
Anthony Gray

 Swift
Pocket 

Reference
PROGRAMMING FOR iOS AND OS X

www.allitebooks.com

http://www.allitebooks.org


ISBN: 978-1-491-91542-4

US $14.99  CAN $15.99

Get quick answers for developing and debugging applications with Swift, 

Apple’s multi-paradigm programming language. This pocket reference is 

the perfect on-the-job tool for learning Swift’s modern language features, 

including type safety, generics, type inference, closures, tuples, automatic 

memory management, and support for Unicode.

Designed to work with Cocoa and Cocoa Touch, Swift can be used in tandem 

with Objective-C, and either of these languages can call APIs implemented 

in the other. Swift is still evolving, but it’s clear that Apple sees it as the future 

language of choice for iOS and OS X software development.

Topics include the following:

 ■ Swift’s Run-Eval-Print-Loop (REPL) and interactive 

playgrounds

 ■ Supported data types, such as strings, arrays, and dictionaries

 ■ Variables and constants

 ■ Program low: loops and conditional execution

 ■ Classes, structures, enumerations, functions, and protocols

 ■ Closures: similar to blocks in Objective-C and lambdas in C#

 ■ Optionals: values that can explicitly have no value

 ■ Operators, operator overloading, and custom operators

 ■ Access control: restricting access to types, methods, and 

properties

 ■ Built-in global functions and their parameter requirements

oreilly.com, Twitter: @oreillymedia

Swift Pocket Reference

IOS PROGR AMMING

www.allitebooks.com

http://www.allitebooks.org


Anthony Gray

Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


978-1-491-91542-4

[LSI]

Swift Pocket Reference
by Anthony Gray

Copyright © 2015 Anthony Gray. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com .

Editor: Rachel Roumeliotis
Production Editor: Matthew Hacker
Copyeditor: Bob Russell, Octal Publishing, Inc.
Proofreader: Jasmine Kwityn
Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

December 2014:  First Edition

Revision History for the First Edition
2014-11-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915424 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Swit
Pocket Reference, the cover image of an African palm swift, and related trade
dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915424
http://www.allitebooks.org


Table of Contents

Introduction                                                                                                       1

Conventions Used in This Book                                                                     2

Using Code Examples                                                                                      2

Safari® Books Online                                                                                        3

How to Contact Us                                                                                            4

Acknowledgments                                                                                           4

Getting Started with Swift                                                                            5

A Taste of Swift                                                                                               11

Basic Language Features                                                                             14

Types                                                                                                                  17

Variables and Constants                                                                               21

Tuples                                                                                                                 26

Operators                                                                                                          29

Strings and Characters                                                                                  38

Arrays                                                                                                                 42

Dictionaries                                                                                                      47

Functions                                                                                                          51

Closures                                                                                                             57

Optionals                                                                                                          63

Program Flow                                                                                                  69

iii

www.allitebooks.com

http://www.allitebooks.org


Classes                                                                                                               80

Structures                                                                                                       108

Enumerations                                                                                                112

Access Control                                                                                               119

Extensions                                                                                                      123

Checking and Casting Types                                                                     127

Protocols                                                                                                         131

Memory Management                                                                               142

Generics                                                                                                          149

Operator Overloading                                                                                 155

Ranges, Intervals, and Strides                                                                 160

Global Functions                                                                                          163

Index                                                                                                                169

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Swift Pocket Reference

Introduction
Swift is an exciting new language from Apple, first announced
at the Apple Worldwide Developers Conference (WWDC) in
June 2014. The language started life as the brainchild of Chris
Lattner, director of Apple’s Developer Tools Department, and is
the next step in the evolution of Apple’s software development
ecosystem.

Swift brings with it many modern language features, including
type safety, generics, type inference, closures, tuples, automatic
memory management, and support for Unicode (for character
and string values as well as for identifiers). You can use a mix‐
ture of Swift and Objective-C in a single project, and either lan‐
guage can call APIs implemented in the other.

The challenge for anyone learning (or even writing about)
Swift is that the language is still evolving. Apple has stated that
the language specification is not final, and the syntax and fea‐
ture set will change.

Despite the uncertainty of a changing language, Swift shows
great promise. It follows on from the company’s other major
developer tools initiatives (all led by Lattner) including LLVM,
Clang, LLDB, ARC, and a series of extensions to Objective-C,

1

www.allitebooks.com

http://www.allitebooks.org


and it’s clear that Apple sees it as the future language of choice
for iOS and OS X software development.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

NOTE

This element signifies a general note.

Using Code Examples
This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly

2 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from
this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “Swit Pocket Reference by Anthony Gray (O’Reilly).
Copyright 2015 Anthony Gray, 978-1-491-91542-4.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand
digital library that delivers expert
content in both book and video form

from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of plans and pricing for
enterprise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data‐
base from publishers like O’Reilly Media, Prentice Hall Profes‐
sional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and

Safari® Books Online | 3

www.allitebooks.com

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
http://www.allitebooks.org


hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://bit.ly/swit_pocket_ref.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank Paris Buttfield-Addison for urging me
(repeatedly) to write this book. He and his partner-in-crime,
Jon Manning, suffer from boundless optimism and seem to
regard “no” as a challenge rather than as a defeat. I’d also like to
thank Rachel Roumeliotis and the other fine folk at O’Reilly for
having faith in me and for shepherding the project through to
completion. Special thanks also go to the readers of the early

4 | Swift Pocket Reference

www.allitebooks.com

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/swift_pocket_ref
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org


release editions, who took the time to provide feedback and
suggestions for improvement, for which I’m deeply grateful.

Getting Started with Swift
To code in the Swift language, you need to be using Xcode 6.1
or later (available free on the Mac App Store), which runs in
either OS X 10.9 (Mavericks) or OS X 10.10 (Yosemite). You
might also consider signing up as a registered Apple developer
(with free and paid tiers) to gain access to a wealth
of documentation and other developer resources at
https://developer.apple.com.

You can use the version of Swift built into Xcode 6.1 to compile
programs that will run on OS X 10.9 and OS X 10.10, and on
iOS 7 and iOS 8.

After you have downloaded and installed Xcode 6.1, go ahead
and run it and allow it to install the various tools that are bun‐
dled with it. When installation is complete, there are a number
of ways that you can get started with Swift:

• Click File → New Project to create a new Xcode project.
The project wizard opens and offers you the choice of
using Swift or Objective-C as the language for the
project.

• Click File → New Playground to create a new playground
document. Playgrounds are single-window dynamic
environments in which you can experiment with Swift
language features and see results instantly alongside the
code you enter.

• Create a Swift script and run it from the command line in
the OS X terminal.

• Use the Swift Read-Evaluate-Print-Loop (REPL) in the
OS X terminal.

Getting Started with Swift | 5

https://developer.apple.com


Let’s look at the REPL, Swift scripting, and playgrounds in
more detail.

NOTE

As of this writing, some features of Swift and Xcode 6.1 are
still unstable. It is likely that you will encounter instability
associated with Swift playgrounds as well as with Xcode’s
autocomplete feature and syntax highlighting. In play‐
grounds, the result of an expression might not always be
displayed alongside it in the results sidebar; instead, it
might appear alongside an earlier line. Occasionally, you
might need to quit and restart Xcode to get it back to a sen‐
sible state.

The Swift REPL
The Swift REPL provides command-line access to Swift and
behaves like an interpreter. You can declare variables and con‐
stants, define functions, evaluate expressions, and use most
other language features; they will be compiled and executed
immediately.

Multiple Xcode installations

If you have more than one installation of Xcode on your com‐
puter, you will need to use the xcode-select command to
choose the Xcode 6 environment as the active developer direc‐
tory. In the terminal, type the following command:

sudo xcode-select -s /Applications/Xcode.app

When prompted, provide your administrator username and
password. If you have installed Xcode in a different location or
changed its name, replace the path in the command with the
location and name of your installed release.

6 | Swift Pocket Reference



Starting the REPL

To start the REPL so that you can test Swift language features,
use the following command:

xcrun swift

If you’ve never used Xcode before, you might see an authenti‐
cation prompt from a process called Developer Tools Access (see
Figure 1), prompting you for a username and password. You
will need to enter an administrator username and password to
continue. After you enter these, you might see the following
error message (on OS X 10.9):

error: failed to launch REPL process: process

exited with status -1 (lost connection)

At this point, type the xcrun swift command again. This time,
the REPL should start normally.

Figure 1. he Developer Tools Access prompt

When the REPL starts, you will see the following output:

Welcome to Swift!  Type :help for assistance.

  1>

You’re now ready to try your first code in Swift. Try the println
function:

  1> println ("Hello, World")

Hello, World

  2>

Getting Started with Swift | 7



The REPL is a great way to test Swift features and experiment
with the language.

Swift as a Scripting Language
You can use Swift as a scripting language, much like Perl,
Python, or Ruby. To use Swift in this manner, ensure the first
line of the script contains the path to the Swift “interpreter.” If
you want to try Swift in this way, type the following into a text
file named hello.swit:

#!/usr/bin/swift

println ("Hello, World")

Next, ensure that the script is marked as executable with a
chmod command:

chmod u+x hello.swift

Now, run the script as follows:

./hello.swift

Swift will compile your program, and assuming there are no
syntax errors, will execute it.

Swift Playgrounds
To explore Swift in a playground, on the Xcode menu bar, click
File → New Playground, or click the “Get started with a play‐
ground” option in the Welcome to Xcode window.

You are then prompted to enter a playground name (which
becomes the saved document’s name) and a platform (iOS or
OS X), as demonstrated in Figure 2.

Once you’ve entered your playground name and selected your
platform, click Next. You will then be prompted to select a loca‐
tion to which to save the file. When the file has been saved, you
see the initial playground window, shown in Figure 3.

8 | Swift Pocket Reference



Figure 2. Creating a Swit playground

Figure 3. he initial playground window

The playground template imports either the Cocoa or UIKit
Framework, depending on whether you selected OS X or iOS
as your playground platform. This means that you can experi‐
ment not just with basic Swift language features, but also with
many of the features provided by the framework, such as draw‐
ing views and images, and even implementing basic
animations.

The playground also displays a line of code:

var str = "Hello, playground"

To the right of that code is the value “Hello, playground”. This
demonstrates one of the most useful features of the

Getting Started with Swift | 9



playground: the result of every expression displays alongside it
in the results sidebar.

Below the existing text, type the following:

for var i=0; i<10; i++

{

    println (i)

}

The results sidebar now displays the text “(10 times)” to con‐
firm the number of executions of the loop.

If you hover the pointer over the entries in the results sidebar
(Figure 4), you’ll see two symbols. The eye-like symbol pro‐
vides a Quick Look view of the value (this includes viewers for
complex data such as strings, arrays, dictionaries, images,
views, URLs, and more). The button symbol opens another
sidebar in the window called the Timeline.

Figure 4. Accessing Quick Look and the Timeline from the results
sidebar

The Timeline can show how values have changed over time as
well as console output (e.g., text output by the println

function).

You can also open the Timeline by going to the Xcode menu
bar and clicking View → Assistant Editor → Show Assistant

10 | Swift Pocket Reference



Editor, or you can use the keyboard shortcut Command-
Option-Return.

NOTE

For an excellent introduction to playgrounds, see the
recording of session 408 (Swift Playgrounds) from the 2014
Worldwide Developers Conference.

A Taste of Swift
Let’s dive right in. What follows is a simple program written in
Swift. Work through carefully to get a sense of some of the fea‐
tures of the language.

The first thing our program does is define a pair of arrays: one
named users, and another named ages for those users. This is
meant to represent raw input of disassociated data that needs to
be merged and then used as the basis of a report:

// some raw data to process

var users = ["xavier", "ryan", "brenda", "james", "sarah"]

var ages = [32, 28, 24, 41, 19]

The next section of code is a pair of extensions to the String
type. Swift has built-in support for Unicode strings, but it also
has a very flexible extension mechanism with which you can
add new features to the language—even to built-in types. Our
extension adds two new member functions to the String type
that can take a string and return a copy that is padded with
leading or trailing spaces to a specified width:

// add some extensions to the String type

extension String

{

    func leadingSpaces(width: Int) -> String

    {

        var s = "\(self)"

        for i in countElements(s)..<width

        {

            s = " " + s

A Taste of Swift | 11

http://bit.ly/2014_wwdc
http://bit.ly/2014_wwdc


        }

        return s

    }

    func trailingSpaces (width: Int) -> String

    {

        var s = "\(self)"

        for i in countElements(s)..<width

        {

            s = s + " "

        }

        return s

    }

}

Next, we declare a dictionary merged. This is an associative
array of key/value pairs to store each user’s name and age. We
also declare a variable, totalAge, to sum all of the ages so that
we can later calculate the average age of all users:

// a dictionary to store merged input

var merged = [String: Int]()

var totalAge = 0.0;

With the dictionary defined, we now iterate over the two input
arrays, merging them into the merged dictionary. The dictio‐
nary utilizes the user’s name as the key, and the user’s age as the
value:

// merge the two arrays into a dictionary

for var i=0; i < ages.count; i++

{

    merged[users[i]] = ages[i]

}

Now that we have a dictionary containing all of the raw input,
it’s time to generate a report. We want to list the users in sorted
order, and we want to print each user’s age alongside their
name, using trailing and leading spaces so that the names are
left-aligned under one another and the ages are right-aligned:

// interate over the dictionary in sorted order

// and generate a report

for user in sorted(merged.keys)

{

    let age = merged[user]!

12 | Swift Pocket Reference



    totalAge += Double(age)

    let paddedUser = user.trailingSpaces(10)

    let paddedAge = "\(age)".leadingSpaces(3)

    println ("\(paddedUser) \(paddedAge)")

 }

println ("\n\(merged.count) users")

println ("average age: \(totalAge / Double(merged.count))")

The output of our program looks like this:

brenda      24

james       41

ryan        28

sarah       19

xavier      32

5 users

average age: 28.8

If you’ve followed along, you should have a good sense for
some of the language’s capabilities. Already, you’ve been
exposed to comments, arrays and dictionaries, various loop
types, type conversion, function calls, extensions, string inter‐
polation, and console output.

The remainder of this book will take you on a tour of these top‐
ics and all of the major aspects of the Swift language. Generally,
the intention is to cover basic features before more advanced
features, but at times it is necessary to dip into advanced topics
early on. When this happens, we’ll try to warn you in advance
and give you a pointer to where you can find more coverage.

Finally, note that this book is about the Swift language, not
about iOS or OS X development. O’Reilly has some excellent
titles that cover using Swift in those broader contexts, but the
examples and discussion you’ll find here are deliberately limi‐
ted to pure Swift as much as possible.

A Taste of Swift | 13



Basic Language Features
Before we delve into the specifics of the language such as data
types or program flow, let’s take a look at some of the more
general aspects of Swift source code.

Comments
Swift supports C-style comments. Comments that extend to the
end of the current line begin at a double forward-slash, as illus‐
trated here:

// this is a comment

println ("Hello, world")  // really?

For multiline comments, you enclose them between a forward-
slash followed by an asterisk at the beginning and end them
with an asterisk followed by a forward-slash, as shown in the
following:

/*you could be excused when looking at this comment

for thinking that it was written in C! */

Unlike C, Swift supports multiline comment nesting. Swift
treats the following as a nested comment block, whereas tradi‐
tional C compilers will report an error at the last */:

/*

/* Original comment here */

*/

Multiline comment nesting makes it possible for you to define
blocks of commented code using the /* and */ comment mark‐
ers without having to first check whether an inner multiline
comment block exists.

Semicolons
Semicolons in Swift are only required when you need to sepa‐
rate multiple statements on a single line. They are not required
at the end of a statement if that is the last statement on the line
(but it is not an error to use them):

14 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


var a = 45;    // semicolons are optional

var b = 55

Whitespace
Swift uses whitespaces to separate tokens; otherwise, it ignores
them. Whitespaces include spaces, tabs, line feeds, carriage
returns, vertical and horizontal tabs, and the null character.

Because whitespace is ignored, you can use line breaks to split
long lines at token boundaries. Thus, the following two state‐
ments are equivalent:

var a = 45

var a

=

45

There is no formal way to split a long string over multiple lines
as there is in C or Objective-C, but strings can be concatenated
by using the + operator. So, you could split a long string
like this:

let longstr = "Hello there this is a very " +

            "long string split over two lines"

Importing Code from Other Modules
In C-like languages, the usual way to use code from other parts
of a project or from libraries or frameworks is by using the
#include directive. When placed in a source file, this directive
instructs the compiler to read a header file into the compilation
process.

The header file declares what classes, methods, functions, and
external variables are provided by the external code, and are
therefore valid to call or access in the source file that hosts the
#include directive. The feature provided by the code, or links
to it, are linked into the executable file at the last stage of the
compilation process by a program called a linker.

Basic Language Features | 15



Swift does away with header files and the need to include them.
Instead, Swift uses the import command, which imports the
definitions made available by another module.

The basic syntax is as follows:

import ModuleName

import Cocoa

Used in this way, everything that ModuleName makes public is
imported.

If a module provides submodules, you can import a specific
submodule, with this syntax:

import ModuleName.SubmoduleName

import Foundation.NSDate

If you only want to import a single feature from a module, use
this syntax:

import Feature ModuleName.SymbolName

import func Darwin.sqrt

This last directive imports just the sqrt function from the
Darwin module. Feature describes the type of the entity to be
imported; the type can be one of the following: var, func, class,
struct, enum, protocol, or typealias (all of which are described
throughout the remainder of this book).

You can import most of the standard OS X and iOS frame‐
works into a Swift project, including, for example, AppKit,
Cocoa, CoreData, Darwin, Foundation, UIKit, and WebKit.
Refer to Apple’s documentation on OS X and iOS for
more information on these and other frameworks at https://
developer.apple.com.

In most applications, you’ll only need to import Cocoa (for OS
X applications) or UIKit (for iOS applications), because they in
turn import most other modules that are normally required for
these application types.

If you are using the Xcode editor, you can see what additional
submodules these modules import or make available by hold‐

16 | Swift Pocket Reference

https://developer.apple.com
https://developer.apple.com


ing down Command-Option and simultaneously clicking the
module name in the line that imports that module. (As of this
writing, this feature does not work for all modules and can gen‐
erate errors).

Types
Swift supports the standard data types that you would expect in
a modern programming language, which you can see listed in
Table 1.

Table 1. Supported data types in Swit

Data Type Description

Bool Boolean value (true, false)

Int Signed integer value

UInt Unsigned integer value

Double Double-precision (64-bit) loating-point value

Float Single-precision (32-bit) loating-point value

Character A single Unicode character

String An ordered collection of Characters

Speciic Integer Types
Int and UInt are 32- or 64-bit values, as determined by the
underlying platform. Swift also supports integer types of spe‐
cific size (and hence numeric range). Table 2 shows the range
of values for each type.

Table 2. Speciic integer types and their value ranges

Name Type Range

Int8 Signed 8-bit integer –128 to 127

UInt8 Unsigned 8-bit integer 0 to 255

Int16 Signed 16-bit integer –32,768 to 32,767

Types | 17



Name Type Range

UInt16 Unsigned 16-bit integer 0 to 65,535

Int32 Signed 32-bit integer –2,147,483,648 to 2,147,483,647

UInt32 Unsigned 32-bit integer 0 to 4,294,967,295

Int64 Signed 64-bit integer –263 to 263–1

UInt64 Unsigned 64-bit integer 0 to 264–1

You can determine the maximum and minimum values that
can be stored by each integer type by using the max and min
properties, as demonstrated in the following example:

UInt8.max      // returns 255

Int16.min      // returns -32768

Numeric Literals
Numeric literals can be expressed in decimal, binary, octal, or
hexadecimal, as presented in Table 3.

Table 3. Expressing numeric literals

Preix Base Example(s)

None Decimal 17, 1024, 2.767, 2.5e2

0b Binary 0b10001011

0o Octal 0o213

0x Hexadecimal 0x8C, 0x4.8p2

When using numeric literals, also note the following:

• Floating-point literals may be followed by an optional
exponent, which is expressed with an e for decimal
floating-point literals, or a p for hexadecimal
floating-point literals, and which is in turn followed by
the exponent itself, in decimal. For example, e3 repre‐
sents a decimal exponent that multiplies the mantissa by
103, and p4 represents a hexadecimal exponent that mul‐

18 | Swift Pocket Reference



tiplies the mantissa by 24. Examples include 2.7e4, which
equates to 2.7 x 104, and 0x10.4p2, which equates to
0x10.4 x 22 (the decimal equivalent being 16.25 x 22).

• To be inferred as a floating-point value, a literal without
an exponent must have a decimal point with digits on
either side. The presence of an exponent removes the
requirement for a decimal point if it is not needed (e.g.,
5e2 evaluates to 5.0 x 102).

• Numeric literals can include underscores (but not com‐
mas) to aid readability. 1_000_000 and 1_00_00_00 are the
same as 1000000.

• Floating-point literals are treated as Double values, unless
they are used in a Float context.

Character and String Literals
Character literals are single characters surrounded by double-
quotes (unlike C-based languages, in which single quotes are
used), as shown here:

"A", "B", "!"

String literals are character sequences surrounded by double-
quotes:

"Hello, World"

The compiler cannot distinguish between a Character literal
and a single-character String literal. Literals enclosed in
double-quotes are treated by the compiler as Strings, unless
they appear in a Character context, such as in assignment:

let someChar: Character = "C"

// "C" is treated as a character literal

var c: Character

c = "A"

// "A" is treated as a character literal

Types | 19



Type Aliases
The typealias keyword defines an alternative name for an
existing type. The following example equates the identifier Byte
with the type UInt8:

typealias Byte = UInt8

After this declaration, Byte can then be used as a type anywhere
that UInt8 can be used, such as in the following example:

var b: Byte = 64

See also the sections “Tuples” on page 26 and “Protocols” on
page 131 for examples of type aliases.

Nested Types
Swift supports the definition of types within types, as in this
example:

class A

{

    class B

    {

        var i = 0

    }

    var j = B()

    var k = 0

}

NOTE

The examples shown here draw on content covered later in
the text, including variables (see “Variables and Constants”
on page 21), classes (see “Classes” on page 80), and enumer‐
ations (see “Enumerations” on page 112).

Although you can use such nested definitions to provide utility
classes, structures, or enumerations to support the implementa‐
tion of the outer class, the nested type definitions are visible

20 | Swift Pocket Reference



outside the class as well. For the preceding definition, we can
create instances of A and B as follows:

var a = A()

var b = A.B()

a.j.i = 2

b.i = 5

If a class contains a nested enumeration, as follows:

class A

{

    enum TravelClass

    {

        case First, Business, Economy

    }

    // rest of class definition

}

then the enumeration can be accessed outside the class by spec‐
ifying the “path” to the enumeration values, as follows:

var t = A.TravelClass.First

Other Types
In addition to the types already discussed, you can use many
other Swift language elements in a type context, or they can
behave as types. These include classes, structures, enumera‐
tions, functions, and protocols. These topics are covered in
later sections of this book.

Variables and Constants
Variables and constants must be declared before you use them.

You declare variables by using the var keyword, followed by the
variable’s name, a colon, and then its type, as
demonstrated here:

var name: Type

var a: Int

var s: String

var c: Character

Variables and Constants | 21



You can assign values to variables at the same time that you
declare them:

var a: Int = 45

var s: String = "Frodo"

Swift uses type inferencing, which means that you don’t need to
specify a variable’s type if you assign that variable a value when
you declare it:

var a = 45

var b = 23.0, s = "Strings too"

You declare constants by using the let keyword. They look like
variables in the way that they are created and used, but they are
immutable—meaning they cannot be changed. Because a con‐
stant cannot be changed, it must be assigned a value when it is
declared (the exception is for constant properties in classes and
structures, which can have their value assigned during initiali‐
zation—see “Classes” on page 80 and “Structures” on page 108
for more information:

let name: Type = expr

let b: Float = 23.1

let t: String = "Bilbo"

As with variables, the type of a constant will be inferred from
the value you assign to it, so in most circumstances, you do not
need to specify the type:

let b = 23.1

let t = "Bilbo"

You can declare the type explicitly for circumstances in which
the inferred type is not desired. This is useful when you want to
declare a Character type where String might otherwise be
inferred, or a Float type where a Double might be inferred, as
illustrated here:

let c: Character = "A"

// "A" is otherwise inferred to be a String

let f: Float = 3.14159

// 3.14149 is otherwise inferred to be a Double

22 | Swift Pocket Reference



The names of variables and constants can contain most Uni‐
code and other characters. They cannot begin with a number.

Some keywords are reserved for specific language features, and
you cannot use them as identifiers for variables and constants.
Examples include class, func, let, var, and so on. However, if
you enclose a keyword with backticks, you can use it as an
identifier, like this:

var func = 4         // not allowed – func is reserved

var `func` = 4       // allowed

Despite this, you should be wary of using backticks as a means
of using keywords as identifiers. A best practice is to avoid
using reserved keywords at all.

Computed Variables
A computed variable is not a variable in the usual sense—it is
not a value that is stored in memory and read whenever it is
referenced in an expression or during assignment. Instead,
computed variables are functions that look like variables.

A computed variable contains two functions: a getter (identified
with the keyword get, which returns the computed value) and
a setter (identified with the keyword set, which might initialize
the conditions that affect the value returned by the getter). The
declaration looks as follows:

var variableName: someType

{

    get

    {

        // code that computes and returns

        // a value of someType

    }

    set(valueName)

    {

        // code that sets up conditions

        // using valueName

    }

}

Variables and Constants | 23



The valueName is optional; you use it inside the code that
implements the setter to refer to the value passed into the set
method. If you omit it, the parameter can be referred to using
the default name of newValue.

The setter is optional, and for most practical uses, you would
not use it. If you don’t use the setter, the get clause is not
required, and all that is required is code to compute and return
a value.

var variableName: someType

{

    // code that computes and returns a value

}

When a computed variable is defined, it is used exactly like any
other variable. If its name is used in an expression, the getter is
called. If it is assigned a value, the setter is called:

var badPi: Float

{

    return 22.0/7.0

}

let radius=1.5

let circumference = 2.0 * badPi * radius

As global or local variables, computed variables would appear
to be of limited use, but the same syntax can also be used for
properties in structures and classes. In this context, as compu‐
ted properties, the feature becomes more useful. For more
information about computed properties, see the section “Prop‐
erties” on page 84 later in this book.

Variable Observers
Variable observers are functions (or methods) that you can
attach to variables and that are called when the value of the
variable is about to change (identified with the willSet

keyword) or after it has changed (identified with the didSet
keyword). The declaration looks as follows:

24 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


var variableName: someType = expression

{

    willSet(valueName)

    {

        // code called before the value is changed

    }

    didSet(valueName)

    {

        // code called after the value is changed

    }

}

When variable observers are used with global and local vari‐
ables, the type annotation is required, as is the expression used
to initialize the variable.

Both valueName identifiers (and their enclosing parentheses)
are optional.

The willSet function is called immediately before the value of
the variable is about to be changed. The new value is visible
inside willSet as either valueName or newValue if valueName was
not specified. The function is unable to prevent the assignment
from happening and unable to change the value that will be
stored in the variable.

The didSet function is called immediately after the value of the
variable has been changed (except for after the initial assign‐
ment). The old value of the variable is visible inside didSet as
either valueName or oldValue if valueName was not specified:

var watcher: Int = 0

{

    willSet

    {

        println("watcher will be changed to \(newValue)")

    }

    didSet

    {

        println("watcher was changed from \(oldValue)")

    }

}

The didSet function can modify the value of the observed vari‐
able without willSet or didSet being called recursively, so you

Variables and Constants | 25



can use didSet to act as a guard or validator of values stored in
the variable. Here is an example of using didSet to ensure that
an integer variable can only have an even value:

var onlyEven: Int = 0

{

    didSet

    {

        if ((onlyEven & 1) == 1) { onlyEven++ }

    }

}

It is not necessary to define both didSet and willSet functions
if only one of them is required.

You can use the same syntax that is used for variable observers
for properties in structures and classes, creating property
observers. See the section “Properties” on page 84 for more
details.

Tuples
A tuple is a group of values that you can treat as a single entity.
Tuples are enclosed in parentheses, with each element separa‐
ted by a comma. Table 4 provides a few examples.

Table 4. Tuple examples

Tuple Description

(4, 5) A tuple with two integer parts

(2.0, 4) A tuple with a loating-point part, and an integer part

("Hello", 2, 1) A tuple with a string part, and two integer parts

The collection of types of each component of the tuple, in
order, is considered to be the type of tuple.

The type of each tuple in Table 4 is as follows:

(Int, Int)

(Float, Int)

(String, Int, Int)

26 | Swift Pocket Reference



You can store a tuple in a variable or constant of that tuple’s
type, or pass it to or from functions for which that tuple’s type
is acceptable.

NOTE

Although they are useful for storing temporary or related
values in a single container, tuples are not an appropriate
method for storing structured, complex, or persistent data.
For such cases, consider using dictionaries, classes, or
structures, instead.

Tuple Variables and Constants
To create a variable or constant that stores a tuple, you list the
tuple’s component types inside parentheses where you would
usually specify the type, as shown in the following:

var a: (String, Int) = ("Age", 6)

let fullName: (String, String) = ("Bill", "Jackson")

Because Swift uses type inferencing, the tuple type can be infer‐
red if the variable or constant is initialized when it is declared.
In this example, there is no need to specify that the tuple’s type
is (String, Int, String), because it is inferred by the compiler:

var loco = ("Flying Scotsman", 4472, "4-6-2")

Extracting Tuple Components
Much like arrays, you can access tuple components by position,
with the first component having an index of 0:

var loco = ("Flying Scotsman", 4472, "4-6-2")

let name = loco.0         // assigns "Flying Scotsman"

let number = loco.1       // assigns 4472

Tuples | 27



Naming Tuple Components
You can name tuple components and then access them by those
names. This example names the first component of the tuple
name, and the second component age:

var person: (name: String, age: Int)

person.name = "Fred"

person.age = 21

let c = person.age

let result = (errCode: 56, errMessage:"file not found")

var s = result.errMessage

// s is now the string "file not found"

Using Type Aliases with Tuples
You can use type aliases to associate a type identifier with a
tuple type, and that alias can then be used to create new instan‐
ces of that tuple type:

typealias locoDetail =

    (name: String, number: Int, configuration: String)

var thomas: locoDetail = ("Thomas", 1, "0-6-0")

Or a function could return a tuple of that type (see also “Func‐
tions” on page 51), as demonstrated here:

func getNextLoco() -> locoDetail

{

    // do something then return a value of type locoDetail

}

Type inferencing works with type aliases, so in

var anEngine = getNextLoco()

the variable anEngine will also be of type locoDetail.

Tuples as Return Types
Tuples are a convenient way to return more than one value
from a function or method call.

Consider a function that, on each successive call, returns the
next line of text from a file. At some point, the end of the file

28 | Swift Pocket Reference



will be reached, and this needs to be communicated to the
caller. The end-of-file state needs to be returned separately to
the line of text itself, and this is a natural fit for a tuple:

func readLine () -> (Bool, String)

{

    …

}

The function could even name the tuple parameters, as is
done here:

func readLine () -> (eof: Bool, readLine: String)

{

    …

}

Using tuples in this way produces a more natural expression
and avoids more opaque techniques to test if the end-of-file
was reached.

Operators
Operators are symbols that represent some operation to be
applied to values (usually expressed as literals, variables, con‐
stants, or expressions). Examples of well-known operators
include the plus sign (+), which normally represents addition
(or, in the case of strings, concatenation), and the minus sign
(–), which represents subtraction.

Operators are often characterized as unary (which operate on a
single value), binary (which operate on two values), or ternary
(which operate on three values).

The Swift language supports operator overloading, so it is
important to remember that the actual operation performed by
an operator will be determined by the type of data to which it is
applied. The descriptions that follow relate to the default
behavior. (See also “Operator Overloading” on page 155.)

Operators | 29



No Implicit Type Conversion
Before considering the specific operators supported by Swift,
you should note that Swift does not do implicit type conver‐
sion. This means that the following will not compile, because
the operands f and i are of different types (one is a Double, one
is an Int):

var i = 2

var f = 45.0

let result = (f / i) // error

Unlike C-based languages, Swift will not do implicit type con‐
version in expressions—you must explicitly convert operands
to the desired type. For numeric types, that means treating the
type as a function, and the operand to be converted as its
argument:

let result = (f / Double(i))

It is also important to note that Swift’s type inference rules will
treat a floating-point literal as a Double, unless it is used to initi‐
alize a variable of type Float. In the preceding example, f is
inferred to be a Double, not a Float, so i must be cast to a
Double.

Arithmetic Operators
The standard binary arithmetic operators in Swift are the same
as in other languages:

+

Addition (or string concatenation, if both operands
are strings)

-

Subtraction
*

Multiplication
/

Division

30 | Swift Pocket Reference



NOTE

Unlike other languages, Swift does not allow an overflow
or underflow using these operators. If such an overflow or
underflow occurs, the program will terminate (or the issue
will be flagged ahead of time by the compiler, if possible).
For more information about this, see the section “Overflow
Operators” on page 34 later in the book.

++

Pre or post-increment
--

Pre- or post-decrement

As with C, these last two unary operators will increment or
decrement a variable of Int, Float, or Double type. They also
return a value. When you use them as a prefix (the operator
appears to the left of the operand), they return the new (incre‐
mented) value. When you use them as a postfix (the operator
appears to the right of the operand), they return the original
(pre-increment/pre-decrement) value.

Bitwise Operators
The following operators are used with integer data types and
permit bit-level manipulation:

~ (~A)
Bitwise NOT; inverts all bits in a number

& (A & B)
Bitwise AND of A and B

| (A | B)
Bitwise OR of A and B

^ (A ^ B)
Bitwise XOR of A and B

<< (A << B)
Bitwise left-shift of A by B bits

Operators | 31



>> (A >> B)
Bitwise right-shift of A by B bits

When the left operand is an unsigned type, the left-shift and
right-shift operators always shift in new bit values of zero.

When the left operand is a signed type, the left-shift and right-
shift operators preserve the sign bit at all times. The left-shift
operator always shifts in new bit values of zero, whereas the
right-shift operator always shifts in new bits with the same
value as the sign bit.

Assignment Operators
Other than the regular assignment operator (=), all of the other
operators described here are compound assignment opera‐
tors (i.e., they combine another operation, such as addition or
subtraction, with an assignment):

=

Assignment
+=

Add and assign (a += n is equivalent to a = a + n)
-=

Subtract and assign (a -= n is equivalent to a = a - n)
*=

Multiply and assign (a *= n is equivalent to a = a * n)
/=

Divide and assign (a /= n is equivalent to a = a / n)
%=

Remainder and assign (a %= n is equivalent to
a = a % n)

<<=

Bitwise left-shift and assign (a <<= n is equivalent to
a = a << n)

>>=

Bitwise right-shift and assign (a >>= n is equivalent to
a = a >> n)

32 | Swift Pocket Reference



&=

Bitwise AND and assign (a &= n is equivalent to
a = a & n)

|=

Bitwise OR and assign (a |= n is equivalent to
a = a | n)

^=

Bitwise XOR and assign (a ^= n is equivalent to
a = a ^ n)

NOTE

Unlike C-based languages, assignment operators do not
return a value. This prevents a potentially serious error
whereby you accidentally type an = operator in an if state‐
ment when you meant to use == and end up with code that
makes an assignment instead of testing a condition.

Comparison Operators
The comparison operators return a Boolean value that repre‐
sents whether the comparison is true or false. Equality refers to
whether the left and right operands have the same value. Identi‐
cality refers to whether the operands reference the same object:

== (A == B)
Test equality (same values)

!= (A != B)
Test inequality

=== (A === B)
Test identitcality (same objects)

!== (A !== B)
Test unidentitcality

< (A < B)
Test less than

Operators | 33



<= (A <= B)
Test less than or equal to

> (A > B)
Test greater than

>= (A >= B)
Test greater than or equal to

~= (A ~= B)
Pattern match

Logical Operators
In Swift, non-Boolean values (such as Int) cannot be silently
cast to Boolean values. These operators can only be used on
Bool values:

! (!A)
Logical NOT; returns the logical opposite of the
operand

&& (A && B)
Logical AND; returns true if both operands are true

|| (A || B)
Logical OR; returns true if either operands is true

Overlow Operators
The overlow operators only accept integer operands; they do
not cause an error if an arithmetic overflow occurs:

&+

Overflow addition
&-

Overflow subtraction
&*

Overflow multiplication
&/

Overflow division (division by 0 returns 0)
&%

Overflow remainder (division by 0 returns 0)

34 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


Type Casting Operators
is

Checks whether an instance is of a specific subclass
type, or an instance conforms to a protocol.

as

Forcibly downcasts an instance reference to a specific
subclass type, or an instance reference to a specific
protocol type. Causes a runtime error if the downcast
fails.

as?

Optionally downcasts an instance reference to a spe‐
cific subclass type, or an instance reference to a spe‐
cific protocol type. Returns an optional value if nil of
the downcast fails.

See also the sections “Checking and Casting Types” on page
127, and “Protocols” on page 131 later in the book.

Range Operators
The closed range operator (x...y) represents all integer values
starting at x and ending at y. x must be less than or equal to y.
This operator can be used in a loop, as in the following:

for i in 1...5

{

    // i will successively take values from 1 through 5

}

The half-open range operator (x..<y) represents all integer val‐
ues starting at x and ending at y – 1. The value for x must be
less than or equal to y – 1:

for i in 0..<5

{

    // i will successively take values from 0 through 4

}

See also the section “Ranges, Intervals, and Strides” on page
160 for more information.

Operators | 35



Ternary Conditional Operator
Swift’s ternary conditional operator performs the same function
as its syntactic counterpart in C. The basic format is as follows:

expr1 ? expr2 : expr3

If expr1 evaluates to true, the operator returns expr2. Other‐
wise, it returns expr3.

This operator provides a shorthand equivalent of:

var a: Int

if (someCondition)

{

    a = 6

}

else

{

    a = 9

}

reducing it to the following:

var a: Int = someCondition ? 6 : 9

Operator Precedence
When evaluating expressions that consist of more than a single
operator, and where there are no parentheses to control evalua‐
tion order, Swift uses a simple set of rules to determine the
order of evaluation. Let’s take a look at the following
expression:

4 * 5 + 3

By convention, we treat the multiplication as a higher priority
operator than the addition, and so the expression is evaluated
to 23, and not 32.

Swift classifies the built-in operators as belonging to one of
eleven groups and uses numeric precedence levels to determine
overall evaluation order. Operators at higher levels are evalu‐
ated before operators at lower levels.

36 | Swift Pocket Reference



In addition, when two operators with the same precedence
level are being evaluated, Swift uses predefined associativity val‐
ues to determine which to evaluate first. Associativity values
are declared as none, left, and right:

• A value of left means the lefthand subexpression will be
evaluated first.

• A value of right means the righthand subexpression will
be evaluated first.

• A value of none means that operators at this precedence
level cannot be adjacent to each other.

Table 5 shows the precedence and associativity values for the
built-in operators.

Table 5. Built-in operator precedence and associativity values

Precedence Associativity Operators

160 None <<, >>

150 Left *, /, %, &*, &/, &%, &

140 Left +, -, &+, &-, |, ^

135 None ..<, ...

132 None is, as

130 None <, <=, >, >=, ==, !=, ===, !==, ~=

120 Left &&

110 Left ||

110 Right ??

100 Right ?: (ternary conditional)

90 Right =, *=, /=, %=, +=, -=, <<=, >=, &=, ^=, |=, &&=,

||=

Operators | 37



Using Table 5, we can see that in

4 << 5 * 4

the left-shift operator (<<) will be evaluated first because it has a
higher precedence level than the multiply operator (*).

For an expression in which operands have the same prece‐
dence, the associativity values are applied. Consider this
expression:

4 + 3 &- 88

Both the addition operator (+) and the overflow subtraction
operator (&-) are precedence level 150, but they are left associa‐
tive, which means that the lefthand subexpression is evaluated
first, causing the expression to be interpreted as follows:

(4 + 3) &- 88

Strings and Characters
A String is an ordered collection of Characters. The Character
type is Unicode-compliant, so Strings are also fully Unicode-
compliant.

Empty string and character variables are declared as follows:

var astring: String

var achar: Character

Or they can be initialized by using a string literal value:

var astring: String = "Hello"

var achar: Character = "A"

Like String literals, Character literals are enclosed in double-
quotes. (Swift does not permit characters to be enclosed in
single-quotes, which might confuse C programmers.)

Because Swift can infer types, it is not necessary to include the
String keyword when assigning a value, so you can also write
the previous examples as follows:

var astring = "Hello"

var achar: Character = "A"

38 | Swift Pocket Reference



You can concatenate String types by using the + operator to
create a new String:

let newString = "Hello" + " Bill"

Or you can append a String to an existing String by using the
+= operator:

var welcome = "Hello"

welcome += " there"

Strings are a value type and are copied when assigned or
passed to a function or method (unlike NSStrings, which are
passed by reference).

String Properties
You can use the following features to check string length and
get alternate views of the string in different character formats:

someString.isEmpty

Boolean; true, if the string contains no characters.
countElements(someString)

Returns the number of characters in the string.
Because Swift strings are Unicode-compliant, the
number of characters might not be the same as the
length of the string in bytes.

someString.utf8

A view of the string in UTF-8 format (of type
String.UTF8View), for iterating over the string’s charac‐
ters in 8-bit format.

someString.utf16

A view of the string in UTF-16 format (of type
String.UTF16View), for iterating over the string’s char‐
acters in 16-bit format.

someString.unicodeScalars

A view of the string in UnicodeScalar format (of type
UnicodeScalarView), for iterating over the string’s char‐
acters in UnicodeScalar format.

Strings and Characters | 39



Comparing Strings
You can compare strings and substrings by using the following
comparison operators and methods:

==

Returns true if two strings contain the same sequence
of characters.

!=

Returns true if two strings contain different sequen‐
ces of characters.

<

Returns true if the string to the left of the operator
sorts lexically before the string to the right of the
operator.

<=

Returns true if the string to the left of the operator
sorts lexically before or is equal to the string to the
right of the operator.

>

Returns true if the string to the left of the operator
sorts lexically after the string to the right of the
operator.

>=

Returns true if the string to the left of the operator
sorts lexically after or is equal to the string to the right
of the operator.

someString.hasPrefix(prefixString)

Returns true if the sequence of characters in prefix
String matches the start of someString.

someString.hasSuffix(suffixString)

Returns true if the sequence of characters in suffix
String matches the end of someString.

40 | Swift Pocket Reference



Escaped Characters in Strings
To use certain special characters in string literals, use a back‐
slash escape sequence:

\0

Null character
\\

Backslash
\t

Tab
\n

Line feed
\r

Carriage return
\"

Double quote
\'

Single quote
\u{n}

Arbitrary Unicode scalar; n is from 1 to 8 hex digits

String Interpolation
Expressions can be evaluated and the result substituted in a
string literal using the escape sequence:

\(expr)

For example:

let costOfMeal = 56.52

let advice = "Consider tipping around \(costOfMeal * 0.20)"

String interpolation is not restricted to numeric values:

let a = "Hi"

let b = "there"

let c = "\(a) \(b)"       // c is now "Hi there"

Strings and Characters | 41



Arrays
An array is a collection of items of the same type, be it a simple
type (such as Int, Double, or String) or a more complex type
(such as a class or structure). You access elements in an array
by their position in the collection using a subscript syntax. This
example assigns the sixth element in the array to the constant v
(because array elements start at 0):

let v = vertex[5]

The type of an array is formally specified as Array<Type>,
although the more frequently used shorthand equivalent is
[Type]. Thus, if you see the term [String], you can conclude
that it means an array of type String.

You declare arrays in a similar way to variables and constants.
You create empty arrays as follows:

var arrayName = [Type]()

var daysPerWeek = [String]()

You can declare arrays with a specified number of pre-
initialized entries:

var vertex = [Double](count: 3, repeatedValue: 0.0)

Or you can initialize them by using an array literal:

var locos: [String] = ["Puffing Billy", "Thomas"]

let daysPerMonth: [Int] =

    [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 31, 31]

let primes = [1, 3, 5, 7, 11]

You can also use the + operator to create an array that combines
existing arrays of the same type, as shown here:

let vowels = ["A", "E", "I", "O", "U"]

let consonants = ["B", "C", "D",  "F", "G", "H", "J", …]

var allLetters = vowels + consonants

Here are some more characteristics of arrays in Swift:

• Arrays declared by using var are mutable, whereas arrays
declared by using let are immutable.

42 | Swift Pocket Reference



• An array’s type does not need to be specified if it is ini‐
tialized from an array literal, because the type can be
inferred.

• All entries in an array must be of the same type (unlike
Objective-C’s NSArray class, which can store a collection
of arbitrary objects).

• Arrays are a value type and are copied when assigned or
passed to a function or method (unlike NSArray, which is
passed by reference).

Accessing Array Elements
You access array elements by using C-style subscript syntax.
Remember, the first element in an array has an index of 0:

let days = daysPerMonth[5]

It is also possible to access a subset of elements at one time by
using a range. This operation returns a new array:

let newArray = oldArray[5...7]

If you attempt to access an element beyond the end of the array,
a runtime error will occur.

arrayName.first

Returns the first element in the array.
arrayName.last

Returns the last element in the array.

Array Properties
To examine the properties of an array, use the following
features:

arrayName.capacity

Integer: the number of elements the array can store
without it being relocated in memory.

Arrays | 43



arrayName.count

Integer: the number of elements in the array.
arrayName.isEmpty

Boolean: true, if the array has no elements.

Modifying a Mutable Array
You can modify mutable arrays in the following ways:

arrayName.append(value)

Adds a new element to the end of the array.
arrayName += array

Appends (copies) one array to the end of another.
arrayName[n] = value

Store a value in element n, replacing the existing value
there. A runtime error will occur if you attempt to
write beyond the end of the array. To “grow” the array
(i.e., add more entries), use the append method.

arrayName[range] = array
Replace a range of elements with an array of the same
type. Ranges are specified as [start...end]. All ele‐
ments from [start] to [end] are removed and
replaced with copies of the elements in array. The size
of the range does not have to be the same as the size
of the array replacing it; the array will expand or con‐
tract to hold the replacement.

arrayName.insert(value, atIndex: n)
Insert a new value in front of element n.

arrayName.removeAll(keepCapacity: Bool)
Removes all elements from the array. The keepCapac
ity argument is optional and defaults to false. If set
to true, the capacity of the array will remain
unchanged.

arrayName.removeAtIndex(n)

Remove (and return) element n from the array.

44 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


arrayName.removeLast()

Removes (and returns) the last element of the array.
arrayName.reserveCapacity(n)

Ensures that the array has sufficient capacity to store
n elements without further relocation, by relocating it
if necessary.

arrayName.sort

Sorts the elements of the array. Used with a closure to
define how two elements sort with respect to each
other (e.g., names.sort { $0<$1 }). (See also the sec‐
tion “Closures” on page 57.)

Iterating Over Arrays
To iterate over all elements in an array, you use a for-in loop:

for item in arrayName

{

    …

}

Let’s take a closer look at how this works:

• The code in the braces is executed once for each item in
the array.

• For each execution, item takes on the value of the next
element, starting at the first element.

• item is a constant—although its value changes with each
iteration, it cannot be modified in the loop.

To use both the position and value of items from the array, use
the enumerate function, as shown here:

for (index, item) in enumerate(arrayName)

{

    …

}

The enumerate() function returns a tuple consisting of the inte‐
ger index and value of each item in the array.

Arrays | 45



Array Algorithms
Most of the algorithms that you can apply to arrays use closures.
These are anonymous functions that perform some operation
on one or two elements of the array (such as a transform, or
comparison). See the section “Closures” on page 57 for more
information.

The examples that follow are demonstrated using this array of
strings:

var names = ["John", "Zoe", "Laura", "albert", "Allen"]

arrayName.filter()

Returns a new array that contains only the elements that
match some condition, which is defined by using a clo‐
sure. This example filters names longer than four
characters:

names.filter { countElements($0) > 4 }

// returns ["Laura", "albert", "Allen"]

arrayName.map()

Returns a new array in which each element has been
transformed by a mapping function, which is defined by
using a closure. This example returns an array in which
any string from the original array that does not start with
an uppercase “A” is prefixed with an asterisk (*):

names.filter { $0.hasPrefix("A") ? $0 : "*" + $0 }

// returns:

// ["*John", "*Zoe", "*Laura", "*albert", "Allen"]

arrayName.reduce()

Returns a single value (of the type stored in the array)
derived by recursively applying a reduction filter (defined
by using a closure) to each element of the array and the
output of the previous recursion. This example seeds the
recursion with an empty string ($0) and concatenates each
element of the array ($1) to the output of the previous
recursion ($0):

46 | Swift Pocket Reference



names.reduce("") { $0 + $1 }

// returns "JohnZoeLauraalbertAllen"

arrayName.reverse()

Returns a new array that contains the elements of array
Name in reverse order, as shown here:

names.reverse()

// returns ["Allen", "albert", "Laura", "Zoe", "John"]

arrayName.sorted()

Returns a new array that contains the elements of array
Name in sorted order. Used with a closure to define how
two elements sort with respect to each other. For example:

names.sorted { $0<$1 }

// returns ["Allen", "John", "Laura", "Zoe", "albert"]

Dictionaries
Much like arrays, dictionaries store a collection of values, but
whereas array elements are referenced via position, dictionary
elements are referenced via unique keys.

A dictionary’s type is formally specified as Dictionary<Key
Type, ValueType>, although the preferred shorthand equivalent
is [KeyType:ValueType]. Thus, if you see the term
[String:Int], you can assume that it means a dictionary whose
key type is String and whose value type is Int.

Dictionaries are declared in a similar way to variables and con‐
stants. You can create empty dictionaries like so:

var dictionaryName = [Type: Type]()

var cpus = [String: String]()

Or you can initialize them upon declaration by using a dictio‐
nary literal, as demonstrated here:

var cpus: [String:String] =

    ["BBC Model B":"6502",  "Lisa":"68000", "TRS-80":"Z80"]

Dictionaries | 47



The type of both the key and the value can be inferred when
initialized with a dictionary literal, so we can reduce the previ‐
ous example to the following:

var cpus =

    ["BBC Model B":"6502",  "Lisa":"68000", "TRS-80":"Z80"]

If you’re not initializing a dictionary with a literal value, you
can specify a minimum capacity by using the following:

var dictionaryName = [Type: Type](minimumCapacity: Int)

var cpus = [String: String](minimumCapacity: 5)

Specifying a minimum capacity could be useful for improving
performance of dictionaries that are frequently mutated. Unlike
arrays, you cannot determine the capacity of a dictionary, and
you cannot reserve additional capacity after creation to
improve performance.

Here are some more characteristics of dictionaries in Swift:

• All keys in a dictionary must be of the same type.

• All values in a dictionary must be of the same type.

• The contents of a dictionary are stored in arbitrary order.

• Dictionaries are a value type and are copied when
assigned or passed to a function or method (unlike
NSDictionary, which is passed by reference).

Accessing Dictionary Elements
To access dictionary values, you use the key as a subscript, as
illustrated here:

let cpu = cpus["BBC Model B"]

Dictionary Properties
You can use the following features to access various properties
of a dictionary:

48 | Swift Pocket Reference



dictionaryName.isEmpty

Boolean: true, if the dictionary has no elements.

dictionaryName.count

Integer: the number of key-value pairs in the dictionary.

dictionaryName.keys

Returns an array of all keys in the dictionary, which you
can use for iterating over the keys in a dictionary (see
“Iterating Over Dictionaries” on page 50). The returned
keys are in no particular order. To use this in an array con‐
text, you must copy it to a new array by using this syntax:

let newArrayName = [Type](dictionaryName.keys)

dictionaryName.values

Returns an array of all values in the dictionary, which can
be used for iterating over the values in a dictionary (see
“Iterating Over Dictionaries” on page 50). The returned
keys are in no particular order. To use this in an array con‐
text, you must copy it to a new array by using the follow‐
ing syntax:

let newArrayName = [Type](dictionaryName.values)

Modifying a Mutable Dictionary
You can modify mutable dictionaries in the following ways:

dictionaryName[key] = value
Sets (or updates) the value of the element identified
by key. To remove this key-value pair from the dictio‐
nary, set value to nil.

dictionaryName.updateValue(newValue, forKey: key)
Sets (or updates) the value of the element identified
by key. Returns the old value as an optional (see
“Optionals” on page 63) if there was one.

dictionaryName.removeAll(keepCapacity: Bool)
Removes all elements from the dictionary. The keepCa
pacity argument is optional, and defaults to false. If

Dictionaries | 49



set to true, the capacity of the dictionary will remain
unchanged.

dictionaryName.removeValueForKey(key)

Removes a key-value pair from the dictionary identi‐
fied by key. Returns the value that was removed or nil
if there was no value for key.

Iterating Over Dictionaries
To iterate over all elements in a dictionary, you use a for-in
loop, as shown in the following:

for (key, value) in dictionaryName

{

    …

}

Let’s take a closer look at how this works:

• The code inside the braces is executed once for each item
in the array.

• For each execution, key and value take on successive key-
value pairs from the dictionary. Dictionaries are stored in
arbitrary order.

• key and value are constant—although their values
change with each iteration, they cannot be modified in
the loop.

To iterate over just the keys or values of the dictionary, use the
keys or values property, which returns an unsorted array:

for value in dictionaryName.values

{

    …

}

for key in dictionaryName.keys

{

    …

}

50 | Swift Pocket Reference



Functions
You declare functions in Swift by using the func keyword, as
shown in the following:

func functionName(parameters) -> returnType { … body … }

Here are some characteristics of, and usage tips for Swift
functions:

• Functions can have zero or more parameters.

• If there are no parameters, empty parentheses must still
be provided.

• Functions do not have to return a value.

• If the function does not return a value, omit the arrow
and returnType.

Parameter Types
By default, function parameters are constant (they cannot be
modified in the function body). Variable parameters are cre‐
ated by preceding them in the function declaration with the var
keyword, as shown here:

func someFunc(var s: someType) -> …

You can use the variable s as a local, modifiable variable in the
function body. Variable parameters are lost after the function
returns—you cannot use them to pass values outside the func‐
tion body.

In-out parameters are created by preceding them in the func‐
tion declaration with the inout keyword, like so:

func someFunc(inout i: someType) -> …

i becomes an alias for an external variable passed by reference.
Modifying i inside the function modifies the external variable.
Like variable references in C++, you must place an ampersand
(&) before a referenced variable’s name in a function call:

Functions | 51



var i: Int = 45

someFunc(&i)

Returning Optional Values
A function can return an optional value, which is a way to indi‐
cate that no valid return value can be provided. Suppose that
we were implementing a (pointless!) function to do division.
The function definition might start out like this:

func division(dividend: Double, divisor: Double) -> Double

{

    return dividend / divisor

}

It is possible that the divisor might be zero, which would cause
a runtime error. With an optional return value, we can indicate
when the result is valid and when it is not. To specify that a
return value is optional, follow it with a question mark. Our
function thus becomes:

func division(dividend: Double, divisor: Double) -> Double?

{

    if (divisor == 0) { return nil }

    return dividend / divisor

}

If the divisor is zero, we return a nil value; otherwise, we
return the result of the operation.

Because the return value is now an optional, we need to test it
before using it. To do that, we use this syntax:

var d = division (9.0, 0.0)

if d != nil

{

    // value is valid

    println (d!)

}

else

{

    // value is invalid

}

See also the sections “Optionals” on page 63 and “Optional
Chaining” on page 66.

52 | Swift Pocket Reference



Returning Multiple Values by using Tuples
You can have a function return more than one value by using a
tuple, such as in the following example:

func getRange() -> (lower: Int, upper: Int)

{

    …

    return (someLowValue, someHighValue)

}

Because the tuple members are named in the function declara‐
tion in the preceding example, those names can be used to refer
to the components after the function call. Thus, you could
access the two values like this:

let limits = getRange();

for i in limits.lower...limits.upper { … }

The optional tuple return type

For cases in which a tuple is the return type of a function, you
might want to indicate that the tuple has no value. Extending
the previous getRange() example, it might be the case that no
valid range exists, and thus there is nothing to return. This can
be managed by using an optional return type for the tuple,
which you indicate by following the parentheses around the
return type with a question mark, and returning nil (instead of
a tuple) if the range is not valid:

func getRange() -> (lower: Int, upper: Int)?

{

    if (rangeIsNotValid) { return nil }

    …

    return (someLowValue, someHighValue)

}

For more information, see the section “Optionals” on page 63.

Local and External Parameter Names
Parameter names such as p1 in this example act as a local
parameter name that is used inside the function body.

func f(p1: Int) { … }

Functions | 53



A caller of the function provides a single integer value as the
parameter value:

let a = f(45)

For functions with more than a few parameters, specify exter‐
nal parameter names to make clear the role of each parameter.
You specify external parameter names as follows:

func funcName(externalName internalName: type, …)

func search (string s: String, forString s2: String) 

    -> Int { … }

The search function thus defined would be called like this:

let openDoor =

    search(string: userInput, forString: "open sesame")

Where the local and external parameter names can be the
same, you can write the name once, and prefix it with #. For
example, the following defines forString as both the internal
and external name of the second parameter:

func search (string s: String,

     # forString: String) -> Int { … }

Where external parameter names have been declared, they are
not optional and must be used in calls to that function. In addi‐
tion, external names do not provide an “arbitrary order” fea‐
ture for parameters. For example, the following would not
compile using the previously defined function:

let openDoor = search(forString: "open sesame",

    string: userInput)

// compiler error: Argument 'string' must

// precede argument 'forString'

Default Parameter Values
To add default values for any parameters, use the following:

func search (string s: String,

    forString s2: String = "open sesame") -> Int { … }

54 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


If the forString parameter is omitted in a function call, such as
in the example that follows, the default value of “open sesame”
will be used for that parameter:

let openDoor = search(string: userInput)

NOTE

If you provide a default value for a parameter without an
external name, Swift will generate an external name that
matches the local name.

Variadic Parameters
A variadic parameter supports a variable number of input
values. You specify a variadic parameter by following the
parameter type with an ellipsis (…), as demonstrated here:

func sumOfInts(numbers: Int...) -> Int { … }

The function would then be called as follows:

let total = sumOfInts(2, 3)

let anotherTotal = sumOfInts(5, 9, 11, 13, 22)

In the body of the function, the values passed as arguments to
the function are available in an array (in this case, called
numbers).

When using variatic parameters, you should make note of the
following:

• A function can only have one variadic parameter.

• A variadic parameter must appear after all other
parameters.

Functions | 55



Function Types
A function’s type is an expression of the types of its input
parameters and its result. For example, for:

func sumOfInts(numbers: Int...) -> Int {...}

func search (string s: String, forString s2: String)

    -> Int {...}

func doesNothing() {...}

the types are, respectively:

(Int...) -> Int

(String, String) -> Int

() -> ()

You can use function types in many places where you can use
simpler types (such as Int). For example, you can declare a
variable or constant to be a function type, as shown here:

var generalPurposeFunc: (Int) -> Int

You can then assign the variable generalPurposeFunc a func‐
tion of the same type:

func addOne (i: Int) -> Int { return i+1 }

func addTwo (i: Int) -> Int { return i+2 }

generalPurposeFunc = addOne

That variable can then be used where the function could
be used:

addOne(4)     // returns 5

generalPurposeFunc(5)    // returns 6

generalPurposeFunc = addTwo

generalPurposeFunc(5)    // returns 7

You can pass functions as parameters to other functions, and
functions can be returned by other functions. You specify the
function type as either the type of the parameter or the type of
the returned value. The example that follows defines a function
whose only parameter is a function that takes an integer
parameter and then returns an integer value. The defined func‐
tion does not itself return a value at all:

func adaptable(inputFunc: (Int)->Int) -> () { … }

56 | Swift Pocket Reference



The next example defines a function that takes a single integer
parameter and then returns a function. The returned function
is defined as taking a single integer parameter and returning a
single integer parameter:

func selectOperation(i: Int) -> (Int)-> Int { … }

Closures
Closures are functionally similar to blocks in Objective-C and
lambdas in languages such as Scheme, C#, and Python.

Closures are anonymous functions that can be passed as argu‐
ments to other functions (known as higher-order functions) or
returned by other functions. They can refer to variables and
parameters of the scope in which they are defined (sometimes
called outer variables). In doing so, they are said to capture or
close over those values.

You typically define a closure through a closure expression,
which takes the following format:

{

     (parameters) -> returnType in

        statements

}

To gain a better understanding of where closures can be useful,
consider the operation of sorting arrays. The C standard library
provides a number of sorting functions, one of which is
qsort(), which takes as a parameter a pointer to a comparison
function. This comparison function, defined by the caller, takes
as parameters two pointers to two entities that are to be com‐
pared. The comparison function returns an integer that is less
than, equal to, or greater than zero depending on whether the
first entity is less than, equal to, or greater than the second.

A closure is a concise way of providing similar functionality
without having to define a named function to do the compari‐
son. Instead, the closure is passed as an inline parameter to the
sort function.

Closures | 57



The Swift standard library includes a function, sorted(), that
creates a sorted copy of an array. You use it as follows:

let names = ["John", "Zoe", "Laura", "albert", "Allen"]

let s = sorted(names)

// s is now ["Allen", "John", "Laura", "Zoe", "albert"]

Swift knows how to compare built-in types such as Strings,
Ints, and Floats; therefore, it can sort arrays of these types into
ascending or lexical order. In the preceding example, sorted()
applies its default behavior for the String type and sorts lexi‐
cally (“albert” sorts after “Zoe” because lowercase characters
sort lexically after uppercase characters).

There exists another version of sorted() that takes a closure as
its second parameter. The closure takes two values (of the same
type as the array’s content) and must return true if the first
value should sort before the second (much like the comparison
function required by qsort() described earlier). If the array
being sorted contains strings, the closure must be defined as
follows:

(String, String) -> Bool

In other words, the closure must take two String parameters
and return a Bool value that indicates whether the first sorts
before the second.

This is how you would call sorted() and provide a closure that
replicates the behavior of the simpler version already described:

let t = sorted(names, { (s1: String, s2: String) ->

    Bool in return s1<s2 } )

Because Swift can infer types from context, you can usually
omit them. The array is an array of strings, so it follows that the
two closure parameters must also be of type String. The clo‐
sure must return a Bool. Because all of the types can be infer‐
red, they can be omitted. And as there are now no types to
specify, you can also omit the parentheses and the arrow. Thus,
you can reduce the closure to this:

let t = sorted(names, { s1, s2 in return s1<s2 } )

58 | Swift Pocket Reference



For simple closures with a single expression, such as that just
demonstrated, you can also omit the return keyword, which
reduces the closure further to the following:

let t = sorted(names, { s1, s2 in s1<s2 } )

To produce a reversed variant of the sort, switch the order of
the strings being compared. This effectively returns false if the
first value should sort before the second:

let u = sorted(names, { s1, s2 in s2<s1 } )

// u is now ["albert", "Zoe", "Laura", "John", "Allen"]

Alternatively, reverse the comparison operator, as shown here:

let u = sorted(names, { s1, s2 in s1>=s2 } )

// u is now ["albert", "Zoe", "Laura", "John", "Allen"]

To sort by string length instead of lexically, modify the compar‐
ison operands in the closure to compare the lengths of the two
strings being compared:

let v = sorted(names,

    { s1, s2 in countElements(s1)<countElements(s2) } )

// v is now ["Zoe", "John", "Laura", "Allen", "albert"]

Automatic Argument Names
In the discussion of closures, we defined our own names to
refer to each argument required by the closure. For example,
when sorting an array of strings, we named the arguments s1
and s2 so that we could refer to them subsequently in the com‐
parison expression:

let u = sorted(names, { s1, s2 in s2<s1 } )

For simple inline closures, having to first name the arguments
just so that you can subsequently refer to them makes the clo‐
sure longer than it needs to be. For inline closures, Swift
assigns automatic argument names to each parameter by using
a dollar sign followed by a position number ($0, $1, $2, etc.).

Recall from earlier that (for sorting a string array) the closure
required by sorted() is defined as follows:

(String, String) -> Bool

Closures | 59



There are two string parameters and Swift aliases their argu‐
ments as $0 and $1. Using these aliases means that we don’t
have to define them ourselves, and the sorted() closure exam‐
ples reduce further still to this:

let t = sorted(names, { $0<$1 } )

let u = sorted(names, { $1<$0 } )

let v = sorted(names,

    { countElements($0)<countElements($1) } )

Trailing Closures
When the last (or only) argument provided to a function is a
closure, you can write it as a trailing closure. Trailing closures
are written after the parentheses that wrap the function’s
arguments:

let t = sorted(names) { $0<$1 }

let u = sorted(names) { $1<$0 }

let v = sorted(names)

    { countElements($0)<countElements($1) }

If the function has no other arguments than the closure itself,
and you’re using trailing closure syntax, you can omit the
empty parentheses.

Capturing Values
As with any regular function, closures are able to refer to state
in the scope in which they are defined (e.g., local variables or
constants defined in the same scope). But, similar to functions,
closures can be returned by their containing function, which
means that a closure could be executed after the values that it
refers to have gone out of scope.

This situation does not result in a runtime error. The closure is
said to capture those values, and extend their lifetime beyond
the scope in which they are defined.

In the example that follows, a function (makeTranslator) cre‐
ates new functions (closures) and returns them as its result. It
takes a single parameter (a string) with the local name

60 | Swift Pocket Reference



greeting. The function that it returns takes a single parameter
(a string) and returns a single parameter (a string):

func makeTranslator(greeting: String) -> (String) -> String

{

    return

        {

            (name: String) -> String in

                return (greeting + " " + name)

        }

}

The closures that are built by this function capture the
greeting string value and use it later whenever they are exe‐
cuted, even though that value has since gone out of scope.

Here is how you might use this function:

var englishWelcome = makeTranslator("Hello")

var germanWelcome = makeTranslator("Guten Tag")

After this has been executed, englishWelcome will refer to a clo‐
sure that takes a single string argument and will return it with
the word “Hello” prepended, whereas germanWelcome will refer
to a closure that takes a single string argument and will return
it with the words “Guten Tag” prepended.

Because englishWelcome and germanWelcome refer to closures,
and closures are functions, we call them in the same manner
that we call any function:

englishWelcome ("Bill")

// returns "Hello Bill"

germanWelcome ("Johan")

// returns "Guten Tag Johan"

The closures and the values that they have captured will remain
available until the variables that refer to them go out of scope
or are set to new values. For example, if we change the defini‐
tion of englishWelcome like this:

englishWelcome = makeTranslator("G'day")

englishWelcome ("Bruce")

// returns "G'day Bruce"

Closures | 61



then the storage allocated to the “Hello” version of the closure
and its captured values will be released.

Capturing Values by Reference
In the preceding discussion, the value captured (the greeting
string value) is actually copied when the closure is constructed,
because that value is never modified by the closure.

Values that a closure modifies are not copied but are instead
captured by reference. Here’s a revised example that keeps count
of the number of times it has been called:

func makeTranslator(greeting: String, personNo: String) ->

    (String) -> String

{

    var cnt = 0

    return

    {

      (name: String) -> String in

        cnt++

        return (greeting + " " + name + ", " +

                personNo + " \(cnt)")

    }

}

Next, we construct two new closures to make greetings:

var germanWelcome = makeTranslator("Guten Tag",

    "Sie sind Nummer")

var aussieWelcome = makeTranslator("G'day", "you're number")

And then we call them:

germanWelcome ("Johan")

// returns "Guten Tag Johan, Sie sind Nummer 1"

aussieWelcome ("Bruce")

// returns "G'day Bruce, you're number 1"

aussieWelcome ("Kylie")

// returns "G'day Kylie, you're number 2"

Each closure stores a reference to cnt, which is a local variable
in the makeTranslator() function. In doing so, they extend the
lifetime of that local variable to the lifetime of the closure.

62 | Swift Pocket Reference



Note that each closure still gets its own instance of cnt because
they existed as two different instances, separated by the two
executions of makeTranslator.

Optionals
Swift’s optionals provide a way to indicate that a value exists
without usurping some part of the value’s set of possible states
to do so.

For example, an application might want to record if a piece of
string is present in the physical world, and if so, record what
the length of that piece of string is. In this example, a negative
value (such as –1) could be used to indicate that the string is
not present, because such a value could never represent an
actual length. This example uses a single store to represent
whether the string is present and (only if it is) what its length is.

A similar technique is often used in Objective-C, where objects
(or, more precisely, pointers to objects) may be nil, indicating
that there is no object. Many Objective-C method calls return
either (a pointer to) an object or nil if the method call has
failed or some other error has occurred.

In Swift, object references are not pointers and may not nor‐
mally be set to nil, unless they are explicitly declared to be
optional values. An example of the syntax for such a declara‐
tion is as follows:

var str: String?

The question mark, which immediately follows the type,
declares that the variable str is an optional. Its value might
exist or it might not. Not having a value is not the same as str
storing an empty string. (When a new optional is created in
this way, it’s initial value is set to nil).

When a variable has been declared to be optional, it must
either be used in places where an optional context for that type
is allowed, or it must be unwrapped (see the section “Unwrap‐
ping Optionals” on page 64) to reveal the underlying value.

Optionals | 63



For example, you can assign an optional to another optional
without issue, as shown here:

var n: String?

n = str

However, you cannot assign it to a nonoptional:

var r: String

r = str  // will produce a compile-time error

Because r is not an optional, the compiler won’t allow an
optional to be assigned to it.

If an optional’s value exists, assign nil to it to remove that
value:

str = nil

Only optionals can be assigned nil in this way. Attempting to
assign nil to a nonoptional variable or constant will result in a
compile-time error.

Unwrapping Optionals
To access the value stored by an optional, first check if a value
exists with the if statement. If it does exist, use the exclamation
mark to force unwrap the optional and access the raw value it
stores, as demonstrated here:

if str            // check if the optional has a value

{

    r = str!      // it does – unwrap it and copy it

}

else

{

    // the optional had no value

}

Force unwrapping an optional for which no value exists will
result in a runtime error.

64 | Swift Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


Implicitly Unwrapped Optionals
In some situations, it might be appropriate to use an optional,
even if it will always have a value. For example, an optional cre‐
ated by using let cannot be mutated (so it cannot be reset to
nil), and it must be initialized when it is declared, so it can
never not have a value:

let constantString: String? = "Hello"

Even though its value cannot change, the value must be still
unwrapped to use it in a nonoptional context:

var mutableString: String

mutableString = constantString     // compile-time error

mutableString = constantString!    // allowed

For this and other uses, Swift provides implicitly unwrapped
optionals, which are defined by using an exclamation mark
after the type instead of a question mark. After it is defined, a
reference to the optional’s value does not need to be unwrap‐
ped; it is implicitly unwrapped whenever it is referenced:

let constantString: String! = "Hello"

mutableString = constantString

This example is contrived, but implicitly unwrapped optionals
play a role during class initialization. See the section “Classes”
on page 80 for more information.

Optional Binding
Optional binding is a way to test whether an optional has a
value, and, if it does, make a scoped nonoptional copy for use
inside the if statement. The syntax, which does not read natu‐
rally, but is likely to become second nature for seasoned Swift
developers, is as follows:

if let someConst = someOpt

{

    // someConst is now an unwrapped version of someOpt

    println (someConst)

}

Optionals | 65



Assuming the optional someOpt has a value, someConst holds a
copy of that value inside the braces of the if statement. Because
someConst is not an optional, its value can be used directly—the
unwrapping has been handled in the let statement.

Use var instead of let to create an unwrapped copy of the
optional that is mutable. Modifying the value copied in this
way does not change the original optional value.

Optional Chaining
When you access an optional, it either has a value or is nil, and
you need to test that the value exists before unwrapping it, as in
the following example:

var s: String?

if s            // check if the optional has a value

{

    var r = s!      // it does – do something with it

}

else

{

    // the optional had no value

}

You can use optionals anywhere that a value might or might
not exist:

• A property of a class, structure, or enumeration might
hold an optional value.

• A method of a class, structure, or enumeration might
return an optional value.

• A subscript of a class, structure, or enumeration might
return an optional value.

66 | Swift Pocket Reference



NOTE

This content appears here as it relates to optionals, but the
topic and the examples used to illustrate it also require an
understanding of classes (see “Classes” on page 80) or
structures (see “Structures” on page 108) and subscripts (see
“Subscripts” on page 93).

Optional chaining is a facility by which you can query an
optional, or something that depends on an optional having a
value, without specifically having to test the optional first. You
use optional chaining when accessing class, structure, or enu‐
meration properties, methods, or subscripts using dot-syntax.

Consider this simple example of two classes, in which class A
contains an optional reference to an instance of class B:

class A

{

    var otherClass: B?

}

class B

{

    var someProperty: Int = 7

    func someMethod()

    {

        println ("someMethod called!")

    }

    subscript (index: Int) -> String

    {

        get { return "getter for [\(index)] called" }

        set {  }

    }

 }

Now, assume that we have an optional reference to an instance
of class A, as in the following example:

var a: A?

Let’s further assume that we want to follow the path from our
optional reference a through to someProperty or someMethod()

Optionals | 67



of class B. Without optional chaining, we would need to check
that each optional has a value; if it does (and only if it does),
can we descend down to the next level, like this:

if a != nil

{

    if a!.otherClass != nil

    {

        println (a!.otherClass!.someProperty)

    }

    else

    {

        println ("no property available")

    }

}

else

{

    println ("no property available")

}

This leads to potentially deep conditional tests, which is what
optional chaining simplifies. With optional chaining (and let
binding), you can reduce the code to the following:

if let p = a?.otherClass?.someProperty

{

    println (p)

}

else

{

    println ("no property available")

}

If any optional in the chain returns a nil value, the entire
expression returns nil.

The use of optional chaining isn’t restricted to reading property
values; we can also write them like this:

a?.otherClass?.someProperty = 6

The statement will return nil if the assignment failed because
some part of the optional chain returned nil, which can be tes‐
ted like this:

68 | Swift Pocket Reference



if (a?.otherClass?.someProperty = 6) == nil

{

    // unable to write the property

}

You can call methods using optional chaining, as follows:

a?.otherClass?.someMethod()

Again, the method call will return nil if the call failed because
some part of the chain returned nil. Even if the method nor‐
mally returns a nonoptional value, it will always be returned as
an optional when used in an optional chain context.

You can also use optional chaining with subscripts:

a?.otherClass?[1]

// returns nil, or "getter for [1] called"

a?.otherClass?[3] = "Optional chaining is neat"

// returns nil if the assignment fails

Program Flow
Swift includes the usual selection of loops and conditional exe‐
cution features. Most of these are superficially the same as their
counterparts in C-like languages, but in some cases (e.g., the
switch statement) they offer considerably expanded and safer
functionality.

Loops
Swift provides the standard loop constructs that you would
expect in a programming language, including for, while, and
do-while loop variants.

for-condition-increment loops

The for-condition-increment loop is functionally the same as
the for loop in C. The loop consists of an initialization phase, a
test, an increment, and a set of statements that are executed for
each iteration of the loop. Here’s an example:

Program Flow | 69



for initialization; condition; increment

{

    statements

}

The three phases work as follows:

• The initialization phase sets up the conditions for the
start of the loop (typically, initializing a loop counter).

• The condition tests whether the loop’s termination condi‐
tion has been met—whenever this evaluates to true, the
statements in the body of the loop are executed once.

• The increment phase adjusts some variable or value that
forms part of the condition test to ensure that a stopping
condition can be reached (typically, incrementing the
loop counter).

It is possible that the statements in the body of the loop will
never execute. For this to happen, the condition would have to
evaluate to false the first time it was executed.

The body of the loop defines a new scope, inside which local
variables and constants can be defined. These go out of scope
as soon as the loop terminates, and their values are lost.

The most familiar version of this loop would be as follows:

for var i=0; i<10; i++

{

    println ("\(i)")

}

Note the following:

• Semicolons must separate the three expressions that
define the setup, test, and increment phases.

• Unlike C, parentheses are optional around the setup, test,
and increment code.

70 | Swift Pocket Reference



for-in loops

You use the for-in loop to iterate over collections of things,
such as the elements of an array or dictionary, the characters in
a string, or a range of numbers.

Here’s the general format:

for index in collection

{

    statements

}

In the following example, which iterates over a range of num‐
bers, the loop index variable (i) takes on the value of the next
number in the range each time through the loop:

for i in 3...8

{

    println (i)

}

The example that follows iterates over the contents of an array.
The loop index variable (i) takes on the value of the next entry
in the array each time through the loop (see also the section
“Iterating Over Arrays” on page 45):

var microprocessors = ["Z80", "6502", "i386"]

for i in microprocessors

{

    println (i)

}

// prints:

// Z80

// 6502

// i386

This next example iterates over the contents of a dictionary. A
tuple is used as the loop index, so that for each iteration, we get
the next key and its associated value (see also the section “Iter‐
ating Over Dictionaries” on page 50):

var vehicles = ["bike":2, "trike":3, "car":4, "lorry":18]

for (vehicle, wheels) in vehicles

{

    println (vehicle)

}

Program Flow | 71



// prints:

// car

// lorry

// trike

// bike

The preceding example also demonstrates that dictionaries are
stored in arbitrary order.

while loops

As in C, while loops test a condition ahead of the loop body;
only if the condition evaluates to true is the loop body exe‐
cuted. The general format is as follows:

while condition

{

    statements

}

You can use the while loop to replicate the functionality of the
for-condition-increment loop, as follows:

var count = 0;

while (count < 10)

{

    println (count)

    count ++;

}

The condition is tested before the body of the loop is executed.
If it evaluates to false the first time it is executed, the state‐
ments in the body of the loop will never execute.

do-while loops

do-while loops test the termination condition at the end of the
loop, rather than at the start. This means that the statements in
the body of the loop are guaranteed to be executed at least
once. Loop execution continues until the condition evaluates to
false.

The general format for a do-while loop looks like this:

72 | Swift Pocket Reference



do

{

    statements

} while condition

Here is an example:

var t = 0;

do

{

    println (t)

    t++;

} while (t < 10)

Early termination of loops

You can use a continue statement anywhere in the body of the
loop to stop the current iteration and begin the next iteration.

To terminate the loop, you use a break statement anywhere in
the body of the loop, which continues execution at the next
statement after the loop.

Conditional Execution
There are two statements in Swift that support conditional exe‐
cution of blocks of code: the if-else statement and the switch
statement.

if-else

The if statement tests a condition, and executes a block of code
only if that condition evaluates to true.

Here’s the simple form:

if condition

{

    // statements to execute

}

Note that unlike C and many other languages, parentheses are
optional around the condition.

Also unlike C, the braces are required, even if only a single state‐
ment is to be executed when the condition evaluates to true.

Program Flow | 73



The if statement has an optional else clause. If the condition
evaluates to false, the statement(s) in the else clause is
executed:

if condition

{

    // statements to execute when condition met

}

else

{

    // statements to execute when condition not met

}

In all but one situation, braces are required around the state‐
ments in the else clause. That situation is when the else clause
is immediately followed by another if, as demonstrated here:

if condition

{

    println ("shouldn't see this")

}

else if condition

{

    println ("should see this")

}

You can chain multiple if statements in this way, optionally
ending with a final else clause.

switch

The switch statement provides an alternative (and more con‐
cise) way to express a series of condition tests, which you
would otherwise implement by using a chain of if-else
statements.

The basic structure of the statement is as follows:

switch expression

{

    case valueSequence1:

        // statements to execute

    case valueSequence2:

        // statements to execute

    case valueSequence3:

        // statements to execute

74 | Swift Pocket Reference



    default:

        // statements to execute

}

The expression is evaluated, and the result is compared to each
of the values associated with each case clause. If a match is
found, the statements that form part of the matching case are
executed. If no match is found, the statements that follow the
optional default clause are executed.

Each case may contain a single value or a series of values sepa‐
rated by commas, as shown here:

case 2, 4, 6:

The switch statement in Swift is considerably enhanced com‐
pared to its counterpart in C-like languages. Here are the nota‐
ble differences:

• The case clauses must be exhaustive (all possible values
of expression must match a case, or there must be a
default case to catch those that aren’t); otherwise, the
compiler will report an error.

• Execution of statements attached to a case clause will not
fall through into another case unless this behavior is
explicitly enabled with the fallthrough keyword (this
prevents a common error in C, where a break statement
may have been accidentally omitted).

• Every case must contain at least one executable
statement.

• If more than one case matches, the first matching case is
the one that is used.

• A single case can test for a match against a range of
values.

• You can use tuples to test multiple values in a single case.

• The case clause can use an optional where clause to fur‐
ther refine the case match (see the section “The where
qualifier” on page 78).

Program Flow | 75



• The break statement is not required to prevent fall-
through into the next case, but you can use it as a “no-
operation” statement to terminate a case and continue
execution at the next statement after the switch state‐
ment. This is useful when you need to match a specific
case and exclude it ahead of another more general case
which would otherwise include it.

Here is a simple example of a switch statement with multiple
cases:

var a = "c"

switch a

{

    case "a", "e", "i", "o", "u":

        println("this letter is a vowel")

    case "b", "d", "g", "k", "p", "t":

        println("this letter may be a plosive sound in " 

                 + "English")

        fallthrough

    case "c", "f", "h", "j", "l", "m", "n", "q", "r", "s",

         "v", "w", "x", "y", "z":

        println("this letter is a consonant")

    default:

        println("this letter doesn't interest me")

}

Let’s analyze this example a little closer:

• If a match is found in the first case clause, a message is
printed indicating the letter is a vowel, and execution
continues at the next statement after the switch

statement.

• If a match is found in the second case clause, the
println() function is called, but the fallthrough key‐
word causes execution to continue into the statement(s)
defined as part of the next case clause (in this example, a
second println() function is called).

Matching ranges in a case clause.    Here is an example of a switch
statement that uses ranges in the case clause:

76 | Swift Pocket Reference



var marbles = 600

switch marbles

{

    case 0:

        println("you've lost your marbles!")

    case 1:

        println("I see you have a marble")

    case 2...5:

        println("I see you have some marbles")

    case 6...10:

        println("That's quite a handful of marbles!")

    case 10...99:

        println("That's lots and lots of marbles")

    default:

        println("Were marbles on sale?")

}

Using tuples in a case clause.    This next example demonstrates a
crude class scheduling case statement, in which students in dif‐
ferent grades (7–10) and of different genders (“M,” “F”) are
scheduled for specific activities on different days of the week:

let year = 9                 // 7-10

let gender: Character = "M"  // "M" or "F"

let weekday = "Fri"          // "Mon" through "Fri"

let record = (gender, year, weekday)

switch record

{

    case ("M", 7...8, "Mon"):

        println ("Sports: Cricket")

    case ("F", 7...8, "Mon"):

        println ("Sports: Netball")

    case ("M", 9...10, "Tue"):

        println ("Sports: Football")

    case ("F", 9...10, "Tue"):

        println ("Sports: Softball")

    case (_, 7...8, "Wed"):

        println ("Music")

    case (_, 9...10, "Wed"):

        println ("Theater")

    case (_, 7...10, "Thu"):

        println ("Sciences")

    case (_, 7...10, "Fri"):

        println ("Humanities")

Program Flow | 77



    default:

        println("nothing scheduled or invalid input")

}

// outputs "Humanities"

In the preceding example, the underscore (_) is used in some
cases to match all possible values. This example also demon‐
strates matching a range of values (e.g., all students in grades
7–10, regardless of gender, study Humanities on Fridays).

Value binding with tuples and ranges.    Because a tuple in a switch
case matches a range of inputs, you can use let or var value

binding in a case clause to assign a temporary name to, or make
a temporary copy of, part of a matched value, as shown here:

switch record

{

    // ... preceding cases

    case (_, let yr, "Thu"):

        println ("Sciences - customized for year \(yr)")

    // subsequent cases...

}

In this example, the second component of the tuple still
matches any input value. We use the let keyword to make a
temporary local constant named yr; thus, we can subsequently
use whatever value that might be in the case statement. We
could also have used the var keyword to create a mutable copy
of the value and then modify that copy in the scope of the case
clause.

The where qualiier.    You use the where qualifier to further refine
a case clause in a switch statement. In the following example,
we use the where clause with a value bound to the day of the
week to match cases in which students are of either gender, in
year 7, and the day is any day that begins with the letter “T”:

switch record

{

    // ... preceding cases

    case (_, 7, let day) where day.hasPrefix("T"):

        println ("Home Economics")

78 | Swift Pocket Reference



    // subsequent cases...

}

Statement labels

You can precede switch statements and loop constructs by an
optional label, which you can then use as an argument to a
break or continue statement to indicate to which switch or
loop that break or continue should apply.

Statement labels precede the switch or loop construct as
follows:

label: do

{

    // some loop content

} while (someCondition)

Or alternatively:

label: switch expression

{

    // cases

}

Here’s a simple example of nested loops with a continue state‐
ment that causes early termination under some conditions:

outerloop: for var i=1; i<10; i++

{

    for var j=1; j<10; j++

    {

        if ((i == 6) && ((i * j) >= 30))

            { continue outerloop }

        println (i * j)

    }

    println ("-")

}

Without the use of the statement label, the continue statement
would skip the inner println function in some circumstances,
but it would always execute nine inner loops for each outer
loop. The presence of the label changes this, because it causes
early termination of the inner loop in some circumstances and
affects the overall number of iterations of both loops.

Program Flow | 79



Using switch with enumerations

You can use an enumeration as the value of a switch statement
that is to be matched against each case clause, as illustrated
here:

enum TravelClass

{

    case First, Business, Economy

}

var thisTicket = TravelClass.First

switch thisTicket

{

    case .First:

        println ("Cost is $800")

    case .Business:

        println ("Cost is $550")

    case .Economy:

        println ("Cost is $200")

}

// outputs "Cost is $800"

Because switch statements must be exhaustive, all possible enu‐
meration values must be checked, or there must be a default
clause. See the section “Enumerations” on page 112 for more
information.

Classes
As in Objective-C, a Swift class is a flexible entity that encapsu‐
lates properties (or data) and the methods that operate on
them. You can derive classes from other classes (a feature called
inheritance), in which case the derived class is referred to as the
subclass, and the class from which it is derived is referred to as
the superclass.

80 | Swift Pocket Reference



NOTE

Much of what is described here applies, to a greater or
lesser degree, to structures and enumerations, which are
closely related to classes in Swift. See the sections “Struc‐
tures” on page 108 and “Enumerations” on page 112 for
more detail on how they differ.

Unlike Objective-C, in which all classes are subclasses of
NSObject, Swift allows for classes that are not derived from
other classes. Such a class is referred to as base class.

From an implementation perspective, another significant dif‐
ference is that code imported from other modules or frame‐
works in Swift does not use a separate header file. There is no
separation of declarations and definitions. With Swift, the defi‐
nition serves as the declaration.

NOTE

Classes are reference types—when an instance of a class is
passed to a function or stored in a variable of the same
type, the instance is not copied. Instead, a new reference to
the original instance is created.

This is in contrast to Swift’s primitive types, such as Ints,
Doubles, and Strings, as well as some of Swift’s more
complex types, such as arrays, dictionaries, structures, and
enumerations, all of which are value types. When a value
type is passed to a function or stored in another variable of
the same type, a complete copy is made. Swift handles this
efficiently, only copying array elements when and if they
are actually accessed.

Deining a Base Class
You declare a base class by using the following syntax:

Classes | 81



class ClassName

{

    // property, member and related definitions

}

Here is an example of a simple base class that could be used to
store a description of a microprocessor:

class Processor

{

    var dataWidth = 0

    var addressWidth = 0

    var registers = 0

    var name = ""

}

When it’s defined, a class is like a new type: you can create vari‐
ables or constants whose type is the class name, or use instan‐
ces of the class in dictionaries and arrays as you would for
built-in types.

NOTE

By convention, class names begin with an uppercase letter
and use camel case for the remainder of the class name.
Property and method names begin with a lowercase letter
and use camel-case for the remainder of the name.

Thus, if you were to use a class for storing information
relating to employees, you might name it EmployeeRecord,
but not employeeRecord or employee_record.

The four variables defined in the class in the previous example
are called properties. In other languages, they are variously
called instance variables, ivars, or data members.

You must initialize properties that can store values. In the
example, they are initialized with an assignment (dataWidth =
0). Alternatively, you can initialize them by using a separate ini‐
tialization method, which is described in the section “Initializa‐
tion” on page 100 later in the book.

82 | Swift Pocket Reference



Instances
You can think of a class as a recipe for constructing something,
but it isn’t the something that is actually constructed. We call
the entity made from the recipe an instance or an object. In the
same way, Int is a type of data, and a variable of type Int is an
instance of that type of data.

You create instances of simple classes, such as the Processor
class shown in the example in the previous section, by using the
class name followed by empty parentheses, as shown here:

let proc = Processor()

This process, referred to as instantiation, constructs a new
instance of the Processor class and creates a variable called
proc that refers to it.

After you’ve created an instance, you can access its properties
and modify them by using dot syntax:

proc.name = "Z80"

proc.dataWidth = 8

println (proc.name)

NOTE

You might wonder why proc can be declared as an immut‐
able constant (with let), and yet we can modify its proper‐
ties. Although proc itself is immutable (and cannot later be
used to refer to a different instance of the class), it is a refer‐
ence to an instance of the class that is mutable. There is
currently no way in Swift to create an immutable instance
of a class that has mutable properties.

At this level, classes are not substantially different to structs in
C. The usefulness of classes comes through methods that we
can add to them which can use and manipulate the properties
of the class.

Classes | 83



Because classes are reference types, new copies are not made
during assignment. Consider this code:

var newProc = proc

Upon execution, newProc is a reference to the same object as
proc. We can verify this by modifying a property of proc and
checking that same property of newProc:

proc.name = "6502"

println (newProc.name)

// will output "6502"

You can test that proc and newProc refer to the same instance by
using Swift’s identicality operators (=== and !==). These opera‐
tors test whether two references are to the same object:

if (proc === newProc)

{

    println ("same")

}

// will output "same"

Properties
Properties are values that are associated with a class or an
instance of a class and the methods for accessing them. When
they are associated with each instance of a class, they are
known as instance properties, and when they are associated with
the class itself, they are known as type properties. Properties can
be stored values or they can be computed from other properties
or values at runtime.

Stored properties

Stored properties are those for which space in memory is allo‐
cated to store the property’s value. This is in contrast to compu‐
ted properties (discussed a little later) for which no such space is
allocated.

You declare stored properties with var (if they are to be muta‐
ble) or let (if they are to be immutable) inside the class defini‐
tion. In the Processor example from earlier, dataWidth, address

84 | Swift Pocket Reference



Width, registers, and name are all examples of stored
properties.

You access stored properties by using dot syntax, as demon‐
strated here:

proc.name = "6502"

// assigns "6502" to the name property of the proc instance

println (proc.dataWidth)

// outputs the dataWidth property of the proc instance

NOTE

You can define stored properties for both classes and
structures.

Computed properties

Like computed variables, computed properties do not store a
value but are methods that look like properties. They are
defined in terms of a getter (identified with the keyword get,
which returns the computed property) and a setter (identified
with the keyword set, which might initialize the conditions
that affect the value returned by the getter). You can also use
the getter and setter to read and write other properties. You
define a computed property as follows:

class someClass

{

    var propertyName: someType

    {

        get

        {

            // code that computes and returns

            // a value of someType

        }

        set(valueName)

        {

            // code that sets up conditions using valueName

        }

    }

}

Classes | 85



valueName is optional. It is used to refer to the value passed into
the set method. If you omit it, you can refer to the parameter
by using the default name of newValue.

The setter is optional. If the setter is not used, the get clause is
not required, and all that is needed is code to compute and
return a value:

class someClass

{

    var propertyName: someType

    {

        // compute and return a value of someType

    }

}

After a computed property is defined, it is used exactly like any
other property. If its name is used in an expression, the getter is
called. If it is assigned a value, the setter is called.

Here is an example of a simple class named Rect that represents
a rectangle in terms of a corner point, a width and a height, and
defines a computed property called area to return the area of
the Rect:

class Rect

{

    var x = 0.0, y = 0.0

    var width = 0.0, height = 0.0

    var area: Double { return (width * height) }

}

You could use this as follows:

var q = Rect()

q.width = 2.7

q.height = 1.4

q.area

// returns 3.78

NOTE

You can define computed properties for classes, structures,
and enumerations.

86 | Swift Pocket Reference



Property observers

Property observers are functions that you can attach to stored
properties and that are called when the value of the property is
about to change (identified with the willSet keyword) or after
it has changed (identified with the didSet keyword). The decla‐
ration looks as follows:

class Observer

{

    var name: String = ""

    {

        willSet(valueName)

        {

            // code called before the value is changed

        }

        didSet(valueName)

        {

            // code called after the value is changed

        }

    }

}

Both valueName identifiers (and their enclosing parentheses)
are optional.

The willSet function is called immediately before the property
is about to be changed (except for assignment during initializa‐
tion). The new value is visible inside willSet as either value
Name, or newValue if valueName was not specified. The function
can’t prevent the assignment from happening and can’t change
the value that will be stored in the property.

The didSet function is called immediately after the property
has been changed (except for assignment during initialization).
The old value is visible inside didSet as either valueName or old
Value if valueName was not specified.

When creating a subclass, you can override properties of the
superclass and then add property observers to them, allowing
you to create new behaviors which the designer of the super‐
class did not plan for or consider.

Classes | 87



NOTE

Observers can be defined for regular variables in the same
way that they are defined for properties. See the section
“Variable Observers” on page 24 for more.

Instance versus type properties

For most applications of classes, properties are associated with
each instance of the class. Using the Processor class example
from earlier, each microprocessor has a different name, differ‐
ent numbers of registers, and potentially different widths for
their data and address paths. Each instance of the class requires
its own set of these property values. Properties used in this way
are called instance properties.

Some applications only require a single instance of a property
for the entire class. Consider a class that records employee data
and must keep a record of the next available ID for a new
employee. This ID should not be stored in each instance, but it
does need to be associated with the class in some way.

For such purposes, Swift provides type properties, which are
properties associated with the class, not with a specific instance
of the class. The same feature is referred to generically as a class
variable, or in C++, Java, and C#, as a static member variable.

NOTE

Even though computed type properties are supported in
classes, stored type properties (as suggested for the
employee class) are not supported in Swift classes,
although they are supported in structures and enumera‐
tions. If you try to create a stored type property in a class,
the compiler (as of the version of Xcode 6 available when
this document was written) will list the error “Class vari‐
ables not yet supported.” This would seem to imply that
support may be coming in a future release.

88 | Swift Pocket Reference



Computed type properties

When you’re declaring a computed type property for a class,
precede the type property’s definition with the keyword class.
The syntax for creating a read/write computed type property is
as follows:

class SomeClass

{

    class var someComputedProperty: SomeType

    {

        get { return SomeType }

        set(valueName)

        {

             // do something with valueName

             // that sets the property

        }

    }

}

valueName is optional. It is used to refer to the value passed into
the set function. If you omit it, you can refer to the parameter
by using the default name of newValue.

If you want a read-only computed type property, omit the set
definition. In this case, you can also omit the get keyword and
reduce the var body to just the code that calculates and returns
the desired value.

Constant properties

You can declare properties as constants by using the keyword
let. Unlike regular constants, constant properties do not need
to be assigned a value when they are defined. Instead, the set‐
ting of their value can be deferred until the class is initialized.

The following example demonstrates a simple class that
includes an uninitialized constant property, cp, the value of
which is set by the initializer function:

class DemoClass

{

    let cp: Int

    init(v: Int)

Classes | 89



    {

        self.cp = v

    }

}

var demoClass = DemoClass (v: 8)

demoClass.cp

// returns 8

When using constant properties, you should note the
following:

• Constant properties can only be initialized by the class in
which they are defined; they cannot be initialized in a
subclass.

• A constant property’s value can be modified during initi‐
alization, but it must have a value before the initialization
process has completed.

Methods
Methods are functions that are either associated with a class (in
which case, they are known as type methods) or with every
instance of a class (in which case, they are known as instance
methods).

You define methods like functions inside the class definition, as
in the following example, which revises the earlier example of
the Rect class to use a method to return the area of the
rectangle:

class Rect

{

    var x = 0.0, y = 0.0

    var width = 0.0, height = 0.0

    func area() -> Double

    {

        return width * height

    }

}

The method is called using dot syntax, as in this example:

90 | Swift Pocket Reference



var q = Rect()

q.width = 5.0

q.height = 2.0

q.area()

// returns 10.0

Local and external parameter names

In a function definition, parameter names are local unless an
external parameter name is explicitly declared or the local
parameter name is preceded by a # character. In this next
example, sourceString and searchString are both internal
parameter names:

func search (sourceString: String, searchString: String)

    -> Int { … }

This is in contrast to method definitions where, by default, all
parameter names except the first are both local and external.
The first parameter name is local unless preceded by an exter‐
nal parameter name or preceded by a #.

This difference in the default behavior between functions and
methods encourages the writing of method definitions in Swift
that are called in a manner that closely matches the style of
Objective-C method calls.

Consider this example, which introduces a new string-related
class with search capability:

class SomeStringClass

{

    func searchFor(searchString: String,

        startingAt: Int) -> Int

    {

        // return result of search

    }

}

In the searchFor() method defined in this class, searchString
is a local parameter name, whereas startingAt is both a local
and an external parameter name. The function facilitates
searching an instance of the string class by using this syntax:

Classes | 91



var haystack = SomeStringClass()

haystack.searchFor("needle", startingAt: 0);

Let’s break this down further:

• If you want the first parameter to have an external
parameter name, either precede the local name with the
external name or precede the local name with # to use the
local name as the external name.

• For the second and subsequent parameters, if you want
to prevent the definition of an external name, precede the
local name with _ (an underscore character).

• For the second and subsequent parameters, if you want
to define your own external name, precede the local
name with the desired external name.

Self

Every instance of a class (and other types) has an automatically
generated property named self which refers to that instance.
Consider an extended version of our Rect class:

class Rect

{

    var x = 0.0, y = 0.0

    var width = 0.0, height = 0.0

    func area() -> Double

    {

        return width * height

    }

    func sameSizeAs(width: Double, _ height:Double) -> Bool

    {

        return width == self.width && height == self.height

    }

}

In the area() method, both width and height are properties of
the instance, and the return statement could have explicitly
referred to them thus:

return self.width * self.height

92 | Swift Pocket Reference



But this is not necessary, because in method calls, self is nor‐
mally implied whenever properties or methods of that class
are used.

The exception is when a parameter name for a method is the
same as a property name for the class, such as occurs with the
sameSizeAs() method. Parameter names take precedence over
property names in methods; therefore, self must be explicitly
used to differentiate the width and height properties from the
width and height parameters.

Deining type methods

When defining a type method for a class, you must precede the
method’s definition with the keywords class func, as in the
following example:

class AClass

{

    class func aTypeMethod()

    {

        // implementation

    }

}

Despite appearances, this is not a nested class definition.

To call a type method for a class, precede it with the class name
using dot syntax:

AClass.aTypeMethod()

To call the same method from within other methods defined
for the class, you can omit the class name because it is equiva‐
lent to self.

A type method can access other type methods defined in the
class as well as computed type properties defined in the class.

Subscripts
In Swift, you can define subscript methods for your own
classes, which make it possible for you to use subscript syntax

Classes | 93



to read and write values appropriate for an instance of
your class.

Subscript syntax is how you access members of arrays and dic‐
tionaries, as demonstrated here:

var m = [Int](count:10, repeatedValue:0)

m[1] = 45;

m[2] = m[1] * 2

var cpus = ["BBC Model B":"6502", "Lisa":"68000",

            "TRS-80":"Z80"]

let cpu = cpus["BBC Model B"]

Subscript syntax affords both reading and writing of values,
and adheres to the following general pattern:

class SomeClass

{

    subscript(index: someIndexType) -> someReturnType

    {

        get

        {

            // return someReturnType based on index

        }

        set(valueName)

        {

            // write valueName based on index

        }

    }

}

You can omit the valueName parameter name, in which case the
parameter to be written can be accessed as newValue.

Here’s an example class that can represent byte values. It also
defines a subscript method by which you can access individual
bits as though the byte is an array of bits:

class Byte

{

    var d: UInt8 = 0

    subscript(whichBit: UInt8) -> UInt8

    {

        get { return (d >> whichBit) & 1 }

        set

94 | Swift Pocket Reference



        {

            let mask = 0xFF ^ (1 << whichBit)

            let bit = newValue << whichBit

            d = d & mask | bit

        }

    }

}

After it is defined, you can use the class like this:

var b = Byte()

b[0] = 1

// b is now 0000 0001, or 1

b[2] = 1

// b is now 0000 0101, or 5

b[0] = 0

// b is now 0000 0100, or 4

Here are some additional things you can do in relation to
subscripts:

• For a read-only subscript, omit the set definition—in
this case, you can also omit the get keyword and reduce
the subscript body to just the code that calculates and
returns the desired value.

• Subscript parameters aren’t limited to single integer val‐
ues; you can declare a subscript method that takes any
number of floats, strings, or other types that suit your
requirements.

• You can define multiple overloaded subscript methods as
long as they take different numbers and/or types of
parameters, or return different types of value. Swift will
determine the appropriate method to call using type
inferencing.

Member Protection
Swift provides a mechanism for controlling access to proper‐
ties, methods, and subscripts of classes as part of a broader
access control system. Read the section “Access Control” on
page 119 for more information.

Classes | 95



Inheritance: Deriving One Class from Another
You can define new classes in terms of existing classes. In doing
so, the new class is said to inherit all of the properties and
methods of the existing class; the new class is derived from the
existing class.

A common example used to illustrate inheritance is that of 2D
geometric shapes. The generic base class contains methods and
properties that should be common to all shapes, such as color,
fill, line thickness, and perhaps origin or enclosing rectangle.
Derived classes include actual geometric shapes, such as lines,
circles, ellipses, quads, polygons, and so on. Each of these
introduce new methods and properties that are specific to that
shape (such as a draw method and properties to store the geo‐
metric details), but all inherit from the base class the common
set of properties and methods that all shapes have.

In Swift, you derive one class from another by using this
syntax:

class NewClassName: BaseClassName

{

    // property and method definitions for the new class

}

Overriding Superclass Entities
When one class is derived from another, the new class is called
the subclass, and the class from which it is derived is called the
superclass. Although much of the time a subclass will add its
own properties and methods to those inherited from the super‐
class, a subclass also has the ability to override methods and
properties of the superclass by redefining them itself.

To override something already defined in a superclass, you
must precede its definition in the subclass with the override
keyword. This is a signal to the Swift compiler that the redefini‐
tion is intentional, and that you haven’t accidentally created a
method or property with the same name.

In Swift, you can override methods, properties, and subscripts.

96 | Swift Pocket Reference



Accessing overridden superclass entities

A derived class can use the super prefix in overriding defini‐
tions to access the superclass version of that entity. Following
are the ways in which you can do this:

• To access an overridden method, call it with
super.methodName().

• To access an overridden property, refer to it as
super.propertyName in the getter, setter, or observer
definitions.

• To access an overridden subscript, use super[index
Value].

Overriding properties

You can’t actually override a property in a superclass with your
own property (it wouldn’t make sense to duplicate the storage
space), but you can override a property in order to provide
your own custom getter and setter for the superclass instance,
or add a property observer so that you can be informed when
the property value changes.

Earlier in this section, we introduced the Rect class for storing
arbitrary rectangles. The example that follows creates a derived
class, Square(), that overrides the width and height properties
with new getters and setters which ensure that the height and
width always match, and therefore that instances of the Square
class are always in fact square:

class Square: Rect

{

    override var width: Double

    {

        get { return super.width }

        set

        {

            super.width = newValue

            super.height = newValue

        }

Classes | 97



    }

    override var height: Double

    {

        get { return super.height }

        set

        {

            super.width = newValue

            super.height = newValue

        }

    }

}

Note that the getter and setter still access the properties that are
stored in the superclass via the super prefix. Here is an example
of the class in use:

var s = Square()

s.width = 20.0

s.height = 10.0

s.area()

// returns 100.0

s.width

// returns 10.0 (not 20.0)

When overriding properties, note the following:

• You can override inherited read-only properties as read/
write properties, by defining both a getter and setter.

• You cannot override inherited read/write properties as
read-only properties.

• If you provide a setter, you must also provide a getter
(even if it only returns the superclass property
unmodified).

• You can override inherited mutable properties (declared
with var) with property observers, but you cannot over‐
ride inherited immutable properties (declared with let)
in this way (because property observers are intended to
observe writes to the property).

• You cannot override a property with both a setter and an
observer (because the setter can act as the observer).

98 | Swift Pocket Reference



Overriding methods and subscripts

To override a method or a subscript that exists in the super‐
class, precede the method or subscript name in the derived
class with the override keyword.

In the earlier subscript discussion, we introduced a Byte class
that included a subscript method which made it possible for us
to access each bit of a byte as though it were an array of bits,
using subscript syntax.

One serious problem with this class is that it does not perform
bounds-checking on either the subscript value or the value to
be written. If we refer to a bit position higher than 7, the pro‐
gram will terminate because the mask assignment in the setter
will generate an overflow. If we assign a bit value of something
other than 0 or 1, the assignment will happen, but it will pollute
other bits in the byte property that we’re presenting as the array
of bits.

For the purpose of illustration, let’s create a safe derived class
that overrides the subscript definition to ensure that these val‐
ues can’t exceed their appropriate values:

class SafeByte: Byte

{

    override subscript(whichBit: UInt8) -> UInt8

    {

        get { return super[whichBit & 0x07] }

        set { super[whichBit & 0x07] = newValue & 1 }

    }

}

Observe that this still uses the superclass implementation of the
subscript function; it just sanitizes the bit value and bit position
before doing so.

Preventing Overrides and Subclassing
Prepending the keyword final to a property, method, or sub‐
script definition prevents that entity from being overridden in a
derived class. Here is a modified version of our Rect class that

Classes | 99



uses the final keyword to prevent the width and height prop‐
erties from being overridden:

class Rect

{

    var x = 0.0, y = 0.0

    final var width = 0.0, height = 0.0

    // rest of definition

}

Note that the use of final in this context does not mean that
the values of width and height are locked; it just means that the
properties cannot be overridden in a subclass.

This change means that our Square class from earlier would no
longer compile, because it overrides these properties with a
custom setter and getter.

You can also use the final keyword in front of a class defini‐
tion to prevent that class from being subclassed.

Initialization
Initialization is the process of setting up appropriate default
values for stored properties in a new instance of a class, struc‐
ture, or enumeration. The process is similar to a constructor in
C++, C#, or Java, or the Init selector in Objective-C. It ensures
that a new instance is ready for use and does not contain ran‐
dom or uninitialized data.

Initialization happens automatically for a new instance of a
class; you do not call the initializer explicitly, although you do
need to call initializers in a superclass from the initializer of a
derived class (see the section “Initialization and Inheritance”
on page 106 for more information).

You can initialize stored properties by either assignment of
default values in the class definition or by defining one or more
init() functions in the class. The Byte class we introduced ear‐
lier demonstrates initialization by assignment:

100 | Swift Pocket Reference



class Byte

{

    var d: UInt8 = 0

    // rest of class definition

}

For more complex classes, it is common to write one or more
init() functions to manage the process of instantiating a new
instance of an object. For classes, Swift supports two kinds of
initialization function: designated initializers and convenience
initializers.

A designated initializer must initialize all of the properties of a
class. In a subclass, it must initialize all of the properties
defined in that subclass and then call a designated initializer in
the superclass to continue the initialization process for any
inherited properties.

A convenience initializer provides a way to call a designated
initializer with some of the designated initializer’s parameters
set to common default values.

A designated initializer is defined by using the following
syntax:

class ClassName

{

    init(parameterList)

    {

        // statements to initialize instance

    }

    // rest of class definition

}

A convenience initializer is defined by using the following
syntax:

class ClassName

{

    convenience init(parameterList)

    {

        // statements to initialize instance

    }

    // rest of class definition

}

Classes | 101



Here as some important characteristics of the initialization
process:

• If a property has a property observer, that observer is not
called when the property is initialized.

• Properties whose type is optional are automatically ini‐
tialized to nil if you do not separately initialize them.

• Immutable properties (declared with let) can be modi‐
fied during initialization, even if assigned a default value
in the class definition.

• A designated initializer is the main initializer for a class.
Most classes will only have one, but more than one is
allowed: for example, one with no arguments that sets all
properties to default values, and one with arguments that
serve as initialization values for specific properties.

• A designated initializer must call a designated initializer
for its superclass.

• Convenience initializers are optional secondary initializ‐
ers; they must call another initializer in the same class.

• A convenience initializer’s execution must eventually lead
to the execution of a designated initializer.

Swift also supports deinitializers, which are invoked automati‐
cally immediately before an object is deallocated (see the sec‐
tion “Deinitialization” on page 107 for more information).

Designated initializers

Our Rect class demonstrated initialization by assignment in the
class definition:

class Rect

{

    var x = 0.0, y = 0.0

    var width = 0.0, height = 0.0

    // rest of definition

}

102 | Swift Pocket Reference



We could rewrite this to use a designated initializer function
instead, like this:

class Rect

{

    var x, y, width, height: Double

    init()

    {

        x = 0.0; y = 0.0

        width = 0.0; height = 0.0

    }

    // remainder of class definition

}

This default init(), without parameters, is the initializer that is
called when you create a new object with no initialization
parameters, as in the following:

var q = Rect()

You can create additional initializers, each of which take differ‐
ent numbers and/or types of parameters. The following exten‐
ded version of the Rect class includes two different designated
initializer methods, either of which will be called depending on
how the Rect is instantiated:

class Rect

{

    var x, y, width, height: Double

    init()

    {

        x = 0.0; y = 0.0

        width = 0.0; height = 0.0

    }

    init(x: Double, y: Double,

         width: Double, height: Double)

    {

        self.x = x

        self.y = y

        self.width = width

        self.height = height

    }

}

Now, either init() method can be used to construct Rect
instances:

Classes | 103



var q = Rect()

var r = Rect(x: 2.0, y: 2.0, width: 5.0, height: 5.0)

Note that the second init() function has only defined internal
parameter names, but the instantiation of r shows that they are
externally visible.

NOTE

For init() functions, Swift will always generate an exter‐
nal parameter name if one hasn’t been defined. Moreover,
external parameter names (whether explicitly defined, or
implicitly generated) must be used when the class is
instantiated.

If you want to prevent the generation of an external parameter
name, precede the internal parameter name with an under‐
score, like this:

class Rect

{

    var x, y, width, height: Double

    init()

    {

        x = 0.0; y = 0.0

        width = 0.0; height = 0.0

    }

    init(_ x: Double, _ y: Double,

         _ width: Double, _ height: Double)

    {

        self.x = x

        self.y = y

        self.width = width

        self.height = height

    }

}

Because there are now no external parameter names, new
instances of the class can be created just by specifying the
parameter values, as shown here:

var q = Rect(2.0, 2.0, 5.0, 5.0)

104 | Swift Pocket Reference



Convenience initializers

Convenience initializers are secondary initialization functions
that must call some other initializer within the same class, and
ultimately they must cause the execution of a designated
initializer.

In the section “Defining a Base Class” on page 81, we
introduced a simple class called Processor to represent micro‐
processors. Our use of this class might require frequent instan‐
tiation of a particular type of processor class, and hence sup‐
port the inclusion of a convenience initializer:

class Processor

{

    var dataWidth = 0

    var addressWidth = 0

    var registers = 0

    var name = ""

    init (name: String, dWidth: Int, aWidth: Int, regs: Int)

    {

        self.name = name

        dataWidth = dWidth

        addressWidth = aWidth

        registers = regs

    }

    convenience init (eightbitName: String, regs: Int)

    {

        self.init(name: eightbitName, dWidth:8,

                  aWidth:16, regs: regs)

    }

}

Note that the convenience initializer defaults two of the four
parameters required by the designated initializer, which it calls
as self.init().

The convenience initializer is called when we construct a new
instance, like this:

var p = Processor(eightbitName:"6502", regs:3)

Classes | 105



Initialization and Inheritance
Hierarchies of classes introduce additional complexity into the
way that initializers are defined and used, including the
following:

• A designated initializer must set values for all properties
introduced in its own class before calling a superclass
initializer.

• A designated initializer must call a superclass initializer
before setting the value of any inherited property.

• A convenience initializer must call another initializer in
its class (convenience or designated) before setting the
value of any property.

• Initializers cannot call instance methods, read instance
properties, or refer to self until all properties introduced
by the class and all properties of its superclass hierarchy
have been initialized.

A derived class in Swift does not usually inherit initializers
from a superclass, but there are two circumstances in which
it does:

• If the derived class does not define any designated initial‐
izers of its own, it will automatically inherit all of the des‐
ignated initializers of its superclass.

• If the derived class implements all of its superclass desig‐
nated initializers, by any combination of defining them
itself and inheriting them, it will automatically inherit all
of its superclass convenience initializers.

Overriding initializers

You can override initialization functions in a derived class, but
you must consider the following:

106 | Swift Pocket Reference



• To override a designated initializer, you must precede its
definition with the keyword override.

• To override a convenience initializer, it must use the
same number of parameters, with the same names and
types, as the superclass initializer it is overriding, but you
must not use the override keyword.

Required initializers

The required keyword, when used in front of an initializer,
means that the initializer must be implemented in a derived
class. Here are two issues to keep in mind:

• A required designated initializer must be redefined in the
derived class.

• A required convenience initializer does not need to be
redefined in the derived class if it will be automatically
inherited, unless the inherited behavior is not desirable.

Deinitialization
Deinitialization is the process of cleaning up anything related to
an instance of a class immediately before that instance is deal‐
located. The process is similar to a destructor in C++ and C#,
or a finalize method in Java.

A deinitializer is declared by using the deinit keyword, as
shown here:

class SomeClass

{

    // other parts of class definition

    deinit

    {

        // code to tidy up before deallocation

    }

}

Classes | 107



The deinit function is called automatically and cannot be
called directly.

A derived class inherits its superclass deinitializer, and the
superclass deinitializer is automatically called at the end of the
derived deinitializer’s implementation.

Structures
In Swift, structures are closely related to classes (see “Classes”
on page 80), which can be surprising for C and Objective-C
programmers, but less surprising for those familiar with C++,
in which classes and structs are also closely related.

Here are some notable similarities and differences:

• Like classes, structures can have properties, instance and
type methods, subscripts, and initializers, and they can
support extensions and protocols (see the sections
“Extensions” on page 123 and “Protocols” on page 131).

• Structures can’t inherit from or be derived from other
structures and can’t have deinitializers.

• Structures are value types, whereas classes are reference

types. This means that structures are always copied when
assigned or used as arguments to functions; they don’t
use reference counts.

The syntax for declaring a new structure is as follows:

struct StructureName

{

    // property, member and related definitions

}

108 | Swift Pocket Reference



NOTE

By convention, structure names begin with an uppercase
letter, and use camel case for the remainder of the structure
name.

Properties in Structures
Properties and property features in structures are largely iden‐
tical to those of classes, and you should read the subsection
“Properties” on page 84 in “Classes” on page 80 to learn the
basics.

Like classes, structures support stored and computed proper‐
ties, property observers, and constant properties.

Structures also support type (also known as class) properties.
Whereas classes introduce these by using the keyword class, in
structures they are introduced with the keyword static.

Methods in Structures
Structures can have instance methods, defined by using the
same syntax as they are with classes. The following example
demonstrates a structure for representing rectangles in terms of
a corner point, a width, and a height, and includes a method
area() that computes the area of the shape:

struct Rect

{

    var x = 0.0, y = 0.0, width = 0.0, height = 0.0

    func area() -> Double

    {

        return (width * height)

    }

}

Structures | 109



Mutating Methods
By default, instance methods defined in a structure are not able
to modify that entity’s properties. You can enable this behavior,
however, by defining the instance method as a mutating
method.

The following example modifies our earlier Rect structure to
include a mutating method embiggenBy(), which modifies the
width and height properties:

struct Rect

{

    var x = 0.0, y = 0.0, width = 0.0, height = 0.0

    mutating func embiggenBy(size: Double)

    {

        width += size

        height += size

    }

}

A mutating method can also replace the current instance of the
structure with a new instance by direct assignment to self.

Type Methods for Structures
When declaring a type method for a structure, precede the
method’s definition with the keyword static (in contrast to
classes, for which the keyword class is used), as illustrated in
this example:

struct AStruct

{

    static func aTypeMethod()

    {

        // implementation

    }

}

Type methods defined in structures can access other type
methods and type properties defined for the same structure
(indicated with the keyword static).

110 | Swift Pocket Reference



To call the type method for a structure, you precede it with the
structure name using dot syntax, as shown here:

AStruct.aTypeMethod()

To call the same method from within other methods defined
for the structure, the structure name can be omitted because it
is equivalent to self.

Initializers in Structures
As with classes, there are a number of different ways that you
can initialize a structure before it is used. The most obvious
way is by assigning default values to stored property members
during assignment, as in this example:

struct Rect

{

    var x=0.0, y=0.0, width=0.0, height=0.0

}

New instances of this structure can be instantiated without
specifying any parameters:

var qq = Rect()

If no initializer methods are included in a structure definition,
Swift will automatically create a memberwise initializer that
allows each stored property to be specified during instantiation,
such as the following:

var q = Rect(x:2.0, y:2.0, width:2.0, height:5.0)

If you require more flexibility than what is provided by either
the memberwise initializer or default values, you can write
your own init() method (or methods) to do custom
initialization.

Initializer delegation in structures

For structures that include more than a few init() methods,
you can use initializer delegation, by which one init() method
calls another to carry out some part of the initialization

Structures | 111



process. Here is an example of a structure for implementing a
Rect class that includes two different init() methods:

struct Rect

{

    var x, y, width, height: Double

    init(_ x: Double, _ y: Double,

         _ width: Double, _ height: Double)

    {

        self.x = x

        self.y = y

        self.width = width

        self.height = height

    }

    init()

    {

        self.init(0.0, 0.0, 0.0, 0.0)

    }

}

The first init() method provides a way to initialize the struc‐
ture such that each initial property value is specified when the
structure is instantiated:

var q = Rect(0.0, 0.0, 3.0, 4.0)

The second init() method provides another way to instantiate
the structure, as in the following:

var r = Rect()

In this case, the second init() function delegates all of its work
to the first init() function by using the self prefix, with each
parameter set to 0. Only initializers are allowed to call other
initializers in this way.

Enumerations
An enumeration is a user-defined type that consists of a set of
named values. With enumerations, algorithms can be more
naturally expressed by using the language of the problem set

112 | Swift Pocket Reference



rather than having to manually map values from another type
(such as Int) to some representation of the problem set.

For example, you might want to store information about the
class of travel for a ticket. Without enumerations, you might
use “1” to represent first class, “2” to represent business class,
and “3” to represent economy class.

Using an enumeration, you could instead represent the classes
as named values such as first, business, and economy.

Enumerations in Swift are considerably enhanced compared to
their counterparts in C-based languages, and they share many
characteristics with classes and structures. Following are some
of the notable similarities and differences:

• Enumerations can have computed properties (but not
stored properties), instance and type methods, and ini‐
tializers (see also the section “Classes” on page 80).

• Enumerations support extensions and protocols (see the
sections ““Extensions” on page 123” and “Protocols” on
page 131).

• Enumerations can’t inherit or be derived from other enu‐
merations and can’t have deinitializers.

The syntax for declaring a new enumeration is as follows:

enum EnumName

{

    // list(s) of enumeration member values

}

NOTE

By convention, enumeration names begin with an upper‐
case letter, and use camel case for the remainder of the
enumeration name.

Enumerations | 113



Using our travel class analogy, the example becomes thus:

enum TravelClass

{

    case First

    case Business

    case Economy

}

We can write the same definition more concisely, as demon‐
strated here:

enum TravelClass

{

    case First, Business, Economy

}

Unlike C, enumerations in Swift are not assigned equivalent
integer values, but such values can be optionally assigned to
them (see the section “Raw Member Values” on page 114).

Once defined, enumerations are used much like any other type:

var thisTicket = TravelClass.First

var thatTicket: TravelClass

thatTicket = .Economy

Note that dot syntax is required when referring to a named
value from an enumeration. In the second assignment in the
preceding example, the enumeration name is omitted because
it can be inferred from the variable type, but the dot is still
required.

Raw Member Values
In C, each member of an enumeration has an underlying inte‐
ger value, and you can use that value in place of the member
name. Swift does not assign values to enumeration members by
default, but you can include values in the definition. These are
called raw values. Moreover, raw values aren’t limited to integer
values; they can be strings, characters, or floating-point values,
but all raw values for a given enumeration must be of the
same type.

114 | Swift Pocket Reference



This example declares an enumeration with raw values of
Int type:

enum AtomicNumber: Int

{

    case Hydrogen = 1

    case Helium = 2

    case Lithium = 3

    case Beryllium = 4

}

For enumerations where the raw value is of Int type, successive
members will be given auto-incrementing raw values if no
value is provided:

enum AtomicNumber: Int

{

    case Hydrogen = 1, Helium, Lithium, Beryllium

}

// Helium = 2, Lithium = 3, Beryllium = 4

The rawValue property in this example gives you access to a
member’s raw value:

AtomicNumber.Lithium.rawValue

// returns 3

var mysteryElement = AtomicNumber.Helium

mysteryElement.rawValue

// returns 2

The (rawValue: n) initializer lets you translates a raw value
back its enumeration value, if one exists. Because there might
be no member with the specified raw value, this returns an
optional value, which must be unwrapped:

if let r = AtomicNumber(rawValue: 2)

{

    // r will have the value Helium

}

else

{

    // there was no matching member for the raw value 2

}

Enumerations | 115



Associated Values
Raw member values are invariant (i.e., they are constant values
that are associated with each enumeration member). Enumera‐
tions in Swift support another kind of value called an associated
value. These are more like properties of a class—you can set
each one differently for each instance of the enumeration.

You define associated values for an enumeration as follows:

enum EnumName

{

    case MemberName(SomeType [, SomeType…])

    case AnotherMemberName(SomeType [, SomeType…])

}

The associated value(s)—expressed as a tuple—can have one or
more values, each of which can be of a different type.

Let’s consider a concrete example. The term “network address”
can be generically used to mean an address for the type of pro‐
tocol being considered, even though network addresses for two
different protocols might look very different from each other.

For example, an Ethernet MAC address consists of six 2-digit
hex values separated by colons (e.g., “00:01:23:45:CD:EF”),
whereas an IPv4 consists of four 8-bit unsigned values (or
octets). We can represent this as an enumeration with associ‐
ated values like this:

enum NetworkAddress

{

    case MAC(String)

    case IPv4(UInt8, UInt8, UInt8, UInt8)

}

When we define a variable of this enumeration type, we can
associate IP addresses with each IPv4 case, and MAC addresses
with each MAC case:

var routerAddress = NetworkAddress.IPv4(192, 168, 0, 1)

var dnsServerAddress = NetworkAddress.IPv4(8, 8, 8, 8)

var ethernetIF = NetworkAddress.MAC("00:DE:AD:BE:EF:00")

116 | Swift Pocket Reference



Note that the associated value is stored with the variable; it is
not part of the enumeration. You can even reassign a different
type of network address to an existing variable of that type and
store a different type of associated value:

var someAddress = NetworkAddress.IPv4(192, 168, 0, 1)

someAddress = NetworkAddress.MAC("00:DE:AD:BE:EF:00")

someAddress = NetworkAddress.IPv4(10, 10, 0, 1)

To check for different types of network addresses, use a switch
statement:

someAddress = NetworkAddress.IPv4(10, 10, 0, 1)

switch someAddress

{

    case .MAC:

        println ("got a MAC address")

    case .IPv4:

        println ("got an IP address")

}

// prints "got an IP address"

To access the associated value, use a switch statement with let
value binding:

someAddress = NetworkAddress.MAC("00:DE:AD:BE:EF:00")

switch someAddress

{

    case let .MAC(theaddress):

        println ("got a MAC address of \(theaddress)")

    case let .IPv4(a, b, c, d):

        println ("got an IP address with" +

          "a low octet of \(d)")

}

// prints "got a MAC address of 00:DE:AD:BE:EF:00"

Methods in Enumerations
Enumerations can have instance methods, which you define
using the same syntax as when defining classes. The following
example extends our NetworkAddress enumeration to include a
method getPrintable() that returns the associated value of
either enumeration type as a string:

Enumerations | 117



enum NetworkAddress

{

    case MAC(String)

    case IPv4(UInt8, UInt8, UInt8, UInt8)

    func getPrintable() -> String

    {

        switch self

        {

            case let .MAC(theAddress):

                return theAddress

            case let .IPv4(a, b, c, d):

                return ("\(a).\(b).\(c).\(d)")

        }

    }

}

You use this as follows:

var someAddress = NetworkAddress.IPv4(192, 168, 0, 1)

someAddress.getPrintable()

// returns "192.168.0.1"

someAddress = NetworkAddress.MAC("00:DE:AD:BE:EF:00")

someAddress.getPrintable()

// returns "00:DE:AD:BE:EF:00"

By default, instance methods defined in an enumeration are
not able to modify the instance’s value, but you can enable this
behavior by defining the instance method as a mutating method
(see the subsection “Mutating Methods” on page 110 in “Struc‐
tures” on page 108).

Type Methods for Enumerations
To declare a type method for an enumeration, you precede the
method’s definition with the keyword static (in contrast to
classes, where the keyword class is used), as shown in the fol‐
lowing example:

enum AnEnumeration

{

    static func aTypeMethod()

    {

        // implementation

    }

}

118 | Swift Pocket Reference



Type methods defined in enumerations can access other type
methods and type properties defined for the same enumera‐
tions (indicated with the keyword static).

To call a type method for an enumeration, precede it with the
enumeration name using dot syntax, like so:

AnEnumeration.aTypeMethod()

To call the same method from within other methods defined
for the same enumeration, you can omit the enumeration name
because it is equivalent to self.

Access Control
Many object-oriented languages feature a method of access
control for limiting access to members of classes. For example,
C++ supports public, protected, and private access levels for
data and function members of a class or structure.

Swift provides a similar mechanism, but it extends it to provide
access control for higher-order types (classes, structures, and
enumerations) as well as their members, and for globally
defined values, such as functions and variables, type aliases,
protocols, extensions, and generics.

The access control levels provided by Swift are public, internal,
and private. Following are descriptions of each and some limi‐
tations on their use:

• Public entities are accessible from any source file in the
module in which they are defined as well as any source
file that imports that module.

• Internal entities are accessible from any source file in the
module in which they are defined, but not from else‐
where. Internal access is the default access level that is
applied in most cases for which access control is not
otherwise specified.

• Private entities are only accessible within the source file
in which they are defined (and thus are not even

Access Control | 119



accessible from other source files that are part of the
same module).

• It is not possible to specify an access level for an entity
that is more open than the access level of its type. For
example, if the class SomeClass has an access level of
internal, it is not possible to define an instance of this
class and assign it an access level of public.

• It is not possible to specify an access level for a member
of an entity that is more open than the entity itself. For
example, if the class SomeClass has an access level of
internal, it is not possible for a member of the class to
have an access level of public.

Specifying Access Control Levels
You specify access control levels by preceding the entity to
which they refer with one of the keywords, public, internal, or
private, as in the following:

public let APIVersion = "1.0.0"

private struct HashingRecord { }

internal class Byte { }

The access level specified for a type affects the default access
level for its members:

• If a type’s access is marked as private, its members will
default to private.

• If a type’s access is marked as public or internal, its mem‐
bers will default to internal—you need to explicitly
declare members as public if you want them visible out‐
side the current module, even if the containing entity
itself is marked as public.

• If a type’s access is not specified, it, and its members, will
default to internal.

120 | Swift Pocket Reference



Earlier in the section on classes we introduced a Byte class that
included a subscript definition that allowed us to treat a Byte
object as an array of bits. If we were including this class in a
framework for other programs to use, we would make the class
and its subscript member public, but might want to make the
variable that contains the stored value private, so that the
implementation is opaque to callers:

public class UInt8

{

    private var d: UInt8 = 0

    public subscript(whichBit: UInt8) -> UInt8

    {

        // rest of subscript definition

    }

}

Other code that imported this library module would be able to
create instances of the Byte class, and could set and get their
value by subscript, but could not access the d property directly.

Default Access Control Levels
Although the default access level for most entities is internal,
there are some exceptions and caveats that you might need to
consider, which are presented in Table 6.

Table 6. Access control restrictions

Type Default/available access level(s)

Constants,

variables,

properties

Constants, variables, and properties must have either the same

access level as their type, or a more restrictive level. For example,

a variable of type SomeClass that is marked internal

cannot itself be marked as public.

Enumeration

cases

The access level of the cases of an enumeration is the same as the

access level of the enumeration itself (enumeration cases are not

members in the usual sense).

Enumeration

values

The default access level is the same as the access level of the

enumeration with which the values are associated and cannot be

overridden with a more restrictive access level.

Access Control | 121



Type Default/available access level(s)

Extensions When extending a class, structure, or enumeration, new

members deined in the extension have the same default access

level as members of the original entity:

• You can override the default for new members by

specifying a diferent access level on the extension.

• The access level for new members can override the

default but cannot be more open than the access level of

the original entity.

• You cannot specify an access level on an extension that

adds protocol conformance.

Function The default access level is the most restrictive of all of the

function’s parameter and return types. You can override the

default but only with a more restrictive level.

Generics The efective access level for generics is the most restrictive of the

access level of the generic itself as well as the access level of any

of its constraining types.

Getters,

setters

The default access level for getters and setters is the same as the

access level for the entity on which they are deined. The setter

can have a more restrictive level than the getter (limiting

modiication of the entity without afecting its readability),

which is speciied by preceding the variable or property name

with either private(set) or internal(set).

Initializers The default access level for initializers is the same as the access

level of the class to which they belong. You can override the

default for a custom initializer with a more restrictive level.

122 | Swift Pocket Reference



Type Default/available access level(s)

Nested types • Types deined within private types will also be private.

• Types deined within internal types will default to the

internal access level but can be made private.

• Types deined within public types will default to the

internal access level, and you can override with any access

level.

Protocols The default access level is internal, but you can override this with

any level. Each requirement within the protocol has the same

access level as the protocol itself, and this cannot be overridden.

Subclasses The default access level is the same as that of the superclass, but

you can override this with a more restrictive level. A subclass can

override the implementation of an inherited class member and

override that member’s access level so long as it is not more open

than the access level of the subclass.

Subscripts The default access level for a subscript is the most restrictive of its

index and return types. You can override this only with a more

restrictive level.

Tuple The only available access level is the most restrictive level of all of

the types that comprise the tuple. You cannot override this

because tuples are not explicitly deined like other types.

Type aliases The default access level for a type alias is the same as that of the

type that it aliases. You can override the default with a more

restrictive level.

Extensions
Swift’s extensions mechanism makes it possible for you to add
new functionality to existing classes, structures, and enumera‐
tions, even if you did not create them yourself, and you do not
have their source code. This is a hugely powerful feature and
one which opens opportunities for extending Swift itself—if the

Extensions | 123



language is missing a feature that you need, you can often add
it yourself as an extension.

The basic syntax of an extension is as follows:

extension Type

{

    // code that extends Type

}

Extensions can only add new functionality to existing types;
they cannot override existing properties, methods, subscripts,
or any other functionality already defined in a type.

Computed Property Extensions
You can use extensions to add computed type properties and
computed instance properties to an existing type, but you can‐
not use them to add stored properties or property observers.

Here is a simple extension that adds a computed property to
the UInt class that returns a hex representation of the unsigned
integer as a string:

extension UInt

{

    var asHex: String

    {

        var temp = self

        var result = ""

        let digits = Array("0123456789abcdef")

        while (temp > 0)

        {

            result = String(digits[Int(temp &

                         0x0f)]) + result

            temp >>= 4

        }

        return result

    }

}

With this extension in place, we can query the asHex property
of any UInt type to get its hex equivalent as a string:

124 | Swift Pocket Reference



45.asHex

// returns "2d"

var s = 100.asHex

// stores "64" in a new String variable s

Initializer Extensions
You can use an extension to add convenience initializers to a
class, but you cannot add delegated initializers or deinitializers.

You can also use an extension to add initializers to structures. If
the structure does not define its own initializers, your exten‐
sion initializer can call the default member-wise initializer if
required to set all default property values.

Method Extensions
You can use extensions to add instance methods and type
methods to an existing type. This example extends the Int type
to provide a facility for converting an integer to a fixed-width
string with leading spaces:

extension Int

{

    func asRightAlignedString(width: Int) -> String

    {

        var s = "\(self)"

        while (countElements(s) <= width)

        {

            s = " " + s

        }

        return s

    }

}

let x = -45

x.asRightAlignedString(5)

// returns "  -45"

An instance method added with an extension can modify the
instance with the mutating keyword. This example extends the
Double type with a method that truncates a double to its nearest
integer value that is not larger than the original value:

Extensions | 125



extension Double

{

    mutating func trunc()

    {

        self = Double(Int(self))

    }

}

var d = 45.5

d.trunc()

// d is now 45.0

Subscript Extensions
Here is an example that extends the String class to support
subscripted character referencing:

extension String

{

    subscript (i: Int) -> String

    {

        return String(Array(self)[i])

    }

}

To use this, follow a string with a subscript:

"Hello"[4]

// returns "o"

var a = "Alphabetical"

a[0]

// returns "A"

Earlier, in the introduction to classes, we presented a Byte class
that included a subscript definition with which we could treat
a Byte object as an array of bits. Using extensions, we can apply
the same feature to the UInt8 type, as demonstrated here:

extension UInt8

{

    subscript(whichBit: UInt8) -> UInt8

    {

        get { return (self >> whichBit) & 1 }

        set

        {

            let mask = 0xFF ^ (1 << whichBit)

            let bit = (newValue & 1) << whichBit

126 | Swift Pocket Reference



            self = self & mask | bit

        }

    }

}

var b: UInt8 = 0

b[0] = 1

b[7] = 1

b

// returns 129

Checking and Casting Types
Swift is a strongly typed language, but there are times when
some relaxation of type rules is warranted, and there are times
when you want to check what an object’s type is or downcast a
reference to a subclass type.

Using Swift’s is, as, and as? type casting operators, you can test
types and protocol conformance, and downcast types and
protocols.

Any and AnyObject
One Swift mechanism that provides type flexibility comes via
the keywords AnyObject and Any, which are special built-in type
aliases. AnyObject can represent an instance of any class,
whereas Any can represent an instance of any type except for
function types.

You can use these two type aliases to create complex enti‐
ties. For example, an array that can store any type of data:

var a = [Any]()

a.append(2)

a.append(3.4)

a.append("crunch")

Or you can create a function that can take an instance of any
class type:

Checking and Casting Types | 127



func someFunc(t: AnyObject)

{

    // do something with t

}

Another example of where AnyObject is required is when call‐
ing Objective-C APIs that return an NSArray. Because an
Objective-C array can contain arbitrary object types, it must be
represented in Swift as an array of type [AnyObject]. To work
with such an array, you will likely need to use Swift’s type-
casting operators to cast references to the array entries to an
appropriate Swift class, such as a String.

Checking Types
You use the is operator to check whether an instance is of a
specific type. Consider the following example of three classes
A, B, and C. Note that B is a subclass of A:

class A { }

class B: A { }

class C { }

var a = A()

var b = B()

var c = C()

Next, we create a function that takes an instance of any object
as a parameter and uses the is operator to check whether it is
an instance of A:

func typeCheck(t: AnyObject) -> Bool

{

    return t is A

}

typeCheck(a) // true

typeCheck(b) // true

typeCheck(c) // false

The first typeCheck call returns true because a is an instance of
class A. The second call also returns true, because b is an
instance of B, which in turn is a subclass of A. The third call
returns false because c is not of type A or a subclass of A.

128 | Swift Pocket Reference



Downcasting Types
Using downcasting, we can treat an instance of a class as an
instance of one of its subclasses.

Consider the scaffolding in the example that follows for a sys‐
tem for representing geometric shapes. We start with a generic
base class called shape and then define specific shapes as sub‐
classes of the base class to represent circles and squares. Note
that the subclasses have different functionality to one another.
In this contrived example, one has a describe method, while
the other has an identify method—a small difference purely
for the sake of demonstration:

class Shape { }

class Square: Shape

{

    func describe()

    {

        println("I am a square")

    }

}

class Circle: Shape

{

    func identify()

    {

        println("I am a circle")

    }

 }

Now, we define an array for storing shapes and then add some
shapes to it:

var shapes = [Shape]()

let sq = Square()

let ci = Circle()

shapes.append(sq)

shapes.append(ci)

The array is defined to store generic shapes, but because both
Circle and Square are subclasses of Shape, they too can be
stored in the array.

Checking and Casting Types | 129



With this structure in place, we now want to create a general-
purpose function to do something with our array of shapes
(e.g., drawing them on a display or calling some other subclass-
specific method). As we walk through the array, we might want
to know the type of each member (whether it’s a circle or a
square, or something else), but we might also want to be able to
treat each member as its subclass type (rather than the generic
type of the array) so that we can use features unique to each
subclass. For that we can use the as and as? downcast
operators.

The as operator forcibly downcasts to a specific subclass type.
If the object you’re trying to downcast is not actually of the
specified class or is not a subclass of the specified class, Swift
will terminate with a runtime error.

The as? operator attempts to downcast to a specific subclass
type and returns an optional value. If the downcast fails (mean‐
ing that the object you’re trying to downcast is not of the speci‐
fied class or a subclass of the specified class), the value returned
is nil. If the downcast succeeds, the returned value is the type
to which it was downcast.

Suppose that we wanted to walk through our shape array
searching for a specific type of entry. Even though we could do
that by using the is operator, here’s how we would do it using
the as? operator and let binding:

for s in shapes

{

    if let c = s as? Circle

    {

        // c is now a reference to an array entry downcast

        // as a circle instead of as a generic shape

    }

    else

    {

        // downcast failed

    }

}

Alternatively, we could use a switch statement to achieve a sim‐
ilar goal:

130 | Swift Pocket Reference



for s in shapes

{

    switch s

    {

        case let cc as Circle:

            cc.identify()

        case let ss as Square:

            ss.describe()

        default:

            break;

    }

}

Note in the preceding example how we again use let binding
so that we have a reference to the array entry, but the reference
is cast to the subclass type so that cc refers to a Circle. This
allows us to call methods unique to the Circle type, whereas ss
refers to a Square, and lets us call methods unique to the square
type.

If you’re sure that a downcast won’t fail and you don’t want to
use let binding, you can use the as operator to forcibly down‐
cast from the generic class to the subclass like this:

for s in shapes

{

    if s is Circle

    {

        let c = s as Circle

        c.identify()

    }

}

Protocols
A protocol defines a standard set of features, expressed via
properties, methods, operators, and subscripts, that embody a
specific role or provide a specific set of functionality. A proto‐
col isn’t the implementation of this functionality; it just
describes what must be implemented.

A class, structure, or enumeration can subsequently adopt the
protocol, which implies that the class, structure, or

Protocols | 131



enumeration will include its own definitions of the features that
the protocol declares, thereby conforming to the protocol.

The syntax for declaring a new protocol is as follows:

protocol ProtocolName

{

    // protocol definition

}

NOTE

By convention, protocol names begin with an uppercase
letter, and use camel case for the remainder of the protocol
name.

The syntax for adopting one or more protocols is as follows:

class ClassName : [SuperClassName]

        ProtocolName [, ProtocolName…]

{

    // class definition and code that

    // implements the requirements of ProtocolName(s)

}

If the class is derived from an existing class, the superclass
name appears before any protocol names.

The protocol body consists of a series of declarations that
define the requirements that must be implemented in order for
the adopter to conform to the protocol. This includes a list of
the required properties and methods that the adopter must
define and any constraints on them (e.g., whether a property is
read-only or read/write).

Required Properties
A property requirement for a protocol specifies both the name
of the property and its type as well as whether the property is
read-only or read/write. It does not specify whether the prop‐

132 | Swift Pocket Reference



erty is implemented as a stored property or as a computed
property, because that is up to the adopter.

You declare properties by using var in this fashion:

protocol SomeProtocol

{

    var aWritableProperty: Double { get set }

    var aReadOnlyProperty: Int { get }

    class var aTypeProperty: String { get set }

}

This example also demonstrates how the type of a property is
specified and whether it must be implemented as a read-only
property (by using just the get keyword) or read/write (by
using both the get and set keywords).

To conform to this protocol, an adopter must define a read/
write property named aWritableProperty, a read-only property
named aReadOnlyProperty, and a read/write type property
named aTypeProperty.

Note that the class keyword is used to indicate a type property,
even if the protocol will be adopted by a structure or
an enumeration.

Required Methods
A method requirement for a protocol specifies the name,
parameters, and return type of the method. You write it in the
same way as you would define an ordinary method in a class,
except for the method body. This next example defines a proto‐
col that requires adopters implement a method that returns a
(presumably) printable string:

protocol aProtocol

{

    func printable() -> String

}

A class adopting this protocol must include a method that
returns a printable representation of the instance.

Protocols | 133



A required method in a protocol can be an instance method (as
shown in the example) or a type method (by preceding it with
the keyword class).

If a required method needs to be able to mutate the instance
that it refers to, precede it with the keyword mutating (see the
subsection “Mutating Methods” on page 110 in “Structures” on
page 108).

Optional Methods and Properties
You can use the keyword optional in front of a method or
property name in a protocol to indicate that the method or
property does not have to be implemented by a class that
adopts that protocol.

There is an important restriction, though, in the use of the
optional keyword: the protocol definition must be prefixed
with the @objc keyword, even if there is no intention to interact
with Objective-C code or data. This immediately places further
restrictions on what you can do with the protocol, notably the
following:

• @objc protocols can only be adopted by classes, not by
structures or enumerations.

• You cannot use generic types in the protocol (using the
typealias keyword, as described in the section “Generic
Protocols” on page 154).

• You cannot use any Swift data type in the protocol that
has no Objective-C equivalent (so, for example, the pro‐
tocol cannot define anything that uses or requires a
tuple).

The example that follows demonstrates a protocol that defines
an optional property and an optional method. The property is
defined as a read-only string (because only the get keyword is
present), and the method is defined as taking an integer param‐
eter, and returning an integer string:

134 | Swift Pocket Reference



@objc protocol Optionals

{

    optional var optProperty: String { get }

    optional func optMethod(i: Int) -> String

}

Next, we define two classes that each adopt the protocol. One
class only implements the optional method; the other only
implements the optional property:

class ImplementsProperty: Optionals

{

    let optProperty = "I'm a property!"

}

class ImplementsMethod: Optionals

{

    func optMethod(i: Int) -> String

    {

        return "I'm a method and was passed \(i)"

    }

}

Finally, we create an instance of each class to demonstrate how
we access the optionally defined features. In doing so, note that
the variables a and b are declared to be of type Optionals (the
protocol), not of either of the class types:

var a: Optionals = ImplementsProperty()

var b: Optionals = ImplementsMethod()

Looking first at our instance a, you might expect that you can
reference it directly, and, technically, you can:

a.optProperty

// returns an optional String? "I am a property!"

Notice, though, that the returned value is an optional string,
even though the property is declared in the protocol as a non‐
optional string, and the class actually implements the property.
Because optional methods and properties might not have been
implemented in an adopting class, they always return an
optional value. Thus, you must test for a non-nil value and
then unwrap it to safely use the property value.

Protocols | 135



Because you can access the property, you might wonder what
happens if you try to access the (unimplemented) method:

a.optMethod(1)

// compiler error

Rather than returning an optional value of nil, this code gener‐
ates an error because the method hasn’t actually been imple‐
mented. Instead, you must call the method with a question
mark immediately following its name, as in this example:

a.optMethod?(1)

// returns nil

When called this way, we do get a nil value—in this case, indi‐
cating that the method has not been defined. Finally, let’s con‐
sider our instance b, created earlier, that implements the
optional method but not the optional property:

b.optMethod?(1)

// returns an optional String? "I am a method and was passed 1"

b.optProperty

// returns nil

This time, the method return (defined as a nonoptional string)
is wrapped in an optional because the method implementation
itself is optional, whereas the property, which has not been
implemented, returns nil.

When a protocol is defined with an optional method or prop‐
erty, you can also use optional chaining to access the optional
entities. See also the sections “Optionals” on page 63 and
“Optional Chaining” on page 66 for more information.

Adopting Protocols with Extensions
Protocol use isn’t limited to classes, structures, and enumera‐
tions that you define yourself: you can use Swift’s extension
mechanism to conform any existing type to a protocol, includ‐
ing simple built-in types such as Int, Double, and String.

The basic syntax for defining such an extension is as follows:

136 | Swift Pocket Reference



extension Type : ProtocolName [, ProtocolName…]

{

    // code that extends Type and implements

    // the requirements of ProtocolName(s)

}

Following is an example of using an extension to conform the
Bool type to the Printable protocol that we introduced earlier.
This example is somewhat contrived because the global print
function will print Bool types as either “true” or “false”, so we
define our implementation to print “YES” and “NO” instead:

extension Bool: Printable

{

    func printable() -> String

    {

        return self ? "YES":"NO"

    }

}

Here’s how to use this with Bool types:

var a = false

a.printable()

// returns "NO"

Inheritance and Protocols
In the same way that you can use inheritance with classes, you
can use inheritance with protocols—one protocol inherits all of
the requirements of another and then adds further require‐
ments of its own.

The syntax for basing one protocol on another is as follows:

protocol ProtocolName : ProtocolName [, ProtocolName…]

{

    // protocol definition

}

The next example demonstrates a simple protocol that requires
that adopters implement the method asHex() to return a hex
representation of the type, but because it inherits from the
Printable protocol (described earlier), adopters must also
implement a method named printable():

Protocols | 137



protocol Hexable : Printable

{

    func asHex() -> String

}

And here, we define an extension to the Bool type that adopts
the Hexable protocol and implements the required methods:

extension Bool: Hexable

{

    func asHex() -> String

    {

        return self ? "1":"0"

    }

    func printable() -> String

    {

        return self ? "YES":"NO"

    }

}

NOTE

For the purpose of demonstration, we’ll assume that the
reader is happy to forgive the contrivance that “1” is the
hex equivalent of true, and that “0” is the hex equivalent of
false.

Using a Protocol as a Type
A protocol is a type in the same way that a class is a type, and
you can use protocols in most places that you can use types.
This is a hugely powerful feature, especially when you begin to
think of types not in terms of what they can store (Ints,
Strings, data) but in terms of the functionality that they can
provide (methods, actions, conformed behavior).

With this mindset, we can think of a variable not as a place to
store a specific type of value but as a place to store anything
that implements specific behavior. Similarly, we can think of an

138 | Swift Pocket Reference



array not as a place to store a collection of one type of data but
as a place to store a collection of anything that implements a
specific behavior.

Earlier, we demonstrated an extension to the Bool type that
adopted the Hexable protocol. Here’s a similar extension for the
UInt type:

extension UInt: Hexable

{

    func asHex() -> String

    {

        var temp = self

        var result = ""

        let digits = Array("0123456789abcdef")

        digits

        while (temp > 0)

        {

            result = String(digits[Int(temp &

                         0x0f)]) + result

            temp >>= 4

        }

        return result

    }

    func printable() -> String

    {

        return "\(self)"

    }

}

With both Bool and UInt conforming to the Hexable protocol,
we can now create some interesting behavior with variables:

var a: Hexable = true

a.printable()    // returns "YES"

a.asHex()        // returns "1"

a = 45

a.printable()    // returns "45"

a.asHex()        // returns "2d"

The variable a is of type Hexable; it can store anything that con‐
forms to the Hexable protocol, which means it can store both
Bool and UInt data.

Protocols | 139



This next example defines an array of type Hexable, and popu‐
lates it with some values:

var ar = [Hexable]()

ar.append(true)

ar.append(45)

ar[0].asHex()     // returns "1"

ar[1].asHex()     // returns "2d"

Again, the array is not limited to being able to store just Bool
data or just UInt data: it can store Hexable data, which, due to
protocol conformance, includes both Bool and UInt types.

Checking Protocol Conformance
You can use the is, as, and as? type casting operators to check
for protocol conformance and to downcast protocols in the
same way that you can use them to check and downcast class
types, because you can define protocols in terms of other pro‐
tocols (inheritance) in the same way that you can define classes
in terms of other classes.

There is an important restriction, though, in the use of these
operators in checking and downcasting protocols: the protocol
definition must be prefixed with the @objc keyword, even if
there is no intention to interact with Objective-C code or data.
This is the same restriction that was described earlier in the
section “Optional Methods and Properties” on page 134, and it
imposes the same limitations when checking for protocol
conformance.

The @objc keyword requirement also means that you cannot
check if an instance conforms to a built-in Swift protocol,
because those protocols aren’t defined with the @objc keyword.

If you can work within these restrictions, you can use the type
checking and downcasting operators in the same way that you
would use types. For example, the following defines a sample
protocol, class, and general function to check if any instance
conforms to the protocol using the is keyword:

140 | Swift Pocket Reference



@objc protocol DemoProto

{

}

class DemoClass: DemoProto

{

}

func protoCheck(t: AnyObject) -> Bool

{

    return t is DemoProto

}

Next, we create some objects that we then pass to the protocol
checking function:

var s = DemoClass()

var a = 4

protoCheck(s)  // returns true

protoCheck(a)  // returns false

The instance of s returns true because s is an instance of Demo
Class, which adopts the DemoProto protocol.

Built-In Protocols
There are many built-in protocols in Swift: some are used to
define the language itself, while others are useful to adopt for
your own classes so that you can use them in many of the same
contexts as Swift’s built-in types.

Table 7 lists some of the more useful among them.

Table 7. Built-in protocols

Protocol Description

AbsoluteValuable For types that support the abs (absolute value)

function.

Comparable For types that can be magnitude-compared using

relational operators like < and ==.

Equatable For types that can be compared for equality using ==

and !=.

Protocols | 141



Protocol Description

ForwardIndexType For types that can represent discrete values in a series,

and that implement the successor() method to

step from one value to the next.

Hashable For types that can provide an integer hash value and

can be used as keys in a dictionary.

Printable For types that can be converted to a text

representation and written to an output stream (such

as by println).

SignedNumberType For types that can be subtracted, negated, or

initialized from 0.

Streamable For types that can be written to an output stream

(such as String, Character, and UnicodeSca

lar)

Strideable For types that can represent a continuous sequence of

values that can be ofset and measured.

If you are interested in implementing these protocols, or
exploring any other aspects of Swift, open a playground or any
Swift source file and locate (or just type in) the global function
name println. Next, Command-Option-click this function
name, and the assistant editor will open the equivalent of a
“Swift Header File,” which defines and document’s many
aspects of the language. You’ll need to do this to see what fea‐
tures must be added to your own class so that it conforms to
each protocol.

Memory Management
Swift, like Objective-C, uses reference counting as the main
technique for keeping track of when dynamically allocated
memory is no longer being used and can be released for other
purposes.

For many years, Objective-C used (and can still use) manual
reference counting, but this requires diligence on the part of

142 | Swift Pocket Reference



the developer, and even though it can obviously be mastered, it
is a challenge for those new to the language to understand the
nuances of when to use certain methods associated with refer‐
ence counting, and when not to use them.

After a brief experiment with an Objective-C garbage collector
for automatic memory management, Apple announced ARC in
2011. ARC—which stands for Automatic Reference Counting
—uses the same approach that a programmer would use, but it
does so in a rigorous and deterministic manner.

How Reference Counting Works
The principle underpinning reference counting is quite simple.
Every object (that is, every instance of a class) has a built-in
reference count property that is set to 1 when the object is
instantiated.

Whenever a piece of code wants to express an interest in or
ownership over the object (that is, when a pointer is created
that points to the object), it must increment the reference
counter. When it has finished with the object and has no fur‐
ther interest in it (that is, when its pointer to the object is no
longer needed), it must decrement the reference counter. (In
Objective-C, the way to express interest in an object is to call its
retain method, and the way to express no further interest is to
call the object’s release method.)

When the reference counter for an object is decremented to
zero, it means that there are no current references to the object
and that the object can be destroyed and the memory allocated
to it can be released.

As long as an object’s instantiation and release happens in the
one function, the process of reference counting is very simple
to master. The intricacies of reference counting don’t really
become apparent until the instantiation of an object is discon‐
nected (code or execution-wise) from its release. At this point,
it is relatively easy for a novice programmer to not release an
object to which they created a reference (which results in a

Memory Management | 143



memory leak) or to release an object that they don’t actually
own (which can result in a crash).

ARC manages the entire process of reference counting, auto‐
matically determining where to add retain and release calls,
and thus relieves the programmer from the responsibility of
doing so.

Retain Cycles and Strong References
One of the main problems with a reference counting approach
to memory management is that of retain cycles. At their sim‐
plest, these occur when two objects contain strong references to
each other. Consider the following code:

class A { }

var a = A()

The variable a stores a strong reference to the newly created
instance of class A.

Strong references are also created by default when objects store
references to each other. This next example has been trimmed
to the bare minimum, but this situation can occur in many
places where complex interlinked data structures are used:

class A

{

    var otherObject: B?

}

class B

{

    var otherObject: A?

}

var a = A()  // retain count for new instance of A set to 1

var b = B()  // retain count for new instance of B set to 1

a.otherObject = b

// B instance retain count incremented to 2

b.otherObject = a

// A instance retain count incremented to 2

144 | Swift Pocket Reference



The code demonstrates two instances, referred to by a and b,
that also refer to each other. After this code has executed, the
retain count for each of the instances will be 2.

When the section of code that instantiates these two classes
goes out of scope, a and b, being local variables, also go out of
scope and are deleted. When a is deleted, the retain count for
the instance it refers to is decremented (to 1), but because it is
not zero, the instance itself is not deleted. Similarly, when b is
deleted, the retain count for the instance it refers to is decre‐
mented (again, to 1), but, again, because it is not zero, that
instance is also not deleted.

As a consequence, we end up with two instances (one of class
A, one of class B) that refer to each other and thus keep each
other “alive.” Because the retain count for both instances never
reaches zero, neither object can be deleted, and both take up
memory.

This situation is a referred to as a memory leak, and if the situa‐
tion that created it occurs repeatedly during the execution of
the program, the amount of memory allocated to the program
will continue to grow, possibly causing performance issues or
termination by the operating system if it limits the amount of
memory that an application can claim.

Although retain cycles are something that an experienced
coder might consider when manually managing memory, they
are not something that ARC can prevent without some assis‐
tance from the programmer. Essentially, if ARC is to manage
memory automatically, it requires some additional information
about the nature of references to other objects—they need to be
classified as either weak or unowned.

Weak References
One way to prevent a retain cycle is to change one of the strong
references to a weak reference. You do this by preceding the var
declaration with the keyword weak, as in this example:

Memory Management | 145



class A

{

    var otherObject: B?

}

class B

{

    weak var otherObject: A?

}

Weak references have two effects:

• There is no assertion that the referrer “owns” the instance
it refers to, and it can deal with the fact that the instance
might go away (in practical terms, this means that when a
weak reference is established, the retain count is not
incremented).

• When an instance referred to by a weak reference is deal‐
located, ARC sets the weak reference value to nil (thus,
weak references must be declared as variables, not
constants).

With a weak reference in place, consider in this next example
how the retain counts change as the code executes:

var a = A()  // retain count for new instance of A set to 1

var b = B()  // retain count for new instance of B set to 1

a.otherObject = b

// B instance retain count incremented to 2

b.otherObject = a

// A instance retain count remains at 1

Because the reference that the instance of B holds to A is a weak
reference, the retain count for the A instance remains at 1.

As before, when the local variables a and b go out of scope and
are deleted, the retain count for the instances they refer to are
both decremented. That means that the retain count for the
instance of A drops to zero, and the retain count for the
instance of B drops to 1.

Because the instance of A now has a retain count of zero, it is no
longer required in memory, and the process of its deinitializa‐

146 | Swift Pocket Reference



tion and deallocation can begin. During deallocation, two
things to happen:

• The weak reference to the instance of A that is stored in
the instance of B is set to nil.

• Because the instance of A holds a strong reference to the
instance of B (and A is being deallocated), the deallocation
process sends B a release message, decrementing its retain
count to zero.

At this point, the instance of A has been removed from mem‐
ory, and we are left with an instance of B that has a retain count
of zero. The process of its deinitialization and deallocation now
begins.

When using weak references, consider the following:

• Use a weak reference if your code and data model allows
for a reference to have no value (i.e., be nil) at times dur‐
ing the execution of your program.

• Weak references must always be defined as optionals.

Unowned References
An unowned reference is similar to a weak reference in that
there is no assertion that the referrer “owns” the instance to
which it refers, and when an unowned reference is established,
the instance’s retain count is not incremented.

The main difference between a weak reference and an
unowned reference is that whereas a weak reference may at
times validly be nil without causing errors, an unowned refer‐
ence, once established, must always have a value.

An unowned reference is defined by preceding the var declara‐
tion with the keyword unowned, as in this example:

Memory Management | 147



class B

{

    unowned var otherObject: A

}

When using unowned references, consider the following:

• Use an unowned reference if your code or data model
expects that the reference, after creation, will always exist
and be valid (at least until such time as the referrer goes
out of scope or is deleted).

• Unowned references must always be defined as
nonoptionals.

• If you try to access an instance that has been deallocated
via an unowned reference, Swift will terminate with a
runtime error.

Retain Cycles and Closures
Like classes, closures are actually reference types. If you assign
a closure to a property of an instance and that closure captures
the instance, either by reference to a property of the instance or
by a method call on the instance, you will have created a retain
cycle between the instance and the closure.

The solution to this is to use either a weak or an unowned ref‐
erence in the closure to the instance or method that is being
captured, but the syntax is not the same as for references, as
described earlier. Instead, references are specified in a capture
list as part of the definition of the closure.

A capture list is defined inside the closure definition either
immediately prior to the parameter list or immediately prior to
the in keyword if the closure has no parameters. The capture
list is a series of one or more reference types (unowned or weak,
followed by the property or method that it refers to) and sepa‐
rated by commas, as follows:

148 | Swift Pocket Reference



{

    [referenceType propertyOrMethod [, ...] ]

    (parameters) -> returnType in

        statements

}

For example, a closure being stored in a property aClosure, and
referencing self, would look as follows:

var aClosure: (parameters) -> returnType =

{

    [unowned self]

    (parameters) -> returnType in

        statements

}

The rules as to which type of reference you should use remain
the same as they do for instance-to-instance references. Use a
weak reference (defined as an optional) if the reference may val‐
idly become nil; use an unowned reference if the closure and the
instance that it captures refer to each other, and the reference
will remain valid until both objects can be deallocated.

Generics
Swift’s generics feature provides you with the ability to write
generic code that can work with any type of data. Similar fea‐
tures exist in C++ (as templates) and C# (as generics). Parts of
the Swift standard library are implemented as generics. For
example, the Array type and the Dictionary type are generic
collections that can store any type of data.

In Swift, you can write generic code in a number of ways,
including generic functions, generic types, and generic
protocols.

Generic Functions
To see a classic example of where generics are useful, consider
the Swift standard library function swap, which is defined as
follows:

func swap<T>(inout a: T, inout b: T)

Generics | 149



From this function definition, we can see swap takes two inout
parameters, of some type T, but there’s nothing to indicate what
type T actually is. (The two parameters are declared as inout
parameters because the function must swap two existing items,
not copies of them.)

swap is a generic function that can swap a pair of Ints, Doubles,
or even a pair of instances of a user-defined type. It can swap
any two variables, as long as they are of the same type. To get a
better understanding of what swap is doing, take a look at this
next example to consider how it would be implemented:

func swap<T>(inout a: T, inout b: T)

{

    let temp = a

    a = b

    b = temp

}

Nothing in the body of the function definition is type specific.
So long as the constant temp is of the same type as a (which it
will be due to type inferencing), and a is of the same type as b
(which it must be according to the types specified in the
parameter list of the function), this function can swap any two
same-typed values.

You define generic functions by using the following syntax:

func someFunc<Placeholder, [Placeholder…]>(parameterList)

{

    // function body

}

The key parts of the definition that indicate that this is a
generic function are the angle brackets immediately following
the function name; these contains one or more type placehold‐
ers. These placeholders, called type parameters, stand in for
actual types throughout the body of the function.

In much the same way that “i” has become a defacto loop vari‐
able, “T” is commonly used as the name for a type parameter in
generic functions, but you can use any valid identifier.

150 | Swift Pocket Reference



NOTE

By convention, type identifiers begin with an uppercase let‐
ter, and use camel case for the remainder of the identifier
name.

Generic Types
Earlier in this book, in the section “Arrays” on page 42, it was
noted that the preferred way to refer to an array of a specific
type is [SomeType], but that the formal way is Array<SomeType>.
The angle brackets reveal that the Array type is actually imple‐
mented as a generic type, and you can create our own generic
types in the same way, using classes, structures, or
enumerations.

This next example is a generic struct-based implementation of
a queue:

struct Queue<T>

{

    var entries = [T]()

    mutating func enqueue(item: T)

    {

        entries.append(item)

    }

    mutating func dequeue() -> T

    {

        return entries.removeAtIndex(0)

    }

}

The queued data is stored in an array, entries, of type T, and
defines two methods: enqueue (to add an item to the end of the
queue) and dequeue (to pull an item from the beginning of the
queue).

So defined, Queue is now a new, generic type, and you can cre‐
ate queues for integers, strings, and any other data type to

Generics | 151



which you have access. For example, you can create and use a
queue for Int data as follows:

var q = Queue<Int>()

q.enqueue(45)

q.enqueue(39)

q.enqueue(61)

q.enqueue(98)

q

// returns 45, 39, 61, 98

q.dequeue()

// returns 45

q

// returns 39, 61, 98

Constraining Types
In designing a generic function or type, you might want to
place some limits on what types it can support. You can con‐
strain types based on either their class (or subclass) or by pro‐
tocol conformance. The constraint is specified in the angle
brackets immediately following the type parameter you want to
constrain, as follows:

<T: SomeClass>

<T: SomeProtocol>

In the first example, T can act only as a placeholder for instan‐
ces of SomeClass (or its subclasses). In the second example, T
can act only as a placeholder for types that conform to the
specified protocol.

Revisiting our Queue example from earlier, we could constrain
it to support only signed integer as follows:

struct Queue<T: SignedIntegerType>

{

    // existing definition

}

SignedIntegerType is a protocol built into Swift that the signed
integer types (Int, Int8, Int16, Int32, and Int64) conform to,
but which the unsigned types (UInt, UInt8, etc.) do not.

152 | Swift Pocket Reference



With this constraint in place, we can no longer create a queue
for UInt data:

var q = Queue<UInt>()

// error – Type 'UInt' does not conform to

// protocol 'SignedIntegerType'

The example that follows is a generic function that can merge
two sorted arrays into a third. Because this function compares
entries from each array, we need to be sure that comparison is a
defined operation for the type of data stored in the arrays, and
we do that by constraining the type T to the Comparable proto‐
col. Types that conform to this protocol can be compared with
the relational operators <, <=, >= and >, and Swift’s built-in types
(such as Double, Int, and String) all conform:

func merge<T:Comparable>(a:[T], b:[T]) -> [T]

{

    var output = [T]()

    var i = 0, j = 0

    let sizea = a.count

    let sizeb = b.count

    output.reserveCapacity(sizea + sizeb)

    while (i < sizea) && (j < sizeb)

    {

        if a[i] < b[j] { output.append(a[i++]) }

        else { output.append(b[j++]) }

    }

    while i < sizea { output.append(a[i++]) }

    while j < sizeb { output.append(b[j++]) }

    return output

}

Here’s a simple example of using our merge function with
strings:

let s = ["allan", "fred", "mike"]

let t = ["brenda", "geraldine", "ruth"]

let u = merge(s, t)

u

// returns "allan", "brenda", "fred", "geraldine",

// "mike", "ruth"

Generics | 153



Generic Protocols
With Swift, you can also write generic protocols, although the
way this works is a little different to the way generic types are
expressed in function and type definitions. Instead of a <T>
placeholder, unknown types in protocols are identified by using
the typealias keyword, which we introduced early on in the
section “Types” on page 17. When you use them in this way in
protocol definitions, these are known as associated types.

To use an associated type, the protocol definition takes
this form:

protocol SomeProtocol

{

    typealias SomeName

    // remainder of protocol definition with the generic

    // type references expressed as SomeName

}

The actual type that the type alias SomeName refers to is defined
when the protocol is adopted, in the same way that the other
required parts of the protocol must be defined to provide
conformance:

class SomeClass : SomeProtocol

{

    typealias SomeName = SomeActualType

    // rest of class definition

}

Here’s an example of a generic protocol, Queueable, that dem‐
onstrates the use of an associated type:

protocol Queueable

{

    typealias NativeType

    mutating func enqueue(item: NativeType)

    mutating func dequeue() -> NativeType

}

A class or structure that adopts this protocol must implement
enqueue and dequeue methods (thus, behaving like a queue),
but the type of data that these methods use is defined in the
adopting class at the same place that the methods themselves

154 | Swift Pocket Reference



are defined—in the protocol definition, it’s referred to as
NativeType.

Following is an example of a structure that stores a list of
strings and adopts the Queueable protocol so that the list can
also be treated as a queue. You can see that the NativeType from
the protocol is defined as being of String type for this particu‐
lar adopter:

struct StringList: Queueable

{

    var list = [String]()

    typealias NativeType = String

    mutating func enqueue(item: NativeType)

    {

        list.append(item)

    }

    mutating func dequeue() -> NativeType

    {

        return list.removeAtIndex(0)

    }

}

You could use the structure as follows:

var s = StringList()

s.enqueue("Joshua")

s.enqueue("Nadia")

s.enqueue("Paul")

s.dequeue()

// returns "Joshua"

s

// returns an array ["Nadia", "Paul"]

Operator Overloading
Operator overloading is the ability to define custom behavior
for standard operators (+, /, =, etc.) when they are used with
custom types. Overloading is a controversial feature because it
can lead to ambiguous code.

Operator Overloading | 155



For example, all programmers understand that the + operator is
traditionally associated with addition when both operands are
numeric. A slightly smaller group generally associate + with
concatenation when both operands are strings, so in a sense, +
is already overloaded in languages that support concatenation
with it.

A language that supports programmer-defined operator over‐
loading takes this further, allowing the programmer to add new
custom behavior to any of the standard operators when they
are applied to custom types. For example, you could define a
struct type to represent vectors. Adding vectors is a natural
operation for people who think in terms of motion, and over‐
loading + to add two vector types allows vector addition to be
expressed naturally in code.

You overload binary infix operators in Swift by using the fol‐
lowing syntax:

func + ([inout] left: SomeType, right: SomeType)

    -> SomeType

{

    // code that returns a value of SomeType

}

Let’s look closer at this syntax:

• The parameter names are shown as left and right, but
you can use any other parameter names. The first param‐
eter is the one that appears on the lefthand side of the
operator, and the second parameter is the one that
appears on the righthand side.

• This example overloads +, but you can overload any
existing binary operator (including compound assign‐
ment operators and comparison operators) except for
assignment (=).

• When overloading compound assignment operators
(such as +=), the first (left) parameter must be prefixed
with inout because the body of the function will directly
modify the left parameter.

156 | Swift Pocket Reference



• The two input types are both shown as SomeType, but
these do not have to be of the same type.

• The return value does not have to be the same type as
either of the operands.

Back in the section “Structures” on page 108, we introduced a
simple structure named Rect to represent rectangular shapes,
as shown in this example:

struct Rect

{

    var x = 0.0, y = 0.0, width = 0.0, height = 0.0

    func area() -> Double

    {

        return (width * height)

    }

}

Here is an overloaded version of the + operator that returns a
new Rect that represents the smallest Rect that would contain
the two operand Rects (assuming the origin is at the upper
left):

func + (left: Rect, right: Rect) -> Rect

{

    return Rect (

                    x: min(left.x, right.x),

                    y: min(left.y, right.y),

                    width: max(left.width, right.width),

                    height: max(left.height, right.height)

                )

}

We would use this new operator as follows:

var a = Rect (x:5, y:5, width:5, height:5)

var b = Rect (x:6, y:6, width:10, height:10)

var c = a + b

// c is now a Rect where

// (x=5.0, y=5.0, width=10.0, height=10.0)

The following example overloads the < operator so that two
Rects can be compared in terms of area:

Operator Overloading | 157



func < (left: Rect, right: Rect) -> Bool

{

    return left.area() < right.area()

}

You could use this as follows:

var e = Rect(x:0, y:0, width:4, height:5)

var f = Rect(x:5, y:5, width:5, height:5)

e<f

// returns true

Overloading Unary Operators
The unary operators are overloaded by preceding the function
definition with either the prefix or postfix keyword. The gen‐
eral pattern is as follows:

prefix func ++ (someName: someType) -> someType

{

    // code that returns a value of SomeType

}

Here’s an alternative:

postfix func -- (someName: someType) -> someType

{

    // code that returns a value of SomeType

}

The parameter names are shown as someName, but you can use
any parameter names.

Note that the return value does not have to be the same type as
the operand.

The following example defines a ++ postfix operator for our
Rect type that adds 1.0 to the x- and y-coordinates but leaves
the width and height unmodified:

postfix func ++ (inout r: Rect) -> Rect

{

    let temp = r;

    r.x += 1.0

    r.y += 1.0

    return temp

}

158 | Swift Pocket Reference



Note that this function copies the operand so that the value
returned is the original, unmodified value (thus mimicking the
expected behavior of a postfix ++ operator). In use, this would
behave as follows:

var d = Rect(x:5, y:5, width:5, height:5)

d++

// returns a Rect where

// (x=5.0, y=5.0, width=5.0, height=5.0)

// but d is a Rect where

// (x=6.0, y=6.0, width=5.0, height=5.0)

Custom Operators
As well as overloading the built-in operators, you can create
custom operators which can begin with any of the ASCII char‐
acters +, -, *, /, =, !, %, <, >, &, |, ^, and ~, as well as a range of
Unicode character blocks, including the math, symbol, arrow,
dingbat, line drawing, and box drawing sets. The second and
subsequent characters can be any of those listed as well as the
any of the Unicode combining characters (which are characters
that modify other characters, such as diacritical marks and
accents).

Unusually, custom operators in Swift need to be declared
before they are defined, using this syntax:

[prefix|postfix|infix] operator symbols {}

For example, we could declare a prefix operator that used the
square root symbol (√) to calculate square roots, as follows:

prefix operator √ {}

We could then implement it thus:

prefix func √ (operand: Double) -> Double

{

    return sqrt(operand)

}

So defined, we can then use our operator as follows:

print (√25)

// outputs 5.0

Operator Overloading | 159



Custom Operator Precedence
When you define custom infix operators, you can also specify
optional precedence and associativity values. These values are
specified when the custom operator is declared (not when it is
subsequently defined) as follows:

operator symbols { associativity someValue

                   precedence someValue }

Precedence is specified as a numeric value, and defaults to 100
if not provided.

Associativity is specified as left, right, or none, and defaults to
none if not provided.

See also the subsection “Operator Precedence” on page 36 in
“Operators” on page 29 for more information.

Ranges, Intervals, and Strides
Earlier in this book, we introduced the closed range operator
(x...y) and the half-open range operator (x..<y). These opera‐
tors represent two of the more commonly used types of ranges
(they’re used frequently in iteration), but Swift supports two
other range types: intervals and strides.

Let’s look at all three of these types a little more closely.

Ranges
A range is a collection of consecutive discrete values. The end
of the range must be reachable from the start by a process of
repeated incrementation (so the start can’t be a value that is
later in the series than the end).

Typically, you will use ranges with integer types, but you can
use them with any type that conforms to the ForwardIndexType
protocol.

160 | Swift Pocket Reference



Ranges are types (so, for example, a variable can be of type
range) and include the properties startIndex and endIndex, as
demonstrated in this example:

var r = 1...5

r

// returns "1..<6"

r.startIndex

// returns 1

r.endIndex

// returns 6

for x in r

{

    println (x)

}

// outputs:

// 1

// 2

// 3

// 4

// 5

Observe that even though we assigned the closed range 1...5
to r, Swift converted this internally to the half-open range
1..<6. This is because it always represents ranges internally in
half-open format.

The endIndex represents the end of a range but is not a value in
the range, which is why the for loop only outputs five values.

Intervals
Like a range, an interval consists of a start value and an end
value, and the start must be less than the end, but intervals are
not associated with indexing or the concept of advancing pro‐
gressively from the start to the end by incrementation. Instead,
they are associated with the idea of containment—checking
whether a value is contained within the interval.

You can use intervals with any type that conforms to the
Comparable protocol. Thus, intervals can be of type Int or Dou
ble, or any other type that conforms to that protocol.

Ranges, Intervals, and Strides | 161



Intervals are types (so a variable can be of type interval) and
include the properties start and end as well as the method
contains(), as demonstrated in this example:

var i = 1.1...2.2

i.start

// returns 1.1

i.end

// returns 2.2

i.contains(3.4)

// returns false

i.contains(1.6)

// returns true

i.contains(2.2)

// returns true

Like ranges, you can define intervals as either half-open or
closed.

When a type used with the half-open or closed range operator
conforms to only the Comparable protocol (such as the floating-
point types) the operator will always return an interval.

However, if a type used with either of the range operators con‐
forms to both the Comparable and ForwardIndexType protocols
(such as the integer types), the operator will return an interval
when it is used in a pattern matching context (e.g., a switch
case), but it will return a range in any other context.

Strides
Like ranges and intervals, a stride consists of a start and an end,
but it also includes a distance to step as the sequence
progresses.

The end value of a stride can be inclusive (specified with the
through parameter name) or exclusive (specified with the to
parameter name).

Unlike ranges and intervals, none of these values are accessible
as properties of the stride.

162 | Swift Pocket Reference



You can use strides with any type that conforms to the
Strideable protocol, which includes floating-point and integer
types.

Strides are types, so a variable can be of type stride, as in the
following example:

var s = stride(from:2, to:8, by:2)

for x in s

{

    println (x)

}

// outputs

// 2

// 4

// 6

Because the stride in the previous example was initialized with
a to parameter, the end value of the stride (8) was excluded
from the sequence. In this next example, we use a stride
directly, but this time we initialize it by using the through
parameter so that the end value (2.8) is included in the
sequence:

for x in stride(from:2.2, through:2.8, by:0.3)

{

    println (x)

}

// outputs

// 2.2

// 2.5

// 2.8

Note that due to the inability to exactly represent all floating-
point values, a stride initialized with a floating-point to param‐
eter may appear to return the end value as the last value in a
sequence. This is not an issue with strides, but a reminder that
floating-point values should not be relied on for certain values.

Global Functions
Swift includes many built-in global functions, some of which
have been used as examples in earlier parts of this book. The
more useful functions are listed in this section, along with a

Global Functions | 163



brief discussion of their parameter requirements and what
they do.

If you are interested in further exploring the global function
documentation, open a playground or any Swift source file and
locate (or just type in) the global function name println. Next,
Command-Option-click this function name, which opens the
assistant editor equivalent of a “Swift Header File.” This defines
and documents many aspects of the language.

advancedBy(n: Distance)

This is not a global function per se, but it is a method
that is implemented for built-in types conforming to
the Strideable protocol. It returns the result of apply‐
ing successor() or predecessor() to self n times. For
example, 5.advancedBy(2) returns 7.

abs(x)

Returns the absolute value of x, which must conform
to the AbsoluteValuable protocol.

assert(condition: Bool, message: String)

Tests the condition. If it evaluates to false, it termi‐
nates the program and prints the string message as an
error.

distanceTo(other: Self)

This is not a global function per se, but it is a method
that is implemented for built-in types conforming to
the Strideable protocol. It returns the number of
times that successor() or predecessor() would need
to be called to reach other from self. For example,
5.distanceTo(8) returns 3.

countElements(x)

Returns a count of the number of elements in x,
which must conform to the CollectionType protocol
(this includes strings, arrays, and dictionaries).

164 | Swift Pocket Reference



isEmpty(x)

Returns a Bool indicating whether x is empty. x must
conform to the CollectionType protocol, which
includes strings, arrays, and dictionaries.

last(x)

Returns an optional—either the last element of x, or
nil if x is empty. x must conform to the CollectionType
protocol.

max(list)

Returns the greatest argument in the list. The list of
comma-separated arguments must be of the same
type, and must conform to the Comparable protocol,
which includes Ints and Doubles (and their variants),
and Strings.

maxElement(x)

Returns the maximum element in x, which must be a
collection (such as a String or Array) of a type that
conforms to the Comparable protocol. This includes
Ints and Doubles (and their variants), and Strings.

min(list)

Returns the lesser argument passed. The list of
comma-separated arguments must be of the same
type, and must conform to the Comparable protocol,
which includes Ints and Doubles (and their variants),
and Strings.

minElement(x)

Returns the minimum element in x, which must be a
collection (such as a String or Array) of a type that
conforms to the Comparable protocol. This includes
Ints and Doubles (and their variants), and Strings.

predecessor()

This is not a global function per se, but it is a method
that is implemented for many built-in types, and
returns the predecessor for the object that it is applied
to. For example, 5.predecessor() returns 4.

Global Functions | 165



print(x)

Writes the textual representation of x to the output
stream.

println(x)

Writes the textual representation of x to the output
stream, followed by a new line.

removeAll(&x [, keepCapacity:Bool])

Removes all elements from x, which must be specified
by reference, and which must conform to the RangeRe
placeableCollectionType protocol. This includes
Strings and Arrays. If the keepCapacity parameter is
specified and true, the space allocated to the collec‐
tion will not be released.

removeAtIndex(&x, i: IndexType)
Removes a single element at i from x, which must be
specified by reference, and which must conform to
the RangeReplaceableCollectionType protocol, which
includes the String and Array types.

removeLast(&x)

Removes the last element from x, which must be
specified by reference, and which must conform to
the RangeReplaceableCollectionType protocol, which
includes Strings and Arrays.

removeRange(&x, r: range)

Removes the range of elements from x, which must be
specified by reference, and which must conform to
the RangeReplaceableCollectionType protocol, which
includes the String and Array types.

reverse(x)

Returns a new array containing the elements of x in
reverse order.

sort(&x)

Sorts the collection x, which must be specified by ref‐
erence, in place. x must conform to the MutableCollec
tionType protocol and have an index that conforms to

166 | Swift Pocket Reference



the RandomAccessIndexType protocol. The elements
must conform to the Comparable protocol. This
includes Arrays.

sort(&x, { closure } )
Sorts the array x, which must be specified by refer‐
ence, in place. The closure defines how two elements
sort with respect to each other (e.g., { $0<$1 }). See
the section “Closures” on page 57 for more
information.

sorted(x)

Returns a sorted version of x, which must conform to
the SequenceType protocol (this includes Arrays) and
have elements that conform to the Comparable proto‐
col (which includes Ints, Doubles, and their related
types, and Strings).

sorted(x, { closure } )
Returns a sorted version of x, which must conform to
the SequenceType protocol (this includes Arrays). The
closure defines how two elements sort with respect to
each other, (e.g., { $0<$1 }). See the section “Closures”
on page 57 for more information.

split(x, { closure } )
Returns the result of slicing x, which must conform to
the Sliceable protocol (this includes Strings and
Arrays). The closure defines where to split: for exam‐
ple, { $0 == " " } could be used to split a string at a
space character into an array of strings, or { $0 ==
36 } could be used to split an array of integers into an
array of arrays of integers, splitting at every element
in x that has the value 36. Optional parameters that
follow the closure are maxSplit (an Int that limits the
number of splits), and allowEmptySlices (a Bool that if
true will cause a split for consecutive closure

Global Functions | 167



matches). See also the section “Closures” on page 57
for more information.

successor()

This is not a global function per se, but it is a method
that is implemented for many built-in types, and
returns the successor for the object that it is applied
to. For example, 5.successor() returns 6.

swap(&x, &y)

Swaps x and y, which must be of the same type.
toString(x)

Returns the result of x printed as a String.

168 | Swift Pocket Reference



Index

Symbols
! exclamation mark

as logical operator, 34
custom operators and, 159
unwrapping optionals and, 64

!= comparison operator, 33
strings, 40

!== comparison operator, 33
# character, 91
#include statements, 15
% percent sign, 159
%= assignment operator, 32
& operator (bitwise AND), 31

custom operators and, 159
&% overflow remainder operator,

34
&& logical operator, 34
&* overflow multiplication opera‐

tor, 34
&+ overflow addition operator,

34
&- overflow subtraction operator,

34
&/ overflow division operator, 34
&= assignment operator, 33
(double quotes), 19
* operator, 30

custom operators and, 159
*= assignment operator, 32
+ operator, 30

custom operators and, 159
string concatenation, 15

++ operator, 31
+= assignment operator, 32
- operator, 30

custom operators and, 159
-- operator (decrement), 31
-= assignment operator, 32
-> closure expression, 57
..< half-open range operator, 35
/ operator, 30

custom operators and, 159
/* */ (multi-line comment delim‐

iter), 14
// (comment marker), 14
/= assignment operator, 32
; (semicolons), 14
< comparison operator, 33

custom operators and, 159
strings, 40

<< operator (bitwise left-shift), 31
<<= assignment operator, 32
<= comparison operator, 34

strings, 40

169



= assignment operator, 32
custom operators and, 159

= comparison operator, 34
== comparison operator, 33

strings, 40
=== comparison operator, 33
> comparison operator, 34

custom operators and, 159
strings, 40

>= comparison operator, 34
strings, 40

>> operator (bitwise right-shift),
32

>>= assignment operator, 32
? (question mark), 63
[] syntax

for arrays, 43
for dictionaries, 47-50

\" (double quote) escape
sequence, 41

\' (single quote) escape sequence,
41

\n (line feed) escape sequence, 41
\r (carriage return) escape

sequence, 41
\t (tab) escape sequence, 41
\u{n} arbitrary Unicode scalar

escape sequence, 41
\\ (backslash) escape sequence, 41
^ operator

bitwise XOR, 31
custom operators and, 159

^= assignment operator, 33
_ underscore character, 78, 92
` (back ticks), 23
| operator

bitwise OR, 31
custom operators and, 159

|= assignment operator, 33
|| logical operator, 34
~ operator

bitwise NOT, 31
custom operators and, 159

… range operator, 35
√ (square root), 159

A
abs(x) global function, 164
AbsoluteValuable protocol, 141,

164
access control, 119-123

default, 121-123
of class members, 95
specifying level of, 120

advancedBy() global function,
164

Any keyword, 127
AnyObject keyword, 127
Apple Worldwide Developers

Conference, 1
ARC, 1
arguments, automatic names, 59
arithmetic operators, 30
arrays, 42-47

algorithms for, 46
append function, 44
appending two, 44
assigning value to element, 44
assigning value to range of

elements, 44
capacity property, 43
capacity, reserving, 45
count property, 44
elements, accessing, 43
filter(), 46
inserting values into, 44
isEmpty property, 44
iterating over, 45
map(), 46
modifying, 44-45
mutable, 44-45
mutable, declaring, 42
properties of, 43
reduce(), 46
remove and return last ele‐

ment of, 45

170 | Index



remove and return single ele‐
ments from, 44

removing all elements from,
44

reverse(), 47
sorted(), 47
sorting, 45

as operator, 127
checking for protocol con‐

formance, 140
downcasting with, 130

as? operator, 35, 127
checking for protocol con‐

formance, 140
downcasting with, 130

assignment operators, 32-33
associated types, 154

B
base classes, 96
binary operators, 29
bitwise operators, 31
blocks, 57
Bool values, 34
break statements, 79

C
capture list, 148
case clauses (switch statements),

75
matching ranges in, 76
using tuples in, 77

characters, 38
literals, 19

Clang, 1
classes, 81-108

computed properties, 85-86
computed type properties, 89
constant properties, 22, 89
defining, 81
deinitialization, 107
inheritance, 96

initialization, 100-108
instances, 83
member protection, 95
methods, 90-95
nested types and, 20
overrides, preventing, 99
overriding superclass entities,

96-100
properties of, 84
properties, instance vs. type,

88
property observers, 87
self property, 92
stored properties, 84
subclassing, preventing, 99

closures, 57-63
array algorithms as, 46
automatic argument names,

59
capturing values by reference,

62
capturing values with, 60-62
retain cycles and, 148
trailing, 60

Cocoa Framework, 9
CollectionType protocol, 164
command line access, 6-8
comments, 14
Comparable protocol, 141, 153,

165
comparison operators, 33, 153
computed properties, 85-86

extensions, 125
computed type properties, 89
computed variables, 23
conditionals, 73-80

if-else statements, 73
switch statements, 74-80

constant properties, 22
in classes, 89

constants, 22
default access level of, 121
tuples, 27

Index | 171



continue statements, 79
convenience initializers, 101, 105

overriding, 107
countElements(x) global func‐

tion, 164
curly braces, 73
custom operators, 159

precedence, 160

D
data types, 17-21
default clauses (switch state‐

ments), 75
deinitialization, 107
designated initializers, 101,

102-104
overriding, 107

developer resources, 5
Developer Tools Access prompt, 7
dictionaries, 47-50

accessing elements of, 48
count property, 49
isEmpty property, 49
iterating over, 50
keys property, 49
modifying, 49
mutable, 49
properties of, 48
remove all elements from, 49
remove specified elements

from, 50
setting values for specified

elements, 49
updating values for specified

elements, 49
values property, 49

didSet keyword, 24
distanceTo() global function, 164
do-while loops, 72
downcasting, 129-131

as operator, 35
as? operator, 35

E
else clause, 74
enumerations, 112-119

associated values, 116-117
default access level of, 121
methods in, 117
raw member values, 114
type methods in, 118
using switch statements with,

80
Equatable protocol, 141
escaped characters in strings, 41
extensions, 123-126

adopting protocols with, 136
computed properties, 125
default access level of, 122
initializers, 125
methods, 125
subscripts, 126

external parameter names
in init() methods, 104
in methods, 91-92

external parameters names
in functions, 53

F
filter() (arrays), 46
final keyword, 99
floating point literals, 18
for-condition-increment loops,

69
for-in loops, 71

iterating over arrays with, 45
iterating over dictionaries

with, 50
ForwardIndexType protocol, 142
functions, 51-57

computed variables, 23
default access level of, 122
default parameter values, 54
external parameter names, 53
generic, 149
global, 163-168

172 | Index



local parameter names, 53
parameter types, 51
returning multiple values, 53
returning optional values, 52
returning tuples, 53
types, 56
variadic parameters for, 55

G
generics, 149-155

constraining, 152-153
default access level of, 122
functions, 149
protocols, 154-155
types, 151

getter functions
computed properties, 85
computed variables, 23
default access level of, 122

global functions, 163-168

H
half-open range operator, 35
Hashable protocol, 142

I
if-else statements, 73

optional binding and, 65
import statements, 15
in-out parameters, 51
inheritance, 80, 96

initializers and, 106-107
protocols and, 137

initializer delegation, 111
initializers, 100-108

convenience, 105
default access level of, 122
designated, 102-104
extensions, 125
for structures, 111
inheritance and, 106-107
overriding, 106

required, 107
instances, 83
instantiation, 83
Int types, 17
integer types, 17

overflow operators, 34
internal access control level, 119
intervals, 161
iOS 7, 5
iOS 8, 5
is operator, 127

checking for protocol con‐
formance, 140

checking types with, 130
isEmpty(x) global function, 165

L
lambdas, 57
last(x) global function, 165
Lattner, Chris, 1
let statements, 65, 130

value binding with, 78
literals

array, 42
character, 19
dictionary, 47
floating point, 18
numeric, 18
string, 19

LLDB, 1
LLVM, 1
local parameter names, 91-92

in functions, 53
in methods, 91-92

logical operators, 34
loops, 69-73

do-while, 72
early termination of, 73
for-condition-increment, 69
for-in, 71
while, 72

Index | 173



M
map() (arrays), 46
max(list) global function, 165
maxElement(x) global function,

165
memberwise initializer, 111
memory leaks, 145
memory management, 142-149

closures and, 148
reference counting, 143
retain cycles, 144, 148
strong references, 144
unowned references, 147
weak references, 145

methods, 90-95
extensions, 125
in enumerations, 117
in structures, 109
optional in protocols, 134-136
overriding, 99
parameter names, local/exter‐

nal, 91-92
required in protocols, 133
self property and, 92
subscripts, 93-95
type, 93

min(x) global function, 165
minElement(x) global function,

165
mutable dictionaries, 49
MutableCollectionType protocol,

167
mutating methods, 110, 118, 125

N
nested types, 20

default access level of, 123
null escape sequence, 41
numeric literals, 18

O
Objective-C, 1

operators, 29-38
arithmetic, 30
assignment, 32-33
binary, 29
binary, overloading, 156
bitwise, 31
comparison, 33
custom, 159
implicit type conversion, 30
overflow, 34
overloading, 155-159
precedence, 36-38
range, 35
ternary, 29
ternary conditional, 36
type casting, 35
unary, 29
unary, overloading, 158

optional binding, 65
optional tuple return type, 53
optionals, 63-69

as return value, 52
chaining, 67-69
implicitly unwrapped, 65
method, 134-136
Objective-C pointers vs., 63
properties, 134-136
testing value, 65
unwrapping, 64

OS X 10.10 (Yosemite), 5
OS X 10.9 (Mavericks), 5
overflow operators, 31, 34
overridden superclass entities,

96-100
accessing, 97
initializers, 106
methods, 99
properties, 97-98
subscripts, 99

P
parameters, function, 51

default values for, 54

174 | Index



external names for, 53
local names for, 53
variadic, 55

Perl, 8
playground, 8-11

creating, 5
pointers

in Objective-C, 63
precedence

custom operators, 160
operators, 36-38

predecessor() global function, 165
prefixes, finding in strings, 40
print(x) global function, 166
Printable protocol, 142
println(x) global function, 166
private access control level, 119
program flow, 69-80

conditional execution, 73-80
loops, 69-73

properties
computed, 85-86, 125
computed type, 89
constant, 89
default access level of, 121
in structures, 109
instance vs. type, 88
of classes, 84
optional in protocols, 134-136
overriding, 97-98
required in protocols, 132
stored, 84

property observers, 87
protocols, 131-142

adopting with extensions, 136
built-in, 141
checking conformance of, 140
default access level of, 123
generic, 154-155
inheritance and, 137
optional methods, 134-136
optional properties, 134-136
required methods, 133

required properties, 132
using as types, 138-140

public access control level, 119
Python, 8

Q
qsort() (C standard library), 57
Quick Look view (Xcode), 10

R
range operators, 35
RangeReplaceableCollectionType

protocol, 166
ranges, 160

matching, in case clauses, 76
value binding with, 78

raw values (enumerations), 114
reduce() (arrays), 46
reference counting, 143
removeAll(&x [, keepCapac‐

ity:Bool]) global function, 166
removeAtIndex(&x, i: Index‐

Type), 166
removeLast(&x) global function,

166
removeRange(&x, r: range) global

function, 166
required initializers, 107
required properties, 132
reserved words, 23
retain cycles, 144
return values

multiple, 53
optional, 52
tuples as, 28

reverse(x) global function, 166
arrays and, 47

Ruby, 8
Run-Evaluate-Print-Loop (REPL),

5, 6-8
starting, 7

Index | 175



S
scope

capturing values by reference,
62

closures and, 60-62
self property, 92
SequenceType protocol, 167
setter functions

computed properties, 85
computed variables, 23
default access level of, 122

SignedNumberType protocol, 142
Sliceable protocol, 167
sort(&x) global function, 166
sort(&x, { closure } ) global func‐

tion, 167
sorted() function, 58

on arrays, 47
sorted(x) global function, 167
sorted(x, { closure } ) global func‐

tion, 167
split(x, { closure } ) global func‐

tion, 167
statement labels, 79
stored properties, 84
Streamable protocol, 142
Strideable protocol, 142, 164
strides, 162
strings, 38-41

comparing, 40
countElements property, 39
escaped characters in, 41
hasPrefix comparison, 40
hasSuffix comparison, 40
interpolation, 41
isEmpty property, 39
literals, 19
properties of, 39
unicodeScalars property, 39
utf16 property, 39
utf8 property, 39

strong references, 144
structures, 108-112

initializers delegation in, 111
initializers for, 111
methods in, 109
mutating methods, 110
properties in, 109
type methods for, 110

subclass, 80
subclasses, 96-100

default access level of, 123
subscripts, 93-95

default access level of, 123
extensions, 126
overriding, 99

suffixes, finding in strings, 40
super prefix, 97
superclasses, 80

deinitializer, inheritance of,
108

initialization and, 100
overriding entities, 96-100
protocol inheritance and, 132

swap(&x, &y) global function,
168

Swift
access control, 119-123
arrays, 42-47
as scripting language, 8
classes, 81-108
constants, 22
data types, 17-21
dictionaries, 47-50
functions, 51-57
generics, 149-155
importing modules in, 15
loops, 69-73
memory management,

142-149
operators, 29-38
playground, 8-11
program flow, 69-80
protocols, 131-142
reserved words, 23
simple program in, 11-13

176 | Index



structures, 108-112
tuples, 26-29
variables, 21-26
Xcode, 5-11

switch statements, 74-80
matching ranges in case clau‐

ses, 76
statement labels, 79
using tuples in case clause, 77
using with enumerations, 80
value binding, 78
where qualifier, 78

T
ternary conditional operator, 36
ternary operator, 29
Timeline (Xcode), 10
toString(x) global function, 168
tuples, 26-29

as return type, 28
as return values, 53
constants, 27
default access level of, 123
extracting components of, 27
naming components, 28
using type aliases with, 28
value binding with, 78
variables, 27

type aliases, 20
default access level of, 123
using with tuples, 28

type casting operators, 35
type inferencing, 22

tuples and, 28
type methods

for structures, 110
in enumerations, 118

type placeholders, 150
typealias keyword, 20, 154
types, 17-21

aliases, 20
character literals, 19
checking, 128

downcasting, 129-131
generic, 151
integer, 17
nested, 20
numeric literals, 18
string literals, 19
using protocols as, 138-140

U
UIKit Framework, 9
UInt types, 17
unary operators, 29

overloading, 158
Unicode, 1

\u{n} arbitrary Unicode scalar
character, 41

UnicodeScalars format of strings,
39

unowned references, 147
unwrapping optionals, 64
UTF-16, view of string in, 39
UTF-8, view of string in, 39

V
value types

arrays as, 43
dictionaries as, 48
strings as, 39
structures as, 108

var keyword
arrays and, 42
function parameters and, 51
value binding with, 78

variable parameters, 51
variables, 21-26

computed, 23
default access level of, 121
observers, 24-26
tuples, 27

variadic parameters, 55

Index | 177



W
weak references, 145
where qualifier, 78
while loops, 72
whitespace, 15
willSet keyword, 24
Worldwide Developers Confer‐

ence (2014), 11

X
Xcode, 5-11

multiple installs of, 6
new projects, creating, 5
playground, 8-11
playground, creating, 5
Swift REPL, 6-8

xcode-select command, 6

178 | Index



About the Author
Anthony Gray (you can call him Tony) has a long history
working in tertiary education, where he’s provided technical
and systems support for academic and research staff, and for
some very smart students. He loves to teach, with his favorite
subjects being operating systems, computer graphics and ani‐
mation with OpenGL, and most recently mobile development
for iOS. In his spare time, he writes software to scratch his own
itch, some of which is available at squidman.net. Secretly he
pines for the days when you could handcode assembler for
your 6502 and occasionally writes emulators so he can do
just that.

Colophon
The animal on the cover of Swit Pocket Reference is an African
palm swift (Cypsiurus parvus). This bird seeks palm trees for
dwelling in the savannas and grasslands of sub-Saharan Africa
and of the Arabian Peninsula. 16 centimeters in length, with a
thin body and a long tail, the African palm swift is mostly
brown with a gray throat and a black bill. Differences in color‐
ing between genders (mostly in the tail) lessen with age. To
avoid the ground, these birds use their short purple legs to
cling to vertical surfaces.

The species’s population appears to be on the rise, thanks
largely to growth in the planting of the Washington palm tree.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world. To learn more about how you
can help, go to animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History.
The cover fonts are URW Typewriter and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

http://squidman.net
http://animals.oreilly.com

	Table of Contents
	Swift Pocket Reference
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Getting Started with Swift
	The Swift REPL
	Swift as a Scripting Language
	Swift Playgrounds

	A Taste of Swift
	Basic Language Features
	Comments
	Semicolons
	Whitespace
	Importing Code from Other Modules

	Types
	Specific Integer Types
	Numeric Literals
	Character and String Literals
	Type Aliases
	Nested Types
	Other Types

	Variables and Constants
	Computed Variables
	Variable Observers

	Tuples
	Tuple Variables and Constants
	Extracting Tuple Components
	Naming Tuple Components
	Using Type Aliases with Tuples
	Tuples as Return Types

	Operators
	No Implicit Type Conversion
	Arithmetic Operators
	Bitwise Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Overflow Operators
	Type Casting Operators
	Range Operators
	Ternary Conditional Operator
	Operator Precedence

	Strings and Characters
	String Properties
	Comparing Strings
	Escaped Characters in Strings
	String Interpolation

	Arrays
	Accessing Array Elements
	Array Properties
	Modifying a Mutable Array
	Iterating Over Arrays
	Array Algorithms

	Dictionaries
	Accessing Dictionary Elements
	Dictionary Properties
	Modifying a Mutable Dictionary
	Iterating Over Dictionaries

	Functions
	Parameter Types
	Returning Optional Values
	Returning Multiple Values by using Tuples
	Local and External Parameter Names
	Default Parameter Values
	Variadic Parameters
	Function Types

	Closures
	Automatic Argument Names
	Trailing Closures
	Capturing Values
	Capturing Values by Reference

	Optionals
	Unwrapping Optionals
	Implicitly Unwrapped Optionals
	Optional Binding
	Optional Chaining

	Program Flow
	Loops
	Conditional Execution

	Classes
	Defining a Base Class
	Instances
	Properties
	Methods
	Subscripts
	Member Protection
	Inheritance: Deriving One Class from Another
	Overriding Superclass Entities
	Preventing Overrides and Subclassing
	Initialization
	Initialization and Inheritance
	Deinitialization

	Structures
	Properties in Structures
	Methods in Structures
	Mutating Methods
	Type Methods for Structures
	Initializers in Structures

	Enumerations
	Raw Member Values
	Associated Values
	Methods in Enumerations
	Type Methods for Enumerations

	Access Control
	Specifying Access Control Levels
	Default Access Control Levels

	Extensions
	Computed Property Extensions
	Initializer Extensions
	Method Extensions
	Subscript Extensions

	Checking and Casting Types
	Any and AnyObject
	Checking Types
	Downcasting Types

	Protocols
	Required Properties
	Required Methods
	Optional Methods and Properties
	Adopting Protocols with Extensions
	Inheritance and Protocols
	Using a Protocol as a Type
	Checking Protocol Conformance
	Built-In Protocols

	Memory Management
	How Reference Counting Works
	Retain Cycles and Strong References
	Weak References
	Unowned References
	Retain Cycles and Closures

	Generics
	Generic Functions
	Generic Types
	Constraining Types
	Generic Protocols

	Operator Overloading
	Overloading Unary Operators
	Custom Operators
	Custom Operator Precedence

	Ranges, Intervals, and Strides
	Ranges
	Intervals
	Strides

	Global Functions

	Index

