult to work out where the problem is. To solve this problem, you can add an
exception breakpoint that stops the program at the instant the exception is thrown.

A symbolic breakpoint stops the program when a specific, named function or method
is entered. This is mostly useful when you want to stop execution at a function that you
might not have the source code for, and then view the backtrace.

376 | Chapter 17: Instruments and the Debugger

An OpenGL ES Error breakpoint stops the program whenever an OpenGL ES error is
encountered. This is mostly useful when debugging graphics-heavy iOS applications
such as games.

A Test Failure breakpoint stops the program when a test assertion fails. This breakpoint
is designed to be used in conjunction with unit tests, letting you see exactly when, where,
and hopefully why your tests are failing.

To add one of the special breakpoints, click the + button at the lower left of the break‐
points navigator. Then choose which type of breakpoint you want to add, and Xcode
asks you to configure the new breakpoint (Figure 17-11).

Figure 17-11. Configuring an exception breakpoint

If you’re creating an exception breakpoint, you can choose whether you want to stop
on exceptions thrown by Objective-C code (remember, lots of iOS and OS X is still
written in Objective-C), C++ exceptions (likewise!), or both. You can also choose
whether the breakpoint should stop when the exception is thrown or caught.

Inspecting Memory Contents
When the program is stopped in the debugger, you can see the current state of objects
and variables in memory.

The variables view is the lefthand section of the debug area. When the program is stop‐
ped, the variables view shows the variables that exist at that point.

The variables view shows the value of the variables. If the variables are simple types like

Int or Bool, their values are shown; if the variables are things like arrays, then summary
information about them is shown, like the content of the string or the number of items
in the array.

If you use the flow control buttons while the program is stopped, the variables view
updates to show any changes. If a variable changes, it gets highlighted in blue.

Using the Debugger | 377

The variables view also allows you to quickly send the description message to any
object and see the results. To do this, right-click on a variable and choose Print
Description.

Working with the Debugger Console
At the righthand side of the debug area is the console. The console is the command-line
interface to the debugger, and allows you to directly access some of the debugger’s pow‐
erful, lower-level features.

Working with LLDB via the console is a subject large enough to fill its own book, but
in this section we’ll talk about how to use the console for its arguably most powerful
purpose: running custom code to work with your program’s variables.

Let’s assume that the debugger has stopped at a breakpoint in a method. In this method,

myArray is an array, and you want to check its contents.

To see how many items are in myArray, you’d type this into the console:

print myArray.count

Note the lack of a semicolon. In the console, you don’t put a semicolon at the end of
lines.

When you call a method in the debugger, you must specify what type

of data the method will return. In the preceding example, count re‐

turns an int.

You can send arbitrary messages to objects. For example, if you wanted to get the second

object in the myArray array, you’d do this:

print-object myArray.objectAtIndex(1)

The print-object command takes an object and sends it a description message. It
then returns the string that comes back.

View Debugging
Xcode lets you debug not only your code, but also your views. Using the view debug‐
ging feature, you can peel back the contents of your screens to get a better understanding
of how the screen is laid out.

Using the view debugging feature, you can look behind views and find out what they’ve
covering up, find out if any views aren’t visible because they’re off-screen, and get in‐
formation about the constraints that are defining the view’s position and size. This makes

378 | Chapter 17: Instruments and the Debugger

them great for spotting and solving problems where you’ve added a view, but it isn’t
showing up on the screen.

To use the view debugging feature, simply run any application from Xcode.

View debugging works on both iOS and OS X.

Once the app is running, click the View Debugging button, in the debugger controls
bar (see Figure 17-12)

Figure 17-12. The debugging controls (the View Debugging button is the second from
the right)

Once you click that button, the application will be paused, and you’ll be presented with
the view debugging screen. This screen takes a snapshot of the app’s current state, but
exploded out into each of its different views, as shown in Figure 17-13.

View Debugging | 379

Figure 17-13. The exploded view

When you’re in the view debugging screen, you can click and drag to rotate the entire
scene, and get different views on how the screen is laid out.

You can also click individual views to get additional information about them, including
their position and size, as well as any object-specific information (e.g., clicking a label
will reveal its text). You can also use the slider at the lower left of the screen to increase
and decrease separation of views.

At the bottom center of the screen, you’ll find controls that determine what the view
debugging screen will show you (seen in Figure 17-14.)

Figure 17-14. The view debugging options

Each of these buttons let you configure the view debugging view. From left to right:

1. Toggles whether content that’s clipped by something (like another view) is shown

2. Toggles whether constraints are shown

3. Resets the view to normal

380 | Chapter 17: Instruments and the Debugger

4. Lets you select whether you see view contents, wireframes, or both

The Testing Framework
Xcode comes bundled with XCTest, a full-featured testing system for iOS and OS X
applications. XCTest allows you to define unit tests for your code—small, independent
blocks of testing code that are designed to be run all at the same time, to verify that your
code is behaving the way you want it to.

Testing is an incredibly important part of application development. When developing,
you’ll often find yourself ensuring that the current part of the app that you’re working
on is functioning correctly, and has no bugs; however, this can make you focus too
closely on a single piece, without taking other areas in your app into consideration.

When you write tests for your code, they’re kept around after you’re done working on
the feature you’re focusing on at the moment. This means that when your tests are run,
all of your old tests run as well—which means that you can ensure that your new changes
didn’t break anything.

Tests give you peace of mind. By automating the process of ensuring that your app works,
you don’t have to worry as much when releasing a view version.

On top of this, creating tests is incredibly simple. When you create a new project in
Xcode, a test suite is also created. Test suites contain all of your application’s code.

You can see this in action by following these steps:

1. Create an app. It doesn’t matter whether it’s an iOS app or an OS X app. Name it
TestExamples.

2. Find the test suite. In the project navigator, find the TestExamplesTests folder, which
contains the project’s test files.

3. Open the test case file. Find and open the TestExamplesTests.swift file. Inside this
file, you’ll add your test methods.

Writing Tests
Writing tests using XCTest is very simple. To create tests, you create a subclass of the

XCTestCase class, and then add individual test methods to that subclass. In the preceding
example, Xcode has created the TestExamplesTests file for you, but it’s straightforward
to add your own.

The XCTestCase class has three special methods that you add—the setUp method, the

test methods, and the tearDown method:

The Testing Framework | 381

• The setUp method is run immediately before each test, and serves as the location
to set up the environment needed for each test.

• Any method whose name begins with test, and takes no parameters and returns
no value, is considered a test method. Inside this method, you write code that checks
to see if your application’s working the way you want it to.

• The tearDown method is run immediately after each test, and is your opportunity
to tidy up after the test is run.

Inside test methods, you write code that exercises some part of your app—creating
objects, running methods, and so on—and then verify that the results of that code
matches what you expect. You verify these results using special methods called assertion
functions.

Assertion functions are functions that check to see if a certain condition is true. If it’s
not, the test fails. For example, to test whether addition works as you expect, you can
add a test method that looks like this:

 func testAddition() {

 XCTAssertEqual(2 + 2, 4, "2 + 2 should equal 4")

 }

You can also assert many other conditions, such as a Boolean value being true or false,
two objects being equal, and many other states. In each case, you provide the condition
as well as a short text string explaining what the test represents; if the test fails, Xcode
uses this string to explain to you what went wrong. You can have multiple assertions in
a single test method.

To run your tests, hit Command-U, or open the Product menu and choose Test. The
app will build and start up, and all tests will run. The app will then automatically quit.

If you want to run a specific test, click the diamond shape in the sidebar that’s next to
the test. When you do this, the app builds and starts, and then runs that single test.

The most effective way to use tests is to write tests before you write
the code itself. If you have a feature you want to implement, write a
test that checks the result of your code, as well as empty methods that
return fake data. When you run the tests, you’re expecting the tests
to fail. (If they don’t fail, you have something to investigate!)

Once you have a set of failing tests, you can then begin implement‐
ing your code proper. You’re done once your tests are all passing.

Writing code in this way forces you to think about how the code you’re
writing will be used. When you write a method, you’ll spend more
time writing code that uses the method than writing the method itself.
If you begin your designs with usage in mind, you’ll write better code.

382 | Chapter 17: Instruments and the Debugger

Writing Asynchronous Tests
Some code takes time to run. For example, your app might include an animation that
runs some code when complete, or it might download a file in the background and then
process it. The XCTest system can handle this kind of test using expectations.

An expectation is an object that represents the fact that the system expects a certain
condition to be fulfilled later. In the case of the background download example, your
test might be that you want to ensure that the file downloaded correctly. In this case,
you’d create an expectation just before starting the download, and then when the down‐
load is done, you’d mark the expectation is fulfilled. If the expectation as never fulfilled,
then the test fails.

Here’s an example of how to use expectations in your tests:

 func testExpectations() {

 let openExpectation =

 self.expectationWithDescription("Something useful happened");

 // Perform some work that might take a bit of time

 // (This example method takes a block that runs when the work is done)

 doSomethingUseful { () -> Void in

 // The work is now done, fulfill the expectation

 openExpectation.fulfill()

 }

 // Now that the work has been kicked off, wait 1 second for the

 // expectation to be fulfilled

 self.waitForExpectationsWithTimeout(1.0) { (error) in

 println("The expectation wasn't fulfilled in time! \(error)")

 }

 }

Performance-Testing Blocks with Tests
The measureBlock method allows you to test the performance of a piece of your code.

When you call measureBlock, you provide a block of code that exercises the code you
want to measure. The testing system will repeatedly run that code, and measure the
amount of time taken each time. When this completes, you’re given a report that indi‐
cates how much time was taken, on average:

 func testPerformanceExample() {

 // This is an example of a performance test case.

 self.measureBlock() {

The Testing Framework | 383

 // Do some useful work; this block will be run multiple times, and

 // the time taken to run it will be measured.

 }

 }

Debug Gauges
The debug gauges allow you to quickly get information about how your app is using
system resources. Specifically, you can get information about the app’s CPU load, mem‐
ory usage, and how heavily it’s using the disk and network. In all four of these cases, the
less the app is using, the better.

To see the debug gauges in action, run any application, and then open the debug navi‐
gator, which is the third button from the right in the Navigator panel (see Figure 17-15).

Figure 17-15. The debugging gauges

Debug gauges supplement the heavier functionality provided by Instruments. The
gauges aren’t as good at letting you view different kinds of usage side by side, but they
save time in launching and dealing with Instruments.

Performance Optimization
When writing any application, it’s vital that you consider performance. When an ap‐
plication performs well, it runs faster, consumes less system resources, and creates a
better overall user experience. For example, if your application is CPU-heavy, you’ll end
up draining the user’s battery, and generally ruining her day.

The specific techniques involved in ensuring that your app performs well depend on
the details of what your app does; however, the following are some general tips to make
your application perform well:

• Run code on background queues as much as possible, to give the system oppor‐

tunites to put it on other cores. Use NSOperationQueue to let the system decide how

384 | Chapter 17: Instruments and the Debugger

to run the code—it’s a lot more efficient to run two cores than it is to run a single
core for twice that time.

• Use less memory. Reduce the number of images that your application keeps in
memory, and remove items from memory when they’re not needed. This is espe‐
cially important on iOS, where running out of memory means that your application
will be terminated by the system.

• Delay reading and writing data until it’s actually needed. While pre-caching is fine
in principle, there’s often no reason to spend time loading data from disk into
memory “just in case.” Load the data that your app needs only when there’s a very
good chance that the user will actually need to use it.

• Performance-test your code. While performance is often a matter of feeling fast,
using performance tests in your code allows you to be objective about whether the
changes to your code are improving or worsening your performance.

Performance Optimization | 385

CHAPTER 18

Sharing and Notifications

Just about every app these days deals with some kind of content—whether it’s business
documents written in an office suite, images created in an image editor, or even high
scores earned in a game. Users frequently want to be able to show this content to other
people, and the OS provides built-in sharing APIs that let your application send various
kinds of content to services that can handle them. For example, online services like
YouTube and Vimeo can receive video files and share them over the Internet, the Mes‐
sages app can send text, photos, and videos, and email can send just about any file.

In addition to sending content to other locations, the OS is also capable of receiving
notifications. These are short messages sent from a server to an iOS device, which are
received regardless of whether the app is running or the phone is awake.

In this chapter, you’ll learn how to share data from your application using the built-in
sharing APIs, and how to send and receive both push and local notifications.

Sharing
From the user’s perspective, the problem of data sharing can be rephrased as, “How can
I send this to someone else?” From your application’s perspective, however, the problem
of data sharing is really the question, “Where can I send this data?”

Different systems are capable of accepting different kinds of data. A video, for example,
cannot be sent to a printer, and plain text cannot be sent to a photo-hosting site like
Flickr. Fortunately, the sharing systems on both iOS and OS X already know what dif‐
ferent data types are supported by the sharing destinations that the OS knows about.

As of OS X 10.10, the available sharing destinations for OS X are as follows:

Email
Text, images, videos, and anything that can be copied and pasted

387

Messages
Same content as email

AirDrop
Files

Aperture
Photos

iPhoto
Photos

Flickr
Photos

YouTube, Vimeo, Todou, Youku
Videos

Safari Reading List
URLs

Setting the Desktop background
Images

Setting a Twitter, LinkedIn, or Facebook profile picture
Images

Twitter, Facebook, LinkedIn, Tencent Weibo, and Sina Weibo
Text, images, videos, and URLs

As of iOS 8, the available sharing destinations for iOS are as follows:

Email
Text, images, videos, and URLs (including URLs pointing to local files)

Messages
Text and images

AirDrop
Files

Flickr
Photos

YouTube, Vimeo, Todou, Youku
Videos

Twitter, Facebook, Tencent Weibo, and Sina Weibo
Text, images, videos, and URLs

388 | Chapter 18: Sharing and Notifications

Copying to the pasteboard

Text, images, URLs, colors, and NSDictionary objects

Saving to the camera roll
Images and videos

Printing

Text, images, and any of the UIPrintRenderer or related printing objects (see
“Printing Documents” on page 331)

Assigning to a contact
Images

Sina Weibo and Tencent Weibo are social media services, similar to
Twitter and Facebook, based in the People’s Republic of China. You‐
ku and Tudou are video hosting services, similar to YouTube and
Vimeo, and are also based in the People’s Republic of China.

As you can see, there are a number of different kinds of content that can be given to the
various sharing destinations. Fortunately, the method for actually sharing is rather
straightforward:

1. Make an array containing all of the things you want to share. This array should
contain everything that you want to share—text, images, videos, and so on.

2. Give this array to the sharing system. The OS will figure out which sharing desti‐
nations can be used based on the content that was provided. The greater the number
of different kinds of content you provide, the more sharing destinations will be
offered to the user.

For example, if you provide both text and an image on iOS, “Save to camera roll”
appears, even though it doesn’t support both. Only the supported content will be
shared by the selected sharing destination.

3. Let the sharing system actually handle the sharing. Depending on which sharing
destination was selected, the user might be prompted to provide a little more in‐
formation. For example, if the user is posting an image to Twitter, he’ll be presented
with a Twitter share sheet, which allows him to add some text before sending the
tweet.

It’s a simple and elegant system, and can be a very positive thing for your apps.

To get our hands dirty, we’re going to take a look at the different sharing APIs that are
available on both iOS and OS X.

Sharing | 389

Sharing on iOS
Sharing content on iOS is handled by the UIActivityViewController. When you have
some content that you want to share—some text stored in a string, say—all you need to

do is create a new UIActivityViewController and provide it with an array containing
that object:

 let text = "Hello, world!"

 let activity = UIActivityViewController(activityItems: [text],

 applicationActivities: nil)

The second parameter, left nil in the previous example, can also take an array of UIAc

tivity subclasses. These can be used if you want your app to provide custom sharing
destinations. Note, however, that any custom sharing destinations you include will only
show up inside your own app.

When that’s done, you just need to present the view controller modally as you would
any other modal view controller:

 self.presentViewController(activity, animated: true, completion: nil)

From there, the OS takes over, allowing the user to select the sharing destination and
completing the share.

To show this in action, we’ll build a simple iOS application that supports sharing both
text and images:

1. Create a new single view iPhone application called iOSSharing.

2. Add an image to share. Find an image of some sort on your computer, or take one
with a camera. Once you have it, drag it into the project’s asset catalog.

Apps can also capture images from the built-in camera. We cover how
to make apps that do this in “Capturing Photos and Video from the
Camera” on page 202.

3. Create the interface. Open Main.storyboard, and drag a text field into the top of the
window.

Drag in a UIButton just beneath the text field. Set its title to Share Text.

Drag in a UIImageView beneath this button, and set its image to the one that you
added earlier.

Finally, drag in a second UIButton and place it beneath the image view. Set its title

to Share Image.

390 | Chapter 18: Sharing and Notifications

4. Connect the interface. There are two actions to add: one for sharing text and one
for sharing an image. We’re going to connect these two actions to the appropriate
buttons; we’ll also use the text field and the image view as the sources for the content
that will be shared:

Open ViewController.swift in the assistant, and Control-drag from the top and
bottom buttons into the class’s interface. The two actions you want to create are

shareImage and shareText.

Once that’s done, Control-drag from the text field into ViewController’s interface,

and create a new outlet called textView. Then, Control-drag from the image view

into ViewController’s interface and create a new outlet called imageView.

Finally, because we want the keyboard to go away when the user taps the Return
button, Control-drag from the text field to the File’s Owner in the outline, and
choose “delegate” from the menu that pops up.

The final result should look like Figure 18-1.

The code for this is extremely simple. The two methods that are run when the share
buttons are tapped are only two lines each.

5. Add the image sharing method. Add the following code to shareImage:

@IBAction func shareImage(sender: AnyObject) {

 if let image = self.imageView?.image {

 let activity = UIActivityViewController(

 activityItems: [image], applicationActivities: nil)

 self.presentViewController(activity,

 animated: true, completion: nil)

 } else {

 // No image to share!

 }

}

Sharing on iOS | 391

Figure 18-1. The connected interface

6. Add the text sharing method. Add the following code to shareText:

@IBAction func shareText(sender: AnyObject) {

 let activity = UIActivityViewController(

 activityItems: [self.textView.text], applicationActivities: nil)

 self.presentViewController(activity, animated: true, completion: nil)

}

7. Finally, add the code to dismiss the keyboard when the Return button is tapped.

Add the following method to AppDelegate’s implementation:

func textFieldShouldReturn(textField: UITextField!) -> Bool {

 textField.resignFirstResponder()

 return false

}

392 | Chapter 18: Sharing and Notifications

8. Run the app. Try sharing both text and images, and see what sharing services can
be used for each.

Sharing on OS X
Sharing content on OS X is very similar to sharing on iOS; the only real difference is in
how the list of sharing destinations is presented.

On OS X, you create an NSSharingServicePicker, which presents a menu of available
sharing destinations depending on what content you provide it. This pattern is very
similar to iOS’s model.

Creating an NSSharingServicePicker looks like this:

var text = "Hello, world!"

var share = NSSharingServicePicker(items: [text])

After the picker has been created, it needs to be presented to the user. Because the picker
shows a menu, it needs to know where the menu should appear on screen. This infor‐

mation is provided when you call the showRelativeToRect(_, ofView:, preferre

dEdge:) method. This method receives an NSRect and an NSView that the rectangle
should be considered to be in the coordinate space of, as well as information indicating
which edge of the rectangle the menu should appear on.

For example, if you have an NSView called myView, you can tell the menu to appear on
the far right edge of its bounds rectangle with the following call:

share.showRelativeToRect(aView.bounds, ofView: aView, preferredEdge: 2)

The behavior of the picker after this point is identical to UIActivityViewController.
The user is invited to choose which sharing service to use, and the OS will ask for
additional information as necessary.

Notifications
Notifications are a way for your app to send messages to the user, regardless of whether
the application is currently being used or even running. Originally introduced in iOS
3, they’ve become an indispensable tool for many apps. Starting with OS X 10.7, noti‐
fications are also available on the Mac. Figure 18-2 shows an example of a notification.

Sharing on OS X | 393

Figure 18-2. A notification

There are two kinds of notifications: push notifications (also known as remote notifica‐
tions) and local notifications. Push notifications are sent from a server you control to
the device, while local notifications are scheduled by your app to be displayed later.

Registering Notification Settings
Notifications on iOS can be intrusive. When you’re using an app, it can be annoying to
have your experience interrupted by another app; it’s just as annoying to have your
phone buzz in your pocket and disturb you when that notification isn’t particularly
important. As a result, before you can show either type of notification, you need to first
tell iOS what kinds of notifications your app intends to show.

394 | Chapter 18: Sharing and Notifications

This section applies to iOS only. It doesn’t apply to OS X.

You do this by creating a UIUserNotificationSettings object, which specifies which

kinds of notifications your app would like to show. You then call the registerUserNo

tificationSettings on the shared UIApplication object, which registers these
settings:

 // Indicating that we we want to deliver alerts

 let notificationSettings = UIUserNotificationSettings(

 forTypes: UIUserNotificationType.Alert, categories: nil)

 UIApplication.sharedApplication().registerUserNotificationSettings(

 notificationSettings)

When you call registerUserNotificationSettings for the first time, the system pops
up a dialog box asking if the user wants to grant permission to display notifications, as
shown in Figure 18-3.

In this example, the call to registerUserNotificationSettings was simply declaring
that notifications were going to be sent. However, you can provide more information
about what your notifications will contain, including whether your notifications should
include actions.

Actions are simply small buttons that are attached to your notifications. When a noti‐
fication arrives, you can attach actions that the user selects by swiping the notification
to the left, as shown in Figure 18-4.

To set this up, you first need to create a notification action object, which is an instance

of UIMutableUserInteractionAction. You then set up things like the text that should
be shown to the user, an internal identifier string, and whether selecting the action
should cause the app to launch or not:

Notifications | 395

Figure 18-3. When your app registers for notifications, iOS displays this alert to ask for
the user’s permission

 let notificationAction = UIMutableUserNotificationAction()

 // The title is shown to the user

 notificationAction.title = "Save World"

 // The identifier is used by your app

 notificationAction.identifier = "saveWorldAction"

 // When this action is selected, bring the app to the foreground

 notificationAction.activationMode =

 UIUserNotificationActivationMode.Foreground

 // If true, the user must enter their passcode before the action runs.

 // (Always set to true when the activation mode is Foreground.)

 notificationAction.authenticationRequired = false

 // Should the action be highlighted as destructive? (i.e., red and

396 | Chapter 18: Sharing and Notifications

 // dangerous looking)

 notificationAction.destructive = false

Actions can also be configured as destructive. Destructive actions are ones that can have
some kind of irreversible, destructive effect, like deleting files. When you mark an action
as destructive, the only thing that changes is its appearance:

Figure 18-4. A notification with an action attached

 // This action will be presented as destructive

 let destructiveNotificationAction = UIMutableUserNotificationAction()

 // Conquering the world is generally destructive

 destructiveNotificationAction.title = "Conquer World"

 // This action will launch the app in the background

 destructiveNotificationAction.activationMode =

 UIUserNotificationActivationMode.Background

Notifications | 397

 // Highlight the action as destructive

 destructiveNotificationAction.destructive = true

Once you’ve defined your actions, you create a category. Categories are just containers
of actions combined with an identifier string; the idea is that, when you send a notifi‐
cation, you include which category should be used, which lets the system know which
action buttons to display.

When you provide the actions to the category, you also specify which context these
actions should be displayed in. There are two contexts: the default context, where there’s
lots of space for showing buttons (in other words, the lock screen—see Figure 18-5),
and the minimal context, where there’s less space (as seen in Figure 18-6, which shows
a notification that you need to pull down on to reveal):

 var notificationCategory = UIMutableUserNotificationCategory()

 // The name of the category, used by the app to tell different

 // notifications apart

 notificationCategory.identifier = "com.oreilly.MyApplication.message"

 // Set which actions are displayed when a large amount of space is

 // visible; up to 4 can be provided

 notificationCategory.setActions(

 [notificationAction, destructiveNotificationAction],

 forContext: UIUserNotificationActionContext.Default)

 // Set which actions are displayed when not much space is visible;

 // up to 2 can be provided

 notificationCategory.setActions([notificationAction],

 forContext: UIUserNotificationActionContext.Minimal)

The default context has room for four actions, while the minimal
context only has room for two.

398 | Chapter 18: Sharing and Notifications

Figure 18-5. The default notification context

Finally, when you’re done setting up your categories, you put those categories in an

NSSet object, and use it to create your UIUserNotificationSettings:

 // Create an NSSet containing a single object (the category

 // we defined earlier)

 var notificationCategories = NSSet(object: notificationCategory)

 // Use that NSSet to create the notification settings

 let notificationSettingsWithAction =

 UIUserNotificationSettings(forTypes: UIUserNotificationType.Alert,

 categories: notificationCategories)

 // Register those notification settings

 UIApplication.sharedApplication()

 .registerUserNotificationSettings(notificationSettingsWithAction)

Notifications | 399

Figure 18-6. The minimal notification context

Push Notifications
Every iOS and OS X machine with notifications enabled maintains a permanent con‐
nection to Apple’s push notification service, which delivers short, infrequent messages
to applications.

Push notifications work by having a server make an SSL-secured TCP connection to
the Apple push notification service. When an application wants to receive push notifi‐

cations, it calls the registerForRemoteNotifications method on the application’s

global UIApplication or NSApplication object.

When registering for remote notifications, it’s important to know about the different
kinds that can be delivered. Notifications can:

• Set a badge (i.e., a number) on the app’s icon, either in the Dock on OS X or on the
home screen in iOS

400 | Chapter 18: Sharing and Notifications

• Play a sound file included in the app

• Display an alert

All notifications on all platforms may also include additional application-specific
information.

What Happens When a Notification Arrives
When a remote notification arrives, your application may or may not be running. If it’s

running, your application delegate receives the application(_, didReceiveRemote

Notification:) message, which contains as its second parameter a dictionary con‐
taining any additional information in the notification. This is your app’s opportunity to
do something useful with the notification.

If the application isn’t running when the notification arrives, what it’s able to do depends
on the platform. On OS X, the only thing a notification can do if the app isn’t running
is to modify the app icon’s badge. This is less of a restriction than it seems, because an
application that’s currently running receives a message sent to its application delegate
when the notification arrives, and your application can run any code you want when
that happens.

On iOS, it’s another matter. Because only one app is allowed to be open at the same time
(all other apps are allowed to run in the background for a bit, but are eventually sus‐
pended or terminated—see “Multitasking on iOS” on page 71), a notification is more
likely to arrive when the app isn’t running.

An iOS notification can contain an alert, which is a string of text that’s shown to the
user. When the notification arrives, if it contains an alert, that alert text appears on the
screen. (The specific presentation depends on the user’s preferences, but it’s generally a
banner at the top of the screen, or a pop-up box if the phone was locked when the
notification arrived.) When the user interacts with this alert, the application is launched
(or resumed if it was already launched). At this point, your application is informed that
it received a notification, and can then respond appropriately.

This is why iOS notifications can contain more than OS X applications—because an iOS
app is much less likely to be able to respond to a notification at the moment it arrives,
the system steps in to provide some minimal functionality (showing some text, playing
a sound, etc.). On OS X, that’s not necessary, because the application is much more likely
to be running in the background.

Notifications | 401

Sending Push Notifications
A push notification is nothing more than a JSON-formatted dictionary. When a push
notification is created, it can contain any valid JSON data that you want (i.e., strings,
numbers, arrays, and dictionaries).

For more information on JSON-formatted data, see “Saving More
Complex Data” on page 282 in Chapter 13.

When your application receives the notification, it receives an NSDictionary containing
whatever was sent as the push notification.

In addition to the application-specific data that can be included in the JSON dictionary,

push notifications also contain a special aps dictionary. This dictionary contains infor‐
mation about how the push notification should be presented: its alert text, the number
to display in the application icon’s badge, and so on.

For example, here’s a sample push notification in JSON form:

{

 "aps":{

 "alert":"Hello, world!",

 "badge":1,

 "sound":"hello.wav"

 },

 "foo":"bar"

}

This push notification, when delivered to an iOS device, does the following things:

• Displays the alert text “Hello, world!” on the screen

• Sets the badge on the application’s icon to 1

• Plays the sound hello.wav (which must be inside the application’s bundle—see
“Using NSBundle to Find Resources in Applications” on page 67)

402 | Chapter 18: Sharing and Notifications

The maximum size for a push notification is 256 bytes, including the

aps dictionary. If you try to send a push notification larger than this,
it won’t be accepted by the Apple Push Notification Service.

Additionally, delivery of push notifications is not guaranteed. Ap‐
ple describes it as a “best effort” service, much like SMS. And the
delivery mechanism for push notifications cannot be considered
secure.

Therefore, your push notifications should never contain any sensi‐
tive information, and they shouldn’t be used as the primary way for
your application to receive data. Instead, use push notifications to
let your application know that new data is available and let the ap‐
plication itself do the work of actually retrieving that data.

Additionally, when the application receives the notification (either because the notifi‐
cation was opened by the user or the application was running when the notification was

received), the NSDictionary that the application receives will contain a value @"bar"

for the foo key.

This is a book on Cocoa, not server programming, so we’re not go‐
ing to go into a huge amount of detail on how to set up a server that
sends push notifications to Apple. For information on how to do this,
see “Apple Push Notification Service” in the Local and Remote Noti‐
fication Guide, included in the Xcode developer documentation.

Setting Up to Receive Push Notifications
Applications don’t receive push notifications automatically. That’s because push notifi‐
cations are considered a potential intrusion on the user’s device—if, as a user, you don’t
want an app to interrupt you, it shouldn’t be able to.

In order to make your app indicate to the push notification system that it wants to receive

notifications, it needs to make a method call to the global UIApplication or NSAppli

cation object:

 UIApplication.sharedApplication().registerForRemoteNotifications()

Before you call registerForRemoteNotifications, you must first indicate to the sys‐
tem which types of notifications you plan on receiving, just like you do for local noti‐

fications, using the registerUserNotificationSettings method.

When you register these notification types, the OS will present an alert box to the user,
asking if he wants to receive notifications. If he chooses not to receive them, your ap‐

plication delegate receives the application(_, didFailToRegisterForRemoteNotifi

Setting Up to Receive Push Notifications | 403

http://bit.ly/abt_local_and_remote_notifications
http://bit.ly/abt_local_and_remote_notifications

cationsWithError:) message immediately after your call to registerForRemoteNoti

fications to let your code know about it:

 func application(application: UIApplication!,

 didFailToRegisterForRemoteNotificationsWithError error: NSError!) {

 // Called when registering for remote notifications

 // doesn't work for some reason

 println("Failed to register for notifications! \(error)")

 }

Registering for push notifications can also fail if there’s no Internet connection, if the
push notification service is down, or if your code is running on a platform that doesn’t
support push notification.

If the user does want notifications, the OS contacts the Apple Push Notification service
(APNs), which registers the device and application as able to receive notifications. Once
this is done, the APNs sends a device token back to your application, which is a unique
ID that acts as a “telephone number” for push notifications. When a push notification
is created, the device token is included and sent to the APNs, which uses it to figure out
which of the millions of devices worldwide should receive the notification.

When the application successfully registers for push notifications, it receives the appli

cation(_, didRegisterForRemoteNotificationsWithDeviceToken:) message,

which takes as a parameter an NSData object containing the device token:

 func application(application: UIApplication!,

 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: NSData!) {

 // Called when we've successfully registered for remote notifications.

 // Send the deviceToken to a server you control; it uses that token

 // to send pushes to this specific device.

 }

Once you have a device token, it needs to be sent to whatever server will actually be
sending the push notifications. Without the device token, it’s not possible to indicate
which device should receive a push.

If you don’t want to deal with setting up your own push server, there
are several existing services that can handle it for you. Most of them
are based on usage—that is, the number of push notifications you
send per month—and many include a free plan. We’ve used Urban
Airship and Parse.

Receiving Push Notifications
Remember that a push notification may arrive when your application is open, or when
it’s not.

404 | Chapter 18: Sharing and Notifications

http://urbanairship.com
http://urbanairship.com
http://parse.com

When your application is open and a push notification is received, your application

delegate receives the application(_, didReceiveRemoteNotification:) message:

 func application(application: UIApplication!,

 didReceiveRemoteNotification userInfo: NSDictionary!) {

 // Called when a remote notification arrives, but no action was selected

 // or the notification came in while using the app

 // Do something with the information stored in userInfo

 }

This method receives an NSDictionary that contains whatever information was con‐
tained inside the JSON bundle that was originally sent.

If the user selects an action (if one is available), the application delegate instead receives

the application(_, handleActionWithIdentifier:, forRemoteNotification:,

completionHandler) message:

 func application(application: UIApplication!,

 handleActionWithIdentifier identifier: String!,

 forRemoteNotification userInfo: NSDictionary!,

 completionHandler: (() -> Void)!) {

 // Called when a remote notification arrives,

 // and the user selected an action

 }

If your application is not running and is opened from a push notification, then your

application launches and your application delegate receives the application(_, did

FinishLaunchingWithOptions:) message (on iOS). This is the same message that’s sent

when an application normally launches, but when opening from a push, the launchOp

tions dictionary contains the contents of the JSON dictionary:

 func application(application: UIApplication!,

 didFinishLaunchingWithOptions launchOptions: NSDictionary!) -> Bool {

 var remoteNotification =

 launchOptions[UIApplicationLaunchOptionsRemoteNotificationKey]

 if remoteNotification? {

 // do something with the notification info

 }

 return true;

 }

On OS X, the message received by the application delegate is a little different. On launch,

the application delegate receives the applicationDidFinishLaunching message, which

takes an NSNotification object as a parameter. The equivalent to iOS’s launchOp

tions dictionary can be accessed thusly:

Receiving Push Notifications | 405

 func applicationDidFinishLaunching(_ aNotification: NSNotification) {

 if let remoteNotification = aNotification

 .userInfo[NSApplicationLaunchRemoteNotificationKey] {

 // do something with remoteNotification, which contains

 // the notification info

 }

 }

Finally, if your application ever needs to stop receiving push notifications, it can un‐

register from the Apple Push Notification service by sending the unregisterForRemo

teNotifications message to the global UIApplication or NSApplication object:

 UIApplication.sharedApplication().unregisterForRemoteNotifications()

If you unregister for notifications, you can always register again later.

Local Notifications
While remote notifications require a complex setup involving a remote computer that
communicates with the Apple Push Notification service, local notifications are created
and presented entirely on the device.

Local notifications are only available on iOS.

A local notification looks the same as a remote notification to the user, but its delivery

is controlled by the application. Local notifications are represented by the UILocal

Notification class.

Local notifications can either be created and presented immediately (if the application
is currently running and is in the background), or scheduled to appear at a certain date
and time.

To construct a local notification, you simply create, configure, and schedule a UILocal

Notification:

 var localNotification = UILocalNotification()

 localNotification.fireDate = NSDate(timeIntervalSinceNow: 3);

 localNotification.category = "com.oreilly.MyApplication.message"

 localNotification.alertBody = "The world is in peril!"

 UIApplication.sharedApplication()

 .scheduleLocalNotification(localNotification)

406 | Chapter 18: Sharing and Notifications

This example code creates a local notification that displays the text “The world is in
peril!” three seconds after it’s created.

When a notification fires and the user chooses to open it without selecting an action,
the application delegate receives a message very similar to the one used when a remote

notification arrives, application(didReceiveLocalNotification:):

 func application(application: UIApplication!,

 didReceiveLocalNotification notification: UILocalNotification!) {

 // Called when the user taps on a local notification (without selecting

 // an action), or if a local notification arrives while using the app

 // (in which case the notification isn't shown to the user)

 println("Received notification \(notification.category)!")

 }

If an action was selected, your application delegate receives the application(handle

ActionWithIdentifier:forLocalNotification:completionHandler:) message,

which receives both the UILocalNotification object, as well as the identifier string for
the action that was selected. In addition to these, you also receive a completion block,
which you must call after you finish dealing with the action. The reason you do this is
that this method might be called when you’re in the background and because apps aren’t
allowed to run in the background for long, you need to let the system know when it’s
safe to suspend your process:

 // This function may be called when the app is in the background, if the

 // action's activation mode was Background

 func application(application: UIApplication!,

 handleActionWithIdentifier identifier: String!,

 forLocalNotification notification: UILocalNotification!,

 completionHandler: (() -> Void)!) {

 // Called when the user selects an action from a local notification

 println("Received \(notification.category)! Action: \(identifier)")

 // You must call this block when done dealing with the

 // action, or you'll be terminated

 completionHandler()

 }

If you don’t call the completion block after you’re done responding
to the action, your application will be terminated.

Local Notifications | 407

Likewise, if the application isn’t running when the local notification fires and the user

opens the notification, the application is launched, and the launchOptions dictionary
contains the notification:

 func application(application: UIApplication!,

 didFinishLaunchingWithOptions launchOptions: NSDictionary!) -> Bool {

 var localNotification =

 launchOptions[UIApplicationLaunchOptionsLocalNotificationKey

 if localNotification? {

 // do something with the notification info

 }

 return true;

 }

A local notification can also be presented immediately in the background. For example,
if you have an application that is performing some work in the background and you
want to let the user know that the work is complete, you can create a notification to that
effect:

 UIApplication.sharedApplication()

 .presentLocalNotificationNow(localNotification)

Once a local notification has been scheduled, you can cancel it; you can also cancel all
scheduled notifications:

 UIApplication.sharedApplication().cancelLocalNotification(aNotification)

or

 UIApplication.sharedApplication().cancelAllLocalNotifications()

408 | Chapter 18: Sharing and Notifications

CHAPTER 19

Nonstandard Apps

For the majority of this book, we’ve talked about GUI applications designed to run on
either OS X or iOS. These applications receive user input via the mouse, keyboard, or
touchscreen, display information via the screen, and are launched by double-clicking
them on OS X or tapping them on iOS.

However, not every piece of software that you write is a traditional app. In some cases,
you might want to create something that the user doesn’t need to interact with—for
example, a background application that automatically downloads files from the Internet.
Another case where you don’t want to build a traditional app is when you want to create
a preference pane, which the user can access via the System Preferences application.

In this chapter, you’ll learn how to build apps for OS X that don’t fit the mold of standard
applications. Specifically, you’ll learn how to build command-line tools (which don’t
use a GUI), system preference panes, and applications that add an item to the system-
wide menu bar. Finally, you’ll learn how to make apps on iOS that can use more than
one screen.

This chapter mostly applies to OS X only—on iOS, you can only build
apps that display a graphical interface interface, and command-line
tools and daemons aren’t supported.

The only exception to this is “iOS Apps with Multiple Windows” on
page 417.

Command-Line Tools
The simplest possible application on OS X is a command-line tool. This kind of app
never presents a GUI to the user, but instead sends and receives input and output via
the command line.

409

The command line is a common traditional user interface for interacting with the sys‐
tem, and it is often the foundation that graphical user interfaces build on top of. OS X,
as a Unix-based system, offers a command-line interface that your applications can use.

In fact, the command line has been involved in many of the apps that you’ve been

developing in this book. Whenever you use NSLog or println to log some text, that text
goes to the command line. (Xcode redirects it so that you can view it in the IDE, but if
you were to launch the app via the Terminal, you’d see it there.)

To demonstrate how to build a command-line tool with Swift, we’ll create a simple app
that prints text out to the command line:

1. Create a new command-line tool project named CommandLine.

Xcode will create a command-line application that uses the Foundation framework
and is written in Swift.

There are several types of command-line apps, which vary by the
framework that your code uses. If you use Foundation, you’ll be
writing Swift. If you create a Core Foundation application, you’ll
write C.

2. Replace the main method in main.swift with the following code:

import Foundation

for var i = 10; i > 0; i-- {

 NSLog("%i green bottles, standing on the wall", i);

 NSLog("%i green bottles, standing on the wall", i);

 NSLog("And if one green bottle should accidentally fall");

 NSLog("There'll be %i green bottles, standing on the wall\n\n", i-1);

}

3. Test the application by running it and noting what gets shown in the log.

4. Then test the application in the Terminal. Open the Terminal application, and in
Xcode, scroll down to the Products group and open the folder. You’ll see the Com‐
mandLine application. Drag it onto Terminal’s icon in the Dock and watch the
program run.

Preference Panes
For the most part, your applications should show their preferences inside the apps
themselves. For example, most apps that have preferences you can change have a Pref‐
erences window, accessible via the main menu (or by pressing ⌘-,).

410 | Chapter 19: Nonstandard Apps

However, some software doesn’t present a traditional interface where the preferences
can be displayed—for example, background applications or device drivers. In these
cases, you create preference panes, which are small programs hosted by the System
Preferences application.

Preference panes are designed to allow the user to control features that affect the entire
system (as far as the user is concerned). For example, when you install drivers for a
graphics tablet, the features the drivers provide apply to all applications, which means
that the drivers don’t have an app to show UI in. To allow the user to configure how it
works, therefore, the drivers provide a preference pane.

Preference panes are only available on OS X. On iOS, you use Set‐
tings Bundles, which are basically files that describe what settings to
show to the user. You don’t write any code to display them. These

settings are then available to the user using the NSUserDefaults sys‐
tem, which is discussed in “Preferences” on page 209.

How Preference Panes Work
A preference pane is not a separate application, but is instead a bundle of code loaded
by the System Preferences application. The bundle contains code and whatever resour‐
ces it needs (such as images, nib files, etc.); when the preference pane is installed, System
Preferences displays it as an icon in the main window. When the user selects the pref‐
erence pane’s icon, the bundle is loaded, its main nib is displayed, and your code begins
running.

The preference pane bundle stays in memory after the user switches
to another pane, until the System Preferences application exits.

Because your preference pane is a bundle that’s loaded by another application, accessing

resources via NSBundle’s pathForResource(ofType:) method or NSUserDefaults
won’t work the same way as in your applications. This is because these methods access
the application’s bundle and preference domain, not your bundle and preference do‐

main. If you want to set preferences, you need to specifically tell NSUserDefaults which
domain the preferences should be set in.

Preference Panes | 411

Preference Domains
Imagine that two applications exist, both of which set a preference called favoriteCol

or. These applications are by different authors and use the preference in different ways,

so each assumes that it’s the only one using the favoriteColor preference.

To prevent preferences colliding, OS X and iOS separate preferences by domain. When

you use NSUserDefault’s setValue(forKey:) and valueForKey methods (and related

methods like setBool(forKey:)), it assumes that the preference domain you want to
work in is the one with the same name as your application’s bundle identifier.

So, to go back to our two example applications, as long as each has a different bundle
identifier—and it should, because Apple won’t allow it into the App Store unless a unique
one is set—the two applications will set and retrieve preferences in their own, separate
domains.

When you’re building a preference pane, however, the bundle identifier of the applica‐

tion is that of System Preferences. This means that calling methods like boolForKey

won’t retrieve the settings you want. To solve this problem, you indicate to NSUser

Defaults exactly which preference domain you want to work with.

To retrieve the preferences for a specific domain, you use the NSUserDefaults class’s

persistentDomainForName method. This method takes an NSString containing the

name of the domain, and returns an NSDictionary containing all of the keys and values
stored in that domain’s preferences.

To set the preferences for this domain, you use NSUserDefaults’s setPersistentDo

main(forName:) method. This works in much the same way: it takes an NSDiction

ary containing settings to apply, and an NSString containing the name of the domain
to set.

This means that, instead of working with preferences on an individual basis, you work
with a dictionary that contains all of the settings. When you set the values for a domain,
you replace all of the settings at once.

For example, imagine that you want to work with the preferences for the domain
com.oreilly.MyAmazingApplication.

To get the preferences as a mutable dictionary (so that you can modify it later), you
do this:

let domainName = "com.oreilly.MyAmazingApplication"

var preferences =

 NSUserDefaults.standardUserDefaults().persistentDomainForName(domainName)

You can then modify that dictionary as you like, like so:

preferences["isChecked"] = true

412 | Chapter 19: Nonstandard Apps

When you’re done, you set the preferences for the domain by passing in the dictionary:

NSUserDefaults.standardUserDefaults().setPersistentDomain(preferences,

 forName: domainName)

Building a Sample Preference Pane
We’ll now build a preference pane that displays a single checkbox, which we’ll store in
the domain com.oreilly.MyAmazingApplication.

1. Create a new preference pane application for OS X. You’ll find the template in the
System Plug-in section.

Name the project PreferencePane.

2. Create the interface. Open PreferencePane.xib. This is the nib file that contains the
view that will be shown when the preference pane is selected.

Drag in a checkbox and make its label read whatever you like.

3. Make the File’s Owner of the nib file use the PreferencePane class. By default, the
nib file created as part of the project template does not set the File’s Owner object
to use the main class of the project. We’ll change that first.

Select the File’s Owner in the Interface Builder, and open the Identity Inspector.

Change the class from NSPreferencePane to PreferencePane (your class).

4. Connect the interface to the code. Open PreferencePane.swift in the assistant.

Control-drag from the checkbox into PreferencePane’s interface. Create an outlet

called checkbox.

5. Add the code that loads the current preference. We’ll first add the code that loads
the current value of the setting and turns the checkbox on or off. To do this, replace

the mainViewDidLoad method in PreferencePane.swift with the following code (this
method is run when the preference pane finishes loading):

 override func mainViewDidLoad() {

 var preferences = NSUserDefaults.standardUserDefaults()

 .persistentDomainForName(domainName)

 if let checked = preferences?["isChecked"] as? NSNumber {

 switch checked {

 case true:

 self.checkbox.state = NSOnState

 default:

 self.checkbox.state = NSOffState

 }

 }

 }

Preference Panes | 413

6. Add the code that sets the preference when the pane is closed.

Add the following method to PreferencePane.swift (this method is called after the
preference pane has stopped being shown by the user—such as when the System
Preferences pane quits or the user clicks the Back, Forward, or Show All button):

 override func didUnselect() {

 var preferences = NSUserDefaults.standardUserDefaults()

 .persistentDomainForName(domainName) as? [String: AnyObject]

 // persistentDomainForName might return nil, because this might

 // be the first time we've ever tried to save the preferences.

 // If this is the case, set 'preferences' to be an empty

 // dictionary, so that it can be used.

 if preferences == nil {

 preferences = [:]

 }

 // Store the info in the dictionary

 switch self.checkbox.state {

 case NSOnState:

 preferences?["isChecked"] = true

 default:

 preferences?["isChecked"] = false

 }

 // Store the dictionary in NSUserDefaults

 NSUserDefaults.standardUserDefaults()

 .setPersistentDomain(preferences!, forName: domainName)

 }

7. Test the application.

Build the preference pane by pressing ⌘-B or choosing Build from the Product
menu.

Launch the System Preferences application.

Open the Products group in the project navigator. Drag the
PreferencePane.prefPane file onto the System Preferences application in the Dock.
System Preferences will ask how you want to install the preference pane.

Play around with the preference pane. If you check the checkbox, quit System Pref‐
erences, and come back to your preference pane, the checkbox will remain checked.

You can’t test preference panes like you can other applications, be‐
cause preference panes aren’t run like normal applications. Instead,
you build the application and load it into the System Preferences
application.

414 | Chapter 19: Nonstandard Apps

Status Bar Items
Another example of applications that don’t present themselves with traditional GUIs
are applications that exist as status items—items that live in the top-right corner of the
screen. OS X has a number of built-in applications that live like this, such as the volume
changer and clock.

Status items can display any text, image, or view when clicked, and can display either a
menu or a custom view. You create a status item by asking the system’s status bar to

create an NSStatusItem for you; you then customize the status item by setting its title

text, image, or view, and providing it with an NSMenu or other view to display when it’s
clicked.

You must keep a reference to the NSStatusItem object that you get

from the NSStatusBar class. If you don’t, the object will be released
from memory and removed from the status bar.

Status items allow you to work with an application’s features without requiring that the
application be the foreground application. For example, Twitter for Mac shows a status
item while the application is running that changes color when new messages arrive.

You can also create an application that only displays a status item. Such applications are
generally background utility apps such as Dropbox, which use the status item to indicate
the app’s current status and provide an easy way to access basic settings, as well as a
means to access a more complete settings UI for controlling the application.

If you’re writing an application that only shows a status item, you likely don’t want to

show the dock icon. To implement this, set the Application is agent (UIElement)

value in the application’s Info.plist file to YES, and the app will not show a dock icon.

Building a Status Bar App
We’ll now demonstrate how to build a status bar application that doesn’t show a
dock icon:

1. Create a Cocoa application named StatusItem.

2. Create the interface. This application will have neither a menu bar nor a window
to show. The only UI will be the status item.

Open MainMenu.xib and delete both the main menu and the main window.

Drag in an NSMenu. It will contain three items—delete the second and third.

Make the single menu item’s label read Quit.

Status Bar Items | 415

3. Connect the interface to the code. Open AppDelegate.swift in the assistant.

Control-drag from the menu into AppDelegate, and create a new outlet called menu.

Control-drag from the Quit menu item into AppDelegate, and create an action

named quit.

4. Next, we’ll create the status item and prepare it. We’ll also add the code that gets
run when the Quit menu item is chosen.

We’ll also need to add a property that stores the NSStatusItem object. Without this
variable, the status item would be removed from memory, and therefore the status
item would disappear immediately after it was added.

Update AppDelegate.swift so that it looks like the following code:

import Cocoa

class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet var window: NSWindow!

 @IBOutlet var menu: NSMenu!

 var statusItem : NSStatusItem!

 @IBAction func quit(sender: AnyObject) {

 NSApplication.sharedApplication().terminate(nil)

 }

 func applicationDidFinishLaunching(aNotification: NSNotification?) {

 // Make a status bar that has variable length

 // (as opposed to being a standard square size)

 // -1 to indicate "variable length"

 statusItem = NSStatusBar.systemStatusBar().statusItemWithLength(-1)

 // Set the text that appears in the menu bar

 statusItem.title = "My Item"

 // Set the menu that should appear when the item is clicked

 statusItem.menu = self.menu

 // Set if the item should change color when clicked

 statusItem.highlightMode = true

 }

}

5. Finally, we’ll make the application not show a dock icon. The status item will remain
visible no matter which application is currently active, so there’s always a way to
access it.

416 | Chapter 19: Nonstandard Apps

To do this, you modify the application’s Info.plist file and indicate that it’s an
agent. “Agent” is Apple’s term for a background application that doesn’t present a
dock icon.

Select the project at the top of the project navigator. Open the Info tab at the top of
the main editor.

Add a new entry into the Application is agent (UIElement) property list and

set the value of this entry to YES.

6. Run the application. Nothing will appear in the dock, but the word “Test” will appear
at the top of the screen in the menu bar. You can open this menu and choose to quit
the app.

iOS Apps with Multiple Windows
Sometimes, you might want to run your iOS app on more than one screen. For example,
you might want to use the built-in touchscreen to receive input from the user and display
the results on a television. Without the touch sensor or any of the other iOS device
hardware, any second screen will be for output only, but this doesn’t mean it isn’t useful.

A window on an iOS device is represented by a UIWindow object. Inside this window are

two important properties. The rootViewController holds the root view controller to
be displayed; in the case of a standard iOS app, this will be the inital view controller
from the storyboard, and in the case of an external window, it can be anything you wish.

The second important property is the screen, which represents the actual physical

screen on which the window is going to be displayed. The screen has a bounds property,
which holds its size, and also has additional properties such as brightness, meaning that
you can customize the second window to a degree.

To demonstrate how to use a second window in your iOS apps, we’ll create a demo app
with two different view controllers—one for the device and another for the external
monitor:

1. Create a new single view iPhone application and call it MultipleWindows.

2. Create the interface. Open the Main.storyboard and add a second view controller
to the storyboard. There is no need to hook it up to the inital view controller, but
do make sure it looks different so you can see it on the second window later.

Select the new view controller and open the Identity Inspector, and set the Story‐

board ID to secondWindowVC.

3. Connect to the new window. Replace the AppDelegate.swift file with the following:

import UIKit

@UIApplicationMain

iOS Apps with Multiple Windows | 417

class AppDelegate: UIResponder, UIApplicationDelegate {

 var window : UIWindow!

 var secondWindow : UIWindow!

 func application(application: UIApplication!,

 didFinishLaunchingWithOptions launchOptions: NSDictionary!) -> Bool {

 // Register to be notified of when screens connect or disconnect

 var notificationCenter = NSNotificationCenter.defaultCenter()

 notificationCenter.addObserver(self,

 selector: Selector("screenDidConnect:"),

 name: UIScreenDidConnectNotification,

 object: nil)

 notificationCenter.addObserver(self,

 selector: Selector("screenDidDisconnect:"),

 name: UIScreenDidDisconnectNotification,

 object: nil)

 // We're in the middle of starting up. If the system already has

 // multiple screens, set up the second one!

 if UIScreen.screens().count >= 2 {

 var secondScreen = UIScreen.screens()[1] as UIScreen

 self.setupScreen(secondScreen)

 }

 return true

 }

 // Given a screen, prepare and display the view

 // controller for the screen.

 func setupScreen(screen : UIScreen) {

 // If we already have a second window, do nothing

 if self.secondWindow != nil {

 return;

 }

 // Create a window to display on this screen

 self.secondWindow = UIWindow(frame: screen.bounds)

 self.secondWindow.screen = screen

 self.secondWindow.hidden = false

 // Create a view controller to show in the window

 var storyboard = UIStoryboard(name: "Main", bundle: nil)

 var viewController = storyboard

 .instantiateViewControllerWithIdentifier("secondWindowVC")

 as UIViewController

 // Show the view controller in the window

 self.secondWindow.rootViewController = viewController

418 | Chapter 19: Nonstandard Apps

 }

 // Called when a screen connects

 func screenDidConnect(notification: NSNotification) {

 // Get the screen from the NSObject

 var screen = notification.object as UIScreen

 // Attempt to set it up

 self.setupScreen(screen)

 }

 // Called when a screen disconnects

 func screenDidDisconnect(notification: NSNotification) {

 // Get the screen from the NSObject

 var screen = notification.object as UIScreen

 // If we have a second window, and it uses this window...

 if self.secondWindow?.screen == screen {

 // ... remove it!

 self.secondWindow = nil

 }

 }

}

This code is registering to be notified when a second monitor is being connected
or disconnected from the device. When it detects a connection, it creates a new

UIWindow object to hold that screen and then it adds the second view controller
from the storyboard onto that window.

When it detects a window being disconnected, it simply clears out the window so
it doesn’t take up memory.

Now if you run the app and then plug in a second monitor to your device, you should
see the second view controller you created in the storyboard appearing while the initial
view controller is showing on the device.

It’s worth noting that if you start the application and the window is already connected
to the device, you won’t receive a notification. To find out what screens are connected

when the app launches, you can query the screens property of the UIScreen class, which
is a list of all screens currently attached to the device.

iOS Apps with Multiple Windows | 419

CHAPTER 20

Working with Text

Both OS X and iOS have tremendously powerful tools for working with text. Whether
it’s working with multiple languages, converting data into human-readable forms, or
detecting information in text, Cocoa and Cocoa Touch contain a wide variety of useful
tools for working with strings, text, and language.

In this chapter, you’ll learn how to use the system’s built-in internationalization and
localization features to easily make your app display strings in your code in whatever

language the user prefers. You’ll also learn how to use NSFormatter and its subclasses
to format data into strings, and how to use data detectors to detect URLs and dates in
arbitrary text.

Internationalization and Localization
Your primary language may not be the one spoken by your end user. When you write
strings embedded in your code for the user to see, those strings are hardcoded into the
compiled executable—so if something is written in English, the user will see it in English,
even if she doesn’t necessarily read English.

To address this problem, Cocoa has support for localized text, which is text that is re‐
placed at runtime with versions appropriate for your user. In your code, you use place‐
holder strings, and store the translated versions for every language that you support in
a separate file. When the code that displays the text runs, it checks to see which language
the user is using, and replaces the placeholder text with the appropriate version.

Strings Files
A strings file maps internal representations of text to localized representations. Strings
files look like this:

421

1. You may provide any date you like for this field. The possibilities available to you in this universe are truly
limitless.

"welcome message" = "Welcome to OS X!";

"quit message" = "Goodbye! Come back soon!";

Strings files let you keep the text used in your application separate from your code. This
becomes especially useful when the text used in your application changes—for example,
when running in another language.

Strings files can be localized, which means that Xcode will create multiple versions of
the file based on language; at runtime, the application will use only the version of the
file appropriate to the user’s choice of language. If an appropriate version doesn’t exist,
the application will load the best one it can find.

Creating a Sample Localized Application
To demonstrate how localization works in Cocoa, we’ll build an application that makes
use of strings files to translate its interface.

1. Create a new Cocoa application named Localized.

The first thing to do is to enable localization on the interface file. This will make
the application automatically load the locale-appropriate version of the file, and
also lets you preview the application in different languages.

2. Go to the File Inspector. This is the leftmost inspector in the Utilities pane.

Once there, scroll down to the Localization section. You’ll see two localizations
available: Base and English.

Turn on the checkbox next to English. This will enable localization on the file,
because at least one localized language is now available.

3. Create the interface. Open MainMenu.xib and drag a label into the window. Position
it at the upper left of the window and make its text read “This is a localized appli‐
cation for Mac OS X.”

Drag a second label into the window. Position it at the left edge of the window,
underneath the first label. Make its text read “Today is 30 July 2014.”1

Finally, drag in a button. Place it on the right side of the window, aligned with the
second label. Make its text read “Tell the World.”

Next, add the following constraints to the items in the window:

• First label (“This is a localized application for Mac OS X”):

— Leading space to superview: 20

— Top space to superview: 20

422 | Chapter 20: Working with Text

— Vertical space to second label: ≥ 8

• Second label (“Today’s date is 30 July 2014”):

— Leading space to superview: 20

— Bottom space to superview: 20

— Trailing space to button: ≥ 20

• Button (“Tell the World”):

— Trailing space to superview: 20

— Align baseline to second label

When you’re done, the window should look like Figure 20-1.

Figure 20-1. The user interface for the application, including its constraints

When designing interfaces that are going to be localized (which
should be all of them!), avoid creating constraints that set a fixed width
on controls. A piece of text will be one width in one language and a
different width in another, and if you enforce a fixed width, you’ll
more than likely end up with truncated text.

Instead, it’s better to set up leading and trailing space constraints. The
constraint system will then able to work out the width appropriately.

We can now see if the interface appropriately handles different text lengths, even before
translating any of the text in the application. This is possible thanks to Xcode’s built-in
pseudolocalizations, which do things with your app’s base text to test out your interface.

One of these pseudolocalizations is the Double-Length Pseudolanguage. This localiza‐
tion simply takes the text of your development language, and doubles it. So, for example,
“Tell the World” becomes “Tell the World Tell the World.” While many pieces of text
won’t actually double in length when translated to another langauge, it serves as a great
way to test to see whether your interface can handle the wide variation in length.

We’ll now test this interface using this pseudolocalization:

Internationalization and Localization | 423

1. Select Preview from the menu at the far left of the Jump Bar at the top of the assistant.

A copy of the main window of the app should appear in the right side of the Xcode
window. If it doesn’t, make sure you’ve selected the window on the lefthand side.

2. Change the language, at the lower-right of the window, to Double-Length Pseudo‐
language, as shown in Figure 20-2.

Figure 20-2. Selecting the Double-Length Pseudolanguage in the Preview assistant

The preview pane will update to show the app as it appears in the new language. You’ll
notice that it mostly works! The labels have updated to their new sizes, and the button
has been pushed aside further to accomodate the width of the label next to it. However,
one obvious error immediately appears: the first label (the one that reads This is a lo‐
calized application for Mac OS X) is too long, and goes off the side of the window. You
can see this in Figure 20-3.

Figure 20-3. The application, translated into the Double-Length Pseudolanguage (note
that the first label is too long, and extends off the side of the window)

The cause of the error is that the first label’s trailing space isn’t constrained: what we
want is for the trailing edge of the first label to always be 20 pixels away from the edge
of the window. Fortunately, this is very easy to add:

3. Constrain the trailing edge of the first label. Hold down the Control key, and drag
from the trailing edge of the label to the window. Select Trailing Space to Container.

424 | Chapter 20: Working with Text

A new constraint will appear. Select it, and open the Attributes Inspector. Change
its Relation from Equal to Greater Than or Equal, and set the Constant to Standard
by selecting Use Standard Value from the drop-down menu. You can see the final
settings of this constraint in Figure 20-4.

Figure 20-4. The settings for the trailing space

Once the constraint is set up, the preview will update, showing that the layout flows
correctly, as seen in Figure 20-5.

Figure 20-5. The double-length interface, now flowing correctly

The Double-Length Pseudolangage is a great test of your interface’s ability to handle
varying text length, but it’s not a real language, and is only applicable to developers. Let’s
now translate this interface to a real language.

In this chapter, we’re using French as our demonstration language,
but you can pick anything you like. Just choose a different language
when adding a new localization to your app.

Internationalization and Localization | 425

The first step to adding a new language is to add a new localization to the project. This
makes Xcode aware that you want to start translating files into that language, which
means you can do things like select that language in the Preview assistant.

1. Select the project in the project navigator. It’s at the top of the list. Select the project
from the menu at the top of the editor, as seen in Figure 20-6.

Figure 20-6. Selecting the project in the editor view

2. Add the new localization. Scroll down to the Localizations section. Click the +
button, and select French from the menu that appears, as seen in Figure 20-7.

Most languages come in a variety of different dialects. You may see a
giant list that includes many different types of French.

3. Select the files you want to localize. Xcode will ask you which files you want to
translate into the new language. At this stage, there will only be a single file: the
app’s interface, stored in MainMenu.xib. It’s selected by default, so click Finish.

A new file will be created: a strings file for the MainMenu.xib file. It’ll appear as an item
inside the MainMenu.xib file, in the project navigator, as seen in Figure 20-8.

4. You can now go through the new French version of the strings file, and begin
translating the interface to French. For each item in the strings file, you replace the
original language with the French version.

426 | Chapter 20: Working with Text

Figure 20-7. Adding a localization to the project

Figure 20-8. The strings files, shown in the project navigator

This application now has a mostly localized interface. However, it’s not obvious how the
second label will be localized, as it’s going to be displaying dynamic text (i.e., the text
isn’t defined at compile time, but rather depends on the current date).

Internationalization and Localization | 427

To localize this text, we need to be able to localize chunks of text from within code. We
need to be able to take a string, and look up the appropriate localization at runtime. We

can do this using the NSLocalizedString function.

5. Connect the interface to the code. Open AppDelegate.swift in the assistant. Control-

drag from the lower label (the one containing the date) into the AppDelegate class.

6. Replace the applicationDidFinishLaunching method with the following code:

 let languageFormat = NSLocalizedString("today's date: %@",

 comment:"shows today's date")

 self.dateLabel.stringValue = String(format: languageFormat, NSDate())

The NSLocalizedString function and its sibling functions load text from the Local‐
ized.strings file—specifically, from the localized version of that file that fits the user’s
current language.

To localize this application, we’ll create the strings file, and then add both English and
French localizations.

7. Create a new file in the project: a strings file. You’ll find this in the Resource section
of the file templates.

Name the file Localizable.strings.

It’s important to use this filename, as this file is the one the app will
look for if you don’t specify another name.

8. Next, add the English and French versions of the strings file. Select Localiza‐
ble.strings. Open the File Inspector and scroll down to Localizations.

Click the Localize button. A menu will appear; choose Base and click Localize.

Now the localization option has changed, with three small checkboxes, one for Base,
one for English, and the last for French. Select all of the checkboxes.

9. Add the English text. Open Localizable.strings (English) and add the following text:

"today's date: %@" = "Today's date is %@";

10. Then add the French text. Open Localizable.strings (French) and add the following
text:

"today's date: %@"="La date d'aujourd'hui est %@";

428 | Chapter 20: Working with Text

It is also good practice to fill in the Base language, but in this case it is also English
so we will leave it blank.

11. Run the application. Now that the localized strings files have been written, test the
application in English mode.

The text of the label will change to the more accurately written English text.

Next, we’ll test the French version. To avoid having to change the language of the entire
system, we’ll make Xcode launch the application using the French langauge.

To do this, we’ll edit the current scheme and add a parameter that is passed to the
application at start time:

12. Make the application launch using the French language. Click on the Scheme at the
upper left of the window (it’s the drop-down list just to the right of the Stop button).

Choose Edit Scheme… from the menu that appears.

Make sure that the Run Localized.app option is selected. Open the Options panel.

Change the Application Language from System Language to French.

13. Run the application like a Frenchman.

Run the app again. Note that the text appears in French. Quelle surprise! (See
Figure 20-9.)

You can continue adding more localized strings and more localizations to your
application. The more languages supported by your app, the more potential users
you have.

Figure 20-9. The application fully localized into French

Internationalization and Localization | 429

2. The authors, who are Australian, contend that this is superior.

Xcode can also export and import the localized parts of your app using
XLIFF, a standard XML-based format for localized information. Us‐
ing XLIFF, you can export all of the strings in your app that need
translation, and hand them off to a translator who can work on it
using their own tools; they can then deliver the translated XML back
to you, and you can import it back into your project.

To learn more about Xcode’s support for XLIFF, see the Internation‐
alization and Localization Guide in the Xcode documentation.

Formatting Data with NSFormatter
Many useful pieces of information need conversion to text before a human can read
them. Additionally, different people expect information to be presented in different ways
depending on where they live. For example, dates and times are displayed differently
depending on the country. The difference could be as simple as the order of numbers
and punctuation—dates are written “MM-DD-YY” in the United States, and “DD-MM-
YY”2 in Australia. However, sometimes the differences are radical—your user could be
using the Muslim calendar, in which case the same point in time has a completely dif‐
ferent date representation.

To solve this and other problems, Cocoa separates dates from their presentation. When

you want to work with date and time information, you use the NSDate class. When you
want to create text to display a representation of that date to the user, you use the

NSDateFormatter class.

Dates aren’t the only things that can be formatted. Numbers have different representa‐
tions in different cultures, as well as different representations in different contexts.

For example, in the United States, the decimal marker is a period (.), while in many
European countries the marker is a comma (,). Different locales also group numerals
together differently—some Indian numbering systems group numerals in two and
three, so that the number one million is represented as 10,00,000. If you’re writing an
application that displays monetary figures, it’s common to display negative figures in
parentheses (()). Additionally, the locale that your user is in will very likely have a dif‐
ferent currency symbol than $.

NSNumberFormatter takes localization into account, and creates strings that suit what
your user expects to see to what your application needs to display.

To demonstrate how formatters work, we’ll extend the application that we created earlier

in this chapter to format the date using an NSDateFormatter:

430 | Chapter 20: Working with Text

http://bit.ly/abt_internationalization
http://bit.ly/abt_internationalization

 let languageFormat = NSLocalizedString("today's date: %@",

 comment:"shows today's date")

 let dateFormatter = NSDateFormatter()

 dateFormatter.timeStyle = NSDateFormatterStyle.NoStyle

 dateFormatter.dateStyle = NSDateFormatterStyle.LongStyle

 let dateString = dateFormatter.stringFromDate(NSDate())

 self.dateLabel.stringValue = String(format: languageFormat, dateString)

Creating an NSDateFormatter is a rather expensive operation. If you
need to format a large number of dates, create one and keep it around
rather than creating a new one for every time you need to format a
date.

Run the application. The date will appear in the application, correctly formatted for your
user’s locale (Figure 20-10).

You can set the style of both the time and date in the formatter. Both timeStyle and

dateStyle accept any of the following options (note that the precise format will change
depending on the user’s locale—read on if you want total control!):

NoStyle

Dates and times don’t appear at all.

ShortStyle

A brief style. Usually, only numbers appear. Dates appear like “10/24/86” and times
appear like “5:05pm.”

MediumStyle

Slightly more detail appears in the medium style. Dates appear like “Oct 24, 1986.”
Times appear like the short style.

LongStyle

With the long style, almost every detail appears. Month names, for example, are
fully spelled out. Dates appear like “October 24, 1986” and times appear like
“5:05:23pm.”

FullStyle

Every detail is presented in the full style, including era and time zone information.
Dates appear like “Friday, October 24, 1986 AD” and times appear like “5:05:23pm

AEDT.” NSDateFormatter also allows you to format dates with your own format
string. A format string defines which components of the date and time should ap‐

pear. For example, to render an NSDate to look like “17:05 October 24, 1986” (in
that order, regardless of the locale’s preference), you do this:

Formatting Data with NSFormatter | 431

 let dateFormatter = NSDateFormatter()

 dateFormatter.dateFormat = "HH:mm, MMMM d"

Note that the various names for months and days will be correctly
presented in the user’s current language. “July” in English becomes
“juillet” in French, for example.

All the different letters in the format string define what parts of the date and time appear,
and the number of times the symbol is repeated changes the format of the component.

For full details on the format patterns that can be used, see the Unicode specification
TR35, which is used by both OS X and iOS.

Testing Different Locales
The language of an application is separate from the way that dates, times, and meas‐
urements are displayed. If you want to test out different locales in your application, you
need to add a parameter to your application’s run scheme.

To do this, choose Edit Scheme… from the menu that appears, select the Run option,
and open the Options panel.

Change the Application Region to Europe → France.

You can then run your application, and the date formatter will produce a date string
that’s delivered in the system language, but uses French styles of dates. The differences
are often subtle—things like the names of months being shorter—but add up to feeling
like an app that matches what the user is comfortable with.

Figure 20-10. The app, with a French-formatted date

432 | Chapter 20: Working with Text

http://bit.ly/unicode_spec_tr35
http://bit.ly/unicode_spec_tr35

Formatting Numbers, Lengths, Mass, Energy, and Data
In addition to dates, it’s often very useful to format values for the user to see. These
sometimes need localization, such as in the case of formatting numbers as currency, but
often you just want to display a quantity with the right unit.

This is where the NSNumberFormatter and its related classes comes in. These classes
take a value along with any information on how you’d like it to be formatted, and return
a string for you to display to the user.

NSNumberFormatter
The basic NSNumberFormatter is very straightforward, but also very versatile. You can
use it to format numbers into decimal formats, scientific notation, currency, and as
percentages.

Creating one is very easy—all you need to do is to create an instance of the class:

let numberFormatter = NSNumberFormatter()

Let’s say you wanted to format a number value as some currency. In this case, you’d just

need to set the formatting style as CurrencyStyle; the formatter automatically selects
the locale-appropriate currency symbol:

// Showing currency

numberFormatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle

numberFormatter.stringFromNumber(23.42) // = "$23.42"

The number formatter doesn’t perform currency conversions—
you’ll need to do that yourself. All it does is take a number and turn
it into a string that can be presented to the user.

The number formatter is also capable of rounding to arbitrary intervals. For example,
if you want to round to the nearest 0.5:

// Round to the nearest 0.5

numberFormatter.roundingIncrement = 0.5

numberFormatter.stringFromNumber(23.42) // = "$23.50"

NSNumberFormatter is good for more than just currency, however. When you need to
render an arbitrary number, it’s got you covered:

// Showing numbers

numberFormatter.numberStyle = NSNumberFormatterStyle.DecimalStyle

numberFormatter.stringFromNumber(2003.42) // = "2,003.42"

Formatting Numbers, Lengths, Mass, Energy, and Data | 433

You can also feed it decimal numbers and have it render them as percentages (such as
0.43 being rendered as “43%”; this would be displayed as “45%” with rounding enabled):

// Showing percentages

numberFormatter.numberStyle = NSNumberFormatterStyle.PercentStyle

numberFormatter.stringFromNumber(0.95) // = "95%"

NSEnergyFormatter, NSMassFormatter, and NSLengthFormatter
The NSEnergyFormatter class is designed to support rendering values, measured in
joules, into locale-appropriate strings. This is usually for apps that care about energy in
food, such as in diet-management apps, but the concepts apply to non-food energy just
the same.

NSEnergyFormatter, along with its NSMassFormatter and NSLengthFormatter cousins,
allow you to keep all of your app’s data in a single consistent unit (joules, kilograms, and
meters), and display them to the user in units that they’re familiar with, no matter where
they’re from.

Creating an energy formatter is just a matter of creating an instance of the NSEnergy

Formatter class:

let energyFormatter = NSEnergyFormatter()

If you have a specific unit you want to display the energy value in, you can provide that
unit to the formatter along with the value you want to format:

// Formats the value, given in joules; uses a specific unit

energyFormatter.stringFromValue(5000,

 unit: NSEnergyFormatterUnit.Kilojoule) // = "5,000 kJ"

If you want to use the user’s default units, you can simply provide just the value, and
the formatter will automatically select an appropriate unit for its size and the user’s
locale:

// Formats the value, given in joules; automatically uses a locale-specific

// unit

energyFormatter.stringFromJoules(50000) // = "11.95 kcal"

Mass formatters and length formatters work identically to energy formatters. First, you
create the instance:

let massFormatter = NSMassFormatter()

let lengthFormatter = NSLengthFormatter()

Once you have the object, you can begin formatting values. You can format mass and
lengths as specific units (you provide the values in either kilograms or meters,
respectively):

434 | Chapter 20: Working with Text

// Formats the value, given in kilograms; uses a specific unit

massFormatter.stringFromValue(0.5,

 unit: NSMassFormatterUnit.Kilogram) // = "0.5 kg"

// Formats the value, given in meters; uses a specific unit

lengthFormatter.stringFromValue(42.3,

 unit: NSLengthFormatterUnit.Meter) // = "42.3 m"

Additionally, you can provide just the values, and have the formatter select the unit for
you, depending on the quantity and the user’s locale.

// Formats the value, given in meters; automatically uses a locale-specific

// unit

massFormatter.stringFromKilograms(0.5) // = "1.1 lb"

// Formats the value, given in meters; automatically uses a locale-specific

// unit

lengthFormatter.stringFromMeters(42.3) // = "46.259 yd"

NSByteCountFormatter
The NSByteCountFormatter class is a bit different to the previously discussed format‐
ters. The byte count formatter is designed to take a value, measured in bytes, and convert
that to a representative string that displays the number of kilobytes, megabytes, gigabytes
(or more). This is very useful for indicating the size of a download, a file, and more.

Again, creating the formatter is simple:

let dataFormatter = NSByteCountFormatter()

Simple use of the byte count formatter is just as straightforward—you simply provide
a number of bytes, and receive a string:

// Formats the value, given in bytes

dataFormatter.stringFromByteCount(200000) // = "200 KB"

The main way in which the byte count formatter differs from other formatters is that
there are two ways that bytes can be counted: decimally, in which 1,000 bytes are counted
as a kilobyte, and binarily, in which 1,024 bytes are counted as a kilobyte. The reasoning
for this is boring, and filled with words like “mebibyte”; let’s just leave it at the simple
fact that most people think of a thousand bytes as a kilobyte, and are totally incorrect
in doing so.

However, good app design is all about not surprising the user, so the default counting
style is decimal: 1,000 bytes is a kilobyte. If, however, you want to change this counting
style, you can very easily do so:

// Count style can be changed; defaults to decimal (2,000 bytes = 2KB)

// Setting this to Binary makes it treat 2,048 = 2KB

dataFormatter.countStyle = NSByteCountFormatterCountStyle.Binary

dataFormatter.stringFromByteCount(200000) // = "195 KB"

Formatting Numbers, Lengths, Mass, Energy, and Data | 435

The byte count formatter also intelligently knows how to handle zero bytes. Zero bytes

is a special case, and simply displaying the digit 0 isn’t very readable. NSByteCountFor

matter, therefore, formats zero bytes using words:

// Also formats zero bytes intelligently, as a word

dataFormatter.stringFromByteCount(0) // = "Zero KB"

Detecting Data with NSDataDetector
As far as the system is concerned, text that it receives can be literally anything. However,
text frequently contains information that’s useful to both the user and to the app you’re
writing. For example, posts to Twitter often contain links to websites, and it’s a useful
feature for a Twitter app to be able to quickly open a link in the tweet’s text. Another
example is date and time information: an email could contain the date for a meeting,
and an app may want to extract that.

To extract information from text, you use the NSDataDetector class. This class reads
through a string and looks for whatever data you tell it to keep an eye out for.

You can use data detectors to detect the following kinds of data in strings:

• Dates

• Addresses

• Links

• Phone numbers

• Transit information (like flight information)

When you create an NSDataDetector, you provide it with the kinds of information that

you’re looking for. You then provide a string to the data detector, and get back an NSArray

that contains NSTextCheckingResult objects. Each NSTextCheckingResult contains
additional information about what type each result is—a date, URL, or other kind of
detectable data.

To demonstrate data detectors, we’ll build a simple application that allows users to type
in anything they want and see what the data detector finds.

The application will present a text field and a button. When the button is clicked, the
text will be checked and the results will be presented in a label:

1. Create a new Cocoa application and call it DataDetectors.

2. Create the interface. Open MainMenu.xib.

Drag in a text field, and resize it until it’s a few lines high. Place it in the top half of
the window.

436 | Chapter 20: Working with Text

Drag in a button and place it under the text field. Change its label to Check.

Drag in a multiline label. Place it under the button in the bottom half of the window.

When you’re done, the app’s interface should look like Figure 20-11.

Figure 20-11. The data detector app’s interface

3. Connect the interface to the code. Open AppDelegate.swift in the assistant.

Control-drag from the top text field into the AppDelegate class. Create an outlet

called inputTextField.

Control-drag from the bottom text field into AppDelegate, and create an outlet

called outputTextField.

Finally, Control-drag from the button into AppDelegate, and create an action called

check.

4. Replace the check() method with the following code:

 @IBAction func check(sender: AnyObject) {

 let detector = NSDataDetector(

 types: NSTextCheckingTypes(NSTextCheckingAllTypes), error: nil)

 let inputString = self.inputTextField.stringValue

 var resultsText = ""

 if let matches = detector?.matchesInString(inputString, options: nil,

Detecting Data with NSDataDetector | 437

 range: NSMakeRange(0, countElements(inputString))) {

 for match in matches {

 if let result = match as? NSTextCheckingResult {

 switch result.resultType {

 case NSTextCheckingType.Link:

 resultsText += "Link: \(result.URL)\n"

 case NSTextCheckingType.Date:

 resultsText += "Date: \(result.date)\n"

 case NSTextCheckingType.PhoneNumber:

 resultsText += "Phone Number: \(result.phoneNumber)"

 case NSTextCheckingType.Address:

 resultsText += "Address: \(result.addressComponents)"

 default:

 resultsText += "Other: \(result.description)\n"

 }

 }

 }

 }

 self.outputTextField.stringValue = resultsText

 }

5. Run the application. Type in text like this:

Apple's doing an event at 4pm tomorrow!

and click the Check button. The app will display the date and time it detected.

TextKit
TextKit is a new text rendering engine, originally included in iOS 7, built on top of
CoreText, replacing WebKit as the text engine for iOS. Technically, everything that
TextKit allows you to do was possible in the past through clever use of CoreText, but it
was hard and very time consuming. TextKit allows you to do text-related manipulation,
including kerning, ligatures, and letterpress effects, among other features.

One of the most important features of TextKit is dynamic type, allowing your users to
increase or decrease the size of fonts on the fly to better suit their own needs. Users of

438 | Chapter 20: Working with Text

your app will start expecting dynamic font to be implemented and obeyed inside your
app from the beginning, so be wary of ignoring it! At its most basic, dynamic fonts

simply add a new method to UIFont called preferedFontForTextStyle to allow for the
user’s system-wide preferred font to be determined. The different text styles
available are:

• Headings

• Subheadings

• Body

• Footnotes

• Captions

As a quick demonstration of TextKit and dynamic fonts, we’ll create a simple iPhone
app that responds to the updates in dynamic fonts.

1. Create a new single view iPhone application, and call it TextKitDemo.

2. Create the interface. Open Main.storyboard.

Drag in a text view, and place it to fill the entire view.

Select the text view, and inside the Attributes Inspector, untick Editable.

3. Connect the interface. Open ViewController.swift in the assistant.

Control-drag from the text view into the ViewController class, and create an outlet

called textView.

4. Add the code. Replace ViewController.swift with the following:

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var textView: UITextView!

 var observer : AnyObject?

 override func viewDidLoad() {

 super.viewDidLoad()

 self.textView.font =

 UIFont.preferredFontForTextStyle(UIFontTextStyleBody)

 observer = NSNotificationCenter.defaultCenter()

 .addObserverForName(UIContentSizeCategoryDidChangeNotification,

 object: nil, queue: NSOperationQueue.mainQueue(),

 usingBlock: { (notification) in

TextKit | 439

 self.textView.font =

 UIFont.preferredFontForTextStyle(UIFontTextStyleBody)

 })

 }

}

Now if you run the app, it will dynamically change and update to the user’s preferred
dynamic font!

440 | Chapter 20: Working with Text

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
accelerometer, 325
access control, 49–50
actions, 83, 87
AirPrint, 333
alerts (see notifications)
ambient lights, 169
animation, with actions, 150–151
animations, 100, 170

(see also Core Animation)
combining, 173
on iOS, 103–104
on OS X, 102–103

annotations, 321
APP Nap, 336–338
app-scoped bookmarks, 219
Apple Developer Forums, 2
Apple Developer Programs, 1–3
Apple ID, 2
application bundle, 212
application development

connecting code, 15–17
interface design, 13–17

application sandbox (see sandboxes)
application visibility, 337
applications, 63–79

(see also OS X applications, iOS applica‐
tions)

composition in iOS and OS X, 65–67

finding resources in, 67–68
notifications, 78–79
overview, 63–64
platform comparisons, 63–64

arithmetic operators, 50
array controllers, 230, 247, 249–250
arrays, 28, 51
assertion functions, 382
assets, 190
assistant editor versus main editor, 8
asynchronous tests, 383
audio and video, 189–208

AV Foundation, 189–190
AVAudioEngine API, 199
AVAudioPlayer, 199–200
AVKit, 195–199
AVKit player view controllers, 86
AVPlayer, 190–200
AVPlayerLayer, 191–195
AVSpeechSynthesizer, 200
AVSpeechUtterance, 200
photo library, 207–208
speech synthesis, 200–201
using camera features, 201–208
video player app example, 191–195

authentication with Touch ID, 338–342
Automatic Reference Counting, 372
autosizing masks, 90
AV Foundation, 189–190

441

B
background applications, 70
background fetching, 73
background notifications, 74
battery life, 336–338
Bézier path, 125, 128, 140, 152
bindings, 241–254

array and object controllers, 246–247
binding to controllers, 245–247
binding views to models, 241–242
Cocoa bindings, 269
controller key, 244
in EventsKit, 357
example app, 242–245, 247–254
model key path, 244

bitmasks, 156
blurring, 153–154
bookmark data, 219
bounds rectangles, 121
breakpoints, 374–377
build configurations (see schemes)
bundle, 212
bundle ID, 5

C
CALayer class, 101
calendars (see EventKit)
camera features, 201–208

building a photo app, 204–206
differences between devices, 201

cameras, in SceneKit, 167
capsules (see SceneKit)
cell radio capability, 309
cell tower lookups, 309
chat application example, 301–305
child nodes, 144, 167
CIFilter API, 153
classes, 40–42

access control, 49–50
inheritance, 42–42
properties and, 44
protocols for, 46

CLBeaconRegion, 318
CLGeocoder, 314
CLLocationManager, 310
closures, 39–40, 105–107
CLRegion, 317
CMMotionManager, 326

Cocoa
NSData objects, 57–59

Cocoa bindings, 269
Cocoa design patterns, 59–60
code, connecting, 15
COLLADA files, 163, 182–187
collection view controllers, 85
collection views, 255, 270–273

data sources and delegates, 255–256
on iOS, 270–273
on OS X, 270

collision effects, 154
color shifting, 153–154
command-line tools, 409–410
comments, 25
compiled binary, 65
completion handlers, 106
computed properties, 44
constants, 25
constraints, 90–95, 181

interface build example, 91–95
constraints menu, 91
context, 115
contraints, 157
controller objects, 245
controllers, 59

binding to, 245–247
table view, 258

converting types, 27
coordinate space, 117
Core Animation, 100–104
Core Data syncing, 220
Core Image filters, 153
Core Location framework, 310–314
Core Motion, 324–331

altimeter, 329–330
example app, 326–329
pedometer, 330–331

CTM (see current transform matrix)
cubes (see SceneKit)
current transform matrix (CTM), 135
custom paths, 126–127
custom views, 122–136

fill color, 123–124
gradiants, 132–134
paths, 124–128
shadows, 129–132
transforms, 135–136

442 | Index

D
DAAP (Digital Audio Access Protocol) server,

299
data

detecting, 436–438
formatting (see formatting data)
loading from files and URLs, 57
serialization/deserialization, 58–59

data sharing (see sharing)
data source, 255
data source objects, 258
data source protocol, 255
data syncing (see iCloud)
data view, 255
databases, 277
debug gauges, 384
debugging, 155, 374–381

controlling program flow, 375
custom breakpoints, 375
debugger console, 378
inspecting memory contents, 377
of views, 378–381
setting breakpoints, 374–377
special breakpoints, 376–377

default, 210
default case, 34
default value, 210
defaults object, 210
deinitialization, 42
delegates, 256, 262
delegation pattern, 60
detecting data, 436–438
developer programs (see Apple Developer Pro‐

grams)
device motion (see Core Motion)
dictionaries, 29
digital signing certificates, 2
directional lights, 169
dirty rectangle, 121
document pickers, 235–239
document types, 277
document-based applications, 275–292

document management in OS X versus iOS,
275

document objects in MVC, 276
document types, 277
example apps, 279–292
in iOS, 286–292

(see also UIDocument)

in OS X, 278–286
(see also NSDocument)

role of documents, 278
document-scoped bookmarks, 219
Documents directory, 217
Double-Length Pseudolanguage, 423
drawing, 115–117
drawRect method, 120
dynamic type, 438

E
EKEventStore, 349
emission property, 179
emissive component, 174
entitlements, 77
evaluating policies, 339
EventKit, 349–359

accessing calendars, 351
accessing events, 352
date picker, 357–358
event store, 349–351
event-finding predicate, 352
example app, 354–359
repeating events, 352
user privacy, 359
working with events, 353–354

exception breakpoint, 376
exhaustive statements, 34
expectations, 383
extendedGamepad, 335
extensions, 47–48

F
FaceTime camera, 201
failable initializer, 43
file packages, 277
file storage locations, 217
file URL, 295
filesystem, working with, 212–217

creating directories, 215
creating files, 216
file storage locations, 217
moving and copying files, 216
NSFileManager, 213–217
removing files, 216
temporary directory, 215

fill color, 123–124
flat files, 277

Index | 443

fonts, 149–150
for loops, 32
for-in loops, 31
foreground applications, 70
formatting data

NSEnergyFormatter, 434
NSFormatter, 430–432
NSLengthFormatter, 434
NSMassFormatter, 434
NSNumberFormatter, 433–435

fragment shader (.fsh), 158
frame rectangles, 120–121
frameworks, 64
functions

as generators, 38
as variables, 37–39
defining, 35–37
overriding, 42

G
game controllers, 334–336
gamepad, 335
games (see SpriteKit)
generics, 51
geocoding, 314–317
geometry classes, 172
geometry of objects, 168
gesture recognizers, 179
GLKit controllers, 85
glow effect, 179
GLSL (OpenGL Shading Language), 157
GPS, 308
gradiants, 132–134
graphical user interfaces (GUIs), 81–104

actions, 83
constructing an interface, 89–91
Core Animation, 100–104
iOS, 82, 95–97
nib files, 82–89
OS X, 81–82
outlets, 83
storyboards, 86–87, 88
UI Dynamics, 98–100

graphics, 115
(see also drawing)
2D (see SpriteKit)
3D (see SceneKit)

graphics context, 115, 117, 130
gravity, 98–99

gravity effects, 154
groups of actions, 150
GUI (see graphical user interfaces (GUIs))
gyroscope, 325

H
Handoff, 342–347
hit testing, 178–180
HUD (heads-up display), 84

I
iBeacons, 309, 317–319
iCloud, 209, 212, 220–239

and Core Data syncing, 220
document pickers, 235–239
iOS storage, 233–235
key-value store, 223–224
OS X storage, 228–233
setup for, 222
storing settings, 223–228
testing access, 222–223
ubiquity container, 222
user etiquette, 239
what it stores, 221

identifiers, 86, 265
identity matrix, 135
if statements, 27, 30
if-let statement, 32
image effect nodes, 153–154
immutable arrays, 29
in-out keyword, 37
index paths, 257–257
Info.plist file, 65
inheritance, 42–42
instances, in classes, 41
Instruments, 1, 361–373

example app, 368–372
interface, 364
Library, 366–368
Mark Generation button, 373
observing data, 365–366
retain cycles and memory leaks, 372–373

integers, 34, 50
Interface Builder, 82, 260
interface design, 13–15
interfaces (see graphical user interfaces (GUIs))
intialization, 42–43
invocation operations, 108

444 | Index

iOS
animations on, 103–104
application restrictions, 76
AVKit, 197–199
camera features, 202–206
collection views on, 270–273
device motion (see Core Motion)
document pickers, 235–239
drawing gradients, 134
drawing shadows, 131–132
iCloud settings in, 225–228
iCloud storage on, 233–235
interfaces on, 82, 95–97
nonstandard apps, 417–419
printing documents, 333–334
sample application development, 13–17
Scenekit in, 165
sharing destinations, 388
sharing on, 390–393
storyboards, 86–87
table views on, 256–264

(see also UITableView)
testing for, 17
transforms, 136
view controllers in, 82, 84–86

iOS applications
background versus foreground running, 71–

75
lifecycle, 70–71
multitasking, 71–75
NSBundle, 67–68
structure, 66
suspension versus termination, 71

iOS developer programs, 1–3
downloading Xcode, 3
registering, 2–3

iOS Simulator, 1, 17–18, 221
isEmpty property, 56

J
jointed objects, 155
JSON

in document-based apps, 282–286
and push notifications, 402

K
key-value store, 221, 223–224
keys, 29

L
label nodes, 149
Lambert’s cosine law, 176
languages (see localized text)
launch images, 97
launch screen files, 97
layers, 101
layout objects, 270
lazy properties, 45, 355
let keyword, 23, 24, 29
lighting scenes in SpriteKit, 156–156
lights, in SceneKit, 169–170
LLDB (see debugging)
local notifications, 394, 406–408
LocalAuthentication framework, 338–342
localized text, 421–430

example app, 422–430
XLIFF, 430

location app example, 311–314
location awareness

Core Location, 310–314
geocoding, 314–317
hardware for, 307–309
and privacy, 320
region monitoring and iBeacons, 317–319

location hardware
cell tower lookups, 309
GPS, 308
iBeacons, 309
WiFi base station lookups, 309

M
Mac App Store applications, 6
Mac applications, 77

(see also OS X)
Mac developer programs, 1–3

downloading Xcode, 3
registering, 2–3

magnetometer, 310, 325
main editor versus assistant editor, 8
main queue, 107
mapping, normal, 176–177
maps

annotating, 321–322
example app, 320
Mercator projection, 323
and overlays, 322–323
using, 320

Index | 445

Mark Generation button, 373
material properties, 175
materials, 174
Mavericks, 16
memory leaks, 372–373
memory managed objects, 54
memory usage, 370
memory, inspecting contents, 377
Mercator projection, 323
methods, in classes, 41
model-view controller, 59–60, 276–278
models, 59
modules, 54
Multipeer Connectivity, 301–305, 342
multiple subpaths, 128–128
MVC (see model-view controller)

N
navigation controllers, 84
networking, 293–305

Bonjour service discovery, 299–301
browsing for shared iTunes libraries, 299–

301
connections, 293–297
Multipeer Connectivity, 301–305
networked app example, 297–298

NeXTSTEP OS, 1
nib files, 68, 82, 82–89

interface build example, 91–95
loading, 88–89
outlets and actions, 87
structure, 83–86

nil, 26
nodes, 139, 143

child, 167
in scenes, 164
root, 167
shape nodes, 151

nonstandard apps, 409–419
command-line tools, 409–410
iOS apps with multiple windows, 417–419
preference panes, 410–414
status bar items, 415–417

normal component, 174
normal mapping, 176–177
notifications, 59, 393–408

actions, 395–399
background, 74
categories, 398

defined, 387
destructive actions, 398
local, 406–408
push notifications, 400–406

(see also push notifications)
registering settings, 394–399

NSArrayController, 247
NSAttributedString, 248
NSBundle, 67–68
NSCollectionView, 270
NSData objects, 57–59
NSDataDetector, 436–438
NSDateFormatter, 430–431
NSDocument, 276, 278–286

autosaving and versions, 279
JSON example, 282–286
plain text editor example, 280–282
representing documents with, 279–280
saving data, 280–286

NSFileManager, 213–217
NSFormatter, 430
NSGradient objects, 132
NSHTTPURLResponse, 296
NSInsetRect function, 125
NSJSONSerialization, 282
NSMetadataQuery, 230, 233
NSNetServiceBrowser, 299
NSNotifications class, 78
NSNumberFormatter, 430
NSObjectController, 247
NSOpenPanel, 218
NSOperation, 108
NSPredicate, 352
NSSavePanel, 218
NSShadow objects, 129
NSSharingServicePicker, 393
NSTableView, 264

example app, OS X, 265–268
sorting, 268–269
with bindings, 269

NSURL, 294–295, 297
NSURLConnection, 296
NSURLRequest, 295, 297
NSURLResponse, 296
NSURLSession, 296, 297
NSUserDefaults, 210
NSUserDefaultsController, 245
NSView, 120, 192

446 | Index

O
object constraints (see constraints)
object controllers, 247
object identifiers, 265
object library, 14
Objective-C, 52–54
objects, 40–52

access control, 49–50
classes within, 40–41
converting to data, 58–59
extensions, 47–48
generic types, 51
inheritance, 42–42
initializers/deinitializers, 42–43
memory managed, 54
operators, 50
properties, 44–46
protocols, 46

Objects Library, 89
omni lights, 169
OpenGL, 139
OpenGL ES Error breakpoint, 377
OpenGL Shading Language (GLSL), 157
operation queues, 105

concurrency with, 107
in sample application, 109–113
and NSOperation, 108
performing work on, 108–109

operators, 50
optimization, 384
optional types, 32
optional variables, 27
OS beta versions, 2
OS X

animations on, 102–103
application restrictions, 77
AVKit, 195–197
camera features, 201
drawing gradients, 132
drawing shadows, 129
iCloud storage on, 228–233
interfaces on, 81–82
nonstandard apps, 409–417
preference panes, 410–414
printing documents, 331–332
sandbox, 75–78
SceneKit in, 165
sharing destinations, 387
sharing on, 393–393

storing iCloud settings, 223–225
table view on, 264–270

(see also NSTableView)
transforms, 135
windows in, 81, 83–84

OS X applications
lifecycle, 68–70
structure, 65

outlets, 83, 87

P
page controllers, 85
panel windows, 83
parameters

defining in functions, 35–37
internal versus external name, 36

parent class, 42
parenting, 144
paths, 116, 124–128
pedometer, 330–331
performance (see Instruments)
performance optimization, 384
photo app, building, 204–206
photo library, 207–208
physics, in SpriteKit, 154
pixels, 117–120

Retina displays, 118
and screen points, 119

playgrounds, 23–24
point lights, 169
policies, evaluating, 339
POST request, 295
Powerbox, 218
predicate, 231, 352
preference panes, 410–414

preference domains, 412–413
sample build, 413–414

preferences, 209–212
accessing, 211
default values, 210–211
setting, 211

Printer Simulator, 334
printing

on iOS, 333–334
on OS X, 331–332

privacy, and calendar access, 359
privacy, and location, 320
private API application restrictions, 77–78
properties, 44–46

Index | 447

properties, in classes, 41
property list classes, 282
property list objects, 211
property observers, 45
protocols, 46
proximity UUID, 318
pseudolocalizations, 423
push notifications, 394

delivery options, 400
receiving, 401, 404–406
sending, 402
setup for, 403–404

Q
QuartzCore, 101

R
range operator, 31
ranges, 34
re-parenting, 144
reference counting, 54
region monitoring, 317–319
relative altitude, 329
remote notifications (see push notifications)
Resources folder, 68
retain count, 54
retain cycles, 55, 372–373
Retina displays, 118
reverse geocoding, 314
reversing actions, 151
revision control, 10
root nodes, 167
rotation actions, 151
run loop, 69
runAction, 151

S
sandboxes, 75–78, 213, 217–220, 228

application restrictions, 76–78
enabling sandboxing, 217–218
open and save panels, 218
security-scoped bookmarks, 219–220

scaling actions, 151
scene graph, 164
SceneKit, 163–187

3D object, adding, 168
animations, 170, 173

camera, adding, 167
COLLADA files, 163, 182–187
constraints, 181
framework, 165
hit testing, 178–180
lights, adding, 169–170
materials in, 174
normal mapping, 176
scene, adding, 166
SceneKit view, adding, 165
storyboard, 165
structure, 164
text geometry, 172

scenes, 141–143, 145
scenes, 3D (see SceneKit)
schedules (see EventKit)
schemes, 9
SCNCamera, 167
SCNConstraint, 181
SCNGeometry, 168
SCNHitTestResult, 178
SCNMaterial, 175
SCNNode, 167
SCNScene, 164, 166
SCNText, 172
SCNView, 164, 165
screen points, 119
security-scoped bookmarkds, 219–220
segues, 86
sequence of actions, 150, 151
serialization/deserialization, 58–59
shaders, 157–159
shadows, drawing, 129–132
shape nodes, 151
sharing, 387–393

available iOS destinations, 388
available OS X destinations, 387
on iOS, 390–393
on OS X, 393–393

simulator, 17
size classes, 95–97
SKAction, 150
SKConstraint, 157
SKLabelNode, 149
SKLightNode, 156
SKNode, 139
SKPhysicsBody, 154
SKScene, 140
SKScenes, 154

448 | Index

SKShader, 158
SKTexture, 175
SKTransition, 142
SKView, 140
sort descriptor, 268
sort keys, 268
sorting, closures and, 39
sound (see audio and video)
specular component, 174
speech synthesis, 200–201
spheres (see SceneKit)
split view controllers, 85
spotlights, 169
springs and struts, 90
SpriteKit, 139–161

animation, 150–151
app framework for, 140–141
architecture, 139–140
constraints, 157
image effect nodes, 153–154
jointed objects, 155
lighting scenes, 156–156
nodes, 139, 143
physics in, 154
putting sprites in scenes, 145
scenes, 140, 141–143
shaders and, 157–159
shape nodes, 151
SpriteKit editor, 160
text images, 149–150
texture atlases, 148–149
textures, 147, 175
touch responses, 146–147
views, 140
Xcode template, 140

standard view controllers, 84
standard windows, 83
status bar items, 415–417
stored properties, 44
storyboards, 13, 86–87, 88
strings, 55–57
strings files, 421
stroking, 116
subclassing, 60
subpaths, 128–128
subscripting, 30
subtextures, 148
subviews, 120
sumNumbers function, 22

superviews, 120
Swift

Cocoa design patterns, 59–62
comments, 25
constants, 25
control flow, 30–34
data, 57–59
defining functions, 35–39
goals, 21–22
interoperating with Objective-C, 52–54
memory management, 54
modules, 54
objects, 40–52

(see also objects)
overview, 21–23
playgrounds, 23–24
strings in, 55–57
switches, 33
types, 26–30
variables, 24–26

switch statements, 33–34
symbolic breakpoint, 376
syncing (see iCloud)

T
table view controllers, 84
table views, 255–270

data sources and delegates, 255–256
on iOS, 256–264

(see also UITableView)
on OS X, 264–270

(see also NSTableView)
tapping (see touch responses)
targets, 9, 87
Test Failure breakpoint, 377
test suites, 381
TestFlight, 19
testing framework, 381–383

(see also XCTest)
text

detecting data, 436–438
formatting data, 430–436
internationalization and localization, 421–

430
strings files, 421
TextKit, 438–440
with SpriteKit, 149–150

text geometry, 172
TextEdit, 362

Index | 449

TextKit, 438–440
texture atlases, 148–149
textured windows, 83
textures, 147, 175
threads, 107, 108
3D graphics (see SceneKit)
3D objects, 168
timer tolerance, 337
top bar controllers, 85
Touch ID authentication, 338–342
touch response, 146–147

tap gesture recognizer, 179
transforms, 135–136
transitions, 142
troubleshooting (see Debugger, Instruments)
tuples, 28, 33, 35
types, 26–30

(see also tuples, arrays, dictionaries)
converting between, 27
extensions, 47–48
generic, 51
no value (nil), 26

U
ubiquity container, 222, 230
UI Dynamics, 98–100

and gravity, 98–99
snapping UI, 99–100

UIActivityViewController, 390
UICollectionView, 270–273
UIDocument, 276, 286–292
UIImagePickerController, 202
UIKit, 139
UITableView, 256–264

cell reuse, 259
cells, 259–260
cells anatomy, 260
controllers, 258
design with Interface Builder, 260
implementing, 262
index paths, 257–257
prototype cells, 260
responding to actions, 262
sections and rows, 257–257
table view cells, 256

UITapGestureRecognizer, 179
UIUserNotificationSettings, 395
UIView, 120
UIViewController, 258

UIWindow, 417
Uniform Type Identifier, 236
uniforms, 157, 158
unit tests, 381
unwrapping, 27
URLs, 294–295
user activities, 337
user constraints, 91
user preferences (see preferences)
utilities, 64

V
values, 29
var keyword, 24
variables, 24–26

functions as, 37–39
optional, 27

variadic parameters, 36
version control, 10
video (see audio and video)
video player app example, 191–195
view controllers, 82, 84–86, 96

(see also model-view controller (MVC))
view debugging, 378–381
ViewController, 233
viewDidLoad method, 179
views, 59, 115

(see also drawing)
binding to models, 241–242
bounds rectangles, 121
custom, 122–136

(see also custom views)
data view, 255
frame rectangles, 120–121
SpriteKit, 140
table and collection views (see collection

views, table views)

W
weak references, 55
while loops, 32
WiFi base station lookups, 309
windows, 81, 83–84

X
Xcode, 1, 2, 64

constraints in (see constraints)

450 | Index

creating playgrounds, 23–24
downloading, 3
first project steps, 4–7
Interface Builder, 82
LLDB (see debugging)
Objects Library, 89
schemes, 9
simple iOS application, 13–17
size classes, 95
SpriteKit template, 140
targets, 9
versions, 4
XCTest (see XCTest)

Xcode interface, 7–13
debug area, 12
editor, 7–8
navigator tabs, 10–11
toolbar and buttons, 9–10
utilites pane, 11

XCTest, 381–383
asynchronous tests, 383
testing blocks with tests, 383
writing tests, 381–382

.xib files, 82
XLIFF, 430

Index | 451

About the Authors
Jonathon Manning is the cofounder of Secret Lab, an independent game development
studio based in Hobart, Tasmania, Australia. Jon is a game designer and programmer
who’s worked on all kinds of projects, ranging from iPad games for children to instant
messaging clients. Jon is about to submit a PhD exploring the manipulation of online
social networks. He can be found on Twitter as @desplesda.

Paris Buttfield-Addison is also a cofounder of Secret Lab, where he works as a mobile
app engineer, game designer, and researcher with a passion for making technology
simpler and as engaging as possible. Paris has a PhD in Computing and can be found
on Twitter as @parisba.

Tim Nugent pretends to be a mobile app developer, game designer, PhD student, and
now he even pretends to be an author. When he isn’t busy avoiding being found out as
a fraud, he spends most of his time designing and creating little apps and games he won’t
let anyone see. Tim spent a disproportionately long time writing this tiny little bio, most
of which was spent trying to stick a witty sci-fi reference in, before he simply gave up.
Tim can be found as @The_McJones on Twitter.

Colophon
The animal on the cover of Swift Development with Cocoa is an Australasian gannet.The
Australasian gannet (Morus serrator or Sula bassana) belongs to the Sulidae family and
has a small range or territory, though its overall numbers seem to be increasing. This
bird breeds on Tasmania, Victoria, and New Zealand; and tends to live in large colonies
on cliffs and beaches.

This large coastal seabird has mostly white plumage, with black lining and flight feathers,
plus a yellow head and a blue beak. The young bird has darker coloring, mostly brown
with light spots, but gradually becomes whiter over its first five years. Its body is around
three feet long, with a wingspan of approximately five feet. Younger birds disperse to a
greater extent than their mature counterparts, who tend to hang in pairs for several
consecutive seasons. In breeding season, a couple lays only one egg. Flat ground sur‐
rounded by the sea seems to be the preferred nesting location for the gannet, and an‐
chovies, mackerel, flying fish, and squid are some favorite foods.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.secretlab.com.au
https://twitter.com/desplesda
https://twitter.com/parisba
https://twitter.com/The_McJones
http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Objective-C to Swift
	Audience
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Cocoa Development Tools
	The Mac and iOS Developer Programs
	Registering for a Developer Program
	Downloading Xcode

	Creating Your First Project with Xcode
	The Xcode Interface

	Developing a Simple Swift Application
	Designing the Interface
	Connecting the Code

	Using the iOS Simulator
	Testing iOS Apps with TestFlight

	Chapter 2. Programming with Swift
	The Swift Programming Language
	Playgrounds
	Variables and Constants
	Types
	Tuples
	Arrays
	Dictionaries

	Control Flow
	Switches

	Functions and Closures
	Using Functions as Variables
	Closures

	Objects
	Inheritance
	Initialization and Deinitialization
	Properties
	Protocols
	Extensions
	Access Control
	Operators
	Generics

	Interoperating with Objective-C
	Using Objective-C and Swift in the Same Project
	Using Swift Objects in Objective-C
	Using Objective-C Objects in Swift

	Modules
	Memory Management
	Working with Strings
	Comparing Strings
	Searching Strings

	Data
	Loading Data from Files and URLs
	Serialization and Deserialization

	Design Patterns in Cocoa
	Model-View-Controller
	Delegation

	Chapter 3. Applications on OS X and iOS
	What Is an Application?
	Applications, Frameworks, Utilities, and More
	What Are Apps Composed Of?
	Using NSBundle to Find Resources in Applications

	The Application Life Cycle
	OS X Applications
	iOS Applications

	The Application Sandbox
	Application Restrictions

	Notifications with NSNotification

	Chapter 4. Graphical User Interfaces
	Interfaces in OS X and iOS
	MVC and Application Design
	Nib Files and Storyboards
	Structure of a Nib File
	Storyboards
	Outlets and Actions
	How Nib Files and Storyboards Are Loaded

	Constructing an Interface
	Guidelines and Constraints

	Building an App with Nibs and Constraints
	Interfaces on iOS
	Launch Screen Files

	UI Dynamics
	UI and Gravity
	Snapping UI

	Core Animation
	Layers
	Animations

	Chapter 5. Closures and Operation Queues
	Closures in Cocoa
	Concurrency with Operation Queues
	Operation Queues and NSOperation
	Performing Work on Operation Queues
	Putting It All Together

	Chapter 6. Drawing Graphics in Views
	How Drawing Works
	The Pixel Grid
	Retina Displays
	Pixels and Screen Points

	Drawing in Views
	Frame Rectangles
	Bounds Rectangles

	Building a Custom View
	Filling with a Solid Color
	Working with Paths
	Creating Custom Paths
	Multiple Subpaths
	Shadows
	Gradients
	Transforms

	Chapter 7. SpriteKit
	SpriteKit’s Architecture
	Making an App That Uses SpriteKit
	Working with SpriteKit Scenes
	SpriteKit Nodes
	Putting Sprites in Scenes
	Responding to Touches
	Working with Textures
	Texture Atlases
	Working with Text
	Animating Content with Actions
	Using Shape Nodes
	Using Image Effect Nodes
	Adding Physics to SpriteKit Objects
	Adding Joints to SpriteKit Objects
	Lighting SpriteKit Scenes
	Constraints
	Using Shaders in SpriteKit
	Using SpriteKit Editor

	Chapter 8. SceneKit
	SceneKit Structure
	Working with SceneKit
	Adding a SceneKit View
	Adding a Scene
	Adding a Camera
	Adding a 3D Object
	Adding Lights
	Animating Content in the Scene
	Creating Text Geometry
	Combining Animations

	Working with Materials
	Normal Mapping

	Hit Testing
	Constraints
	Loading Data from COLLADA Files
	Adding Physics to the Scene

	Chapter 9. Audio and Video
	AV Foundation
	Playing Video with AVPlayer
	AVPlayerLayer
	Putting It Together
	AVKit
	AVKit on iOS
	Playing Sound with AVAudioPlayer

	Speech Synthesis
	Working with the Photo Library
	Capturing Photos and Video from the Camera
	Building a Photo Application
	The Photo Library

	Chapter 10. iCloud and Data Storage
	Preferences
	Registering Default Preferences
	Accessing Preferences
	Setting Preferences

	Working with the Filesystem
	Using NSFileManager
	File Storage Locations

	Working with the Sandbox
	Enabling Sandboxing
	Open and Save Panels
	Security-Scoped Bookmarks

	iCloud
	What iCloud Stores
	Setting Up for iCloud
	Testing Whether iCloud Works
	Storing Settings
	Handling External Changes
	The iOS Counterpart

	iCloud Storage
	iCloud Storage on OS X
	iCloud Storage on iOS

	Document Pickers
	Using iCloud Well

	Chapter 11. Cocoa Bindings
	Binding Views to Models
	A Simple Bindings App
	Binding to Controllers
	Array and Object Controllers
	A More Complex Bindings App

	Chapter 12. Table Views and Collection Views
	Data Sources and Delegates
	Table Views
	UITableView on iOS
	NSTableView on OS X

	Collection Views
	UICollectionView on iOS

	Chapter 13. Document-Based Applications
	The NSDocument and UIDocument Classes
	Document Objects in MVC
	Kinds of Documents
	The Role of Documents

	Document-Based Applications on OS X
	Autosaving and Versions
	Representing Documents with NSDocument
	Saving Simple Data
	Saving More Complex Data

	Document-Based Applications on iOS

	Chapter 14. Networking
	Connections
	NSURL
	NSURLRequest
	NSURLSession
	NSURLResponse and NSHTTPURLResponse

	Building a Networked Application
	Bonjour Service Discovery
	Browsing for Shared iTunes Libraries

	Multipeer Connectivity

	Chapter 15. Working with the Real World
	Working with Location
	Location Hardware
	The Core Location Framework
	Working with Core Location

	Geocoding
	Region Monitoring and iBeacons
	Locations and Privacy
	Maps
	Using Maps
	Annotating Maps
	Maps and Overlays

	Device Motion
	Working with Core Motion
	Using the Built-in Altimeter
	Using the Pedometer

	Printing Documents
	Printing on OS X
	Printing on iOS

	Game Controllers
	App Nap
	Authenticating Using Touch ID
	Handoff

	Chapter 16. EventKit
	Understanding Events
	Accessing the Event Store
	Accessing Calendars
	Accessing Events
	Working with Events
	Building an Events Application
	User Privacy

	Chapter 17. Instruments and the Debugger
	Getting Started with Instruments
	The Instruments Interface
	Observing Data
	Adding Instruments from the Library

	Fixing Problems Using Instruments
	Retain Cycles and Leaks
	Using the Debugger
	Setting Breakpoints
	Inspecting Memory Contents
	Working with the Debugger Console

	View Debugging
	The Testing Framework
	Writing Tests
	Writing Asynchronous Tests
	Performance-Testing Blocks with Tests

	Debug Gauges
	Performance Optimization

	Chapter 18. Sharing and Notifications
	Sharing
	Sharing on iOS
	Sharing on OS X
	Notifications
	Registering Notification Settings
	Push Notifications
	What Happens When a Notification Arrives

	Sending Push Notifications
	Setting Up to Receive Push Notifications
	Receiving Push Notifications
	Local Notifications

	Chapter 19. Nonstandard Apps
	Command-Line Tools
	Preference Panes
	How Preference Panes Work
	Preference Domains
	Building a Sample Preference Pane

	Status Bar Items
	Building a Status Bar App

	iOS Apps with Multiple Windows

	Chapter 20. Working with Text
	Internationalization and Localization
	Strings Files
	Creating a Sample Localized Application

	Formatting Data with NSFormatter
	Testing Different Locales

	Formatting Numbers, Lengths, Mass, Energy, and Data
	NSNumberFormatter
	NSEnergyFormatter, NSMassFormatter, and NSLengthFormatter
	NSByteCountFormatter

	Detecting Data with NSDataDetector
	TextKit

	Index
	About the Authors

