
www.allitebooks.com

http://www.allitebooks.org

Visualforce
Development
Cookbook

Over 75 recipes to help you create powerful custom
pages, simplify data-entry, and enrich the Salesforce
user interface

Keir Bowden

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Visualforce Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-080-8

www.packtpub.com

Cover Image by Javier Barría C. (jbarriac@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Keir Bowden

Reviewers
Santosh Kumbar

Aruna Lambat

Christopher Alun Lewis

Karanraj Sankaranarayanan

Jitendra Zaa

Acquisition Editor
Edward Gordon

Lead Technical Editor
Amey Varangaonkar

Technical Editor
Amit Ramadas

Project Coordinator
Abhijit Suvarna

Proofreaders
Simran Bhogal

Ameesha Green

Stephen Swaney

Indexers
Monica Ajmera Mehta

Tejal Soni

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Keir Bowden is a 25-year veteran of the IT industry from the United Kingdom.
After spending the early part of his career in the Defense industry, he moved into
investment-banking systems, implementing systems for Banque Nationale de Paris,
CitiGroup, and Deutsche Bank. In the late 1990s, Keir moved into Internet technologies,
leading the development of the order management and payment handling systems of one
of the first European Internet shopping sites.

Keir started working with Force.com in late 2008 and has been recognized by Salesforce as a
Force.com MVP for contribution and leadership in the community. In 2011, he became one of
the selected few people worldwide to earn all Salesforce.com certifications, and now serves as
a judge on the EMEA Technical Architect Certification Review Boards. Keir is also a prominent
blogger on Apex and Visualforce solutions, and regular speaker at events such as Dreamforce
and Cloudstock.

Keir is a Chief Technical Officer of BrightGen, a Salesforce.com Platinum Cloud Alliance Partner
in the United Kingdom, where he is responsible for current and future technical strategy.

Keir worked as the technical reviewer for Salesforce CRM Admin Cookbook by
Packt Publishing before accepting the challenge of authoring his first book.

I would like to thank my partner, Marie, for putting up with me spending
even more time than usual on my computer; something that she hadn't
previously thought possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Santosh Kumbar started working on the Force.com platform in the year 2009. He is an
expert in Force.com technologies and currently, he is working as a Senior Software Engineer
with a Force.com partner in Pune. He has worked on many Salesforce custom applications
for end users, and has also been a part of application development for AppExhange apps.
He owns a website www.santoshkumbar.com, which is purely built on Visualforce and
Apex and also, he is always passionate about exploring new technologies.

Santosh received an Engineering degree from Sapthagiri College of Engineering,
Bangalore, specializing in Electronics and Communication. He can be contacted
at santosh224@gmail.com or found on Twitter @san_224.

Aruna Lambat is an enthusiastic Technical Leader working on the Salesforce.com
technology with a profound understanding of software design and development. She is
passionate about building better products and providing excellent services, leading to a
higher rate of customer satisfaction.

She started working on the Salesforce.com platform since 2008. She entered into IT
acquaintance in 2004 as a student. She has completed her Master's degree in Computer
Applications from Maharashtra, India. She has been associated with the IT industry since
2007 having started her carrier as a Java developer, and later shifted her focus to Cloud
computing, specifically in Salesforce.com.

She is a Salesforce Certified Developer (DEV401), Administrator (ADM201), and Advanced
Administrator (ADM301/211), giving regular contributions to the Salesforce developer
community. She is also certified for Java knowledge as a Sun Certificated Java developer
(SCJP), and Sun Certified Web Component Developer (SCWCD).

www.allitebooks.com

http://www.allitebooks.org

Before contributing to this book as a reviewer, she worked previously on the following two
Salesforce books:

 f She helped author for citing the example during the book Force.com Developer
Certification Handbook (DEV401) by Packt Publishing.

 f Worked as a Technical Reviewer for the book Force.com Tips and Tricks by
Packt Publishing.

Aruna works with a reputed India-based IT MNC; it is primarily engaged in providing a range of
outsourcing services, business process outsourcing, and infrastructure services. Aruna works
as a Lead Consultant/Salesforce Application Architect on Salesforce.com technology based
customer services.

Aruna resides in Pune, a cultural capital of Maharashtra, also known for its educational
facilities and relative prosperity. She is from Nagpur, also known as "Orange City" where
her parents are currently staying. She completed her education from this city and achieved
success at different points in her career with immense support from her parents. Aruna loves
going on nature visits, reading fiction books, playing pool, and catching up with friends in her
free time.

Aruna can be contacted via e-mail at Aruna.Lambat@gmail.com. Her LinkedIn profile
name is Aruna Lambat, her Twitter handle is @arunalambat, and she is available on
Facebook at /aruna.lambat.

My special thanks to my parents, Mr and Mrs Anandrao Lambat, for always
being there with me, for their immense help and support, and guiding me
through each and every step making it so enlightening.

Christopher Alun Lewis is a Salesforce.com Certified Force.com Advanced Developer
with many years' experience developing on the platform. He works for Desynit, a Salesforce
partner based in Bristol in the South West of England, where he helps design, architect, and
build Force.com solutions for a wide variety of clients.

Christopher is a key contributor to the Salesforce development community. In his spare time,
he writes a popular blog (christopheralunlewis.blogspot.com), organizes local Force.
com developer community meetings, and volunteers his Force.com skills to local charities.

I was delighted when I was invited to review this book. Thanks to Keir for
creating a great reference for fellow Force.com developers, and being a
constant positive presence in the community.

www.allitebooks.com

http://www.allitebooks.org

Karanraj Sankaranarayanan (Karan) is a certified Salesforce.com developer and
works as a Salesforce consultant in HCL Technologies. Karan holds a Bachelor's degree
in Engineering from Anna University with a specialization in Computer Science. Overall,
he has 3 years of experience in the Salesforce platform and the IT industry. He is very
much passionate about the Salesforce platform, an active member/contributor of the
Salesforce customer community/developer forum, and writes technical blogs too.

He is also the leader of the Chennai Salesforce Platform Developer user group based in
Chennai, India. He was one of the reviewers of the book Force.com Tips and Tricks by Packt
Publishing. He can be reached via Twitter (@karanrajs) and through Salesforce community
https://success.salesforce.com/profile?u=00530000004fXkCAAU.

I would like to thank the author of this book Keir Bowden (also known as
Bob buzzard) and Packt Publishing for giving me the wonderful opportunity
to review this book. It really has been a great pleasure to be a part of this
wonderful book.

Jitendra Zaa (@ilovenagpur) is a Force.com developer and owner of the known
Salesforce blog blog.shivasoft.in. He has worked extensively on almost every area of
Force.com such as Integration, Data Loading, AppExchange, and Application Development.
He is a Java and Salesforce Certified Developer, Administrator, and Consultant.

Jitendra has more than six years of experience in software development using Salesforce,
Java, PHP, ORMB, J2ME, and ASP.NET technologies. He is currently working with Cognizant
Technology Solutions, Pune, and graduated from RTM Nagpur University.

I wish to thank my parents, family, friends, and especially my wife for helping
me to set aside time for writing blogs and encouraging me. Also, I would like
to thank the Packt Publishing team and the author of this book for giving me
this unique opportunity.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: General Utilities 5

Introduction 5
Overriding standard buttons 6
Data-driven styling 8
Turning off an action poller 10
Visualforce in the sidebar 13
Passing parameters to action methods 16
Reacting to URL parameters 19
Passing parameters between Visualforce pages 22
Opening a pop-up window 26
Adding a launch page 29
Testing a custom controller 32
Testing a controller extension 34

Chapter 2: Custom Components 39
Introduction 39
Passing attributes to components 40
Updating attributes in component controllers 42
Passing action methods to components 46
Data-driven decimal places 48
The custom iterator component 51
Setting a value into a controller property 54
Multiselecting related objects 57
Notifying the containing page controller 62

Chapter 3: Capturing Data Using Forms 67
Introduction 67
Editing a record in Visualforce 68
Adding error messages to field inputs 70

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Adding error messages to nonfield inputs 73
Using field sets 76
Adding a custom lookup to a form 79
Adding a custom datepicker to a form 83
Retrieving fields when a lookup is populated 86
Breaking up forms with action regions 88
The "Please wait" spinner 91
Avoiding validation errors with action regions 93
Action chaining 96
Errors – harmful if swallowed 99

Chapter 4: Managing Records 103
Introduction 103
Styling fields as required 104
Styling table columns as required 106
Attaching an image to a record 109
Managing attachments 113
Maintaining custom settings 116
Refreshing record details from embedded Visualforce 119
Using wrapper classes 123
Changing options based on the user input 126
Changing page layout based on the user input 130
Form-based searching 133

Chapter 5: Managing Multiple Records 137
Introduction 137
Preventing duplicates by searching before creating 138
Editing a record and its parent 142
Managing a list of records 144
Converting a lead 148
Managing a hierarchy of records 152
Inline-editing a record from a list 157
Creating a Visualforce report 161
Loading records asynchronously 165

Chapter 6: Visualforce Charts 169
Introduction 169
Creating a bar chart 170
Creating a line chart 173
Customizing a chart 176
Adding multiple series 180
Creating a stacked bar chart 184
Adding a third axis 189

iii

Table of Contents

Embedding a chart in a record view page 193
Multiple charts per page 198

Chapter 7: JavaScript 205
Introduction 206
Using action functions 206
Avoiding race conditions 209
The confirmation dialog 212
Pressing Enter to submit 214
Tooltips 217
The character counter 219
The onload handler 222
Collapsible list elements 225
The scrolling news ticker 229
Carousel messages 233
Hiding buttons on submit 237
Client-side validation 240
Trapping navigation away 243

Chapter 8: Force.com Sites 247
Introduction 247
Creating a site 248
Record and field access 251
Retrieving content from Salesforce 254
Web to lead form 258
Creating a website template 262
Adding a header menu to a template 265
Adding a sidebar to a template 269
Conditional rendering in templates 273

Chapter 9: jQuery Mobile 277
Introduction 277
Mobilizing a Visualforce page 279
Navigation and transitions 281
Adding a navigation bar 286
Working with dialogs 290
Listing records 293
Mobile Visualforce forms 296
Redirecting to the mobile page based on the browser 299
Storing the user's location 303
Scanning the QR code to access the page 307

Index 313

Preface
The Visualforce framework allows developers to build highly customized, personalized,
and branded user interfaces for their Salesforce and Force.com applications. Hosted
natively on the Force.com platform, Visualforce gives developers complete control over
all areas of the user interface, allowing them to satisfy complex business requirements
and support multiple devices.

Visualforce pages use a mixture of HTML and Visualforce components, which are
processed server side and delivered to the browser as HTML. This allows the use of
standard web technologies, such as CSS and JavaScript, to provide an enriched and
dynamic user experience.

Visualforce Development Cookbook provides solutions for a variety of challenges faced
by Salesforce developers, and demonstrates how easy it is to build rich, interactive pages
using Visualforce. Each recipe contains clear, step-by-step instructions along with detailed
explanations of the key areas of Visualforce and Apex code that deliver the solution.

Whether you are looking to make a minor addition to the standard page functionality or
override it completely, this book will provide you with practical examples that can be readily
adapted to a number of scenarios.

What this book covers
Chapter 1, General Utilities, covers enhancing or replacing standard functionality with
Visualforce, systemizing business processes, guiding users through the creation and
ongoing management of data, and writing effective tests.

Chapter 2, Custom Components, demonstrates how to create custom Visualforce components
to encapsulate functionality for re-use across multiple pages, and techniques to allow
communication between component and page controllers.

Chapter 3, Capturing Data Using Forms, describes how to capture data entered in a
Visualforce page and send this to the server for processing.

Preface

2

Chapter 4, Managing Records, offers techniques to streamline and enhance the management
of Salesforce data using Visualforce pages, using styling to indicate required fields, and
changing pages in response to user actions.

Chapter 5, Managing Multiple Records, covers recipes to manage multiple records in a single
page, from editing parent and child records through to managing a deep and wide hierarchy.

Chapter 6, Visualforce Charts, presents a series of recipes to create charts of increasing
complexity, embed a chart into a standard Salesforce page, and add multiple charts to a
single page in a similar style to a Salesforce dashboard.

Chapter 7, JavaScript, shows how to use JavaScript to provide a variety of client-side
enhancements, including confirmation of user actions, instant feedback on user inputs,
and animation of content to create tickers and carousels.

Chapter 8, Force.com Sites, provides step-by-step instructions to configure a publicly
accessible website, allowing visitors to access Salesforce records and extracting boilerplate
content out to re-usable templates.

Chapter 9, jQuery Mobile, demonstrates how to use Visualforce in conjunction with the jQuery
Mobile framework to produce mobile pages to interact with data stored in Salesforce.

What you need for this book
In order to build the recipes in this book, you will need an Enterprise, Unlimited, or Developer
(recommended) Edition of Salesforce and System Administrator access. You will also need a
supported browser—the latest version of Google Chrome, Mozilla Firefox, Apple Safari 5 or 6,
or Internet Explorer 9 or 10.

Who this book is for
This book is intended for intermediate Visualforce developers, who are familiar with the basics
of Force.com, Visualforce, and Apex development. An understanding of the basics of HTML,
CSS, and JavaScript is also useful for some of the more advanced recipes.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The list of
available status field values for the converted lead is created by extracting all values from the
LeadStatus database table."

Preface

3

A block of code is set as follows:

public void uploadImage()
{
 att.parentId = parentId;
 att.Name='image';
 insertatt;

 att=new Attachment();
}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Navigate to the Apex Classes
setup page by clicking on Your Name | Setup | Develop | Apex Classes."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
General Utilities

In this chapter, we will cover the following recipes:

 f Overriding standard buttons

 f Data-driven styling

 f Turning off an action poller

 f Visualforce in the sidebar

 f Passing parameters to action methods

 f Reacting to URL parameters

 f Passing parameters between Visualforce pages

 f Opening a pop-up window

 f Adding a launch page

 f Testing a custom controller

 f Testing a controller extension

Introduction
This chapter provides solutions for a variety of situations that Visualforce developers are likely
to encounter on a regular basis. Enhancing or replacing standard functionality with Visualforce
enriches the user experience, improving user productivity and adoption. Visualforce also
allows business processes to be highly systemized, guiding users through the creation and the
ongoing management of data. Writing effective tests for Visualforce controllers is a key skill
that allows developers to deploy Visualforce pages to production, and be confident that they
will work as intended.

General Utilities

6

Overriding standard buttons
Two common complaints from users are that the information they are interested in requires a
number of clicks to access, or that there is too much information on a single page, resulting
in a cluttered layout that requires significant scrolling. This is an area where a Visualforce
override can make a significant difference by traversing relationships to display information
from a number of records on a single page.

Salesforce allows the standard pages associated with sObject record actions, such as view
and edit, to be overridden with Visualforce pages. This is typically used to display the record
in a branded or customized format; for example, to display the details and related lists in
separate tabs.

In this recipe, we will override the standard page associated with viewing an account record
with a Visualforce page that not only provides a tabbed user interface, but also lifts up
additional activity information from the related contact list and line item information from
the related opportunity lists. Further, the related opportunities displayed will be limited to
those which are open.

Only Visualforce pages that use the standard controller for the
sObject can override standard pages.

Getting ready
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter AccViewOverride in the Label field.

4. Accept the default AccViewOverride that is automatically generated for the
Name field.

5. Paste the contents of the AccViewOverride.page file from the code download into
the Visualforce Markup area and click on the Save button.

6. Then, navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Chapter 1

7

7. Locate the entry for the AccViewOverride page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

As the record view override applies to all users, ensure that all profiles
are given access to the Visualforce page. Any user with a profile that
does not have access will receive an Insufficient Privileges error
when attempting to view an account record.

9. Now that the Visualforce page is complete, configure the account view override.
Navigate to Your Name | Setup | Customize | Accounts | Buttons, Links and Actions.

10. Locate the View entry on the resulting page and click on the Edit link.

11. On the following page, locate the Override With entry, check the Visualforce Page
radio button, and choose AccViewOverride from the list of available pages.

12. Click on the Save button.

www.allitebooks.com

http://www.allitebooks.org

General Utilities

8

How it works…
When a user clicks on an account record link anywhere in Salesforce, the tabbed page with
details from related records is displayed, as shown in the following screenshot:

The key areas of the code are the tabs for the related records. The Open Opportunities tab
iterates the opportunities related list, and generates an <apex:pageblock /> for each
opportunity that is currently open by encapsulating this inside a conditionally rendered
<apex:outputPanel />.

<apex:repeat value="{!Account.Opportunities}" var="opp">
 <apex:outputPanel rendered="{!NOT(opp.IsClosed)}">
 <apex:pageBlock title="{!opp.Name}">

Then, the standard <apex:relatedList /> component is used to generate the
opportunity product list by specifying the current value of the opportunity iterator
as the subject of the component.

 <apex:relatedList subject="{!opp}" list="OpportunityLineItems" />

Data-driven styling
A useful technique when creating a custom user interface with Visualforce is to conditionally
style important pieces of information to draw the user's attention to them as soon as a page
is rendered.

Chapter 1

9

Most Visualforce developers are familiar with using merge fields to provide sObject field
values to output tags, or to decide if a section of a page should be rendered. In the tag
shown below, the merge field, {!account.Name}, will be replaced with the contents
of the name field from the account sObject:

<apex:outputField value="{!account.Name}"/>

Merge fields can also contain formula operators and be used to dynamically style data when it
is displayed.

In this recipe we will display a table of campaign records and style the campaign cost in green
if it was within budget, or red if it was over budget.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter ConditionalColour in the Label field.

4. Accept the default ConditionalColour that is automatically generated for the
Name field.

5. Paste the contents of the ConditionalColour.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Click on the Save button to save the page.

7. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

8. Locate the entry for the ConditionalColour page and click on the Security link.

9. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ConditionalColour page:
https://<instance>/apex/ConditionalColour. Here, <instance> is the
Salesforce instance specific to your organization, for example, na6.salesforce.com.

General Utilities

10

A list of campaigns is displayed, with the campaign cost rendered in red or green depending
on whether it came in on or over budget.

Conditional styling is applied to the Actual Cost column by comparing the actual cost with the
budgeted cost.

<apex:column style="color:
 {!IF(AND(NOT(ISNULL(campaign.ActualCost)),
 campaign.ActualCost<=campaign.BudgetedCost),
 "lawngreen", "red")}" value="{!campaign.ActualCost}"/>

See also
 f The Data-driven decimal places recipe in Chapter 2, Custom Components shows how

to format numeric values to a specified number of decimal places.

Turning off an action poller
The standard Visualforce <apex:actionPoller/> component sends AJAX requests to the
server based on the specified time interval. An example use case is a countdown timer that
sends the user to another page when the timer expires. But what if the action poller should
stop when a condition in the controller becomes true, for example, when a batch apex job
completes or an update is received from a third-party system?

In this recipe, we will simulate the progression of a payment through a number of states. An
action poller will be used to retrieve the latest state from the server and display it to the user.
Once the payment reaches the state Complete, the action poller will be disabled.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

Chapter 1

11

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the PollerController.cls Apex class from the code
download into the Apex Class area.

Note that there is nowhere to specify a name for the class
when creating through the setup pages; the class name is
derived from the Apex code.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionPoller in the Label field.

8. Accept the default ActionPoller that is automatically generated for the Name field.

9. Paste the contents of the ActionPoller.page file from the code download into the
Visualforce Markup area.

10. Click on the Save button to save the page.

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the ActionPoller page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionPoller page:
https://<instance>/apex/ActionPoller.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

General Utilities

12

The page polls the server for the current state, displaying the message Polling … when the
action poller executes as shown in the following screenshot:

Once the current state reaches Complete, the action poller terminates.

The key to this recipe is the enabled attribute on the actionPoller component.

<apex:actionPoller action="{!movePayment}"
 rerender="payment" interval="5" status="status"
 enabled="{!paymentState!='Complete'}"/>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

This merge field references the paymentState property from the custom controller, which is
evaluated each time the action poller executes until it becomes false. At this time the action
poller is permanently disabled.

The Polling … message is generated by the actionStatus component associated with
the action poller. This component has a startText attribute but not a stopText attribute,
which means that the text will only be displayed while the AJAX request is in progress.

<apex:actionStatus startText="Polling ..." id="status"/>

See also
 f The Using action functions recipe in Chapter 7, JavaScript shows how to execute

a controller.

Chapter 1

13

Visualforce in the sidebar
Visualforce is commonly used to produce custom pages that override or supplement standard
platform functionality. Visualforce pages can also be incorporated into any HTML markup
through use of an iframe.

An iframe, or inline frame, nests an HTML document inside
another HTML document. For more information, visit
http://reference.sitepoint.com/html/iframe.

In this recipe, we will add a Visualforce page to a Salesforce sidebar component. This page will
display the number of currently open cases in the organization, and will be styled and sized to
fit seamlessly into the sidebar.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the CasesSidebarController.cls Apex class from the
code download into the Apex Class area.

4. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

5. Click on the New button.

6. Enter CasesSidebar in the Label field.

7. Accept the default CasesSidebar that is automatically generated for the Name field.

8. Paste the contents of the CasesSidebar.page file from the code download into the
Visualforce Markup area.

9. Click on the Save button to save the page.

General Utilities

14

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the CasesSidebar page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Ensure that all profiles whose sidebar will display the Visualforce
page are given access. Any user with a profile that does not have
access will see an Insufficient Privileges error in their sidebar.

13. Next, create the home page component by navigating to the Home Page
Components setup page by clicking on Your Name | Setup | Customize |
Home | Home Page Components.

14. Scroll down to the Custom Components section and click on the New button.

15. If the Understanding Custom Components information screen appears, as shown in
the following screenshot, click on the Next button.

To stop this information screen appearing each time you create a
home page component, select the Don't show this page again box
before clicking on the Next button.

16. On the next page, Step 1. New Custom Components, enter Case Count by Status
in the Name field, select the HTML Area option, and click on the Next button.

Chapter 1

15

17. On the next page, Step 2. New Custom Components, select the Narrow (Left)
Column option.

18. Select the Show HTML box.

19. Paste the following markup into the editable area:
<iframe style="border: none" src="/apex/CasesSidebar"
seamless=""></iframe>

20. Click on the Save button.

21. Next, add the new component to one or more home page layouts. Navigate to Your
Name | Setup | Customize | Home | Home Page Layouts.

22. Locate the name of the home page layout you wish to add the component to and click
on the Edit link.

23. On the resulting page, Step 1. Select the Components to show, select the Case
Count by Status box in the Select Narrow Components to Show section and click on
the Next button.

24. On the next page, Step 2. Order the Components, use the arrow buttons to move
the Case Count by Status component to the desired position in the Narrow (Left)
Column list and click on the Save button.

25. Repeat steps 22 to 24 for any other home page layouts that will contain the
sidebar component.

This will add the component to the sidebar of the home page
only. To add it to the sidebar of all pages, a change must be
made to the user interface settings.

26. Navigate to Your Name | Setup | Customize | User Interface and locate the
Sidebar section.

27. Select the Show Custom Sidebar Components on All Pages box as shown in the
following screenshot, and click on the Save button.

General Utilities

16

How it works…
The component appears in the sidebar on all pages, showing the number of cases open for
each nonclosed status, as shown in the following screenshot:

There's more…
The case counts displayed in the sidebar will be retrieved when the page is displayed, but
will remain static from that point. An action poller can be used to automatically refresh the
counts at regular intervals. However, this will introduce a security risk, as each time the
poller retrieves the updated information it will refresh the user's session. This means that if
a user were to leave their workstation unattended, the Salesforce session will never expire.
If this mechanism is used, it is important to remind users of the importance of locking their
workstation should they leave it unattended.

Passing parameters to action methods
When developers move to Apex/Visualforce from traditional programming languages, such as
Java or C#, a concept many struggle with is how to pass parameters from a Visualforce page
to a controller action method.

Passing parameters to an action method is key when a Visualforce page allows a user to
manage a list of records and carry out actions on specific records. Without this, the action
method cannot determine which record to apply the action to.

In this recipe, we will output a list of opportunities and for each open opportunity, provide
a button to update the opportunity status to Closed Won. This button will invoke an action
method to remove the list element and will also send a parameter to the controller to identify
which opportunity to update.

Chapter 1

17

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the ActionParameterController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionParameter in the Label field.

8. Accept the default ActionParameter that is automatically generated for the
Name field.

9. Paste the contents of the ActionParameter.page file from the code download into
the Visualforce Markup area.

10. Click on the Save button to save the page.

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the ActionParameter page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser shows the list of currently open opportunities:
https://<instance>/apex/ActionParameter.

www.allitebooks.com

http://www.allitebooks.org

General Utilities

18

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Clicking on the Win button for the Grand Hotels Kitchen Generator opportunity updates the
status to Closed Won and redraws the list of opportunities.

The page markup to send the parameter to the controller is as follows:

<apex:commandButton value="Win" action="{!winOpp}" status="status"
 rerender="opps_pb"
 rendered="{!opp.StageName!='Closed Won'}">
 <apex:param name="oppIdToWin" value="{!opp.Id}"
assignTo="{!oppIdToWin}" />
</apex:commandButton>

The <apex:param /> component defines the value of the parameter, in this case,
the ID of the opportunity, and the controller property that the parameter will be assigned
to – oppIdToWin.

Note that there is a rerender attribute on the command button. If this
attribute is omitted, making the button a simple postback request, the
parameter will not be passed to the controller. This is a known issue with
Visualforce as documented in the following knowledge article: http://
help.salesforce.com/apex/HTViewSolution?id=0000026
64&language=en_US.

Chapter 1

19

The property is declared in the controller in a normal way.

public Id oppIdToWin {get; set;}

Finally, the action method is invoked when the button is pressed.

public PageReference winOpp()
{
 Opportunity opp=new Opportunity(Id=oppIdToWin,
 StageName='Closed Won');
 update opp;
 return null;
}

The ID of the opportunity to update is assigned to the oppIdToWin controller property before
the action method is invoked; thus, the action method can simply access the property to get
the parameter value.

Reacting to URL parameters
URL parameters are used to pass information to Visualforce pages that the page or controller
can then react to. For example, setting a record ID parameter into the URL for a page that
uses a standard controller causes the controller to retrieve the record from the database and
make it available to the page.

In this recipe we will create a Visualforce search page to retrieve all accounts where the name
contains a string entered by the user. If the parameter name is present in the page URL, a
search will be run against the supplied value prior to the page being rendered for the first time.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the SearchFromURLController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

General Utilities

20

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter SearchFromURL in the Label field.

8. Accept the default SearchFromURL that is automatically generated for the
Name field.

9. Paste the contents of the SearchFromURL.page file from the code download into
the Visualforce Markup area.

10. Click on the Save button to save the page.

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the SearchFromURL page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser retrieves all accounts where the name field
contains the text ni: https://<instance>/apex/SearchFromURL?name=ni.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 1

21

The constructor of the custom controller attempts to extract a value for the parameter Name
from the page URL, and if one has been supplied, executes the search.

public SearchFromURLController()
{
 searched=false;
 String nameStr=
 ApexPages.currentPage().getParameters().get('name');
 if (null!=nameStr)
 {
 name=nameStr;
 executeSearch();
 }
}

Note that the constructor also sets the value retrieved from the URL
into the Name property. This property is bound to the input field on
the page, and causes the input field to be prepopulated with the
value retrieved from the URL when the page is first rendered.

The action method that executes the search is as follows:

public PageReference executeSearch()
{
 searched=true;
 String searchStr='%' + name + '%';
 accounts=[select id, Name, Industry, Type from Account where name
LIKE :searchStr];

 return null;
}

Note that searchStr is constructed by concatenating the search term
with the % wildcard characters; this allows the user to enter a fragment
of text rather than full words. Also, note that the concatenation takes
place outside the SOQL query and the resulting variable is included as
a bind expression in the query. If the concatenation takes place directly
in the SOQL query, no matches will be found.

General Utilities

22

See also
 f The Passing parameters between Visualforce pages recipe in this chapter shows how

URL parameters can be used to maintain the state across pages that do not share
the same controller.

Passing parameters between Visualforce
pages

If a user is redirected from one Visualforce page to another and they both share the same
controller and extensions, the controller instance will be retained and re-used, allowing the
second page to access any information captured by the first.

If the pages do not share the same controller and extensions, the controller instance will be
discarded and the second page will have no access to any information captured by the first.
If the state needs to be maintained across the pages in this case, it must be encapsulated in
the parameters on the URL of the second page.

In this recipe, we will build on the example from the previous recipe to create a Visualforce
search page to retrieve all accounts where the name contains a string entered by the user,
and provide a way for the user to edit selected fields on all the accounts returned by the
search. The record IDs of the accounts to edit will be passed as parameters on the URL
to the edit page.

How to do it…
As the search page makes reference to the edit page, the edit page and associated custom
controller must be created first.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the EditFromSearchController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the edit Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter EditFromSearch in the Label field.

8. Accept the default EditFromSearch that is automatically generated for the
Name field.

Chapter 1

23

9. Paste the contents of the EditFromSearch.page file from the code download into
the Visualforce Markup area.

10. Click on the Save button to save the page.

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the EditFromSearch page and click on the Security link.

13. On the resulting page, select which profiles should have access and click the
Save button.

14. Next, create the search page by navigating to the Apex Classes setup page by
clicking on Your Name | Setup | Develop | Apex Classes.

15. Click on the New button.

16. Paste the contents of the SearchAndEditController.cls Apex class
from the code download into the Apex Class area.

17. Click on the Save button.

18. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

19. Click on the New button.

20. Enter SearchAndEdit in the Label field.

21. Accept the default SearchAndEdit that is automatically generated for the
Name field.

22. Paste the contents of the SearchAndEdit.page page from the code
download into the Visualforce Markup area.

23. Click on the Save button to save the page.

24. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

25. Locate the entry for the SearchAndEdit page and click on the Security link.

26. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser retrieves all accounts where the
name field contains the string United: https://<instance>/apex/
SearchAndEdit?name=United.

General Utilities

24

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Notice that the page contains an Edit button, and clicking on this executes the following
action method:

public PageReference edit()
{
 PageReference pr=Page.EditFromSearch;
 Integer idx=1;
 for (Account acc : accounts)
 {
 pr.getParameters().put('account' + idx, acc.id);
 idx++;
 }

 return pr;
}

This method initially creates a page reference for the edit page—EditFromSearch. It
then iterates the accounts in the search results and adds an entry to the page reference
parameters for the account ID. Each parameter has the name account, concatenated
with the index of the result, starting from 1. This will result in a URL of the form
https://<instance>/apex/EditFromSearch?account1=001i0000006OVLIAA4&ac
count2=001i0000006OVLJAA4.

Chapter 1

25

The EditFromSearch page then renders a form with an editable row per account.

The constructor of EditFromSearchController that manages the data for the page
extracts the IDs from the URL and adds them to a list, starting with account1, until it
hits a parameter index that is not present in the URL.

Integer idx=1;
String accStr;
do
{
 accStr=ApexPages.currentPage().getParameters().
get('account' + idx);
 if (accStr!=null)
 {
 ids.add(accStr);
 }
 idx++;
}
while (null!=accStr);

The action method that saves the user's edits redirects them to the standard account tab
once the save is complete.

return new PageReference('/001/o');

Note that accessing the standard tab via this URL is not supported
by Salesforce, and if the URL scheme or three character prefix for
account (001) were to change, this redirection would stop working.

General Utilities

26

See also
 f The Reacting to URL parameters recipe in this chapter shows how a controller can

process URL parameters prior to rendering a Visualforce page.

Opening a pop-up window
Pop-up browser windows have received mixed reviews in recent years. Originally created
before tabbed browsers existed to display additional information without interfering
with the page the user had navigated to, they were quickly hijacked and used to display
advertisements and spam. Pop ups should be used sparingly in applications and wherever
possible in response to an action by the user.

The target attribute can be specified as _blank on HTML hyperlink tags to open the link in a
new window, but all modern browsers allow the user to specify that new windows should be
opened as new tabs instead. Also, if the browser does open the URL in a new window, it will be
of the same size as the existing window and block most of it. Opening a window in JavaScript
allows for fine-grained control over many aspects of the pop-up window, for example, the size,
and whether to display a toolbar.

In this recipe we will create a page that renders a list of accounts, displaying a very small
subset of fields per row. A link will be provided on each row to allow the user to view full
details of the account in a pop-up window.

Note that there is no way to ensure that a browser will display a pop-up
window. Pop-up blockers generally allow windows to be opened in response
to an action by the user, such as clicking on a link, but it is possible for
users to configure their browser to block all pop ups regardless of how they
were triggered.

How to do it…
This recipe requires two Visualforce pages to be created: the main page containing the list of
accounts and the pop-up window page. The pop-up page is referenced by the main page, so
this will be created first.

1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

2. Click on the New button.

Chapter 1

27

3. Enter Popup in the Label field.

4. Accept the default Popup that is automatically generated for the Name field.

5. Paste the contents of the Popup.page file from the code download into the
Visualforce Markup area.

6. Click on the Save button to save the page.

7. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

8. Locate the entry for the Setup page and click on the Security link.

9. On the resulting page, select which profiles should have access and click on
the Save button.

10. Next, create the main account list page by navigating to the Visualforce setup
page by clicking on Your Name | Setup | Develop | Pages.

11. Click on the New button.

12. Enter PopupMain in the Label field.

13. Accept the default PopupMain that is automatically generated for the
Name field.

14. Paste the contents of the PopupMain.page file from the code download
into the Visualforce Markup area.

15. Click on the Save button to save the page.

16. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

17. Locate the entry for the PopupMain page and click on the Security link.

18. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays a list of accounts:
https://<instance>/apex/PopupMain.

www.allitebooks.com

http://www.allitebooks.org

General Utilities

28

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Note that as this page uses a standard list controller, the list
of accounts displayed will be that of the last list view that the
user accessed.

The detail link markup is as follows:

<apex:outputLink title="View detail in a popup window"
 onclick="return openPopup('{!acc.Id}');">
 Details
</apex:outputLink>

The onclick attribute defines the JavaScript function to be invoked when the link is clicked;
note the {!acc.id} merge field, which passes the ID of the chosen account to the function.

The JavaScript function uses the window.open function to open the new window.

var newWin=window.open('{!$Page.Popup}?id=' + id, 'Popup',
'height=600,width=650,left=100,top=100,resizable=no,scrollbars=yes,too
lbar=no,status=no');

The final parameter details the features required for the new window as a comma separated
list of name=value pairs.

Chapter 1

29

Clicking on the Details link displays the full account details in a pop-up window.

See also
 f The Adding a custom lookup to a form recipe in Chapter 3, Capturing Data Using

Forms shows how information can be captured in a pop-up window and passed
back to the main window to populate input fields.

Adding a launch page
When a Visualforce page is deployed to production, only users whose profiles have been
given access via the security settings will be able to access the page. Any user with a profile
that does not have access will receive an Insufficient Privileges error, which is not a good
experience and can lead users to think that the page is crashing.

A better solution is to check whether the user has access to the page and if they do not,
present a user-friendly message that explains the situation and directs them to where they
can get more help.

In this recipe we will create a launch page accessible to all profiles that checks if the user has
access to the protected page. If the user has access, they will be transferred to the protected
page, while if they don't, they will receive an explanatory message.

General Utilities

30

How to do it…
This recipe requires a second user login. Ensure that this is not created with the System
Administrator profile, as that profile has access to all Visualforce pages regardless of the
security settings.

1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

2. Click on the New button.

3. Enter Protected in the Label field.

4. Accept the default Protected that is automatically generated for the Name field.

5. Paste the contents of the Protected.page file from the code download into the
Visualforce Markup area.

6. Click on the Save button to save the page.

7. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

8. Locate the entry for the Protected page and click on the Security link.

9. On the resulting page, ensure that the profile of your second user does not
have access to the Protected page.

10. Log in using your second user credentials and attempt to access any account record.
You will receive an error message as shown in the following screenshot:

11. Next, create the launch page controller by navigating to the Apex Classes setup page
by clicking on Your Name | Setup | Develop | Apex Classes.

12. Click on the New button.

13. Paste the contents of the LaunchController.cls Apex class from the
code download into the Apex Class area.

14. Click on the Save button.

15. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

16. Click on the New button.

17. Enter Launch in the Label field.

18. Accept the default Launch that is automatically generated for the Name field.

Chapter 1

31

19. Paste the contents of the Launch.page file from the code download into the
Visualforce Markup area.

20. Click on the Save button to save the page.

21. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

22. Locate the entry for the Setup page and click on the Security link.

23. On the resulting page, give access to all of the profiles and click on the Save button.

How it works…
Log in using your second user credentials and open the following URL in your browser:
https://<instance>/apex/Launch.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The resulting page displays a friendly error message detailing that your user does not have
access to the page, and renders a clickable link to request access.

The Launch page declaration contains an action attribute.

<apex:page controller="LaunchController" action="{!allowAccess}">

This invokes the allowAccess action method in the controller before the page is rendered.

public PageReference allowAccess()
{
PageReference pr=Page.Protected;
 try
 {
 pr.getContent();
 }
 catch (Exception e)
 {

General Utilities

32

 pr=null;
 }

 return pr;
 }

The allowAccess method attempts to retrieve the contents of the protected page
programmatically. If the contents are retrieved successfully, it returns the page reference for the
Protected page, which redirects the user to that page. If an exception occurs, the method returns
null, which leaves the user on the Launch page and displays the friendly error message.

Testing a custom controller
Writing unit tests for Visualforce page controllers is often a source of confusion for developers
new to the technology. A common mistake is to assume that the page must somehow be
rendered and interacted with in the test context, whereas, in reality the page is very much a
side issue. Instead, tests must instantiate the controller and set its internal state as though
the user interaction had already taken place, and then execute one or more controller
methods and confirm that the state has changed as expected.

In this recipe we will unit test SearchFromURLController from the Reacting to URL
parameters recipe.

Getting ready
This recipe requires that you have already completed the Reacting to URL parameters recipe,
as it relies on SearchFromURLController being present in your Salesforce instance.

How to do it…
1. Create the unit test class by navigating to the Apex Classes setup page and by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SearchFromURLControllerTest.cls Apex
class from the code download into the Apex Class area.

4. Click on the Save button.

5. On the resulting page, click on the Run Tests button.

Chapter 1

33

How it works…
The tests successfully execute as shown in the following screenshot:

Navigating back to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes shows that the tests have achieved 100 percent coverage of the controller.

Percentage coverage is important as at least 75 percent coverage
across all code must be achieved before classes may be deployed
to a production organization.

The test class contains two unit test methods. The first method tests that the search is
correctly executed when the search term is passed on the page URL. As unit tests do not
have access to organization data, the first task for the test is to set up three test accounts.

List<Account> accs=new List<Account>();
accs.add(new Account(Name='Unit Test'));
accs.add(new Account(Name='Unit Test 2'));
accs.add(new Account(Name='The Test Account'));
insert accs;

General Utilities

34

As the controller is reacting to parameters on the URL, the page reference must be set up and
populated with the name parameter.

PageReference pr=Page.SearchFromURL;
pr.getParameters().put('name', 'Unit');
Test.setCurrentPage(pr);

Finally, the controller is instantiated, which causes the action method that executes the
search to be invoked from the constructor. The test method then confirms that the search
was executed and the actual number of matches equals the expected number.

SearchFromURLController controller=new
 SearchFromURLController();
System.assertEquals(true, controller.searched);
System.assertEquals(2, controller.accounts.size());

The second unit test method tests that the search is correctly executed when the user enters
a search term. In this case, there is no interaction with the information on the page URL, so
the test simply instantiates the controller and confirms that no search has been executed by
the constructor.

SearchFromURLController controller=new SearchFromURLController();
System.assertEquals(false, controller.searched);

The test then sets the search term, executes the search method, and confirms the results.

controller.name='Unit';
System.assertEquals(null, controller.executeSearch());
System.assertEquals(2, controller.accounts.size());

See also
 f The Testing a controller extension recipe in this chapter shows how to write unit tests

for a controller that extends a standard or custom controller.

Testing a controller extension
Controller extensions provide additional functionality for standard or custom controllers.
The contract for a controller extension is that it provides a constructor that takes a single
argument of the standard or custom controller that it is extending. Testing a controller
extension introduces an additional requirement that an instance of the standard or custom
controller, with appropriate internal state, is constructed before the controller extension.

In this recipe we will create a controller extension to retrieve the contacts associated with an
account managed by a standard controller and unit test the extension.

Chapter 1

35

How to do it…
As the test class makes reference to the controller extension, this must be created first.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the AccountContactsExt.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Create the unit test class by navigating to the Apex Classes setup page by
clicking on Your Name | Setup | Develop | Apex Classes.

6. Click on the New button.

7. Paste the contents of the AccountContactsExtTest.cls Apex class
from the code download into the Apex Class area.

8. Click on the Save button.

9. On the resulting page, click on the Run Tests button.

How it works…
The tests successfully execute as shown in the following screenshot:

General Utilities

36

Navigating back to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes shows that the tests have achieved 100 percent coverage of the controller.

The test class contains one unit test method. As unit tests do not have access to the
organization data, the first task for the test is to set up the account and contact information.

Account acc=new Account(Name='Unit Test');
insert acc;

List<Contact> contacts=new List<Contact>();
contacts.add(new Contact(FirstName='Unit',
 LastName='Test', Email='Unit.Test@Unit.Test',
 AccountId=acc.id));
contacts.add(new Contact(FirstName='Unit',
 LastName='Test 2', Email='Unit.Test2@Unit.Test',
 AccountId=acc.id));
insert contacts;

Next, the instance of the standard controller is instantiated.

ApexPages.StandardController std=
 new ApexPages.StandardController(acc);

Note that the standard controller requires the sObject record that it is managing as a
parameter to the constructor. As this is the record that will be made available to the controller
extension, it must have the fields populated that the extension relies upon. In this case, the
only field used by the extension is the ID of the account, and this is automatically populated
when the account is inserted.

In this recipe the records to be tested are created in the test classes.
In the real world, this is likely to lead to a lot of repetition and a
maintenance overhead. In that case, a utility class to handle the set
up of test data would be a more robust solution.

Chapter 1

37

Finally, the controller extension is instantiated, taking the standard controller as a
constructor parameter, and the test verifies that the extension has successfully
retrieved the associated contacts.

AccountContactsExt controller=new AccountContactsExt(std);
System.assertEquals(2, controller.contacts.size());

See also
 f The Testing a custom controller recipe in this chapter shows how to write unit tests

for a custom controller that does not extend or rely upon another controller.

www.allitebooks.com

http://www.allitebooks.org

2
Custom Components

In this chapter, we will cover the following recipes:

 f Passing attributes to components

 f Updating attributes in component controllers

 f Passing action methods to components

 f Data-driven decimal places

 f The custom iterator component

 f Setting a value into a controller property

 f Multiselecting related objects

 f Notifying the containing page controller

Introduction
Custom components allow custom Visualforce functionality to be encapsulated as discrete
modules, which provides two main benefits:

 f Functional decomposition, where a lengthy page is broken down into custom
components to make it easier to develop and maintain

 f Code re-use, where a custom component provides common functionality that can be
re-used across a number of pages

A custom component may have a controller, but unlike Visualforce pages, only custom
controllers may be used. A custom component can also take attributes, which can
influence the generated markup or set property values in the component's controller.

Custom components do not have any associated security settings; a user with access to a
Visualforce page has access to all custom components referenced by the page.

Custom Components

40

Passing attributes to components
Visualforce pages can pass parameters to components via attributes. A component declares
the attributes that it is able to accept, including information about the type and whether
the attribute is mandatory or optional. Attributes can be used directly in the component or
assigned to properties in the component's controller.

In this recipe we will create a Visualforce page that provides contact edit capability. The page
utilizes a custom component that allows the name fields of the contact, Salutation, First
Name, and Last Name, to be edited in a three-column page block section. The contact record
is passed from the page to the component as an attribute, allowing the component to be
re-used in any page that allows editing of contacts.

How to do it…
This recipe does not require any Apex controllers, so we can start with the custom component.

1. Navigate to the Visualforce Components setup page by clicking on Your Name |
Setup | Develop | Components.

2. Click on the New button.

3. Enter ContactNameEdit in the Label field.

4. Accept the default ContactNameEdit that is automatically generated for the
Name field.

5. Paste the contents of the ContactNameEdit.component file from the code
download into the Visualforce Markup area and click on the Save button.

Once a custom component is saved, it is available in your organization's
component library, which can be accessed from the development footer
of any Visualforce page. For more information visit http://www.
salesforce.com/us/developer/docs/pages/Content/
pages_quick_start_component_library.htm.

6. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter ContactEdit in the Label field.

9. Accept the default Contact Edit that is automatically generated for the Name field.

10. Paste the contents of the ContactEdit.page file from the code download into the
Visualforce Markup area and click on the Save button.

Chapter 2

41

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the Contact Edit page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ContactEdit page:
https://<instance>/apex/ContactEdit.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The custom component that renders the input fields in the Name section defines a single,
required attribute of type Contact.

<apex:attribute name="Contact" type="Contact"
 description="The contact to edit" required="true" />

The description of the attribute must always be provided, as this is
included in the component reference. The type of the attribute must be
a primitive, sObject, one-dimensional list, map, or custom Apex class.

The Contact attribute can then be used in merge syntax inside the component.

<apex:inputField value="{!Contact.Salutation}"/>
<apex:inputField value="{!Contact.FirstName}"/>
<apex:inputField value="{!Contact.LastName}"/>

Custom Components

42

The page passes the contact record being managed by the standard controller to the
component via the Contact attribute.

<c:ContactNameEdit contact="{!Contact}"/>

See also
 f The Updating attributes in component controllers recipe in this chapter shows

how a custom component can update an attribute that is a property of the
enclosing page controller.

Updating attributes in component
controllers

Updating fields of sObjects passed as attributes to custom components is straightforward,
and can be achieved through simple merge syntax statements. This is not so simple when
the attribute is a primitive and will be updated by the component controller, as parameters
are passed by value, and thus, any changes are made to a copy of the primitive. For example,
passing the name field of a contact sObject, rather than the contact sObject itself, would
mean that any changes made in the component would not be visible to the containing page.

In this situation, the primitive must be encapsulated inside a containing class. The class
instance attribute is still passed by value, so it cannot be updated to point to a different
instance, but the properties of the instance can be updated.

In this recipe, we will create a containing class that encapsulates a Date primitive and a
Visualforce component that allows the user to enter the date via day/month/year picklists.
A simple Visualforce page and controller will also be created to demonstrate how this
component can be used to enter a contact's date of birth.

Getting ready
This recipe requires a custom Apex class to encapsulate the Date primitive. To do so, perform
the following steps:

1. First, create the class that encapsulates the Date primitive by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the DateContainer.cls Apex class from the code download
into the Apex Class area.

4. Click on the Save button.

Chapter 2

43

How to do it…
1. First, create the custom component controller by navigating to the Apex Classes setup

page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the DateEditController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the custom component by navigating to the Visualforce Components
setup page by clicking on Your Name | Setup | Develop | Components.

6. Click on the New button.

7. Enter DateEdit in the Label field.

8. Accept the default DateEdit that is automatically generated for the Name field.

9. Paste the contents of the DateEdit.component file from the code download into
the Visualforce Markup area and click on the Save button.

10. Next, create the Visualforce page controller extension by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

11. Click on the New button.

12. Paste the contents of the ContactDateEditExt.cls Apex class from the code
download into the Apex Class area.

13. Click on the Save button.

14. Finally, create a Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

15. Click on the New button.

16. Enter ContactDateEdit in the Label field.

17. Accept the default ContactDateEdit that is automatically generated for the
Name field.

18. Paste the contents of the ContactDateEdit.page file from the code download into
the Visualforce Markup area and click on the Save button.

19. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

20. Locate the entry for the ContactDateEdit.page file and click on the Security link.

21. On the resulting page, select which profiles should have access and click on the
Save button.

Custom Components

44

How it works…
Opening the following URL in your browser displays the ContactDateEdit page:
https://<instance>/apex/ContactDateEdit?id=<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <contact_id> is the ID of any contact in your Salesforce instance.

The Visualforce page controller declares a DateContainer property that will be used to
capture the contact's date of birth.

public DateContainer dob {get; set;}
private Contact cont;
private ApexPages.StandardController stdCtrl {get; set;}

public ContactDateEditExt(ApexPages.StandardController std)
{
 stdCtrl=std;
 cont=(Contact) std.getRecord();
 dob=new DateContainer(cont.BirthDate);
}

Note that as DateContainer is a class, it must be
instantiated when the controller is constructed.

The custom component that manages the Date of Birth section defines the following
two attributes:

 f A required attribute of type DateContainer, which is assigned to the
dateContainer property of the controller

Chapter 2

45

 f The title of for the page block section that will house the picklists; as this is a
reusable component, the page supplies an appropriate title

Note that this component is not tightly coupled with a contact date
of birth field; it may be used to manage a date field for any sObject.

<apex:attribute type="DateContainer" name="dateContainerAtt"
 description="The date" assignTo="{!dateContainer}"
 required="true" />
<apex:attribute type="String"
 description="Page block section title" name="title" />

The component controller defines properties for each of the day, month, and year elements
of the date. Each setter for these properties attempts to construct the date if all of the other
elements are present. This is required as there is no guarantee of the order in which the
setters will be called when the Save button is clicked and the postback takes place.

public Integer year {get;
 set {
 year=value;
 updateContainer();
 }
 }

private void updateContainer()
{
 if ((null!=year) && (null!=month) && (null!=day))
 {
 Date theDate=Date.newInstance(year, month, day);
 dateContainer.value=theDate;
 }
}

When the contained date primitive is changed in the updateContainer method, this is
reflected in the page controller property, which can then be used to update a field in the
contact record.

public PageReference save()
{
 cont.BirthDate=dob.value;

 return stdCtrl.save();
}

Custom Components

46

See also
 f The Passing attributes to components recipe in this chapter shows how an sObject

may be passed as an attribute to a custom component.

 f The Adding a custom datepicker to a form recipe in Chapter 3, Capturing Data Using
Forms presents an alternative solution to capturing a date outside of the standard
Salesforce range.

Passing action methods to components
A controller action method is usually invoked from the Visualforce page that it is providing the
logic for. However, there are times when it is useful to be able to execute a page controller
action method directly from a custom component contained within the page. One example is
for styling reasons, in order to locate the command button that executes the action method
inside the markup generated by the component.

In this recipe we will create a custom component that provides contact edit functionality,
including command buttons to save or cancel the edit, and a Visualforce page to contain the
component and supply the action methods that are executed when the buttons are clicked.

How to do it…
This recipe does not require any Apex controllers, so we can start with the custom component.

1. Navigate to the Visualforce Components setup page by clicking on Your Name |
Setup | Develop | Components.

2. Click on the New button.

3. Enter ContactEdit in the Label field.

4. Accept the default ContactEdit that is automatically generated for the Name field.

5. Paste the contents of the ContactEdit.component file from the code download
into the Visualforce Markup area and click on the Save button.

6. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter ContactEditActions in the Label field.

9. Accept the default ContactEditActions that is automatically generated for the
Name field.

10. Paste the contents of the ContactEditActions.page file from the code download
into the Visualforce Markup area and click on the Save button.

Chapter 2

47

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the ContactEditActions page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ContactEditActions page:
https://<instance>/apex/ContactEditActions?id=<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <contact_id> is the ID of any contact in your Salesforce instance.

The Visualforce page simply includes the custom component, and passes the Save and
Cancel methods from the standard controller as attributes.

<apex:page standardController="Contact">
 <apex:pageMessages />
 <apex:form >
 <c:ContactEdit contact="{!contact}" saveAction="{!save}"
 cancelAction="{!cancel}" />
 </apex:form>
</apex:page>

www.allitebooks.com

http://www.allitebooks.org

Custom Components

48

The ContactEdit custom component declares attributes for the action methods of type
ApexPages.Action.

<apex:attribute name="SaveAction"
 description="The save action method from the page controller"
 type="ApexPages.Action" required="true"/>
<apex:attribute name="CancelAction"
 description="The cancel action method from the page controller"
 type="ApexPages.Action" required="true"/>

These attributes can then be bound to the command buttons in the component in the same
way as if they were supplied by the component's controller.

<apex:commandButton value="Save" action="{!SaveAction}" />
<apex:commandButton value="Cancel" action="{!CancelAction}"
 immediate="true" />

There's more…
While this example has used action methods from a standard controller, any action method
can be passed to a component using this mechanism, including methods from a custom
controller or controller extension.

See also
 f The Updating attributes in component controllers recipe in this chapter shows

how a custom component can update an attribute that is a property of the
enclosing page controller.

Data-driven decimal places
Attributes passed to custom components from Visualforce pages can be used wherever the
merge syntax is legal. The <apex:outputText /> standard component can be used to
format numeric and date values, but the formatting is limited to literal values rather than
merge fields. In this scenario, an attribute indicating the number of decimal places to display
for a numeric value cannot be used directly in the <apex:outputText /> component.

Chapter 2

49

In this recipe we will create a custom component that accepts attributes for a numeric value
and the number of decimal places to display for the value. The decimal places attribute
determines which optional component is rendered to ensure that the correct number
of decimal places is displayed, and the component will also bracket negative values. A
Visualforce page will also be created to demonstrate how the component can be used.

How to do it…
This recipe does not require any Apex controllers, so we can start with the custom component.

1. Navigate to the Visualforce Components setup page by clicking on Your Name |
Setup | Develop | Components.

2. Click on the New button.

3. Enter DecimalPlaces in the Label field.

4. Accept the default DecimalPlaces that is automatically generated for the Name field.

5. Paste the contents of the DecimalPlaces.component file from the code download
into the Visualforce Markup area and click on the Save button.

6. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter DecimalPlacesDemo in the Label field.

9. Accept the default DecimalPlacesDemo that is automatically generated for the
Name field.

10. Paste the contents of the DecimalPlacesDemo.page file from the code download
into the Visualforce Markup area and click on the Save button.

11. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

12. Locate the entry for the DecimalPlacesDemo page and click on the Security link.

13. On the resulting page, select which profiles should have access and click on the
Save button.

Custom Components

50

How it works…
Opening the following URL in your browser displays the DecimalPlacesDemo page:
https://<instance>/apex/DecimalPlacesDemo.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce page iterates a number of opportunity records and delegates to the
component to output the opportunity amount, deriving the number of decimal places
from the amount.

<c:DecimalPlaces dp="{!TEXT(MOD(opp.Amount/10000, 5))}"
 value="{!opp.Amount}" />

The component conditionally renders the appropriate output panel, which contains two
conditionally rendered <apex:outputText /> components, one to display a positive value
to the correct number of decimal places and another to display a bracketed negative value.

<apex:outputPanel rendered="{!dp=='1'}">
 <apex:outputText rendered="{!AND(NOT(ISNULL(VALUE)), value>=0)}"
 value="{0, number, #,##0.0}">
 <apex:param value="{!value}"/>
 </apex:outputText>
 <apex:outputText rendered="{!AND(NOT(ISNULL(VALUE)), value<0)}"
 value="({0, number, #,##0.0})">
 <apex:param value="{!ABS(value)}"/>
 </apex:outputText>
</apex:outputPanel>

Chapter 2

51

See also
 f The Data-driven styling recipe in Chapter 1, General Utilities shows how to

conditionally color a numeric value based on whether it is positive or negative.

The custom iterator component
The Visualforce standard component <apex:repeat /> iterates a collection of data and
outputs the contained markup once for each element in the collection. In the scenario where
this is being used to display a table of data, the markup for the table headings appears before
the <apex:repeat /> component and is rendered regardless of whether the collection
contains any records or not.

Custom iterator components may contain additional markup to be rendered outside the
collection, for example, the headings markup in the scenario mentioned earlier. This allows
the component to avoid rendering any markup if the collection is empty through the logic
implemented in a custom controller.

In this recipe, we will create a custom component that takes a collection of data and renders
a containing page block and a page block section for each element in the collection. If the
collection is empty, no markup will be rendered. We will also create a containing page that
displays the details of an sObject account and utilizes the custom component to display
contact and opportunity information, if present.

Getting ready
This recipe makes use of a custom controller, so this will need to be present before the
custom component can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the AllOrNothingController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce Components setup page by clicking on Your Name |
Setup | Develop | Components.

6. Click on the New button.

7. Enter AllOrNothingPageBlock in the Label field.

Custom Components

52

8. Accept the default AllOrNothingPageBlock that is automatically generated for the
Name field.

9. Paste the contents of the AllOrNothingPageBlock.component file from the
code download into the Visualforce Markup area and click on the Save button.

10. Next, create the custom controller for the Visualforce page by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

11. Click on the New button.

12. Paste the contents of the AllOrNothingListsExt.cls Apex class from the code
download into the Apex Class area.

13. Click on the Save button.

14. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

15. Click on the New button.

16. Enter AllOrNothingLists in the Label field.

17. Accept the default AllOrNothingLists that is automatically generated for the
Name field.

18. Paste the contents of the AllOrNothingLists.page file from the code download
into the Visualforce Markup area and click on the Save button.

19. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

20. Locate the entry for the AllOrNothingLists page and click on the Security link.

21. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the AllOrNothingLists page:
https://<instance>/apex/AllOrNothingLists?id=<account_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com, and <account_id> is the ID of an account from your Salesforce
instance.

Chapter 2

53

The page displays brief details of the account and page blocks for the account's contacts
and opportunities.

If the account does not have any opportunities or contacts, the appropriate page block
is omitted.

Custom Components

54

The AllOrNothingPageBlock custom component accepts a list of generic sObjects and
wraps its content in an output panel that is only rendered if the list is not empty.

<apex:outputPanel rendered="{!render}">
 <apex:pageBlock title="{!title}">
 <apex:repeat value="{!list}" var="ele">
 <apex:componentBody >
 <apex:variable var="{!var}" value="{!ele}"/>
 </apex:componentBody>
 </apex:repeat>
 </apex:pageBlock>
 </apex:outputPanel>

The <apex:componentBody /> defines where the content from the Visualforce page will be
inserted. As this is inside the <apex:repeat /> component, this insertion will take place for
each element in the collection.

The Visualforce page passes attributes to the component of the list to iterate the title of the
page block, and the variable name representing an element in the list. The contained markup
can reference the variable name to access fields or properties of the element.

<c:AllOrNothingPageBlock list="{!opportunities}" var="opp"
 title="Opportunities">
<apex:pageBlockSection title="{!opp.Name}">
 <apex:outputField value="{!opp.Amount}" />
 <apex:outputField value="{!opp.CloseDate}" />
 <apex:outputField value="{!opp.StageName}" />
 <apex:outputField value="{!opp.Probability}" />
</apex:pageBlockSection>
</c:AllOrNothingPageBlock>

Setting a value into a controller property
Visualforce controllers are often re-used across pages with minor variations in behavior
specific to the page, for example, displaying accounts of a particular type. While the controller
can detect the page that it is being used by and alter its behavior accordingly, this is not a
particularly maintainable solution, as use of the controller in any new page would require
changes to the Apex code and renaming a page would break the functionality.

A better mechanism is for the page to set the values of properties in the controller to
indicate the desired behavior. In this recipe we will create a custom component that takes
two attributes: a value and the controller property to set the value into. Two Visualforce pages
with a common controller will also be created to demonstrate how the component can be
used to change the behavior of the controller to suit the page.

Chapter 2

55

Getting ready
This recipe does not require any Apex controllers, so we can start with the custom component.

How to do it…
1. Navigate to the Visualforce Components setup page by clicking on Your Name |

Setup | Develop | Components.

2. Click on the New button.

3. Enter SetControllerProperty in the Label field.

4. Accept the default SetControllerProperty that is automatically generated for the
Name field.

5. Paste the contents of the SetControllerProperty.component file from the
code download into the Visualforce Markup area and click on the Save button.

6. Next, create the custom controller for the Visualforce pages by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

7. Click on the New button.

8. Paste the contents of the AccountsTypeController.cls Apex class from the
code download into the Apex Class area.

9. Click on the Save button.

10. Next, create the first Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

11. Click on the New button.

12. Enter AccountsType1 in the Label field.

13. Accept the default AccountsType1 that is automatically generated for the
Name field.

14. Paste the contents of the AccountsType1.page file from the code
download into the Visualforce Markup area and click on the Save button.

15. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

16. Locate the entry for the AccountsType1 page and click on the Security link.

17. On the resulting page, select which profiles should have access and click on
the Save button.

18. Finally, create the second Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

19. Click on the New button.

Custom Components

56

20. Enter AccountsType2 in the Label field.

21. Accept the default AccountsType2 that is automatically generated for the
Name field.

22. Paste the contents of the AccountsType2.page file from the code
download into the Visualforce Markup area and click on the Save button.

23. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

24. Locate the entry for the AccountsType2 page and click on the Security link.

25. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the first Visualforce page in your browser displays a list of accounts whose type is
Customer - Direct: https://<instance>/apex/AccountsType1.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

While, opening the second Visualforce page displays a list of accounts whose type is
Customer - Channel: https://<instance>/apex/AccountsType2.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 2

57

The SetControllerProperty custom component assigns the value attribute to the
controller property attribute:

<apex:component >
 <apex:attribute name="from" type="String" assignTo="{!to}"
 description="The value to set"/>
 <apex:attribute name="to" type="String"
 description="The controller property to set the value into"/>
</apex:component>

The Visualforce pages set the type of account to be retrieved into the controller property via
the custom component.

<c:SetControllerProperty from="Customer - Direct"
to="{!accType}" />

See also
 f The Updating attributes in component controllers recipe in this chapter shows

how a custom component can update an attribute that is a property of the
enclosing page controller.

 f The Passing attributes to components recipe in this chapter shows how an sObject
may be passed as an attribute to a custom component.

Multiselecting related objects
One task that users often find unwieldy when implementing Salesforce is setting up the
sObjects to represent many-to-many relationships. A junction object allows a single instance
of one sObject type to be related to multiple instances of another sObject type and vice versa.

This requires the user to create a new instance of the junction object and populate
master-detail fields to associate two sObjects with each other, resulting in a large
number of clicks and page transitions.

In this recipe, we will create a custom object – account group – that acts as a container
for multiple accounts. We will then create a page that allows a number of accounts to be
associated with a single custom sObject. We will use junction objects for the relationship to
allow a single account to be related to multiple account groups, and a single account group to
be associated with multiple accounts. A custom Visualforce component will manage the action
of presenting the available accounts and allowing the user to choose which to relate with the
account group. The component will use the mechanism described in the Updating attributes
in component controllers recipe to make the selected values available to the page controller
via a custom string container class.

www.allitebooks.com

http://www.allitebooks.org

Custom Components

58

Getting ready
This recipe requires two custom sObjects: the account group, and the junction object between
an account group and an account.

1. First, create the account group custom sObject by navigating to Your Name | Setup |
Develop | Objects.

2. Click on the New Custom Object button.

3. Enter Account Group in the Label field.

4. Enter Account Groups in the Plural Label field.

5. Select the Starts with vowel sound box.

6. Leave all other input values at their defaults and click on the Save button.

7. Next, create the junction object to associate an account group with an
account by navigating to Your Name | Setup | Develop | Objects.

8. Click on the New Custom Object button.

9. Enter Account Group JO in the Label field.

10. Enter Account Group JOs in the Plural Label field.

11. Select the Starts with vowel sound box.

12. Leave all other input values at their defaults and click on the Save button.

13. On the resulting page, create the master-detail relationship for the account
group by scrolling down to the Custom Fields and Relationships section and
clicking on the New button.

14. On the next page, Step 1. Choose the field type, select the Master-Detail
Relationship from the Data Type radio buttons and click on the Next button.

15. On the next page, Step 2. Choose the related object, choose Account Group
from the Related To picklist and click on the Next button.

16. On the next page, Step 3. Enter the label and name for the lookup field, leave all
the fields at their default values and click on the Next button.

17. On the next page, Step 4. Establish field-level security for reference field, leave all
the fields at their default values and click on the Next button.

18. On the next page, Step 5. Add reference field to page layouts, leave all the
fields at their default values and click on the Next button.

19. On the final page, Step 6. Add Custom Related Lists, leave all the fields at
their default values and click on the Save button.

20. Next, create the master-detail relationship for the account by scrolling down to the
Custom Fields and Relationships section and click on the New button.

21. On the next page, Step 1. Choose the field type, select the Master-Detail
Relationship from the Data Type radio buttons and click on the Next button.

Chapter 2

59

22. On the next page, Step 2. Choose the related object, choose Account from the
Related To picklist and click on the Next button.

23. On the next page, Step 3. Enter the label and name for the lookup field,
leave all the fields at their default values and click on the Next button.

24. On the next page, Step 4. Establish field-level security for reference field,
leave all the fields at their default values and click on the Next button.

25. On the next page, Step 5. Add reference field to page layouts, leave all the
fields at their default values and click on the Next button.

26. On the final page, Step 6. Add Custom Related Lists, leave all the fields at their
default values and click on the Save button.

How to do it…
1. Create the custom string container class by navigating to the Apex Classes setup

page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the StringContainer.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the custom controller for the Visualforce component by
navigating to the Apex Classes setup page by clicking on Your Name | Setup |
Develop | Apex Classes.

6. Click on the New button.

7. Paste the contents of the MultiSelectRelatedController.cls Apex
class from the code download into the Apex Class area.

8. Click on the Save button.

9. Next, navigate to the Visualforce Components setup page by clicking on Your Name |
Setup | Develop | Components.

10. Click on the New button.

11. Enter MultiSelectRelated in the Label field.

12. Accept the default MultiSelectRelated that is automatically generated for
the Name field.

13. Paste the contents of the MultiSelectRelated.component file from the
code download into the Visualforce Markup area and click on the Save button.

14. Next, create the custom controller for the Visualforce page by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

15. Click on the New button.

Custom Components

60

16. Paste the contents of the AccountGroupController.cls Apex class from the
code download into the Apex Class area.

17. Click on the Save button.

18. Finally, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

19. Click on the New button.

20. Enter AccountGroup in the Label field.

21. Accept the default AccountGroup that is automatically generated for the
Name field.

22. Paste the contents of the AccountGroup.page file from the code download
into the Visualforce Markup area and click on the Save button.

23. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

24. Locate the entry for the AccountGroup page and click on the Security link.

25. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the Visualforce page in your browser displays the account group create page:
https://<instance>/apex/AccountGroup.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 2

61

The chosen account IDs are stored as semi-colon separated values in a property of the page
controller. The page controller constructor extracts all accounts and creates a standard
SelectOption class for each one.

accountOptions=new List<SelectOption>();
for (Account acc : [select id, Name from Account])
{
 accountOptions.add(new SelectOption(acc.id, acc.name));
}

The custom component controller contains two collections of options: available and chosen.
The component iterates the full set of account options and adds the option to available or
chosen depending on whether the account ID is present in the semi-colon separated string
of chosen IDs.

availableItems=new List<SelectOption>();
chosenItems=new List<SelectOption>();

for (SelectOption sel : allOptions)
{
 String selId=sel.getValue();
 if (selected.value.contains(selId+';'))
 {
 chosenItems.add(sel);
 }
 else
 {
 availableItems.add(sel);
 }
}

Accounts can be moved between the Available and Selected lists by highlighting the options
and clicking on the > or < buttons.

Custom Components

62

Each button invokes an action method in the component controller that adds or removes the
account IDs from the semi-colon separated chosen string, and then rebuilds the available and
chosen lists.

Clicking on the Save button creates the account group record and a junction object for each
account ID in the chosen string.

public PageReference save()
{
 insert accountGroup;
 List<Account_Group_JO__c> agJOs=
 new List<Account_Group_JO__c>();

 for (String accId : chosenAccounts.value.split(';'))
 {
 Account_Group_JO__c agJO=
 new Account_Group_JO__c(
 Account_Group__c=accountGroup.id,
 Account__c=accId);
 agJOs.add(agJO);
 }

 insert agJOs;

 return new PageReference('/' + accountGroup.id);
}

Notifying the containing page controller
In the earlier recipes, we have seen how components can accept an attribute that is a
property from the containing page controller and update the value of the property in response
to a user action. If the containing page controller needs to determine if the property has
changed, it must capture the previous value of the property and compare that with the current
value. The same applies if the attribute passed to the component is a field from an sObject
managed by the parent page controller.

In this recipe we will create a custom component that can notify its containing page controller
when an attribute value is changed. In order to avoid tying the component to a particular
page controller class, we will create an interface that defines the method to be used to notify
the page controller. This will allow the component controller to notify any page controller that
implements the interface.

Chapter 2

63

Interfaces define a "contract" between the calling code and the implementing
code. The calling code is able to rely on the method(s) defined in the interface
being available without having to know the details of the underlying code
that is implementing the interface. This allows the implementing code to be
swapped in and out without affecting the calling code.

Getting ready
This recipe requires that you have already completed the Multiselecting related objects recipe,
as it relies on the custom sObjects created in that recipe.

How to do it…
1. First, create the interface by navigating to the Apex Classes setup page by clicking on

Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the Notifiable.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the component controller by navigating to the Apex Classes
setup page by clicking on Your Name | Setup | Develop | Apex Classes.

6. Click on the New button.

7. Paste the contents of the NotifyingMultiSelectRelatedController.
cls Apex class from the code download into the Apex Class area.

8. Click on the Save button.

9. Next, create the custom component by navigating to the Visualforce
Components setup page by clicking on Your Name | Setup | Develop | Components.

10. Click on the New button.

11. Enter NotifyingMultiSelectRelated in the Label field.

12. Accept the default NotifyingMultiSelectRelated that is automatically
generated for the Name field.

13. Paste the contents of the NotifyingMultiSelectRelated.component
file from the code download into the Visualforce Markup area and click on
the Save button.

Custom Components

64

14. Next, create the custom controller for the Visualforce page by navigating to
the Apex Classes setup page by clicking on Your Name | Setup | Develop |
Apex Classes.

15. Click on the New button.

16. Paste the contents of the NotifiableAccountGroupController.cls Apex class
from the code download into the Apex Class area.

17. Click on the Save button.

18. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

19. Click on the New button.

20. Enter NotifiableAccountGroup in the Label field.

21. Accept the default NotifiableAccountGroup that is automatically generated for the
Name field.

22. Paste the contents of the NotifiableAccountGroup.page file from the code
download into the Visualforce Markup area and click on the Save button.

23. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

24. Locate the entry for the NotifiableAccountGroup page and click on the
Security link.

25. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the NotifiableAccountGroup page:
https://<instance>/apex/NotifiableAccountGroup.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <account_id> is the ID of an account from your Salesforce instance.

When accounts are moved between the Available and Selected lists, the component
controller notifies the parent page controller, which writes a message into the page
with the notification details.

Chapter 2

65

The parent page controller, NotifiableAccountGroupController, implements the
Notifiable interface.

public with sharing class NotifiableAccountGroupController
 implements Notifiable

The implementation of the notify method wraps the notification text in an ApexPages.
Message class and adds this to the messages for the page.

public void notify(String detail)
{
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO, 'Notified - ' + detail));
}

Custom Components

66

The custom component takes a parameter of type Notifiable, which is assigned to a
property in its controller.

<apex:attribute name="notify"
 description="The entity to notify when the selection changes"
 type="Notifiable" assignTo="{!notifiable}" />

The custom component also takes a rerender parameter, which is used to update part of
the containing page when the selection changes.

<apex:attribute name="rerender"
description="The component to rerender when the selection changes"
 type="String" />

In this case, the page passes through the ID of its <apex:pageMessages /> component to
display the message added in the page controller's notify method as described earlier.

When the action methods to move accounts between the Available and Selected lists are
executed, these invoke the notify method with details of the change.

if (null!=notifiable)
{
 notifiable.notify('Values deleted - now ' + selected.value);
}

See also
 f The Updating attributes in component controllers recipe in this chapter shows

how a custom component can update an attribute that is a property of the
enclosing page controller.

 f The Passing attributes to components recipe in this chapter shows how an sObject
may be passed as an attribute to a custom component.

 f The Multiselecting related objects in this chapter shows how to create a custom
multiselect picklist style component.

3
Capturing Data

Using Forms

In this chapter, we will cover the following recipes:

 f Editing a record in Visualforce

 f Adding error messages to field inputs

 f Adding error messages to nonfield inputs

 f Using field sets

 f Adding a custom lookup to a form

 f Adding a custom datepicker to a form

 f Retrieving fields when a lookup is populated

 f Breaking up forms with action regions

 f The "Please wait" spinner

 f Avoiding validation errors with action regions

 f Action chaining

 f Errors – harmful if swallowed

Introduction
Forms are a key feature of any application that makes use of Visualforce. They provide a
mechanism to capture data entered by the user and send this to the page controller for
processing, for example, to create, edit, or delete sObject records, or to send the user to a
specific page.

Capturing Data Using Forms

68

Users enter data through input components. Visualforce provides a specific standard
component, <apex:inputField />, for entering sObject field data. This component
renders the appropriate device for entering data based on the field type, such as a JavaScript
date picker for a field of type Date. Input components are bound to sObject fields or controller
properties via the merge syntax. Controller properties that are public and have a public getter
and setter may be bound to input components without writing any further code.

Processing of the submitted form is carried out via Action methods. These may be provided
automatically by the platform in the case of standard controllers, or coded using Apex in the
case of extension or custom controllers. Action methods can rely on all sObject fields and
controller properties bound to input components containing the latest user input when
they execute.

Editing a record in Visualforce
The standard record edit page does not allow customization outside the layout of fields.
Editing records with Visualforce pages allows customization of all aspects of the page,
including styling, content, and displayed buttons.

In this recipe, we will create a Visualforce page that provides contact edit capability, but
does not allow a contact to be reparented to a different account. The account lookup field is
editable until the record is saved with the lookup populated, after which it becomes read-only.
This page will also render a different section heading depending on whether the contact is
being created or edited.

Getting ready
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter ContactCreateEdit in the Label field.

4. Accept the default ContactCreateEdit that is automatically generated for the
Name field.

5. Paste the contents of the ContactCreateEdit.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Chapter 3

69

7. Locate the entry for the ContactCreateEdit page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ContactCreateEdit page to create a
new record: https://<instance>/apex/ContactCreateEdit.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Note that the section heading for the page is Create Contact, and the Account Name field
is editable. Save this record and edit it again via the same page using the following URL:
https://<instance>/apex/ContactCreateEdit?id=<contact_id>.

Capturing Data Using Forms

70

Here, <contact_id> is the record ID of the newly created contact, and it displays the edit
form of the page with a different section heading, and the Account Name field is changed
to read-only.

The Visualforce page utilizes a standard controller and conditionally renders the section
heading, and input/output variants of the Account Name field based on the ID of the record.

<apex:sectionHeader
 title="{!IF (Contact.id==null, 'Create', 'Edit')} Contact" />

<apex:inputField value="{!Contact.AccountId}"
 rendered="{!null==Contact.AccountId}" />
<apex:outputField value="{!Contact.AccountId}"
 rendered="{!null!=Contact.AccountId}" />

See also
 f The Using field sets recipe in this chapter shows how an administrator can control the

editable fields on a Visualforce page.

Adding error messages to field inputs
When users are editing or creating a record via a Visualforce page, they will often make
mistakes or enter invalid data. The required fields will present an error message underneath
the field itself, but validation rules or exceptions will simply send the user to a new page with a
large error message, telling them that the insert or update failed.

In this recipe we will create a Visualforce page to allow a user to create or edit a contact
record. The contact standard controller and a controller extension manage the page. The
extension controller checks whether the e-mail address or phone number field has been
populated. If either of the fields is populated, the record will be saved, but if both are missing,
an error message will be added to both fields asking the user to populate at least one of them.

Chapter 3

71

Getting ready
This recipe makes use of a controller extension, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the controller extension by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the InputFieldErrorExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter InputFieldError in the Label field.

8. Accept the default InputFieldError that is automatically generated for the Name field.

9. Paste the contents of the InputFieldError.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the InputFieldError page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the InputFieldError page:
https://<instance>/apex/InputFieldError.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Capturing Data Using Forms

72

Leaving both the Phone and Email fields blank causes a tailored error message to be
displayed underneath the fields.

The Visualforce page controller extension declares a Save method, which overrides the
standard controller's Save method. If the contact's Phone and Email fields are both empty,
the controller uses the addError method of the sObject field to associate an error message
with the field. When the page is rendered, Visualforce will automatically display the error
message with the field. If either of the Phone or Email fields are populated, the controller
extension delegates it to the standard controller Save method and returns the result.

public PageReference save()
{
 PageReference result=null;
 Contact cont=(Contact) stdCtrl.getRecord();

 if ((String.IsBlank(cont.Email)) &&
 (String.IsBlank(cont.Phone)))
{
 cont.email.addError
 ('Please enter an email address or phone number');
 cont.phone.addError
 ('Please enter a phone number or email address');
 }
 else
 {
 result=stdCtrl.save();
 }

 return result;
}

Chapter 3

73

See also
 f The Adding error messages to nonfield inputs recipe in this chapter shows

how error messages can be displayed against input elements associated
with controller properties.

Adding error messages to nonfield inputs
In the previous recipe, Adding error messages to field inputs, the platform took care of
positioning of the error message based on whether the field had any errors associated
with it. Visualforce automatically provides this functionality for <apex:inputField />
components, but if a different input component is used, such as <apex:inputText /> or
<apex:selectList />, there is no equivalent functionality.

In this recipe we will create a Visualforce page to allow a user to create or edit a contact
record. The contact standard controller and a controller extension manage the page. The ID
of the account that the contact is associated with is entered via an <apex:selectList />
component, which is bound to a controller property rather than an sObject field. If the user
does not select an account to associate the contact with, an error message is displayed under
the <apex:selectList /> component.

Getting ready
This recipe makes use of a controller extension, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the Visualforce page controller extension by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the InputSelectErrorExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter InputSelectError in the Label field.

8. Accept the default InputSelectError that is automatically generated for the
Name field.

Capturing Data Using Forms

74

9. Paste the contents of the InputSelectError.page file from the code download
into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the InputSelectError page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the InputSelectError page:
https://<instance>/apex/InputSelectError.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Leaving the selected account value as -- Choose -- causes the save to fail and an error
message to be displayed under the select component.

In order to display the error message in the correct place, it must be coupled with the property
that the input component is bound to. The controller extension defines an inner class that
contains two String properties; one to hold the input value and another to hold the error
message. The class also exposes a method to determine if the input value is currently in error.

public class ValueAndError
{
 public String value {get; set;}
 public String error {get; set;}

 public Boolean getHasError()

Chapter 3

75

 {
 return (!String.IsBlank(error));
 }
}

An instance of this class is used by the controller extension to contain the ID of the
selected account.

public ValueAndError accountIdVal {get; set;}

The controller extension defines a Save method, which overrides the standard controller save
method. If the value property of the ValueAndError instance remains at the default, an
error message is added to the instance.

 if (String.IsBlank(accountIdVal.value))
 {
 accountIdVal.error='Please choose an account';
 }

The Visualforce page conditionally adds the error style class to the input component if the
ValueAndError instance indicates there is an error. Additionally, the actual error message
is displayed using a style class of errorMsg.

<apex:selectList value="{!accountIdVal.value}" size="1"
 styleClass="{!IF(accountIdVal.hasError,'error','')}">
 <apex:selectOptions value="{!accountOptions}" />
</apex:selectList>
<div class="errorMsg"
 style="display:{!IF(accountIdVal.hasError,'block','none')}">
 Error: {!accountIdVal.error}
</div>

The error and errorMsg style classes are from the standard Salesforce
stylesheets. Using these classes entails the risk that if Salesforce update
their styling, these classes may be changed or removed entirely, which
would break the error message styling. In order to avoid this, clone the
Salesforce styles into your own stylesheet.

See also
 f The Adding error messages to field inputs recipe in this chapter shows how error

messages can be displayed against input elements associated with sObject fields.

Capturing Data Using Forms

76

Using field sets
A field set defines a group of sObject fields. A Visualforce page can iterate the fields contained
in the set and access the values and other information, such as label or type, through the
merge syntax. This decouples maintenance of the page from the skill set required to author
Visualforce pages, and allows administrators to add or remove fields through point and click.

In this recipe we will create two field sets for the contact sObject: one to display the address
information and another to display information about the contact. We will then create a
Visualforce page that uses these field sets to render input components inside a page block
section, which allow a contact record to be created or edited.

Field sets are in beta as of the Summer 13 release of Salesforce; this means
that the functionality is of production quality but contains known limitations.

Getting ready
This recipe relies on two field sets, which must be created before the Visualforce page
can be created.

1. First, create the contact detail field set. Navigate to the Contact Field Sets setup page
by clicking on Your Name | Setup | Customize | Contacts | Field Sets.

2. Click on the New button.

3. Enter Detail in the Field Set Label field.

4. Accept the default Detail that is automatically generated for the Field Set Name field.

Ensure that the name is correctly set, as the Visualforce
page uses this to retrieve the field set.

5. Enter In the cookbook field sets example page in the Where is this
used? field and click on the Save button.

6. On the resulting page, drag the following fields onto the In the Field Set pane:
Salutation, First Name, Last Name, Contact Description, Business Phone,
and Email.

If you wish to allow administrators to add additional fields to the
field set, these must be dragged onto the Available for the Field
Set pane.

Chapter 3

77

7. Click on the Save button to commit the changes.

8. Next, create the contact address field set. Navigate to the Contact Field Sets setup
page by clicking on Your Name | Setup | Customize | Contacts | Field Sets.

9. Click on the New button.

10. Enter Address Information in the Field Set Label field.

11. Accept the default Address_Information that is automatically generated for the Field
Set Name field.

Ensure that the name is correctly set, as the Visualforce
page uses this to retrieve the field set.

12. Enter In the cookbook field sets example page in the Where is this
used? field and click on the Save button.

13. On the resulting page, drag the following fields onto the In the Field Set pane:
Mailing Street, Other Street, Mailing City, Other City, Mailing State/Province,
Other State/Province, Mailing Zip/Postal Code, Other Zip/Postal Code, Mailing
Country, and Other Country.

14. Click on the Save button to commit the changes.

How to do it…
1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on

Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter FieldSets in the Label field.

4. Accept the default FieldSets that is automatically generated for the Name field.

5. Paste the contents of the FieldSets.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the FieldSets page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

Capturing Data Using Forms

78

How it works…
Opening the following URL in your browser displays the FieldSets page:
https://<instance>/apex/FieldSets.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce page uses the $ObjectType global variable to access a named field set and
iterate the contained fields, which are bound to input components.

<apex:pageBlockSection title="General">
 <apex:repeat value="{!$ObjectType.Contact.FieldSets.Detail}"
 var="field">
 <apex:inputField value="{!Contact[field]}" />
 </apex:repeat>
</apex:pageBlockSection>

Chapter 3

79

Adding a custom lookup to a form
The Salesforce standard lookup functionality renders a dialog that supports a small amount of
customization. The fields displayed may be configured, and if Enhanced Lookups have been
enabled, the results can be filtered and ordered, and large result sets may be paged through.
The lookup dialog's layout can neither be altered, nor can it be branded or contain additional
help text.

In this recipe we will create a Visualforce lookup page that replaces the lookup dialog and
provides additional instructions to the user. An additional Visualforce page will demonstrate
how this can be be integrated into a custom opportunity create page.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the LookupController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the custom lookup Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter LookupPopup in the Label field.

8. Accept the default LookupPopup that is automatically generated for the Name field.

9. Paste the contents of the LookupPopup.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the LookupPopup page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

13. Finally, create the custom create opportunity Visualforce page by navigating to the
Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

Capturing Data Using Forms

80

14. Click on the New button.

15. Enter Lookup in the Label field.

16. Accept the default Lookup that is automatically generated for the Name field.

17. Paste the contents of the Lookup.page file from the code download into the
Visualforce Markup area and click on the Save button.

18. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

19. Locate the entry for the Lookup page and click on the Security link.

20. On the resulting page, select which profiles should have access and click the
Save button.

How it works…
Opening the following URL in your browser displays the custom opportunity create Lookup
page: https://<instance>/apex/Lookup.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 3

81

Clicking on the telescope icon to the right of the Account field opens the custom lookup dialog.

The Lookup page contains a hidden input component that is populated with the ID of the
chosen account, while the text input component is used to display the name of the chosen
account. JavaScript is used to execute the function to open the lookup dialog when the
telescope icon is clicked.

<apex:inputHidden value="{!Opportunity.AccountId}"
 id="targetId" />
<apex:inputText size="20" id="targetName" onFocus="this.blur "/>
<a href="#" onclick="openLookupPopup('{!$Component.targetName}',
'{!$Component.targetId}'); return false">
<apex:image style="vertical-align:middle;width:21px; height:21px"
 value="/img/icon/telescope16.png" />

Note that the input text component defines an onFocus handler that
simply removes the focus from itself. This stops the user entering an
account name directly, as there is no controller logic to retrieve the ID
based on the name.

Capturing Data Using Forms

82

The ID of the input fields for the chosen account ID and name are passed to the dialog as
URL parameters. This allows the dialog to populate the fields once the user has chosen
an account.

In addition to opening the dialog, the Lookup page also handles closing it. This is because
many browsers do not allow a page to close a dialog if it was not responsible for opening it.

var newWin=null;
function openLookupPopup(name, id)
{
 var url="/apex/LookupPopup?namefield=" + name +
 "&idfield=" + id;
 newWin=window.open(url, 'Popup',
 'height=500,width=600,left=100,top=100,resizable=no,
 scrollbars=yes,toolbar=no,status=no');
 if (window.focus)
 {
 newWin.focus();
 }

 return false;
}

function closeLookupPopup()
{
if (null!=newWin)
 {
 newWin.close();
 }
}

The Lookup dialog attaches an onclick handler to each of the account names in the
search results, to execute the JavaScript function that populates the name and ID of the
chosen account.

<apex:column headerValue="Name">
 <apex:outputLink value="#"
 onclick="fillIn('{!account.Name}',
 '{!account.id}')">{!account.Name}
 </apex:outputLink>
</apex:column>

Chapter 3

83

The fillIn function populates the fields in the parent window and then executes the
JavaScript in the parent window to close the pop up.

function fillIn(name, id)
{
var winMain=window.opener;
if (null==winMain)
{
 winMain=window.parent.opener;
}
var ele=winMain.document.getElementById
 ('{!$CurrentPage.parameters.namefield}');
ele.value=name;
ele=winMain.document.getElementById
 ('{!$CurrentPage.parameters.idfield}');
ele.value=id;
 winMain.closeLookupPopup();
}

See also
 f The Opening a pop-up window recipe in Chapter 1, General Utilities shows how to

create a pop-up window when a user clicks on a link in a Visualforce page.

Adding a custom datepicker to a form
The standard datepicker that is rendered when an <apex:inputField /> component is
bound to an sObject field of type Date or DateTime has a limited range of years available,
as shown in the following screenshot:

Capturing Data Using Forms

84

While this range of years may be suitable for opportunity close dates, it is unsuitable for
capturing a contact's date of birth. One option to improve this is to add some JavaScript to the
page that alters the datepicker year range, but this entails a risk as it relies on the standard
datepicker code to remain the same.

In this recipe, we will integrate a third-party JavaScript datepicker with a Visualforce input
field bound to a date. The datepicker used is from Design2Develop and can be downloaded
from http://www.design2develop.com/calendar/. This has been chosen as the style
class names; do not conflict with any standard Salesforce style classes as of the Summer 13
release of Salesforce.

Getting ready
This recipe requires the Design2Develop calendar ZIP file to be present as a static resource.

1. Download the custom datepicker ZIP file from
http://www.design2develop.com/calendar/#download.

2. Navigate to the Static Resource setup page by clicking on Your Name | Setup |
Develop | Static Resources.

3. Click on the New button.

4. Enter D2DCalendar in the Name field.

5. Enter Design2Develop JavaScript Date Picker in the Description field.

6. Click on the Browse button and select the calendar.zip file downloaded in step 1.

7. Accept the default Private value for the Cache Control field and click on the
Save button.

How to do it…
1. First, create the Visualforce page that the datepicker will be used in by navigating to

the Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter DatePicker in the Label field.

4. Accept the default DatePicker that is automatically generated for the Name field.

5. Paste the contents of the DatePicker.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the DatePicker page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

Chapter 3

85

How it works…
Opening the following URL in your browser displays the DatePicker Visualforce page:
https://<instance>/apex/DatePicker.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Clicking on the Date of Birth input field renders the custom datepicker with a wider range of
years as shown in the following screenshot:

Note that a side effect of this is that the styling of the datepicker may
be customized. The sample code uses the calendar_green.css
stylesheet supplied as part of the calendar.zip file to produce a
datepicker that is colored green.

The DatePicker page provides an onFocus handler for the Date of Birth input field.

<apex:inputText id="birthdate" size="10"
 value="{!Contact.BirthDate}"
 onfocus="initialiseCalendar(this,
 '{!$Component.birthdate}')"/>

The initialiseCalendar JavaScript function extracts the existing date from the input
component, if present, and passes this to the custom datepicker initialization code, which
renders the datepicker with the existing date preselected, if defined.

function initialiseCalendar(obj, eleId)
{
 var element=document.getElementById(eleId);
 var params='close=true';
 if (null!=element)

Capturing Data Using Forms

86

 {
 if (element.value.length>0)
 {
 // date is formatted dd/mm/yyyy - pull out the month and year
 var month=element.value.substr(3,2);
 var year=element.value.substr(6,4);
 params+=',month='+month;
 params+=',year='+year;
 }
 }

 fnInitCalendar(obj, eleId, params);
}

See also
 f The Adding a custom lookup to a form recipe in this chapter shows how to replace the

standard lookup component with a custom version.

Retrieving fields when a lookup is populated
When viewing an sObject that has a lookup relationship to another sObject, additional fields
from the related sObject can be displayed on the page using formula fields. When creating a
new record, or editing an existing record and changing the lookup value, formula fields cannot
be used, as the lookup field has only been populated with a record ID and the related record
has not been retrieved.

In this recipe, we will create a Visualforce page that allows a user to create a case sObject
record. The case standard controller and a controller extension manage the new case record.
When the lookup to the account that the case is related to is populated, additional fields are
retrieved from the account record and displayed.

Getting ready
This recipe makes use of a controller extension, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

Chapter 3

87

3. Paste the contents of the PullLookupFieldsExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter PullLookupFields in the Label field.

8. Accept the default PullLookupFields that is automatically generated for the
Name field.

9. Paste the contents of the PullLookupFields.page file from the code download
into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page, by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the PullLookupFields page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following page in your browser displays the PullLookupFields page:
https://<instance>/apex/PullLookupFields.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com.

Populating the account lookup automatically populates the Website and Phone output
elements with the details from the account.

Capturing Data Using Forms

88

The PullLookupFields page executes an action method when the contents of the case
account lookup field changes.

<apex:inputField value="{!Case.AccountId}">
 <apex:actionSupport event="onchange" action="{!accountSelected}"
 rerender="account, msgs" status="stat"/>
</apex:inputField>

When the accountSelected method is executed, it confirms that the field has not been
cleared and retrieves the related account record, attaching this to the case record from the
standard controller.

Case cs=(Case) stdCtrl.getRecord();

// handle the situation where the account field has been cleared
if (!String.isBlank(cs.AccountId))
{
 cs.Account=[select Website, Phone from Account
 where id=:cs.AccountId];
}

When the account section of the page is rerendered, the related fields are retrieved using the
standard dot notation.

<apex:outputField value="{!Case.Account.Website}"/>
<apex:outputField value="{!Case.Account.Phone}"/>

Breaking up forms with action regions
The submission of a form in a Visualforce page causes the view state and all user inputs to
be processed by the controller. In the event that the form is being submitted back, purely to
introduce some additional information based on a single user input, this can be inefficient,
especially if there are a large number of field inputs on the page. The <apex:actionRegion
/> component can be used to break the form up into discrete sections, reducing the amount
of data processed by the controller and improving performance of the page.

In this recipe we will create a Visualforce page that allows a user to create a case record. The
case subject is automatically generated by a controller extension from a base subject entered
by the user and the name of the account that the case is associated with. A change to either
the base subject or the account lookup causes the form to be submitted in order to update
the generated subject. Each of these fields is contained in an action region, ensuring that only
the controller only processes the updated value.

Chapter 3

89

Getting ready
This recipe makes use of a controller extension, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ActionRegionExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionRegion in the Label field.

8. Accept the default ActionRegion that is automatically generated for the
Name field.

9. Paste the contents of the ActionRegion.page page from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ActionRegion page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionRegion page:
https://<instance>/apex/ActionRegion.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Capturing Data Using Forms

90

Entering a value in the Base Subject or Account Name field and losing focus on the field
(by tabbing out or clicking into another field) updates the Subject field with the latest values
from these fields.

The ActionRegion page defines an action region for each of the fields that contribute to the
Subject field value.

<apex:actionRegion>
 <apex:pageBlockSection title="Subject" id="subject">
 <apex:pageBlockSectionItem >
 <apex:outputLabel value="Base Subject"/>
 <apex:inputText value="{!baseSubject}">
 <apex:actionSupport event="onchange"
 action="{!setupSubject}" rerender="subject, msgs"
 status="stat"/>
 </apex:inputText>
 </apex:pageBlockSectionItem>
 <apex:outputField value="{!Case.Subject}" />
 </apex:pageBlockSection>
</apex:actionRegion>

The setupSubject action method defined in the page controller extension concatenates the
name of the selected account with the base subject and assigns this to the Subject field.

String subject='';
Case cs=(Case) stdCtrl.getRecord();

// handle the situation where the account field has been cleared
if (!String.isBlank(cs.AccountId))
{

Chapter 3

91

 Account acc=[select Name from Account where id=:cs.AccountId];
 subject+=acc.Name + ' - ';
}

if (null!=baseSubject)
{
 subject+=baseSubject;
}

cs.Subject=subject;

See also
 f The Avoiding validation errors with action regions recipe in this chapter shows how

action regions may be used to submit part of a form for server-side processing that
would otherwise be blocked, due to validation errors.

The "Please wait" spinner
When a user carries out an action that results in a Visualforce form submission, for example,
clicking a button, it can be useful to render a visual indication that the submit is in progress.
Without this a user may click on the button again, or assume there is a problem and navigate
away from the page. The standard Visualforce <apex:actionStatus /> component can
display messages when starting and stopping a request, but these messages are easily
missed, especially if the user is looking at a different part of the page.

In this recipe, we will create a Visualforce page that allows a user to create a case sObject
record utilizing the case standard controller. When the user clicks on the button to create
the new record, a spinner GIF will be displayed. In order to ensure that we have the user's
full attention, the page will be grayed out while the submit takes place.

How to do it…
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

2. Click on the New button.

3. Enter Working in the Label field.

4. Accept the default Working that is automatically generated for the Name field.

5. Paste the contents of the Working.page file from the code download into the
Visualforce Markup area and click on the Save button.

Capturing Data Using Forms

92

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup | Develop |
Pages.

7. Locate the entry for the Working page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the Working page:
https://<instance>/apex/Working.

Here, <instance> is the Salesforce instance specific to your organization, for example na6.
salesforce.com.

Populating the fields on the page and clicking on the Save button greys out the page contents
and displays a message with a spinning icon.

The Working page defines two div elements that are initially hidden as follows:

<div id="opaque"/>
<div id="spinner">
 <p align="center"
 style='{font-family:"Arial", Helvetica, sans-serif; font-
size:20px;}'>
 <apex:image value="/img/loading.gif"/> Please wait
</p>
</div>

The opaque div greys out the entire page when made visible—the style for this, and the
spinner div are defined at the top of the Visualforce page.

Chapter 3

93

The Save and Cancel buttons have onclick handlers that execute a JavaScript function that
makes the opaque and spinner div elements visible.

<script>
function showSpinner()
{
 document.getElementById('opaque').style.display='block';
 var popUp = document.getElementById('spinner');

 popUp.style.display = 'block';
}
</script>

<apex:commandButton value="Save" action="{!save}"
 onclick="showSpinner()" />
<apex:commandButton value="Cancel" action="{!cancel}"
 onclick="showSpinner()" />

Avoiding validation errors with action
regions

Submitting a Visualforce form without populating a required field causes an error message to
be returned to the user. When the user has triggered the submission by clicking on a button,
a message of this nature will not come as a surprise. If the submission is automatically
triggered, for example, to retrieve fields once a lookup is populated, the sudden and
unexpected appearance of an error message is a poor user experience.

In this recipe we will create a Visualforce page to create an opportunity with a number of
required fields. When the user selects the account to associate the opportunity with, the form
will be submitted, and related fields from the account record populated regardless of whether
the required fields have been populated.

Getting ready
This recipe makes use of a controller extension, so this will need to be created before the
Visualforce page.

Capturing Data Using Forms

94

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ActionRegionAvoidValidationExt.cls
Apex class from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionRegionAvoidValidation in the Label field.

8. Accept the default ActionRegionAvoidValidation that is automatically
generated for the Name field.

9. Paste the contents of the ActionRegionAvoidValidation.page file from the
code download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ActionRegionAvoidValidation page and click on the
Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionRegionAvoidValidation page:
https://<instance>/apex/ActionRegionAvoidValidation.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 3

95

Entering a value in the Account Name field and losing focus on the field (by tabbing out or
clicking into another field) updates the Website and Phone fields with the details from the
chosen account, even though the required fields of Opportunity Name, Close Date, and
Stage are not populated.

The ActionRegionAvoidValidation page defines an action region for the Account
section, which stops the controllers from processing other fields on the page when
the automatic submission takes place. The automatic submission is handled by the
<apex:actionSupport /> component nested in the Account Name input field.

<apex:actionRegion >
 <apex:pageBlockSection title="Account" id="account">
 <apex:inputField value="{!Opportunity.AccountId}">
 <apex:actionSupport event="onchange"
 action="{!accountSelected}" rerender="account, msgs"
 status="stat"/>
 </apex:inputField>
 <apex:pageBlockSectionItem />
 <apex:outputField value="{!Opportunity.Account.Website}"/>
 <apex:outputField value="{!Opportunity.Account.Phone}"/>
 <apex:actionStatus startText="Getting detail" id="stat" />
 </apex:pageBlockSection>
</apex:actionRegion>

Capturing Data Using Forms

96

The accountSelected method in the controller extension retrieves the related account
record and associates it with the opportunity record that the standard controller is managing.

Opportunity opp=(Opportunity) stdCtrl.getRecord();

// handle the situation where the account field has been cleared
if (!String.isBlank(opp.AccountId))
{
 opp.Account=[select Website, Phone from Account
 where id=:opp.AccountId];
}
else
{
 opp.Account=null;
}

See also
 f The Breaking up forms with action regions recipe in this chapter shows how areas

of a large and complex form may be submitted independent of each other using
action regions.

Action chaining
Action chaining allows multiple controller action methods to be executed in a series from a
Visualforce page, each in a separate transaction. This technique is rarely used, but does solve
the following problems:

 f Working around governor limits; for example, repeatedly polling an external system to
determine if processing triggered through a web service call has completed without
breaching the limit for callouts per transaction. In this case, the same action would
be chained to poll the external system and then update the Visualforce page to
indicate the user whether the action had completed.

 f Avoiding the MIXED_DML_OPERATION error when the controller must modify setup
and nonsetup records; for example, changing a user and an opportunity record. In
this case, the first action in the chain would modify the user record, while the second
would modify the opportunity record.

In this recipe, we will create a Visualforce page to create an opportunity and move it through
a number of stages, with each stage transition taking place in a separate transaction. This
may be used to avoid governor limits in a situation where an opportunity must progress
through each stage individually, but the act of changing stage causes a significant amount of
processing to take place, or external systems must be updated as the opportunity progresses.

Chapter 3

97

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ActionChainController.cls Apex class from
the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionChain in the Label field.

8. Accept the default ActionChain that is automatically generated for the Name field.

9. Paste the contents of the ActionChain.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ActionChain page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionChain page:
https://<instance>/apex/ActionChain.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Capturing Data Using Forms

98

Filling in the opportunity record fields, setting the Stage Name field to Prospecting, and
clicking on the Save button causes the chain of actions to execute, with each action
displaying a message to indicate that the opportunity has progressed to a new stage.

The ActionChain page conditionally renders one of a number of action function components
and JavaScript that executes the function based on the opportunity stage name.

<apex:outputPanel rendered="{!opp.StageName='Prospecting'}">
 <apex:actionFunction name="qualificationJS"
 action="{!qualification}" rerender="js,msgs,detail"
 status="stat"/>
 <script>
 qualificationJS();
 </script>
</apex:outputPanel>

<apex:outputPanel rendered="{!opp.StageName='Qualification'}">
 <apex:actionFunction name="needsAnalysisJS"
 action="{!needsAnalysis}" rerender="js,msgs,detail"
 status="stat"/>
 <script>
 needsAnalysisJS();
 </script>
</apex:outputPanel>

Each action function executes a controller action method to progress the opportunity to the
next stage, and rerenders the JavaScript section and any messages from the controller.

Chapter 3

99

Errors – harmful if swallowed
When a form submission results in a rerender of a section rather than refreshing the entire
Visualforce page, it is very easy to cause error messages from the controller to be swallowed
rather than displayed to the user. In this situation, as far as the user is concerned, the form
submission is broken; they click on a button and nothing on the page changes.

In this recipe we will create a Visualforce page to create an opportunity. When the account the
opportunity is associated with is selected, the form will be submitted and the account record
retrieved so that additional fields on the page may populated. If the opportunity name is not
defined, the form submission will fail and an error message will be displayed to the user.

Getting ready
This recipe makes use of a controller extension, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the RerenderValidationExt.cls Apex class from
the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter RerenderValidation in the Label field.

8. Accept the default RerenderValidation that is automatically generated for
the Name field.

9. Paste the contents of the RerenderValidation.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the RerenderValidation page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Capturing Data Using Forms

100

How it works…
Opening the following URL in your browser displays the RerenderValidation page:
https://<instance>/apex/RerenderValidation.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Choosing the account before supplying the opportunity name causes the postback to fail with
an error message.

The Account Name input field has a nested <apex:actionSupport /> component to
submit the form and execute a controller method when the value changes.

<apex:inputField value="{!Opportunity.AccountId}">
 <apex:actionSupport event="onchange" action="{!accountSelected}"
 rerender="account, msgs" status="stat"/>
</apex:inputField>

This component defines the rerender attribute, which will result in only the listed standard
components being redrawn when the controller method has completed. This list includes an
<apex:pageMessages /> component.

<apex:pageMessages id="msgs" />

In the event that an error occurs while submitting or processing the form, the account section
will not change. Rerendering the msgs component ensures that any errors that occur are
communicated back to the user.

Chapter 3

101

See also
 f The Adding error messages to nonfield inputs recipe in this chapter shows

how error messages can be displayed against input elements associated
with controller properties.

 f The Adding error messages to field inputs recipe in this chapter shows how error
messages can be displayed against input elements associated with sObject fields.

4
Managing Records

In this chapter, we will cover the following recipes:

 f Styling fields as required

 f Styling table columns as required

 f Attaching an image to a record

 f Managing attachments

 f Maintaining custom settings

 f Refreshing record details from embedded Visualforce

 f Using wrapper classes

 f Changing options based on the user input

 f Changing page layout based on the user input

 f Form-based searching

Introduction
One of the common use cases for Visualforce pages is to simplify, streamline, or enhance the
management of sObject records. In the earlier chapters we have covered how Visualforce can
be used to provide a custom or user interface to create and edit records.

In this chapter, we will use Visualforce to carry out some more advanced customization
of the user interface—redrawing the form to change available picklist options, or capturing
different information based on the user's selections. We will also see how Visualforce can be
used to manage non-sObject information by providing custom user interfaces to allow custom
settings and attachments to be maintained, and searching for records based on the value of
specific fields.

Managing Records

104

Styling fields as required
Standard Visualforce input components, such as <apex:inputText />, can take an
optional required attribute. If set to true, the component will be decorated with a red bar to
indicate that it is required, and form submission will fail if a value has not been supplied as
shown in the following screenshot:

In the scenario where one or more inputs are required and there are additional validation rules,
for example, when one of either the Email or Phone fields is defined for a contact, this can
lead to a drip feed of error messages to the user. This is because the inputs make repeated
unsuccessful attempts to submit the form, each time getting slightly further in the process.

In this recipe we will create a Visualforce page that allows a user to create a contact record.
The Last Name field is captured through a nonrequired input decorated with a red bar
identical to that created for required inputs. When the user submits the form, the controller
validates that the Last Name field is populated and that one of the Email or Phone fields is
populated. If any of the validations fail, details of all errors are returned to the user.

Getting ready
This recipe makes use of a controller extension so this must be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the RequiredStylingExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

6. Click on the New button.

7. Enter RequiredStyling in the Label field.

8. Accept the default RequiredStyling that is automatically generated for the
Name field.

Chapter 4

105

9. Paste the contents of the RequiredStyling.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the RequiredStyling page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the RequiredStyling page to create a new
contact record: https://<instance>/apex/RequiredStyling.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Clicking on the Save button without populating any of the fields results in the save failing with
a number of errors.

The Last Name field is constructed from a label and text input component rather than a
standard input field, as an input field would enforce the required nature of the field and stop
the submission of the form.

<apex:pageBlockSectionItem >
 <apex:outputLabel value="Last Name"/>
 <apex:outputPanel id="detailrequiredpanel" layout="block"
 styleClass="requiredInput">
 <apex:outputPanel layout="block" styleClass="requiredBlock" />
 <apex:inputText value="{!Contact.LastName}"/>
 </apex:outputPanel>
</apex:pageBlockSectionItem>

Managing Records

106

The required styles are defined in the Visualforce page rather than relying
on any existing Salesforce style classes to ensure that if Salesforce
changes the names of its style classes, this does not break the page.

The controller extension save action method carries out validation of all fields and attaches
error messages to the page for all validation failures.

if (String.IsBlank(cont.name))
{
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.ERROR,
 'Please enter the contact name'));
 error=true;
}

if ((String.IsBlank(cont.Email)) &&
 (String.IsBlank(cont.Phone)))
{
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.ERROR,
 'Please supply the email address or phone number'));
 error=true;
}

See also
 f The Styling table columns as required recipe in this chapter shows how to style a

column header to indicate that the contents of the column are required.

Styling table columns as required
When maintaining records that have required fields through a table, using regular input fields
can end up with an unsightly collection of red bars striped across the table.

In this recipe we will create a Visualforce page to allow a user to create a number of contact
records via a table. The contact Last Name column header will be marked as required, rather
than the individual inputs.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

Chapter 4

107

How to do it…
1. First, create the custom controller by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the RequiredColumnController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create Visualforce page by navigating to the Visualforce setup page by clicking
on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter RequiredColumn in the Label field.

8. Accept the default RequiredColumn that is automatically generated for the
Name field.

9. Paste the contents of the RequiredColumn.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the RequiredColumn page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the RequiredColumn page:
https://<instance>/apex/RequiredColumn.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Managing Records

108

The Last Name column header is styled red, indicating that this is a required field. Attempting
to create a record where only First Name is specified results in an error message being
displayed against the Last Name input for the particular row.

The Visualforce page sets the required attribute on the inputField components in the
Last Name column to false, which removes the red bar from the component.

<apex:column >
 <apex:facet name="header">
 <apex:outputText styleclass="requiredHeader"
 value="{!$ObjectType.Contact.fields.LastName.label}" />
 </apex:facet>
 <apex:inputField value="{!contact.LastName}" required="false"/>
</apex:column>

The Visualforce page custom controller Save method checks if any of the fields in the row are
populated and if this is the case, it checks that the last name is present. If the last name is
missing from any record, an error is added. If an error is added to any record, the save does
not complete.

if ((!String.IsBlank(cont.FirstName)) ||
 (!String.IsBlank(cont.LastName)))
{
 // a field is defined - check for last name
 if (String.IsBlank(cont.LastName))
 {
 error=true;
 cont.LastName.addError('Please enter a value');
}

String.IsBlank() is used as this carries out three checks at once:
to check that the supplied string is not null, it is not empty, and it does
not only contain whitespace.

Chapter 4

109

See also
 f The Styling fields as required recipes in this chapter shows how to style an input field

to indicate it is required without using the required attribute.

Attaching an image to a record
Associating an image with a record is a common requirement while implementing Salesforce,
for example, adding a photo to a contact or a custom news story sObject. Using the standard
attachments functionality creates a disconnect between the record and the image, requiring
additional clicks to view the image, and often relies on the user following a naming convention
when uploading the file.

In this recipe, we will create a Visualforce page to allow a user to attach an image to a
contact record. The page also displays the image if one has been uploaded. This page
will be embedded into the standard contact page layout.

While the size limit for a record attachment in Salesforce is 5 MB, as
the attachment in this recipe is rendered on a Visualforce page, it is
important to keep the size of the file as small as possible to avoid lengthy
download times and excessive bandwidth usage.

Getting ready
This recipe makes use of a controller extension, so this will need to be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the AddImageExt.cls Apex class from the code download
into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter AddImage in the Label field.

8. Accept the default AddImage that is automatically generated for the Name field.

Managing Records

110

9. Paste the contents of the AddImage.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the AddImage page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

13. Finally, add the page to the standard contact page layout. Navigate to the contact
Page Layouts page by clicking on Your Name | Setup | Customize | Contacts |
Page Layouts.

14. Locate the page layout you wish to add the Visualforce page to and click on the Edit
link in the Action column.

If there are multiple page layouts defined, choose the page layout
assigned to your profile. You can view the assignments by clicking
on the Page Layout Assignment button.

15. On the resulting page layout editor page, click on the Visualforce Pages link in the
left-hand column of the palette as shown in the following screenshot:

16. Drag the +Section option from the right-hand side of the palette and drop this
beneath the Address Information section.

Chapter 4

111

17. In the Section Properties popup, set Section Name to Add Image, select the
1-Column radio button in the Layout section, and click on the OK button.

18. Drag the AddImage page from the right-hand side of the palette and drop this
beneath the Add Image section.

19. Click on the Save button to commit the page layout changes.

20. Repeat steps 14 to 19 to add the page to any additional page layouts as required.

Only pages that make use of a standard controller may be
embedded in a standard record view page.

How it works…
Navigating to the detail view of any contact record displays the new Add Image section. Only
the Upload section is populated, as no image has been added to the record.

Managing Records

112

Once an image has been uploaded, this is displayed in the Add Image section.

The controller extension extracts the ID of the contact record from the standard controller and
stores it in parentId.

parentId=std.getId();

When the file is uploaded, it is stored as an attachment on the record with the name of image.

public void uploadImage()
{
 att.parentId = parentId;
 att.Name='image';
 insert att;

 att=new Attachment();
}

The attached image is displayed using an <apex:image /> standard component.

<apex:pageBlockSectionItem >
 <apex:image
 value="/servlet/servlet.FileDownload?file={!ImageId}"
 rendered="{!NOT(ISBLANK(ImageId))}" />
</apex:pageBlockSectionItem>

The controller retrieves the ID of the attached image by querying the record's attachments for
one named image.

public Id getImageId()
{
 Id result=null;
 List<Attachment> images=[select id from Attachment
 where Name='image' and parentId=:parentId
 order by CreatedDate DESC];
 if (images.size()>0)
{
 result=images[0].id;

Chapter 4

113

}

 return result;
}

Note that the resulting attachments are ordered by the
CreatedDate field and the ID of the first result is used.
This allows the user to upload a new image without having to
remember to delete any existing images.

There's more…
As the controller extension deals with the ID of the record from the standard controller,
rather than a specific sObject type, this can be used to extend any standard controller to
provide this functionality.

See also
 f The Managing attachments recipe in this chapter shows how to manage a record and

its attachments from a single page.

Managing attachments
The standard mechanism of attaching files to Salesforce records navigates the user away
from the record to a dedicated upload page. This leaves the user unable to see if they are
duplicating an existing attachment, or see the exact details of any fields that may be required
to name the attachment correctly.

In this recipe, we will create a Visualforce page to allow a user to attach files directly to a
contact record, displaying fields from the record and details of any existing attachments.

Getting ready
This recipe makes use of a custom controller, so this must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

Managing Records

114

3. Paste the contents of the AttachmentsExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create Visualforce page by navigating to the Visualforce setup page by clicking
on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter Attachments in the Label field.

8. Accept the default Attachments that is automatically generated for the Name field.

9. Paste the contents of the Attachments.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the Attachments page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the Attachments page:
https://<instance>/apex/Attachments?id=<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <contact_id> is the ID of any contact record in your organization.

Chapter 4

115

The Visualforce page retrieves the attachments associated with the contact record through
the standard related list.

<apex:pageBlockTable value="{!Contact.attachments}"
 var="attachment" >
 <apex:column headerValue="Action">
 <apex:commandLink action="{!deleteAttachment}" value="Del">
 <apex:param name="deleteId"
 assignTo="{!selectedAttachmentId}"
 value="{!attachment.id}"/>
 </apex:commandLink>

 <apex:outputLink
 value="/servlet/servlet.FileDownload?file={!attachment.id}"
 target="_blank">View</apex:outputLink>
 </apex:column>
 <apex:column value="{!attachment.Name}" />
 <apex:column value="{!attachment.Description}" />
</apex:pageBlockTable>

Note that the Del link in the Action column passes the ID of the
attachment to delete using the <apex:param /> tag.

The controller extension sets parentId of the uploaded attachment to the ID of the contact
record being managed by the standard controller, prior to inserting into the database.

att.ParentId = recordId;
insert att;

att=new Attachment();

PageReference result=ApexPages.CurrentPage();
result.setRedirect(true);
return result;

Note that the Redirect attribute of the returned page reference is
set to true to force a client-side redirect back to the same page. This
causes the standard controller to be constructed from scratch, querying
the latest attachments from the database.

Managing Records

116

There's more…
As the controller extension deals with the ID of the record from the standard controller
rather than a specific sObject type, this can be used to extend any standard controller
to provide this functionality.

See also
 f The Attaching an image to a record recipe in this chapter shows how to upload an

image as an attachment and display it in a record.

Maintaining custom settings
Custom settings are a natural fit for data that controls application behavior. They are similar
to custom sObjects but are cached, and so do not have to be retrieved from the Salesforce
database each time they are accessed. For more information, refer to the Custom Settings
Overview page in the Salesforce online help. Unlike custom sObjects, custom settings do not
have a configurable user interface provided by the platform, which can make maintenance a
challenge for inexperienced administrators.

In this recipe, we will create a Visualforce frontend to an existing custom setting that allows an
administrator to take an application in and out of maintenance, with an associated message
to display to users.

Getting ready
This recipe makes use of a custom setting, so this will need to be created and populated
before the Visualforce page can be created.

1. Navigate to the Custom Settings setup page by clicking on Your Name | Setup |
Develop | Custom Settings.

2. Click on the New button.

3. Enter VF Cookbook Settings in the Label field.

4. Enter VF_Cookbook_Settings in the Object Name field.

5. Select the List option from the in the Setting Type picklist.

6. Select the Protected option from the in the Visibility picklist.

7. Enter Maintaining Custom Settings Recipe into the Description field and
click on Save.

8. On the resulting page, click on the New button in the Custom Fields section.

9. Select the Checkbox radio button on the Step 1. Choose the field type page and
click on the Next button.

Chapter 4

117

10. Enter In Maintenance in the Field Label field on the Step 2. Enter the
Details page.

11. Accept the default In_Maintenance that is automatically generated for the Field
Name field.

12. Select Unchecked for the Default Value radio button and click on the Next button.

13. Click on the Save & New button on the Step 3. Confirm information page.

14. Select the Text Area radio button on the Step 1. Choose the field type page and
click on the Next button.

15. Enter Message in the Field Label field on the Step 2. Enter the Details page.

16. Accept the default Message that is automatically generated for the Field Name field.

17. Click on the Save button on the Step 3. Confirm information page.

18. Next, create the instance of the custom setting that will be managed by the
Visualforce page. Navigate to the Custom Settings setup page by clicking on Your
Name | Setup | Develop | Custom Settings.

19. Locate the entry the VF Cookbook Settings and click on the Manage link.

20. Click on the New button.

21. Enter VF Cookbook App in the Name field and leave the other fields empty.

Ensure the Name field is set correctly as the Visualforce page custom
controller relies on this to retrieve the custom setting.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the SettingsController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

6. Click on the New button.

7. Enter Settings in the Label field.

8. Accept the default Settings that is automatically generated for the Name field.

9. Paste the contents of the Settings.page file from the code download into the
Visualforce Markup area and click on the Save button.

Managing Records

118

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the Settings page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the custom setting maintenance Settings
page: https://<instance>/apex/Settings.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Populating the fields and clicking on the Save button displays a message that the changes
have been saved.

While clicking on the Cancel button takes the user back to their home page.

The custom controller defines the name of the custom setting as a public final static
property (effectively a constant) to avoid hardcoding values in methods,

public final static String VF_COOKBOOK_APP='VF Cookbook App';

Chapter 4

119

The custom controller retrieves the custom setting without consuming a SOQL query.

public VF_Cookbook_Settings__c settings {get; set;}

public SettingsController()
{
 settings=VF_Cookbook_Settings__c.
 getInstance(VF_COOKBOOK_APP);
}

The action method executed by clicking on the Save button stores the custom setting through
a DML update call.

public PageReference Save()
{
 update settings;
 ApexPages.addMessage(new ApexPages.Message(
 ApexPages.Severity.INFO, 'All changes saved'));

 return null;
}

Refreshing record details from embedded
Visualforce

A Visualforce page can be embedded into a standard or custom sObject record view page,
providing the standard controller for the sObject type manages it. This technique is often
used to allow information to be added to a record or its related lists without leaving the view
page. The Visualforce page is embedded in the record view page using an iframe. This means
that returning a page reference to send the user to the record view page after an update
results in the entire record view page being displayed inside the iframe, as shown in the
following screenshot:

Managing Records

120

In this recipe, we will create a Visualforce page that is embedded inside the standard case
sObject record view page and allows a case comment to be added directly from the page.
Upon saving a case comment, the entire record view page will be refreshed to display the
updated case comments related list.

Getting ready
This recipe makes use of a controller extension, so this must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the RefreshEmbeddedExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter RefreshEmbedded in the Label field.

8. Accept the default RefreshEmbedded that is automatically generated for the
Name field.

9. Paste the contents of the RefreshEmbedded.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the RefreshEmbedded page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

13. Finally, add the page to the standard case page layout. Navigate to the case Page
Layouts page by clicking on Your Name | Setup | Customize | Case | Page Layouts.

14. Locate the first page layout to add the page to and click on the Edit link in the
Action column.

Chapter 4

121

15. On the resulting page layout editor page, click on the Visualforce Pages link in the
left-hand column of the palette.

16. Drag the +Section option from the right-hand side of the palette and drop this
beneath the standard and custom buttons.

17. In the Section Properties popup, set the Section Name to RefreshEmbedded, select
the 1-column radio button in the Layout section, and click on the OK button.

18. Drag the RefreshEmbedded page from the right-hand side of the palette and drop
this beneath the Add RefreshEmbedded section.

19. Click on the Save button to commit the page layout changes.

20. Repeat steps 14 to 19 to add the page to additional page layouts.

Managing Records

122

How it works…
Navigating to the detail view of any case record displays the new Add Comment section,

Entering a comment into the Body input field and clicking on the Save button refreshes the
entire page and displays the new comment in the Case Comments related list.

The action method invoked by the Save button sets a Boolean property to indicate that the
page must be refreshed, and defines the target URL reference.

public PageReference save()
{
 cc.parentId=stdCtrl.getId();
 insert cc;

 refreshPage=true;
 pageRef=stdCtrl.view().getUrl();

 return null;
}

Chapter 4

123

When the Visualforce page is refreshed, JavaScript is conditionally rendered based on the
value of the refreshPage property to redirect the main page to the target URL.

<apex:outputPanel rendered="{!refreshPage}">
 <script>
 window.top.location='{!pageRef}';
 </script>
</apex:outputPanel>

Note that this technique will not work when the record view is
displayed in the Salesforce Service Cloud Console, as the record
view is not the top-level page and thus, cannot be accessed or
refreshed through JavaScript.

Using wrapper classes
A common use case for Visualforce is to present a list of sObjects, allowing a user to select
a number of these, and then choose an action to apply to the selected entries. Marking an
sObject entry as selected presents a challenge, as it is associating transient information, the
selected status, with a record persisted in the Salesforce database.

The solution is to use a wrapper class to encapsulate or wrap an sObject instance and some
additional information associated with the sObject instance.

In this recipe, we will create a Visualforce page that presents a list of opportunity sObjects,
and allows the user to select a number of records to remove from the displayed list.

Getting ready
This recipe makes use of a wrapper class which associates a checkbox with an opportunity
sObject record.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the SelectOpportunityWrapper.cls Apex class
from the code download into the Apex Class area.

4. Click on the Save button.

Managing Records

124

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SelectOpportunitiesController.cls Apex
class from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter SelectOpportunities in the Label field.

8. Accept the default SelectOpportunities that is automatically generated for
the Name field.

9. Paste the contents of the SelectOpportunities.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the SelectOpportunities page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following page in your browser displays the SelectOpportunities page:
https://<instance>/apex/SelectOpportunities.

Chapter 4

125

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Selecting a number of checkboxes and clicking on the Remove from List button removes the
selected rows from the list.

Managing Records

126

The custom controller extracts the opportunities for the page and encapsulates each of these
in a SelectOpportunityWrapper class.

opps=new List<SelectOpportunityWrapper>();
for (Opportunity opp : [select id, Name, StageName
 from Opportunity order by CreatedDate limit 10])
{
 opps.add(new SelectOpportunityWrapper(opp));
}

The action method executed when the Save button is clicked iterates the list and removes any
wrapper class instances where the selected checkbox property is set to true.

List<SelectOpportunityWrapper> keep=new
 List<SelectOpportunityWrapper>();
for (SelectOpportunityWrapper wrap : opps)
{
 if (!wrap.selected)
 {
 keep.add(wrap);
 }
}

opps=keep;

See also
 f The Changing options based on the user input recipe in this chapter shows how a

wrapper class can be used to choose options that will be displayed in a picklist.

Changing options based on the user input
In the earlier recipes, for example, the Retrieving fields when a lookup is populated recipe in
Chapter 3, Capturing Data Using Forms, we have seen how to populate the contents of fields
in response to user actions. This technique can also be used to change the characteristics of
other input fields on the page in response to user selections.

In this recipe we will create a Visualforce page that allows a user to create five task sObject
records at once. Each task is associated with a contact selected from a picklist. The picklist
options are configured through a series of checkboxes; clearing a checkbox removes the
contact from the picklist.

Chapter 4

127

Getting ready
This recipe makes use of a custom controller, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SelectContactsController.cls Apex class
from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter SelectContacts in the Label field.

8. Accept the default SelectContacts that is automatically generated for the
Name field.

9. Paste the contents of the SelectContacts.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the SelectContacts page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the SelectContacts page:
https://<instance>/apex/SelectContacts.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Managing Records

128

The contact picklist for each task initially contains all 10 contact options.

Clearing the checkboxes of a number of the contacts removes those contacts from the picklist.

Chapter 4

129

The displayed contacts are associated with their checkbox through an inner wrapper class in
the custom controller.

public class ContactWrapper
{
 public Contact cont {get; set;}
 public Boolean available {get; set;}

 public ContactWrapper(Contact inContact)
 {
 cont=inContact;
 available=true;
 }
}

The custom controller creates the picklist options based on the value of each
contact's checkbox.

available=new List<SelectOption>();
for (ContactWrapper cw : contacts)
{
 if (cw.available)
 {
 available.add(new SelectOption(cw.cont.id,
 cw.cont.FirstName + ' ' +
 cw.cont.LastName));
 }
}

The SelectContacts page iterates the contact wrappers and renders a checkbox next to the
contact name. An <apex:actionsupport /> component is nested in each checkbox to
automatically submit the form and rebuild the contact picklists when a contact checkbox is
selected or cleared.

<apex:repeat value="{!contacts}" var="wrap">
 <apex:pageBlockSectionItem >
 <apex:outputLabel
 value="{!wrap.cont.FirstName} {!wrap.cont.LastName}" />
 <apex:inputCheckbox value="{!wrap.available}">
 <apex:actionSupport event="onchange"
 action="{!availableChanged}" />
 </apex:inputCheckbox>
 </apex:pageBlockSectionItem>
</apex:repeat>

Managing Records

130

See also
 f The Using wrapper classes recipe in this chapter shows how to encapsulate an

sObject record and a checkbox via a wrapper class.

 f The Changing page layout based on the user input recipe in this chapter shows how
the format of a page can change in response to user selections.

Changing page layout based on the user
input

When a Visualforce form submission component specifies a rerender attribute, this causes
a partial refresh of the page to take place, redrawing the specified components based on the
result of the submission. This can be used to change the elements on the page based on the
user input; for example, to guide the user through creating a record a few fields at a time.

In this recipe, we will create a Visualforce page that allows the user to create an account
record. If the user chooses an account type containing the word customer, additional fields
will be rendered to capture additional customer-specific information.

Getting ready
This recipe makes use of a controller extension, so this needs to be present before the
Visualforce page can be created.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ChangeContentExt.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

6. Click on the New button.

7. Enter ChangeContent in the Label field.

8. Accept the default ChangeContent that is automatically generated for the
Name field.

Chapter 4

131

9. Paste the contents of the ChangeContent.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ChangeContent page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the Save
button.

How it works…
Opening the following URL in your browser displays the ChangeContent page:
https://<instance>/apex/ChangeContent.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The page initially displays the Detail section for the user to fill in as shown in the
following screenshot:

Managing Records

132

Selecting any customer option from the Type picklist causes the Customer Information
section to be rendered to capture additional customer-specific information.

The ChangeContent page defines a conditionally rendered Customer Information section.

<apex:pageBlockSection title="Customer Information"
 rendered="{!showCustomerSection}">
 <apex:inputField value="{!Account.NumberOfEmployees}"/>
 <apex:inputField value="{!Account.Rating}"/>
 <apex:inputField value="{!Account.Industry}"/>
</apex:pageBlockSection>

The Type picklist contains a nested <apex:actionSupport /> component to automatically
submit the form when a value is selected.

<apex:actionRegion >
 <apex:pageBlockSection >
 <apex:inputField value="{!Account.Type}">
 <apex:actionSupport event="onchange" action="{!typeChanged}"
 rerender="customersection" />
 </apex:inputField>
 <apex:inputField value="{!Account.Description}"/>
 </apex:pageBlockSection>
</apex:actionRegion>

Chapter 4

133

Note that the Type field is nested inside an action region. This allows
the form to be submitted even if the required Account Name field has
not been populated.

The action method invoked when the Type value changes sets the showCustomerSection
property based on the selected value.

Account acc=(Account) stdCtrl.getRecord();
if (acc.Type.toLowerCase().contains('customer'))
{
 showCustomerSection=true;
}
else
{
 showCustomerSection=false;
}

See also
 f The Changing options based on the user input recipe in this chapter shows how to

alter picklist options based on user selections.

Form-based searching
Standard Salesforce searching looks for any occurrence of a supplied text value in all
searchable fields of one or more sObject types. In the scenario where a user is interested in
the occurrence of the text value in a particular field, this can lead to a number of unwanted
results. For example, searching for an account whose name contains the text United will also
retrieve all accounts with a mailing or billing address in the United Kingdom.

Form-based searching allows a user to specify the text that should be present in particular
fields in order to be considered a match.

In this recipe, we will create a Visualforce page to allow a user to search for accounts that
contain specified text in the Account Name or Website fields, or where the name entered
in the Industry field matches one of a number of options.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

Managing Records

134

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SearchAccountsController.cls Apex class
from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter SearchAccounts in the Label field.

8. Accept the default SearchAccounts that is automatically generated for the
Name field.

9. Paste the contents of the SearchAccounts.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the SearchAccounts page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the SearchAccounts page:
https://<instance>/apex/SearchAccounts.

Chapter 4

135

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The SearchAccountsController page utilizes an account record to capture the Account
Name and Website fields for searching. As the Industries picklist allows multiple values to be
selected, the standard Industry field cannot be used to capture this. Instead, the controller
interrogates the database schema to find the available options.

Schema.DescribeFieldResult fieldDesc =
 Account.Industry.getDescribe();
List<Schema.PicklistEntry> plEntries =
 fieldDesc.getPicklistValues();

for (Schema.PickListEntry plEntry : plEntries)
{
 SelectOption option=new
 SelectOption(plEntry.getValue(),
 plEntry.getLabel());
 industryOptions.add(option);
}

Managing Records

136

The action method executed by the Go button determines which of the search criteria fields
have been populated and constructs a dynamic SOQL query to retrieve the matches.

if ((null!=industries) && (industries.size()>0))
{
 for (Integer idx=0; idx<industries.size(); idx++)
 {
 whereStr+=' OR Industry = \'' + industries[idx] + '\'';
 }
}

if (''!=whereStr)
{
 String queryStr='select Id, Name, Website, Industry from
 Account where ' + whereStr.substring(4);
 results=Database.query(queryStr);
}

Note that a substring of the whereStr variable is used to generate the
query, starting at position 4. This eliminates the initial ' OR ' added
with the first selected industry.

See also
 f The Reacting to URL parameters recipe in Chapter 1, General Utilities shows how to

execute a text search based on a URL parameter.

5
Managing Multiple

Records

In this chapter, we will cover the following recipes:

 f Preventing duplicates by searching before creating

 f Editing a record and its parent

 f Managing a list of records

 f Converting a lead

 f Managing a hierarchy of records

 f Inline-editing a record from a list

 f Creating a Visualforce report

 f Loading records asynchronously

Introduction
When Visualforce pages utilize a controller extension or custom controller, they can
retrieve additional records via SOQL queries. This allows pages to manage more than
one record, regardless of the record sObject types or whether there is any relationship
between the records.

The Salesforce Object Query Language (SOQL) allows information to
be retrieved from the Salesforce database based on supplied criteria.
It has an SQL-like syntax, but does not support advanced operations
such as wildcard field lists.

Managing Multiple Records

138

In this chapter, we will explore a number of scenarios to manage multiple records on a single
page, ranging from a single record and its parent to a deep and wide hierarchy.

We will also see how Visualforce can be used to present details of a collection of records in
response to user-specified criteria, in order to search for existing matches before creating a
new record or to produce a custom report page.

Preventing duplicates by searching before
creating

A very common problem in Salesforce implementations is duplicate data. While training users
to search for existing records before creating can help, this relies on users remembering to
follow the process, which can be especially problematic if some users create records on an
infrequent basis.

In this recipe, we will create a Visualforce page that overrides the lead sObject create button
and requires a user to search for existing matching records before they are allowed to create
a new record. In order to avoid the user having to rekey data in the event that no matches are
found, the search criteria is carried through to the create page.

Getting ready
This recipe makes use of a controller extension, so this must be created before the
Visualforce page.

This page does not make use of the standard controller, but the page
is required to use the lead standard controller in order to be able to
override a standard button.

How to do it…
1. Navigate to the Apex Classes setup page, by clicking on Your Name | Setup |

Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SearchLeadsExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

Chapter 5

139

7. Enter SearchLeads in the Label field.

8. Accept the default SearchLeads that is automatically generated for the Name field.

9. Paste the contents of the SearchLeads.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the SearchLeadspage and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

13. Finally, configure the New Lead override by navigating to Your Name | Setup |
Customize | Leads | Buttons, Links, and Actions.

14. Locate the New entry on the resulting page and click on the Edit link.

15. On the following page, locate the Override With entry, check the Visualforce Page
radio button, and choose SearchLeads from the list of available pages.

16. Click on the Save button.

How it works…
Creating a new lead through any mechanism, for example, via the New button on the Leads
tab or the Create New menu on the sidebar, displays the Search Leads page. Initially, only
the search criteria fields and the Go button are displayed.

Managing Multiple Records

140

Once the user has searched for records, the Create New button is displayed along with
any matches.

Clicking on the Create New button takes the user to the standard New Lead page with the
search criteria prefilled into the appropriate fields.

The Create New button is conditionally rendered based on a controller property set when the
user searches.

<apex:commandButton value="Create New" action="{!createNew}"
 rendered="{!executed}" />

The action method executed by the Go button determines which of the search criteria fields
have been populated, constructs a dynamic SOQL query to retrieve the matches, and sets the
property to indicate that a search has been executed. If no search criteria has been entered,
an error message is displayed.

String whereStr='';
if (!String.IsBlank(searchLead.FirstName))
{
 String wcFName='%' + searchLead.FirstName + '%';
 whereStr+=' OR FirstName LIKE \'' + wcFName + '\'';
}

if (''!=whereStr)

Chapter 5

141

{
 String queryStr='select Id, FirstName, LastName, Company,
 Email from Leadwhere ' + whereStr.substring(4);
 results=Database.query(queryStr);

 executed=true;
}
else
{
 ApexPages.addMessage(
 newApexPages.Message(
 ApexPages.Severity.ERROR,
 'Please enter the search criteria'));
}

The action method executed by the Create New button redirects the user to the standard New
Lead page and includes parameters to prefill the lead fields with the search criteria entered by
the user.

PageReferencepr=newPageReference('/00Q/e');
pr.getParameters().put('nooverride', '1');

if (!String.IsBlank(searchLead.FirstName))
{
 pr.getParameters().put('name_firstlea2',
 searchLead.FirstName);
}

This recipe relies on the HTML element IDs for standard lead fields not
changing in the future. Salesforce does not support this mechanism of
passing parameters to prefill fields, although it has been successfully
used for a number of years.

See also
 f The Reacting to URL parameters recipe in Chapter 1, General Utilities shows how to

execute a text search based on a URL parameter.

Managing Multiple Records

142

Editing a record and its parent
A Visualforce page managed by a standard controller can provide the edit capability for a
record and its parent. However, when the standard controller Save method is invoked, the
object graph is not traversed and only the record being managed by the controller is saved.

In this recipe we will create a Visualforce page to allow a user to edit fields from a contact
and its parent account. Saving the record will also apply any changes made to the parent
account record.

Getting ready
This recipe makes use of an extension controller, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the custom controller by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ContactAndAccountEditExt.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ContactAndAccountEdit in the Label field.

8. Accept the default ContactAndAccountEdit that is automatically generated for the
Name field.

9. Paste the contents of the ContactAndAccountEdit.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ContactAndAccountEdit page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Chapter 5

143

How it works…
Opening the following URL in your browser displays the ContactAndAccountEdit page:
https://<instance>/apex/ContactAndAccountEdit?id=<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <contact_id> is the ID of any contact record in your organization.

The controller extension retrieves the related account record based on the contact managed
by the standard controller. If the contact does not have a parent account, a new account
record is created.

cont=(Contact) stdCtrl.getRecord();
if ((null!=cont.Id) && (null!=cont.AccountId))
{
 acc=[select id, Name, Type, NumberOfEmployees, Industry
 from Account where id=:cont.AccountId];
}
else
{
 acc=new Account();
}

Managing Multiple Records

144

The action method invoked by clicking on the Save button upserts the account record, sets
the parent account ID of the contact record if a new account record is created, and then
delegates to the standard controller save action method to update the contact record.

upsert acc;

if (null==cont.AccountId)
{
 cont.AccountId=acc.id;
}

return stdCtrl.save();

See also
 f The Managing a list of records recipe in this chapter shows how to maintain a list of

sObject records of a single type.

 f The Managing a hierarchy of records recipe in this chapter shows how to maintain a
hierarchy of sObject records of different types.

Managing a list of records
Salesforce users often require the capability to work with a number of records at once. For
example, a sales user may be communicating with a number of contacts, while he/she may
also be creating or deleting contacts in response to information received through a number of
channels. The Salesforce enhanced list view functionality allows a set of records that share a
common record type to be inline-edited, but doesn't provide a way to add or remove records.

In this recipe, we will create a Visualforce page to allow a user to edit the details of a
collection of existing contact records, and create or delete records dynamically. Upon
saving the list, existing records will be updated, any new records will be inserted, and
any records previously deleted from the collection will also be deleted from the database.

Chapter 5

145

Getting ready
This recipe makes use of a wrapper class that needs to be created before the Visualforce page.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the ContactKeyWrapper.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the ContactListEditController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ContactListEdit in the Label field.

8. Accept the default ContactListEdit that is automatically generated for the
Name field.

9. Paste the contents of the ContactListEdit.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ContactListEdit page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Managing Multiple Records

146

How it works…
Opening the following URL in your browser displays the ContactListEdit page:
https://<instance>/apex/ContactListEdit.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Each contact record managed by the custom controller is encapsulated in an instance of the
ContactKeyWrapper class. This ensures that both new and existing records have a unique
key even if they have not been written to the database.

wrappers=new List<ContactKeyWrapper>();
List<Contact> contacts=[select id, FirstName, LastName from Contact
order by CreatedDate limit 5];
for (Contact cont : contacts)
{
 wrappers.add(new ContactKeyWrapper(mainKey++, cont));
}

The Delete button uses an <apex:param /> component to send the key of the contact
wrapper record to be deleted.

<apex:commandButton value="Delete" action="{!removeItem}"
rerender="block">
 <apex:param name="keyToDelete" value="{!wrap.key}"
 assignTo="{!keyToDelete}" />
</apex:commandButton>

Chapter 5

147

The action method invoked by clicking on the Delete button locates the record identified by
the controller property the parameter is assigned to and inspects its id field. If this is null,
the record can simply be removed from the list being managed, as it has not been written to
the database yet. If it is not null, the record is not only removed from the list, but also added
to a list of records to be deleted when the changes are saved.

for (ContactKeyWrapper wrap : wrappers)
{
 if (wrap.key==keyToDelete)
 {
 found=true;
 if (null!=wrap.cont.id)
 {
 toDelete.add(wrap.cont);
 }
 break;
 }

...

if (found)
{
 wrappers.remove(idx);
}

The user can add one or more records to the list by entering the number of records and
clicking on the Add button. This creates the appropriate number of instances of the
ContactKeyWrapper class and appends these to the list.

Clicking on the Save button iterates the list of records and identifies those that have fields
populated. These records are validated to ensure that all the required fields are populated. The
method then executes a DML upsert for the populated records, updating existing records and
inserting new ones. The records in the toDelete list are then deleted from the database.

See also
 f The Editing a record and its parent recipe in this chapter shows how to maintain an

sObject record and its parent record from a single page.

 f The Managing a hierarchy of records recipe in this chapter shows how to maintain a
hierarchy of sObject records of different types.

Managing Multiple Records

148

Converting a lead
The standard Salesforce lead conversion page allows a user to create a new account and
contact record or merge with existing records, and optionally create a new opportunity record.
Information from the lead is copied to the existing or new records based on the lead field
mapping configuration. If a user wishes to specify information after clicking on the Convert
button, they must exit the conversion and edit the lead record.

In this recipe, we will create a Visualforce page to allow a user to convert a lead and in
addition to creating or merging with existing records, populate additional fields on the
opportunity that is created as part of the conversion.

Getting ready
This recipe makes use of a controller extension so this must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the LeadConvertExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter LeadConvert in the Label field.

8. Accept the default LeadConvert that is automatically generated for the Name field.

9. Paste the contents of the LeadConvert.page file from the code download into the
Visualforce Markup area and click on the Save button.

Chapter 5

149

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the LeadConvert page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the LeadConvert page:
https://<instance>/apex/LeadConvert?id=<lead_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com, and <lead_id> is the ID of any unconverted lead record in
your organization.

Managing Multiple Records

150

Populating the opportunity fields and clicking on the Convert button converts the lead to
create new or merge with existing account and contact records, and redirects the user to
the new opportunity record.

A case record is used as the carrier object for the account and contact information.

A carrier object is an sObject that is used to hold a set of fields for
a page, rather than for its intended purpose. In this recipe, we need
to hold references to account and contact records. While this could
be achieved using Id properties, using a case sObject allows the
<apex:inputField /> standard component to be used, which
generates appropriate HTML markup for a record lookup.

<apex:pageBlockSection title="General" columns="1">
 <apex:inputField value="{!carrier.AccountId}"/>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="New Account '{!Lead.Company}'" />
 <apex:inputCheckbox value="{!newAccount}" />
 </apex:pageBlockSectionItem>
 <apex:inputField value="{!carrier.ContactId}"/>
 <apex:pageBlockSectionItem>
 <apex:outputLabel value="New Contact '{!Lead.FirstName} {!Lead.
LastName}'" />
 <apex:inputCheckbox value="{!newContact}" />
 </apex:pageBlockSectionItem>

Chapter 5

151

The list of available status field values for the converted lead is created by extracting all
values from the LeadStatus database table where the IsConverted field is set to
true, and creating SelectOption instances for each value.

List<LeadStatus> states=[select id, MasterLabel from
 LeadStatus where IsConverted=true];

for (LeadStatus state : states)
{
 if (null==convertedStatus)
 {
 convertedStatus=state.MasterLabel;
 }

 SelectOption option=new
 SelectOption(state.MasterLabel, state.MasterLabel);
 result.add(option);
}

If values are not populated for the account and contact lookup fields, the controller creates
a new account and contact record. The checkboxes on the page are provided as a visual
indicator to the user and the controller does not use the values.

if (null!=carrier.AccountId)
{
 leadConvert.setAccountId(carrier.AccountId);
}

If the Opportunity Name field is populated, a new opportunity is also created when the
lead is converted.

if (String.IsBlank(opp.Name))
{
 leadConvert.setDoNotCreateOpportunity(true);
}
else
{
 leadConvert.setOpportunityName(opp.Name);
}

The additional opportunity fields are captured to an opportunity record instance in the controller,
which is used to update the new opportunity after the lead conversion has taken place.

if (!String.IsBlank(opp.Name))
{
 Opportunity newOpp=[select id from Opportunity where
 id=:convertResult.getOpportunityId()];

Managing Multiple Records

152

 if (!String.IsBlank(opp.StageName))
 {
 newOpp.StageName=opp.StageName;
 }

Finally, the user is directed to one of the accounts or opportunity view pages depending on
whether a new opportunity was created as part of the lead conversion or not.

if (!String.IsBlank(opp.Name))
{

...

 result=new PageReference('/' +
 convertResult.getOpportunityId());
}
else
{
 result=new PageReference('/' + convertResult.getAccountId());
}

There's more…
This Visualforce page can be configured as an override to the standard lead convert button.

1. Navigate to Your Name | Setup | Customize | Leads | Buttons and Links.

2. Locate the Convert entry on the resulting page and click on the Edit link.

3. On the following page, locate the Override With entry, check the Visualforce Page
radio button, and choose LeadConvert from the list of available pages.

4. Click on the Save button.

Managing a hierarchy of records
Salesforce records often form part of a deep and wide hierarchy; for example, an account can
contain a number of cases, each of which can have a number of comments associated with
them. Creating and maintaining the elements of the hierarchy in isolation is a cumbersome
and time-consuming task, as to add a comment a user must click through from the account
record to the case record, and then click on the New button on the case comments related list
to open the new comment page.

In this recipe we will create a Visualforce page that allows a user to maintain an account, its
associated cases, and the comments associated with those cases. The user can update or
delete existing records, or create new records at any level of the hierarchy.

Chapter 5

153

Getting ready
This recipe makes use of two wrapper classes which need to be created before the Visualforce
page and controller.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the CaseCommentKeyWrapper.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

6. Click on the New button.

7. Paste the contents of the CaseKeyWrapper.cls Apex class from the code
download into the Apex Class area.

8. Click on the Save button.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the AccountCasesCommentsExt.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

6. Click on the New button.

7. Enter AccountCasesCommentsEdit in the Label field.

8. Accept the default AccountCasesCommentsEdit that is automatically generated for
the Name field.

9. Paste the contents of the AccountCasesCommentsEdit.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Managing Multiple Records

154

11. Locate the entry for the AccountCasesCommentsEdit page and click on the
Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the custom setting maintenance settings
page: https://<instance>/apex/AccountCasesCommentsEdit?id=<account_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <account_id> is the ID of any account record in your organization.

Chapter 5

155

Each case and child case comments managed by the controller are encapsulated in an
instance of the CaseKeyWrapper and CaseCommentKeyWrapper classes respectively.
This ensures that both new and existing records have a unique key even if they have not been
written to the database. The cases are encapsulated in the controller extension constructor.

List<Case> cases=[select id, Status, Subject,
 (select id, CommentBody, IsPublished, ParentId from
 CaseComments)
 from Case
 whereAccountId=:stdCtrl.getId()];

caseWrappers=new list<CaseKeyWrapper>();
for (Case cs : cases)
{
 caseWrappers.add(new CaseKeyWrapper(key++, cs,
 cs.CaseComments));
}

While the comments are encapsulated in the CaseKeyWrapper constructor.

comments=new List<CaseCommentKeyWrapper>();

if (null!=inComments)
{
 for (CaseComment cc : inComments)
 {
 comments.add(new CaseCommentKeyWrapper(commentKey++,
 cc));
 }
}

The commentKey is an integer property of the CaseKeyWrapper
class that starts at 1 and is incremented for each comment processed.
This means that it must be concatenated with the key from its parent
CaseKeyWrapper class in order to generate a unique value.

The del button to delete a case uses an <apex:param /> component to send the key of the
case wrapper record to be deleted.

<apex:commandButton value="del" action="{!deleteCase}"
rerender="list">
 <apex:param name="caseToDel" value="CS{!caseWrap.key}"
 assignTo="{!caseToDel}"/>
</apex:commandButton>

Managing Multiple Records

156

The del button to delete a case comment also uses an <apex:param /> component, but
requires the keys of both the comment wrapper and its parent case wrapper to be encoded
in the parameter passed back by the controller in order to generate a unique value for the
comment, as explained earlier:

<apex:commandButton value="del" action="{!deleteCaseComment}"
 rerender="list">
 <apex:param name="ccToDel"
 value="CS{!caseWrap.key}:CC{!commentWrap.key}"
 assignTo="{!ccToDel}"/>
</apex:commandButton>

The action method associated with each del button locates the record identified by the
controller property the parameter is assigned to and inspects its id field. If this is null, the
record can simply be removed from the list being managed, as it has not been written to the
database yet. If it is not null, the record is not only removed from the list, but also added to a
list of records to be deleted when the changes are saved.

Clicking on the Save button iterates the list of case wrappers, extracts the encapsulated
cases, and executes a DML upsert. The case wrappers are then iterated again, and the child
case comments are extracted from their wrapper class instances. The parentId field of any
newly added comments will be null, so this will be set to id of the parent case.

List<CaseComment>caseComments=new List<CaseComment>();
for (CaseKeyWrapper wrapper : caseWrappers)
{
 for (CaseCommentKeywrapperccWrapper : wrapper.comments)
 {
 CaseComment comment=ccWrapper.comment;
 if (null==comment.ParentId)
 {
 comment.parentId=wrapper.cs.id;
 }
 caseComments.add(comment);
 }
}

A DML upsert operation is then carried out for the case comment records. Finally, DML
operations are carried out to remove any deleted cases or comments from the database.

Chapter 5

157

See also
 f The Managing a list of records recipe in this chapter shows how to maintain a list of

sObject records of a single type.

 f The Managing a record and its parent recipe in this chapter shows how to maintain
an sObject record and its parent record from a single page.

Inline-editing a record from a list
In the previous recipes, all records in a list have been editable. This works well when the
user is expecting to edit a number of records, but is not a great experience for users that
predominantly view records. In this situation, it is better to give the user a read-only view of
the records and a rapid way to edit a record if required.

In this recipe, we will create a Visualforce page that presents a list of contacts in read-only
mode. The user may double-click on any field in order to edit the record details. Any changes
to the contact records are stored locally, until the user chooses to save or discard them.

Standard Visualforce markup provides support for inline editing, but
this requires each field to be double-clicked to edit individually.

Getting ready
This recipe makes use of a custom controller that must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the ContactDblClickEditController.cls Apex class
from the code download into the Apex Class area.

4. Click on the Save button.

Managing Multiple Records

158

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ContactDblClickEdit in the Label field.

8. Accept the default ContactDblClickEdit that is automatically generated for the
Name field.

9. Paste the contents of the ContactDblClickEdit.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ContactDblClickEdit page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the custom setting maintenance settings
page: https://<instance>/apex/ContactDblClickEdit.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 5

159

Double-clicking on any of the fields changes the specific row into edit mode.

Clicking on the Done button applies any changes made to the record stored in the controller
and reverts the row to read-only mode. Clicking on Cancel not only reverts the row to read-only
mode, but also discards any changes that the user has made.

The Visualforce page defines two sets of columns for the list of records: one set to render for
records in read-only mode, and another to render input fields if the record is in edit mode.

<apex:pageBlockTable style="width:75%" value="{!contacts}"
var="contact" >
 <apex:column style="width:10%" headerValue="First Name"
 value="{!contact.FirstName}"
 rendered="{!contact.id!=chosenContactId}"
 ondblclick="editContact('{!contact.id}')" />

 ...
 <apex:column style="width:10%" headerValue="First Name"
 rendered="{!contact.id==chosenContactId}">
 <apex:inputField style="width:80%"
 value="{!contact.FirstName}" />
 </apex:column>
</apex:pageBlockTable>

Managing Multiple Records

160

The ondblclick event handler for the read-only columns executes an action function that
simply passes a parameter to the controller, identifying the record that the user would like
to edit.

<apex:actionFunction name="editContact" rerender="contacts, msgs">
 <apex:param name="chosenContactId" value=""
 assignTo="{!chosenContactId}" />
</apex:actionFunction>

This causes the page to be refreshed and the edit-mode columns to be rendered for the
record whose ID matches the chosenContactId controller property.

The buttons rendered in the action column for the record in edit mode are both associated
with the same action method; this simply clears the value of the chosenContactId
controller property. If the user is keeping their edits, the form submission will automatically
update the details of the stored record. If the user chooses to cancel the edit, the
immediate="true" attribute on the button will discard any data entered by the user and
revert the page to display the last saved data from the controller.

<apex:commandButton action="{!done}" rerender="contacts, msgs"
 value="Done" />
<apex:commandButton action="{!done}" rerender="contacts, msgs"
 value="Cancel" immediate="true" />

Note that editing a record and then double-clicking a different
row will save the outstanding edit as though the Done button
had been clicked.

See also
 f The Managing a list of records recipe in this chapter shows how to create an editable

list of records.

 f The Managing a hierarchy of records recipe in this chapter shows how to maintain a
hierarchy of sObject records of different types.

Chapter 5

161

Creating a Visualforce report
Salesforce provides powerful analytic capabilities through the report and dashboard builders,
but there are times when reporting requirements cannot be satisfied through the standard
functionality; for example, where data from a number of different sources is required to be
presented in multiple formats. In this scenario, Visualforce can give fine-grained control over
the layout of the results, while a custom controller allows retrieval of any accessible data in
the system.

In this recipe, we will create a Visualforce report that retrieves all cases matching criteria
specified by the user and outputs these in a tabular format containing details of all cases,
keeping a running total of the number of cases with the same status and origin. Two tables
that provide the total count of cases for each status and origin value follow this.

Note that the replacement of standard reporting functionality with
Visualforce should only be carried out as a last resort. Coding
complex reporting requirements can consume significant amounts
of time and removes the capability for users to customize reports to
their own requirements.

Getting ready
This recipe makes use of a wrapper class that needs to be created before the Visualforce
page and controller.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the CaseAndTotals.cls Apex class from the code download
into the Apex Class area.

4. Click on the Save button.

Managing Multiple Records

162

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the CasesReportController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter CasesReport in the Label field.

8. Accept the default CasesReport that is automatically generated for the Name field.

9. Paste the contents of the CasesReport.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the CasesReport page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following page in your browser displays the CasesReport page:
https://<instance>/apex/CasesReport.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 5

163

Choosing either an option from the Choose timeframe: picklist or populating the Enter
custom criteria: fields and clicking on the associated Go button retrieves the cases that
match the criteria for display in a tabular format, and also renders the case totals broken
down by status and origin.

Each Go button has an associated action method to execute a query and retrieve the
matching cases. The button associated with the Choose timeframe: picklist executes the
chooseTimeframe method. As the value of each option in the picklist is a SOQL date literal,
the chosen value can be bound directly into the query.

String queryStr='select id, CaseNumber, CreatedDate, Status,
 Origin from Case where CreatedDate=' + timeFrame +
 ' order by CreatedDateasc';

processCases(Database.query(queryStr));

Managing Multiple Records

164

More information on SOQL date literals can be found in the Salesforce
help at https://login.salesforce.com/help/doc/en/
custom_dates.htm.

The Go button associated with the Enter custom criteria: section executes the
runCustomQuery action method; this constructs the query based on the user's inputs.

Date startDate=carrier1.ActivityDate;
Date endDate=carrier2.ActivityDate;
String queryStr='select id, CaseNumber, CreatedDate, Status,
 Origin from Case where CreatedDate>=:startDate ' +
 ' andCreatedDate<=:endDate ';
if (statusCriteria!='All')
{
 if ('Open'==statusCriteria)
 {
 queryStr+='and Status!=\'Closed\'';
 }
 else if ('Closed'==StatusCriteria)
 {
 queryStr+='and Status=\'Closed\'';
 }
}

queryStr+=' order by CreatedDateasc';

processCases(Database.query(queryStr));

The custom criteria section uses task records as carriers for the Start
Date and End Date inputs. A carrier object is an sObject that is used to
hold a set of fields for a page, rather than for its intended purpose. While
this could be achieved using String properties, using a task sObject
allows the <apex:inputField /> standard component to be used,
which generates appropriate HTML markup for a datepicker.

Each method executes the appropriate query and delegates the results to the processCases
method. This method updates the total number of cases for the case status and origin,
encapsulates the record in a wrapper class, and adds it to the list of records to be displayed
on the page.

Chapter 5

165

The totals for case origin and status are stored in maps that are keyed by the status and
origin values.

public Map<String, Integer>statusTotals {get; set;}

The page uses dynamic Visualforce bindings to iterate the keys from the map and output the
associated values.

<apex:repeat value="{!statusTotals}" var="status">
 <tr>
 <td style="width:30%">
 <apex:outputText value="{!status}" />
 </td>
 <td style="width:30%">
 <apex:outputText value="{!statusTotals[status]}" />
 </td>
 </tr>
</apex:repeat>

More information on using dynamic Visualforce bindings to reference
Apex maps and lists can be found at http://www.salesforce.
com/us/developer/docs/pages/Content/pages_
dynamic_vf_maps_lists.htm.

Loading records asynchronously
In the previous recipes, all lists of records being managed by the page or related to the record
being managed have been loaded synchronously; that is, the records have been retrieved
by the controller and displayed when the page is initially loaded. In the event that the query
retrieving the records is complex (and thus, time consuming), or where the payload for the
records is large due to the volume of records or the size of each individual record, this can
result in a delay before the page is loaded. A delay of this nature is invariably a negative
experience for the user, often leading them to conclude that the application has failed in
some way.

In this recipe, we will create a Visualforce page that loads an account record prior to rendering
the page for the first time, and then loads the opportunity records associated with the account
asynchronously. A spinning GIF is displayed to the user indicating that the asynchronous load
is taking place.

Managing Multiple Records

166

Getting ready
This recipe makes use of a controller extension, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the AsynchLoadExt.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter AsynchLoad in the Label field.

8. Accept the default AsynchLoad that is automatically generated for the Name field.

9. Paste the contents of the AsynchLoad.pagefile from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the AsynchLoad page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the AsynchLoad page:
https://<instance>/apex/AsynchLoad?id=<account_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <account_id> is the ID of any account record in your organization.

Chapter 5

167

This initially displays details of the account and the spinning GIF in the Opportunities section.

Once the asynchronous load completes, the opportunity details are rendered into the
Opportunities section.

Managing Multiple Records

168

The controller extension defines a property, oppsNeeded, that indicates if the
opportunities have been asynchronously loaded or not. When the page is initially loaded,
an <apex:outputPanel /> component is rendered to execute an action function to
load the opportunities and set the value of the oppsNeeded value to false.

<apex:outputPanel rendered="{!oppsNeeded}">
 <script>
 loadOppsJS();
 </script>
</apex:outputPanel>

Upon completion of the action function, the opportunities section is rerendered. This section
displays a spinning GIF if the oppsNeeded property has a value of false, or the list of
opportunities if the value is true.

<apex:outputPanel rendered="{!oppsNeeded}">
 <apex:pageBlockSection title="Opportunities">
 <div id="spinner">
 <p align="center" style='{font-family:"Arial", Helvetica, sans-
serif; font-size:20px;}'>
 <apex:image value="/img/loading.gif"/>
 </p>
 </div>
 </apex:pageBlockSection>
</apex:outputPanel>

<apex:outputPanel rendered="{!NOT(oppsNeeded)}">
 <apex:pageBlockSection title="Opportunities" columns="1">
 <apex:pageBlockTable value="{!opps}" var="opp"
rendered="{!oppsFound}">
 <apex:column
 headerValue="{!$ObjectType.Opportunity.fields.Name.label}">
 <apex:outputLink value="/{!opp.id}">
 {!opp.Name}
 </apex:outputLink>
 </apex:column>
 ...
 </apex:pageBlockTable>
 </apex:pageBlockSection>
</apex:outputPanel>

6
Visualforce Charts

In this chapter, we will cover the following recipes:

 f Creating a bar chart

 f Creating a line chart

 f Customizing a chart

 f Adding multiple series

 f Creating a stacked bar chart

 f Adding a third axis

 f Embedding a chart in a record view page

 f Multiple charts per page

Introduction
Visualforce charting allows custom charts to be embedded into any Visualforce page using
standard components, only server-side code is required. A key difference from the standard
charting functionality available in reports and dashboards is that the data is provided by the
Visualforce page controller and can be derived from any number of sObjects, regardless of
whether any relationships between the sObjects exist.

Visualforce charts became Generally Available in the Winter '13 release
of Salesforce. Prior to this, custom charts required use of a JavaScript
framework, such as Dojo Charting or Google Charts.

In this chapter, we will create a number of Visualforce charts of increasing complexity, add a
chart to a standard Salesforce record view page, and generate a number of charts on a single
page, much like a standard Salesforce dashboard.

Visualforce Charts

170

Creating a bar chart
Bar charts allow easy comparison of groups of data. A typical use in Salesforce is to view
performance on a month-by-month basis; for example, to identify the effectiveness of a
process improvement.

In this recipe, we will create a Visualforce page containing a bar chart that displays the
total value of won opportunities per month for the previous 12 months. This allows a sales
manager to view at a glance whether sales are increasing or decreasing, and to identify any
problem months that require further analysis.

Getting ready
This recipe makes use of a custom controller, so this must be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the BarChartController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter BarChart in the Label field.

8. Accept the default BarChart that is automatically generated for the Name field.

9. Paste the contents of the BarChart.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the BarChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Chapter 6

171

How it works…
Opening the following URL in your browser displays the BarChart page:
https://<instance>/apex/BarChart.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="300" width="550" data="{!chartData}">

The bar series component defines the values from the chart data that will be used to plot the
x and y values.

<apex:barSeries orientation="vertical" axis="bottom" xField="name"
 yField="oppTotal" />

The x and y values must appear in every record of the chart
data collection.

Visualforce Charts

172

The axes for the chart are defined by <apex:axis/> components: one for the bottom
axis displaying the month name and another for the left-hand axis displaying the total
opportunity value.

<apex:axis type="Category" position="bottom" fields="name"
title="Month" />
<apex:axis type="Numeric" position="left" fields="oppTotal"
title="Value" grid="true"/>

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 public Decimal oppTotal { get; set; }
}

Here, the name property contains the month name, while the oppTotal property contains the
total value of opportunities closed in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year and adds the opportunity amount to the
wrapper class instance for the month that the opportunity closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...
for (Opportunity opp : [select id, CloseDate, Amount
 from Opportunity
 where IsClosed = true
 and IsWon = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(opp.CloseDate.month()-1);
 cand.oppTotal+=opp.Amount;
}

Chapter 6

173

In order to ensure that a bar is rendered for each month, the controller iterates the months
and generates a random value for any month that has an opportunity total value of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0.0==cand.oppTotal)
 {
 cand.oppTotal=Math.random()*750000;
 }
}

See also
 f The Creating a stacked bar chart recipe in this chapter shows how to create a chart

where each bar contains a breakdown of the data set.

 f The Adding multiple series recipe in this chapter shows how to plot a bar and a line
series on the same chart.

Creating a line chart
Line charts are useful to demonstrate changes in data over time. A typical use in Salesforce is
to view the number of records with a particular characteristic over a period of time.

In this recipe, we will create a Visualforce page containing a line chart that displays the total
number of closed cases per month for the previous 12 months.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the custom controller by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the LineChartController.cls Apex class from the code
download into the Apex Class area.

Visualforce Charts

174

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter LineChart in the Label field.

8. Accept the default LineChart that is automatically generated for the Name field.

9. Paste the contents of the LineChart.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the LineChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the LineChart page:
https://<instance>/apex/LineChart.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 6

175

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="300" width="550" data="{!chartData}">

The line series component defines the values from the chart data that will be used to plot the
x and y values, and how each point in the series should be decorated.

<apex:lineSeries axis="bottom" fill="false" xField="name"
 yField="recordCount"markerType="cross" markerSize="4"
 markerFill="#FF0000"/>

Unlike the majority of Visualforce components, no error will be generated
at save time if xField or yField refer to properties that do not exist in
the chart data collection. In this instance, no chart will be rendered and
the browser will generate a JavaScript error.

The axes for the chart are defined by <apex:axis/> components: one for the bottom
axis displaying the month name and another for the left-hand axis displaying the record
count value.

<apex:axis type="Numeric" position="left" fields="recordCount"
title="Record Count" grid="false" steps="1"/>
<apex:axis type="Category" position="bottom" fields="name"
title="Month" />

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 publicDecimalrecordCount { get; set; }
}

Here, the name property contains the month name, while the recordCount property
contains the total number of cases closed in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year and increments the record count in the
wrapper class instance for the month that the opportunity closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),

Visualforce Charts

176

 Time.newInstance(23, 59, 59, 999));

 ...
for (Case cs : [select id, ClosedDate
 from Case
 where IsClosed = true
 and ClosedDate>=:startDT
 and ClosedDate<=:endDT])
{
 Data cand=dataByMonth.get(cs.ClosedDate.date().month()-1);
 cand.recordCount++;
}

In order to ensure that a point is plotted for each month, the controller iterates the months
and generates a random value for any month that has a record count of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0.0==cand.recordCount)
 {
 cand.recordCount=(Math.random()*20).intValue();
 }
}

See also
 f The Adding multiple series recipe in this chapter shows how to plot a bar and a line

series on the same chart.

Customizing a chart
Visualforce charts are highly customizable; colors, markers, line widths, highlighting, legends,
labels, and more are under the control of the developer.

In this recipe we will create a Visualforce page containing a bar chart displaying the total value
of won opportunities per month for the last year.

The chart will be customized to display horizontal bars in a custom dark blue color that do not
highlight when the user hovers over a bar. Finally, a legend will be displayed to show the user
what the bars represent.

Chapter 6

177

Getting ready
This recipe relies on the custom controller from the Creating a bar chart recipe in this chapter.
If you have already completed that recipe, you can skip this section.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the BarChartController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter CustomBarChart in the Label field.

4. Accept the default CustomBarChart that is automatically generated for the
Name field.

5. Paste the contents of the CustomBarChart.page file from the code download into
the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the CustomBarChart page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the CustomBarChart page:
https://<instance>/apex/CustomBarChart.

Visualforce Charts

178

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="400" width="550" data="{!chartData}">

The bar series component defines the values from the chart data that will be used to plot the
x and y values.

<apex:barSeries axis="bottom" xField="oppTotal" yField="name"
 colorSet="#00A" highlight="false" title="Total"
 orientation="horizontal"/>

The following attributes override the default functionality of the bar series:

 f colorSet: This defines the custom color for the bars

 f highlight: This specifies whether the bar should be highlighted when the user
hovers their mouse over it

 f orientation: This specifies whether the bars should be drawn vertically
(the default) or horizontally

Chapter 6

179

The chart legend is created by an <apex:legend/> component nested inside the
chart component.

<apex:legend position="bottom"/>

The axes for the chart are defined by <apex:axis/> components: one for the left-hand
axis displaying the month name and another for the bottom axis displaying the opportunity
total value.

<apex:axis type="Category" position="left" fields="name"
title="Month" />
<apex:axis type="Numeric" position="bottom" fields="oppTotal"
title="Total" grid="true"/>

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 public Decimal oppTotal { get; set; }
}

Here, the name property contains the month name, while the oppTotal property contains the
total value of opportunities closed in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year and adds the opportunity amount to the
wrapper class instance for the month that the opportunity closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...
for (Opportunity opp : [select id, CloseDate, Amount
 from Opportunity
 where IsClosed = true
 and IsWon = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(opp.CloseDate.month()-1);
 cand.oppTotal+=opp.Amount;
}

Visualforce Charts

180

Adding multiple series
In the previous recipes in this chapter, each chart contained a single series. Visualforce charts
are not limited to this and can plot multiple sets of data, regardless of whether there is a
relationship between the data sets.

In this recipe we will create a Visualforce page containing a chart that plots two series against
the month for the last year. The first is a bar series of the number of opportunities lost in the
month, while the second is a line series of the number of opportunities won in the month. This
allows a sales director to see if the won/lost ratio is improving over time.

Getting ready
This recipe makes use of a custom controller, so this must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the MultiSeriesChartController.cls Apex class from
the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter MultiSeriesChart in the Label field.

8. Accept the default MultiSeriesChart that is automatically generated for the
Name field.

9. Paste the contents of the MultiSeriesChart.page file from the code download
into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the MultiSeriesChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Chapter 6

181

How it works…
Opening the following URL in your browser displays the MultiSeriesChart page:
https://<instance>/apex/MultiSeriesChart.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="300" width="550" data="{!chartData}">

A bar series component defines the values from the chart data that will be used to plot the
lost opportunity x and y values. The title attribute defines the title that will be used in the
legend for the series.

<apex:barSeries orientation="vertical" axis="bottom" xField="name"
 yField="lostCount" title="Lost" />

Visualforce Charts

182

A line series component defines the values from the chart data that will be used to plot the x
and y values, and how each point in the series should be decorated. Once again the title
attribute defines the title that will be used in the legend for the series.

<apex:lineSeries axis="bottom" fill="false" xField="name"
 yField="wonCount" markerType="circle" markerSize="4"
 markerFill="#00FF00" title="Won"/>

The chart legend is created by an <apex:legend/> component nested inside the chart
component. The position attribute defines the location of the legend; in this recipe it will be
displayed above the chart.

<apex:legend position="top"/>

The axes for the chart are defined by <apex:axis/> components: one for the bottom axis
displaying the month name and another for the left-hand axis displaying the won and lost
record count values. As there are multiple series being plotted against the left-hand axis,
a comma-separated list of the chart data properties is specified as the value of the
fields attribute.

<apex:axis type="Numeric" position="left"
fields="wonCount,lostCount"title="Total" grid="true"
steps="1"/>
<apex:axis type="Category" position="bottom" fields="name"
title="Month" />

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 publicIntegerwonCount { get; set; }
 publicIntegerlostCount { get; set; }
}

Here, the name property contains the month name, the wonCount property contains the total
number of opportunities won in that month, and the lostCount property contains the total
number of opportunities lost in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year and increments the won or lost count in the
wrapper class instance for the month that the opportunity closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),

Chapter 6

183

 Time.newInstance(23, 59, 59, 999));

 ...
for (Opportunity opp : [select id, CloseDate
 from Opportunity
 where IsClosed = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(opp.CloseDate.month()-1);
 if (opp.IsWon)
 {
 cand.wonCount++;
 }
 else
 {
 cand.lostCount++;
 }
}

In order to ensure that a bar and point are plotted for each month, the controller iterates
the months and generates a random value for any month that has a won or lost record
count of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0.0==cand.wonCount)
 {
 cand.wonCount=(Math.random()*50).intValue();
 }

 if (0.0==cand.lostCount)
 {
 cand.lostCount=(Math.random()*50).intValue();
 }
}

See also
 f The Creating a bar chart recipe in this chapter shows how to plot a data set as a

series of bars.

 f The Creating a line chart recipe in this chapter shows how to plot a data set as a line.

Visualforce Charts

184

Creating a stacked bar chart
Stacked bar charts allow the contributing parts of data to be compared to the whole. An
example of this is displaying a bar that represents the total number of opportunities that
are currently open, with sections of the bar displaying the count of opportunity records that
are in each stage of the sales process.

In this recipe, we will create a Visualforce page containing a stacked bar chart where each
bar displays the total opportunity value that closed that month, both won and lost, for the
last 12 months. Each bar is divided into two segments: the lower segment shows the total
value of opportunities lost in a month, while the upper segment shows the total value won.

Getting ready
This recipe makes use of a custom controller, so this must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the StackedBarChartController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

6. Click on the New button.

7. Enter StackedBarChart in the Label field.

8. Accept the default StackedBarChart that is automatically generated for the
Name field.

9. Paste the contents of the StackedBarChart.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the StackedBarChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

Chapter 6

185

How it works…
Opening the following URL in your browser displays the custom setting maintenance settings
page: https://<instance>/apex/StackedBarChart.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="450" width="550" data="{!chartData}">

Visualforce Charts

186

A bar series component defines the values from the chart data that will be used to plot the
won/lost opportunity x and y values. Setting the stacked attribute to true specifies that the
values should be stacked on top of each other in a single bar. Setting the stacked attribute
to false causes the bars to be rendered side by side as shown in the following screenshot:

As this component is generating a stacked bar chart, the yField attribute contains comma-
separated values for all segments of the bar, in this case, the lost and won opportunity totals.

<apex:barSeriescolorSet="#A00,#00A" orientation="vertical"
 axis="bottom" xField="name"
 yField="lostTotal,wonTotal"
 title="Lost, Won" stacked="true"/>

The colorSet and title attributes also contain comma-separated values for each bar
segment. The colorSet attribute defines the color to apply to each segment, while the
title attribute defines the text to be displayed in the legend for each segment.

Chapter 6

187

The colors in the colorSet attribute are specified as RGB
(Red, Green, Blue) values, where #A00 equates to a dark red
color and #00A equates to a dark blue color.

The chart legend is created by an <apex:legend/> component nested inside the chart
component. The position attribute defines the location of the legend; in this recipe it
will be displayed below the chart.

<apex:legend position="bottom"/>

The axes for the chart are defined by <apex:axis/> components: one for the bottom axis
displaying the month name and another for the left-hand axis displaying the won and lost total
values. As a stacked bar series is being plotted against the left-hand axis, a comma-separated
list of the chart data properties is specified as the value of the fields attribute.

<apex:axis type="Category" position="bottom" fields="name"
 title="Month" />
<apex:axis type="Numeric" position="left"
fields="wonTotal,lostTotal"title="Amount"
grid="true"/>

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 publicDecimalwonTotal { get; set; }
 publicDecimallostTotal { get; set; }
}

Here, the name property contains the month name, the wonTotal property contains the total
value of opportunities won in that month, and the lostTotal property contains the total
value of opportunities lost in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year and applies the opportunity value to the
appropriate won or lost property in the wrapper class instance for the month that the
opportunity closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...

Visualforce Charts

188

for (Opportunity opp : [select id, CloseDate, Amount
 from Opportunity
 where IsClosed = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(opp.CloseDate.month()-1);
 if (opp.IsWon)
 {
 cand.wonTotal+=opp.Amount;
 }
 else
 {
 cand.lostTotal+=opp.Amount;
 }
}

In order to ensure that a stacked bar is plotted for each month, the controller iterates the
months and generates a random value for any month that has a won or lost total of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0.0==cand.wonTotal)
 {
 cand.wonTotal=(Math.random()*750000).intValue();
 }

 if (0.0==cand.lostTotal)
 {
 cand.lostTotal=(Math.random()*750000).intValue();
 }
}

See also
 f The Creating a bar chart recipe in this chapter shows how to plot a data set as a

series of bars.

 f The Adding multiple series recipe in this chapter shows how to plot a line and a bar
series on the same chart.

Chapter 6

189

Adding a third axis
Plotting multiple series on a single graph can be problematic if the values of the two series
vary widely. For example, if the total value of won opportunities were plotted against the
record count of won opportunities, the total value number would be likely to be several
hundred thousand times the record count number. Plotting these on a single chart would
result in the record count plot being as close to zero as to be indistinguishable from zero.

The solution to this problem is to display a third axis. The axis is scaled appropriately to the
data set that is plotted against it.

In this recipe we will create a Visualforce page containing a chart that displays the total value
of the won and lost opportunities per month for the last year. The won/lost information is
displayed as a stacked bar chart. The chart also displays a line series chart where each point
on the line series is the number of opportunities that were won/lost in that month. As the
number of opportunities will be considerably lower than the total value, a third axis is added
for the opportunity number values.

Getting ready
This recipe makes use of a custom controller that must be present before the Visualforce
page can be created.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the MultiAxisChartController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter MultiAxisChart in the Label field.

8. Accept the default MultiAxisChart that is automatically generated for the Name field.

9. Paste the contents of the MultiAxisChart.page file from the code download into
the Visualforce Markup area and click on the Save button.

Visualforce Charts

190

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the MultiAxisChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the MultiAxisChart page:
https://<instance>/apex/MultiAxisChart.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="450" width="550" data="{!chartData}">

A bar series component defines the values from the chart data that will be used to plot the
won/lost opportunity x and y values. Setting the stacked attribute to true specifies that the
values should be stacked on top of each other in a single bar.

Chapter 6

191

As this component is generating a stacked bar chart, the yField attribute contains comma-
separated values for all segments of the bar, in this case, the lost and won opportunity totals.

<apex:barSeriescolorSet="#A00,#00A" orientation="vertical"
 axis="bottom" xField="name"
 yField="lostAmount,wonAmount"
 title="Lost, Won" stacked="true"/>

The colorSet and title attributes also contain comma-separated values for each bar
segment. The colorSet attribute defines the color to apply to each segment, while the
title attribute defines the text to be displayed in the legend for each segment.

A line series component defines the values from the chart data that will be used to plot the x
and y values, and how each point in the series should be decorated. Once again the title
attribute defines the title that will be used in the legend for the series.

<apex:lineSeries axis="bottom" fill="false" xField="name"
 yField="recordCount"markerType="circle"
 markerSize="4" markerFill="#00FF00"
 title="Record Count"/>

The axes for the chart are defined by <apex:axis/> components: one for the bottom axis
displaying the month name, one for the left-hand axis displaying the opportunity record count,
and one for the right-hand axis displaying the won/lost total values. As a stacked bar series is
being plotted against the right-hand axis, a comma-separated list of the chart data properties
is specified as the value of the fields attribute.

<apex:axis type="Category" position="bottom" fields="name"
title="Month" />
<apex:axis type="Numeric" position="left" fields="recordCount"
title="Record Count" grid="false" steps="5"/>
<apex:axis type="Numeric" position="right"
fields="wonAmount,lostAmount"
title="Opportunity Amount" grid="false" steps="5"/>

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 publicDecimallostAmount { get; set; }
 publicDecimalwonAmount { get; set; }
 publicIntegerrecordCount { get; set; }
}

Visualforce Charts

192

Here, the name property contains the month name, the wonAmount property contains the
total value of opportunities won in that month, the lostAmount property contains the total
value of opportunities lost in that month, and the recordCount property contains the
number of opportunities won/lost in that month.

The chart data collection is provided by the getChartData() controller method, which
iterates all opportunities closed in the last year, applies the opportunity value to the
appropriate won or lost property in the wrapper class instance for the month that the
opportunity closed in, and increments the opportunity record count:

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...
for (Opportunity opp : [select id, CloseDate, Amount
 from Opportunity
 where IsClosed = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(opp.CloseDate.month()-1);
 if (opp.IsWon)
 {
 cand.wonAmount+=opp.Amount;
 }
 else
 {
 cand.lostAmount+=opp.Amount;
 }
 cand.recordCount+=opp.Amount;
}

In order to ensure that a stacked bar and point are plotted for each month, the controller
iterates the months and generates a random value for any month that has a won total,
lost total, or record count of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0.0==cand.wonAmount)
 {
 cand.wonAmount=(Math.random()*750000).intValue();

Chapter 6

193

 }

 if (0.0==cand.lostAmount)
 {
 cand.lostAmount=(Math.random()*750000).intValue();
 }

 if (0.0==cand.recordCount)
 {
 cand.recordCount=(Math.random()*20).intValue();
 }
}

See also
 f The Adding multiple series recipe in this chapter shows how to plot a line and a bar

series on the same chart.

Embedding a chart in a record view page
Visualforce charts can be generated wherever a Visualforce page can be displayed, including
sidebar components, the homepage, and in standard record view pages.

In this recipe, we will create a Visualforce page containing a chart that displays a stacked bar
chart containing the total number of activities carried out with a contact per month for the last
year. The stacked bars contain a segment for the events and tasks that make up the activity
total. This Visualforce page is embedded into the standard contact record view page to allow a
sales manager to see at a glance whether a contact is being neglected or receiving more than
its fair share of attention.

Getting ready
This recipe makes use of a controller extension that must be present before the Visualforce
page can be created.

How to do it…
1. First, create the controller extension for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ContactActivitiesChartExt.cls Apex class from the
code download into the Apex Class area.

Visualforce Charts

194

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ContactActivitiesChart in the Label field.

8. Accept the default ContactActivitiesChart that is automatically generated for the
Name field.

9. Paste the contents of the ContactActivitiesChart.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ContactActivitiesChart page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

13. Finally, add the page to the standard contact page layout. Navigate to the contact
Page Layouts page by clicking on Your Name | Setup | Customize | Contact |
Page Layouts.

14. Locate the first page layout to add the page to and click on the Edit link in the
Action column.

15. On the resulting page layout editor page, click on the Visualforce Pages link in the
left-hand column of the palette as shown in the following screenshot:

Chapter 6

195

16. Drag the +Section option from the right-hand side of the palette and drop this
beneath the standard and custom buttons.

17. In the Section Properties popup, set the Section Name to Activities Last 12
Months, select the 1-column radio button in the Layout section, and click on the OK
button, as shown in the following screenshot:

18. Drag the ContactActivitiesChart page from the right-hand side of the palette and
drop this beneath the Activities Last 12 Months section.

19. Click on the Save button to commit the page layout changes.

20. Repeat steps 14 to 19 to add the Visualforce page to additional page layouts
as required.

Visualforce Charts

196

How it works…
Navigating to the record view page of any contact in your Salesforce instance displays
the contact detail page with the new Activities Last 12 Months section as shown in the
following screenshot:

The Visualforce chart is generated via an <apex:chart/> standard component, which
defines the dimensions of the chart and the collection of data that that will be plotted.

<apex:chart height="200" width="100%" data="{!chartData}">

A bar series component defines the values from the chart data that will be used to plot the
won/lost opportunity x and y values. Setting the stacked attribute to true specifies that the
values should be stacked on top of each other in a single bar.

As this component is generating a stacked bar chart, the yField attribute contains comma-
separated values for all segments of the bar, in this case, the event and task record counts.

<apex:barSeriescolorSet="#A00,#00A" orientation="vertical"
 axis="bottom" xField="name" yField="events,tasks"
 title="Events, Tasks" stacked="true"/>

The colorSet and title attributes also contain comma-separated values for each bar
segment. The colorSet attribute defines the color to apply to each segment, while the
title attribute defines the text to be displayed in the legend for each segment.

Chapter 6

197

The axes for the chart are defined by <apex:axis/> components: one for the bottom axis
displaying the month name and another for the left-hand axis displaying the activity record
count. As a stacked bar series is being plotted against the right-hand axis, a comma-separated
list of the chart data properties is specified as the value of the fields attribute.

<apex:axis type="Category" position="bottom" fields="name"
title="Month"/>
<apex:axis type="Numeric" position="left" fields="events,tasks"
title="# Activities" grid="false" steps="1"/>

The chart data is a collection of inner classes defined in the custom controller.

public class Data
{
 public String name { get; set; }
 public Integer events { get; set; }
 public Integer tasks { get; set; }
}

Here, the name property contains the month name, the events property contains the
event record count for the month, and the tasks property contains the task record
count for the month.

The chart data collection is provided by the getChartData() controller method, which
iterates all events and tasks associated with the contact in the last year, and increments the
appropriate record count property in the wrapper class instance for the month that the activity
took place in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...
for (Event ev : [select id , EndDateTime
 from Event where WhoId=:cont.id
 and EndDateTime>=:startDT
 and EndDateTime<=:endDT])

Visualforce Charts

198

{
 Data cand=dataByMonth.get(ev.EndDateTime.date().month()-1);
 cand.events++;
}

for (Task ts : [select id, ActivityDate
 from Task where WhoId=:cont.id
 and ActivityDate>=:startDT.date()
 and ActivityDate<=:endDT.date()])
{
 Data cand=dataByMonth.get(ts.ActivityDate.month()-1);
 cand.tasks++;
}

In order to ensure that a stacked bar is plotted for each month, the controller iterates the
months and generates a random value for any month that has a task or activity count of zero.

for (Integer idx=0; idx<12; idx++)
{
 Data cand=dataByMonth.get(idx);
 if (0==cand.events)
 {
 cand.events=(Math.random()*20).intValue();
 }
 if (0==cand.tasks)
 {
 cand.tasks=(Math.random()*20).intValue();
 }
}

Multiple charts per page
A common use case for Visualforce charting is producing a number of custom charts arranged
into rows and columns, much like a standard dashboard. Simply adding chart components
to HTML table cells results in all the charts being displayed in the top-left cell of the table, as
shown in the following screenshot:

Chapter 6

199

The solution to this is to use the chart renderTo attribute to specify the DOM component
that the chart should be rendered inside.

In this recipe we will create a Visualforce page that displays a table of bar charts. Each bar chart
displays the total won opportunity value per month for the last year for a specific account.

Getting ready
This recipe makes use of a custom controller, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the ChartTableController.cls Apex class from the code
download into the Apex Class area.

Visualforce Charts

200

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ChartTable in the Label field.

8. Accept the default ChartTable that is automatically generated for the Name field.

9. Paste the contents of the ChartTable.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ChartTable page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ChartTable page:
https://<instance>/apex/ChartTable.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 6

201

The Visualforce charts are generated via a <apex:chart/> standard components in an
HTML table. Each chart is nested in a div element that the chart is rendered to.

<div id="CHART{!chart.idx}">
 <apex:chart height="230" width="300" data="{!chart.months}"
 renderto="CHART{!chart.idx}">

A bar series component defines the values from the chart data that will be used to plot the
won opportunity x and y values.

<apex:barSeries orientation="horizontal" axis="left"
 xField="oppTotal" yField="name" />

The axes for the chart are defined by <apex:axis/> components: one for the bottom
axis displaying the month name and another for the left-hand axis displaying the won
opportunity value.

<apex:axis type="Category" position="left" fields="name"
 title="Month" />
<apex:axis type="Numeric" position="bottom" fields="oppTotal"
 title="Closed Total" grid="true"/>

The data is a collection of inner classes defined in the custom controller.

public class MonthData
{
 public String name { get; set; }
 public Decimal oppTotal { get; set; }
}

A second inner class associates a collection of the MonthData records with a unique index
and the name of the account.

public class ChartData
{
 public Integer idx {get; set;}
 public String name {get; set;}
 public List<MonthData>months {get; set;}
}

A third and final inner class encapsulates a number of the ChartData instances in a
collection. This class is used to generate a single row in the chart table.

public class Row
{
 public List<ChartData> charts {get; set;}

 public Row()

Visualforce Charts

202

 {
 charts=new List<ChartData>();
 }
}

The chart data collection is provided by the getRows() controller method, which queries
nine accounts and generates three rows of chart data, each containing chart data for
three accounts.

for (Account acc : [select id, name from Account order by
 CreatedDate limit 9])
{
 if (0==Math.mod(idx,3))
 {
 row=new Row();
 result.add(row);
 }
 row.charts.add(getAccountChartData(idx++, acc));
}

The getAccountChartData() method iterates the opportunities won for the account over
the last year, and adds the opportunity amount to the wrapper class instance for the month
that the opportunity was closed in.

DateTimestartDT=DateTime.newInstance(
 Date.today().addYears(-1).toStartOfMonth(),
 Time.newInstance(0, 0, 0, 0));
DateTimeendDT=DateTime.newInstance(Date.today(),
 Time.newInstance(23, 59, 59, 999));

 ...
for (Opportunity opp : [select id, CloseDate, Amount
 from Opportunity
 where AccountId=:acc.Id
 and IsClosed = true
 and IsWon = true
 and CloseDate>=:startDT.date()
 and CloseDate<=:endDT.date()])
{
 MonthDatacand=dataByMonth.get(opp.CloseDate.month()-1);
 cand.oppTotal+=opp.Amount;
}

Chapter 6

203

In order to ensure that a bar is plotted for each month per account, the controller iterates the
months and generates a random value for any month that has an opportunity total of zero.

for (Integer idx=0; idx<12; idx++)
{
 MonthDatacand=dataByMonth.get(idx);
 if (0.0==cand.oppTotal)
 {
 cand.oppTotal=(Math.random()*750000).intValue();
 }
}

7
JavaScript

In this chapter, we will cover the following recipes:

 f Using action functions

 f Avoiding race conditions

 f The confirmation dialog

 f Pressing Enter to submit

 f Tooltips

 f The character counter

 f The onload handler

 f Collapsible list elements

 f The scrolling news ticker

 f Carousel messages

 f Hiding buttons on submit

 f Client-side validation

 f Trapping navigation away

JavaScript

206

Introduction
JavaScript is used on a huge number of websites to add visual effects, validation, server
interaction, and many more features. As JavaScript executes at the client side, it removes
the latency involved with a round trip to the web server, resulting in more responsive
applications and an improved user experience. JavaScript can also provide functionality
that is not possible using HTML and server-side processing, for example, handling individual
key clicks or mouse movements.

Visualforce has built-in capability to allow JavaScript interaction with the page controller. For
example, the <apex:actionSupport /> component allows controller action methods to be
called in response to JavaScript events, while the <apex:actionFunction /> component
generates a JavaScript function that encapsulates a controller action method. Further, many
components provide the on<event> attributes, such as onclick and onchange, to allow
custom JavaScript to be invoked in response to user actions.

JavaScript is not without its downsides; however, browser compatibility is a common
problem. Using a framework such as jQuery (http://jquery.com/), Prototype
(http://prototypejs.org/), or Dojo (http://dojotoolkit.org/) simplifies
the task of creating cross-browser compatible JavaScript, as well as providing a powerful
set of utilities to traverse and manipulate the Document Object Model (DOM).

In this chapter, we will use JavaScript to provide a variety of client-side enhancements, from
ensuring that a user does not lose their work or commit it too early through to providing a visual
indicator of the number of remaining characters that an input can accommodate. We will also
use JavaScript to create dynamic content, such as scrolling news and carousel messages.

A number of the recipes in this chapter include JavaScript and CSS
files from one or more Content Delivery Networks (CDNs). This does
introduce a dependency on the site hosting the CDN and in the
event that this site was unavailable or access blocked, the recipe
functionality would cease to work.

Using action functions
An action function allows an action method from a controller to be executed from JavaScript.
The standard Visualforce <apex:actionFunction /> component generates a named
function that can be called from any JavaScript code.

Chapter 7

207

In this recipe, we will create a Visualforce page that displays a list of cases and a countdown
timer implemented in JavaScript. Once the timer expires, an action method from the page's
controller is executed, which redirects the user's browser to the standard case tab.

Getting ready
This recipe makes use of a custom controller, so this must be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the ActionFunctionController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionFunction in the Label field.

8. Accept the default ActionFunction that is automatically generated for the Name field.

9. Paste the contents of the ActionFunction.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ActionFunction page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionFunction page:
https://<instance>/apex/ActionFunction.

JavaScript

208

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The countdown timer at the bottom-left is updated by a JavaScript function that executes
every second.

countDownObj.count = function(i)
{
 countDownObj.innerHTML = 'Going to tab in ' + i + ' seconds';
 if (i == 0) {
 fn();
 return;
 }
 setTimeout(function()
 {
 countDownObj.count(i - 1);
 },
 pause);
}

The controller action method is exposed as a JavaScript function via an action function.

<apex:form >
 <apex:actionFunction name="goCasesTabJS"
 action="{!goCasesTab}" />
</apex:form>

Chapter 7

209

Note that as the action function executes an action method, a form
submission takes place. For this reason, the <apex:actionFunction />
component must always be nested inside the <apex:form /> tags.

The action method invoked when the goCasesTabJS JavaScript function is executed simply
returns the page reference for the case tab.

public PageReference goCasesTab()
{
 PageReference result=new PageReference('/500/o');
 return result;
}

Avoiding race conditions
An action function provides a way to submit a form programmatically via a JavaScript function
call. When an action function is executed from a JavaScript event handler, the default
browser behavior continues once the event handler has completed. If the event handler is
attached to a Visualforce component that submits the form, an onclick handler for an
<apex:commandLink /> or <apex:commandButton /> component, for example, the
default browser behavior is to continue with the form submission. This results in a race
condition as to which form submission request will be processed first by the server and will
often produce unexpected results.

In this recipe, we will create a Visualforce page to execute a search for accounts matching a
user-entered string of characters. When the user clicks on the button to start the search, a
JavaScript function is invoked that checks the number of characters entered. If two or more
characters have been entered, the search is executed via an action function. If fewer than two
characters have been entered, any existing results are cleared and the search is not executed.
In either case, the default form submission from the button is stopped.

Getting ready
This recipe makes use of a custom controller, so this will need to be created before the
Visualforce page.

How to do it…
1. First, create the custom controller by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

JavaScript

210

3. Paste the contents of the ActionFunctionSearchController.cls Apex class
from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ActionFunctionSearch in the Label field.

8. Accept the default ActionFunctionSearch that is automatically generated for the
Name field.

9. Paste the contents of the ActionFunctionSearch.page file from the code
download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ActionFunctionSearch page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ActionFunctionSearch page:
https://<instance>/apex/ActionFunctionSearch.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 7

211

The Go button defines an onclick handler that executes a JavaScript function to determine
the number of characters entered and execute a search or clear the results.

function runSearch()
{
 // don't run the search unless there are enough characters
 var str = document.getElementById(
 '{!$Component.frm.crit_pb.crit_pbs.crit_str}').value;
 if (str.length>=2)
 {
 doSearchJS();
 }
 else
 {
 alert('Please enter at least two characters');
 clearResultsJS();
 }
}

Visualforce will automatically generate an ID for each HTML element based
on the id attribute of the element and the id attribute of each ancestor
element, which can make identification of an individual element challenging.
To assist this, Visualforce provides a $Component global merge variable that
uses a dot notation based on the component hierarchy to identify an element.
For more information visit http://www.salesforce.com/us/
developer/docs/pages/Content/pages_best_practices_
accessing_id.htm.

The onclick handler returns false once the function has completed; this instructs
the browser to stop handling the click event at that point, rather than continuing with
the default behavior of submitting the form.

<apex:commandButton value="Go" onclick="runSearch();
 return false;" />

See also
 f For more information on action functions, refer to the Using action functions recipe.

JavaScript

212

The confirmation dialog
A feature missing from the standard Salesforce record edit functionality is the ability for the
user to confirm that they wish to execute an action. If a user inadvertently clicks on the Cancel
button, their work will be discarded.

In this recipe we will create a Visualforce page that allows a user to create an account record.
If the user clicks on a button to save the record or cancel the creation, they will be requested
to confirm that they wish to continue with the action.

Getting ready
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter Confirmation in the Label field.

4. Accept the default Confirmation that is automatically generated for the Name field.

5. Paste the contents of the Confirmation.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the Confirmation page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the Confirmation page:
https://<instance>/apex/Confirmation.

Chapter 7

213

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

If the user clicks on the Save or Cancel button, they are asked to confirm the action.

The Save and Cancel buttons each define an onclick handler that executes a JavaScript
function. This function opens an appropriate confirmation dialog to ask the user to confirm
the action.

function confirmCancel()
{
 return confirm("This will discard your changes\nAre you sure you
wish to continue?");
}

JavaScript

214

The onclick handlers return the result of the JavaScript function, ensuring that if the user
chooses not to proceed, the default browser behavior of continuing with the form submission
will not take place.

<apex:commandButton value="Cancel" action="{!cancel}"
 onclick="return confirmCancel();" immediate="true" />

See also
 f The Trapping navigation away recipe in this chapter shows how to ask the user to

confirm they wish to navigate away from a page, even if they haven't clicked a button
or link on the page.

 f The Pressing Enter to submit recipe in this chapter intercepts the pressing of an Enter
key in a form and asks the user to confirm they wish to save their changes.

Pressing Enter to submit
When the Enter key is pressed and a single-line HTML form element has focus, modern
browsers will submit the form via the first submit button. If the user has pressed the Enter
key expecting to move on to a new line and remain in the input element, this can lead to the
submission of a partially filled in form, resulting in a low quality record being created.

In this recipe we will create a Visualforce page that allows a user to create an opportunity. If
the user presses the Enter key while filling in any of the opportunity fields, they will be asked
to confirm that they wish to submit the form.

Getting ready
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

How to do it…
1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on

Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter PressEnter in the Label field.

4. Accept the default PressEnter that is automatically generated for the Name field.

5. Paste the contents of the PressEnter.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Chapter 7

215

7. Locate the entry for the PressEnter page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the PressEnter page:
https://<instance>/apex/PressEnter.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

If the user presses the Enter key while filling in one of the fields, they will be asked to confirm
that they wish to submit the form.

JavaScript

216

Each field in the form defines an onkeypress event that executes a JavaScript function.

<apex:inputField value="{!Opportunity.Name}"
 onkeypress="return keypress(event);" />

This function inspects the key pressed and if it is the Enter key, opens a confirmation dialog to
ask the user to confirm the form submission. If the user confirms that they wish to continue,
the Save button is located and programmatically clicked.

var result=true;
if (keyCode == 13)
{
 var ele=document.getElementById(
 '{!$Component.frm.pb.pb_btns.savebtn}');
 if (confirm("This will save your changes\nAre you sure you wish to
continue?"))
 {
 ele.click();
 }
 result=false;
}

return result;

The result of the function indicates whether the default browser behavior should continue; if
the key pressed is not the Enter key, the result is true and the default behavior of adding the
character to the field continues. If the key pressed is Enter, the result is false which stops
the default form submission.

The key pressed is identified based on its code. For a list of JavaScript key
code, visit http://www.cambiaresearch.com/articles/15/
javascript-char-codes-key-codes.

See also
 f The Trapping navigation away recipe in this chapter shows how to ask the user to

confirm they wish to navigate away from a page.

 f The The confirmation dialog recipe in this chapter asks the user to confirm that they
wish to execute the action associated with the button they have just clicked.

Chapter 7

217

Tooltips
Tooltips allow additional information to be provided when an HTML element is hovered over.
The standard title attribute available for any HTML element provides a basic tooltip,
but the output of this attribute cannot be styled or use custom transitions to appear in
interesting ways.

In this recipe we will create a Visualforce page containing a list of opportunities. Each column
heading in the list provides an explanatory tooltip when the header text is hovered over. The
tooltip is styled and slides down to reveal itself.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework and jQuery
User Interface (http://jqueryui.com/) library to produce, style, and transition the
tooltip. The JavaScript and CSS files are included from the Google Hosted Libraries content
delivery network rather than being uploaded as Salesforce static resources, as this makes it
straightforward to move to new versions simply by changing the URL of the included file.

This recipe makes use of a standard controller, so this must be created before the
Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the TooltipsController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter ToolTips in the Label field.

8. Accept the default ToolTips that is automatically generated for the Name field.

9. Paste the contents of the ToolTips.page file from the code download into the
Visualforce Markup area and click on the Save button.

JavaScript

218

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the ToolTips page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ToolTips page:
https://<instance>/apex/ToolTips.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Hovering over any of the column headings reveals a tooltip explaining the purpose of the field
contained in the column.

Chapter 7

219

The header facet of each column is encapsulated in a span element with the tooltip
style class.

<apex:facet name="header">
 <span class="tooltip"
 title="Which stage is this opportunity at in the Sales
process">Stage
</apex:facet>

When the page has finished loading, the tooltips are activated via a jQuery selector on the
tooltip style class.

$(document).ready(function(){
 $(".tooltip").tooltip({
 show: {
 effect: "slideDown",
 delay: 250
 }
 }
);
 });

The tooltip function turns the selected elements into jQuery UI tooltips and the show
options define how the tooltip should reveal itself, in this case, by sliding down 250
milliseconds after the user hovers over the element.

See also
 f The Collapsible list elements recipe in this chapter shows how jQuery can be used to

collapse and expand items in a list.

The character counter
A number of field types allow a set number of characters to be entered, for example, text area
and long text area. A useful addition to the user interface for these fields is a mechanism to
inform the user how many more characters they may enter.

In this recipe we will create a Visualforce page that allows a user to create a case. The
subject standard field can contain a maximum of 255 characters. A counter of the number of
characters remaining is displayed beneath the Subject input field. The character counter is
updated when the user types a character, or if they cut or paste information from or to the field.

JavaScript

220

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework to handle the
client-side events. The JavaScript file is included from the Google Hosted Libraries content
delivery network rather than being uploaded as a Salesforce static resource, as this makes
it straightforward to move to a new version simply by changing the URL of the included file.

How to do it…
1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on

Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter CharacterCounter in the Label field.

4. Accept the default CharacterCounter that is automatically generated for the
Name field.

5. Paste the contents of the CharacterCounter.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the CharacterCounter page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the CharacterCounter page:
https://<instance>/apex/CharacterCounter.

Chapter 7

221

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

A JavaScript function limits the number of characters entered to 255 and updates the content
of the div element with the ID of avail to show the number of characters remaining:.

function availChars(ele)
{
 if($(ele).val().length > 255)
 $(ele).val($(ele).val().substr(0, 255));
 var diff=255-$(ele).val().length;
 $('#avail').html(diff + ' characters left');
}

JavaScript

222

When the page has finished loading, the function is bound to a number of events for the
Subject input field, including the keyup event.

$(document).ready(function(){
 $('[id$=subject]').keyup(function(event) {
 availChars(event.target);

 $('[id$=subject]').bind('paste', function(event) {
 setTimeout(function() {
 availChars(event.target);
 }, 10);
 });
 });

Note that the paste event handler introduces a delay of 10 milliseconds
before executing the availChars function; this allows the paste event to
complete and update the value of the input field.
Note also that to identify the subject input element, we used a jQuery
selector to locate the element whose ID ends with subject. When using a
JavaScript framework that provides selectors, this is an alternative approach
to the $Component global merge field described in the Avoiding race
conditions recipe in this chapter.

The onload handler
An onload handler allows JavaScript code to be executed when an HTML page has completed
loading. While adding an onload handler to a Visualforce page, care must be taken not to
interfere with any default onload handler added by the platform, to give focus to the first
input field in the page, for example.

In this recipe we will create a Visualforce page that allows a user to create an opportunity.
An onload handler in the page executes a JavaScript function to set the default value for
the opportunity amount field to 100000. If the platform has specified an onload handler
function, this is executed before the amount value is set.

How to do it…
This recipe makes use of a standard controller, so we only need to create the Visualforce page.

1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on
Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter Onload in the Label field.

Chapter 7

223

4. Accept the default Onload that is automatically generated for the Name field.

5. Paste the contents of the Onload.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the Onload page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the Onload page:
https://<instance>/apex/Onload.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The opportunity Amount value is defaulted to 100000 by the JavaScript function executed by
the onload handler.

function()
{
 document.getElementById(
 '{!$Component.frm.pb.pbs.amount}').value=
 '100000';
}

JavaScript

224

The onload handler is added by a JavaScript function that checks if there is an existing
handler. If there is, a new function is created to execute the existing handler, followed by the
new one. If there is not an existing handler, the function is applied as the onload handler.

function addLoadEvent(fn)
{
 var currentHandler = window.onload;
 if (typeof currentHandler != 'function')
 {
 window.onload = fn;
 }
 else
 {
 window.onload = function()
 {
 if (currentHandler)
 {
 currentHandler();
 }
 fn();
 }
 }
}

Note that the function to be executed when the page is loaded is
passed as a parameter to the addLoadEvent function.

This mechanism allows any number of onload handlers to be chained together.

See also
 f The The confirmation dialog and Pressing Enter to submit recipes in this chapter

show how to handle other JavaScript events.

 f The The character counter recipe in this chapter shows how to use jQuery to bind a
JavaScript function to specified events.

Chapter 7

225

Collapsible list elements
When a number of records and related information are rendered as a list, a user is often
presented with a large amount of data that they must scroll through in order to access the
items that they are interested in. One way to improve this is to allow items to be collapsed,
showing enough headline information to allow the item to be identified, but taking up the
minimum amount of screen real estate.

In this recipe, we will create a Visualforce page that displays a list of account records
and their associated contact records. Each account record is collapsed when the page
is initially rendered, and the user may click a record to expand it and see the associated
contact information.

Visualforce provides collapsible behavior for the standard
<apex:pageBlockSection /> component. However, this forces
the content to be expanded or collapsed to be nested inside this
component, which styles the content in a similar fashion to a standard
Salesforce section. The solution presented in this recipe provides this
behavior for a regular HTML table that may be used in a variety of
situations with or without Salesforce styling.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework and jQuery
User Interface (http://jqueryui.com/) library to produce, style, and transition the
tooltip. The JavaScript and CSS files are included from the Google Hosted Libraries content
delivery network rather than being uploaded as Salesforce static resources, as this makes it
straightforward to move to new versions simply by changing the URL of the included file.

This recipe also makes use of a custom controller, so this will need to be present before the
Visualforce page can be created.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the CollapsibleController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

JavaScript

226

6. Click on the New button.

7. Enter Collapsible in the Label field.

8. Accept the default Collapsible that is automatically generated for the Name field.

9. Paste the contents of the Collapsible.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the Collapsible page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the Collapsible page:
https://<instance>/apex/Collapsible.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 7

227

Clicking on the right arrow icon next to the account name opens the account record to display
the associated contact records.

The list of accounts is rendered as an HTML <table> element. Two <tbody> elements are
rendered for each account, the first containing just the account name that is visible when the
page is rendered.

<tbody id="{!acc.id}-collapsed}">
 <tr onclick="toggle('{!acc.id}');">
 <td colspan="2">
 <span style="float:left;" class="ui-accordion-header-icon ui-
icon ui-icon-circle-arrow-e">

 Account:
{!acc.Name}
 </td>
 </tr>
</tbody>

JavaScript

228

The second <tbody> element contains the account name and the associated contact
records, which is hidden when the page is initially rendered.

<tbody id="{!acc.id}-expanded" style="display:none">
 <tr onclick="toggle('{!acc.id}');">
 <td colspan="2">
 <span style="float:left;" class="ui-accordion-header-icon ui-
icon ui-icon-circle-arrow-s">

 Account: {!acc.Name}
 </td>
 </tr>
 <apex:repeat value="{!acc.Contacts}" var="cont">
 <tr>
 <td style="border-right: none">

 </td>
 <td style="border-left: none">
 Contact:
 <apex:outputLink
 value="/{!cont.id}">{!cont.Name}
 </apex:outputLink>
 </td>
 </tr>
 </apex:repeat>
</tbody>

Each <tbody> element defines an onclick handler.

onclick="toggle('{!acc.id}');"

The toggle function uses the jQuery toggle function (http://api.jquery.com/
toggle/) to swap the visibility of both <tbody> elements associated with an account,
hiding the currently visible element and showing the currently hidden element.

function toggle(baseId)
{
 $('tbody[id*="' + baseId + '"]').toggle();
}

See also
 f The Tooltips recipe in this chapter shows how jQuery can be used to generate styled

tooltips that appear via a custom transition when a user hovers over an element.

Chapter 7

229

The scrolling news ticker
A scrolling news ticker is a common feature on many websites, providing an eye-catching way
to present headlines or updates to users.

In this recipe we will create a Visualforce page that displays a list of news items based on 10
recently closed opportunities. The page initially displays the first three opportunities and then
scrolls through the remaining, removing the top item, moving the others up vertically, and
appending the next item to the bottom of the list.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework to scroll the
list of stories. The JavaScript file is included from the Google Hosted Libraries content
delivery network rather than being uploaded as a Salesforce static resource, as this makes it
straightforward to move to a new version simply by changing the URL of the included file.

This recipe makes use of a wrapper class to encapsulate the stories.

1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop
| Apex Classes.

2. Click on the New button.

3. Paste the contents of the Story.cls Apex class from the code download into the
Apex Class area.

4. Click on the Save button.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the NewsTickerController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter NewsTicker in the Label field.

8. Accept the default NewsTicker that is automatically generated for the Name field.

JavaScript

230

9. Paste the contents of the NewsTicker.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the NewsTicker page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the NewsTicker page:
https://<instance>/apex/NewsTicker.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Chapter 7

231

After a short interval, the top story fades out and the items scroll up.

The news items are generated from the list of story custom object instances managed by the
custom controller. Each story displays an image, the publication date, the headline, a snippet
of the body, and a read more link.

<ul id="listticker">
 <apex:repeat value="{!stories}" var="story">

 <img style="float:left; margin: 5px 0 0 0; padding:1px;
border:1px solid #999999;"
 src="{!story.image}" height="24px" width="24px" />
 <p style="margin: 0 0 0 40px;">
 <apex:outputText value="{0, date, dd/MM/yyyy}">
 <apex:param value="{!story.pubDate}"/>
 </apex:outputText>

 <apex:outputText value="{!story.headline}"/>

 <apex:outputText value="{!story.snippet}"/>

 <apex:outputLink style="text-decoration:none; margin: 5px 0 0
0; line-height:1.3em; display:block; color: #555;"
 value="/{!story.id}">Read more ... »
 </apex:outputLink>
 </p>

 </apex:repeat>

JavaScript

232

The list is sized to display the first three items with the remainder hidden from the view.

#listticker{
 height:260px;
 overflow:hidden;
 padding:0 0 14px 0;
}

A JavaScript function utilizes jQuery functionality to fade out the top element in the list and
remove it.

function removeTop()
{
 first = $('ul#listticker li:first').html();
 $('ul#listticker li:first')
 .animate({opacity: 0}, speed)
 .fadeOut('slow', function() {$(this).remove();});
 addBottom(first);
}

The item removed from the list is passed to the addBottom() JavaScript function, which
appends the item to the bottom of the list.

function addBottom(first)
{
 var last = ''+first+'';
 $('ul#listticker').append(last)
}

The standard JavaScript setInterval() function executes the removeTop() function at
the specified interval.

interval = setInterval(removeTop, pause);

There's more...
While this recipe uses opportunities, the actual news items are instances of a wrapper class.
This allows the recipe to be easily adapted to use any other standard or custom Salesforce
sObject type.

See also
 f The Carousel messages recipe in this chapter shows how to display a carousel of

messages at the top of a page.

Chapter 7

233

Carousel messages
A carousel is a mechanism for giving viewers of a web page access to a number of content
items (for example, messages, news stories, and images) via a single element on the page.
They are usually implemented as sliding or rotating horizontal panels where the content is
updated after a set period of time.

In this recipe we will create a Visualforce page that rotates a carousel of recently closed
opportunities. The page displays a single opportunity at a time and transitions between
opportunities by fading out the old one and fading in the new one. We will then create a
homepage component containing this page and add it to the Home page layout.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework. The JavaScript
file is included from the Google Hosted Libraries content delivery network rather than being
uploaded as a Salesforce static resource, as this makes it straightforward to move to a new
version simply by changing the URL of the included file.

This recipe also uses the bxSlider (http://bxslider.com/) JavaScript library to provide
the carousel functionality. As this is not available from a content delivery network, it must be
present as a static resource.

1. Download the jquery.bxslider.zip file by navigating to the bxSlider homepage
http://bxslider.com/ and clicking on the Download button on the top-right of
the page.

2. Navigate to the Static Resource setup page by clicking on Your Name | Setup |
Develop | Static Resources.

3. Click on the New button.

4. Enter BXSlider in the Name field.

5. Enter bxslider carousel in the Description field.

6. Click on the Browse button and select the jquery.bxslider.zip file downloaded
in step 1.

The Browse button may have a different label depending
on the browser; using Google Chrome, for example, results
in a label of Choose File.

7. Accept the default Private value for the Cache Control field and click on the
Save button.

JavaScript

234

The Cache Control field values are only applicable for a
static resource that is used in a Force.com site.

How to do it…
1. First, create the custom controller for the Visualforce page by navigating to the Apex

Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the BannerController.cls Apex class from the
code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page
by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter Banner in the Label field.

8. Accept the default Banner that is automatically generated for the Name field.

9. Paste the contents of the Banner.page file from the code download into
the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualfrce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the Banner page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on
the Save button.

13. Next, create the homepage component by navigating to the Home Page
Components setup page by clicking Your Name | Setup | Customize |
Home | Home Page Components.

14. Scroll down to the Custom Components section and click on the New button.

15. If the Understanding Custom Components information screen appears, as shown in
the following screenshot, click on the Next button:

Chapter 7

235

16. On the next page, Step 1. New Custom Components, enter Top Sales in the Name
field, select the HTML Area option, and click on the Next button.

17. On the next page, Step 2. New Custom Components, select the Wide
(Right) Column option.

18. Select the Show HTML box.

19. Paste the following markup into the editable area:
<iframe style="border: none" src="/apex/Banner" seamless=""
width="100%"></iframe>

20. Click on the Save button.

21. Next, add the new component to one or more homepage layouts. Navigate to
Your Name | Setup | Customize | Home | Home Page Layouts.

22. Locate the name of the homepage layout you wish to add the component to
and click on the Edit link.

23. On the resulting page, Step 1. Select the Components to show, select the
Top Sales box in the Select Wide Components to Show section and click on the
Next button.

24. On the next page, Step 2. Order the Components, use the arrow buttons to
move the Top Sales component to the top position in the Wide (Right) Column list
and click on the Save button.

25. Repeat steps 22 to 24 for any other homepage layouts that will contain the
sidebar component.

JavaScript

236

How it works…
Opening the homepage displays the Top Sales component.

The opportunities iterated by the carousel are output as an HTML unordered list.

<ul id="slider1">
 <apex:repeat value="{!opps}" var="opp">
 <li style="text-align:center; width: 280px; height:150px;">
 <p style="font-size:20px; font-weight:bold; color:green">
 <apex:outputField value="{!opp.Amount}"/>
 </p>
 <p style="font-size:18px; font-weight:bold">
 <apex:outputText value="{!opp.Name}"/>
 </p>
 <p style="font-size:16px; font-weight:bold">Closed by
 {!opp.Owner.Name} on
 <apex:outputText value="{0, date, dd/MM/yy}">
 <apex:param value="{!opp.CloseDate}"/>
 </apex:outputText>
 </p>

 </apex:repeat>

Chapter 7

237

When the page is loaded, the bxSlider is activated via JavaScript.

$('#slider1').bxSlider({
 auto: true,
 controls:false,
 mode:'fade',
 pause:8000,
 pager:false
 });

See also
 f The The scrolling news ticker recipe in this chapter shows how to display a vertically

scrolling ticker of news stories.

 f There are a number of configuration options available for bxSlider. Visit
http://bxslider.com/options for more details.

Hiding buttons on submit
When a user clicks on a button to submit a form, if they don't receive any feedback
that the click was successful, they are likely to click the button again, resulting in a
double form submission. Disabling buttons or the form when a button is clicked can
introduce browser compatibility issues, as some browsers will interpret this as a request
to cancel the form submission.

In this recipe we will create a Visualforce page that allows a user to edit some basic
information about a contact. When the user clicks on the Save or Cancel button to save
or discard their changes, the buttons will be swapped out with a pair of disabled buttons
containing text to indicate that the form submission is taking place.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework to swap the
buttons. The JavaScript file is included from the Google Hosted Libraries content delivery
network rather than being uploaded as a Salesforce static resource, as this makes it
straightforward to move to new versions simply by changing the URL of the included file.

JavaScript

238

How to do it…
1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on

Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter WorkingButtons in the Label field.

4. Accept the default WorkingButtons that is automatically generated for the
Name field.

5. Paste the contents of the WorkingButtons.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the WorkingButtons page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the WorkingButtons page:
https://<instance>/apex/WorkingButtons?id=<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example, na6.
salesforce.com, and <contact_id> is the ID of any contact in your Salesforce instance.

Chapter 7

239

Editing details of the record and clicking on the Save button swaps out the buttons with their
disabled equivalents.

Four buttons are rendered when the page is initially displayed; two visible and two hidden.

<apex:commandButton id="commandbtn1" value="Save" action="{!save}"
 onclick="workingButtons()"/>
<apex:commandButton id="commandbtn2" value="Cancel"
 action="{!cancel}" immediate="true"
 onclick="workingButtons()"/>
<apex:commandButton id="workingbtn1" value="working..."
 disabled="true" style="display:none" />
<apex:commandButton id="workingbtn2" value="working..."
 disabled="true" style="display:none" />

Each of the Save and Cancel buttons defines an onclick handler that executes a
JavaScript function to swap the displayed buttons with the hidden buttons using the
jQuery toggle function.

 function workingButtons()
 {
 $('[id*="commandbtn"]').toggle();
 $('[id*="workingbtn"]').toggle();
 }

No value is returned from the onclick hander; this indicates the browser that the standard
behavior of continuing with the form submission should take place.

JavaScript

240

See also
 f The The confirmation dialog recipe in this chapter shows how the standard browser

behavior of continuing with a form submission can be stopped if a user so chooses.

 f The Collapsible list elements recipe in this chapter shows how the jQuery toggle
function can be used to open/close a section of a list of records.

Client-side validation
Carrying out validation in the browser when a user submits a form is a technique that has
been popular for a number of years. The user is given immediate feedback rather than having
to wait for a round trip to the server, and bandwidth is saved by not submitting the form if
there are issues.

In this recipe we will create a Visualforce page that allows a user to create a contact record.
When the user clicks on Save, client-side validation will take place to ensure that one of the
e-mail address or phone number fields has been populated before submitting the form.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework to swap the
buttons. The JavaScript file is included from the Google Hosted Libraries content delivery
network rather than being uploaded as a Salesforce static resource, as this makes it
straightforward to move to new versions simply by changing the URL of the included file.

This recipe also uses the jQuery Validation plugin to provide the validation functionality. This is
included in the Microsoft Ajax Content Delivery Network.

For more information about the jQuery Validation plugin,
visit http://jqueryvalidation.org/.

How to do it…
1. Create the Visualforce page by navigating to the Visualforce setup page by clicking on

Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter ClientSideValidation in the Label field.

4. Accept the default ClientSideValidation that is automatically generated for the
Name field.

Chapter 7

241

5. Paste the contents of the ClientSideValidation.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the ClientSideValidation page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your browser displays the ClientSideValidation page:
https://<instance>/apex/ClientSideValidation.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

JavaScript

242

Leaving both the Email and Phone fields blank when saving the record.

When the page is loaded, the jQuery Validation Plugin is activated. Each of the Email and
Phone fields is defined as required if the other field is empty,

 '{!$Component.createform.pblock.pbsection.
contactemail}': {
 required: function() {
 return $('[id="{!$Component.
createform.pblock.pbsection.contactphone}"]').val()=='';
 }
 }, // email

Each field has an associated message that is displayed when the field is required but empty.

messages: {
 '{!$Component.createform.pblock.pbsection.contactemail}':
 "One of Email or Phone must be provided",
 '{!$Component.createform.pblock.pbsection.contactphone}':
 "One of Phone or Email must be provided",
} // messages

Note that as a user may have old browser software or have chosen to
disable JavaScript, any client-side validation should also be replicated
on the server side to ensure that the validation rules are applied.

Chapter 7

243

See also
 f The Adding error messages to field inputs recipe in Chapter 3, Capturing Data Using

Forms shows how to validate server side that one of the e-mail and phone number
fields is populated when creating a contact record.

Trapping navigation away
When a user is filling in a form, inadvertently clicking on a link to another page, or generating
the page back, the keyboard shortcut sends the browser to a new page and discards all
user inputs. In the event that the form is large and complex, this can represent a significant
lost effort.

In this recipe we will create a Visualforce page that allows a user to create a contact record.
If the user clicks on a button to save the record or cancel the creation, they will be requested
to confirm that they wish to continue with the action. If the user clicks on the Save or Cancel
button, this will submit the form without further confirmation.

Getting ready
This recipe uses the jQuery (http://jquery.com/) JavaScript framework to swap the
buttons. The JavaScript file is included from the Google Hosted Libraries content delivery
network rather than being uploaded as a Salesforce static resource, as this makes it
straightforward to move to new versions simply by changing the URL of the included file.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter ConfirmLeavePage in the Label field.

4. Accept the default ConfirmLeavePage that is automatically generated for the
Name field.

5. Paste the contents of the ConfirmLeavePage.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the ConfirmLeavePage page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

JavaScript

244

How it works…
Opening the following URL in your browser displays the ConfirmLeavePage page:
https://<instance>/apex/ConfirmLeavePage.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

If the user clicks any of the other tabs on the page, a confirmation dialog asks them to confirm
that they wish to leave the page.

Chapter 7

245

When the page is loaded, jQuery is used to add an onbeforeunload event handler.

window.onbeforeunload = function()
{
 return 'This will lose any unsaved changes you have made';
}

The onbeforeunload event is fired when a page is about
to unload its resources.

Each of the Save and Cancel buttons defines an onclick handler that removes the
onbeforeunload handler, allowing the action to continue without requiring the user
to confirm they wish to continue.

<apex:commandButton value="Save" action="{!save}"
 onclick="clearConfirm();"/>
 ...
function clearConfirm()
{
 window.onbeforeunload=null;
}

See also
 f The The confirmation dialog recipe in this chapter shows how to ask the user to

confirm they wish to continue when they click on a button to submit a form.

 f The Pressing Enter to submit recipe in this chapter intercepts the pressing of an Enter
key in a form and asks the user to confirm they wish to save their changes.

8
Force.com Sites

In this chapter, we will cover the following recipes:

 f Creating a site

 f Record and field access

 f Retrieving content from Salesforce

 f Web to lead form

 f Creating a website template

 f Adding a header menu to a template

 f Adding a sidebar to a template

 f Conditional rendering in templates

Introduction
Force.com sites allow public websites to be created in and hosted by Salesforce, removing
the requirement to configure, secure, and manage a web server. Visualforce pages that have
direct access to Salesforce data via the page controller generate the site content.

In this chapter, we will create a Force.com site initially containing static content. We will
then create a set of template pages to remove repetition of common markup. Finally, we will
provide access to Salesforce data from a public website, allowing visitors to access records
without logging in to Salesforce.

Force.com Sites

248

Unlike earlier chapters in this book, these recipes are best performed in order, as many
recipes build on knowledge gained in earlier recipes and the first recipe, Creating a site,
configures the Force.com site that is used to serve the content for all of the remaining recipes.

Salesforce supports an additional technology to host websites, Site.com,
which does not use Visualforce to generate content. For more information on
Site.com visit http://wiki.developerforce.com/page/Site.com.

Creating a site
In this recipe we will configure a Force.com site that displays a single page. The contents of
the page are static, and the page will be publicly available to unauthenticated visitors.

Getting ready
This recipe uses the Bootstrap framework (http://twitter.github.io/bootstrap/)
to style the page. The JavaScript and CSS files are included from the BootStrapCDN
(http://www.bootstrapcdn.com/index.html) content delivery network rather
than being uploaded as Salesforce static resources, as this makes it straightforward to
move to new versions simply by changing the URL of the included file. Bootstrap in turn
relies on the jQuery (http://jquery.com/) JavaScript framework. This is included
from the Google Hosted Libraries content delivery.

This does introduce a dependency on the BootstrapCDN and Google Hosted
Libraries sites and in the event that either site was unavailable or access
blocked, the Bootstrap styling and functionality would be lost.

Before the site can be configured, a subdomain prefix must be selected. This prefix will be
used to generate the unique domain for the site.

1. Navigate to the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

Chapter 8

249

2. On the resulting page, choose your preferred subdomain, check the box to indicate you
accept the terms of use, and click on the Register My Force.com Domain button.

Note that once you have chosen your domain name, it cannot be
modified. As this domain will be used as the prefix for all Force.com
sites created in your Salesforce instance, it should be a representative
of your organization rather than a particular site.

How to do it…
1. First, create the Visualforce page that will be displayed by the site by navigating to the

Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter SiteHome in the Label field.

4. Accept the default SiteHome that is automatically generated for the Name field.

5. Paste the contents of the SiteHome.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Next, create the site by navigating to the Sites setup page by clicking on Your Name |
Setup | Develop | Sites.

7. Click on the New button.

8. Enter Visualforce Cookbook in the Label field.

9. Accept the default Visualforce_Cookbook that is automatically generated for the
Name field.

10. Check the Active box to make the site active as soon as the configuration is saved.

11. Enter SiteHome in the Active Site Home Page field.

Force.com Sites

250

12. Leave all other fields with their default values and click on the Save button.

How it works…
Opening the following URL in your browser displays the SiteHome page:
http://<domain>/SiteHome.

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Chapter 8

251

The standard header, sidebar, and stylesheets are hidden via attributes in the enclosing
<apex:page/> standard component. As the page contains <html> and <body> tags,
additional attributes specify that Visualforce should not insert its own version of these.

<apex:page applyHtmlTag="false" applyBodyTag="false" sidebar="false"
showHeader="false"
 standardStyleSheets="false">

Bootstrap divides the page into a 12-column grid and style classes are defined to allow
content to span a number of columns.

<div class="span4">
 <h2>Public</h2>
 <p>
 This site is publicly accessible. There is no requirement for
 a user to login in order to access the public information
 </p>
</div><!-- .span4 -->

See also
 f The Retrieving content from Salesforce recipe in this chapter shows how to

dynamically generate content for a Force.com site.

 f The Web to lead form recipe in this chapter shows how to capture data into
Salesforce from a Force.com site.

Record and field access
A common source of confusion for Visualforce developer is configuring a Force.com site
to allow unauthenticated access to Salesforce records and specific fields. This is usually
configured via the Profiles menu located at Your Name | Setup | Administration Setup |
Profiles. However, access to records and fields for a Force.com site is configured via the setup
page for the site in question.

In this recipe we will configure the Force.com site created in the first recipe to allow public
access to contact records. We will then create a Visualforce page that allows a visitor to enter
an e-mail address into a form on the Force.com site and extract the contact record matching the
e-mail address, displaying the First Name, Last Name, and Email fields from the contact record.

Getting ready
This recipe requires that you have already completed the Creating a Site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

Force.com Sites

252

How to do it…
1. First, add access to the contact sObject to Guest User Profile for the site. Navigate to

the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

2. Click on the Visualforce Cookbook link in the Sites section.

3. Click on the Public Access Settings button: this displays the Guest user profile for
the site.

4. On the resulting page click the Edit button, select the Read checkbox for the Contact
sObject in the Custom Object Permissions sections, and click on the Save button.

5. Next, add the required field access for the profile. Scroll down to the Field Level
Security section and click on the [View] link for the Contact element.

6. On the resulting page, confirm that the Visible checkbox for the Email field is
selected. If it is not, click on the Edit button and select the checkbox, and then
click on the Save button.

Note that the Name field is always visible to all profiles, so no
action needs to be taken for that field.

7. Next, create the custom controller by navigating to the Apex Classes setup page by
clicking on Your Name | Setup | Develop | Apex Classes.

8. Click on the New button.

9. Paste the contents of the RetrieveContactController.cls Apex class from the
code download into the Apex Class area.

10. Click on the Save button.

11. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

12. Click on the New button.

13. Enter RetrieveContact in the Label field.

14. Accept the default RetrieveContact that is automatically generated for the
Name field.

Chapter 8

253

15. Paste the contents of the RetrieveContact.page file from the code download into
the Visualforce Markup area and click on the Save button.

16. Navigate to the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

17. Click on the Visualforce Cookbook link in the Sites section.

18. On the resulting page, scroll down to the Site Visualforce Pages list and click on the
Edit button.

19. On the resulting page, Enable Visualforce Page Access, select RetrieveContact
from the Available Visualforce Pages list, click on the Add icon to add it to the
Enabled Visualforce Pages list, and click on the Save button.

How it works…
Opening the following URL in your browser displays the RetrieveContact page:
http://<domain>/RetrieveContact.

Here <domain> is the Force.com domain name chosen while configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Force.com Sites

254

Filling in the Email field and clicking on the Lookup button displays the details of the first
contact with a matching e-mail address.

See also
 f The Creating a site recipe in this chapter shows how to set up a Force.com site and

make a static page publicly available.

 f The Retrieving content from Salesforce recipe in this chapter shows how to extract
records from Salesforce and use these to generate content on a Force.com site.

Retrieving content from Salesforce
Force.com sites allow unauthenticated visitors access to custom (and some standard)
Salesforce sObjects. While providing public access to data stored in Salesforce might seem
like a security risk, it is a perfect fit for dynamically generated website content; content
authors don't need to know how to edit Visualforce pages in order to be able to update the
content of the site.

In this recipe we will create a Visualforce page that renders content from the three most
recently edited records of a custom sObject. We will then make this page publicly available
via an unauthenticated Force.com site.

Chapter 8

255

Getting ready
This recipe requires that you have already completed the Creating a site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

This recipe requires a custom sObject that encapsulates the items to display on the site.

1. First, create the site content custom sObject by navigating to Your Name | Setup |
Create | Objects.

2. Click on the New Custom Object button.

3. Enter SiteItem in the Label field.

4. Enter SiteItems in the Plural Label field.

5. Leave all other input values at their defaults and click on the Save button.

6. On the resulting page, create the field that will contain the content detail, scroll down
to the Custom Fields and Relationships section, and click on the New button.

7. On the next page, Step 1. Choose the field type, select Text Area from the Data Type
radio buttons and click on the Next button.

8. On the next page, Step 2. Enter the details, enter Detail in the Field Label field,
leave all other fields at their default values, and click on the Next button.

9. On the next page, Step 3. Establish field-level security for reference field, leave all
the fields at their default values and click on the Next button.

10. On the final page, Step 4. Add to page layouts, leave all the fields at their default
values and click on the Save button.

11. Next, create a tab for the SiteItem object to allow easy record creation by navigating
to Your Name | Setup | Create | Tabs.

12. Click on the New button in the Custom Object Tabs section.

13. On the next page, Step 1. Enter the details, choose SiteItem from the Object
picklist, click on the lookup icon in the Tab Style field, and choose a style from the
resulting popup. Finally, click on the Next button.

14. On the next page, Step 2. Add to profiles, leave all fields at their default values and
click on the Next button.

15. On the next page, Step 3. Add to custom apps, leave all fields at their default values
and click on the Save button.

16. Next, add access to the custom sObject to Guest User Profile for the site. Navigate to
the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

17. Click on the Visualforce Cookbook link in the Sites section.

18. Click on the Public Access Settings button.

Force.com Sites

256

19. On the resulting page click on the Edit button, select the Read checkbox for the
SiteItem sObject in the Custom Object Permissions sections, and click on the
Save button.

20. Next, add access to the Detail field for the Guest User Profile. Scroll down to the
Field Level Security section and click on the [View] link for the SiteItem element.

21. On the resulting page, click on the Edit button, select the Visible checkbox for the
Detail field, and click on the Save button.

22. Finally, create at least three SiteItem records.

How to do it…
1. First, create the custom controller by navigating to the Apex Classes setup page by

clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the SiteItemController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter SiteItem in the Label field.

8. Accept the default SiteItem that is automatically generated for the Name field.

9. Paste the contents of the SiteItem.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

11. Click on the Visualforce Cookbook link in the Sites section.

12. On the resulting page, scroll down to the Site Visualforce Pages list and click on the
Edit button.

13. On the resulting page, Enable Visualforce Page Access, select SiteItem from the
Available Visualforce Pages list, click on the Add icon to add it to the Enabled
Visualforce Pages list, and click on the Save button.

Chapter 8

257

How it works…
Opening the following URL in your browser displays the SiteItem page:
http://<domain>/SiteItem.

Here, <domain> is the Force.com domain name chosen while configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Bootstrap divides the page into a 12-column grid and style classes are defined to allow
content to span a number of columns. The SiteItem records from the custom controller are
iterated to generate a row of data. As the controller only returns three records, each iteration
element spans four grid columns.

<div class="row-fluid">
 <apex:repeat value="{!items}" var="item">
 <div class="span4">
 <h2>{!item.Name}</h2>
 <p>{!item.Detail__c}</p>
 </div><!-- .span4 -->
 </apex:repeat>
 </div> <!-- row-fluid -->

Force.com Sites

258

See also
 f The Creating a site recipe in this chapter shows how to set up a Force.com site and

make a static page publicly available.

 f The Web to lead form recipe in this chapter shows how to capture data into
Salesforce from a Force.com site.

Web to lead form
The standard Salesforce web to lead functionality allows a form to be embedded into a
company's website to capture information that is then turned into a lead in the company's
Salesforce instance. The form is submitted to a servlet that is common to all Salesforce
instances and thus, may not be customized besides sending the user to a thank you page
that is disconnected from the lead.

For more information on web to lead, visit http://login.
salesforce.com/help/doc/en/customize_leadcapture.htm.

In this recipe we will create a Visualforce page that captures a lead and redirects the user to a
personalized thank you page that displays the ID of the lead for future reference. We will then
make this page publicly available via an unauthenticated Force.com site.

Getting ready
This recipe requires that you have already completed the Creating a site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

How to do it…
1. First, create the thank you Visualforce page by navigating to the Visualforce setup

page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter WebToLeadThanks in the Label field.

Chapter 8

259

4. Accept the default WebToLeadThanks that is automatically generated for the
Name field.

5. Paste the contents of the WebToLeadThanks.page file from the code download into
the Visualforce Markup area and click on the Save button.

6. Next, create the web to lead page controller extension by navigating to the Apex
Classes setup page by clicking on Your Name | Setup | Develop | Apex Classes.

7. Click on the New button.

8. Paste the contents of the WebToLeadExt.cls Apex class from the code download
into the Apex Class area.

9. Click on the Save button.

10. Next, create the web to lead Visualforce page by navigating to the Visualforce setup
page by clicking on Your Name | Setup | Develop | Pages.

11. Click on the New button.

12. Enter WebToLead in the Label field.

13. Accept the default WebToLead that is automatically generated for the Name field.

14. Paste the contents of the WebToLead.page file from the code download into the
Visualforce Markup area and click on the Save button.

15. Navigate to the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

16. Click on the Visualforce Cookbook link in the Sites section.

17. On the resulting page, scroll down to the Site Visualforce Pages list and click on the
Edit button.

18. On the resulting page, Enable Visualforce Page Access, select WebToLead and
WebToLeadThanks from the Available Visualforce Pages list, click on the Add icon
to add it to the Enabled Visualforce Pages list, and click on the Save button.

19. Click on the Public Access Settings button.

20. On the resulting page click on the Edit button, select the Read and Create
checkboxes for the Lead object in the Standard Object Permissions sections, and
click on the Save button.

How it works…
Opening the following URL in your browser displays the WebToLead page:
http://<domain>/WebToLead.

Force.com Sites

260

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

For a full list of the icons available in Bootstrap, visit
http://getbootstrap.com/2.3.2/base-css.html#icons.

Chapter 8

261

Filling out and submitting the form takes the visitor to the personalized thank you page.

The form is laid out as a series of div elements using the Bootstrap style class control-group.

<div class="control-group">
 <apex:outputLabel styleClass="control-label"
 for="firstname" value="First Name" />
 <div class="controls">
 <div class="input-prepend">
 <i class="icon-user"></i>
 <apex:inputText id="firstname" value="{!Lead.FirstName}" />
 </div>
 </div>
</div>

The <div> class with the input-prepend style class works in conjunction with the enclosed
 element to prepend the icon to the input element.

The Bootstrap error style class is used to indicate that a value is required for a form field.

<div class="control-group error">
 <apex:outputLabel styleClass="control-label" for="lastname"
 value="Last Name" />
 <div class="controls">
 <div class="input-prepend">
 <i class="icon-user"></i>
 <apex:inputText id="lastname" value="{!Lead.LastName}" />
 </div>
 </div>
</div>

Force.com Sites

262

Note that the <apex:inputText /> components are used to capture
the user input rather than an <apex:inputField /> component. This
stops the required field classes being added to the input element, which
would otherwise cause the input element to appear underneath the icon.

See also
 f The Creating a site recipe in this chapter shows how to set up a Force.com site and

make a static page publicly available.
 f The Retrieving content from Salesforce recipe in this chapter shows how to

dynamically generate content for a Force.com site.

Creating a website template
In the previous recipes in this chapter, each page contained the entire Visualforce markup
needed to display its content. This leads to repetition of common markup, to display headers
and footers for example. In the event that the header or footer content needs to be changed,
every page on a site needs to be updated with the new markup.

Visualforce provides a solution to this issue—templates. These allow the common elements of
a site to be added to a template that is used as the starting point for rendering any page. The
page then injects its specific content into the template at appropriate points.

In this recipe we will create a template version of the SiteItem Visualforce page from
the Retrieving content from Salesforce recipe, where the template provides the header
and footer markup. We will then make this page available publicly available via an
unauthenticated Force.com site.

Getting ready
This recipe requires that you have already completed the Creating a site and Retrieving
content from Salesforce recipes, as it relies on the custom domain and Force.com site
created in the first recipe, and the custom objects and controller from the second.

How to do it…
1. First, create the template; this is simply another Visualforce page. To do this, navigate

to the Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.
2. Click on the New button.
3. Enter CookbookTemplate in the Label field.
4. Accept the default CookbookTemplate that is automatically generated for the

Name field.

Chapter 8

263

5. Paste the contents of the CookbookTemplate.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter SiteItemTemplated in the Label field.

9. Accept the default SiteItemTemplated that is automatically generated for the
Name field.

10. Paste the contents of the SiteItemTemplated.page file from the code download
into the Visualforce Markup area and click on the Save button.

11. Navigate to the Sites setup page by clicking on Your Name | Setup | Develop | Sites.

12. Click on the Visualforce Cookbook link in the Sites section.

13. On the resulting page, scroll down to the Site Visualforce Pages list and
click on the Edit button.

14. On the resulting page, Enable Visualforce Page Access, select CookbookTemplate
and SiteItemTemplated from the Available Visualforce Pages list, click on the Add
icon to add it to the Enabled Visualforce Pages list, and click on the Save button.

How it works…
Opening the following URL in your browser displays the SiteItemTemplated page:
http://<domain>/SiteItemTemplated.

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Force.com Sites

264

The template defines the common content and where pages utilizing the template can inject
their content. In the following code snippet, the div element with the style class of hero-
unit generates the generic header and then inserts the body content provided by the page
based on the template.

<!-- container -->
<div class="container-fluid">
 <div class="hero-unit">
 <h1>Demo Site</h1>
 <h2>Visualforce Developer Cookbook</h2>
 </div>

 <apex:insert name="body" />

</div> <!-- container -->

Note that there is no enclosing markup to indicate the page
is a template.

The page making use of the template defines the content that will be inserted into the
template when rendered, and encloses this in an <apex:composition/> component.

<apex:composition template="CookbookTemplate">
 <apex:define name="Title">
 Force.com Sites Recipe 4
 </apex:define>
 ...
</apex:composition>

See also
 f The Creating a site recipe in this chapter shows how to set up a Force.com site and

make a static page publicly available.

 f The Adding a header menu to a template recipe in this chapter shows how to add a
navigation menu to the header of a page template.

Chapter 8

265

Adding a header menu to a template
A common requirement for a website is to display a navigation menu as part of the header.
In the scenario where each page defines its own header and footer, it is straightforward
to highlight a menu option to indicate the page that is currently being displayed. When a
template provides the header and footer information, a mechanism is required to allow the
page to identify itself to the template, which can then highlight the appropriate menu option.

In this recipe, we will create a Visualforce template that provides header and footer content
to four other Visualforce pages: a Home page, an About page, a Contact page, and a Links
page. We will then make these pages available publicly available via an unauthenticated
Force.com site.

Getting ready
This recipe requires that you have already completed the Creating a site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

How to do it…
1. First, create the template; this is simply another Visualforce page. Navigate to the

Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter CookbookTemplateV2 in the Label field.

4. Accept the default CookbookTemplateV2 that is automatically generated for
the Name field.

5. Paste the contents of the CookbookTemplateV2.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Next, create the Home Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter Home in the Label field.

9. Accept the default Home that is automatically generated for the Name field.

Force.com Sites

266

10. Paste the contents of the Home.page file from the code download into the
Visualforce Markup area and click on the Save button.

11. Next, create the About Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

12. Click on the New button.

13. Enter About in the Label field.

14. Accept the default About that is automatically generated for the Name field.

15. Paste the contents of the About.page file from the code download into the
Visualforce Markup area and click on the Save button.

16. Navigate to the Sites setup page by clicking on Your Name | Setup |
Develop | Sites.

17. Next, create the Contact Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

18. Click on the New button.

19. Enter Contact in the Label field.

20. Accept the default Contact that is automatically generated for the Name field.

21. Paste the contents of the Contact.page file from the code download into the
Visualforce Markup area and click on the Save button.

22. Next, create the Links Visualforce page by navigating to the Visualforce setup
page by clicking on Your Name | Setup | Develop | Pages.

23. Click on the New button.

24. Enter Links in the Label field.

25. Accept the default Links that is automatically generated for the Name field.

26. Paste the contents of the Links.page file from the code download into the
Visualforce Markup area and click on the Save button.

27. Navigate to the Sites setup page by clicking on Your Name | Setup |
Develop | Sites.

28. Click on the Visualforce Cookbook link in the Sites section.

29. On the resulting page, scroll down to the Site Visualforce Pages list and
click on the Edit button.

30. On the resulting page, Enable Visualforce Page Access, select
CookbookTemplateV2, Home, About, Contact, and Links from the Available
Visualforce Pages list, click on the Add icon to add it to the Enabled Visualforce
Pages list, and click on the Save button.

Chapter 8

267

How it works…
Opening the following URL in your browser displays the Home page:
http://<domain>/Home.

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Clicking on any of the other pages in the header navigation bar updates the bar to indicate the
current page.

Force.com Sites

268

The template defines an empty value as the default.

<apex:variable var="page" value="" />

Each page defines markup to be injected into the template that overrides the page variable
with its own value.

<apex:define name="page">
 <apex:variable var="page" value="home"/>
</apex:define>

The template inserts this markup:

<apex:insert name="page" />

The template then conditionally outputs a > character next to the menu item that equates to
the page.

<div class="nav-collapse collapse">
 <ul class="nav">

 <apex:outputText value=">" rendered="{!page=='home'}" />
 Home

 <apex:outputText value=">" rendered="{!page=='about'}" />
 About

 <apex:outputText value=">" rendered="{!page=='contact'}" />
 Contact

 <apex:outputText value=">" rendered="{!page=='links'}" />
 Links

</div>

See also
 f The Retrieving content from Salesforce recipe in this chapter shows how to

dynamically generate content for a Force.com site.

 f The Adding a sidebar to a template recipe in this chapter shows how to add a sidebar
component to a template.

Chapter 8

269

Adding a sidebar to a template
Website content is not always suited to being broken up across a number of pages. A table of
contents, while being potentially quite long, may be more usable when displayed on a single
page. A sidebar can improve the user experience by providing links to allow the user to rapidly
navigate around the lengthy content.

In this recipe, we will create a Visualforce template that provides header and footer content
to two other Visualforce pages: a TableOfContents page (containing information about all
chapters) and a Chapter1 page (containing detailed information about the first chapter).
Each page has a sidebar to assist with navigation through the page content. We will then
make these pages available publicly available via an unauthenticated Force.com site.

Getting ready
This recipe requires that you have already completed the Creating a site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

How to do it…
1. First, create the template; this is simply another Visualforce page. Navigate to the

Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter CookbookTemplateV3 in the Label field.

4. Accept the default CookbookTemplateV3 that is automatically generated for
the Name field.

5. Paste the contents of the CookbookTemplateV3.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Next, create the TableOfContents Visualforce page by navigating to the
Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter TableOfContents in the Label field.

9. Accept the default TableOfContents that is automatically generated for the
Name field.

10. Paste the contents of the TableOfContents.page file from the code
download into the Visualforce Markup area and click on the Save button.

11. Next, create the Chapter1 Visualforce page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

12. Click on the New button.

Force.com Sites

270

13. Enter Chapter1 in the Label field.

14. Accept the default Chapter1 that is automatically generated for the Name field.

15. Paste the contents of the Chapter1.page file from the code download into the
Visualforce Markup area and click on the Save button.

16. Navigate to the Sites setup page by clicking on Your Name | Setup |
Develop | Sites.

17. Click on the Visualforce Cookbook link in the Sites section.

18. On the resulting page, scroll down to the Site Visualforce Pages list and
click on the Edit button.

19. On the resulting page, Enable Visualforce Page Access, select
CookbookTemplateV3, TableOfContents, and Chapter1 from the Available
Visualforce Pages list, click on the Add icon to add it to the Enabled Visualforce
Pages list, and click on the Save button.

How it works…
Opening the following URL in your browser displays the Home page:
http://<domain>/TableOfContents.

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Chapter 8

271

Scrolling down or clicking on one of the navigation links in the sidebar allows quick navigation
to the particular section.

Note that even though the header has scrolled out of view, the navigation
sidebar remains in view; this functionality is provided by the Bootstrap Affix
JavaScript. For more information visit http://twitter.github.io/
bootstrap/javascript.html#affix.

Clicking on the Chapter 1 – General Utilities link takes the user to the detail page for the first
chapter, which also has a navigation sidebar.

Force.com Sites

272

The Bootstrap framework divides the page up into a 12-column grid. The template provides a
3-column container for the sidebar and a 9-column container for the details.

<div class="row-fluid">
 <div class="span3">
 <apex:insert name="sidebar" />
 </div>

 <div class="span9">
 <apex:insert name="body" />
 </div>

</div> <!-- row -->

Each page that utilizes the template provides the list of sidebar navigation elements and the
content associated with each navigation element.

<apex:define name="sidebar">
 <ul class="nav nav-list" data-spy="affix" data-offset-top="270">
 <i class="icon-arrow-right"></i>
 Chapter 1
 ...

</apex:define>
<apex:define name="body">
 <fieldset id="chapter1">
 <legend>
 Chapter 1 - General Utilities
 </legend>
 <div class="fieldset-content">

 Overriding Standard Buttons
 ...

 </div>
 </fieldset>
</apex:define>

It is important to make sure that every navigation list item has associated
content, or the user will experience viewing of content by clicking on links
only in some instances.

Chapter 8

273

See also
 f The Retrieving content from Salesforce recipe in this chapter shows how to

dynamically generate content for a Force.com site.

 f The Adding a header menu to a template recipe in this chapter shows how to add a
navigation menu to the header of a page template.

Conditional rendering in templates
Templating a website is an effective way to avoid repeated content and the associated
maintenance overhead. There are occasions when this common content needs to be replaced
for one or two exceptional pages; for example, a homepage may require slightly different
header information than other pages in a site. This problem can be solved by the homepage
not utilizing a template, but this then means that any common content that the homepage
does require is repeated in the homepage and the template.

In this recipe we will create a Visualforce template that provides header and footer content.
A page may override the header text provided by the template. We will then create two
Visualforce pages that utilize this template: a StandardHeader page (that displays the
standard header text) and a CustomHeader page (that provides its own custom text for
use in the header). We will then make these pages available publicly available via an
unauthenticated Force.com site.

Getting ready...
This recipe requires that you have already completed the Creating a site recipe, as it relies on
the custom domain and Force.com site created in that recipe.

How to do it…
1. First, create the template; this is simply another Visualforce page. Navigate to the

Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter CookbookTemplateV4 in the Label field.

4. Accept the default CookbookTemplateV4 that is automatically generated for the
Name field.

Force.com Sites

274

5. Paste the contents of the CookbookTemplateV4.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Next, create the StandardHeader Visualforce page by navigating to the
Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

7. Click on the New button.

8. Enter StandardHeader in the Label field.

9. Accept the default StandardHeader that is automatically generated for the
Name field.

10. Paste the contents of the StandardHeader.page file from the code
download into the Visualforce Markup area and click on the Save button.

11. Next, create the CustomHeader Visualforce page by navigating to the
Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

12. Click on the New button.

13. Enter CustomHeader in the Label field.

14. Accept the default CustomHeader that is automatically generated for the Name field.

15. Paste the contents of the CustomHeader.page file from the code download into the
Visualforce Markup area and click on the Save button.

16. Navigate to the Sites setup page by clicking on Your Name | Setup |
Develop | Sites.

17. Click on the Visualforce Cookbook link in the Sites section.

18. On the resulting page, scroll down to the Site Visualforce Pages list and
click on the Edit button.

19. On the resulting page, Enable Visualforce Page Access, select CookbookTemplateV4,
StandardHeader, and CustomHeader from the Available Visualforce Pages list,
click on the Add icon to add it to the Enabled Visualforce Pages list, and click
on the Save button.

How it works…
Opening the following URL in your browser displays the StandardHeader page:
http://<domain>/StandardHeader.

Chapter 8

275

Here, <domain> is the Force.com domain name chosen when configuring the site, for
example, vfcookbook-developer-edition.na15.force.com.

Clicking on the here link in the Notes section displays the CustomHeader page with a
different text in the header section.

Force.com Sites

276

The CookbookTemplateV4 page defines a variable to indicate whether the standard header
text should be used, and provides a mechanism for a page to inject Visualforce markup to
override this.

<apex:variable var="header" value="standard" />
<apex:insert name="headerOverride" />

The standard header text is conditionally rendered based on the value of the header variable.

<apex:outputPanel rendered="{!header=='standard'}">
 Standard Header
</apex:outputPanel>

If the page has overridden the value of the header variable to 'custom', a mechanism is
provided for the page-specific header text to be injected.

<apex:outputPanel rendered="{!header=='custom'}">
 <apex:insert name="customHeaderText" />
</apex:outputPanel>

A page may override the header text through the following markup:

<apex:define name="headerOverride">
 <apex:variable var="header" value="custom"/>
</apex:define>
<apex:define name="customHeaderText">
 Custom Header
</apex:define>

See also
 f The Retrieving content from Salesforce recipe in this chapter shows how to

dynamically generate content for a Force.com site.

 f The Adding a header menu to a template recipe in this chapter shows how to add a
navigation menu to the header of a page template.

 f The Adding a sidebar to a template recipe in this chapter shows how to add a sidebar
component to a template.

9
jQuery Mobile

In this chapter, we will cover the following recipes:

 f Mobilizing a Visualforce page

 f Navigation and transitions

 f Adding a navigation bar

 f Working with dialogs

 f Listing records

 f Mobile Visualforce forms

 f Redirecting to the mobile page based on the browser

 f Storing the user's location

 f Scanning the QR code to access the page

Introduction
Users today expect mobile access to the same applications and data that they have on their
desktop or laptop computer, and failure to provide this type of access can lead to a lack of
adoption of an application.

There are three types of mobile applications:

 f Native: These applications provide access to all the features on a device and have
the potential for the slickest user experience and best performance. The downsides
are that a separate application needs to be built for each platform that is supported
using platform-specific tools and languages, and distributing and upgrading an
application is often constrained by the platform (to distribute an iOS application, for
example, requires membership of the Apple Developer Program).

jQuery Mobile

278

 f HTML5: These are web applications that are accessed via the device browser. They
do not have access to many device features and have limitations around offline
storage and session management. The key benefit to HTML5 mobile applications is
that one application runs on any device and every user accesses the latest version of
the application.

 f Hybrid: These applications allow an HTML5 application to run inside a thin container
on the mobile device. A container such as PhoneGap (Cordova) provides access
to native device features via a JavaScript bridge. While hybrid applications are
developed on a common framework, they still require a version of the application to
be built for each device, and have the same distribution and upgrade challenges as
native applications.

As this is a book about Visualforce rather than mobile development, we will focus on
HTML5 using the jQuery Mobile framework to provide the user interface. jQuery Mobile is
a cross-device, touch-optimized, mobile UI framework built on jQuery. It uses progressive
enhancement to maximize device support, starting with regular HTML for older devices,
then applying CSS and JavaScript for devices that support those technologies.

For more information on jQuery Mobile, visit
http://jquerymobile.com/.

In this chapter, we will use Visualforce in conjunction with jQuery Mobile to produce mobile
pages that access Salesforce data, apply animated transitions between pages, and add a
navigation bar. We will then move on to more advanced techniques, including creating a
record in Salesforce and updating a record with a user's current location.

The jQuery Mobile JavaScript and CSS files are included from the Microsoft
Ajax Content Delivery Network (http://www.asp.net/ajaxlibrary/
cdn.ashx) rather than being uploaded as Salesforce static resources, as
this makes it straightforward to move to new versions simply by changing the
URL of the included file.
This does introduce a dependency on the Microsoft Ajax Content Delivery
Network and in the event that the site was unavailable or access blocked,
the jQuery Mobile styling and functionality would be lost.

Chapter 9

279

Mobilizing a Visualforce page
Mobilizing a Visualforce page using jQuery Mobile requires that the jQuery Mobile
stylesheets are used rather than the standard Salesforce stylesheets. This means that
standard Visualforce components controlling layout, such as <apex:pageBlock /> and
<apex:pageBlock />, cannot be used. Instead, the jQuery Mobile specific styles must be
used to layout and organize data.

In this recipe we will create a mobile Visualforce page that displays the top 10 opportunities
by value. This page will use a jQuery Mobile grid to lay out the information in two columns.

Getting ready
This recipe requires a custom controller, so this must be created before the Visualforce page.

How to do it…
1. Navigate to the Apex Classes setup page by clicking on Your Name | Setup | Develop

| Apex Classes.

2. Click on the New button.

3. Paste the contents of the MobileOppsController.cls Apex class from the code
download into the Apex Class area.

4. Click on the Save button.

5. Next, create the Visualforce page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter MobileOpps in the Label field.

8. Accept the default MobileOpps that is automatically generated for the Name field.

9. Paste the contents of the MobileOpps.page file from the code download into the
Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the MobileOpps page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

280

How it works…
Opening the following URL in your mobile device browser displays the MobileOpps page:
https://<instance>/apex/MobileOpps.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Device browsers often assume that the user is viewing a desktop size page and size their
display accordingly. Mobile Safari, for example, will assume a width of 980 px and zoom out to
fit in all the content. To avoid this, the viewport is set through an HTML meta tag to match the
dimensions of the device.

<meta name="viewport" content="initial-scale=1, maximum-scale=1,
 height=device-height, width=device-width" />

The initial-scale and maximum-scale tags ensure that the browser does not zoom out
when initially rendering the page, and that the user cannot zoom the page in or out. It also
allows the jQuery Mobile framework to scroll the page down by 60 pixels to hide the mobile
Safari navigation bar.

A jQuery Mobile page is defined as div with a data-role attribute of page.

<div data-role="page" id="main">

HTML5 data- attributes are not standard attributes; they are a
way to store additional data on an element that has meaning to the
application. In earlier incarnations of HTML, the class attribute was
often used to store this information.

Chapter 9

281

Inside the page container, additional <div> elements are defined to specify the header bar
(with a data-role attribute of header) and the main body of the page (with a data-role
attribute of content).

<div data-role="header">
 <h1>Opportunities</h1>
</div> <!-- /header -->
<div data-role="content">
 <h2>Top 10 by Value</h2>
 ...
</div>

Further, the <div> elements generate the grid layout, while a standard Visualforce
<apex:repeat /> component iterates the opportunities from the controller and
outputs them in individual grid cells.

<div class="ui-grid-a">
 <div class="ui-block-a">Amount</div>
 <div class="ui-block-b">Name</div>
 <apex:repeat value="{!opps}" var="opp">
 <div class="ui-block-a">
 <apex:outputField value="{!opp.Amount}"/>
 </div>
 <div class="ui-block-b">
 <apex:outputText value="{!opp.Name}"/>
 </div>
 </apex:repeat>
</div>

See also
 f The Adding a navigation bar recipe in this chapter shows how to add a toolbar with

navigation buttons to the footer of a mobile page.

 f The Listing records recipe in this chapter recipe shows how to display a rich, filterable
list of records on a mobile page.

Navigation and transitions
A Visualforce page leveraging jQuery Mobile can contain one or more application web pages.
Each application page is demarcated by a <div> element with a data-role attribute of
page, and additional application pages can be added to a single Visualforce page by stacking
these elements.

jQuery Mobile

282

When multiple application pages appear in a single Visualforce page, these are all stored
in the Document Object Model (DOM) at load time and JavaScript is used to transition
between the application pages. This can lead to faster application performance, as there
is no round-trip to the server in order to access the next page, but does result in a larger
DOM, so is not necessarily suitable for applications with many content heavy pages.

For more information about the Document Object Model, visit
http://en.wikipedia.org/wiki/Document_Object_Model.

When a single Visualforce page contains a single application page, the default jQuery Mobile
behavior is to load the new page into the DOM, use JavaScript to transition to the new page,
and then to discard the previous page. This behavior can be overridden to force a full-page
reload, which is useful when dealing with an application containing multiple Visualforce forms,
as it ensures that any previous versions of the viewstate are discarded.

When jQuery Mobile navigates to an external page via Ajax, it only loads the
content wrapped inside the first <div> element with a data-role attribute
of page. Any additional inclusions or content/JavaScript outside of these
elements will be discarded.

When page navigation makes use of Ajax, animated transitions may be applied to give more
of a mobile application experience. The default transition is to fade out the previous page and
fade in the new one, and there are a number of additional transition options.

In this recipe we will create a mobile Visualforce page that demonstrates each of these
navigation types. This page will also contain links to demonstrate each of the transition
types available.

How to do it…
This recipe does not require any controllers, so we only need to create the Visualforce pages.

1. First, create the Visualforce page containing two application pages by navigating to
the Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter MobileNavigation in the Label field.

4. Accept the default MobileNavigation that is automatically generated for the
Name field.

5. Paste the contents of the MobileNavigation.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Chapter 9

283

7. Locate the entry for the MobileNavigation page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

9. Next, create the Visualforce page that is external but loaded via Ajax by navigating to
the Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

10. Click on the New button.

11. Enter MobileNavigation2 in the Label field.

12. Accept the default MobileNavigation2 that is automatically generated for the
Name field.

13. Paste the contents of the MobileNavigation2.page file from the code download
into the Visualforce Markup area and click on the Save button.

14. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

15. Locate the entry for the MobileNavigation2 page and click on the Security link.

16. On the resulting page, select which profiles should have access and click on the
Save button.

17. Finally, create the Visualforce page that is external and accessed via a full page
reload by navigating to the Visualforce setup page by clicking on Your Name |
 Setup | Develop | Pages.

18. Click on the New button.

19. Enter MobileNavigation3 in the Label field.

20. Accept the default MobileNavigation3 that is automatically generated for the
Name field.

21. Paste the contents of the MobileNavigation3.page file from the code download
into the Visualforce Markup area and click on the Save button.

22. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

23. Locate the entry for the MobileNavigation3 page and click on the Security link.

24. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your mobile device browser displays the MobileNavigation page:
https://<instance>/apex/MobileNavigation.

jQuery Mobile

284

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Each button is generated from an HTML anchor tag. The internal transition simply specifies
the target anchor as the href attribute.

Internal Page

The external transition via Ajax defines a target href attribute of the external page, and relies
on the default jQuery Mobile behavior to provide Ajax navigation.

 External Page (Ajax)

The external transition without Ajax defines a target href attribute of the external page, and
turns off the Ajax navigation via the data-ajax attribute.

<a href="/apex/MobileNavigation3" data-ajax="false"
 data-role="button">External Page (Non-Ajax)

Chapter 9

285

The buttons in the Transitions section override the default transition behavior by specifying
the desired transition through the data-transition attribute.

 Pop

 Flip

Clicking on the Internal Page link navigates to another application page inside the same
HTML document using the default transition of fade in/out. As this is a JavaScript-only
transition, there is no round-trip to the server.

Clicking on the Back button returns to the main page via the same mechanism.

Clicking on the External Page (Ajax) button on the main page navigates to an external page
via Ajax. A spinner is displayed to indicate that this is taking place, and the default transition
of fade in/out is used.

Clicking on the Back button returns the user to the main page via the same mechanism.

jQuery Mobile

286

Clicking on the External Page (Non-Ajax) button on the main page navigates to an external
page via a full-page reload. As this navigation does not take place via JavaScript, there is
no animated transition or spinner image while the navigation takes place. Once the page is
rendered, all HTML markup and JavaScript from previous pages has been discarded.

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains the how a

Visualforce page utilizing jQuery Mobile is constructed.

 f The Adding a navigation bar recipe in this chapter shows how to add a toolbar with
navigation buttons to the footer of a mobile page.

Adding a navigation bar
As HTML5 applications may either hide the mobile browser controls or navigate via JavaScript
manipulation of the DOM, a different mechanism of navigating between pages must be used.
jQuery Mobile provides a navbar widget that may be placed in the header, footer, or body of a
page. This widget contains buttons to support navigation to other pages, and may be up to five
buttons wide, after which it will wrap onto the next line.

In this recipe we will create mobile Visualforce pages for the Home and About elements of an
application with a common navigation bar in the footer of the page. In order to avoid repetition
of common content, we will use a template to generate the header and footer information,
allowing each page to inject its content into appropriate areas of the page. The navigation bar
will highlight the button for the current page. Finally, we will provide an additional button in the
navigation bar to open a Facebook-style panel.

How to do it…
This recipe does not require any controllers, so we only need to create the Visualforce pages.

1. First, create the template for the pages by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

Chapter 9

287

3. Enter MobileNavBarTemplate in the Label field.

4. Accept the default MobileNavBarTemplate that is automatically generated for the
Name field.

5. Paste the contents of the MobileNavBarTemplate.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the MobileNavBarTemplate page and click the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

9. Next, create the Home page by navigating to the Visualforce setup page by clicking on
Your Name | Setup | Develop | Pages.

10. Click on the New button.

11. Enter MobileNavBarHome in the Label field.

12. Accept the default MobileNavBarHome that is automatically generated for the
Name field.

13. Paste the contents of the MobileNavBarHome.page file from the code download
into the Visualforce Markup area and click on the Save button.

14. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

15. Locate the entry for the MobileNavBarHome page and click on the Security link.

16. On the resulting page, select which profiles should have access and click on the
Save button.

17. Finally, create the About page by navigating to the Visualforce setup page by clicking
on Your Name | Setup | Develop | Pages.

18. Click on the New button.

19. Enter MobileNavBarAbout in the Label field.

20. Accept the default MobileNavBarAbout that is automatically generated for the
Name field.

21. Paste the contents of the MobileNavBarAbout.page file from the code download
into the Visualforce Markup area and click on the Save button.

22. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

23. Locate the entry for the MobileNavBarAbout page and click on the Security link.

24. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

288

How it works…
Opening the following URL in your mobile device browser displays the MobileNavBarHome
page: https://<instance>/apex/MobileNavBarHome.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The template page defines the header and allows the page to inject the text to be displayed.

<div data-role="header">
 <h1><apex:insert name="title"/></h1>
</div> <!-- /header -->

The navbar widget is defined as a <div> element with a data-role attribute of navbar
in the footer, and relies on the page utilizing the template setting its name to a variable to
highlight the active page. Each button in the navbar is generated from an anchor element
inside a list item with the image displayed in the button specified by the data-icon attribute.

<div data-role="footer" data-position="fixed">
 <apex:variable var="page" value="home" />

Chapter 9

289

 <apex:insert name="page" />
 <div data-role="navbar">

 <a href="/apex/MobileNavBarHome" data-ajax="false"
 data-icon="home" class="{!IF(page=='home', 'ui-btn-active',
 '')}">Home

 ...

 </div><!-- /navbar -->
</div><!-- /footer -->

Note that the anchor tag specifies that Ajax navigation between pages
should not be used via the data-ajax="false" attribute. This is to
ensure that the browser interprets the entire page, rather than just the
<div> element with a role of page, as detailed in the Navigation and
transitions recipe.

Clicking on the About button navigates to the About page and updates the active navbar button.

jQuery Mobile

290

Clicking on the Settings button pops out the Facebook-style panel, pushing the existing
content off to the right.

The panel is defined in the template as a sibling <div> element to the footer with a
data-role attribute of panel. The close button is an anchor element with an href
target of the <div> element for the page to return to.

<div data-role="panel" id="settingspanel">
 <h3>Settings</h3>
 <p>A popout panel is becoming a common way to capture settings
information.</p>
 Close
</div><!-- /panel -->

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Navigation and transitions recipe in this chapter explains the various
types of page navigation available in jQuery Mobile and the animated
transitions between pages.

Working with dialogs
While mobile applications can utilize the standard JavaScript alert function to create a
dialog, this can be a jarring user experience, as the dialog will not be styled according to the
application and the pop-up aspect may be at odds with the page transitions used elsewhere.
jQuery Mobile provides the following two mechanisms for generating a dialog:

 f A page that has a <div> element with a data-role attribute of dialog will only
ever be rendered as a dialog and thus, is not as re-usable as the second method
explained next.

Chapter 9

291

 f A link to a page with a data-rel attribute of dialog renders the target page as
a dialog. This allows the target page to be rendered as a regular page or a dialog
depending on the use case.

In this recipe we will create a Visualforce mobile page that displays a list of account names
and a View button. Clicking on the View button will open an external page as a dialog and
display details of the selected account.

How to do it…
This recipe does not require any controllers, so we only need to create the Visualforce pages.

1. First, create the account list page by navigating to the Visualforce setup page by
clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter MobileDialogMain in the Label field.

4. Accept the default MobileDialogMain that is automatically generated for the
Name field.

5. Paste the contents of the MobileDialogMain.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the MobileDialogMain page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

9. Next, create the dialog page by navigating to the Visualforce setup page by clicking on
Your Name | Setup | Develop | Pages.

10. Click on the New button.

11. Enter MobileDialog in the Label field.

12. Accept the default MobileDialog that is automatically generated for the Name field.

13. Paste the contents of the MobileDialog.page file from the code download into the
Visualforce Markup area and click on the Save button.

14. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

15. Locate the entry for the MobileDialog page and click on the Security link.

16. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

292

How it works…
Opening the following URL in your mobile device browser displays the MobileDialogMain
page: https://<instance>/apex/MobileDialogMain.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

A standard <apex:repeat /> Visualforce component iterates the accounts from the
controller and outputs the name and a button to view the detail.

<a href="/apex/MobileDialog?id={!acc.id}" data-mini="true"
 data-role="button" data-rel="dialog" data-transition="flip">
 View

The data-rel attribute of dialog specifies that the target page should be opened as a
dialog, and the data-transition attribute specifies that the desired animated transition
between the pages.

Clicking on the View button for any of the accounts displays the details in a dialog.

Chapter 9

293

The detail page has no markup to indicate that it should be displayed as a dialog, and thus,
could be used to display the account details as a regular jQuery Mobile page.

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Navigation and transitions recipe in this chapter explains the various types of page
navigation available in jQuery Mobile and the animated transitions between pages.

Listing records
In the previous recipes, records have been laid out in a grid format which do not have
much space for record details. Using jQuery Mobile listview widget allows record details
to be displayed in each element of a list, and also allows a number of different items of
functionality to be made available declaratively through HTML5 data- attributes.

In this recipe we will create a mobile Visualforce page to render contact information in a
jQuery Mobile listview widget. The listview will group the contacts into sections based on the
first letter of the LastName field on the contact record. The listview will also be filterable by
entering text into a search box at the top of the list.

How to do it…
This recipe does not require any controllers, so we only need to create the Visualforce pages.

1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

2. Click on the New button.

3. Enter MobileFilteredList in the Label field.

4. Accept the default MobileFilteredList that is automatically generated for the
Name field.

5. Paste the contents of the MobileFilteredList.page file from the code download
into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the MobileFilteredList page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

294

How it works…
Opening the following URL in your mobile device browser displays the MobileFilteredList
page: https://<instance>/apex/MobileFilteredList.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

The listview widget is generated from an unordered list element with the data-role attribute
of listview.

<ul data-filter="true" data-autodividers="true"
 data-filter-placeholder="Search contacts..."
 data-role="listview" data-theme="c" data-divider-theme="b">
 ...

Chapter 9

295

Setting the data-autodividers attribute to true groups the contacts by the first text item
in each element; in this case, the LastName field from the contact record. The data-filter
attribute set to true makes the listview searchable and adds the search box. Finally, the
data-filter-placeholder attribute defines the placeholder text that the search box will
initially be populated with.

The contacts from the controller are iterated by a standard <apex:repeat /> component to
generate a list item for each record.

<apex:repeat value="{!contacts}" var="cont">

 <h2>{!cont.LastName}, {!cont.FirstName}</h2>
 ...

</apex:repeat>

Entering text into the search box restricts the listview to those elements with matching text.

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Working with dialogs recipe in this chapter shows how to open a detail dialog
page from a list of records.

jQuery Mobile

296

Mobile Visualforce forms
Capturing data from a mobile site can be achieved in a number of ways. The most
straightforward, from a markup and code perspective, is to use a standard controller to manage
the page and capture the information via a standard <apex:form /> component. This
mechanism requires the Visualforce viewstate to be used to maintain the state between the
controller and the page, which is somewhat heavyweight for a mobile device and precludes use of
Visualforce Ajax functionality, as this would interfere with the jQuery Mobile Ajax page navigation.

The other option is to use JavaScript to send the information back to Salesforce, either via the
REST API or JavaScript Remoting. Using the REST API makes an application more portable,
allowing it to be easily hosted outside the Salesforce platform, but does consume API calls
and can lead to limits being exhausted. JavaScript Remoting allows methods in an Apex
controller to be called from a Visualforce page via and does not consume API calls. It does,
however, tie an application to Visualforce, which means that it can only be hosted on the
Salesforce platform.

In this recipe we will create a mobile Visualforce page to capture lead information and store
this in the Salesforce database via JavaScript Remoting.

Getting ready
This recipe makes use of a custom controller, so this must be created before the
Visualforce page.

How to do it…
1. First, create the custom controller for the page by navigating to the Apex Classes

setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the MobileLeadCaptureController.cls Apex class from
the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the page that will capture the lead by navigating to the Visualforce setup
page by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter MobileLeadCapture in the Label field.

8. Accept the default MobileLeadCapture that is automatically generated for the
Name field.

9. Paste the contents of the MobileLeadCapture.page file from the code download
into the Visualforce Markup area and click on the Save button.

Chapter 9

297

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the MobileLeadCapture page and click on the Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your mobile device browser displays the MobileLeadCapture
page: https://<instance>/apex/MobileLeadCapture.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

jQuery Mobile

298

Filling out the form details and clicking on the Submit button saves the lead to the Salesforce
database, clears the form, and displays a confirmation message.

In the event that an error has occurred or a mandatory field (with a red label) was not
populated, an error message will be displayed in place of the confirmation message.

To make a controller method available to JavaScript Remoting, it must be decorated with
the @RemoteAction annotation.

@RemoteAction
public static String CreateLead(String fName, String lName,
 String inCompany, String inEmail, String inPhone)
{
 ...
}

This method is invoked from the page using JavaScript after retrieving the lead details from
the input elements.

var fname=$('#firstname').val();
var lname=$('#lastname').val();
...
MobileLeadCaptureController.CreateLead(fname, lname, company,
 email, phone, leadCaptured, {escape:true});

As JavaScript Remoting calls are asynchronous, a callback function must be provided to
handle the controller response, in this case, it is the leadCaptured function, which checks
the response from the controller and generates the appropriate message for the user.

function leadCaptured(result, event)
{
 ...
 if (event.status)

Chapter 9

299

 {
 if ('SUCCESS'==result)
 {
 ...
 $('#msg').html('Lead created</
span>');
 }
 else
 {
 $("#msg").html('An error occurred : ' +
result + '');
 }
 }
 else if (event.type === 'exception')
 {
 $("#msg").html(event.message);
 }
 ...
}

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Storing the user's location recipe in this chapter shows how to capture
coordinates of the user's current location and store those in a record.

Redirecting to the mobile page based on the
browser

While developers can provide mobile versions of a web page or site, users only access these if
they are aware of the URL. When a user receives a link to a full site page in an e-mail or social
media post, they are likely to follow this link rather than attempting to alter it to point to the
mobile version. An application can improve the user experience by detecting that a mobile
device is in use and sending the user to a mobile version of the page.

jQuery Mobile

300

There are two ways in which this functionality can be provided in Visualforce. They are
as follows:

 f Server side by interrogating the USER-AGENT header of the request and matching this
against a set of mobile devices. While this provides a faster experience for the user,
as a server-side redirect can be used to send them to the destination page, it does
introduce a maintenance overhead, as the list of mobile devices is ever increasing.

 f Client side using JavaScript to determine the dimensions of the user's device and
sending them to a different page if the width of the device is below a certain size. While
this may involve two server round-trips: one for the full version of the site and another
for the mobile version, it is future-proof in such a way that it is device-agnostic and
purely concerned with the amount of screen estate available to display the page.

In this recipe we will create a Visualforce page that allows a user to view details of a contact.
When the page is initially loaded, it will check the width of the user's device. If the width is
less than or equal to 650 pixels, the user will be sent to a mobile page that renders the details
using jQuery Mobile. If the width is greater than 650 pixels, the user will be redirected to a
desktop version of the page that renders the details using standard Visualforce components.

Getting ready
This recipe does not require any controllers, so we only need to create the Visualforce pages.

How to do it…
1. First create the desktop version of the page by navigating to the Visualforce setup

page by clicking on Your Name | Setup | Develop | Pages.

2. Click on the New button.

3. Enter DesktopViewContact in the Label field.

4. Accept the default DesktopViewContact that is automatically generated for
the Name field.

5. Paste the contents of the DesktopViewContact.page file from the code
download into the Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

Chapter 9

301

7. Locate the entry for the DesktopViewContact page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

9. Next, create the mobile version of the page by navigating to the Visualforce
setup page by clicking on Your Name | Setup | Develop | Pages.

10. Click on the New button.

11. Enter MobileViewContact in the Label field.

12. Accept the default MobileViewContact that is automatically generated for
the Name field.

13. Paste the contents of the MobileViewContact.page file from the code
download into the Visualforce Markup area and click on the Save button.

14. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

15. Locate the entry for the MobileViewContact page and click on the Security link.

16. On the resulting page, select which profiles should have access and click on the
Save button.

17. Finally, create the page that will determine where the user should be
redirected to by navigating to the Visualforce setup page by clicking on Your Name |
Setup | Develop | Pages.

18. Click on the New button.

19. Enter ViewContact in the Label field.

20. Accept the default ViewContact that is automatically generated for the
Name field.

21. Paste the contents of the ViewContact.page file from the code download
into the Visualforce Markup area and click on the Save button.

22. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

23. Locate the entry for the ViewContact page and click on the Security link.

24. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

302

How it works…
Opening the following URL in your mobile device browser displays the mobile version of the
ViewContact page: https://<instance>/apex/ViewContact?id<contact_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com, and <contact_id> is the record ID of a contact within your
Salesforce instance.

While accessing the same page in your desktop browser displays the desktop version
of the page.

Device browsers often assume that the user is viewing a desktop-size page and size their
display accordingly, which would result in the user being redirected to the desktop version
of the page. To avoid this, the viewport is set through an HTML meta tag to match the
dimensions of the device.

<meta name="viewport" content="initial-scale=1, maximum-scale=1,
 height=device-height, width=device-width" />

Chapter 9

303

A JavaScript fragment extracts the device width and redirects the user to the appropriate page.

<script>
 if ($(window).width()<=650)
 {
 window.location='/apex/MobileViewContact?id={!contact.id}';
 }
 else
 {
 window.location='/apex/DesktopViewContact?id={!contact.id}';
 }
</script>

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Mobile Visualforce forms recipe in this chapter shows how to capture a lead on a
mobile device and store this in the Salesforce database.

Storing the user's location
Mobile devices, by their very nature, are used on the move and applications often need to
capture the location of the user in order to provide the best user experience; for example,
showing proximity to a business or services, or allowing them to check-in at a destination.

In this recipe we will create a mobile Visualforce page to capture a lead and the location of the
user. The location will be stored on the lead record in the Salesforce database.

Getting ready
This recipe requires a custom field on the lead sObject to capture the location.

1. Navigate to the lead fields setup page by clicking on Your Name | Setup | App Setup
| Customize | Lead | Fields.

2. Scroll down to the Lead Custom Fields and Relationships section and click on the
New button.

3. On the next page, Step 1. Choose the field type, select the Gelocation option from
the Data Type radio buttons and click on the Next button.

4. On the next page, Step 2. Enter the Details, enter Location in the Label field,
enter 10 in the Decimal Places field, accept the default name of Location,
and click on the Next button.

jQuery Mobile

304

5. On the next page, Step 3. Establish field-level security for reference field, leave all
the fields at their default values and click on the Next button.

6. On the next page, Step 4. Add to page layouts, leave all the fields at their default
values and click on the Save button.

At the time of writing, in the Summer '13 release of Salesforce, the
Geolocation field type is in beta. This means that it is a production
quality feature with known limitations.

How to do it…
1. First, create the custom controller for the page by navigating to the Apex Classes

setup page by clicking on Your Name | Setup | Develop | Apex Classes.

2. Click on the New button.

3. Paste the contents of the MobileLeadLocationCaptureController.cls Apex
class from the code download into the Apex Class area.

4. Click on the Save button.

5. Next, create the page that will capture the lead by navigating to the
Visualforce setup page by clicking on Your Name | Setup | Develop | Pages.

6. Click on the New button.

7. Enter MobileLeadLocationCapture in the Label field.

8. Accept the default MobileLeadLocationCapture that is automatically
generated for the Name field.

9. Paste the contents of the MobileLeadLocationCapture.page file from
the code download into the Visualforce Markup area and click on the Save button.

10. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

11. Locate the entry for the MobileLeadLocationCapture page and click on the
Security link.

12. On the resulting page, select which profiles should have access and click on the
Save button.

How it works…
Opening the following URL in your mobile device browser displays the MobileLeadLocation
page: https://<instance>/apex/MobileLeadLocation.

Chapter 9

305

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com.

Filling out the form details and clicking on the Submit button executes JavaScript to retrieve
the user's location after requesting permission. The lead is then saved to the Salesforce
database, the form is cleared, and a confirmation message is displayed.

In the event that an error has occurred, a mandatory field (with a red label) was not populated,
or retrieving the user's location has failed, an error message will be displayed in place of the
confirmation message.

The controller method is made available for execution in JavaScript via the @RemoteAction
annotation.

@RemoteAction
public static String CreateLead(String fName, String lName, String
inCompany, String inEmail, String inPhone,
 Double latitude, Double longitude)
{
 Lead newLead=new Lead(FirstName=fName,
 LastName=lName,
 Company=inCompany,
 Email=inEmail,
 Phone=inPhone);

 if (null!=latitude)
 {
 newLead.Location__Latitude__s=latitude;
 newLead.Location__Longitude__s=longitude;
 }
 ...
}

jQuery Mobile

306

When the user clicks on the Submit button, the page uses the built-in geolocation
functionality to attempt to determine the location, if available.

if (navigator.geolocation)
{
 navigator.geolocation.getCurrentPosition(
 geoSuccess,
 geoError,
 {
 maximumAge: 0,
 timeout:30000,
 enableHighAccuracy: true
 }
);
}

As the getCurrentPosition function is asynchronous, callback functions must be provided
to handle error (geoError) and success (geoSuccess) results.

The geoSuccess function simply delegates to a common function process the lead, passing
the location as coordinate parameters.

function geoSuccess(position)
{
 uploadLead(position.coords.latitude,
 position.coords.longitude);
}

The uploadLead function executes the controller method to store the lead record in the
Salesforce database, which is also asynchronous and again requires a callback method
to be specified.

function uploadLead(lat, long)
{
 var fname=$('#firstname').val();
 var lname=$('#lastname').val();
 ...
 MobileLeadLocationCaptureController.CreateLead(fname, lname,
 company, email, phone, lat, long,
 leadCaptured, {escape:true});
}

Chapter 9

307

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Mobile Visualforce forms recipe in this chapter introduces JavaScript Remoting and
compares this with other mechanisms of saving records to the Salesforce database.

Scanning the QR code to access the page
Mobile devices, especially phones, have small keyboards and screens which can make
entering page URLs difficult. If the device has a camera, scanning a code to navigate to
a page can improve the user experience.

QR, or Quick Response, codes are 2-dimensional barcodes originally used to
track automobiles during manufacture. For more information on QR codes see
http://en.wikipedia.org/wiki/QR_code.

In this recipe we will create a mobile view page to display details of an opportunity. We will also
create a Visualforce page to generate a QR code that links to this mobile view page, which we
will then embed into the opportunity view page. When the code is scanned on a mobile device,
this navigates a user to the mobile view page to allow them to view the opportunity details.

Getting ready
This recipe relies on the mobile device being able to scan the QR code.

This recipe also uses the jquery.qrcode.js (https://github.com/jeromeetienne/
jquery-qrcode) JavaScript library to generate the QR code. As this is not available
from a content delivery network, it must be present as a static resource:

1. Download the jquery.qrcode.js ZIP file by navigating to the GitHub page
https://github.com/jeromeetienne/jquery-qrcode / and
clicking on the Download Zip button at the bottom of the right-hand sidebar.

2. Navigate to the Static Resource setup page by clicking on Your Name | Setup |
Develop | Static Resources.

3. Click on the New button.

4. Enter QRCode in the Name field.

5. Enter QR code generator in the Description field.

6. Click on the Browse button and select the jquery.qrcode-<version>.
zip file downloaded in step 1.

7. Accept the default Private value for the Cache Control field and click on the
Save button.

jQuery Mobile

308

This recipe also requires Visualforce page to generate a QR code that is embedded into the
opportunity record view page.

1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

2. Click on the New button.

3. Enter OppQRCode in the Label field.

4. Accept the default OppQRCode that is automatically generated for the Name field.

5. Paste the contents of the OppQRCode.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the OppQRCode page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on
the Save button.

9. Finally, add the page to the standard opportunity page layout. Navigate to
the contact Page Layouts page by clicking on Your Name | Setup | Customize |
Opportunity | Page Layouts.

10. Locate the first page layout to add the page to and click on the Edit link in
the Action column.

11. On the resulting layout editor page, click on the Visualforce Pages link in the
left-hand column of the palette.

12. Drag the +Section option from the right-hand side of the palette and drop this
beneath the bottom section of the page.

Chapter 9

309

13. In the Section Properties popup, set Section Name to QR Code, select the
1-column radio button in the Layout section, and click on the OK button.

14. Drag the OppQRCode page from the right-hand side of the palette and drop this
beneath the QR Code section.

15. Click on the Save button to commit the page layout changes.

16. Repeat steps 10 to 15 to add the Visualforce page to additional page layouts
as required.

How to do it…
1. Navigate to the Visualforce setup page by clicking on Your Name | Setup |

Develop | Pages.

2. Click on the New button.

3. Enter MobileOpp in the Label field.

4. Accept the default MobileOpp that is automatically generated for the Name field.

5. Paste the contents of the MobileOpp.page file from the code download into the
Visualforce Markup area and click on the Save button.

6. Navigate to the Visualforce setup page by clicking on Your Name | Setup |
Develop | Pages.

7. Locate the entry for the MobileOpp page and click on the Security link.

8. On the resulting page, select which profiles should have access and click on the
Save button.

jQuery Mobile

310

How it works…
Opening the following URL in your desktop browser displays the details of an opportunity,
including the QR code: https://<instance>/<opportunity_id>.

Here, <instance> is the Salesforce instance specific to your organization, for example,
na6.salesforce.com, and <opportunity_id> is the record ID of an opportunity
within your Salesforce instance.

Scanning the QR code, with an application such as Semacode for the iPhone, opens the
device browser and navigates to the MobileOpp page, passing the record ID as a parameter
on the URL.

The OppQRCode page defines a <div> element to house the QR code.

<div id="qrcodeTable" />

Chapter 9

311

This element is then populated via a JavaScript code.

<script>
 $('#qrcodeTable').qrcode({
 render : "canvas",
 width : 150,
 height : 150,
 text :
 "{!LEFT($Api.Partner_Server_URL_260, FIND('/services',
 $Api.Partner_Server_URL_260)) +
 'apex/MobileOpp?id=' + Opportunity.Id}"
 });
</script>

The LEFT function determines the base Salesforce URL by processing the partner web
services API endpoint for your Salesforce instance.

See also
 f The Mobilizing a Visualforce page recipe in this chapter explains how a Visualforce

page utilizing jQuery Mobile is constructed.

 f The Mobile Visualforce forms recipe in this chapter shows how to capture a lead on a
mobile device and store this in the Salesforce database.

Index
Symbols
<apex:axis/> component 191, 197
<apex:chart/> standard component 196
<apex:outputPanel /> component 168
<apex:actionFunction /> component 206
<apex:actionStatus /> component 91
<apex:actionSupport /> component 95, 206
<apex:form /> component 296
<apex:inputField /> component 68
<apex:pageBlockSection /> component 225
<apex:repeat /> component 281
<apex:selectList /> component 73
<instance> 174
@RemoteAction annotation 298, 305

A
action chaining 96-98
action function

about 206
using 207-209

action methods
parameters, passing to 16-19
passing, to components 46, 48

action poller
about 10
turning off 11, 12

action regions
used, for breaking up forms 88-90
validation errors, avoiding with 93-95

addError method 72
alert function 290
animated transitions

in jQuery Mobile 282-286
attachments

managing 113-115

attributes
passing, to components 40-42
updating, in component controllers 42-45

B
bar chart

about 170
creating 170-172

beta 304
BootStrapCDN

URL 248
Bootstrap framework

URL 248
buttons

hiding, on submit 237-239
bxSlider

about 233
URL 233

C
carousel 233
carousel messages 233-236
CasesReport page 162
character counter

about 219
working 220, 221

chart
bar chart, creating 170-173
customizing 176-179
embedding, in record view page 193-198
line chart, creating 173-176
multiple charts per page 198-203
stacked bar chart, creating 184-188

client-side validation
about 240

314

performing 240, 242
collapsible list elements

about 225
working 225-228

colorSet attribute 178, 186, 191, 196
commentKey 155
component controllers

attributes, updating in 42-45
components

action methods, passing to 46, 48
attributes, passing to 40-42

conditional rendering
in templates 273-276

configuration, Force.com sites 248-251
confirmation dialog

about 212
using 212, 213

ContactKeyWrapper class 146
contact records

public access, providing to 251-253
containing page controller

notifying 62-66
content

retrieving, from Salesforce 254-257
Content Deliver Networks (CDNs) 206
controller

value, setting into 54-57
controller extensions

about 34
testing 34-37

coordinates
capturing, of user' location 303-306

Create New button 140
custom components 39
custom controller

about 32
testing 32-34

custom datepicker
adding, to form 83-85

CustomHeader page 273
custom iterator components

about 51
implementing 51-54

custom lookup
adding, to form 79-83

custom settings
managing 116-119

D
data

capturing, on mobile site 296, 298
data-driven decimal places 49, 50
data-driven styling 9
Delete button 146
Design2Develop calendar ZIP file 84
dialogs

generating, ways 290
working with 290-293

Document Object Model (DOM) 206
about 282
URL 282

Dojo
URL 206

duplicates
preventing, by search before

creating 138-141

E
Enhanced Lookups 79
Enter key

pressing, for form submission 214-216
error messages

adding, to field inputs 70-72
adding, to nonfield inputs 73-75

errors
solving 99, 100

events property 197

F
field inputs

error messages, adding to 70-72
fields

retrieving 86, 88
styling, as required 104-106

fields attribute 182
field sets

about 76
creating 76, 77
using 77, 78

fillIn function 83
Force.com sites

about 247
configuring 248-251

315

public access, providing to contact records
251-253

form-based searching 133-136
forms

about 67
breaking up, with action regions 88-90
custom datepicker, adding 83-85
custom lookup, adding 79-83

form submission
Enter key, pressing for 214-216

G
general utilities

action poller, turning off 11, 12
controller extension, testing 34-37
custom controller, testing 32-34
data-driven styling 9
launch page, adding 29-31
parameters, passing between Visualforce

pages 22-25
parameters, passing to action methods 16-19
pop-up browser windows, opening 26-29
reacting to, URL parameters 19-21
standard buttons, overriding 6-8
Visualforce page, adding to Salesforce sidebar

component 13-16
geoSuccess function 306
getAccountChartData() method 202
getChartData() controller method 172, 175,

179, 182, 187, 197
getCurrentPosition function 306
getRows() controller method 202
Go button 140

H
header menu

adding, to template 265-268
highlight 178
HTML5 application 278
hybrid application 278

I
iframe

about 13
URL 13

image
attaching, to record 109-112

inline frame. See iframe

J
JavaScript 206
JavaScript Remoting 296
jQuery

URL 206
jQuery Mobile

about 278
animated transitions 282-286
page navigation 282-286
URL, for info 278
used, for mobilizing Visualforce

page 279-281
jquery.qrcode.js 307
jQuery Validation plugin

about 240
URL, for info 240

L
launch page

adding 29-31
lead

capturing, on mobile device 296-298
converting 148-152

LEFT function 311
line chart

about 173
creating 173, 174
working 174-176

list
record, inline-editing from 157-160

listview widgets 293
lostTotal property 187

M
merge fields 9
MIXED_DML_OPERATION error 96
mobile applications, types

HTML5 278
hybrid 278
native 277

316

mobile page
records, listing on 293-295
redirecting to 299-302

mobile site
data, capturing on 296, 298

N
name property 175, 179, 182, 187
native application 277
navbar widget 286
navigation

trapping 243-245
navigation bar

adding 286-290
nonfield inputs

error messages, adding to 73-75

O
objects

multiselecting 57-62
onbeforeunload event 245
onclick handler 211
onFocus handler 81
onload handler

about 222
working 223, 224

Opportunity Name field 151
oppsNeeded property 168
oppTotal property 172
options

based on user input, changing 126-130
orientation 178

P
page access

QR codes, scanning for 307-311
page layout

based on user input, changing 130-133
page navigation

in jQuery Mobile 282-286
parameters

passing, between Visualforce pages 22-25
passing, to action methods 16-19

PhoneGap 278
Please wait spinner 91, 92

pop-up browser windows
about 26
opening 26-29

position attribute 187
Prototype

URL 206
public access

providing, to contact records 251-253
public final static property 118

Q
QR (Quick Response) 307
QR code

scanning, for page access 307-311

R
race conditions

avoiding 209-211
record

and parent, editing 142-144
details, refreshing from embedded Visualforce

119-123
editing, in Visualforce 68-70
hierarchy, managing 152-156
image, attaching 109-112
inline-editing, from list 157-160
list, managing 144-147
listing, on mobile page 293-295
loading, asynchronously 165-168

recordCount property 175
record view page

chart, embedding in 193-198
Remove from List button 125
renderTo attribute 199
required attribute 108
rerender attribute 130
REST API 296
runCustomQuery action method 164

S
Salesforce

content, retrieving from 254-257
web to lead functionality 258-261

Salesforce Object Query Language. See SOQL

317

Salesforce sidebar component
Visualforce page, adding to 13-16

save action method 106
Save method 72, 108
scrolling news ticker

about 229
working 229-232

SearchAccountsController page 135
SelectContacts page 129
SelectOpportunityWrapper class 126
series

multiple series, adding 180-183
sidebar

adding, to template 269-272
site

creating 248-251
Site.com

URL, for info 248
sObject 6
SOQL 137
stacked attribute 186
stacked bar chart

about 184
creating 184-188

standard buttons
overriding 6-8

StandardHeader page 273
String.IsBlank() method 108
submit

buttons, hiding on 237-239

T
table columns

styling, as required 106-109
tasks property 197
template

conditional rendering 273-276
header menu, adding to 265-268
sidebar, adding to 269-272

third axis
adding 189-192

title attribute 181, 186, 191
toggle function 228

toolbar, with navigation button
adding, to footer of mobile page 286-290

tooltip function 219
tooltips

about 217
working 217-219

U
uploadLead function 306
URL parameters

reacting to 19-21
user input

based options, changing 126-130
page layout based on, changing 130-133

user' location
coordinates, capturing of 303-306

V
validation errors

avoiding, with action regions 93-95
value

setting, into controller 54-57
Visualforce

record, editing 68-70
Visualforce charting 169
Visualforce override 6
Visualforce page

adding, to Salesforce sidebar
component 13-16

mobilizing, jQuery Mobile used 279-281
Visualforce report

creating 161-165

W
website template

creating 262-264
web to lead functionality

about 258-261
URL 258

wrapper classes
using 123-126

Thank you for buying
Visualforce Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Force.com Tips and Tricks
ISBN: 978-1-84968-474-3 Paperback: 224 pages

A quick reference guide for administrators and
developers to get more productive with Force.com

1. Tips and tricks for topics ranging from point-
and-click administration, to fine development
techniques with Apex and Visualforce

2. Avoids technical jargon, and expresses concepts
in a clear and simple manner

3. A pocket guide for experienced Force.com
developers

Salesforce CRM: The
Definitive Admin Handbook
ISBN: 978-1-84968-306-7 Paperback: 376 pages

A comprehensive, power-packed guide for all Salesforce
Administrators covering everything from setup and
configuration, to the customization of Salesforce CRM

1. Get to grips with tips, tricks, best-practice
administration principles, and critical design
considerations for setting up and customizing
Salesforce CRM with this book and e-book

2. Master the mechanisms for controlling access to,
and the quality of, data and information sharing

3. Take advantage of the only guide with real-world
business scenarios for Salesforce CRM

Please check www.PacktPub.com for information on our titles

Salesforce CRM Admin
Cookbook
ISBN: 978-1-84968-424-8 Paperback: 266 pages

Over 40 recipes to make effective use of Salesforce CRM
with the use of hidden features, advanced user interface
techniques, and real-world solutions

1. Implement advanced user interface techniques to
improve the look and feel of Salesforce CRM

2. Discover hidden features and hacks that extend
standard configuration to provide enhanced
functionality and customization

3. Build real-world process automation using the
detailed recipes to harness the full power of
Salesforce CRM

Force.com Developer
Certification Handbook
(DEV401)
ISBN: 978-1-847199-76-8 Paperback: 446 pages

A comprehensive handbook to guide Force.com
developers through important fundamentals and
prepare them for the DEV401 exam

1. Simple and to-the-point examples that can be
tried out in your developer org

2. A practical book for professionals who want to
take the DEV 401 Certification exam

3. Sample questions for every topic in an exam
pattern to help you prepare better, and tips to get
things started

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
General Utilities
	Introduction
	Overriding standard buttons
	Data-driven styling
	Turning off an action poller
	Visualforce in the sidebar
	Passing parameters to action methods
	Reacting to URL parameters
	Passing parameters between Visualforce pages
	Opening a pop-up window
	Adding a launch page
	Testing a custom controller
	Testing a controller extension

	Chapter 2:
Custom Components
	Introduction
	Passing attributes to components
	Updating attributes in component controllers
	Passing action methods to components
	Data-driven decimal places
	The custom iterator component
	Setting a value into a controller property
	Multiselecting related objects
	Notifying the containing page controller

	Chapter 3:
Capturing Data
Using Forms
	Introduction
	Editing a record in Visualforce
	Adding error messages to field inputs
	Adding error messages to nonfield inputs
	Using field sets
	Adding a custom lookup to a form
	Adding a custom datepicker to a form
	Retrieving fields when a lookup is populated
	Breaking up forms with action regions
	The "Please wait" spinner
	Avoiding validation errors with action regions
	Action chaining
	Errors – harmful if swallowed

	Chapter 4:
Managing Records
	Introduction
	Styling fields as required
	Styling table columns as required
	Attaching an image to a record
	Managing attachments
	Maintaining custom settings
	Refreshing record details from embedded Visualforce
	Using wrapper classes
	Changing options based on the user input
	Changing page layout based on the user input
	Form-based searching

	Chapter 5:
Managing Multiple Records
	Introduction
	Preventing duplicates by searching before creating
	Editing a record and its parent
	Managing a list of records
	Converting a lead
	Managing a hierarchy of records
	Inline-editing a record from a list
	Creating a Visualforce report
	Loading records asynchronously

	Chapter 6:
Visualforce Charts
	Introduction
	Creating a bar chart
	Creating a line chart
	Customizing a chart
	Adding multiple series
	Creating a stacked bar chart
	Adding a third axis
	Embedding a chart in a record view page
	Multiple charts per page

	Chapter 7:
JavaScript
	Introduction
	Using action functions
	Avoiding race conditions
	The confirmation dialog
	Pressing Enter to submit
	Tooltips
	The character counter
	The onload handler
	Collapsible list elements
	The scrolling news ticker
	Carousel messages
	Hiding buttons on submit
	Client-side validation
	Trapping navigation away

	Chapter 8:
Force.com Sites
	Introduction
	Creating a site
	Record and field access
	Retrieving content from Salesforce
	Web to lead form
	Creating a website template
	Adding a header menu to a template
	Adding a sidebar to a template
	Conditional rendering in templates

	Chapter 9:
jQuery Mobile
	Introduction
	Mobilizing a Visualforce page
	Navigation and transitions
	Adding a navigation bar
	Working with dialogs
	Listing records
	Mobile Visualforce forms
	Redirecting to the mobile page based on the browser
	Storing the user's location
	Scanning the QR code to access the page

	Index

