Web Application Design
and Implementation

[vww allitebooks.cond

http://www.allitebooks.org

1807

SWILEY
2007

BICENTENNIAL

SICKNTENNIAL
TVINNSIINEOI®

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Chatles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation'’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

Ubsiioind Pre /B BT UL

WiLLiAM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFICER CHAIRMAN OF THE BOARD

[vww allitebooks.cond

http://www.allitebooks.org

Web Application Design
and Implementation

Apache 2, PHP5, MySQL,
JavaScript, and Linux/UNIX

Steven A. Gabarré

Stevens Institute of Technology
Hoboken, New Jersey

IEEE

computer
psoaety

60 anniversary

............
J1807
H@WILEY f;
12007

M I3
llllllllllll

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication

[vww allitebooks.cond

http://www.allitebooks.org

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside
the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic formats. For more information about Wiley
products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Gabarro, Steven A., 1979-
Web application design and implementation: Apache 2, PHPS, MySQL,
JavaScript, and Linux/Unix / by Steven A. Gabarré.
p. cm.
Includes index.
ISBN-13: 978-0-471-77391-7 (cloth)
ISBN-10: 0-471-77391-3 (cloth)
1. Web site development. 2. Web sites-Design. 3. Application
software-Development. 1. Title.
TK5105.8883.G33 2007
006.7-dc22
2006014999

[vww allitebooks.cond

http://www.allitebooks.org

Contents

Preface xiii

About the Author / xiii

Before We Get Started / xiii

Who Should Read This Book? / xiv
About the Examples / xiv

How to Read This Book / xiv

Acknowledgments XV

Introduction: Web Application Recipe 1

Overview / 1
Procedure / 1
Step 1—Understanding the Problem and Finding the
Solution / 1
Step 2—Designing the Database / 2
Step 3—Major Functionalities / 2
Step 4—Backside / 2
Step 5—Improvements on Functionality / 2
Step 6—Improvements on Looks / 3
Step 7—Thorough Testing, Hacking Attempts / 3
Step 8—Presentation / 3
Step 9—Publication / 3
Step 10—Celebration (and Maintenance) / 4

[vww allitebooks.cond

http://www.allitebooks.org

vi

1.

3‘

CONTENTS

Fundamentals 5

The Origins of the Internet / 5
The World Wide Web / 6
The Web Browsers / 7
The Web Servers / 7
TCP/IP BASICS / 8
The Internet Layer / 9
The Transport Layer / 11
The Application Layer / 11
The Toolbox / 12
Browsers / 12
FTP / 13
Email Clients / 14
Programming Tools / 14
Other Useful Tools / 15

. The Different Approaches of Web Programming 17

Before We Get Started / 17

The Basics—HTML / 17

The Creator—SGML / 18

Other SGML-Based Languages—XML and XSL / 19
The Good Old Java / 20

Something Different—JavaScript / 21

The Savior—PHP / 22

The Rival—ASP.NET / 22

The Myth—CGI / 23

Another Big Option—Perl / 23

The Future?—C# / 24

Client-Side versus Server-Side—Which Side to Pick? / 24
My Choices—PHP, MySQL, JavaScript / 25

Introduction to HTML 27

What Do You Need to Get Started? / 27
How Does HTML Work? / 28
Syntax Basics / 28
File Structure / 28
Tag Parameters / 30
Basic Text Formatting / 30
External References / 32
Links / 32
Images / 33

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Organizing Data / 34

Lists / 35
Tables / 36
Frames / 39

Special Characters / 43

. Work Environment

Introduction / 45
Downloading the Software / 45
Installing the Apache Server / 46

Installation Steps / 46
Checking the Installation / 47
Possible Errors / 47
Configuring Apache / 48

Installing PHPS / 48
Testing PHP / 50
Installing MySQL / 50

Adding a MySQL User / 51
How Do I Know if MySQL is Running? / 51

Installing PhpMyAdmin / 51
Installing a Bulletin Board: phpBB / 52

Installation Steps / 52

Basic Security Considerations / 54
Conclusion / 55

. PHP—A Server-Side Scripting Language

How Does It Work? / 57

Some “New” Words on PHP / 57
Syntax Generalities / 58

Instructions / 58

Operators / 61
Mathematical Functions / 61
Data Types / 63

Constants / 64

Variables / 65

. PHP Arrays and Flow of Control

Arrays / 69

Basic Arrays / 69
Associative Arrays / 70

[vww allitebooks.cond

vii

45

57

69

http://www.allitebooks.org

viii

CONTENTS

Multidimensional Arrays / 71
Array Functions / 74
PHP Program Structure and Flow of Control / 77
Conditions / 77
Loops / 80
Functions / 82

7. Using Files, Folders, and Strings in PHP 85

Using Files / 85

Folder Manipulation / 89

Basic String Manipulation / 90
Changing a String / 90
Finding and Comparing / 93
Formatting Strings / 94
Manipulating HTML Files / 95

PHP Information Functions / 96

Closing Remarks / 97

Writing a Basic File Explorer / 97
Requirements / 97
Hints / 98

Case Study: An Indexer/Searcher—Step 1 / 98

Overview / 98
The Indexer—Step 1 / 99

. PHPS and Object-Oriented Programming 101

Overview / 101

Classes and Objects / 101

Classes in PHP / 102

Constructors and Destructors / 103
Visibility / 104

The Scope Resolution Operator / 105
The Static Keyword / 105

Class Constants / 106

Class Abstraction / 106

Object Interfaces / 106

Copying and Cloning Objects / 107
Comparing Objects / 108

Type Hinting / 109

Exceptions / 109

Final Words / 110

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS ix

9. Creating Some Interactivity 111

Overview / 111
Forms / 111
Writing a Form in HTML / 111
GET versus POST / 115
Retrieving the Form Infomation on a PHP Script / 115
Dynamically Creating Forms / 116
Transferring Data Between PHP Scripts / 117
Cookies / 117
Sessions / 120
One Last Useful Function and Design Techniques / 122
Assignments / 123
File Explorer—Step 2 / 123
Case Study: Indexer/Searcher—Step 2 / 124

10. Making Cleaner Code and Output 127

Cleaning Up Your Code / 127
What You Need / 127
How to Use It?—HTML Side / 128
How to Use It?>—PHP Side / 128
Cleaning Up Your Output / 131
The CSS File / 132
Useful Tools / 134
Assignment / 135

11. Using Databases 137

Overview / 137
Database Basics / 137
The Entity Relationship Model / 137
More Practical Examples / 138
Typical Sources of Error / 139
Simplifying the Diagrams / 140
Using MySQL / 140
MySQL Syntax / 141
Data Types / 142
MySQL Numeric Data Types / 142
Date and Time Data Types / 143
String Data Types / 144
MySQL Operators / 144
MySQL Instructions / 145
Using Functions in MySQL / 150

[vww allitebooks.cond

http://www.allitebooks.org

X

12.

13.

14.

15.

CONTENTS

Using PhpMyAdmin
Overview / 151
Creating a Database / 151

Creating Tables / 152
Accessing an Existing Table / 154

Exporting/Importing a Database Structure and Content / 154

Assignment—Final Project / 157

Creating Database-Driven Websites with PHP/MySQL

Overview / 159

Connecting to Your MySQL Server with PHP / 159

Submitting SQL Queries / 160
Processing the Results of a Query / 161
Example of Login Procedure / 162
Other Useful Functions / 163
Grouping Our Methods in a Class / 164
Indexer/Searcher—Steps 3 and 4 / 168

JavaScript—A Client-Side Scripting Language

Introduction / 171

JavaScript Syntax / 173
Types of Data and Variables / 173
Operations and Calculations / 173
Arrays / 175
Decisions / 176
Loops / 176
Using Functions / 177

Using Objects / 178

The String Objects / 178
The Math Class / 179
The Array Objects / 181

The Date Objects / 181

Programming the Browser

Overview / 185
The Window Object / 185

The Location Object / 186
The History Object / 186
The Navigator Object / 186
The Screen Object / 187
The Document Object / 187

[vww allitebooks.cond

151

159

171

185

http://www.allitebooks.org

16.

17.

18.

19.

Using Events / 191
Timers / 194
Time to Practice! / 195

Windows and Frames

Frames and JavaScript / 197
Windows and JavaScript / 201
Assignments / 206

One Last Funny Example / 206

String Manipulations Revisited

Overview / 209

New Basic String Methods / 209
Regular Expressions in JavaScript / 210
Regular Expressions in PHP / 213

The Set of PCRE / 214

JavaScript and DHTML

Overview / 217

Positioning Elements / 217

Writing Dynamic Menus in DHTML / 222
Your Turn!! / 225

Putting It All Together!

Overview / 227
Procedure / 227
Step 1—Understanding the Problem and Finding the
Solution / 227
Step 2—Designing the Database / 228
Step 3—Main Functionalities / 230
Step 4—Backside / 231
Step S—Improvements on Functionality / 231
Step 6—Improvements on Looks / 232
Step 7—Thorough Testing, Hacking Attempts / 232
Step 8—Presentation / 233
Step 9—Publication / 233
Step 10—Celebration © (and Maintenance) / 234

What Language to Use? / 234

CONTENTS

xi

197

209

217

227

Xxii CONTENTS

Appendix A: Special Characters

Appendix B: Installing on UNIX
Overview / 241

Installing Apache and PHP / 241

Installing MySQL / 243
Appendix C: Advanced phpBB
Appendix D: class.FastTemplate.php
Appendix E: File Upload Script
Bibliography

Index

237

241

247

251

267

269

271

Preface

ABOUT THE AUTHOR

Steven Gabarré was born in 1979 and raised in Alicante, Spain. He started
programming early, learning BASIC (Beginner’s All-purpose Symbolic
Instruction Code) at age 9. Later on, in high school, he learned Turbo Pascal
and C. At that point it was pretty obvious that he was going to end up as a
computer scientist. He ended up studying for a master’s degree in computer
science in the Ecole Pour I'Informatique et les Techniques Avancées, where
he specialized in advanced multimedia and Web technologies, graduating
with honors, finishing third in his class. He went to the United States in
January 2002, enrolling in the Masters of Science in Information Systems at
the Stevens Institute of Technology, in Hoboken, New Jersey. There he quickly
advanced from teaching assistant to full-time instructor. On his appointment
as full-time faculty, he created the first Web programming course at Stevens,
based on his personal experiences. This book is the result of that course, and
is a close reflection of what Steven teaches his students.

BEFORE WE GET STARTED

In my years of programming, I have learned tons of different programming
languages, ranging from Basic to Java, and including C, PHP, JavaScript,
Visual Basic, C++, Assembly 68k, and many others. Because of this variety I
have always been obsessed with utilizing the tools I had available to combine
the best aspects of each programming language.

xiii

Xiv PREFACE

With this mentality 1 decided to create a Web programming course
that would teach the ins and outs of the most commonly used free Web tech-
nologies. I have always supported free software, and as the big UNIX fan that
I am, I had to teach open-source technologies. This book is the result of the
work I did on the course, with added content to take it a step further.

WHO SHOULD READ THIS BOOK?

The way this book is organized, it should be ideal for anyone trying to learn
how to create complete Websites with no previous knowledge of any of the
languages presented. It does require some minimum knowledge of program-
ming in general, as well as object-oriented programming basics to understand
Chapter 8.

It is also a good read for Web designers that know about making pages
look nice, but have no knowledge of how to create dynamic pages built
through a database or anyone who would like to pick up on the art of pro-
gramming pages. Realize that I have never been a good graphic designer, so
this book will not tell you how to do things like making decisions regarding
the proper colors, fonts, or sizes to use, or other cosmetic details. I will deal
with how to set those features up, but will not tell you how to pick your layout
or color schemes, because I am definitely not good at it. Instead, I will con-
centrate on how to actually program useful pages with loads of functionality.

ABOUT THE EXAMPLES

All the examples have been tested, and if any are not compatible with a spe-
cific browser, this will be stated in the text. You can find all the example files,
as well as an example solution for the mini exercises and the indexer/searcher
case study at ftp://ftp.wiley.com/public/sci_tech_med/web_application. I will
also work on extra examples that I will make available to illustrate other areas
of the book that did not get a full example. I would have included many more
examples, but then you would need two or three volumes this size. Instead, I
will just put everything in a Website for you to download and test. I hope you
enjoy it all!

HOW TO READ THIS BOOK

The book is organized to be read front to back, but you may skip chapters as you
see fit, or use the book as a reference. The Introduction is asummary of Chapter
19 and should be used by people already experienced in Web development. It is
basically meant as a guide to using this book as a “Web programming cook-
book.” You may read this Introduction for brief guidelines or go straight to
Chapter 19if you need an in-depth explanation with a practical example.

Acknowledgments

I’d like to express great thanks to my family first for always being there for
me. I wouldn’t be where I am without them, and I’ll never manage to thank
them enough for that. To my very close (and special, a.k.a. N.B.) friends, I
thank you for your support and patience over the years; it is not easy putting
up with me for so long, but you have always given me some of the best times
I could hope for. Quick “howdy” to my online friends at COTW and BF2C
for helping me steam off when I had too much work and needed a break.
Thanks to Larry Bernstein for allowing me the opportunity to write this
book, and of course thanks to the people at John Wiley & Sons for getting
my first book published even though I'm still “a kid.” Special thanks to
Whitney, Paul and Melissa for all of their help and patience; and to Ben for
the cover image. ©

Introduction

Web Application Recipe

OVERVIEW

You might be wondering why you are reading an “Introduction” chapter and
why this chapter is called “Web Application Recipe.” Well, this chapter is
your quick guide to professional Web application design and implementation.
It is in essence a summary of the last chapter of the book (Chapter 19),
created mainly for people with enough experience in Web programming to
skip some of the chapters presented. This chapter will give you the rundown
of the major steps in the lifecycle of a Web project, and will refer to the chap-
ters where you might find more in-depth information on the topics covered.
I call it the “recipe” because it gives you the general layout of what needs to
be done, before getting into the specific details that each individual chapter
will cover. For a more in-depth guideline with a practical example, be sure to
read Chapter 19.

PROCEDURE

Step 1—Understanding the Problem and Finding the Solution

The first step in Web development (and any type of project, to be honest) is
to understand what the problem is, as well as what input will be used and

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

2 WEB APPLICATION RECIPE

what output should be produced. This phase is usually done in meetings
between the project manager and the project sponsor (the person paying for
the project). This is a crucial phase as it defines the scope of the project, such
as the features that need to be implemented, and the feel that the page should
have. The main area of discussion in this step is what the project will do,
without concentrating on the “how.”

Step 2—Designing the Database

When creating web applications, chances are your program will need to store
data; hence the use of databases. Many developers create the database as they
implement the program, but this can cause serious troubles as they realize
well into the project that the initial design of the database is flawed and all
the work needs to be redone. This is why you should always start by designing
the database, keeping in mind what the project needs are. Chapters 11 and
12 will show you how to design and create a database. In a database-driven
project the database is the heart of the project.

Step 3—Major Functionalities

Once the database is created, it is time to program the major functionalities
of your application. Many programmers tend to spend a lot of time making
sure that the pages they create look good, without worrying about whether
they actually do something. Webpage appearance is obviously important, but
you will get more out of an ugly functional Web application than with a pretty-
looking useless page. Most of the work needed in this phase will require
accessing the database. To find out more about how to do so, check Chapter
13. This step is basically like programming the brain of your application,
ensuring that its core runs perfectly well.

Step 4—Backside

Once the core of the project is up and running, you need to implement the
back end of the project. This is the section of the project that will be used by
administrators to manage the Website after it has been published, and it is a
good idea to have it up and running before the regular users start meddling
with the Web application. If you need some information on writing scripts in
PHP, check out Chapters 5-9.

Step 5—Improvements on Functionality

This is the phase where you start having fun with the project and improve
its functionalities. It is the opportunity to begin improving the client-side
functionalities by adding some JavaScript scripts to your pages, such as form

PROCEDURE 3

verifications. Check Chapters 14-18 for more information on how to program
in JavaScript. Just make sure that the improvements you decide to work on
are within the scope of the project, to avoid what is known as “scope creep”
(see Chapter 19).

Step 6—Improvements on Looks

Once your project is working, you may start working on the esthetics. Start
by using style sheets (Chapter 10), and do not hesitate to ask your favorite
Web designer for help. In case you wonder about the difference between
a web developer and a Web designer, in essence, a Web designer takes
care of the looks (appearance) of Websites and Web developers write the
scripts that make the pages work. This is the step that adds the skin to the
project.

Step 7—Thorough Testing, Hacking Attempts

This is probably one of the most important phases in the project. The goal of
this phase is to ensure that the project is flawless and that you have made it
hackerproof. The best asset in this phase is imagination and a bit of paranoia.
Never assume that your users will be friendly, using your application for what
it was meant to be. The true secret to a hacker-safe program is to think like
a hacker. Try to think of any security hole that you might not have fixed yet
and fix it! This step is the equivalent of getting some immunizations for your
project. The more time you spend here, the less time you will spend dealing
with attacks.

Step 8—Presentation

Assuming that you are not writing the application for yourself and there is
money involved, you will need to present your final project to your project
sponsor. The key here is to be relaxed and be confident that your project
is rock-solid. If you follow the guidelines in this book, this should not be
a problem. If you are presenting to a nontechnical person, start by showing
the general features of the project, getting into details only when asked to
do so. If you are presenting to a fellow developer, go straight to the
functionalities.

Step 9—Publication

When the project has been approved, it is time to release it. Place it in your
desired host and make sure that everything is set up properly so that users
worldwide can access it. This phase should be fairly fast.

4 WEB APPLICATION RECIPE

Step 10—Celebration (and Maintenance)

Once the project is published, this is your chance for a small break. Enjoy
your favorite brew, have a good night’s sleep, and get back to work! Once a
project is published, you need to maintain it, updating the database as needed
or fixing bugs that users might have found.

Fundamentals

THE ORIGINS OF THE INTERNET

Not that long ago, in a galaxy pretty close by, men and women used to live
without practical means of communication. Paper was the main medium used
for information sharing and horses the main carrier for that medium. But
science kept working, and in 1831 Joseph Henry invented the first electric
telegraph. Four years later, Samuel Morse invented the Morse code, and
worked on the very first long-distance electric telegraph line, which he fin-
ished in 1843. A bigger leap in communication progress was made by Alex-
ander Graham Bell, who patented the electric telephone in 1876. Long-distance
communication was finally a reality, but still archaic compared to what was
to be achieved. With the arrival of computers in the midtwentieth century,
people realized the potential of storing and processing data in those amazing
new machines. Furthermore, the United States and the Soviet Union were
deep in the Cold War, and the fear of a possible strike was constantly present
in the military’s mind. One of the main concerns was the possibility that all
communication between remote locations could be interrupted by an attack.
Telephone and telegraph lines were out in the open, and could be easily
damaged, so the National Security Agency (NSA) thought of a way to
preserve communications. Emulating the principles of telephone commu-
nication, in the 1960s, the NSA thought of connecting computers through

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

[vww allitebooks.cond

http://www.allitebooks.org

6 FUNDAMENTALS

wide-area networks (WANSs), so that if the phone lines went down, they would
still be able to send orders to detachments across the country, through the
use of computers. In order to make this idea a reality, the Advanced Research
Project Agency (ARPA) created the first computer network in 1969, and
named it the ARPANET. It was composed of only four computers, located
in the University of California at Los Angeles (UCLA), the University of
California at Santa Barbara (UCSB), the University of Utah, and the Stan-
ford Research Institute (SRI). Three years later, in 1972, the use of routers
allowed the ARPANET to have 20 nodes and 50 host computers, which could
all communicate through tools such as the telnet and FTP (File Transfer
Protocol). In 1974 Vincent Cerf, from the SRI, and Robert Kahn, from the
Defense Advanced Research Project Agency (DARPA), presented the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) basics, forever chang-
ingthe way computers wouldcommunicate. In1983 the Defense Communication
Agency (DCA) took control of the ARPANET and separated the military
section to form the MILNET, which would be used for military purposes only.
In the mid-1980s the two main existing networks, the ARPANET and the
NSFNET (created by the National Science Foundation), merged to create a
massive computer network. That merge motivated a trend that brought more
and more computers to the network, and this network of networks was then
named “the Internet.” By 1990 the Internet had 3000 subnets and over 200,000
host computers. The estimated number of host computers in the year 2004
was approximately 234 million, and growing.

THE WORLD WIDE WEB

After creation of the Internet, great potential could be seen way beyond the
actual work that was being done. Computers were destined to do more than
utilize telnets and FTP; it was great to be able to link one computer to
another in order to send files, but the problem of communication was not yet
totally solved. Scientists doing research had to connect to a remote computer
and send their research results one at the time through FTP. This was faster
than sending manuscripts through “snail mail,” but it was still not the best
option, so in 1989 Tim Berners-Lee presented the World Wide Web project
to the Conseil Européen de Recherche Nucléaire (CERN; European Orga-
nization for Nuclear Research, based in Switzerland). The idea was to come
up with a set of standards for information sharing that scientists around the
world would be able to use. The goal was to be able to have all research
documents in a format and location accessible to all interested regardless of
the platform being used. In 1994 the World Wide Web Consortium (W3C)
was created to lead the World Wide Web (WWW) to its full potential by
developing common protocols that would promote its evolution and ensure
its operability. You can find out more about the W3C visiting their Website,

www.w3c.org.

THE WEB SERVERS 7

THE WEB BROWSERS

Right at this point we have seen what lead to the creation of the computer
network known as “the Internet,” and the reasoning behind the apparition of
the World Wide Web. But we still have a main problem that we haven’t
answered yet—how do we use all this to communicate? First the Internet
brought us the media through which the information would flow, then the
WWW provided a standard format for information formatting, but there
was still the problem of how to read that information. To solve that problem,
some tool had to be created that would use the current standards and decode
Web documents and format them in such a way that would be intelligible
to the user. The Web browsers came to the rescue and solved that pro-
blem. The first graphical user interface (GUI) with the WWW to appear
was Mosaic, created by the National Center of Supercomputer Applications
(NCSA) at the University of Illinois in 1993. In 1994 Norway entered in
the pages of Internet history by creating the still-used Opera. Soon after-
ward Netscape appeared, followed by Microsoft’s Internet Explorer, which
appeared along Windows 95. From that point on, the browsing market
has done nothing but evolve and—Fortunately for us, the users—improve.
Nowadays the two main browsers used are Internet Explorer and Mozilla
Firefox.

THE WEB SERVERS

Now that we know what the Internet is, the purpose of the World Wide Web,
and why we use Web browsers, another question may arise: “Where are all
these data stored?” It is definitely enlightening to know how we access all the
information that the World Wide Web has to offer, but where is all that infor-
mation? Well, the answer is pretty simple; it is in all the computers that form
the Internet. Some people become alarmed, believing that any computer con-
nected to the Internet will automatically make all of its files accessible to the
entire world. Not to worry, that is not how it works. In order to share informa-
tion in a specific computer, some software has to be installed on the computer,
making it a “Web server.” The server creates a list of folders that will be
shared when someone attempts to connect to the computer using standard
Web protocols. There are two main competitors in the Web server market.
The first one, my personal favorite and the one used throughout this book, is
Apache, developed by the Apache Software Foundation (www.apache.org).
Apache has the great advantage of being totally free of charge and works on
every platform. It is an open-source program, which means that you can actu-
ally see the code behind the server and even participate in the improvement
of Apache. It is reliable and vastly used around the world, and pretty much
the only reliable option on UNIX/Linux. The other main server is Microsoft’s
Internet Information Services (IIS, www.microsoft.com/iis). IIS is not open-

8 FUNDAMENTALS

source and works only on Windows operating systems, although a simplified
free version is available with Windows XP Professional. The latest versions
of IIS run on Windows Server 2003, which obviously is not free. Some of the
differences between IIS and Apache reside in their user interface. Apache,
as most UNIX-based software, is configured entirely through a simple text
file that is loaded when the server starts up, whereas IIS has a GUI that is
meant to be much more user-friendly. Choosing which server to use is based
mainly on knowing which technologies will be used as well as the budget
available. Users on a low budget will probably prefer the use of open-source
technology and free development platforms; hence the use of Apache. If, on
the other hand, you wish to use Microsoft’s NET and you have the money to
afford it, IIS is the best option.

TCP/IP BASICS

As mentioned earlier, the Internet was strongly enhanced by the creation of
TCP/IP by Cerf and Kahn, but how exactly did TCP/IP help in this new era
of communications? When studying network communications, we learn about
the Open Systems Interconnection (OSI) layer model. This model breaks
down all computer networking into seven distinct layers. Computers can com-
municate at the same level through a set of protocols adapted to that particu-
lar layer. The seven layers are as follows (in ascending order):

1. Physical layer—responsible for sending raw bits over the communica-
tion channel. It is specific to the medium [twisted-pair or fiberoptic
cable, wifi (wireless fidelity), etc.].

2. Data link layer—takes a raw transmission and transforms it into a line
free of undetected transmission errors. It also breaks the input data into
data frames and transmits them sequentially. Finally it attaches special
bit patterns at the beginning and end of the frame like the starting frame
delimiter (SFD), cyclic redundancy check (CRC), or the preamble. This
is the layer responsible for flow control and error control.

3. Network layer—concerned with addressing and routing of messages to
their respective final destinations.

4. Transport layer—provides services that support reliable end-to-end
communications, such as generating the final address of the destination,
establishing the connection, error recovery, and termination of the
session.

5. Session layer—responsible for the dialog between two cooperating
applications or processes. Remote login and spooling operations use the
session layer to ensure successful login and to control the flow of data
to the remote printer. The token management in a token ring configura-
tion is handled by the session layer.

TCP/IP BASICS 9

6. Presentation layer—concerned with the syntax and semantics of the
information transmitted from end to end. For example, X Windows is
considered a level 6 service.

7. Application layer—provides the utilities and tools for application pro-
grams and users, like telnet, FTP, DNS, and HTTP.

TCP/IP is basically a simplification of the OSI layer model that concen-
trates on only four layers: network access layer (Ethernet, FDDI, or ISDN),
Internet layer (IP), transport layer (TCP, UDP), and application layer (FTP,
telnet, SMTP, HTTP).

The Internet Layer

The Internet layer is the equivalent of the network layer in the OSI model. It
contains the Internet Protocol (IP), which provides addressing, datagram
services, data package segmentation, and transmission parameter selection.
In order to function properly, TCP/IP relies on IP addresses, which are
assigned to each computer. An IP address is composed of 4 bytes, and is
usually shown as four numbers separated by dots. Each of these numbers can
range between 0 and 255, since it represents only one of the bytes of the IP
address (and, as you should know, you can represent 256 numbers with only
8 bits). Each IP address is composed of two parts, the network address and
the computer address. To understand how the address is broken down, you
need to know your subnet mask. The way it works is through a basic binary
AND operation between your address and your subnet mask. The result of that
operation represents the network address. For example, let’s assume that your
IP is 192.168.1.20, and your subnet mask is 255.255.255.0. Let us see how we
get the network address:

If you are not sure about how to use the binary AND with nonbinary
numbers, start by transforming each number to binary. 192.168.1.20 becomes
11000000.10101000.00000001.00010100, and 255.255.255.0 is 11111111.11111
111.11111111.00000000. Performing the AND operation between those two
numbers gives us 11000000.10101000.00000001.00000000, which is no other
than 192.168.1.0. You can achieve this result faster by realizing that 255 in
binary is written 11111111, and since an AND operation between a 1 and any
other bit will leave the bit unchanged, we can basically keep the numbers of
the IP address that correspond to the 255s of the subnet mask. Then we know
that a binary AND between 0 and anything will always be 0, so where our
subnet mask is 0, we can directly write 0. So, if we have an IP of 155.180.24.45
and a subnet mask of 255.255.0.0, our network address will be 155.180.0.0.

This network address lets us know which computers we will be able to
communicate with directly. Only computers that are in the same network can
“see” each other, so a computer in a 192.168.1.0 network and another one in
a network 155.180.0.0 will not be able to communicate with one another even
if they are directly linked to each other. The rest of the IP address (20 in the

10 FUNDAMENTALS

first example, 24.45 in the second) corresponds to the particular computer
address. Choosing a network appropriately is important since it will decide
the amount of computers that you can connect. For instance, a network with
a subnet mask of 255.255.255.0 will be able to accommodate only 254 distinct
IP addresses. This type of network is said to be of class C. A network with
subnet of 255.255.0.0 is said to be of class B, and finally 255.0.0.0 will be
subnet of a network of class A. One of the most important things when choos-
ing your computer’s IP address is making sure that it is a valid address. You
are not allowed to have an IP that is the same than your network address; for
example, if your network is 192.168.1.0, you cannot have 192.168.1.0 as a
computer’s IP address. The other restriction is that your computer address
cannot be all ones in binary; for instance, in the same network as in the previ-
ous example, the address 192.168.1.255 is not authorized (as 255 is 11111111
in binary). This type of address is used by TCP/IP to send broadcast messages
to all computers within the network.

Now that we know how the IP address work, you might be wondering how
you can be in a class C network (with a maximum of 254 computers) and still
be able to access millions of computers worldwide, even though they are not
in the same local network as you are. Well, the answer to that is basically the
use of routers. Routers are small machines that act as a bridge between two
separate networks. To function, they have two network cards in two separate
networks. For example, you could have a router with one of its IP addresses
as 192.168.1.254 in a class C network, and the other IP as 155.180.255.254 in
a class B network. If a computer connected to the class C network attempts
to access an IP that is not part of the 192.168.1.0 network, it sends the IP
requested to the router, which will then try to find that address using its
second branch. The whole principle of the Internet is based on millions of
networks connected through routers. Now, because of the amount of routers
in the world, there is a virtually infinite amount of ways to submit data
between two computers. To avoid taking the wrong path, several protocols
can be used.

Remembering the IP addresses of all the possible computers we would like
to access is pretty difficult, so symbolic addresses were created. Those
addresses work as a set of aliases of real IP addresses, such as .com, .gov,
.net, .es, and .co.uk. To make it even easier, it is possible to assign a name to
a specific address, such as google.com, for example. In order to retrieve the
corresponding IP, the computer accesses something called a Domain Name
Service (DNS), which contains a table with all equivalences between names
and IPs. Every time you see a dot in a name, this means that you are accessing
a subdomain; for example, if you visit the page http://steven.bewchy.com/, you
are looking within all companies (.com) for the one called “bewchy,” and once
you find it, you look for the subdomain called “steven” within “bewchy.” The
“http://” section allows the computer to know that you wish to access that
domain using the HTTP protocol. DNS is another protocol residing in the
Internet layer.

TCF/IP BASICS 11

The Transport Layer

The transport layer is home to two main protocols: the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP). UDP is a
connectionless protocol, meaning that the order in which messages are sent
by the emitting computer is not necessarily the order in which they will be
received in the destination computer. This protocol is not of interest in this
book, so we will not go any further in the explanation of UDP. TCP, on the
other hand, is very important for Web access; it is a connection-centered
protocol. TCP handles the connection, disconnection, data flow control and
transfer, sequencing, and many other tasks required to establish a proper
communication between two computers. It receives the data flow that needs
to be sent by the user and breaks it down into packets of usually 64 kB (kilo-
bytes; i.e., 65,536 bytes), which are then sent through the IP protocol. In order
to send those packets, TCP needs to open something called a “socket,” which
is a couple of the type <IP address, port> which can be used by programs to
access files. Sockets can be opened or closed, and allow both reading and
writing. For example, a character in a TV show who asks the computer techni-
cian to “open a socket on a computer” is actually requesting access to the
computer through its IP address on a specific port. You can imagine “ports”
as electronic gates that reside within your computer and that are needed to
send or receive information. For example, when you access a Webpage, the
information contained in the page is sent to you via your port 80 (generally).
If you access an FTP server, you are using your port 21; if you are connecting
through SSH (Secure SHell; used to connect to remote computers), you’re
probably using port 22.

The Application Layer

This layer is responsible for the protocols that most users know or at least have
heard about. The first and uttermost important for this book is the HyperText
Transfer Protocol (HTTP). HTTP was created for the exchange of HTML
documents; it is based on TCP/IP and is the protocol responsible for the com-
munication between Web server and Web client (you and your browser!). This
protocol is meant to be multiplatform, so everything is sent in ASCII (Ameri-
can Standard Code for Information Interchange) format, as plain characters.
We shall talk more about HTML documents in the next chapter.

Many other protocols in the application layer are important in the everyday
life of an Internet user, such as the following ones:

« File Transfer Protocol (FTP)—responsible for transferring files.
« Simple Mail Transfer Protocol (SMTP)—responsible for sending emails.

« Post Office Protocol (POP)—usually seen as POP3 by email clients, this
protocol allows you to retrieve email messages from your mail server.

« Internet Message Access Protocol (IMAP)—another protocol used for
email transfers.

12 FUNDAMENTALS

* Telnet—widely used in the early days of the Internet but fortunately is
now loosing importance. It allows you to remotely connect to a computer,
but the major disadvantage is that it does not encrypt any of the data sent
through this protocol (and that includes your passwords).

« Common Gateway Interface (CGI)—discussed further in the next
chapter; in a nutshell, it allows you to use the output of external applica-
tions in any Webpage. It is not a programming language!!

THE TOOLBOX

To conclude this chapter, I will list some programs that I believe all Web
developers should know about. All opinions are entirely personal, and you
are more than free to disagree with me.

Browsers

As mentioned earlier, browsers are essential in the use of the Internet and
choosing the right one for you is an important decision to make. Throughout
this book we will discuss some of the differences between these browsers,
especially during the JavaScript coverage. The most commonly used by
Microsoft Windows users is obviously Internet Explorer (http://www.micro-
soft.com/ie/), since it comes with the operating system. MSIE is a very user-
friendly browser, and perfect for Mr. or Mrs. Anybody that just wants to
browse the web. As a developer you must know that it is a dangerous tool,
since no matter how disgusting your HTML code might be, MSIE will manage
to make the output look decent, especially when using tables or frames. So
do not assume your page is perfectly written just because MSIE displays it
nicely. One of the advantages of MSIE is that JavaScript works perfectly well
with it, so you will probably love it when we are working on that language. It
also contains many plug-in that are required in many websites, so you might
actually be required to use it to fully appreciate some websites. The major
flaw it has as far as I'm concerned, and a reason why I stopped using it, is the
number of security holes it contains. Granted, in most cases no one will ever
attack your computer using those security holes, but as a computer scientist,
I like being protected.

Another browser that had great influence in the world of browsing is
Netscape (http://browser.netscape.com/ns8/), which had a great growth in the
late 90s. Unfortunately for Netscape, it has been going downhill for few years
now, and personally it will never cross my mind to use it again until they
improve it greatly. I actually stopped using NS when they released their
version 6, mostly due to JavaScript incompatibilities that will be mentioned
in further chapters. But basically Netscape had a set of Netscape-specific
HTML tags that were both useful and necessary for the use of JavaScript on
that browser, but they decided to wipe those out on version 6, which pretty

THE TOOLBOX 13

much was like forcing programmers to reprogram every single JavaScript
code programmed for version 5. When I discovered that, I decided to stop
using Netscape.

Another browser that was quite “cute” for lack of better words was Neo-
Planet (www.neoplanet.com). It was not really a full fledged browser but more
like an add-on for MSIE. Unfortunately it is no longer available for download
in their official website. The fun thing about NeoPlanet was the use of skins and
sounds, which would allow you to have for example a “shaggadelic” skin based
on the movie Austin Powers with nice flashy colors, peace signs instead of the
regular buttons, and the voice of Mike Myers saying “Oh Behave”, “Yeah
Baby!” and other catchy phrases from the movie every time you clicked on a
link. There were skins for all tastes, and was definitely the funniest browser I
ever used in my life. It did get boring and repetitive after a while though.

UNIX lovers have been using a browser called Mozilla for quite some time.
It is like a dream come true for UNIX lovers due to its small size, basic
appearance and good functionality. Mozilla evolved and created the Mozilla
Firefox browser (www.getfirefox.com), which I have to say, is my current
browser. It is probably the most secure browser available for free right now,
and has great features like the use of tabs, which allow you to have as many
open websites as you wish on a single browser window. It also has an extensive
set of skins, though I’ve never really used them. There are many other features
but I'll let you look into it.

Maybe some of you use things like America Online and its built-in browser,
but I'd rather not say what I think about AOL to make sure that I don’t offend
anyone. To phrase it very politely, “I, Steven Gabarré, do not like AOL.”

FTP

If you are trying to install an FTP server on a Windows machine, I would
have to recommend Serv-U FTP (www.serv-u.com). It is a great server soft-
ware that will probably allow you to do anything you want to with it. If you
are looking for an FTP server for UNIX, there are so many good, and free,
ones that I won’t even bother mentioning them (there was probably one
included in your UNIX/Linux distribution).

If you are trying to get a nice FTP client, one of the most commonly used
(or at least it was when I discovered FTP) is Cute-FTP (www.cuteftp.com).
There are many others free and not free, but my favorite would have to be
LeechFTP, which allows the use of multiple threads, which speeds up the
transfer of multiple files. Unfortunately, the development of LeechFTP has
not been continued for over a year, so there are no really recent (as of 2006)
versions. I still like my old version, though, since it never gave me any prob-
lems. It would seem (at the time of this writing) that the people working on
LeechFTP are now working on a new client called BitBeamer (www.bit-
beamer.com). I have never tried that software, so I cannot vouch for it, but it
is supposed to have all the features that LeechFTP had.

14 FUNDAMENTALS

Email Clients

One of the most widely used email clients is Outlook Express, which comes
standard with every copy of Windows (since Windows 95). It is simple and
works well, and is preinstalled with Windows, so no need to add extra soft-
ware if that is your platform. There is also the more complicated version
called Outlook, which does all Outlook Express does but adds in a calendar,
nicer agenda, but also heavier software to run. Personally I prefer the Express
version.

Another survivor of the old ages, and the first email client I ever used in
my life, is Eudora (www.eudora.com). I haven’t used it since 1997 or so, so I
am not really in a position to tell you how good the latest versions are.

Many users simply like using the clients that come with their browsers,
such as Netscape mail, or directly with Web-based email clients like Hotmail
(www.hotmail.com), or Yahoo (http://mail.yahoo.com), which allow you to
view emails directly on a browser. Personally I'd recommend you use Gmail
(www.gmail.com) created by the people from Google. It is by far the best
Web-based email tool I have used in over 10 years of Internet use, and it is
still in its Beta version, so Google can still improve it. The only problem is
that you can create an account only if you are invited to do so by a current
user.

If what you use is UNIX or Linux, the two main email clients I know
and have used are “Pine” (Program for Internet News & Mail) and “Elm”
(Electronic Mail), but I would have to vouch for Elm. It is a very small simple
application that runs straight from your shell and lets you choose your text
editor. They are both usually included with the major UNIX/Linux distributions.

Programming Tools

Whenever you start programming Webpages, you will have to choose which
software to use, and you might think you need a lot of money for licenses and
so on. Well, think again, because you have excellent tools that will be more
than enough to program Websites (and I strongly recommend that you use
these when working with this book). On Windows platform you have two
great tools called Notepad and Wordpad. I personally prefer the first one
because it is much simpler and does not have all the unnecessary things that
Wordpad has. On UNIX you have “vi” and “emacs,” which is pretty much
like choosing between Red Sox and Yankees (or between Real Madrid and
FC Barcelona), since in most cases people that like one hate the other. In my
case it is true: I love emacs and hate vi. But it is only a question of taste.

If you think those tools are too basic for you and you would like to see
some colors in your code when you type it, you might want to choose some-
thing like HomeSite by Macromedia (www.macromedia.com/software/home-
site). It is a simple text editor adapted to Web development, so it recognizes
the syntax and highlights special words and tags. It also allows you to preview

THE TOOLBOX 15

the page and comes with a great tool for the creation of style sheets. Similar
to HomesSite but a bit simpler is UltraEdit (www.ultraedit.com), which allows
you to import or create your own set of syntax rules and colors associated
with those rules.

Another well-known editing tool is Macromedia’s DreamWeaver (www.
macromedia.com/software/dreamweaver). The basic way to use Dream-
Weaver is to simply drag and drop the elements you wish to have in the page.
You can also type directly in a “preview” of the page, having DreamWeaver
take care of all the actual coding. Because of this feature, I do not recommend
it for this course, since it promotes laziness, and adds too much useless code.
If you really want to use it, please use the split view and type in the code
directly. (The split view will allow you to see both the preview and code at
the same time).

Finally, we have Microsoft’s FrontPage (www.microsoft.com/frontpage),
which is definitely not my favorite tool for Web programming. It creates a
large amount of unnecessary folders and files when you are just trying to
create a simple Website, and adds useless code in the pages that you create.
It might be a great option for people wanting to create a Webpage without
having to understand any of the code, like web designers, for example. If you
are a Web developer, code should be your number one priority, making Front-
Page my last choice. Last, and least, is Microsoft’s Word “Export to HTML”
feature, which should be used only by non-Web-savvy people to quickly create
pages from Word documents. It is very problematic, and I discourage its
use.

Other Useful Tools

Finally, there are some tools that are useful for the “cosmetic” part of Web
programming, such as Adobe’s PhotoShop and ImageReady (www.adobe.
com/photoshop), probably some of the best image editing software in the
market. They both come as a single bundle, with PhotoShop used mainly for
pictures and ImageReady focused mainly on images for the Web.
Macromedia also offers an array of tools to create animations and facilitate
the design of a Website such as Flash, Fireworks, FreeHand, or Director.

[vww allitebooks.cond

http://www.allitebooks.org

The Different
Approaches of Web
Programming

BEFORE WE GET STARTED

Before I head on and start explaining the different languages available in the
Web programming market, let me stress that all the opinions stated are exclu-
sively my personal views. I tend to be very opinionated, but I will try to justify
both my criticism and praises of the different languages presented.

THE BASICS—HTML

The very first programming language that must be mentioned when discuss-
ing Web programming is obviously HTML. The WWW could not be what it
is today if it weren’t for this language. The HTML (HyperText Markup Lan-
guage) is, as the name indicates, a “markup” language, which generally means
that it is based on the use of tags to provide functionality. The “code” in an
HTML file is simply text containing those tags that provide functionality and
different looks to the page. It is an interpreted client-side language, meaning
that for an HTML page to be viewed, a browser must first download it from
a server into a client machine and then execute the code line by line.
HTML relies strongly on the use of Universal Resource Identifiers (URI).
Each URI represents a way to refer to a page, an image, or even an email

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

17

18 THE DIFFERENT APPROACHES OF WEB PROGRAMMING

address. The location of a page is a URI commonly called URL (Universal
Resource Location). For example, an email address URI would look like
mailto:myname@mydomain.com, a normal URL could be http://www.mydo-

main.com/myfolder/mypage.html#section2. Usually a URL can be of two
types: absolute or relative. An absolute URL is basically a URL that includes

the information on the full path of a file or folder, like domain, subdomain,
file, section, ... A relative URL is one in which you can see not the entire path
of the file, but how to reach it from the current working directory. For example,
if you had the tree structure shown below in your “mydomain.com,” and you
were viewing the page “foobar.html,” the image mypic.jpg could be accessed
by using either http://www.mydomain.com/images/mypic.jpg (absolute URL)
or ../images/mypic.jpg (URL relative to the folder files):

mydomain.com (/)

images
mypic.jpg
myotherpic.jpg
files
foobar.html

otherfile.html
yetanotherfile.html

As you noticed, relative paths usually start with “./”, which means “go to
parent directory” or “./”, which means “current directory.” Relative paths
are an easy way to make a Website more portable since they are independent
of the domain that the pages are in. It is especially useful if, like me, you
test all your pages in a local computer before uploading the files to your
host.

The use of URISs is pretty much a necessity in HTML because they allow
you to embed images to a page, send information from a form to a processing
script, create an image map, link to an external style sheet, create frame docu-
ments, cite an external reference, or also refer to metadata conventions to
describe the page.

THE CREATOR—SGML

SGML, or Standard Generalized Markup Language, is a system for defining
markup languages, like HTML. It is a descendant of IBM’s Generalized
Markup Language (GML) developed in the 1960s. It relies strongly on the
use of DTDs (Document Type Definitions) to define the syntax of markup
constructs. SGML is not really used on the Web in its full version, but smaller
subsets of SGML are becoming increasingly prevalent in many information
exchange standards.

OTHER SGML-BASED LANGUAGES—XML AND XSL 19
OTHER SGML-BASED LANGUAGES—XML AND XSL

The eXtensible Markup Language (XML) is a simplification of SGML that
relies on the use of tags to organize information in any format that its writer
deems the best. It is a very common language that is at the base of platforms
like .NET. It is used mostly to exchange information through the Web in an
organized manner, making it easy to retrieve information from its files. XML
files are actually interpreted by most browsers nowadays, showing its contents
in a tree format, such as you would see on a file explorer.

Here is an example of an XML file containing information of some games
that I like:

<?xml version="1.0”" encoding="IS0-8859-1"7?>
<GAMESLIST>
<GAME>
<NAME>Star Wars Galaxies</NAME>
<DEVELOPER>Sony Online Entertainment / Lucas
Arts</DEVELOPER>
<CATEGORY>MMORPG</CATEGORY>
<RELEASED>Summer 2003</RELEASED>
<CLAN>Clan of The Wroshyr</CLAN>
<CHARACTER>Elder Bewchabbacc The Black</CHARACTER>
</GAME>
<GAME>
<NAME>Battlefield 2</NAME>
<DEVELOPER>Electronic Arts / Dice Software</DEVELOPER>
<CATEGORY>FPS</CATEGORY>
<RELEASED>Summer 2005</RELEASED>
<CLAN>101lst Airborne Division - 160th Special
Operations Aviation Regiment “Night Stalkers”</CLAN>
<CHARACTER>Captain Bewchy</CHARACTER>
</GAME>
<GAME>
<NAME>Pac man - aka Puck-Man</NAME>
<DEVELOPER>Namco</DEVELOPER>
<CATEGORY>0ldie</CATEGORY>
<RELEASED>1980</RELEASED>
<CLAN>Nbuns Team</CLAN>
<CHARACTER>Nica</CHARACTER>
</GAME>
</GAMESLIST>

Because the output produced by browsers when opening a basic XML file
tends to provide too much information, and it does not have a flexible appear-
ance, XSL was created. The eXtensible Style sheet Language is used as a

20 THE DIFFERENT APPROACHES OF WEB PROGRAMMING

perfect complement of XML files, by specifying the appearance that each
section of an XML file should have. It relies on the XSLT (XSL Transforma-
tions), which through a single link of the XSL file on the XML file, will
produce any type of output that the programmer decides to use. It allows a
really quick presentation of the contents of the XML file, with a much nicer
appearance. Note that the XSL file is dependent on the XML file as far as
tags are concerned, but if you have well-formatted XML and XSL files, any
added element to the XML file will still be properly formatted by the XSL.
Here is an example of an XSL file that will allow us to format the previous
XML file:

<?xml version="1.0" encoding="IS0-8859-1" 2>
<html xsl:version="1.0" xmlns:xsl="http://www.w3.0rg/1999/
XSL/Transform” xmlns="http://www.w3.0rg/1999/xhtml”>
<BODY style="font-family:Arial,helvetica,
sans-serif;font-size:12pt;background-color:#EEEEEE”>
<xsl:for-each select="GAMESLIST/GAME”>
<div style="background-color:grey;color:
white;padding:4px”>
<xsl:value-of
select="NAME”/>
by <xsl:value-of select=“DEVELOPER”/>
</div>
<div style="margin-left:20px;margin-bottom:lem; font-
size:10pt”>
<xsl:value-of select="CATEGORY”/> game released in
<xsl:value-of select="RELEASED”/>. I play it with the
<xsl:value-of select="CLAN”/> as
<xsl:value-of select="CHARACTER"/>.
</div>
</xsl:for-each>
</BODY>
</html>

In order to link our XML file to the XSL file, you would simply add the
following line right after the <?xml. ... ?> line of the XML file:

<?xml-stylesheet type="text/xsl” href="videogames.xsl” ?>

THE GOOD OLD Java

A language that must be mentioned when studying virtually any program-
ming area is Java. Because of its multiplatform characteristics, this object-
oriented language has been chosen by many developers in the past. The rise

SOMETHING DIFFERENT-JavaScript 21

of technologies such as J2EE (Java 2 Enterprise Edition) or J2ME made the
use of Java a necessity. One problem in using Java in the Web is mostly that
Java applications run as applets embedded in Webpages, not as a working
part of the page itself. Basically, your Java-based Webpages are not really
pages, whose appearance changes depending on the Java code. Instead, the
page itself is like a frame for a full Java application. This means that the code
must be compiled first into “byte codes,” which will have to be downloaded
by the client and will start running only after the client has received the entire
program.

Java is currently undergoing some changes and improvements that will
supposedly make it a very strong choice for Web programming, but in my
opinion, it is far from the best option out there. The fact that applets need to
be fully downloaded and then interpreted by a Java virtual machine in the
client’s computer makes it slow, and speed is usually a major factor in the
Web. It is also quite complex to use, since it is a full object-oriented program-
ming language, and not really the fastest way to write a scripting page.

I personally do not recommend the use of Java for Web applications unless
you will be working with J2EE or J2ME. If you are attempting any other
project on the Web, I recommend a scripting language instead.

SOMETHING DIFFERENT—JavaScript

Here comes one of the greater sources of confusion among young developers.
Despite the name “JavaScript,” this programming language is very different
from Java. First, it is a compact, object-based scripting language, generally
used to develop client-side scripting pages, and sometimes server Internet
applications. In many cases, JavaScript is code that is embedded directly in
the HTML code of a page, to be executed by the client. This means that the
code is downloaded at the same time as is the rest of the page, making it
entirely visible. It is then interpreted line by line at the same time as are the
HTML tags. Again, it is different from Java; some of the major dlfferences
are listed in Table 2.1.

TABLE 2.1 Differences between Java and JavaScript

Java JavaScript

Compiled byte codes are downloaded from Interpreted by the client as it gets
server to the client prior to execution downloaded

Object-oriented; applets consisting of Object-based; uses built-in extensible
classes with inheritance objects, but there are no classes or

inheritance

Applets distinct from HTML Code integrated with HTML

Variables data types MUST be declared Variables data types are not declared

Static binding; object references must Dynamic binding; object references

exist at compile time checked at runtime

22 THE DIFFERENT APPROACHES OF WEB PROGRAMMING
THE SAVIOR—PHP

Well, you are probably wondering about the title I gave this section, but let
me explain my logic behind it. I am one of those old-school developers who
believe that C language is one of the best programming languages ever,
because of its flexibility and how easy it is to learn. C is a language that, with
a small toolset, can allow you to achieve pretty much anything you wish to
achieve. Well, for me, PHP is pretty much “C for the Web.” The syntax is very
similar, with less syntax restrictions, as we will see little by little, but follows
the two concepts of C that I like the most: flexibility and ease of use. It is
really easy to learn; an experienced programmer can pick it up in a couple of
days. Another great asset of PHP is the fact that it runs server-side, meaning
that the code is executed before the client has access to it, but we shall discuss
this later on. Let us talk about the basics.

PHP is a recursive acronym of Hypertext PreProcessor and, as the name
indicates, works like many preprocessors found in other languages. This
means that the code is read line by line and interpreted as it goes, or at least
that was how PHP started. It is an open-source scripting language, so you will
be able to find many sites enhancing its development. It also means that the
PHP project is created and maintained by developers who wish to invest their
free time in making the product better, yet free.

PHP was designed to work for the Web, and its code is embedded directly
in HTML pages, although, as we shall see later, it is possible to separate
HTML and PHP through the use of templates. Interestingly, PHP is not
limited to work on the Web, and can actually be used to create command-line
scripts that you could run from a shell, or even GUI (Graphical User Inter-
face) applications through the use of the PHP-GTK library.

PHP is also designed to work closely with a wide variety of databases,
including Oracle, MySQL, PostgreSQL, ODBC, and Sybase among others,
making it an excellent choice for database-driven Websites, regardless of the
database you wish to use. It also includes an extensive set of libraries that
allows developers to interact with a wide range of other technologies. PHP
developers can write applications that will generate images, PDF documents,
work LDAP authentication servers, communicate with flash animations, and
many other things that unfortunately we will not be able to discuss, since it
would probably take several volumes.

THE RIVAL—ASP.NET

Active Server Pages (ASP) and now ASP.NET are probably among the major
sources of confusion among developers. ASP used to be an actual program-
ming language developed by Microsoft that worked similarly to PHP; it was
a server-side scripting language, hence the title “the rival.” With the arrival
of the .NET platform, ASP.NET received an entirely new meaning, referring

ANOTHER BIG OPTION—Perl 23

to a development platform, rather than an actual programming language; that
is why you will probably see in the markets that teach how to “program in
ASP.net with another programming language.” There are many to choose
from, including, for example, Visual Basic.Net. The whole idea is that you can
develop ASP.NET applications in your desired language. It is all based on the
use of the Common Language Runtime (CLR) designed for .NET. It is widely
used with Web services; it is highly efficient and very popular in big corpora-
tions. One main difference from PHP is the fact that it is not open source,
and its development depends exclusively on Microsoft’s developer team. This
also means that using it might become quite expensive if you are to work on
the “official” professional version of the developer. I personally like to call
this the “PHP for high class.”

THE MYTH—CGI

Now, here is a good source of laughter among recruiters who know about Web
programming. Many people think that CGI (Common Gateway Interface) is
an actual programming language and tend to “beef up” their resumés, adding
it to their list of known programming languages, without really understanding
what CGI is. CGI is a common gateway interface, and is definitely not a pro-
gramming language. It is a standard for interfacing external applications with
information servers, or, if you prefer, a “magical door” that will allow you to
run your normal executable files in a Webpage. CGI applications are executed
in real time, allowing a dynamic output, such as, for example, generating a
Webpage adapted to a set of received inputs. The way it works is simple; you
first write an application in your favorite language and compile it to an execut-
able rename it to “file.cgi” (note that this is technically optional, and many
developers leave script names as “file.exe”; I personally discourage this).
Some of the most common allowed programming languages are C/C++,
FORTRAN, Perl, TCL, UNIX Shell script, Visual Basic, and Apple script.
Of course, to make your application more useful for the Web, it is usually
written to receive a set of parameters and produce HTML code that will be
displayed as the page’s output on the browser.

ANOTHER BIG OPTION—Perl

Even though I used Perl only when I was a computer science student, and
considering that it is never in my list of languages to use, I have nothing nega-
tive to say about it. Perl is a very powerful programming language, and also
very flexible, if anything, it is more complicated to learn and use than PHP.
It is also open-source, and one of the best options if your application is meant
to work extensively with text manipulation. Some of the most powerful regular
expression tools were created for Perl, and then exported to other languages,

24 THE DIFFERENT APPROACHES OF WEB PROGRAMMING

as we will see when we study PCRE functions in PHP. Websites such as
Amazon.com are partly built in Perl, so you can see that it is not just a little
programming language for small applications. It also has the ability to inter-
face with external C/C++ libraries through the use of XS and SWIG.

THE FUTURE?—C#

C# was a language created to work with .NET as a simple yet powerful object-
oriented programming language, mixing a programming interface similar to
the old Visual Basic, yet having the object-oriented features you could find
in C++. It is Microsoft’s answer to Sun’s Java. Java became increasingly
popular through J2EE, so Microsoft decided to create a language following
the same principles on their version of the three-tier architecture program-
ming platform, .NET. It strongly relies on XML as information exchange
format, and it is gaining popularity for programming Web services. As do
other .NET languages, it requires code to be compiled, yet it follows the
principle of Java’s byte codes, by compiling into a platform-free language,
that will be interpreted by clients.

The reason behind the question mark is that even though C# is a fairly
recent language it is meant to be the flagship in the .NET revolution—or at
least that is what Microsoft representatives were announcing when they pre-
sented .NET. The reality is that its acceptance is still growing, but many .NET
developers prefer relying on older programming languages that they are more
familiar with. .NET is still gaining importance, and who knows, maybe it will
be the most predominant platform for Web services, not only on Microsoft
applications and Websites, but as a more global solution. If that happens,
surely C# will become increasingly popular and will be the first choice of
programming language for new developers.

CLIENT-SIDE VERSUS SERVER-SIDE—WHICH SIDE TO PICK?

As we have seen, most scripting languages are defined as either client-side or
server-side. A client-side program is basically a program that needs to be fully
downloaded by the browser to use it. The code in many cases is embedded in
HTML code, which results in full disclosure of how your program works,
since all users can read it by choosing the “view page source” option in their
browsers. In many cases the code is interpreted by plugins in the client, which
brings us to another problem of client-side applications—they are browser-
dependent. As we will see when studying JavaScript, many features are not
cross-browser, meaning that they can be used only in a specific browser,
sometimes even in a specific version of it. The positive side of client-side
scripting, and the reason for its continued use, is that once the code is down-
loaded, the server has nothing else to do. The client is solely responsible for

MY CHOICES—PHP, MySQL, JavaScript 25

any calculations or actions that might take place, which allows programmers
to create Webpages that will change dynamically as the code is executed.

Server-side applications run in the server, as the term indicates. This means
that when a client attempts to access a script programmed that way, the query
is sent to the server along with any input that the script might need. The script
then runs on the server, utilizing server resources only, and then sends the
final output to the client, who can see only that result, and has no access to
the source code itself. This obviously is a great asset since it protects the code,
which is very important for security reasons. Another great advantage of
having scripts run directly on the server is that you need to worry only
whether the server knows how to run it properly. Unlike the scenario in client-
side applications, the script will run exactly the same way, producing the same
output regardless of the client’s platform or browser. On the negative side,
each time you wish to do something dynamic, you must communicate back
and forth between client and server.

Now that we know the differences between both sides, it is generally the
time to choose your preference, by selecting the language to use. Most devel-
opers, and therefore most books out there, tend to choose only one side, but
not me. Even though it is possible to create Websites based on just one tech-
nology, taking advantage of server-side and client-side programming simulta-
neously gives much more flexibility and allows a greater set of functionalities.
Some features run better in client-side, some in server-side, so restricting
yourself to only one will potentially limit your final project. Throughout this
book we will learn when it is better to use a client-side language such as
JavaScript, or a server-side language like PHP.

MY CHOICES—PHP, MySQL, JavaScript

Now that we have seen some of the most common options that programmers
face when engaging in Web programming, we must choose which technologies
to use. In our case, the choices are obviously known. One question you might
ask is why those choices and not others.

First, we have PHP. It is one of the most powerful and flexible programming
languages for the Web. It is free, is easy to learn (making it ideal for a one-
semester course), and simplifies any database access you might want to use.

JavaScript, although I do not like it as much as a language itself as it is
much more restrictive syntaxwise than PHP, is a really useful programming
language. As we will see, it is important to have a client-side language to
couple with PHP to make our pages more lifelike, dynamically changing
without having to constantly communicate with the server, and JavaScript will
help us fulfill that need.

MySQL, even though we have not discussed it yet, is a free database that
can be installed in any platform, providing a reliable solution for information
handling. It is also extremely easy to use MySQL databases with PHP, which

26 THE DIFFERENT APPROACHES OF WEB PROGRAMMING

will make our job so much easier. My “second best” option for databases
would be PostgreSQL, similar to MySQL with even some extra features, but
again, we shall follow the path of simplicity for this book.

Finally, and pretty much most importantly, these are the languages that I
have been using for years, and I never had any problems with them. Knowing
how to properly mix these three programming languages should allow you to
create any professional database-driven Website you would like to. Also,
although you might use different technologies in the future, mastering these
three will give you the mindset needed for Web development. It is like learn-
ing how to play soccer; you must learn how to kick the ball, regardless of the
shoes you will wear or the team you will support. Web programming is much
the same; if you know how to properly design a Website, the language choice
will be only secondary.

[vww allitebooks.cond

http://www.allitebooks.org

Introduction to HT'M L

WHAT DO YOU NEED TO GET STARTED?

Before we start discussing HTML, let me give you a checklist of things you
should have with you when programming. First, you need a basic text editor
like Notepad or emacs. You can also use more advanced tools, like the ones
mentioned in Chapter 1, but if you really wish to learn the ins and outs of
HTML, you are better off with a basic editor. The next needed thing is a
browser, which will be used to test the pages and make sure that they look
the way you want. Third, you need, obviously, some basic HTML knowledge.
Last but not least, you need good music. People usually think I'm kidding
when I mention music as a necessity, but from my experience, the right music
can activate the brain to work more efficiently. The right music will depend
on your own personal taste, but I would recommend either classical if you
work better in a calm environment or hard rock, punk, and other fast-paced
music if, like me, you prefer the music tempo to drive your fingers into a typing
frenzy. This chapter will try to make sure you have element number three:
basic HTML knowledge.

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

27

28 INTRODUCTION TO HTML
HOW DOES HTML WORK?

Syntax Basics

HTML is a markup language and, as such, works entirely through the use of
tags. Each tag is used to define different parts of the file, different styles, links,
images, embedded elements, forms, and so on. Each tag starts with the char-
acter “<” and finishes with “>”. Keep this in mind because those characters
are restricted for tags, meaning that your page might behave in a strange way
if you attempt to use it in a normal string. If you wish to use that character,
refer to the special characters table shown in Appendix A. Now, some tags
require an opening and a closing tag in order to show the area of effect of the
tag. In those cases the closing tag will always start with “</”, followed by the
name of the tag it is closing (without the attributes list) and “>”.

For example, to have some text appearing in white, you could use the
FONT tag, with the attribute color set to “white.” To do so, your opening tag
would be and your closing tag would be .
Your final portion of code would look like this:

 This text will show up in white

Note that HTML is not case-sensitive, so you can mix uppercase and lower-
case letters. Nevertheless, I strongly advise everyone to capitalize all tags
since it makes code reading much easier.

Finally, remember to name your files with either .html or .htm as their
extension.

File Structure

It is very important to understand the basic structure of an HTML file,
knowing exactly where each part of your code must be written in. It is some-
thing fairly easy to remember, but unfortunately there are still people who
claim to be Web programmers but who misuse the file’s main areas. Good
Web design and programming demands efficient and effective use of the
available tools. This book is designed to avoid these pitfalls.

The first thing is the full file, which must always start with the tag <HTML>
and finish with </HTML>. You should never have HTML tags before the
opening tag, nor after the closing one. One of the reasons for this occasional
error is the fact that most browsers can now ignore major errors like this one
and still manage to create a proper-looking output, but please always start
your files by setting up these two tags.

The next section to know is the header, limited by the tags <HEAD> and
</HEAD>. This section holds all information related to the file, including its
author, its keywords, its title, and sometimes even some JavaScript functions
that will be used in the page. Most basic pages use the header only to specify

HOW DOES HTML WORK? 29

the title that will appear on the browser window. To doso, use the <TITLE> . . .
</TITLE> tags. Any text written between the opening and closing tags will
appear in the title bar of the browser.

The final area is the body, starting with <BODY> and finishing with
</BODY>. The body of a page is the actual content of the page, meaning that
the data that will appear inside the browser window. The body tag can accept
a set of properties that allow you to set up a background image (background)
or color (bgcolor); specify font colors for text (color), links (link), visited links
(vlink), active links (alink), and even action scripts to run on load or unload
of the page. There should always be a body section in a Webpage, unless you
are using the page as a frameset definition page (see discussion later).

Here is an example of what a “Hello world” HTML page should look
like:

<HTML>
<HEAD>
<TITLE>Hello World Page</TITLE>
</HEAD>
<BODY>
HELLO WORLD!!!

And have a nice day!
</BODY>
</HTML>

Note the indentation I have used. This is not required, but will improve the
readability of your code. You will also note the use of the tag
, which
forces a break of line. It is important to realize that any group of white spaces
(whether it is a tab, a new line, or basic spaces) is always translated on the
screen as a single white space. This is important to know since the appearance
your code has will not necessarily be the same as in the output. Check the
following example:

<HTML>
<HEAD>
<TITLE>Hello World Page</TITLE>
</HEAD>
<BODY>
HELLO WORLD!!!
And have a nice day!
</BODY>
</HTML>

You probably noticed that this code is almost exactly the same as the previous
one except that there is no
 tag after “Hello World!!!.” In this example,
the text “And have a nice day!” would show on the same line as “HELLO

30 INTRODUCTION TO HTML

WORLD!!!,” even though it is written a line below it, because the “new line”
will be translated into a single white space.

As a teacher I enforce the use of the basic six tags needed for an HTML
proper structure, so I would recommend everyone to make it a habit to write
them all as soon as a page is created, and then fill in the blanks.

Tag Parameters

As we saw previously with the FONT and BODY tags, it is possible to add
attributes to an opening HTML tag to make it more effective. Each attribute
will affect the area after the opening tag and will finish with the closing tag.
Remember that there is no need to write the attributes in the closing tag.
Checking the W3C website (www.w3c.org) can get you an exhaustive list of
all the attributes that tags can use, but I will give you the ones I consider most
important for the tags that I will teach you at the end of this chapter.

BASIC TEXT FORMATTING

There are many ways to format text in HTML, but we will discuss only the
real basics right now. There will be more details on styles in Chapter 10. The
tags I am about to show you are considered to be deprecated and should be
replaced with the use of style sheets, but as much as this is true, you probably
want to get started without having to learn advanced formatting features. In
that case, the following tags are ideal.

The first basic tool commonly used for formatting text is the <P>... </P>
tag, which stands for “paragraph.” As the name indicates, it defines an area
that works as a single block, and most browsers will automatically break a new
line at the end of a paragraph. I try not to use this tag when writing normal text
since the output on the screen might be different depending on the browser, so
I prefer to handle my paragraphs manually. On the other hand, paragraphs are
really useful when using style sheets, as we will see in Chapter 10.

A very useful tool in HTML is the different heading styles that can be
used. There are six basic levels of headings that can be used to easily write
titles, chapters, or sections. Each heading is treated as a paragraph, so a new
line is added automatically when the tag is closed. To use a heading, simply
wrap your title with <Hn> ... </Hn>, where “n” is the level of title you wish
to use from 1 to 6 (with H1 the biggest heading and H6 the smallest). If you
wish to add extra linebreaks you can use, as seen earlier, the
 tag.

To change the appearance of text, you can use <I>... </I> to italicize a
text, ... to make it bold, or <U>... </U> to underline it. As
always, these tags affect the text only between opening and closing tags. It is
also possible to use the tag to specify colors, fonts, sizes, and back-
ground colors, for example, but it is considered poor programming practice
to use these in your HTML code since it makes it much more difficult to read.
Instead, you should use styles, which, again, we will see in Chapter 10.

BASIC TEXT FORMATTING 31

Most tags, including <P>, accept an attribute called ALIGN that allows
setting of the horizontal alignment of a block by setting it to “left,” “center,”
“right,” or “justify.” It is also possible to center an area of the page by using
the <CENTER> ... </CENTER> tag. The advantage of the <CENTER> tag
is that it will act on anything between opening and closing tags, regardless of
the type of element (form input, image, paragraph, button, etc.).

To do a basic enhancement on your page’s look, you can use horizontal
rules. These are horizontal lines used mostly to separate sections and para-
graphs. To use it, just write <HR> with any of the following attributes:
ALIGN (left, center, or right), NOSHADE to remove the shade under the
line, SIZE (in pixels) to specify the height of the line, and WIDTH (length
in either pixels or percentage of the page) to specify the linewidth. An example
of anice-looking rule couldbe <HRALIGN=center SIZE=1 WIDTH=75%>,
which would create a line of 75% of the page’s width, centered in the page,
and with 1 pixel height. Note that this tag does not need to be closed.

Finally, to conclude this set of basic formatting tools, I would have to add
the <BLOCKQUOTE>...</BLOCKQUOTE> tag. This tag was created
to be used to quote other people in a text, but it has a nice property. Any
text inside a <BLOCKQUOTE> tag is automatically indented, which is great
for a really fast indentation solution. I personally have used it in the past to
force a blank margin at the beginning of my pages, making the output
cleaner.

Here is an example using all these tags:

<HTML>
<HEAD>
<TITLE>Formatting example</TITLE>
</HEAD>
<BODY>
<BLOCKQUOTE>
All my text will show up with an indentation!
<P ALIGN=right>This is a first paragraph with right
alignment</P>
<P ALIGN=left>And this is a separate left-aligned
paragraph with things written in <I>italic</I>, bold,
<U>underlined</U> and even <U><I>all mixed up</I></U></P>

<CENTER>
<HR size=1 width=75%>
<H1>Headingl</H1>
<H2>Heading2</H2>
<H6>Heading6, and like the others I'm centered!</H6>

</CENTER>

</BLOCKQUOTE>
</BODY>

</HTML>

32 INTRODUCTION TO HTML
EXTERNAL REFERENCES

Two of the most common features in Webpages are links and images. They
are two ways of referring to an external file. One places an image in the
middle of the page, while the other sets up a clickable area that will open any
type of file, or even open your default email client to send an email.

Links

Let us start with the links. Any text or image can be turned into a link by
wrapping it with the <A>... tag. The attributes for the <A> tag are
essential for its proper functioning. The first attribute to set should be HREF,
which will hold the URL that the link will refer to. The address could be an
absolute or relative URI, or a call to a mail client by entering mailto:any-
email@address.here. You can also select a target for the link, which specifies
where the link should be open. This is done by using TARGET followed by
the name of the window or frame where you wish the link to open. If the
name has been set to a window or frame, it will work without complications,
but if it has not been set yet, the link will pop up a new window that will
receive the name written in the target parameter. From this point on, any link
targeting the same name will open on that new window. Instead of providing
a name, it is also possible to enter _blank to always open the link in a new
popup window, _self to open the link in the current window or frame, _parent
to open the link in the parent frame (see the section on frames), or _top to
open the link in the parent of all parents (top frame). Here is a link
example:

This is the clickable area

Another interesting use of the <A> tag is to create linking points in the
page. This means creating a point in the page that can be linked to, allowing
fast scrolling of long pages. To use this feature, write
... . To then link to that area, just add #anyname at the end of the
address of the file you are linking to, or directly enter #anyname as the HREF
if you wish to move inside the current file. Here is an example:

<HTML>
<HEAD><TITLE>Link Examples</TITLE></HEAD>
<BODY>
This is the top of the page!

Here is a normal <A HREF=“http://www.google.com”
target="_blank”>1ink

Now I'm going to add loads of BRs to make this page
really long!

EXTERNAL REFERENCES 33

This should be pretty low on the page so take me to the top!

</BODY>

</HTML>

Images

Using images in Websites is like using table salt when cooking. Without it,
the site is too bland, but include too many images, and it becomes hard to
enjoy. I must say, as most people discovering animated GIF images for the
first time, my first HTML page was an array of ridiculous images, including
the “all-star” work-in-progress animation, email-me image, and other classics
found in virtually all “I’m learning HTML” Websites. In retrospect, I can say
that that page was certainly the ugliest page I ever wrote in my life, but people
learn from past mistakes. So here is my advice to all of you—keep it simple
and don’t overdo images!

Another important thing about images is size and format. People seldom
realize that the bigger the image, the longer it will take to load, especially for
those people out there who still use dialup connections. Generally images
should be kept under 100 kB. Another important factor is the format. Most
browsers accept a vast variety of image formats; however, for example includ-
ing a BMP image is strongly discouraged, simply because as in all noncom-
pressed formats, the images will tend to be unnecessarily huge. The most
commonly used formats are GIF, JPG, and PNG, and you should try to limit
your images’ formats to either one of these three. Keep in mind that GIF
images allow animations, but are limited to 256 colors. Generally, use JPG
for images that require higher quality and GIF for icons and such. Also keep
in mind that even though you can add an image as a background for the page,
you do not necessarily need an image as big as the contents of the page. A
technique I regularly use when creating my background images is to utilize
the fact that background images are shown as a mosaic, filling the entire page
with as many copies of the image as needed. For example, if there is a color
you really want to use but it cannot be defined with the standard hexadecimal
red-green-blue notation, you can create a picture of 1 pixel by 1 pixel (1 x 1
pixel) filled with the color you wish to use. When using it as a background,
that pixel will be used all over the page to fill in the background, but will need
to be downloaded only once to the client. Another nice technique is to include

34 INTRODUCTION TO HTML

images of just a few pixels in height and very large width (I usually make the
format 1600 pixels wide and 1-10 pixels tall depending on the effect I wish to
achieve). The idea is to create a pattern that will be repeated line by line on
the left side of your page. A nice image I created was for a school example
where I decided to elicit that “bluebook” feeling. To do so I had an image
that was all white, with a blue horizontal line and a red vertical line to create
the margin. Just by selecting that image as the BACKGROUND property of
my <BODY> tag created the desired effect, with an image that was less than
1kB.

To include an image in the middle of a page, simply use the tag,
which does not need to be closed. The parameters to use include first SRC,
which defines the URI of the image to be shown. It is also possible to specify
the size of the image through WIDTH and HEIGHT. Note that if you do not
set the size of the image, it will be displayed in its original size, but if you set
both attributes your image might be distorted if you do not respect the image’s
aspect ratio. The best way to set a new size for an image that you wish to
portray as either bigger or smaller is to simply set up one of the parameters
as a number of pixels or a percentage of the original size. By writing only one
of the attributes and omitting the other, you will be able to preserve the aspect
ratio while changing the size of the image. The last but not least attribute is
ALT, which takes a string, usually describing the image. This is extremely
important if you wish to make your Website compatible with nongraphical
browsers like Links, for example. When an image cannot be displayed by a
browser, only the name will appear where the image should be. If you write
the description of the image in the ALT attribute, instead of the picture’s
name, you will see that description. A good example of why this is useful
would be Websites that are mainly picture-based, meaning that all menu
options are actually pictures with text inside them. In these cases, the ALT
should be whatever text the image holds. For example, if menul.gif is a picture
that says “register,” the ALT for that picture should be “register” also. That
way, a person visiting the Website will still be able to use it even though the
images won’t show up, as “register” will be much clearer to understand than
“menul.gif.”

ORGANIZING DATA

When creating a Webpage, something very important to keep in mind is
organizing the contents to ensure that the page is not cluttered or disorga-
nized. This is especially important when adding pictures in the middle of
paragraphs while attempting to keep a professional look. The main tech-
niques used to organize information in a page are lists, tables, and frames.
The first, as we will see right now, is not really useful with images but is a
great way to create topic lists or any set of small text that needs some
ordering.

ORGANIZING DATA 35

Lists

Lists are a tool rarely used by developers on Webpages for reasons that
I do not fully understand. I have often seen students creating paragraphs
after paragraphs starting with a number or series of numbers to create
a topic list for example, when HTML provides the tools to do so
automatically.

There are two main types of lists: ordered and unordered. An ordered list
will always include the position of the current element in front of the text
itself, whereas unordered lists pretty much are the same as adding bullets in
front of the text. An ordered list is created with the tag . .. and
should always include TYPE as a parameter, with either one of the following
values:

1—for decimal numbers (1, 2, 3,4,...)

a—for lowercase alphabetical characters (a, b, c, d,...)
A—for uppercase alphabetical characters (A, B, C, D, ...)
i—for lowercase roman numerals (i, i, iii, iv, v, Vi, .. .)
I—for uppercase roman numerals (I, I, III, IV, V, VI, . .)

Another optional parameter is START, which takes a number that will be
considered the position of the first element in the list. For example, a list
defined as <OL TYPE=I START=19>... would have its elements
numbered as XIX for the first one, XX for the second, XXI for the third, and

SO on.
Unordered lists are created with . .. , and, as you probably

guessed, also require a TYPE parameter that will define the aspect of the
bullets:

disk—for a filled-in circle
square—for a square outline
circle—for a circle outline

Once you have defined an area to work as a list, you can add a new element
by starting its line with the tag . Think of this tag as a bullet or number
that you place in front of text, since it does not need to be closed. Each
will either add a bullet or put the next number or letter following the last
 used in the same list. Note than you can use nested lists if you wish to
by simply using . .. or ... instead of a new
tag. Each new nested list will be automatically indented, along with all its
contents, keeping the lists clean.

36 INTRODUCTION TO HTML
Here is an example of nested lists:

<HTML>
<HEAD><TITLE>Nested Lists</TITLE></HEAD>
<BODY>
<OL TYPE=I START=19>
I'm the first element, yet I show up as 19!!
Second line
And now something different!
<UL TYPE=circle>
Aren’t circles pretty?
Just wait until you try the other types!

Where was I again?
</0OL>
</BODY>
</HTML>

Tables

Tables are probably one of the most widely used systems for organizing pic-
tures and text. A table is a very efficient tool when used properly but can
cause painful results if not handled with care. Many programmers actually
base their entire Websites on really complex tables, which gives a consistent
look to their pages. Generally speaking, table fanatics tend to hate frames
(next section) and vice versa. I personally think they are both needed. I use
frames for the general layout of the site (header, menus, body, etc.), and I use
tables to organize individual pages. The reason for this is that, whereas many
people have pages that all start with the exact same several dozen lines only
for menus and headings that need to be loaded in every single page that is
opened, I just use a frame that loads it once, and stays open. Each page will
open only the new content, without necessitating reloading of the page’s entire
layout. But anyway, let us see how to use tables!

The very first thing is to define an area that will be treated as a table. It is
very important to close it if you wish your page to have the desired look
regardless of the version of the browser. In the mid-1990s browsers would go
crazy when a table was not closed properly; nowadays browsers tend to solve
the problem and output the right aspect. Regardless, make sure that you close
the tags! This is also important when starting new rows and cells, as we shall
see. The official HTML syntax states that it is not necessary to close a row
or cell definition, but I would strongly recommend everyone to do so, since it
will make tables much easier to understand. To create a table, the tag used is
<TABLE>...</TABLE>. This tag can take, among others, the following
parameters:

[vww allitebooks.cond

http://www.allitebooks.org

ORGANIZING DATA 37

WIDTH—specifies in pixels or percentage the width of the table
HEIGH T—specifies in pixels or percentage the height of the table
BORDER—defines the size in pixels of the table’s border
CELLSPACING—defines in pixels the spacing between cells
CELLPADDING—defines in pixels the padding around each cell
ALIGN—“left,” “right,” or “center”; specifies where the table will be
aligned on the page
BGCOLOR—background color for the page, in either letters or hexadeci-
mal RGB values

Note that WIDTH and HEIGHT can be omitted if you want the table to
adapt to the size of the cells. Many graphic designers use these settings
to create restricted pages that appear to be a single box, allowing the page to
look exactly the same regardless of the resolution used by the client. The
BORDER parameter has to be used wisely; make it too big, and the page will
look goofy. I generally set it to 0 or 1 for either no border at all or just a small
one. A border of 0 is extremely useful when, for example, using images as
menu options. By having images of the exact same size placed in a table, you
can give many fancy effects to your pages, such as, for example, tabs in a
folder, or a set of buttons in a futuristic interface. It is all up to your imagina-
tion and your skills with image editors. Personally I am definitely not a
graphic designer, so I tend to keep it simple, or use text for my menus.

Once you have defined the general rules for your table, you must specify
the cells left to right and row by row. This means that the very first thing is
to define a row with the tags <TR>... </TR>. Each new row must start and
finish with these tags, which seldom take parameters (except maybe styles or
heights). Once you are inside a row, you must write the cells one by one, in
the order in which they will appear with either <TD> . .. </TD> for standard
cells or <TH> ... </TH> for header cells. The header cells are usually in the
first row, and will automatically center and render the text they contain in
boldface. Regardless of the cell type selected, you can use the following
parameters:

HEIGHT, WIDTH, BGCOLOR—do the same as with <TABLE> but for
the current cell only

ALIGN—"left,” “center,” “justify,” “right,” or “char”; specifies the text
alignment inside the cell

VALIGN—“top,” “middle,” “bottom,” or “baseline”; specifies the vertical
alignment of the text inside the cell

ROWSPAN and COLSPAN—take the number of rows or columns that
the cell should use

ROWSPAN and COLSPAN are probably two of the major sources of error
in tables among HTML developers. They are not complicated, but it is easy

38 INTRODUCTION TO HTML

to mess up if you do not watch out. The number they accept represents the
span that the cell should take rowwise or columnwise. For example, a
ROWSPAN=2 would mean that the current cell will use two rows. Obviously,
setting either parameter to 1 will do nothing to the cell. The dangerous thing
about these is that you must remember where you expanded a new row or
column in order to avoid extra cells popping out of the table. Note that expanded
cells use room on the following rows and columns, never the previous ones.
Check this bad example:

<HTML>
<HEAD><TITLE>Bad Tables</TITLE></HEAD>
<BODY>
<TABLE BORDER=2 WIDTH=500>
<TR>

<TD>Let’s make a 3x3 table!</TD>
<TD COLSPAN=2>I'm going to expand this cell!</TD>
<TD>So should I add a third cell?</TD>
</TR>
<TR>
<TD ROWSPAN=3>What happens with a rowspan of 3?
I'm on second row and there’s only supposed to be one
more!</TD>
<TD>This table is going to look horrible!</TD>
<TD>Let’s just be done with it . . . </TD>
</TR>
<TR>
<TD>Last row! and the first cell I type in the
code</TD>
<TD>Wait a second . . . Didn’t I rowspan? So even
though I’'m the second set of TDs I appear third!!! Let
us avoid adding a new cell then</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Obviously this example was an array of horrible mistakes. Let us fix it by
doing a proper 3 x 3 table with good rowspans and colspans. The aspect we
wish to create is shown in Table 3.1.

TABLE 3.1 Desired Separation between Cells
1 2and 3

4and 7

ORGANIZING DATA 39

Here is the code to achieve the format shown Table 3.1:

<HTML>
<HEAD><TITLE>Good Tables</TITLE></HEAD>
<BODY>
<TABLE BORDER=2 WIDTH=600>
<TR>
<TH WIDTH=200>1</TH>
<TH COLSPAN=2>2 and 3</TH>
</TR>
<TR>
<TD ROWSPAN=2 VALIGN=‘bottom”>4 and 7</TD>
<TD>5</TD>
<TD ALIGN=center>6</TD>
</TR>
<TR>
<TD>8</TD>
<TD>9</TD>
</TR>
</TABLE>
</BODY>
</HTML>

My last little tip with tables is to always start drawing a normal table with
no expanded cells, and then figure out which ones need to be expanded. When
creating Webpages, paper and pen are still your biggest ally!

Frames

Here is another source of syntax errors, and widely hated by <7A BL E> users.
Personally, as stated in the tables section, I tend to use frames on a regular
basis, since it allows me to have some sets of data to load to the client once
and only once, to then remain open. By doing so instead of systematically
creating my entire layout with tables, I can have content pages that are much
lighter and faster to load for the client. The idea behind a frame is to break
down your main window into several miniwindows, called “frames.” Each
frame can independently open a separate Webpage, yet it is possible to com-
municate between them. Some important things to know about frames is that
you need a page to hold the frameset, which will define the aspect of each
frame, and then the files you will load in each one of those frames. Frameset
definitions replace the <BODY> ... </BODY> tag, but some old browsers
cannot use frames, so you might want to create a “noframes” section.

Let’s start with the basics. The very first thing to do, as stated above, is to
write the frameset right after the <HEAD> ... </HEAD> in the page that
will be loaded. This page will have nothing displayed except the title, but is
extremely important. To create a frameset, use the tag <FRAMESET>. ..

40 INTRODUCTION TO HTML

</FRAMESET> with either ROWS or COLS as parameter. You can techni-
cally use both at the same time, creating a frameset working like tables with
no rowspan or colspan, but it is recommended to restrict the use to only one
type. The type of data you should put in those attributes are called “multi-
length” since they provide the sizes of all frames that the frameset will hold.
If, for example, your frameset needs to have five rows, you will have a ROWS
attribute with five lengths in order, separated by commas. Lengths can be a
number of pixels, a percentage of the screen, or an asterisk (*), meaning
“whatever is left on the screen.” Suppose that you wish to break up the
window into three rows: the first one 100 pixels tall, the last one representing
10% of the screen, and the middle one using the rest of the window. You
would write <FRAMESET ROWS=“100, * 10%”>... </FRAMESET>. It
is also possible to specify the attribute BORDER, which sets the border size
between frames in that frameset.

Once the frameset is defined, you need to define each frame that will be
included, filling the rows or columns you created with the <FRAMESET> tag.
Note that these frames must be in the order in which you want them to appear,
and note also that you can use a new frameset instead of a frame in an avail-
able slot. The basic frames are created with the tag <FRAME>, which does
not need to be closed. There are two parameters that should always be set,
and few optional ones. First there is NA M E, which is essential since it provides
the name that will define the frame itself, and which will be used in the
TARGET attribute of a link wanting to open a page in that frame. Then we
have SRC, which is used to specify the URL of the file that will be loaded in
that frame when the frameset is created. Other parameters include NORE-
SIZE, which takes no values, needs only to be added or omitted, and prevents
the frame from being resized. SCROLLING can be set to “yes,” always allow-
ing a scrollbar in that frame; “no,” to never allow scrollbars; or “auto,” to
include a scrollbar only when needed. By default, SCROLLING is set to auto.

Here is an example of a frameset page that will open some of the examples
we saw in this chapter in four different frames. You will note that the top
frame loads about:blank, which is simply a standard name understood by
browsers as a blank page:

<HTML>
<HEAD><TITLE>Frames example</TITLE></HEAD>
<FRAMESET ROWS="100,%*,100” BORDER=2>
<FRAME NAME=“title” SRC=‘“about:blank”>
<FRAMESET COLS="25%, *” BORDER=0>
<FRAME NAME="menu” SRC="links.html” SCROLLING=NO>
<FRAME NAME="body” SRC=“goodtables.html” NORESIZE>
</FRAMESET>
<FRAME NAME=“footer” SRC=‘nestedlists.html”>
</FRAMESET>
</HTML>

ORGANIZING DATA 41

As stated earlier, some browsers are not capable of working with frames,
usually because the browser was of an older date than the addition of frames
in the HTML standards. The general behavior of a browser that is reading
an unknown tag is to ignore that tag. Obviously a browser that cannot process
frames will ignore our entire frameset and frame definitions, as it does not
recognize the tags. We can take advantage of that behavior and use another
frame-related tag to create an alternate version of our page that would not
employ frames, but instead would use tables, for example. To do so, you can
use the <NOFRAMES>...</NOFRAMES> tag, and put a normal
<BODY>...</BODY> block inside it. This new block should be included
right before the last </FRAMESET> tag. The way it will be processed is
simple. If the browser knows frames, it will ignore anything between
<NOFRAMES> and </NOFRAMES> and therefore skip the body you
added. If the browser does not understand frames, it will not understand the
<NOFRAMES> tag and ignore both opening and closing tags, but will still
parse what is between them. At that point it will find a <BODY> that will be
considered the normal beginning of the body section of a standard page. You
should always have a noframes section when working with frames, to at least
ask the user to get a browser supporting frames. Here is an improved version
of our previous example:

<HTML>
<HEAD><TITLE>Frames example</TITLE></HEAD>
<FRAMESET ROWS='100,%*,100” BORDER=2>
<FRAME NAME=“"title” SRC=‘about:blank”>
<FRAMESET COLS="25%, *” BORDER=0>
<FRAME NAME="menu” SRC=“links.html” SCROLLING=NO>
<FRAME NAME="body” SRC="“goodtables.html” NORESIZE>
</FRAMESET>
<FRAME NAME=“footer” SRC=“nestedlists.html”>
<NOFRAMES>
<BODY>
Please get yourself a good browser like Firefox
</BODY>
</NOFRAMES>
</FRAMESET>
</HTML>

There is another very curious type of frame called the “inline frame” (or
“iframe”), which is basically a frame that can be used as an image. It has the
advantage of being usable inside a normal body of a page, and does not
require any frameset definition. You can utilize this asset to, for example,
include it in a table, surrounding it by images of a TV frame to create a TV
effect. The TV screen would basically be the inline frame that would be used

42 INTRODUCTION TO HTML

to display the contents. You can top it off with a remote-looking menu that
will have links targeting that iframe. To create an iframe, use the tag
<IFRAME> ... </IFRAME>, where the space between the opening and
closing tags is used to enter the “alternate” version, in case the browser does
not support iframes (it is similar to the “noframes” section). The <I[FRAME>
tag needs the following attributes:

SRC—the URI to be loaded in the frame

NAME—name of the frame enabling you to link to it

WIDTH—frame width

HEIGHT—frame height

ALIGN—*“top,” “middle,” “bottom,” “left,” or “right” for frame alignment
FRAMEBORDER—1 or 0 to have or not have a frame border
MARGINWIDTH—size in pixels for the margin width
MARGINHEIGHT—size in pixels for the margin height
SCROLLING—*“yes,” “no,” or the default “auto” to allow scrollbars

Here is an example of a page having an iframe inside a table:

<HTML>
<HEAD><TITLE>IFRAME in TABLE</TITLE></HEAD>
<BODY>
<CENTER>
<TABLE BORDER=0>
<TR>
<TD ROWSPAN=3>I want <A HREF="“http://www.
getfirefox.com” target="coolframe”>Firefox!</TD>
<TH> INLINE FRAME</TH>
<TD ROWSPAN=3> I want to look for <A
HREF="“http://www.google.com”
target="coolframe”>something!</TD>
</TR>
<TR>
<TD><IFRAME SRC="“http://www.google.com”
NAME="coolframe” WIDTH=400 HEIGHT=300 ALIGN=middle
FRAMEBORDER=0>The Iframe is NOT WORKING!!</IFRAME></TD>
</TR>
<TR>
<TD align=center>This was cool</TD>
</TR>
</TABLE>
</CENTER>
</BODY>
</HTML>

SPECIAL CHARACTERS 43

SPECIAL CHARACTERS

The last piece of information necessary for now in order to start creating
Websites is how to use special characters. As mentioned at the beginning of
this chapter, you are not allowed to use the characters < and > except for tags,
but what if you wanted to use that symbol for a mathematical comparison?
Here is where special characters come in handy. Other typical example is
white spaces; as stated earlier, any large group of white spaces is translated
into a single white space by browsers, so what if you wanted to force five white
spaces between two words? Another final crucial example, at least for me, is
my last name, “Gabarr6.” As you noticed, it contains an accent on the o,
which few keyboards around the world have, and that, depending on the
regional settings, might not show up on the screen if I just use the character
“6.” Many people would just ignore this and write “Gabarro,” but as a proud
Spaniard, I need my accent, and luckily enough I can get it in HTML in a
way that will be printed in any computer, regardless of its settings.

All special characters in HTML start with an ampersand (&) and finish
with a semicolon (;). For example, the character “6” is written ó,
meaning that when writing my last name on a Webpage I have to spell it
Gabarró. White spaces are done with , < is <, and > is >.

You can find a large reference table such as that in Appendix A.

Work Environment

INTRODUCTION

In this chapter we will see step-by-step how to install all the software that we
will need for our Websites to run. This includes an Apache Web server, the
PHP engine, and a MySQL database. We will also see how to install and use
two powerful PHP-based applications: phpMyAdmin to manipulate data-
bases, and phpBB, a free bulletin board tool.

The installation guidelines are for Microsoft Windows based computers.
These tools also work on UNIX, but chances are you already have a Web
server and PHP installed as part of the UNIX/Linux distribution of your
choice. You can find more information on UNIX/Linux installation guide-
lines in Appendix B.

DOWNLOADING THE SOFTWARE

The first obvious thing to do is download all the necessary software that we
will use. The Apache Web server can be found at www.apache.org. Once
there, click on “HTTP server,” find the latest stable release (the current
version at the time of this writing is 2.0.55 with a Windows installer and 2.2.0
as a UNIX source package), click on “download,” and find the “Win32 binary

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

45

46 WORK ENVIRONMENT

(MSI Installer),” which will simplify the installation process. Download the
file somewhere safe along with all the files that we will download next.

To download PHP, go to www.php.net, click on “downloads,” and choose
the newest stable Windows zip package (version 5.1.2 as of right now), choose
the download mirror closest to your geographic location, and save the file
with the Apache installer.

The MySQL server can be found at www.mysgl.com. Click on “developer
zone,” and find the “MySQL server download” (current version is 5.0). Find
the Windows downloads sections and the file for “Windows (x86)” by picking
a mirror. At that point you may enter some personal information, although
this is optional.

The two last tools are phpMyAdmin and phpBB. The former can be found
at www.phpmyadmin.net. In the main page you should be able to see all the
different available versions; just download the latest stable version (2.7.0, p.
12, as of the time of this writing). Pick your favorite compression format,
choose a mirror, and download. PhpBB can be found at www.phpbb.com; go
to “download” and download the full package in zip, gzip or bz2 format,
depending on your favorite compressing tool. If you are unsure, just pick zip.
Choose the mirror again and save the file on your drive.

INSTALLING THE Apache SERVER

Installation Steps

To avoid problems, the first thing to do is stop any service that might use the
port 80, such as, for example, instant messaging tools like AIM or Skype. It
might also be a good idea to temporarily disable your computer’s firewall
while you install this application.

Start by double-clicking on the installer file that you downloaded. Click
on “next,” read and accept the terms in the license agreement, click “next”
again, read the description if you wish to, and then get to the “server informa-
tion” configuration page. All these settings can be modified later on, but you
might want to set them up right away. First you will see the “network domain.”
If your computer is in a domain, enter that information there. If you are
unsure of your network domain, simply type “localhost”. The next field is
“server name,” which represents your computer name in the domain written
right before. For example, if your domain was in.home.net, and your com-
puter name is mycomp, you would enter in.home.net in the first field and
mycomp.in.home.net in the second. As before, if you are unsure, just type
“localhost”. Finally enter the email address to which users should send ques-
tions in case they encounter a problem accessing your sites.

You must then choose whether to install the application as a service for all
users on port 80, or just for the current user on port 8080. The main differ-
ence between the two is that a service installation will basically start up your
server when the computer does, and will be working on the standard port

INSTALLING THE Apache SERVER 47

used by Web applications. The other option is to have the server running only
when you decide to launch it manually on a nondefault port. I recommend
the first option. Choose the “typical” installation, and select the folder in
which to install it (I will assume that you used the default folder in further
steps). Click “next” and then “finish.”

Checking the Installation

At this point the application should automatically install and start running.
It is time to check the installation. Your systray (that area with little icons,
on the bottom right of your desktop, where the clock is) should have a new
icon: a red feather with a green “play” symbol. If you see this feather, Apache
is installed. If you see the green play symbol, Apache is running, but if you
see a red “stop” symbol, this means that the server could not start. Double-
clicking on the icon will bring up the Apache service monitor, which will allow
you to start, stop, or restart the Web server. Keep in mind that you will need
to restart the server each time you modify its configuration, so get familiar
with the tool. When you are done with it, click on “OK.”

Possible Errors

If for some reason Apache is not running at this point, chances are you will
see an error message saying “Service not installed.” This is usually due to
other services running on port 80, which will prevent installation of other
services on the same port. Luckily, we can change Apache’s standard port.
To do so, open a command console (click “start,” then “run,” and type
“cmd”), in the console access your Apache installation folder (C:/Program
Files/Apache Group/Apache2/bin), and type “apache —k install”. That should
install the service, but you may still get an error saying “could not bind to
address 0.0.0.0:80”. Note that “:” means “using the port.” In that case, find
the file located in [...]/Apache2/conf/httpd.conf and open it. This is the
most important file for Apache; it is its configuration file and is loaded auto-
matically each time the server is started. Find the line that says “Listen 80”
and replace it with “Listen 127.0.0.1:80”, save the file, and again try to run
the “apache -k install” on your console. If that still does not work, again
replace that same line with “Listen 127.0.0.1:8080”. The reasons for these
different errors are all related to Windows’ services, and the way you access
the server. The line “Listen 80” means that Apache tries to accept incoming
requests through port 80 on the local computer. Sometimes the server is incor-
rectly installed, and there is no reference to what constitutes the “local”
computer. To force this binding, we add the 127.0.0.1 IP address, which always
represents the local computer. We are basically telling Apache which socket
to use to accept all communications. If there is another service running on
port 80, this will still not work; hence the need to change Apache’s port to
something else. The port 8080 is the standard “Alternative” for Web servers.

[vww allitebooks.cond

http://www.allitebooks.org

48 WORK ENVIRONMENT

Configuring Apache

By now your basic Apache server should be running. You can check it by
opening a browser and accessing http://localhost/ (or http://localhost:8080/
if you changed the port that Apache uses). This should open a page telling
you that your installation was a success. Now it is time to set up your prefer-
ences. My first recommendation is to create a folder called “Web” on a sec-
ondary hard disk or partition of your choice. This will be the folder in which
all your Web applications will run. I will assume that your folder is “D:/Web”.
Open [...]/Apache2/conf/httpd.conf and leave it open as we will be modifying
it when we install PHP.

The first thing to do is find the line that starts with “DocumentRoot” fol-
lowed by a path. Change the path to the one you will use; for example, change
the line to DocumentRoot “D:/Web.” If you are afraid of messing up the
configuration file, you can comment out the existing line by placing the char-
acter # in front of the line, and typing a new line with your chosen Document
Root. Note that Apache uses forward slashes (/) instead of backslashes (\).
This allows your Apache to know which folder in your computer to go to when
trying to find Webpages. The next thing to do is set up the rights for that
folder; you may again use the basic settings, by finding the line that starts as
<Directory followed by the same path that was initially set as “Document-
Root.” Replace that path with the same one you used for your “Document-
Root.” Your new line should be <Directory “D:/Web”>. This line represents
the opening tag for a set of rules that will be applied to that folder. It is
important to remember to set the rights to the folders you want to access, or
you may get a “forbidden” error message when trying to access it.

The next thing to set up is the list of files that will be opened by default
when trying to access a folder. This information can be found in the line that
starts as “Directorylndex index.html index.html.var.” Here you may set up
any file that you would like to use as a directory index. I recommend adding
at least the following: index.php and index.htm, but you might want to add
index.php3 index.php4 index.php5 index.phtml if you are planning on running
old PHP applications.

Save the file and restart your Apache. Remember to keep your httpd.conf
file opened as we will be using it in a few minutes. If you did not make any
syntax errors, Apache should restart easily. In case of a typo, Apache should
inform you of the line with the problem. Find it and correct the typo. Access
your localhost through your browser once more. You should now see the
contents of your “Web” folder or one of the directory index files if there is one.

INSTALLING PHP5

Find the zip file you downloaded and extract it to C\PHP\. Add C:\PHP
to your Windows PATH. To do so, open your “system properties” window
by either right-clicking on “My Computer” and selecting “properties,” or by

INSTALLING PHP5 49

selecting the option through your control panel. Click on “advanced” and
then “environment variables.” In “system variables” you should see one called
“PATH?; select it, click on “Edit,” go to end of the “Variable value:” field,
and add “;C:\PHP\” (without the double quotes). Do not delete any of the
other information in that field!!! Adding the PHP folder to the PATH will
help Windows find any file inside that folder. Accept all windows by clicking
on “Accept” or “OK” until they are closed.

Now go to your C:\PHP\ folder and rename the file “php.ini-recommended”
as “php.ini.” You can also do a copy of that file and rename the copy. Open
the file and find the line that says “;extension=php_mysql.dll” and remove
the semicolon in front of the line. Do the same with the line containing
“;extension=php_mbstring.dll.” This will tell PHP to start up with the
MySQL and MBString extensions. The first is obviously needed to run
MySQL; the second one is needed for phpMyAdmin. Now look for the line
extension_dir = “./” and replace it with extension_dir = c:/php/ext.

One last thing you might want to do for development purposes is turn on
the error display on pages. By default, any script error is logged into a file but
does not show up on the screen. Find the section on error reporting and make
sure that you have the following lines:

error_reporting = E_ALL

; Print out errors (as a part of the output). For production web sites,

; you're strongly encouraged to turn this feature off, and use error logging

; instead (see below). Keeping display_errors enabled on a production
web site

, may reveal security information to end users, such as file paths on your
Web

; server, your database schema or other information.

display_errors = on

Changing display_errors to oN will allow you to view any script error when
you attempt to run them. As you can read in the php.ini file, it is recom-
mended to turn this feature off for pages that will be publicly available, as it
may show information that should remain hidden to the user. For develop-
ment purposes, it’s much easier if you can see all errors and notices so that
you can correct them before publishing your page.

Save the file and open your Apache’s httpd.conf. Go to the end of the file
and add the following lines:

LoadModule php5_module “c:/php/phpSapache2.dll”
AddType application/x-httpd-php .php .phtml .php3 .php4 .php5
PHPIniDir “C:/PHP”

The first line tells Apache to load the PHP module when Apache starts,
which will allow PHP files to be executed. The second line adds a new type

50 WORK ENVIRONMENT

of application, namely, PHP applications, which should be identified through
the files extensions listed in the line. You may add any file extension that you
would like to run through the PHP processor. The final line tells Apache
where to find the php.ini file.

Now copy the file C:\PHP\libmysql.dll to your C:\Windows\System32\
folder and restart Apache. This step should not really be necessary, but I have
seen many cases in which not doing so resulted in some problems in loading
the MySQL extension. If you reload your http://localhost/ on your browser,
assuming that there are no directory index files in your Web folder, you should
see at the end of the page a line that says “Apache/2.0.55 (Win32) PHP/5.1.2
Server at localhost Port 80, assuming that you installed the same versions as
I did.

Testing PHP

Go to your “document root” folder (D:\Web in our example) and create a
new folder called phpwork or something similar. This folder will be the one
in which all your PHP work should be saved. Inside that new folder, create a
file called index.php containing the following code:

<?PHP phpinfo(); 7>

Try to access http://localhost/phpwork/; this should show a huge table with
all the PHP configuration information.

INSTALLING MySQL

Locate the file you downloaded, decompress it, and launch Setup.exe. Choose
“typical” installation, let it copy all files, and skip signup. Make sure that the
option “configure the MySQL server now” is selected, and click on “finish.”
Click “next” and choose “detailed configuration.” Now through all the
windows, select “developer machine,” “nontransactional database only”
(unless you are planning on using MyISAM, which I will not explain in this
book), “decision support” (assuming that the installation is for your work
computer and will be used only by a few programmers. If you are configuring
a Web server that will be accessed by many users, you might want to choose
one of the other options). Make sure that you enable TCP/IP networking, and
remember the port number (3306 by default), “enable strict mode,” choose
your character set, and “install as window service.” You may even choose
“include bin directory in Windows PATH” to make it easier for you to change
settings later on. Select a “root” password; this is very important, and never
forget that information. Choose whether you want to enable root access from
remote machines or not (I recommend “not” if you are going to be physically
working on the computer to prevent possible security breaches). Click on
“execute,” which will configure your MySQL.

INSTALLING phpMyAdmin 51

Adding a MySQL User

I strongly recommend that everyone create a new user that will have the right
to use the MySQL database other than the root. This will be the user that we
will use in our PHP scripts. Open a command console (as we did when solving
Apache problems) and type “mysql —-user=root ——password=your_pass
mysql”, replacing “your_pass” with the password you selected for the root
during the installation of MySQL. This will open the MySQL console.
Now type “GRANT ALL PRIVILEGES ON ** TO ‘newuser’@’localhost’
IDENTIFIED BY ‘newpass’WITHGRANTOPTION;”,replacing “newuser”
and “newpass” with the username and password you wish to use with PHP.
Press “enter,” then type “\quit” and “enter” again.

How Do | Know if MySQL is Running?

If you managed to open the MySQL console and added a user, MySQL is
running, so we can move to the next step: testing whether PHP can connect
to MySQL, and in no way better than using phpMyAdmin.

INSTALLING PhpMyAdmin

Decompress the zip file you downloaded inside your document root, and
rename the folder to something easy for you to remember but hard for someone
to guess. This will prevent people from trying to access your administration
tool. Go to the folder and locate the file config.default.php. Either rename it
to config.inc.php or copy the file and rename the copy. Open the file (Wordpad
will probably output the text in a nicer way than Notepad), locate the line
Scfg[‘PmaAbsoluteUri’] = ;" and enter the absolute URI of your phpMy-
Admin folder. For example, if you called the folder “mysqlAdmin” and you
placed it in your document root, you should type “$cfg/PmaAbsoluteUri’] =
‘http://localhost/mysqlAdmin’;”. Next find the first line that says “$cfg
[‘Servers’][$i][‘user’] = ‘root’; // MySQL user” and replace “root” with the
user you created with MySQL. In the following line enter the password for
that user and save the file. If you created a user “newuser” with “newpass”
as a password, your two lines should look like this:

Scfg[‘Servers’][8i][‘user’] = ‘newuser’; // MySQL user
Scfg[‘Servers’][$i][‘password’] = ‘newpass’; // MySQL password (only needed
Save the file and access the folder through your browser (e.g., http://
localhost/mysqlAdmin/). This should open up phpMyAdmin’s interface. If

there is any error, it would show up in this window. Typical errors include bad
user/passwords and wrong absolute URIs.

52 WORK ENVIRONMENT

We will see how to use phpMyAdmin in Chapter 12, but for now let us
create a new database that will be used by phpBB. In the main page type the
name of the database you want to create (I will choose “forum™) and click on
“create.” If you look on the dropdown menu on the left menu, you should see
a new database called “forum” with O tables. Congratulations! This means
that your phpMyAdmin is working perfectly well.

INSTALLING A BULLETIN BOARD: phpBB

Bulletin boards are spreading over the Internet to connect people with the
same interests in a discussion area. PHPBB is one of the most popular PHP
bulletin board solutions, mostly because of its simplicity. We will see how to
install this application and how to set it up. You will find more detailed infor-
mation in Appendix C.

Installation Steps

Start by decompressing the zip file inside your document root and rename
the folder, for example, as “forum,” and access http://localhost/forum/install/
install.php. This is an automated PHP script that will configure your boards
to work with your database. Make sure that you select MySQL 4.x/5.x as your
database type (unless your host has a different database), method “install.”
Your database configuration should be “localhost” for hostname and “forum”
for database name (or the name you chose when creating a test database in
the previous steps). Use the user and password you created when installing
MySQL (and the same that you used for phpMyAdmin). You should leave
the prefix with the default “phpbb_” as it will help you recognize the tables
used by phpBB. Enter your email address (for users to mail you about any
problem), enter your domain (localhost if running only locally, your com-
puter’s name if you plan on using it on a local-area network only, or the
domain in which you are installing phpBB if phpBB will be used over the
Internet), your server port (80 by default), the folder in which you installed
the forums, and a user and password that you will use in the boards. It is
preferable to use a user/password different from the one in your database
settings. Each message you will write in the boards will have your username
attached to it, so you might want to use your favorite nickname.

Finish the installation by clicking on the “install” buttons until you see a
message telling you to delete two directories. Delete those two directories in
your forum/folder to prevent malicious attempts to reconfigure your boards.

Try to access http://localhost/forum/; this should open up the boards’ main
page, which should include one forum called “test forum 1.” Using phpBB is
very intuitive; clicking on a forum name will open the list of messages in that
category. Each message is a “thread” in which all users can discuss whatever
they feel like. Let us configure our boards and add new forums.

INSTALLING A BULLETIN BOARD: phpBB 53

Start by logging in with the user/password you entered during the install,
either by entering it at the bottom of the page or clicking on “log in.” I do not
recommend selecting the “remember me” option if you are the administrator,
to avoid having someone log in as an admin through your computer and
change the forum settings. Now that you are logged in, you will notice that at
the bottom of the page there is a new link that says “go to administration
panel.” Click on it, and reenter your user/password information (this is a
double-check for security reasons). The way this application works is through
the menus on the left. The main area shows the current configuration page.
When entering the administration panel, you can see the forum’s statistics, as
well as who is online. PhpBB will also let you know if you have the latest
version installed.

On the left menu click on “management” to enter the forum administra-
tion. Here you can create new forums and categories. Let us start by editing
the existing one to make it look nicer. Next, to “test category 1,” click on
“edit” and change the name to “announcements.” Do to same with “test
forum 1” and rename it to “news,” along with the description of your choice.
Leave everything by default and click on “update.” You can use the two text-
boxes to create new forums and categories. Each forum will be attached to a
category. The order in which you see categories and forums is the same one
that the users will see.

The next menu (“permissions”) allows you to change the rights of each
forum. Select a forum and then the rights you want to use. I recommend
selecting “advanced mode” for more flexibility. In advanced mode you can
determine who can view, read, post, reply, edit, delete, turn a thread into a
sticky thread (always remaining on top of a forum), turn a thread into an
announcement (like sticky threads, but with a different icon), vote in polls,
and create a poll. The options for each one of these categories are ALL to
allow use for everybody, REG to allow it only for registered users who have
created a user and a password, PRIVATE to only allow it for the users or
groups of your choice, MOD to only allow it for moderators, and ADMIN to
allow it only for administrators.

A little further down in the menu you will see “configuration.” This
is where you can set all the settings for your boards, and is pretty self-
explanatory. While you are there, change the “site name” and “site descrip-
tion” to something more welcoming than “yourdomain.com” and “a_little_text
to describe your forum.” If you wish to force users to enter valid email
addresses when creating a new account, select “user” in the “enable account
activation” option. I recommend that you also enable the visual confirmation
and disable user emails via the board. Change your system time zone [e.g.,
EST time is GMT (Greenwich Mean Time) -5].

Finally, at the end of the menu, you can see the “User Admin,” where you
can manage users individually, create ranks, and set individual permissions
or moderator rights.

54 WORK ENVIRONMENT

Check Appendix C for a full description of how to administrate a phpBB
board.

BASIC SECURITY CONSIDERATIONS

Now that you have everything installed, keep everything safe!! Remember
that PHP is a server-side language, so any PHP script runs on your server and
can access any file on the server even if that file is not accessible through your
http://localhost/. Take advantage of this to store files that may contain secret
information in folders that are not in your document root if you are running
Windows. For example, if you have a file required by PHP that contains your
database information (user, password, domain, etc.), you can store it on
C:\UltraSecretStuff\, and later, when PHP needs to access it, just enter the
local path instead of an “http” address. This way, users will not be able to
attempt opening the file.

If you are running on a UNIX/Linux machine, use tools like chmod and
chown to your advantage. By default, PHP applications run with limited user
permissions on UNIX/Linux servers, so that you can create folders and allow
only yourself the right to enter them. This way anyone trying to access the
folder through an “http://” will get a “forbidden” error page, whereas your
PHP will still be able to access the folder and its files. For example, if your
document root is located in ~/web/ and you create a folder ~/web/includes/
with important information needed by PHP, you might want to set that
folder’s rights to read and execute only for the owner.

A file’s rights on a UNIX/Linux system is represented through a set of
letters (that you can see if you type “Is —I” in the folder containing the files).
The letter r stands for read, w for write, and x for execute. These letters appear
in groups of three and are either present or replaced by a dash (-). There are
three groups, the first for the owner of the file, the second for the people in
the same group as the owner, and the last for the rest. If, for example, a file
has —-rwxr-xr—- before its name when doing “Is -1,” this means the user can
read, write, and execute the file or directory; people in the owner’s group can
read it and execute it; and the others can only read it. All folders inside the
document root that need to be accessible by all users should have the rights
-rwxr-xr-x or what we call “755.” The number is basically the translation of
the rights into octal. Each group of three characters (r, w, and x) represents
a single bit set to 1 if the letter is present or 0 if there is a dash. For example,
rwx would be binary 111, which equals to 7 in octal; r-x is 101, which equals
to 5. To change a file’s rights, you need to type chmod rights file, for example,
chmod 755 myfile. When a folder contains secret information, you might want
to set it with a chmod 700 folder to allow yourself to read, write, and execute,
but forbid access to all others (except the root user, of course). PHP should
still be able to access those folders, but no one else would from their
computers.

CONCLUSION 55

You may also want to use chown, which allows you to change the owner
of a file. For example, typing chown myuser myfile will change the owner of
myfile to the user myuser.

CONCLUSION
If you have reached this step with no errors, congratulations!! You probably

survived the hardest part of working with PHP. Now let us start using what
we have installed and learn the PHP basics.

PHP—A Server-Side
Scripting Language

HOW DOES IT WORK?

Some “New” Words on PHP

As you should already know, PHP is a server-side scripting language. PHP
scripts are usually accessed through forms that send information using either
the GET or POST methods (as we will discuss in Chapter 9). It was created
in 1995 by Rasmus Lerdorf, and initially called PHP/FI.

For a long time there were two main versions that coexisted: PHP3 and
PHP4, and now we have PHPS5, which made PHP3 a thing of the past. PHP4
is still used by many PHP users, even after they install PHPS. The main dif-
ference between the versions is the way they operate. PHP3 was a pure inter-
preted language, which means that code was interpreted line by line on the
server as the code was read. PHP4 introduced the script motor “Zend” that
increased the treatment speed. PHP4 was a sort of object code compiler that
was then sent to the Zend engine. The arrival PHP5 brought Zend2, and even
faster script motor, as well as real object-oriented programming, as we will
see in Chapter 8. Most PHPS users actually don’t take advantage of the
object-oriented capabilities of PHPS, so they technically use PHP4 on a PHPS
installation.

This chapter covers the basics of PHP, so it could be considered a PHP4
tutorial. Chapter 8 will introduce you to using objects in PHPS5.

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

57

58 PHP—A SERVER-SIDE SCRIPTING LANGUAGE

Syntax Generalities

PHP code is usually inserted inside HTML code. This allows for small parts
of an HTML page to be executed before the page is downloaded to the user’s
computer. To insert PHP code in any page, you must use <? PHP. For a long
time it was fine to just write <?, but the newer versions of PHP encourage the
use of the full <? PHP opening tag, to prevent all possible confusion in execut-
ing the scripts. Once the opening symbol has been written, you enter the
“PHP zone.” Anything that you type will be executed by your PHP engine
before you send the final page to the user. When you are done writing your
script, or portion of script, you must close the “PHP zone” with ?>. You actu-
ally already saw an example of this when we wrote our index.php file contain-
ing <?PHP phpinfo(); ?>. This means that we start the PHP, and call the
function phpinfo(). This is the function that outputs all the configuration
settings of PHP. Each instruction in PHP must end with a semicolon, not
doing so will make the page not work, so be careful!

You can create comments in PHP by using the same symbols as in C lan-
guage. You can either select an area of comment, starting with /* and finishing
with */, or you can use // to comment anything from there until the end of the
line. Here is an example:

<?PHP/* ———---——- INDEX.PHP FILE --=—===--
---- This file checks the phpinfo ----%*/
phpinfo(); //This is the line that will be executed

// the rest are all comments
2>

INSTRUCTIONS

In PHP you may use instructions, functions calls, loops, and conditions (plus
objects with PHPS), but never forget the semicolon at the end of each function
call and every instruction.

A first easy function to use is echo, which allows printing on the page.
Remember that when you run PHP code, it runs in the server, and any output
that occurs will appear instead of the code where the instruction was called,
so if you wish to make an “echo” in an HTML page containing all proper
tags, you should place the PHP code between the opening and closing body
tags. Here is a clean example:

<HTML>
<HEAD>
<TITLE>Scriptl</TITLE>
</HEAD>
<BODY>
<?PHP echo “Hello World!”; ?>
</BODY>
</HTML>

[vww allitebooks.cond

http://www.allitebooks.org

INSTRUCTIONS 59

You could say that PHP4 is an “expression-oriented” programming lan-
guage. An expression is basically a set of characters following a specific syntax.
Expressions always have a value that can be a numeral or string, including 0 or
the void string “”. To know what a PHP code does, you simply need to locate
and understand the expressions, as well as the information they hold.

The first type of expression available consists of elementary expressions,
such as constants or variables. For example, the number 100 would be con-
sidered an expression with the value 100. Variables like $§a would be expressed
with a value equal to the content of the variable.

We have also composed expressions created by storing an elementary
expression in a variable. Note that all variables in PHP start with the dollar
sign ($). The following two lines would be considered as two expressions:

$a =100;
$b = 3a;

This would store the elementary expression 100 into the variable $a. Then
the elementary expression $a (containing the value 100) would be stored in
$b. In the end both $a and $b would be equal to 100.

Another type of expression consists of functions. Assuming that we have
a function called test() that returns the value of 100, doing Sresult = test();
would use the function fest() as an expression and store it in $result making
that variable hold the number 100.

It is also possible to postincrement, postdecrease, preincrement, and pre-
decrease a variable. This is still considered an expression. Check this code:

<?PHP
Svar = 100;
echo Svar++; //echoes S$var and increments it by 1
echo ++S8var; //increments S$var by 1 and echoes it
echo Svar--; //echoes Svar and decreases it by 1
echo --S$var; //decreases Svar and echoes it

2>

If you execute this code, you will note that it outputs 100102102100 with no
spaces between the numbers. This is due to the fact that we are only output-
ting numbers, without inserting white spaces or breaks of line. We will see
further on how to concatenate strings to variables.

PHP expressions can also be the values TRUE and FALSE. By default,
these two constants are equal to 1 and 0, respectively. Note that if you write

<?PHP
sSvar = TRUE;
echo Svar;
?>

the output will be the number 1 and not TRUE.

60 PHP—A SERVER-SIDE SCRIPTING LANGUAGE

A comparison is also considered an expression, having a value of 1 for true
and 0 for false. For example, $a = 3b < 0; would store 1 inside $a if $b is lower
than 0, and would store O if $b is greater than or equal to 0. The existing
comparison operators are

> Greater than

>= Greater than or equal to
== Equal to

1= Different from

<= Less than or equal to

< Less than

Another type of expressions is the combination of operators with the
affectation symbol (=). For example, $a += 10; will increase $a by 10. This
works with any operator, and it has the following equivalence (we will assume
that <op> is an operator): $a <op> = $b is the same as $a = $a <op> $b.

Here are a few examples:

8a -=(8b + $c); will calculate $a — ($b + $¢) and store the result in $a
$a *=$a; will multiply $a by $a and store the result in $a
Sa/=2; will divide $a by 2 and store the result in $a

The last basic type of expression is the conditional operator. This allows us
to check a Boolean value (TRUE or FALSE) and use an expression if the
value is true, a different one if it is false. The basic syntax is expressionl ?
expression2 : expression3;. In this example expressionl will be checked as
true or false. If it is true, then expression2 will be evaluated. If it was false,
expression 3 will be evaluated. For example

<?PHP
Sa = 100;
Sb = 50;
$Sc = (8a < Sb) ? 50: 25; // will compare $a to $b if

//Sa 1is less than $b, 50
//is evaluated. If Sa 1is greater or equal than Sb,
//then 25 is evaluated.
echo Sc;
?>

This example would output 25. Remember than an expression can be a func-
tion or even an operation, so you could use this to calculate a positive differ-
ence as follows:

MATHEMATICAL FUNCTIONS 61

<?PHP
Sa = 100;
sSb = 12;

Spositive_difference = ($a >= S$b) ? (Sa - Sb) : (Sb - Sa);
echo Spositive_difference;

2>

OPERATORS

You may use the following operators:

.

Arithmetic. Use + to add, — to subtract, * to multiply, / to divide, % to
calculate the remainder of a division (called the modulo operator).
Affectation. Use = to store the value of the expression on the right to the
variable on the left of the sign.
Affectation with Operation. As we saw above, += —= *= /= %= .= (the
operator “.” allows us to concatenate strings.
Reference Affectation. Using $a = &$b; causes $a to point to the same
memory location as $b is. It is pretty much the same as making $a an
alias of $b. Note that unlike in C language, this operation does not copy
the address of $b in the variable $a. It just makes $a and $b refer to the
same location. Changing $a will also have an effect on $b.
Bit Operations. Use & (binary AND), | (binary OR), * (binary exclusive OR,
“XOR”), ~ (binary NOT), << (logical shift to the left), >> (logical shift to
the right).
Other Comparison Operators. Use === for “identical,” meaning that
both expressions around the operator have the same value and are of the
same type (see example further down). Use !== for not identical.
Increments and Decrements. Same as before ($a++, ++8a, ——$a, and $a—-)
Logical Operators. The following can be used:

“and” or “&&” for AND

“or” or “Il” for OR

“xor” for exclusive OR (XOR)

! for NOT
These operators are used for logical operations, such as mixing several
comparisons in one big expression. Do not mix logical and binary opera-
tors which do bit-by-bit operations with the expressions around them.

MATHEMATICAL FUNCTIONS

There are many mathematical functions at the disposition of PHP developers.
Here are the most important ones and some basic explanations on how they
work:

62

PHP—A SERVER-SIDE SCRIPTING LANGUAGE

* abs—calculates the absolute value of a number. For example, abs(-10)
will return 10

* acos, asin, atan, atan2—calculates the arc cosine, arc sine, arc tangent,
and tanget of two variables. For example, atan(3x) calculates the arc
tangent of $x.

* acosh, asinh, atanh—calculates the inverse hyperbolic cosine, inverse
hyperbolic sine, and inverse hyperbolic tangent.

* cos, sin, tan—calculates the cosine, sine, and tangent of a variable. For
example, cos(acos($x)) will return $x.

* base_convert—converts the first parameter from the base given in the
second parameter to the base given as third parameter. For example,
base_convert(1110,2,10) will convert 1110 from base 2 to base 10, hence
returning the number 14.

« bindec, decbin, dechex, hexdec, decoct, octdec—converts a number from
binary to decimal; from decimal to binary; from decimal to hexadecimal;
from hex to decimal; from decimal to octal; and from octal to decimal.
For example, bindec(1001) returns 9; decbin(3) returns 11; dechex(16)
returns 10; hexdec(FF) returns 255; decoct(256) returns 400; and
octdec(400) returns 256.

« round, floor, ceil—does a regular rounding of a number, rounds down,
and rounds up. For example, round(1.6) returns 2; floor(1.9) returns 1;
and ceil(1.1) returns 2.

» exp—returns the exponent of the Neperian (or e). For example, exp (5.7)
returns 298.87.

« sqrt—calculates the square root of a number. For example, sqrt(16)
returns 4.

* log, logl0—calculates the natural logarithm and the base 10 logarithm
of a number. For example, log(2.7) returns 0.99 and log10(100) returns 2.

* min, max—calculates the minimum and maximum of a series of numbers.
For example, max(23,54,12,53,62,24) would return 62. Both functions
can accept any amount of parameters.

+ pi—returns the value of I1. Just type pi() to use it.

« pow—calculates the power of a number. For example, pow(2,3) calcu-
lates 2 to the power of 3, so it would return 8.

« number_format—reformats a number into a string. The first parameter
is the number, the second is the number of numbers to show after the
decimal point, the third is the symbol used as a decimal point, and the
last parameter is the symbol used to separate groups of three digits. For
example, number_format(123456.7, ‘2°, *.’, *,’) would return the string
“123,456.70.”

* rand, mt_rand—generates a random number and a random number
using the Mersenne Twister algorithm. Just type either mt_rand() or
rand().

DATA TYPES 63

« srand, mt_srand—allows you to seed the random-number generator,
whether standard or using the Mersenne Twister. For example, you could
use mt_srand(123) followed by mt_rand() to get a random number
seeded with the number 123. Whenever you need to generate a random
number, it is preferable for better results to combine mt_srand with a
seed that will change constantly. For example, you can do “mt_rand (crc32
(microtime()));” microtime gets the current timestamp (exact date and
time in microseconds), and crc2 gets a string to return a number, namely,
the polynomial of a string. This little method can be found at www.php.
net, where it is explained in detail.

getrandmax (), mt_getrandmax()—returns the highest number that the
random function can generate, in either normal or Mersenne Twister
version.

DATA TYPES

In PHP it is not necessary to specify the type of a variable. All variables do
have a type, but that type can change depending on what information is stored
in the variable. For example, doing $a = 10; will make the variable $a an
integer, but if a few lines later we do $a = “Hello”;, that same variable $a will
become a string.

The basic data types in PHP are integer (int), double (or real, or float),
string, array, object, and Boolean. It is possible to check the type of a variable
by either calling gettype($a), which returns a string with the type of $a, or
by calling one of the many “is_” functions that return true if the variable is
of the type that makes up the function name, and false otherwise. The func-
tions are is_long(), is_double(), is_string(), is_array(), is_object(), is_bool(),
is_float(), is_int(), is_integer(), is_real(), and is_numeric(). Naturally, is_
numeric will check whether the variable passed as a parameter is of any
numerical type.

As already mentioned, it is possible to change a variable’s type simply by
storing a different type of value in that same variable. It is also possible to
modify a variable’s type without changing its contents. This process is called
casting, and it can be done either permanently, or just for one instance. To
change a type permanently, use the settype function. For example, settype($a,
“double”); would change the type of the variable $a to a double. If you wish
to change the type of a variable only when reading it once, without having to
permanently change its type, you can simply precede the variable name with
the new type surrounded by parentheses. In the following example we will
store an integer contained in the variable 34, into $b, which will be holding
that same number as a double:

$a=35;
3b = (double)$a;

64 PHP—A SERVER-SIDE SCRIPTING LANGUAGE

Remember that when using the “identical” (===) comparison, the types of
the compared variables must be the same!!
Here is an example code illustrating types:

<?PHP
Sa = 5;
echo gettype(Ssa)." “;
Sb = (double)sa;
echo gettype(Sb)." ”;
if (Sa == $b)
echo “$a and $b are the same!!”;

else
echo “"$a and $b are different!!”;
if ($a === $b)
echo " And they are identical!”;
else
echo " But they are NOT identical!!”;
?>

This code will output integer double 5 and 5 are the same!! But they are NOT
identical!!

CONSTANTS

It is possible (and sometimes recommended) to use constants in PHP. These
should always be used whenever you have a piece of information that you will
use throughout your code but that might have to be modified in future ver-
sions. For example, if you are writing a script to handle data in an array, and
you decide the maximum size will be 100, you should create a constant called
MAX_SIZE and set it to 100. Throughout your code you will write MAX_
SIZE instead of 100 each time you need to do an operation related to the size
of the array. By doing so you will add a good level of modifiability to your
program; for example, if you decided to expand the array to 500 items, you
would need to change only the constant definition, and not each use you made
of the constant. This approach applies to any programming language that
allows the use of constants.

To create a constant in PHP, simply type define(name, value). For example,
define(“MAX_SIZE”, 100); or define(“DB”, “C:/DataBase/”);. From that
moment on, doing echo MAX_SIZE; would output 100.

There are also a set of predefined constants that can be used in any PHP
code. These are part of the language and need not to be declared.

NULL: Same as 0
__FILE _: Name of the current running PHP file
__LINE__: Current line of PHP code being executed

VARIABLES 65

PHP_VERSION: Shows the current running version of PHP

PHP_OS: Shows the operating system version
TRUE: Boolean value 1
FALSE: Boolean value 0

Other constants exist, but these would be considered the most important ones
to remember.

VARIABLES

As we have seen, we can use variables in PHP. There is no need to define a
variable, nor declare it, before its use. But I would recommend that you initial-
ize a variable if you are planning to use it for concatenations or operations that
will modify the variable inside a loop, such as iterators, for example. A typical
source of notices (type of errors) is when you have a variable that will be used
to store a total inside a loop. If the loop body is the first place where that vari-
able is used, and the code looks like $var +=8somedata;, you will get a notice.
This is due to the fact that the first time the code runs, the server has no idea what
Svar holds. By default it will assume 0, so the code will produce the desired
result, but the notice will be there. Simply avoid that by initializing $ var before
the loop (doing $var = 0; or $var = “”; if the variable will hold a string).

Variable names are case-sensitive, meaning that $ Var and $var are consid-
ered two different variables. Variables should always start with the dollar sign
($) followed by a letter and any series of letters, numbers, or the underscore
(_) sign. For example, $varl_hooah is a valid name, but $Ivar is not.

You can check at anytime whether a variable has been set by using the isset
command. This is really useful in pages that are meant to be open through
an HTML form. In those cases, information has to be sent to the script,
so by simply checking at the beginning of the script if the variable is set
you can avoid many problems and notices. For example, if you were receiving
a variable called “name” through a POST method (as we will see in later
chapters), you should start your code with something similar to the
following:

<?PHP
if (!isset($_POST["name”])) // If the variable "“name”
sent through

{ //the POST method is not set
echo "You did not arrive here through the form!”;
exit();

}

else

{ // regular code goes here

}

2>

66 PHP—A SERVER-SIDE SCRIPTING LANGUAGE

It is possible to check whether a variable is empty through the empty func-
tion. This function will simply check if the variable contains either 0 or the
empty string “”. It returns true when the variable is empty, false otherwise.

To unset a variable, you can use unset. For example, you can use this tech-
nique in code requiring a flag by combining it with the isset method as
follows:

<?PHP
sa = 0;
while (isset($a))
{

// do something and at one point do the next line
unset(Sa); // this will unset the variable, so the while
// condition will no longer be true

}

2>

This is just an example; it would actually be simpler to have $a change its
value from TRUE to FALSE, and change our condition to while ($a). Unset-
ting a variable is usually a good choice when you want to enhance the security
in your script, prevent loopholes, and make sure that everything that is sup-
posed to be gone does not exist anymore.

A variable in PHP is local to the function that it belongs to. This means
that a variable defined inside the implementation of a function has a meaning
only inside that function and will not be recognized outside it. The opposite
is also true. A variable defined in the main area of your code will not be
accessible inside a function unless it is sent as a parameter to that function.
Note that, unlike many other programming languages, PHP does not need a
“main” function. Instead, any code written in your PHP code file is consid-
ered to be part of the “main” unless it is a function definition. Therefore it is
possible, although not recommended, to have function declarations and
implementations right in the middle of regular “main” code. Doing this would
make your code pretty messy, so I would advise you to write all functions at
the end of your file, or even better, on an external include file.

It is possible to create global variables in PHP, although many program-
mers will advise you to avoid using global variables when possible. To indicate
inside a function that a variable is global, simply type global followed by the
name of variable you want to use as global. For example, if your “main” con-
tained a variable $Gl_DBserver that you wish to access in a function as a
global variable, simply write global $GI_DBserver; in the first line of your
function implementation.

Functions can also use static variables. A static variable is a variable that
has meaning only inside the function in which it was defined, but that doesn’t
get erased when the function is finished working. Instead, the value of a static
variable is remembered for the next call of that function. The initialization

VARIABLES 67

of a static variable should always happen in the line that declares it as static;
this way the initialization will occur only the first time the function is called,
without overwriting its value in each successive call. Check this example:

<?PHP
function static_example()
{
static Scount = 0;
echo "“You have called the function ”.++Scount." times”;
}
?>

The first time the function is called, a variable $count is created as static,
and set to 0. This will only happen the first time the function is called; the
next time, the program will understand that $count already exists. When we
echo the string “You have called the function,” note that right after this string
we have placed a dot (.), allowing the concatenation of anything to the previ-
ous string. We concatenate ++$ count, which will then be concatenated with
“times.” Our total string will tell us how many times we accessed the function.
The preincrement is due to our initialization to O of the static variable. The
first time the function is called, the preincrement will modify $count from 0
to 1. Next time the function is called, $count will still be holding 1, and will
be incremented to 2 before echoing the message.

PHP Arrays and
Flow of Control

ARRAYS

Basic Arrays

Arrays are sets of data stored as a single variable. You could imagine a set as
a cabinet with multiple drawers. Each drawer holds an element, and the posi-
tion of the element is called its “index.” Unlike most programming languages,
where arrays hold values of the same type, arrays in PHP can hold any type
of data in each one of its elements. This makes PHP arrays much more flexible
but can potentially create many problems if you don’t remember the types
used for each index. In order to store values inside an array, you need to place
the index to access between square brackets, right after the variable name
holding the entire array. For example, if $myArray is an array, you could
access the element at index 3 by writing $myArray/3]. Note that indices start
at 0, but you are not required to use consecutive indices. In other program-
ming languages you must use index 0, then 1, 2, 3, and so forth. In PHP you
may have an array with three elements positioned at indices 12, 42, and 51,
for example. It is not recommended but it causes no issues. Here is an example
that stores an integer, a string, and a double in the same array and then will
echo the types of those elements:

Web Application Design and Implementation: Apache 2, PHPS, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarrd
Copyright © 2007 by John Wiley & Sons, Inc.

69

70 PHP ARRAYS AND FLOW OF CONTROL

<?PHP
Svar[0] = 1;
svar[l] = "Two”;
svar([2] = 3.00;
$i = 0;

while (Si < count($var)) {
echo gettype(Svar[Si])."
";
Si++;

}

2>

Don’t worry about the while section, as we will discuss this a few sections
later. Note the use of the function count that returns the number of elements
inside an array. Also, doing $var/$i] simply reads the element at the index
$i.

It is also possible to define an array as a single line using the function array.
Check this example:

<?PHP
S var = array(); //creates an empty array, useful to
//avoid some notices
Svar2 = array(l, "“Two”, 3.00); //same array as we had
//before

2>

Associative Arrays

It is also possible to create associative arrays. An associative array is basically
an array in which the index can be a word. It is important to realize that an
element in an associative array will actually have two indices. First you will
have the real index of the element, as indicated during its creation. This “real
index” is generally called the “key” of the element. The other index is a num-
bered index that is known internally by PHP, which basically holds the order
in which the elements are held in the array. Check this example:

<?PHP
svar[“number”] = 1;
svar([“string”] = "“Two”;
svar[“secondnum”] = 3.00;
?>

In this example we have created an associative array with three elements. The
keys of these elements will be “number,” “string,” and “secondnum,” but you
will still be able to refer to the elements through the indices 0, 1, and 2,

ARRAYS 71

respectively. The numbered indices will always respect the order in which the
elements are in memory.

Another way to create an associative is through the array method, as we
used with regular arrays. The difference is that in this case you are to write
the entries using the format “key”=>element. For example, the previous asso-
ciative array would be written

. n ”—) y N] ”
’
Svar = array(“number”=>1 string”=>"Two”,
“"secondnum”=>3.0);

Multidimensional Arrays

One final type of array is the multidimensional array. This basically repre-
sents an array that contains an array as one or more of its elements. This could
be used, for example, to hold information on different contacts for an address
book. Check this code:

<?PHP
for ($i=0; $i < 10; Si++)
Scontacts([Si] = array(

"Name”=>"Name” .Si,
“Surname”=>"“Surname” .S1i,
“Tel”=>S1);
foreach (Scontacts as Sc=>Sdetails) // loop 1
foreach (Sdetails as Skey=>Selem) // loop2
echo Sc."“:” .Skey."”.Selem.“
”; // instruction
2>

This code would produce the following output

0: Name Name 0

0: Surname Surname 0
0:Tel0

: Name Name 1

: Surname Surname 1
:Tel 1

: Name Name 2

: Surname Surname 2
:Tel2

]

NN NN NN

and so on until number 9.

Let us see how the script works. First we use a “for” loop (which we will
study after a few pages) to create 10 entries in a regular array. Each entry
contains an associative array containing a name, a surname, and a telephone

72 PHP ARRAYS AND FLOW OF CONTROL

number. To make it simple, each name is the concatenation (thanks to the
period symbol) of the word “name” and the current index. We follow a similar
procedure with the surname. The telephone number is simply the current
number. Then we use a tool called foreach, which allows us to go through
every single entry in the $contacts array. Each entry in that array is obviously
another array, so we use another foreach to extract all the details inside it and
display them. The loop foreach allows really fast access to every entry in an
array regardless of whether it is an associative array. There are two main ways
of using foreach:

foreach ($arrayName as $variable)
or
foreach ($arrayName as $key=>3element)

Regardless of the case, §arrayName has to be an array. In the first case,
Svariable is a variable name that doesn’t need to exist yet. The foreach loop
will store every entry in the array in that variable, one at the time. As in all
the other types of loops, the foreach will run the next line after the foreach
as long as there are elements in the array. For example, you could display all
elements in an array $arr as follows:

foreach(Sarr as Selem)
echo Selem;

Each execution of the code under the foreach is called an iteration of the
loop. In the first iteration, $elem will hold Sarr{0]; in the second iteration,
Selem will be the same as $arr[1]; and so on until there are no more elements
in the array, in which case the program will skip directly to the instruction
after the iterating statement. It is important to realize that your $elem holds
an actual copy of the element in the array, not the element itself. Note that it
is possible to group several instructions in a same loop by simply surrounding
all the statements with curly braces. For example, the following code will run
two instructions in each iteration:

foreach (Sarr as Se)
{ echo se." ”;
echo "“
";

The second version of foreach allows the creation of two variables, one for
the current key, and one for the element associated with that key. Obviously
this is useful mostly with associative arrays, but you may still use it with
regular arrays, in which case your keys will be the indices of each element.

ARRAYS 73

In our contacts example, the first foreach loop will check the $contacts array.
Each entry in this array is an array, and the keys are simply numbers. The
foreach will fill the variable $c with the current index, and the variable
$details with the current entry, corresponding to the associative array with
all the information on the contact. Since $details is an array, we may check
its contents with another foreach. Our second foreach will parse the current
$details array and fill $key with the current key and $elem with the entry
associated to that key. Here is how the program runs:

After the $contacts array is filled up and we enter the first loop:
$c == 0; $details == $contacts[0];
We enter the loop 2, checking the contents of $details
$key == “Name”; $elem == “Name 0”;
We execute the instruction.
Iteration 2 of the loop2
$key == “Surname”; $elem == “Surname 0”;
We execute the instruction.
Iteration 3 of loop 2
$key == “Tel”; $elem == 0;
We execute the instruction.
There are no more entries in $details so loop 2 is done
Iteration 2 of loop 1 starts
$c == 1; $details == $contacts[1];
We start a new loop 2, checking the new contents of $details
$key == “Name”; $elem == “Name 17;
[...] Similar execution for all the middle entries...
Iteration 10 of loop 1 starts
$c == 9; $details == $contacts[9];
We enter the loop 2, checking the new contents of $details
$key == “Name”; $elem == “Name 9”;
We execute the instruction.
Iteration 2 of the loop2
$key == “Surname”; $elem == “Surname 97;
We execute the instruction.
Iteration 3 of loop 2
$key == “Tel”; $elem == 9;
We execute the instruction.
There are no more entries in $details so loop 2 is done
There are no more entries in $contacts so loop 1 is done
Our program finishes its execution.

It is also possible to access a particular element in an array by using mul-
tiple brackets. In our previous example $contacts is an array of arrays; there-
fore $contacts[0] is the first one of those arrays. Since $contacts[0] is an array,
we can check its first entry by adding a new set of brackets. So, for example,

74 PHP ARRAYS AND FLOW OF CONTROL

$contacts[0][1] would be the entry indexed at 1 in the entry 0 of $contacts. It
would show up as Surname 0. Remember that indices start at 0, so something
of the type $arr[3][6] would actually access the seventh entry in the fourth
element of $arr.

The only limit to multidimensional arrays is your imagination! You can
have any number of dimensions applied to an array, and not all entries need
to hold an array. You could, for example, have an array of your friends. Each
entry would hold an array containing the name of that friend along with an
array of the relatives of that friend as in this example:

<?PHP
Sfriends[0][0] = “Steven”;
Sfriends([0][1][“father”] = ‘“Peter”;
Sfriends[0][1][*mother”] = “Jackie”;
Sfriends([0][1][“sister”] = "“Romina”;
Sfriends([1][0] = “Christian”;
Sfriends[1][1][“brother”] = “Daniel”;
// and so on

?>

As you can see, we can utilize the flexibility of PHP to create entries that do
not necessarily hold the same information. The only common thing is that
for each friend indexed at $i, $friends[$i][0] will always be a name and
3friends[$i][1] will be an array holding an associative array with the rela-
tives. If you wanted to show the entire list of friends and their relatives you
could use the following code:

<?PHP
// we assume that we have a filled Sfriends array as
in the previous example
foreach (Sfriends as SoneFriend)
{ echo “"Name: ” .SoneFriend[0]. "“
";
foreach (SoneFriend([l] as Srelation=>Sname)
echo Srelation. “: ” .Sname. “
”;
echo "“
";

2>

Array Functions

Here are some important functions useful for arrays manipulations. Realize
that each time you have an array there is an internal pointer that informs you
of the current position in the array. It basically refers to the current element’s
index.

ARRAYS 75

array_walk—allows you to run a specific function with each one of the
elements in the array and returns TRUE or FALSE depending on wether
it managed to run the function flawlessly. For example, typing array_
walk (8arr, ‘myfunction’); is the same as typing

foreach($arr as $e)

myfunction($e);

Always make sure that your “myfunction” accepts the type of data that
your array is holding.
count—for example, $size = count($arr). Returns the number of ele-
ments in the array.
current—for example, current($arr). Returns the element at the current
position, as given by the internal pointer.
each—for example, each(8arr). Returns the element at the current posi-
tion, and moves to the next one.
end—for example, end(8arr). Places the internal pointer at the end of
the array.
key—for example, key(83arr). Returns the key of the current element.

next—for example, next($arr). Moves the internal pointer to the next
element.

pos—for example, pos(3arr). Returns the current position of the internal
pointer.

prev—for example, prev($arr). Moves the internal pointer to the previ-
ous element.

reset—for example, reset(3arr). Places the internal pointer at the first
element of the array.

sizeof—same as count.

asort and arsort—sorts the array associatively in either normal or reverse
order (respectively). Sorting associatively means that the association
between keys and elements will be respected. For example, if you have
an entry $arr{“NJ”] = “New Jersey”; initially located at index 4 that is
later moved to index 12, doing $arr/12] will still return “New Jersey”,
and the key of that entry will still be “NJ”. Sorting is done by checking
the elements.

ksort and krsort—sorts the array associatively, in normal or reverse
order, by looking at the key. It operates under the same principle as does
asort or arsort, but instead of comparing the entries in the array to choose
the order, the function will check the keys.

sort and rsort—sorts the array in normal or reverse order, by checking
the entries in the array. This sorting is nonassociative, so all keys are lost,
and replaced with basic number indices.

uasort, uksort, usort—for example, usort($arr, “function”);. This will
run a key sort, associative sort, or regular sort using your own function

76

.

PHP ARRAYS AND FLOW OF CONTROL

as a comparison method. Your function should be adapted to the case
you wish to use. For example, usort and uasort will need a function that
accepts two elements of whatever type the array holds; uksort will need
a function that accepts two strings. The function should return 0 if the
values are identical, a positive number if the first parameter is greater
than the second, or a negative number if the first parameter is less than
the second. Check the example at the end of this list of functions.
list—for example, list(3a, 3b, $c) = $arr;. This will copy the elements of
the array into the variables listed. In this case $a will hold $arr[0], $b
will hold $arr[1], and $c will hold $arr/2]. Note that you may use one
or more variables in the list method.

range—for example, $arr = range($min, $max);. Creates an array with
the integer numbers between $min and $max.

shuffle—for example, shuffle($arr); Shuffles the elements of the array.
array_count_values—for example, $arrl = array_count_values($arr);.
Will check the contents of $arr and the number of times each element is
repeated. The array returned contains the actual value counted as a key,
and the number of times it appeared as an element.

array_keys—for example, $arrl = array_keys($arr);. Returns a nonas-
sociative array containing the keys of $arr.

array_merge—merges one or more arrays together and returns the resulting
array. For example, $arr =array_merge(3arrl, $arr2, 3arr3); will merge the
three arrays sent as parameters and return the merged array, which is stored
in $arr. You may provide one or more arrays as parameters.
array_pad—for example, $arrl = array_pad(3arr, $n, $val); will add $n
times the value $val to the end of the array $arr. If $n is negative, the
values are added at the beginning of the table. Returns the resulting array.
array_pop—for example, $elem = array_pop ($arr); will remove the last
element of the $arr from the array and return it.

array_push—pushes one or more elements at the end of an array. For
example, $n = array_push($arr, $a, 3b, $¢); will add $a, $b, and $c at
the end of $arr. The value returned is the new size of the array. '
array_reverse—for example, array_reverse($arr); returns a reversed
version of $arr.

array_shift—same as array_pop but removes the first element rather
than the last.

array_unshift—same as array_push but adds the elements at the begin-
ning of the array rather than the end.

array_slice—for example, $arr2 = array_slice($arr, $pos, $n); will return
the $n elements from $arr starting at the position $pos. If $n is omitted,
it returns all the elements from $pos to the end of the array. If $n is
negative, the slice will stop $n elements before the end of the array.

PHP PROGRAM STRUCTURE AND FLOW OF CONTROL 77

« array_splice—forexample,8arrl =array_splice($arr, $pos, 3n, $newarr);
will take out of $arr $num elements starting at $pos and replace them
by the elements inside $newarr. The returned array holds the elements
that were replaced.

« array_values—for example, $values = array_values(3arr); will return a
nonassociative array holding just the values of $arr.

« in_array—for example, in_array($elem, $arr); will check whether $elem
is inside $arr. Returns TRUE if found, FALSE otherwise.

Here is an example using usort:

<?PHP
// we are assuming we have an array Sarr holding integers
// we sort using our compare function (which will
produce a reverse sort)
// and we print the results
usort(Sarr, ‘“compare”);
foreach (Sarr as Skey=>Selem)
echo "“Skey=>Selem”;
function compare(Sa, S$b) {
if ($a==$b)
return O0;
elseif (Sa < $b)
return 1;
else
return -1;

2>

PHP PROGRAM STRUCTURE AND FLOW OF CONTROL

A program in PHP is basically a set of instructions. It is possible to group
instructions in a block using curly braces, as we saw in the foreach example.
Grouping instructions in a single block allows treating the entire block as
a single instruction. This behavior is especially useful in loops, as we saw
earlier on.

Conditions

You can have your program select different paths in your program depending
on your own conditions. You can do this using the if. .. elseif. .. else state-
ments. The basic structure is

78 PHP ARRAYS AND FLOW OF CONTROL

if (condition)
instructionl;
elseif (condition2)
instruction2;
else
instruction3;

Each condition should be a Boolean expression. If condition is true,
then instructionl is executed and the program jumps to the instruction
after instruction3. If it is false, condition2 is tested; if true, instruction2
is executed; if false, instruction3 will run. Note that you may use any
amount of elseif or you can even omit it. There should never be more
than one else in each if. .. elseif. .. else block. Note that any else or elseif
will refer to the last if or elseif created that did not have an else/elseif
yet. To avoid getting lost with all the if and else statements, it is a good
idea to write each else right under the if that it refers to. Check this
example:

<?PHP
if (Sa < S$b) // checks if Sa is lower than S$Sb
echo Sa. “ 1is less than ” .S$b;
elseif (Sa > Sb) // we get here only if Sa was NOT
//less than S$b

echo S$b. “ 1is less than ” .Sa;
else // Sa 1is not lower nor greater than S$b
echo Sa. " 1s equal to ” .S$b;

2>

Attention!! If you wish to compare for equality, make sure to use either
the double or triple equal sign to check for equality or identical variables.
Watch this example:

<?PHP
if ($Si = 34567)
echo "“This is always true!!!”;
2>

Remember that FALSE is equal to 0, so a condition is considered to be
FALSE only if the condition is equal to 0. Doing if ($i = 34567) will copy
34567 inside $i and check the value of $i. If $i is different from 0, it will be
considered TRUE.

Each if... elseif . . . else group works as a single instruction. Check this
example:

PHP PROGRAM STRUCTURE AND FLOW OF CONTROL 79

<?PHP
if (Sa < 100) // first condition
if ($b < $100) // this if statement is the
//beginning of the
// block that will run if the first
//instruction 1is true
echo “"both numbers are less than 100”;
else // this else refers to the previous if, and 1is
//still
// part of the same block inside the first
//condition
echo "Only the first number is less than 100”;
elseif ($a == 100) // the previous else finished the
//second if
// block, so this elseif refers to the first
//condition
echo "“The first number was 100”
else // this else refers to the elseif, and is part
//of the
// block started with the first condition
echo "The first number was greater than 100”;
2>

You may avoid headaches and confusion by simply using curly braces
for a better view of each block. The general structure would look like
this:
if (condition)

{ statements if true

}

elseif (condition2)

{ statements if condition is false and condition2 true

}

elseif (condition3)

| statements if condition and condition2 are false but condition3 is true
)

else

{ statements if all conditions were false

)

It is generally considered poor programming practice to have too many
nested if or ifelse statements. If you are trying to find a match to a variable,
you may use a different alternative: the switch . . . case. The general syntax of
a switch . . . else is as follows:

80 PHP ARRAYS AND FLOW OF CONTROL

switch ($variableToCheck) {
case valuel:
statements
break;
case value2:
statements
break;
default:
statements
}

The program will successively compare the $variableToCheck with all the
different values written next to the case keyword. If a match is found, the
program will run every instruction placed between the following colon symbol
(:) and either the first break statement or the closing brace (whichever happens
first). The case lines are not really considered instructions; you can think of
them as little labels in front of the code lines. Therefore you can put several
cases together, by listing many case value: lines before starting to write the
code. Note that if you omit the break statements, the program will continue
to execute the following instructions even if they were meant to be for a dif-
ferent case. The default case is run if no matches were found among the
values. Here is a small example:

<?PHP
i = 2;
switch ($i) {
case 0:
case 1:
echo "“i was either 0 or 17;
break;
case 2:
echo “i was equal to 2”;
break;
case 3:
echo "“i was 3”;
break;
default:
echo "I don’t know what i was, because I can’t
count to more than 3!”;

}

Loops

A loop is a way to repeat one or more statements a determined number of
times. We already saw one type of loop adapted to arrays: the foreach.

PHP PROGRAM STRUCTURE AND FLOW OF CONTROL 81

The most basic loop is the while loop. It receives an expression that is tested
before starting each iteration. The loop will keep on going until the expression
becomes false. For example

<?PHP
$i = 0;
while (Si < 10)
{ echo S$i++;
echo “ 7 ;

}

?>

This loop will check whether $i is less than 10. If it is, it prints §i and incre-
ments it by one with the postincrement operator, prints a white space, and
checks $i again. The moment $i is no longer less than 10 (i.e., when it reaches
10), the loop finishes. This code will show the numbers from 0 to 9 on the
page. This type of loop is excellent in testing for a specific value change, but
make sure that the statement can eventually be false, or you will enter an
infinite loop!! Note that if the condition is false before the first iteration, the
loop will never be entered and the body of the loop will never execute.

If you wish to make a loop that allows you to run its body at least once
before checking the condition, you may use do. .. while. This type of loop
works the in same way as a while but checks the condition after each iteration.
It will always run the body at least once. The general syntax is

do
{ statements
} while (condition);

If you wish to count a specific amount of numbers, you can use a for loop.
This type of loop works similarly to a while but it allows you to run a set of
expressions before the first check of the condition, and you can have a set of
expressions to run after each iteration. The general syntax is

for (exprl, expr2 [, ...]; condition; expr3, exprd [,...])
{ statements }

All the expressions before the first semicolon are run only once, before
entering the loop, the condition is tested before each iteration, and all the
expressions after the second semicolon will run at the end of each iteration.
Multiple expressions are separated by commas.

For example, the following loop would initialize $i to 0 and would then
check whether $i is less than 10; if it is true, it will print the value followed
by a white space and will increment $i by one—this loop will finish when $i
reaches 10:

82 PHP ARRAYS AND FLOW OF CONTROL

for (S$i = 0; $i < 10; Si++)
echo $si.“ ”;

Regardless of the type of loop you are using, you may quit the loop by
typing break;. It is also possible to force a new iteration without letting the
loop finish the current one by typing continue;.

FUNCTIONS

You can create functions in PHP by simply writing

function functionName(listof Parameters)

body of function
/

Functions are usually written in include files or at the end of your program.
They don’t require specifying a return type, since you may store any type in
any variable. The same goes for the parameters list. You do not need to
specify their types. Note that variables defined in a function, as well as the
names used for the parameters list, are local to the function. This means that
they have meaning only inside the function. To return a value from a function,
simply use return followed by the value to return. For example, you could
write and use a function called average to calculate the average of two numbers
with the following code:

<?PHP
Sa = average(12,76); //12 and 76 are called the
//arguments sent to average
function average(Sx, Sy) // $x and Sy are called the
//formal parameters
{ return ($x + Sy) / 2;
}

?>

You may send parameters by value or by reference. Sending a parameter
by value means that the formal parameters receive a copy of the arguments,
whereas sending a value by reference means that the formal parameters are
an alias for the actual arguments. In the first case, any modifications done to
the formal parameters will not affect the argument variables. If you send
parameters by reference, any changes done to the formal parameters will also
change the values of the arguments. To call a function sending parameters by
value, simply write the name of the variable to be sent, for example,

FUNCTIONS 83

average(8a, $b);. To send a parameter by reference, simply add the amper-
sand symbol in front of the argument, for example, average(&$a, &3b);

You may also force a function to work with parameters sent by reference
by putting the ampersand only in front of the formal parameter rather than
the argument. The following function will increment any parameter sent by
one:

<?PHP
$x = 5;
add_one (58x);
echo $x; //this will echo 6
function add_one(&Sa)
{ Sa++; }

?>

Using Files, Folders, and
Strings in PHP

USING FILES

The first useful thing to do in PHP with files is to use include files. These are
files that are linked from any script through two possible techniques. Include
files usually hold data such as user and password information for database
connection, sets of functions commonly used, and headers and footers used
in every page.

One way to link to an external file is to use include(filename);. Note that
the filename could be a Web address of the type http://www.blabla.com/
myfile.php, a relative path ./includes/include.php, or an absolute path /usr/
home/sgabarro/includes/include.php. Note that PHP can access any file in the
server (assuming that the proper permissions were set) even if those files are
not accessible through the Web server. It is very important to exploit this
ability when including files containing important information such as data-
base settings, since it prevents malicious users from accessing those files
through their browsers.

Doing an include will insert the external file inside the including script. If
the called file has a return value, you may retrieve that value by storing the
return value of the function include. Note that this function can be used inside
loops.

The other method to link to files is require(filename). This will execute
the called file before inserting it in the script. It cannot use a return value,

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

85

86 USING FILES, FOLDERS, AND STRINGS IN PHP

and it cannot be used in loops. I personally use require when I have sets of
pages with the same header and footer, to make my code easier to read. The
idea is to have a header.php file containing all initializations needed for your
scripts, as well as all the needed HTML tags; and a footer.php file with all
the closing instructions needed, as well as the closing HTML tags such as
</body> or </html>. Your pages would then look like this:

<?PHP require(“header.php”); 2>

I am inside my HTML body!!

<?PHP echo “And I can even create PHP code inside
it
"; ?>

I am going to stop now

< ?PHP require(“footer.php”); 2>

It is also possible to use files for things other than linking to include files.
One thing to remember is that any file written, modified, created, or destroyed
will be in the server since PHP is server-side. So it is a very bad idea to think
of doing a malicious PHP script that will erase important files such as your
windows.ini or php.ini files and putting the file in an accessible folder of your
Web server. This would allow anyone to run the script erasing your files, as
the script is in your server. So think carefully about what you are doing in
your scripts before running them.

The first thing to do when you want to use a file for reading or writing
purposes is to open it. To do so you may use the function fopen. This function
returns a file descriptor that will be used by all other reading and writing
methods. The function receives two parameters: the path to the file to open
(URL, relative path, or local path) and a flag specifying the opening mode.
The mode can be

€699

r Read only

“r+” Read and write

“w” Write only

“w+” Read and write, erasing the file if it exists and creating it if it
doesn’t

“a” Write-only but placing the internal pointer at the end of the file if it
exists and creating it does not exist

“a+” Read/write, placing the internal pointer at the end or creating the file

if it does not exist

In any case, you may add a b to indicate that you are using a binary file (e.g.,
“ba” will refer to a binary file opened as “append.”

Realize that you may open a file for writing only if you have the proper
permissions on that file. Assuming that you have the proper rights, you could
create a new file for read/write doing

Sfp = fopen(“myNewFile"”, “w+");

USING FILES 87

Once your file is open, you may do the following:

« fclose($fp)—closes the file. You should always close a file when you are
done with it.

« feof($fp)—checks whether the internal pointer is at the EOF (end of
file).

* fgetc(3fp)—reads the character at the current location and moves the
internal pointer forward one character.

fgetesv($fp, $len, $sep)—reads a “comma-separated values” file and

returns a single line of that file as an array containing the comma-

separated values. $len and $sep are optional parameters. $len is the
maximum length of a single line; $sep is a single character used as
separator (set to “,” by default).

fgets(3fp, $len)—reads a string of up to $len—1 bytes from the current

location. Reading will also stop if there is a new line (\n) or the pointer

reaches the EOF. Returns FALSE if you try to read beyond EOF.
feetss($fp, 8len)—same as fgets but strips all HTML tags in the line.

* fpassthru($fp)—outputs all the bytes from the current position until the

EOF.

fouts(3fp, $str) or fwrite($3fp, $str)—writes the contents of $str.

* fread(3fp, $len)—similar to fgets but stops only when up to $len have
been read or EOF is reached.

« fseek(3fp, 3offset, $whence)—changes the location of the internal
pointer. The new location is calculated through $offset (a number),
depending of the value of $whence as follows. If $whence == SEEK_SET,
set position equal to $offset bytes. If $whence == SEEK_CUR, set posi-
tion to current position plus $offset. If $whence == SEEK_END, set
position to EOF plus $offset (in this case you should make sure that
Soffset is negative). If omitted, $whence is set to SEEK_SET.

« ftell($fp)—returns the position of the file pointer.

« rewind($fp)—places the internal pointer at the beginning of the file.
This is the same as doing fseek($fp, 0, SEEK_SET);.

Using only these functions, it is possible to combine them to gather informa-
tion such as the size in bytes of a file, by simply doing the following (assuming
that the file has been opened already):

fseek(Sfp, 0, SEEK_END);
Ssize = ftell(Sfp);

If you wanted to read all the lines in a file and output them with the line
number in front of each of those lines, you could use the following code:

88 USING FILES, FOLDERS, AND STRINGS IN PHP

<?PHP
Spath = "“./file.txt”; // our file path
S$i = 1; // our line counter
If (Sfp = fopen(Spath, “r”)) //note that we can use the

// single = because fopen will return
// FALSE if there is a problem
{ echo "File Opened

";
while (Sline = fgets($fp, 100)) // we assume that
//no line 1is
// longer than 100 characters

{
echo Si++.”: “.Sstr.”
";
}
fclose(Sfp); // DON’T FORGET TO CLOSE THE FILE!!!
}
else
echo "“Could not open file”;
2>

Here are some file manipulation functions that can be used with a simple
path rather than a file handler $fp:

* copy($src, 8dst)—makes a copy of the file in the path $src into the file
specified in the path $dst. Make sure that you have the proper rights to
create files in the folder you are trying to copy to.

* readfile($file)—reads a entire file and ouputs its contents. This is the
same as doing an fopen followed by a fpassthru.

* rename($oldpath, $newpath)—renames (or technically moves) a file
from the oldpath to the newpath.

* unlink($path)—fun yet dangerous function. It deletes the file specified
in $path.

It is also possible to retrieve information from the file system with the fol-
lowing functions (there are many functions, but I am going to list those that
I consider the most useful ones):

* basename($path)—assuming that $path contains a full path with a file-
name, it will return the filename. For example, basename(“/usr/home/
sgabarro/file.php”) would return “file.php.”

* diskfreespace(§dir)-—returns the number of bytes available on the cor-
responding file system or disk partition.

« file_exists($path)—checks whether the file in the $path exists.

* fileatime($file) —returns the “last access” time for the file.

« filectime($file) —returns the “creation” time for the file.

FOLDER MANIPULATION 89

« filemtime($file)—returns the “last modification” time for the file.

« filegroup ($file)—returns the name of the group that owns the file on a
UNIX/Linux file system.

« fileowner(3file)—returns the name of the owner of the file on a UNIX/
Linux file system.

« fileperms($file)—returns the permissions flags of the $file on a UNIX/
Linux file system.

* filesize($file)—returns the size of the file.

« filetype($file)—returns the type of the file. A file could be a directory,
an executable, a link, or a file. Note that on a Windows file system, a §file
will always be either a directory or a file. Only UNIX/Linux has meaning
for “executable” and “link.”

« is_dir(3file), is_executable($file), is_file($file), is_link($file)—returns
TRUE if $file is a directory, an executable, a regular file, or a link
(respectively).

* readlink(3link) —reads the destination of a UNIX/Linux link.

When testing these methods, you may realize that sometimes your PHP
code perceives a file as a directory or a directory as a file. This might happen
when trying to check the type of a file or directory that is not in the current
working directory. The current working directory is the location in your hard
drive from where the script is running (basically, wherever your PHP file is
stored). It is possible to change the current working directory in PHP by using
the method chdir($dir). This will continue executing whatever script you are
in, but will consider $dir the actual current working directory. When checking
files or directories in PHP it is highly recommended that you do a chdir to
the containing folder before checking the types or even reading the contents
of that folder.

FOLDER MANIPULATION

Assuming that you have used chdir to access a folder that you want to explore,
it is possible to retrieve information on that folder through the following
methods:

« $folder = opendir($dir)—opens the directory $dir in order to read its
contents. Doing so will create an internal pointer that will allow you to
parse its contents. The returned value is the handler needed in the fol-
lowing methods.

* readdir($folder)—assuming that the directory has been opened, this

reads the current entry (which could be of any type) and moves the
internal pointer to the next item in the folder.

90 USING FILES, FOLDERS, AND STRINGS IN PHP

* rewinddir(3folder)—places the internal parsing pointer of an opened
directory back to the first item in the folder.

* closedir($folder)—as when opening files, it is important to close an
opened directory as soon as you have finished reading from it.

Here is an example of how you could open a directory, check the free space
available, and display the directory’s contents:

<?PHP
Spath="D:/Web/”;
chdir(Spath);

Sfolder = opendir(Spath);
Sfree = diskfreespace(Spath);
echo "“Let’s check”.Spath."contents
";
echo Sfree." bytes free
";
while(Sfile=readdir(Sfolder)) |
echo Sfile.“"
";
}
closedir(sfolder);

?>

To finish with file/folders manipulation methods, here are some final
functions that can be used with a string containing the needed path:

« dirname($path)—returns the directory portion of a path. If your path is
a full local path, you can use basename(8path) to get the filename, and
dirname($path) to get to the directory in which the file is located.

« mkdir($dir, $mode)—creates the directory specified in $path. The
$mode is ignored on Windows and is actually optional. It is used to set
UNIX/Linux permissions. For example, to create a /usr/home/sgabarro/
newfolder/ that would be accessible only by the owner of the folder, I
could do mkdir(“/usr/home/sgabarro/newfolder/”, 0700),.

* rmdir(3dir)—deletes a directory. The directory must be empty for this
to work.

BASIC STRING MANIPULATION

Changing a String

When manipulating strings received through forms, it is a common problem
to have many extra white spaces before and after the actual string. Another
common problem is special characters, such as single or double quotes or the
backslash character. These characters have a special meaning in database

BASIC STRING MANIPULATION 91

queries, and attempting to insert a string with these special characters in a
database could be disastrous. It is possible to suspend the special meaning of
a special character by simply adding a backslash in front of the conflicting
character. For example, “ becomes \” and \ becomes \\. As a rule of thumb,
to avoid problems, you want to keep as many backslashes as needed when
storing strings in databases. When printing the string, you should remove
those slashes. Finally, in many cases you will find yourself with a set of char-
acters that you wish to get rid of, or that you simply want to replace with
something else (see the indexer case study). Here are some useful methods
for any of these endeavors:

« chop($str) or rtrim($str)—removes the white spaces at the end of a
string and returns the new string.

Iltrim ($str)—removes the white spaces at the beginning of a string and
returns the new string.

trim($str)—removes all white spaces at the beginning and at the end of
astring and returns the new string. Itis the same as doing ltrim (chop ($str))
or chop(ltrim($str)).

addslashes(3str) and stripslashes(3str)—adds or removes backslashes in
front of each character that needs to be quoted in database queries, such
as a single quote (‘) or double quotes (). Always use addslashes when
inserting a string in a database and stripslashes when printing a string
retrieved from a database.

str_replace($stringtoreplace, 3replacement, $str)—replaces all the itera-
tions of $stringtoreplace in $str with $replacement. In later chapters we
will see how to use a regular expression that will make string replace-
ments much more useful. For now simply use a str_replace for each
replacement you wish to do.

As we shall see in the indexer case study at the end of this chapter, we
sometimes need to make sure that all strings have the same casing. This can
simply be done by using strtolower(3str) or strtoupper(3str), which respec-
tively turn all letters to lowercase or uppercase. You can also format strings
to be used as nicer titles by either making the first letter in the string a capital
letter, or even better, capitalizing the first letter of each word (this looks
very nice in titles). You do this with either ucfirst(3str) or ucwords(3str),
respectively.

If you ever need to reverse a string, this can be easily done with
strrev($str)—and finally, probably two of the most useful string manipulation
functions are explode and implode. As you can probably imagine with these
names, one is the reverse of the other. The goal of an explode is to breake a
string into an array. This works by providing a string and a separator, and it
returns an array containing all the entries that where separated by the separa-
tor. For example, explode(“Let us explode this!”, “ ”); would explode the

92 USING FILES, FOLDERS, AND STRINGS IN PHP

string using white space as a separator, creating an array containing “Let,”
“us,” “explode,” and “this!.” Note that the explode function breaks the string
only with the separator provided and will consider that, for example, a new
line (\n) is a regular character. Because of this behavior, cleaning up the entire
string before exploding is highly recommended, as, for example, when replac-
ing new lines (\n) or tabs (\t) with white spaces.

The implode method accepts an array and a separator and returns a string
containing each element in the array separated by the separator. So, doing
implode($arr, “ ”) is similar as running the following code:

foreach (Sarr as Selem)
echo Selem.“ ”;

There are some alternatives to the explode method when you are trying to
extract words from a string that contains many special characters such as
double quotes, arithmetic symbols, new lines, tabs, or any such character. The
most efficient option would probably be regular expressions, but that section
will be covered in a much later chapter. The other alternative is to tokenize the
string. To do so, we use the function strtok ($str, $sep). This function splits the
string $str into smaller strings called tokens, with each token delimited by any
of the characters from $sep. The way it works is that each successive call to
strtok will return the next token. The $sep parameter needs to hold a string
with all the special characters to be considered separators. When strtok cannot
find any more tokens, it will return false, which makes this method ideal for
use inside a while loop. Here is an example taken from www.php.net:

<?php
Sstring = "This is\tan example\nstring”;
/* Use tab and newline as tokenizing characters as well
*/
Stok = strtok(Sstring, " \n\t”);
while (Stok !== false) {
echo "“Word=Stok
”";
Stok = strtok(" \n\t”);
}

?>

In this example, the string $string is broken down into “this,” “is,” “an,”
“example,” and “string.” Even though there were no white spaces between
some of these words, a separator was found, causing strtok to recognize that
a nonword character was found. Each iteration of the loop will have a single
word. Note that only the first call to strtok needs to provide the string to use.
Any further call to strtok will remember what string was being tokenized and
the location where the previous called stopped. You may restart the tokeniz-
ing or tokenize a different string by providing the string as a parameter again.

BASIC STRING MANIPULATION 93

This function is obviously different from explode, but it can be used with an
array to make an advanced explode that will accept more than one separator.
Here is an example:

< ?PHP
/* Function superExplode takes a string to be turned
into an array and a string with all characters to be
considered separators.
PRE-Conditions: both string are non-empty
POST-Conditions: An array will be returned containing
each token found */
function superExplode($Sstr, Ssep)
{
$i = 0;
sarr(Si++] = strtok(Sstr, Ssep);
while (Stoken = strtok(S$sep))
Sarr[Si++] = Stoken;
return Sarr;

2>

Finding and Comparing

Here are some functions that you can use to compare strings or to find pat-
terns in a string:

+ ord(8char)—returns the ASCII code of a character.

stremp ($strl, $str2)—compares both strings. Returns a negative value
if strl is less than str2, a positive number if strl is greater than str2, 0 if
they are equal. Note that comparisons are case-sensitive, so “A” and “a”
will be two different strings.

strcasecmp ($strl, $str2)—case-insensitive comparison. Same as strcmp
with the difference that two identical letters with different casing (like
“a” and “A”) will be considered equal.

strnatcmp ($strl, $str2)—natural comparison. Same as strcmp, but when
a series of digits is found, the value of the entire number is compared
rather than comparing digit by digit. For example, strcmp (“al23”, “a9”)
would say that the second string is greater since 9 > 1, but strnatcmp
would say the first string is greater since 123 > 9; strnatcmp is also
case-sensitive.

strnatcasecmp ($strl, $str2)—natural, case-insensitive comparison.

strpos($str, $tofind, $offset)—finds the first match of $tofind in $str,
starting the search on the character at position $offset ($offset will be

94 USING FILES, FOLDERS, AND STRINGS IN PHP

equal to 0 if you omit it). Returns the position of the found match in the

string or FALSE if it was not found. If you write this method in a while

loop, realize that this method might return 0 if the match is found on the

first character, but since FALSE == 0, your loop will exit prematurely.

You can avoid this by using the identical (===) or not identical (!==)

operator, since the 0 returned when a match was found will be an integer,

whereas a 0 or FALSE returned when there was no match will be con-

sidered a Boolean. For example, if you wish to echo the index of all

strings “match” in $str, you could write

<?PHP

// we assume that Sstr has a string

S$i = 0; // Si will be used to store the index of

//each match

while (($i = strpos($str, “match”, $i)) !== FALSE)
echo Si++.“ ”;

// We increment Si so that next search starts after

// the last match to avoid an infinite loop

>

strrpos ($str, $tofind, 3 offset)—reverse find. Will find the last location of

Stofind in $str before the index $offset. $offset can be omitted, in which

case it will be considered equal to the length of the string minus one.

substr($str, $start, $length)—returns the substring from $szr starting at

$start with $length characters. For example, substr(“Hello World”, 2, 5);
would return the string “llo W.”

Formatting Strings

Here are a set of functions that can be used to print formatted strings:

+ chr($n)—returns the character that has $n as its ASCII code.

« print($str)—prints a single string. Similar to echo, and does not need
parentheses around its parameter.

- printf—works the same way as the function of same name used in C
language. It takes a preformatted string that contains a mix of regular
characters with special tokens that will be replaced with variables. After
the string you must put the variables that will replace the tokens in the
same amount and order as you had them in the preformatted string. The
tokens can be %b for binary integer, %c for ASCII character, %d for
decimal number, %f for floating-point number, %o for octal number, %s
for string, %x or %X for hexadecimal, and %e for scientific notation
e.g., 1.234E + 4 instead of 1.234 x 10*). For example, if we had a variable
3n with a number that we wish to print in hexadecimal, and $str a string
to show up before our number, we could write printf(“My string is %s
and my number is %X”, $str, $n);.

BASIC STRING MANIPULATION 95

« sprintf—works the same way as printf but instead of printing the string,
it returns the final string so that it can be saved in a variable. Technically
a printf(...) is the same as a print(sprintf(...)).

Manipulating HTML Files

Since PHP was built for the Internet, it contains many useful functions that
manipulate Webpages. Some of them assume that you have opened an HTML
file and saved its contents in a string, whereas others just accept the URL of
the page to process as a parameter. To distinguish those cases, let us use $str
as a parameter in the first case and $ur/ in the second.

The first method is a very useful one that allows retrieval of the META
tags information. A META tag is an HTML tag with two parameters called
“name” and “content” that describe pretty much anything related to the page.
They are usually found in the HEAD section of the page. The name attribute
informs of the data being stored, and the content attribute holds anything that
describes that name. Online searchers such as AltaVista rely strongly on some
of the META tags, most specifically the “keywords” META tag. Here is a
basic example of what a META tags block could look like:

<META name="description” content="This is a silly example, but who cares”>
<META name="author” content="Steven A. Gabarr6”>

<META name="keywords” content="test page, silly, example, PHP, HTML”>
<META name="generator” content="Notepad”>

PHP provides a very useful method to retrieve all the META information
as an array called get_meta_tags($url). The returned array is an associative
array holding the name of the META tag as a key and the content as the
element. If we were to call this function on a file containing the previous
example of META tags, our array would be as follows:

$arr[“description”] == “This is a silly page, but who cares”
$arr[“author”] == “Steven A. Gabarré”

$arr[“keywords”] == “test page, silly, example, PHP, HTML”
$arr[“generator”] == “Notepad”

A common problem when mixing HTML and PHP is new lines. When
printing a new line (\n) in PHP, we are technically inserting a new line on the
resulting HTML code that will be printed by the browser, but as we know, a
\n is shown by browsers as a white space. Many times you will be trying to
either show information retrieved from a text file or even a database that was
not necessarily formatted in HTML, meaning that it contains many new-line
characters, but no
 tags that would allow the new line to appear on the
resulting Webpage. You can solve that by using nl2br($str), which will return
a new version of $str that will have
 inserted before all new lines (\n).

96 USING FILES, FOLDERS, AND STRINGS IN PHP

Another source of problems are URLSs that contain special characters such
as white spaces. Many browsers will not accept a link containing white spaces,
and will understand those links only if the code of the special character is
written. For example, a white space is usually represented as %20 in a URL.
When URL contains those special characters represented as the percentage
sign followed by the code of the character, we say that the URL is encoded.
If you want to show the same URL with regular characters (e.g., replacing
%20 with a white space), you say that you are getting the decoded version of
the URL. You can switch easily between encoded and decoded URLs by
using rawurlencode($url) and rawurldecode($url), which will return either
the encoded or decoded version of the $url. As a basic rule, always encode
the URLSs you are going to insert in an HTML link, and always decode the
link names you want to show on the actual page. So, for example, assuming
that $url is your URL, you could write the following code (code in boldface
is PHP code, the rest is regular HTML):

<A HREF="<?PHP rawurlencode($url); ?>”><?PHP
rawurldecode($url) ?>

Last but not least, one of my favorite functions that will prove extremely
useful for our indexer is strip_tags($str). This function takes a string and
returns the same string with every single HTML tag removed from it. Here
is an example:

< ?PHP

Sstr = "“I am a <I>string</I>
with loads of
HTML;

Sstr2 = strip_tags(Sstr);

echo Sstr2;
2>

The variable $str2 would hold “I am a string with loads of HTML.”

PHP INFORMATION FUNCTIONS

PHP has a set of methods used to retrieve information on its actual settings.
Here are some of the most important ones:

- getenv($varname)—returns the value associated with the environment
variable specified in §varname. Environment variables include things
like SERVER_NAME,SERVER_PROTOCOL,and REMOTE_HOST.
Through these variables you can actually retrieve really interesting infor-
mation like the last page visited, the IP address of the visitor, and many
more interesting things ©. Note that you can also get the same results

WRITING A BASIC FILE EXPLORER 97

using $§_SERVER([8varname]. For example, $_SERVER[“REMOTE_
ADDR”] would give you the IP address of your visitor.

« get_cfg_var($varname)—returns the settings for varname as set in the
PHP configuration file (php.ini).

« get_current_user()—returns the name of the owner of the current PHP
script. Useful in UNIX/Linux.

« getmypid()—returns the process id of the running script.

« getmyuid() and getmygid()—returns the user id or group id (respec-
tively) of the PHP script’s owner.

« phpinfo()—As we saw when installing PHP, this function outputs
pretty much everything you need to know about your PHP installation.
To use www.php.net’s words, this method “outputs lots of PHP
information.”

« phpversion()—returns the version of PHP that is running.

CLOSING REMARKS

With all the functions and techniques studied to this point you can write
almost any script you wish. The only important thing needed (coming in
Chapter 9) is how to send information between different scripts, or how to
send information from HTML to PHP using forms (also in Chapter 9). The
following chapter will be devoted to PHPS techniques and object-oriented
programming. Now it is the time to test your skills, and the best way is to
practice, practice, and practice some more. PHP is a very easy language, but
writing scripts will end up taking more time than you expect, so have patience
and take your time to make sure that you write the best possible code. The
only limit right now is your imagination. To get you started, here is a first
PHP assignment.

WRITING A BASIC FILE EXPLORER

In this assignment, we are going to simulate a file explorer. The goal is to
use PHP to display the contents of a folder in the same way that a regular
file explorer would. Here are some specific items you should make sure to
achieve.

Requirements
The following guidelines are recommended:

« To keep it simple, your script should have a variable called $path that
will hold the path to check.

98 USING FILES, FOLDERS, AND STRINGS IN PHP

* You should make sure that the variable $path represents a real directory
and that you print an error if this is not the case.

* The explorer should now check the contents of the folder

* You should then echo the contents of the folder by first writing all the
folders in alphabetical order, followed by all the remaining files also in
alphabetical order. For example, if your folder contains the files bla.htm,
foo.php, bar.mp3, and the folders Music and Work, you should display in
order “Music, Work, bar.mp3, bla.htm, foo.php.”

+ Try to show what is a folder by either underlining its name using the
HTML <U>...</U> tag or simply by placing a small icon (using
 tag) in front of it.

Hints

The following tips are also recommended:

* Try not to parse the folder twice. You should be able to open the $path
after you know that it is a real directory and retrieve all the needed
information in one pass.

+ The order in which files and folders are read will most likely be the order
of creation, so do not assume that folders will always be before files, and
do not assume that everything will be sorted alphabetically.

+ When sorting data you might want to have two separate arrays holding
names (one for directories, one for files) and sort them individually.
Another option could be to have a two-dimensional array, where
Sarr[$i][0] is the name and $arr[$i][1] is the type. In that case you
could use wusort, using a method that would compare two entries by
checking their types first, and then their names if their types are the
same.

« Remember to do a CHDIR before opening the folder!!

As we learn new techniques, we will refine this explorer to render directories
clickable. Our goal will be able to click on a directory to run the same script
on that new folder.

CASE STUDY: AN INDEXER/SEARCHER—STEP 1

Overview

If there is a tool that has made the Internet as useful as it is, it would undoubt-
edly be searchers. Trying to imagine an Internet without Google, Yahoo,
AltaVista, and other searchers should bring shivers down your spine. Imaging
having to find the lyrics to a song you are looking for by yourself, or find an

CASE STUDY: AN INDEXER/SEARCHER—STEP 1 99

answer to an aching questions without a tool to do the dirty work for you.
Now, since we are learning about Web programming, it is our chance to get
behind the wheel and figure out how searchers work, by writing our own.

The Indexer—Step 1

The secret to a great search engine is having great indexing. The process of
indexing is the usually long and hard task of gathering as much information
on the pages we want to be able to search for and organize our findings. There
are tons of different types of indexers, from the basic “keywords” indexers
that simply store the information found under the META tag “keywords” to
complex full-text indexers with thesaurus that use n-dimensional space vectors
to store the information of the files (beyond the scope of this book). We are
going to settle for something in the middle: a basic full-text indexing with
META tag information gathering.

A full-text indexer simply goes through the content of the file being indexed,
counting how many times each word appears. This information is then stored
in a database, and when a user looks for a word like “Spain,” you show all
the pages that contained that word, starting with the one that had the word
appearing more times. There are several important things to realize when
indexing, though.

First, there are useless words that do not need to be indexed. A “useless”
word is a word that no one with common sense would try to look for, usually
a word that gives no information on the topic of the page. For example, words
like “a,” “the,” “for,” “yes,” and “no” could be considered “useless.” In order
to skip useless words, there are several techniques, such as having an array
with all the entries to ignore (the safest way). Another faster way is not to
index a word that has less than a predetermined amount of letters, with the
danger of excluding short but important words. For example, a page on data-
bases might contain the abbreviation DB (for database) appearing many
times, and should not be ignored. For our indexer, we will simply ignore words
of one letter, indexing only words of two or more letters.

Another typical problem when indexing is HTML tags. Obviously when
searching for files, you want to be able to know how many times a word
appeared, but you seldom care about how many times a specific HTML tag
was used. Our function strip_tags will be extremely useful! Always remove
the HTML tags before proceeding to indexing the words in the file.

Other important thing to keep in mind are letter casing and special char-
acters. Realize that as far as PHP goes, words like “Alicante” (my hometown)
and “alicante” are different, but as far as your indexer goes, they should be
the same. To solve this, the standard consensus is to lowercase the entire file
being indexed. As for special characters, you do not want to record in your
database how many times you had a new line, and exclamation point or a
double quote. So you need to find a way to get rid of special characters.
Regular expressions are usually the best way, but since we will not see them

100 USING FILES, FOLDERS, AND STRINGS IN PHP

until almost the end of this book, you may use strtok or str_replace. This way,
you can avoid problems like having “hello!” and “hello” appear as two sepa-
rate words because of the exclamation point. Getting rid of special characters
is one of the most important steps in an indexer.

Finally, as stated above, our indexer will also have to gather the META
tag information. This step has basically no interference with the full-text
indexing, since get_meta_tags accepts the URL of the file directly, whereas
the full-text indexing will require you to open the file and store its contents
in a string so that it can be modified.

In a nutshell, our basic indexer will need to

* Get the META tag information (info) (get_meta_tags).

* Open the file, and copy the entire contents in a string variable (set of file
functions).

« Strip the tags (strip_tags).

« Lowercase everything (strrolower).

* Get rid of special characters and count how many times each word
appears in the file.

* As far as this first assignment, the indexer should simply output all the
gathered info on a page. Of course, the counted words should be sorted
alphabetically, and each word should appear only once, followed by the
number of times it was found.

+ In this assignment we will also simply output the contents of the META
tags.

Hints:

+ To get rid of special characters, you can do multiple str_replace followed
by an explode, or you can thank me and use the superExplode method
seen earlier. This way you can use tokenizers and still get an array with
all the words.

+ If you have an array holding all the words, remember array_count_values,
which does the counting for you.

« If you have an associative array with words as keys, and numbers as ele-
ments (like the one you get after running array_count_values), you can
sort the array using ksort. . ..

« To keep it simple, just have a $path variable containing the page to index.
In step 2 we will see how to use forms to provide the filename (end of
chapter 9).

PHP5 and
Object-Oriented
Programming

OVERVIEW

Even though objects in PHP have existed since version 3, their use has been
improved with PHPS, thanks to the use of the script motor Zend 2. In case
you have never programmed in any object-oriented programming language
(e.g., C++ or Java), I will explain the raw basics so you can follow the explana-
tions. If you wish to look into C++, I recommend that you read The Design
and Evolution of C++ by Bjarne Stroustrup (see alphabetical list in Bibliog-
raphy at the end of this book).

CLASSES AND OBJECTS

A class is a complex data type that can hold both data and methods. Classes
are generally categories of objects; the data it contains are called data members
or attributes and allow definition of a particular instance of that class. The
methods inside a class are generally actions that an instance of a class can do,
or simply methods that allow access to or modification of data members. For
example, you could have a class called Car that would hold data members
such as manufacturer, model, and year, and methods like checkMileage() or
changeColor().

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

101

102 PHP5 AND OBJECT-ORIENTED PROGRAMMING

An object is an instance of a class, or more basically a specific item that
can be part of a class. For example, with the class Car, you could have an
object myDodgeViper (1 wish). The object will contain specific data that will
define it; for example, in this case manufacturer would be equal to Dodge and
model would be equal to Viper.

CLASSES IN PHP

To create a class in PHP, you start by writing class followed by the name of
the class. Once you are in the class, you can create functions as you would
outside a class. The difference will be that definitions of functions defined
inside a class will be methods of the class. In order to call a method of a class
you have two choices: either creating an object of your class and invoking the
method (see below) or calling the method statically through the class name:

<?php
class SimpleClass
{
// member declaration
public Svar = ‘a default value’;

// method declaration
public function displayVar() {
echo Sthis->var;
}
public static function statMethod(){
echo "This is a static method”;
}
}
Sa = new SimpleClass(); //we create an object of the
//class SimpleClass
Sa->displayVar(); //we invoke the method displayVar
//through the object Sa
SimpleClass::statMethod(); // We call the static method
//statMethod
?>

It is possible to use inheritance in PHP, through the keyword extends.
Inheritance is the process of deriving a class from another one. When you
derive from a class (your parent class), you are its child, and inherit any of
the parent’s data members and methods. This means that you can use any of
the parent’s public methods without the need to redefine them. To show that
a class derives from another one, add extends ParentClass at the end of the
class definition line. Check the example at the end of the next section.

CONSTRUCTORS AND DESTRUCTORS 103

It is possible for a child class to override a parent’s method. This basically
means changing the behavior of an inherited method, while keeping the
same name. If you want to prevent a child class from overriding your methods,
write the keyword final in front of the parent’s method definition, for
example

final public function dontChangeMe()

CONSTRUCTORS AND DESTRUCTORS

A constructor is a method that is called whenever an object of a class is
created. Its goal is to initialize the data members of the class. In PHP, con-
structors need to be called __construct() and may have any parameters
you need. By default a constructor takes no parameters, but you might
use parameters to define special initialization data. If, for example, you
defined your constructor as function __construct($a) (assuming that $a will
hold a number), you could initialize an object doing $myObj = new
MyClass(12);.

If your class derives from a parent class, and you wish to call your parent’s
constructor, you can do parent::__construct();.

A destructor does the opposite of a constructor. It is a method called when
the script is finishing running and all objects are freed from memory. Its
intended use is removal of all data that are no longer needed, and must be
named __destruct(). Destructors may not have parameters.

<?php
class BaseClass {
function __construct() {
print “In BaseClass constructor\n”;
}

function inheritedFunction() {
echo “howdy!”;
}
}
class SubClass extends BaseClass |
function __construct() {

parent::__construct();

print “In SubClass constructor\n”;
}
}
Sobj = new BaseClass();
Sobj2 = new SubClass();
Sobj2->inheritedFunction();
?>

104 PHP5 AND OBJECT-ORIENTED PROGRAMMING

VISIBILITY

When you are defining a data member or data function, it is possible to set
up its visibility. The visibility can be public, private, or protected. Public vis-
ibility means that the data can be accessed anywhere, private means that the
data are accessible only within the class itself, and protected means that only
the class itself, its parents, and its descendants can access it. Data members
should always have their visibility written before the data themselves, but it
can be omitted in the case of methods that take public as default visibility.

<?php

/**

* Define MyClass

*/

class MyClass

{

public Spublic = ‘'Public’;
protected Sprotected = ‘'Protected’;
private Sprivate = ‘Private’;

function printHello()
{
echo Sthis->public;
echo Sthis->protected;
echo Sthis->private;
}
}
Sobj = new MyClass();
echo Sobj->public; // Works
echo Sobj->protected; // Fatal Error
echo Sobj->private; // Fatal Error
Sobj->printHello(); // Shows Public, Protected and
//Private

class MyClass2 extends MyClass

{

// We can redeclare the public and protected members,
//but not private

protected Sprotected = ‘'Protected2’;

function printHello()

{
echo Sthis->public;
echo Sthis->protected;
echo Sthis->private;

}

THE STATIC KEYWORD 105

Sobj2 = new MyClass2();

echo Sobj2->public; // Works

echo Sobj2->private; // Undefined

echo Sobj2->protected; // Fatal Error

Sobj2->printHello(); // Shows Public, Protected2, not
//Private

2>

THE SCOPE RESOLUTION OPERATOR

The scope resolution operator is basically two colons (::). The scope operator
was named “Paamayim Nekudotayim” by the Zend team of developers while
they were writing Zend engine 0.5 (used in PHP3). It actually means “double
colon” in Hebrew. It is a token that allows access to the static, constant, and
overridden members and methods of a class, without the need to create an
object of that class.

<?php
class MyClass {
const CONST_VALUE = ‘A constant value’;
}
echo MyClass::CONST_VALUE;
class OtherClass extends MyClass
{
public static S$my_static = ‘'static var’;

public static function doubleColon() {
echo parent::CONST_VALUE . "“\n”;
echo self::$my_static . "“\n”;
}
}
OthercClass::doubleColon();
2>

THE STATIC KEYWORD

When you have a method that you would like to access without the need to
create an object, you must make the method static (and public). Doing so,
you will be allowed to access the method by simply writing the name of the
class followed by the scope operator and the method name. Note that since a
static method can be called without an instance of the class, you may not use
the $this object reference inside a static method. A static data member is
basically a member that can be accessed without the need of an object. Fur-
thermore, you cannot access a static data member from an object, so it is

106 PHP5 AND OBJECT-ORIENTED PROGRAMMING

accessible only by writing the name of the class, followed by the scope opera-
tor and the variable name.

CLASS CONSTANTS

You may define constant values inside classes. Constants are similar to vari-
ables, but they cannot be modified. Constants do not use the dollar sign in
their names, and, like static members, they cannot be accessed from an
instance of the class. You may not store a variable, class member, result of a
calculation, or function call inside a constant. Constants are useful when there
is an important data item that you will use throughout your code and that
does not change. You might wonder, why use a constant instead of simply
writing its value? Imagine that you are programming a page that will handle
an array, making sure that you never get more than a specific number of ele-
ments, say, 100. You could write the number 100 each time you want to check
the maximum size of the array for comparison, but if in the future you wish
to upgrade your program to accept 1000 numbers, you will have to go through
your code and change every single “100” to “1000.” A problem might arise if
you also use “100” for other functions, such as calculating a percentage. By
creating a constant instead of writing the actual data throughout the code,
you allow yourself the flexibility needed to upgrade your code by simply
changing one value: the one written in the constant declaration.

CLASS ABSTRACTION

PHPS5 made it possible to create abstract classes. An abstract class is a class
that cannot be instantiated, and is used mainly for inheritance purposes.
Abstract classes will usually have abstract methods, which are basically
methods that are declared but not implemented. If your class contains at least
one abstract method, you must declare the class as abstract, simply adding
the word abstract in front of the class name and all abstract methods.

OBJECT INTERFACES

Object interfaces allow you to create code that specifies which methods a class
must implement, without having to define how these methods are handled.
The difference between an abstract class and an interface is that abstract
classes are used for inheritance and can contain both data and methods.
Interfaces can only have methods, which must be implemented by a class.
Interfaces are defined using the interface keyword, in the same way as a stan-
dard class, but without any of the methods having their contents defined. All
methods declared in an interface must be public.

COPYING AND CLONING OBJECTS 107

It is possible to implement more than one interface, by simply writing the
names of all implemented interfaces separated by commas. It is not possible
to implement two interfaces that share function names, as this would create
ambiguity. Also, if your class implements an interface, it must implement all
the interface’s functions, or be declared as an abstract class, since the non-
implemented methods become “abstract.”

<?php
// Declare the interface ‘iTemplate’
interface iTemplate
{
public function setVariable($name, $var);
public function getHtml($template),
/
// Implement the interface
// This will work
class Template implements iTemplate
{
private $vars = array();
public function setVariable($name, $var)

{
Sthis->vars[$name] = $var;
/
public function getHtml($template)
{

foreach($this->vars as $name => $value) {
Stemplate = str_replace(‘{’ . $name . ‘}’, $value, $template);
/
return $template;
/
/

COPYING AND CLONING OBJECTS

There is a very important thing to realize about objects, and that is that an
object variable is technically a reference to the actual object. Therefore,
copying an object by doing objectl = object2; simply causes both variables to
refer to the same object. In many cases we will not want just a copy of the
reference to the object but a copy of the entire contents of the object. To do
so, we can use the clone operator, for example, object! = clone (object2);

The clone operator will create a new object and copy all the attributes from
object2 to objectl. This may sound like using the equal sign (=), but the main
difference is that using clone will call any existing __clone() method of the
class (see below).

108 PHP5 AND OBJECT-ORIENTED PROGRAMMING

It is possible to specify what to do when you are trying to clone an object
by creating a method __clone(). For example, if you have a class that contains
object definitions, you could have a __clone() method that will clone the data
members rather than doing a shallow copy. Check this example:

<?PHP
class SubObject
{
static Sinstances = 0;
public Sinstance;

public function __construct() {

Sthis->instance = ++self::$instances;
}
public function __clone() |
Sthis->instance = ++self::$instances;
}
}
class CloneMeWell
{

public Sobjectli;
public Sobject2;
function __clone()
{ Sthis->objectl = clone (Sthis->objectl); }
}
Sobjl = new CloneMeWell();
sobjl->objectl = new SubObject();
Sobjl->object2 = new SubObject();
Sobj2 = clone Sobjl;
2>

In this example we create an instance of the class CloneMeWell, containing
two objects of the class SubObject. The SubObject constructor increases a
static data member and saves it in the $instance data member. This variable
stores how many instances of that class were created. We then make a clone
of CloneMeWell, in which we define a __clone() method that clones the
Sobject] data member, but not the $object2. What will happen is that a new
instance of CloneMeWell will be created and its $object] will be a clone,
meaning that a third instance of SubObject is created by cloning the $objectl,
but since $object2 is not cloned but instead simply copied, $objI->object2 will
refer to the same object than $obj2->object2.

COMPARING OBJECTS

There are two ways to compare two objects to determine whether they are
the same. You may use the double or triple equal sign. The double equal (==

EXCEPTIONS 109

will check whether all attributes are the same, and whether the two objects
are instances of the same class. For example, an object and its clone would
be equal, if compared with ==.

The triple equal (===) will check whether the object variables are identi-
cal, meaning that they will refer to the same instance of the same class.

TYPE HINTING

Since PHPS, it has been possible to force function parameters to be either
objects or arrays (since PHP 5.1). You may write a method that is meant to
work only with a specific class. To do so, either write the name of the class in
front of the parameter, or write the word array if what you need is an array.

For example, if we wanted to have a function that accepts an object of the
class MyClass and an array, you would write

function myFunction(MyClass $classParam, array $theArray);

EXCEPTIONS

Exceptions are a technique used to handle problems found during execution.
PHP’s exception model is very similar to that of other languages such as Java
or C++. The principle is to try to run a piece of code, and if there is a problem,
you throw an exception, which you then have to catch. An exception is not
really the same as an error, notice, or warning; it is bad behavior that you
suspect might occur. Any block of code that you know might cause a problem
should be written in a try block. If you need to throw an exception, simply
use the throw keyword, creating a new instance of the class Exception. After
the try block, you should have a catch block, which will handle any exception
that might occur. If the try block had no exceptions, the catch block would
be ignored. You may read the exception message through a variable declared
in a catch block, as an instance of the class Exception. The class Exception
contains a method getMessage() that returns the message describing the
exception.

For example, let us imagine that we want to check for a divide-by-zero
exception. Your code would be as follows:

<?PHP
function divide(Sa, S$b)
{
try {
if (Sb == 0)
throw new Exception(“"Attempted to divide by zero!”);
return Sa / Sb;

110 PHP5 AND OBJECT-ORIENTED PROGRAMMING

} catch (Exception Se) {
echo "“Caught exception: "“.Se->getMessage().”\n”;
}
}
?>
Here is the structure of the built-in Exception class:

<?php

class Exception

{

protected S$Smessage = ‘Unknown exception’; // exception

//message

protected Scode = 0; // user defined exception code
protected s$file; // source filename of exception
protected Sline; // source line of exception
function __construct($Smessage = null, Scode = 0);
final function getMessage(); // message of exception
final function getCode(); // code of exception
final function getFile(); // source filename
final function getLine(); // source line
final function getTrace(); // an array of the

backtrace()
final function getTraceAsString(); // formated string
of trace

/* Overrideable */
function __toString(); // formated string for display
}

2>

FINAL WORDS

There are many other features and details on object-oriented programming,
but with the elements mentioned above, you should have more than enough
to get started. At the end of Chapter 13, we will write a class that will help
us communicate with a database. The class will contain methods to connect
to the database, as well as to gather information in it. You will also see a
practical example of exceptions used in the same class.

Creating Some
Interactivity

OVERVIEW

By now you know all the nuts and bolts of the core set of tools that PHP pro-
vides with one major exception: interactivity between pages. The goal of this
chapter is to overcome this need and show you the many ways of transmitting
information between PHP scripts.

FORMS

Our first technique of communications is forms. A form is basically a Webpage
that has a set of available input areas for the user to enter information. It also
contains a button that allows you to send that information to any page.

Writing a Form in HTML

The first thing to learn is how to create a form in HTML, and how to set it
up to send all the data to a PHP script. To do so, use the <FORM>...
</FORM> tags. Inside those tags will be the entire contents of the form, so
keep in mind that if you place an input area outside those tags, you will not
be able to send the information that the input area contains. The FORM tag
takes two main attributes: action and method. Action allows you to specify

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarrd
Copyright © 2007 by John Wiley & Sons, Inc.

111

112

CREATING SOME INTERACTIVITY

the script that will run when the form is submitted, and method specifies how
the information will be sent to the script. The two possible methods are GET
and POST. For now, simply write POST, and later on I will explain why that
option is better. You may also add a rarget the same way we did with regular
links if you want to send the form information to a different window or
frame.

Once you have created the working area for your form, it is time to create
input areas. Input areas are created with the <INPUT /> tag, which can be
set up with the following attributes:

Name—name given to the input. Probably one of the most important
pieces of information, as we will need this name to gather the informa-
tion in the receiving script.

Type—type of input; see below

Value—default value for the input, if any. If you do not want to set a
default value, simply skip this attribute. On radio buttons and check-
boxes, this specifies the value associated with the current option. On
reset and submit buttons, this specifies the string appearing on the
button.

Checked—if your input is a checkbox or a radio button, simply write the
word CHECKED in the input tag to have the option selected by
default.

Maxlength—maximum number of characters that a textbox will accept.
When the number is reached, any extra characters that the user tries to
write will be ignored.

Size—actual size of the input item. For example, you can use size to
define the length of a textbox.

Here are the different types of input that exist, and what they are used

for:

.

Text—this is used for regular one-lined textboxes; perfect for login
information.

Password—same as text with the exception that the characters typed in
the box will not show up. Instead, for each character typed you will see
a special symbol like an asterisk (*) or black dots, depending on the
browser used. You should obviously use this type for password fields, so
that no one can eavesdrop on a user who is entering his/her user/pass
information.

Checkbox—a checkbox is basically a small square box that can be checked
or not checked. Since it is possible to deselect a checkbox by simply click-
ing on it, there is no real necessity to group checkboxes together, and
they can all work independently. Nevertheless, it is a good idea to group
similar checkboxes together. To do this, simply call all the checkboxes

FORMS 113

with the same name, followed by brackets. For example, if your group of
checkboxes needs to be called “Checks,” you should write “Checks[]”
for each checkbox under their name property. Grouping checkboxes
together allows you to gather all the information of the checkboxes as a
single array, rather than having one variable per checkbox.

+ Radio—used to create radio buttons. A radio button is a circle on a
screen that can be checked or unchecked. The difference between radio
buttons and checkboxes is that radio buttons should always be grouped,
as only one option can be selected at any time. You may not click on a
selected radio button to unselect it. Instead, you need to click on a dif-
ferent radio button of the same group. This makes the need of grouping
radio buttons crucial. If you leave all the radio buttons independent, you
will be able to select them all, but unselect none. To group radio buttons,
simply give them the same name. In the case of radio buttons there is no
need to put the angular brackets that we used with checkboxes, because
checkboxes are processed as an array (hence the brackets). You may have
several options selected, but since radio buttons can have only one option
selected within the same group, there is no need for arrays.

* Hidden—probably one of the most useful underused input types. They
are useful when transfering information from forms to forms without
showing that information to the user. It simply saves the data stored in
the “value” attribute and sends it through the form without asking for
any input to the user. Note that since this is HTML, the “hidden” field
can still be seen and read through the page’s code, so avoid entering
decrypted passwords in “hidden” inputs.

+ Reset—this will create a button that will reset the form to its initial state,
erasing any data that might have been written thus far and replacing them
with the default values.

+ Submit—probably the most important button (at least until we study
forms manipulation with JavaScript). This will create a button that will
send all the input values to the script specified on the “action” field of
your FORM tag.

* Button—a simple button like reset and submit but that has no action. It
is useful in JavaScript.

There are actually two more types of input, but they do not use the INPUT
tag. These are text areas that are multiline textboxes, and select areas that
are menus.

To use a text area, use the <TEXTAREA> ... </TEXTAREA> with the
attributes name (same meaning as the name of an INPUT tag), rows (number
of rows the text area will show on screen), and cols (number of columns of
character the text area will show on screen). Note that any character between
the end of the opening tag and the beginning of the closing tag will be
considered the default value, so if you want a totally empty text area of

114 CREATING SOME INTERACTIVITY

20 lines and 80 columns, type <TEXTAREA name="fullText” ROWS=20
COLS=80></TEXTAREA>. Realize that anything written between the tags
will not be considered regular HTML; instead it will be considered regular
text to be inside the text area. This means that if you have five white spaces
between opening and closing tags, it will not translate it all into a single white
space on screen as HTML code would; rather, it will actually show five white
spaces on the text area.

To use select areas, you first need to use the <SELECT>...</SELECT>
tags with the attributes name (same as the other inputs) and size (which speci-
fies how many lines to show on screen). Select displays a set of options that
are clickable by the user. In this book we will limit ourselves to simple selec-
tions (which is the default behavior), but it is actually possible to allow the
user to select more than one option at once. Note that if the size of the select
is 1, your select becomes a dropdown menu. Once you have defined the
SELECT tags, you must add a set of options. Each option is an element that
will appear on the list, with an associated value. To add an option, use the
<OPTION /> tag with the attribute value, followed by the name you want to
show on the menu. Note that using the tag OPTION creates a selectable
option with its value, but does not create the text that would show up. The
name to show must be written after the tag, and each option should be written
on a different line.

Regardless of the input used, realize that the tag that creates the input does
only that. To tell the user what to enter in each input, you are responsible for
writing regular text around your inputs, explaining what they are for, espe-
cially for radio buttons and checkboxes (there is nothing more ridiculous on
a screen than a bunch of little circles or squares with no name or explanation
as to why they are there).

Here is an example of a form with all the different kinds of inputs that
will call a script called forms.php (which we will see later on) on a blank
window:

<FORM action="forms.php” method="POST” target=“_blank”>

<INPUT type="text” name="text” value=”"HELLO”
size="20" maxlength="20">

<INPUT type="password” name=“"pass” value="" size="8"
maxlength="8”>

<INPUT type=*radio” name="radio” value="1"/>Radiol

<INPUT type="radio” name=’"radio” value="2"
CHECKED/>Radio2

<INPUT type="radio” name="radio”
value="3"/>Radio3

<INPUT type="checkbox” name="check(]”
value="4"/>0ne

<INPUT type="checkbox” name=”check(]”
value="1"/>Two

FORMS 115

<INPUT type=“checkbox” name=”check[]” value="3"
CHECKED/>Three

<INPUT type="hidden” name="hidden” value="boo!”/>

<TEXTAREA name="textarea” cols=720" rows="5">
Yipi yipi hey! This text is preceded with new
lines, tabs and white spaces!
</TEXTAREA>

<SELECT name="select” size="1">
<OPTION value="1">Uno
<OPTION value="2”">Dos
<OPTION value=”3">Tres
</SELECT>

<INPUT type=“"submit” name="submit” value="GO!”/>

<INPUT type="reset”/>

</FORM>

GET versus POST

As mentioned earlier, a form transmits information to your PHP scripts
through two possible methods called GET and POST. The GET method will
access the script provided in the action parameter of your FORM tag by
writing the URL of the script followed by all the data that were found in the
script. So, for example, if your input contained two textboxes called “name”
and “nickname,” where I wrote “Steven” and “Bewchy,” submitting the form
would ask the browser to open the URL yourscript.php?name=Steven&nick
name=Bewchy. The syntax is pretty simple; there is a question mark right
after the script to run, followed by the series variable=value. Different vari-
ables are written next to each other by placing an ampersand (&) in between,
thus enabling you to see absolutely all of the form information sent by simply
looking at the address bar on your browser. This is obviously a very poor
choice if you are sending important information such as passwords, and the
main reason why I never use GET as a form method. The POST method sends
all the information directly to the script in a way that is transparent to the
user, so the address bar in my previous example would show “yourscript.

php.”

Retrieving the Form Information on a PHP Script

Once you arrive to a script from a form, you need to first know how the data
were sent, and depending on the method you use, one of two arrays: §_GET
or §_POST. These arrays are automatically filled when information is received
in the page through either method. They are associative arrays where the key
is the name of the input, and the element is the value that it was set as. For
example, if in “yourscript.php” you received the previous example of “name”
and “nickname” through the GET method, you would be able to read the

116 CREATING SOME INTERACTIVITY

values “Steven” and “Bewchy” by simply writing $_GET/“name”] and $_
GET[“nickname”], respectively. It is a good idea to first verify that that data
have been sent (with issef) before trying to read them in order to avoid unnec-
essary notices. This can also be used as a security measure to verify that a
user has accessed the script through a form and did not attempt to directly
write the script’s URL. Other fun things you can do is put the $_GET and
$_POST arrays in a foreach loop to extract all the info sent without even
knowing what was sent. Remember that a group of checkboxes sent together
will be sent as an array, so keep it in mind and use foreach to check which
options where selected. When reading the values sent for radio buttons,
checkboxes, and select areas, you will receive whatever the value parameter
was equal to for the selected option. Here is the forms.php file that would
process my previous form:

<?PHP
if (!isset($_POST[“text”]))
echo "You stupid cheater!! You didn’t use my form!!!”;
else
{
echo strip_tags($_POST[“text”]).”
";
Sarr = $_POST["“check”];
foreach ($arr as Selem)
echo Selem.” *;
echo "“
";
echo strip_tags(S_POST["“textarea”]).”
";
// you can access the variables by knowing their name
foreach ($_POST as Sk=>Se)
echo “Input $k received with value S$e
";
// or simply use foreach
} 2>

Dynamically Creating Forms

Remember that the only real limit to what you can do with PHP is your
imagination. If you wish to have a form be automatically generated, just use
a PHP script that will echo the tags you need with the dynamic data. For
example, imagine that you want to display a dropdown menu where you can
select any of the U.S. states, with their zipcode abbreviations as values. It is
quite painful to write the entire list with the proper OPTION tags each time
you need to have that dropdown menu. Instead, you could have an associative
array called $states in an include file. The array would have the abbreviation
as a key and the actual name as a value, so, for example, you would have
$states[“NJ”] == “New Jersey” and $states[“NY”] == “New York.” Here is
a little script that would create all the options for you:

TRANSFERRING DATA BETWEEN PHP SCRIPTS 117

[...] all the forum definition would be up here [. ..]
<SELECT name=State size=1>
<?PHP
foreach (S$states as Sk=>Se)
echo "<OPTION value=’'".Sk.”’>".Se.”\n”; //don’t forget

//the \n
?>
</SELECT>

[...] rest of html code [.. .]

TRANSFERRING DATA BETWEEN PHP SCRIPTS

The most basic way to transfer data between PHP scripts is by using the GET
method. Because of the way GET data are retrieved in PHP, you do not actu-
ally need to receive these data from a form. Simply use the syntax presented
before to write variables after the URL of the script to which you wish to
send data. So, for example, if I had $varl and $var2 that I wanted to transmit
to a new PHP script, I could have a link created by PHP as follows:

echo “
Click Me!";

Instead of having a link, we can use the header function, which, as we will
see at the end of this chapter, can automatically redirect the user to the des-
tination page if the proper conditions are met.

Cookies

A better way to share information among different scripts is the use of
cookies. But you may ask “What are cookies?” Well, let me quote the Cam-
bridge Advanced Learner’s Dictionary to answer you:

1. biscuit (FLAT CAKE), UK.
noun [C] (U.S. cookie)
a small, flat cake that is dry and usually sweet:
chocolate/ginger biscuits
a packet of biscuits
We had tea and biscuits at 3.30 p.m.
2. cookie (BISCUIT), cooky
noun [C] MAINLY U.S.
a sweet biscuit:
chocolate-chip cookies

118 CREATING SOME INTERACTIVITY

3. cookie (TYPE OF PERSON)
noun [C] U.S. INFORMAL
a person of the type mentioned:
She’s a smart/tough cookie.

4. cookie (COMPUTING)
noun [C] SPECIALIZED
a piece of information stored on your computer that contains
information about all the Internet documents that you have
looked at

Obviously we are going to concentrate on the fourth definition. A bit more
seriously, cookies were created by Netscape and can hold text information of
no more than 4 kB. You can have up to 20 cookies per domain and a total of
300 cookies maximum, according to RFC 2109. Cookies are saved on the
user’s computer and can be returned to the server that created the cookie
only in the folder specified on creation. PHP can import the available cookies
through the $_COOKIE array.

Cookies are useful when you wish to individualize a Website with different
color scheme preferences, as you can use them to remember the login infor-
mation of your user, or even memorize a shopping cart on a commercial
Website.

Cookies can be set in HTML through a Set-Cookie, but we will see only
how to create them in PHP. The important thing to remember is the list of
parameters cookies need, as you will need that information to create a useful
cookie. The first important thing to set up is the name of the cookie, as well
as its contents. Other parameters include expires, which sets the expiration
time of the cookie; the path, which specifies where the cookie will be acces-
sible; the domain, which states which domain can view the cookie (you can
usually leave the option blank to use the current domain); and the secure flag,
to decide whether you wish to encrypt the cookie.

To create a cookie with PHP, use setcookie(3name, $value, $expires,
Spath, $domain, §secure);. Technically you need only the first three param-
eters; the rest can be left as default. Imagine that you wish to create a cookie
called “myCookie” that contains “Hello World!”, and you wish the cookie to
survive for a full minute. Here is the instruction you would need to run:

setcookie(“myCookie”, “Hello World!”, time()+60);

The function time() returns the current UNIX timestamp, which is the
number of seconds passed since the Unix Epoch (January 1, 1970 00:00:00
GMT). You may also retrieve the number of milliseconds elapsed since
that date with microtime();. Since we want our cookie to exist for one minute,
we simply need to set the expiration date to the creation time plus 60
seconds.

TRANSFERRING DATA BETWEEN PHP SCRIPTS 119

If later on you wish to access that same cookie, you would read the contents
using $_COOKIE[“myCookie”], which would hold the string that the cookie
contained.

As cookies hold only text data, you might think that they are quite limited,
but with our imagination, we can overcome this limitation. Simply use implode
to create a string with multiple variables concatenated one after the other
before writing in the cookie, and use explode when reading that same info to
split it back the way it was. Here is an example:

<?PHP // COOKIE CREATION
if (l!isset(S_COOKIE[“helloCookie”])) |
echo "Cookie not defined
";
Scol="#FF0000”";
Ssize=12;
Sfont="Verdana”;
Stext="Hello mister cookie!”;
Sarr=compact(“col”, "size”, "font”, "text”);
$val=implode("[”, $arr);
setcookie(“helloCookie”, Sval,time()+600,"”,””,0);
echo "“A cookie will be created

”";
} else {
echo “"Here is the info on the cookie :

";
SmyCookie=$_COOKIE["helloCookie”];
echo S$SmyCookie;
Sarr=explode ("|”, SmyCookie);
echo "The following vars where in the cookie
:

";
foreach (Sarr as Sk=>Selem) {
echo "“Sk=>Selem
";
S{"cookie_Sk”} = Selem; //See explanation below
}
echo ‘“
Now let’s use the cookie info :

”;
echo "“<FONT FACE=\"".Scookie_2.”\” COLOR=\"".Scookie_0.”\"
SIZE=\"".$cookie_1.”\">".stripslashes (Scookie_3).”";
}

?>

You probably noticed the line that uses ${ “cookie_$k”} as a variable name.
This is a technique that allows you to create several variables with automati-
cally generated names. As you know, the dollar sign $ means that you are
writing a variable and the curly braces { } tell PHP that you wish to generate
the name of the variable through a combination of strings and other variables.
For example, in our code we have $k holding the key of elements in an array,
getting the values 0, 1, 2, and 3. This will result in variables called $cookie_0,
Scookie_1, $cookie_2, and $cookie_3.

120 CREATING SOME INTERACTIVITY

Sessions

One of the most efficient and easy ways of transferring information between
pages without the user’s knowledge is to use sessions. Sessions can be imag-
ined as a “magic cloud” that contains all the variables that we need it to hold.
The session can be accessed from any PHP script, which can either add
more data or read data from the session. The session information is saved in
the server computer either on text files (that’s the standard behavior) or on
the Web server’s process memory. This makes session much more flexible
than cookies to store data, as the only limit is the size of the server’s hard
drive.

When a user accesses a page that uses sessions, a unique session identifier
is randomly generated and encrypted. This session id is usually stored in the
client’s computer as a cookie, although you do not need to manually create
the cookie, as the session initialization will do this for you. If the browser
that the client is using does not accept cookies from your domain, you can
still transmit the session identifier between pages with the GET or POST
method.

The default session configuration should be good enough for the scope of
this book, but here are some settings you can change in your php.ini file (each
element will be written as a setting=default_value, followed by an explanation
of what it does):

« session.save_handler = files—this line specifies the way in which the
session information will be stored in the server. Other possible values are
“mm” for memory, or “user” if you want to manually configure the saving
process.

- session.save_path = C:\PHP\sessiondata—folder in which the session
data will be stored.

- session.use_cookies = I—use cookies? 1 for yes, 0 for no.

« session.name = PHPSESSID—name provided to the session.

« session.auto_start =)—I strongly recommend leaving this as 0. You may
write 1 if you want a session to start automatically in every single PHP
script that you write.

To use session in PHP, you first need to start the session with session_
start(). If no session was yet created for the user, a session will be created. If
a session already existed for this user, starting the session will allow you to
access the existing session. Remember that you must use session_start() if
you are planning on using sessions, or the session data will not be accessible.
If you want to destroy a session, meaning that you don’t want the user to be
able to access the session data any longer, use session_destroy(). This func-
tion is usually one of the last steps of a logout procedure. When a session is
started, you may check the name and id of the session with the functions
session_name() and session_id(), respectively.

TRANSFERRING DATA BETWEEN PHP SCRIPTS 121

In order to use the session, use the array §_SESSION. For example, if you
want to create a session variable “username” with the value “Bewchy,” you
simply need to write

3_SESSION[“username”] = “Bewchy”;

The $_SESSION array works pretty much the same way as $_GET,
$_POST, $_SERVER or $_COOKIE. Therefore it is possible to check
whether a session variable exists by simply using isset(§_SESSION[“varname”]).
You may also delete a session variable using unset. Also, since it is an array,
you can use foreach to retrieve all the data in a session.

The following example is a series of three files. The first one will create a
session and store data in it; the second file will check whether the session
exists and show any data stored in it; the third file will be a logout procedure
that will destroy the session. To navigate between the pages, we will add some
basic HTML links:

<HTML><HEAD><TITLE>File 1</TITLE></HEAD>

<BODY>

Starting the session . . .

<?PHP

session_start();
S_SESSION[“username”] = “Bewchy”;
S_SESSION["realname”] = "“Steven”;
S_SESSION["clan”] = “COTW”;

?>

Session created

Next page!
</BODY>

</HTML>

<HTML><HEAD><TITLE>File 2</TITLE></HEAD>
<BODY>
Checking the session . . .

<?PHP
session_start();
echo session_name().” “.session_id().”
";
if (!isset($_SESSION["“username”]))

{

echo "“You cheater!!! You tried to sneak in with no
session!
";

?>

Go create your session!
<?PHP
}

122 CREATING SOME INTERACTIVITY

else
{
echo "“Session data is:
";
foreach($_SESSION as Sk=>Se)
echo S$Sk.” “.Se.”
";
?>
Next page!
<?PHP// the previous HTML line is inside the { } of the
//else, so will
// only run if the session existed
}
>
</BODY>
</HTML>

<HTML><HEAD><TITLE>File 3</TITLE></HEAD>
<BODY>

Checking the session . . .

<?PHP

session_start();

if (!isset($_SESSION["“username”]))

echo “Are you trying to destroy a non-existent

session?
";

else

{

echo "“"Unsetting session variables and destroying
session
";
unset $_SESSION[“username”];
unset $_SESSION[“realname”];
unset $S_SESSION[“clan”];
session_destroy();
}
?>
Try the second script now
that there is no session!
</BODY>
</HTML>

ONE LAST USEFUL FUNCTION AND DESIGN TECHNIQUES

Sometimes you will process information in pages that are not really displaying
any data, but that are just PHP scripts that, for example, make sure that the
login information is correct before setting up the page for the logged-in user.
In those cases we want to be able to redirect the user from the current script

ASSIGNMENTS 123

to a different one. This can be done with JavaScript, as we will see in Chapter
14, or you can simply use the PHP header function.

The function header allows you to send a raw HTTP header. For this
reason you may use this function only if the headers haven’t been sent yet,
which means that if a single character has been printed, you will not be able
to user header, and will get a message saying “headers already sent.” I will
not get into the details of raw HTTP headers; the only thing you need to know
for our situation here is how to utilize this function for redirections. Simply
write header(“location: http://blablabla.com”); replacing “blablabla.com”
with whatever URL you wish to go to. You can, of course, take advantage of
this to send GET information by writing, for example, header(“location:
myscript.php ?varl=1&var2=2&var3=3");.

Usually when I write a login procedure I start on a standard form. When
the user enters the user and password information and clicks on the submit
button, I receive all the information in a PHP script that starts by checking
the database. If the user and password do not match any record, I use header
to redirect the user to the login page; if the login information is correct, I set
up my session with all the info I might need from the database (email address,
name, surname, preferences, etc.) and use header to move to the “logged-in”
main page.

A header can also be used as a basic security tool. If there is a page that
should be accessed only if the user is logged in and you are using sessions,
you can check one of the session variables right at the beginning of your page
and header the user back to the login page if that user is not properly logged
in. You can also add information on the redirection with the GET method.
This is what the top of your “secure” pages could look like this:

<?PHP
if (!isset(S_SESSION[“user”]))
header("location: http://mydomain/index.php?reason=nologin”);
2>
<HTML>
<HEAD>
[...]

ASSIGNMENTS

File Explorer—Step 2

Now that we know how to transmit information between PHP scripts, take
the file explorer from Chapter 7 and make it more useful by rendering the
folders clickable. The idea is to turn each folder into a link. When you click
on a folder name, you should call the same explorer script sending the new

124 CREATING SOME INTERACTIVITY

path to parse through the GET method. Note that there are always two
“directories” that appear in every path: “.” and “...” The folder “.” repre-
sents the current working directory, and is not of much use to us, so there is
no need to print it. The “..” folder represents the parent directory. Now if you
click on “..”, you can process the folder the lazy way, meaning that the path
will appear with a “/../” at the end. The problem with this technique is that
after several clicks your path might look something like “/usr/home/sgabarro/
folder/../../sgabarro/folder/,” which shows poor design as it actually refers to
the folder “/usr/home/sgabarro/folder/.” Instead, when you encounter a “..,”
you should figure out the path of the parent directory by using functions like
strrpos and substr.

CASE STUDY: INDEXER/SEARCHER—STEP 2

In this new step of our indexer, we are going to make our indexer more user-
friendly. The last thing a user who wants to index files should need to do is have
to open the script source file and modify a $path variable. Instead, use a form.

The other improvement is to make our indexer more flexible, to expedite
the indexing of local files. Our indexer will have to accept either regular .htm
or .html files (in which case the indexer will do the same as in step 1) or actual
folder names. First, if you wish to make your indexer work perfectly well,
make sure that you can handle paths written with forward slashes (/), back-
slashes (\), and in case of folders, paths that either do or do not contain a
“closing” slash at the end.

If the input received is a folder, find all the .htm and .html inside that folder
and use your indexer on those files. However, if the provided path is a folder,
and that folder contains other directories, you should enter those new direc-
tories and do the same work. Basically you need to traverse the entire direc-
tory structure rooted at the path provided as a parameter, and index every
single .htm and .html file. Don’t forget to ignore nonhtml files like .php, .mp3,
and .zip, as they would probably crash your indexer. To make matters clearer,
here is an example of directory structure:

—FolderPassedThroughForm
—file.htm
aFolder
oreFolders
morefile.html
script.php
work.pdf
—otherfile.html
-music.mp3
—Erzo therFolder
-more.htm

CASE STUDY: INDEXER/SEARCHER—STEP 2 125

In this example, if the form provides FolderPassedThroughForm as the initial
folder, your indexer should index and display all the information of the files
file.htm, morefile.html, otherfile.html, and more.htm; ignoring all the other
items. Try to display the full path of each file indexed, as this will help you
out on the next step.

10

Making Cleaner Code
and QOutput

CLEANING UP YOUR CODE

One of the drawbacks of embedding HTML and PHP is that it makes code
look quite messy. It is also pretty easy to get confused on where HTML ends
and PHP starts. If we manage to avoid writing HTML inside PHP code, and
if we avoid writing PHP code around regular HTML tags, we can have code
that is much easier to read. The problem that this will cause is that it will be
more complicated to implement the scripts.

To face this challenge, we will use something called templates, and more
particularly, a class called FastTemplate. There are many different template
options, but I have been using FastTemplate for many years and it is fast and
efficient to use. The idea behind templates will be to have pieces of HTML
in a small file that will be used as puzzle pieces to finish our Webpages. Each
little HTML piece will be called a template file, and might contain areas that
we will manage to change from our PHP code. Just imagine those dynamic
sections as if they were “template variables.”

What You Need

The first thing you need is to make sure that you have downloaded the include
file. You can see the entire code in Appendix D, and you may download it
from the companion Website (the file is called class.FastTemplate.zip).

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

127

128 MAKING CLEANER CODE AND OUTPUT

Note that this version is a debugged version of the standard one you can
find online. When I tested the class with the newer versions of PHP, I realized
that there were many notices due to outdated writing. I corrected those errors,
and the class now works flawlessly with PHP 5.1.2. Extract the zip file in your
desired folder (e.g., a folder ./include/ inside your document root), open up
the file, and find the variable §WIN32 (it should be around the first few lines
of code). If you are running your server on a Windows system, make sure that
the variable is set to TRUE. If you are running a UNIX/Linux server, make
sure that it’s equal to FALSE.

How to Use It?—HTML Side

Your templates should be small sections of HTML code that you want to be
able to combine and reuse. For example, you could have a file “tablerow3.
html” that would allow you to create a row on a table with three columns. Any
area that should be dynamically changed by PHP should contain a “template
variable.” Template variables should be a word made up of uppercase letters,
digits, or the character underscore, and surrounded by curly braces. For
example, {ITEM_1} is a valid “template variable” name. If we want to have a
template to create rows on a table containing three columns, but don’t know
what each column will contain, we could have the following template file:

<TR>
<TD>{CELL_1}</TD>
<TD>{CELL_2}</TD>
<TD>{CELL_3}</TD>
</TR>

You could have another file called “mainpage.html” that would contain the
table definition in which the rows would be inserted. It could be something
like this:

<HTML><HEAD></HEAD><BODY>
<TABLE>

{ROWS'}

</TABLE>

</BODY></HTML>

The most important thing to remember is to place all template files in the
same folder. Try to think in terms of reusability and do not be afraid to break
your standard page into many different template files. Think that the more
template files with “template variables,” the more flexibility you will have
when building your final output.

How to Use It?—PHP Side

The first thing to do in your PHP is to include the file you just configured
with the include function. For example, your first line could be

CLEANING UP YOUR CODE 129
include(*“./include/class. FastTemplate.php”);

Then you will need to create an object of the class FastTemplate and use some
of its methods to set up your final page.

To create a FastTemplate object, decide on its name (e.g., $tpl) and use the
FastTemplate constructor, by providing the path to the template files. For
example, if your template files are in ./templates/, you would write

3tpl = new FastTemplate(“./templates/”);

The basic methods needed to use templates are define, assign, parse, and
FastPrint. Define and FastPrint will be used only once per page, whereas
assign and parse might occur a variable amount of times, depending on the
number of “template variables” used.

The define method takes an associative array in which the elements are
the name of the template files to use and their keys are abbreviations of those
pages. Choose easy-to-remember names for the keys, as you will refer to the
templates through those abbreviations. For example, if we needed to use the
files mainpage.html and tablerow3.html, you would write

Stpl->define(array(“main”=>"mainpage.html”,
“row”=>"tablerow3.html”));

The next step is to use assign to set up all the template variables of the
template file that we wish to parse. Simply call the assign method with the
name of the variable you want to set up and the value you want to assign to
it. This information will be saved inside the template object and used when
you parse a file (see next paragraph). For example, to set up my template
variable {CELL_1}, I would write

Stpl->assign(“CELL_1"7, $value);

Note that using assign on a template variable that was already assigned will
overwrite the previous value of that template variable.

Once all the variables of a template file have been set, you may parse
the file. Parsing the file means going through the template file, replacing
all template variables found with their appropriate values, and storing the
final parsed string (file with proper values) in a new template variable to be
used later. There are two ways of doing this. The first, and usual way, is to
call the parse method with the name of a variable that will hold the result
of the parsing, and the abbreviation of the file to parse. For example, if
we wanted to parse tablerow3.html after we assigned all three cells, you
would do

Stpl->parse(“ROWS”, “row”);

130 MAKING CLEANER CODE AND OUTPUT

The first parameter is usually an existent template variable, particularly, the
name of the template variable where you will insert the parsed file. This way
of parsing is similar to assign, as it will overwrite the template variable pro-
vided as the first parameter on each call.

The other way to parse a file is to use the “append” parsing. The point of
the append version is to concatenate successive parsings of the same file (with
different data) into a single variable. For example, if our tablerow3.html is
supposed to help us build a full table, we will most likely need more than a
single row. If we used the regular parse, we would be able to have only a single
row. In order to use the append method, simply place a period sign (.) imme-
diatly before the name of the file abbreviation. The way you would proceed
is to first set up all variables of tablerow3.html, then parse the file doing

Stpl->parse(“ROWS”, “.row”);

If it is the first time you call this parse, a new template variable ROWS would
be set up containing the parsing of row. Each additional call of the same line
will add the result of a new parsing right after the previous content of ROWS.
Between each call of parse, be sure to reassign the template variables of the
parsed file so that each row has the appropriate information, rather than all
rows holding the same information. Again, remember that parsing will techni-
cally do an assign of a template variable.

Once you have parsed, from the inside out, all the template files needed
to create your final output (including the main page), use the method Fast-
Print by doing

Stpl->FastPrint();

This method will find the result of the last parsing done and will output the
entire string contained in that variable.

Here is an example that would create our dropdown menu with the list of
states assuming that we have the variable $states containing the associative
array explained in Chapter 6. To keep it simple, we will assume that the
variable is in an include file states.php. I will provide, in order, the code for
mainbody.html (main page), option.html (containing a single option line),
and templates.php that will do all the work:

<HTML>
<HEAD><TITLE>Template example</TITLE>
</HEAD>
<BODY>
<FORM action=nopage.php method=post>
<SELECT name=select>
{OPTIONS}
</SELECT>

CLEANING UP YOUR OUTPUT 131

<INPUT type=submit value=GO>
</FORM>

</BODY>

</HTML>

<option value="{VALUE}”>{NAME}

<?PHP

include("./include/states.php”);

include("“./include/class.FastTemplate.php”);

Stpl = new FastTemplate("“./TEMPLATES”);

Stpl->define (array(“page” => “mainbody.html”,

“option” => “option.html”));

foreach (Sstates as Sk=>Se)
{

Stpl->assign(“VALUE”, Sk);

Stpl->assign("NAME”, Se);

Stpl->parse ("OPTIONS”,”.option”); //We use append
}
Stpl->parse (“OPTIONS”, "page”);

/* This parse parses the final page once all options
have been set up. Since the result of this parse will
be printed out and not really used inside any file, and
since the OPTIONS variable will not be needed any
further after the parsing of mainbody.html, I store the
result in the last variable I used (in this case
OPTIONS). I do this to avoid creating an extra entry,
and waste memory space. Technically on the last parsing
the name provided on first parameter is not important.
Realize that we do not need to append either, as we
need only one main body. */

Stpl->FastPrint();

?>

CLEANING UP YOUR OUTPUT

To this point, we have been using boring black and white pages, with all set-
tings to default. It is time to bring up some life in our pages, by making a
cleaner output.

The first method, which is considered deprecated and poor programming
practice, is to use the HTML . . . tag. This tag allows you to
specify the font, size, color, and many other cosmetic settings for a block of text.
Since this tag should not be used, I will not waste time discussing it further.

The way you should set up the aspect of your pages should always
be through Style Sheets. These style sheets can be defined inside the header

132 MAKING CLEANER CODE AND OUTPUT

of your HTML files, or even better, saved inside style sheet files called
Cascading Style Sheets (or .css files). We will, of course, concentrate on the
latter.

The CSS File

A CSS file is a file that defines categories of input that will have a specific
look. It is possible to define properties for any link that HTML accepts, and
you may also create independent styles that will be able to attach to any block
of data you wish to use. The properties specified in the CSS file define the
sizes, fonts, decorations, colors, and many other aspect properties. The list of
valid attributes is way too large for me to show in its entirety all here, but it
is pretty easy to understand the point of each attribute. You can find an
exhaustive list on http://www.pageresource.com/dhtml/cssprops.htm. (Note
that CSS files should start with </-- and finish with ——>.)

The way the contents of a CSS file works is quite simple; you only need to
write the name of the tag that you wish to change (e.g., the H1 tag) followed
by a group of properties between curly braces. Each property is written as
property: value;.

Some tags, such as links, have several states, and it is possible to have a
different aspect for each state. The main states of a link are “link” for regular
state, “visited” for a link that has been visited, “hover” for a link that has the
cursor placed on top of it, and “active” for a link that refers to a page that is
currently opened in a different frame or window. To specify the state you
want to set up, write the name of the tag (in our case A) followed by a colon
and the state (style sheet example will be presented following the next
paragraph).

Not only is it possible to create styles for existing tags; you may also define
your own classes that can be applied to anything. So, for example, instead of
defining a style for H1, one for H2, or one for TD, you can have a class
“myclass” and use it on a link, a cell, a paragraph, or pretty much anywhere.
To create your class, instead of writing the name of a tag, write the name that
you want to give to your class preceded by a period (.). Here is a style sheet
example that I actually use systematically in my basic pages:

<l--
A:link
{ font-size: 12pt;
font-weight: bold;
text-decoration: none;
color: 000000; }
A:visited
{ font-size: 12pt;
font-weight: bold;
text-decoration: none; color: 000000;}

CLEANING UP YOUR OUTPUT 133

A:hover
{ font-size: 12pt;
font-weight: bold;
text-decoration: none; color: red;}
A:active
{ font-size: 12pt;
font-weight: bold;
text-decoration: underline; color: 000000;}
BODY
{ font-size: 12pt;
font-family: Verdana, Arial, Helvetica, sans-serif }
table
{ font-size: 12pt;
font-family: Verdana, Arial, Helvetica, sans-serif }
H1
{color: darkblue;
font-size: 18pt;
margin-top: I1pt;
margin-bottom: 2pt;
margin-left: Ipt;
margin-right: Ipt;
font-family: Verdana, Arial, Helvetica, sans-serif;
}
H2
{ color: black;
font-size: 16pt;
font-family: Arial Narrow, Arial, Helvetica, sans-
serif }
H3, H4
{ font-size: 14pt;
font-weight: bold;
font-family: Verdana, Arial, Helvetica, sans-serif }
H5
{ font-size: 12pt;
font-weight: bold;
font-family: Verdana, Arial, Helvetica, sans-serif }
.myclass {
font-size: 30pt;
letter-spacing: 10;
font-weight: bold;
font-variant: small-caps;
color: Yellow;
background-color: Red;

-—>

134 MAKING CLEANER CODE AND OUTPUT

Some of the main features of my style sheet, and something that I usually
have in all my pages, is nonunderlined links. I personally dislike seeing a link
as a typical blue underlined text. Instead, my links simply have the same look
as regular text with the only difference that they are in boldface. To let the
user know that they are links, I use the hover state of the link and use flashy
colors like red; that way, when the user passes the mouse over the link, its
appearance will change, capturing the attention of the user. I do have under-
lined links, but only when the page referred to by the link is active. Note
that colors can be written in hexadecimal, providing a RGB color (red-
green-blue), or by simply writing the name of the color.

I also included a .myclass style to show how to create your own class. This
class in particular is a silly one that will show up text with the colors of the
Spanish flag (red and yellow). I also added humorous attributes such as font_
variant, letter_spacing, and background_color.

How to use the style sheet? The first thing to do is to link to the style sheet
in your HTML file. Simply insert the following line of HTML inside the
<HEAD> ... </HEAD> section:

<link rel=stylesheet href="styles/mystyle.css” type=text/css>

Of course, don’t forget to change the href parameter to hold the path to your
style sheet file.

The next step is to use the actual styles that are in the CSS file. If you defined
a style for a standard tag, simply use the tag, and the style will be applied auto-
matically (as long as you are already linked to the style sheet). If you created
your own class and you wish to apply it to any tag, simply add the attribute class
to the tag you wish to change, followed by the name of the class (without the
period sign). So, for example, if I want a link to use myclass, I would use

 . . .

If you want to apply your class to a section of your HTML without separating
that portion as a link, paragraph, or other “visible” container, you can use the
<DIV>...</DIV> tag, which will cause your portion of HTML code to be
“divided” from the rest of the HTML. This will be very useful when we do some
DHTML, as it will allow us to move entire sections around our pages. Of
course, you still need to use the class attribute, as in this example:

Regular text and <DIV class=myclass>funky text!</DIV>.
So easy!

Useful Tools

If you are a lucky user of Macromedia’s HomeSite software, you have the
opportunity to use a program called TopStyle, which ships with HomeSite.

ASSIGNMENT 135

TopStyle is an excellent tool for creating style sheets; it shows all possible
attributes on a menu at the right side of the program. It also provides a
preview window where you can see what your styles look like while you write
them. Please note that I sincerely like the product in question and am not
trying to advertise anything.

ASSIGNMENT

Now that you know how to use templates and styles, try applying all that you
have learned in this chapter on the file browser that you have been working
on in the previous chapters. This means no tags, no background
properties in the <BODY> tag, and, of course, not a single HTML tag in your
PHP and no PHP inside files containing HTML.

11

Using Databases

OVERVIEW

Now that we are familiar with PHP, it is time to move on to databases, so we
can start designing database-driven Websites. This chapter will cover data-
base principles, as well as MySQL basics. The following chapter will be
devoted to mixing PHP and MySQL before we move on to JavaScript.

DATABASE BASICS

As the word indicates, a database is basically a base of data, or, if you prefer,
a set of data with a structure that is similar to real-life situations. It allows
you to store any type of information you need, and it can be accessed by any
user with the proper rights.

The Entity Relationship Model

A 9

An entity is a real-life object, such as, for example, “Steven Gabarrd,” or a
receipt for a purchase made on a specific date in a specific store. An entity
type defines a group of entities with the same characteristics like “workers”
or “receipts.” Basically, an entity is to an entity type what an object is to a
class. An entity is a specific instance of an entity type. Entities can be related

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

137

138 USING DATABASES

Entity1 Entity2

Id entity1 - N Id entity2
Attribute1 AttributeA
Attribute2 AttributeB

FIGURE 11.1 Entity relationship model.

through relationships usually named as actions. Each entity type has a set of
attributes that help define different entities at the same time. For example,
name and age would be attributes of the entity type “workers.”

When an entity can be identified individually with a single attribute or a
small set of attributes, these are considered index keys. If there is more than
one index key, one of them has to be set as a primary index key. If an entity
cannot be identified through its own attributes, and if it needs a relation with
another entity, it is called a weak entity. Any relationship to a weak entity is
called a weak relationship.

Relationships between entities have a complexity of either 1:1, 1:n
(or n:1), or n:m. If you have a 1:1 relationship between an Entityl and
Entity2, this means that for each entity of the type Entityl there will be a
single entity of type Entity2 related to it and vice versa. A relationship of
1:n would mean that an entity of type Entityl can have n associated
entities of type Entity2, but a single element of Entity2 can be associated
with only a single item of Entityl. The relationship n:1 is the reverse of 1:n.
Finally, a relationship n:m means that an item of Entityl can be related to
many items of Entity2, and an item of Entity2 can be related to many items
of Entityl.

An example of an entity relationship model is shown in Figure 11.1.

More Practical Examples

Let us imagine that you are creating a database to hold the exams you give
in a class, as well as the grades of all students. You will need a table students
that will contain all students with attributes such as id_student, name,
surname, and email. Then you need a table tests to hold all tests, although if
our tests do not have the same number of questions, it is not a good idea to
include the actual questions in the table containing the actual tests. Instead,
we will just store id_test, title, and date. Taking advantage of id_test, we will
have a table question_in__test with the questions used in each test. This could
make us think of something interesting: What if a teacher likes to reuse some
questions in different tests? Is it a good idea to hold the same full string with
the question as two separate entries? Well, I recommend that you always
avoid redundancies, and storing two full questions with exactly the same data
except the id of the test seems redundant. Therefore, we will use a separate
table questions that will contain id_question, question, and answer. The id

DATABASE BASICS 139

of the questions will be used in the table question_in_test along with an id_
test referring to the test it was asked in; number, to know in which order it
was asked for the test; value, indicating the number of points it is worth for
that test; and id_qt, which will be a primary automatically incremented dull
key used to refer to a specific question of a specific test. Finally, we need to
hold the grades of each student, which might as well be a grade per question.
We will have a table grade_per_question with id_gq (dull key), id_student
(the student that took the test), id_gt (reference to a question of a test from
the question_in_test table), and grade. Technically we could create an addi-
tional table with the grades for a full test per student, but since it is possible
to calculate it from data held in other tables, it is not necessary. The final list
of tables (and attributes) we have is as follows:

« students: id student, name, surname, email

- tests: id test, title, date

* questions: id_question, question, answer

* question_in_test: id gt, id_question, id_test, number, value
« grade_per_question: id gq, id_qt, id_student, grade

Now we need to determine the relationships between the tables. First we
have the table students that holds a piece of information (id_student) required
in the table grade_per_question. Each student can have many graded ques-
tions, but each entity in grade_per_question can refer to only a single student.
Therefore the relationship from students to grade_per_question is 1:n. The
table test holds id_test, needed in question_in_test. Each test can have mul-
tiple questions, but an entity in question_in_test can refer to only a single test;
therefore the relationship from test to question_in_test is 1:n. The table
questions contains id_question, used in question_in_test. Each question can
be used in many tests, but each entity inside question_in_test can refer to only
a single question, so the relationship from questions to question_in_test is
also 1:n. The table question_in_test contains id_qt, used in grade_per_ques-
tion. A question in a test can have a grade for many students, but an entity
inside grade_per_question can refer to only a specific question in a specific
test; therefore the relationship from question_in_test to grade_per_question
is again 1:n. The table question_in_test has references to id_question and
id_test, but we already took care of the relationships that these references
entail. Finally, the table grade_per_question has already been assigned all
needed relationships. In Figure 11.2 you will see a simplified diagram for this
database.

Typical Sources of Error

When working with databases, you should always make sure that all the
information is consistent. For example, if we have the database defined in the

140 USING DATABASES

previous database and you insert an entry in the table question_in_test, you
should make sure that it refers to the right test with a proper id_test and to
the right question, with the proper id_question. You should systematically
check all data inserting when the entity you insert depends on data already
in the database.

To avoid problems, and to enhance security, I personally always use a dull
key called id_ followed by the name of the table. I always make that key
primary, and autoincremented (automatically incremented), so I do not need
to worry about specifying its value when inserting elements. Fields like email
should always be set as UNIQUE to avoid problems. The reason why
dull keys help protect your database is that all the information you need
to search for a specific entry in any table is simply a number, so if you send
that information through pages, anyone trying to hack on your site will see
only a number, without knowing what it means. For example, if you are
sending a reference to a student through the GET method in PHP, it is
much safer to see something like script.php?id=4 instead of script.
php?student=sgabarro.

Simplifying the Diagrams

Something I have realized after many years of designing databases is the
tediousness of always adding the name of a relationship as well as its type.
After you gain some experience understanding relationships, their types
become pretty obvious with a simple glance at the tables linked by the rela-
tionship. Therefore, I do not write the relationship name or its type. To show
the dependences between tables, such as, for example, the dependence of our
table grade_per_question on the tables students and question_in_test, 1 use
an arrow pointing from the depending table (let’s call this the “primary”
table, or table 1) to the dependent table (the “secondary” table, or table 2).
This generally means that all my relationships have an arrow on the end of
the line that would have corresponded to a “1” in complexity terms. For
example, a relationship of 1:1 would be represented with a double-sided
(double-barbed) arrow, a relationship of 1:n will be expressed by an arrow
going from the n to the “1,” and a relationship of n:m will not be expressed
by an arrow. A simplified version of our previous database diagram is shown
in Figure 11.2.

USING MySQL

MySQL is a database programming language based on the standard ANSI
SQL92 but contains several modifications. For example, nested SELECTs
were not available in MySQL until version 4.1; MySQL does not support
SELECT...INTO TABLE that the standard SQL accepts; and views became
accessible only in version 5.0.1. You probably wonder what all this means.

USING MySQL 141

| Students [|
PK | id student PK |id test
| name ‘ title
surname date
| email |
’ Question_in_test
A
PK idgqt
P K1 id_test
number
| value

{

| |FK2 |id_question | N
{Grade,per__question[- — 2 r Questions

PK idgg PK | id question
| > !
FK1 |id_student question
FK2 |id_qt answer
| grade)

FIGURE 11.2 Database structure for student grade example.

Well, no need to know since we do not plan to go that far into MySQL for
you to need those features.

MySQL also includes extra features that were not in the standard SQL,
such as proper string comparisons, regular expressions, arithmetic on dates,
and many other things that again we will not see as we can do all of it with
PHP and JavaScript.

MySQL Syntax

Before we go into MySQL syntax, I would like to explain some standard
notations that I will use to explain the different commands. Whenever you
see a group of text between square brackets in a syntax line (e.g.,
[UNSIGNED)), this means that the element between brackets is optional and
you may use it or not use it depending on what you are trying to achieve.

A group of elements separated by the pipe sign “I” and surrounded by curly
braces { } implies a choice. Simply read the pipe as “or”; for example, if you
see “{integer | real | string},” this means that the whole block between the
opening and closing brace must be replaced by either the word integer, real,
or string, and that exactly one of those blocks must be used, no more, no less.
You may also see the pipe sign separating options inside a set of square brack-
ets, meaning a choice between the different options, so that only one option
maximum can be used. For example, if you see “[FIRST | AFTER position},”
this means that you can write FIRST, AFTER position or simply nothing at
all.

142 USING DATABASES

Words in capital letters (uppercase) will be key syntax words, whereas
lowercase words will be used to show what type of information is expected. In
the previous example, position should be a number representing a position.

Finally, if you see a comma followed by three period signs (, . . .) (ellipses),
this means that the element placed before the comma can be repeated as
many times as needed.

Data Types

When using MySQL you can use a string by simply surrounding a piece of
text with either double or single quotes. Inside a string you may use any of
the following special characters: \0 for an ASCII 0 (NULL) character, \’ for
a single-quote character, \” for a double-quote character, \b for a backspace
character, \n for a new-line character, \r for a carriage return character, \t for
a tab(ulation) character, \% for the percentage character, and _ for the under-
score character. You may also use floating-point numbers (e.g., —12.345),
integers (e.g., 678), as well as hexadecimal numbers (e.g., 3FB7A). Finally you
may use the NULL value to represent the lack of data.

Any name you use to define the structure of your database has a maximum
size. For instance, database names, table names, and column (or attribute)
names cannot exceed 64 characters. If you wish to use a longer name, you
may use aliases, which allow a maximum of 255 characters.

Assuming that you have a database called classgrades with the previous
example of database structure (see Figure 11.2), you could access a student
name by doing name if you are inside the table student, student.name if you
are in the classgrades database, but not accessing the table student, or simply
classgrades.student.name if you want to access that field from a different
database on the same server. For Web projects you will most likely have only
one database with many tables, which will simplify your work.

You may create variables in MySQL using the SET instruction to declare
the variable, and := to assign an expression to it. You may declare a variable
as integer, real, or string, and might declare many variables with a single SET
instruction. All MySQL variables start with the character @. Here is an
example:

SET @varl = integer, @var2 = real, @var3 = string;
@varl := 4,

I have never used MySQL variables, as I can accomplish the same func-

tionality with PHP in a much faster and easier way.

MySQL Numeric Data Types

When creating a table in MySQL it is important to know the type you wish
to use for each attribute. Here is the list of different usable types, with the

USING MySQL 143

explanation of what they mean. You might also see /U], meaning that the
type can be set as UNSIGNED or [Z], meaning that the type can be set as
ZEROFILL (indicating that the number will be filled with zeros to the left
of the number until all the allowed digits are used). If you see [(M)] or
[(M,D)], this means that you may specify the maximum number of digits
[e.g., (5)] or the number of digits for the integer and fractional part of a
number in the case of nonintegers [e.g., (5,2) would allow five digits before
the decimal point and two after]:

TINYINT [(M)][U][Z]—smallest integer number accepted in MySQL.:
-128 to 127 or 0 to 255 in case of unsigned numbers.

BIT—same as a TINYINT(1) for any version of MySQL up to and
including 4.1.

BOOLEAN or BOOL—same as TINYINT(1). A value of 0 is consid-
ered false; nonzero values are considered true.

SMALLINT [(M)][U][Z]—a small integer between —32,768 and 32,767
in signed numbers and 0 to 65535 for unsigned numbers.
MEDIUMINT [(M)][U][Z]—a medium integer between -8,388,608
and 8,388,607 for signed numbers, and 0 to 16,777,215 for unsigned.
INTEGER [(M)][U][Z]—a regular integer ranging from —2,147,483,648
to 2,147,483,647 and 0 to 4,294,967,295 for unsigned.

INT [(M)][U][Z]—same as INTEGER.

BIGINT [(M)][U][Z]—a big integer, ranging from -9,223,372,036,854,
775,808 to 9,223,372,036,854,775,807 and 0 to 18,446,744,073,709,551,615
for unsigned numbers.

FLOAT [(M,D)][U][Z]—a small floating-point number with
values ranging from -3.402823466E+38 to —1.175494351E-38, 0, and
1.175494351E-38 to 3.402823466E+38 according to IEEE standard.
DOUBLE [(M,D)][U][Z]—normal-size floating-point number.
Allowable values range from -1.7976931348623157E+308 to -
2.2250738585072014E-308, 0, and 20.2250738585072014E-308 to
1.7967931348623157E+308.

DECIMAL [(M[,D])][U][Z]—unpacked fixed-point number. The
number is actually stored as a string, using one character for each digit.

Date and Time Data Types

The following types are used to store dates and times:

DATE—used to store any date between “1000-01-01” and “9999-12-31”
with the format YYYY-MM-DD (Y for year digit, M for month digit,
and D for day digit)

144 USING DATABASES

« DATETIME—used to store both date and time. The supported range is
“1000-01-01 00:00:00” to “9999-12-31 23:59:59.” As you can see, the
format is YYYY-MM-DD HH:MM:SS.

« TIMESTAMP [(M)]—used to store a timestamp, ranging from “1970-
01-01 00:00:00” to partway through the year 2037.

+ TIME—used to store a time ranging from —838:59:59 to 838:59:59.
« YEAR [(214)]—stores a year in either two- or four-digit format.

String Data Types

Here are the main types that can be used in MySQL to store strings:

« CHAR(M) [BINARY]—used to store a string of a specific number of

characters (given by M). Note that, for example, a CHAR(10) will always

use 10 characters in memory, regardless of how many characters you
actually need.

VARCHAR(M) [BINARY]—variable-length string. The main differ-

ence between a VARCHAR and a CHAR is that in a CHAR the max

(maximum) size represents the number of characters used in memory at

any time whereas the VARCHAR uses only the exact amount of char-

acters needed, up to the max size. For example, storing “bla” in a

VARCHAR(30) will not use up 30 characters in memory, but only 3 as

needed.

+ TINYBLOB—a block of data that can hold up to 255 bytes.

« TINYTEXT—Ilike a TINYBLOB but holds text data rather than a blob.

« BLOB and TEXT—bigger blob and text fields than can hold up to 65,535
bytes of binary data (BLOB) or text data (TEXT).

« MEDIUMBLOB and MEDIUMTEXT—blob and text of up to 16,777,215
bytes or characters.

+ LONGBLOB and LONGTEXT—blob and text of up to 4,294,967,295
bytes [4 GB (gigabytes)] of data.

« ENUM(‘valuel’, ‘value2’,...)—an enumeration. A string object that
can have only one value, chosen from the list of values ‘valuel’,
‘value2’, ..., NULL, or the special ‘’ error value. An ENUM can have
up to 65,535 distinct values. Data are internally stored as integers.

« SET(‘valuel’, ‘value2’, ...)—a set is a string object that can have zero
or more values, each of which must be chosen from the list of values
‘valuel’, ‘value2’, ... A SET can have up to 64 members.

MySQL Operators

In MySQL you will find the traditional arithmetic operators such as +, —, *,
and /. You can also use the pipe sign | for a binary or operation, the ampersand

USING MySQL 145

& for binary AND operations, a double “less than” sign << to do a logical shift
to the left, and a double “greater than” sign >> to do a logical shift to the
right. If you wish to know how many bits there are in a number n, simply use
BIT_COUNT(n).

Logical operators can be NOT, or simply an exclamation point !, for the
logical NoT (/TRUE == FALSE). You can use OR, or the double pipe Il; AND
or the double ampersand & &.

MySQL Instructions

The following chapters explain the basics of the most important functions as
far as Web programming goes. The explanations of some functions will be
brief, as their actions will usually be done through PhpMyAdmin, rather than
typing the actual SQL query. For the same reasons, I will not go in full depth
of all the abilities of each one of the instructions; instead, I will limit discus-
sion of each instruction to its most common use(s).

To create a database, use CREATE DATABASE name. To delete the data-
base (along with all its contents), use DROP DATABASE [IF EXISTS] name.
The option IF EXISTS is just an extra flag that you can put to avoid errors in
case the name provided does not correspond to an actual database on the
server. To force the use of a database, write USE DATABASE name.

The code used to create a table in a database is CREATE [TEMPO-
RARY] TABLE [IF NOT EXISTS] table_name [(create_definitionl, create_
definition2, . . .)]. When creating a table it is possible to set up its contents
through the create definitions. Each one of them can be either one of
these:

« attribute_name type [NOT NULL | NULL][DEFAULT default_value]
[AUTO_INCREMENT][PRIMARY KEY][reference_definition]—
used to define a new field in the table

« PRIMARY KEY (key_column_name, ...)—used to specify the fields
that will act as primary key

« UNIQUE (column_name, . ..)—used to specify which fields are unique

For example, to create the student table of the earlier example, assuming that
the email address has to be unique, you would write

CREATE TABLE ‘'student’ (

‘id_student’ SMALLINT UNSIGNED NOT NULL
AUTO_INCREMENT,

‘name’ VARCHAR(10) NOT NULL,

‘surname’ VARCHAR(20) NOT NULL,

‘email’ VARCHAR(30) NOT NULL,

PRIMARY KEY ('id_student’),

UNIQUE (‘email’)
) TYPE = MYISAM COMMENT = ‘Super table’;

146 USING DATABASES

The TYPE field at the end is not really necessary, but you should include it
to force the type of table you are creating. The COMMENT field is just an
example of how you would insert a comment for a created table.

If you need to alter an already existing table, you may do it by writing
ALTER [IGNORE] TABLE table_name alter_specs [, alter_specs2,...].
The alter_specs can be any of the following:

* ADD COLUMN create_definition [FIRST | AFTER column_name]—
used to add a new attribute. The create_definition uses the same syntax
as with the CREATE instruction.

* ADD PRIMARY KEY (col_name,...)—makes the fields placed
between parentheses a primary key of the table.

*« ADD UNIQUE (col_name, . . .)—sets the fields placed between paren-
theses as unique.

« ALTER [COLUMN] col_name {SET DEFAULT default_value| DROP
DEFAULT}—used to set a default value for a field or to remove the
current default value.

« CHANGE [COLUMN] old_name create_definition—replaces the
column old_name with the column defined by the create_definition.

« MODIFY [COLUMN)] create_definition—similar to CHANGE but
will try to figure out the column to be modified through the
create_definition.

« DROP [COLUMN|] name—removes an entire column.

* DROP PRIMARY KEY—unsets all primary keys.

* RENAME [AS] new_name—renames a table.

All these instructions allow you to prepare the database for its use, and even
though you will most likely do the same job through PhpMyAdmin without
needing to understand the syntax, it is very useful to understand the queries
so that you may create an installation script that would set up the database
with the proper structure needed for your scripts to work.

The two operations we will do most often through PHP scripts are inser-
tions and searches in the database. In order to insert an element in a table,
there are three possible syntaxes:

« INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY]
[INTO] table_name [(col_name, col_name2,...)] VALUES (expres-
sionl, expression2, ...) [ON DUPLICATE KEY UPDATE col_name=
expression, . . .J. This is my personal favorite. Simply use the table name
followed by the fields for which you wish to specify a value. For example,
you could skip values that are autoincremented, and values with a default
value if you wish to use that same default value. Finally, after the word
VA LUES you write the expressions that you wish to store in the specified
fields in the same order that you wrote the field names.

USING MySQL 147

« INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY]
[INTO] table_name [(col_name, col_name,...)] SELECT...[ON
DUPLICATE KEY UPDATE col_name=expression, . . .]. This is used
whenever the insertion depends on a selection (see next section).

« INSERT[LOW_PRIORITY|DELAYEDI|HIGH_PRIORITY][INTO]
table_name SET col_name=expression, col_name2=expression2, ...
[ON DUPLICATE KEY UPDATE col_name=expression, . . .J. This is
similar to the first case but with a slightly different syntax.

For example, to insert a new user in our previous example, we could write

INSERT INTO students (name, surname, email) VALUES
(‘Steven’, ‘Gabarré’, ‘sgabarro@stevens.edu’);

The ON DUPLICATE KEY UPDATE. .. section allows you to update
the fields of existing entries if you attempt to input an entry with a conflicting
key or unique field. For example, in our case, the field email is UNIQUE, so
if I attempt to insert a new entry with the same email address (sgabarro@
stevens.edu), the MySQL server will find the field that contained that unique
field and update the entry by looking at the series of assignments placed after
the ON DUPLICATE . ..

If you are trying to update an entire field but, for example, preserving the
primary key, you can use REPLACE, which works exactly the same way as
INSERT, except that it does not accept the ON DUPLICATE KEY UPDATE
field. Instead, in case of a duplicate field, the conflicting entry is removed and
replaced with the new entry. For example, if the id_student for the entry
containing my name were 5 and I wanted to update my email address, I could do

REPLACE INTO students (id_student, email) VALUES
(5, ‘sgabarro@cs.stevens.edu’);

Another final way to update a series of entries is to use UPDATE with the
following syntax:

UPDATE [LOW_PRIORITY] table_name SET col_name=expressionl
[, col2=expr2, ...] [WHERE where_condition] [ORDER BY col_name]
[LIMIT row_count]

The way UPDATE works is simple; you provide a condition as part of the
where_condition that will match all the elements you want to update, and it
will change the specified columns for all the matches found. If you provide
an ORDER BY statement, the updates will be done in the order of the sorted
elements. Finally, the row_countis used as a limit and represents the maximum
number of rows to update. If you do not provide a limit, all matches will be
updated. Also, if you do not provide a WHERE statement, all entries in
the table will be matched and updated (based on the limit). For example,

148 USING DATABASES

assuming that we had an extra field age in my table students, we could decide
to look at every student alphabetically ordered by their last names (surnames),
and make the 10 first 20-year-old students in the list one year older by writing

UPDATE students SET age = age + 1 WHERE age
=20 ORDER BY surname LIMIT 10

In order to delete an entry from a table, we use DELETE [LOW._
PRIORITY] FROM table_name [WHERE where_definition][ORDER BY
column] [LIMIT rows]. Skipping the WHERE section will match all the ele-
ments in the table and delete all the entries that the LIMIT allows you. For
example, to delete the first 20 students using alphabetical order based on the
surname, you would write

DELETE FROM students ORDER BY surname LIMIT 20

Assuming that you already inserted data in your database, the operation
you will use more often is called SELECT. A SELECT is used to look for
information in one or more tables that matches specific criteria. The following
displayed routine in bold, is the full syntax accepted for a SELECT; it may
seem overwhelming, but as you will see in a later example, it is quite simple
once you skip some of the optional sections. I will explain the important
options that you might need and skip the rest, which is usually needed only
in advanced database manipulation.

SELECT

[ALL | DISTINCT | DISTINCTROW]

[HIGH_PRIORITY]

[STRAIGHT_JOIN]

[SOL_SMALL_RESULT] [SQL_BIG_RESULT]
[SOL_BUFFER_RESULT]

[SOL_CACHE | SQL NO_CACHE] [SQL_CALC_FOUND_ROWS]
select_expression, . . .
[FROM table_references

[WHERE condition]

[GROUP BY {col_name | expression | position}

[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}
[ASC | DESC],...]

[LIMIT {[offset,] row_count | row_count OFFSET offset}]

[PROCEDURE procedure name (argument list)]

[INTO OUFILE ‘file name’ export_options | INTO DUMPFILE ‘file
name’]

[FOR UPDATE | LOCK IN SHARE MODE]]

USING MySQL 149

Pretty scary, isn’t it? ©
To simplify this a bit, let me show you the options that I have personally
used in the past; I will explain each of them. If you wish to learn what the

others do, refer to http://dev.mysql.com/doc/refman/5.0/en/select.html:

SELECT select_expression [, select_expression2, ...] FROM table_

referencel [, table_reference2, ...] [WHERE condition][GROUP BY
col_name [ASC | DESC]] [HAVING where_condition] [ORDER BY
col_name [ASC | DEC]] [LIMIT [offset,]count][INTO DUMPFILE

‘exportfile’]]

The select_expressions represent which data are being searched. Usually
it is a series of attributes from the tables in which we are searching. If you
wish to gather the information for all the fields in the tables searched, you
can use the * (asterisk) symbol. Another useful tool when looking for data
gathered from separate tables is to use aliases to the tables searched. For
example, if you define an alias ¢/ for the first table containing the data you
are searching, and ¢2 for the second table that you need (see next paragraph
for table alias definition), you could write for example SELECT tl.columnl,
t2.column2, ...

The table references are the list of tables in which to look for the informa-
tion needed. When looking inside a single table, simply write its name, but if
you are searching in different tables, it is preferable to provide them with an
alias using the keyword AS so that the aliases can be used in the select_
expression. For example, you could have SELECT tl.name, t2.salary FROM
employee AS tl, info AS t2....This would create an alias ¢/ to the table
employee, and an alias ¢2 to the table info.

The where_condition is the same type of expression as seen before. It is
used to select the right matches that you need. For example, you could group
an employee’s name with that person’s salary, extracted from tables employee
and info, assuming that the name of the employee is the main identifier
needed in the info table by doing SELECT tl.name, t2.salary FROM employee
AS tl, info AS t2 WHERE tl.name = t2.name. Of course, we assume that
both tables have a field name. This query will find all pairs of entries with the
same name and return the value of the name field from the employee table
and the salary field from the info field for each of those matches.

The GROUP BY section allows you to group results by a specific field. It
is quite similar to ORDER BY. The options ASC and DESC mean “ascending
order” and “descending order,” respectively.

The option HAVING is quite similar to WHERE but runs at the end of
the query, right on the set of values that were found owing to the WHERE
definition. The HAVING field allows you to use functions, whereas WHERE
does not.

ORDER BY is the regular sorting, as used in other instructions. Note that
an ORDER BY statement can accept several table names that allow you to

150 USING DATABASES

create several levels of ordering. For example, ORDER BY surname, name
ASC would do a sorting of the data by surname, and if there were several
entries with the same surname, those entries would be sorted by name.

The option LIMIT is a bit more flexible when using a SELECT, allowing
you to not only specify how many elements to match but also know which is
the first element to be considered. This is a really useful tool when you want
to limit the number of results shown on a page, and facilitates the creation of
multiple pages to show data. For example, in a commercial Website where
you would sell several hundred products, you should avoid showing them all
on the same page. Instead, you should split them into smaller groups, for
example, 10 items per page. The standard in these cases is to have small
numbers that represent the pages—for example, with page 1 showing elements
0-9, page 2 showing elements 10-19, and so on. This method could be imple-
mented by calculating the LIMIT value by checking the current page. We
come up with the formula first_item = (page — 1) * 10. Just to verify, the first
item of page 4 would be the 31st entry (index 30) in the list of matches, and
(4-1) *10==30, so it is all good! This value represents the offset that should
be followed by the amount of elements that we want to gather. For example,
to view the 10 items on page 5, we would calculate the offset doing (5 — 1) *
10 == 40, and use a LIMIT 40,10.

Finally, INTO DUMPFILE allows dumping the results of the query in a
file for its further processing. As a last example, let us imagine that we want
to gather all the info on users with an id greater than 50 and save it in the file
“results.txt.” You could do

SELECT * FROM users WHERE id_user > 50 INTO DUMPFILE
‘results.txt’;

Using Functions in MySQL

There are many useful functions in MySQL that allow advanced database
programming directly through the SQL command prompt. Nevertheless, we
have learned how to use PHP, and we will always access MySQL through
PHP scripts. This means that it is much simpler for us to do the work directly
in PHP and use the results of the PHP functions as input for our SQL
queries.

12

Using PhpMyAdmin

OVERVIEW

PhpMyAdmin is probably the most useful and simple database management
tool I have used. It allows the manipulation of a MySQL database, using PHP,
through a very user-friendly interface. This short chapter will guide you
through the steps of creating and setting up your database.

CREATING A DATABASE

The first thing you need to do when creating a database is to have its layout
prepared. It is important to know exactly what the database will hold, what
tables it will include, and what fields will define the tables. The next step is
to create the actual database.

In PhpMyAdmin main page, you will see a text area such as that shown in
Figure 12.1

In that field you should enter the name of the database you wish to create
and then click on “create.” If the database already exists, select it from the
dropdown menu on the left frame. Once you have selected the database you
wish to access (or created a new one), you will see its name appear on the
left frame, along with the name of every table it contains.

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

151

152 USING PhpMyAdmin

—— o e . Svsarsts £ dogsn o o pamons wetns Q) e e o

Welcome 10 phpdtyAdmin 2.6.2-pi1

My S 6002 0 g 0 v ot e e

(R 1T Ty

v

L i e R ———

FIGURE 12.1 PhpMyAdmin homepage.

CREATING TABLES

Once you select a database and you see the list of tables on the left, you may
click on a table name on the left menu to check the structure of that table.
Clicking the icon to the left of the table name will show its contents. If there
are no tables, you will see a screen like that shown in Figure 12.2.

The top menu gives access to Structure (to view the structure of the data-
base), SQL (where you can type in your own SQL queries, or import a SQL
file), Export (which allows you to export the structure and data of the data-
base), Query (used to create queries through dropdown menus, when you are
uncertain of SQL syntax), Operations (to copy the database, rename it,
change its character set, etc.), and Drop, which deletes the database along
with all the data it contains.

To create a new table, enter its name in the Name field, and the amount of
attributes it will contain in the Fields attribute. You can always modify this
later, but it is preferable to know the details beforehand. Each time you
are in the database structure page, you have the possibility of creating a
new table.

Once you select the number of fields for the new table, you will see a screen
similar to the screenshot in Figure 12.3, with as many lines as number you
provided for the Fields value. For each line you must insert (in this order) the
name of the field (how you will refer to it in your scripts), its type (through
the dropdown menu), its length (see chapter 11), its collation (just leave as
default), any attributes (like UNSIGNED or UNSIGNED_ZEROFILL),

CREATING TABLES 153

FIGURE 12.2 Table creation page.

FIGURE 12.3 Filling in the details of a new table.

154 USING PhpMyAdmin

e Dees e o

@ O B e rresmm— iomi
Cottossn | ettt et Vonaerptuce vt sosse (., g 2. s v) e e e K]t et S

S ecoion » s et

RN 590 pow [tewcr! fiwey ROpese Xivey

o s -
. i B L - TEN e ER B e VAN
s [. "

FIGURE 12.4 Database structure view.

whether you wish to allow the field to accept being null or not, a default value
(if any), whether it is an AUTO_INCREMENT field (ideal for ids) and,
through the radio buttons, whether the field is a primary key, index key, or a
unique or regular field. The last checkbox allows creation of a full-text, which
is a way to group several fields together as one massive text field.

After you fill in all the details of your new table, you can insert some com-
ments, and then submit it so that the table is created. You should see its name
on the left frame menu, as in Figure 12.4.

ACCESSING AN EXISTING TABLE

Click on the name of the table you wish to view in the left menu. This will
take you to the table menu (see Figure 12.5), where you can view the table
structure, Browse the data in the table, send a SQL query, Insert new entries,
Export the table and its contents, do several Operations on the table, Empty
its contents, or Drop the entire table along with its data.

EXPORTING/IMPORTING A DATABASE STRUCTURE AND CONTENT

Usually phpMyAdmin is used to create the general database structure, leaving
the elements’ insertion to your own PHP scripts. Sometimes it is useful to
create installation scripts that will use PHP to create the needed database

EXPORTING/IMPORTING A DATABASE STRUCTURE AND CONTENT 155

o e 53 s .. o | St G T 8 o v K sy vt St
e Pecahon b Dxbase Grawit b T goees

O Sorien] e A% Sewet | it | Qtnon | SOpwmion Wheey | X0

Sl St
Fow W ¢ o Tae ¢ D o Tebe (30 o % ()

| e g o St
| Mopee Typs Cotnaty Acton Sud Tre Beege Swemenn Yoo
R S § 7 X e ne B e e
R $ 7K RN G i
Onaeminton + osmss (0] LD .
G A e S
e e et

i SO sy 5 Saatne Bt i
SEUBCT * TRUAL e WOEAE +

7 G s ey b s @

O Loamben of the toat e
Locadan of e wat e
[fnne | e 3 2000,

e

| B s e w0 e e e st

FIGURE 12.5 Table structure view.

and table structure in the database server. To do so, follow the directions in
the next chapter to write a PHP script that will run all the needed SQL
queries, such as “CREATE DB” or “CREATE TABLE.”

Another way of setting up your database on another computer is to use the
export/import feature. Select the database you wish to export from the drop-
down menu on the left and select the Export tab (see Figure 12.6).

Once you are there, select the format to export to (SQL is usually the best
choice, as it will create a simple text file with all the SQL queries that will
create and populate your database). You may choose whether you wish to
export the database structure, the data, or both, as well as setting up other
options on the way the import will work. Finally, select the “Save as file”
option so that you can save the export. If you don’t select “Save as file,” the
actual export file will simply show up in your browser, rather than allowing
you to download it. You may also choose to compress the file as a zip or gzip
(I personally use gzip when exporting), to make the export file smaller. Note
that exporting a database exports its contents, but not the database name, so
you will need to create the database before you can import the structure.

Once the file is created and saved in your computer, transfer it to the server
in which you wish to install your database. We will assume that you have
installed phpMyAdmin in the destination computer. Create a database with
the same name as your source database, and select the SQL option (third icon
from left in the toolbar shown in Figure 12.7).

From there, click on the Browse button, select the export file you saved,
and click on the lower Go button. The other Go button is used when you

156 USING PhpMyAdmin

FIGURE 12.6 Export interface.

FIGURE 12.7 SQL queries interface, import page.

ASSIGNMENT—FINAL PROJECT 157

manually write your SQL queries. Make sure that the file is smaller than the
size specified (2048 KB in my screenshot), or the operation might time out.
If your file is larger, you can break it down into several small files and import
them one by one.

ASSIGNMENT—FINAL PROJECT

When I teach this course, this is the point where I ask students to specify their
idea for a final project. The reason I wait until I finish the basics of databases
is because all database-driven Websites should be designed around the data-
base, so it is important to have enough knowledge of database structures to
come up with a proper database layout for the project. The main rules I
enforce are:

» Create a team (minimum one person, maximum three or four, depending
on the project). The harder the project, the more people I allow to work
on it. Ideally I like to have projects of at least two students as it forces
them to learn how to work together in teams.

« Start thinking of a final project idea; the project must be a database-
driven Website written in PHP. I allow free choice of database (excluding
MS Access) as the principles remain the same regardless of whether they
decide to use MySQL, PostgreSQL, or other similar database. Typical
projects include bulletin boards similar to phpBB, eBusiness Websites,
image galleries, and online journals.

+ Write a page describing the project, and who will be the team members.
I require students to write the description in a single page to learn how
to transmit important information in a small amount of text, going
straight to the point.

« When students have no project ideas, I usually choose one for them, but
I tend to suggest fairly complex projects such as email or FTP clients
coded in PHP. This usually motivates students to use their imaginations
and create Websites that they might use in the future.

« Finally, some JavaScript features must be added before the final presen-
tation of the project.

Once the project proposal is submitted, it is the professor’s decision to accept
the project as is or to add features that seem are necessary. Once the project is
approved, the student must take the project through three main phases:

1. First they need to come up with the database layout, which needs to be
reviewed by the professor and approved.

2. About a week or two before the final presentation day, the students should
go through what I call a “CEO” (chief executive officer) presentation.

158 USING PhpMyAdmin

This teaches some basic principles of real-world communication, based
on the principle that CEOs will give you a maximum of 5 minutes to
impress them. This is usually a fun role-playing chance, where the pro-
fessor pretends to know nothing about Web technologies. The students
must show the progress on their projects in exactly 5 minutes and con-
vince the CEO that their project will be beneficial for the “fictitious”
company that the CEO is representing. Of course, they must make sure
that they can explain their projects in very simple words, avoiding sen-
tences like “We will handle user authentication through sessions, storing
the session ID in a cookie for further use.” Instead, the presentation
should emphasize the main functionalities of the project, as well as the
appearance (CEOs will want it to look nice) rather than the “how it
works.”

3. The final presentation usually runs for about 15 minutes and should be
what I call the “CIO” (chief information officer) presentation. A CIO
knows about technology, and therefore the presentation should have a
much higher technical level than for the CEO presentation. In this pre-
sentation the students should efficiently show every aspect of their
Website, which needs to be flawless (I take great pleasure in attempting
basic security breaches to students’ projects). They should, of course,
explain how the scripts work and show important portions of code.

In the last chapter of the book you will find a long step-by-step develop-
ment cycle that I use on my Websites and that I recommend. It also includes
some examples of security breaches that can happen in a PHP project.

13

Creating Database-

Driven Websites
with PHP/MySQL

OVERVIEW

Once you have designed and created the database you want to use, it is pos-
sible to access its contents with PHP. The easiest way to proceed is to create
the database and its tables with a tool like phpMyAdmin, and then use PHP
scripts to manipulate the data in the database.

CONNECTING TO YOUR MySQL SERVER WITH PHP

When you wish to check the contents of your database with PHP, the first
thing to do is to connect to it, using the method mysql_connect. This function
requires three extremely important parameters: the host (or server where the
DB is installed and running), the user (should be the same one you set up for
phpMyAdmin), and the password for that user. Generally the host will always
be localhost unless your Web server and database server are installed in two
separate machines.

Instead of directly using the mysql_connect, I would recommend creating
an include file in which you will write wrapper functions for all the standard
methods. A wrapper function will run the standard one, making sure every-
thing works fine, or quit the script if there is a problem. The include file should

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

159

160 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

also include the user, password, and server information so that the informa-
tion is centralized in a single file. The file should be kept in a safe folder!!!
Here is what the beginning of the include file should look like:

<?PHP
SMySQIL_Host="localhost”;
SMySQL_User="user”;
SMySQL_Pass="pass”;
function connect()
{
global SMySQL_Host, S$MySQL_User, SMySQL_Pass;
if (! Slinkid=mysqgl_connect(“$SMySQL_Host”, "“SMySQL_
User”, “"SMySQL_Pass”))
{ .
echo “Impossible to connect to “, SMySQL_Host,
“
";
exit;
}
return Slinkid;
}

?>

Note that our new function connect will return the same value that mysql_
connect returns. This $linkid will be the resource needed for us to send any
query to our database server. To actually connect using our function, we need
to first include our include file and then simply call our function connect, like
this:

<?PHP
include(“/usr/home/sgabarro/includes/myinclude.inc.php”);
$lkid = connect(); '

?>

SUBMITTING SQL QUERIES

So far our code simply connects to the database and does nothing else. To
add extra functionality, there are many methods, as we shall see; but once
you know MySQL syntax, you only need the method to send a query and the
methods to read the results from those queries. Whenever you wish to access
a database, create a string holding a SQL query, and use either mysql_db_
query or mysql_query. The first one takes a database name and the query;
the second takes the SQL query and the link id provided by connect. If you
use the second method, you must first select the database to use on your
MySQL server using mysql_select_db. 1 personally prefer the second option,
but I also have a wrapper method for this task:

PROCESSING THE RESULTS OF A QUERY 161

function send_sql($sql, $Slink, $db) {

if (! (Ssucc = mysqgl_select_db(sdb))) {
echo mysql_error();
exit;

}

if (! ($res = mysql_query($sql, $link))) {
echo mysqgl_error();
exit;

}

return Sres;

}

Note the use of mysql_error(), which prints the last error returned by the
MySQL server. Usually my scripts will use only a single database, so I write
send_sql with just two parameters, and I hard-code the database to access on
the my_select_db line. This function should be in the same file as connect.
Here is an example of how you would retrieve all the info for a user “Bewchy”
assuming that our DB name is “Examples” and our table name is “Users”:

<?PHP
include(“include.inc.php”);
Slink = connect();
Sdb = “Examples”;
S$sgl = “SELECT * FROM Users WHERE username=’‘Bewchy’”;
if (Sres = send_sql($sqgl, S$link, $db))
echo "“The query worked, now let us learn how to

use the returned var”;
2>

PROCESSING THE RESULTS OF A QUERY

As you probably noticed, when sending a SQL query, the send_sql function
returns a variable that we called $res. This variable is a resource handler, and
contains all the information related to the query sent. For example, if you
tried to find a series of users, $res would hold the details of all the matches
found. These data can be read with several methods; my favorite is the func-
tion mysql_fetch_row. This function receives a resource handler as an input
and returns the next row. Each row is an entity that was returned after the
query. What is nice about this method is that it will return an array with all
the details in the order they were requested. Also, this function returns
FALSE if there are no more rows, so you can easily use it in a loop to process
all the results. You can also use the function mysql_num_rows($res), which
will return the number of rows the resource handler contained. If, for example,
your query was “SELECT user, password FROM Users WHERE age=26,”

162 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

doing send_sql should return a resource handler with all the usernames and
passwords of all the 26-year-old users. Assuming that we called $res = send_
sql($sql, $link, $db), here is some code you could use to check all the
entries:

<?PHP
// we assume that the query was already done
if (mysql_num_rows($res) == 0)
echo “No match found!”;
else
while ($row = mysql_fetch_row($res))
echo “User: “.$row[0].”
Password: “.$row[1].”
";
7>

EXAMPLE OF LOGIN PROCEDURE

When you have a page that requires users to log in using a username and
password, I usually have a login.php script that checks user validity. If it is, I
gather all the needed info for that user and store it in a session, right before
I redirect the page to the “logged-in” area, which, of course, will ensure that
the session is properly set up. Something I like to do is store all passwords
with MDS encryption, to increase security. This means that to verify user-
name/password information, I need to encrypt the password received through
the login page also with MDS5, and see if it matches the one stored in the
database. A basic way to check for proper username/password is to attempt
to find all users with same username and encrypted password. If you set up
your database properly, fields like “username” will be unique, so you know
that you can receive only a single match or none at all. Here is a basic login.
php procedure, assuming that our “users” database contains (in order) the
fields id_user, username, pass, name, surname, and email:

<?PHP
include (“include.inc.php”);
session_start();
slink = connect();
$sql = "“SELECT * FROM users WHERE user='".S_
SESSION[“user”].”’ AND pass=MD5('”.$_SESSION[“pass”].”’)”;
if (! Sres = send_sqgl($sql, $link, ‘“examples”))
{
echo "Database problem!!!
exit;
}
if (mysql_num_rows(Sres) == 0)
header("Location: index.php”);

OTHER USEFUL FUNCTIONS 163

// no need to put an else, since if any of the previous
//"if” was true, we would have left the page by now.
Sarr = mysql_fetch_row(Sres);

S_SESSION[“id”] = Sarr[0];

S_SESSION[“user”] = Sarr(l];

S_SESSION[“name”] = Sarr[2];

S_SESSION[“surname”] = Sarr(3];

S_SESSION([“email”] = Sarr(4];

header("Location: index_logged.php”);
?>

OTHER USEFUL FUNCTIONS
Here is a list of functions you might find more or less useful:

« int mysql_affected_rows(3linkid)—returns the number of affected rows

in the previous MySQL operation.

bool mysql_close($link)—closes the MySQL connection.

* bool mysql_data_seek(8res, $row)—moves the internal pointer of a
resource handler to the row $row. The next call of mysql_fetch_row()
would return that row.

« resource mysql_list_dbs($lid)—lists all the databases available in the
MySQL server through a result pointer. To retrieve a specific name of
database, use mysql_db_name($res, $row).

» mysql_drop_db($dbname, $link)—deletes a MySQL database along
with all its tables and data.

« int mysql_errno($link)—returns the error number from the previous
MySQL operation. To get the string of that error message, use mysql_
error($link) instead.

- object mysql_fetch_field(3res)—returns an object containing the field
information. This can be used to obtain information about fields in the
provided query result. The main fields you might find useful in the
returned object are name for the field name, table for the name of
the table the column belongs to, and def for the default value of that
column. Other properties include max_Ilength, not_null, primary_key,
unique_key, multiple_key, numeric, blob, type, unsigned, and zerofill.

« array mysql_fetch_lengths($res)—returns an array that corresponds to
the lengths of each field in the last row fetched by MySQL.

« bool mysql_free_result($res)—frees the result memory.

« int mysql_insert_id($link)—returns the ID generated from the previ-
ous INSERT operation. Very useful to know the value of an AUTO_
INCREMENT field right after inserting an element.

164 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

* int mysql_num_fields($res)—get the number of fields in a result.

« string mysql_result($res, §row)—get the contents of a specific result as
a string.

GROUPING OUR METHODS IN A CLASS

As I was trying to find an example of object-oriented programming in PHP,
I realized how useful a database class would be. Inside we would have all the
methods we need to help out with any database operation we might want to
do. It will also hold all the data that we might need, like resource, handlers,
username, password, host, and link id.

The class will contain a method setup that will accept the host, username,
password, and default database to use for our remaining queries. This func-
tion will also connect to the database. This function should be the first
one to call, although it can be omitted as long as you change the class code
to include your default host, username, and password instead of “localhost,”
“root,” and “.” The function pick_db will allow you to pick a new database,
or choose one if you never used setup. This can also be skipped if you
give the member $db a default value with the database name you will
always use. Then we have a destructor that frees up memory and disconnects
for the server, a function disconnect to disconnect, a function connect to
connect to the server, a function send_sql (pretty much the same that we
mentioned earlier in this chapter), with the added feature that it will connect
to the database in case this had not yet been done. The function printout
will show the contents of a resource handler as a table; next_row, which
returns the next row in the resource handler; insert_id, which will return
the last AUTO_INCREMENT value set by an INSERT; and new_db,
which creates a new database and sets it up as the default database to
use.

Feel free to add your own methods; there are many other things that you
might find useful to use; this is meant to serve only as an example. Note that
I used exceptions in some functions to illustrate how to use them.

Here is the code:

<?PHP

/***

* % * %

** (Class database written by Steven A. Gabarré **
* %k * ok

***/

class database

GROUPING OUR METHODS IN A CLASS 165

private S$link;
private Sres;
private Shost

“localhost”; // change to your own
//default value
“root”; // change to your own
//default value
private Spass = “”; // change to your own default
//value

private Suser

private $db;

// sets user, pass and host and connects
public function setup(Su, $p, Sh, $db)
{
Sthis->user = Su;
Sthis->pass = S$p;
Sthis->host = Sh;
Sthis->db = S$db;
if (isset($this->1ink))
Sthis->disconnect();
Sthis->connect();
}
// Changes the database in which all queries will
//be performed
public function pick_db($db)
{
Sthis->db = $db;
}

// destructor disconnects
public function __destruct()
{

Sthis->disconnect();

}

//Closes the connection to the DB

//public function disconnect()

{
if (isset(Sthis->1ink))
mysql_close(Sthis->1ink);
unset(Sthis->1ink);

}

// connects to the DB or disconnects/reconnects if
//a connection already existed
public function connect()

166 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

{
if (l!isset(Sthis->1ink))
{
try {
if (!Sthis->link=mysql_connect(Sthis->host,
Sthis->user, Sthis->pass))
throw new Exception(“Cannot Connect to
“. Sthis->host);
} catch (Exception Se)
{
echo Se->getMessage();
exit;
}
}
else
{
Sthis->disconnect();
Sthis->connect();
}
}

// sends a SQL query
public function send_sql(Ssql) |
if (l!isset(Sthis->1link))
Sthis->connect();
try {
if (! S$succ = mysql_select_db(Sthis->db))
throw new Exception(“Could not select the
database “.Sthis->db);
if (! Sthis->res = mysql_query($sql, $this->link))
throw new Exception(“Could not send query”);
} catch (Exception Se)
{
echo Se->getMessage().”
";
echo mysql_error();
exit;
}
return S$this->res;

}

// Shows the contents of the Sres as a table
public function printout() |
if (isset(Sthis->res) && (mysqgl_num_rows(Sthis-
>res) > 0))
{
mysqgl_data_seek(Sthis->res, 0);

an

GROUPING OUR METHODS IN A CLASS 167

Snum=mysqgl_num_fields(Sthis->res);
echo "“<table border=1>";
echo “<tr>”;
for ($i=0;8i<Snum;Si++){
echo "“<th>”;
echo mysqgl_field _name(Sthis->res, $i);
echo "“</th>”";

}
echo "“</tr>”";
while (Srow = mysql_fetch_row(Sthis->res)) {

echo "“<tr>”;
foreach (Srow as Selem) {
echo "<td>Selem</td>";

}
echo “</tr>";
}
echo "“</table>”;
}
else
echo "“There is nothing to print!
”";
}

// returns an array with the next row
public function next_row()
{
if (isset(Sthis->res))
return mysql_fetch_row(Sthis->res);
echo "“You need to make a query first!l!!”;
return false;

}
// returns the last AUTO_INCREMENT data created

public function insert_id()

{
if (isset(Sthis->1ink))
{
sid = mysql_insert_id($Sthis->1ink);
if (sid == 0)
echo “You did not insert an element that cause
auto-increment ID to be created!
”";
return $id;
}
echo "“You are not connected to the database!”;
return false;

}
// Creates a new DB and selects it

public function new_db(Sname)

168 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

if (!isset(Sthis->1ink))
Sthis->connect();
Squery = "CREATE DATABASE IF NOT EXISTS”.Sname;
try {
if (mysql_query(Squery, Sthis->1link))
throw new Exception(“Cannot create database
“.Sname);
Sthis->db = Sname;
} catch (Exception Se)
{
echo Se->getMessage().”
";
echo mysqgl_error();
exit;
}
}
}

?>
Here is a small function that illustrates how the previous class would be used:

<?PHP
include ("“./databaseClass.php”);

$db = new database();
S$db->setup(“dbuser”, “dbpass”, "“dbhost”, "“dbname”);

Squery = “SELECT * FROM user”;

Sres = Sdb->send_sql(Squery);

echo “"Found "“.mysql_num_rows(Sres). " rows
";
Srow = Sdb->next_row();

echo Srow([0].”
";
Srow = Sdb->next_row();
echo Srow[l].”
";
Sdb->printout();
sdb->insert_id();
Sdb->new_db(“testing”);
Sdb->disconnect();
Sdb->insert_id();

2>

INDEXER/SEARCHER-—STEPS 3 AND 4

The next phase for our indexer/searcher is to start using our database to hold
the results from our indexing as well as reading the information in the data-
base to perform a search.

INDEXER/SEARCHER—STEPS 3 AND 4 169

Step 3 will consist in taking our previous version (step 2) and modifying
the code so that instead of outputting the results on a page, everything will
be stored in a database. It is entirely up to you to decide on your database
structure, but remember that you want to be able to search all that informa-
tion effectively. The important data we will need to hold are

« Filename

 File URL

+ Metatags for each file

+ Full-text count of the words of each file

To avoid redundancy with the words, I would recommend using a words
table with simply a word and an id. Then you would refer to the word found
through its id. An example of what your database might look like is shown in
Figure 13.1. Every attribute in boldface is a “unique” field, underlined fields
are primary keys (PK is for primary key, FK for foreign key).

Step 4 consists in writing the search module of our indexer/searcher. It
should consist of a textbox, and either a select box, radio buttons, or check-
boxes. The textbox is where users would enter the words they are looking for,
and the other element will allow users to specify whether to perform a full-
text search, a metatags search, or both. This step is actually the easiest one
as long as you have a good database layout.

Once the user enters the word to search for, you should output the names
of all the files containing the word. Each name should have a link to the file,
and should display the number of iterations of the word you were searching
for. The pages should be displayed in order of importance, putting the page
with the most iterations of the searched word right on top. You can also add

e ; z .
Files ’ F”e",word,, . Words
PK id file PK, FK1 id file f T, 1
<4 PK, FK2 | id word P PK |id word
name
url count word
A
Meta_info

PK, FK1 | id file
PK type

content

FIGURE 13.1 Sample database structure for the indexer/searcher.

170 CREATING DATABASE-DRIVEN WEBSITES WITH PHP/MySQL

extra features such as wildcard searching. For example, you could allow a user
who is looking for any words containing the string “abc” to write things like
abc. This is easily done by replacing the asterisks by a percentage sign, as
the % is the “wildcard” character in MySQL. To look for a nonfull match, do
not use attribute = value; instead use the LIKE operator. For example, if you
wanted to search for any user whose name includes the letter “z,” your SQL
query would be

SELECT * FROM ‘users’ WHERE name LIKE ‘%z%’

Another fun feature is to add a “highlight” link that would load a prepro-
cessed version of the page. The preprocessing would basically be a PHP script
that would open the page, replace the word you were looking for by the same
word with a “highlight style” (such as all-capital letters, yellow background
with red lettering) throughout the original text and then display the updated
version of the page.

14

JavaScript—A Client-Side
Scripting Language

INTRODUCTION

Remember that JavaScript is a Web programming language that runs client-
side. It runs on almost any browser, although different browsers will run
slightly different versions on JavaScript. This is important to realize, as some
instructions that work on MS Internet Explorer might not work on Mozilla
Firefox or Netscape Navigator and vice versa. The reason for this is the lack
of real standard, and the fact that there is no single organization deciding on
what JavaScript should handle or not (as opposed to HTML’s W3C). My
recommendation, when writing in JavaScript, is to check the browser version
and to always test your script on the most popular browsers out there. If you
do not wish to make your scripts compatible with different browsers (which
usually takes a longer time to write), you should at least test the version of
the browser and give users a warning, letting them know that the scripts might
not work.

Other than a browser to test your scripts, you need only a basic text editor
to write the scripts. You do not even need a Web server, since double-clicking
on your HTML files containing JavaScript will be good enough to see if they
work.

JavaScript code is usually embedded in the middle of HTML pages. To
start a block of JavaScript, write <SCRIPT LANGUAGE = “JavaScript”>
and finish the block with </SCRIPT>. The SCRIPT tags in this case act like

Web Application Design and Implementation: Apache 2, PHPS, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

171

172 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE

the <?PHP and ?> for PHP. Once you are in between opening and closing
SCRIPT tags, make sure you respect all JavaScript syntax rules!

As we saw on Chapter 2, JavaScript is an object-based language, so most
of our time will be spent using preexisting objects to do our job. One thing
to remember is that the language is case-sensitive, so make sure to use the
proper mix of upper- and lowercasing when calling an object’s method or
attribute!

When we studied PHP, we saw that it works by executing the code on the
server, and sending the final result of the script directly to the client’s browser.
JavaScript runs client-side, having all its code downloaded along with the
HTML. For this reason, all the JavaScript is run line by line as the page is
being read and displayed. For example, if you have some JavaScript between
two HTML paragraphs, the first paragraph will be displayed, then the
JavaScript will run, and the second paragraph will appear on the page only
after the entire script is finished running. Here is an example of a page con-
taining a script that will change the background color of the page. You do not
need to understand how it works; we are just trying to see the basic structure
of a page containing JavaScript and how the script is executed step by step:

<HTML>
<HEAD><TITLE>JavaScript example 1</TITLE></HEAD>
<BODY>
First block!

<SCRIPT LANGUAGE="JavaScript”>
alert(“First block”);
</SCRIPT>
Second block!

<SCRIPT LANGUAGE="JavaScript”>
alert(“Second block”);
</SCRIPT>
And now we change the background color to flashy
yellow

<SCRIPT LANGUAGE="JavaScript”>
alert(“"Change Background!”);
document.bgColor = "“Yellow”;
</SCRIPT>
</BODY>
</HTML>

The function alert used creates an alert window, which blocks the script
until the user clicks on “OK.” As you can see, when an alert is waiting to be
clicked on, it blocks the interpretation of the HTML file and nothing else is
displayed until we unblock the script.

Comments work in JavaScript the same way as they did in PHP, meaning
that you can use either the double slashes or the /* ... */.

JavaScript SYNTAX 173
JavaScript SYNTAX

Types of Data and Variables

In JavaScript, as in PHP, any data help has a type associated with it, which can
be numerical, text, or, of course, more complex data such as arrays or objects.
When writing a string, make sure to surround it by either double or single
quotes. You may also use any of the typical special characters such as\b for back-
space, \n for new line, \r for return carrier, \t for a tab, \’ to show a single quote, \”
for double quotes, \\ for backslash, or\xNN (where NN is a hexadecimal number)
to write the character with ASCII code “NN.” You can also use true and false.

As in PHP, JavaScript does not need to specify the type that a variable will
hold, and you can therefore switch the contents of a variable from a number
to a string, to an object, or to anything you need. Variables in JavaScript do
not need special characters such as the dollar sign used in PHP. For this
reason, for the browser to understand that a word refers to a variable, you
need to declare that variable, by putting the keyword var in front of the vari-
able name the first time you use it. Variable names must start with a letter,
and can be composed of any letters, numbers, and the underscore symbol (_).
Here is a small example of how you would declare a variable, we will assign
a number to it, and then switch to a string (this code should, of course, be
surrounded by the SCRIPT tags!):

var myvar;

myVar = 23456;
alert(myVar);

myVar = “Hello World!”;
alert(myVar);

Remember to put a semicolon at the end of each line of code. As you can
see, alert is very flexible, and can show any data of primitive types.

Operations and Calculations

To assign a value to a variable, simply use the equal sign. You may use numeri-
cal calculations between variables with the typical arithmetic symbols +, —, *,
/. The plus sign can also be used to concatenate strings, so you could output
a mix of strings and variables by writing, for example, alert (“Variable 1 is “
+ varl + “and variable 2 is “ + var2);.

You can use the same postincrement (var++), preincrement (++var), post-
decrement (var——) and predecrement (——var) used in PHP. You can also
precede the equal sign with an operator to do things like myVar *=5;. Remem-
ber that something of the type variable operator = expression is equivalent to
variable = variable operator expression. You may therefore use it not only with
numbers but also with, for example, strings myString += “this will be concate-
nated to myString”;. JavaScript handles the basic operator precedence, so
expressions like 1 +2 * 3 willreturn 7 (1 + (2 * 3)) and not 9 ((1 +2) * 3).

174 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE

Two very useful methods will allow you to find a number inside of a string.
You can use parselnt(string), which returns the first integer found in the string
or NaN if no string was found; or parseFloat(string), which returns the first
floating-point number found in the string or NaN if there were no numbers.
NaN stands for “not a number” and means that a string contains no numerical
data. These two functions work only if the number you are looking for is right
at the beginning of the string (white spaces may precede the number). If you
try to parse a string of the type “string 123,” these methods will return NaN.
You can actually test a string to see if it is a number using isNaN (). Realize
that this method tells you if the parameter provided is not a number, so it will
return false if the parameter was a number: it would mean that it is not NaN;
therefore it is a number (you must love double negations ©). For example,
isNaN (234) will return false and isNaN(“Hello”) would return true.

Here is an example of a miles-to-kilometers converter script. Since
JavaScript is client-side, we can directly ask the user for input data without
the need of forms. To do so we will use the prompt method, which takes two
parameters: the string to display (what you want the user to input), and the
default value. The function prompt will pop up an entry box for the user to
enter some information, and will return whatever the user wrote. Also, instead
of doing an alert as in the previous examples, we will use document.write(),
which is basically the JavaScript equivalent of PHP’s echo. This way we will
show the results on the Webpage rather than on an alert window.

<HTML>
<HEAD><TITLE>Conversions!</TITLE></HEAD>
<BODY>
I don’t understand miles, so give me kilometers
please!

<SCRIPT LANGUAGE="JavaScript”>
var inputVar = prompt(“"Enter the number of miles
to convert”, 60);
1f (isNaN(parseFloat (inputVar)))
alert("You didn’t enter a number!! This 1is
unacceptable!”);
else
{
var result = parseFloat(inputVar) * 1.609344;
// conversion data provided by Google
document.write(parseFloat (inputVar) + “ miles 1is

the same as " + result + “ km”);
}
</SCRIPT>

Thanks for using the converter!
</BODY>

</HTML>

JavaScript SYNTAX 175

Arrays

If you wish to use arrays, you need to specify that the variable you will use
is an array. This is done by creating an object of the class Array by writing

var myArray = new Array();

The Array constructor can actually accept the series of elements to insert in
the array. Since JavaScript’s variables can be of any type, you can hold a mix
of different data types in the same array. To access or modify data in an array,
you can use the angle brackets with the index of the element to modify. Note
that as in PHP, the elements inserted in an array do not need to have succes-
sive indices, and it is possible to have an array with only three elements
located at indices 2, 23, and 325, for example. Here is a basic array manipula-
tion example:

var myArray;
myArray = new Array(“Uno”, 2, "“3.0”);
myArray[3] = “Four”;

As with PHP, array indices start at 0 by default. You can create multidi-
mensional arrays by simply making an array element become a new Array();
thus each new level of arrays would use a new set of angled brackets with an
index. Here is how you would create the same “friends” array that we saw in
the PHP version of multidimensional arrays. Remember, our goal was to have
a set of names and list of relatives for each entry in our friends array. So
technically we need a three-dimensional array. The first dimension tells us
which friend we are dealing with, the second dimension allows us to read
either the friend’s name or the array of relatives, and the third dimension
holds the names of the relatives:

var friendsArray = new Array();
friendsArray[0] = new Array();
friendsArray[0][0] = “Steven”;
friendsArray[(0][1] = new Array();
friendsArray[0][1][0] = “Peter”;
friendsArray([0][1][1] = “Jackie”;
friendsArray([0][1][2] = “Romina”;
friendsArray([l] = new Array();
friendArray([1][0] = “Christian”;
friendArray([1][1] = new Array();
friendArray(1][1][0] = “Jose”’;
friendArray([1](1][1] = “Liliane”;
friendArray[1][1][2] = "“Daniel”;
// and so on

176 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE

Decisions

As in PHP, JavaScript can check different conditions and branch to different
sections of the code depending on the value found. To do so we can use the

common comparison operators “==" for equals, “<” for less than, “>” for
greater than, “<=" for less than or equal to, “>=" for greater than or equal
to, and “!=" for different. You can combine different boolean expressions

with “&&” for AND, “lI” for oR, and “!” for NOT.

When using the if statement in JavaScript, there is one basic difference,
residing in the elseif. In PHP elseif has to be written as a single word, but in
JavaScript it is two separate words. The general syntax would therefore be:

if (condition)
{}

else if (anotherCondition)

{}

else

{]

You may also use the switch . . . case the exact same way as in PHP (don’t
forget to use break). Here is an example of using both switch and if state-
ments. We will prompt the user for a number; if the user inputs something
that is NaN, we will say there’s a problem; if it is a number, we will say “hello”
if it is 0 or 1, “goodbye” if it is 2, and “hooah!” otherwise:

var input = prompt(“Enter a number”, 0);
if (isNaN(input))
document.write("Not a number!”);
else
{
switch (input)
{
case O0:
case 1:
document.write(“Hello”);
break;
case 2:
document.write(“Goodbye”);
break;
default:
document.write(“Hooah!”);
}
}

Loops

In JavaScript, you may use the exact same basic loops used in PHP (except
for the foreach loop). Just as a reminder, here are three quick loop examples.

JavaScript SYNTAX 177

Remember that if you are creating a new variable in the first section of a for
loop, you will still need to write the keyword var:

var n = 5; var j = 10; var k = 15;
for(var i = 0; 1 < n; 1i++)
document.write(i + " “);
while (i < Jj)
document.write((i++) + “ “);
do
{ document.write(i + " "“);

} while ((i++) < k);

In case you feel deprived for not having the great foreach to process all the
elements in an array, feel that way no more, since JavaScript has the equiva-
lent for. .. in. The basic syntax is for (index in array) and allows you to get
all the valid indices in an array, skipping the indices of empty cells. For
example, you could print all the contents of an array doing

var index;

for (index in myArray)

{
document.write(myArray[index]);

}

Finally, you can use break and continue as we did in PHP. The first will
quit a loop, and the latter will force the next iteration of a loop.

Using Functions

To create a function, simply write function functionName(parameterl,
parameter2, . . .). As in PHP, the type of parameters or return value can be
anything, so it does not need to be defined. For example, if we wanted to
create a function to convert miles into kilometers, we would write the follow-
ing code:

function milesToKm(miles)
{
if (isNaN(miles))
alert (“"Error in function milesToKm: Parameter
provided is NaN!!”);
else
return (miles * 1.609344);

To use the function later on, you would simply write, for example, var
myKm = milesToKm (60);.

178 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE
USING OBJECTS

Recall that an object is an instance of a class, which means an element that
holds both data members that define it, as well as methods. For example, an
object “car” can have the properties “color,” “brand,” or “mileage.” The methods
inside the object are actions that can be done with the particular object. For
an object car you could have fillTank(), changeColor(), and so on.

To create an object you need to use the keyword new, like this:

var myVar = new ObjectName (constructor parameters);

Remember that JavaScript is an object-based language, not an object-ori-
ented language. Therefore you may not create new classes, but you may use
any of the preexisting ones. We already have used Arrays, and as you might
have noticed, we used the keyword new to create arrays. This is due to the
fact that arrays are actually objects! We will now see some of the most impor-
tant available classes that can be used in JavaScript to create objects.

The String Objects

Yes! Strings are objects too!! They are special objects that do not necessarily
need the keyword new to be created. You can create strings either by simply
writing a string between single or double quotes, or by using new String(), in
which case the constructor can receive a string or a number. For example, var
stringl = new String(123.345); will create the string “123.345.” As you can
see, converting from numbers to strings is really simple. Here is a list of major
data members and methods that can be used with strings (you do not need a
variable to use these methods and you may use them right after a string
between double quotes, e.g., “hello”.length would return 5):

« length—for example, myString.length is a data member holding the
number of characters in the string.

* charAt(position)—for example, myString.charAt(4) returns the charac-
ter at the position provided as a parameter. Note that indices start at 0,
so our example would return the fifth character.

* charCodeAt(position)—same as charAt but returns the ASCII code of
the character rather than the character itself.

* fromCharCode(list of numbers)—this method is actually used to create
strings from a set of ASCII codes. Instead of writing a name of object in
front of the method, use the class name String. You could write, for
example, var myString = String.fromCharCode (61, 62, 63),, which would
create the string “abc.”

+ indexOf(string, position)—for example, myString.indexOf(“tofind”, 0)
will find the index of the first match of the provided string (“tofind”)

USING OBJECTS 179

starting at the index provided (0). The second parameter is optional, but
very useful if trying to find a series of matches.

« lastIndexOf(string, position)—same as indexOf but searches back-
ward. If the position is omitted, the search is done from the very end of
the string.

« substring(beginning, end)—returns the substring from the calling string

starting at position beginning and finishing before index end. It is very

important to realize that the last character returned will always be at
index end-1. For example, if myString holds “Hello,” doing myString.
substring(1, 3) would return the string “el.”

substr(beginning, length)—similar to substring. Returns the substring

starting at beginning and having length characters. For example, “Hello”.

substr(3, 2) would return “lo.”

toLowerCase()—for example, myString.toLowerCase(). Turns myString

to all lowercase.

toUpperCase()—for example, myString.toUpperCase(). Turns myString
to all uppercase.

The Math Class

The Math class contains many static methods, meaning that there is no need
to create an object of the class Math in order to use them. Simply write Math.
followed by the name of the data member or method to use. Here is the list
of the most important methods and static data members:

+ Math.PI—returns the value of I1

« Math.abs(number)—returns the absolute value of number
+ Math.ceil(number)—returns number rounded up

+ Math.floor(number)—returns number rounded down

+ Math.round(number)—rounds the number

+ Math.pow(x, y)—calculates x to the power of y (x*)

One last and fun function of the Math class is random(). Unlike PHP,
random will always return a number between 0 included and 1 excluded. From
there it is up to you to figure out how to achieve the range of numbers you
want to have. Here is an interesting application. Imagine that you are writing
a script for role players, and you are trying to get a dice-rolling script that will
calculate a series of dice rolls. A very popular role playing rule set called the
“d20 system,” used in games such as “Star Wars RPG” or “Dungeon &
Dragons,” is based on rolling a die with 20 sides, numbered 1 to 20. Now, we
know that our random-number generator will return a value (let us call it x)
between 0 and 1. We have

0<=x<1

180 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE
Since we want to get values of up to 20, we can multiply x by 20, getting

0=<20x<20

One problem is that, we may get 0 and yet we will never reach 20. Since our

smaller number will always need to be 1, we can add one:

1=20x+1<21

Now we have to realize that the number we will get will be a floating-point
number. In order to turn it into an integer, we will need to round it. If we
round up, our range will be 1-21, which is not good. If we use the regular
round, we might still get number 21 which is out of bounds. Instead, we can
use floor since the largest number we will get is 20.9999999999(. . .], which,

rounded down, is still 20. Our final formula gives us
1 < floor(20 x + 1) < 20
Here is the script that would calculate our dice rolls:

<HTML>
<HEAD><Title>d20 System dice roller vl</Title>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript”>

var numberOfThrows;

var diceRoll;

do

{

numberOfThrows = parselnt(prompt(“How many times

should I roll the dice? Enter a number please.”, 1));

} while (isNaN(numberOfThrows));

// we bug the user until he enters an actual

//number.

document.write(“"Let’s roll!!
");

for (var 1 = 0; i1 < numberOfThrows; i++)
{

diceRoll = Math.floor(Math.random() * 20 + 1);
document.write(diceRoll + “
");
}
</SCRIPT>
If you want to reroll, press F5 or click on the
browser’s refresh button.
</BODY>
</HTML>

THE DATE OBJECTS 181

The Array Objects

As we saw earlier, arrays are technically objects created doing new Array().
Here is a list of important methods and data members; we will assume
that myArray is already holding an array with the numbers 12, 2, 69, 51,
and 666:

« myArray.length—returns the number of elements in the array.

« myArray.concat(myArray2)—returns the concatenation of myArray and
myArray?2.

* myArray.slice(b,e)—same as substring for Strings. Will return the subar-
ray starting at index b and finishing at index e — 1. For example, myArray.
slice(1,4) would return an array holding the values 2, 69, and 51.

* myArray.join(mySeparator)—same as PHP’s implode. Creates a string

with all the elements in myArray concatenated with mySeparator.

For example, myArray.join(“+-+"); would create the string

“U2+—42+—+69+—+51+—+666.”

myArray.sort()—sorts myArray.

* myArray.reverse()—reverses myArray. If you wish to do a reverse sort
of an array, you could do myArray.sort() followed by myArray.reverse()
and “voilal.”

THE DATE OBJECTS

A quite useful class in JavaScript is the Date class, which allows you to store
any date. To create an object with the current date and time, simply write var
date = new Date();. You may also use three other constructors if you are
trying to create a date object for a date different from the current one.

The first alternative is to provide a number, particularly the number of
milliseconds elapsed since January 1, 1970 at 00:00:00 GMT. For example, if
you do var date = new Date (303178567890); you are creating a Date object
based on August 10, 1979 around (20:15 hours) (8:15 p.m.).

Obviously, creating a date like this is useful only if you want to create an
object using a saved UNIX timestamp that you might have received through
a PHP script. To create a Date object for an older date, write the date as a
string with Day Month Year, for example, var date = new Date(“10 August
1979%);.

The final alternative if you want a specific time but do not know the number
of milliseconds elapsed is to use a Date constructor that accepts seven param-
eters in the following order: year, month, day, hour, minute, second, and mil-
lisecond. Note that in JavaScript, the list of months actually starts at index 0.
This means that January is 0 and December is 11. Therefore, to create a date
based on August 10, 1979 at 5:30 hours (5:30 a.m.), 20 seconds and 14 milli-
seconds, you would write

182 JavaScript—A CLIENT-SIDE SCRIPTING LANGUAGE
var date = new Date(1979, 7, 10, 5, 30, 20, 14),

One last thing to remember when writing times with this format is that all
times use the military 24-hour system, so if you wish to say that it is 3:00
p.m., you must write 15:00 hours. Basically, just add 12 to p.m. times to get
the military time.

Once a Date object has been created, it is possible to extract individual
items from it, or modify settings individually. Here are the available methods
assuming that our object is called myDate:

b4

* myDate.getDate()—gets the month date. In my previous examples it
would be “10.”

myDate.getDay()—gets the day of the week, where 0 is Sunday, 1 is
Monday and so on until Saturday, which is 6.
myDate.getMonth()—gets the month number. Remember that January
is 0, and December is 11 (yes, Christmas is on 11/25 when you are using
JavaScript ©).

myDate.getYear() and myDate.getFullYear()—returns the year, in either

“short” version or full version. For example, for the year 1979, getYear()

would return 79, and getFullYear() would return 1979. For this reason,

getYear() on a year like 2006 will return 106 because getYear() returns

the number of years passed since 1900.

myDate.getHours(), myDate.getMinutes(), myDate.getSeconds(), and

myDate.getMilliseconds () —returns the hour, minute, second, and milli-

second, respectively.

» myDate.setDate(n)—sets the date to n. Note that there will be no
setDay () since the weekday is calculated automatically, and you cannot
change the course of time and decide that a date that was a Monday will
become a Wednesday!!

» myDate.setMont(n)—sets the month to n. Remember, January is month

0!

myDat.setYear(n)—sets the year to n.

» myDate.setHours(n), myDate.setMinutes(n), myDate.setSeconds(n),
myDate.setMilliseconds (n)—sets the hours, minutes, seconds, and mil-
liseconds to n. If you set a value greater than the regular maximum for
the quantity being set, the date will be modified accordingly. For example,
setting the hours to 36 would move the date forward one day (24 hours)
and set the hour to noon.

There is something extremely important to realize when using dates in
JavaScript. Since the language is client-side, any date gathered will be the
date of the client! This also means that if users change the clock settings on
their computers, your script will think it is a totally different date! Obviously
this is unacceptable. You might think that no one is silly enough not to realize

THE DATE OBJECTS 183

that, but let me tell you a little (true) story. As the Spaniard I am, I love soccer,
and my favorite team happens to be a team from a major city in Spain that is
not the capital. I will not say the actual name of the team because I do not
wish to get into trouble with them. Any soccer fans probably guessed the team
I root for. Anyway, in order to please their fans, they had a page with live text
description of their games. To build up anticipation waiting for the next game,
they had a counter saying how long you had to wait for it. The script worked
by checking the current time and comparing it to the game time—except that
they programmed it in a client-side programming language, and did not
account for the time difference. So, there was I in the United States wanting
to know how my team was doing at the exact time the game was being played,
but the page said I had to wait 6 hours for the game to start, simply because
there is a 6-hour difference between that major coastal Spanish city and U.S.
west coast. The moral of this story is “Remember which side you are gathering
the time from!” The client side will give you the user’s time; the server side
will give you the server’s time, which won’t be affected by the time zone of
visitors.

Luckily, JavaScript has a way to solve this issue: using UTC times. UTC is
the Coordinated Universal Time (UTC sounded better than CUT) imple-
mented in 1964, and more commonly known as GMT (Greenwich Mean
Time). Basically it sets the center of all time zones in Greenwich (southeast
of London, U.K.). Eastern Standard Time (EST) is GMT - 5, Central Euro-
pean Time (CET) is GMT + 1, and so on. Once you have a Date object, you
can create a nice formatted string of the full date using the methods myDate.
toLocaleString() if you want to get the local time, or myDate.toUTCString(),
which will represent the same date as UTC. For example if the current time
is 13:15 (1:15 p.m.) in local time and I am in the U.S. east coast, the time
shown by roUTCString() will be 18:15 (6:15 p.m.). You may also retrieve the
time zone offset (number of minutes offset between UTC and local time)
using myDate.getTimezoneOffset().

You may also set or get individual sections of the date directly in UTC
format, by directly using any of the previous methods adding the word UTC
next to get or set. For example, myDate.getUTCDate () will get the UTC date,
and myDate.setUTCHours(n) will set the hours of the UTC time (which
obviously changes the local time accordingly).

15

Programming
the Browser

OVERVIEW

In this chapter, we will see how you can use JavaScript to access any section
of HTML files, as well as the actual browser window. To access all these fea-
tures, we need to use the Window object and its components.

THE WINDOW OBJECT

The window object holds data members and methods that will allow you to
interact with the actual browser window. It is a global object, which means
that you do not need to actually write its name when calling its methods. We
already saw a method from the window object: the function alert. Technically
you should type window.alert(“Hello”) to use this method, but we can omit
the window. section. The window object also allows you to change things like
the message appearing on the status bar of your browser (the area that shows
the progress when downloading a page, and displays “Done” when the page
is loaded). You may do this by modifying the data member defaultStatus. For
example, writing window.defaultStatus = “Hello and Welcome!”; will write
the welcome message in the status bar. Later on, when we start using timers,
we will see how to create scrolling text on the status bar. As with alert, you

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

185

186 PROGRAMMING THE BROWSER

do not need to write window. and may simply use defaultStatus = “This is
cool!”.

The most interesting thing about the window object is the objects it con-
tains. These are the location, history, navigator, screen, and document objects.
Since all these objects are part of window, you may write, for example, either
window.document, or simply document.

The Location Object

The location object allows to change the location of the window, forcing a
redirect if set to a page different from the one currently running. You can use
two different redirections:

* location.replace(“newpage.html”)—changes the current page with
“newpage.html” in the history stack. This means that the page that called
this method will disappear from the browser’s history, and only the new
one will appear.

* location.href(“newpage.html”)—also redirects the browser to the new
page, but simply adds the new page on the history stack. Once you are
in the newpage.html, you can go back to the page that used the method
by simply clicking “back.”

The History Object

The history object allows you to move through the browser’s history. It has
three main methods:

* history.back()—same effect as clicking on the “back” button of the
browser.

* history.forward()—same effect as clicking on the “forward” button of
the browser.

* history.go(n)—allows one to move forward or backward n times. If n is
negative, it is the same as clicking “back” n times; if it is positive, it is the
same as clicking “forward” n times.

The Navigator Object

The navigator object gives information about the browser, including the
software used, its version, or the operating system it is using. Here is
an example of how you could extract information on the browser. From
here you could use the indexOf method to find strings like MSIFE or Firefox
to check the browser version (note that mimeTypes and plugins refer to an
array):

THE WINDOW OBJECT 187

<HTML>
<HEAD>
<TITLE>Navigator Example</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript”>
var navData = navigator.appCodeName + "“
”";
navData += navigator.appName + "“
";
navData += navigator.appVersion + “
";
navData += navigator.cookieEnabled + "“
";
navData += navigator.mimeTypes + “
";
navData += navigator.platform + "“
”";
navData += navigator.plugins + “
";
navData += navigator.userAgent + “
”;
document.write(navData);
</SCRIPT>
</BODY>
</HTML>

The Screen Object

The screen object provides information on the screen such as screen.height
for the client’s screen height in pixels, screen.width for the screen width, or
screen.colorDepth for the number of color bits used:

<HTML>
<HEAD>
<TITLE>Screen Object</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript”>
var screenData = "“You are running with a resolution
of “;
screenData += screen.width + “ by " + screen.height;
screenData += " with a color depth of " + screen.
colorDepth;
document.write(screenData);
</SCRIPT>
</BODY>
</HTML>

The Document Object

The document object is probably the most important object inside window.
It refers to the actual page being displayed. We already saw a method from

188 PROGRAMMING THE BROWSER

this object: write, which adds text to a page. The document object also includes
arrays such as forms, images, and links, which allow you to access and set up
all the data inside forms, images, and links in the page.

The main problem of the document object is that browsers might have
different properties inside it, making it harder for the developer to write
multibrowser code. For example, Netscape Navigator contains an array tags
in the document object that Microsoft Internet Explorer does not support.
Let us concentrate on the basic arrays inside the document object.

First, we have the images array. Each time you use an image with the
 tag, there is a reference to that image that is added to the images
array. The very first image will be at document.images[0], the second image
in document.images[1], and so on. You may also add a name attribute to the
IMG tag, allowing you to refer to the image through the link’s name. For
example animage defined as
can be accessed by doing document.images[“myImage”]. When you have a
reference to an image, you may change any attribute inside the tag by simply
writing a period (.) followed by the name of the attribute to change. The fol-
lowing example prompts the user for an image URL and replaces the image
on the page with the one provided in the prompt:

<HTML>
<HEAD>
<TITLE>Image Loader</TITLE>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript”>

var url = prompt(“Enter an image URL”,
“http://wroshyr.free.fr/images/bewchy.gif”);
document.images["imagel”].src = url;
</SCRIPT>
</BODY>
</HTML>

The next array is the links array. It does the same as the image array, but
instead of storing all links created with the tag, it stores references
to all links created with the <A> tag. As with the images, you may also
provide a name to the links so that they are easier to refer to. Since it is also
possible to change any of the links’ tag attributes, you can drive a user crazy
by switching the destinations of your links by doing, for example, document.
links[0].href = “differentpage.html”.

Last but not least, we have the forms array, which holds references to all
the forms in the page. You might think that its usefulness is limited since
pages usually contain at most a single form, and you probably wouldn’t want
to change its properties such as action or method, or your receiving script

THE WINDOW OBJECT 189

wouldn’t work properly. Well, when you have access to a form element, you
can actually have access to every tag inside that form, which means that you
can edit the properties of every single input, and even add and remove options
in a select input!

Since there is usually only one form, the simplest thing to do is to give a
name to the form inside the FORM tag, allowing you to refer to it through
its name. For example, if you define a

<FORM ACTION="script.php” METHOD=POST NAME=“myForm”>

you will be able to access the actual form doing document.forms[“myForm”],
document.forms[0], or even document.myForm. My favorite is the third
option. To access an input tag located inside a form myForm, use the period
sign followed by the name of the input. Here is an example of a script that
would change the appearance of a “submit” button; to make the code shorter,
our form will not have any action or input:

<HTML>
<HEAD>
<TITLE>Changing Button</TITLE>
</HEAD>
<BODY>
<FORM NAME="myForm”>
<INPUT TYPE="Button” VALUE="Name that WILL change”
NAME="myButton”>
</FORM>
<SCRIPT LANGUAGE="JavaScript”>
alert(“"Let us change the button name!!!”);
document.myForm.myButton.value = “I changed!!
Woohoo!"”;
</SCRIPT>
</BODY>
</HTML>

If you do not know the names of the inputs (or are too lazy too scroll up/
down your code to read it), or if you wish to make a set of operations with
every single one of them, you can use a single form reference as an array. You
can therefore check the number of inputs in the form (including selects, and
textareas) by doing document.yourFormName.length. If you wish to access
the third input in the form, you can do document.yourFormName[2] (remem-
ber that arrays start their indices at 0).

Some form inputs have special behaviors, such as checkboxes and radio
buttons. Recall that you can group a set of checkboxes or a set of radio buttons
by giving the same name to each different option. Thus, the objects referring
to each one of those blocks can be used in JavaScript as an array, in which

190 PROGRAMMING THE BROWSER

the index identifies which option you are accessing. You can also determine
whether an option is checked by comparing the checked attribute to true. For
example, if you want to determine whether the third radio button on a series
of radio buttons called myRadio is checked, you can do

if(document.myForm.myRadio[2].checked == true)
doSomething(),

You can also select and deselect options by accessing the one you wish to
modify and updating the value of the attribute checked to FALSE if you are
deselecting or TRUE if you are selecting it.

In the case of a SELECT input, you can access each option individually,
and even add or remove options. To access a specific option we use the options
array, which is automatically made part of each select object. The value of
each option can be value modified (with .value) or even the text next to the
option (with .text). To remove an option from a select menu, simply set the
option to be equal to null. To add a new option, we create an object of
the type Option, providing its constructor with the text to appear next to it,
and the value associated with that option. Note that all created options are
placed at the end of the menu, but since all options are in an options array,
you can use array operations to switch the elements around. You can also
check which option is selected by accessing the data member selectedIndex
of a select area anytime. For example, to change the text in a menu option
when you select it, you could do

document.myForm.mySelect.options[document.myForm.mySelect.
selectedIndex].text = “This was the selected option”;

One last useful thing that you can do in JavaScript is force the submission
of a form (even if there is no “submit” button!). Simply use the method
submit() from a form object. For example

document.myForm.submit();

Here is an example that allows you to add and remove options in a drop-
down menu:

<HTML>

<HEAD>

<SCRIPT LANGUAGE=JavaScript>

function butRemove_onclick()

{
var sel = document.forml.selectArea;
sel.options([sel.selectedIndex] = null;

}

USING EVENTS

function butAdd_onclick()
{
var sel = document.forml.selectArea;
var newoption = new Option();
var pos = sel.options.length;
sel.options[pos] = newoption;
sel.options[pos].text = document.forml.option.value;
sel.options[pos].value = document.forml.optionValue.
value;
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME=forml>
<SELECT NAME=selectArea SIZE=1>
<OPTION VALUE=0 SELECTED>Example Option
</SELECT>

191

Option:<INPUT TYPE="text” NAME="option”>...VALUE:<INPUT

TYPE="text” NAME="optionValue”>

<INPUT TYPE="button” VALUE="Remove Selected Option”
NAME=butRemove onclick="butRemove_onclick()”>

<INPUT TYPE="button” VALUE="Add Option” NAME=butAdd
onclick="butAdd_onclick()”>

</FORM>
</BODY>
</HTML>

USING EVENTS

Probably one of the most interesting things about JavaScript is the opportu-

nity to use events. An event is an action that is triggered by an action by

the

client. For example, you can have an event happening when a page finishes
loading, when the client clicks on a button or link, or when the mouse cursor
is placed over certain areas. Events are assigned directly as a parameter of
the tag that will handle the event. For example, if you want to start an action
when the page finishes loading, the event is set in the BODY tag; if you want
a link to behave in a specific way, you would put the handler in the A tag; and

so on. Events start with on followed by the actual event to handle, these
the main events:

+ onClick—triggered when the element is clicked on
+ onMouseOver—triggered when the mouse is place over the element

are

192 PROGRAMMING THE BROWSER

* onMouseOut—triggered when the mouse leaves the element
+ onMouseDown—triggered when the mouse button is pressed (a click is
a combination of mousedown and mouseup)

» onMouseUp—triggered when the mouse button is released over the
element

« onKeyDown—as onMouseDown but with the keyboard

» onKeyUp—same as onMouseUp but with the keyboard

» onKeyPress—same as on mouseclick but with the keyboard (same as
onKeyDown followed by onKeyUp)

+ onLoad—triggered when the element finishes loading (usually put in the
BODY tag)

« onUnload—triggered when you leave a page

« onChange—triggered when the element changes (useful mostly in text
fields)

* onSelect—triggered when a menu option is selected

+ onResize—triggered when the window is resized (would be placed inside
the BODY tag)

+ onReset—triggered when a form is reset

+ onMove—triggered when the window is moved (would be placed inside
the BODY tag)

« onFocus—triggered when an element gains the focus (cursor entering a
text area, for example)

« onError—triggered when there is a JavaScript error

» onDragDrop—triggered when an element is dragged and dropped in the
browser window

» onBlur—triggered when an element looses focus
« onAbort—triggered when the loading of a page is interrupted

Once you know which event you want to use, you must decide what action
to take. The general procedure is to create a function in JavaScript that will
be called by your event handler. Then simply write the name of the method
between double quotes next to the event, inside the tag that will handle the
event. For example, <BODY onload = “loadfunction()”> would call the
JavaScript function loadfunction() whenever the body of the page finishes
loading. Note that you may also call the methods with any parameter you wish
to use, so you can use the same function for different elements. I personally
like putting all my event functions inside the HEAD tags, which helps keep
the body as clean as possible, concentrating all functions outside it. This also
allows the functions to load before the body does, so that as soon as you need
to use them, the browser already knows about them.

Here is a fun little example. We will have a link with an onClick attribute
that will popup an alert message, a button input with an onMouseOver

USING EVENTS 193

that will change its face value, and an onClick that will change the page to
www.google.com. Note that the event names are not case-sensitive, so you
may write onClick or onclick:

<HTML>
<HEAD>
<TITLE>Link that goes nowhere and onLoad</TITLE>
<SCRIPT LANGUAGE="JavaScript”>
function link_onclick()
{
alert(“You clicked on the link! But I refuse to go
anywhere!!”);
return false;

}
function button_onmouseover()
{
document.forml.mybutton.value = “You placed the
cursor on me!!! I will take you to Google.”;
}
function button_onclick()
{
location.href = “http://www.google.com”;
}
</SCRIPT>
</HEAD>
<BODY>

Take me to <A HREF="http://www.google.com/”
onclick="return link_onclick()”>Google!
<FORM name="forml”>
<input type=“button” name="mybutton”
onmouseover="pbutton_onmouseover()”
onclick="button_onclick()”
value="Place the mouse over me!”>
</form>
</BODY>
</HTML>

As you probably noticed, when using the event onClick 1 actually wrote
return in front of the function name, and my function returns a value. This is
a very useful feature that is used mostly on links and forms (through the
“submit” button, actually). Writing return basically means that your function
will return a value that should not be ignored, and that should be true or false.
Now, here comes the fun part! If the value is true, the element works normally,
as if the return were not there, but if your return value is false, the element
will not perform its standard task, leaving the user in the page. This is

194 PROGRAMMING THE BROWSER

extremely useful on forms as you can verify the contents of the form before
submitting it and let the users know about any errors so that they can correct
them before sending the data through the form. To do this, you would simply
have an onClick property on your “submit” button that would call the method
that will verify all data, returning false if a problem was encountered.

Two methods are very useful on forms containing text areas. Ideally, when
you are writing a form, you should always include some JavaScript to test the
form before sending any data to your PHP scripts. This allows a first layer of
data verification done on the client, which is much faster than transmitting
the data to a PHP script; have the PHP script verify the data; and redirect
the client to the first page if an error is found. Verifications done in JavaScript
allow you to avoid the burden of constant back and forth with the server. A
typical problem that can be found in forms is bad type of data input in a
textbox; for example, you may be expecting an email address and the user
leaves the field empty, or inputs a text that is not an email address. In those
cases you want to inform the user of the error and to change the data. In those
cases you can call the methods focus() and select(), to place the user in the
field that needs changing. These methods should be called from a form
element object; an example would be document.myForm.mylnput.focus().
The method focus() will give the focus to the entry, and the method select()
allows you to select the entire text that was entered. When a field needs to be
changed, there is nothing better than to do a focus() of the problematic field,
followed by select(). This way the user simply needs to enter the new data,
automatically overwriting the previous text.

One last useful point is to realize that any of the objects accessed through
the document object can be stored in variables to ease up the typing. For
example, you could do

var myButton = document.myForml.button;

From then on, you would be able to access your button simply typing
myButton.

TIMERS

JavaScript has the ability to create two main types of timers: one-shot timers
and regular timers, called “intervals.” One-shot timers allow you to decide
on a specific amount of milliseconds to wait before a function is called. Using
the function setTimeout, for example, you could do

var timerlD = setTimeout(“myFunction()”, 5000),

This would create a timer that would wait 5 seconds before calling myFunc-
tion(). The returned ID is very important as it will be needed if you want to
stop the timer. Simply use clearTimeout(timerID) to stop the timeout.

TIME TO PRACTICE! 195

Regular timers are like timeouts, except that they restart the timer after each
timeout. The function used in that case is setInterval(“functionName()”,
time); for example

var timerlD = setInterval(“alert(‘Hello’)”, 5000);

This would run the alert(‘Hello’) every 5 seconds. As with timeouts, you can
clear the interval by doing clearInterval(timerID).

TIME TO PRACTICE!

Now that you know the basics of event programming, try writing a script
containing a button that keeps track of how many times it has been clicked.
Realize that variables defined outside a function are considered global. They
are accessible inside any function, so you can use that fact to your advantage.
Also remember that the text on a button is set by its attribute value.

Another fun thing to do is an event log. Create a form with different types
of inputs, such as radio buttons, regular buttons, text and password fields, and
text areas. Now make sure that you have at least one large text area that you
will use to keep track of all events that occur. Set up each input you created
with all the events you might want to test out, and have each event function
display the latest event at the end of the large text area. Remember that you
can access the contents of a text area through the value field of the tag, and
also that you can concatenate text using the plus (+) sign. Also, if you wish
to include a “clear” button, you can either simply include a “reset” button or
create a regular button with an event that will write an empty string (“”) in
the value field of your text area by doing

“»,

document.myForm.textAreal.value = “”;

Finally, use intervals or timeouts to create a banner changer. Have a set of
images with their URLSs stored in an array, and set a timer that will change
the image every few seconds.

16

Windows and Frames

In the previous chapter we studied the window object and its contents,
concentrating on the document object. The goal of this chapter is see how
JavaScript can communicate between windows and frames, which effectively
means communicating between separate Webpages.

FRAMES AND JavaScript

When you create a frame in a Webpage, each frame will have its own window
object; it is therefore possible to access any of the object window contains on
each separate frame. You can always check the name of any created frame
by accessing the name field of your frame, which is accessed by writing
window.name. To make matters even nicer for us developers, you may also
access the parent of any frame you have, as well as any child. Imagine that
you have created a frameset page containing two frames called frameLeft and
frameRight. When you are in either frame, you can access the page that
created those frames (the one with the frameset definition) by simply typing
window.parent. This will refer to the window object of the parent; from there
you can access anything defined in the parent as if you were in the parent’s
page, including functions, variables, and form references. Whenever you wish
to access a function or variable defined in your parent’s page, you can do so

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

197

198 WINDOWS AND FRAMES

by writing the name of the method or variable after window.parent. Here is
an example of a frameset page containing a method that will pop up an alert
box saying “Hello.” The frameset will define two children, frameLeft and
frameRight, with one button each. Whenever the user clicks on either button,
we will call the method written in the parent frameset. To make things more
interesting, our method will accept the name of the calling frame as a param-
eter. Obviously our left and right frames do the same, except that they will
send a different value to the parent’s method. We can use window.name in
the frame’s code to directly send the right name.

Frameset definition:

<HTML>
<HEAD>
<TITLE>Basic Frames Example</TITLE>
<SCRIPT LANGUAGE="“JavaScript”>
function sayHi(name)
{
alert (“"Hello "“ + name);
}
</SCRIPT>
</HEAD>
<FRAMESET cols="50%,*">
<FRAME name=‘“frameLeft” SRC=“"page.html”>
<FRAME name=‘“frameRight” SRC=“page.html”>
</FRAMESET>
</HTML>
Frame’s page:
<HTML>
<HEAD>
</HEAD>
<BODY>
<INPUT type=“button” value="Click me!”
onclick="window.parent.sayHi(window.name)”>
</BODY>
</HTML>

Since we know that we access a frame’s parent, you might be wondering if
it is possible to access frames in a more complex layout, in which a frameset
may contain a frameset inside it. Well. . . . Of course, you can! Not only can
you move up in the frames, you can also check a frameset child either using
the frames array, or simply using the name of the array inside the window
object of the frameset page. Also if the parent of a frame has a parent, this
“grandparent” can be accessed by adding a new .parent for each level you
wish to climb in the frame’s hierarchy. If you wish to access the parent of all

FRAMES AND JavaScript 199

frameset (usually called the “root” or the “top”), you can do window.top. The
most important step when you are attempting to work with more complex
frames is to really know your frame’s hierarchy well.

Let us suppose that our page is cut into three frames, with frameTitle on
top, and frameMenu and frameBody underneath. Our menu frame will have
a dropdown menu with several city names; when a city is selected, we will
keep track of all selected cities on the frameBody inside a text area. The
frameTitle will have a page showing how many times you changed cities,
writing the message using a button, since we haven’t seen how to modify
regular text yet.

Frameset definition:

<HTML>
<HEAD>
<TITLE>Frames Example</TITLE>
</HEAD>
<FRAMESET ROWS="200, *">
<FRAME name=‘“frameTitle” SRC="title.html”>
<FRAMESET cols="200, *”>
<FRAME name=‘“frameMenu” SRC="menu.html”>
<FRAME name=‘“frameBody” SRC="body.html”>
</FRAMESET>
</FRAMESET>
</HTML>
frameTitle:
<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript”>
var count = 0;
function change_button()
{
count++;
document.myForm.myButton.value = count +
"selected cities so far”;
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name="“myForm”>
<INPUT type="Button” name="myButton” value="0
selected cities so far”>
</FORM>
</BODY>
</HTML>

200 WINDOWS AND FRAMES

frameMenu

<HTML>
<HEAD>
<SCRIPT LANGUAGE=‘“JavaScript”>
function select_onchange()

{
window.top.frameTitle.change_button();
window.parent.frameBody.change_text();

}

var test = 0;

</SCRIPT>
</HEAD>
<BODY>

<FORM name="myForm”>
<SELECT name="mySelect”

onchange="select_onchange() ">
<OPTION value=0>Alicante
<OPTION value=1>Hoboken
<OPTION value=2>New York City
<OPTION value=3>Barcelona
</SELECT>
</FORM>
</BODY>
</HTML>

frameBody:

<HTML>
<HEAD>
<SCRIPT LANGUAGE=‘“JavaScript”>
function change_text()
{
var myTextArea = document.myForm.myText;
var menuSelect = window.parent.frameMenu.
document.myForm.mySelect;
myTextArea.value = myTextArea.value + menuSelect.
options[menuSelect.selectedIndex].text + "“\n”
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name=“myForm”>
<TEXTAREA name="myText” COLS=50
ROWS=25></TEXTAREA>
</FORM>
</BODY>
</HTML>

WINDOWS AND JavaScript 201
WINDOWS AND JavaScript

Probably one of the most annoying things on the Internet are the popup
windows that 90% of pages abuse. Well, now it is your chance to create popup
windows! JavaScript allows the creation of windows and the communication
between different windows. Of course, we will not concentrate on how to
annoy users, but rather how to make intelligent popups that close themselves
when they are no longer needed.

We already saw a basic technique for creating popup windows. The idea
was to provide a name in the target field of a link, making sure that the name
had not been used yet (creating the new window with that name), or by using
_blank, which would always create a new window with no name. JavaScript
will allow us to go a step further and create new windows with the set of
properties we need.

The basic syntax of window creation is calling the open method from the
window object. The function takes three parameters: the page to open, the
title to give to the window, and a list of window features. For example, if you
wanted to create a popup that opens a file called popup.html, you could have
the following script. In order to make our popup intelligent, we are adding
an onUnload in the BODY. This event will be triggered when you leave the
page that opened the popup, and it will close the popup window that was
created. To close a window, simply use the method close():

<HTML>
<HEAD>
<TITLE>Popup example</TITLE>
<SCRIPT LANGUAGE=“JavaScript”>
var newWindow = window.open(“http://www.google.com”,
"mywWindow”, “width=500,height=500");
function closeIt()
{
alert (“"Goodbye!”);
newWindow.close();
return true;
}
</SCRIPT>

</HEAD>
<BODY onunload=‘return closeIt()”>
Go elsewhere.
</BODY>
</HTML>

A good thing about the open method is that if you attempt to open a new
popup with the same name under the same variable, the previous popup is

202 WINDOWS AND FRAMES

updated, instead of creating a new popup. The object returned by open is
extremely important as it is a reference to the new window’s window object.
Thus, you can access anything in the new window by using the previously
seen objects such as document and location.

The third parameter in the open method is probably the most interesting
one, as it allows you to fully customize the look of the new window. It should
be a string with no white spaces so that it works in all browsers (Netscape
does not like white spaces in this parameter). You may use any of these
attributes:

« copyHistory—can be yes or no; allows you to specify whether you want
to copy the history stack of the opening window.

« directories—can be yes or no; allows you to either show or hide the direc-
tory buttons.

+ height—height of the window in pixels.
« left—left starting position; basically, the amount of pixels between the
window’s left border and the screen’s left border.

* location—can be yes or no; allows you to show or to hide the location
field.

« menubar—yes or no; allows you to show or hide the menu bar.

« resizable—yes or no; allows the user to resize or not to resize the
window.

» scrollbars—yes or no; allows scrollbars to appear when needed or not.
If you make a window that is not resizable and has no scrollbars, make
sure that it is big enough to display all that you want to show.

* status—yes or no, show or do not show the status bar.

* toolbar—yes or no; show or do not show the toolbar.

* top—top starting position; basically, the number of pixels between the
top of the window and the top of the screen.

+ width—width of the window in pixels.

Imagine that you want to create a window that will be opened right in the
middle of the screen, meaning that its center should be the same as the
screen’s center. Then you want the window to be a third the size of the screen.
The first thing to do is to calculate the size. This is done using screen.height
and screen.width. We just need to divide the numbers there by 2 to get our
“half-size.” The position is a bit harder. If you used half of the screen’s height
and width, you would be basically choosing the center of the screen as a
coordinate, but using those values on our top and left field would make our
window’s top left corner to be at the center of the screen, and we do not want
that. Since our window is meant to be centered and we already know its size,
we know that the number of pixels from (for example) the top of the window
and its center will be the window’s height divided by 2. Since we know the

WINDOWS AND JavaScript 203

distance from the top of the screen to the center of the screen, we can simply
subtract that value by half the size of the window, letting us know the coor-
dinate to use for our top. Use the same principle to calculate the left coordi-
nate. The code would be something like this:

Var newWindow;

function open_centered_window(urlToOpen)

{ var height = screen.height / 3;
var width = screen.width / 3;
var top = (screen.height / 2)- (height / 2);
var left = (screen.width / 2) - (width / 2);

var features = “width=” + width + “, height=" +
height + "“, top=”" + top + ", left=" + left;
newWindow = window.open(urlToOpen, “myWindow”,
features);
}

When we create a new window, since we get an object reference to the new
window, the popup creator can always access the contents of the popup. Now,
if you wish to do the opposite (accessing the creator window from the popup),
use the opener object of your window. If you have a window main that opens
a pop-up child that opens a window grandchild, you can access child from
grandchild doing window.opener and even main from grandchild doing
window.opener.opener. Each opener object will refer to the window object of
you opener; from there you may access any form element, image, and so on.

One last fun thing you can do with windows is moving and resizing them.
This can be done through the window object, so it can be done to any opener
window, popup, or the window itself. There are two ways to resize and move:
changing the coordinates/size through an offset, or giving the final value
the fields it should have. Moving is done with theWindow.moveTo (left, top)
or theWindow.moveBy (leftoffset, topOffset). Resizing is done through
theWindow.resizeTo (width, height) or theWindow.resizeBy(widthOffset,
heightOffset). To show this, we are going to create two windows. The main
one will simply contain a button to open or close the second window. We
will actually use the same button to open and close the window. Our popup
window will contain two text fields and two buttons. The text fields will allow
us to enter a number of pixels for height and width, and will contain an
onChange event that will apply the changes whenever they are made. The
two buttons will be used to either center the window, or have it move to a
random location. If the user manually changes the size of the main window,
we will update the remote controller with the new size of the window. The
randomizing of the location and size of the main window will be done in
such a way that the resulting window will always be inside the limits of the
screen, and with a size small enough so that the bottom right corner will not
protrude out of the desktop.

204 WINDOWS AND FRAMES

Main window:
<HTML>
<HEAD>
<TITLE>Popup example</TITLE>
<SCRIPT LANGUAGE=‘“JavaScript”>
var newWindow;
var status = 0;
function popupopenclose()
{
if (status == 0)
{
openWindow();
document. forml.myButton.value
status = 1;
}
else
{
closeWindow();

“Close Window”;

document. forml.myButton.value = "“Open Window”;

status = 0;

}

function openWindow()

{

newWindow = window.open(“"remote.html”,”"Remote”,

"width=250,height=250");
}

function closeWindow()

{
if (typeof(newWindow) != "undefined”)
{
if (newWindow.closed == false)
{
newlWindow.close();
}
}
}

function changeSize()

{
if (window.outerHeight > 0)

{

newWindow.document.myForm.height.value

outerHeight;

window.

WINDOWS AND JavaScript 205

newWindow.document.myForm.width.value = window.
outerWidth;
}

}
</SCRIPT>

</HEAD>
<BODY onunload="closeWindow()"”
onResize="changeSize()”>
<FORM NAME=forml>
<INPUT TYPE=‘button” VALUE=“"Open Remote”
NAME=myButton onclick="popupopenclose()”>
</FORM>
</BODY>
</HTML>

Remote Controller Window:

<HTML>
<HEAD><TITLE>Remote controller!</TITLE>
<SCRIPT LANGUAGE=“JavaScript”>

var height = 500;

var width = 500;

var left = 200;

var top = 200;

function applyChanges()

{
window.opener.moveTo (left, top);
window.opener.resizeTo (width, height);

}

function updateWindow()

{
height = document.myForm.height.value;
width = document.myForm.width.value;
applyChanges();

}

function centerWindow()

{
top = (screen.height / 2) - (height / 2);
left = (screen.width / 2) - (width / 2);
applyChanges();

}

function randomWindow()

{
top = Math.round(Math.random() * screen.height);
left = Math.round(Math.random() * screen.width);

206 WINDOWS AND FRAMES

height = Math.round(Math.random() * (screen.
height - top));
width = Math.round(Math.random() * (screen.width
- left));
applyChanges();
}
</SCRIPT>
</HEAD>
<BODY>
<FORM name=myForm>
Height: <INPUT onChange="updateWindow()"”
name="height” value="500" type="text”>

width: <INPUT onChange=‘“updateWindow()” name="width”
value="500" type=‘“text”>

<INPUT name="“center” type=‘“button”
onclick="centerWindow()” wvalue="Center Window”>

<INPUT name="random” type=‘"button”
onclick="randomWindow()” value="Random Window”>

</FORM>
</BODY>
</HTML>

There is only one thing in the code that you might not know yet: outerHeight
and outerWidth. These are basically properties of any window object that tell
you the size of the outside of the browser window. If you want to know the size
of the actual document, ignoring its borders, use innerHeight and innerWidth.
Unfortunately, these properties depend on the platform. They work great on
Firefox but not on Internet Explorer (IE) version 6+, for example. That is the
reason why there is a condition checking window.outerHeight in the main
window. If you try to access that value on IE, you will get “undefined.”

ASSIGNMENTS

At this point you can do most of the fun features of JavaScript, so open up
your mind, use your imagination, and try writing scripts that allow you to
communicate between different frames in different windows. Try playing
around with forms, updating data remotely, and have fun! The more fun you
have practicing, the better you will learn.

ONE LAST FUNNY EXAMPLE

Here is a really cool example of an annoying window. It is a perfect example
of how annoying popup windows can become. Before you write it down and

ONE LAST FUNNY EXAMPLE 207

try it out, be advised that I am not responsible for any problems that may
arise. Nothing major should happen, but if you don’t watch out, you might
end up with several hundred browser windows moving around your desktop.
When you are tired of seeing the effects, you should kill all the windows either
through your task bar or task manager. That being said, let me explain how
this little devilish window works, and why you need to be careful with it
(unless you have a popup blocker). The idea of this popup window is to show
several things. First we have an example of interval timers, which we use to
call a method that will calculate the new coordinates and size of the window.
Then we see how to move and resize an existing window. We also see how to
use events to detect when a key is being pressed or the mouse is clicked inside
the window. Finally, we see an example on how to create a popup window.
What the script will do is constantly move and resize a window around your
desktop (on a very basic pattern). This should be annoying enough, but to
make matters worse, the moment a key is being pressed, we will create a new
window that loads the same page, so that we have two annoying windows.
Clicking anywhere on the page will have the same effect. Note that the event
used for the key detection is onKeyDown, which means that the event is not
happening as a combination of key down and key up (full key press), but just
when the key goes down. Now, since most operating systems will repeat the
key if it stays pressed, holding the key down will be considered as a lot of
separate events. I tried pressing it for about a full second and ended up with
around 20 windows. Of course, having onKeyDown as the event also means
that if the users tries using ALT + F4 (default combination of keys to close a
window), they will open a new window (because of the button being pressed)
and close it (because of the “closing” combination of keys), but if they hold
the key down too long, the windows might be created faster than they are
deleted. Well, here is the code, I hope you enjoy it ©:

<HTML>
<HEAD>
<TITLE>OMG THIS SUCKS!</TITLE>
<SCRIPT language=“JavaScript”>
var size = 800;
var direction = 1;
var myTimerID = setInterval(“startannoying()”, 1);
function newwindow()
{

window.open (“annoyingwindow.html”, "“~, "“7);

}
function startannoying()
{

if (direction == 0)

{

size += 10;

208 WINDOWS AND FRAMES

if (size == 800)
direction = 1;
}
else
{
size -= 10;
if (size == 100)
{
direction = 0;
}
}

window.resizeTo (size,size);
window.moveTo (size, size);
}
</SCRIPT>
</HEAD>
<BODY onkeydown="newwindow()” onmousedown="newwindow()”>
I wouldn’t touch the keyboard or click on the window
if I was you!!
</BODY>
</HTML>

You could actually make this worse by, for example, adding an onUnload,
in case the user tries (and manages) to hit the “back” button. Any “improve-
ments” to make the page more annoying are entirely up to your imagination.

17

String Manipulations
Revisited

OVERVIEW

We have seen the basics of string manipulations, with methods such as
charAt(), charCodeAt(), indexOf(), lastIndexOf(), substr(), substring(),
toUpperCase(), toLowerCase(), or even the attribute length to determine the
size of a string. It is now time to take string manipulations a step further, see
more useful methods, and study regular expressions. We will finish this
chapter talking about the use of regular expressions in PHP, but for now let
us talk about JavaScript.

NEW BASIC STRING METHODS

Back in Chapter 14, we saw that arrays had a method called join that allowed
the creation of a string from a set of array elements. This was the same as a
PHP implode. You might be wondering whether there is an equivalent to
PHP’s explode in JavaScript, and the answer obviously is “Yes.” The function
is called split() and takes a delimiter as parameter. For example, assuming
that you have a string called myString, you could write myString.split(*,’) if
you wanted to use the comma as a separator. There is something very impor-
tant to realize when you use split. If your string finishes with the separator,
you will have an entry that is an empty string. So if you do

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

209

210 STRING MANIPULATIONS REVISITED

var myString = “a,b,c,d,”;
var myArray = myString.split(*,’);

your array would actually hold “a,” “b,” “c,” “d,” and “”.

Another interesting function, which will acquire an entirely new dimen-
sion in a few paragraphs after we do regular expressions, is replace(match,
replacement). For example, you could do myString.replace(“winter”,
“summer”) to have a sunnier day. As we will see later on, the match can
actually be a regular expression, which will allow you to change as many
matches as needed.

Next we have search; for example, myString.search(“Bewchy”) would
return the string’s position or -1 if the string were not found. You might
wonder what the difference is between this and indexOf. Simply put, search
accepts regular expressions; indexOf does not.

The final basic method is match, for example, myString.match(“1234”).
This creates an array with all the matches found on the string. In our example
it would create an array with as many entries as times you found 7234 on
myString. Each entry will have the exact same /234 data. You might wonder
why you would use this method! Well, it will become much more useful when
we combine it with regular expressions, as it will give us all matches on our
expression.

REGULAR EXPRESSIONS IN JavaScript

A regular expression is basically a string that has a specific syntax, which
allows you to find groups of similar strings. For example, they can be used to
see if a string is an email address by checking the string for the key elements
that all email addresses should contain.

To use regular expressions in JavaScript, we use the RegExp objects. You
can create a new object by writing the regular expression either directly
between slashes or as a string. The following example creates two variables
with the same regular expression that will attempt to find three digits (I per-
sonally always use the first type):

var myRegExp = /\d{3}/;
var myRegExp2 = new RegExp(“\d{3}”);

A regular expression tries to ascertain, character by character, what your
expression holds inside a string. Check this example:

var myString = “bar, barman, barmaid, Bar, barcode”;
var myRegExp = /bar/;
myString = myString.replace(myRegExp, “Club”);

REGULAR EXPRESSIONS IN JavaScript 211

The idea is to change all “bar” iterations with “Club,” but if you try the
example, the result will be “Club, barman, barmaid, Bar, barcode.” Only the
first one would be replaced. If you wish to match all iterations, you need to
add the “global match” modifier, which will try to match the expression in
the entire string. Simply add a “g” after the closing slash. This would still raise
an issue, as we have a string Bar with capital B. Since B is different from b,
it would still not match the second word Bar. You can solve this with the
“case-insensitive” modifier, by putting a letter “i” at the end of the regular
expression. Our regular expression becomes

var myRegExp = /bar/gi;

With this regular expression, the result would be “Club, Clubman, Clubmaid,
Club, Clubcode”.

To make expressions more useful, you can use any of the following special
characters:

+ \d—represents any digit (0-9)

+ \D—any nondigit character

+ \w—any word character [A-Z, a-z, 0-9, or underscore (_)]

« \W—any nonword character

+ \s—any non-white-space character

+ .—any single character

« [...]—put characters instead of the periods, and it will match any of the
characters between brackets. For example, [abc] will match a or b or c.
You can represent a range of values with the — sign; for example, [a-s]/
would be any letter from a to s.

« [~ ...]—any one character except those inside the brackets. For example,
["abc] will match any character EXCEPT for a, b, or c.

When there is a character (including any of the previous special charac-
ters), you can use any of the following suffixes, to be placed right after the
actual character that is repeated. If you want a group of characters to be
repeated, surround the group with parenthesis. Here is the set of repetition
characters:

+ {n}j—match n of the previous items. For example, /a{4}/ would match
aaaa.

+ {n,}—matches n or more of the previous item. For example, /a{2, }/ would
match aa, aaa, aaaa, and so on with as many a symbols as needed.

« [n,m}—matches at least n and at most m of the previous item. For
example, /a{2,4}/ would match aa, aaa, and aaaa.

+ ?—match the previous item 0 or 1 times. For example, /a?/ will match a
and lack of a. It’s the same as using {0,1].

212 STRING MANIPULATIONS REVISITED

« +—match the previous item 1 or more times. Same as doing {1,/.
« *—match the previous item 0 or more times. Same as doing {0, .

For example, to find a number like 1-800-555-5555, we can use either one
of these two:

var myRegExp = /\d-\d{3}-\d{3}-\d{4}/;
var myAltRegExp = \d-(\d{3}-){2}\d{4}/;

It is also possible to use a series of characters that allow forcing the posi-
tion of a regular expression. Here is the list:

« A—placed in front of a pattern, it will ensure that the match is found at
the beginning of the string. For example, /*Hello/ would check whether
Hello is right at the beginning of the string.

- $—placed at the end of a pattern, it will ensure that the match is found
at the end of the string. For example, /Goodbye$/ would check whether
the string finishes with Goodbye.

« \b—matches a word boundary. A word boundary is basically a limiter
that does not count as a character, which means that a word was just
written or is about to start.

- \B—matches a nonword boundary.
Check this example to understand word boundaries:

var myString = “Hello World!!! This isn’t really cool is it?”;
var myRegExp = /\b/g;
myString = myString.replace(myRegExp, “1”);

In this little piece of code we are replacing word boundaries all across the
string (due to the global match modifier) with a pipe (1). The resulting string
would be “|Hellol |\World|!!! \this| lisnl’itl Ireally| Icooll lis lit]?.” Therefore, if
we wanted to improve our previous bar example, to have only the full word
bar matched, you would use the regular expression /\bbar\b/gi .

Remember that you can group regular expression in parentheses; so, for
example /\b((ab){2,3}c) +\b/gi would match globally (and case-insensitively)
any full word (surrounded by word boundaries) that will have two or three
groups of ab followed by a c, 1 or more times. For example, “ababc” is a match,
and so is “abababcababc,” but not “ababab c,” since there is a word boundary
before c is found.

Another useful feature of regular expressions is the reuse of previous
matches. For example, you could have a string with comma-separated strings,
and you could try to see if the same word appears twice in a row anywhere
in the string. To do this, we must first group in parentheses the pattern that

REGULAR EXPRESSIONS IN PHP 213

will be repeated, and then refer to it with a backslash followed by the position
of the pattern (only the parenthesized patterns count). OQur regular expression
to match successive identical words separated by a comma and a white space
would be /(\w+), \1/. Basically, we try to find any word character one or more
times, followed by a comma, a white space, and the exact same group of word
characters found before the comma.

Sometimes you might have two possible choices of matches, and you might
want to match only one of two choices. You can use a pipe (I), which is the
“or” character. For example, writing /a(blc)d/ would match either abd or acd,
but never abcd, abc or ad.

REGULAR EXPRESSIONS IN PHP

Using regular expressions in PHP is the same as using regular expressions in
JavaScript, so I grouped both languages in this chapter. When using regular
expressions in PHP, our regular expressions will be written as a string rather
than using the slashes. For example, instead of writing /abc/to match the string
abc, we would use “abc”, with the double quotes. Other than that, the basics
are the same; you can use any of the grouping, and position characters. You
can also use [[:alnum:]] to match an alphanumerical data (digit or letter),
[[:digit:]] to match a digit, and [/:alpha:]] to match a alphabetical character.

Once you have created your regular expression, you must use any of the
regular expression functions that PHP has. First, we have ereg, which accepts
a regular expression, a string where the regular expression needs to be found,
and an optional array that will hold the series of matches. The function
returns the length of the match for the pattern or FALSE if there were no
matches. Imagine that you want to see if a date is formatted the regular
American way of month-day-year and print its European equivalent in the
format day/month/year. First we would write a regular expression that would
help us see if there were a match, making sure to group in parentheses every
group that we want to move around. Each parenthesized group will be acces-
sible individually through the array sent as parameter. The entry at index 1
will hold the submatch for the first set of parentheses, the entry at index 2
will hold the second pattern, and so on. Index 0 will have the full match. Here
is the code that would check the expression and print the new version:

if (ereg(“([0-9]{1,2}))-([0-9]{1,2})-([0-9]{4})”, $dateString, $matches))
echo $matches[2].”/”. $matches[1].”/”.3matches[3];

else
echo “Invalid date format: “. $dateString,

You may also use eregi, which does the same, but ignoring the character
case. It is like adding the i modifier at the end of a regular expression in
JavaScript.

214 STRING MANIPULATIONS REVISITED

To replace patterns with other strings, use ereg_replace(3pattern, $replace-
ment, 3string) or eregi_replace(3pattern, $replacement, $string) for the same
as a case-insensitive match find.

If you wish to gather information on all the different matches, use the
function split(pattern, string, limit). This function returns an array with all
the matched elements. The /imit is an optional parameter if you wish to store
a maximum number of matches. You can also use spliti to do the same but
case-insensitively. For example, if you wanted to find all words of two or more
characters in a string (e.g., as in an indexer), you could do

Sarr = spliti(“[[:alpha:]]{2,}”, $str);

The Set of PCRE

It is commonly known that the language Perl is one of the best languages
for string manipulation, mainly because of its powerful regular expressions
methods. Since there is nothing wrong in admitting that a different program-
ming language is more powerful in a small set of operations, PHP decided
to bring what made Perl so special into PHP, by creating the set of PCRE
(Perl-compatible regular expressions).

The PCRE allows use of the same regular expressions as in JavaScript,
meaning that you must put the slashes before and after your patterns. You
will still need the double quotes around the entire expression. For example,
to match the string php in a PCRE function, your regular expression should
be “/php/.” The good thing about this is that you can use the same modifiers
used in JavaScript, such as i for case-insensitive. It also allows you to use the
x modifier, which helps in creating commented multiline regular expressions.
The x modifier basically indicates that all the white spaces in the patterns
should be ignored, as well as any character between a pound sign (#) and the
end of a line. This would allow you to turn a regular expression like /\bphp\b/i
into

/ #begin pattern

\b #find word boundary

php #followed by “php”

\b #then another word boundary
/xi

Another modifier that can be added after the closing slash is the letter e.
When used, it allows the use of subpattern matches similar to \7 in JavaScript.
This feature will be usable with the function preg_replace(), with the differ-
ence that it needs a double backslash (as shown below).

Finally, you may use any of the following special characters with any
PCRE: \d for digit, \D for nondigit, \s for white space character, \S for non-
white-space character, \w for word character, \W for nonword character, \b

REGULAR EXPRESSIONS IN PHP 215

for word boundary, \B for nonword boundary, \A for start of subject, \z for
end of subject, and \Z for end of subject or new line. For more information
you may go to WWWw.pcre.org.

Here is an example of how to use the e attribute to replace all tag names
in a string to uppercase. To match all tag names, and not its attributes, find a
character “less than,” maybe followed by a slash (in case of a closing tag) and
a series of word characters, followed by another set of characters different
from “greater than,” followed by “greater than.” Since the character slash is
a special character, to use it we need to “escape” it by preceding it with a
backslash, so if you see “\/,” it is not a strange capital V (or inverted uppercase
Greek letter lambda); it is a backslash followed by a forward slash. Our
regular expression would be “/(< \/?)(\w+)([*>]* >)/e”. The three groups
in parentheses are as follows: opening “less than,” tag name, parameters, if
any, with closing “greater than.” To change the string to enable it to hold all-
uppercase tags, you would do

SnewString = preg_replace(“/(<\?)(\w+)([*>]*>)/e”, “’\\1".
strtoupper(‘\\2°)."\\3*”, $str);

The other main PCRE functions used in PHP are

« preg_match($pattern, $string, $array)—the array is optional; this
attempts to match the pattern on the string. If the array is provided,
$array[0] would hold the text that matched the full pattern, $array[1]
would hold the text that matched the first parenthesized subpattern,
$array[2] would hold the text that matched the second parenthesized
subpattern, and so on. This function looks for only one match.
preg_match_all($pattern, 3str, $matches, $order)—this will find all
matches of $pattern in $str and store them in the array $matches. The
Sorder can be PREG_PATTERN_ORDER or PREG_SET ORDER.
The first choice will organize the matches so that $matches[0] is an array
of all the full-pattern matches, $matches[1] the array with all the matches
on the first parenthesized subpattern, and so on. The second option will
have $matches[0] holding an array of the first set of matches (meaning
that $matches[0][0] would be the first full match, $matches[0][1] would
be the contents of the first subpattern for the same match, and so on);
matches[1] would be the second set of matches, and so on. I personally
prefer using PREG_PATTERN_ORDER, as it helps out when you want
to show information per type of match (full or partial).

« preg_replace(3pattern, $replacement, $str, $limit)—if $limit is omitted
or set to -1, all occurrences of $pattern in $str are replaced with $replace-
ment. You can use (as we saw earlier) \\0, \\ for substring matches. Note
that you can only use single digits, meaning that only the full match and
the first nine subpatterns can be referred to.

216 STRING MANIPULATIONS REVISITED

+ preg_split(3pattern, $str, 3limit, $flag)—same as split but using PCRE.
Slimit is optional, and $flag can be PREG_SPLIT NO_EMPTY, which
will gather only nonempty matches.

« preg_quote($s, 3delimiter)—puts a backslash in front of every character
that is part of the regular expression syntax. The $delimiter is optional,
but will also be escaped if included. The characters affected are \ + * ?

[1"8()(}=1<>1:

18

JavaScript and DHTML

OVERVIEW

You might be wondering what DHTML is, and, as do many people, you probably
think it is a new language. Well, you would be wrong. DHTML stands for
Dynamic HTML, which is a “high-tech” word used to define the possibility of
changing an alreadyloaded page. When we changedimages, and moved windows,
we were doing DHTML. In this chapter we will take this one step further, seeing
how to change text, positioning of elements, and almost anything.

One very important thing to realize is that DHTML is technically done
through JavaScript; therefore the scripts we will write might not work in every
single browser. It is important to test your scripts and try to force yourself to
use cross-platform objects and properties.

POSITIONING ELEMENTS

One of the main aspects of DHTML is elements positioning; it is possible to
pinpoint the exact location of any element. Each location is given in pixels as
a top left coordinate of the beginning of the element. Positioning can be either
absolute or relative. When the positioning is set as absolute, the number of
pixels specified indicates the location of the block from the top left corner of
the inside of the browser. If the location is set as relative, the coordinate

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

217

218 JavaScript AND DHTML

provided is calculated from the top left of the container. Note that the actual
coordinates can be set as part of the item’s style by using the top and left
properties. To illustrate positioning, we will create a colored box, using the
height and width style attributes. Imagine that you have the following classes
in your style sheet:

<l--
.Box { top: 100px;
left: 100px;
height: 300px;
width: 300px;
background-color: red;
position: absolute; }
.ParagraphStyle { top: 100px;
left: 100px;
color: yellow;
position: relative; }
-

This example yields a red box of 300 x 300 pixels, with its top left at 100 x
100 pixels from the top left of the browser:

<HTML>
<HEAD>
<TITLE>Positioning Example</TITLE>
<LINK rel=stylesheet href=mystyle.css type=text/css>
<BODY>
<DIV CLASS="Box”>
<P CLASS="ParagraphStyle”>
This is cool!!!
</P>
</P>
</BODY>
</HTML>

Besides the possibility of positioning any element anywhere, it is also pos-
sible to access any tag in a page, and modify its contents. We already saw how
to do this with basic tags like links, images, and forms (with its elements), but
it can also be done with paragraphs, DIV sections, or almost anything. To do
so, provide the attribute ID to the tag you want to access. For example, you
can set a paragraph to be accessible by doing

<P ID=“myParagraph”>...</P>

Once you have a set of opening/closing tags with an ID set to it, you may
access the text inside it using the attribute innerText. For example, if we

POSITIONING ELEMENTS 219

have the previous paragraph, you could change its contents by changing
myParagraph.innerText. Note that innerText does not work on Firefox; instead,
you should use textContent. As with any of the basic tags we saw earlier, you
can update any property of the elements. Properties include any of the attri-
butes in the style sheet. To change a style simply use the word style, followed
by the style attribute to change. For example, you can change the left position
of a paragraph to “200” by doing

myParagraph.style.left = “200px”;

You can also add any event handler to paragraphs or other items, to enable
you to change text when the mouse gets over it or out, even when you click
it. This way you can create sections of your page that will behave like links
without being links! Simply add an onclick property that will change the
location.href, and you have made a link for yourself.

Be creative, but do not abuse the flourishes as they might become annoying
to users. A nice use of paragraph positioning is scrolling news headers. You
could have a section on top of your page with a paragraph that will scroll text
thanks to an interval timer.

You can actually use coordinates that are negative when positioning an
element. This means that they are placed outside the actual body of the page,
making them hidden. From there you can use events to bring those sections
in or out of the page, which is great for dynamic menus. Later on we will see
how we can create this sort of menus.

As you probably realized using innerText, it only captures text skipping
any HTML in the block. If you wish to set the contents of a paragraph or
other element to contain HTML tags, you can use the properties innerHTML
and outerHTML. The first will allow setting or reading all the contents
between the opening and closing tags. The latter actually allows you to change
the contents as well as the containing tags. This can be used to create an
HTML code preview viewer as in the following example. This example works
only with Microsoft Internet Explorer (IE). After it you will see a similar
example that works on Firefox:

<HTML>
<HEAD>
<SCRIPT LANGUAGE=JavaScript>
function setHTML()

{
if (radInnerOuter([0].checked == true)
{
divl.innerHTML = textareal.value
}

else

220 JavaScript AND DHTML

{
divl.outerHTML = textareal.value;
}
}
function getHTML()
{
if (radInnerOuter[0].checked == true)
{
textareal.value
}
else
{
textareal.value = divl.outerHTML;
}
}
</SCRIPT>
</HEAD>
<BODY>
<DIV ID="divl”>
Write your HTML code in the box below!</HI1>
</DIV>

<TEXTAREA COLS=50 ROWS=20 ID=textareal
NAME=textareal></TEXTAREA>
InnerHTML <INPUT TYPE="radio” NAME="radInnerOuter”
CHECKED>
outerHTML <INPUT TYPE="radio” NAME=“radInnerOuter”>
<INPUT TYPE="button” VALUE="Get HTML” NAME="bttnGet”
onclick="getHTML() ">
<INPUT TYPE="button” VALUE="Set HTML” NAME="bttnSet”
onclick="setHTML() ">
</BODY>
</HTML>

divl.innerHTML;

Here is a similar example that works on Firefox. Since outerHTML does
not work on Firefox, we will illustrate the difference between innerHTML
and innerText, or Firefox’s equivalent textContent. As you will note, textCon-
tent will not parse any HTML contained in the text, whereas innerHTML

will check the HTML code and process it.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=JavaScript>
function set()

{
if (document.forml.radTextHTML[0].checked == true)

POSITIONING ELEMENTS 221

divl.innerHTML = document.forml.textareal.value
}
else

{
divl.textContent = document.forml.textareal.value;

}
function get()
{
if (document.forml.radTextHTML[0].checked == true)
{
document. forml.textareal.value = divl.innerHTML;
}
else
{
document. forml.textareal.value = divl.textContent;

}
</SCRIPT>
</HEAD>
<BODY>
<DIV ID="divl”>

<Hl>Write your HTML code in the box below!</H1>
</DIV>
<FORM NAME=“forml”>

<TEXTAREA COLS=60 ROWS=10 ID=textareal
NAME=textareal></TEXTAREA>

InnerHTML <INPUT TYPE="radio” NAME="radTextHTML”
CHECKED>
ContentText <INPUT TYPE="radio” NAME="radTextHTML”><P>
<INPUT TYPE="button” VALUE="Get” NAME="bttnGet”
onclick="get()”>
<INPUT TYPE="button” VALUE="Set” NAME="bttnSet”
onclick="set()”>
</BODY>
</HTML>

If you wish to update the inner or outer text or HTML of a block without
changing the entire contents, you can use insertAdjacentText or insertAdja-
centHTML. These are two methods that accept the location of the insertion,
followed by the block to insert. The value of the first parameter can be before-
Begin to insert before the opening tag of a block, afterBegin to insert after

222 JavaScript AND DHTML

the opening tag, and before the current text/HTML, beforeEnd to insert right
before the closing tag, and afterEnd to insert after the closing tag. For example,
myDiv.insertAdjacentText(“beforeEnd”, “
"); would insert a break of
line at the end of myDiv but before its closing tag.

Another fun feature of DHTML is the ability to detect the source of an
event. In IE, for example, you can use the event object, which holds informa-
tion on the location of the mouse cursor, or what caused each event. Here are
the contents of the event object: ‘

+ event.screen X—gives the X coordinate of the cursor.
* event.screenY—gives the Y coordinate of the cursor.

* event.button—returns a number representing the mouse button that
causes the last event: 0 for no button pressed, 1 for left button, 2 for right
button, 3 for left + right, 4 for middle button, S for left + middle, 6 for
right + middle, and 7 for all three buttons (which is fun if you want to
compel users to have a three-button mouse ©).

* event.fromElement—returns the element in which the mouse was before
the event occurred. For example, if you had a onMouseOut event on a
button called myButton in your form myForm, when the mouse leaves
the button the even.fromElement would be the same as document.
myForm.myButton.

+ event.srcElement—returns the element that caused the event.

* event.toElement—returns the element to which your mouse is moving
when the event occurred.

WRITING DYNAMIC MENUS IN DHTML

Imagine that you are trying to imitate the typical window menus that every
application has (with File, Edit, View, etc.) but inside a Webpage. The idea is
that you want to show a table with a set of options; if you click on any of them,
you “activate” the menus, which would show a table with all the submenus
for each of those options, right under the main title. In order to do so, we
could have a set of tables with the submenus, each table would be a submenu
and would be in a separate DIV section. The idea is to keep the submenus
“hidden” and make them appear in the page when the right option is
selected.

To “hide” a submenu, we will place its DIV at a set of negative coordinates,
placing it in a higher and further left position than the top left corner of
the browser, effectively making it invisible. Once the option is selected,
we will place the submenu right under the main option. We will combine
this technique with several onmouseover, onmouseout, and onclick maneuvers.

The onclick will be used to know whether you are in “menus” mode or
not, just like when you click on File. After the first click, you want to show

WRITING DYNAMIC MENUS IN DHTML 223

all the submenus by simply placing the mouse over its title. Whenever we
move out of at menu title, we will hide its submenu, unless we place the cursor
on that same submenu. Finally after a click is made, we will switch back to
“no-menu” mode, hiding all submenus. Below you will see the code to achieve
this on Internet Explorer (this is just a basic example; most links will not even
work). Be sure to check the companion Website for the Firefox-compatible
version, as well as many other examples:

<HTML>
<HEAD>
<TITLE>DHTML Menus Example - MSIE Version</TITLE>
<SCRIPT LANGUAGE="JavaScript”>

var showMenus = 0;
function hideMenu(num)
{
var toHideId = (num.id).substring(3);
var destinationId = (event.srcElement.id).
substring(3);
if (toHideId != destinationId|[(showMenus == 0))
{
num.style.top = -500;
num.style.left = -500;
}
}
function pickMenu(num)
{
hideMenu (div0);
hideMenu(divl);
hideMenu(div2);
var src = event.srcElement;
if (showMenus == 1)
{
num.style.top = parselnt(src.style.top) + src.
height;
num.style.left = parselInt(src.style.left);
}
}
function toggle(num)
{
if (showMenus == 1)
{
hideMenu(div0);
hideMenu (divl);

hideMenu(div2);

224 JavaScript AND DHTML

showMenus = 0;
}
else
{
showMenus = 1;
pickMenu (num);
}
}
</SCRIPT>
</HEAD>
<BODY>
<IMG SRC="file.gif” ID="img0” onmouseover=“"pickMenu
(div0)” onmouseout="hideMenu(div0)” onclick="toggle(div0)”
style="position:absolute;left:10px;top:10px; ">
<IMG SRC="links.gif” ID="imgl” onmouseover=’"pickMenu
(divl)” onmouseout="hideMenu(divl)” onclick="toggle(divl)”
style="position:absolute;left:115px;top:10px; ">
<IMG SRC="help.gif” ID="img2” onmouseover="pickMenu
(div2)” onmouseout="hideMenu(div2)” onclick="toggle(div2)”
style="position:absolute;left:220px;top:10px; ">
<DIV ID="div0” STYLE="position:
absolute;top:-500;1eft:-500;width:100px; ">
<TABLE border=1>
<TR>
<TD>0Option 1</TD>
</TR>
<TR>
<TD>0Option 2</TD>
</TR>
<TR>
<TD>Option 3</TD>
</TR>
<TR>
<TD>QOption 4</TD>
</TR>
</TABLE>
</DIV>
<DIV ID="divl” STYLE="position:absolute;top:-500;
left:-500; ">
<TABLE border=1>
<TR>
<TD>Google</TD>
</TR>
<TR>
<TD>Stevens</TD>

YOUR TURN!! 225

</TR>
<TR>
<TD>Wiley</TD>
</TR>
</TABLE>
</DIV>
<DIV ID="div2” STYLE="position:absolute;top:-500;
left:-500; ">
<TABLE border=1>
<TR>
<TD>About</TD>
</TR>
<TR>
<TD>Help Me</TD>
</TR>
</TABLE>
</DIV>
</BODY>
</HTML>

YOUR TURN!!

Now that you know about DHTML, try to write a script that will show moving
paragraphs on the screen. Remember, you can set the position of a paragraph
myParagraph by doing

myParagraph.style.top and myPararaph.style.left;

19

Putting It All Together!

OVERVIEW

With so many techniques and approaches, you might feel a bit lost trying to
know how to organize your development phases, what you should start with,
and what language should be used for what. This chapter provides the guide-
lines for applying the design techniques I have used in the past and that have
always proved to work. As an example, we will imagine that we are writing
a Web-based commerce site. These guidelines are general to any language;
at the end of this chapter I will get more specific on the strong points of each
language and what languages should be used and when.

PROCEDURE

Step 1—Understanding the Problem and Finding the Solution

This is probably one of the most important steps in Web development,
and actually any type of programming. Designing your scripts properly
depend on this. You must understand what is that you are trying to achieve
and then figure out how to solve that problem. Usually the solution is found
through several meetings between the developer’s group and their managers.
It is a good idea to have project sponsors at the first meetings so that they can
state clearly what they are paying for and what they would like to accomplish.

Web Application Design and Implementation: Apache 2, PHPS, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

227

228 PUTTING IT ALL TOGETHER!

Once the first meeting has taken place with the decided scope of the
project, you need to visualize how the final product will behave and what
modules will be required. For example, if we are writing an e-business site,
we know that we will need a payment module for costumers to pay for their
purchases, a shopping cart system to keep track of purchases, a username/
password system to remember regular users, an administrator panel to add
items to our store, and scripts that will show the products to the clients by
extracting the details from the database, allowing items to be searched by
name, price range, or even category. To keep the example simple, and since
I know what most computer science students like to do in their spare time,
we will assume that we are coding a Website that will sell videogames.

Step 2—Designing the Database

The reason why we call these Websites “database-driven” programs is
simple—the entire page revolves around a central database. This means that
creating the database should always be the first part of your development
cycle, after knowing how you plan to solve the problem. Always try to create
a database with the least possible redundancies, and my advice is to try to
have tables that hold only the crucial information for that table. If there is a
set of data that complements a table but is not essential for the table itself
(e.g., a list of user preferences would complement a user’s table), you should
create a separate table linked to the main one, rather than including the all
the properties in a single table. The reason for this is that if you do a query
on a large table, more information will have to be fetched, taking longer times
to run the queries.

We have established that we want a Website to sell videogames, so we will
need a table called videogames with attributes like id_game, name, esrb_
rating, description, and image_url. Then we know that we will need to remem-
ber client’s details, so we will use a user table with id_user, name, surname,
email, username, password, and level. I am adding the level field to handle
clients versus administrators. It just needs to be a little flag that will have a
set value for regular shoppers, and a different value for Website administra-
tors, granting them the right to modify the contents of the site, such as adding
and removing games, reviewing orders, deleting users, adding more adminis-
trators, and so on.

As we said, we want to be able to search games by categories, yet you prob-
ably noticed that I did not add a category field. There is nothing wrong with
writing a string with all the categories that a game is part of; for consistency
with category names, I will create a categories table with id_category and
category. This will store the names of the categories and associate each one
with a simple number. This is the way I always write my databases so that
I never need to transmit a string to extract information from one table to
another. Instead, I always use dull keys, making it harder for a hacker to know
what information I transmit between scripts.

PROCEDURE 229

Obviously this table still does not tell us which categories a game belongs
in, so we need to create a game_category table with id_game_category (not
strictly needed, but I want to keep it simple and avoid the need to combine
two attributes as my primary key), id_game, and id_category. This will allow
me to store all the categories of all the games. If a game has more than one
category, it will have two entries in that table. This is a good example of a
n,m relationship, where each game can have many categories, and each cate-
gory can be applied to many games.

Following the same type of logic, even though the number of possible game
platforms is limited, there are always new platforms appearing every few
years. In order to keep our database as robust and flexible as possible, we
will have a platforms table with id_platform and platform, similar to the cat-
egories table. As you probably noticed earlier, the videogames table had no
reference to platform or price, because the same game may be available in
different platforms, and its price will likely depend on its platform. For
example, a handheld version of a game will always be less expensive than the
same game on the newest generation of consoles. We will therefore use a
game_platform with id_game_platform (this is the id used), id_game,
id_platform, and price.

We then need to keep track of shopping carts. Most basic commercial
Websites simply store the shopping cart in a session or a set of cookies, loosing
all its contents if the user leaves the current computer and logs in on a differ-
ent one later on. Instead of this behavior, we instruct the computer to memo-
rize all shopping carts of registered users, so that the next time they log in,
the items they tried to purchase will still be available. Each user is supposed
to have only a single cart, so to keep things simple, we will use id_user as the
primary key for the carts. If the user is not logged in, we will not store the
cart in the database, using sessions instead. Basically, shoppers would get in
the page, start shopping, and if they log in, their shopping carts will be stored
in the database. If they were already logged in, updating the carts would
update the database as well. Our table cart will hold id_user, date, and
total_price. To store the items in the cart and its quantities, we can use a table
game_in_cart with id_game_in_cart (dull id), id_user (reference to a specific
shopping cart), id_game_platform (reference to a game in a specific plat-
form), and quantity. The price can be calculated through the game_platform
table.

Once the user decides to check out the shopping cart (i.e., finishes
shopping), you need to ask for information such as shipping address, billing
address, and payment information. Each user may have several credit cards,
each associated with its own billing address information, and can also have a
group of possible shipping addresses (in case the order is to be sent home, to
the office or to a friend). To make our database as flexible as possible, we will
have a table addresses with id_address, id_user, linel, line2, city, zip, and
phone; and a table payment with id_payment, id_address, type (Visa,
MasterCard, American Express, or other payment method), number, expiration

230 PUTTING IT ALL TOGETHER!

i‘ ; { PIRRR = — ; .
L Game n: can L 5 ool Game_category | Categories |
‘PK 'd gamc n carl PK| id game — ‘PK id gamecamgory ' PK |d Lmegory‘
i game olatform nam
Eﬁf ' esbre FK2 Id game category
1 I description FK1 |id_category
| | image_url
L | | Platforms |
o R — R — } Game platform } PK id platform
Can | EE— L PK "’ game P‘a”o““ —> platform
PK,FK1/id user [Uses FK2 | id_game
date P PK id user FK1 | id_platform
total pri i fname price
surname
email L Order_ nem |
usemame |¢) e e
ey password | ' ‘PK id order |tem
ddresses | S— i —
el | level i FK2 id_order
PK | id address A et K1 {i_game._plattorm
"FK1[id_user 1 :
line 1 v
line 2 - | Orders
city : PK id order
o e e
adbidind | [date
{‘ = m ent] total
ERYOD FK2| id_payment
PK |id payment < “IFK3 id_address
FK1 |id_address shipping_method
type
number
expiration
cev
FK2 ‘id,user

FIGURE 19.1 Videogame store database structure.

date, ccv (security code), and id_user (we could do without it, since we can
extract the user information through the id_address, but it would simplify the
task of searching for payment methods for a specific user).

After the user confirms the payment method as well as the shipping and
billing address, the shopping cart is upgraded to an “order,” and will be stored
in a table orders with id_order, id_user, date, total, id_payment (for payment
method and billing address), id_address (for shipping address), shipping_
method. The specific items of each order will be in a table order_item with
id_order_item, id_order, id_game_platform, quantity.

The final layout of our database is shown in Figure 19.1.

Step 3—Main Functionalities

Once you have created the database, you should create the main functional-
ities of your Website. Start concentrating on making sure the Website works,
as clients would much rather see an ugly Website that can do what it is sup-

PROCEDURE 231

posed to do, rather than a pretty page that has errors all over the place and
does nothing at all.

Try to start with the important tasks first, as they will be the key parts of
the project, but keep in mind what will need to be done in further steps. It is
a good idea to set some data inside the database so that you can tell whether
the scripts work well.

In our game-selling Website I would probably start writing the code to
show all the games in the database, with 10 titles per page, taking advantage
of the LIMIT property used in MySQL when performing a SELECT. The
next step would be to extract the categories and platforms for which we have
games from the database and write a script that would show the games for a
specific platform and/or category by simply clicking on a link.

Once you can display all items correctly, work on the user login procedure.
This should not take too long. At the same time create the forms to attract new
users and add information like addresses and payment information. Make sure
that the login script creates a session and that the session is kept alive until the
user logs out. Of course, write the logout procedure that will destroy the session.

Next, start working on the add-to-cart function that should be attached to
each displayed game on the page. Then work on the scripts that would help
you update the cart, such as removing items, adding items, or changing the
quantities of items already in there. Finally, work on the checkout procedure,
turning a cart into an order.

If you write all the previously mentioned functionalities, the core of the
project is done, and you can start pitching the progress to your team mates
to try and find usability problems and bugs.

Step 4—Backside

You should always create an administrator panel to help you handle the data
in your Website. For example, to add a new user or other entry in the database,
it is much more recommendable to do so via your own scripts, rather than
going straight to the database manager and adding the data manually.

Since you already wrote a login page, and in your database you have a flag
level, add a check during login that will test whether the user is an adminis-
trator, and, if so, direct the user to an Admin panel.

The Admin panel should have scripts allowing the removal of items, as
well as adding new categories, platforms, games, removing users, making a
user an Admin, and pretty much anything that would update the contents of
the database. To test out the functionalities, simply try adding a few items
through the newly built Admin panel, then switch to a regular user and see
if the products appear as they should.

Step 5—Improvements on Functionality

Once you have finished with the basic functionality of both the user and
administrative portions of the site, you may start having fun with advanced

232 PUTTING IT ALL TOGETHER!

functionality. This could include a searching tool to look for items by name,
platform, esbr, price, or anything you might want to provide. You can do a
“news” page that would show the most recent releases, based on the release
date on the database, as well as the current date. You could also have an
“upcoming” section with the games that are about to appear. The whole point
of this is to improve the functionality of your Webpage, based on recommen-
dations from tester users, project managers, and other team mates. Do not get
too far away from your initial agreement; if you ask any project manager, you
will learn that “Scope creep will kill you!”—meaning that if you keep chang-
ing the specifications of the project after you already agreed on them, your
project will be delayed, potentially making you loose your window of oppor-
tunity as well as many development hours (and time is money). The “updates”
should concentrate on bug fixes, and increased robustness on the project.

A typical thing that should be done in this step is to add forms verification
for every single form on the Website. You should check all the data transmit-
ted from page to page and make sure that it contains what it should.

At the end of this step your entire Website should be functional, but might
not look the best. So let us advance to step 6.

Step 6—Improvements on Looks

Once you know that your pages work, you might start playing around with
different style sheets. The best thing to do as you are developing the pages is
to think about what different styles you will need and start providing class
names to all the elements that will need a style. Then create an empty style
sheet and link to it. In this step we edit the style sheet in question and experi-
ment with colors, fonts, sizes, and even layouts.

Step 7—Thorough Testing, Hacking Attempts

So, you finally have a Website with all the required functionalities, you have
an administrator control panel, the page uses a nice style sheet that you think
your supervisor will like, and you probably think that you are finished with
the project . . . unfortunately it is not yet the case. This step is probably one
of the most overlooked steps in Web development, and it is the fundamental
difference between a good Website and an excellent one.

In this phase you should group yourself with some friends or coworkers
and attempt to break your Website (make sure that you have backups of the
pages and database before you start). By “breaking” the Website I mean
trying to insert corrupt data, hacking into the administrator panel without
proper authorization, and things like that. It is actually quite funny to do and
forces you to use your imagination to try and figure out the most obscure way
to make the pages not work as intended.

A typical thing I do when testing my students’ Websites is attempt to insert
HTML code in any form containing data that will be displayed. For example,

PROCEDURE 233

you could write things like if the background
color is white when asked for a name; that way you force all following text to
appear in white, virtually “erasing” all data that should appear on the page.
The data would still be there, but would show up as white over white.
Sometimes I decide to insert JavaScript like <SCRIPT LANGUAGE=
“JavaScript”>alert(“i pwn u n00b!”)</SCRIPT>, which will produce an
alert message every time the field in question is read. This is usually an easy
way to illustrate a serious problem, as it could allow a user to enter a
JavaScript code that would generate popup windows opening malicious Web-
sites. Those Websites could have the same appearance as your legitimate
Website, and could be asking users to enter personal username and password
information. This is a “hacking” technique called “phishing.” It basically
tricks users into entering their usernames and passwords into a “fake” Website
that will transmit that data to the hacker in question. Making sure that no
one inserts HTML in your pages is a good first step to avoid this problem. In
short, you must do thorough testing in all code that asks the user for data,
using things like regular expressions, or even PHP functions such as strip_tags
to annihilate any tags that could have been inserted.

If your script allows users to upload data to the server, be sure to test the
data sent (there is an upload script in the appendixes), and keep your brain
functioning to find new ways to break your code. You should spend much time
in this phase, since the Internet is populated with malicious users who will
attempt to break your pages.

Step 8—Presentation

The last important step after you are sure that you have produced the best
Website ever is to present it to the program sponsors (the people who paid
for it) and make sure that they like it. You probably think this is the easiest
step, but unfortunately project sponsors always want new features in their
sites, so be prepared for criticism, and other remarks on things that should
be included that you did not work on. It is also a good chance to get some
input that might help you do nice updates on the site. The approach I would
recommend is to start explaining your project in general, discussing only the
main features and then focusing a little more on details of the functionalities
only if you are asked to. This is assuming that you are talking to a person
with no Web programming knowledge. If you present to a fellow programmer,
you might want to skip the “commercial talk” and go straight to the function-
alities, emphasizing security features and administrator panel.

Step 9—Publication

After the project has been approved, it is time to release it. Upload it to the
Web server of your choice, and make sure that everything is set up properly.
All pages should be accessible, all include files should be in secured folders,

234 PUTTING IT ALL TOGETHER!

all the links and images should be working, and the page should be accessible
by anyone in the world. If you did the previous steps properly, this should not
take long.

Step 10—Celebration © (and Maintenance)

This is by far my favorite step of a Web development cycle! After you have
tested absolutely every single step in the project, it is time to take your favorite
brew from the cooler and celebrate with the people who helped you create
your Website.

Unfortunately, this step is not long enough, since once the project is pub-
lished you will need to maintain the project. This means fixing things that
could have slipped through the cracks during all your testing, upgrading fea-
tures, adding functionalities, or simply (in our example) adding all video-
games that are announced.

WHAT LANGUAGE TO USE?

You finally know how to go step by step from a single idea to a full project,
but you still might have a very important question, namely: “What language
should T use?” Most Web programming books concentrate on a single
approach and a maximum of one or two technologies, yet here we have talked
about four programming languages as well as a database management tool,
so how should you combine all these languages?

First, you should familiarize yourself with PhpMyAdmin. Since the cre-
ation of the database should be one of the first development steps on the
project, you should use this tool to set everything up before writing a single
line of code.

For scripts such as login procedures, logout, session handling, and anything
that requires extracting information from the database and creating dynamic
pages, you should use PHP combined with HTML for the layout. Of course,
any query to gather information from the database should be done in MySQL
syntax, but submitted to the database through PHP scripts. All the informa-
tion gathered should be retrieved from PHP.

Actually PHP is probably the language that you will use for about three-
quarters of your project as it is the backbone of your project, and handles
every minute detail on things that need to get done for the user to see a nice
output.

JavaScript should be used for enhancements, such as, for example, form
verification. Many people want to check the forms in PHP, but that means
that all the data are sent from your form to PHP, then verified, and, in case
of problems, the user is redirected to the same first form. This takes time as
you need to communicate several times with the server. Handling forms in
JavaScript is an excellent idea for things like required fields that cannot be

WHAT LANGUAGE TO USE? 235

empty, valid email addresses, and other basic checks that should be done
before sending any data to the processing PHP script. Here is where you
should practice all those regular expressions in JavaScript and keep the user
in the form (remember to return false) as long as there are one or more prob-
lems in the form. Once JavaScript verifies that all the required data are there
and formatted as required, you may allow the form to send its data to PHP
(return true) and have PHP run a second series of tests. I always recommend
a two-phase verification to get rid of as many possible errors and security
holes as possible. My JavaScript side takes care of required fields and format-
ting, and PHP will verify things like compatibility with the values in the
database, user level, and so on.

JavaScript is also very useful in providing some visual enhancements such
as dropdown menus or rollover buttons. The most basic rollovers you could
do would be to change an image with onmouseover and onmouseout if you
are using images for your menu items. You can otherwise change a text
style.

In a nutshell, HTML will organize the output layout, PHP will populate
the page with the appropriate data, and JavaScript will make it all look nicer,
as well as verify that the user enters the required information. MySQL will
be the tool used by PHP to manipulate the database.

Well, I hope this book will help you understand the ins and outs of Web
programming, the folklore, and good and poor design, and I hope that
creating Websites will be as gratifying for you as it is for me. I wish you all
the best!

Appendix A

Special Characters

Name Code Glyph Description
&lIsquo; ‘ left single quote

’ ’ right single quote

‚ , single low-9 quote

“ “ left double quote

” " right double quote

„ " double low-9 quote

† 1 dagger

‡ 1 double dagger

‰ %o per mill sign

‹ < single left-pointing angle quote
› > single right-pointing angle quote
♠ L black spade suit

♣ L black club suit

♥ v black heart suit

♦ L4 black diamond suit

‾ _ overline, = spacing overscore
← — leftward arrow

↑ T upward arrow

&rarr,; - rightward arrow

↓ { downward arrow

™ ™ trademark sign

" " double quotation mark
& & ampersand

⁄ / slash

< < less-than sign

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré

Copyright © 2007 by John Wiley & Sons, Inc.

237

238 APPENDIX A

Name Code Glyph Description

> > greater-than sign

– - en dash

— — em dash

 nonbreaking space

¡ i inverted exclamation
¢ ¢ cent sign

£ £ pound sterling

¤ Q general currency sign
¥ ¥ yen sign

¦ or &brkbar; H broken vertical bar

§ § section sign

¨ or ¨ h umiaut

© © copyright

ª 8 feminine ordinal

« « left-angle quote

¬ - not sign

­ - soft hyphen

® ® registered trademark
¯ or &hibar; - macron accent

° * degree sign

± + plus or minus

² 2 superscript two

³ 3 superscript three

´ : acute accent

µ v micro sign

¶ 1 paragraph sign

· . middle dot

¸ N cedilla

&supt; 1 superscript one

º ° masculine ordinal

» » right-angle quote

¼ + one-fourth

½ 3 one-half

¾ 2 three-fourths

¿ ¢ inverted question mark
À A uppercase A, grave accent
Á A uppercase A, acute accent
Â A uppercase A, circumflex accent
Ã A uppercase A, tilde

Ä A uppercase A, umlaut
Å A uppercase A, ring

Æ £ uppercase AE (diphthong)
Ç o] uppercase C, cedilla
È E uppercase E, grave accent
É E uppercase E, acute accent
Ê E uppercase E, circumflex accent
Ë E uppercase E, umlaut
&lgrave; [uppercase |, grave accent
ĺ i uppercase |, acute accent
&lcirc; i uppercase |, circumflex accent
&luml; i uppercase |, umlaut
Ð 9] uppercase Eth, Icelandic

SPECIAL CHARACTERS 239

Name Code Glyph Description
&Nitilde; N uppercase N, tilde
Ò (o] uppercase O, grave accent
Ó (o} uppercase O, acute accent
Ô (o} uppercase O, circumflex accent
Õ 0 uppercase O, tilde
Ö (o] uppercase O, umlaut
× X multiplication sign
Ø %] uppercase O, slash
Ù V] uppercase U, grave accent
Ú U uppercase U, acute accent
Û V] uppercase U, circumflex accent
Ü U uppercase U, umlaut
Ý Y uppercase Y, acute accent .
Þ P uppercase THORN, Icelandic
ß B lowercase sharps, German
à a lowercase a, grave accent
á a lowercase a, acute accent
â a lowercase a, circumflex accent
ã a lowercase a, tilde
ä a lowercase a, umlaut
å a lowercase a, ring
æ ® lowercase ae (diphthong)
ç (] lowercase c, cedilla
è <} lowercase e, grave accent
é é lowercase e, acute accent
ê é lowercase e, circumflex accent
ë é lowercase e, umlaut
ì i lowercase i, grave accent
í i lowercase i, acute accent
î i lowercase i, circumflex accent
ï 1 lowercase i, umlaut
ð o] lowercase eth, Icelandic
ñ A lowercase n, tilde
ò o lowercase o, grave accent
ó 6 lowercase o, acute accent
ô (o} lowercase o, circumflex accent
õ 0 lowercase o, tilde
ö [¢] lowercase o, umlaut
÷ + division sign
ø] lowercase o, slash
ù u lowercase u, grave accent
ú u lowercase u, acute accent
û a lowercase u, circumflex accent
ü i lowercase u, umlaut
ý y lowercase y, acute accent
þ p lowercase thorn, Icelandic

y

ÿ

lowercase y, umlaut

Appendix B

Installing on UNIX

OVERVIEW

In most cases, your UNIX distribution will install everything for you, but if you
are one of the unlucky UNIX users who have to install everything manually,
follow these directives on Apache, PHP, and MySQL installation. This just
reflects installation steps, as the configuration is pretty much the same as when
installing on a Windows-based computer. I will assume that you have root
access in your UNIX server, since you will need it on many of the steps. If you
do not know what root access is, I advise you to contact your system administra-
tors and have them install everything for you. This should spare you some head-
aches, and your system administrators will be much happier as they will make
sure that everything is done properly. The installation steps will assume that
you are using default configuration options. For more advanced options, check

www.apache.org, www.php.net, and www.mysgl.com. I will not explain how to
install phpBB or phpMyAdmin, as it is the same as a Windows installation.

INSTALLING Apache AND PHP

Download the most recent version of Apache 2.2 and a fitting PHP version
from the abovementioned places. This quick guide covers only the basics to
get you started with Apache 2.0 and PHP. For more information, read the
Apache documentation. The version numbers have been omitted here, to

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

241

242 APPENDIX B

ensure that the instructions are not incorrect. You will need to replace the
“NN” here with the correct values from your files. (Note: The following
guidelines were excepted directly from the PHP online manual.)

gzip -d httpd-2_2_NN.tar.gz
. tar xvf httpd-2_2_NN.tar

. gunzip php-NN.tar.gz

. tar -xvf php-NN.tar

. cd httpd-2_2_NN

. ./configure --enable-so
make

. make install

PN A WN R

Now you have Apache 2.2.NN available under /usr/local/apache2,
configured with loadable module support and the standard MPM prefork.
To test the installation use your normal procedure for starting the Apache
server, e.g.:

/usr/local/apache2/bin/apachectl start
and stop the server to go on with the configuration for PHP:
lusr/local/apache2/bin/apachectl stop.

9. cd ../php-NN

10. Now, configure your PHP. This is where you customize your PHP with
various options, like which extensions will be enabled. Do a ./configure
~help for a list of available options. In our example we’ll do a simple
configure with Apache 2 and MySQL support. Your path to apxs may
differ, in fact, the binary may even be named apxs2 on your system.

./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-mysql

11. make
12. make install

If you decide to change your configure options after installation, you only
need to repeat the last three steps. You only need to restart apache for
the new module to take effect. A recompile of Apache is not needed.

Note that unless told otherwise, “make install” will also install PEAR,
various PHP tools such as phpize, install the PHP CLI, and more.

13. Setup your php.ini
cp php.ini-dist /usr/local/lib/php.ini

You may edit your .ini file to set PHP options. If you prefer having php.
ini in another location, use --with-config-file-path=/some/path in step 10.

If you instead choose php.ini-recommended, be certain to read the list of
changes within, as they affect how PHP behaves.

14.

15.

16.

INSTALLING ON UNIX 243

Edit your httpd.conf to load the PHP module. The path on the right hand
side of the LoadModule statement must point to the path of the PHP
module on your system. The make install from above may have already
added this for you, but be sure to check.

For PHP 5:
LoadModule php5_module modules/libphpS.so

Tell Apache to parse certain extensions as PHP. For example, let’s have
Apache parse the .php extension as PHP. You could have any extension(s)
parse as PHP by simply adding more, with each separated by a space.
We’ll add .phtml to demonstrate.

AddType application/x-httpd-php .php .phtml

It’s also common to setup the .phps extension to show highlighted PHP
source, this can be done with:

AddType application/x-httpd-php-source .phps
Use your normal procedure for starting the Apache server, e.g.:

s/usr/local/apache2/bin/apachectl start

INSTALLING MySQL

(Note: The following notes are quoted directly from the online reference
manual of MySQL.)

The recommended way to install MySQL on Linux is by using the RPM
packages. The MySQL RPMs are currently built on a SuSE Linux 7.3
system, but should work on most versions of Linux that support rpm and
use glibc.

MySQL AB does provide some platform-specific RPMs; the difference
between a platform-specific RPM and a generic RPM is that a platform-
specific RPM is built on the targeted platform and is linked dynamically
whereas a generic RPM is linked statically with LinuxThreads.

Note: RPM distributions of MySQL often are provided by other vendors.
Be aware that they may differ in features and capabilities from those
built by MySQL AB, and that the instructions in this manual do not
necessarily apply to installing them. The vendor’s instructions should
be consulted instead.

In most cases, you need to install only the MySQL-server and MySQL-
client packages to get a functional MySQL installation. The other
packages are not required for a standard installation.

244 APPENDIX B

If you get a dependency failure when trying to install MySQL packages
(for example, exrror: removing these packages would break
dependencies: libmysglclient.so.10 is needed by...),
you should also install the MySQL-shared-compat package, which
includes both the shared libraries for backward compatibility (1ib-
mysqlclient.so.12 for MySQL 4.0 and libmysqglclient.so.10
for MySQL 3.23).

Some Linux distributions still ship with MySQL 3.23 and they usually
link applications dynamically to save disk space. If these shared libraries
are in a separate package (for example, MySQL-shared), it is sufficient
to simply leave this package installed and just upgrade the MySQL
server and client packages (which are statically linked and do not depend
on the shared libraries). For distributions that include the shared librar-
ies in the same package as the MySQL server (for example, Red Hat
Linux), you could either install our 3.23 MySQL-shared RPM, or use
the MySQL-shared-compat package instead.

The following RPM packages are available:
¢ MySQL-server-VERSION.i386.rpm

The MySQL server. You need this unless you only want to connect to
a MySQL server running on another machine.

Note: Server RPM files were called MySQL-VERSION.1i386.rpm before
MySQL 4.0.10. That is, they did not have -server in the name.

® MySQL-Max-VERSION.i386.rpm

The MySQL-Max server. This server has additional capabilities that
the one provided in the MySQL-server RPM does not. You must
install the MySQL-server RPM first, because the MySQL.-Max RPM
depends on it.

® MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to
install this package.

® MySQL-bench-VERSION.i386.rpm

Tests and benchmarks. Requires Perl and the DBI and DBD: :mysql
modules.

® MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile
other MySQL clients, such as the Perl modules.

¢ MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (libmysglclient.so*)
that certain languages and applications need to dynamically load and
use MySQL.

INSTALLING ON UNIX 245

® MySQL-shared-compat-VERSION.i386.rpm

This package includes the shared libraries for both MySQL 3.23 and
MySQL 4.0. Install this package instead of MySQL-shared if you
have applications installed that are dynamically linked against MySQL
3.23 but you want to upgrade to MySQL 4.0 without breaking the
library dependencies. This package has been available since MySQL
4.0.13.

® MySQL-embedded-VERSION.i386.rpm
The embedded MySQL server library (available as of MySQL 4.0).
® MySQL-VERSION.Src.rpm

This contains the source code for all of the previous packages. It can
also be used to rebuild the RPMs on other architectures (for example,
Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server
RPM), run a commnd like this:

shell> rpm -qpl MySQL-server-VERSION.i386.rpm>

To perform a standard minimal installation, install the server and client
RPMs:

shell> rpm -i MySQL-server-VERSION.i386.rpm
shell> rpm -i MySQL-client-VERSION.i386.rpm

To install only the client programs, install just the client RPM:
shell> rpm -i MySQL-client-VERSION.i386.rpm

The server RPM places data under the /var/lib/mysql directory.
The RPM also creates a login account for a user named mysql (if one
does not exist) to use for running the MySQL server, and creates the
appropriate entries in /etc/init.d/ to start the server automatically
at boot time. (This means that if you have performed a previous instal-
lation and have made changes to its startup script, you may want to make
a copy of the script so that you don’t lose it when you install a newer
RPM.)

If you want to install the MySQL RPM on older Linux distributions that
do not support initialization scripts in /etc/init.d (directly or via a
symlink), you should create a symbolic link that points to the location
where your initialization scripts actually are installed. For example, if
that location is /etc/rc.d/init.d, use these commands before install-
ing the RPM to create /etc/init.d as a symbolic link that points
there:

shell> cd /etc
shell> 1n -s rc.d/init.d.

246 APPENDIX B

However, all current major Linux distributions should support the new
directory layout that uses /etc/init.d, because it is required for LSB
(Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld
server should be up and running after installation. You should be able
to start using MySQL.

Note: The accounts that are listed in the MySQL grant tables initially
have no passwords. After starting the server, you should set up pass-
words for them.

Appendix C

Advanced phpBB

If you followed the steps of Chapter 4, you should know how to create forums
in phpBB as well as setting up its rights. Let us now see more advanced
features!

The first thing we will do is set up groups. This allows a faster rights han-
dling on who has access to different boards. Any board that should be hidden
except for specific user groups should have its rights set to PRIVATE, MOD,
or ADMIN. The PRIVATE right will block everyone from accessing the
forum in question unless you manually add the user in question to the allowed
list, or if that user is in a group with the proper rights. Using groups is much
faster in the long run.

In the Admin panel, under “Group Admin,” click on “Management”; this
will show a dropdown menu with the current groups. Selecting a group and
clicking on “Look up group” will take you to the group editing page. The
button “create group” takes you to the same page, but for a new group. In
there, select the group name, its description, and a moderator, who will have
the right to add new users to the group. A group can be open, allowing anyone
to join it, closed so that everyone can see it but may only be part of the group
if added by the group moderator, or hidden; in which only the group members
can see the existence of the group. Admin groups should be hidden; if you
have a “Members” area, it should be closed, for example.

To add users to a group, you must be the group moderator or an adminis-
trator of the boards. On the main page, click on “Usergroups” (top menu)

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

247

248 APPENDIX C

and select the group in which to add a member. Click on “View information,”
which will bring the list of all users of the group. Under the list you have a
text area in which you can enter a member name; do so and click “Add
member” to add the user to the group.

To change the forum access rights of a group, click on “Permissions” under
“Group Admin” in the administrator page. Choosing a group will show all
the forums in your database. In each line corresponding to a forum, you will
see a “Moderator status” dropdown menu that will allow you to make (or not
make) the group members moderators of a specific forum. In any forum that
has one of its rights set to PRIVATE, you will have another option “Allowed
Access” or “Disallowed Access,” which will decide whether the group is part
of the “private” group of the forum. If you wish to set up the same kind of
rights for a specific user, click on “Permissions” under “User Admin.”

There is a feature in phpBB that most users look forward to, called “ranks.”
A rank represents your notoriety in the forums and can be special or post-
count-based. Click on “Ranks” under “User Admin” to access the current
list of ranks. To add a new rank, click on “Add New Rank” and fill the form
with this information: Rank Title is the string that will appear under the user’s
name to show that person’s rank. Special rank (yes or no) distinguishes
between fixed ranks (e.g., “moderator,” “admin,” “ruler of the world”) and
ranks based on the number of messages posted. Minimum Posts are used for
nonspecial ranks, and signify the number of posts needed to reach the rank.
Finally, the Rank Image should be an image path, relative to the forum’s root.
For example, to use “Sstars.gif” as a rank image, assuming that it is inside an
“images” folder on the root, you would write ./images/5starts.gif. Rank images
should be fairly small. Usually they are stars or other symbols associated with
the forum’s theme. The more stars, the more notoriety. Don’t be afraid to
create outrageous ranks needing thousands of messages, since, as sad as it
may sound, if your forums become popular enough, you might have people
with those numbers. For example, in the forums I use for my courses, I use
the following ranks: n00Ob (0 posts), Visitor (10 posts), Frequent Visitor (25
posts), Known Face (50 posts), and Friendly Face (100 posts). I could have
pushed it further with things like “Friend” (250 posts), “Family” (500 posts),
“Are you stalking me?” (1000 posts), and “Get a life!” (2500 posts). Be
original with the names, and lots of people will look forward to what their
next rank will be (as sad as it may sound).

Another important thing to know how to use in phpBB is how to moderate
forums. When you are an administrator or moderator of a specific board, you
will have a link on the bottom right appearing when you visit a forum that
reads “Moderate this forum.” Clicking it will show the list of topics in the
forum with a checkbox at the end of each name. Selecting one or more topics
and using one of the four buttons will allow you to moderate entire topics.
The options are “Delete,” to delete the entire topic along with all its replies;
“Move,” to move the topic to a different forum (in which case you may leave
a “shadow” of the topic, basically the name will appear but will link to the

ADVANCED phpBB 249

new location of the thread); “Lock,” used to prevent nonadministrators and
nonmoderators from writing in a topic; and “Unlock,” to unlock a locked
topic.

Clicking on a topic name in this section allows you to change the name of
the topic or even split the posts in the topic as different topics.

Finally, it is possible to edit and delete any message as long as you are an
administrator or a moderator of the forum containing the message. To do so,
simply click on the small “x” next to the message to delete, or click the “edit”
button.

There are more features in phpBB like styles, mass email, and others, but
they are pretty straightforward to understand, so I shall stop writing about
them right here.

Appendix D

class.FastTemplate.php

This is the code for my version of the class FastTemplate. It is very similar to
the one found in www.webmasters.net with some minor changes to avoid
notices with PHPS:

<?PHP
/*
CVS Revision. 1.1.0 with modifications by Steven
Gabarré
*/
class FastTemplate {
var SFILELIST = array(); // Holds the array of
filehandles
// FILELIST[HANDLE] == *“fileName”
var SDYNAMIC = array(); // Holds the array of dynamic
// blocks, and the fileHandles they
// live in.
var SPARSEVARS =array(); // Holds the array of Variable

// handles.
// PARSEVARS[HANDLE] == “value”
var SLOADED = array(); // We only want to load a

template

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarré
Copyright © 2007 by John Wiley & Sons, Inc.

251

252 APPENDIX D

// once - when 1it’s used.
// LOADED([FILEHANDLE] == 1 1if loaded
// undefined if not loaded yet.
var SHANDLE = array(); // Holds the handle names
assigned
// by a call to parse()
var SROOT = “”; // Holds path-to-templates
var SWIN32 = true; // Set to true if this is a
WIN32 server
var SERROR = “”; // Holds the last error message
var SLAST = “”; // Holds the HANDLE to the last
// template parsed by parse()
var SSTRICT = true; // Strict template checking.

// Unresolved vars in templates will

// generate a warning when found.
// % ok o b ok ok ok ok ok ok ok o ok o b ok o sk o Sk ok o ok o 3t ok ok Sk ot 3t ok o ok ok o ok o b ok o b ok o ok o o ok ok ok ok Sk ok o ok ok A b A

function FastTemplate ($pathToTemplates = "“”)

{
global S$php_errormsg;

if(!empty($SpathToTemplates))

{

Sthis->set_root(SpathToTemplates);

}

} // end (new) FastTemplate ()

// 2ok ok ok b ok ok ok ok o ok ok b S ok b b o ok ok ok ok ok ok o ok ok ok b ok ok ok ok S ok ok ok S ok ok ok ok ok Sk ok ok ok o ok ok ok b o ok ok Sk o ok ot

// All templates will be loaded from this “root”

directory

// Can be changed in mid-process by re-calling with a

new
// value.

function set_root (Sroot)

{

Strailer = substr(Sroot,-1);

1f(!$Sthis->WIN32)

{
if((ord(Strailer)) != 47)
{
Sroot = “Sroot”. chr(47);
}
if(is_dir(Sroot))
{
Sthis->ROOT = Sroot;
}
else
{

Sthis->ROOT = “”;

class.FastTemplate.php 253

Sthis->error(“"Specified ROOT dir [Sroot] is not a

directory”);

}

}

else

{

// WIN32 box - no testing
if((ord(Strailer)) != 92)
{
Sroot = “Sroot” . chr(92);
}

Sthis->ROOT = Sroot;
}
} // End set_root()
// ook 3k o o b o ok ok b % ok ok ok o ok ok ok ok o b ok ok ok b ok ok 5k ok ok ok ok o ok 3t ok ok ok ok sk 5k ok ok 3k o ok ok b Sk ok ok b ok ok ok ok ob b A ok ok
// Calculates current microtime
// I throw this into all my classes for benchmarking
purposes
// It’s not used by anything in this class and can be
removed
// 1f you don’t need it.
function utime ()
{
Stime explode(" “, microtime());
Susec (double)Stime[0];
$sec = (double)Stime[l];
return S$sec + Susec;

1}

}

// ok ok ok ok ok ok s ok ok ok Sk ok ok ok ok 5k ok ok o Sk ok ok ok ok ok ok ok o ok ok 5k 5k ok b ok ok ok ok Sk 5k 5k ok ot o Sk Sk o ok ok oF ok ok 5k ok ok ok oF o ok ok

// Strict template checking, if true sends warnings to
STDOUT when
// parsing a template with undefined variable references
// Used for tracking down bugs-n-such. Use no_strict()
to disable.
function strict ()
{
Sthis->STRICT = true;
}
// %ok ok ok ok ok ok ok ok ok ok S ot ok sk ok ok sk ok ok ok ok b ok b ok ok ok ok ok ok ok ok ok Sk o ok ot ok ok ok 3k ok o ok sk ok b ok ok ok ok ok ok ok ok ok ok ok b
// Silently discards (removes) undefined variable
references
// found in templates
function no_strict ()
{
Sthis->STRICT = false;
}

254 APPENDIX D

// % ok o ok ok ok ok ok ok ok ok o ok o ok o o o S ot o ok ok ok ok ok ok b ok ok ok o S o ok Sk ok ok ok ok b ok ok ok ok ok ok ok ok ok o o Sk ok ok ok ok ok ok ot

// A quick check of the template file before reading it.
// This is -not- a reliable check, mostly due to
inconsistencies
// in the way PHP determines if a file is readable.
function is_safe (S$filename)
{
if(!file_exists($filename))
{
Sthis->error(“[S$filename] does not exist”,0);
return false;
}
return true;
}
/7 t2 22222222222 222222222222 2222222222222 2222222222222 222222223
// Grabs a template from the root dir and
// reads it into a (potentially REALLY) big string
function get_template (Stemplate)
{
if(empty(Sthis->ROOT))
{
Sthis->error(“"Cannot open template. Root not
valid.”, 1);
return false;
}
Sfilename = “Sthis->ROOT”.”Stemplate”;
Scontents = implode("“”, (@file(Sfilename)));
if((!Scontents) or (empty(Scontents)))
{
Sthis->error(“get_template() failure: [Sfilename]
Sphp_errormsg”,1);
}
return S$contents;
} // end get_template
// 9k 3 o ok o b ok o ok o sk ok o ok ok b o o ok ok 3 ok o ok ok o ok o ok ok o ok o Sk ok 3k ok ok Sk ok o ok o o ok o Sk ok ot b o ok o o ok o ok ok ok
// Prints the warnings for unresolved variable
references
// 1in template files. Used if STRICT is true
function show_unknowns (SLine)
{
Sunknown = array();
if (ereg("“({[A-Z0-9_]+})”,$Line, Sunknown))
{
SUnkVar = Sunknown[1];
if(!(empty($UnkVar)))

class.FastTemplate.php 255

{
@error_log(“[FastTemplate] Warning: no value found
for variable: SUnkVar ",0);
}
}
} // end show_unknowns()
// % % o o b ok b ok ok ok ok o b o ok ok o ok ok Sk ok ok ok ok ok ok b ok ok ok ok ok ok o o ok o o ok o ok ok ok ok ok ok ok S ok ok ok Sk ok ok ok ok ok ok ok A
// This routine get’s called by parse() and does the
actual
// {VAR} to VALUE conversion within the template.
function parse_template (Stemplate, S$tpl_array)
{
while (list (Skey,Sval) = each (Stpl_array))
{
if (!(empty(skey)))

{
if(gettype(Sval) != “string”)
{
settype(Sval,”string”);
}

// php4 doesn’t like '($’ combinations
Skey = ‘{‘."Skey”.’}’;
Stemplate =
ereg_replace(“Skey”, ”Sval”,”Stemplate”);
//Stemplate =
str_replace("“Skey”, ”Sval”,”Stemplate”);
}
}
1f(!Sthis->STRICT)
{
// Silently remove anything not already found
Stemplate = ereg_replace("“{([A-Z0-9_]+)}”,””, Stemplate);
}
else
{
// Warn about unresolved template variables
if (ereg(“({[A-Z0-9_]+})”, Stemplate))
{
Sunknown = split("“\n” Stemplate);
while (list (SElement,S$Line) = each(Sunknown))
{
SUnkVar = SLine;
if(!(empty(SUnkVar)))
{

Sthis->show_unknowns (SUnkVar);

256 APPENDIX D

}
}
}
}
return Stemplate;
} // end parse_template();
// L2 222222222 22222222222 2222222222322 2222222222222 22 22T PP TP
// The meat of the whole class. The magic happens here.
function parse (SReturnVar, S$SFileTags)
{
Sappend = false;
Sthis->LAST = SReturnVar;
Sthis->HANDLE[SReturnVar] = 1;
if (!isset(Sthis->$SReturnvar))
Sthis->SReturnVar = "“”;

if (gettype(SFileTags) == ‘array”)
{
unset (Sthis->$ReturnVar); // Clear any previous data
while (list (Skey , Sval) = each (SFileTags))
{
if ((!isset(Sthis->$val)) |[| (empty(Sthis->$val)))
{
Sthis->LOADED("“Sval”] = 1;
if(isset($this->DYNAMIC["“Sval”]))
{
Sthis->parse_dynamic(Sval, SReturnvar);
}
else
{
SfileName = Sthis->FILELIST["“Sval”];
Sthis->$val = Sthis->get_template(S$fileName);
}
}
// Array context implies overwrite
Sthis->SReturnvar =
Sthis->parse_template(Sthis->$val, Sthis->PARSEVARS);
// For recursive calls.
Sthis->assign(array(SReturnVar => Sthis-
>$SReturnvar));
}
} // end if FileTags is array()
else
{

// FileTags is not an array

class.FastTemplate.php 257

Sval = SFileTags;

if((substr(sval,0,1)) == ‘.’)

{
// Append this template to a previous ReturnVar
Sappend = true;
Sval = substr(Sval,l);

}
if ((!isset(Sthis->$val)) |[| (empty($this->Sval)))
{ .
Sthis->LOADED[“S$val”] = 1;
if(isset(Sthis->DYNAMIC["Sval”]))
{
Sthis->parse_dynamic($val, SReturnvar);
}
else
{
S$fileName = Sthis->FILELIST[“Sval”];
Sthis->Sval = Sthis->get_template($SfileName);
}
}
if(Sappend)
{
Sthis->$ReturnVar .= Sthis->parse_template
(Sthis->Sval, Sthis->PARSEVARS);
}
else
{
Sthis->SReturnvar = Sthis->parse_template
(Sthis->Sval, Sthis->PARSEVARS);
}

// For recursive calls.
Sthis->assign(array(SReturnVar => Sthis->SReturnvar));
}
return;
} // End parse()
// % 3k ok ok b ok ok ok ok ok ok ok ok b ok ot ok ok ok ok ok o ok b ok ok ok ok o ok b o ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok ok b b oA
function FastPrint (Stemplate = “”)
{
if(empty(Stemplate))
{
Stemplate = Sthis->LAST;
}
if((!(isset($this->Stemplate))) [| (empty($this-
>Stemplate)))
{

258 APPENDIX D

Sthis->error(“"Nothing parsed, nothing printed”0);

return;
}

else

{
print Sthis->Stemplate;
}

return;

}

// Aok ok o A Sk ok b & ok ok sk ok ok o ok ok ot ok o ok o ok ok ok ok o ok ok Sk ok ok ok ok ok ok o ok ok b ok ok Sk ok o ok ok ok ok A b ok o ok o ok ok b o ok
function fetch (Stemplate = "“”)
{

if(empty(Stemplate))
{

Stemplate = Sthis->LAST;
}

if((!(isset($this->Stemplate))) |[| (empty(Sthis-
>Stemplate)))
{
Sthis->error("Nothing parsed, nothing printed”0);
return “”;
}
return(Sthis->Stemplate);
}

// ok sk ok ok ok ok b o 5k ok sk ok ok b Sk ok o sk ok Sk ok Sk ok Sk ok ok ok Sk ok ok ok ok Sk ok Sk ok ok ok ok 3k ok 5k ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ot

function define_dynamic (SMacro, S$ParentName)

{

// A dynamic block lives inside another template file.
// It will be stripped from the template when parsed
// and replaced with the {STag}.
Sthis->DYNAMIC["“$Macro”] = SParentName;

return true;

}

// % ok ok % ok sk % ok ok ok ok ok ok sk Sk ok sk 5k o b 5k ok b ok Sk ok ok ok ok o ok ok ok Sk ok ok Sk ok ok ok 3k ok ok o S ok ok ok ok ok ok b b o b b b ok b b

function parse_dynamic (SMacro,SMacroName)
{
// The file must already be in memory.
SParentTag = S$this->DYNAMIC[“S$Macro”];
if((!Sthis->S$ParentTag) or (empty(Sthis->SParentTag)))
{
SfileName = Sthis->FILELIST[SParentTag];
Sthis->SParentTag = S$this->get_template(SfileName);
Sthis->LOADED[SParentTag] = 1;
}
if(Sthis->$ParentTag)

class.FastTemplate.php 259

Stemplate = Sthis->$ParentTag;
SDataArray = split(“\n”, Stemplate);
$newMacro = “”;
SnewParent = "”;
Soutside = true;
Sstart = false;
Send = false;
while (list (SlineNum,S$SlineData) = each ($DataArray))
{
SlineTest = trim(SlineData);
if(“<!-- BEGIN DYNAMIC BLOCK: S$Macro -->" ==
“SlineTest”)

{
Sstart = true;
Send = false;
Soutside = false;
}
if(“<!--” END DYNAMIC BLOCK: S$Macro -->" == “$lineTest”)
{
Sstart = false;
Send = true;
Soutside = true;
}
if((!Soutside) and (!Sstart) and (!Send))
{
SnewMacro .= "“SlineData\n”; // Restore linebreaks
}
1f((Soutside) and (!Sstart) and (!Send))
{
SnewParent .= “S$lineData\n”; // Restore linebreaks
}
if(Send)
{
SnewParent .= ‘{‘'.”SMacroName}\n”;
}

// Next line please
if(Send) { Send = false; }
if($start) { Sstart = false; }
} // end While
Sthis->SMacro = S$newMacro;
Sthis->SParentTag = SnewParent;
return true;
} // SParentTag NOT loaded - MAJOR oopsie
else

260 APPENDIX D

{
@error_log(“ParentTag: [SParentTag] not loaded!”,0);
Sthis->error(“ParentTag: [SParentTag] not loaded!”,0);
}

return false;

// % ok ok ok o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok o ok ok 5k Sk ok ok ok S ok ok ok S ok ok ok ok ok ok ok Sk ok ok ok S ok ok Sk b b ok b b b b A b ok

// Strips a DYNAMIC BLOCK from a template.
function clear._dynamic ($Macro="")
{
if(empty(SMacro)) { return false; }
// The file must already be in memory.
SParentTag = Sthis->DYNAMIC[“SMacro”];
if((!Sthis->S$SParentTag) or (empty(Sthis->$ParentTag)))
{
SfileName = Sthis->FILELIST[$ParentTag];
Sthis->$ParentTag = Sthis->get_template($fileName);
Sthis->LOADED[SParentTag] = 1;
}
if(Sthis->$ParentTag)
{
Stemplate = S$this->$ParentTag;
SDataArray = split(“\n” Stemplate);
SnewParent = “”;
Soutside = true;
Sstart = false;
Send = false;
while (list ($lineNum,SlineData) = each (S$DataArray))
{
SlineTest = trim($lineData);
if(“<!-- BEGIN DYNAMIC BLOCK: SMacro -->" ==
“"SlineTest”)

{
Sstart = true;
Send = false;
Soutside = false;
}
if("<!-- END DYNAMIC BLOCK: S$Macro -->" == "“SlineTest”)
{
Sstart = false;
Send = true;
Soutside = true;
}

1f((Soutside) and (!Sstart) and (!Send))
{

class.FastTemplate.php 261

SnewParent .= “SlineData\n”; // Restore
linebreaks
}
// Next line please
if(Send) { Send = false; }
if(sstart) { Sstart = false; }
} // end While
Sthis->$ParentTag = SnewParent;
return true;
} // SParentTag NOT loaded - MAJOR oopsie
else
{
@error_log(“ParentTag: [SParentTag] not loaded!”,0);
Sthis->error(“ParentTag: [SParentTag] not loaded!”,0);
}
return false;
}
// % % ok S ok ok ok ok b ok ok ok 3k ok ok b sk b ok o ok b ok ok ok o o ok sk ot st ok b Sk b ok ok b o ok ok o Sk ok o b ok o b b ok ok o ok b b ok A ok
function define ($fileList)
{
while (list (S$FileTag,SFileName) = each (SfileList))
{
Sthis->FILELIST["SFileTag”] = SFileName;

}
return true;
}
// %ok o A ok sk A ok ok ok ok ok o b ok o ok o Sk ok ok o ok ok o 5k b ok ok b Sk ot b ok ok ok o ok b ok ot ok o o ok b S ok o ok ok ok o ok b b ok ot
function clear parse (SReturnVar = "“”)
{
Sthis->clear(SReturnvar);
}
// ok 3k ok b ok ok ok ok A ok ok b o s b ok ko b ok b o ok b o b ok o ok b ok b Sk ok ok Sk ok ok Sk ok o b o o ok b o ok ok b o ok ok % o ok ok b b ok
function clear (SReturnvVar = “”)
{

// Clears out hash created by call to parse()
if(!empty($SReturnvVar))
{
if((gettype(SReturnVar)) != “array”)
{
unset (Sthis->S$SReturnvar);
return;
}
else
{
while (list (Skey,Sval) = each (SReturnVar))

262 APPENDIX D

{
unset(Sthis->sval);
}
return;
}
}
// Empty - clear all of them
while (list (Skey,Sval) = each (Sthis->HANDLE))
{
SKEY = Skey;
unset(Sthis->SKEY);
}
return;
} // end clear()
// LZ 222222222222 2222222222 222222222222 2222222222222 2222223
function clear_all ()
{
Sthis->clear();
Sthis->clear_assign();
Sthis->clear._define();
Sthis->clear_tpl();
return;
} // end clear_all

// %k % ok ok ok ok b ok ok ok ok ok ok S ok o ok o ok Sk ok ok ok ok ok ok o ok Sk ok ok ok ok ok ok ok ok ok ok Sk ok ok 5k ok ok ok ok ok Sk ok o ok ob Sk ok Sk ok S ok b

function clear_tpl (SfileHandle = "“”)
{

if(empty(Sthis->LOADED))

{

// Nothing loaded, nothing to clear
return true;

}
if(empty(SfileHandle))
{
// Clear ALL fileHandles
while (list (Skey, Sval) = each (Sthis->LOADED))
{
unset(Sthis->Skey);
}
unset (Sthis->LOADED);
return true;
}
else
{
i1f((gettype(sfileHandle)) != “array”)
{

class.FastTemplate.php 263

if((isset($this->$fileHandle)) || (!empty(Sthis-
>S$fileHandle)))

{
unset (Sthis->LOADED[SfileHandle]);

unset(Sthis->$fileHandle);
return true;
}
}
else
{
while (list ($SKey, SVal) = each (SfileHandle))
{
unset ($this->LOADED[SKey]);
unset (Sthis->$Key);
}
return true;
}
}
return false;
} // end clear_tpl
// % ok ot ok ok ok ok ok ok b ok ok sk o ok ok ok ok o sk o b ok 3k o ok S o ok 3k ok ok o ok ok 3 ok ob ok ok ok o ok ot ok o ok ot sk ok b ok Sk ok b ok o o
function clear_define (SFileTag = "“”)
{
if(empty(SFileTag))
{
unset (Sthis->FILELIST);
return;
}
1f((gettype(SFiles)) != “array”)
{
unset (Sthis->FILELIST[SFileTag]);
return;
}
else
{
while (list (Tag, SVal) = each (SFileTag))
{
unset ($this->FILELIST[STag]);
}
return;
}
}

// % ok ok ok ok 5k ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k 5k ok ok ok ok ok Sk Sk Sk 5k 5k 3k ok sk ot ot ok ok 3k ok ok ok ok o ok 5k ok ok ok ok Sk ok ok ok ok

// Aliased function - used for compatibility with CGI::
FastTemplate

264 APPENDIX D

// function clear_parse ()

/7
// Sthis->clear_assign();
/7 0}

// % ok ok ok ok ok ok ok ok ok ok ok o ok S ok b ok ok ok ok ok ok ok ok ok ok ok ok St Sk Sk Sk ok ok ok ok ok ok ok ok b ok ok ok ok o o o o Sk o ok ok ok ok ok b o o

// Clears all variables set by assign()
function clear_assign ()
{
if(!(empty($Sthis->PARSEVARS)))
{
while(list(SRef,$Val) = each (Sthis->PARSEVARS))
{
unset (Sthis->PARSEVARS[“SRef”]);
}
}
}
// o ok ok ok ok ok ok ok ok ok ok ok ok ok b b o ok ok ok S ok ok ok ok b ok ok ok ok ok Sk ok o ok ok o b ok ok ok ok ok o ok ot Sk o o ok ok o o ok ok ok ok b b A
function clear_href (Shref)
{
if(!empty(Shref))
{
if((gettype(Shref)) != “array”)
{

unset (Sthis->PARSEVARS [Shref]);
return;

}
else
{
while (list (SRef,Sval) = each (Shref))
{
unset(Sthis->PARSEVARS[SRef]);
}
return;
}
}
else
{
// Empty - clear them all
Sthis->clear_assign();
}
return;
}
// [E 222222 ILILILILILSSSS 222222222222 ssssssssssssssd
function assign (Stpl_array, Strailer="")
{

class.FastTemplate.php 265

if(gettype(Stpl_array) == “array”)

{

while (list (S$key,Sval) = each (Stpl_array))
{
if (!(empty(Skey)))
{

// Empty values are allowed
// Empty Keys are NOT
Sthis->PARSEVARS["“"Skey”] = Sval;
}
}
}
else
{
// Empty values are allowed in non-array context now.
if (!empty(Stpl_array))
{
Sthis->PARSEVARS(["Stpl_array”] = Strailer;
}

//} % % ok ok ok ok ok ok ok ok ok o Sk ok ok b ok o ok b b ok ok ot ok o b ok o ok ok o ok b o ok o o ot ok o ok ot o ok b b ok b ok ok b A ok ko b o
// Return the value of an assigned variable.
// Christian Brandel cbrandel@gmx.de
function get_assigned(Stpl_name = "“”)
{
if(empty(Stpl_name)) { return false; }
if(isset(Sthis->PARSEVARS(["Stpl_name”]))

{
return (Sthis->PARSEVARS["Stpl_name”]);
}
else
{
return false;
}
}
// 7 ok ok ok ok ok ok o ok ok ok ok ok ok o o ot ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok Sk Sk Sk Sk o o o o o o b 3k b ok ok ok ok ok ok ok ok ok ok ok ok b b
function error (SerrorMsg, S$die = 0)
{

Sthis->ERROR = SerrorMsg;
echo "ERROR: Sthis->ERROR
 \n”;
if (Sdie == 1)
{
exit;

}

266 APPENDIX D

return;

} // end error()
// % ok ok ok o ok A ok ok ok % ok o b ok o ok ok ok o b o ot ok K b o ok o ok o b ok ok ok b A b ok ok ok ot ok o ot ok ok ok o ok ob S ok o Sk ok b ok &

// % o ok ok ok ok b ok ok ok ok ok ok ok ok b ok ok ok Sk ok ok ok ok ok ok ok ok ok ok Sk ok S ok Sk ok Sk ot Sk ok ok ok o S b Sk ok ok ok ok b ok ok ok ok ok ok ok ok

} // End class.FastTemplate.php3
2>

Appendix E

File Upload Script

Here is a little script for uploading a file to a server. There are two files: a
form in which to enter all details of the file to be uploaded, and the PHP file
that will process the uploading and place the file in the desired folder:

<html>
<head>
<title> A Simple Form for Uploading a File </title>
</head>
<body>
<hl>A simple form for uploading a file </hl>
<form action="upload.php” method="post”
enctype="multipart/form-data”>
Enter file name: <Input type=file name=userfile>

<input type=submit>

</form>
</body>
</html>

Web Application Design and Implementation: Apache 2, PHPS, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

267

268 APPENDIX E

<html>
<head>
<title>
Upload File Example
</title>
</head>
<body>
<?php
printf(“Uploaded File Details

");
printf(“Name: $%$s
“, S_FILES[“userfile”][“"name”]);
printf(“"Temporary Name: %s
”,
S_FILES[“userfile”][“tmp_name”]);
printf(“Size: %s
”, $_FILES[“userfile”][“size”]);
printf(“Type: $s

”", S_FILES[“userfile”][“type”]);
if (move_uploaded_file($_FILES[“userfile”][“tmp_name”],
"D:/Web/UploadedFiles/”.$_FILES[“userfile”][“name”])) {
printf(“"File successfully copied");
} else {
printf(“Error: failed to copy file");
}
?>
</body>
</html>

Bibliography

Apache Installation Notes (included in the Apache installation files; used as guide-
lines on how to install an Apache server).

Bellis, Mary, The History of Communication, http://inventors.about.com/library/
inventors/bl history of communication.htm (a timeline of communication-
related inventions; I used those dates in Chapter 1).

Bernstein, Lawrence, and C. M. Yuhas, Trustworthy System through Quantitative
Software Engineering, Wiley, October 2005 (nice guide on software development
and quantitative software engineering).

Cambridge Advanced Learner’s Dictionary (used for the definitions of “cookie™).

Classes and Objects (PHPS5), chapter of the PHP online manual http://www.php.net/
manual/en/language.oopS.php (used in Chapter 9 to explain the object-oriented
programming principles, as well as to present basic examples).

Englander, Irv, The Architecture of Computer Hardware and Systems Software: An
Information Technology Approach, 3rd ed., Wiley, January 2003 (I have used this
book as a reference on the basics of TCP/IP and also in one of my courses; it has
a nice easy approach to the technologies presented).

Internet Society, A Brief History of the Internet, http://www.isoc.org/internet/history/
brief.shtml (a brief explanation of how the Internet developed to the point it has
reached now).

Jacobs, Ian (Head of W3C Communications), About W3C: History, http://www.w3c.
org/Consortium/history (a description of how the World Wide Web concept origi-
nated, leading to the creation of the W3C).

Web Application Design and Implementation: Apache 2, PHPS5, MySQL, JavaScript, and
Linux/UNIX, by Steven A. Gabarr6
Copyright © 2007 by John Wiley & Sons, Inc.

269

270 BIBLIOGRAPHY

MySQL Reference Manual, http://dev.mysql.com/doc/refman/5.1/en/index.html
(used for MySQL syntax references).

MySQL 5.1 Reference Manual: 2.4 Installing MySQL on Linux, http://dev.mysqgl.
com/doc/refman/S.1/en/linux-rpm.html (used in Appendix B for MySQL installa-

tion notes).

Original FastTemplate Class, www.thewebmasters.net/php/FastTemplate.phtml (per-
sonally modified to make it compatible with newer versions of PHP).

PHP Installation Notes (included in the PHPS package; used as guidelines on how to
install PHP5 on Windows).

PHP: Installation on Unix Systems—Manual, http://www.php.et/manual/en/install.
unix.php (installation guide for UNIX systems, used in Appendix B).

PHP Online Manual, http://www.php.net/manual/en/ (used as functions reference to
ensure accuracy of function prototypes).

phpBB Installation Notes (included in phpBB installation files; used to give the
guidelines on installing phpBB).

phpMyAdmin Installation notes (included in phpMyAdmin installation files; used to
give the guidelines for installing phpMyAdmin).

Stroustrup, Bjarne, The Design and Evolution of C++, Addison-Wesley, 1994 (recom-
mended book on C++).

The W3C Website, http://www.w3c.org (used as quick reference on HTML tag
syntax).

Webmonkey | Reference: Special Characters, http://www.webmonkey.com/webmon-
key/reference/special characters/ (reference cited in Appendix A).

Wikipedia (the free encyclopedia), Web Browser Entry, http://en.wikipedia.org/wiki/
Web browser (this page describes all there is to know about Web browsers; I used
it as a reference on the order in which the browsers appeared).

Wilton, Paul, Beginning JavaScript, Wrox, June 2000 (I used this book to learn
JavaScript; it gave me ideas for new examples and approaches).

Windows Server 2003 R2 Pricing, http://www.microsoft.com/windowsserver2003/
howtobuy/licensing/pricing.mspx (pricing guide for MS Windows Server 2003
R2).

abs function, in PHP, 62. See also Math.

abs method

Absolute positioning, with DHTML,
217-218

Absolute URL, 18

in <A> tag, 32-33

Abstract classes, 106

abstract methods, 106

acos function, in PHP, 62

acosh function, in PHP, 62

action attribute, in <FORM> tag,
111-112, 115

Action scripts, in <BODY> tag, 29

Active links, in <BODY> tag, 29

Active Server Pages (ASP), 22-23

ADD COLUMN alter_spec, for
MySQL ALTER TABLE
instruction, 146

ADD PRIMARY KEY alter_spec, for
MySQL ALTER TABLE
instruction, 146

Addresses. See IP addresses; Symbolic
addresses

addslashes method, in PHP, 91

Index

Add-to-cart function, for videogame
store Website, 231
ADD UNIQUE alter_spec, for MySQL
ALTER TABLE instruction, 146
Administration
of phpBB bulletin board, 53, 247-248
of videogame store Website, 228
of Web projects, 2, 234
Admin panel, for videogame store
Website, 231
Adobe, 15
Advanced Research Projects Agency
(ARPA), 6
Affectation operators, in PHP, 61
Affectation symbol (=), in PHP, 60. See
also Equal sign (=)
afterBegin method, with DHTML,
221-222
afterEnd method, with DHTML, 222
alert function, 172, 173
with Window objects, 185
Aliases
MySQL, 142
in MySQL SELECT instruction, 149

Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript, and

Linux/UNIX, by Steven A. Gabarr6

Copyright © 2007 by John Wiley & Sons, Inc.

27

272 INDEX
ALIGN parameter
in <HR> tags, 31
in HTML table tags, 37, 39
in <IFRAME> tag, 42
in <TABLE> tag, 37
Alink, in <BODY> tag, 29
ALT attribute, in tag, 34
ALTER alter_spec, for MySQL ALTER
TABLE instruction, 146
alter_specs, for MySQL ALTER
TABLE instruction, 146
ALTER TABLE instruction, for
MySQL databases, 146
Amazon.com Website, Perl language
and, 24
American Standard Code for
Information Interchange (ASCII),
11
America Online (AOL), browser for,
13
Ampersand (&)
in forms, 115
for HTML special characters, 43,
237-239
as MySQL operator, 144-145
in PHP functions, 83
Angle brackets (< >), in tags, 28
Animations, in HTML, 33-34
Animation software, 15
ANSI SQL, 140
Apache server, 7-8, 45
configuring, 48
downloading, 45-46
installing on UNIX, 241-243
installing on Windows, 46-47
PHP installation and, 49-50
testing, 47
Apache Software Foundation, 7
Append parsing, with FastTemplate, 130
Applets, 21
Application layer
OSL, 9
TCP/1P, 9, 11-12
Arguments, in PHP functions, 82-83.
See also Parameters
Arithmetic operators
in JavaScript, 173-174
MySQL, 144-145
in PHP, 61

ARPANET, 6
Array constructor, in JavaScript, 175
array_count_values function, in PHP,
76
Array data type, in PHP, 63
array function/method
associative arrays via, 71
in PHP, 70
Array functions, in PHP, 74-77
array_keys function, in PHP, 76
array_merge function, in PHP, 76
array mysql_fetch_lengths function,
163
Array objects, in JavaScript, 181
array_pad function, in PHP, 76
array_pop function, in PHP, 76
array_push function, in PHP, 76
array_reverse function, in PHP, 76
Arrays
associative, 70-71
with cookies, 119
exploding strings into, 91-92
with FastTemplate, 129-131
imploding into strings, 91-92
in JavaScript, 175
for META tags, 95
multidimensional, 71-74
in PHP, 69-77
in retrieving form information on
PHP scripts, 115-116
sorting PHP, 75-76
split() function and, 209-210
type hinting of, 109
array_shift function, in PHP, 76
array_slice function, in PHP, 77
array_splice function, in PHP, 77
array_unshift function, in PHP, 76
array_values function, in PHP, 77
array_walk function, in PHP, 75
Array.concat method, in JavaScript, 181
Array.join method, in JavaScript, 181
Array.length method, in JavaScript, 181
Array.reverse method, in JavaScript,
181
Array.slice method, in JavaScript, 181
Array.sort method, in JavaScript, 181
arsort function, in PHP, 75
asin function, in PHP, 62
asinh function, in PHP, 62

asort array function, in PHP, 75
Aspect ratio, of images in HTML, 34
ASP.NET (Active Server Pages), 22-23
PHP versus, 23
assign method, with FastTemplate, 129,
131
Associative arrays, in PHP, 70-71
Asterisk (*)
in MySQL SELECT instruction, 149
in wildcard searching, 170
<A> tag, 32-33
atan? function, in PHP, 62
atan function, in PHP, 62
atanh function, in PHP, 62
At sign (@), in MySQL strings, 142
Attributes
in <A> tag, 32-33
in classes, 101
for database entity types, 138, 139
~in <HR> tags, 31
in HTML tags, 30-31
in MySQL tables, 142-143
and text appearance, 30-31
Autoincremented keys, in databases,
139, 140
auto_start setting, for session command,
120

Background color, in <BODY> tag, 29
Background images
in <BODY> tag, 29
in HTML, 33-34
BACKGROUND property, in <BODY>
tag, 34
back() method, in history object, 186
Backside, of Web projects, 2, 231
Backslash (\)
indexer/searcher and, 124
in MySQL strings, 142
in PCRE, 215
in regular expressions, 213
in strings, 91
Banner changer, 195
base_convert function, in PHP, 62
basename function, in PHP, 88
BASIC (Beginner’s All-purpose
Symbolic Instruction Code), xiii
beforeBegin method, with DHTML,
221-222

INDEX 273
beforeEnd method, with DHTML,
222
Bell, Alexander Graham, 5
Berners-Lee, Tim, 6
BGCOLOR parameter
in <BODY> tag, 29
in HTML table tags, 37
BIGINT data type, in MySQL, 143
Billing, for videogame store Website,
230
Binary operations, in IP addressing,
9-10
bindec function, in PHP, 62
BitBeamer software, 13
BIT_COUNT operation, MySQL, 145
BIT data type, in MySQL, 143
Bit operations, in PHP, 61
_blank attribute, in <A> tag, 32-33
BLOB data type, in MySQL, 144
<BLOCKQUOTE-> tag, 31
Blocks, of PHP instructions, 77, 78-79
BMP images, in HTML, 33
Body, of HTML files, 29-30
<BODY> tag, 29-30, 199-200
BACKGROUND property in, 34
events in, 192
frames and, 39, 41
for popup windows, 201
Boldface, with HTML, 30
BOOLEAN (BOOL) data type
in MySQL, 143
in PHP, 63
Boolean expressions, in flow of control,
78-79
Boolean operators, MySQL, 144-145
Boolean values, in PHP, 59-60
bool mysql_close function, 163
bool mysql_data_seek function, 163
bool mysql_free_result function, 163
BORDER parameter
in <FRAMESET> tag, 40
in <TABLE> tag, 37, 38, 39
Braces ({ })
in cookie scripts, 119
in MySQL notation, 141
in PHP control blocks, 79
in PHP multidimensional array
indexing, 72
in template variable names, 128

274 INDEX
break statement
in JavaScript, 176, 177
in PHP, 80
Browse button, with phpMyAdmin
application, 155-157
Browse command, accessing
phpMyAdmin tables with, 154
Browsers, xiv, 7
client- and server-side programs and,
24-35
with HTML, 27
HTML frames and, 39, 41
HTML tables and, 36
include files and, 85
JavaScript and, 171, 172
programming, 185-195
programming tools for, 12-13

 tag, 29-30
PHP and, 95-96
 tag, 30
Bulletin boards, phpBB, 52-54. See also
phpBB bulletin board tool
Bullets, in HTML text, 35
button function, in DHTML, 222
button input type, for <INPUT> tag,
113
Buttons, 195
in frames, 199-200

Capitalizing strings, 91
Cascading Style Sheets (CSS), in
cleaning up output, 132-134
case command
in JavaScript, 176
in PHP, 79-80
“Case-insensitive” modifier, in regular
expressions, 211
Casings, of strings, 91
catch block, for PHP exceptions,
109-110
Categories, for videogame store
Website, 228-229

ceil function, in PHP, 62. See also Math.

ceil method
CELLPADDING parameter, in
<TABLE> tag, 37
Cells, in HTML tables, 37-39
CELLSPACING parameter, in
<TABLE> tag, 37

Centering text, in HTML, 31
<CENTER> tag, 31
Cerf, Vincent, 6
CERN (Conseil Européen de Recherche
Nucléaire), World Wide Web and, 6
CHANGE alter_spec, for MySQL
ALTER TABLE instruction, 146
Characters, in regular expressions,
210-213. See also Special characters
charAt() method, for JavaScript strings,
178, 209
charCodeAt() method, for JavaScript
strings, 178, 209
CHAR data type, in MySQL, 144
chdir method, in PHP, 89
Checkboxes
document object and, 189-190
in forms, 112-113
checkbox input type, for <INPUT> tag,
112-113
checked attribute
document object and, 190
for <INPUT> tag, 112
Child class, 102-103
frames for, 197-200
parent constructor for, 103
chmod tool, security with, 54
chop method, in PHP, 91
chown tool, security with, 54, 55
chr function, in PHP, 94
C language, PHP and, 22
C++ language
C# and, 24
object-oriented programming with,
101
C# language, 24
class command
in PHP, 102
style sheets and, 134
Class A, B, C networks, 10
Class constants, 106
Classes
abstract, 106
with Cascading Style Sheets, 132-134
grouping PHP methods in, 164-168
in object-oriented programming,
101-102
in PHP, 102-103
scope resolution operator for, 105

static keyword and, 105-106
type hinting of, 109
visibility and, 104-105
clearInterval function, in JavaScript,
195
clearTimeout function, in JavaScript,
194
Clients, client- and server-side programs
and, 24-25. See also Email clients
Client-side programs, 24-25
JavaScript, 172, 182-183
Clock, JavaScript and, 181-183. See also
Time entries
clone operator, in PHP, 107-108
Cloning, of objects, 107-108
closedir method, in PHP, 90
close() method, in popup window
creation, 201
Closing tags, 28
attributes and, 30
Cold War, in Internet history, 5-6
Colons (::), for PHP scope resolution,
105
Color
in <BODY> tag, 29
with Cascading Style Sheets, 134
colorDepth, in screen object, 187
cols attribute, in <TEXTAREA> tag,
113-114, 115
COLSPAN parameters, in <TD> tag,
37-39
COLS parameter, in <FRAMESET>
tag, 40, 41
Comma (,)
in MySQL notation, 142
in PHP while loops, 81-82
Comments
in JavaScript, 172
in PHP code, 58
Common Gateway Interface (CGI), 12,
23
ASP and, 23
Communication
between computers, 5-6
in database projects, 157-158
IP addressing in, 9-10
Comparison operators, in PHP, 60, 61
Comparisons
in PHP, 60

INDEX 275
of objects, 108-109
of strings, 93-94
Computer address, 9-10
Computers
communication between, 5-6
IP addressing of, 9-10
ports and sockets for, 11
concat method, in JavaScript, 181
Conditions
in JavaScript, 176
in PHP, 58, 59, 60, 77-80
Configuration
of Apache server, 48
of phpBB bulletin board, 53
con function, in PHP, 62
connect function, in database class,
164
Connectionless protocols, 11
Constants
class, 106
in PHP, 59-60, 64-65
predefined, 64-65
_construct() methods, in PHP, 103
Constructors
FastTemplate, 129-131
for JavaScript arrays, 175
for JavaScript date objects, 181
in PHP, 103
continue command
in JavaScript, 177
in PHP, 82
$_COOKIE array, 119
Cookies, information transfer via,
117-119
Coordinates, in positioning screen
elements, 217
copy function, in PHP, 88
copyHistory attribute, for open method,
202
Copying, of objects, 107-108
count function, in PHP, 70, 75
CREATE DATABASE instruction, for
MySQL databases, 145
CREATE TABLE instruction, for
MySQL databases, 145-146
CSS (Cascading Style Sheets) files,
132-134
Curly braces. See Braces ({ })
current array function, in PHP, 75

276 INDEX

Cute-FTP software, 13
Cyclic redundancy check (CRC), 8

Data
for sessions, 120-122
on Web servers, 7
database class, for PHP methods,
164-168
Databases, 137-150
creating with phpMyAdmin
application, 151-152
defined, 137
entities in, 137-138
errors in, 139-140
examples of, 138-139, 140, 141
exporting/importing structures with
phpMyAdmin application, 154-157
include files and, 85
indexer/searcher and, 168-170
installing MySQL on UNIX, 241,
243-245
MySQL, 25-26, 45, 46, 50-51, 52,
140-150, 235
PHP and, 22
projects using, 2, 157-158, 228-230
simplifying diagrams of, 140
in Websites, xiv, 2
Data functions, visibility of, 104-105
Data link layer, OSI, 8
Data members
in classes, 101
static, 105-106
visibility of, 104-105
Data organization, for HTML, 34-42
Data transfer, between PHP scripts,
117-122
Data types
classes as, 101
JavaScript, 173
MySQL, 142-144
in PHP, 63-64
in PHP arrays, 69-70
DATE data type, in MySQL, 143
Date data types, MySQL, 143-144
Date objects, in JavaScript, 181-183
Date.getDate() method, in JavaScript,
182
Date.getDay() method, in JavaScript,
182

Date.getFullYear() method, in
JavaScript, 182

Date.getHours() method, in JavaScript,
182

Date.getMilliseconds () method, in
JavaScript, 182

Date.getMinutes() method, in
JavaScript, 182

Date.getMonth () method, in JavaScript,
182

Date.getSeconds() method, in
JavaScript, 182

Date.getTimeZoneOffset() method, in
JavaScript, 183

Date.getUTCDate() method, in
JavaScript, 183

Date.getYear() method, in JavaScript,
182

Date.setDate method, in JavaScript, 182

Date.setHours method, in JavaScript,
182

Date.setMilliseconds method, in
JavaScript, 182

Date.setMinutes method, in JavaScript,
182

Date.setMonth method, in JavaScript,
182

Date.setSeconds method, in JavaScript,
182

Date.setUTCHours method, in
JavaScript, 183

Date.setYear method, in JavaScript, 182

Date.toLocaleString() method, in
JavaScript, 183

Date.toUTCString() method, in
JavaScript, 183

DATETIME data type, in MySQL, 144

decbin function, in PHP, 62

dechex function, in PHP, 62

DECIMAL data type, in MySQL, 143

decoct function, in PHP, 62

Decrement operation, in PHP, 59, 61

default case, in PHP, 80

defaultStatus function, with Window
objects, 185-186

Defense Advanced Research Projects
Agency (DARPA), 6

Defense Communication Agency
(DCA), 6

define function/method
with FastTemplate, 129, 131
in PHP, 64
DELETE instruction, for MySQL
databases, 148
Deleting topics, from phpBB, 248-249
Deletions, from MySQL databases, 148
Dependencies, in databases, 140
Design and Evolution of C++, The
(Stroustrup), 101
destruct function, in database class, 165
_destruct() methods, in PHP, 103
Destructors, in PHP, 103
Directories
files as, 89
folders and, 89-90
indexer/searcher and, 124-125
PHP file explorer and, 97-98,
123-124
directories attribute, for open method,
202
Director software, 15
Directory index, for Apache server, 48
dirname method, in PHP, 90
disconnect function, in database class,
164, 165-166
diskfreespace function, in PHP, 88
DIV section, dynamic menus and, 222
do command/statement
in JavaScript, 177
in PHP, 81
document.forms array, in document
object, 188-189
document.images array, in document
object, 188
document.links array, in document
object, 188
document.myForm method, document
object and, 189, 190
Document object, in browser
programming, 186, 187-191
Document Type Definitions (DTDs), 18
document.write function
in document object, 188
in JavaScript, 174
document.yourFormName method,
document object and, 189
Dollar sign ($)
in cookie scripts, 119

INDEX 277

in PHP code, 59, 60
variable names and, 64
domain attribute, for setcookie
command, 118-119
Domain Name Service (DNS), 10
Domains, 10
installing Apache server and, 46-47
DOUBLE data type
in MySQL, 143
in PHP, 63
Double equal sign (==), in object
comparisons, 108-109
Downloading, of work environment
software, 45-46
DreamWeaver software, 15
DROP alter_spec, for MySQL ALTER
TABLE instruction, 146
Drop command, for phpMyAdmin
tables, 152, 154
DROP DATABASE instruction, for
MySQL databases, 145
Dropdown menus
adding and removing options in,
190-191
in frames, 199-200
DROP PRIMARY KEY alter_spec, for
MySQL ALTER TABLFE
instruction, 146
Dull keys, in databases, 139, 140
Dynamic form creation, 116-117
Dynamic HTML (DHTML), 217. See
also HyperText Markup Language
(HTML)
JavaScript and, 217-225
Dynamic menus, in DHTML, 222-225

each array function, in PHP, 75
echo function, in PHP, 58, 64
Elementary expressions, in PHP, 59-60,
64-65, 65-67

Ellipsis (. ..), in MySQL notation, 142
Elm (ELectronic Mail), 14
else command

in JavaScript, 176

in PHP, 64, 77-80
else if command, in JavaScript, 176
elseif command, in PHP, 77-80
emacs software, 14

with HTML, 27

278 INDEX
Email, protocols for, 11
Email addresses
in HTML, 18, 32-33
text areas in forms and, 194
Email clients, programming tools for, 14
empty function/command
accessing phpMyAdmin tables with,
154
in PHP, 65
Encryption, in PHP/MySQL login
procedures, 162
end array function, in PHP, 75
Entities, in databases, 137-138
Entity types, in databases, 137-138
ENUM data type, in MySQL, 144
Equal sign (=). See also Double equal
sign (==); Identical comparison
(===
in object copying and cloning, 107,
108
in PHP, 60
ereg function, in PHP, 213-214
eregi function, in PHP, 213-214
eregi_replace() function, in PHP, 214
ereg_replace() function, in PHP, 214
Errors
in databases, 139-140
in installing Apache server, 47
in installing PHP engine, 49
in installing phpMyAdmin
application, 51
Eudora, 14
event.button function, in DHTML, 222
event.fromElement function, in
DHTML, 222
Event logs, 195
event objects, in DHTML, 222
Events
in browser programming, 191-194
DHTML and, 222
event.screenX function, in DHTML,
222
event.screenY function, in DHTML,
222
event.srcElement function, in DHTML,
222
event.toEvent function, in DHTML, 222
Exception class, in PHP, 109-110
Exceptions, in PHP, 109-110

exp function, in PHP, 62
expires attribute, for setcookie
command, 118-119
explode function
with cookies, 119
in PHP, 91-92, 209
Export command/tab
with phpMyAdmin application, 154,
155, 156
for phpMyAdmin tables, 152
Expressions. See also Boolean
expressions; Elementary
expressions; Regular expressions
in PHP, 59-61
precedence in JavaScript, 173
extends keyword, in PHP, 102
eXtensible Markup Language (XML),
19-20
C# and, 24
eXtensible Style sheet Language (XSL),
19-20
External references, in HTML text,
32-34

Fake Websites, 233
false constant, in JavaScript, 173
FALSE value, in PHP, 59-60, 78-79
FastPrint method, with FastTemplate,
129, 131
FastTemplate, 127
PHP and templates and, 129-131
PHP code for, 251-266
fclose function, in PHP, 87
feof function, in PHP, 87
fgetc function, in PHP, 87
fgets function, in PHP, 87
fgetss function, in PHP, 87
Fields attribute, for phpMyAdmin
tables, 152-154
fileatime function, in PHP, 88
filectime function, in PHP, 88
file_exists function, in PHP, 88
File explorer, in PHP, 97-98, 123-124
filegroup function, in PHP, 89
filemtime function, in PHP, 89
fileowner function, in PHP, 89
fileperms function, in PHP, 89
Files
for Apache server, 48

for Cascading Style Sheets, 132-134
as directories, 89
downloading work environment,
45-46
with FastTemplate, 129-131
for MySQL database, 50
PHP and, 48-50, 85-89, 95-96
with phpBB bulletin board, 52
PHP file explorer and, 97-98
PHP functions in, 82
for phpMyAdmin application, 51
with sessions, 121-122
template, 127, 128
uploading to servers, 267-268
filesize function, in PHP, 89
File Transfer Protocol (FTP), 11
origin of, 6
programming tools for, 13
World Wide Web and, 6
filetype function, in PHP, 89
final keyword, in PHP, 103
Firefox browser, 7, 13
DHTML and, 219, 220-221
Fireworks software, 15
Fixed ranks, phpBB, 248
Flash software, 15
FLOAT data type
in MySQL, 143
in PHP, 63
Floating-point numbers, in MySQL
strings, 142
floor function, in PHP, 62. See also
Math.floor method
Flow of control, in PHP, 69, 77-83
focus() method, text areas in forms and,
194
Folders
for Apache server, 48
indexer/searcher and, 124-125
PHP and, 49-50, 89-90
with phpBB bulletin board, 52
PHP file explorer and, 97-98, 123-124
for phpMyAdmin application, 51
for submitting MySQL queries,
160-161
Font attributes, with HTML, 30-31
<FONT:> tag, 28
attributes in, 30-31
in cleaning up output, 131

INDEX 279
fopen function, for PHP files, 86-87, 88
for command, in JavaScript, 177
foreach command
PHP arrays and, 71-73, 80
in retrieving form information on
PHP scripts, 116
in retrieving session information on
PHP scripts, 121
for loop, 81-82
PHP arrays and, 71-73
Form method, document object and,
189, 190
Formatting
of HTML text, 30-31
of strings, 94-95
Forms, 111-117
dynamically creating, 116-117
GET versus POST for, 112, 115
PHP scripts and, 115-116
text areas in, 194
writing in HTML, 111-115
forms array, in document object,
188-189
Forms verification, 193-194
for videogame store Website, 232
<FORM> tag, 111-115
document object and, 189
Forums, with phpBB bulletin board,
52-53, 247-249
forward() method, in history object, 186
fpassthru function, in PHP, 87
fputs function, in PHP, 87
FRAMEBORDER parameter, in
<IFRAME> tag, 42
Frames
in HTML, 34, 36, 39-42
JavaScript and, 197-200, 206
name attribute for, 197-198
in OSI data link layer, 8
<FRAMESET> tag, 39-41, 198, 199-200
<FRAMES> tag, 40, 41, 198, 199-200
fread function, in PHP, 87
FreeHand software, 15
fromCharCode method, for JavaScript
strings, 178
fromElement function, in DHTML, 222
FrontPage software, 15
fseek function, in PHP, 87
ftell function, in PHP, 87

280 INDEX
full-text attribute, for phpMyAdmin
tables, 154
Functionalities, in Web applications/
design, 2-3, 230-231
Functions. See also Information
functions; Mathematical functions;
Wrapper functions
in JavaScript, 177
MySQL, 150, 160-161, 162-163,
163-164
in PHP, 58, 59, 60-61, 82-83
PHP data type, 63
with PHP files, 85-89

Gabarrd, Steven A., xiii
Generalized Markup Language (GML),
18
$_GET array, 115-116
get_cfg_var function, in PHP, 97
get_current_user function, in PHP, 97
getDate() method, in JavaScript, 182
getDay() method, in JavaScript, 182
getenv function, in PHP, 96-97
getFullYear() method, in JavaScript, 182
getHours() method, in JavaScript, 182
getMessage() method, for PHP
exceptions, 109, 110
get_meta_tags function, in PHP, 95
GET methods
forms and, 112, 115-116, 117
PHP and, 57
getMilliseconds () method, in JavaScript,
182
getMinutes () method, in JavaScript,
182
getMonth() method, in JavaScript, 182
getmygid() function, in PHP, 97
getmypid() function, in PHP, 97
getmyuid() function, in PHP, 97
getrandmax () function, in PHP, 63
getSeconds() method, in JavaScript, 182
getTimeZoneOffset() method, in
JavaScript, 183
gettype function, in PHP, 63, 64
getUTCDate() method, in JavaScript,
183
getYear() method, in JavaScript, 182
GIF images, in HTML, 33-34
“Global match” modifier

global type
in PHP, 65
in regular expressions, 211, 212
Gmail, 14
GMT (Greenwixh Mean Time),
JavaScript and, 183
Go button, with phpMyAdmin
application, 155-157
go() method, in history object, 186
Google, email tools with, 14
Grandparent, 198-199
Graphical user interface (GUI)
PHP and, 22
for Web browsers, 7
GROUP BY option, in MySQL
SELECT instruction, 149
Grouping
of PHP methods in classes, 164-168
of radio buttons, 113
in regular expressions, 212, 213
Groups, with phpBB, 247-248

Hacking, prevention of, 3, 232-233
header function, PHP scripts and, 117,
122-123
Headers, in HTML files, 28-29
Heading styles, HTML, 30
<HEAD> tag, 28-29
events in, 192
frames and, 39
HEIGHT attribute/parameter
in HTML table tags, 37, 38, 39
in <IFRAME> tag, 42
in tag, 34
for open method, 202, 218
in screen object, 187
Henry, Joseph, 5
hexdec function, in PHP, 62
Hexadecimal numbers, in MySQL
strings, 142
hidden input type, for <INPUT> tag,
113
Highlight links, in indexer/searcher, 170
history.back () method, in history
object, 186
history.forward() method, in history
object, 186
history.go() method, in history object,
186

History object, in browser
programming, 186
<Hn> tags, 30
HomeSite software, 14-15, 134-135
Horizontal lines, in HTML, 31
Host parameter, for mysql_connect
method, 159
Hotmail, 14
HREF attribute, in <A> tag, 32-33
href redirection, in location object,
186
<HR> tags, 31
HTML code. See also HyperText
Markup Language (HTML)
cleaning up, 127-135
templates for, 127, 128
HTML documents, HTTP and, 11
HTML files
naming, 28
PHP and, 95-96
structure of, 28-30
<HTML> tag, 28
HTML tags, 17
attributes in, 30-31
with Cascading Style Sheets, 132-134
for data organization, 34-42
for external references, 32-34
format for, 28
in HTML files, 28-30
for Netscape, 12-13
parameters with, 30
PHP files and, 86
searching and, 99
for special characters, 43, 237-239
HTTP headers, 123
HyperText Markup Language (HTML),
27-43. See also Dynamic HTML
(DHTML); HTML entries
basic syntax of, 28
in browser programming, 185-195
Cascading Style Sheets for, 132-134
client-side programs and, 24
cookies with, 118
data organization for, 34-42
external references in, 32-34
file structure for, 28-30
frames in, 34, 36, 39-42
getting started with, 27
images in, 33-34

INDEX 281
interactive Websites with, 111-125
JavaScript and, 21
links in, 32-33
lists in, 34, 35-36
PHP and, 22, 58
special characters in, 43, 237-239
tables in, 34, 36-39
text formatting in, 30-31
when to use, 234-235

HyperText Transfer Protocol (HTTP),

10, 11

ID attribute, for tags, 218-219
Identical comparison (===
of objects, 108-109
in PHP, 61, 64
if command
in JavaScript, 176
in PHP, 64, 77-80
<IFRAME> tag, 41-42
Image editing software, 15
ImageReady software, 15
Images, in HTML, 33-34
images array, in document object, 188
Image size, in HTML, 33-34
 tag, 34
implode function
with cookies, 119
in PHP, 91-92, 209
in_array array function, in PHP, 77
Include files, 85, 127-128
for connecting to MySQL server,
159-160
include statement, 85
PHP and templates and, 128-129
Increment operation, in PHP, 59, 61
Indentation
HTML <BLOCKQUOTE?> tag and,
31
in HTML code, 29
with HTML lists, 35-36
Indexing. See also Directory index
of arrays, 69-70
of associative arrays, 70-71
of multidimensional arrays, 72, 73-74
PHP searchers and, 98-100, 124-125,
168-170
Index keys, database entities as, 138,
140

282 INDEX

indexOf() method
in browser programming, 186-187
for JavaScript strings, 178, 209
Information functions, in PHP, 96-97
Inheritance, among classes, 102-103
Initialization, of PHP variables, 64
innerHeight method, for Window
objects, 206
innerHTML property, with DHTML,
219-220
innerText attribute, with DHTML,
218-219, 220
innerWidth method, for Window
objects, 206
Input, in forms, 112-113, 114-115
<INPUT> tag, 112-113, 114-115
insertAdjacentHTML method, with
DHTML, 221
insertAdjacentText method, with
DHTML, 221
Insert command, accessing
phpMyAdmin tables with, 154
insert_id function, in database class,
164, 167-168
INSERT instruction, for MySQL
databases, 146-147
Insertions, into MySQL databases,
146-147
Installation
of Apache server, 46-47, 241-243
of MySQL database, 50-51, 243-245
of PHPS engine, 48-50
of phpBB bulletin board, 52-54
of phpMyAdmin application, 51-52
Instructions, MySQL, 145-150
INTEGER (INT) data type
in MySQL, 143
in PHP, 63
Integers, in MySQL strings, 142
interface keyword, 106-107
Interfaces, object, 106-107
Internal pointers, in PHP files, 87
Internet
browsers for, 7
history of, 5-6
routers in, 10
servers for, 7-8
Internet Explorer (IE), 7
DHTML and, 219-220

document object and, 188
dynamic menus and, 222-225
programming tools for, 12
Internet Information Services (IIS), 7-8
Internet layer, TCP/IP, 9-10
Internet Message Access Protocol
(IMAP), 11
Internet Protocol (IP), 9. See also IP
entries; Transmission Control
Protocol/Internet Protocol
(TCP/1P)
int mysql_affected_rows function, 163
int mysql_errno function, 163
int mysql_insert_id function, 163
int mysql_num_fields function, 164
INTO DUMPFILE instruction, for
MySQL databases, 150
IP addresses, 9-10
is_dir function, in PHP, 89
is_ functions, in PHP, 63
isset command
in PHP, 64, 65
in retrieving form information on
PHP scripts, 116
in retrieving session information on
PHP scripts, 121
<I> tag, 30
Italics, with HTML, 30

J2EE (Java 2 Enterprise Edition), 21
J2ME (Java 2 Micro Edition), 21
Java language, 20-21

C# and, 24

JavaScript versus, 21

object-oriented programming with,

101

JavaScript, 21, 25, 171-183

array objects in, 181

arrays in, 175

in browser programming, 12-13,

185-195

calculations with, 173-174

as client-side language, 25, 172

conditions in, 176

data types in, 173

date objects in, 181-183

decision making in, 176

DHTML and, 217-225

events in, 191-194

frames and, 197-200, 206

functions in, 177

in hackerproofing Websites, 232-233

HTML and, 171, 172

Java versus, 21

loops in, 176-177

Math class in, 179-180

MySQL and, 141

objects in, 178-183

operations in, 173-174

PCRE and, 214

PHP and, 172

regular expressions in, 210-213

string objects in, 178-179

syntax of, 173-177

timers in, 194-195

variables in, 173-174

when to use, 234-235

Window objects and, 197, 201-206,

206-208

join method, in JavaScript, 181, 209
JPG images, in HTML, 33-34

Kahn, Robert, 6
key array function, in PHP, 75
Key index. See also Index keys

of associative arrays, 70, 71

in multidimensional arrays, 72, 73
krsort array function, in PHP, 75
ksort array function, in PHP, 75

Languages. See Programming languages
lastIndexOf method, for JavaScript
strings, 178, 209
LeechFTP software, 13
left attribute, for open method, 202-203,
218
length method/attribute, for JavaScript
strings, 178, 181, 209
Lerdorf, Rasmus, 57
LIMIT option, in MySQL SELECT
instruction, 149, 150, 231
Line numbering, with HTML lists,
35-36
Links
in <BODY> tag, 29
with Cascading Style Sheets, 132-134
highlighting in indexer/searcher, 170
in HTML text, 32-33

INDEX 283
nonunderlined, 134
to style sheets, 134
links array, in document object, 188
Linux, 7, 8. See also UNIX/Linux
browsers for, 13
email tools with, 14
include file for, 128
security for, 54-55
setting up work environment in, 45
Web programming tools with, 14-15
list array function, in PHP, 76
Lists, in HTML, 34, 35-36
 tag, 35
location attribute, for open method, 202
location. href redirection, in location
object, 186
Location object, in browser
programming, 186
location.replace redirection, in location
object, 186
Lock/Unlock, phpBB, 249
logl10 function, in PHP, 62
log function, in PHP, 62
Logical operators
MySQL, 145
in PHP, 61
login.php script, 162-163
Login procedures
header function and, 123
for PHP/MySQL Websites, 162-163
for videogame store Website, 231
LONGBLOB data type, in MySQL, 144
LONGTEXT data type, in MySQL, 144
Loops. See also for loop
in JavaScript, 176-177
in PHP, 58, 65, 80-82
Lowercase strings, 91
in MySQL notation, 142
searching and, 99
Itrim method, in PHP, 91

Macromedia, 14-15

Main function, in PHP, 65

Maintenance, of Web projects, 2, 4,
234

Management, of phpBB bulletin board,
53,247

MARGINHEIGHT parameter, in
<IFRAME> tag, 42

284 INDEX
MARGINWIDTH parameter, in
<IFRAMES> tag, 42
match method, in JavaScript, 210
Match reuse, in regular expressions,
212-213
Math.abs method, in JavaScript, 179.
See also abs function
Math.ceil method, in JavaScript, 179.
See also ceil function
Math class, in JavaScript, 179-180
Mathematical functions, in PHP, 61-63
Math.floor method, in JavaScript, 179,
180. See also floor function
Math.PI method, in JavaScript, 179. See
also pi function
Math.pow method, in JavaScript, 179.
See also pow function
Math.round method, in JavaScript, 179,
180. See also round function
max function, in PHP, 62
maxlength attribute, for <INPUT> tag,
112
MEDIUMBLOB data type, in MySQL,
144
MEDIUMINT data type, in MySQL,
143
MEDIUMTEXT data type, in MySQL,
144
menubar attribute, for open method,
202
Menu creation, with FastTemplate,
130-131
Menus
adding and removing options in,
190-191
dynamic, 222-225
for exporting/importing structures
with phpMyAdmin application,
155-157
in frames, 199-200
with phpBB bulletin board, 53
for phpMyAdmin database creation,
151-152
for phpMyAdmin table creation,
152-154
Mersenne twister, 63
META tags, 95
PHP searchers and, 99, 100

method attribute, in <FORM> tag,
111-112
Methods, in classes, 101, 164-168
Microsoft .NET. See .NET languages
Microsoft Internet Explorer (MSIE).
See Internet Explorer (IE)
Microsoft Word, 15
microtime() function, for setcookie
command, 118
MILNET, 6
min function, in PHP, 62
Minimum Posts, phpBB, 248
mkdir method, in PHP, 90
Moderating forums, using phpBB,
248-249
MODIFY alter_spec, for MySQL
ALTER TABLE instruction, 146
Morse, Samuel, 5
Morse code, 5
Mosaic browser, 7
moveBy method, for Window objects,
203
moveTo method, for Window objects,
203
Moving topics, with phpBB, 248-249
Moving windows, 203-206, 207-208
Mozilla Firefox browser, 7, 13. See also
Firefox entries
mt_getrandmax () function, in PHP, 63
mt_rand function, in PHP, 62
mt_srand function, in PHP, 63
Multidimensional arrays, in PHP, 71-74
Music, listening to while programming,
27
MyISAM software, 50
my_select_db function, 161
mysql_affected_rows function, 163
mysql_close function, 163
mysql_connect method, 159-160
MySQL databases, 25-26, 45, 140-150
adding users to, 51
in creating Websites, 159-170
data types in, 142-144
date and time data types in, 143-144
downloading, 46
functions in, 150
installing on UNIX, 241, 243-245
installing on Windows, 50-51

instructions for, 145-150

MySQL versions and, 140-141

numeric data types in, 142-143

operators for, 144-145

with phpBB bulletin board, 52

PHP engine and, 49, 50

phpMyAdmin application and, 51

queries to, 160-162

RPM distributions of, 243-245

string data types in, 144

syntax for, 141-142

testing, 51

using, 140-141

when to use, 235
mysql_data_seek function, 163
mysql_db_query function, 160
mysql_drop_db function, 163
mysql_errno function, 163
mysql_error() function, 161
mysql_fetch_field function, 163
mysql_fetch_lengths function, 163
mysql_fetch_row function, 161, 163
mysql_free_result function , 163
mysql_insert_id function, 163
mysql_list_dbs function, 163
mysql_num_fields function, 164
mysql_num_rows function, 161-162
MySQL queries, 160-162
mysql_query function, 160
mysql_result function, 164
mysql_select_db function, 160-161
MySQL server, connecting to, 159-160

name attribute
for <A> tag, 32-33
for frames, 197-198
for <INPUT> tag, 112
for <SELECT> tag, 114-115
for setcookie command, 118-119
for <TEXTAREA> tag, 113-114,
115
Name command, for phpMyAdmin
tables, 152
NAME parameter
in <FRAME> tag, 40, 41
in <IFRAME> tag, 42
Names, MySQL, 142. See also
Nicknames

INDEX 285

name setting, for session command,
120
National Center of Supercomputer
Applications (NCSA), 7
National Security Agency (NSA), 5-6
Navigator object, in browser
programming, 186-187. See also
Netscape Navigator
NeoPlanet browser, 13
Nested lists, in HTML, 35-36
.NET languages, 8. See also ASP.NET
(Active Server Pages)
C# and, 24
Netscape browser, 7
cookies with, 118
programming tools for, 12-13
Netscape mail, 14
Netscape Navigator, document object
and, 188
Network access layer, TCP/IP, 9
Network address, 9-10
Network layer, OSI, 8
Networks, addressing within, 9-10
new_db function, in database class, 164
New lines, HTML code and PHP and,
95-96
next array function, in PHP, 75
next_row function, in database class,
164, 167
Nicknames, with phpBB bulletin board,
52
ni2br function, in PHP, 95-96
<NOFRAMS> tag, 41
Nonunderlined links, with Cascading
Style Sheets, 134
NORESIZE parameter, in <FRAME>
tag, 40, 41
NOSHADE attribute, in <HR> tags, 31
Notation, for MySQL, 141-142
Notepad, with HTML, 27
NSFNET, 6
number_format function, in PHP, 62
Numbers, in JavaScript, 173-174
Numeric data types, MySQL, 142-143

Object data type, in PHP, 58, 63
Object interfaces, 106-107
object mysql_fetch_field function, 163

286 INDEX
Object-oriented programming
with PHPS, 101-110
for programming browsers, 185-195
Objects
comparing, 108-109
copying and cloning, 107-108
creating and destroying, 103
FastTemplate, 129-131
in JavaScript, 178-183
in object-oriented programming,
101-102
static keyword and, 105-106
type hinting of, 109
visibility and, 104-105
octdec function, in PHP, 62
 tag, 35
onAbort event, in JavaScript, 192
onBlur event, in JavaScript, 192
onChange event, in JavaScript, 192
onClick event, in JavaScript, 191,
192-193
onclick property, with DHTML, 219,
222-223
onDragDrop event, in JavaScript, 192
onError event, in JavaScript, 192
onFocus event, in JavaScript, 192
onKeyDown event, in JavaScript, 192,
207-208
onKeyPress event, in JavaScript, 192
onKeyUp event, in JavaScript, 192
onLoad event, in JavaScript, 192
onMouseDown event, in JavaScript,
192
onMouseQut event, in JavaScript, 192
onMouseOQver event, in JavaScript, 191,
192-193
onMouseUp event, in JavaScript, 192
onMove event, in JavaScript, 192
onReset event, in JavaScript, 192
onResize event, in JavaScript, 192
onSelect event, in JavaScript, 192
onUnload event
in JavaScript, 192
in popup window creation, 201
opendir method, in PHP, 89
opener object, 203
Opening files, in PHP, 86-87
Opening tags, 28
attributes in, 30

open method, in popup window
creation, 201-203
Open-source programs, 7
Perl language as, 23-24
PHP as, 22
Open Systems Interconnection (OSI),
layers in, 8-9
Opera browser, 7
Operations
in JavaScript, 173-174
in PHP, 60-61
Operations command, for phpMyAdmin
tables, 152, 154
Operators, MySQL, 144-145
<OPTION> tag, 114-115
for dynamic form creation, 116-117
ORDER BY option, in MySQL
SELECT instruction, 149-150
Ordered lists, in HTML, 35
Orders, for videogame store Website, 230
ord function, in PHP, 93
outerHeight method, for Window
objects, 206
outerHTML property, with DHTML,
219-220
outerWidth method, for Window
objects, 206
Outlook Express, 14
Output, cleaning up, 131-135

Paragraphs
HTML, 30, 31, 35
moving, 225
Parameters
for cookies, 118-119
with FastTemplate, 129-131
in JavaScript date objects, 181
for JavaScript functions, 177
for mysql_connect method, 159-160
in open method, 201-202
in PHP functions, 82-83
_parent attribute, in <A> tag, 32-33
Parent class, 102-103
constructors from, 103
window objects for, 197-200
Parentheses, in regular expressions, 212,
213
parse method, with FastTemplate,
129-130, 131

password input type, for <INPUT> tag,

112

Password parameter, for mysql_connect

method, 159
Passwords
in forms, 112
with MySQL database, 50, 51
with phpBB bulletin board, 52, 53
with phpMyAdmin application, 51
in PHP/MySQL login procedures,
162-163
path attribute, for setcookie command,
118-119
Paths, URLs and, 18
PCRE (Perl-compatible regular
expressions), 214-216
Period (.), in FastTemplate append
parsing, 130
Perl language, 23-24
regular expressions in, 214
Permissions, phpBB, 53, 248
Phishing, 233
PhotoShop software, 15
PHP (Hypertext PreProcessor), 22, 25
arrays in, 69-77
ASP.NET versus, 23
classes in, 102-103
comparisons in, 60
conditions in, 58, 59, 60, 77-80
connecting to MySQL server with,
159-160
constants in, 59, 64-65
in creating Websites, 159-170
data types in, 63-64
exceptions in, 109-110
expressions in, 59-61
FastTemplate code in, 251-266
file explorer in, 97-98, 123-124
files in, 85-89
flow of control in, 69, 77-83
folders in, 89-90
functions in, 58, 59, 60-61, 82-83
HMTL and, 58
HTML files and, 95-96

indexer/searcher in, 98-100, 124-125,

168-170
information functions in, 96-97
installing on UNIX, 241-243
instructions in, 58-61

INDEX 287

interactive Websites with, 111-125
loops in, 58, 65, 80-82
mathematical functions in, 61-63
object-oriented programming with,
101-110
objects in, 58
operators in, 61
Perl-compatible regular expressions
in, 214-216
regular expressions in, 213-216
as server-side language, 25, 57-67
strings in, 90-96
syntax of, 58, 59, 60
variables in, 59-60, 64, 65-67
versions of, 57
when to use, 234-235
PHPS
installation of, 48-50
object-oriented programming with,
101-110
phpBB bulletin board tool, 45
advanced features of, 247-249
downloading, 46
installing, 52-54
PHP code
cleaning up, 127-135
templates and, 127, 128-129, 129-131
PHP engine, 45
downloading, 46
installing, 48-50
with phpBB bulletin board, 52
security for, 54
testing, 50
PHP-GTX library, 22
phpinfo() function, in PHP, 97
PHP methods, grouping in classes,
164-168
phpMyAdmin application, 45, 151-158
accessing tables with, 154
creating databases with, 151-152
creating tables with, 152-154
creating Websites with, 159
downloading, 46
exporting/importing database
structure and content with, 154-157
installing, 51-52
with phpBB bulletin board, 52
PHP engine and, 49
when to use, 234

288 INDEX
PHP scripts
accessing MySQL via, 150
cookies with, 117-119
in creating Websites, 159
for dynamic form creation, 116-117
<FORM> tag and, 111-112
header function and, 117, 122-123
MySQL and, 141
retrieving form information on,
115-116
for sessions, 120-122
transferring data between, 117-122
<?PHP tag, 58
JavaScript in, 172
phpversion() function, in PHP, 97
PHP zone, 58
Physical layer, OSI, 8
pick_db function, in database class, 164,
165
pickMenu () function, dynamic menus
and, 224
pi function, in PHP, 62. See also Math.
PI method
Pine (Program for Internet News &
Mail), 14
Pipe sign (1)
in MySQL notation, 141
as MySQL operator, 144
in regular expressions, 213
Pixels
in HTML images, 33-34
in moving and resizing windows,
203-206
in positioning screen elements, 217, 218
Platforms, for videogame store Website,
229
PNG images, in HTML, 33-34
Popup windows
annoying, 206-208
creating, 200-206
malicious, 233
Port 80, installing Apache server and,
46-47
Ports, 11
pos array function, in PHP, 75
$_POST array, 115-116
Postdecreasing variables
in JavaScript, 173
in PHP, 59

PostgreSQL database, 26
Postincrementing variables
in JavaScript, 173
in PHP, 59
POST methods
forms and, 112, 114, 115
PHP and, 57
Post Office Protocol (POP), 11
Pound sign (#)
in <A> tag, 32-33
with PCRE, 214
pow function, in PHP, 62. See also
Math.pow method
Preamble, 8
Precedence, in JavaScript expressions,
173
Predecreasing variables
in JavaScript, 173
in PHP, 59
Predefined constants, in PHP, 64-65
preg_match_all() function, in PCRE,
215
preg_match() function, in PCRE, 215
preg_quote() function, in PCRE, 216
preg_replace() function
in PCRE, 215
in PHP, 214
preg_split() function, in PCRE, 216
Preincrementing variables
in JavaScript, 173
in PHP, 59
Preprocessors, PHP as, 22
Presentation
of database projects, 157-158
of Web applications, 3, 233
Presentation layer, OSI, 9
prev array function, in PHP, 75
Primary index keys, database entities
as, 138, 140
printf function, in PHP, 94
print function, in PHP, 94
printout function, in database class, 164,
166-167
Private visibility, of PHP data members/
functions, 104-105
Privileges, with MySQL database, 51
Programming languages, xiii-xiv. See
also C language; C++ language; C#
language; eXtensible Markup

Language (XML); eXtensible Style
sheet Language (XSL); HyperText
Markup Language (HTML); Java
language; JavaScript; .NET
languages; Perl language; PHP
(Hypertext PreProcessor); Standard
Generalized Markup Language
(SGML)
choosing, 234-235
for the Web, 17-26, 17-18
Programming tools, 12-15
for World Wide Web, 14-15
Program structure, in PHP, 77-83
Projects
back ends of, 2, 231
databases for, 2, 228-230
defining scope of, 1-2, 227-228
functionalities in, 2-3, 230-231
hackerproofing, 3, 232-233
improving appearance of, 3, 232
improving functionalities of, 2-3,
231-232
maintaining, 2, 4, 234
presenting, 3, 233
publishing, 3, 233-234
testing, 3, 232-233
prompt method, in JavaScript, 174
Protected visibility, of PHP data
members/functions, 104-105
Protocols
in Internet application layer, 11-12
in Internet transport layer, 11
for routers, 10
<P> tag, 30, 31
Publication, of Websites, 3, 233-234
Public visibility, of PHP data members/
functions, 104-105

Queries, MySQL, 160-162
Query command, for phpMyAdmin
tables, 152
Quotation marks (“)
in MySQL strings, 142
in PHP regular expressions, 213

Radio buttons
document object and, 189-190
in forms, 113
radio input type, for <INPUT> tag, 113

INDEX 289
rand function, in PHP, 62
random() function, in JavaScript, 179-
180. See also getrandmax()
function; mt_getrandmax()
function; mt_rand function; mit_
srand function; rand function;
srand function
range array function, in PHP, 76
Rank Image, phpBB, 248
Ranks, phpBB, 248
Rank Title, phpBB, 248
rawurldecode function, in PHP, 96
rawurlencode function, in PHP, 96
readdir method, in PHP, 89
readfile function, in PHP, 88
Reading files, in PHP, 86-87, 88
readlink function, in PHP, 89
Real data type, in PHP, 63
Real index, of associative arrays, 70
Redundancies
avoiding in databases, 138-139
avoiding in indexer/searcher, 169-170
Reference, sending parameters by,
82-83
Reference affectations, in PHP, 61
RegExp objects, in JavaScript, 210-213
Regular expressions
in JavaScript, 210-213
in PHP, 213-216
Relationships, in databases, 138, 139,
140, 141
Relative positioning, with DHTML,
217-218
Relative URL, 18
in <A> tag, 32-33
RENAME alter_spec, for MySQL
ALTER TABLE instruction, 146
rename function, in PHP, 88
Renaming topics, with phpBB, 249
Repetition characters, in regular
expressions, 211-212
REPLACE instruction, for MySQL
databases, 147
replace method, in JavaScript, 210
replace redirection, in location object,
186
require function, in PHP, 85-86
reset array function, in PHP, 75
reset input type, for <INPUT> tag, 113

290 INDEX

resizable attribute, for open method,
202

resizeBy method, for Window objects,
203

resizeTo method, for Window objects,
203

Resizing windows, 203-206, 207-208

resource mysql_list_dbs function, 163

return statement

in events, 193-194
in PHP functions, 82

reverse method, in JavaScript, 181

rewind function, in PHP, 87

rewinddir method, in PHP, 90

rmdir method, in PHP, 90

Root parent, 198-199

round function, in PHP, 62. See also
Math.round method

Routers, 10

rows attribute, in <TEXTAREA> tag,
113-114, 115

ROWSPAN parameter, in <TD> tag,
37-39

ROWS parameter, in <FRAMESET>
tag, 40, 41

RPM distributions, MySQL, 243-245

rsort array function, in PHP, 75

save_handler setting, for session
command, 120
save_path setting, for session command,
120
Scope creep, 232
Scope resolution operator, PHP, 105
Screen
dynamic menus in, 222-225
moving paragraphs on, 225
positioning elements in, 217-222
positioning popup windows in,
202-203
screen.colorDepth, in screen object,
187
screen.height, 202
in screen object, 187
Screen object, in browser programming,
186, 187
screen.width method, 202
in screen object, 187
screenX function, in DHTML, 222

screenY function, in DHTML, 222
<SCRIPT>tag, 172, 173
scrollbars attribute, for open method,
202
SCROLLING parameter
in <FRAME> tag, 40, 41
in <IFRAME> tag, 42
Searchers
META tags and, 95
PHP, 98-100, 124-125, 168-170
Searches, of MySQL databases, 146,
148-149
Searching tools, for videogame store
Website, 232
search method, in JavaScript, 210
secure flag, for setcookie command,
118-119
Secure SHell (SSH), 11
Security
in databases, 140
header function and, 123
in PHP/MySQL login procedures,
162-163
of work environment, 54-55
SELECT instruction
document object and, 190
for MySQL databases, 148-150, 231
MySQL versions and, 140
select() method, text areas in forms and,
194
<SELECT>tag, 114-115
_self attribute, in <A> tag, 32-33
Semicolon (;)
for HTML special characters, 43,
237-239
in PHP code, 58
in PHP while loops, 81-82
send_sql function, 161
in database class, 164, 166
Separators, in strings, 91-93
Server-side programs, 24-25, 183
ASP as, 22-23
Servers, 7-8
client- and server-side programs and,
24-25
include files and, 85
uploading files to, 267-268
Serv-U FTP software, 13
$_SESSION array, 121

session.auto_start setting, for session
command, 120
session_destroy() function, in PHP,
120-122
session_id() function, in PHP, 120-122
Session layer, OSI, 8
session_name() function, in PHP,
120-122
session.name setting, for session
command, 120
Sessions, information transfer via,
120-122
session.save_handler setting, for session
command, 120
session.save_path setting, for session
command, 120
session_start() function, in PHP,
120-122
session.use_cookies setting, for session
command, 120
setcookie command, in PHP, 118-119
SET data type, in MySQL, 144
setDate method, in JavaScript, 182
setHours method, in JavaScript, 182
setlnterval function, in JavaScript, 195
setMilliseconds method, in JavaScript,
182
setMinutes method, in JavaScript, 182
setMonth method, in JavaScript, 182
setSeconds method, in JavaScript, 182
setTimeout function, in JavaScript, 194
settype function, in PHP, 63
setup method, in database class, 164,
165
setUTCHours method, in JavaScript,
183
setYear method, in JavaScript, 182
Shadows, phpBB, 248-249
Shopping carts, for videogame store
Website, 229-230
shuffle array function, in PHP, 76
Simple Mail Transfer Protocol (SMTP),
11
sin function, in PHP, 62
size attribute
in <HR> tags, 31
in <INPUT> tag, 112
in <SELECT> tag, 114-115
sizeof array function, in PHP, 75

INDEX 291
Slash (/)
indexer/searcher and, 124
with PCRE, 214
in regular expressions, 210, 211
in tags, 28
slice method, in JavaScript, 181
SMALLINT data type, in MySQL,
143
Sockets, 11
Software
downloading work environment,
45-46
HomeSite, 134-135
sort array function, in PHP, 75
Sorting
of PHP arrays, 75-76
PHP file explorer and, 98
sort method, in JavaScript, 181
Source code, client- and server-side
programs and, 24-25
Soviet Union, in Internet history, 5-6
Spaces
in HTML code, 29-30, 43, 95-96
in strings, 90-91
Special characters. See also Characters
in HTML, 43, 237-239
in JavaScript, 173
in MySQL strings, 142
with PCRE, 214-215
in regular expressions, 211-212
searching and, 99-100
in strings, 90-91
split() function
in JavaScript, 209-210
in PHP, 214
spliti() function, in PHP, 214
Splitting topics, with phpBB, 249
sprintf function, in PHP, 95
SQL command, for phpMyAdmin
tables, 152, 154
SQL option, with phpMyAdmin
application, 155, 156
sqrt function, in PHP, 62
Square brackets ([])
in MySQL notation, 141
in PHP array indexing, 69-70
in PHP multidimensional array
indexing, 73-74
srand function, in PHP, 63

292 INDEX
SRC attribute/parameter
in <FRAME> tag, 40, 41
in <IFRAME> tag, 42
in tag, 34
srcElement function, in DHTML, 222
Standard Generalized Markup
Language (SGML), 18, 19
languages related to, 19-20
Standards, JavaScript and, 171
Stanford Research Instutute (SRI), 6
Starting frame delimiter (SFD), 8
START parameter, in tag, 35
States, of links, 132
Static keyword, in PHP, 105-106
Static variables, in PHP, 65-66
status attribute, for open method,
202
strcasecmp function, in PHP, 93
strcomp function, in PHP, 93
String data types
MySQL, 144
PHP, 63
String methods, in JavaScript, 209-210
string mysql_result function, 164
String objects, in JavaScript, 178-179
Strings
casings of, 91
finding and comparing, 93-94
formatting, 94-95
HTML code as, 95-96
in JavaScript, 173-174, 209-213
MySQL, 142
in PHP, 90-96, 213-216
regular expressions and, 210-213,
213-216
stripslashes method, in PHP, 91
strip_tags function, in PHP, 96
strnatcasecmp function, in PHP, 93
strnatcmp function, in PHP, 93
Stroustrup, Bjarne, 101
strpos function, in PHP, 93-94
str_replace method, in PHP, 91
strrev method, in PHP, 91
strrpos function, in PHP, 94
strtok function, in PHP, 92-93
strtolower method, in PHP, 91
strtoupper method, in PHP, 91
Structure page, for phpMyAdmin tables,
152-154

Style attributes, with DHTML, 219
Style sheets, 14-15
in cleaning up output, 131-132,
132-134
for videogame store Website, 232
Subdomains, 10
Submenus, for dynamic menus, 222-225
submit input type, for <INPUT> tag,
113
submit() method, document object and,
190
Subnet masks, 9-10
substr function, in PHP, 94
substring () method, for JavaScript
strings, 178, 209
substr() method, for JavaScript strings,
178, 209
switch command
in JavaScript, 176
in PHP, 79-80
Symbolic addresses, 10
Syntax
HTML, 28
JavaScript, 173-177
MySQL, 141-142
for MySQL instructions, 145-150
for MySQL queries, 160-161
Systray, installing Apache server and,
47

Tables
accessing with phpMyAdmin
application, 154
creating with phpMyAdmin
application, 152-154
in HTML, 34, 36-39
MySQL, 142-143, 149
for videogame store Website,
228-230
<TABLE> tag, 36-37, 38, 39
Tags, accessing with DHTML, 218-219.
See also HTML tags
tan function, in PHP, 62
TARGET attribute
in <A> tag, 32-33
forms and, 112
<TD> tag, 37-39
Teamwork, in database projects, 157
Telegraph, invention of, 5

Telephone
in communication between
computers, 6
invention of, 5
Telnet protocol, 12
Template files, 127, 128
with FastTemplate, 129-131
Templates, 127
HTML code and, 127, 128
PHP code and, 127, 128-129, 129-131
Template variables, 128
with FastTemplate, 129-131
Text
in forms, 112
as HTML code, 17
Text areas, 195
in forms, 194
in frames, 199-200
<TEXTAREA> tag, 113-115
textContent attribute, with DHTML,
219, 220-221
TEXT data type, in MySQL, 144
Text editors
with HTML, 27
JavaScript and, 171
Text formatting, HTML, 30-31
text input type, for <INPUT> tag, 112
throw keyword, for PHP exceptions,
109
<TH> tag, 37, 39
TIME data type, in MySQL, 144
Time data types, MySQL, 143-144
time() function, for setcookie command,
118
Time methods, in JavaScript, 181-183
Timeouts, 194-195
Timers, in browser programming,
194-195
TIMESTAMP data type, in MySQL,
144
TINYBLOB data type, in MySQL, 144
TINYINT data type, in MySQL, 143
TINYTEXT data type, in MySQL, 144
Titles, in frames, 199-200
<TITLE> tag, 29
toEvent function, in DHTML, 222
toggle() function, dynamic menus and,
224
Tokens, in strings, 92-93

INDEX 293
toLocaleString() method, in JavaScript,
183
toLowerCase() method, for JavaScript
strings, 178, 209
toolbar attribute, for open method, 202
top attribute
in <A> tag, 32-33
for open method, 202-203, 218
Top parent, 198-199
TopStyle program, 134-135
toUpperCase() method, for JavaScript
strings, 178, 209
toUTCString() method, in JavaScript,
183
Transmission Control Protocol (TCP), 11
Transmission Control Protocol/Internet
Protocol (TCP/IP), 8-12
OSI layer model and, 8-9
Transport layer
0SI1, 8
TCP/IP, 9, 11
trim method, in PHP, 91
<TR> tag, 37-39
true constant, in JavaScript, 173
TRUE value, in PHP, 59-60, 78-79
try block, for PHP exceptions, 109
type attribute, for <INPUT> tag, 112
Type hinting, in PHPS, 109
TYPE parameter
in tag, 35
in tag, 35

uasort array function, in PHP, 75-76
ucfirst method, in PHP, 91
ucwords method, in PHP, 91
uksort array function, in PHP, 75-76
 tag, 35
UltraEdit software, 15
Underlining, with HTML, 30. See also
Nonunderlined links
Underscore (_), in template variable
names, 128
UNIQUE fields, in databases, 140
United States, in Internet history, 5-6
Universal Resource Identifiers (URIs),
in HTML, 17-18, 32-33
Universal Resource Location (URL)
in HTML, 18, 32-33
HTML code and PHP and, 96

294 INDEX

University of California at Los Angeles
(UCLA), 6
University of California at Santa
Barbara (UCSB), 6
University of Utah, 6
UNIX/Linux, 7, 8
browsers for, 13
email tools with, 14
include file for, 128
installing Apache on, 241-243
installing MySQL on, 243-245
installing PHP on, 241-243
security for, 54-55
setting up work environment in, 45
Web programming tools with, 14-15
unlink function, in PHP, 88
Unordered lists, in HTML, 35
unset command/function
in PHP, 65
in retrieving session information on
PHP scripts, 121
UNSIGNED data type, in MySQL,
143
UPDATE instruction, for MySQL
databases, 147-148
Uploading, of files to servers, 267-268
Uppercase strings, 91
in MySQL notation, 142
in PCRE, 215
use_cookies setting, for session
command, 120
USE DATABASE instruction, for
MySQL databases, 145
Useless words, searching and, 99
User Datagram Protocol (UDP), 11
Usergroups, with phpBB, 247-248
User parameter, for mysql_connect
method, 159
Users
adding to MySQL database, 51
interactive Web pages for, 111-125
of MySQL databases, 140-141
with phpBB bulletin board, 52, 53
with phpMyAdmin application, 51
of videogame store Website, 228
usort array function, in PHP, 75-76, 77
<U> tag, 30
UTC (Coordinated Universal Time),
JavaScript and, 183

VALIGN parameter, in HTML table
tags, 37, 39
Value, sending parameters by, 82-83
value attribute
for <INPUT> tag, 112
for setcookie command, 118-119
VARCHAR data type, in MySQL, 144
Variables
with cookies, 119
with FastTemplate, 129-131
in forms, 115
JavaScript, 173-174
MySQL, 142
in PHP, 59-60, 65-67
PHP arrays as, 69
PHP data types and, 63-64
static PHP, 65-66
template, 128, 129-131
var keyword, in JavaScript, 173
Videogame store, designing Website for,
228-230
Visibility, of PHP data members/
functions, 104-105
Visited links, in <BODY> tag, 29
vi software, 14
Visual Basic, ASP and, 23
Vlink, in <BODY> tag, 29

Weak entities, in databases, 138
Weak relationships, in databases, 138
Web applications, steps in developing,
1-4,227-234

Web browsers. See Browsers
Web pages, interactivity in, 111-125
Web programming

with JavaScript, 171

languages for, 17-26
Web programming course, xiii—xiv
Web servers. See Servers
Websites

creating, xiv, 157-158, 159-170

designing, xiv, 157-158

fake, 233

Java code in, 21

steps in developing, 1-4, 227-234
while command

in JavaScript, 177

in PHP, 70, 81

strpos function and, 94

while condition, in PHP, 65
White-on-white text, for videogame
store Website, 233
White spaces
in HTML code, 29-30, 43, 95-96
in strings, 90-91
Wide area networks (WAN:Ss), early, 6
width attribute/method/parameter
in <HR> tags, 31
in HTML table tags, 37, 38, 39
in <IFRAME> tag, 42
in tag, 34
for open method, 202, 203, 218
in screen object, 187
Wildcard searching, in indexer/searcher,
170
Window objects
annoying, 206-208
in browser programming, 185-191
JavaScript and, 197, 201-206
moving and resizing windows for,
203-206
Windows operating systems, 7, 8, 14
include file for, 128
setting up work environment in,
45-55
Word, 15
Word boundaries
in PCRE, 215
in regular expressions, 212
Words, extracting from strings, 91-92
Work environment, 45-55

INDEX 295
configuring, 48
downloading software for, 45-46
installing software for, 46—47, 48-50,
50-51, 51-52, 52-54
security of, 54-55
World Wide Web (WWW)
browsers for, 7
developer’s toolkit for, 12-15
history of, 6
programming tools for, 14-15
servers for, 7-8
World Wide Web Consortium (W3C),
history of, 6
Wrapper functions, in connecting to
MySQL server, 159-160, 160-161
write function, in document object, 188
Writing files, in PHP, 86-87

XML files, 19-20
XSL files, 20
XSLT (XSL Transformations), 20

Yahoo, 14

YEAR data type, in MySQL, 144

yourFormName method, document
object and, 189

Zend script motor
PHP and, 57, 101
scope resolution operator and, 105
ZEROFILL data type, in MySQL,
143

	5989433
	5989459
	5989431
	5989452
	5989441
	5989440
	5989439
	5989438
	5989437
	5989436
	5989435
	5989434
	5989451
	5989450
	5989449
	5989448
	5989447
	5989446
	5989445
	5989444
	5989443
	5989442
	5989458
	5989457
	5989456
	5989455
	5989454
	5989453
	5989432

