

Swift for Beginners
DEVELOP AND DESIGN

Boisy G. Pitre

PEACHPIT PRESS
WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Swift for Beginners: Develop and Design
Boisy G. Pitre

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.

Peachpit Press is a division of Pearson Education.

Copyright 2015 by Boisy G. Pitre

Editor: Robyn G. Thomas
Copyeditor: Darren Meiss
Proofreader: Nancy Bell
Technical editor: Steve Phillips
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry
Cover design: Aren Straiger

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
the publisher. For information on getting permission for reprints and excerpts, contact
permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained in this book or by the computer software and
hardware products described in it.

Trademarks

Apple, Cocoa, Cocoa Touch, Objective-C, OS X, and Xcode are registered trademarks of Apple Inc.,
registered in the U.S. and other countries. Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks. Where those designations appear in this book,
and Peachpit was aware of a trademark claim, the designations appear as requested by the owner of the
trademark. All other product names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with
this book.

ISBN-13: 978-0-134-04470-5
ISBN-10: 0-134-04470-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

To the girls: Toni, Hope, Heidi, Lillian, Sophie, and Belle

Acknowledgments

When creating a book, it truly “takes a village,” and I could not have had better support from the staff
at Peachpit Press. Many thanks go to executive editor, Cliff Colby at Peachpit for providing me the
opportunity; editor Robyn Thomas for her immensely helpful and invaluable editing skills and for
keeping the project on track; technical editor Steve Phillips who meticulously commented on drafts of
the book for technical correctness and whose contributions undoubtedly made this work better.

During my writing, I’ve drawn inspiration from the works of a number of friends who are authors in
the iOS and Mac OS developer community: Chris Adamson, Bill Cheeseman, Bill Dudney, Daniel
Steinberg, and Richard Warren.

I would be remiss if I didn’t mention the MacTech Conference dynamic duo Ed Marczak and Neil
Ticktin, as well as CocoaConf maestro Dave Klein, for the writing and speaking opportunities that
they have provided me at those venues.

A tip of the hat to James Dempsey, whose band, the Breakpoints, and their excellent Backtrace
album fueled several long writing and review sessions with their rollicking tunes. Java Square Café in
downtown Opelousas, Louisiana provided a great place to write as well as tasty lattes. Also, thanks to
Dave et Ray’s Camp Jam/Supper Club and my friends there who served as inspiration for several of
the coding examples I used.

Much appreciation goes to the minds at Apple for creating Swift, along with a host of great products
over the years that have enhanced my own productivity and that of many, many others.

Finally, many thanks to my family, especially my wife, Toni, whose patience and encouragement
while I worked on this book was abundant.

About the Author

Boisy G. Pitre is Affectiva’s Mobile Visionary and lead iOS developer, where his work has led to the
creation of the first mobile SDK for delivering emotions to mobile devices for the leading emotion
technology company and spin-off of the MIT Media Lab. Prior to that he was a member of the Mac
Products Group at Nuance Communications where he worked with a team of developers on Dragon
Dictate.

He also owns Tee-Boy, a software company focusing on Mac and iOS applications for the weather
and data acquisition markets, and has authored the monthly Developer to Developer column in
MacTech Magazine.

Along with Bill Loguidice, Boisy co-authored the book CoCo: The Colorful History of Tandy’s
Underdog Computer (2013), published by Taylor & Francis.

Boisy holds a Master of Science in Computer Science from the University of Louisiana at
Lafayette, and resides in the quiet countryside of Prairie Ronde, Louisiana. Besides Mac and iOS
development, his hobbies and interests include retro-computing, ham radio, vending machine and
arcade game restoration, farming, and playing the French music of South Louisiana.

Contents

Introduction

Welcome to Swift

SECTION I THE BASICS

CHAPTER 1 INTRODUCING SWIFT
Evolutionary, yet Revolutionary
Preparing for Success
Tools of the Trade
Interacting with Swift
Ready, Set...
Diving into Swift
Help and Quit
Hello World!
The Power of Declaration
Constants Are Consistent
This Thing Called a Type
Testing the Limits
Can a Leopard Change Its Stripes?
Being Explicit
Strings and Things
Stringing Things Together
Characters Have Character
Math and More
Expressions
Mixing Numeric Types
Numeric Representations
True or False
The Result
Printing Made Easy
Using Aliases
Grouping Data with Tuples
Optionals
Summary

CHAPTER 2 WORKING WITH COLLECTIONS
The Candy Jar

Birds of a Feather...
Extending the Array
Replacing and Removing Values
Inserting Values at a Specific Location
Combining Arrays
The Dictionary
Looking Up an Entry
Adding an Entry
Updating an Entry
Removing an Entry
Arrays of Arrays?
Starting from Scratch
The Empty Array
The Empty Dictionary
Iterating Collections
Array Iteration
Dictionary Iteration
Summary

CHAPTER 3 TAKING CONTROL
For What It’s Worth
Counting On It
Inclusive or Exclusive?
For Old Time’s Sake
Writing Shorthand
It’s Time to Play
Making Decisions
The Decisiveness of “If”
When One Choice Is Not Enough
Switching Things Around
While You Were Away...
Inspecting Your Code
Give Me a Break!
Summary

CHAPTER 4 WRITING FUNCTIONS AND CLOSURES
The Function
Coding the Function in Swift
Exercising the Function

More Than Just Numbers
Parameters Ad Nauseam
Functions Fly First Class
Throw Me a Function, Mister
A Function in a Function in a...
Default Parameters
What’s in a Name?
When It’s Good Enough
To Use or Not to Use?
Don’t Change My Parameters!
The Ins and Outs
Bringing Closure
Summing It Up
Stay Classy

CHAPTER 5 ORGANIZING WITH CLASSES AND STRUCTURES
Objects Are Everywhere
Swift Objects Are Classy
Knock, Knock
Let There Be Objects!
Opening and Closing the Door
Locking and Unlocking the Door
Examining the Properties
Door Diversity
Painting the Door
Inheritance
Modeling the Base Class
Creating the Subclasses
Instantiating the Subclass
Convenience Initializers
Enumerations
Structural Integrity
Value Types vs. Reference Types
Looking Back, Looking Ahead

CHAPTER 6 FORMALIZING WITH PROTOCOLS AND EXTENSIONS
Following Protocol
Class or Protocol?
More Than Just Methods

Adopting Multiple Protocols
Protocols Can Inherit, Too
Delegation
Extending with Extensions
Extending Basic Types
Using Closures in Extensions
Summary

SECTION II DEVELOPING WITH SWIFT

CHAPTER 7 WORKING WITH XCODE
Xcode’s Pedigree
Creating Your First Swift Project
Diving Down
Interacting with the Project Window
It’s Alive!
Piquing Your Interest
Making Room
Building the UI
Tidying Up
Class Time
Hooking It Up
You Made an App!

CHAPTER 8 MAKING A BETTER APP
It’s the Little Things
Show Me the Money
Remember the Optional?
Unwrapping Optionals
Looking Better
Formatting: A Different Technique
Compounding
Hooking Things Up
Testing Your Work
When Things Go Wrong
Where’s the Bug?
At the Breaking Point
The Confounding Compound
The Value of Testing
The Unit Test

Crafting a Test
When Tests Fail
Tests That Always Run
Wrapping Up

CHAPTER 9 GOING MOBILE WITH SWIFT
In Your Pocket vs. on Your Desk
How’s Your Memory?
Thinking About Gameplay
Designing the UI
Creating the Project
Building the User Interface
Creating the Buttons
Running in the Simulator
Setting Constraints
The Model-View-Controller
Coding the Game
The Class
Enumerations
The View Objects
The Model Objects
Overridable Methods
Game Methods
Winning and Losing
Back to the Storyboard
Time to Play

CHAPTER 10 ADVANCING AHEAD
Memory Management in Swift
Value vs. Reference
The Reference Count
Only the Strong Survive
Put It in a Letter
The Test Code
Breaking the Cycle
Cycles in Closures
Thanks for the Memories
Thinking Logically
To Be or NOT to Be...

Combining with AND
One Way OR the Other
Generics
Overloading Operators
Equal vs. Identical
Scripting and Swift
Editing the Script
Setting Permissions
Running the Script
How It Works
Calling S.O.S.
And Now, Your Journey Begins
Study Apple’s Frameworks
Join Apple’s Developer Program
Become a Part of the Community
Never Stop Learning
Bon Voyage!

Index

Introduction

Welcome to Swift for Beginners! Swift is Apple’s new language for developing apps for iOS and Mac
OS, and it is destined to become the premier computer language in the mobile and desktop space. As a
new computer language, Swift has the allure of a shiny new car—everybody wants to see it up close,
kick the tires, and take it for a spin down the road. That’s probably why you’re reading this book—
you’ve heard about Swift and decided to see what all the fuss is about.

The notion that Swift is an easy language to use and learn certainly has merit, especially when
compared to the capable but harder-to-learn programming language it’s replacing: Objective-C. Apple
has long used Objective-C as its language of choice for developing software on its platforms, but that
is changing with the introduction of Swift.

Not only is Swift easy to learn, it’s extremely powerful. You’ll get a taste of some of that power
here in this book.

Who Is This Book For?
This book was written for the beginner in mind. In a sense, we’re all beginners with Swift because it’s
such a new language. However, many will want to learn Swift as a first or second computer language,
many of whom haven’t had any exposure to Objective-C or related languages, C and C++.

Ideally, the reader will have some understanding and experience with a computer language; even so,
the book is styled to appeal to the neophyte who is sufficiently motivated to learn. More experienced
developers will probably find the first few chapters to be review material and light reading because
the concepts are ubiquitous among many computer languages but nonetheless important to introduce
Swift to the beginner.

No matter your skill level or prior experience, Swift for Beginners will appeal to anyone who wants
to learn about Swift.

How to Use This Book
Like other books of its kind, Swift for Beginners is best read from start to finish. The material in
subsequent chapters tends to build on the knowledge attained from previous ones. However, with few
exceptions, code examples are confined to a single chapter.

The book is sized to provide a good amount of material, but not so much as to overwhelm the
reader. Interspersed between the text are a copious number of screenshots to guide the beginner
through the ins and outs of Swift as well as the Xcode tool chain.

How You Will Learn
The best way to learn Swift is to use it, and using Swift is emphasized throughout the book with plenty
of code and examples.

Each chapter contains code that builds on the concepts presented. Swift has two interactive
environments you will use to test out concepts and gain understanding of the language: the REPL and
playgrounds. Later, you’ll build two simple but complete apps: a loan calculator for Mac OS and a
memory game for iOS.

Swift concepts will be introduced throughout the text—classes, functions, closures, and more, all
the way to the very last chapter. You’re encouraged to take your time and read each chapter at your

leisure, even rereading if necessary, before moving on to the next one.
Source code for all the chapters is available at www.peachpit.com/swiftbeginners. You can

download the code for each chapter, which cuts down considerably on typing; nonetheless, I am a firm
believer in typing in the code. By doing so, you gain insight and comprehension you might otherwise
miss if you just read along and rely on the downloaded code. Make the time to type in all of the code
examples.

For clarity, code and other constructs such as class names are displayed in monospace font.
Highlighted code throughout the book identifies the portions of the code that are intended for you to

type:
Click here to view code image

 1> let candyJar = ["Peppermints", "Gooey Bears", "Happy Ranchers"]
candyJar: [String] = 3 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
}
 2>

You’ll also find notes containing additional information about the topics.

 Note

To print or not to print? Remember, simply typing the name of the item without using
print or println is acceptable when using the REPL. When doing so, the result of the
expression is assigned to a temporary variable—in this case $R0.

What You Will Learn
Ultimately, this book will show you how to use Swift to express your ideas in code. When you
complete the final chapter, you should have a good head start, as well as a solid understanding of what
the language offers. Additionally, you’ll have the skills to begin writing an app. Both iOS and Mac OS
apps are presented as examples in the later chapters.

What this book does not do is provide an all-inclusive, comprehensive compendium on the Swift
programming language. Apple’s documentation is the best resource for that. Here, the emphasis is
primarily on learning the language itself; various Cocoa frameworks are touched on where necessary
to facilitate the examples but are not heavily emphasized for their own sake.

http://www.peachpit.com/swiftbeginners

Welcome to Swift

Swift is a fun, new, and easy-to-learn computer language from Apple. With the knowledge you’ll gain
from this book, you can begin writing apps for iOS and Mac OS. The main tool you’ll need to start
learning Swift is the Xcode integrated development environment (IDE). Xcode includes the Swift
compiler, as well as the iOS and Mac OS software development kits (SDKs) that contain all the
infrastructure required to support the apps you develop.

The Technologies
The following technologies are all part of your journey into the Swift language.

Swift

Swift is the language you’ll learn in this book. Swift is a modern language designed from the ground
up to be easy to learn as well as powerful. It is language that Apple has chosen to fuel the continued
growth of apps, which make up their iOS and Mac OS ecosystem.

Xcode

Xcode is Apple’s premier environment for writing apps. It includes an editor, debugger, project
manager, and the compiler tool chain needed to take Swift code and turn it into runnable code for iOS
or Mac OS. You can download Xcode from Apple’s Mac App Store.

LLVM

Although it works behind the scenes within Xcode, LLVM is the compiler technology that empowers
the elegance of the Swift language and turns it into the digestible bits and bytes needed by the
processors that power Apple devices.

The REPL

The Read-Eval-Print-Loop (REPL) is a command-line tool you can use to try out Swift code quickly.
You run it from the Terminal application on Mac OS.

Playgrounds

The interactivity and immediate results from Xcode’s playgrounds are a great way to try out Swift
code as you learn the language.

Section I: The Basics
Learning something new always starts with “the basics.” The Swift language is no exception. This
section covers everything you need to know about this cool new language to start making your next
great app!

 Chapter 1, Introducing Swift

 Chapter 2, Working with Collections

 Chapter 3, Taking Control

 Chapter 4, Writing Functions and Closures

 Chapter 5, Organizing with Classes and Structures

 Chapter 6, Formalizing with Protocols and Extensions

Chapter 1. Introducing Swift

Welcome to the brave new world of Swift! If you’ve been paying attention to the buzz, you may have
heard that Swift is an entirely new programming language created by Apple to empower developers to
write iOS and Mac apps more easily and efficiently. Swift is so easy to learn that you’ll be writing
simple apps before you know it.

Swift gives you powerful new ways to write code. Its readability is refreshingly simple compared to
its worthy and powerful predecessor, Objective-C. With Swift, you’ll find new and interesting ways to
express yourself as a developer, and learn the language and its capabilities.

You’ll find that expressing your ideas is easy in this innovative language. It also delivers power and
flexibility in both its capabilities and its syntax.

Since Swift is so new, it is subject to changes and additions by Apple. Never before has a computer
language with such exposure and potential usage been subject to near-immediate modifications and
revisions. It’s all part of the excitement and innovation that Swift represents.

Evolutionary, yet Revolutionary
Language is the vehicle in which we share, exchange, and co-opt information. As humans, we express
intent through language to our friends, family members, and co-workers. It’s no different when we
communicate with a computer system—the basic tenet remains the same.

Just like human languages, computer languages aren’t new—in fact, they have been with us in some
form or another for many, many years. Their raison d’etre has always been to allow us to
communicate with and instruct a computer to perform a specific operations.

What has changed and evolved are the computer languages themselves. Early computer pioneers
understood that telling a computer what to do in terms of 0’s and 1’s was tedious and error prone.
Compromises between the richness of a language’s syntax and the computing power needed to process
and interpret that language were made along the way, and languages such as C and C++ became the
entrenched lingua franca of modern computer applications.

And while C and C++ were widely adopted and used on major computing platforms, Apple brought
something different to the party with Objective-C. Built upon the foundation of C, this rich language
welded the power of the long-used language with object-oriented design methodologies to the
programmer’s toolbox. For many years Objective-C has been the underpinning of applications written
for Apple’s ecosystem of Macintosh computers and iOS devices.

Yet, despite its power and elegance, Objective-C carried the baggage of its namesake, C. For many
of us who know C quite well, this isn’t an impediment; however, the crop of new developers who have
come to the Mac and iOS platforms in recent years pined for something easier to comprehend and
develop with.

Apple answered the call and at the same time lowered the barrier to entry. Now, writing apps has
just become much easier, and our ability to express what we want our apps to do is one step closer to
“easy.”

Preparing for Success
You may be wondering what you need to learn Swift successfully. Actually, you’ve taken your first
step by starting to read this book. Learning a new computer language can be daunting, and that’s why

this book was written for the Swift beginner. If you are new to Swift, this book is for you. If you have
never used C, C++, or Objective-C, this book is also for you. Yet even if you are a seasoned developer
with knowledge of the aforementioned languages, you’ll still find this book helpful in getting up to
speed with Swift.

While not an absolute necessity, possessing a basic understanding of, and familiarity with, an
existing programming language is valuable while reading this book. This book isn’t written to teach
you how to program, or provide you the underlying fundamentals of developing software. It assumes a
certain familiarity with the basic concepts of computer languages; therefore, you should have some
exposure to a computer language already.

Despite this requirement, the book is written to help you along as much as possible. Terminology is
explained thoroughly when it is introduced, and concepts are described as clearly as possible.

Tools of the Trade
So you’re ready to learn Swift. Great! First, you need to get your “supplies” in order. Thinking back to
when you were in grade school, just prior to the start of the term, your parents were given a list of
supplies you needed: notebooks, scissors, construction paper, glue, no. 2 pencils, and the like. Well,
you won’t need those for this book, but you must nevertheless prepare for learning Swift by obtaining
the proper tools of the trade.

First, we highly recommend that you interactively run the code presented here, and to do that, you
will need a Macintosh computer running OS X 10.9 Mavericks or 10.10 Yosemite. You’ll also need
Xcode 6, which has the Swift compiler and accompanying environment. Most importantly, you will
want to become a member of the Apple Developer Proram in order to get the most out of Yosemite
and Xcode 6. If you’re not already a memory of the Apple Developer Program, you can read all about
joining by visiting https://developer.apple.com/programs.

Once you’ve downloaded and installed Xcode 6 on your Mac, you’re ready to learn Swift.

Interacting with Swift
To start out, we’ll be exploring the Swift language through a fun and interactive environment known
as the REPL. REPL stands for Read-Eval-Print-Loop and indicates the nature of the tool: It reads
instructions, evaluates them, prints the results, and loops back around to do it all over again.

In fact, this interactivity is one of Swift’s nifty features that evades many compiled languages such
as C and Objective-C. This isn’t something new if you’re coming from scripting languages like Ruby
or Python, which offer their own REPL environments, but for a compiled language, it is a novel idea.
Ask C, C++, or Objective-C developers how many times they’ve wished for a way to “try out” code
without the overhead of creating a source file with debug statements, compiling it, running it, and then
observing the results. The beauty of the Swift REPL is that it makes that kind of long-winded,
repetitious workflow a thing of the past.

Another huge benefit of this interactivity is that it helps to make the inherently strenuous task of
learning a new language much, much easier. You can put off learning the complexity of compiler tool
chains and the nuances of integrated development environments, and instead focus on the language. In
fact, very early on in this book, you’ll be exploring, testing, and prodding the nooks and crannies of
Swift. You’ll quickly find that doing this interactively will help you formulate an understanding of the
language much quicker.

Having the ability to run your code in real time, without the context of an encompassing run-time

https://developer.apple.com/programs

environment, may feel odd at first, but you’ll soon fall in love with the instant gratification it
provides. In fact, the REPL reminds some of us “old-timers” of the interactive nature of early
interpretive languages like BASIC, which was around in the early days of the home computer
revolution. Talk about coming full circle!

Ready, Set...
OK, have you downloaded Xcode 6? Very good. Now, forget about Xcode for the time being. Actually,
I encourage you to explore Xcode 6 and its new features, but we’re going to focus our attention
completely on the REPL in the Terminal for the first few chapters.

If you haven’t run the Terminal app before, don’t worry. It’s accessible from the Utilities folder,
which is located in your Mac’s Applications folder. The easiest way to get to it is to click the
Spotlight icon and type Terminal (Figure 1.1).

FIGURE 1.1 Using Spotlight to find the Terminal application

Alternatively, you can click the Finder icon in the Dock and then choose Go > Utilities (Figure 1.2).

FIGURE 1.2 The Go menu in the Finder menu bar

A new Finder window shows the contents of this folder; you may have to scroll down in the window
to find the Terminal app (Figure 1.3). Double-click the icon to launch the app.

FIGURE 1.3 Locating Terminal from the Finder

When you launch Terminal, you’ll see a window similar to Figure 1.4. The text and background
color of your Terminal may vary from what you see here.

FIGURE 1.4 The Terminal window

You’re almost ready to start your first foray into Swift. But before you start your adventure, you’ll
need to type a few commands in this newly created Terminal window.

Start by typing this line and pressing Return:
Click here to view code image

sudo xcode-select -s /Applications/Xcode.app/Contents/Developer/

You’ll be prompted for your administrator password; type it. This command is necessary because it

ensures that Xcode 6 is the default version of Xcode running on your Mac. It is required just in case
you’ve already installed a previous version of Xcode. The good news is that you’ll have to type this
command only once. The setting stays in place, and you need not worry about typing it again, unless
you want to switch to another version of Xcode.

Typing this next command and pressing Return takes you into the Swift REPL:
xcrun swift

Depending on your previous use of Xcode, you may be presented with a dialog asking for your
password, similar to Figure 1.5. If so, type the password as instructed.

FIGURE 1.5 Enter your name and password.

In short order, you’re greeted with this message:
Click here to view code image

Welcome to Swift! Type :help for assistance.
 1>

Congratulations for making this far! Now the adventure begins.

Diving into Swift
So here you are running the Swift REPL as it sits in the Terminal window and patiently awaits your
command. Swift is in control and gently reminds you that you can type something by showing you a
prompt. Every time you start the REPL, the prompt is shown with the number 1 followed by the
greater-than sign. Let’s do a sanity check by pressing Return:
Click here to view code image

Welcome to Swift! Type :help for assistance.
 1>
 2>

As you type a line, the prompt increments to the next ordinal position—easy enough. The constantly
increasing number acts as a reference point as you type commands.

Help and Quit
Swift has built-in help for REPL commands. Typing :help at the prompt will show a list of these
commands, which are always prepended with a colon character. This is how Swift distinguishes a

REPL command from a Swift statement. Go ahead and type :help (which is itself a command) to see
the list of commands. There are quite a few of them in the list, and you’ll notice a number of
commands are related to debugging. We won’t worry about most of these commands.

If you want to quit Swift at any time and return back to the Terminal’s default shell, you can type
the :quit command. If you do quit the REPL, you can simply retype the xcrun swift command
at the shell prompt to get right back into Swift.

Hello World!
All right, this is the moment you’ve been waiting for. Every programmer’s introduction to a new
language involves the initial ritual of writing the necessary code to tell the world “Hello!” In Swift,
it’s surprisingly easy, as you’ll soon see.

Whet your appetite a bit by typing a one-liner, which is emblematic of your first encounter with this
new language. Let’s tell the world hello... in French. Type the following text and press Return at the
2> prompt:

print("Bonjour, monde")

And you see the following:
Click here to view code image

Welcome to Swift! Type :help for assistance.
 1>
 2> print("Bonjour, monde")
 3>

Congratulations on writing your first line of code in Swift. Granted, it’s a bit minimal, but hey, it’s
a start. And it shows just how quickly you can get something working.

It’s a rather innocuous line. print is a Swift method that directs the computer to display whatever
is enclosed in quotation marks (the string) and bounded by parentheses. A method is a term used to
describe a collection of instructions that can be executed by invoking a given name. The print
method is just one of many common Swift methods you’ll be using throughout the book. You’ll use it
often.

At this point, you may be asking yourself, “Wait, didn’t I just tell it to print something?” Indeed,
you did. And Swift obediently followed your direction. Computers are never wrong, right? Swift
followed your command, just as you gave it. So what gives? Have you encountered your first bug
already?

It turns out that the print method doesn’t “flush” its contents to the screen straight away. Instead,
it buffers the data, awaiting the point where another method comes into play. The related method that
adds a new line character, which forces everything to appear, is println.

Let’s use that method to print a character:
 3> println("!")
Bonjour, monde!
 4>

Now the full text appears on a line by itself. Note that the initial text we expected to appear, did not.
However, it wasn’t gone forever. It was just waiting for a new line to “flush it out.”

All right, you’ve mastered the very basics... you can tell Swift to print a string of text. This is a
small, but important start to your understanding of the language. Let’s take things a little further by

looking at some basic but important Swift constructs.

The Power of Declaration
If you harken back to your high school algebra class, you’ll remember that a variable is a placeholder
that represents some quantity. When you say “x equals 12” or “y equals 42” you are in essence making
a declaration. You declare that some variable is equal to some number.

Swift would make your algebra teacher proud, because it too can declare variables, albeit with a
slightly different syntax. Type the following:

 4> var x = 12
x: Int = 12
 5>

We’ve just declared our first variable using Swift’s var keyword. Line 4 instructed Swift to declare
the variable x to be equal to 12, and Swift dutifully followed that instruction by declaring that indeed,
x is now equal to 12. Not only that, but it went further: Swift declares that “x is an Int whose value
is equal to 12.”

What is Int? It’s short for “integer,” which is simply a whole number with no fractional
component. By typing the number 12 as we did, Swift inferred something about the variable it was
being assigned to: x is a number whose value is 12, and furthermore, x is an integer. In Swift’s
response, it uses the notation of x: Int as a way of advertising the variable’s type. We’ll see this
notation again in a short while.

OK, so we’ve declared a variable named x with seemingly little effort. Let’s up the ante a bit by
declaring a second variable, with a twist:

 5> var y = 42.0
y: Double = 42
 6>

Here, you’ve added a decimal point followed by a zero. That nomenclature is enough of a hint to
Swift that y is a Double, which simply means a number with a fractional component; it’s not a whole
number but a representation of a real number, also known as a floating point number.

Float or Double?
If you have programmed in other languages, you are probably familiar with floating point
numbers and know that they come in two sizes: float and double. Float values are typically 32-
bits long, and double values are typically 64-bits long (providing twice the precision). In
addition to Double, Swift also supports the Float type. However, since modern computer
architectures are 64-bit, Swift defaults to the Double type for floating point numbers, and
we’ll always use them in our examples.

Here’s a quick review. What Swift has done in both of these cases is assign a type to the variable.
The two variables x and y exist as an integer and as a double, respectively, and will hold that
distinction for as long as this REPL session runs.

Variables can be assigned different values once they have been declared. For example, you assigned
x the number 12 earlier. Giving a different value to the variable is as simple as using the equals sign:

 6> x = 28

 7>

Notice that Swift is silent on the assignment of x to the number 28. Now verify the new value has
been assigned:

 7> println(x)
28

And as we expected, x is shown to hold the value of its last assignment, 28.
Variables can also be assigned the contents of other variables. Test this idea by assigning the

variable y to the variable x. What do you think will happen?
Click here to view code image

 8> x = y
<REPL>:8:5: error: 'Double' is not convertible to 'Int'
x = y
 ^

 8>

Swift’s errors are very detailed, providing both the line number and the column location separated
by a colon (in this case, line 8 and column 5) where the error occurred. The content of the line is even
reprinted after the error, with a caret reinforcing the error position. Finally, due to the error, the
succeeding prompt did not increase to number 9. Instead you received a prompt with the number 8
once more (it’s Swift’s way of saying “hey, relax... try again!”).

What’s in a Name?
In Swift, variable names can start with any character except a number. Here, we’re using a
single letter as a variable name, but you’re encouraged to make your variable names longer and
more expressive so that your code is readable.

So what went wrong here? Very simply, you attempted to assign the variable y, whose type is
Double, to the variable x, whose type is Int. Such assignments are a violation of Swift’s type rules.
We’ll get into types in more detail in a little while, but for now, let’s see if this “rule” can be bent.

Assume that you stubbornly want to assign the value of y to x, even though they are of different
types. You can do it after all, but it takes a little persuasion. Recall that x is an Int and y is a
Double. With this in mind, type the following statements:

 8> x = Int(y)
 9> println(x)
42
 10>

With some coaxing, the assignment worked. So what’s going on here?
On line 8, we are “casting” the Double value of y into an Int, which is the type of x. Swift allows

such assignments if they are explicitly written. We’ll talk more about casting shortly.
For good measure, we used the println command to show the value of x. And as we would

expect, x is now equal to the integer value of 42.

Constants Are Consistent

Variables are useful in so many ways because their values can change over time. They come in handy
for iterating loops, holding temporary numbers, strings, and other objects that we’ll discuss later.

Another construct in Swift can hold values... the constant. Constants are just what their name
implies: They hold a value constantly and unwaveringly. Unlike a variable, the value of a constant
doesn’t change once it’s assigned. It’s literally locked into place. Yet like a variable, a constant has a
type, and types, once assigned, never change.

Let’s see constants in action by declaring a new variable and assigning a new constant z to the
value of the variable x:

 10> let z = x
z: Int = 42
 11>

On line 10, we’re using the let command, which is Swift’s keyword for creating a constant. The
constant z has taken on both the type and the value of the variable x: It’s an integer with a value of 42.

Now, if a constant is truly constant, we should not be able to assign another number or variable to it.
Let’s test that theory:
Click here to view code image

 11> z = 4
<REPL>:11:3: error: cannot assign to 'let' value 'z'
z = 4
~ ^

 11>

The attempt to reassign the constant z to a value raised an error. Again, Swift’s concise error
reporting leads the way, advertising the line number (11) and the column number (3) where the
offense took place.

So why does Swift have constants and variables? Isn’t a variable more flexible, since it can change,
and constants cannot? These are good questions, and the answers lie in the underlying compiler
technology. The Swift compiler can make better decisions and code optimizations when it knows that
a location in memory holding a value will not change. Always use constants in your code when this is
the case. Only use variables when you truly anticipate that the value will change at some point. In
short, constants don’t require as much overhead as variables, precisely because they don’t change.

As you learn to develop with Swift, you’ll find yourself using constants in more and more situations
where you recognize that a value doesn’t change. Indeed, Apple encourages their use in your code for
that very reason.

This Thing Called a Type
Earlier, did you notice that Swift inferred the type of our declared variables automatically? Recall that
you didn’t have to do any extra typing to tell Swift that a variable was an integer or a double. Swift
infers the type of a variable or a constant by simply looking at what is on the right side of the equals
sign.

A type is a construct that computer languages use to classify values and the containers that hold
them. Types bring clarity of intent to code and eliminate ambiguity by clearly defining the
characteristics of a value, variable, or constant. They tightly couple a variable or constant to its value,
like an ironclad contract. Swift is very much a type-aware language, and you’ve seen this already in

some of the previous examples.
Table 1.1 illustrates Swift’s basic types. There are others, and as you’ll see later, you can create our

own types, but for now, you’ll work with these:

TABLE 1.1 Variable Types

You have already learned about Int, but Int8, Int32, and Int64 may be new to you, as well as
UInt, UInt8, UInt32, and UInt64. Integers that can be positive and negative are known as signed
integers and come in 8, 16, 32, and 64 bits of representation; integers that are positive only are known
as unsigned integers. They also come in 8-, 16-, 32-, and 64-bit flavors. If you don’t specify 32- or 64-
bit types, the 64-bit values are assumed in Int and UInt. In fact, in development you rarely need to
concern yourself with the size of a type. For now, don’t worry about this detail.

Testing the Limits
Each of the numeric types in Table 1.1 has an upper and lower limit. That is, each type can store a
number that can be no smaller than its minimum and no larger than its maximum. That’s because
numeric types have a finite amount of bits that can be used to represent them. Swift conveniently
allows you to interrogate each type for its minimum and maximum stored value:

 11> println(Int.min)
-9223372036854775808
 12> println(Int.max)
9223372036854775807
 13> println(UInt.min)
0
 14> println(UInt.max)
18446744073709551615
 15>

By adding .min or .max to the end of the type name, you can determine its minimum and

maximum value capacity. Lines 11 through 14 show the ranges for the Int and UInt type. Feel free
to explore the ranges of the other types listed in the table.

Can a Leopard Change Its Stripes?
Since types are an inherent characteristic of a value, constant, or variable, you may be curious as to
what the rules are when different types interact with each other. Remember in the earlier example
where you tried assigning a variable of one type to the variable of another? The initial assignment
attempt caused an error, and some nudging was required to convince Swift to assign the Double
variable to an Int one. Let’s look at that example again (don’t retype it; just scroll up in the Terminal
to see what you typed earlier):

 4> var x = 12
x: Int = 12
 5> var y = 42.0
y: Double = 42

We assigned x and y values of Int and Double, respectively, and then shortly thereafter
attempted to assign the value of y to x:
Click here to view code image

 8> x = y
<REPL>:8:5: error: 'Double' is not convertible to 'Int'
x = y
 ^

 8> x = Int(y)
 9> println(x)
42

The assignment of the newly declared variable x to the number 12 on line 4 established it as an
Int, followed by declaring y as a Double. Then an assignment of y to x failed with the error, which
forced us to cast y into an Int on line 8. We refer to this process as casting, whereby a value of one
type is coerced into being a value of another type. In computer language–speak, this feature is known
as a type conversion. Every language has rules for handling type conversions, and Swift is certainly no
exception.

One typical rule is that type conversions can only take place between “like” types. In popular
computer languages such as C, you can convert an integer to a double, or vice versa, because both are
numeric types. However, coercing an integer to become a string is not a valid type conversion because
the types are inherently different. Swift is a bit more flexible in this regard, however. Try the
following:

 15> var t = 123
t: Int = 123
 16> var s = String(t)
s: String = "123"
 17>

Here, the variable t is being declared and assigned what is clearly an Int number. That is followed
by another declaration of the variable s to the String type casted version of the Int variable t.

Can we cast a string into an Int, or even a Double?
Click here to view code image

 17> var u = Int(s)
<REPL>:17:9: error: cannot invoke 'init' with an argument of type '@lvalue String'
var u = Int(s)
 ^~~~~~

 17> var v = Double(s)
<REPL>:17:9: error: cannot invoke 'init' with an argument of type '@lvalue String'
var v = Double(s)

 ^~~~~~~~~

Here is where Swift draws its line in the sand. Although casting a numeric type to a String type is
possible, it doesn’t work the other way around. But don’t fret; you can convert a String’s contents
to an Int or Double, without type casting:
Click here to view code image

 17> var myConvertedInt = s.toInt()
myConvertedInt: Int? = 123
 18>

The String type has a special method for converting its contents to an integer: toInt(). This
method evaluates the string’s contents and if it consists of characters composed of a valid integer, it
provides the integer representation. On line 17, myConvertedInt is declared and assigned an Int
value on the same line.

You are probably puzzled by the Int? shown in Swift’s response for line 17, and rightly wondering
“What is that question mark doing there?” It’s an indicator that myConvertedInt is a special type
of Int: an optional Int. We’ll talk a lot more about optionals later, but for now, just know that they
allow a variable to take on a special value known as nil.

Being Explicit
Having Swift infer the type of your variables or constants is pretty handy. You don’t have to tell Swift
what an integer is, or what a number with a fractional component is—it just knows. However,
sometimes you may want to explicitly declare a variable or constant to be a certain type. Swift allows
you to advertise the type as part of the declaration:
Click here to view code image

 18> var myNewNumber : Double = 3
myNewNumber: Double = 3
 19>

Declaring a variable or constant with a specific type is as easy as adding a colon, followed by the
type name, after the variable or constant name. Here, you’ve declared myNewNumber as a Double
and assigned the number 3 to it, and Swift dutifully reports the declaration.

What would have happened if you left off the : Double on line 18? Swift would have evaluated
the assignment, determined that the value was an Int, and made myNewNumber that type. In this
particular case, we overrode Swift’s inherent assumption, and forced it to type the variable according
to our wishes.

Let’s consider what happens if we leave off the assignment of the variable or constant to a value:
Click here to view code image

 19> var m : Int

:19:5 error: variables currently must have an initial value when entered at the top level of the REPL
 20> let rr : Int
<REPL>:20:5: error: 'let' declarations require an initializer expression
let rr : Int
 ^

On line 19, a variable named m was declared to be an Int, but did not assign a value at declaration
time. Swift returned an error indicating that an initial value must be assigned in the context of the
REPL.

On the next line, the let command declares rr as an Int, but does not assign a value. Notice that
Swift returns an error indicating that an initializer expression is required. Since constants are just that
—constant—the value must be assigned when the constant is declared.

Strings and Things
So far, you’ve delved a bit into the numeric types, but another type in Swift is used quite a bit: the
String type. As you saw earlier, a string in Swift is one or more characters bounded by double
quotes ("").

Here is a perfectly valid declaration of a string:
Click here to view code image

 20> let myState = "Louisiana"
myState: String = "Louisiana"
 21>

So is this:
Click here to view code image

 21> let myParish : String = "St. Landry"
myParish: String = "St. Landry"
 22>

Again, these examples underscore type inference versus type explicitness. In the first case, Swift
looks at the value to determine the type; in the second case, you specified the type explicitly. Both are
correct.

Stringing Things Together
Strings can be connected, or concatenated together to form larger strings using the plus sign (+)
operator. Here are a number of constant declarations that are used to form a larger constant string:
Click here to view code image

 22> let noun = "Wayne"
noun: String = "Wayne"
 23> let verb = "drives"
verb: String = "drives"
 24> let preposition = "to Cal's gym"
preposition: String = "to the gym"
 25> let sentence = noun + " " + verb + " " + preposition + "."
sentence: String = "Wayne drives to Cal's gym."
 26>

On line 25, we concatenated six individual pieces of text together and assigned that result to the
sentence constant.

Characters Have Character
So far, you’ve seen three types in action: Int (for whole numbers), Double (for numbers with a
fractional component), and String (for a series of characters). Another type you will use in Swift is
the Character type, which is actually a special case of a String. A variable or constant of type
Character contains a single character bound in double quote marks.

It’s worth a try:
Click here to view code image

 26> let myFavoriteLetter = "A"
myFavoriteLetter: String = "A"
 27>

You may be scratching your head wondering why the variable myFavoriteLetter is identified
by Swift as a String. Without explicitly specifying the type Character, Swift assumes a string
type when even just one letter is enclosed in double quotes. The Character type is one type that
isn’t inferred by Swift. Let’s rectify this:
Click here to view code image

 27> let myFavoriteLetter : Character = "A"
myFavoriteLetter: Character = "A"
 28>

Now we get the result we expect!
If a String is a composition of one or more Character types, you should be able to build a

String from a Character. And indeed you can, using the same plus sign (+) operator we used
earlier for strings, but with a caveat: The character must be cast to a String type.
Click here to view code image

 28> let myFavoriteLetters = String(myFavoriteLetter) + String(myFavoriteLetter)
myFavoriteLetters: String = "AA"
 29>

If you are coming from languages like C or Objective-C where string concatenation is much more
obtuse, this should feel extremely simple. After all, bringing characters and strings together with a
simple plus sign operator is a lot less typing that using C’s strcat() function or Objective-C’s
Foundation class NSString method stringWithFormat: to perform string concatenation.
You’re witnessing the conciseness and beauty of the Swift language in action here. String
concatenation is as naturally expressive as adding two numbers. Speaking of adding numbers, let’s get
back to them, and take a look at doing some simple math in Swift.

Math and More
Swift can do math very, very well. We just saw how the String type uses the plus sign for
concatenating strings. However, the plus sign is used for more than just bringing together strings. It’s
also the universal expression for addition, and now is as good a time as any to explore Swift’s math
capabilities. Let’s look at a few simple arithmetic examples of mathematical expressions:

 29> let addition = 2 + 2
addition: Int = 4
 30> let subtraction = 4 - 3
subtraction: Int = 1

 31> let multiplication = 10 * 5
multiplication: Int = 50
 32> let division = 24 / 6
division: Int = 4
 33>

The basic four operations are here: addition (+), subtraction (–), multiplication (*), and division
(/). Swift gave us the answers we anticipated and also typed the constants as we would expect: Int.
Again, this decision to type the constants as integers is based on the value on the right side of the
equals sign.

We can also perform the modulo math operation (using the % operator), which returns the
remainder value of a division operation:

 33> let modulo = 23 % 4
modulo: Int = 3
 34>

In Swift, the modulo operator even works with Double values:
Click here to view code image

 34> let modulo = 23.5 % 4.3
modulo: Double = 2.0000000000000009
 35>

In addition, the plus and minus signs are honored as unary operators. Prepending a + to the value
infers a positive number, while a – implies a negative number:
Click here to view code image

 35> var positiveNumber : Int = +33
positiveNumber: Int = 33
 36> var negativeNumber : Int = -33
negativeNumber: Int = -33
 37>

Expressions
Mathematical expressions are fully supported, including the standard operator order of precedence
(multiplication and division evaluated first from left to right, and then addition and subtraction):

 37> let r = 3 + 5 * 9
r: Int = 48
 38> let g = (3 + 5) * 9
g: Int = 72
 39>

Line 37 yields the result of multiplying 5 times 9 first and then adding 3, while line 38 yields the
same expression with parentheses around the first two values to enforce the addition first, and then the
multiplication of the result by 9. Swift honors the canonical order of precedence of mathematical
operations just like other modern languages.

Mixing Numeric Types
What happens if we get clever and mix a number with a fractional component with an integer?
Click here to view code image

 39> let anotherDivision = 48 / 5.0
anotherDivision: Double = 9.5999999999999996
 40>

Here we are dividing an integer 48 by a number 5 with a decimal point and a 0 behind it. The
decimal point is just enough of a hint to Swift that its type is Double. Even the type of the resulting
constant anotherDivision is assigned a type of Double. What you are witnessing here is Swift’s
notion of type promotion. The Int 48 has been promoted to a Double simply by the presence of
another Double in the equation. Likewise, the type of the constant being assigned also takes on the
same type. It’s a good idea to be aware of this rule.

When numeric values of different types are used in a common expression, type promotion always
goes from the type with the least possible representation to the type with the most possible
representation. Since a Double can represent Int value, but not the other way around, Int values
are promoted to Double values.

Numeric Representations
Numeric values can be represented different ways in Swift. Up to now, we’ve been focused on the
most common and natural way of thinking of numbers: decimal, or base 10. Let’s explore other ways
to express a numeric value.

Binary, Octal, and Hexadecimal Notation
If you have done any amount of programming, you’ve encountered base 2, base 16, and possibly even
base 8 numbers. Known as binary, hexadecimal, and octal, respectively, these number systems come
up often enough in software development that having a shorthand notation to refer to them in their
natural state is helpful:
Click here to view code image

 40> let binaryNumber = 0b110011
binaryNumber: Int = 51
 41> let octalNumber = 0o12
octalNumber: Int = 10
 42> let hexadecimalNumber = 0x32
hexadecimalNumber: Int = 50
 43>

The prefix for binary numbers is 0b, for octal numbers it’s 0o, and for hexadecimal numbers it’s
0x. Of course, no prefix implies a decimal number.

Scientific Notation
An alternate way of representing a number is to provide it in scientific notation. Such notation is
useful to express numbers with a large number of decimal places in a compact form:
Click here to view code image

 43> let scientificNotation = 4.434e-10
scientificNotation: Double = 0.00000000044339999999999999
 44>

The e represents the exponent of a base 10 number, in this case 4.434 × 10-10.

Large Number Notation

If you’ve ever sat in front of your Mac counting the number of zeros behind a number to determine its
magnitude, you’ll love this next feature. Swift allows you to demark large numbers in such a way that
their size is immediately clear:
Click here to view code image

 44> let fiveMillion = 5_000_000
fiveMillion: Int = 5000000
 45>

The underscores are ignored but help immensely with the readability of the number.

True or False
Another type that Swift supports is Bool, or the Boolean type; it holds a single value: true or
false and is often used in comparative expressions to answer questions like “is 12 greater than 3?”
or “does 55 equal 12?” These logical comparisons are used heavily in software development, from
terminating the iteration of a list of objects to determining the execution path of a set of conditional
statements:

 45> 100 > 50
$R0: Bool = true
 46> 1.1 >= 0.3
$R1: Bool = true
 47> 66.22 < 7
$R2: Bool = false
 48> 44 <= 1
$R3: Bool = false
 49> 5.4 == 9.3
$R4: Bool = false
 50> 6 != 7
$R5: Bool = true
 51>

The comparisons above are: greater than, greater than or equal, less than, less than or equal, equal
to, and not equal to. Based on the “trueness” of the comparison, a Bool of either true or false is
returned. We’re also comparing both Int and Double literals to illustrate that both numeric types
are comparable, even amongst each other.

The Result
Notice that we have not used the let or var keyword to assign the result of the Boolean expression
to a variable or constant. Also, the results of the conditional expression evaluations are different, as in
the result of line 48:

$R3: Bool = false

What is $R3? This is known in the Swift REPL as a temporary variable, and it holds the value of
the result, in this case, false. You can reference a temporary variable as though it were a variable:

 51> println($R3)
false
 52>

You can assign values to these temporary variables as though they were declared variables as well.

What About Strings?
Wouldn’t it be great if you could use the same comparator operators to test the equality of
strings? If you’ve come from C or Objective-C, you know how tedious testing for equality of
two strings is.
In C, it’s like this:

Click here to view code image

int result = strcmp("this string", "that string")

In Objective-C, it’s like this:
Click here to view code image

NSComparisonResult result = [@"this string" compare:@ "that string"];

Swift makes this operation super easy to read and type:
Click here to view code image

 52> "this string" == "that string"
$R6: Bool = false
 53> "b" > "a"
$R7: Bool = true
 54> "this string" == "this string"
$R8: Bool = true
 55> "that string" <= "a string"
$R9: Bool = false
 56>

The results speak for themselves: Swift’s string comparison feature is much more natural and
expressive.

Printing Made Easy
So far we have used the print and println methods to print strings in the REPL. Let’s revisit
these methods, and examine how we can use them to construct more complex strings.

One of the conveniences of the print and println methods is their ability to effortlessly print
the contents of variables in-line with other text. If you happen to know C or Objective-C, you’ll recall
that the amount of typing required to express formatted text is rather large, with printf in C and
NSLog() in Objective-C being prime examples. Consider this Objective-C code excerpt:
Click here to view code image

NSString *myFavoriteCity = "New Orleans";
NSString *myFavoriteFood = "Seafood Gumbo";
NSString *myFavoriteRestaurant = "Mulates";
NSInteger yearsSinceVisit = 3;
NSLog(@"When I visited %@ %d years ago, I went to %@ and ordered %@.", myFavoriteCity,
yearsSinceVisit, myFavoriteRestaurant, myFavoriteFood);

If this looks familiar to you, you know that it’s problematic for several reasons. First, the variables
are not in the exact position they would be when the string is printed, which requires us to “line up”
variables in the correct order or else we will get unexpected results. Second, we are dealing with two
different types of variables with different formatting codes: NSString, which uses %@, and
NSInteger, which uses %d. (If you aren’t familiar with the concept of formatting codes, don’t

worry, you won’t use them in Swift.)
With Swift you avoid the cumbersome dance of using a format string and worrying about ordering

and formatting codes. Instead, you can simply place your variables right inside the string, exactly
where they would naturally go, and they will be printed right alongside the other text. Here’s the Swift
version of the Objective-C code:
Click here to view code image

 56> let myFavoriteCity = "New Orleans"
myFavoriteCity: String = "New Orleans"
 57> let myFavoriteFood = "Seafood Gumbo"
myFavoriteFood: String = "Seafood Gumbo"
 58> let myFavoriteRestaurant = "Mulates"
myFavoriteRestaurant: String = "Mulates"
 59> let yearsSinceVisit = 3
yearsSinceVisit: Int = 3
 60> println("When I visited \(myFavoriteCity) \(yearsSinceVisit) years ago, I went to \(myFavoriteRestaurant) and
ordered \(myFavoriteFood).")
When I visited New Orleans 3 years ago, I went to Mulates and ordered Seafood Gumbo.
 61>

The markup to do this on line 60 is amazingly simple. There, the embedded notation \() is used to
reference all four constants you declared earlier on lines 56 through 59. This notation is very handy,
especially when compared to how the aforementioned languages handle this feature.

Of course, assigning the result of the string to a variable or constant is just as easy as printing it:
Click here to view code image

 61> let sentence = "When I visited \(myFavoriteCity) \(yearsSinceVisit) years ago, I went to \
(myFavoriteRestaurant) and ordered \(myFavoriteFood)."
sentence: String = "When I visited New Orleans 3 years ago, I went to Mulates and ordered
Seafood Gumbo."
 62>

Using Aliases
We talked about types earlier and how they are central to Swift’s idea of identifying and classifying
variables and constants. As an immutable (non-changing) property, the type is an integral component
of every number and string in your program. Sometimes, however, you may want to enhance the
readability of your source code by using a type alias.

A type alias is simply a way of telling Swift to give an alternate name to a type:
Click here to view code image

 62> typealias EightBits = UInt8
 63> var reg : EightBits = 0
reg: EightBits = 0
 64>

Here, the native Swift type UInt8 has been aliased to EightBits, which can then be used in
subsequent declarations. You can even get clever and assign a type alias to another type alias:
Click here to view code image

 64> typealias NewBits = EightBits
 65> var reg2 : NewBits = 0
reg2: NewBits = 0
 66>

Of course, NewBits and EightBits are really a UInt8 under the hood. Nothing really new has
been created in terms of a type, but the readability of your code changes. Although type aliases are
great ways to enhance your code, they should be used with care and their use documented, especially
if you are sharing your work with other developers. Nothing can be more confusing than encountering
a new type and not knowing exactly what it is or represents.

Grouping Data with Tuples
Sometimes bringing different data elements together to form a larger type is useful. Up to now,
you’ve worked with single pieces of data: integers, strings, and so on. These elemental types are the
foundation of Swift’s data storage and manipulation capabilities, but they can also be combined in
interesting ways as you’ll see throughout the book.

One such combination that we will explore here is the tuple. A tuple is a grouping of one or more
variables, constants, or literal values into a single entity. A tuple is defined by a comma-separated list
bounded with parentheses:
Click here to view code image

 66> let myDreamCar = (2014, "Mercedes-Benz", "M-Class")
myDreamCar: (Int, String, String) = {
 0 = 2014
 1 = "Mercedes-Benz"
 2 = "M-Class"
}
67>

The constant myDreamCar is defined as a tuple with three elements: an Int and two String
literals. Note that Swift inferred the type of each member of the tuple, as you did not provide an
explicit type. Also, the members of the tuple retain the order in which they are defined.

So now that you’ve defined a tuple, what can you do with it? You can inspect it, of course. Using
dot notation, you can explore the tuple’s contents, starting with the 0 index element as follows:

 67> println(myDreamCar.0)
2006
 68> println(myDreamCar.1)
Ford
 69> println(myDreamCar.2)
Mustang
 70> println(myDreamCar)
(2006, Ford, Mustang)
 71>

If you attempt to reference a non-existing member of the tuple, Swift will remind you with an error:
Click here to view code image

 71> println(myDreamCar.3)
<REPL>:71:9: error: '(Int, String, String)' does not have a member named '3'
println(myDreamCar.3)
 ^ ~
 71>

You will encounter the use of tuples later in this book; as you’ll see, they will come in handy for
quite a few things.

Optionals

You may recall earlier that we used the toInt() method on a String variable s to convert its
contents to an Int so that it could be assigned to a new variable of the same type:
Click here to view code image

 17> var myConvertedInt = s.toInt()
myConvertedInt: Int? = 123
 18>

We glossed over the question mark following the type designator returned by Swift. That question
mark signifies that myConvertedInt is more than just an Int. It’s an optional Int.

So what exactly is an optional? It’s actually a qualifier on a type that alerts Swift that the variable
or constant could be nothing, or nil. The value nil has long standing in programming languages. In
Objective-C, it’s also known as nil and in C/C++, it’s NULL. The meaning is essentially the same:
empty.

Let’s consider the code above in a different context: where s is not "123" but "abc":
Click here to view code image

 71> let s = "abc"
s: String = "abc"
 72> var myConvertedInt = s.toInt()
myConvertedInt: Int? = nil
 73>

Notice that myConvertedInt is still of type Int? (an optional Int), but its value is not 123.
It’s nil. And that is precisely because there is no numeric representation for the letters “abc” to
convert to an Int. Returning nil is Swift’s way of admitting defeat. The optional gives a variable an
alternate path to success. In this case, the String class’s toInt() method is returning nil as a
way of saying “I cannot convert this into a number.”

Declaring a variable as an optional is as simple as adding a question mark at the end of the type at
declaration time:

 73> var v : Int?
v: Int? = nil
 74>

Swift responds with the indication that v is indeed an optional Int. Since you didn’t provide an
assignment to a value at declaration time, the default assigned value is not 0, but nil.

Try setting the variable to an actual value:
 74> v = 3
 75>

Finally, let’s show the value. Instead of using the println method, we’ll just type the name of the
variable; Swift will assign it to a temporary.

 75> v
$R10: Int? = 3
 76>

And as you can see, Swift reports that the value is indeed 3.
Optionals work on more than just Int types. In fact, any type can be declared as an optional. Here’s

an example of two variables, one String and one Character, as declared optionals:
Click here to view code image

 76> var s : String? = "Valid text"
s: String? = "Valid text"
 77> var u : Character? = "a"
u: Character? = "a"
 78> u = nil
 79>

On line 78, u is set to the nil value, underscoring that any variable declared as an optional can be
set to nil.

We’ll explore optionals much more in a subsequent chapter. For now, knowing that they exist and
recognizing the notation surrounding them is enough.

Summary
Congratulations, Swift beginner... you’ve made it through the first chapter. And what a whirlwind it
has been. You have been thrown quite a lot of information to digest, so don’t hesitate to go back and
review the chapter if you need to.

Here are the topics that were introduced in this chapter:
 Variables
 Constants
 The print method
 Types (Int, Double, Character, and String, just to name a few)
 Mathematical operators
 Numeric notations (binary, hexadecimal, scientific, and so on)
 String concatenation
 Type inference and explicit declarations
 Type aliases
 Tuples
 Optionals

Remember: These are the basic concepts you need to master in order to become a Swift artisan.
Know and understand them well because in subsequent chapters we’ll build on what you learned here
and discuss even more features of the language.

Chapter 2. Working with Collections

The last chapter covered a lot of the basics of Swift, with plenty of examples (including intentional
mistakes) in order to reinforce the concepts of variables, constants, and types. As you’ll see going
forward, the Chapter 1 information will come in handy in this and subsequent chapters.

For this chapter, get ready to turn your attention to the notion of collections.
When you think of a collection, what comes to mind? Here are several examples of collections you

might have had at one time or another:
 Assortment of toy action figures and accessories
 Postage stamps or coins from different countries
 Shopping list of items to buy at the grocery store Collections can also be more general
categorizations:
 Make and model of vehicles in a parking lot
 Names of people on a wedding invitation list

All these examples evoke the notion of a grouping or organization of individual elements or items
(toys, stamps, vehicles, and so on). Collections of related (or even unrelated) items is an important
part of the Swift language. And as you’ll see shortly, collections come in different flavors.

For the bulk of this chapter, you’ll focus on collections, which are essentially structures that allow
you to group information and data in various ways. You’ll use collections quite a bit later in this book
and in your general Swift development, so take the time to understand them.

The Candy Jar
Let’s explore the idea of collections in Swift by imagining an empty candy jar sitting on a store
counter. Now, think of all the various candies you could put into that jar. Let’s call the jar a container,
which holds one or more candies, or values. Representing that candy jar and its contents in Swift can
be modeled in a number of ways, starting with an array.

An array is nothing more than an ordered list of values of some length. Arrays are common
constructs in computer languages, and declaring one in Swift is easy.

Here is an array of three candy values that would go into the virtual candy jar:
Click here to view code image

 1> let candyJar = ["Peppermints", "Gooey Bears", "Happy Ranchers"]
candyJar: [String] = 3 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
}
 2>

Recognize the let keyword? That’s the constant declaration keyword. In this case you’re declaring
a constant named candyJar and using a special notation: the opening and closing brackets [and].
The items in the array are bounded by these two characters, and this is how Swift recognizes that an
array is being declared.

This array has three String constants:

 "Peppermints"
 "Gooey Bears"
 "Happy Ranchers"

The comma between each value in the array denotes where one value ends and the other begins.
Also, notice that once again, Swift inferred the types of each of these items by simply looking at how
they are represented—as strings. That’s because each value is surrounded by double quotes.

Starting from Scratch
We’ll continue to use the REPL to explore concepts. The line numbers shown in the code
snippets in this chapter start with line number 1, which presumes we have restarted the REPL.
Remember: To quit the REPL, type:
:quit

and to restart the REPL from the Terminal, type:
xcrun swift

Notice how Swift reported the declaration to us after you typed it. It explicitly points to candyJar
being an array of String values:

candyJar: [String] = 3 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
}

Here, Swift is confirming that the array holds three values, and that they are ordered, starting with
the number 0. In fact, all arrays in Swift begin with the “0th value” and continue in ordinal fashion.
This number is known as the array index and maps directly to the value it represents.

So far, so good? Great. Now, let’s learn how to interrogate an array for a particular value. Let’s say
you wanted to see the second element in the array. Remember, since arrays are ordered starting at 0,
the second element will have an index of 1.

 2> candyJar[1]
$R0: String = "Gooey Bears"
 3>

 Note

To print or not to print? Remember, simply typing the name of the item without using
print or println is acceptable when using the REPL. When doing so, the result of the
expression is assigned to a temporary variable—in this case $R0.

Swift politely responds with the value “Gooey Bears” as the second element in the array and also
reminds us of the type: String.

As expected, replacing the [1] with another array index will reference the value at that location:

 3> candyJar [2]
$R1: String = "Happy Ranchers"

 4>

That notation is quite handy. You can access individual elements in the array simply by using the
index number bounded by brackets.

Now, what happens if you reference a nonexistent location? Use an index that is clearly out of the
range of the currently available index values:
Click here to view code image

 4> candyJar[5]
fatal error: Array index out of range
Execution interrupted. Enter Swift code to recover and continue.
Enter LLDB commands to investigate (type :help for assistance.)
 5>

Not surprisingly, you have hit a nerve with Swift because you requested a nonexistent element. The
array doesn’t have a sixth element (the array has only three elements, with subscripts 0, 1, and 2).
Being the ever so careful language that it is, Swift reminds us of the infraction with a fatal error.

And here’s where Swift is ahead of the pack compared to some other computer languages: It
emphasizes safety. Swift creates a safe environment where exceptional and anomalous behavior, like
referencing nonexisting array subscripts, is not tolerated. If you have any experience with arrays in C,
you might already know accessing nonexistent parts of an array is possible. In fact, very similar
methods have been used in the past by writers of Trojan horse software to compromise computer
systems.

This error presents an opportunity to bring up a very good question: “What if I wanted to add more
values to an array? How would I do that?” Swift has a special method that works on arrays:
append(). To add a value to an array, simply append it. Let’s add my favorite candy to the jar:
Click here to view code image

 5> candyJar.append("Candy Canes")
/var/folders/2c/pbfh6lvx6gl73t448cwt47v00000gn/T//lldb/3609/expr.mdR66C. swift:2:1: error: immutable value of type
'[String]' only has mutating members named 'append'
candyJar.append("Candy Canes")
^ ~~~~~~

 5>

Another error! It seems you just can’t catch a break. We all learn by making mistakes, though, and
this is certainly part of learning the ins and outs of Swift.

Can you spot why this error occurred? Look carefully at the text of the error message:
Click here to view code image

error: immutable value of type '[String]' only has mutating members named 'append'

Swift is telling you that the array of String values is immutable (nonchangeable), and you are
trying to change the contents of a constant array. Remember, you declared the array as a constant
array with let. You cannot modify the value of a constant, and that includes arrays declared as
constants.

You’ll need to create a second array, a mutable (changeable) one. You can do that easily, and at the
same time, start with the contents of the immutable array:
Click here to view code image

 5> var refillableCandyJar = candyJar

refillableCandyJar: [String] = 3 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
}
 6>

That was easy! You just declared a variable refillableCandyJar and initialized it with the
contents of the candyJar constant array. All the same values that exist in the constant array are now
part of this variable array.

Birds of a Feather...
Can an array contain values of different types? Try the following:
Click here to view code image

 6> var arrayTest = ["x", 3]
/var/folders/2c/pbfh6lvx6gl73t448cwt47v00000gn/T//lldb/3866/expr.xiaPT9. swift:2:17: error: 'String' is not
convertible to 'Int'
var arrayTest = ["x", 3]
 ^

 6>

Clearly, Swift prevents this from happening, underscoring that indeed, values in an array must be of
the same type.

Speaking of types, what if you want to be specific about the value type in the array declaration
itself?
Click here to view code image

 6> var h2o : [String] = ["Hydrogen", "Hydrogen", "Oxygen"]
h2o: [String] = 3 values {
 [0] = "Hydrogen"
 [1] = "Hydrogen"
 [2] = "Oxygen"
}
 7>

Declaring an array to hold specific type values involves adding the colon, followed by the name of
the type bounded by brackets [].

Extending the Array
Let’s bring our focus back to the refillableCandyJar array, which is a mutable array, thanks to
the previous assignment on line 5. Now, can you actually append to this new array? Let’s find out:
Click here to view code image

 7> refillableCandyJar.append("Candy Canes")
 8>

Other than the prompt, there’s no indication whether or not this was successful. But hey, at least
you didn’t get an error. Let’s see the contents of the variable array and verify that Candy Canes was
added:

 8> refillableCandyJar
$R2: [String] = 4 values {

 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
 [3] = "Candy Canes"
}
 9>

And indeed, it occupies the fourth location (array subscript 3) in the array, just as we hoped it
would.

Let’s add a few more candies to the jar. This time, use a different syntax:
Click here to view code image

 9> refillableCandyJar += ["Peanut Clusters"]
 10> refillableCandyJar += ["Banana Taffy", "Bubble Gum"]
 11> refillableCandyJar
$R3: [String] = 7 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Happy Ranchers"
 [3] = "Candy Canes"
 [4] = "Peanut Clusters"
 [5] = "Banana Taffy"
 [6] = "Bubble Gum"
}
 12>

Instead of adding a single String value, lines 9 and 10 instead append another array, which
demonstrates the flexibility that Swift brings here. You can simply add the contents of one array to
another with the += operator. Finally, on line 11, you requested the contents of the variable
refillableCandyJar, which shows the entire contents of the virtual candy jar—all seven
delicious varieties.

So far, you have created a constant array and a variable array. You’ve also assigned the constant
array to the variable array, creating a mutable array that can be changed. And you’ve successfully
modified the array contents using both the append() method and the += operator. Let’s do some
further exploration into arrays.

Replacing and Removing Values
Replacing an array value is as simple as specifying the array subscript and assigning it a new value.
Let’s replace Happy Ranchers with another type of candy:
Click here to view code image

 12> refillableCandyJar[2] = "Lollipops"
 13> refillableCandyJar
$R4: [String] = 7 values {
 [0] = "Peppermints"
 [1] = "Gooey Bears"
 [2] = "Lollipops"
 [3] = "Candy Canes"
 [4] = "Peanut Clusters"
 [5] = "Banana Taffy"
 [6] = "Bubble Gum"
}
 14>

Replacements work great. But what if you want to remove a value? Perhaps you don’t like Gooey
Bears. Can it be removed from the virtual candy jar? Of course. You’ve grown a variable array by
appending to it, now you’ll remove some items completely:
Click here to view code image

 14> refillableCandyJar.removeAtIndex(1)
$R5: String = "Gooey Bears"
 15> refillableCandyJar
$R6: [String] = 6 values {
 [0] = "Peppermints"
 [1] = "Lollipops"
 [2] = "Candy Canes"
 [3] = "Peanut Clusters"
 [4] = "Banana Taffy"
 [5] = "Bubble Gum"
}
 16>

On line 14, you employed the array method removeAtIndex(), which takes a single parameter:
the index of the value you wish to remove. The method’s result is the value removed, and the value is
assigned to $R5.

A quick review of the variable refillableCandyJar on line 15 shows that indeed, the Gooey
Bears are gone, and the contents of the entire array have “shifted” up. Instead of seven items in the
candy jar, you have only six now.

Remember, any time an item is removed from an array, the other values “fill in the gap” and move
up to accommodate the empty space.

Here’s another handy way to remove the last value of the array:
Click here to view code image

 16> refillableCandyJar.removeLast()
$R7: String = "Bubble Gum"
 17>

Again, the removed value is returned, and the array is shortened from six to five values:
 17> refillableCandyJar
$R8: [String] = 6 values {
 [0] = "Peppermints"
 [1] = "Lollipops"
 [2] = "Candy Canes"
 [3] = "Peanut Clusters"
 [4] = "Banana Taffy"
}
 18>

Inserting Values at a Specific Location
So far, you have added values (via the append() method) to the end of an array, and you have
directed Swift to remove a value at a specific position from the array. Now, let’s see how easy
inserting a value is.

Let’s add "Twirlers" at the position where "Candy Canes" is currently. That’s position 2, or
the third position in the array:
Click here to view code image

 18> refillableCandyJar.insert("Twirlers", atIndex: 2)
 19>

Now let’s review the contents of the array to see if it worked:
 19> refillableCandyJar
$R9: [String] = 6 values {
 [0] = "Peppermints"
 [1] = "Lollipops "
 [2] = "Twirlers"
 [3] = "Candy Canes"
 [4] = "Peanut Clusters"
 [5] = "Banana Taffy"
 20>

And indeed it did. "Twirlers" now occupies location 2. The values have also been shifted down
one place to accommodate the new value thanks to the insert() method.

Notice that the insert() method took two parameters: the value to insert into the array, as well
as the index (or position) where the insertion takes place. What’s interesting to note about this method
is the second parameter. These named parameters increase the readability of Swift’s code by
providing context for the parameter being passed. You’ll learn more about the composition of method
names in Swift a little later.

Combining Arrays
Swift’s syntax for combining arrays together is natural for concatenating strings. To illustrate, create
another candy jar array with a different set of confectionaries:
Click here to view code image

 20> var anotherRefillableCandyJar = ["Sour Tarts", "Cocoa Bar", "Coconut Rounds"]
anotherRefillableCandyJar: [String] = 3 values {
 [0] = "Sour Tarts"
 [1] = "Cocoa Bar"
 [2] = "Coconut Rounds"
}
 21>

Now create a third array with the array combination syntax using the earlier array,
refillableCandyJar with six values, and the new anotherRefillableCandyJar with
three values:
Click here to view code image

 21> var combinedRefillableCandyJar = refillableCandyJar + anotherRefillableCandyJar
combinedRefillableCandyJar: [String] = 9 values {
 [0] = "Peppermints"
 [1] = "Lollipops"
 [2] = "Twirlers"
 [3] = "Candy Canes"
 [4] = "Peanut Clusters"
 [5] = "Banana Taffy"
 [6] = "Sour Tarts"
 [7] = "Cocoa Bar"
 [8] = "Coconut Rounds"
}
 22>

The new array has nine values (six from the first array, and three from the second). Also, the values
are ordered in the same way they were in the original arrays.

We’ve covered a lot about arrays. They are excellent for storing lists of values, whether they are
related or not. They can be immutable (by declaring them constant with the let command), or they
can be mutable arrays that can change (values can be added, removed, or replaced). And finally, all
values within an array must be of the same type.

The next section takes a look at another type of collection: the dictionary.

The Dictionary
When you think of a dictionary, Daniel Webster probably comes to mind. The dictionary on a shelf in
the library is composed of pages of definitions for words. You look up a word in alphabetical order to
determine its definition. In Swift, dictionaries work in a similar fashion.

Like an array, a dictionary in Swift is composed of one or more entities. Unlike an array, the entity
in a dictionary contains two distinct components: a key and a value. Although the key and the value
themselves can be different types, all keys must be of the same type; likewise, all values must also
share the same type.

To start out learning about dictionaries, I’ll use one of my favorite food additives: peppers. Some
peppers are hotter than others, and this “heat” can be quantified using a measurement known as
Scoville units. You’ll use a dictionary to define a subset of the Scoville scale. The key for each entry
will be the name of the pepper, and the value will be the Scoville unit for that pepper:
Click here to view code image

 22> var scovilleScale = ["Poblano" : 1_000, "Serrano" : 700, "Red Amazon" : 75_000, "Red Savina Habanero" :
500_000]
scovilleScale: [String : Int] = {
 [0] = {
 key = "Poblano"
 value = 1000
 }
 [1] = {
 key = "Red Savina Habanero"
 value = 500000
 }
 [2] = {
 key = "Red Amazon"
 value = 75000
 }
 [3] = {
 key = "Serrano"
 value = 700
 }
}
 23>

You’ve just created a dictionary with four entries: Poblano with a score of 1,000, Serrano with a
score of 700, Red Amazon with a score of 75,000, and Red Savina Habanero with a score of 500,000!
(That’s a really hot pepper!)

 Note

How Swift orders the dictionary depends on the version of Xcode used. However, Swift

will always use the order that is the most efficient for retrieval and access.

When you declared the dictionary, Swift once again inferred the type of both the key and the value.
The key is clearly a String type; the value is an Int type. This is confirmed by the REPL report
showing the result of the declaration. Also, the underscore was used to visually mark the thousands
place in the number. Remember, this is purely syntactic sugar. It has no bearing on the value of the
Int; the numbers show up without underscores in the result.

Do you notice something unusual? Look closely at the REPL output. The order in which you
declared the dictionary and the order in which the dictionary is reported is not the same. Swift ordered
the dictionary differently than you declared it. This difference illustrates an important tenet of
dictionaries: Swift orders keys to determine the best method for quick retrieval and access. You
cannot rely on the order in which you declared a dictionary to be the order in which it will be stored.

Looking Up an Entry
Accessing an entry in a dictionary looks very similar to accessing a value in an array... except for the
value bounded in the brackets. Recall that in an array, the ordinal position of the value is used (0, 1, 2,
3, and so on). In a dictionary, you use the actual key to look up the value of that entry:

 23> scovilleScale["Serrano"]
$R10: Int? = 700
 24>

Notice the question mark again following the Int declaration. Remember that the question mark
signifies an optional value—one that can be nil. The return value of a dictionary value is always an
optional, but that doesn’t mean we can use nil as a value, as shown in this example:
Click here to view code image

 24> var myNilArray = ["someKey" : nil]
/var/folders/2c/pbfh6lvx6gl73t448cwt47v00000gn/T//lldb/8622/expr.6ydWX5. swift:2:18: error: type 'StaticString' does
not conform to protocol 'Hashable'
var myNilArray = ["someKey" : nil]
 ^

 24>

The somewhat mystical error is telling us that nil is not a valid value. Nor would it be for the key:
Click here to view code image

 24> var myNilArray = [nil : "x"]
/var/folders/2c/pbfh6lvx6gl73t448cwt47v00000gn/T//lldb/8622/expr.vsuqMC. swift:2:18: error: cannot convert the
expression's type 'Dictionary' to type 'NilLiteralConvertible'
var myNilArray = [nil : "x"]
 ^~~~~~~~~~~~~

 24>

So why would Swift bother to return a value as an optional type when you ask for a value in a
dictionary? Let’s consider the dictionary of Scoville units again:

 24> scovilleScale
$R11: [String : Int] = {
 [0] = {
 key = "Poblano"

 value = 1000
 }
 [1] = {
 key = "Red Savina Habanero"
 value = 500000
 }
 [2] = {
 key = "Red Amazon"
 value = 75000
 }
 [3] = {
 key = "Serrano"
 value = 700
 }
}
 25>

You still have the same four entries in the dictionary. What if you asked for a value with a key that
didn’t exit? Let’s find out if there is a Scoville unit for the Tabasco pepper:

 25> scovilleScale["Tabasco"]
$R12: Int? = nil
 26>

Lo and behold, the value returned is nil. This is precisely why Swift dictionary values return an
optional type: the possibility that the dictionary will be queried with a nonexistent key.

Adding an Entry
Now that you’ve established what happens when you ask our Scoville unit dictionary for a nonexistent
pepper, let’s add that same pepper to our dictionary. Remember, because the dictionary was created as
a mutable dictionary with var, extending it with the following syntax is possible:
Click here to view code image

 26> scovilleScale["Tabasco"] = 50_000
 27>

And for verification:
 27> scovilleScale
$R13: [String : Int] = {
 [0] = {
 key = "Poblano"
 value = 1000
 }
 [1] = {
 key = "Red Savina Habanero"
 value = 500000
 }
 [2] = {
 key = "Tabasco"
 value = 50000
 }
 [3] = {
 key = "Red Amazon"
 value = 75000
 }
 [4] = {
 key = "Serrano"

 value = 700
 }
}
 28>

Notice that the newly added pepper finds its way in the dictionary in an unpredictable order.

Updating an Entry
If you really know your peppers, you may have realized that the Serrano’s Scoville unit is actually
wrong. The value is off by an order of magnitude: Its Scoville rating is 7,000, not 700. Let’s fix that:
Click here to view code image

 28> scovilleScale["Serrano"] = 7_000
 29>

The syntax for updating a dictionary entry is the same as assigning a new value to a new key. Swift
simply replaces the old value, 700, with the new value, 7,000:

 29> scovilleScale
$R14: [String : Int] = {
 [0] = {
 key = "Poblano"
 value = 1000
 }
 [1] = {
 key = "Red Savina Habanero"
 value = 500000
 }
 [2] = {
 key = "Tabasco"
 value = 50000
 }
 [3] = {
 key = "Red Amazon"
 value = 75000
 }
 [4] = {
 key = "Serrano"
 value = 7000
 }
}
 30>

Removing an Entry
Removing a dictionary entry looks a lot like the previous two examples:
Click here to view code image

 30> scovilleScale["Tabasco"] = nil
 31>

Setting the key value to nil effectively removes that dictionary entry:

 31> scovilleScale
$R15: [String : Int] = {
 [0] = {
 key = "Poblano"
 value = 1000

 }
 [1] = {
 key = "Red Savina Habanero"
 value = 500000
 }
 [2] = {
 key = "Red Amazon"
 value = 75000
 }
 [3] = {
 key = "Serrano"
 value = 7000
 }
}
 32>

Another way to remove a dictionary item is to use the removeValueForKey() method:
Click here to view code image

 32> scovilleScale.removeValueForKey("Poblano")
$R16: Int? = 1000
 33>

In this case, the entry’s value is returned (1000). Sometimes this is the preferred method of
removing an entry, as you’ll see in later chapters.

Arrays of Arrays?
The parts of this chapter on arrays and dictionaries used a very specific set of data: strings and
integers. But what if you wanted to declare an array of dictionaries? Or a dictionary of arrays? In
Swift, arrays and dictionaries are types, just like strings and integers, so they can contain references to
each other.

Let’s take the candy jar analogy a bit further. Mr. Arceneaux has a candy route with three stores:
Fontenot’s Grocery, Dupre’s Quick Mart, and Smith’s Pick-n-Sack. Each store has its own candy jar,
and every week, Mr. Arceneaux’s route takes him to each store to fill the candy jars.

Mr. Fontenot’s customers like Choppers and Jaw Bombs, while Mr. Dupre’s customers are inclined
to purchase chocolate candies like Butterbar, Mrs. Goodbuys, and Giggles. Mr. Smith’s customers
prefer Jelly Munchers and Gooey Bears.

How could you model this assortment of candies and stores using either arrays or dictionaries? To
make things easy, start from the bottom up: with the candy jars.
Click here to view code image

 33> var fontenotsCandyJar = ["Choppers", "Jaw Bombs"]
fontenotsCandyJar: [String] = 2 values {
 [0] = "Choppers"
 [1] = "Jaw Bombs"
}
 34> var dupresCandyJar = ["Butterbar" , "Mrs. Goodbuys", "Giggles"]
dupresCandyJar: [String] = 3 values {
 [0] = "Butterbar"
 [1] = "Mrs. Goodbuys"
 [2] = "Giggles"
}
 35> var smithsCandyJar = ["Jelly Munchers", "Gooey Bears"]
smithsCandyJar: [String] = 2 values {

 [0] = "Jelly Munchers"
 [1] = "Gooey Bears"
}
 36>

Three arrays represent three candy jars. The variable names indicate the jars’ owners.
Now it’s simply a matter of creating an array:

Click here to view code image

 36> let arceneauxsCandyRoute = [fontenotsCandyJar, dupresCandyJar, smithsCandyJar]
arceneauxsCandyRoute: [[String]] = 3 values {
 [0] = 2 values {
 [0] = "Choppers"
 [1] = "Jaw Bombs"
 }
 [1] = 3 values {
 [0] = "Butterbar"
 [1] = "Mrs. Goodbuys"
 [2] = "Giggles"
 }
 [2] = 2 values {
 [0] = "Jelly Munchers"
 [1] = "Gooey Bears"
 }
}
 37>

Swift denotes the type of arceneauxCandyRoute as “an array of an array of strings” with the
[[String]] nomenclature.

Interrogating the array for the first element yields the first value in the array, which itself is an
array:

 37> arceneauxsCandyRoute[0]
$R17: [String] = 2 values {
 [0] = "Choppers"
 [1] = "Jaw Bombs"
}
 38>

Notice that while the candy jars are now part of the route array, there isn’t really an indication of
which store goes with the array. That’s because the variable name is not encapsulated within the array
itself, just the values.

Let’s bring some clarity to this example. Instead of using an array to hold the candy jar arrays, let’s
use a dictionary:
Click here to view code image

 38> let arceneauxsOtherCandyRoute = ["Fontenot's Grocery" : fontenotsCandyJar, "Dupre's Quick Mart" :
dupresCandyJar, "Smith's Pick-n-Sack" : smithsCandyJar]
arceneauxsOtherCandyRoute: [String : [String]] = {
 [0] = {
 key = "Dupre's Quick Mart"
 value = 3 values {
 [0] = "Butterbar"
 [1] = "Mrs. Goodbuys"
 [2] = "Giggles"
 }
 }

 [1] = {
 key = "Smith's Pick-n-Sack"
 value = 2 values {
 [0] = "Jelly Munchers"
 [1] = "Gooey Bears"
 }
 }
 [2] = {
 key = "Fontenot's Grocery"
 value = 2 values {
 [0] = "Choppers"
 [1] = "Jaw Bombs"
 }
 }
}
 39>

Swift denotes the type of arceneauxsOtherCandyRoute with [String : [String]]. In
English, this is “a dictionary whose key is a string and whose value is an array of strings.”

The difference between this dictionary of arrays and the array of arrays earlier is that the key (of
type String) is the descriptive term that defines the value, the candy jar. Instead of using a
somewhat anonymous index value to obtain the value you want, you can now specify the value by its
key:
Click here to view code image

 39> arceneauxsOtherCandyRoute["Smith's Pick-n-Sack"]
$R18: [String]? = 2 values {
 [0] = "Jelly Munchers"
 [1] = "Gooey Bears"
}

Depending on what you are trying to model, you may find that a mixture of arrays, dictionaries, or
both may be appropriate. Practice certainly makes perfect.

Starting from Scratch
Up to now, the arrays and dictionaries you have created have been initialized at declaration time. At
times in Swift development, however, creating an array or dictionary without initializing it will be
necessary. Perhaps the values are not known at that time in the application, or an empty array or
dictionary will need to be populated by a method in a library or framework.

The Empty Array
Two nomenclatures are used to declare an empty array:
Click here to view code image

 40> var myEmptyArray : Array<Int> = []
myEmptyArray: [Int] = 0 values
 41>

This is the “longhand” form of declaring an array, and involves the keyword Array along with the
type of the array bounded by angle brackets < >. Swift gives us a second “short form” style we can
also employ:
Click here to view code image

 41> var myEmptyArray = [Int]()
myEmptyArray: [(Int)] = 0 values
 42>

In these examples, you have declared an empty mutable array that will hold Int values. Because
it’s a mutable array, you can change it or populate it as you normally would any other array. Let’s add
three integers to the array:
Click here to view code image

 42> myEmptyArray += [33, 44, 55]
 43> myEmptyArray
$R19: [(Int)] = 3 values {
 [0] = 33
 [1] = 44
 [2] = 55
}
 44>

You can also remove all elements of an array by assigning the variable to the “empty array”:
 44> myEmptyArray = []
 45> myEmptyArray
$R20: [(Int)] = 0 values
 46>

The array is now void of its original values, and you can reuse it for storing other data.

The Empty Dictionary
Creating a new, empty dictionary is similar to creating an empty array. The syntax involves the actual
word Dictionary along with a set of angle bracket characters:
Click here to view code image

 46> var myEmptyDictionary = Dictionary<String, Double>()
myEmptyDictionary: [String : Double] = {}
 47>

The Long and Short of It
Swift’s syntax is very rich and flexible, usually allowing more than one way to express the same
operation. In the case of array and dictionary declaration, using the short form saves some
typing, but using the long form declaration is clearer. Whatever method you use, it’s always
helpful to be consistent.

In this example, you specified the specific key type and the value that will be allowed in the
dictionary: The key type is String, and the value type is Double. These types are bounded by the
angle bracket characters < > and separated by a comma. You can then add entries into the dictionary
as follows:
Click here to view code image

 47> myEmptyDictionary = ["MyKey" : 1.125]
 48> myEmptyDictionary
$R21: [String : Double] = {
 [0] = {
 key = "MyKey"

 value = 1.125
 }
}
 49>

Iterating Collections
Now that you’ve covered the basic collection types (arrays and dictionaries), it’s time to explore
iterating them. Iterating a collection is the act of examining each value in an array or dictionary and
potentially performing some work on it.

Iterating is something that we all do in our daily work. When you’re following a written list of steps
to complete a task, you are iterating over that list. Working with data is no different. Iteration is a very
common coding task, and as you’ll see shortly, Swift provides several constructs to make iterating
over collections a breeze.

Array Iteration
If you’re coming from another programming language like C, you are intimately familiar with the
notion of the for loop. Swift has several flavors of this same construct that are more naturally
expressive than C’s version. Even if you have little prior programming experience, you’ll pick up the
concept right away.

The for-in loop is constructed in the following manner:
Click here to view code image

 for itemName in list {
 ... do something with itemName
 }

The itemName is any name you wish to use. It becomes a variable assigned to each value in the
list as the iteration occurs. The list is the object being iterated, and everything that appears between
the curly braces is code that is executed.

Let’s revisit the combinedRefillableCandyJar array from earlier in the chapter:
Click here to view code image

 49> combinedRefillableCandyJar
$R22: [String] = 9 values {
 [0] = "Peppermints"
 [1] = "Lollipops"
 [2] = "Twirlers"
 [3] = "Candy Canes"
 [4] = "Peanut Clusters"
 [5] = "Banana Taffy"
 [6] = "Sour Tarts"
 [7] = "Cocoa Bar"
 [8] = "Coconut Rounds"
}
 50>

The following is a segment of code that uses Swift’s for-in construct to print individual array
values. This is a multiline code segment; as you type it in the REPL, the prompt changes from a
number followed by a greater-than sign to a number followed by a period. This is triggered by the
addition of the opening curly brace {, which tells the REPL that a new code block is beginning.

Because of this behavior, the results don’t appear until the last line, which contains the closing

curly brace }, is entered:
Click here to view code image

 50> for candy in combinedRefillableCandyJar {
 51. println("I enjoy eating \(candy)!")
 52. }
I enjoy eating Peppermints!
I enjoy eating Lollipops!
I enjoy eating Twirlers!
I enjoy eating Candy Canes!
I enjoy eating Peanut Clusters!
I enjoy eating Banana Taffy!
I enjoy eating Sour Tarts!
I enjoy eating Cocoa Bar!
I enjoy eating Coconut Rounds!
 53>

Here’s the breakdown of this code block: Each item in the combinedRefillableCandyJar
array is assigned to the candy variable. Since there are nine values in the array, the for-in loop
iterates nine times; each time, the code bounded in the curly braces is executed. In this case, the value
is combined with a formatted String value and printed to the screen.

Another variation of the for-in loop provides both the value and the index of that value in the
array:
Click here to view code image

 53> for (index, candy) in enumerate(combinedRefillableCandyJar) {
 54. println("Candy \(candy) is in position \(index) of the array")
 55. }
Candy Peppermints is in position 0 of the array
Candy Lollipops is in position 1 of the array
Candy Twirlers is in position 2 of the array
Candy Candy Canes is in position 3 of the array
Candy Peanut Clusters is in position 4 of the array
Candy Banana Taffy is in position 5 of the array
Candy Sour Tarts is in position 6 of the array
Candy Cocoa Bar is in position 7 of the array
Candy Coconut Rounds is in position 8 of the array
 56>

Here, Swift’s enumerate() method wraps the previously defined array named
combinedRefillableCandyJar. This method conveniently returns a tuple containing both the
index of the value and the value itself in the array. The variables index and candy are then
referenced to create a combined string. (You will recall that tuples were introduced in Chapter 1.)

Dictionary Iteration
Iterating through a dictionary using the for-in construct is identical to that of the array example we
just covered. To illustrate, let’s reuse the dictionary you created earlier for Mr. Arceneaux’s other
candy route.
Click here to view code image

 56> for (key, value) in arceneauxsOtherCandyRoute {
 57. println("\(key) has a candy jar with the following contents: \(value)")
 58. }
Dupre's Quick Mart has a candy jar with the following contents: [Butterbar, Mrs. Goodbuys,

Giggles]
Smith's Pick-n-Sack has a candy jar with the following contents: [Jelly Munchers, Gooey
Bears]
Fontenot's Grocery has a candy jar with the following contents: [Choppers, Jaw Bombs]
 59>

Since dictionaries are composed of keys and values, they automatically return a tuple. That tuple is
captured, and its contents are assigned to the variables key and value. Notice that value is itself
an array, and the println method displays that array quite handily.

To further illustrate iterations, let’s go for the gold and expand the first for-in loop to contain
another for-in loop as follows:
Click here to view code image

 59> for (key, value) in arceneauxsOtherCandyRoute {
 60. for (index, candy) in enumerate(value) {
 61. println("\(key)'s candy jar contains \(candy) at position \(index)")
 62. }
 63. }
Dupre's Quick Mart's candy jar contains Butterbar at position 0
Dupre's Quick Mart's candy jar contains Mrs. Goodbuys at position 1
Dupre's Quick Mart's candy jar contains Giggles at position 2
Smith's Pick-n-Sack's candy jar contains Jelly Munchers at position 0
Smith's Pick-n-Sack's candy jar contains Gooey Bears at position 1
Fontenot's Grocery's candy jar contains Choppers at position 0
Fontenot's Grocery's candy jar contains Jaw Bombs at position 1
 64> :quit

This is an example of a nested for-in loop. For each iteration through
arceneauxsOtherCandyRoute (a dictionary), Swift is capturing the value in the variable
value (an array) and using the enumerate() method on that variable to perform further iteration.

Summary
The whirlwind tour of collections has come to an end. As you have seen, arrays and dictionaries are
great structures for organizing and grouping different types of data, from text to numbers. These
collection types can even contain other collections, allowing you to concoct very elaborate data
referencing schemes. Finally, you’ve witnessed Swift’s flexible syntax for declaring new arrays and
dictionaries. You can literally take your pick on how you want your code to read when creating new
collections.

In the next chapter, you will begin flexing your programming muscles with control structures,
which is where things will begin to get interesting.

Chapter 3. Taking Control

In the last chapter, you spent some time getting to know Swift’s collections: arrays and dictionaries.
Then you started looking at ways to iterate through those collections. In this chapter, you’ll continue
looking at iterating, and then move on to Swift’s ability to take directions on what to do at specific
intervals.

If you haven’t already done so, start up the REPL in the Terminal application (remember, you can
type xcrun swift to get it going). The line numbers in the figures in this chapter assume that you
are starting with a fresh REPL session.

For What It’s Worth
As you saw in the previous chapter, Swift’s ability to iterate through a collection, be it an array or a
dictionary, uses the for-in loop. Other variations of the for-in loop are also useful for iterating,
and not just through collections.

Counting On It
One common use for the for-in loop is as an enumeration mechanism. Using a special syntax Swift
provides, you can construct a for-in loop that counts a specific range of numbers. The construction
of this for-in loop is as follows:
Click here to view code image

for loopVariable in startNumber...endNumber

Just as in the previous chapter, the for-in loop requires a loop variable, which will hold the value
for each iteration. What follows the in keyword for this variation of the loop is a start number,
followed by three periods (...), followed by the end number.

The three periods is your way of telling Swift that the start and end number are part of a range. The
for loop will then start by assigning the start number to the loop variable, execute the loop, add 1 to
the loop variable, and compare it to the end number. As long as the loop variable is less than or equal
to the end number, the loop will continue to execute.

Try the following code snippet:
Click here to view code image

 1> var loopCounter : Int = 0
loopCounter: Int = 0
 2> for loopCounter in 1...10 {
 3. println("\(loopCounter) times \(loopCounter) equals \(loopCounter * loopCounter)")
 4. }
1 times 1 equals 1
2 times 2 equals 4
3 times 3 equals 9
4 times 4 equals 16
5 times 5 equals 25
6 times 6 equals 36
7 times 7 equals 49
8 times 8 equals 64
9 times 9 equals 81
10 times 10 equals 100

 5>

CamelCase
You may have noticed that throughout the text, variable names have a specific lower/uppercase
combination—the first word is lowercase, and subsequent words begin with an uppercase
character. This is called CamelCase and is a convention used by the Objective-C language.
Examples of CamelCase are myFirstBirthday, rockyMountainHigh, and bedAndBreakfast. Swift
carries this convention forward as well. Although you don’t have to use CamelCase in your
code, using this or another consistent naming convention throughout your code is
recommended.

On line 1, you declared an Int variable loopCounter that will be used as the loop variable. Line
2 has the for-in loop with the ... variation, setting 1 as the start number and 10 as the end
number.

On line 3 is a print command that will show the result of the multiplication of the loopCounter
variable times itself. Finally, on line 4 the closing bracket cues the REPL that the for-in loop
should be executed. Swift then emits 10 lines showing the squaring of numbers from 1 to 10.

Inclusive or Exclusive?
Another variation on the ... syntax for specifying a range is the ..< syntax, which tells Swift to
iterate the loop one value less than the end number. Using the previous example again, replace ...
with ..< and notice the difference:
Click here to view code image

 5> for loopCounter in 1..<10 {
 6. println("\(loopCounter) times \(loopCounter) equals \(loopCounter * loopCounter)")
 7. }
1 times 1 equals 1
2 times 2 equals 4
3 times 3 equals 9
4 times 4 equals 16
5 times 5 equals 25
6 times 6 equals 36
7 times 7 equals 49
8 times 8 equals 64
9 times 9 equals 81
 8>

The loop ended with the number 9, one less than the ending number specified, 10.
You may be wondering why this is useful. After all, couldn’t you just replace the 10 with 9, use the

... range specifier, and obtain the same effect?
Actually, the syntax is useful when iterating through a collection like the array, which has an index

that always starts at 0. Enter the following lines of code:
Click here to view code image

 8> let numbersArray = [11, 22, 33, 44, 55, 66, 77, 88, 99] numbersArray: [Int] = 9 values {
 [0] = 11
 [1] = 22
 [2] = 33
 [3] = 44

 [4] = 55
 [5] = 66
 [6] = 77
 [7] = 88
 [8] = 99
}
 9> for loopCounter in 0..<9 {
 10. println("value at index \(loopCounter) is \ (numbersArray[loopCounter])")
 11. }
value at index 0 is 11
value at index 1 is 22
value at index 2 is 33
value at index 3 is 44
value at index 4 is 55
value at index 5 is 66
value at index 6 is 77
value at index 7 is 88
value at index 8 is 99
 12>

Using the array size as the loop limit value might look more natural. No matter your preference,
remember that arrays always start their index at 0, which means the last element’s index is one less
than the total number of elements in the array. Don’t’ forget to compensate for that fact when iterating
through an array.

For Old Time’s Sake
Swift has yet another variation of the for loop, one that you might recognize if you’re familiar with
the C language. It doesn’t use the in keyword, but instead has three distinct parts:

for initialization; evaluation; modification

 initialization: Here, the loop variable is initialized.
 evaluation: A test is made at this location; as long as the result is true, the loop executes.
 modification: This is typically where the loop variable is modified.

One advantage to this form of for loop is that it allows the modification step to be more than just a
simple increment of 1. It can also be an increment of another number, or even a decrement.
Click here to view code image

 12> for loopCounter = 0; loopCounter < 9; loopCounter = loopCounter + 2 {
 13. println("value at index \(loopCounter) is \(numbersArray [loopCounter])")
 14. }
value at index 0 is 11
value at index 2 is 33
value at index 4 is 55
value at index 6 is 77
value at index 8 is 99
 15>

The choice of 2 as an increment value in the for loop modification component causes the iteration
to skip every other element in the array. You can even construct the loop to go backward, paying close
attention not to go below 0, the index of the first element of the array:
Click here to view code image

 15> for loopCounter = 8; loopCounter >= 0; loopCounter = loopCounter - 2 {

 16. println("value at index \(loopCounter) is \(numbersArray [loopCounter])")
 17. }
value at index 8 is 99
value at index 6 is 77
value at index 4 is 55
value at index 2 is 33
value at index 0 is 11
 18>

The flexibility of this for loop’s form makes it ideal for traversing collections in non-ordinal
fashion, or for any number of computational variations.

Writing Shorthand
In the previous two examples, the modification step of the for loop looks like this:

loopCounter = loopCounter + 2
loopCounter = loopCounter - 2

The first line adds 2 to loopCounter; the second line subtracts 2.
It’s a little long, isn’t it? Don’t worry. Swift has a more succinct syntax for adding or subtracting a

number from a variable:
Click here to view code image

 18> var anotherLoopCounter = 3
anotherLoopCounter: Int = 3
 19> anotherLoopCounter += 2
 20> anotherLoopCounter
$R0: Int = 5
 21>

Line 18 assigns 3 to the anotherLoopCounter variable. On line 19, the += syntax takes the
place of typing the variable again. It’s a shorthand method of saying “add the value on the right to the
variable on the left.” On line 20, typing the variable name by itself causes the REPL to show the value
and assign it to a temporary variable.

The same logic works for subtraction, too:
 21> anotherLoopCounter -= 3
 22> anotherLoopCounter
$R1: Int = 2
 23>

It gets better! If you simply want to increment the number by 1, you can use an even shorter syntax,
++:

 23> anotherLoopCounter++
$R2: Int = 2
 24>

Did you catch that? anotherLoopCounter was 2 before the increment. Why did it return 2 after
the increment? Shouldn’t it be 3 if you are incrementing by 1?

What you are seeing here is a side effect of the increment operation. The position of the ++ after the
variable name causes the value prior to the increment to be returned. So the value, 2, is assigned to the
temporary variable $R2. If you request the REPL to show the variable again, it will contain the
incremented value:

 24> anotherLoopCounter
$R3: Int = 3
 25>

This is called a post increment. The increment is happening after the evaluation of the variable.
This also works for subtraction as a post decrement:

 25> anotherLoopCounter--
$R4: Int = 3
 26> anotherLoopCounter
$R5: Int = 2
 27>

Just as there is a post increment, there’s also a pre increment:
 27> ++anotherLoopCounter
$R6: Int = 3
 28>

Notice that anotherLoopCounter, which was 2 on line 26, is now 3. Showing another-
LoopCounter again should reveal the same number:

 28> anotherLoopCounter
$R7: Int = 3
 29>

And so it is.
Finally, here’s the pre decrement:
 29> --anotherLoopCounter
$R8: Int = 2
 30> anotherLoopCounter
$R9: Int = 2
 31>

You’ll see more of these shorthand increment/decrement operators later. Just remember, they save
you some typing so be sure to recognize them in code and use them to add or subtract a number from a
variable.

It’s Time to Play
Up to this point in your journey, you’ve used the Swift REPL to type code and see results. The REPL
works well for short, quick lines of code that provide immediate feedback. However, as we move
forward, you’ll be writing more and more code. Being able to save and load that code and easily edit it
requires interacting with Xcode 6, Apple’s development environment for writing Swift apps for iOS
and OS X.

One of the new and fun features of Xcode 6 is playgrounds. A playground is an interactive slate
where you can type Swift instructions and see instant results—much like the REPL but way easier to
edit and change your source code.

Since you downloaded Xcode 6 in Chapter 1 in order to work with the REPL, you have everything
you need to get started. To begin, use the Finder (Figure 3.1) to launch Xcode 6 from your
Applications folder.

FIGURE 3.1 Finder showing Xcode 6

When starting Xcode 6, you’ll be greeted with the dialog in Figure 3.2.

FIGURE 3.2 The Xcode startup window

The first option is “Get started with a playground.” Click it, and a new window appears, asking you
to give a name to your playground and select the target platform (either iOS or OS X) (Figure 3.3).

FIGURE 3.3 Saving the playground

For now, keep the suggested name MyPlayground, and leave the Platform set to OS X. Click Next.
Select a location on your system, and click Create.

After the playground is saved, a new window appears (Figure 3.4). This is your new playground!
It’s like a fresh canvas with no paint—ready for you to type Swift code to your heart’s content.

FIGURE 3.4 The newly created playground window

The playground window is composed of two panes. The left pane shows the Swift code that you
type, one line at a time, along with the line number. This pane is very similar to the REPL sessions
you’ve used up to now, but more interactive.

The right pane shows the results of the code, corresponding to the line. This is the real power and
convenience of playgrounds—seeing your code run live, along with the results. As you’ll see,
playgrounds are excellent for learning Swift because you can try new concepts without the overhead of
waiting for the compiler to do its work.

Let’s go over the five lines of code that already appear in the window (Figure 3.5).

FIGURE 3.5 The default code in the initial playground window

Line 1 is a comment; Xcode shows comment text in green. A comment in Swift begins with two
forward slashes. The Swift compiler ignores whatever follows the two forward slashes, up to the end
of the current line. Developers use comments to add source code commentary, usually for the benefit
of other developers who might read the code someday. Adding code comments is akin to being a good
citizen; comments help others understand your app’s intent. Comments also help document your own
work so that months (or years) later you can quickly remember what you did.

Line 3 is an import statement. This statement tells Swift that your program needs resources (code
and data) from Cocoa, which is Apple’s framework for writing iOS and OS X apps.

Line 5 should look familiar; it’s a variable declaration, implicitly declaring a string type and
assigning "Hello, playground" to the variable.

Turn your attention to the Results sidebar on the right (Figure 3.6). The text "Hello,
playground" appears there. This is the result of Swift executing the code in the left pane.

FIGURE 3.6 The Results sidebar

Playgrounds make writing, editing, and understanding code so much easier. Throughout our use of
playgrounds in this book, you’ll appreciate that your work is preserved, and you can scroll back and
modify or alter previously written code.

Playground Rules
Wherever you use playgrounds throughout the remainder of this book, you’ll see a listing of the
code to type, accompanied by the code appearing in the playground along with the results. This
is intended to guide you line by line through the code and show you exactly how your results
will look onscreen.

Making Decisions
Can computers “think?” It’s an oft-debated topic. Part of thinking is making decisions, and in that
regard, computers certainly do well. An integral part of any app is decision making, and knowing what
to do and where to go is critical in the flow of a program.

Program flow is simply one long series of decisions: “if this is true then go here, else go there.” Or,
“while this is not true, continue doing this operation until it is.” Our lives are filled with such
decision-making instances—we don’t even give it a second thought. Tasks like deciding which pair of
shoes to wear, what time to leave for work, or when it’s appropriate to cross the street are all part of
the decision matrix we encounter each day.

It’s no different for your Mac, iPhone, or iPad. When you’re writing your app in Swift, it gives you
a rich set of ways to specify what your program should do, and when. We’ll spend a good part of the
rest of this chapter looking at Swift’s control flow constructs.

The Decisiveness of “If”
“If” is everywhere around us. It’s in our speech and is a constant presence in our mind as we go
through our day making decisions. It usually indicates the start of a sentence that contains the word

“then,” as in:
If the light is red, then apply the brake.
If the coffee is hot, then drink it.
Swift’s version isn’t as wordy as the English variants, but is nonetheless easy to read. Here’s the

general form of the Swift if statement:

if predicate {
 // do something
}

The predicate is evaluated by Swift, and if found to be true will cause statements in the first set of
curly braces to execute; otherwise the evaluation is false, and the code in the curly braces is ignored.

It can also include the word “else.” Carrying the previous sentence further:
If the light is red, then apply the brake, else stomp on the accelerator!
If the coffee is hot, then drink it, else throw it away.
These sentences carry a predicate and two possible outcomes, depending on the “truthfulness” of

the predicate in question. Is the light red? Is the coffee hot? If so, do something; otherwise do
something else. In programing, we call this construct the if/then/else clause.

Here’s the general form of the if/then/else as expressed in Swift:

if predicate {
 // do something
}
else {
{
 // do something else
}

When Swift encounters an if clause, it evaluates the predicate. If the predicate’s result is true, the
code in the first set of curly braces executes. The else clause provides a fallback; if the predicate
evaluates to false, the code in the second set of curly braces executes.

As an illustration, let’s set up the traffic light analogy in Swift’s parlance. Start by typing the
following code as lines 7 through 13 in the MyPlayground window (Figure 3.7).

var trafficLight = "Red"

if trafficLight == "Red" {
 print("Stop!")
} else {
 print("Go!")
}

FIGURE 3.7 Using if in the playground

On line 7, you are declaring a variable named trafficLight and assigning it the string "Red".
Line 9 contains the if statement. Our predicate here is the comparison of the variable

trafficLight to the string "Red", which is true because trafficLight was assigned the value
"Red" on line 7.

In the Results sidebar, you can see that “Stop!” is shown because the comparison of
trafficLight to the string "Red" is true.

How would you get the Results sidebar to show "Go!" instead of "Stop!"?
You could set the trafficLight variable to something other than "Red" on line 7 (Figure 3.8).

FIGURE 3.8 Executing the else clause

Now the Results sidebar shows "Go!" as you would expect, since the comparison of
trafficLight to "Red" on line 9 is false.

Another approach would be to leave the variable on line 7 set to the string "Red" and modify the
comparison operator on line 9 (Figure 3.9).

FIGURE 3.9 An alternate execution of the else clause

The comparison operator != means does not equal, which is the opposite of ==. The logic of the
sentence on line 9 is inverted, and literally reads: “if the trafficLight variable does not equal
Red, print Stop! Otherwise print Go!”

Testing for Equality in Swift
Up to this point, you’ve seen a single equals sign when assigning a value to a variable or
constant. When doing a comparison between two values, variables, or constants, the double
equal (==) is used. Line 9 in Figure 3.7 uses this comparison operator, and we’ll go over
additional comparison operators shortly.

So far, you’ve been comparing strings. Let’s try comparing numbers and look at a few new
comparison operators. Just for grins, keep the existing code on lines 7 through 13, and just add the

following new code beginning on line 15 (Figure 3.10):
Click here to view code image

var number1 : Int = 33
var number2 : Int = 101

if number1 >= number2 {
 print("33 is greater than 101")
} else {
 print("33 is less than 101")
}

FIGURE 3.10 Comparing numbers in an if statement

Line 18 shows the greater-than (>) symbol as a comparison operator. In the example, number1
(value of 33) is less than number2 (value of 101) so the expression is false, and the code in the
second clause executes. If you replace the greater-than symbol on line 18 with the less-than (<)
symbol, the condition becomes true, and the code in the first clause executes. Go ahead and try it...
that’s what playgrounds are for!

There are more operators you can use. Swift supports the equality tests in Table 3.1.

TABLE 3.1 Swift’s Equality Operations

These operators also work on more than just numbers. You can use them to compare strings, too.
Strings can be compared to each other based on alphabetical order. Consider lines 24 through 29 in
Figure 3.11.
Click here to view code image

let tree1 = "Oak"
let tree2 = "Pecan"
let tree3 = "Maple"

let treeCompare1 = tree1 > tree2
let treeCompare2 = tree2 > tree3

FIGURE 3.11 String comparisons

On lines 24 through 26, three constant strings are declared: Oak, Pecan, and Maple. Line 28 shows
the comparison of tree1 (Oak) to tree2 (Pecan) and the resulting value (false). It’s obvious that
tree1 is not greater than tree2, because alphabetically, Oak comes before Pecan. Line 29 indicates
a result of true, because tree2 (Pecan) indeed is greater than (or comes after) tree3 (Maple).

When One Choice Is Not Enough
Sometimes a comparison yields more than just an either/or scenario. Take for example, the three tree
constants you just created. Each type of tree is associated with a type of product. What if you wanted
to return a product for each tree type? Type the following code on lines 31 through 43 (Figure 3.12)
and let’s talk about the results.
Click here to view code image

var treeArray = [tree1, tree2, tree3]

for tree in treeArray {
 if tree == "Oak" {
 println("Furniture");
 }
 else if tree == "Pecan" {
 println("Pie");
 }
 else if tree == "Maple" {
 println("Syrup")
 }
}

This code snippet combines several concepts. On line 31, you declare an array composed of the
three tree constants declared earlier.

FIGURE 3.12 Multiple if statements wrapped in a for loop

On line 33, the for statement is used to iterate through the newly created array, with the variable
tree holding each array element throughout the iteration process. Lines 34, 37, and 40 all do a
comparison of the variable tree to the known strings that were assigned earlier, and if a match is
made, the product for that tree is printed.

Switching Things Around
In the previous example, the three if statements handled the available cases, but what happens if
there are more possibilities to compare? Long lists of repeating if statements can be tedious to type
and difficult to read. Swift gives you an alternative when handling more than just a handful of
predicates: the switch statement.

You’ll find that this new construct comes in handy in a number of coding scenarios. Type in the
following code, and study the results in Figure 3.13 to see exactly what is happening.

treeArray += ["Cherry"]

for tree in treeArray {
 switch tree {
 case "Oak":
 println("Furniture")
 case "Pecan":
 println("Pie")
 case "Maple":
 println("Syrup")
 default:
 println("Wood")
 }
}

FIGURE 3.13 The switch-case statement wrapped in a for loop

Line 48 shows the switch keyword, followed by the tree variable, which is assigned each
member in the treeArray throughout the for loop iteration on line 47. A closing curly brace
contains the various case statements that fall below it. Swift stops at each case statement and
evaluates the tree variable for a match. When one is found, the code bounded between the triggered
case statement and the next case statement is executed.

You may be wondering what the default keyword does. It is a “catch-all” case whose code is
executed when all other cases fail. Here, it is never executed because all three tree types are covered in
case statements, but what if you were to add a fourth tree in the array? Line 55 in Figure 3.14 does
just that:

FIGURE 3.14 The effect on the switch-case statement when adding to the array

Now the default case is activated because the new value in the array does not have a matching
case statement, and "Wood" is printed when "Cherry" is encountered in the for loop.

Where’s the Break?
If you’re familiar with Objective-C, you may have used switch-case statements in that
language, and are wondering where the break statement is in each case. Simply put, Swift
does not require it. It’s implicitly understood that execution will “fall through” the remaining
case statements on a match, and the intervening code won’t be executed.

Cherry wood certainly seems less appealing than cherry pie. How could you alter the statement to
accommodate printing the word "Pie" for both Pecan and Cherry? Obviously, you could add another
case statement to catch the case of the variable tree being equal to "Cherry" and that would
certainly work, but there is a much more neat and tidy alternative. Swift allows you to combine two or
more values in a single case for evaluation. Modify line 51 to case "Pecan", "Cherry": as in
Figure 3.15, and notice the output in the Results sidebar.

Swift duly notes that in the case of "Pecan" and "Cherry", the code to print "Pie" was
executed two times. You don’t have to stop there. As an exercise, you can add other names like
"Lemon" and "Apple" to line 51. This flexibility makes switch-case a powerful alternative to
other normally used conditional constructs.

FIGURE 3.15 Multiple constants on a single case

Up to this point, you’ve been using switch-case to evaluate strings. That is more than can be
done in languages like Objective-C and C, which can evaluate only numbers. Numbers in Swift,
including ranges, are easy to compare. The following code snippet illustrates this by using a
switch-case statement to append the appropriate ordinal abbreviation to a number between 1 and 9
(Figure 3.16).

var position = 8

switch position {
 case 1:
 println("\(position)st")

 case 2:
 println("\(position)nd")

 case 3:
 println("\(position)rd")

 case 4...9:
 println("\(position)th")

 default:
 println("Not covered")
}

FIGURE 3.16 Using switch-case on numeric values

On line 60, position is declared as a variable with the number 8 and execution falls through to
the switch-case where the variable is evaluated against the possible cases. Since numbers 4
through 9 always end in “th”, line 72 takes advantage of Swift’s range (...) operator to specify every
whole number between 4 and 9, with the remaining cases being covered on the previous lines.

Feel free to experiment with this code by changing the value of position on line 60. The Results
sidebar will update to indicate the code being executed when you make your change.

While You Were Away...
Up to this point, you’ve seen some of Swift’s powerful control and iterative capabilities with if, for,
and switch-case, but additional constructs can provide other natural ways of expressing intent.

Sometimes in the course of developing software you want to express the logic of a loop in terms of
an unknown iteration count. For example, you want to iterate on something until a specific set of
criteria is met. For example, let’s say you want to compute a table of values, but don’t want to stop
until the computed value is greater than some number.

The while loop is a Swift loop construct that allows you to continue executing the same code, over
and over, until a condition of your choosing is met. Its basic form is:

while someCondition {
 // execute code
}

The condition someCondition is a Boolean expression that can be either true or false. If true, the
code in the curly braces is executed, and control goes back to the while loop. If the condition result
is false, execution moves past the encapsulated code.

To see the while loop in action, type the following code on lines 79 through 85 (Figure 3.17), and
watch the results in the Results sidebar.

var base = 2

var target = 1000
var value = 0

while value > target {
 value += base
}

FIGURE 3.17 Iterating a value in a while loop

A variation of the while loop is the do-while. This type of loop executes the code and then
evaluates the expression before deciding whether to continue the execution or move on. Here’s the
form of this style of loop:

do {
 // execute code
} while someCondition

The condition someCondition is the same Boolean expression expected in the while loop, but
is evaluated after the code in the curly braces is executed initially. In Figure 3.18, lines 87 through 90
show a do-while loop executing the same code as the earlier while loop in lines 83 through 85.
Notice the difference in the value for the do-while loop: It is 1002 instead of the while loop’s
value of 1000. Why?

do
{
 value += base
} while value < target

FIGURE 3.18 A do-while loop

When you entered the do-while loop, in lines 87 through 90, value was already 1000, due to
being previously set by the while loop in lines 83 through 85. The do-while loop enforced the
execution of the code, which added base (2) to value (1000), and then evaluated the expression. At
that point, value (1002) was not less than target (1000); the condition was false, and the do-
while loop exited.

Inspecting Your Code
One feature of playgrounds we’ve glossed over so far is the ability to inspect and see the output of the
code. In the Results sidebar, Swift is constantly analyzing the code you type, even reporting how many
times a code segment runs. This is helpful for analyzing how many times a loop runs, and can even be
used in certain scenarios to optimize and make your code run faster and better.

The playgrounds environment actually offers more ways to inspect your code in the Results sidebar.
Type the following code snippet, and study the results of the code on lines 92 through 128 in Figure
3.19. This code uses a combination of while and switch-case to monitor the increasing speed of
a car.
Click here to view code image

// Speed Limit Simulation
var speedLimit = 75
var carSpeed = 0

while (carSpeed < 100) {
 carSpeed++
 switch carSpeed {
 case 0..<20:
 println("\(carSpeed): You're going really slow")

 case 20..<30:
 println("\(carSpeed): Pick up the pace")

 case 30..<40:

 println("\(carSpeed): Tap the accelerator")

 case 40..<50:
 println("\(carSpeed): Hitting your stride")

 case 50..<60:
 println("\(carSpeed): Moving at a good clip")

 case 60..<70:
 println("\(carSpeed): Now you're cruising!")

 case 70...speedLimit:
 println("\(carSpeed): Warning... approaching the speed limit")

 default:
 println("\(carSpeed): You're going too fast!")

 }

 if carSpeed > speedLimit {
 break
 }
}

FIGURE 3.19 The speed limit code snippet

This example monitors the ever-increasing speed of a car. On line 93, the speed limit is set to 75
(miles per hour), and on the following line, the car’s speed variable is set to 0. The while loop on
line 96 contains the condition that the speed is less than 100. As the loop progresses, the car’s speed is
incremented by 1 on line 97, then evaluated in a switch-case statement.

Each case handles a range of speeds, providing feedback on each value. After you type in the code,
notice that the number of times each case is executed appears in the Results sidebar. If you hover your
mouse over any of those lines in the Results sidebar, you’ll see an “eye” icon and a circle.

Clicking the circle (shown in Figure 3.20) to the right of the results line brings up the Timeline
pane, which shows details about the values in the playground. It gives you a blow-by-blow account of

what your code is doing. As you scroll through this new pane, you’ll notice some interesting panels of
data that appear. We’ll ignore most of these for now. Scroll all the way down and view the output of
the println method showing the speed and the message “You’re going too fast!”

FIGURE 3.20 The icons in the Results sidebar

With the Timeline pane (Figure 3.21), you can review the exact behavior of your code, even down
to the messages that were output, how many times they were output, and their order. This is a very
insightful part of playgrounds, scroll around and get a taste of what else is in this pane. When you’re
finished exploring, click the X in the upper-right corner to close it, making room for your code and the
Results sidebar.

FIGURE 3.21 The Timeline pane

Give Me a Break!
Sometimes in the process of using a loop you may find yourself wanting to exit early. The previous
code snippet provides such an opportunity. Once the car is speeding past the speed limit, the message
“You’re going too fast!” continues to print all the way to the car going to 100 miles per hour. What if
you wanted to stop the while loop once the car exceeded the speed limit? This is achievable using
the break keyword. Using break allows you to exit early from a loop or switch-case
statement, allowing control to go immediately to the nearest encompassing block of code. Lines 125
through 127 of Figure 3.22 show how this is done.

FIGURE 3.22 Using break to exit the while loop early

The if statement on line 125 checks to see if the car’s speed has exceeded the speed limit, and if
so, issues a break. Note that this breaks the encompassing while loop, effectively ending the
iteration.

Summary
In this chapter, you’ve seen Swift’s control constructs in action, and have tamed the wild west of
while and do-while loops. You’ve also been exposed to one of Swift and Xcode 6’s neatest
features: playgrounds. These interactive documents let you play with your code like putty in your
hands, allowing you to see changes in near real time, as well as analyze the results. They’re a great
way to experiment and learn the Swift language.

Give your mind a rest and get ready for the next chapter, where there’s more Swift goodness
coming!

Chapter 4. Writing Functions and Closures

We’ve covered a lot up to this point in the book: variables, constants, dictionaries, arrays, looping
constructs, control structures, and the like. You’ve used both the REPL command-line interface and
now Xcode 6’s playgrounds feature to type in code samples and explore the language.

Up to this point, however, you have been limited to mostly experimentation: typing a line or three
here and there and observing the results. Now it’s time to get more organized with your code. In this
chapter, you’ll learn how to tidy up your Swift code into nice clean reusable components called
functions.

Let’s start this chapter with a fresh, new playground file. If you haven’t already done so, launch
Xcode 6 and create a new playground by choosing File > New > Playground, and name it Chapter 4.
We’ll explore this chapter’s concepts with contrived examples in similar fashion to earlier chapters.

The Function
Think back to your school years again. This time, remember high school algebra. You were paying
attention, weren’t you? In that class your teacher introduced the concept of the function. In essence, a
function in arithmetic parlance is a mathematical formula that takes an input, performs a calculation,
and provides a result, or output.

Mathematical functions have a specific notation. For example, to convert a Fahrenheit temperature
value to the equivalent Celsius value, you would express that function in this way:

The important parts of the function are:
 Name: In this case the function’s name is f.
 Input, or independent variable: Contains the value that will be used in the function. Here it’s x.
 Expression: Everything on the right of the equals sign.
 Result: Considered to be the value of f(x) on the left side of the equals sign.

Functions are written in mathematical notation but can be described in natural language. In English,
the sample function could be described as:

A function whose independent variable is x and whose result is the difference of the independent
variable and 32, with the result being multiplied by 5, with the result being divided by 9.

The expression is succinct and tidy. The beauty of this function, and functions in general, is that
they can be used over and over again to perform work, and all they need to do is be called with a
parameter. So how does this relate to Swift? Obviously I wouldn’t be talking about functions if they
didn’t exist in the Swift language. And as you’ll see, they can perform not just mathematical
calculations, but a whole lot more.

Coding the Function in Swift
Swift’s notation for establishing the existence of a function is a little different than the mathematical
one you just saw. In general, the syntax for declaring a Swift function is:
Click here to view code image

func funcName(paramName : type, ...) -> returnType

Take a look at an example to help clarify the syntax. Figure 4.1 shows the code in the Chapter 4.
playground file, along with the function defined on lines 7 through 13. This is the function discussed
earlier, but now in a notation the Swift compiler can understand.

FIGURE 4.1 Temperature conversion as a Swift function

Start by typing in the following code.
Click here to view code image

func fahrenheitToCelsius(fahrenheitValue : Double) -> Double {
 var result : Double

 result = (((fahrenheitValue - 32) * 5) / 9)

 return result
}

As you can see on line 7, there is some new syntax to learn. The func keyword is Swift’s way to
declare a function. That is followed by the function name (fahrenheitToCelsius), and the
independent variable’s name, or parameter name in parentheses. Notice that the parameter’s type is
explicitly declared as Double.

Following the parameter are the two characters ->, which denote that this function is returning a
value of a type (in this case, a Double type), followed by the open curly brace, which indicates the
start of the function.

On line 8, you declare a variable of type Double named result. This will hold the value that will
be given back to anyone who calls the function. Notice it is the same type as the function’s return type
declared after the -> on line 7.

The actual mathematical function appears on line 10, with the result of the expression assigned to
result, the local variable declared in line 8. Finally on line 12, the result is returned to the caller
using the return keyword. Any time you wish to exit a function and return to the calling party, you
use return along with the value being returned.

The Results sidebar doesn’t show anything in the area where the function was typed. That’s because
a function by itself doesn’t do anything. It has the potential to perform some useful work, but it must
be called by a caller. That’s what you’ll do next.

Exercising the Function
Now it’s time to call on the function you just created. Type in the following two lines of code, and pay
attention to the Results sidebar in Figure 4.2.

Click here to view code image

var outdoorTemperatureInFahrenheit = 88.2
var outdoorTemperatureInCelsius = fahrenheitToCelsius(outdoorTemperature InFahrenheit)

FIGURE 4.2 The result of calling the newly created function

On line 15, you’ve declared a new variable, outdoorTemperatureInFahrenheit, and set its
value to 88.2 (remember, Swift infers the type in this case as a Double). That value is then passed to
the function on line 16, where a new variable, outdoorTemperatureInCelsius, is declared,
and its value is captured as the result of the function.

The Results sidebar shows that 31.222222 (repeating decimal) is the result of the function, and
indeed, 31.2 degrees Celsius is equivalent to 88.2 degrees Fahrenheit. Neat, isn’t it? You now have a
temperature conversion tool right at your fingertips.

Now, here’s a little exercise for you to do on your own: Write the inverse method,
celsiusToFahrenheit using the following formula for that conversion:

Go ahead and code it up yourself, but resist the urge to peek ahead. Don’t look until you’ve written
the function, and then check your work against the following code and in Figure 4.3.
Click here to view code image

func celsiusToFahrenheit(celsiusValue : Double) -> Double {
 var result : Double

 result = (((celsiusValue * 9) / 5) + 32)

 return result
}

outdoorTemperatureInFahrenheit = celsiusToFahrenheit(outdoorTemperature InCelsius)

FIGURE 4.3 Declaring the inverse function, celsiusToFahrenheit

The inverse function on lines 18 through 24 simply implements the Celsius to Fahrenheit formula
and returns the result. Passing in the Celsius value of 31.22222 on line 26, you can see that the result
is the original Fahrenheit value, 88.2.

You’ve just created two functions that do something useful: temperature conversions. Feel free to
experiment with other values to see how they change between the two related functions.

More Than Just Numbers
The notion of a function in Swift is more than just the mathematical concept we have discussed. In a
broad sense, Swift functions are more flexible and robust in that they can accept more than just one
parameter, and even accept types other than numeric ones.

Consider creating a function that takes more than one parameter and returns something other than a
Double (Figure 4.4).
Click here to view code image

func buildASentence(subject : String, verb : String, noun : String) -> String {
 return subject + " " + verb + " " + noun + "!"
}

buildASentence("Swift", "is", "cool")
buildASentence("I", "love", "languages")

FIGURE 4.4 A multi-parameter function

After typing in lines 28 through 33, examine your work. On line 28, you declared a new function,
buildASentence, with not one but three parameters: subject, verb, and noun, all of which are
String types. The function also returns a String type as well. On line 29, the concatenation of
those three parameters, interspersed with spaces to make the sentence readable, is what is returned.

For clarity, the function is called twice on lines 32 and 33, resulting in the sentences in the Results
sidebar. Feel free to replace the parameters with values of your own liking and view the results
interactively.

Parameters Ad Nauseam
Imagine you’re writing the next big banking app for the Mac, and you want to create a way to add
some arbitrary number of account balances. Something so mundane can be done a number of ways,
but you want to write a Swift function to do the addition. The problem is you don’t know how many
accounts will need to be summed at any given time.

Enter Swift’s variable parameter passing notation. It provides you with a way to tell Swift, “I don’t
know how many parameters I’ll need to pass to this function, so accept as many as I will give.” Type
in the following code, which is shown in action on lines 35 through 48 in Figure 4.5.
Click here to view code image

// Parameters Ad Nauseam
func addMyAccountBalances(balances : Double...) -> Double {
 var result : Double = 0

 for balance in balances {
 result += balance
 }
 return result
}

addMyAccountBalances(77.87)
addMyAccountBalances(10.52, 11.30, 100.60)
addMyAccountBalances(345.12, 1000.80, 233.10, 104.80, 99.90)

FIGURE 4.5 Variable parameter passing in a function

This function’s parameter, known as a variadic parameter, can represent an unknown number of
parameters.

On line 36, our balances parameter is declared as a Double followed by the ellipsis (...) and
returns a Double. The presence of the ellipsis is the clue: It tells Swift to expect one or more
parameters of type Double when this function is called.

The function is called three times on lines 46 through 48, each with a different number of bank
balances. The totals for each appear in the Results sidebar.

You might be tempted to add additional variadic parameters in a function. Figure 4.6 shows an
attempt to extend addMyAccountBalances with a second variadic parameter, but it results in a
Swift error.

FIGURE 4.6 Adding additional variable parameters results in an error.

This is a no-no, and Swift will quickly shut you down with an error. Only the last parameter of a
function may contain the ellipsis to indicate a variadic parameter. All other parameters must refer to a
single quantity.

Since we’re on the theme of bank accounts, add two more functions: one that will find the largest
balance in a given list of balances, and another that will find the smallest balance. Type the following
code, which is shown on lines 50 through 75 in Figure 4.7.
Click here to view code image

func findLargestBalance(balances : Double...) -> Double {
 var result : Double = -Double.infinity

 for balance in balances {
 if balance > result {
 result = balance
 }
 }

 return result
}

func findSmallestBalance(balances : Double...) -> Double {
 var result : Double = Double.infinity

 for balance in balances {
 if balance < result {
 result = balance
 }
 }

 return result
}

findLargestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)
findSmallestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)

FIGURE 4.7 Functions to find the largest and smallest balance

Both functions iterate through the parameter list to find the largest and smallest balance. Unless you
have an account with plus or minus infinity of your favorite currency, these functions will work well.
On lines 74 and 75, both functions are tested with the same balances used earlier, and the Results
sidebar confirms their correctness.

Functions Fly First Class
One of the powerful features of Swift functions is that they are first-class objects. Sounds pretty
fancy, doesn’t it? What that really means is that you can handle a function just like any other value.
You can assign a function to a constant, pass a function as a parameter to another function, and even
return a function from a function!

To illustrate this idea, consider the act of depositing a check into your bank account, as well as
withdrawing an amount. Every Monday, an amount is deposited, and every Friday, another amount is
withdrawn. Instead of tying the day directly to the function name of the deposit or withdrawal, use a
constant to point to the function for the appropriate day. The code on lines 77 through 94 in Figure 4.8
provides an example.
Click here to view code image

var account1 = ("State Bank Personal", 1011.10)
var account2 = ("State Bank Business", 24309.63)

func deposit(amount : Double, account : (name : String, balance : Double)) -> (String, Double) {
 var newBalance : Double = account.balance + amount
 return (account.name, newBalance)
}

func withdraw(amount : Double, account : (name : String, balance : Double)) -> (String, Double) {
 var newBalance : Double = account.balance - amount
 return (account.name, newBalance)
}
let mondayTransaction = deposit
let fridayTransaction = withdraw

let mondayBalance = mondayTransaction(300.0, account1)
let fridayBalance = fridayTransaction(1200, account2)

FIGURE 4.8 Demonstrating functions as first-class types

For starters, you create two accounts on lines 77 and 78. Each account is a tuple consisting of an
account name and balance.

On line 80, a function is declared named deposit that takes two parameters: the amount (a
Double) and a tuple named account. The tuple has two members: name, which is of type String,
and balance, which is a Double that represents the funds in that account. The same tuple type is
also declared as the return type.

At line 81, a variable named newBalance is declared, and its value is assigned the sum of the
balance member of the account tuple and the amount variable that is passed. The tuple result is
constructed on line 82 and returned.

The function on line 85 is named differently (withdraw) but is effectively the same, save for the
subtraction that takes place on line 86.

On lines 90 and 91, two new constants are declared and assigned to the functions respectively by
name: deposit and withdraw. Since deposits happen on a Monday, the mondayTransaction
is assigned the deposit function. Likewise, withdrawals are on Friday, and the
fridayTransaction constant is assigned the withdraw function.

Lines 93 and 94 show the results of passing the account1 and account2 tuples to the
mondayTransaction and fridayTransaction constants, which are in essence the functions
deposit and withdraw. The Results sidebar bears out the result, and you’ve just called the two

functions by referring to the constants.

Throw Me a Function, Mister
Just as a function can return an Int, Double, or String, a function can also return another
function. Your head starts hurting just thinking about the possibilities, doesn’t it? Actually, it’s not as
hard as it sounds. Check out lines 96 through 102 in Figure 4.9.
Click here to view code image

func chooseTransaction(transaction: String) -> (Double, (String, Double)) -> (String, Double) {
 if transaction == "Deposit" {
 return deposit
 }

 return withdraw
}

On line 96, the function chooseTransaction takes a String as a parameter, which it uses to
deduce the type of banking transaction. That same function returns a function, which itself takes a
Double, and a tuple of String and Double, and returns a tuple of String and Double. Phew!

FIGURE 4.9 Returning a function from a function

That’s a mouthful. Let’s take a moment to look at that line closer and break it down a bit. The line
begins with the definition of the function and its sole parameter: transaction, followed by the ->
characters indicating the return type:
Click here to view code image

func chooseTransaction(transaction: String) ->

After that is the return type, which is a function that takes two parameters: the Double, and a tuple
of Double and String, as well as the function return characters ->:

(Double, (String, Double)) ->

And finally, the return type of the returned function, a tuple of String and Double.
What functions did you write that meet this criteria? The deposit and withdraw functions, of

course! Look at lines 80 and 85. Those two functions are bank transactions that were used earlier.
Since they are defined as functions that take two parameters (a Double and a tuple of String and
Double) and return a tuple of Double and String, they are appropriate candidates for return
values in the chooseTransaction function on line 96.

Back to the chooseTransaction function: On line 97, the transaction parameter, which is
a String, is compared against the constant string "Deposit" and if a match is made, the
deposit function is returned on line 98; otherwise, the withdraw function is returned on line 101.

Ok, so you have a function which itself returns one of two possible functions. How do you use it?
Do you capture the function in another variable and call it?

Actually, there are two ways this can be done (Figure 4.10).
Click here to view code image

// option 1: capture the function in a constant and call it
let myTransaction = chooseTransaction("Deposit")
myTransaction(225.33, account2)

// option 2: call the function result directly
chooseTransaction("Withdraw")(63.17, account1)

FIGURE 4.10 Calling the returned function in two different ways

On line 105 you can see that the returned function for making deposits is captured in the constant
myTransaction, which is then called on line 106 with account2 increasing its amount by
$225.33.

The alternate style is on line 109. There, the chooseTransaction function is being called to
gain access to the withdraw function. Instead of assigning the result to a constant, however, the
returned function is immediately pressed into service with the parameters 63.17 and the first
account, account1. The results are the same in the Results sidebar: The withdraw function is

called and the balance is adjusted.

A Function in a Function in a...
If functions returned by functions and assigned to constants isn’t enough of an enigma for you, how
about declaring a function inside of another function? Yes, such a thing exists. They’re called nested
functions.

Nested functions are useful when you want to isolate, or hide, specific functionality that doesn’t
need to be exposed to outer layers. Take, for instance, the code in Figure 4.11.
Click here to view code image

// nested function example
func bankVault(passcode : String) -> String {
 func openBankVault(Void) -> String {
 return "Vault opened"
 }
 func closeBankVault(Void) -> String {
 return "Vault closed"
 }
 if passcode == "secret" {
 return openBankVault()
 }
 else {
 return closeBankVault()
 }
}

println(bankVault("wrongsecret"))
println(bankVault("secret"))

FIGURE 4.11 Nested functions in action

On line 112, a new function, bankVault, is defined. It takes a single parameter, passcode,
which is a String, and returns a String.

Lines 113 and 116 define two functions inside of the bankVault function: openBankVault and

closeBankVault. Both of these functions take no parameter and return a String.
On line 119, the passcode parameter is compared with the string "secret" and if a match is

made, the bank vault is opened by calling the openBankVault function. Otherwise, the bank vault
remains closed.

Into the Void
On lines 113 and 116, you’ll notice a new Swift keyword: Void. It means exactly what you
might think: emptiness. The Void keyword is used mostly as a placeholder when declaring
empty parameter lists, and is optional in this case. However, be aware of it because you will be
seeing more of it later.

Lines 127 and 128 show the result of calling the bankVault method with an incorrect and correct
passcode. What’s important to realize is that the openBankVault and closeBankVault
functions are “enclosed” by the bankVault function, and are not known outside of that function.

If you were to attempt to call either openBankVault or closeBankVault outside of the
bankVault function, you would get an error. That’s because those functions are not in scope. They
are, in effect, hidden by the bankVault function and are unable to be called from the outside.
Figure 4.12 illustrates an attempt to call one of these nested functions.

FIGURE 4.12 The result of attempting to call a nested function from a different scope

In general, the obvious benefit of nesting functions within functions is that it prevents the
unnecessary exposing of functionality. In Figure 4.12, The bankVault function is the sole gateway
to opening and closing the vault, and the functions that perform the work are isolated within that
function. Always consider this when designing functions that are intended to work together.

Default Parameters
As you’ve just seen, Swift functions provide a rich area for utility and experimentation. A lot can be

done with functions and their parameters to model real-world problems. Functions provide another
interesting feature called default parameter values, which allow you to declare functions that have
parameters containing a “prefilled” value.

Let’s say you want to create a function that writes checks. Your function would take two
parameters: a payee (the person or business to whom the check is written) and the amount. Of course,
in the real world, you will always want to know these two pieces of information, but for now, think of
a function that would assume a default payee and amount in the event the information wasn’t passed.

Figure 4.13 shows such a function on lines 130 through 132. The writeCheck function takes two
String parameters, the payee and amount, and returns a String that is simply a sentence
describing how the check is written.
Click here to view code image

func writeCheck(payee : String = "Unknown", amount : String = "10.00") -> String {
 return "Check payable to " + payee + " for $" + amount
}

writeCheck()
writeCheck(payee : "Donna Soileau")
writeCheck(payee : "John Miller", amount : "45.00")

FIGURE 4.13 Using default parameters in a function

Take note of the declaration of the function on line 130:
Click here to view code image

func writeCheck(payee : String = "Unknown", amount : String = "10.00") -> String

What you haven’t seen before now is the assignment of the parameters to actual values (in this case,
payee is being set to "Unknown" by default and amount is being set to "10.00"). This is how
you can write a function to take default parameters—simply assign the parameter name to a value!

So how do you call this function? Lines 134 through 136 show three different ways:
 Line 134 passes no parameters when calling the function.

 Line 135 passes a single parameter.
 Line 136 passes both parameters.

In the case where no parameters are passed, the default values are used to construct the returned
String. In the other two cases, the passed parameter values are used in place of the default values,
and you can view the results of the calls in the Results sidebar.

Another observation: When calling a function set up to accept default parameters, you must pass the
parameter name and a colon as part of that parameter. On line 135, only one parameter is used:
Click here to view code image

writeCheck(payee : "Donna Soileau")

And on line 136, both parameter names are used:
Click here to view code image

writeCheck(payee : "John Miller", amount : "45.00")

Default parameters give you the flexibility of using a known value instead of taking the extra effort
to pass it explicitly. They’re not necessarily applicable for every function out there, but they do come
in handy at times.

What’s in a Name?
As Swift functions go, declaring them is easy, as you’ve seen. In some cases, however, what really
composes the function name is more than just the text following the keyword func.

Each parameter in a Swift function can have an optional external parameter preceding the
parameter name. External names give additional clarity and description to a function name. Consider
another check writing function in Figure 4.14, lines 138 through 140.
Click here to view code image

func writeCheck(payer : String, payee : String, amount : Double) -> String {
 return "Check payable from \(payer) to \(payee) for $\(amount)"
}

writeCheck("Dave Johnson", "Coz Fontenot", 1000.0)

FIGURE 4.14 A function without external parameter names

This function is different from the earlier check writing function on lines 130 through 132 in two
ways:

 An additional parameter named payer to indicate who the check is coming from
 No default parameters

On line 142, the new writeCheck function is called with three parameters: two String values
and a Double value. From the name of the function, its purpose is clearly to write a check. When
writing a check, you need to know several things: who the check is being written for; who is writing
the check; and for how much? A good guess is that the Double parameter is the amount, which is a
number. But without actually looking at the function declaration itself, how would you know what the
two String parameters actually mean? Even if you were to deduce that they are the payer and payee,
how do you know which is which, and in which order to pass the parameters?

External parameter names solve this problem by adding an additional name to each parameter that
must be passed when calling the function, which makes very clear to anyone reading the calling
function what the intention is and the purpose of each parameter. Figure 4.15 illustrates this quite
well.
Click here to view code image

func writeBetterCheck(from payer : String, to payee : String, total amount : Double) -> String {
 return "Check payable from \(payer) to \(payee) for $\(amount)"
}

writeBetterCheck(from : "Fred Charlie", to: "Ryan Hanks", total : 1350.0)

FIGURE 4.15 A function with external parameter names

On line 144, you declare a function, writeBetterCheck, which takes the same number of
parameters as the function on line 138. However, each of the parameters in the new function now has
its own external parameter: from, to, and total. The original parameter names are still there, of
course, used inside the function itself to reference the assigned values.

This extra bit of typing pays off on line 148, when the writeBetterCheck function is called.
Looking at that line of code alone, the order of the parameters and what they indicate is clear: Write a
check from Fred Charlie to Ryan Hanks for a total of $1350.

When It’s Good Enough
External parameter names bring clarity to functions, but they can feel somewhat redundant and
clumsy as you search for something to accompany the parameter name. Actually, you may find that in
certain cases, the parameter name is descriptive enough to act as the external parameter name. Swift
allows you to use the parameter name as an external name, too, with a special syntax: the # character.

Instead of providing an external parameter name, simply prepend the # character to the parameter
name, and use that name when calling the new function writeBestCheck, as done on line 150 in
Figure 4.16. This is known as shorthand external parameter naming.

FIGURE 4.16 Using the shorthand external parameter syntax

The three parameter names, from, to, and total, all are prepended with #. On line 154, the
parameter names are used as external parameter names once again to call the function, and the use of
those names clearly shows what the function’s purpose and parameter order is: a check written from
Bart Stewart to Alan Lafleur for a total of $101.
Click here to view code image

func writeBestCheck(#from : String, #to : String, #total : Double) -> String {
 return "Check payable from \(from) to \(to) for $\(total)"
}

writeBestCheck(from : "Bart Stewart", to: "Alan Lafleur", total : 101.0)

To Use or Not to Use?
External parameter names bring clarity to functions, but they also require more typing on the part of
the caller who uses your functions. Since they are optional parts of a function’s declaration, when
should you use them?

In general, if the function in question can benefit from additional clarity of having external
parameter names provided for each parameter, by all means use them. The check writing example is
such a case. Avoid parameter ambiguity in the cases where it might exist. On the other hand, if you’re
creating a function that just adds two numbers (see lines 156 through 160 in Figure 4.17), external
parameter names add little to nothing of value for the caller.
Click here to view code image

func addTwoNumbers(number1 : Double, number2 : Double) -> Double {
 return number1 + number2
}

addTwoNumbers(33.1, 12.2)

FIGURE 4.17 When external parameter names are not necessary

Don’t Change My Parameters!
Functions are prohibited from changing the values of parameters passed to them, because parameters
are passed as constants and not variables. Consider the function cashCheck on lines 162 through
169 in Figure 4.18.
Click here to view code image

func cashCheck(#from : String, #to : String, #total : Double) -> String {
 if to == "Cash" {
 to = from
 }
 return "Check payable from \(from) to \(to) for $\(total) has been cashed"
}

cashCheck(from: "Jason Guillory", to: "Cash", total: 103.00)

FIGURE 4.18 Assigning a value to a parameter results in an error.

The function takes the same parameters as our earlier check writing function: who the check is
from, who the check is to, and the total. On line 163, the to variable is checked for the value "Cash"
and if it is equal, it is reassigned the contents of the variable from. The rationale here is that if you
are writing a check to “Cash,” you’re essentially writing it to yourself.

Notice the error: Cannot assign to ‘let’ value ‘to’. Swift is saying that the parameter to is a
constant, and since constants cannot change their values once assigned, this is prohibited and results in
an error.

To get around this error, you could create a temporary variable, as done in Figure 4.19. Here, a new
variable named otherTo is declared on line 163 and assigned to the to variable, and then possibly to
the from variable assuming the condition on line 164 is met. This is clearly acceptable and works fine
for our purposes, but Swift gives you a better way.

FIGURE 4.19 A potential workaround to the parameter change problem

With a var declaration on a parameter, you can tell Swift the parameter is intended to be variable
and can change within the function. All you need to do is add the keyword before the parameter name
(or external parameter name in case you have one of those). Figure 4.20 shows a second function,
cashBetterCheck, which declares the to parameter as a variable parameter. Now the code inside
the function can modify the to variable without receiving an error from Swift, and the output is
identical to the workaround function above it.
Click here to view code image

func cashBetterCheck(#from : String, var #to : String, #total : Double) -> String {
 if to == "Cash" {
 to = from
 }
 return "Check payable from \(from) to \(to) for $\(total) has been cashed"
}

cashBetterCheck(from: "Ray Daigle", to: "Cash", total: 103.00)

FIGURE 4.20 Using variable parameters to allow modifications

The Ins and Outs
As you’ve just seen, a function can be declared to modify the contents of one or more of its passed
variables. The modification happens inside the function itself, and the change is not reflected back to
the caller.

Sometimes having a function change the value of a passed parameter so that its new value is
reflected back to the caller is desirable. For example, in the cashBetterCheck function on lines
172 through 177, having the caller know that the to variable has changed to a new value would be
advantageous. Right now, that function’s modification of the variable is not reflected back to the
caller. Let’s see how to do this in Figure 4.21 using Swift’s inout keyword.
Click here to view code image

func cashBestCheck(#from : String, inout #to : String, #total : Double) -> String {
 if to == "Cash" {
 to = from
 }
 return "Check payable from \(from) to \(to) for $\(total) has been cashed"
}

var payer = "James Perry"
var payee = "Cash"
println(payee)
cashBestCheck(from: payer, to: &payee, total: 103.00)

println(payee)

FIGURE 4.21 Using the inout keyword to establish a modifiable parameter

Lines 181 through 186 define the cashBestCheck function, which is virtually identical to the
cashBetterCheck function on line 172, except the second parameter to is no longer a variable
parameter—the var keyword has been replaced with the inout keyword. This new keyword tells
Swift the parameter’s value can be expected to change in the function and that the change should be
reflected back to the caller. With that exception, everything else is the same between the
cashBetterCheck and cashBestCheck functions.

On lines 188 and 189, two variables are declared: payer and payee, with both being assigned
String values. This is done because inout parameters must be passed a variable. A constant value
will not work, because constants cannot be modified.

On line 190, the payee variable is printed, and the Results sidebar for that line clearly shows the
variable’s contents as "Cash". This is to make clear that the variable is set to its original value on
line 189.

On line 191, we call the cashBestCheck function. Unlike the call to cashBetterCheck on
line 179, we are passing variables instead of constants for the to and from parameters. More so, for
the second parameter (payee), we are prepending the ampersand character (&) to the variable name.
This is a direct result of declaring the parameter in cashBestCheck as an inout parameter. You
are in essence telling Swift that this variable is an in-out variable and that you expect it to be modified
once control is returned from the called function.

On line 193, the payee variable is again printed. This time, the contents of that variable do not
match what was printed on line 189 earlier. Instead, payee is now set to the value "James
Perry", which is a direct result of the assignment in the cashBestCheck function on line 183.

Bringing Closure
Functions are great, and in the earlier code you’ve written, you can see just how versatile they can be

for encapsulating functionality and ideas. Although the many contrived examples you went through
may not give you a full appreciation of how useful they can be in every scenario, that will change as
you proceed through the book. Functions are going to appear over and over again both here and in your
coding, so understand them well. You may want to re-read this chapter to retain all the ins and outs of
functions.

We’ve got a little more to talk about before we close this chapter, however. Our tour of functions
would not be complete without talking about another significant and related feature of functions in
Swift: closures.

In layman’s terms, a closure is essentially a block of code, like a function, which “closes in” or
“encapsulates” all the “state” around it. All variables and constants declared and defined before a
closure are “captured” in that closure. In essence, a closure preserves the state of the program at the
point that it is created.

Computer science folk have another word for closures: lambdas. In fact, the very notion of the
function you have been working with throughout this chapter is actually a special case of a closure—a
function is a closure with a name.

So if functions are actually special types of closures, then why use closures? It’s a fair question, and
the answer can be summed up this way: Closures allow you to write simple and quick code blocks that
can be passed around just like functions, but without the overhead of naming them.

In essence, they are anonymous blocks of executable code.
Swift closures have the following structure:
{ (parameters) -> return_type in
 statements
}

This almost looks like a function, except that the keyword func and the name is missing; the curly
braces encompass the entire closure; and the keyword in follows the return type.

Let’s see closures in action. Figure 4.22 shows a closure being defined on lines 196 through 201.
The closure is being assigned to a constant named simpleInterestCalculationClosure. The
closure takes three parameters: loanAmount, interestRate (both Double types), and years
(an Int type). The code computes the future value of a loan over the term and returns it as a Double.
Click here to view code image

// Closures
let simpleInterestCalculationClosure = { (loanAmount : Double, var interestRate : Double, years : Int) -> Double in
 interestRate = interestRate / 100.0
 var interest = Double(years) * interestRate * loanAmount

 return loanAmount + interest
}

func loanCalculator(loanAmount : Double, interestRate : Double, years : Int, calculator : (Double, Double, Int) ->
Double) -> Double {
 let totalPayout = calculator(loanAmount, interestRate, years)
 return totalPayout
}

var simple = loanCalculator(10_000, 3.875, 5, simpleInterestCalculationClosure)

FIGURE 4.22 Using a closure to compute simple interest

The formula for simple interest calculation is:
futureValue = presentValue * interestRate * years
Lines 203 through 206 contain the function loanCalculator, which takes four parameters: The

same three that the closure takes, and an additional parameter, calculator, which is a closure that
takes two Double types and an Int type and returns a Double type. Not coincidentally, this is the
same parameter and return type signature as our previously defined closure.

On line 208, the function is called with four parameters. The fourth parameter is the constant
simpleInterestCalculationClosure, which will be used by the function to compute the
total loan amount.

This example becomes more interesting when you create a second closure to pass to the
loanCalculator function. Since you’ve computed simple interest, then write a closure that
computes the future value of money using the compound interest formula:

futureValue = presentValue (1 + interestRate)years

Figure 4.23 shows the compound interest calculation closure defined on lines 210 through 215,
which takes the exact same parameters as the simple calculation closure on line 196. On line 217, the
loanCalculator function is again called with the same parameters as before, except the
compoundInterestCalculationClosure is passed as the fourth parameter. As you can see in
the Results sidebar, compound interest yields a higher future value of the loan than simple interest
does.
Click here to view code image

let compoundInterestCalculationClosure = { (loanAmount : Double, var interestRate : Double, years : Int) -> Double
in
 interestRate = interestRate / 100.0
 var compoundMultiplier = pow(1.0 + interestRate, Double(years))

 return loanAmount * compoundMultiplier
}

var compound = loanCalculator(10_000, 3.875, 5, compoundInterest CalculationClosure)

FIGURE 4.23 Adding a second closure that computes compound interest

On line 212 you may notice something new: a reference to a function named pow. This is the power
function, and is part of Swift’s math package. The function takes two Double parameters: the value
to be raised and the power to raise it to. It returns the result as a Double value.

Summing It Up
We’ve spent the entire chapter discussing functions and their use. Toward the end, you learned about
closures and how they are essentially nameless functions that can be passed around to do useful work.
As I indicated earlier, functions and closures are the foundations on which Swift apps are written.
They appear everywhere and are an integral part of the development process. Knowing how they work
and when to use them is a skill you will acquire over time.

In fact, there are even more things about functions and closures that I didn’t touch on in this
chapter. There’s no need to overload you on every possible feature they have; we’ll cover those extras
later in the book. For now, you have enough of the basics to start doing useful programming.

Also, feel free to work with the code in the playground for this chapter. Change it, modify it, add to
it, and make a mess of it if you want. That’s what playgrounds are for, after all!

Stay Classy
With functions and closures covered, we’ll turn our attention to the concept of the class. If you are
familiar with object-oriented programming (OOP), Swift’s notion of a class is similar to that of
Objective-C and C++. If you’re new to the idea of objects and OOP, don’t worry, we’ll explain all that
terminology in the next chapter.

Meanwhile, feel free to take a break and review the notes and code in this chapter, as well as
experiment with your playground file. When you’re ready, proceed to Chapter 5, and we’ll get down
and dirty with classes.

Chapter 5. Organizing with Classes and Structures

Swift is an object-oriented language, and as such, it is apropos to devote some considerable real estate
to the subject. If you are familiar with other object-oriented languages such as Objective-C and C++,
the concepts presented here will be very familiar to you. If you are new to the idea of object-oriented
programming, don’t be alarmed. I’ll take you through a tour of the concepts to prepare you for Swift’s
flavor of OOP (that’s the common acronym for object-oriented programming, by the way, and I’ll be
using it throughout the chapter).

No matter what your current familiarity is with OOP concepts, preparing yourself with a new
playground file in Xcode 6 is a good idea. Choose File > New > Playground menu, and save your new
playground file as Chapter 5.playground. You’ll use this playground for all the examples in
this chapter, and you can easily go back and refer to it as you need.

Ready? Let’s dive in.

Objects Are Everywhere
OOP is a methodology in software development that involves thinking about problems in terms of
objects.

Look around you—objects are everywhere. Anything you can pick up and hold, or even touch and
feel, could be considered an object.

If you think about an object—any object—you can immediately identify certain properties (also
called attributes) of that object, as well as certain behaviors. In OOP parlance, objects have properties
and behaviors. This is true in the real world, and it’s true in Swift.

Take a moment to glance around the room. Pick out an object on the wall—a door, a window, a
mirror, a picture, or a piece of furniture. Let’s start with the door, which any room should have (or
else you’ll be stuck inside). Look at the door and ask yourself: What properties does this door have?

 Dimensions (width, height, and depth)
 Weight
 Color
 State (is it opened or closed?)

These very generic properties could be applied to another item in the room, namely the window.
The door and the window share these same properties, which makes them similar but not the same—a
door is not a window. This notion of similar properties will come in handy later as we study classes.

Now that you’ve identified the properties of the door, can you ascertain what its behaviors are? In
other words, what is it that the door can do?

 A door can open and close.
 A door can lock or unlock (assuming it has a lock).

Technically, it takes someone (or something) to open or close a door, or even to lock or unlock it, so
out of these behaviors comes a number of actions that can be performed on the object.

Let’s continue this process a bit further by identifying another object. If you have a window you can
look out of, perhaps you can see other objects: cars, people, trees, and so on. Set your sights on a tree
if possible, and note its properties:

 Height

 Type (oak, maple, cypress, and so on)
 Foliage state (Does it have leaves or have they all fallen due to the time of year?)

Of course, a tree has many other properties, but we’ll keep it simple with these three. What about
behaviors of a tree? What can a tree “do?”

 A tree can sway in the breeze.
 A tree can produce seeds.
 A tree can perform photosynthesis.

This process you just went through is an important one when thinking about objects. What you have
done is a common task in OOP: modeling. Modeling an object entails examining its properties and
behaviors, and then coming up with the code to describe that model in whatever programming
language you want to use.

In this case, you’ve modeled two very different objects: a tree and a door. Other than dimensions,
one has very little similarity to the other. That’s where objects can get interesting.

Now that you have an idea how to model an object, it’s time to look at how to express that model in
Swift.

Swift Objects Are Classy
In Swift, objects are expressed using a special construct called the class. Just like in our modeling
exercise, a Swift class contains the elements to express the model in code. The word class is an
actual keyword and comprises several items:

 A name
 One or more properties
 One or more methods

Every class has a name that uniquely identifies it. A class also has properties, just like the objects
you modeled earlier. A class also has methods. A method is a formal name for a function that exists
inside a class. We explored functions in the previous chapter; now they come back to us in the form of
methods, as we’ll see shortly.

So to summarize, a Swift class defines the properties that make up the object, as well as the
methods that perform the behaviors and act on those properties.

Knock, Knock
As we explore this idea of object modeling in Swift, let’s look more closely at the door as an object,
which is as good an example as any. Figure 5.1 shows a definition for a new object you’ll call Door.

FIGURE 5.1 The Door object in Swift

Get started on the example by typing the following on lines 7 through 34.
Click here to view code image

class Door {
 var opened : Bool = false
 var locked : Bool = false
 let width : Int = 32
 let height : Int = 72
 let weight : Int = 10
 let color : String = "Red"

 func open(Void) -> String {
 opened = true;
 return "C-r-r-e-e-a-k-k-k... the door is open!"
 }

 func close(Void) -> String {
 opened = false;
 return "C-r-r-e-e-a-k-k-k... the door is closed!"
 }

 func lock(Void) -> String {
 locked = true;
 return "C-l-i-c-c-c-k-k... the door is locked!"
 }

 func unlock(Void) -> String {
 locked = false;
 return "C-l-i-c-c-c-k-k... the door is unlocked!"
 }
}

In Swift, an object is defined using the class keyword, followed by the name of the class. In this
case, Door on line 7. Following that is an opening curly brace and the rest of the definition of the
class.

Lines 8 through 13 define the properties of the class. Every property, be it a variable or a constant,
has an assigned value. Swift requires that all properties be assigned to some value to avoid ambiguity.
Notice that two of the properties are variables: opened and closed. These Booleans reflect the
door’s state, which can change throughout the lifetime of the object; thus they are declared as
variables.

The remaining properties, however, are constants. The door’s width, height, weight, and
color are not expected to change once it has been created.

Lines 15 through 33 define the methods for the class. This class has four methods: open, close,
lock, and unlock. In the case of the open and close methods, they set the opened variable
accordingly and return a String indicating the state of the door. The lock and unlock methods
perform a similar function.

Let There Be Objects!
So now that you have defined a class, how do you use it?

In OOP parlance, the process of turning a class into an object is known as instantiation. This is
effectively the process of creating a real, live object that can be interacted with. Without the act of
instantiating an object, a class is merely just a template, or blueprint to build an object. Just as
blueprints don’t turn a house into a home until the carpenters arrive and the hammers start swinging, a
class alone cannot deliver a ready-to-run object. It requires the instantiation process.

Let’s see how instantiation works in Figure 5.2.

FIGURE 5.2 Instantiating the Door class

On line 36, an instance of the Door class is created by simply referencing the class’s name,
followed by open and close parentheses. This is the basic method for creating and initializing an
object. The result of the assignment is a newly created object, which is assigned in this case to the
frontDoor object. It’s that simple!

If you are coming from Objective-C, you may ask “where is the init method defined?” That’s a
good question, and we’ll explore that more in just a bit. For now, this Swift class does not have one.

Along with the creation of the frontDoor object, notice the Results sidebar shows the values of
the properties. You’ll need to expand the size of your window to see the values for all the properties
available in the Door class.

Opening and Closing the Door
Quiz time! How would you tell the frontDoor object to open and close?

The methods, of course. You just saw in Figure 5.2 how to call a method; lines 38 and 39 in Figure
5.3 reveal the answer.

let frontDoor = Door()

frontDoor.close()
frontDoor.open()

Now that the object frontDoor is created, you reference the named constant and the dot notation
when calling the open and close methods. The open and close parentheses indicate that the names
following the dot are method names.

FIGURE 5.3 Calling the close and open methods

Dot Notation—It Isn’t Just for Properties
Note how the open and close methods are called. They follow the class name you’ve
instantiated (Door) and a dot (.) character. The dot is part of Swift’s dot notation, and it
applies to both accessing properties and calling methods in a class. The dot acts as a syntactical
element that delineates an object from its properties or methods. In the case of calling methods,
the method name is always followed by open and close parentheses () to be typed after the
method name.
Dot notation is a very common element of Swift; you’ll see it used over and over again.

Locking and Unlocking the Door
In the same way you opened and closed the door with the available methods, you can lock and unlock
the door. Type in the following code on lines 41 and 42 (Figure 5.4), and notice the Results sidebar.

frontDoor.lock()
frontDoor.unlock()

FIGURE 5.4 Locking and unlocking the door

Again, just as you closed and opened the door with the appropriate methods, locking and unlocking
the door produced similar results in the Results sidebar. Things appear to be working as designed.
However, notice a couple of odd things about the Door class.

For instance, ask yourself: Can you lock an open door? Shouldn’t a door have to be closed before
it’s locked? And what if you tell the frontDoor object to close the door when it’s already closed (or
conversely, tell the frontDoor object to open the door when it’s already open). Should a door creak
if it’s not going to move?

Let’s fix these issues right away with some additional logic. Figure 5.5 shows a new class,
NewDoor, along with revised open, close, lock, and unlock methods that handle the various
cases, as well as a new object, newFrontDoor.

FIGURE 5.5 Addressing holes in the Door class logic

In the case of the open method, a check is added for the opened property. If it’s false (meaning
the door is closed), the door is allowed to be closed, otherwise you are reminded that the door is
already opened. The inverse logic is applied to the close method on line 62.
Click here to view code image

class NewDoor {
 var opened : Bool = false
 var locked : Bool = false
 let width : Int
 let height : Int
 let weight : Int
 var color : String

 func open(Void) -> String {
 if (opened == false) {
 opened = true
 return "C-r-r-e-e-a-k-k-k... the door is open!"
 }
 else {
 return "The door is already open!"
 }
 }

 func close(Void) -> String {
 if (opened == true) {
 opened = false
 return "C-r-r-e-e-a-k-k-k... the door is closed!"
 }

 else {
 return "The door is already closed!"
 }
 }

 func lock(Void) -> String {
 if (opened == false) {
 locked = true
 return "C-l-i-c-c-c-k-k... the door is locked!"
 }
 else {
 return "You cannot lock an open door!"
 }
 }

 func unlock(Void) -> String {
 if (opened == false) {
 locked = false
 return "C-l-i-c-c-c-k-k... the door is unlocked!"
 }
 else {
 return "You cannot unlock an open door!"
 }
 }
}

Likewise, the lock and unlock methods are adapted to check for the opened property. If the door
is open, you are reminded that you can neither lock nor unlock the door. You can clearly see the
Results sidebar showing the altered output based on the additions in the methods. Feel free to
experiment with changing the order of the close, open, lock, and unlock methods on lines 95
through 99 in your playground file.

The only hole left in this logic is locking a door that is locked, or unlocking a door that is unlocked.
I’ll leave that as an exercise for you to solve.

Examining the Properties
Up to this point, we’ve ignored the other properties of the newFrontDoor object. They are
accessible, however, by using the dot notation you’ve used thus far to call the methods.

Lines 101 through 106 in Figure 5.6 demonstrate how to access the individual properties, with the
results showing in the Results sidebar.

newFrontDoor.lock()
newFrontDoor.unlock()

newFrontDoor.locked
newFrontDoor.opened

newFrontDoor.width
newFrontDoor.height
newFrontDoor.weight

FIGURE 5.6 Examining the properties of the newFrontDoor object

Door Diversity
The NewDoor class has proven to be quite clever. Thanks to the added code, the class can open, close,
lock, and unlock, and can do so only when appropriate.

However, one thing you cannot currently do is create a door with a different size, weight, or color.
Every door object that is created has the same values for the properties. That’s because those
properties are set to the specific values when the object is instantiated (scroll back to lines 47 through
50 of your playground file as a reminder). Those properties also happen to be constants, meaning that
their values cannot change once the object is created, so no matter what door you create, you always
get the same size, height, and color. A little boring, isn’t it?

How can you change this? You could change the constants to variables by changing the let
keywords to var keywords. Doing so would allow you to change the properties using dot notation like
so:

newFrontDoor.width = 36
newFrontDoor.height = 80

This approach would certainly work; however, it feels “wrong” to change a door’s dimensions after
it has already been instantiated. After all, when you purchase a door at your local hardware store, its
size and weight are already determined. These properties should be set at the time the door is created,
and remain immutable for the lifetime of the object. So how do you do this?

The answer is a special method known as init, which initializes an object. Up to this point, we
haven’t actually written an init method; we’ve just let Swift do the initialization for us. This method
seems like a natural and proper place to allow the user to specify alternate values for these properties.

Swift thinks so, too, and actually allows you to create your own init method with your own
parameter list. This is a great way to set up an object to your own liking, and that’s exactly what is
happening in lines 52 through 57 in Figure 5.7. Type the init method in your playground file.
Click here to view code image

init(width : Int = 32, height : Int = 72, weight : Int = 10, color : String = "Red") {
 self.width = width
 self.height = height
 self.weight = weight
 self.color = color
}

FIGURE 5.7 Creating your very own init method

This init method takes four parameters corresponding to the four properties on lines 47 through
50. In Figure 5.7, the default values have been removed from those lines. Instead, they are now part of
the default parameter values in the init method’s declaration (remember we discussed default
parameters earlier in the book). As a result, you no longer need to initialize the properties on lines 47
through 50. Go ahead and remove these initialization values in your playground file, too.

A new keyword is used on lines 53 through 56: self. This keyword is Swift’s way of letting an
object refer to itself. Using the self keyword is particularly important in this example, because the
parameter names in the init method match exactly to the property names in the class. Without
self, the following statements would not only be ambiguous, they would cause a Swift compiler
error:

width = width
height = height
weight = weight
color = color

The self keyword explicitly points out that it is the property of the instantiated object receiving
the assignment.

If you’ve kept a sharp eye, you may be asking how the properties width, height, weight, and
color, which are declared as constants with the let keyword, can be assigned values if they are
constants. You are witnessing an exception to the rule that constants cannot change. Swift allows
constant properties of a class to be assigned values at initialization time—but not after. Once the value
of an object’s constant property has been set in the init method, it cannot be changed later.

One other note: The keyword func does not precede the init method name.
With the new init method in place, you can now create another object from the NewDoor class,

this time with your very own dimensions.
Line 115 in Figure 5.8 shows how to instantiate a second NewDoor object with the parameter list

defined in your new init method. Notice that the parameter names are being used to explicitly show
which values go with which parameters. This is a small but important difference between functions
and methods. In methods, parameter names are automatically promoted to external parameter names.
As a result, you must specify the names for parameters when creating new objects.

Click here to view code image

let newBackDoor = NewDoor(width: 36, height: 80, weight: 20, color: "Green")

FIGURE 5.8 Exercising the new init method with additional parameters

The width, height, weight, and color for the newBackDoor object are clear and
unambiguous, as shown by the Results sidebar. Notice that the newFrontDoor object created on line
100 still retains the default values that now exist in the init method’s default parameter list.

Painting the Door
Let’s revisit the properties of the NewDoor class. We can assume that once a door is created, its
dimensions and weight are fixed, but the color can change. You can paint the door a different color,
for example.

Attempting to change the color of the newBackDoor object, however, results in an error as shown
in Figure 5.9.

newBackDoor.color = "White"

FIGURE 5.9 Attempting to change the color of the newBackDoor object

Can you spot the reason for the error? Look back to line 50 in your playground file for the definition
of the color property in the NewDoor class.

let color : String

Changing the let keyword to var removes the error and allow you to change the color of the
newBackDoor object, or any object of type NewDoor. Remember to consider what properties
should be constants and which should be variables when creating your classes.

You’ve just seen how classes are created in Swift. Using just a single, compact class, you modeled
both the attributes and behavior of a door. How cool was that!

The NewDoor class exercise should also give you an appreciation of just how the modeling process
works. When you create a class to model something, you must think about its properties and
behaviors, and let them guide your design as well as any constraints.

Inheritance
Another important principle of OOP is the idea of inheritance (and no, we’re not talking about your

rich uncle’s estate). Inheritance allows an object to obtain the attributes and behaviors of another class
while bringing its own unique attributes and behaviors to the mix.

It helps to think of inheritance in terms of genealogy and genetics. As an individual, you are the
product of your parents’ genetics. You inherited one or more of their traits, including possibly their
name, yet you remain a unique individual with your own properties (height, weight, eye color, and so
on) as well as behaviors (diet, exercise habits, and so on) Likewise, your children will inherit certain
properties and behaviors from you and your parents, yet retain their own.

Inheritance also creates a hierarchy. Just as you have parents, your children have you as a parent,
and eventually they may become parents. This connection also applies to objects and the classes from
which they derive.

A class can derive from another class, known as its superclass. Likewise, a class derived from
another class is known as a subclass of that class. Figure 5.10 clarifies this relationship.

FIGURE 5.10 Illustrating the class relationship

Inheritance is a neat concept in OOP because it allows you to compartmentalize functionality into a
specific class, which can then flow down to subclasses without code duplication.

Recall earlier when you were asked to look around the room you are in to select an object for
modeling. We used the door for our class, but if you had chosen a window, how different would that
class have been from the Door class you created?

Looking at the Door class in your playground file, you’ll come to realize that every property and
behavior a door has, a window has. Both open and close; both can lock and unlock; and both have
dimensions, weight, and color. But is a window a door? Of course not. So what makes a window
different from a door?

Well, for one thing, you would consider walking through an open door, but you likely wouldn’t
walk through an open window. Also, a door might have a door handle and a doorknob; a window
doesn’t.

Based on that small difference, how can you use inheritance to model both a door and a window in
such a way that they share a common set of properties and behaviors, yet retain their distinctions that
make them uniquely what they are?

Modeling the Base Class
In OOP parlance, the base class is considered the most basic class from where all other classes derive.

A base class does not inherit from any other class; it’s essentially a root, or anchor class. In Swift, any
class that does not derive from a superclass is known as a base class.

In thinking about the door/window class, you can create a base class that captures most of what
currently exists in the Door class. Then you can create two new subclasses: one for doors and one for
windows.

The quickest way to achieve this would be to rename the Door class to something else. Thinking
about class names is important, and in this case, you want a name that can fit both a door and a
window. Let’s choose Portal for the new class name. After all, windows and doors are portals,
right?

Select and copy lines 44 through 98 (the NewDoor class), and paste it at the very bottom of your
playground file. Once pasted, change the class name from NewDoor to Portal.

Now that you’ve added the new class Portal, notice that references to the word “door” on lines
136, 139, 146, 149, 156, 159, 166, and 169 seem out of place. The quickest way to handle that is to
create a new name property, pass that in the init method, and then use Swift’s string interpolation
to embed the property name in the string constants. You can see the changes in their entirety in Figure
5.11; go ahead and change your playground file accordingly.
Click here to view code image

class Portal {
 var opened : Bool = false
 var locked : Bool = false
 let width : Int
 let height : Int
 let weight : Int
 let name : String
 var color : String

 init(name : String, width : Int = 32, height : Int = 72, weight :
 p Int = 10, color : String = "Red") {
 self.name = name
 self.width = width
 self.height = height
 self.weight = weight
 self.color = color
 }

 func open(Void) -> String {
 if (opened == false) {
 opened = true
 return "C-r-r-e-e-a-k-k-k... the \(name) is open!"
 }
 else {
 return "The \(name) is already open!"
 }
 }

 func close(Void) -> String {
 if (opened == true) {
 opened = false
 return "C-r-r-e-e-a-k-k-k... the \(name) is closed!"
 }
 else {
 return "The \(name) is already closed!"
 }
 }

 func lock(Void) -> String {
 if (opened == false) {
 locked = true
 return "C-l-i-c-c-c-k-k... the \(name) is locked!"
 }
 else {
 return "You cannot lock an open \(name)!"
 }
 }

 func unlock(Void) -> String {
 if (opened == false) {
 locked = false
 return "C-l-i-c-c-c-k-k... the \(name) is unlocked!"
 }
 else {
 return "You cannot unlock an open \(name)!"
 }
 }
}

FIGURE 5.11 The Portal class adjusted with the new name property

Notice the addition of the name property on line 124, as well as the name parameter in the init
method on line 127 and the assignment on line 128. This will allow you to pass an appropriate string
to identify the type of object. Also, the word "door" in the string literals has been replaced
everywhere with \(name), allowing the printed string to properly identify the object.

The new Portal class looks good so far. Now we’ll create the replacement classes to represent the
door and window.

Creating the Subclasses

Creating the Subclasses
We’ll create two new classes: NiceDoor and NiceWindow. Both of these classes will be
subclasses of the Portal class. Take your time and type in lines 176 through 186 in Figure 5.12 into
your playground window.
Click here to view code image

class NiceDoor : Portal {
 init(width : Int = 32, height : Int = 72, weight : Int = 10, color : String = "Red") {
 super.init(name : "door", width: width, height: height, weight: weight, color: color)
 }
}

class NiceWindow : Portal {
 init(width : Int = 48, height : Int = 48, weight : Int = 5, color : String = "Blue") {
 super.init(name : "window", width: width, height: height, weight: weight, color: color)
 }
}

FIGURE 5.12 The addition of the new NiceDoor and NiceWindow classes

On line 176 is the definition of the NewDoor class. Notice that the class name is followed by a
colon, and then the name of the superclass, Portal. This is how classes in Swift specify the class
they wish to inherit from.

Line 177 shows the definition of the init method for the NiceDoor class. Notice that this
method is identical to the init method of the Portal class, even down to the default parameter
values for the parameters. The reason for this duplication becomes apparent when you look at line 178
and its special syntax.

There you’ll notice a new keyword: super. Somewhat related to the self keyword mentioned
earlier, super actually refers to the superclass. In our case, the superclass is the Portal class. What
follows the keyword is the familiar dot notation and the name of the method to call in the superclass:
init.

It is common and expected practice to call the superclass’s init method first, giving the
superclass the opportunity to initialize itself. In this case, you’re passing named parameters, including
the new name parameter. Since this is the NiceDoor class, the string "door" is passed, along with
the width, height, weight, and color. Since the superclass, Portal, contains the properties
for these values, we need to make sure its init method is called.

Lines 71 through 75 show the definition of the NiceWindow class, which looks almost identical to
the NiceDoor class. It too derives from the Portal class, but has width, height, and weight
defaults that make sense for a window. The name also reflects this class and gives the string
"window" to the superclass’s init method.

Instantiating the Subclass
With the new NiceDoor and NiceWindow classes created, now we’ll exercise them. Figure 5.13
shows the earlier code where the frontDoor object was created—keep that code in place. Also
notice that the Results sidebar shows the same results even though we’ve changed the class hierarchy,
and Door is now subclassed from Portal.

let sunRoomDoor = NiceDoor()

sunRoomDoor.close()
sunRoomDoor.open()

sunRoomDoor.lock()
sunRoomDoor.unlock()

sunRoomDoor.locked
sunRoomDoor.opened

sunRoomDoor.width
sunRoomDoor.height
sunRoomDoor.weight
let bayWindow = NiceWindow()

bayWindow.close()
bayWindow.open()

bayWindow.lock()
bayWindow.unlock()

bayWindow.locked
bayWindow.opened

bayWindow.width
bayWindow.height
bayWindow.weight

FIGURE 5.13 Instantiating the NiceDoor and NiceWindow classes

Type in lines 188 through 217 in Figure 5.13, which create two new objects: sunRoomDoor and
bayWindow. These objects are instantiated from the NiceDoor and NiceWindow class,
respectively, and those in turn are subclassed from Portal. The Results sidebar shows the objects
being manipulated, which confirms that the code in the Portal superclass is being exercised
appropriately.

Securing the Door
The NiceDoor class can be instantiated to provide a door object that will unlock and lock the door
intelligently, but what if you want to add a combination lock? Before such a door can be unlocked, a
security code needs to be entered. If the code is wrong, unlocking the door fails. If the code is correct,
the door is unlocked, and all is well.

This secure door class will require a secret combination code to unlock the door. The combination
can be any series of numbers or letters, but for our purposes, we’ll define the secret combination with
four numbers: 6809. The user of the class will be able to instantiate the object with a personal
combination. Then, upon invoking the unlock method on the class, it will either return that the door
is unlocked (because the user passed the correct code), or it will indicate that the door remains locked
due to an incorrect code.

You could add this functionality into the existing NiceDoor class, but how much fun would that
be? Instead, create a new class, CombinationDoor, which will be a subclass of NiceDoor. The
CombinationDoor class will inherit all the properties and methods of Nice-Door and add the
combination lock ability.

Figure 5.14 shows the newly created class on lines 219 through 263.

FIGURE 5.14 The new CombinationDoor class
Click here to view code image

class CombinationDoor : NiceDoor {
 var combinationCode : String?

 override func lock(Void) -> String {
 return "This method is not valid for a combination door!"
 }

 override func unlock(Void) -> String {
 return "This method is not valid for a combination door!"
 }

 func lock(combinationCode : String) -> String {
 if (opened == false) {
 if (locked == true) {
 return "The \(name) is already locked!"
 }
 self.combinationCode = combinationCode
 locked = true
 return "C-l-i-c-c-c-k-k... the \(name) is locked!"
 }
 else {
 return "You cannot lock an open \(name)!"
 }
 }

 func unlock(combinationCode : String) -> String {
 if (opened == false) {
 if (locked == false)
 {
 return "The \(name) is already unlocked!"
 }
 else

 {
 if (self.combinationCode != combinationCode) {
 return "Wrong code.... the \(name) is still locked!"
 }
 }
 locked = false
 return "C-l-i-c-c-c-k-k... the \(name) is unlocked!"
 }
 else {
 return "You cannot unlock an open \(name)!"
 }
 }
}

let securityDoor = CombinationDoor()

The new class has a new property, combinationCode, defined on line 220. This is an optional
String property. Remember optionals? We discussed them very early in the book. They are normal
types that can have nil as a value. In this case, there is no explicit initialization, so the
combinationCode is presumed to be nil. Defining this property means that you can defer its
initialization to an actual value until later. Combined with the state of the door being closed at
initialization time (see line 119), this is a sensible setting.

Now turn your attention to the lock and unlock methods starting on line 222. A security door
with a combination lock like this one just cannot unlock when told—it first has to verify that the
security code passed to the method by the user matches its internal code. Only if they are the same
does the door unlock. Therefore, creating new methods in the CombinationDoor subclass is
necessary to disallow wanton unlocking; otherwise, the superclass’s implementation would happily
unlock the door when told, no matter what the combinationCode was set to.

The ability to create a method of the same name in a subclass is the override keyword. Swift
requires that a subclass that redefines a similarly named method in any superclass use this keyword to
indicate the intent to override that method. We do not intend on calling the superclass’s
implementation of these methods, either.

Lines 230 through 262 hold the new lock and unlock methods. They are the same in name as
their superclass counterparts, but also take a String parameter. In the case of the lock method, a
combination code is passed and saved in the property combinationCode, and the door is locked.
Notice that you are duplicating the same logic in the superclass to determine if the door is closed
before you attempt to lock it. This is necessary because you are not calling the superclass’s
implementation of the method.

The unlock method is a little larger than the lock method due to the extra logic that must be
evaluated. It too takes a String parameter: the combination code to use when unlocking. On line
252, a check is made between the property combinationCode and the passed code. If the passed
combination code is incorrect, a message is returned indicating that the code is wrong, and the door
remains locked.

If the combination code is correct, the unlock method sets the locked property to false, and
returns the message that the door is unlocked.

On line 265 a shiny new security door object is instantiated. By default it’s closed and unlocked,
ready for you to interact with it.

So far, you’ve created the new CombinationDoor class and have instantiated the
securityDoor object from it. You’ve followed the code and understand how the methods inside

your new superclass override the same named methods above. Now it’s time to unlock the door!

Using the Right Combination
With the securityDoor object created on line 265, let’s see how the new locking and unlocking
works. Lines 268 through 290 are intended to flex and demonstrate the CombinationDoor and its
superclasses. We’ll go over them one by one.

Lines 268 through 272 of Figure 5.15 show the values of the properties, including the
combinationCode property, which is set to nil as discussed earlier. On line 275, you attempt to
unlock the door only to learn in the Results sidebar that this method no longer works. The same
message appears on line 278 when the lock method is invoked.

FIGURE 5.15 Testing the CombinationDoor class

Next, on line 281, the unlock method with the combination parameter is used, but the Results
sidebar indicates that the door is already unlocked; this is a good sign, and shows that the logic behind
the door code is working.

The door is successfully locked on line 284 with a security code of 6809. With this door locked, an
attempt is made to unlock it on line 287 with a different security code—that attempt fails, and the
door remains locked. Finally, on line 290 the unlock method is again called with the right
combination, and the door unlocks.
Click here to view code image

// show values of properties
securityDoor.width
securityDoor.height
securityDoor.weight
println(securityDoor.color)
println(securityDoor.combinationCode)

// unlock the door without providing a combination
securityDoor.unlock()

// lock the door without providing a combination
securityDoor.lock()

// unlock the door with a combination
securityDoor.unlock("6809")

// lock the door with a combination
securityDoor.lock("6809")

// unlock the door with the wrong combination
securityDoor.unlock("3344")

// unlock the door with the right combination
securityDoor.unlock("6809")

Now that you’ve spent some time going over the ins and outs of classes, subclasses, and inheritance,
let’s spend a little time diving deeper into the convenience initializers.

Convenience Initializers
So far, I’ve touched lightly on the init method, which is the method that is called when a class is
instantiated in Swift. You’ve seen several init methods already for the classes that we explored in
this chapter. In the case of the Door class, no explicit init method was needed because the
properties for that class were assigned default values inside the class itself. Both the NewDoor and
NiceDoor classes had init methods along with parameters that had default values assigned to
them.

Sometimes, when designing a class, you may want to have a mix of different init methods. For
instance, one init method might assume some defaults, while another might require the passing of
additional parameters. Ultimately, these initializers all funnel to a single init method known as the
designated initializer. This is typically the init method with the most parameters.

Swift has a special designation for these types of initialization methods. They are known as
convenience initializers.

Let’s explore the concept of convenience initializers, by looking at tractors, which come in various
sizes for different jobs. I’ve created a Tractor class defined on lines 292 through 308 in Figure
5.16. Type in the code, and let’s take a look.

FIGURE 5.16 An example of convenience initializers in the Tractor class
Click here to view code image

 class Tractor {
 let horsePower : Int
 let color : String

 init(horsePower : Int, color : String) {
 self.horsePower = horsePower
 self.color = color
 }

 convenience init(horsePower : Int) {
 self.init(horsePower: horsePower, color: "Green")
 }

 convenience init() {

 self.init(horsePower: 42, color: "Green")
 }
}

The Tractor class looks somewhat similar to the other classes you’ve studied in this chapter. It
has properties at the top, followed by a number of methods. The properties are the horsepower (an
Int), and a color (a String).

On line 296 is the designated initializer. It is the init method that contains the most parameters.
Each parameter represents one property in the class, and lines 297 and 298 contain the assignments for
those properties. If you wanted to instantiate an object of this class, you could call this method with
the three parameters of your choosing.

Line 301 contains a second init method, prefaced with the keyword convenience. This is a
convenience initializer. It’s convenient because you can save some typing when instantiating an object
from this method. Note that it contains one fewer parameter than the designated initializer: The
color parameter is not passed, but assumed to be the value "Green".

This convenience initializer calls self.init on line 302. The initializer being called here is the
designated initializer defined on line 296, which sets the two available properties.

Another convenience initializer is defined on line 305. This init method takes no parameters.
Instead, it assumes that the tractor being created is a 42-horsepower tractor with green paint. If that’s
the kind of tractor you want, you can save yourself some typing by instantiating a Tractor object
with this initializer.

Let’s create a few tractors, shall we?
Click here to view code image

let myBigTractor = Tractor()
let myBiggerTractor = Tractor(horsePower: 71)
let myYardTractor = Tractor(horsePower: 16, color : "Orange")

Line 310 of Figure 5.17 calls the convenience initializer that sets up all the parameters for us. We
can expect a 42-horsepower tractor in the standard green color, and the Results sidebar verifies this.

FIGURE 5.17 Creating tractors with the Tractor class

Likewise on line 311, we are calling one of the convenience initializers that sets the tractor color to
green automatically. Finally on line 312, the third tractor is called with the designated initializer,
forcing you to pass all the parameters explicitly.

Convenience initializers are certainly convenient. You can create a number of them to aid in the
creation of an object, and they all funnel into the designated initializer, which is ultimately
responsible for initializing all the properties of the object.

There’s more to discuss regarding initializers, but I’ll save that for a later time. Instead, let’s turn

our attention to several other useful Swift language features used for data organization: enumerations
and structures.

Enumerations
Enumerations allow you to specify a group of related names with the intent of referencing those
names in your coding. Enumerations are often used in conjunction with classes, but are useful
anywhere. Their roots are in the C language, but are much more flexible and powerful in Swift.
Enumerations have the following basic form:

enum enumerationName {
 // constant definitions
}

Since tractors have been on the agenda for the last few examples, here’s an example of using an
enumeration to represent the different types of fuel for any number of vehicles:

enum FuelType {
 case Gasoline
 case Diesel
 case Biodiesel
 case Electric
 case NaturalGas
}

In this code snippet, the case keyword is used to define each enumeration member. The member
becomes associated with the enumeration name (FuelType) and accessible via dot notation, as
you’ll see shortly.

For added convenience, multiple enumeration members can be placed on a single line like so:
Click here to view code image

enum FuelType {
 case Gasoline, Diesel, Biodiesel, Electric, NaturalGas
}

And simple mappings in enumerations can be achieved with a feature known as raw values:
Click here to view code image

enum FuelType : String {
 case Gasoline = "89 octane"
 case Diesel = "sulphur free"
 case Biodiesel = "vegetable oil"
 case Electric = "30 amps"
 case NaturalGas = "coalbed methane"
}

These values can then be extracted using rawValue:
Click here to view code image

let fuelCharacteristic = FuelType.Gasoline.rawValue

That’s pretty robust for a seemingly simple construct!
Once an enumeration is defined, any of its members can be assigned to a variable and used in your

code quite naturally. Figure 5.18 shows this technique.

FIGURE 5.18 Creating and using an enumeration
Click here to view code image

// enumerations
enum FuelType : String {
 case Gasoline = "89 octane"
 case Diesel = "sulphur free"
 case Biodiesel = "vegetable oil"
 case Electric = "30 amps"
 case NaturalGas = "coalbed methane"
}

var engine : FuelType = .Gasoline

var vehicleName : String

switch engine {
 case .Gasoline:
 vehicleName = "Ford F-150"

 case .Diesel:
 vehicleName = "Ford F-250"

 case .Biodiesel:
 vehicleName = "Custom Van"

 case .Electric:
 vehicleName = "Toyota Prius"

 case .NaturalGas:
 vehicleName = "Utility Truck"
}

The enumeration defined on lines 315 through 321 shows the different fuel types. On line 323, a
variable engine is declared as an enumeration and assigned the value Gasoline. Note that the dot
preceding the value is a shorthanded dot notation. Because you are being explicit about declaring the
variable as a type of FuelType, Swift assumes that Gasoline is part of that enumeration, so an
explicit reference is not needed. You could have typed the following:
Click here to view code image

var engine : FuelType = FuelType.Gasoline

And it would have worked as well, but the extra typing is unnecessary.
On lines 325 through 340, a switch statement is used to traverse all the possibilities in the

FuelType enumeration, with a type of vehicle being printed depending on the value of the engine
variable.

If you’re familiar with enumerations in C, you know that internally the compiler assigns a number
to each enumeration value, and that any reference to that enumeration value actually decomposes into
a number. This is not so in Swift. Enumeration values remain their actual label names internally.

Structural Integrity
Classes are pretty powerful constructs in Swift for representing objects of various kinds, but the
language also offers choices for organizing data in similar ways: structures.

If you’re familiar with C or one of its variants, you’ll recognize structures immediately. They are
organizational constructs for holding data, and they look and feel like classes in several ways,
including how they are created:
Click here to view code image

struct structureName {
 // variable and constant definitions
}

Lines 346 to 358 of Figure 5.19 combine an enumeration and a structure together. The Vehicle
structure, defined on lines 352 through 355, has two members to represent the type of fuel and type of
transmission. Lines 357 and 358 demonstrate how to create variables representing the structure.
Click here to view code image

println("Vehicle \(vehicleName) takes \(engine.rawValue)")

enum TransmissionType {
 case Manual4Gear
 case Manual5Gear
 case Automatic
}

struct Vehicle {
 var fuel : FuelType
 var transmission : TransmissionType
}

var dieselAutomatic = Vehicle(fuel: .Diesel, transmission: .Automatic)
var gasoline4Speed = Vehicle(fuel: .Gasoline, transmission: .Manual4Gear)

FIGURE 5.19 Creating a Vehicle struct and initializing it

In the C language, structures are very useful for organizing and aggregating related data because
there are no such things as classes. In Swift, structures take on that same behavior, but can also
include methods. This makes structures almost the same as classes, but with some notable differences.

Whereas classes can establish hierarchy through inheritance, structures have no notion of
subclassing. Also, structures are copied in their entirety when being assigned from one variable to the
next; classes are referenced and not copied between variables.

Value Types vs. Reference Types
A very subtle but important distinction between classes and structures is how they behave when
assigned to a variable or constant. Classes in Swift are known as reference types. No matter how many
variables or constants are assigned to a particular object, they all point to the same object. Each
variable or constant holds a reference, and not a copy, of that object.

Structures are completely different. When a structure is assigned to a variable or constant, a copy of
that structure is made at that point. The same thing happens if a structure is passed as a parameter to a
function. This copy behavior makes structures value types.

This behavior can be illustrated in your playground by examining the contents of a class or a
structure after it has been assigned. Type in the following code, which lands at lines 361 through 386
in Figure 5.20.
Click here to view code image

// *****************************
// value type vs reference type
// *****************************
// In Swift, structures are value types
struct Structure {
 var copyVar : Int = 10
}

var struct1 = Structure() // struct1 created
var struct2 = struct1 // struct2 is a copy of struct1
struct2.copyVar = 20 // change struct2's copyVar
println("\(struct1.copyVar)") // struct1's copyVar
println("\(struct2.copyVar)") // struct2's copyVar

// In Swift, classes are reference types
class Class {
 var copyVar : Int = 10
}

var class1 = Class() // class1 instantiated
var class2 = class1 // class2 is a reference to class1
class2.copyVar = 20 // change class2's copyVar
println("\(class1.copyVar)") // class1's copyVar
println("\(class2.copyVar)") // class2's copyVar

FIGURE 5.20 Value versus reference types illustrated by structures and classes

On line 366, a simple structure, Structure, with one member, copyVar, is defined. The
copyVar member is assigned the value 10 by default. On line 370, a variable named struct1 is
assigned an instance of Structure. In the Results sidebar, the value of copyVar is shown as 10, as
you would expect.

On line 371, a second variable, struct2, is assigned to the struct1 variable that was just
created. At this point struct1 is copied and assigned to struct2; as a copy, any change to
struct2’s copyVar will be independent and not affect struct1’s copyVar. This is tested on
line 372, where copyVar of struct2 is assigned the value 20.

With that assignment made, both struct1 and struct2’s copyVar contents are printed. As
you would expect from a copy type, copyVar of struct1 remains the initial value, 10, whereas
copyVar of struct2 is 20. The values are different, proving that struct1 and struct2 are not
references to the same structure—they are completely different, independent copies.

Contrast that behavior to the contrived Class class on line 378. This class looks identical to the
structure example with the same variable copyVar, except it is marked as a class.

Just like in the structure example, a new class is instantiated on line 382 and assigned to class1.
On the next line, a variable class2 is assigned to the new class1 variable. At this point a reference
is made from class2 to class1, which means that both variables are referencing, or pointing to,
the exact same object in memory.

To demonstrate this, class2’s copyVar is set to 20 on line 384, and then both copyVar
variables from class1 and class2 are printed on lines 385 and 386. According to the Results
sidebar, they are both set to 20, proving that both class1 and class2 point to the same object. Any
modification of variables in class1 will immediately affect class2.

This behavior is important to understand, and should guide your use of classes versus structures.
Any type of language construct that is copyable should be thought of as “expensive to use” compared
with a referenced construct. For that reason, structures should be relegated to uses where small
aggregations of data are tightly related, like this example:
Click here to view code image

struct Triangle {
 var base : Double
 var height : Double

 func area() -> Double {
 return (0.5 * base) * height
 }

}

Here, the structure is organized around the idea of a triangle’s measurements of base and height,
and a single function that computes the area. Although a class would also work here, a structure fits
better for this type of compact representation. Classes are more appropriate for larger, more disparate
data organized with a number of different methods.

Looking Back, Looking Ahead
From classes to structures and enumerations, you’ve covered quite a lot of territory in this chapter.
Although we have yet to explore a few intricacies of these Swift constructs, that will come. For now,
you have enough of an understanding to begin to exploit these concepts.

I encourage you to practice modeling various types of objects around you and define them in terms
of classes. What are their properties? What are their behaviors? What types of objects are similar?
Can they inherit properties and behaviors from other objects?

Now turn the page and move forward into the next chapter. There, you’ll expand your existing Swift
knowledge with several additional class-related concepts: protocols and extensions.

Chapter 6. Formalizing with Protocols and Extensions

Congratulations on completing a set of milestone topics in the last chapter: classes, structures, and
enumerations—your Swift journey through this book is halfway finished! Yet, you’ve scratched only
the surface of what Swift’s object-oriented capabilities are. There’s still plenty to explore in this area,
and for now, our focus will remain on concepts related to classes and structures.

Two significant features of the Swift language expand the utility and flexibility of classes as well as
structures: protocols and extensions. That material will carry us through this chapter.

Following Protocol
Dinner fork versus salad fork. Saying “please” and “yes sir” or “yes ma’am.” These are behavior
examples we learn to apply in certain situations (in this case, eating at a table, or addressing
someone). Such behaviors are usually taught by a parent and become mannerisms. Essentially, when
we employ such behaviors, we are following existing protocols or modes of conduct.

The idea of protocol also extends to Swift, specifically with respect to classes and structures.
Protocols enforce a “code of conduct” on classes and structures, making them promise to implement
certain methods or properties. This enforcement is mandatory, but only if the class or structure
decides to opt-in, or adopt the protocol.

To illustrate how to use a protocol in Swift, think back to the Portal class in the previous chapter
(you might want to review the playground file for that chapter). The Portal class was created when
we realized that the Door class and the Window class shared a common ability to both lock and
unlock. It demonstrated class hierarchy and inheritance principles that are central to OOP.

Class or Protocol?
Inheritance made sense for doors and windows, but what about other unrelated objects that can also be
locked and unlocked? A car and a house can both be locked and unlocked, but constructing a class
hierarchy that could encapsulate the properties and behaviors of both objects would be unwieldy.
They’re different enough to make inheritance too much of a reach. That’s where protocols come into
play.

As you can see on lines 8 through 11 in Figure 6.1, a protocol definition looks a lot like a class
definition. The basic form of a protocol is:

protocol ProtocolName {
 // protocol members
}

FIGURE 6.1 Demonstrating Swift’s protocol feature

Start up Xcode, and create a new playground named Chapter 6. Type the following code into your
playground file on line 7 (Figure 6.1):
Click here to view code image

// protocol for locking/unlocking
protocol LockUnlockProtocol {
 func lock(Void) -> String
 func unlock(Void) -> String
}

class House : LockUnlockProtocol {
 func lock(Void) -> String {
 return "Click!"
 }

 func unlock(Void) -> String {
 return "Clack!"
 }
1}

class Vehicle : LockUnlockProtocol {
 func lock(Void) -> String {
 return "Beep-Beep!"
 }

 func unlock(Void) -> String {
 return "Beep!"
 }
}

let myHouse = House()
myHouse.lock()
myHouse.unlock()

let myCar = Vehicle()
myCar.lock()
myCar.unlock()

On lines 9 and 10, two functions are declared: lock and unlock. Both take no parameters and
return a String type. What might look strange is that the body of the function is missing, but that’s
the point of a protocol. It lists the method signatures a class must adopt.

To clarify, look at line 13. This is a regular class declaration, but notice what follows the colon: the
name of the protocol. This looks a lot like inheritance as you saw in the last chapter, but in this case, a
protocol follows, not a superclass name.

Lines 14 and 18 show the definition of the lock and unlock methods in the House class. Those
same methods exist in the Vehicle class on lines 24 and 28, except the result returned is different
(locking a house sounds different than locking a vehicle).

Lines 33 through 39 show the declaration of constants of type House and Vehicle, and the
subsequent calls to lock and unlock both via the methods dictated by the
LockUnlockProtocol.

More Than Just Methods
Swift protocols can work with more than just methods. Variable declarations can even be dictated to
the adopters of protocols. Recall in Chapter 5 that a variable, locked, was used to track the lock
status? This makes a great candidate for enhancing the previous example.

Type the following code starting on line 41 (Figure 6.2):
Click here to view code image

// new lock/unlock protocol with locked variable
protocol NewLockUnlockProtocol {
 var locked : Bool { get set }
 func lock(Void) -> String
 func unlock(Void) -> String
}

class Safe : NewLockUnlockProtocol {
 var locked : Bool = false

 func lock(Void) -> String {
 locked = true
 return "Ding!"
 }

 func unlock(Void) -> String {
 locked = false
 return "Dong!"
 }
}

class Gate : NewLockUnlockProtocol {
 var locked : Bool = false

 func lock(Void) -> String {
 locked = true
 return "Clink!"
 }

 func unlock(Void) -> String {
 locked = false

 return "Clonk!"
 }
}

let mySafe = Safe()
mySafe.lock()
mySafe.unlock()

let myGate = Gate()
myGate.lock()
myGate.unlock()

FIGURE 6.2 Adding a variable to a protocol definition

A new protocol NewLockUnlockProtocol is created on lines 42 through 46. It’s nearly
identical to the previous protocol except for the addition of line 43:

var locked : Bool { get set }

Within the context of a protocol, a variable can be designated as mandatory by adding the familiar
var keyword, the name of the variable, and the type following a colon. What is new is the { get
set } that follows the type.

Both get and set are special qualifiers that force the protocol adopter to consider the mutability
of the variable. With both get and set present, the resulting locked declaration in any adopting
class or structure must declare it with the var keyword, indicating mutability. With only get present,
the adopting class or structure can be declared with either the let or var keyword.

Adopting Multiple Protocols
Swift allows a class or structure to adopt more than one protocol; this flexibility allows you to refactor

your work into separate protocols for better organization. Take for instance, the task of finding the
area of a geometric shape as well as the perimeter. The area is the measurement of the space within
the bounds of the shape, while the perimeter is the measurement of the length of all the sides.

If we consider the computation of the area and perimeter as methods declared in separate protocols,
they can be adopted by a variety of structures that represent different shapes. Type the following code
starting on line 84 (Figure 6.3).
Click here to view code image

// a structure adopting multiple protocols
protocol AreaComputationProtocol {
 func computeArea(Void) -> Double
}

protocol PerimeterComputationProtocol {
 func computePerimeter(Void) -> Double
}

struct Rectangle : AreaComputationProtocol, PerimeterComputationProtocol {
 var width, height : Double

 func computeArea(Void) -> Double {
 return width * height
 }

 func computePerimeter(Void) -> Double {
 return width * 2 + height * 2
 }
}

var square = Rectangle(width : 3, height : 3)
var rectangle = Rectangle(width : 4, height : 6)

square.computeArea()
square.computePerimeter()

rectangle.computeArea()
rectangle.computePerimeter()

FIGURE 6.3 Adopting multiple protocols

Lines 85 through 91 show the two new protocols, each requiring the creation of a single function.

On line 93, the Rectangle structure shows the multiple adoption syntax. Each protocol is separated
by a comma. Since both protocols are specified, the methods and variables of both must be adopted. In
this case, only the functions computeArea and computePerimeter are necessary for adoption
by the Rectangle structure.

Lines 105 and 106 show the declaration of two variables: One is a square (which is a special case of
a rectangle), and the other is a rectangle. Both create an instance of the Rectangle structure with
the width and height parameters; the Results sidebar confirms their creation.

Protocols Can Inherit, Too
It may come as a surprise, but just like classes can inherit from each other, protocols can as well.
Protocol inheritance allows you to build on basic protocols and extend them with either new method
or variable requirements.

Type the following code beginning on line 114 (Figure 6.4):
Click here to view code image

// protocol inheritance
protocol TriangleProtocol : AreaComputationProtocol,
PerimeterComputationProtocol {
 var a : Double { get set }
 var b : Double { get set }
 var c : Double { get set }
 var base : Double { get set }
 var height : Double { get set }
}

struct Triangle : TriangleProtocol {
 var a, b, c : Double
 var height, base : Double

 func computeArea(Void) -> Double {
 return (base * height) / 2
 }

 func computePerimeter(Void) -> Double {
 return a + b + c
 }
}

var triangle1 = Triangle(a : 4, b : 5, c : 6, height : 12, base : 10)

triangle1.computeArea()
triangle1.computePerimeter()

FIGURE 6.4 Demonstrating protocol inheritance

Line 115 shows the TriangleProtocol definition, followed by the names of the two protocols
it inherits: AreaComputationProtocol and PerimeterComputationProtocol. In
addition to adopting these two protocols, TriangleProtocol also enforces the addition of five
helpful variables for computing both the area and the perimeter of a triangle. Note that each variable
has both the get and set qualifiers specified.

On line 123, a new structure, Triangle, is defined that adheres to the TriangleProtocol. By
adhering to that protocol, the Triangle structure must also adhere to
AreaComputationProtocol and PerimeterComputationProtocol. Those methods are
defined on lines 127 through 133. Lines 124 and 125 create the additional variables, which are
required by the TriangleProtocol definition.

Line 136 creates an instance of the Triangle structure, aptly named triangle1, along with the
initialization of the parameters. Lines 138 and 139 show the result of calling the computation
methods, and you can verify the results in the Results sidebar.

Delegation
One specific use for Swift’s protocols is an important programming design pattern called delegation.
Delegation allows one class or structure to concede work or even decision making to another class or
structure. When you delegate a task to someone, you expect that person to do the task and report back
the status to you; it’s very much the same idea in Swift. Other classes can be delegates, performing
work on behalf of your class, and protocols are perfect for this. Delegation can also be used to query,
or ask, another class or structure whether or not something is permissible.

Begin typing the following code on line 141 (Figure 6.5). This snippet demonstrates delegation by
modeling a vending machine, which takes a coin and vends an item:
Click here to view code image

// delegation via protocol
protocol VendingMachineProtocol {
 var coinInserted : Bool {get set}
 func shouldVend(Void) -> Bool
}

class Vendor : VendingMachineProtocol {
 var coinInserted : Bool = false

 func shouldVend(Void) -> Bool {
 if coinInserted == true {
 coinInserted = false
 return true
 }
 return false
 }
}

class ColaMachine {
 var vendor : VendingMachineProtocol

 init(vendor : VendingMachineProtocol) {
 self.vendor = vendor
 }
 func insertCoin(Void) {
 vendor.coinInserted = true
 }

 func pressColaButton(Void) -> String {
 if vendor.shouldVend() == true {
 return "Here's a Cola!"
 }
 else {
 return "You must insert a coin!"
 }
 }

 func pressRootBeerButton(Void) -> String {
 if vendor.shouldVend() == true {
 return "Here's a Root Beer!"
 }
 else {
 return "You must insert a coin!"
 }
 }
}

var vendingMachine = ColaMachine(vendor : Vendor())

vendingMachine.pressColaButton()
vendingMachine.insertCoin()
vendingMachine.pressColaButton()
vendingMachine.pressColaButton()

FIGURE 6.5 Using a protocol for delegation

Lines 142 through 145 define the protocol, VendingMachineProtocol, with a Bool variable
and a method. The variable is set to true to indicate a coin is inserted, or false if not. The method
returns a Bool indicating whether or not an item should be vended.

Lines 147 through 157 define a new class, Vendor, which adheres to the
VendingMachineProtocol. It creates the coinInserted variable that the protocol dictates, as
well as the shouldVend method. The logic is simple: If a coin has been inserted, clear the
coinInserted variable and return true, indicating that an item should be vended; otherwise, no
coin has been inserted—return false to prevent a item from vending.

Lines 159 through 187 define the ColaMachine class, which holds an object that adheres to the
VendingMachineProtocol protocol. The init method on line 162 takes that object and assigns
it to the self.vendor variable on line 163. This vendor object will act on behalf of our class to
determine whether it is appropriate to vend an item.

A convenient method, insertCoin, is defined on lines 166 through 168, and simply sets the
vendor object’s coinInserted variable to true when called.

Two other methods, pressColaButton and pressRootBeerButton, call the vendor’s
delegate method shouldVend to determine whether to return a vended item (a cola or a root beer) or
to remind the user gently to insert a coin.

Finally, a new vendingMachine variable is created on line 189, and its methods called on lines
191 through 194 to demonstrate that the class works as expected. Figure 6.5 shows the results in the

Results sidebar.

Extending with Extensions
In the previous chapter, you were introduced to subclassing as a means of extending a Swift class
through inheritance. Inheritance via subclassing is a time-tested way of extending an existing class,
and it works well for modeling and solving problems in object-oriented languages.

However, alternatives to subclassing in Swift still allow you to extend the functionality of a class
without inheritance. Such an approach can be useful when you want to extend, and not fundamentally
create, a new class structure. Subclassing is also limited to classes and does not work on structures.

On the other hand, extensions allow you to expand and extend the behavior and functionality of
classes, structures, and even basic types, in a rather non-invasive and straightforward manner. Swift’s
extensions are analogous to Objective-C categories but are much more powerful.

In true Swift form, the basic form of an extension looks similar to a class or protocol declaration:
extension className {
 // extension methods
}

In the case of an extension, the keyword is followed by the name of the class or structure that will
be extended. Let’s start by extending the class you just worked with: the ColaMachine class. Right
now, the class contains methods to vend colas and root beers. Let’s extend the class to also vend diet
colas. Type the following code starting on line 195 (Figure 6.6):
Click here to view code image

// extensions
extension ColaMachine {
 func pressDietColaButton(Void) -> String {
 if vendor.shouldVend() == true {
 return "Here's a Diet Cola!"
 }
 else {
 return "You must insert a coin!"
 }
 }
}

var newVendingMachine = ColaMachine(vendor : Vendor())

vendingMachine.insertCoin()
vendingMachine.pressDietColaButton()

FIGURE 6.6 Extending the ColaMachine class with an extension

Line 197 in Figure 6.6 shows the start of the extension of the ColaMachine class. Following that
is the new method, pressDietColaButton, on lines 198 through 205, which mirrors similar
methods in the definition of the ColaMachine class earlier in the playground.

A new vending machine object is instantiated on line 208, and the new extension method is called
on lines 210 and 211. The Results sidebar shows the results of that code.

You may be asking, “why create an extension when we could have simply added the function to the
ColaMachine class?” In this case, you could have certainly done that, but as you build your apps in
Swift, you’ll find yourself relying on third-party classes, and you may not necessarily have access to
the source code. Using extensions is a great way to add features to a class defined elsewhere, even
when the class’s source code is not available.

Extending Basic Types
Bringing additional functionality to classes via extensions is one thing, but extending types is
something entirely different. Swift’s extensions allow you to enhance standard types such as Double
and String to make them more powerful and easier to use.

Megabytes and Gigabytes
Let’s start out by extending the most common of the basic Swift types: the ubiquitous integer (Int).
Type the following code starting on line 213 to convert an Int to kilobytes (kb), megabytes (mb), or
gigabytes (gb) (Figure 6.7):
Click here to view code image

// extending Int to handle memory size designations
extension Int {
 var kb : Int { return self * 1_024 }
 var mb : Int { return self * 1_024 * 1_024 }
 var gb : Int { return self * 1_024 * 1_024 * 1_024 }
}

var x : Int = 4.kb
var y = 8.mb
var z = 2.gb

FIGURE 6.7 Using extensions to extend the Int type

This extension demonstrates a feature known as computed properties. Unlike classes, extensions
prevent the addition of regular (or stored) properties, but computed properties are very much allowed.
Computed properties are just that: Their values are derived from computations and take on the form:

var propertyName : type { code }

On lines 215 through 217, the extension to the Int type takes care of conversions for kilobytes,
megabytes, and gigabytes by performing simple math on the value of the type, represented by the
keyword self.

The declared variables on lines 220 through 222 are assigned values appended with the now familiar
dot notation and the appropriate symbol (kb, mb, or gb).

What’s the Temperature?
Let’s extend the Double type to handle computations for three types of temperature units: F for
degrees Fahrenheit, C for degrees Celsius, and K for degrees Kelvin. Type the following code starting
on line 224 (Figure 6.8):
Click here to view code image

// extending Double to handle temperature conversions
extension Double {
 var F : Double { return self }
 var C : Double { return (((self - 32.0) * 5.0) / 9.0) }
 var K : Double { return (((self - 32.0) / 1.8) + 273.15) }
}

var temperatureF = 80.4.F
var temperatureC = temperatureF.C
var temperatureK = temperatureF.K

FIGURE 6.8 Using extensions on the Double type

This looks a lot like the Int extensions we just discussed. Computed properties are once again used
to extend the Double type.

In Figure 6.8, the variables lines 231 through 233 are assigned values appended with the recurring
dot notation and the symbol F, C, or K. The results can be confirmed by looking at the Results sidebar
in Figure 6.8.

Computed properties are quite handy in giving new functionality and utility to even the most
elementary types, but there’s a bonus: Extensions can extend a type with functions, too!

Before or After?
Since we’ve been picking on Int and Double, let’s show the String type a little love. Type the
following code starting on line 235 to use extensions and add two methods: prepend and append
(Figure 6.9):
Click here to view code image

// extending String with functions
extension String {
 func prependString(value : String) -> String {
 return value + self
 }

 func appendString(value : String) -> String {
 return self + value
 }
}

"x".prependString("prefix")
"y".appendString("postfix")

FIGURE 6.9 Using methods to extend the String type

Lines 237 through 243 define two methods that create a new string by combining a literal string
such as “prefix” with the passed-in String object. Again, the self keyword is used to reference the
value. In the case of the prepend method, self is being added to the passed value parameter. For
the append method, self comes before value.

Lines 246 and 247 demonstrate using the new methods. In both cases, the "x" or "y" string literal
calls the method, which itself takes a single parameter, with the results appearing in the Results
sidebar.

It’s Mutating!
Up to this point, each of the extension examples return some variant of self: Depending on the type,
there’s self appended with a string, self prepended with a string, self multiplied by a number,
and so on. The result can be captured in a constant or variable, as is done on lines 231 through 233 in
Figure 6.9.

What if you want to change the value of self instead of simply returning some variation of it?
Swift allows this by specifying a method as mutating. A mutating method in an extension allows the
actual object to be changed.

Type the following code starting on line 249 to create such a mutating method on the Int type
(Figure 6.10):
Click here to view code image

// extensions with mutating instance methods
extension Int {
 mutating func triple() {
 self = self * 3
 }
}

var trip = 3
trip.triple()

extension String {
 mutating func decorate() {
 self = "*** " + self + " ***"
 }
}

var testString = "decorate this"
testString.decorate()

FIGURE 6.10 Using a mutating method on the Int class

On line 251, the mutating keyword is used before the function definition. This keyword is
required when creating a mutating method; if it is omitted, the Swift compiler will throw an error on
line 252 when it attempts to assign a value to self.

The triple function simply takes the value and multiplies it by three. This is done on line 252,
where self is assigned to itself times three. This is the essence of a mutating method: self appears
on the left side of the equal sign, indicating that it will be modified.

On line 256, a variable named trip is created and assigned the value 3. Following that is a call to
the triple method, which triples the value. The Results sidebar shows the value changing from 3 to
9.

Likewise, on line 260, a mutating function is defined for the String type. Line 261 sets self to
be bounded by asterisks in the decorate method. Lines 265 and 266 demonstrate the creation of a
string variable that calls the decorate method. Once again, the Results sidebar reveals that the
method indeed works.

Remember, mutating methods are all about change—modifying the actual value of the extended
class. They cannot work on constants since by definition, a constant is immutable, and attempting to
call a mutating method on a constant will result in a Swift compiler error.

Using Closures in Extensions
Closures are blocks of code that can be passed around just like variables in Swift. You can pass a
closure as a parameter to an extension on the Int type to make a useful repeating feature. Type the
following code starting on line 268 (Figure 6.11):
Click here to view code image

// extension with a closure as a parameter
extension Int {
 func repeat(work: () -> ()) {
 for _ in 0..<self {
 work()
 }
 }
}

5.repeat({
 println("repeat this string")
})

FIGURE 6.11 Using a closure in an extension (using the Timeline view)

Line 269 shows that this is clearly an extension on the Int type. For repeatable tasks, an integer is
the right type choice (a Double wouldn’t work well since you cannot repeat something 3.153 times,
for example).

In line 270, you’re using a function named repeat to extend Int, but the parameter is interesting:
work: () -> ()

This is the simplest form of a closure declaration, a block of code that takes nothing as a parameter
and returns nothing as a result. The name of the parameter is work.

In lines 271 through 273, a simple for-in loop iterates over the closure, which is called the
number of times equal to the value of self. What may be new to you is the underscore (_) in the
place where you might expect a variable. This is a great feature of the Swift language; essentially, it’s
a “don’t care” symbol that tells Swift to disregard any use of a variable. In this case, we don’t need to
use a variable to iterate through the loop, because the loop variable is not used anywhere in the for-
in loop.

The code on lines 277 through 279 uses the repeat method on the integer literal 5. The
println("repeat this string") statement is embedded in the passed closure, which shows
the results in the Timeline pane.

Remember, to view the Timeline pane, click the round circle next to the output in the Results
sidebar (Figure 6.12). You may need to hover over a line of code or click a specific line to get this
circle to appear.

FIGURE 6.12 Clicking the circle shows the Timeline pane in your playground

Summary
It’s been another whirlwind chapter hasn’t it? You’ve taken in a lot, so feel free to go back and review
all the code examples. And of course take some time to experiment with your playground file to get a
good grounding on the concepts.

Now is also a good time for a break as you leave this section and start the next one. Although we
still have more features of the Swift language to cover, next you’ll start learning how to write an app
or two. Delving into writing a full-fledged program is a great way to learn Swift. And there’s no better
way to start than learning the ins and outs of Xcode—Apple’s incredible development environment.

Section II: Developing with Swift
Welcome to the second half of the book! Over the last six chapters, you spent time learning important
aspects of the Swift language. Even though you didn’t explore every aspect of the language, you did
cover the basics as well as some of Swift’s more intermediate features. Now it’s time for you to begin
to build upon your newly gained knowledge.

Since you’ve made it this far, you should now consider yourself a graduate of sorts—no more
playgrounds or simple examples for you in the next few chapters. You’re moving on to full-fledged
development and debugging of Swift applications using Xcode.

 Chapter 7, Working with Xcode

 Chapter 8, Making a Better App

 Chapter 9, Going Mobile with Swift

 Chapter 10, Advancing Ahead

Chapter 7. Working with Xcode

As Apple’s hallmark software development platform for Mac and iOS app creation, Xcode is the tool
that virtually every Swift developer needs to know and use in order to make the most out of the
language. Up to now, you have had very light interaction with Xcode—specifically when creating your
playgrounds. But Xcode is so much more, as you’ll soon learn. It can do a lot to help you hone your
Swift skills and make the best apps possible.

Xcode is an integrated development environment (IDE). Essentially, it’s a system of integrated
components that make writing, debugging, and testing software easier. The major components of any
modern IDE are:

 Compiler—Turns your human-readable source code into processor-specific executable code that
can run on your computer
 Debugger—Helps you find problems in your code when things aren’t working correctly
 Editor—Lets you edit your code
 Project manager—Helps you keep your software project’s tens (or even hundreds) of files
organized
 Test subsystem—Facilitates testing (an always-important aspect of software development)
 Profiling and analyzing tools—Helps you inspect your code while it’s running to determine how
well it performs, uses resources, and so on

Xcode contains all these components and more. We’ll touch on most of these throughout the
remainder of the book. But first a little history lesson.

Xcode’s Pedigree
As of the time of this writing, Xcode is in its sixth major release. That’s quite an achievement for a
single IDE. Since it has always been an Apple product, Xcode has exclusively focused on building
software for its products using the Objective-C programming language, as well as C and C++.

Xcode 1.0 was released in the fall of 2003. Based on Apple’s earlier IDE, Project Builder, Xcode 1.0
was Apple’s foray into a single development platform that would become the basis for its growing line
of Macintosh computers.

It wasn’t until Xcode 3.1 that support for iPhone OS (now iOS) came into being. By that time,
additional debugging and inspection tools were made available, embodied in a powerful application
known as Instruments. It was also the version that heralded a powerful compiler technology that is
ubiquitous in Xcode today: the LLVM compiler system.

Now with Xcode 6, support for the Swift language is bolted in, along with continued support for
Objective-C. You can expect Apple to continue to develop and enhance Xcode for some time going
forward.

Creating Your First Swift Project
Let’s start by taking a tour of Xcode. If you haven’t already launched Xcode 6, go ahead and do so
now. Choose File > New > Project as shown in Figure 7.1.

FIGURE 7.1 Xcode 6’s File menu

Previously, you used the Playground menu item to create a new playground. This time, you’re
creating a new project.

What is an Xcode project? It’s a file package that contains references to all the code source files
and resources that make up an application. The project file essentially manages all these files for you
and makes certain that the Swift compiler does the right thing with them.

After clicking the Project menu item, a new Xcode window appears along with a drop-down
sheet. Here you are prompted to select a project template (Figure 7.2).

FIGURE 7.2 Select a new project template in Xcode.

Two major groups are available for project creation: iOS and OS X. If you are writing an iOS app,
you would normally select an item from the first group.

Choose OS X as the project template. Specifically, select the Application item, select Cocoa
Application in the template chooser, and then click Next. In the dialog that appears, you can set the
project’s options (Figure 7.3).

FIGURE 7.3 Project options for the new project

If your organization name is different than what appears in Figure 7.3, you can simply ignore it for
now. More importantly, ensure the Product Name is set to MyFirstSwiftApp and the Language is set
to Swift and not Objective-C. You can also leave the remaining options deselected. Click Next.

Another dialog appears, prompting you to save the project. Figure 7.4 shows where your project
will be saved. You can choose any convenient location. Feel free to leave the Create Git Repository
option selected (if it is already); however, we won’t be worrying about source control. Once you have
selected a place to save the project, click Create.

FIGURE 7.4 The project save dialog. Navigate to a location on your Mac to save the project.

Congratulations! You’ve taken your first step toward creating your first Swift app on your Mac.

Diving Down
Now that you’ve created your project, you’re ready to dive into the details. The project window may
seem daunting and intimidating at first. Don’t worry. I’ll show you the ins and outs of this window
and how you can use it to manage your Swift development.

The project window is composed of five major areas, four of which you see now:
 The toolbar, which runs along the top, is where you can quickly see the name of your project
file and obtain the status of any compilations or other work going in Xcode.
 The navigator area falls along the left side of the window. It arranges all the files in your
project in a hierarchal fashion, allowing you to organize and browse according to your liking.
You’ll refer to the navigator area quite a bit when working with your project.
 On the right side of the project window is the utilities area. This area is automatically
populated with information about the currently selected file in the navigator area. It’s also a
place where you can set information about various resources that compose your application.
 The debug area rests at the bottom of the project window. It is currently hidden from your view,
but we’ll look at it soon. As you might expect, this is where you interact with the debugger to fix
issues in your code.
 The editor area is where you will spend most of your time interacting with Xcode. You’ll edit
your source code in this area. It is also the largest and centermost area of the project window,
allowing you to focus on your code.

At the moment, the editor area doesn’t contain source code, but instead shows the General panel
related to your application. You can ignore many of these settings for the purposes of learning Swift,
but you should understand the correlation between the navigator area and this pane.

In the navigator area, the topmost selected item is the name of your project. When this is selected,
the editor area shows the content shown in Figure 7.5. A subpane of the editor area shows your
project, MyFirstSwiftApp, as well as two targets. A target in Xcode is a destination of sorts. It’s
an entity that is expected to be “built” or “made.” Your application, MyFirstSwiftApp, is a target

and is currently selected. A second target, in our case MyFirstSwiftAppTests, is automatically
created for an application project such as this. It allows you to write tests that help fortify and
strengthen your code.

FIGURE 7.5 Setting up the target

Interacting with the Project Window
Go to the navigator area on the left side of the window (Figure 7.5), and locate the file named
AppDelegate.swift. Xcode expects all Swift source files to have the .swift extension, so this should
become familiar to you over time.

In the navigator area, single-click the AppDelegate.swift source file (Figure 7.6). Doing so will
show the code in Figure 7.7.

FIGURE 7.6 Selecting the AppDelegate.swift source file from the navigator area

FIGURE 7.7 The AppDelegate.swift code in the editor area

The code in Figure 7.7 should look somewhat familiar to you. It has comments on lines 1 through 7
and a class definition starting at line 12. The rest looks strange and new. Not to worry; I’ll explain it to
you shortly.

What you are looking at is the entry point to a Mac OS X application written in Swift, specifically
the method applicationDidFinishLaunching, which is a member function of the
AppDelegate class. This is the first method in your code that will be called after the application has
started up.

The comment in the method directs you to insert code to initialize your application. A second
method, applicationWillTerminate, is called when the application is terminating.

Both of these methods are wrapped in the AppDelegate class, which is the class that OS X
applications are expected to implement (and indeed, this class is automatically created for you).

Also note that the editor area provides visual clues about your source code: Comments are colored
in green and Swift keywords are in blue. This coloring gives you immediate, at-a-glance cues as to
how your source code is composed. The colors are actually configurable by going to the Xcode >
Preferences menu and selecting the Fonts & Colors toolbar button. (I’ll leave that as an exercise for
you to play with.)

For clarity, let’s review the code in the AppDelegate.swift file line by line.
The comments in lines 1 through 7 indicate the vintage of the file as well as the author and

company to whom it belongs.
Line 9 shows the import statement:
import Cocoa

The import keyword tells the Swift compiler to import other software components into your
project. In this case, that component is Cocoa. Cocoa is the name of Apple’s vast framework of classes
that make up the OS X experience. You’ll be learning a bit about these frameworks throughout the
remainder of the book.

Line 11 is a special attribute type that tells the Swift compiler to generate code specifically for
starting the application. You can safely ignore it.

Line 12 is a now-familiar class definition. Named AppDelegate, it inherits from a base class
named NSObject. This is a historical class that has its roots in Objective-C. This is followed by
NSApplicationDelegate, which is a protocol.
Click here to view code image

class AppDelegate: NSObject, NSApplicationDelegate {

Line 14 should look somewhat familiar. It’s a declaration for a variable named window of type
NSWindow. The strange-looking preface, @IBOutlet weak, is a special attribute that identifies
this variable as an outlet to a UI element (we’ll see this a bit later). The exclamation mark following
the type NSWindow is a special character related to optionals (remember those were discussed in the
beginning of the book). We’ll get into the actual meaning of the (!) operator later. For now, just
ignore it.
Click here to view code image

@IBOutlet weak var window: NSWindow!

As mentioned earlier, lines 17 through 23 are the member methods of the AppDelegate class
defined by the Cocoa framework. In both cases, the methods are passed the following parameter:

aNotification: NSNotification

Notifications are special objects used to pass information between classes in Cocoa; a notification
is an instantiated object of the NSNotification class passed into both methods when they are
called.

That completes the tour of the AppDelegate.swift source file. It’s short, sweet, and automatically
generated by Xcode when it creates an app. Think of it as a boilerplate, or template for you to start
your project.

It’s Alive!
You may find it difficult to believe, but even with this minimal source file, you actually have a
runnable application. This is one of Xcode’s many great features: You can get off the ground running
with minimal effort. To convince you of just how neat this is, choose Product > Run to start the
compilation process. In short order, you’ll see a window like the one in Figure 7.8.

FIGURE 7.8 The window of your first Swift application

You just ran your first app. The window appears with the name of the app, MyFirstSwiftApp,
advertised in the window title bar. It’s something to show for your minimal work, but as a blank
window, it’s not that impressive. That’s because you haven’t done anything to the project as of yet,
but we’ll get to that soon enough.

As a running app, MyFirstSwiftApp takes a prominent position in your Dock with a rather
generic icon. You can also move the window around and resize it by clicking and dragging the lower-
right corner of the window. That’s a lot of functionality you get “for free.”

This is cool, but ultimately a means to an end—you want to build something useful; after all, that’s
what learning Swift is all about.

Next we’ll make some alterations, so go ahead and quit the app by pressing Command-Q.

Piquing Your Interest
An empty window isn’t something that gets you excited, but what can you put there? That depends on
what you want to build.

An earlier chapter touched on interest rate calculations. The idea worked OK in the REPL, but the
user interface wasn’t the best. Who wants to type code to get the answer when they can point and
click?

A simple interest calculator is a perfect fit for your first real Swift app, and the user interface
should be simple to craft. We’ll do a quick inventory of the user interface elements you need to make
this app work; but first, the core problem you’re trying to solve is computing simple interest on a loan.

To do that, you need to think about the inputs (what the user will type in) and the outputs (what the
calculation will yield).

 Inputs—Simple interest requires three: a loan amount, a period of time (or term), and an interest
rate.
 Outputs—The result of the calculation is a single output, namely the total amount of the loan
over the term at the given interest rate.

If you take a quick inventory of how the user interface (or UI as we’ll call it from now on) looks,
you’ll need three input fields and an output field. You’ll also need a button the user can click to
perform the calculation.

Now that you know what you need, you can start building; but first, let’s address the screen real-
estate issue of Xcode.

Making Room
Xcode gives you all the tools you need to create your user interface; in fact, it already created the
window for you as you saw when you ran the app. That window is hiding in a file named
MainMenu.xib. Locate that file in the navigator area (it’s under the group folder named
MyFirstSwiftApp), and single-click it.

The editor area changes to look something like Figure 7.9.

FIGURE 7.9 Selecting MainMenu.xib from the navigator area

The AppDelegate.swift code goes away, and the editor area’s contents change to an inner pane and
what looks like a partial window. Just above the window is the menu bar for the app. By clicking the
MainMenu.xib file, the editor area changed to accommodate the view of the window. The editor
area is context sensitive, showing the content you want to edit.

If you’re working on a Mac with a smaller screen, you may not be able to see the entire editor area.
To help maximize your screen real estate while working with large content, Xcode gives you some
options.

In the upper-right corner of the Xcode window are three buttons (Figure 7.10) you can click to
reclaim areas of the Xcode window. These buttons expand or collapse various areas of the Xcode
window. Be aware that the area you collapse might be needed for subsequent work, so use these
carefully.

FIGURE 7.10 Xcode allows you to collapse areas to maximize your workspace.

You can also click the double arrow (shown in Figure 7.10) to put Xcode into full screen mode and
utilize the entire area of your monitor.

Whichever method you choose, have the entire window visible in the Xcode editor area and ensure
that the utilities area on the right of the Xcode window is still visible—you will need access to it
shortly.

Building the UI
Now the fun begins! You can start building your application’s window with the appropriate UI
elements. Start by looking at the lower-right corner of the Xcode window (the utilities area). There
you’ll see a table of UI elements you can scroll through. This is the “palette” of goodies you can use in
your apps.

Button Up!
Let’s start with the Push Button (Figure 7.11). Locate it, and drag it onto the window in the editor
area.

FIGURE 7.11 The Push Button UI element

When dragging the button in the area inside of the app window, Xcode places helpful perforated
guidelines indicating when the button is centered on the window, as well as appropriate edge
boundaries that conform to Apple’s user interface guidelines. Don’t worry about being too exact with
placement—just position the button in the bottom of your app window (Figure 7.12).

FIGURE 7.12 The window with the Push Button UI element placed

Labels, Labels, Labels
Labels are special noneditable text fields used to hold textual information. For this app, they’ll
precede the editable text fields, which will come shortly.

To find the Label UI element, you can scroll through the element library in the utilities area until
you find “Label,” but a quicker way is to use the search field. Doing so gets you right to that element
(Figure 7.13).

FIGURE 7.13 Using the search field to locate a specific UI element (in this case, “label”)

Two types of labels are available: single line and multi-line. The latter is convenient if you need
labels to span multiple lines for larger descriptions. For this app, a single-line label is all that’s
needed.

Drag the label from the utilities area into the window in the editor area. Notice the placement in
Figure 7.14. Again, don’t worry about getting it exactly right; just place it in the general area. Double-
click the “Label” text to highlight it and type the following to replace the text:

Loan Amount:
The label field’s width automatically expands to accommodate the additional text.
Drag two more labels to the window, and position them underneath each other. Again, refer to

Figure 7.14 for general placement, and be sure to use Xcode’s perforated guides to line things up. Give
the additional two labels the following text:

Loan Term:
Interest Rate:
Next we’ll bring the editable text fields into view.

FIGURE 7.14 The window populated with the labels

Input’s the Key
By now you should be getting the rhythm of the UI element library: Find the appropriate type of
control in the list and drag it to the window. This is part of the process of building a user interface.
There’s one more set of elements to bring into the window: text fields.

A text field is similar to a label, but it is editable. Text fields are where your user interacts with the
app. In this case, you need three, corresponding to the three labels you just created.

Using the search field below the UI element library, search for “field” (Figure 7.15). Once you’ve
located the element, drag it into the window, aligning the text field to the right of the label. Repeat the
process two more times, aligning the text field with the labels as in Figure 7.16.

FIGURE 7.15 The text field in the UI element library

FIGURE 7.16 The window now has a button, three labels, and three text fields.

Note that the text fields are “taller” than their companion labels. As you place them on the window,
Xcode will suggest a proper vertical spacing. In doing so, you should read just the labels’ vertical
spacing so they line up horizontally with their corresponding text field.

Tidying Up
You’re almost finished with the user interface and will soon move on to the fun stuff—coding the
logic in Swift. However, you have a few more things to do before moving onto the next phase.

Rename the Button Title
The name of the button is “Button,” which obviously isn’t intuitive. Double-click the button, and
rename it to Calculate.

Add a Result Label
The app needs to communicate the result of the calculation, and this is best done using a label. Drag a
new label from the UI element library over to the window, and insert it between the interest rate text
field and the button. Double-click this label, and set its name to RESULT.

To make it stand out, click the Attributes inspector icon in the utilities area, and change the Font
from System Regular to System 17 to increase its size (Figure 7.17). Also, click the second icon from
the left in the Alignment set so that the label is centered in the text field.

FIGURE 7.17 The Attributes inspector pane

Optimize the Window Size
The default window size is a little large for our app. Take this opportunity to reposition the UI
elements so that the real estate is better utilized. Then click the lower-right corner of the window and
drag inward until an optimal size is reached. Figure 7.18 shows the desired final result. Again, don’t
worry about getting your window exactly right—just go through the exercise to understand the
process.

FIGURE 7.18 The app’s window is complete and ready to go,

Take It for a Quick Spin
Now that the window is set up properly, choose Product > Run to run the application. You should be
able to interact with the three text fields and click the Calculate button. Of course, nothing happens of
interest because there’s Swift code to write! That’s coming next.

Class Time

Recall back in Chapter 5 where Swift’s class concept was introduced. The idea behind the class is to
create reusable models of real-world and even abstract concepts. It also helps organize your code
logically. A huge benefit is that a Swift class can be easily added into one or more of your projects,
providing you with instant functionality.

Creating a Swift class to handle interest calculations is a good approach here. So how do you do
this? Up to now, you’ve used a playground to write your class code. Here, playgrounds aren’t
applicable. Instead, you must create a class file.

Choose File > New > File. The new file template dialog appears (Figure 7.19).

FIGURE 7.19 The new file template in Xcode

Here you have the opportunity to create many different file types. The file types are grouped by
platform (iOS and OS X). Since this is an OS X app, and you’re creating a Swift class, select the
Source option on the left, click Swift File on the right, and click Next. You’ll be prompted to save the
newly created file via the file save dialog in Figure 7.20.

FIGURE 7.20 The file creation dialog

You can select the targets the file will be associated with. MyFirstSwiftApp is already selected;
go ahead and select the MyFirstSwiftAppTests target as well.

Xcode creates the file and gives it the extension .swift. It also adds the file in the navigator area.
The editor area is updated to show the contents of the file, which contains a set of comments and an
import statement. Below that line is where you can start building your class.

You wrote a simple interest calculation closure in Chapter 4. For this new class,
SimpleInterest, you’ll promote that to a method. Type in the following lines of code at the end
of the newly created class file.
Click here to view code image

class SimpleInterest {
 func calculate(loanAmount : Double, var interestRate : Double, years : Int) -> Double {
 interestRate = interestRate / 100.0
 var interest = Double(years) * interestRate * loanAmount

 return loanAmount + interest
 }
}

This should look familiar to you: a method that takes a loan amount, an interest rate, and a term (in
years), and returns the value of the loan after the term.

Now turn your attention to the AppDelegate.swift file by clicking its name in the navigator area.
Just below line 9 (the import Cocoa statement), replace subsequent lines with the following code:
Click here to view code image

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window : NSWindow!

 @IBOutlet weak var loanAmountField : NSTextField!
 @IBOutlet weak var interestRateField : NSTextField!
 @IBOutlet weak var yearsField : NSTextField!
 @IBOutlet weak var resultsField : NSTextField!

 var simpleInterestCalculator : SimpleInterest = SimpleInterest()

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 // Insert code here to initialize your application
 }

 func applicationWillTerminate(aNotification: NSNotification) {
 // Insert code here to tear down your application
 }

 @IBAction func buttonClicked(sender : NSButton) {
 var result : Double

 result = simpleInterestCalculator.calculate(loanAmountField. doubleValue, interestRate:
interestRateField.doubleValue, years: yearsField.integerValue)

 self.resultsField.stringValue = result.description
 }
}

Let’s go through the code line by line, referring to the line numbers in Figure 7.21.

FIGURE 7.21 The code as it appears in the editor area of Xcode

We discussed lines 9 through 14 earlier, but deferred the discussion on the exclamation mark (!) at
the end of line 14. Now four additional variables declared on lines 16 through 19 also have the
exclamation mark appended.

So what is this exclamation mark? It is known as an implicitly unwrapped optional and is used
when, among other things, you are declaring a variable. So what’s an implicitly unwrapped optional?

Remember we discussed optionals in Chapter 1. An optional is a special type that indicates a
variable can either hold a value or be nil. Accessing a variable whose value is nil is not something
the Swift runtime is fond of, so as a Swift programmer, you must always be cognizant of your
variables’ values, especially when they could be nil.

Declaring a variable as an implicitly unwrapped optional is effectively telling the Swift compiler

that you are promising this variable will never be accessed when its value is nil. It is a contract you
are making with the compiler, and you are obliged to keep it. If you don’t, and the variable is accessed
while nil, a runtime error will occur, and your app will stop.

We have more to talk about regarding optionals, especially the idea of unwrapping them, but we’ll
save that for a little later. For now, let’s continue stepping through the code.

Still looking at lines 16 through 19, these variables are marked with @IBOutlet. This special
keyword is an advertisement to the compiler that the variables are outlets to actual user interface
elements. You’ll notice by the names of these four variables that they correspond to the text fields and
labels you created earlier on the window. We’ll “hook these up” in just a bit.

On line 21 is a variable declaration for an object of type SimpleInterest. This, of course, is the
SimpleInterest class you created a short while ago. The object is instantiated right there on the
line so that it’s ready to use.

You may be surprised that the two methods on lines 23 and 27 haven’t changed—they’re still
empty. It’s not a problem because the code on lines 31 through 37 is where everything happens.

The action method, buttonClicked, is a special method that is called upon the user interacting
with a UI element. Recall that you created a Calculate button on the window—this is the method that
will be called when that button is clicked.

Action methods are prefaced with the @IBAction keyword, which is a big hint to you and the
Swift compiler.

The method takes as a parameter the sender, or caller. This is a reference to the NSButton object
that is clicked. Even though you don’t reference that parameter in this method, you still need to have it
present in the parameter list.

This method also doesn’t have a return type, implying that it returns nothing.
What it does do is declare a Double variable named result and assign it to the return of the

simpleInterestCalculator object’s calculate method, passing in three parameters:
loanAmountField.doubleValue, interestRateField.doubleValue, and
yearsField.integerValue.

These three parameters reference the NSTextField objects you created earlier on the window.
Since the contents of these text fields will return strings, you use the doubleValue and
integerValue methods on them to provide numeric types that are necessary to do the math in the
SimpleInterest class.

The result of the calculation is a Double, but it must be converted to a String to be assigned to
the resultsField:
Click here to view code image

self.resultsField.stringValue = result.description

The description method is a special method available on a Swift class. It allows that class to
return a String representation of its data. Here, the Double variable result is returning the String
representation of its number, the result of the simple interest calculation. The resulting string is
assigned to the contents of the results field.

Run the app by choosing Product > Run, and type in some values in each of the fields. Click the
Calculate button. Did anything happen? Did you get a result?

Hooking It Up

Hooking It Up
Clicking the Calculate button ended up in disappointment—nothing happened. That’s because you still
have some additional work to do.

The @IBOutlet and @IBAction tags are cues to both the compiler and to you, the developer.
When you see these tags in the editor area, you’ll also notice a small circle just to the left of the
corresponding line number. That hollow circle is an indicator whether your outlets and actions are
connected.

Connecting your outlets and actions to the user interface is a critical step in making the app
complete and working. It’s what ties the user interface to the code you write. Without these
connections, the user interface doesn’t have the “backing” it needs to perform the work.

You can hook up outlets and actions in several ways in Xcode. Here’s one way you’ll use: In the
navigator area, click the MainMenu.xib file. The editor area shows the window with the fields you
assembled earlier. To the left of the window is a subpane showing several sections: Placeholders,
Objects, and MyFirstSwiftApp. Select the object named App Delegate (Figure 7.22). Note that you
may have to click the icon highlighted in Figure 7.23 to show the document outline area in full.

FIGURE 7.22 The subpane associated with the XIB file

FIGURE 7.23 Click the Document outline button to hide or show more detail about the interface.

The App Delegate object here is an instantiated reference to the source code in AppDelegate.swift
that you just reviewed. Inside the XIB file is a stored, serialized instance of this object that will be

automatically created and instantiated by the runtime environment when the app is launched. As such,
all of this object’s outlets and actions are available for connecting to the UI.

Right-click App Delegate. A HUD window (known as a heads-up display window because of its
transparent property) appears (Figure 7.24). You can see the list of outlets and actions for the app
delegate. Two are already connected: window (which connects to the window object) and
delegate. You need to connect the rest:

 interestRateField—Outlet to the interest rate text field
 loanAmountField—Outlet to the loan amount text field
 yearsField—Outlet to the loan term text field
 resultsField—Outlet to the result text field
 buttonClicked—Action to the Calculate button

FIGURE 7.24 The connection dialog prior to connections being made

Single-click the circle on the right of the HUD window for each outlet and action, and begin
dragging. A line appears. Drag the line to the appropriate UI element on the window, and the
connection will be made (Figure 7.25).

FIGURE 7.25 The act of connecting an outlet to its corresponding UI element

Once all four outlets and the actions have been connected, rerun the app. This time, input the values

in Figure 7.26, and click the Calculate button. If everything is hooked up correctly, you’ll see the
result field change to 13125.0, or $13,125. If you don’t get the correct answer, or no answer at all,
double-check that you have made the proper outlet and action connections.

FIGURE 7.26 Your first Swift app running correctly!

You Made an App!
Sure it’s simple, but it works. You wrote your very own Swift app. And it was easy. As you saw,
Xcode’s environment made it a cinch to create the basic skeleton of the app. All you needed to do was
add some UI elements, write code to perform actions, capture values from those elements, and connect
the code and the elements together. That’s the basic idea behind any application.

There’s still more Swift to learn, and more that can be done with your new app. You’ll do that, and
more, in the next chapter.

Chapter 8. Making a Better App

You may have heard the saying: “The last 20 percent of a task takes 80 percent of the effort.” That
axiom certainly rings true for software development. Often times as a developer, you’ll expend most
of your energy on getting the final touches of your application just right. It’s what makes the
difference between a good app and a great app.

It’s the Little Things
The simple interest calculator you began working on in the last chapter is an example of such a
process. Although it is definitely functional, it could use some additional tender loving care. Let’s
dive into making this nice little app better, and at the same time, dive deeper into Swift.

Show Me the Money
In the simple interest app, the result is not shown as a dollar amount, which is an obvious deficiency.
The default representation of a Double using the description method is to show the number in plain
decimal representation. This is fine in most cases, but for applications that deal with money, it’s a bit
bland.

How can you spice this up? One idea would be to build a string that prefaces the number with a
dollar sign ($), but what about the numbers after the decimal place? Representing change in cents is
customary, with two numbers following the decimal point. We’ll have to think about how to do that.

Also, if the amount is greater than $999.99, adding a comma for the thousands place would be nice
(for example, $11,311.33 instead of $11313.33).

Beyond that, we’re only thinking in terms of U.S. dollars (assuming you’re in the U.S. of course).
What if this app will be used in other countries with other currencies? Their format for money can be
entirely different, even using commas instead of decimal points.

As you can see, solving this problem can get out of hand fairly quickly, depending on how
accurately you want to convey the visual representation of a financial amount.

You’re in luck, because Cocoa provides something known as a formatter. A formatter is a special
class that understands how to format data in a specific way. There are date formatters and number
formatters, for instance, and you can even create your own formatters for reuse in your apps.

The class NSNumberFormatter is what we’re interested in. It is actually a subclass of
NSFormatter, which is the base class for all formatter classes. NSNumberFormatter can
accommodate a handsome number of numeric formats, including currency, which is perfect for this
application. Not only that, it handles formatting in a number of different localizations, so users in the
United Kingdom or Spain, for example, will see the result formatted in a style customary for their
locale.

How do you use this class? More importantly, how can you easily integrate it into the existing
code? Recall Swift’s extension language feature that was discussed in Chapter 6. Extensions would
make an excellent candidate for extending the Double type, and that’s exactly what is done in the
following code.

Be sure that Xcode is running and your MyFirstSwiftApp project is loaded, and then type in the
highlighted code into the AppDelegate.swift source file:
Click here to view code image

import Cocoa

extension Double {
 var dollars: String {
 var formatter : NSNumberFormatter = NSNumberFormatter()
 var result : String? // declare result as an optional String
 formatter.numberStyle = NSNumberFormatterStyle.CurrencyStyle
 result = formatter.stringFromNumber(self)
 if (result == nil) {
 return "FORMAT FAILURE!"
 }
 return result! // unwrap the optional
 }
}

@NSApplicationMain
class AppDelegate: NSObject, NSApplicationDelegate {

 @IBOutlet weak var window: NSWindow!

 @IBOutlet weak var loanAmountField: NSTextField!
 @IBOutlet weak var interestRateField: NSTextField!
 @IBOutlet weak var yearsField: NSTextField!
 @IBOutlet weak var resultsField: NSTextField!

 var simpleInterestCalculator : SimpleInterest = SimpleInterest()

 func applicationDidFinishLaunching(aNotification: NSNotification) {
 // Insert code here to initialize your application
 }

 func applicationWillTerminate(aNotification: NSNotification) {
 // Insert code here to tear down your application
 }

 @IBAction func buttonClicked(sender : NSButton) {
 var result : Double

 result = simpleInterestCalculator.calculate (loanAmountField.doubleValue,
interestRate: interestRateField.doubleValue, years: yearsField.integerValue)

 self.resultsField.stringValue = result.dollars
 }
}

The extension to the Double type adds a computed property aptly named dollars, which returns
a type of String and uses NSNumberFormatter. A variable of that type named formatter is
declared, as well as a variable named result of type String? (there’s that question mark again!).
The formatter object has a numberStyle property, which is set to
NSNumberFormatterStyle.CurrencyStyle since you want to format for currency. Finally,
you call the formatter’s stringFromNumber method passing self (the value of the Double) and
getting back a String that holds the formatted text. The variable result is then checked against
nil, and if true, a failure message is returned, else result is returned with a conspicuous syntax:

return result!

So what’s going on here? What’s all of this nil checking? Enough suspense! Let’s unravel these
mysterious symbols that keep appearing in Swift. I’ll digress for just a bit to explain this very core

concept of Swift. Then we’ll get right back to the code.

Remember the Optional?
Optionals were covered in Chapter 2. They extend types in such a way that variables declared as
options can either contain a reference to an object of that type, or they can contain nil (or
nonexistent reference).

The declaration of the result variable of type String? is your way of telling Swift the result
might contain an assignment to a legitimate string, or it might contain nil. In fact, as declared above
without an assignment, result is automatically assigned to nil at that point.

That result is declared in this way because of the NSNumberFormatter’s
stringFromNumber method return type. Its return type is String? and not just String.
Therefore, the variable that captures the returned object must be of the same type.

You may be wondering: Why would stringFromNumber return an optional? Why not just return
a String without the appended optional marker (?) and be done with it? Because there may be cases
where the method fails to do the conversion. One such example is looking at
NSNumberFormatter’s converse method, numberFromString, which takes a String value
and converts it to a number. Passing "33" or "145" to this method would return a numeric type, but
a string with a non-numeric character such as "3X4" would fail—it is not a number, and as such it
cannot be converted into numeric form from a String. In that case, numberFromString would
return a nil.

Methods in Swift’s Cocoa classes that return an optional type are letting you know they may return
nil and you should be aware of the possibility.

Unwrapping Optionals
In Swift, variables of optional types come presented like a gift: in nice, shiny wrapping paper. To
extract the value held in a variable of an optional type, you must “unwrap” it. The act of unwrapping
converts a type into a variable whose value cannot be nil. But be careful! If the value of the
variable’s value is nil, unwrapping it will cause a runtime error. Swift does not take kindly to
unwrapping an optional whose value is nil.

That’s where the exclamation mark comes in. It’s short syntax for telling Swift “hey, unwrap this
optional now!” You (the developer) need to ensure the value of the variable is not nil to prevent the
aforementioned runtime error.

In the previous code example, checking for the result being nil and returning an alternative string
value is your way of covering the case where the stringFromNumber method might return nil.

As you go along, you’ll see more examples of this safety checking. It’s all part of Swift’s emphasis
on safe coding.

Looking Better
The final change in the example code is the addition of the computed property reference on this line:
Click here to view code image

self.resultsField.stringValue = result.dollars

Adding this invokes the computed property created in the extension on the Double type,

completing the feature addition in the application.
To see the code in action, tell Xcode to run the application. Figure 8.1 shows the application

running with the new code in place and the result shown formatted for the U.S. currency locale (your
formatting may be different depending on your locale settings).

FIGURE 8.1 The NSNumberFormatter showing the currency format

Discovering in Xcode
As you use Xcode, understand how to discover the cornucopia of classes and methods Swift
offers. The NSNumberFormatter you used in the example is just one of the many, many
classes the Cocoa frameworks grant you access to.
One of Xcode’s great features is context-sensitive help right in the editor area. To see this in
action, hold down the Option key on your keyboard and hover the mouse pointer over the word
NSNumberFormatter on line 13. The pointer changes to a question mark, and a dotted line
underscores the word. Click, and a popover appears like the one in Figure 8.2.

FIGURE 8.2 Context-sensitive help in Xcode

The contents of the window provide the name of the class as well as a clickable link to its
superclass, which gives information on that as well. A description and compatibility
information is also provided, as well as a link to more complete class documentation. Once
you’re finished viewing the help information, click outside the help window to dismiss it.
Commit this Option-click keyboard shortcut to memory—you’ll find it comes in handy as you
learn Swift and Cocoa.
Another handy feature is to hold down the Command key while hovering the mouse pointer over

your source code. Using the NSNumberFormatter again, try this trick. The pointer changes
to a hand, and a solid underline appears under the word. Click, and this time the editor area’s
content changes to show you the Swift class file for the NSNumber-Formatter class. Here
you are getting the direct scoop on all the variables and methods available to you. This,
combined with the documentation available in Xcode, gives you a very comprehensive view of
Cocoa frameworks available in Swift.
When you’re finished, click the folder icon in the navigator area toolbar to switch back to the
standard editing view.

Formatting: A Different Technique
While the result looks great, you still have two text fields that could use some face lifting, too: the
loan amount and interest rate.

Like the result field, the loan amount is a monetary figure, and we should represent the contents of
that field as such. The same goes for the interest rate field. Having the user type $20,000 for the loan
amount, for example, as well as 6.25% for the interest rate would clarify the meanings of these fields.

Instead of doing this in code, however, you’re going to use Xcode to facilitate the process. You will
still use your new friend, NSNumberFormatter, to perform the job, just in a different way.

Make sure that the window appears in the editor area of Xcode by selecting MainMenu.xib in the
navigator area (you may have to click the folder icon in the navigator area toolbar), and then select
MyFirstSwiftApp (Figure 8.3). This sets the stage for the work you’ll do next.

FIGURE 8.3 Bringing the window back into Xcode’s editor area

Now, turn your attention to the right side of the Xcode window and down to the object library. Make
sure the Object button is selected in the object library toolbar, as shown in Figure 8.4. Scroll or use the
search field to locate the NSNumberFormatter object. This is the same object you used earlier in
the code, except that here it is available to use within Xcode and right in your window (Figure 8.4).

FIGURE 8.4 The NSNumberFormatter object in Xcode’s object library

Using your mouse or trackpad, click and drag the NSNumberFormatter object from the object
library and into the text field to the right of the Loan Amount label. When you do this, the utility area
on the upper right side automatically switches tabs to show the attributes inspector. This is where you
can set the attributes of the NSNumberFormatter object you just created by dragging onto the text
field. Set the Style pop-up menu to Currency (Figure 8.5).

FIGURE 8.5 The attributes inspector of the newly created NSNumberFormatter for the Loan
Amount text field

Perform the same action again for the interest rate: Drag the NSNumberFormatter object from
the object library to the text field to the right of the Interest Rate label. This time in the Attributes
inspector, choose Percent from the Style pop-up menu (Figure 8.6).

FIGURE 8.6 The attributes inspector of the newly created NSNumberFormatter for the Interest
Rate text field

Now build and run the application. When the application’s window appears, type in a number for
the loan amount, and fill in the rest of the fields.

If you’re noticing an annoying beep when you try to move away from the loan amount text field to
enter other data, that’s expected. The formatter object is complaining that you aren’t entering the data
in adherence to the currency format. To get around this, type a dollar sign as the first character of the
loan amount. A small bonus: If you didn’t type the comma as the thousands separator, the formatter
automatically inserts it for you.

The same annoying beep occurs when you move to the interest rate field. Just a number won’t do—
you’ll need to append a percent symbol (%) for the formatter to accept your input.

Figure 8.7 shows what everything looks like just prior to clicking the Calculate button. Make sure
the text field contents in your app match what’s here, and then click the Calculate button.

FIGURE 8.7 The interest calculator application with properly formatted input

The end result looks nice, but isn’t it a pain to type in that dollar sign and percentage character? Not
only that, but your users probably won’t be inclined to type them either, and they will remain puzzled
as the app constantly beeps at what seems to be perfectly valid numbers. Sure, you could add some
cue, such as an additional label, to prod the user to type in the numbers with the appropriate
designators, but that will clutter your window and impede the flow of your app. Plus, it looks strange.
There has to be a way for your users to have their cake and eat it too.

As it turns out, there is. With input leniency, your users benefit from the formatter redoing their
input to conform to appropriate formatting rules, and they can input the data the way they feel most
comfortable.

Quit the app, and then turn on leniency by navigating to the number formatter for both fields in the
object tree to the left of the editor area (Figure 8.8). This tree is a very convenient and informative
view of how all the objects in your MainMenu.xib file relate to each other. Finding the formatters
here is easy because they fall right underneath the text fields to which they are attached.

FIGURE 8.8 The object tree shows all your objects in relation to each other.

Figure 8.9 shows that the Lenient option is selected. Make sure it is also selected for both the loan
amount and interest rate formatters.

FIGURE 8.9 The Lenient option allows the number formatter to be flexible in how input is typed
by your users.

Tell Xcode to run your program again. This time, type any plain number in both the loan amount
and interest rate text fields. Not only are the numbers accepted, but they automatically change to
accommodate the formatting rules you’ve chosen for each field.

As a bonus, the formatters deny any invalid input that doesn’t adhere to the formatting rules. For
example, you can type an alphabetic character in the text field, but you are not allowed to proceed
until it is erased because a valid number cannot be attained. The same annoying beep you heard earlier
will be repeated as a reminder.

Compounding

Given the current state of the interest calculation app, adding compound interest calculation wouldn’t
be a stretch. After all, the parameters are the same.

In Chapter 4, you reviewed the compound interest calculation. Here it is again:
futureValue = presentValue(1 + interestRate)years

Adding a compound interest class seems like the quickest and easiest way to bring the functionality
into your app; doing so requires adding a new Swift file. In the last chapter, you chose File > New >
File to create a new Swift source file. That will certainly work, but a slightly quicker method will
create the file and put it in the right place in your project.

To begin, go to Xcode’s navigation area, and look for the folder named MyFirstSwiftApp. Right-
click that folder and choose New File from the shortcut menu (Figure 8.10).

FIGURE 8.10 Right-clicking in the navigator area to add a new file to Xcode

In the file template dialog (Figure 8.11), select Swift File under the OS X Source section, and click
Next.

FIGURE 8.11 Select the Swift file under the OS X Source section.

In the New File dialog (Figure 8.12), name the file CompoundInterest, select the
MyFirstSwiftAppTests checkbox in the Targets area at the bottom. Click Create. The new file appears
in the navigator area. Type the following code below the import Foundation statement:
Click here to view code image

class CompoundInterest {
 func calculate(loanAmount : Double, var interestRate : Double, years : Int)
-> Double {
 interestRate = interestRate / 100.0
 var compoundMultiplier = pow(1.0 + interestRate, Double(years))

 return loanAmount * compoundMultiplier
 }
}

FIGURE 8.12 Saving the new file

The compound interest rate calculation formula used here is the same that was used in Chapter 4.
The method takes the same parameters and returns the same type (Double) as the simple interest
calculation method in the SimpleInterest.swift class file.

With this new class file created and part of your Xcode project, turn your attention to the user
interface. In the navigation area, click the MainMenu.xib file, and make sure the window is in view
in the editor area.

Hooking Things Up
Currently, you have a single button the user clicks to calculate the simple interest. Since you’re giving
the user an option to calculate compound interest as well, why not create a second button for that
calculation?

You could drag a new NSButton object from the object library on the lower-right corner of the
Xcode window, but there’s a slightly quicker way. Single-click the Calculate button to select it, and
then press Command-D to duplicate it. Align the new button under the current one, double-click it to
rename it, and enter Calculate Compound. Double-click the top button, and rename it to Calculate
Simple.

You may need to adjust the window size slightly to accommodate the new button, as well as re-
center the buttons on the screen. When you’re finished, the window should look something like Figure
8.13.

FIGURE 8.13 The app window with the new button added and both buttons renamed

With the window up to snuff, next you’ll tie the new button with the compound interest class you
just created.

Before proceeding, let’s review how the current button is connected. Recall that in the last chapter
you created a method in the AppDelegate.swift file named buttonClicked. It had a single
parameter (an NSButton object reference), did not have a return value, and was tagged with the
special @IBAction keyword.

An easy option would be to copy the method and rename it, and then hook up your new button to
that. Here are the steps:

Start by copying the code. Select the AppDelegate.swift file in the Xcode navigator area, and
then drag to select lines 44 through 50. Choose Edit > Copy to copy the selected code to the copy
buffer. Click line 51 in the editor area, press Return once, and choose Edit > Paste to paste the copied
code to that location (Figure 8.14).

FIGURE 8.14 The contents of the file after adding the new method

Now, you need to do some renaming. Double-click the buttonClicked method name on line 52,
and rename it to compoundButtonClicked. Highlight the text simpleInterestCalculator
on line 55, and rename it to compoundInterestCalculator.

Move the cursor just below line 34 (where the simpleInterestCalculator object is
declared), and type this line:
Click here to view code image

 var compoundInterestCalculator : CompoundInterest = CompoundInterest()

With these changes you have successfully created the code necessary to integrate the new
compound interest calculator into the application. The only thing left is to tie the action of the
compound button calculator to the appropriate action method.

To do that, select MainMenu.xib in the navigator area, and bring up the window. Right-click the
Calculate Compound button to bring up the connections heads-up display, and then break the existing
connection between the buttonClicked method and the App Delegate by clicking the button
(Figure 8.15).

FIGURE 8.15 Break the Calculate Compound Interest button action.

This connection must be broken because it came along “for the ride” when you duplicated the
button earlier. When clicked, the new button should call the compoundButtonClicked method
instead.

Click the circle to the far right of the selector row in the heads-up window, then drag the generated
line over to the App Delegate icon just to the left of the editor area. In the new heads-up window that
appears, select the compoundButtonClicked method (Figure 8.16). This now binds the new
button to the proper action method.

FIGURE 8.16 Connect the selector of the new button to the compound-ButtonClicked
method.

Testing Your Work
Now you’ll put your app through its paces with some real-world data. Run the app in Xcode, and input
the following values:

 Loan Amount: $25,000
 Loan Term: 10
 Interest Rate: 8%

Click the Calculate Simple button to calculate simple interest.

If you didn’t receive an answer in the result area, be sure to recheck your work and your
connections.

If you did get an answer, it should be $45,000. Is it?
I’ll wager that instead, you’re seeing $25,200. That means everything is wired right, but the

calculation is wrong. What’s going on?
You’ve encountered a bug. Don’t fret—it happens to even the best of us. Bugs are a fact of life in

software development, even with languages as easy to use as Swift. However, you don’t have to live
with it. Apple has imbued Xcode with a powerful debugging tool that helps you find bugs and
terminate them on the spot.

When Things Go Wrong
Tracking down bugs can be both frustrating and instructive at the same time. There’s nothing quite as
exhilarating as finding and fixing a particularly tricky problem in your code. It gives you the
satisfaction of knowing that you can troubleshoot problems, and it builds your confidence going
forward.

When I encounter a bug, I ask the following questions:
1. What are the symptoms?
2. What changed since the last time it worked (assuming it did work before)?
3. Where should I begin looking to find the root cause?

Let’s go over and answer each of these questions for this particular bug:
 Question 1: In this app, the symptom is obvious: The calculation for simple interest is
providing an incorrect result.

 Question 2: The simple interest app worked in the last chapter. What changed? You’ve added
NSNumberFormatter objects to the loan amount and interest rate text fields. This certainly
warrants some investigation.

 Question 3: Since the result of the calculation is wrong, the first place to start hunting for the
bug is in the calculation method in the SimpleInterest.swift file.

Where’s the Bug?
The answers to our questions should lead you to the SimpleInterest.swift file since that is the
location of the calculation method. Go to the navigator area in Xcode and select that file so it appears
in the editor area.

Looking over the calculate method, everything seems to be in order. The variable
interestRate is divided by 100 to yield a number between 0 and 1; it’s then multiplied by the
loanAmount and the years (cast as a Double from an Int). This is indeed the calculation for
simple interest.

Nothing obvious stands out. The formula looks correct, yet the result is wrong. What to do? This
sounds like a job for the debugger.

At the Breaking Point
Intuitively, you understand that code is executed in a linear fashion. After one line of code is executed,
the next one is, and the next one, and so on. There are exceptions of course: Threads allow multiple

lines of code in the same app to execute on different processor cores at the same time, but we’re not
concerned with that level of detail here. Analyzing the calculate method in a linear fashion is
enough for us.

If there were some way to “break into” the code as it is executing and inspect the variables, you
could verify the proper operation of the calculate method and thereby rule it in or out as the
problem. And there is just such a way to do that. It’s called the breakpoint.

Breakpoints are stopping points you can place anywhere in the executable areas of your source
code. When Xcode runs your application, it stops when it encounters a breakpoint, affording you the
opportunity to inspect the environment: variables, constants, and something called the stack trace.

So where should you set this breakpoint? And how do you do it?
The area directly to the left of your source code in the editor area—where the line numbers appear

—is known as the gutter. Clicking a line in that gutter creates a breakpoint—a blue arrow (Figure
8.17).

FIGURE 8.17 Setting a breakpoint in the calculate method

For this particular debugging session, click line number 13 in the gutter area to set the breakpoint at
the first executable line of the calculate method.

The breakpoint is now set, which means that when you run the program again, it will stop when it
encounters this location in the execution path.

Run the app again in Xcode. The app starts, and the window appears. Type in the following values
for the fields again:

 Loan Amount: $25,000
 Loan Term: 10
 Interest Rate: 8%

Again, you know the answer should be $45,000, but instead, you’re getting $25,200. Click the
button to calculate simple interest. As soon as you do, Xcode appears in the forefront of your screen as
in Figure 8.18. The breakpoint has been encountered, and line 13 is highlighted. Your app is literally
frozen in a state where you can inspect all its values.

FIGURE 8.18 The breakpoint is encountered.

In addition to Xcode taking over, a new area appears at the bottom. This is the debug area, and it is
composed of a split pane. The left pane shows what appears to be the variable names in the
calculate method along with their values. The right pane shows an (lldb) prompt, which is the
command-line interface to Apple’s debugger known as LLDB.

The prompt area allows you to type commands directly in the LLDB debugger. You won’t be using
the command line version of the debugger in this book, but if you’re interested, the Xcode help has
documentation on this powerful way to interact with the debugger.

Instead, you’ll concentrate on the left pane. Notice that the loanAmount, interestRate, and
years variables are displayed prominently along with their values. You can see clearly that the
values correspond to what you typed earlier in the text fields of the application.

You can instruct Xcode to “step over” the current line, which has not executed yet. Stepping over a
line causes its code to run and lands the execution point on the following line. The debug toolbar icons
are located just above the debug area. To step over line 13, click the fourth icon from the left (Figure
8.19). It is shaped like a triangle, indicating that you are stepping over a line.

FIGURE 8.19 The debug toolbar allows you to execute control over the Xcode debug process. The
Step Over icon is highlighted.

When you click the icon, the green arrow indicator moves to line 14, indicating that it will be
executed next. Meanwhile, the code on line 13 (to modify the interestRate variable) has
executed. You can see that the value in the debug area has changed from .08 to .0008 due to the
division by 100.0 (Figure 8.20).

FIGURE 8.20 The updated variables view after stepping over line 13. Note that the
interestRate value has changed from what it was in Figure 8.18.

This change of the interestRate value is certainly interesting. It went from .08 to .0008, and as
you can see on line 14, will be used to calculate the interest variable. Remembering back to your
math days, .08 is 8%, but .0008 is .08%. You should be asking for a calculation on an 8% interest rate,
not .08%.

If you do the math on line 14 to compute the amount of interest with .0008 as the interest rate, you
get:

Interest = 10 years × .0008 × $25,000 = $200
And adding the original loan amount of $25,000 to the $200 of interest gives you $25,200, which is

what the app is currently showing.
Now consider the formula using the .08 rate:

Interest = 10 years × .08 × $25,000 = $20,000
Adding $20,000 of interest to $25,000 gives you $45,000, which is the right answer. The bug seems

to be identified, but let’s continue to be sure.
So why did this same method work in the previous chapter? What is different about the application

then compared to now?
NSNumberFormatter is certainly new. Considering what NSNumberFormatter’s percent

style does (transforms a number into a percent), it appears that the 8 you typed into the text field was
actually transformed into 0.08. This is confirmed in Figure 8.18 where the debug area shows the
interestRate variable to be 0.08 and not 8.

Prior to adding the formatter, the value of the text field was passed verbatim to the calculate
method, and that’s why the division by 100.0 was necessary. Now, with the NSNumberFormatter
doing its job, the division isn’t needed anymore.

The solution to fixing this bug? Simply remove line 13 from the SimpleInterest.swift
class. In this case, however, turn line 13 into a comment by placing the // characters at the beginning
of the line. This preserves the breakpoint.

Run the application again after commenting out line 13, and use the same input values as before.
When the breakpoint is encountered, control will be at line 14 (since line 13 is a comment). Note in
the debug area that the value of interestRate is now 0.08, which is what is needed for the
calculation result to be accurate.

Step over line 14 by clicking the Step Over icon in the debug toolbar, and look in the debug area for
the interest variable. It should be set to 20000, or $20,000 (Figure 8.21).

FIGURE 8.21 The interestRate variable reflects the correct number, 0.08.

At this point, you should be confident that the application will supply the correct result. Since you
are still in the debugger and control is stopped, you can instruct Xcode to let the program continue to
run unimpeded. Do so by clicking the Continue program execution button on the debug toolbar

(Figure 8.22).

FIGURE 8.22 The Continue program execution button resumes execution of your app.

With the application running at full speed, the result now appears, and you should see a working and
accurate simple interest calculation application like the one in Figure 8.23.

FIGURE 8.23 The application showing the correct value for simple interest

The Confounding Compound
You could declare victory here, but the truth is your work is not complete. There is the compound
interest calculation. Is it correct also? A quick examination of the source code in the
CompoundInterest.swift file shows that the same assumption is made about the
interestRate variable on line 13. It too is being divided by 100.

It’s a safe bet that you will need to strike that statement as well to ensure that the compound interest
calculator is accurate. Go ahead and comment out that line, and then run the same numbers on the
compound interest calculator. You should get the same answer shown in Figure 8.24, which is the
correct one. You may encounter one of the breakpoints set earlier in your debugging session. If you
do, you can click the breakpoint icon and drag it out of the gutter to remove it, and then click the
Continue program execution button in the debug toolbar to continue.

FIGURE 8.24 The correct compound interest calculation

The Value of Testing
Bugs, such as this one, are sometimes easy to spot and sometimes not so easy. In this case, we
obviously needed to check the calculation, but what led us down this path was that the application
worked in Chapter 7. Adding the NSNumberFormatter to the text fields broke the calculation, and
you were astute enough to notice that the value didn’t seem correct.

This demonstrates the fragility of software development and underscores the need for verifiable
testing to catch problems like the one you just solved. In testing parlance, the bug you fixed was
known as a regression. A regression is a failure of something that once worked, and it is one of the
worst bugs to deal with. Regressions can sneak up on you because you are lulled into a false sense of
security that something that was working one or two versions ago is still working correctly.

The Unit Test
Many different types of tests and testing methodologies are available in software development, but the
unit test in particular can be useful. A unit test is a very specific, targeted test that verifies one piece
of functionality. A unit test can be written to cover one particular method in a class, and there can be
many different unit tests for one class. Taken as a whole, a set of unit tests can be used to verify the
functionality of a fundamental block of code and ensure that it is working correctly.

Apple emphasizes the use of unit testing right in Xcode. In fact, when you created the Xcode project
for your first Swift application, you may have noticed the MyFirstSwiftAppTests target right
below your application target (Figure 8.25).

FIGURE 8.25 The MyFirstSwiftAppTests target is a unit test target automatically created by
Xcode.

The navigator area has a group folder named MyFirstSwiftAppTests and underneath that, a
Swift source code file named MyFirstSwiftAppTests.swift. Without you even asking for it,
Xcode created all the infrastructure you need to develop tests for your application.

Crafting a Test
Often when creating unit tests, you’ll find yourself asking the question: “What tests do I need to

write?” The answer to this question depends on the functionality of your application and the pieces
and parts that make up the app.

If you examine the interest calculator app, the calculation methods themselves are obviously
candidates for unit tests. Testing the accuracy of the calculation method can give you confidence that
it is not only correct, but will remain correct if you decide to change it or tweak it later.

Let’s start by looking at the MyFirstSwiftAppTests.swift source file. Locate the source
file in the navigator area of Xcode, and then single-click the file. The editor area changes to show the
contents of that file (Figure 8.26).

FIGURE 8.26 The unit test file, ready for you to make changes

Notice that this is a Swift source file, and it contains a Swift class named
MyFirstSwiftAppTests. It is a subclass of the XCTestCase class, which is a special unit test
class that provides a number of helpful features in performing tests.

Next, notice that a number of methods already exist in the class. The first two—setUp and
tearDown—are special methods called when starting and stopping the test class, respectively. These
methods provide entry points for you to create objects that may be needed during the testing process.

Two additional methods—testExample and testPerformanceExample—are example test
methods you can use as a starting point for your own tests.

In the unit test framework, any method that begins with the word “test” is a test method, and it will
be called when the unit test runs. You can have one such method, or many. How you structure your
unit tests is all up to you.

Given that the interest application has two classes, one for simple interest and one for compound
interest, creating two test methods probably makes sense. These two methods will test the veracity of
the calculate methods, ensuring that they are always returning accurate values.

Replace lines 12 through 41 in the MyFirstSwiftAppTests.swift file with the following
code:
Click here to view code image

class MyFirstSwiftAppTests: XCTestCase {

 var mySimpleInterestCalculator : SimpleInterest = SimpleInterest()
 var myCompoundInterestCalculator : CompoundInterest = CompoundInterest()

 override func setUp() {

 super.setUp()
 // Put setup code here. This method is called before the invocation of each test method in the class.
 }

 override func tearDown() {
 // Put teardown code here. This method is called after the invocation of each test method in the class.
 super.tearDown()
 }

 func testSimpleInterest() {
 // This is an example of a functional test case.
 var result : Double
 result = mySimpleInterestCalculator.calculate(25_000, interestRate: 0.08, years: 10)
 XCTAssertEqualWithAccuracy(result, 45000, 0.1, "Unexpected result: \(result)")
 }

 func testCompoundInterest() {
 // This is an example of a functional test case.
 var result : Double
 result = myCompoundInterestCalculator.calculate(25_000, interestRate: 0.08, years: 10)
 XCTAssertEqualWithAccuracy(result, 53973.12, 0.1, "Unexpected result: \(result)")
 }

}

The two methods, testSimpleInterest and testCompoundInterest, test the simple and
compound interest calculations, respectively. The test involves using the calculate method of each
class to verify that the passed loan amount, loan term, and interest rate yield an expected answer.

Two objects, mySimpleInterestCalculator and myCompoundInterestCalculator,
are instantiated at the top of the MyFirstSwiftAppTests class on lines 14 and 15. These objects
are then used in the respective test methods at lines 30 and 37 to test interest calculation on a 10-year
loan for $25,000 at 8% interest—the same values you used earlier to test the app.

For each test method, a variable named result of type Double is defined and assigned to the
return value of the calculate method for the respective object. To verify the test passed, a call to
the XCTAssertEqualWithAccuracy function is made. This function takes four parameters: the
variable to evaluate, the value that the variable should be, an accuracy factor, and a String that is
shown only if the test fails. When dealing with Float or Double types, this particular test function
is useful since floating point numbers aren’t always exact due to how they are represented in memory.
Here, you are indicating that the passed variable and the result can be equal to within 0.1, or 10 cents.

With the source file modified, run the test by choosing Product > Test. The tests run, and the
navigator area changes its content to show the results of the two tests. Switch to the test navigator
view in the navigator area by clicking the Test Navigator icon (the green diamond-shaped icon). You
should see green checkmarks next to the names of each method. You’ll also see the same green
checkmarks in the gutter next to the source code (Figure 8.27).

FIGURE 8.27 The view of the code when the tests have passed

When Tests Fail
So far the tests pass, but what happens when a failure occurs? Forcing a failure is simple enough—

simply change the second parameter in one of the XCTAssertEqualWithAccuracy methods to a
completely different value. Try this by changing the value 53973.12 on line 38 to 53973.12 + 1
and rerun the tests. The test fails, and the green checkmark for that method turns into a red X. The test
error message is also printed to highlight the details of the error in Figure 8.28.

FIGURE 8.28 The result of a failed test

Now that you know how to invoke a failure, you can fix the problem by simply deleting the + 1,
and the test will pass again.

One irony of this particular set of unit tests is that it would not have caught the bug you fixed earlier
in the chapter; that bug wasn’t caused by the calculate method itself, but the interestRate
variable passed into it from the NSNumberFormatter. As the old adage goes: garbage in, garbage
out.

Tests That Always Run
Unit tests are only good when you actually run them. So far, you have used the Product > Test menu to
invoke the tests each time. What if instead the tests ran every time you actually ran your app? This
way, any changes you make to your program can immediately benefit from retesting. Even though you
may think the change is harmless and won’t introduce bugs, always run your tests prior to building.
Here’s how to tell Xcode to do this for you automatically:

Select the folder icon in the navigation area, and then click the MyFirstSwiftApp project entry
at the top (Figure 8.29).

FIGURE 8.29 The folder icon shows your project’s files in the navigator area.

In the editor area, click the MyFirstSwiftApp target, and then click the Build Phases tab. Click
the disclosure triangle next to the Target Dependencies entry, and then click the Add (+) icon to add a
dependency (Figure 8.30).

FIGURE 8.30 Selecting the target and Build Phases tab

A dialog appears showing MyFirstSwiftAppTests as a potential dependency. Select it, then
click the Add button (Figure 8.31).

FIGURE 8.31 Selecting the MyFirstSwiftAppTests as a dependency

Now you have added the test as a dependency of your application. So every time you build your app,
the unit tests build and execute first. If any of the tests fail, your app will not be built, forcing you to
address the failed tests before moving on.

Wrapping Up
Over the last two chapters, you’ve managed to take the Swift knowledge you’ve acquired and write a
full-fledged application. Not only that, you also managed to use Xcode’s debugging environment to
find and fix a bug, as well as write several unit tests to ensure your calculations would always work
correctly. That’s a lot of work and a big accomplishment!

Take a well deserved coffee break, and gear up for the next chapter!

Chapter 9. Going Mobile with Swift

In the last chapter, you spent some time perfecting your first Swift application for your Mac. Although
you were not creating the most complex or demanding app, it was a useful exercise for getting your
feet wet with Xcode, and even doing some nominal debugging.

In this chapter, we’ll continue with the theme of app development and the Swift language, but this
time you’ll move away from the desktop and onto the other major Apple platform: iOS. That’s right!
You’ll get some first-hand experience writing a Swift app for the premier mobile platform.

If you don’t have an iPhone or iPad, that won’t be a problem. You will be playing exclusively in
Apple’s great iOS simulator environment, so you won’t need the actual hardware.

In Your Pocket vs. on Your Desk
The beauty of Swift is that it is agnostic to the platform you’re on which you are developing. Whether
it’s an app for a notebook or desktop running Mac OS X, or the latest iPhone or iPad running iOS,
Swift just works.

The differences between OS X and iOS are centered around the particular user interfaces (UIs) and
the frameworks used to construct those UIs. As you saw with the interest calculator app in the
previous chapters, OS X apps have free rein of the desktop; they are window-based apps that can co-
exist peacefully on the same screen as other apps.

In the mobile case, screen real estate is limited, and the UI changes from a keyboard and trackpad
(or mouse) to a touch screen with virtual keyboards that come and go as needed.

Apple’s Cocoa framework on OS X is known as Cocoa Touch on iOS, aptly named because of the
more intimate, touch-based interaction iPhones and iPads are known for.

In this chapter, you will be introduced to an iOS-based app, written in Swift, that takes into account
the differences between the two environments. As usual, we’ll introduce some more Swift language
features for you to study and contemplate. So get yourself a “cup of joe” or your favorite beverage,
and settle into some more fun!

How’s Your Memory?
The OS X Swift app you perfected in the last chapter was a bit on the “serious” side. Loan interest
calculators are certainly important in the banking business, but they are not most people’s idea of fun.

For this next app, you’ll use Swift to write something a little more playful.
In 1978, Milton Bradley released Simon, a handheld electronic game. Simon contained four large,

back-lit buttons (the button colors were red, green, yellow, and blue). Simon was a round device, and
the four buttons were arranged concentrically.

Simon tested the player’s ability to memorize patterns. It would light one of the four buttons at
random; the player would then press that button to confirm. After a slight pause, that same button
would light up again, followed by another button. The player would press the two buttons in the same
order. With that round properly completed, Simon would play the sequence again along with an
additional button.

The game would continue to progress in this manner, with a new button highlighted at the end of
each round. A good player could follow 20 or more lighting sequences, but when the player pressed a
button out of order, the game was over.

A game like this makes a perfect candidate to explore a touch-based interactive experience on the
iPhone. With Swift in your corner, this will not only be a fun game to write, but an educational one,
too!

Thinking About Gameplay
When considering how a game like Simon is played, several elements should guide your
understanding of how to develop this in Swift. Let’s go through those now.

 Game elements: This particular type of game has four buttons: red, green, yellow, and blue.
Each button is both an input device (can be touched by the user) and an output device (can
brighten, or light up). The code will need to process touches as well as brighten and dim each
button.
 Randomness: The description of the game includes an element of randomness. The computer
decides the order in which to light up the buttons. As the game designer and developer, you will
need to employ some type of random number generator to come up with a different sequence for
each turn.
 Playability: To make the game interesting, it has to be challenging, perhaps offering different
levels of mastery. For this version, the speed at which the computer lights up each button
sequentially would certainly affect the degree of difficulty. If each button lights up for a quarter
of a second, that would allow the user enough time to observe and learn the pattern. On the other
hand, if the button only lit up for one tenth of a second, before the next one, the game would be
harder to play.
 What it means to “lose”: The game has a very specific lose condition: The player presses the
wrong button when mimicking the sequence. When this happens, the player should receive some
stimulus that indicates the game is lost: a message on the screen or some type of sound.
 What it means to “win”: Winning the game would constitute reaching some terminal number of
presses without a single error. If that number is too high, winning the game might be nearly
impossible. If it is too low, the game will be too easy to defeat.
 Play flow: A game like this is fairly easy to envision from start to finish. The player launches
the game, plays it until either winning or losing, and in either case, a message appears either
congratulating or admonishing the player. Once the message is dismissed, the game restarts
from the beginning.

Designing the UI
A game such as this is fairly easy to design from a UI perspective. The screen has four colored
buttons, which are touchable elements. To make the game easy to play, the buttons should cover as
much of the screen area as possible.

The button arrangement should also facilitate easy and fun gameplay. The easiest way to do that is
to arrange them in a 2 x 2 grid so that as the user watches the order of the buttons light up, everything
is in one easy field of view. Figure 9.1 shows the potential layout of the buttons.

FIGURE 9.1 How the game might look in its simplest form

For simplicity, this design will be created on the iPhone; iPads can still run the game, although not
in its native resolution.

The iPhone aspect ratio is such that the screen is taller than it is wide. This leaves room along the
bottom (or top) of the screen for other potential game information. Figure 9.2 shows how the buttons
would look on an iPhone 5s.

FIGURE 9.2 The buttons on an iPhone 5s

Finally, how about a name? Every game or app needs a good name, and this one is no exception. For
the fun of it, let’s call this game “FollowMe” since the object of the game is to follow the order in
which the buttons light up.

Creating the Project
You’ve been through this step before—launching Xcode and creating a new project. This time,
however, there’s a twist: You won’t be creating an OS X application but an iOS one.

With Xcode running, choose File > New > Project. For this project, select Application under iOS.
The type of application you’ll create is a Single View Application (Figure 9.3).

FIGURE 9.3 Selecting the Single View Application template

Other application templates are available, including one specifically named Game. Although
FollowMe is a game, it’s very simple in design and will work just fine as a Single View Application.

Once you’ve selected the Single View Application template, click Next. In the subsequent window,
set the Product Name to FollowMe, and ensure the settings mimic Figure 9.4.

FIGURE 9.4 Setting the Product Name

Click Next to continue to the Save dialog, and then click Create. You’ll see the Xcode window for
the new project as in Figure 9.5.

FIGURE 9.5 Your new Xcode project is ready for you to begin work.

Building the User Interface
Now that you have a project, you need to start building the UI. By default, iOS apps have a slightly
different method for working with views than what you experienced with the Mac OS X app earlier.
Xcode provides a convenient technology named storyboarding that allows you to build your app in a
view-by-view approach, similar to how animators would create a series of scenes in a film.

Locate the storyboard file named Main.storyboard in the navigator area on the left side of the
Xcode window, and single-click it. The editor area appears showing the main view of the storyboard
(Figure 9.6).

FIGURE 9.6 The editor area showing the view of the storyboard

This single view is where you’ll begin to build the content for the game. If the size of the view
looks a little wider than that of an iPhone, that’s because it is. It’s a 600 x 600 point view, and is
intended to be a generic view space. Xcode 6 defaults to a sizing feature known as Auto Layout. It
conveniently adapts the content dynamically to the view irrespective of aspect ratio, and lets designers
focus more on the content and less on the layout.

Auto Layout can be complex and can take some time to learn. Although it is an important part of
developing for iOS, you’ll get some minimal exposure to it shortly.

Creating the Buttons
Given how the game will work, Cocoa Touch’s UIButton object is the best choice for the user
interface object. UIButton objects can have their background color modified, and they also accept
touch input as a bonus.

Start by locating the Button object in the object library. Drag a single button into the view, and then
navigate to the Size inspector at the top of the utility area to change the size to 128 x 128 (Figure 9.7).
You can ignore the X and Y position of the button for now.

FIGURE 9.7 Creating the first button

Inspectors
In Xcode’s utility area (on the right side of the window), you’ll find a row of icons along the
top. These are inspector icons, and they can change depending on the type of file you have
selected in Xcode. If you hover your mouse over each inspector icon, the name will appear in a
help tag.

Once you have changed the button’s size, click the Attributes inspector icon located along the top of
the utility area. In the title field, erase the “Button” text. This button will have no text in it. Scroll
down in the Attributes inspector and locate the View section. Change the Background of the button to
red by clicking the color and selecting the Color Palettes tab of the Colors window that appears
(Figure 9.8).

FIGURE 9.8 Changing the button title and color in the Attributes inspector

Now you’ll create the remaining three buttons. The simplest way to do this is to select the red
button and choose Edit > Duplicate three times to create three more buttons. Change the colors of the
duplicated buttons to yellow, blue, and green, and then position the buttons in a grid pattern as in
Figure 9.9.

FIGURE 9.9 All four buttons created and positioned

Now, select all four buttons. You can do this by selecting the first button and Command-clicking
the remaining three buttons. With all four buttons selected, choose Editor > Embed In > View. With
this new view in place, click the view and drag to center it both vertically and horizontally inside of
the outer view. This embeds all four buttons into a container view. The purpose of this is to make
setting constraints easier.

Running in the Simulator
With the buttons in place and now inside of a container view, it’s time to see how the app will look
when it runs. Xcode 6 conveniently lets you run your app in a simulator, which mimics the screen size
and aspect ratio of a number of iOS devices. For the purposes of developing this app, use the iPhone
5s for now. You can select it in the upper-left corner of the Xcode window (Figure 9.10).

FIGURE 9.10 The iPhone 5s simulator is selected in Xcode.

You can now run the app in the simulator by choosing Product > Run, which builds the app and
launches the chosen iOS simulator. Figure 9.11 shows the app running.

FIGURE 9.11 FollowMe running the iPhone 5s simulator

Something looks awry, doesn’t it? The buttons seem to be off-center and falling off the edge of the
screen. This is due to the difference in size between the view in the editor area (600 x 600) and the
iPhone 5s’ screen width. To solve this, we’ll dive into Auto Layout.

Setting Constraints
Apple’s numerous hardware offerings for iOS include iPhones and iPads of various sizes and aspect
ratios. Developing user interfaces to accommodate these different screen resolutions and sizes is made
much simpler using Auto Layout, and you’ll use this technology in your app.

Constraints are relationships between objects that enforce position and sizing behaviors, among
other things. For instance, if you rotate your iPhone, your UI should adapt appropriately. Whether
your app is running on an iPhone 6 with a larger screen or an iPhone 4, with a properly configured set
of constraints, things will look optimal.

For this app, the important constraint is that the buttons remain centered on the screen, irrespective
of what device they appear on. This is achieved by setting the constraints on the container view itself,
which holds the four buttons.

Quit the simulator and return to the view in Xcode. There, select the container view by clicking just
outside any of the four buttons. The container view will show as selected in Figure 9.12.

FIGURE 9.12 Selecting the container view

With the container view selected, navigate to the area just to the lower-right side of the editor area
where the constraint setting icons are located. Click the Align constraint icon (the leftmost icon), and
select both the Horizontal Center in Container and Vertical Center in Container options in the pop-up
window (Figure 9.13). Add the two constraints by clicking the “Add 2 Constraints” button.

FIGURE 9.13 Setting the horizontal and vertical center constraints

Once the constraints have been set, the lines in Figure 9.14 appear.

FIGURE 9.14 The view after the constraints have been set

Now that the constraints have been set, run the app in the simulator again. This time the buttons
remain centered. You can simulate rotation of the iPhone 5s in the simulator by holding down the

Command key while pressing the Left and Right Arrow keys on the Mac. In all orientations, the
buttons should align properly in the center (Figure 9.15).

FIGURE 9.15 The constraints now allow for preservation of the buttons’ locations during rotation.

When you’re finished, quit the simulator, and return to Xcode.
At this point, the user interface is nearly good enough; you’ll come back to a few settings in a bit,

but it’s time to delve into the code that controls gameplay. But before getting to that, the next sections
discuss an important design pattern you will encounter here and should understand as you become
adept at Swift.

The Model-View-Controller
In software development, design patterns are useful and common practices programmers use over and
over to solve a common set of problems. Many such design patterns exist and are used in different
situations, but the model-view-controller (MVC) in particular is pervasive in iOS and Mac app
development.

As the name implies, this design pattern is composed of three distinct parts:
 Model represents the data and the code that manipulates and processes that data. Examples
include the variables, constants, and functions that deal with the logic of games such as
FollowMe.
 View is the visible set of objects. In FollowMe, these would be the buttons that appear on the
screen.
 Controller is the object that orchestrates and facilitates communication between the model and
the view. As FollowMe is played, the controller becomes the conduit through which both the
view and the model are updated.

The advantage of the MVC design pattern is that it allows you to think about your app in terms of
what data and functionality it is modeling, what it is showing the user, and how coordination happens
between the two. This separation of concerns provides opportunity to factor your code such that
components can be reused in other applications and projects.

Depending on the complexity of the app, the model, view, and controller may be composed of

separate classes, or they may be combined into a single class. For FollowMe, the model and controller
will be combined into a single source file; the divisions will be noted in the source code.

Coding the Game
Ready for some more Swift?

Locate and single-click the ViewController.swift file in Xcode’s navigator area; the
contents appear in the editor area. Delete the code in the editor area except for the comments and
blank line (lines 1 through 8), and then type the following code:

Smart Editing
As you type, the Swift compiler works in the background to find errors. Hence, you may see
errors appear and disappear while typing. This is normal, so just continue typing until all the
code is in place. Also, Xcode’s editor may try to help you by putting ending curly braces in
position when you type opening ones. It may take some getting used to such a smart editor, so
be aware as you input the code.

Click here to view code image

import UIKit

class ViewController: UIViewController, UIAlertViewDelegate {
 enum ButtonColor : Int {
 case Red = 1
 case Green = 2
 case Blue = 3
 case Yellow = 4
 }

 enum WhoseTurn {
 case Human
 case Computer
 }

 // view related objects and variables
 @IBOutlet weak var redButton : UIButton!
 @IBOutlet weak var greenButton : UIButton!
 @IBOutlet weak var blueButton : UIButton!
 @IBOutlet weak var yellowButton : UIButton!

 // model related objects and variables
 let winningNumber : Int = 25
 var currentPlayer : WhoseTurn = .Computer
 var inputs = [ButtonColor]()
 var indexOfNextButtonToTouch : Int = 0
 var highlightSquareTime = 0.5

 override func viewDidLoad() {
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 override func viewDidAppear(animated: Bool) {
 startNewGame()
 }

 func buttonByColor(color : ButtonColor) -> UIButton {
 switch color {
 case .Red:
 return redButton
 case .Green:
 return greenButton
 case .Blue:
 return blueButton
 case .Yellow:
 return yellowButton
 }
 }

 func playSequence(index: Int, highlightTime: Double) {
 currentPlayer = .Computer

 if index == inputs.count {
 currentPlayer = .Human
 return
 }

 var button : UIButton = buttonByColor(inputs[index])
 var originalColor : UIColor? = button.backgroundColor
 var highlightColor : UIColor = UIColor.whiteColor()

 UIView.animateWithDuration(highlightTime,
 delay: 0.0,
 options: .CurveLinear & .AllowUserInteraction & .BeginFromCurrentState,
 animations: {
 button.backgroundColor = highlightColor
 }, completion: { finished in
 button.backgroundColor = originalColor
 var newIndex : Int = index + 1
 self.playSequence(newIndex, highlightTime: highlightTime)
 })
 }

 @IBAction func buttonTouched(sender : UIButton) {
 // determine which button was touched by looking at its tag
 var buttonTag : Int = sender.tag

 if let colorTouched = ButtonColor(rawValue: buttonTag) {
 if currentPlayer == .Computer {
 // ignore touches as long as this flag is set to true
 return
 }

 if colorTouched == inputs[indexOfNextButtonToTouch] {
 // the player touched the correct button...
 indexOfNextButtonToTouch++

 // determine if there are any more buttons left in this round
 if indexOfNextButtonToTouch == inputs.count {
 // the player has won this round
 if advanceGame() == false {
 playerWins()
 }
 indexOfNextButtonToTouch = 0
 }

 else {
 // there are more buttons left in this round... keep going
 }
 }
 else {
 // the player touched the wrong button
 playerLoses()
 indexOfNextButtonToTouch = 0
 }
 }
 }

 func alertView(alertView: UIAlertView, clickedButtonAtIndex buttonIndex: Int) {
 startNewGame()
 }

 func playerWins(Void) {
 var winner : UIAlertView = UIAlertView(title: "You won!", message: "Congratulations!", delegate: self,
cancelButtonTitle: nil, otherButtonTitles: "Awesome!")
 winner.show()
 }

 func playerLoses(Void) {
 var winner : UIAlertView = UIAlertView(title: "You lost!", message: "Sorry!", delegate: self, cancelButtonTitle:
nil, otherButtonTitles: "Try again!")
 winner.show()
 }

 func randomButton(Void) -> ButtonColor {
 var v : Int = Int(arc4random_uniform(UInt32(4))) + 1
 var result = ButtonColor(rawValue: v)
 return result!
 }

 func startNewGame(Void) -> Void {
 // randomize the input array
 inputs = [ButtonColor]()
 advanceGame()
 }

 func advanceGame(Void) -> Bool {
 var result : Bool = true

 if inputs.count == winningNumber {
 result = false
 }
 else {
 // add a new random number to the input list
 inputs += [randomButton()]

 // play the button sequence
 playSequence(0, highlightTime: highlightSquareTime)
 }

 return result
 }
}

Now that you’ve typed in the code, let’s walk through it so you understand how the program works.

The Class

Since this class will deal with UI elements, importing the UIKit frameworks is important:
import UIKit

Just like the original contents of the file, the class remains named ViewController, which is a
subclass of the UIViewController class. In addition, a protocol, UIAlertViewDelegate, has
been added. This class must conform to this particular protocol due to alert dialogs used later in the
code.
Click here to view code image

class ViewController: UIViewController, UIAlertViewDelegate {

Enumerations
The ButtonColor enumeration exists to represent all four button colors in the game: red, green,
blue, and yellow.

This particular enumeration is based on the Int type, and each enumeration member is set to a
unique raw value of the Int type. The reason for this will become apparent a little later.

 enum ButtonColor : Int {
 case Red = 1
 case Green = 2
 case Blue = 3
 case Yellow = 4
 }

Since the game is played by both the computer (who decides which buttons to highlight) and the
player (a human), you need a way in the game to determine whose turn it is to play. This enumeration
captures that:

 enum WhoseTurn {
 case Human
 case Computer
 }

Note that these two enumerations are declared inside the ViewController class; therefore, they
would not be known, or accessible, outside of that class.

The View Objects
Next is the declaration of the variables and constants needed for the game. All four views (UIButton
objects) exist in the Main.storyboard file. The class needs a reference to those so that it can
manipulate them during the game. The @IBOutlet weak keywords are a hint that you need to
connect these variables to their represented objects in the storyboard. You’ll do that later.
Click here to view code image

 // view-related objects and variables
 @IBOutlet weak var redButton : UIButton!
 @IBOutlet weak var greenButton : UIButton!
 @IBOutlet weak var blueButton : UIButton!
 @IBOutlet weak var yellowButton : UIButton!

The Model Objects
Objects and variables related to the model are defined in this section. Unlike a pure model-view-

controller separation where each entity gets its own class, the controller class ViewController
encompasses these model objects, which represent the data associated with the playing of the game.

The winningNumber variable is an Int that represents the victory condition: the number of
consecutive button highlights the user must successfully mimic. The current value, 25, is considered
somewhat difficult; you can set this number lower to make the game easier to win.
Click here to view code image

 // model-related objects and variables
 let winningNumber : Int = 25

To keep track of whose turn it is, the currentPlayer is declared as a variable of the
WhoseTurn enumeration type. Its default value is set to Computer.
Click here to view code image

 var currentPlayer : WhoseTurn = .Computer

The progression of the game is built on “rounds.” Each round consists of the computer highlighting
buttons in the previous round, along with a new random button. The player must touch the buttons in
the same order. This ordering is dictated by the inputs variable, which is declared as an array of
ButtonColor objects:

 var inputs = [ButtonColor]()

As the player touches the buttons, the computer keeps track of the next button’s index in the
inputs array. This variable keeps track of that index:
Click here to view code image

 var indexOfNextButtonToTouch : Int = 0

One aspect of the game that can affect the degree of difficulty is the time the computer takes to
highlight the button. This variable, set to one-half of one second, controls this time. Larger numbers
slow the highlight progression and make the game easier; smaller numbers increase the game’s speed,
making the game harder:

 var highlightSquareTime = 0.5

Overridable Methods
Working within the context of Cocoa Touch’s UIViewController class, you will find several
methods recommended to override. One such method is viewDidLoad, which is called when the
view is loaded and about to appear on the iOS screen. For purposes of this app, we’ll leave this method
alone.
Click here to view code image

 override func viewDidLoad() {
 // Do any additional setup after loading the view, typically from a nib.
 }

Another method provided to the UIViewController class is didReceiveMemoryWarning,
which is called by iOS when memory is running low on the device. Apps that receive this usually try
to free resources, unload images, or take other actions to relieve memory pressure. For this app, we’ll
simply let the method call its superclass’s implementation.
Click here to view code image

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

The viewDidAppear method is called after the view is loaded, but just prior to appearing on the
screen. This is a perfect place for you to call the startNewGame method, which will begin the
gameplay.
Click here to view code image

 override func viewDidAppear(animated : Bool) {
 startNewGame()
 }

Game Methods
One handy method you need during the game is buttonByColor, which takes a ButtonColor
type and returns the corresponding UIButton on the screen. This is helpful to map color names with
the buttons in the view they represent. The switch/case construct is used to scan through the
various supported button colors, returning the appropriate UIButton reference.
Click here to view code image

 func buttonByColor(color : ButtonColor) -> UIButton {
 switch color {
 case .Red:
 return redButton
 case .Green:
 return greenButton
 case .Blue:
 return blueButton
 case .Yellow:
 return yellowButton
 }
 }

The following method is at the heart of the game and drives the highlighting of the button sequence
by the computer. Two parameters are passed: an index into the inputs array, which will be used to
identify the button to highlight, and a highlight time.

Because this is a fairly sophisticated method, exploring it in-depth is worth the time so you can
understand exactly how it works, so let’s dive in:
Click here to view code image

 func playSequence(index : Int, highlightTime : Double) {

Upon entering the method, the currentPlayer variable is set to indicate the computer is the
current player, since it is the one in control of the game board at this juncture.

 currentPlayer = .Computer

The following if statement performs a special check to see if the index value passed is equal to the
number of elements in the inputs array. If this is true and the two values are equal, it’s the human’s
turn to play, and the method immediately returns to the caller.

 if index == inputs.count {
 currentPlayer = .Human
 return

 }

Three variables are declared next. The first, button, is set to the UIButton reference of the
current input. The buttonByColor method reviewed earlier is used here to find the actual
UIButton based on the ButtonColor stored in the array.

The second variable, originalColor, captures the background color of the button just retrieved.
This saves the color so that it can be restored later. Note that the UIColor object here is declared
optional—because a button can have its backgroundColor property set to nil. In this game that
won’t happen, but the declaration still needs to be made in this way because the type of
backgroundColor is a UIColor? and not a UIColor.

The third variable, highlightColor, is the color that will be used to highlight the button. It is
set to white by calling the whiteColor method of the UIColor class.
Click here to view code image

 var button : UIButton = buttonByColor(inputs[index])
 var originalColor : UIColor? = button.backgroundColor
 var highlightColor : UIColor = UIColor.whiteColor()

The following line of code is what actually causes the selected button to highlight. Here, the
animateWithDuration method is used to perform the animation that indicates to the player that
the button is to be touched. This special method, known as a type method, is called directly from the
type itself, and not a variable of that type. They are typically done so out of convenience, where
having an instance of a type is not necessary to perform a specific function.

A number of parameters are used to perform the animation, but the most relevant for the game are
the highlightTime, which indicates how long the animation will run, and two closures: one that
indicates what will be animated, and what happens after the animation is finished.
Click here to view code image

UIView.animateWithDuration(highlightTime,
 delay: 0.0,
 options: .CurveLinear & .AllowUserInteraction &
.BeginFromCurrentState,

The first closure simply sets the button’s background color to the highlight color (white). This
means that the button’s color will change from its current color (either red, blue, green, or yellow) to
white in 0.5 seconds, which you set when you created the highlightSquareTime variable.
Click here to view code image

 animations: {
 button.backgroundColor = highlightColor

After the animation has occurred and the duration has passed, the code in the second closure is
executed.

In this closure, the button’s backgroundColor property is restored to the original color that was
obtained. In addition, a new variable, newIndex, is created and set to the value of the index passed to
the method earlier, plus 1.

The final line of the closure actually calls back into the same method, playSequence, passing in
the newIndex and the highlightTime. This action causes the next button in the inputs array to
highlight.

If you find a method calling itself to be a little like a snake eating its tail, you’re not alone. This

concept in computer science is known as recursion and is useful when sequential operations such as
this one are executed. The terminal point of the recursion is the return statement reviewed earlier—
when all buttons have been highlighted.
Click here to view code image

 }, completion: { finished in
 button.backgroundColor = originalColor
 var newIndex : Int = index + 1
 self.playSequence(newIndex, highlightTime: highlightTime)
 })
 }

On to the next method. Here is the action method that is called when the player touches one of the
four buttons (you’ll hook up this action method shortly to the buttons in the storyboard). This is
another fairly involved function that we’ll dive into:
Click here to view code image

 @IBAction func buttonTouched(sender : UIButton) {

Every UIButton has a tag property. A tag is an integer property that can be set to a number. For
convenience, all four buttons will link to this same action method. Soon, you’ll set the tag of each
button to correspond to the color code in the ButtonColor enumeration. This will assist the method
in determining which button was touched.
Click here to view code image

 // determine which button was touched by looking at its tag
 var buttonTag : Int = sender.tag

This next line may look a little strange, but is actually a common way of conditionally executing a
block of code based on the value of an assignment. Known in Swift as optional chaining, it assigns the
result of the ButtonColor creation call and checks if the value is nil.

A new constant, colorTouched, is set to the appropriate ButtonColor enumeration member based
on the value of buttonTag. Since buttonTag was declared as an Int type earlier, it must be
converted to a ButtonColor using the rawValue parameter of the ButtonColor initialization
method.

If in the unlikely circumstance ButtonColor(rawValue: buttonTag) were to return nil,
the code inside the if statement would not get executed.
Click here to view code image

 if let colorTouched = ButtonColor(rawValue: buttonTag) {

At this point, the player can touch the buttons while the computer is highlighting them. If this
happens, this method will be called “out of order” and can interfere with proper gameplay. Therefore,
you check to see who is the current player. If it is the computer, you simply ignore this touch and
return immediately.
Click here to view code image

 if currentPlayer == .Computer {
 // ignore touches as long as this flag is set to true
 return
 }

The colorTouched constant, which was created and assigned earlier, is checked against the

current button color in the inputs array. Here the determination is made whether the user has
pressed the correct button in the sequence.
Click here to view code image

 if colorTouched == inputs[indexOfNextButtonToTouch] {

If so, the indexOfNextButtonToTouch is incremented and checked against the size of the
array (inputs.count).
Click here to view code image

 // the player touched the correct button...
 indexOfNextButtonToTouch++

 // determine if there are any more buttons left in this round
 if indexOfNextButtonToTouch == inputs.count {

If the above statement is true, the user has touched the last button in the round correctly. A call is
then made to the advanceGame method (which you’ll see shortly). The result of that call will
determine whether there are more buttons to be touched. If not, false is returned and the user has
won the game.

 // the player has won this round
 if advanceGame() == false {
 playerWins()
 }

In either case, the round is over since the player has touched the buttons in sequence correctly, and
the indexOfNextButtonToTouch variable is reset to zero.

 indexOfNextButtonToTouch = 0
 }

For clarity, the else clause is placed here, but there is no specific action to take. The game keeps
playing since the player has neither won nor lost, and there are more buttons to be pressed.
Click here to view code image

 else {
 // there are more buttons left in this round... keep going
 }
 }

This else clause is the counterpart to the if statement earlier that checked if color-Touched
was equal to inputs[indexOfNextButtonToTouch]. If control comes to this point in the code,
the player touched the wrong button in the sequence and has lost the game. The appropriate method is
called, and the indexOfNextButtonToTouch is reset to zero so the game can start over.
Click here to view code image

 else {
 // the player touched the wrong button
 playerLoses()
 indexOfNextButtonToTouch = 0
 }
 }

Winning and Losing

An important part of gameplay is the visual cues necessary to communicate to the player whether the
game is won or lost. Cocoa Touch provides a class known as UIAlertView to do this. Both
playerWins and playerLoses methods create the view with appropriate win and lose messages.

The following method is part of the UIAlertViewDelegate protocol, which is adopted by this
class, and called when the user taps the button to acknowledge the message. Doing so in either case
starts a new game.
Click here to view code image

 func alertView(alertView: UIAlertView, clickedButtonAtIndex: Int) {
 startNewGame()
 }

The next two methods are called depending on whether the player wins or loses the game. In both
cases, the same UIAlertView object is created, taking a number of parameters, including a title,
message, delegate (for calling the above method), and optional button titles.

Finally, the show method is called on the UIAlertView object, which causes the dialog to
display.
Click here to view code image

 func playerWins(Void) {
 var winner : UIAlertView = UIAlertView(title: "You won!", message:
"Congratulations!", delegate: self, cancelButtonTitle: nil, otherButtonTitles: "Awesome!")
 winner.show()
 }

 func playerLoses(Void) {
 var loser : UIAlertView = UIAlertView(title: "You lost!", message: "Sorry!",
delegate: self, cancelButtonTitle: nil, otherButtonTitles: "Try again!")
 loser.show()
 }

The element of randomness is achieved through the following method, which takes no parameters
and returns a ButtonColor. Inside the method, a variable is declared. Its value is derived from the
arc4random_uniform method, which is provided by iOS to generate random numbers between
zero and the passed parameter minus 1 (in this case, a value of 4 cast to a UInt32 type as mandated
by the method).

As called, the arc4random_uniform method returns a random whole number between 0 and 3.
The number 1 is added to shift the value to between 1 and 4, corresponding to the ButtonColor
enumeration’s raw values.

That Int value is then passed to the ButtonColor’s rawValue creation method to return a
ButtonColor? type. Since it’s an optional, it is returned unwrapped (hence the exclamation point at
the end of the last line).
Click here to view code image

 func randomButton(Void) -> ButtonColor {
 var v : Int = Int(arc4random_uniform(UInt32(4))) + 1
 var result = ButtonColor(rawValue: v)
 return result!
 }

This method starts a new game by initializing the inputs array to a set of empty ButtonColor
objects, and calling the method advanceGame to start the gameplay.

Click here to view code image

 func startNewGame(Void) -> Void {
 // randomize the input array
 inputs = [ButtonColor]()
 advanceGame()
 }

This final method in the code is called as the gameplay advances from round to round.
Click here to view code image

 func advanceGame(Void) -> Bool {

The assumption, based on the assignment of the result variable, is that there are more buttons for
the player to touch. However, if the number of inputs in the inputs array is equal to the
winningNumber constant, the game is effectively over.
Click here to view code image

 var result : Bool = true

 if inputs.count == winningNumber {
 result = false
 }
 else {

If the game is not over, a new random button is added to the inputs array using the concatenation
notation. The randomButton method, which returns a random ButtonColor, is called. The
returned value is wrapped and added to the end of the array, effectively increasing the button count by
1.
Click here to view code image

 // add a new random number to the input list
 inputs += [randomButton()]

After the addition of the random button, the playSequence method is called. This is how the
computer shows the player the sequence of buttons that must be touched to continue gameplay:
Click here to view code image

 // play the button sequence
 playSequence(0, highlightTime: highlightSquareTime)
 }

And finally, the result of the comparison at the top of the method is returned back to the caller.
 return result
 }
}

Back to the Storyboard
With all the code added to the ViewController.swift class, we’ll make a few hookups to the
user interface in the storyboard.

Bring up the Main.storyboard file in the editor area, and then hook up the IBOutlets from the
View Controller icon on the left of the editor area to the corresponding buttons in the view. To do this,
right-click the View Controller icon, and then drag from the appropriate outlet to the button. Do this
for all four outlets: blueButton, redButton, greenButton, and yellowButton.

Next, we’ll set the tags for each button. In the view showing the four buttons, click the red button.
From there, navigate to the utility area, click the Attributes inspector, and then scroll down and locate
the Tag property. Set it to 1 (Figure 9.16). This value corresponds to the value Red in the
ButtonColor enumeration.

FIGURE 9.16 Setting the Tag property for the red button

Do the same thing for the green, blue, and yellow buttons, setting their tags to 2, 3, and 4,
respectively. Setting up the tags this way allows the buttons to be found in the button-Touched
method in the code.

Next, each button must link to the same buttonTouched action method. Start by single-clicking
the red button, and then Command-click the green, blue, and yellow buttons. All four should be
highlighted. Release the Command key and then right-click any of the four buttons.

Locate the “Touch Up Inside” event in the heads-up display that appears, and then click the circle
on the far right of the line. Drag the line up to View Controller to the left of the editor area, and attach
it to the buttonsTouched method that appears in the second heads-up display (Figure 9.17). This
links all four buttons to the same action method.

FIGURE 9.17 Making the connections between the code and user interface elements

Time to Play
With the code typed in and the links made to the UI elements, it’s time to play FollowMe! Run the
app. If all goes well and you didn’t make any typos, the iOS simulator should appear with the app
running. Go through the game and play a few rounds.

If this isn’t working, verify that all four buttons are attached to the action method, and that the
outlet variables are connected back to the buttons. All the connections need to be made for the game to
work.

Feel free to experiment with both the highlightTime and the winningNumber values to
adjust the difficulty of gameplay.

There are number of other adjustments and enhancements you can consider making to improve the
game as it currently stands. Consider doing the following to make playability more fun and
interesting:

 Play sounds when the computer highlights each button.
 Keep a top score or a ranking based on the name of the player.
 When the user taps the wrong button, highlight the button that should have been tapped.

Congratulations on your very first iOS game written in Swift! Although somewhat simplistic in its
presentation, the additional language concepts you’ve been exposed to in this chapter will become part
of your foundation as you move forward into Swift development.

You’ve almost reached the end of your Swift journey... just one more chapter is left. We’ll touch on
some additional language features and delve into a few advanced topics.

Chapter 10. Advancing Ahead

It’s been an exciting journey through the Swift language, and you’ve made it to the final chapter!
Getting here, you’ve learned how to use the REPL, tested code in playgrounds, and created both a Mac
OS and iOS app. Between all of that, you learned about the Swift language itself.

Your learning Swift doesn’t stop with this chapter, or this book for that matter. You will continue to
discover plenty about the language as you use it to craft apps. Then there’s the ever-expansive
collection of frameworks Apple continues to improve in Cocoa and Cocoa Touch. The sky is the limit,
and the fun never ends.

This last chapter covers a range of Swift topics that should be the perfect ending to the heaping
servings of text and code you’ve read through to get here.

Memory Management in Swift
Every object, be it something as small as an Int type or as large as a blob of data, takes up memory
resources. Even though your Mac, iPhone, or iPad comes with a large amount of memory, it is still a
shared, finite resource that must be managed appropriately. Your app won’t be the only app running
on the system, so “playing nice” by using memory appropriately and wisely is part of being a good
“app citizen.”

If you have programming experience with other languages, you may have been waiting to see when
and if this book would cover memory management. Indeed, that aspect of Swift hasn’t been mentioned
throughout the previous chapters. How memory is handled is usually a detail that other programming
languages force the developer to deal with, but Swift was designed to make this detail as transparent
as possible.

The secret weapon in Swift’s seemingly invisible memory management is Apple’s advanced LLVM
compiler. More than just interpreting Swift statements into machine code, LLVM also traces code
paths and determine where objects go out of scope and when their memory can be relinquished.

Even though memory management may seem transparent, you should be aware of some interesting
twists as you embark on your Swift journey.

Value vs. Reference
Early on, you were introduced to the concept of value types versus reference types. This is the notion
of how types are used and passed around in the course of their lifetime.

Types such as Int and String as well as structures and enumerations are considered value types;
when a value type is passed to a method, for instance, a copy of that value is made in memory, and the
copy is passed. This makes for a relatively straightforward memory management style. By working
with a copy of a String value, your method can modify it with impunity and not worry about it
changing the original value that was passed.

Reference types, on the other hand, are not copied when they are passed around—instead, their
memory address is provided to functions or methods that may use them. Closures and objects of
instantiated classes are examples of reference types. If you pass a closure or object to a method, a
copy is not made. Instead, a reference (in the form of the memory address) is passed.

Because reference types are not copied when passed around, special care must be taken to ensure
that they are properly disposed of at the right time. If the memory occupied by a reference type is

given back to the system’s memory pool too early, a crash will result. Conversely, if the memory
occupied by a reference type is not given back to the system’s memory pool after the type is no longer
needed, that memory is essentially locked up and unavailable to be assigned to another type. This is
known as a memory leak.

What’s behind the reason for value versus reference types anyway? Why not make everything a
value type? In constructs such as classes and closures where executable code exists, special memory
protection constraints prohibit the copying of code. From a resource allocation and execution time
point of view, passing an object as a reference instead of a value is also more efficient. Remember,
values are copied, and copying data requires processor time, as well as extra memory to hold the copy.

The Reference Count
Swift uses a unique style of memory management for reference types. Devised by Apple and
supported by the LLVM compiler, this memory management technique is known as ARC (automatic
reference counting).

The basic premise of ARC is that every reference type has a number called a reference count. This
number is set to 1 when a referenced object is created. As that object is passed around in your app, it
may attain one or more “owners” who will use that object in some way or another. The owner of the
object must increase the reference count by 1 when it attains ownership and decrease the reference
count by 1 when it relinquishes ownership. When the reference count goes to 0 (presumably
relinquished by the original owner), the object is destroyed, and the memory it occupied is returned to
the free memory pool for reuse by other objects.

In Objective-C, this retain/release model of memory management used to be manually driven by
the app developer. That is, the developer writing the code that used a referenced object would need to
take care to both retain the object (increase its reference count by 1) and release the object (decrease
its reference count by 1) when he was finished with it.

ARC was introduced sometime later, and the burden of retaining and releasing was lifted from the
developer’s shoulders and given to the compiler. Swift is a beneficiary of this memory management
model, giving you total freedom from the tedium of keeping track of when your objects should be
retained or released.

Not that you can safely ignore memory management when developing in Swift, however.
Sometimes the use of reference types can get you into undue trouble, so having some appreciation for
what ARC does is important. In fact, you’ve already seen hints of ARC in code you worked with in
previous chapters. It just wasn’t emphasized at that point.

Only the Strong Survive
For the most part, using classes and closures in your code involves nothing more than a simple
declaration and creation. You can then pass the variable around as needed for work to be done.
Although it’s not obvious, when you declare a variable of a reference type and then assign an object to
it, you are creating a strong reference to that variable, which means the variable’s reference count will
be incremented.

However, a unique problem—known as a reference cycle—can crop up when two objects reference
each other, which is often the case when designing in Swift. Think of it as a deadly embrace, where
object A has a reference to object B, and object B has a reference to object A (Figure 10.1). They both
hold on to each other so strongly that when it’s time to let go, they cannot.

FIGURE 10.1 Reference cycle

The result of a reference cycle is that the referencing objects stay alive and the memory they occupy
is never returned to the system as long as your app runs.

Let’s look at a code example that exemplifies this problem. Start up Xcode if it’s not already
running and create a new OS X project by choosing File > New > Project. Select “Cocoa Application”
from the OS X section. Be sure to select the Swift language and leave the “Use Storyboards” selection
unchecked. Name this project ReferenceCycleExample.

Put It in a Letter
To demonstrate a reference cycle, you will create two Swift classes: a Letter class that models a
letter addressed to someone, and a MailBox class that models the mailbox the letter will be put into.
Click here to view code image

class Letter {
 let addressedTo: String
 var mailbox : MailBox?

 init(addressedTo: String) {
 self.addressedTo = addressedTo
 }

 deinit {
 println("The letter addressed to \(addressedTo) is being discarded")
 }
}

This class contains a constant named addressedTo, which is the name of the person the letter
will be addressed to. There is also a variable that is a reference to an optional MailBox object.

The init method takes a String that is assigned to the addressedTo member variable that is
part of the Letter class. A new method named deinit is also present. This method is called when
an object is about to be deinitialized and just before the memory it occupies is returned to the system.
In this method, a message is printed to indicate that the letter is being discarded.

Now onto the MailBox class:
Click here to view code image

class MailBox {
 let poNumber: Int
 var letter: Letter?

 init(poNumber: Int) {
 self.poNumber = poNumber
 }

 deinit {
 println("P.O. Box \(poNumber) is going away")
 }
}

The MailBox class looks similar to the Letter class in structure. There is a member constant
named poNumber, which is an Int representing the post office box number of the mailbox. A
member variable named letter is a reference to an optional Letter object.

The Test Code
The code to exercise the two classes and demonstrate the reference cycle is next.

In the following code segment, two variables are declared: an optional Letter variable named
firstClassLetter and an optional MailBox variable named homeMailBox.

 var firstClassLetter: Letter?
 var homeMailBox: MailBox?

The objects are then created with appropriate parameters and assigned to the variables:
Click here to view code image

 // initialize the objects
 firstClassLetter = Letter(addressedTo: "John Prestigiacomo")
 homeMailBox = MailBox(poNumber: 355)

Here is where the homeMailBox object reference is assigned to the mailbox member variable of
the firstClassLetter object, as well as assigning the firstClassLetter object to the
letter member variable of the corresponding homeMailBox object.
Click here to view code image

 firstClassLetter!.mailbox = homeMailBox
 homeMailBox!.letter = firstClassLetter

Lastly, both the firstClassLetter object and homeMailBox objects are assigned to nil.
This is allowable since both member variables were declared optionals. When nil is assigned to a
variable holding an optional reference, that object is destroyed, its deinit method is called, and the
memory the object occupied is released back to the system.

 // deinitialize the objects
 firstClassLetter = nil
 homeMailBox = nil

Figure 10.2 shows the placement of this code in the AppDelegate.swift file of your newly created
project. The Letter and MailBox classes go at the bottom of the file on lines 41 through 65, while
the test code is located on lines 19 through 31 in the applicationDidFinishLaunching

method.

FIGURE 10.2 Placement of the reference cycle example code in AppDelegate.swift

Because the app uses the println method to show when the objects are discarded in their
respective deinit methods, the debug area must be visible. This is where the output of the
println methods will be directed. Before running the code, ensure that the debug area is visible at
the bottom of the Xcode window. If it isn’t visible, just click the Debug area icon (Figure 10.3).

FIGURE 10.3 The Debug area icon shows or hides the debug area.

With the code in place, set breakpoints on the following lines by clicking on the line number to the
left of the editor display (remember, the blue arrow indicates the breakpoint is set):

Line 30:
firstClassLetter = nil

Line 50:
Click here to view code image

println("The letter address to \(addressedTo) is being discarded")

Line 63:

Click here to view code image

println("P.O. Box \(poNumber) is going away")

With the breakpoints set, run the app in Xcode by choosing Product > Run. The breakpoint at line
30 will pause execution (Figure 10.4).

FIGURE 10.4 The breakpoint encountered on line 30

The firstClassLetter object is about to be set to nil. This action, once it takes place, causes
the Letter class’s deinit method to be called, thus triggering the second breakpoint. Will it? To
find out, click the Continue program execution button just above the debug area (Figure 10.5). Instead
of encountering the second breakpoint, control will continue.

FIGURE 10.5 The Continue program execution button

A blank window appears, but since the focus of this simple app is to view the log information only,
you can safely ignore it. Use Command Q to quit the app.

At this point, both the firstClassLetter and homeMailBox variables have been set to nil,
but the deinit methods corresponding to the objects were not called. This is a clear indication that a
reference cycle is in place and that the objects, though no longer referenced, are still alive and holding
memory.

Breaking the Cycle
Now that the reference cycle exists, how do you break it?

The problem stems from the fact that by default, variables that point to reference objects are strong
references. The solution is to convince one of the variables—either letter in the Letter class or
mailbox in the MailBox class—to not increment the reference count. This is known as a weak
reference, and you have actually seen this keyword in code from an earlier chapter.

Declaring a reference variable as weak means that the variable does not “own” the referenced
object, but merely “refers” to it. The assignment does not cause the retain count to increment, which
breaks the deadly embrace that two objects can have on each other.

In the previous code example, it does not matter which variable is declared as weak, as long as one
of them is. Modify the mailbox member variable on line 43 as follows:

 weak var mailbox : MailBox?

Just adding the weak keyword in front of the var keyword is enough to let Swift know that
mailbox is a weak variable. With the change in place, rerun the application.

The breakpoint on line 30 will stop execution as it did before. Now when you continue execution,
you’ll notice that the breakpoint on line 63 is encountered. This is the deinit method of the
MailBox object being called as part of its deinitialization. Clicking the Continue program execution
button then stops at the third breakpoint on line 50, corresponding to the Letter object’s deinit
method. Now the cycle is broken, and both objects have been properly terminated. The output from the

println methods also appears in the debug area, indicating that both objects have been
deinitialized.

Cycles in Closures
Closures are also reference types, and as such, can fall victim to the reference cycle, albeit in a
slightly different way. Take for example the following class, which creates a MailBox object and a
Letter object:
Click here to view code image

class MailChecker {
 let mailbox: MailBox
 let letter: Letter

 lazy var whoseMail: () -> String = {
 return "Letter is addressed to \(self.letter.addressedTo)"
 }

 init(name: String) {
 self.mailbox = MailBox(poNumber: 311)
 self.letter = Letter(addressedTo: name)
 }

 deinit {
 println("class is being deinitialized")
 }
}

In addition to the mailbox and letter properties, this class has something new: a lazy property
named whoseMail to check the letter’s addressee. The lazy keyword is used to defer the evaluation
of the property until it is actually used somewhere in the code. For this example, the reference to
self.letter.addressedTo inside the closure that makes up the whoseMail property
mandates the lazy keyword; otherwise a compiler error would result.

Because the closure is referencing its enclosing MailChecker object as self, Swift insists on
capturing the object as a strong reference. Likewise, the closure itself is strongly referenced by the
MailChecker object that owns it, showing another example of the deadly embrace that can occur
between two objects that strongly reference each other (in this case, those two objects are a class and a
closure).

To illustrate this, type in the MailChecker class at the bottom of the AppDelegate.swift file,
insert a blank line at line 32, then add the following lines of code starting at line 33 inside the
applicationDidFinishLaunching method (Figure 10.6):
Click here to view code image

 // create and destroy a MailCheck object
 var checker : MailChecker? = MailChecker(name: "Mark Marlette")
 var result : String = checker!.whoseMail()
 println(result)
 checker = nil

FIGURE 10.6 Adding the code to the applicationDidFinishLaunching method

This code instantiates an optional MailChecker object and assigns it to the checker variable
and then prints the contents of the object’s whoseMail variable (which is composed of the closure
we just discussed). Lastly, the checker variable is set to nil, which should cause the deinit
method of the MailChecker object to be called and its memory returned to the system.

With all the code in place, set a breakpoint on the line of the MailChecker class’s deinit
method (line 87 as shown in Figure 10.7) and then run the application from Xcode.

FIGURE 10.7 Setting the breakpoint in MailChecker’s deinit method

When the application runs, the previously set breakpoints will be encountered. Just click the
Continue program execution button to continue over them. However, the breakpoint on line 87 is not
encountered. That’s because of the reference cycle.

To break this cycle, a special notation has to be added to the closure declaration in the
MailChecker class. Change line 77 to read:
Click here to view code image

 lazy var whoseMail: () -> String = { [unowned self] in

The addition of [unowned self] in to the closure definition alerts Swift that the self object
should not be retained, thus breaking the reference cycle.

With the addition in place, run the application one more time in Xcode. Execution will stop on the

breakpoint at line 87, confirming that the reference cycle no longer exists, and the MailChecker
object is properly deinitialized and terminated.

Thanks for the Memories
Aside from needing to be cognizant of problems like reference cycles, memory management in Swift
is mostly a hidden detail that is handled behind the scenes thanks to the LLVM compiler. It’s one of
the many things that make developing in Swift simple and straightforward. You focus on your app,
and the language and compiler worry about the rest.

Thinking Logically
Although Swift has new and innovative features, in some ways it remains a beneficiary of computer
languages that came before it. That’s particularly true regarding basic things like mathematical
expressions, which have a common, recognizable syntax across many different languages.

Another area where Swift inherits from other languages is in the use of logical operators. Logical
operations involve determining the truth or falseness of a statement based on words like and, or, and
not. We use these in our every day spoken language all the time. For example:

If it is past 10 P.M. and the living room lights are on, turn them off.
or:

While it is not raining, leave the windows open.
These statements involve evaluating the truth of a clause in the statement and performing some

action based on the outcome of the evaluation.
When programming, these types of constructs come up often, and Swift provides logical operators

you can use to build expressions that evaluate to either true or false.
Let’s move back to playgrounds to test out some of these ideas. In Xcode, create a playground using

File > New > Playground and select the OS X platform. Save the playground as Chapter
10.playground.

To Be or NOT to Be...
A common operator is the logical NOT, which is used to negate the outcome of an evaluation. It uses
the exclamation point (!) operator and precedes an expression.

Type the following code into your newly created playground:
Click here to view code image

// logical NOT
var a : String = "pumpkin"
var b : String = "watermelon"

if a == b {
 println("The strings match!")
}

This code snippet compares the value of a and b using the equality comparison operator (==) you
learned about in Chapter 1. Obviously, “pumpkin” and “watermelon” are not equal strings, so the
result is false, and the code inside the curly braces does not execute.

But by simply using the NOT operator, the logical outcome can be inverted, causing the block to
execute. Type the following code into the playground and observe the Results sidebar:

Click here to view code image

if !(a == b) {
 println("The strings don't match!")
}

As you would expect, the NOT character inverts the false result, making it true, and the println
method is executed. Also, the parentheses surround the comparison by necessity so that the NOT
operator can invert the result of the comparison.

Combining with AND
The second logical operator that you should know about is the logical AND, which is used to combine
two or more Boolean expressions. If any of the Boolean expressions are false, the entire expression is
considered false as well.

Two consecutive ampersand characters (&&) are used to denote the logical operation. The following
code snippet illustrates how to use the operator. Type the code into your playground:

// logical AND
let c = true
let d = true

if c == true && d == true {
 println("both are true!")
}

Here, the logical AND is used when the predicate is evaluated. Both c and d are set to true,
therefore the result of the logical AND is also true, and the println method is called.

If either variable were set to false instead of true, the predicate result would be false, and the
code inside of the curly braces would not execute.

One Way OR the Other
The third and final logical operator is the logical OR. Like the logical AND, the logical OR also
combines two or more Boolean expressions, but only one of the expressions needs to be true for the
entire expression to be true.

The logical OR is denoted with two vertical bar characters (||). Type in the following code in your
playground to see the logical OR in action:
Click here to view code image

// logical OR
let e = true
let f = false

if e == true || f == true {
 println("one or the other is true!")
}

This code illustrates that even though f is set to false, e is true; therefore, the predicate
evaluates to true and the println is executed.

Figure 10.8 shows the sample code in the playground along with the results. Feel free to change the
values of the variables to see how they affect the outcome of the if statements.

FIGURE 10.8 Code demonstrating the logical operators

Generics
Many times in software development, you will encounter situations where you need a function or
method to perform similar behavior on more than one type. In other languages, this usually means
writing one method or function for every type supported.

For example, consider a simple function that takes two parameters of the same type and returns a
Boolean indicating if the first value is equal to the second value. Writing such a function for Int,
Double, and String types would require three functions:
Click here to view code image

// check for equality between Int values
func areValuesEqual(value1: Int, value2: Int) -> Bool {
 return value1 == value2
}

// check for equality between two Double values
func areValuesEqual(value1: Double, value2: Double) -> Bool {
 return value1 == value2
}

// check for equality between two String values
func areValuesEqual(value1: String, value2: String) -> Bool {
 return value1 == value2
}

Swift provides a feature known as generics that makes this repetitiveness a thing of the past. A
generic function or method doesn’t specify the type but instead specifies a placeholder.

All three functions just listed could be replaced by the following function, which makes the type a
generic:
Click here to view code image

func areValuesEqual<T: Equatable>(value1: T, value2: T) -> Bool {
 return value1 == value2
}

The generic method has a special syntax, with the generic placeholder T encompassed in < and >.
Normally just the placeholder is required, but since the values are being used in a comparison context
with ==, the placeholder is followed by a colon and the word Equatable, which is a Swift-provided
protocol that requires arguments to be of types which support equality comparisons.

Now, you simply need to exercise the generic function with Int, Double, and String values:
Click here to view code image

areValuesEqual(3, 3)
areValuesEqual(3.3, 1.4)
areValuesEqual("first", "second")

Figure 10.9 shows the code and the results.

FIGURE 10.9 The generic method and the code that exercises it

Overloading Operators
Early on, you learned how to enhance classes with new methods using extensions. This ability to bring
new functionality into a language construct also extends to the most basic elements in Swift:
operators.

With operator overloading, you can define how basic math operations such as addition, subtraction,
multiplication, and division operate among custom classes or structures by redefining how their
operators behave.

You may be wondering why you would even consider redefining the operation of the + (addition)
sign or the * (multiplication) sign? Wouldn’t it be confusing to change the meaning of these very
basic operators and how they are used in Swift source code?

Although this is a valid observation, in some cases these basic operators can be useful outside of
regular integer or floating-point mathematics. Consider linear algebra, for example, which

concentrates on mathematical operations between matrices.
Addition and multiplication operations are more involved and complex in matrices than regular

numbers. Although some computer languages can inherently perform math on matrices, they are
typically domain-specific languages that focus specifically on scientific computing.

With operator overloading in Swift, providing support for matrices natively is possible. Although a
more general class could be constructed to perform operations on matrices of different sizes, let’s
keep it simple and focus on a specific case: the 2 x 2 matrix. In linear algebra, the procedure for
adding two 2 x 2 matrices is as follows:

Each member of the first matrix is added to the corresponding member of the second matrix, and
the result placed in the corresponding location of the result matrix.

Matrix multiplication is a little more involved. The procedure is as follows:

Swift’s ability to enhance basic operator behavior is useful in such a case. Consider the following
structure, which is a 2 x 2 matrix:

struct Matrix2x2 {
 var a11 = 0.0, a12 = 0.0
 var a21 = 0.0, a22 = 0.0
}

The structure contains four variables of type Double. The variable name’s first number is the row
number, and the second number is the column number.

In Swift, defining a function with the operator’s name as the function name is all you need to create
new functionality for that operator. Below is the function that overrides the plus operator. Two
Matrix2x2 structures are passed as parameters, and the same type is returned, representing the
summation of the two matrices.
Click here to view code image

func + (left: Matrix2x2, right: Matrix2x2) -> Matrix2x2 {
 return Matrix2x2(a11: left.a11 + right.a11,
 a12: left.a12 + right.a12,
 a21: left.a21 + right.a21,
 a22: left.a22 + right.a22)
}

This function returns a new Matrix2x2 object with its a11, a12, a21, and a22 members set to
the sums of the left and right matrices.

The next function defines matrix multiplication on the multiplication operator. The parameters are
identical to the addition function. The code performs matrix multiplication and returns a new
Matrix2x2 representing the product of the left and right matrices.
Click here to view code image

func * (left: Matrix2x2, right: Matrix2x2) -> Matrix2x2 {
 return Matrix2x2(a11: left.a11 * right.a11 + left.a12 * right.a21,
 a12: left.a11 * right.a12 + left.a12 * right.a22,
 a21: left.a21 * right.a11 + left.a22 * right.a21,
 a22: left.a21 * right.a12 + left.a22 * right.a22)
}

Using these operators on the Matrix2x2 structure is as natural as expressing regular math in
Swift. Here, two matrices, A and B, are defined, and their sum is placed in C:
Click here to view code image

var A : Matrix2x2 = Matrix2x2(a11: 1, a12: 3, a21: 5, a22: 6)
var B : Matrix2x2 = Matrix2x2(a11: 2, a12: 6, a21: 4, a22: 8)

var C = A + B

This same pattern is used to demonstrate matrix multiplication:
Click here to view code image

var E : Matrix2x2 = Matrix2x2(a11: 2, a12: 3, a21: 1, a22: 4)
var F : Matrix2x2 = Matrix2x2(a11: 3, a12: 2, a21: 1, a22: -6)

var G = E * F

To see the code in action, type it into your playground and notice the results, which should match
those shown in Figure 10.10.

FIGURE 10.10 The matrix addition and multiplication code in action

Equal vs. Identical
Early on you learned about testing for equality among types such as Int, Double, and String.
Testing if two integers are equal is as simple as typing the following into your playground:

1 == 3

The result of such a comparison of course, would be false. What about other types? Can those
objects be compared for equality? They certainly can, and such a test indicates whether two objects
are identical as opposed to equal.

Sometimes comparing two variables to see if they are referring to the same object, rather than to
two separate objects which have equal values, can be useful. Swift lets you perform this comparison
by using === and !==, which are slight variants of the of the == and != operators used for

comparisons between numeric and string types.
To illustrate how to determine if objects are identical or not, type the following code into your

playground:
Click here to view code image

// testing the identity of objects
class Test1 {
}

class Test2 {
}

var t1 : Test1 = Test1()
var t2 : Test2 = Test2()
var t3 : Test2 = Test2()
var t4 = t2

t1 === t2
t2 === t3
t4 === t2
t4 !== t2

The Test1 and Test2 classes are empty classes that exist merely for illustration. They could just
as easily be large classes with plenty of member variables and methods.

Four variables (t1, t2, t3, and t4) are defined. Both t2 and t3 are set to new instances of the
Test2 class, while t1 is set to a fresh instance of the Test1 class. The variable t4 is set equal to
t2.

Three comparison tests for object identity are followed by an opposite test. Figure 10.11 shows the
results of the comparisons.

FIGURE 10.11 Testing for identity among objects

The statements on lines 85 and 86 evaluate to false, because t1 and t2 hold references to
separate objects (which also happen to be different classes). On line 87 is the sole test that returns
true. The variables t4 and t2 indeed point to the same object, since t4 was assigned to t2 on line

83. Lastly, the test on line 88 is false. The variable t2 is equal to t4 as was just established on the
previous line.

Remember that the object identity test is based on the instantiated object and not the class. Two
variables can be of the same class but pointing to different instances of that class, and they would not
be considered identical.

Scripting and Swift
If you have ever used command-line tools in the Terminal app, you have interacted with the shell. In
fact, when you ran the command to launch the REPL in Chapter 1, you were using the Bash shell. You
can run several different shells on your Mac, but Bash is the most popular.

Shell scripts are files that contain a list of executable lines of code in the language of the shell.
Instead of typing a number of lines at the shell prompt, you can type those lines in a file as a shell
script and then invoke that filename as though it were a command. For many developers who are
command-line savvy, shell scripts are useful for repetitive tasks that are composed of many lines that
need to run from time to time.

As useful as shell scripts can be, the one impediment to their adoption is that you must learn and
master yet another language in order to take full advantage of them. Add to that the possibility of shell
scripts also being written in other shell languages such as C shell or KornShell, and writing, let alone
reading, an existing shell script can be a challenge.

This discussion about shell scripts, of course, is leading up to the fact that Swift code can run inside
of a shell script! This is quite an interesting achievement given that Swift is also a compiled language,
and it speaks to the power and flexibility that Apple has designed into the language. If you’ve used C,
C++, or Objective-C, you can imagine how convenient it would be if you could use those languages in
a shell script (hint: you can’t).

Writing a shell script involves several steps:
1. Using an editor to create the script.
2. Setting the script’s permissions so it can be executed.
3. Executing the script.

Editing the Script
Xcode makes a great editor, so why not use it to create a shell script?

Choose File > New > File and then select Shell Script under the OS X Other section (Figure 10.12).

FIGURE 10.12 Creating a shell script under Xcode

Click Next. In the file save dialog, name the file SwiftScript, and save it to your desktop (Xcode
will automatically append .sh to the shell script filename). A window then appears where you can
edit your script.

Xcode helps you by placing several default lines at the top of the file. The first line is the most
important:

#!/bin/sh

This is known as “hash bang” syntax and specifies the full pathlist in your file system to the shell
that will run the subsequent lines of code. In this case, /bin/sh (which is the Bash shell) is
specified. For Swift scripting, you’ll remove this line. In fact, delete all the lines and replace them
with the following lines:
Click here to view code image

#!/usr/bin/env xcrun swift
import Foundation

class Execution {
 class func execute(#path: String, arguments: [String]? = nil) -> Int {
 let task = NSTask()
 task.launchPath = path
 if arguments != nil {
 task.arguments = arguments!
 }
 task.launch()
 task.waitUntilExit()
 return Int(task.terminationStatus)
 }
}

var status : Int = 0

status = Execution.execute(path: "/bin/ls")
println("Status = \(status)")

status = Execution.execute(path: "/bin/ls", arguments: ["/"])
println("Status = \(status)")

I’ll go over the details of the script shortly. For now, type the lines into the Xcode editor and then
save the file by choosing File > Save.

Setting Permissions
Scripts are run from the command line, so launch the Terminal app (remember you used Spotlight in
Chapter 1 to do this). When the terminal and shell prompt appears, type the following lines:

cd ~/Desktop
chmod +x SwiftScript.sh

The first line changes the current directory to your Desktop folder (where you saved the script). The
second line is needed only once to set the permissions of the script file so that it can be executed by
the shell.

Now you’re ready to run the script.

Running the Script
Running the script is as simple as invoking the script’s name at the prompt with a little extra typing at
the beginning:

./SwiftScript.sh

The ./ tells the shell that the script is in the current directory; you have to be explicit about this
because if you leave it off, the shell won’t be able to locate the script.

When the script runs, you’ll see a listing of files in both your Desktop folder and in the root folder
of your disk. You’ll also see a Status = 0 message that indicates the commands that were used to
show the files worked without issue.

Now that the script has executed, let’s look a little closer at what this script does.

How It Works
The first line is the “hash bang” mentioned earlier. In this case, the application path is
/usr/bin/env, which is a special command to set up the environment for the shell script.
Following that is a command that should be familiar to you: the same command you used to run the
REPL:

#!/usr/bin/env xcrun swift

The next line should also look familiar to you. It’s the import statement that you’ve seen in
source code examples up to now. Just as in an application context, Swift scripts require a base of code
to run from. Foundation is the framework that brings base functionality to Swift apps, so it is included
here:

import Foundation

Next is a Swift class named Execution. Its purpose in life is to execute a command, which is
something that scripts do a lot of. As you can see, setting up to execute a command in Swift takes a bit
of work. Encapsulating this functionality into a class makes subsequent command execution much
easier.

class Execution {

The one and only method in this class is named execute, and it takes two parameters: a String
named path to an executable to run, and an array of String arguments that can be optionally
passed. An Int is returned that will reveal the executed command’s status.

You may recall that optional arguments allow you to either pass or not pass a parameter to a method
or function. In this case, the array is also an optional, which means it can be assigned to nil.

What may look a little different to you is the keyword class in front of the method definition.
This is a special method known as a type method. Type methods are called differently than instance
methods, which is what you’ve been familiar with up to now.

A type method can be called directly from the class without creating an instance. Type methods are
mostly for convenience, as you will see shortly.
Click here to view code image

 class func execute(#path: String, arguments: [String]? = nil) -> Int {

Within the method are the steps to launch a command. A Foundation class named NSTask is used
set up the launch path and arguments:

 let task = NSTask()
 task.launchPath = path

In the case of the arguments parameter, there is a necessary check for the value being nil. Only
if it is not nil is the parameter assigned to the arguments property of the task object, where it is
unwrapped using the exclamation point (!).
Click here to view code image

 if arguments != nil {
 task.arguments = arguments!
 }

Once the task object has been set up, the launch method is called to invoke the command:
 task.launch()

And as per the documentation for NSTask, the waitUntilExit method must be called to allow
the task to complete:

 task.waitUntilExit()

Finally, the terminationStatus property of the task object is returned as an Int (originally
it is an Int32, so we just cast it here for the caller’s convenience):
Click here to view code image

 return Int(task.terminationStatus)
 }
}

What follows the class definition is the code that actually uses the class. The variable that will hold
the return status of the execute method is defined:

var status : Int = 0

Then, the execute method is used to execute the command /bin/ls (which shows files in a
directory). Note the named parameter path:, which is mandated in the method’s definition by use of
the # character. Insisting that the user specify the parameter name reinforces its purpose and makes

the use of the method clear.
Also note that in this case, no arguments are being passed.
The status is returned and printed on the following line as well.

Click here to view code image

status = Execution.execute(path: "/bin/ls")
println("Status = \(status)")

The method is used again to execute the same command, but this time with an argument indicating
the root path /.
Click here to view code image

status = Execution.execute(path: "/bin/ls", arguments: ["/"])
println("Status = \(status)")

What you’ve just witnessed is the ultimate in language flexibility. You can write a class in Swift
and then utilize it in the context of a shell script, which is superbly convenient. Time you invest in
developing code in Swift for your apps isn’t lost on scripting—the sky is the limit!

Calling S.O.S.
Having world-class documentation is one thing, but knowing how to get to it and use it is another.
Apple has invested significant resources to bring you top-notch documentation on their tools and
classes, so use it. In Xcode simply choose Help > Documentation and API Reference (Figure 10.13).
The documentation browser appears, where you can read everything you need to know about all of
Apple’s technologies, including Swift, Cocoa, Cocoa Touch, and more (Figure 10.14).

FIGURE 10.13 Xcode’s Help menu gives you access to all of Apple’s documentation resources.

FIGURE 10.14 The Xcode documentation browser is your central source of information.

Besides the Help menu, you have other venues for accessing documentation. You were introduced
earlier to Xcode’s Command-click and Option-click shortcuts for viewing details of Apple-provided
Swift classes. Recall from Chapter 8 that you can hover over a Cocoa or Cocoa Touch class name in
your source code and then hold down the Command key and click the underlined class name to view
all the details of that class.

Get into the habit of using these shortcuts—they will save you time and get you to the right place in
the documentation to help you complete your work. Remember, if you hold down the Option key
while hovering the mouse pointer over a type name, variable, or constant in your source, the pointer
changes to a question mark. You can then click and receive a popover that shows relevant information
about the item. See Figure 10.15 for a refresher on this handy feature.

FIGURE 10.15 Using Xcode’s Option-click shortcut to view documentation on NSNotifcation

And Now, Your Journey Begins
Congratulations! You’ve reached the end of Swift for Beginners. In all honesty though, your journey
into Swift has really just begun. The investment you have made in reading the pages of this book,
following the examples, and typing and running code will begin to pay off as you start to practice what
you’ve learned.

Before I send you off on your Swift adventure, I’ve compiled some “words of wisdom” I hope will
guide you going forward.

Study Apple’s Frameworks
Cocoa and Cocoa Touch are composed of many, many frameworks and libraries. Along with all of
those frameworks are pages and pages of documentation available from Xcode’s Help menu. It may
seem overwhelming at first, but over time your knowledge of them will increase. Like a skilled
carpenter who knows which tool is best to use for the job at hand, you too will learn to select the right
framework and class to perform the task you need.

Join Apple’s Developer Program
If writing an app for the App Store is in your plans, being a part of one of Apple’s Developer
Programs is essential. Currently the Mac Developer Program and iOS Developer Program are $99/year
each. Depending upon your development goals, you may need to be a part of only one, but in doing so

you are prepared for eventual launch of your app. You also gain access to the latest beta builds of the
software, development tools, and a host of other goodies, including sample app code from Apple.
Finally, the iOS Developer Program provides you with the ability to run apps on actual devices, and
not just the simulator.

Besides the obvious benefits of being a member of the Developer Program, you also receive a
number of technical support incidents that are handled by Apple Support engineers so you can have
direct access to personalized support to resolve difficult problems. You also gain access to the
developer forums, where developers and Apple engineers alike participate in helping each other with
problems.

Become a Part of the Community
Whether you’re in a big city where there are other like-minded Swift developers, or in the solitude of
the country, miles away from civilization, consider joining the growing number of online
communities that focus on Swift and Apple development. Join publicly available forums, mailing
lists, and any other online resources you can find.

If your budget allows, considering traveling to one of the many conferences that focus on iOS and
Mac development. Traditionally, stateside conferences such as CocoaConf and MacTech Conference
have focused on Objective-C development, but that will undoubtedly change as Swift becomes the
dominant language for Apple’s family of devices. Attending conferences like these gives you the
opportunity to focus on specific areas by speakers who are well known in the community. I can
personally vouch that they are terrific folks who are very approachable and willing to help.

Never Stop Learning
The key to any investment’s success is continued and sustained growth. I encourage you to continue
expanding your knowledge of Swift by reading and studying the proliferation of example code on
Apple’s developer site and throughout the Internet. Ask questions, share knowledge and ideas, and
continue to focus on the basics. Leave yourself some room to poke and prod some of the esoteric
nooks and crannies of the Swift language.

A number of websites are dedicated to helping you get past a compiler error or an issue with a
particular class. Use the crowd-sourced wisdom of other Swift developers on the Internet to help
expand your understanding of the language—and don’t forget to give back when someone else needs
help.

Bon Voyage!
It’s been fun having you along for the ride; now it’s time for you to go out there and use Swift to bring
great products to people. You’ve been given a solid foundation—continue to study and explore the
language. The rest is up to you.

Now go out there and change the world!

Index

Symbols
+ (addition), performing, 21
&& (ampersands), using with logical AND, 261
[] (brackets), using with arrays, 37
: (colon), using with arrays, 37
, (comma), using with arrays, 34
/ (division), performing, 21
== (double equal), using in comparisons, 68
! (exclamation) point

explained, 188, 197
using with logical NOT, 260

> (greater-than) symbol, effect of, 69
< (less-than) symbol, effect of, 69
* (multiplication), performing, 21
(pound) sign, prepending to parameter names, 103
? (question mark), using with Int declarations, 43
(subtraction), performing, 21
... (three periods), using with for-in loop, 58–60
_ (underscore), using, 168
| | (vertical bar), using with logical OR, 261

A
account balances, adding, 89–90
account tuple, example of, 93
actions and outlets, connecting, 190–191
addition (+)

and multiplication code, 266–267
performing, 21

administrator password, entering, 9
aliases, using, 27
ampersands (&&), using with logical AND, 261
AND operator, using, 261
API Reference, accessing, 274
App Delegate object, using, 190
AppDelegate.swift source file, 178–179, 187
append method, adding, 165
append() method, using with arrays, 36, 38–39
ARC (automatic reference counting), 251
array index, explained, 35

array iteration, 52–54
array values

inserting, 40–41
removing, 39–40
replacing, 39–40

arrays. See also empty arrays
accessing elements in, 36
adding values to, 36
of arrays, 48–50
combining, 41–42
confirming values in, 35
declaring to hold type values, 37
defined, 34
versus dictionaries, 42, 48, 50
extending, 38–39
using colon (:) with, 37
using commas with, 34

attributes, explained, 116
Attributes inspector, using in Xcode, 226

B
balances, finding, 91–92
bank account, depositing check into, 92–93
bank balances, finding, 91–92
base class, modeling, 129–132
Bash shell, 269
behaviors, explained, 116
binary notation, 23
“Bonjour, monde,” 10
Bool variable type, 15, 24–25
brackets ([]), using with arrays, 37
break keyword, using, 81
breakpoints

creating, 207
encountering, 208, 256
in MailChecker’s deinit method, 258
setting, 207

bugs
encountering, 206
fixing, 209–210
identifying, 209
locating, 206
setting breakpoints, 207–210

buttonClicked action method, 189
buttons

creating for FollowMe UI, 225–227
creating in Xcode, 182
selecting in Xcode, 226

C
Calculate button, clicking, 189, 191
Calculate Simple button, creating, 203
CamelCase, explained, 59
candy jar example. See also collections

array values, 37
combining arrays, 41–42
error, 36
explained, 34
extending arrays, 38–39
inserting values, 40–41
let keyword, 34
removing values, 39–40
replacing values, 39–40

case keyword, using with enumerations, 142
cashBestCheck function, defining, 109
cashCheck function, 105
casting values, 13
Character variable type, 15

building Strings from, 20
using, 20

check writing function, 100–101
class keyword, defining objects with, 119
class methods, defining, 119
class relationship, 128
classes

deriving from superclasses, 128
elements of, 117
explained, 117
expressing objects with, 117
names, 117
properties, 117
versus protocols, 150–153
using, 119–120
using in code, 252
in Xcode, 186–189

close method, calling, 120

closures
for computing compound interest, 112
for computing simple interest, 110–111
cycles in, 257–259
example, 110
explained, 110
functions as, 110
as reference types, 257
using in code, 252
using in extensions, 167–168
using with games, 240

Cocoa framework, 220
formatter, 194
returning optionals in, 196

Cocoa Touch
playerLoses method, 242
playerWins method, 242
UIAlertView class, 242

CocoaConf, attending, 277
code, inspecting, 78–80
code samples, running, 7
code snippets, speed limit, 78
coding in real time, 7
ColaMachine class, extending, 162
collections, iterating, 52–55. See also candy jar example
colon (:), using with arrays, 37
CombinationDoor class

creating, 135–137
testing, 138

comma (,), using with arrays, 34
Command-click shortcut, using, 274
comparing

numbers, 59
strings, 70
values and constants, 68

compilation process, starting in Xcode, 180
compound interest calculation

correcting, 210
performing, 112
reviewing, 201
testing, 205–207

compound interest class, adding, 202–203
computed properties. See also properties

explained, 164
using, 197

concatenating strings, 19
conferences, attending, 277
constants

comparing, 68
declaring explicitly, 18
using, 13–14
and variables, 14

constraints, setting for FollowMe game, 228–230
Continue program execution button, 256
convenience initializers, using, 139–141
currency format, showing, 197

D
data, grouping with tuples, 28–29
Debug area icon, identifying, 255
declaration, explained, 10–11
declaring, variables, 11
default keyword, using, 73
delegation, using with protocols, 158–161
description method, using, 189
design patterns, 230
designated initializer, explained, 139–140
dictionaries. See also empty dictionaries

adding entries, 45
versus arrays, 42, 48, 50
creating, 42–43
keys and values, 42
looking up entries in, 43–45
ordering, 43
removing entries, 47
returning tuples, 55
Scoville units, 42–44
updating entries, 46

dictionary iteration, 54–55
division (/), performing, 21
Document outline button, clicking, 190
documentation, accessing, 274
dollars property, adding, 196
door, locking and unlocking, 121–124
Door class, instantiating, 120
Door object, 118–119

dot notation
using with methods, 121
using with properties, 121
using with tuples, 28

double equal (==), using in comparisons, 68
Double type, extending, 194–196
double value, explained, 12
Double variable type, 15
do-while loop, using, 76–77

E
else clause, executing, 68
empty arrays, declaring, 51. See also arrays
empty dictionaries, creating, 51–52. See also dictionaries
enumerations

creating and using, 142–144
explained, 141
using case keyword with, 142
using in FollowMe game, 236

equal versus identical, 267–268
equality

operations, 69
testing for, 80

error messages, immutable value type, 36
errors

details of, 12
disappearance of, 231
displaying, 231

exclamation (!) point
explained, 188, 197
with logical NOT, 260

extending types
gigabytes, 163–164

megabytes, 163–164
extensions

explained, 162
form of, 162
using with Int type, 163

external parameters. See also parameters; shorthand external parameter naming
best practices, 104
using with functions, 100–103

F

false, returning, 24
Finder window, opening, 8
Float variable type, 15
floating point number, explained, 11–12
FollowMe game. See also gameplay; iOS simulator; Simon game; storyboarding

building UI for, 224
class, 236
coding, 231–235
creating project for, 222–223
enumerations, 236
linking buttons to method, 246
model objects, 237
overridable methods, 238
playing, 247
playSequence method, 244
Product Name, 223
randomButton method, 244
randomness, 243
running in iOS simulator, 227
setting constraints, 228–230
Single View Application template, 223
starting, 244
Tag property for red button, 245
view objects, 236–237
winning and losing, 242–244

FollowMe user interface
Auto Layout, 224
buttons, 225–227
Main.storyboard file, 224

for loop
addition and subtraction, 62
evaluation, 61
flexibility, 61
increment operation, 62
initialization, 61
modification, 61–62

for-in loop
as enumeration mechanism, 58
requirements, 58
use of three periods (.), 58–60

formatter class, using in Cocoa, 194
fractions, mixing with numbers, 22
frontDoor object, opening and closing, 120

functions
calling, 86–87
as closures, 110
coding, 84–85
conversion formula, 86
creating, 88
declaring, 85
explained, 84
external parameters, 100, 102
as first-class objects, 92–94
indicating start of, 85
versus methods, 117
nesting, 96–98
parts of, 84
returning functions, 94–96
using default parameters in, 99–100
variable parameter passing in, 89
variadic parameter, 90

G
game methods
advanceGame, 242
animateWithDuration method, 239
animation parameters, 240
buttonByColor, 238–239
buttonByColor method, 239
closures, 240
colorTouched constant, 241
for FollowMe game, 238–242
highlightColor variable, 239
highlightTime parameter, 240
if statement, 239
optional chaining, 241
originalColor variable, 239
playSequence() method, 239
recursion, 240
switch/case construct, 238
tag properties for UIButtons, 241
type method, 239
variable declarations, 239

gameplay. See also FollowMe game; Simon game
elements, 221

losing, 221
play flow, 221
playability, 221
randomness, 221
winning, 221

generic methods. See also methods
exercising, 264
explained, 263
syntax, 263
<T> placeholder, 263

Go menu, displaying, 8
greater-than (>) symbol, effect of, 69
grouping data with tuples, 28–29

H
“Hello World!”, 10
:help command, typing at prompt, 10
hexadecimal notation, 23
HUD (heads-up display) window, using in Xcode, 190–191

I
IDE (integrated development environment), components of, 174
identical versus equal, 267–268
if clause, encountering, 67
if statement

explained, 66
predicate, 66
wrapping in for loop, 71

if/then/else clause
explained, 66
form of, 67

import keyword, using in Xcode, 179
import statement, displaying in playground window, 65
inheritance

base class, 129–132
class relationship, 128
enumerations, 141–144
explained, 128
initializers, 139–141
instantiating subclasses, 133–139
structures, 144–145
subclasses, 132–133

using with protocols, 157–158
value types versus reference types, 145–147

init method
calling for superclass, 133
creating, 125–126
as designated initializer, 139–140
for NiceDoor class, 133

initializers. See convenience initializers
inout keyword, using with modifiable parameter, 108
insert() method, using with arrays, 41
inspector icons, using in Xcode, 225
instantiating subclasses, 133–139
instantiation, explained, 119
Int type, extending, 163–164
Int* variable type, 15
integers

positive and negative, 15
testing for equality, 267

interactivity, benefits of, 7
inverse function, declaring, 87
iOS

MVC (model-view-controller), 230
versus OS X, 220

iOS Developer Program, joining, 276
iOS simulator, launching, 227. See also FollowMe game
iPhones, aspect ratio, 222
iterating collections, 52–55

K
keyboard shortcuts, using, 274
kilobyte (kb), converting Int to, 163–164

L
labels, creating in Xcode, 183
large number notation, 23
lazy property, example of, 257. See also properties
leniency, using in Xcode, 201
less-than (<) symbol, effect of, 69
let keyword

changing to var keyword, 125, 127
using, 13–14
using with candy jar, 34

Letter class, creating, 253–254
LLVM compiler, 250
loanCalculator function, calling, 112
lock function, declaring, 152
logical NOT operator, using, 260
logical operations

AND, 259–261
code sample, 262
combining with logical AND, 261
indicating, 261
NOT, 259–260
OR, 259–261

loops, exiting from, 81

M
Mac Developer Program, joining, 276
MacTech Conference, attending, 277
MailBox class, creating, 253–254
Main.storyboard file, using with FollowMe, 224
math functions, notation for, 84
mathematical expressions, 21–22
megabyte (mb), converting Int to, 163–164
memory address, explained, 250
memory management

breakpoint, 256
Letter class, 253–254
LLVM compiler, 250
MailBox class, 253–254
MailChecker object, 258
reference count, 251
retain/release model, 251
test code, 254–256
value versus reference, 250–251
weak reference, 256

methods versus functions, 117. See also generic methods
mobile platform. See iOS
model objects, using in FollowMe game, 237
modifiable parameter, using inout keyword with, 108. See also parameters
modulo (%) operation, performing, 21
multiplication (*), performing, 21
mutable array

example of, 38

explained, 36
mutating method, using in Int class, 165–167
MVC (model-view-controller), 230
MyFirstSwiftAppTests.swift source file, 212

N
name, entering, 9
negative numbers, implying, 21
nested functions, using, 96–98
newBackDoor object, changing color of, 127
newDoor object, instantiating, 126
newFrontDoor object, properties of, 124
NewLockUnlockProtocol, creating, 154–155
NiceDoor class

adding, 132
instantiating, 134–135

NiceWindow class
adding, 132
defining, 133
instantiating, 134

nil
explained, 29
using, 196

NOT operator, using, 260
notifications, using in Xcode, 179
NSNumberFormatter class, explained, 194
NSNumberFormatter object, using, 199–200
number formatter, Lenient option, 201
numbers, comparing, 59
numeric representations

binary, 23
hexadecimal, 23
large number notation, 23
octal, 23
scientific notation, 23

numeric types, mixing, 22

O
object tree, displaying in Xcode, 201
Objective-C development conferences, attending, 277
objects

defining with class keyword, 119

expressing via classes, 117
identifying, 116
instantiating, 119
testing identity of, 268–269

octal notation, 23
online communities, joining, 276
OOP (object-oriented programming). See also Swift programming language

explained, 116
inheritance, 128

open method, calling, 120
operators

overloading, 265–266
using, 69–70

optional chaining, using with games, 241
optionals

declaring types as, 30
declaring variables as, 30
explained, 29, 197
implicitly unwrapped, 188
returning, 196
unwrapping, 188
using in Xcode, 188

Option-click shortcut, using, 274–275
OR operator, using, 261
OS X versus iOS, 220
outlets and actions, connecting, 190–191
override keyword, using, 137

P
parameter values, retaining, 105
parameters, using with functions, 100. See also external parameters; modifiable parameter; shorthand
external parameter naming
password, entering, 9
playground window

code and code results, 65
comments, 65
default code in, 65
import statement, 65
panes in, 65
Results sidebar, 65
variable declaration, 65

playgrounds
benefits, 65

conventions, 65
creating, 64
explained, 64
inspecting code in, 78–80
naming, 64

Portal class
adding, 129–130
adjusting with name property, 131

positive numbers, implying, 21
post increment, explained, 63
pound (#) sign, prepending to parameter names, 103
predicate, using with if statement, 66
prepend method, adding, 165
print method, explained, 10, 26–27
printIn method, using, 10–11, 13, 26–27
program flow, explained, 66
properties, explained, 116. See also computed properties; lazy property
protocols

applying multiple, 155–156
versus classes, 150–153
creating functions for, 156
and delegation, 158–161
and inheritance, 157–158
using, 153–155

Push Button UI element, creating in Xcode, 182

Q
question mark (?), using with Int declarations, 43
:quit command, typing, 10

R
$R3 temporary variable, 25
randomness, achieving in games, 243
real time, coding in, 7
recursion, using with games, 240
reference count, explained, 251
reference cycle

breaking, 256–258
explained, 252
placement in AppDelegate.swift, 255

reference types versus value types, 145–147, 250–251
regression, explained, 211

removeAtIndex() array method, using, 39
REPL (Read-Eval-Print-Loop) environment, 7. See also Swift REPL
REPL, restarting from Terminal, 35
REPL commands, built-in help for, 10
Results sidebar, icons in, 80

S
safety, emphasis on, 36
scientific notation, 23
Scoville units, 42–44
scripting. See shell scripts
securityDoor object, instantiating, 137
self keyword, using, 126
shell scripts
arguments parameter, 273
creating under Xcode, 270
editing, 270–271
execute method, 272–273
Execution class, 272, 274
explained, 269
“hash bang,” 272
import statement, 272
running, 272
setting permissions, 271
type method, 273
writing, 270

shorthand external parameter naming, explained, 103. See also external parameters; parameters
signed integers, 15
Simon game. See also FollowMe game; gameplay

described, 220
UI design, 221–222

simple interest calculator. See also computed properties; Xcode IDE
adding result label, 185
buttonClicked action method, 189
buttons, 182
Calculate button, 191
compounding, 201–206
formatted input, 200
inputs, 180–181
interest rate field, 198–201
labels, 183
loan amount field, 198–201
optimizing window size, 185

outputs, 180–181
renaming button title, 184
testing, 185
text fields, 184
UI (user interface), 182–184
using, 111, 203

speed limit code snippet, 78
Spotlight, using, 8
Step Over icon, using, 210
stepping over lines, 208
storyboarding

FollowMe game, 245–246
in Xcode, 224

String type, extending, 165
String variable type, 15

building from Character type, 20
concatenating, 19
using toInt() method with, 17

strings
comparing, 70
testing equality of, 25

structures
explained, 144
using, 144–147

subclasses
creating, 132–133
instantiating, 133–139

subtraction (−) performing, 21
superclass, explained, 128
Swift programming language. See also OOP (object-oriented programming)

interacting with, 7
running code samples, 7

Swift REPL, starting, 9. See also REPL (Read-Eval-Print-Loop) environment
switch statement, using, 72–75
switch-case statement, using, 72–75

T
temperature conversion, performing, 85–87
temperature units, computing, 164
temporary variables. See also variable types

assigning values to, 25
creating, 106

Terminal application

finding, 8
launching, 8

test methods, variables used with, 214
tests. See also unit tests

failure of, 215–216
passing, 214
running, 214, 216–217
writing, 212–214

text fields, using in Xcode, 184
three periods (...) using with for-in loop, 58–60
Timeline pane, accessing, 80
Tractor class

convenience initializers in, 139
using, 141

traffic light analogy, setting up, 67
tuples

grouping data with, 28–29
returning for dictionaries, 55

type alias, explained, 27
type conversion, explained, 17. See also variable types
type method

in games, 239
in shell scripts, 273

type promotion, explained, 22
types. See variable types

U
UI (user interface)

building in Xcode, 181–184
connecting actions to, 189–190
connecting outlets to, 189–190

UIButton object
tag property for, 241
using in Cocoa Touch, 225

UIKit frameworks, importing, 231, 236
UInt* variable type, 15
unary operators, using, 21
underscore (_), using, 168
unit tests. See also tests

framework, 213
performing, 211–212

unlock function, declaring, 152
unlock method, using, 138

unsigned integers, 15

V
value types versus reference types, 145–147, 250–251
values

comparing, 68
displaying, 13

var declaration, using on parameter, 106
var keyword

changing let keyword to, 125, 127
using, 11

variable declaration, displaying in playground, 65
variable modification, reflecting to caller, 108–109
variable parameters, using, 106–107
variable types. See also temporary variables; type conversion

adding .max to, 16
adding .min to, 16
Bool, 15, 24–25
Character, 15
declaring explicitly, 18
Double, 15
explained, 14
Float, 15
Int*, 15
interaction between, 16
limits, 15–16
String, 15
UInt*, 15

variables
adding to protocol definitions, 153
assigning types to, 12
assigning values to, 12
comparing, 267
and constants, 14
declaring, 11
declaring as implicitly unwrapped optionals, 188
declaring as optionals, 30
names, 13
parameter passing notation, 89–90
usefulness of, 13

variadic parameter, explained, 90
VendingMachineProtocol, defining, 161

vertical bar (| |), using with logical OR, 261
view objects, using in FollowMe game, 236–237
ViewController.swift file, using, 231
Void keyword, explained, 98

W
weak reference, explained, 256
while loop
do-while variation, 76–77
form of, 75–76
stopping, 81
using, 76

writeCheck function, 99–101

X
Xcode 6, requirement of, 7
Xcode IDE. See also simple interest calculator
AppDelegate.swift source file, 178–179
Attributes inspector, 226
attributes inspector, 200
classes, 186–189, 198
clues about source code, 178
comments, 178
components of, 174
context-sensitive help, 198
creating user interface, 181–184
debug area, 177
debug process, 209
Document outline button, 190
editor area, 177–178, 188
file creation dialog, 186
File menu, 175
file template, 186
Help menu, 275
HUD (heads-up display) window, 190–191
import keyword, 179
initializing applications, 178
input leniency, 201
inspector icons, 225
iOS project group, 175
keyboard shortcuts, 198
labels, 183

maximizing workspace, 182
methods, 198
navigator area, 176–178
notifications, 179
NsNumberFormatter object, 199–200
object tree, 201
optimizing window size, 185
optionals, 188
Option-click shortcut, 275
OS X project group, 175–176
project options, 176
project save dialog, 176
project templates, 175
project window, 176–180
Push Button UI element, 182
releases of, 174
selecting buttons in, 226
starting compilation process, 180
storyboarding, 224
target setup, 177
toolbar, 176
utilities area, 177

Xcode IDEdebug process, executing control over, 209
XIB file, contents of, 190

Code Snippets

	Title Page
	Copyright Page
	Dedication Page
	Acknowledgments
	About the Author
	Contents
	Introduction
	Who Is This Book For?
	How to Use This Book
	How You Will Learn
	What You Will Learn

	Welcome to Swift
	The Technologies

	Section I: The Basics
	Chapter 1. Introducing Swift
	Evolutionary, yet Revolutionary
	Preparing for Success
	Tools of the Trade
	Interacting with Swift

	Ready, Set...
	Diving into Swift
	Help and Quit
	Hello World!

	The Power of Declaration
	Constants Are Consistent
	This Thing Called a Type
	Testing the Limits
	Can a Leopard Change Its Stripes?
	Being Explicit

	Strings and Things
	Stringing Things Together
	Characters Have Character

	Math and More
	Expressions
	Mixing Numeric Types
	Numeric Representations

	True or False
	The Result

	Printing Made Easy
	Using Aliases
	Grouping Data with Tuples
	Optionals
	Summary

	Chapter 2. Working with Collections
	The Candy Jar
	Birds of a Feather...
	Extending the Array
	Replacing and Removing Values
	Inserting Values at a Specific Location
	Combining Arrays

	The Dictionary
	Looking Up an Entry
	Adding an Entry
	Updating an Entry
	Removing an Entry

	Arrays of Arrays?
	Starting from Scratch
	The Empty Array
	The Empty Dictionary

	Iterating Collections
	Array Iteration
	Dictionary Iteration

	Summary

	Chapter 3. Taking Control
	For What It’s Worth
	Counting On It
	Inclusive or Exclusive?
	For Old Time’s Sake
	Writing Shorthand

	It’s Time to Play
	Making Decisions
	The Decisiveness of “If”
	When One Choice Is Not Enough
	Switching Things Around
	While You Were Away...
	Inspecting Your Code
	Give Me a Break!

	Summary

	Chapter 4. Writing Functions and Closures
	The Function
	Coding the Function in Swift
	Exercising the Function
	More Than Just Numbers
	Parameters Ad Nauseam
	Functions Fly First Class
	Throw Me a Function, Mister
	A Function in a Function in a...
	Default Parameters
	What’s in a Name?
	When It’s Good Enough
	To Use or Not to Use?
	Don’t Change My Parameters!
	The Ins and Outs

	Bringing Closure
	Summing It Up
	Stay Classy

	Chapter 5. Organizing with Classes and Structures
	Objects Are Everywhere
	Swift Objects Are Classy
	Knock, Knock
	Let There Be Objects!
	Opening and Closing the Door
	Locking and Unlocking the Door
	Examining the Properties
	Door Diversity
	Painting the Door

	Inheritance
	Modeling the Base Class
	Creating the Subclasses
	Instantiating the Subclass
	Convenience Initializers
	Enumerations
	Structural Integrity
	Value Types vs. Reference Types

	Looking Back, Looking Ahead

	Chapter 6. Formalizing with Protocols and Extensions
	Following Protocol
	Class or Protocol?
	More Than Just Methods
	Adopting Multiple Protocols
	Protocols Can Inherit, Too
	Delegation

	Extending with Extensions
	Extending Basic Types
	Using Closures in Extensions

	Summary

	Section II: Developing with Swift
	Chapter 7. Working with Xcode
	Xcode’s Pedigree
	Creating Your First Swift Project
	Diving Down
	Interacting with the Project Window
	It’s Alive!

	Piquing Your Interest
	Making Room
	Building the UI
	Tidying Up
	Class Time
	Hooking It Up

	You Made an App!

	Chapter 8. Making a Better App
	It’s the Little Things
	Show Me the Money
	Remember the Optional?
	Unwrapping Optionals
	Looking Better
	Formatting: A Different Technique

	Compounding
	Hooking Things Up
	Testing Your Work

	When Things Go Wrong
	Where’s the Bug?
	At the Breaking Point
	The Confounding Compound

	The Value of Testing
	The Unit Test
	Crafting a Test
	When Tests Fail
	Tests That Always Run

	Wrapping Up

	Chapter 9. Going Mobile with Swift
	In Your Pocket vs. on Your Desk
	How’s Your Memory?
	Thinking About Gameplay
	Designing the UI

	Creating the Project
	Building the User Interface
	Creating the Buttons
	Running in the Simulator
	Setting Constraints

	The Model-View-Controller
	Coding the Game
	The Class
	Enumerations
	The View Objects
	The Model Objects
	Overridable Methods
	Game Methods
	Winning and Losing

	Back to the Storyboard
	Time to Play

	Chapter 10. Advancing Ahead
	Memory Management in Swift
	Value vs. Reference
	The Reference Count
	Only the Strong Survive
	Put It in a Letter
	The Test Code
	Breaking the Cycle
	Cycles in Closures
	Thanks for the Memories

	Thinking Logically
	To Be or NOT to Be...
	Combining with AND
	One Way OR the Other

	Generics
	Overloading Operators
	Equal vs. Identical
	Scripting and Swift
	Editing the Script
	Setting Permissions
	Running the Script
	How It Works

	Calling S.O.S.
	And Now, Your Journey Begins
	Study Apple’s Frameworks
	Join Apple’s Developer Program
	Become a Part of the Community
	Never Stop Learning
	Bon Voyage!

	Index
	Code Snippets

