
www.allitebooks.com

http://www.allitebooks.org


Web Services Testing  
with soapUI

Build high quality service-oriented solutions by  
learning easy and efficient web services testing  
with this practical, hands-on guide

Charitha Kankanamge

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Web Services Testing with soapUI

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1191012

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-566-5

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Charitha Kankanamge

Reviewers
Evanthika Amarasiri

Bindu Laxminarayan 

Ajay Pawar

Acquisition Editor
Kartikey Pandey

Lead Technical Editors
Hithesh Uchil

Azharuddin Sheikh

Technical Editors
Vrinda Amberkar

Ankita Meshram

Prashant Salvi

Project Coordinators
Sai Gamare

Shraddha Vora

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'Silva

Aditi Gajjar

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org


About the Author

Charitha Kankanamge is Manager, Quality Assurance and Senior Technical 
Lead at WSO2 with more than 9 years of experience in Software Quality Assurance. 
Charitha is specialized in SOA and middleware testing. He lead the WSO2 QA 
team since 2007. He is also a committer of the Apache Software Foundation 
contributing to Apache web services project. Charitha is interested in researching 
new technologies in software-testing space as well as new trends in agile and 
exploratory testing processes.

Prior to joining WSO2, Charitha has worked at Virtusa inc. for 3 years where he  
was involved in multiple on-site and off-shore project assignments. In his rare  
offline moments, he enjoys playing guitar and watching movies.

Charitha has been involved in reviewing two books, Apache Jmeter, Emilly H. 
Halili  and Quick Start Apache Axis2, Deepal Jayasinghe both being published by 
Packt Publishing.

Charitha can be reached through his blog:

http://charithaka.blogspot.com

www.allitebooks.com

http://www.allitebooks.org


Acknowledgement

Making a book reality takes many dedicated people, and it is my great pleasure to 
acknowledge their contributions.

First, I'd like to thank Packt Publishers, in particular, Kartikey Pandey – Senior 
Acquisition Editor, who proposed me to write this book. I'm grateful for all the  
help I got from the editorial staff at Packt Publishers in reviewing this book,  
specially Hithesh Uchil – Lead Technical Editor and Sai Gamare who coordinated  
the progress of writing, by ensuring that I stayed on track.

This book has benefited from a great set of technical reviewers. I'd like to thank  
each of them for volunteering their time reviewing drafts of this book and providing 
valuable feedback. Specially, my colleague at WSO2 QA team, Evanthika Amarasiri 
who carried out in-depth quality assurance process in all chapters by executing  
each sample.

I sincerely thank my wife, Thushari for her patience, support, and understanding 
throughout the writing process. Many thanks to my beloved parents who raised me, 
made me the person who I am today by providing their insightful guidance in all 
aspects of my life.

Though I'm unable to name individually, I would like to extend my heartfelt 
gratitude to many colleagues at WSO2, who never hesitated to give their support to 
the fullest extent, whenever I requested help on various subject matters. I must thank 
Dr. Sanjiva Weerawarana, Founder, Chairman and CEO of WSO2, Inc. whose vision 
inspires me and guides me to accomplish my career aspirations.

Finally, a big thank goes to the developers and contributors of Smartbear software 
for making soapUI the world's best open source web services testing tool.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Evanthika Amarasiri joined 99X Techonology (former Eurocenter DDC Ltd.) in 
2000 as a trainee QA Engineer. She has become competent in testing applications 
based on Java, C++, VB and .NET, Lotus Notes, and in mobile application testing 
(Symbian and J2ME). While she was working there, she studied for her B.Sc. 
in Information Systems at the Informatics Institute of Technology, Sri Lanka, 
which was affiliated to the Manchester Metropolitan University, UK. She left 99X 
Technology in 2006 and joined WSO2 Lanka (Pvt) Limited (in the same year) as a 
Software Engineer - Quality Assurance. From 2006 to date, she has worked with 
several leading middleware products of WSO2. During her stay at WSO2 she has 
gained experience and knowledge on different kinds of web technologies, operating 
systems, databases, application servers, and many QA testing tools. She has also 
gained extensive experience in functional, usability, performance testing, as well 
as QA test planning. By contributing to the Apache Synapse, which is a free and 
open source software project, she has become a committer for the same. Currently 
she is working as a Quality Assurance Technical Lead and is also a member of the 
Management Committee in the Integration Technology team of WSO2.

I would like to thank my loving husband and my mother for all 
the support given while reviewing this book. Also, a special thank 
goes to my team mates for all the valuable inputs given, to make the 
review process a success. My sincere gratitude goes to Charitha, the 
author of the book, for selecting me as a reviewer for his book. He is 
a great teacher/leader who has inspired us with his work. Without 
his guidance and support, I would not have made this far in my 
career. I wish him all the best for his future endeavors.

www.allitebooks.com

http://www.allitebooks.org


Bindu Laxminarayan is an expert in Software Testing and Quality Assurance 
with expertise in Test Automation Framework Design and Development. Over 
the last 7 years, she has worked on various testing tools including but not limited 
to SOAPUI, Jmeter and selenium on RESTful and SOAP Web Services. She is 
currently working on Test Automation of Cloud Web Services and design patterns 
in Automated Testing. Over the last two years she has presented at work on 
StarEast Conference.

Ajay Pawar is an IBM middleware consultant having more than a decade of 
experience. He is Director at ePower Consultancy Services UK. Ltd.

He started his career working on technologies such as Java, Java Swing, Java 
EE, and then extended his experience in SOA world. He is an expert in IBM 
middleware tools such as WebSphere Process Server (WPS), WebSphere 
Integration Developer (WID), WebSphere MQ (WMQ), and Websphere Service 
Registry and Repository (WSRR). He has also good flair for web services testing. 
He is proficient in soapUI tool and he used it extensively for manual as well as 
automation testing.

I would like to thank my wife Hema, sweet daughter Aarohi, and a 
cute baby Vihaan for their constant support.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, 
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books. 

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org




This book is dedicated to my parents, who have raised me to be the person I am today  
and my beloved wife Thushari and my loving kids, Risith and Nethul.





Table of Contents
Preface 1
Chapter 1: Web Services Testing and soapUI 7

SOA and web services 8
Service-oriented solutions 8

Case study 8
Building blocks of SOA 9

Simple Object Access Protocol 11
Alternatives to SOAP 13

REST 13
Java Script Object Notation 14

Web Services Description Language 14
Message exchanging patterns 16
SOAP Faults 17
Approaches of testing web services 18

Unit testing of web services 19
Functional testing 19

Tool assisted testing 19
Using client APIs provided by service container middleware 19

Integration testing of web services 20
Performance testing of web services 20
The common challenges of Web services testing 20

Use of external web services 21
Implications of using complex standards and protocols  21
Headless nature of web services 21

What is soapUI? 22
Capabilities of soapUI 23
Installing soapUI 24

System requirements 24



Table of Contents

[ ii ]

Installing soapUI on Linux 25
soapUI installation on Windows 27
Installing soapUI on MacOS 28

A glance at soapUI user interface 28
Summary 30

Chapter 2: The Sample Project 31
The problem domain 33
Project pre-requisites 34

Java  34
Apache Ant  34
MySQL 34
Setting up Apache Axis2 34
Setting up project source directories 35

Designing the web services 36
Creating the database 36

Implementing the web services 37
Web services fault handling 43
Managing database operations 45
Completing the web service implementation classes 47

Deploying web services 48
Summary 53

Chapter 3: First Steps with soapUI and Projects 55
Understanding the web services definition 55

Schema 56
portType 57
binding 58
Service 59

Creating a soapUI project 60
Invoking the guest management web service 64
A detailed look at SOAP requests and responses 67
Generating SOAP Faults 70
Summary 72

Chapter 4: Working with Your First TestSuite 73
A sample test scenario 73
Creating a TestSuite 74

Adding TestCases 78
addRoom TestCase 79
getRoomDetails TestCase 81
deleteRoom TestCase 81



Table of Contents

[ iii ]

Running the first TestSuite 81
Adding test assertions 84

Not SOAP Fault assertion 84
XPath Match assertion 86
The Contains assertion 88

Adding properties to soapUI tests 89
Reading property values from a file 90

Transferring property values between TestSteps 91
Summary 97

Chapter 5: Load and Performance Testing with soapUI 99
Non-functional testing of web services 100

Performance testing 101
Planning for web service performance testing 102
Using soapUI for performance testing 103
Working with load tests in soapUI 103

Limit of a load test 104
Threads in a soapUI load test 105
Load test strategies of soapUI 106

Simple load strategy 106
Burst load strategy 107
Thread load strategy 108
Variance strategy 109

A closer look at the load test report and statistics of soapUI 110
Using load test assertions in soapUI 112

The Max Errors assertion 113
The Step Average assertion 114
Step TPS assertion 115
The Step Maximum assertion 115
The Step Status assertion 116
LoadTest options 117

Summary 117
Chapter 6: Web Service Simulation with soapUI 119

Mocking in software testing 119
Mocking in web services testing 120

Mock services and contract-first web service development 120
Simulating services that are not accessible 121
Dealing with test environmental restrictions 121

Mock services with soapUI 122
The structure of soapUI MockService 123

MockService details 125
MockOperation details 126
Dispatching styles of MockOperation 127
MockResponse details 129



Table of Contents

[ iv ]

soapUI mock services in action 129
Static responses – the basic scenario 130
Using dynamic responses 131

Summary 138
Chapter 7: Advanced Functional Testing with soapUI 139

Introduction to web services extensions 140
What is WS-Addressing 141
What is WS-Security 143

WS-Policy 143
WS-SecurityPolicy 143
WS-Trust 144
WS-SecureConversation 144

Configuring Apache Axis2 for WS-Addressing and WS-Security 144
WS-Addressing in Apache Axis2 145
WS-Security in Apache Axis2 145

Testing the WS-Addressing with soapUI 146
Validating the WS-Addressing responses 149

Testing WS-Security with soapUI 150
Web service authentication 150

Securing GuestManagementService 151
Testing the secured GuestManagementService with soapUI 156

Project level WS-Security configurations in soapUI 159
Testing asymmetric binding policy with soapUI 161

Asymmetric binding 161
Signing SOAP messages 162
Securing RoomManagementService 165
Testing secured RoomManagementService with soapUI 169

Validating WS-Security responses 175
Summary 176

Chapter 8: Getting Started with REST Testing 177
Introduction to REST 178

Represent everything with URIs 178
Using standard HTTP methods 179
Linking resources together 179
Multiple representations of resources 180
Stateless communication 180

Testing RESTful APIs using soapUI 180
REST Services in soapUI 182

Request and response representation  188
Using POST or PUT requests in soapUI REST services 189
Reading POST message content from a file 191
Inserting the HTTP Basic Authentication header to requests 193



Table of Contents

[ v ]

REST parameters 194
Query parameters 194
Template parameters 194
Matrix parameters 196
Header parameters 196

Functional testing of REST services 197
WADL 198
Summary 200

Chapter 9: Testing Databases with soapUI 201
Testing data in isolation 202
Setting up soapUI to connect to the database 203
JDBC Request TestStep 203

JDBC Request properties 206
JDBC test assertions 207

Stored procedures with JDBC Request TestStep 208
Accessing soapUI properties from SQL query 209

Summary 213
Chapter 10: JMS Testing with soapUI 215

Introduction to JMS 215
Setting up Apache ActiveMQ 216

JMS integration in soapUI 217
Working with JMS messaging in soapUI 222
Validating JMS responses 226
Verifying end-to-end JMS message delivery using the sample project 228

Configuring JMS in Apache Axis2 228
Configuring a session in HermesJMS 231
Adding a JMS endpoint in soapUI 233

Summary 233
Chapter 11: Extending soapUI with Scripting 235

Introduction to Groovy scripting language 236
What is Groovy? 236
HelloWorld with Groovy 237
Variable and object declaration in Groovy 238
Control structures in Groovy 239
Class and method declarations in Groovy 240

Groovy scripting in soapUI 241
The context object 242
The testRunner variable 245



Table of Contents

[ vi ]

soapUI ModelItems 248
Setup and TearDown scripts in soapUI 250
Load Script at soapUI project level 252

Request and response handling using Scripts 254
Script assertion 255

Summary 256
Chapter 12: Automated Testing with soapUI 257

Test automation 258
Why is test automation essential in SOA? 258
Continuous Integration (CI) 260

soapUI JUnit integration 261
soapUI command line executions 266

Invoking a soapUI command line functional test runner 267
Invoking test runners from the soapUI graphical user interface 270

Maven soapUI plugin 273
Summary 280

Chapter 13: Miscellaneous Topics 281
soapUI IDE plugins 282

soapUI Eclipse plugin 282
soapUI IntelliJ IDEA plug-in 284

WS-I validation using soapUI 285
soapUI integration with external web services' frameworks 288
Sending attachments with SOAP messages using soapUI 292

Deploying an MTOM-enabled web service 294
Using soapUI to send an attachment to the web service 294

Summary 299
Index 301



Preface
This book is all about using soapUI for functional and performance testing of  
service-oriented solutions. soapUI can be used to test various aspects of a  
service-oriented solution without merely playing the role of a web service  
invocation tool. We will follow a simple tutorial-style approach throughout  
the book in which we will explore all key features provided by soapUI based  
on a sample web services project. This book is ideally designed to guide readers  
to get more detailed insight on soapUI by doing a lot of hands-on exercises.

What this book covers
Chapter 1, Web Services Testing and soapUI, introduces soapUI by giving an overview 
of its history, features, and installation of soapUI in your computer. We will begin 
our journey towards learning soapUI by discussing some key characteristics of SOA, 
Web services and Web services testing in general.

Chapter 2, The Sample Project, introduces the sample web services project which will be 
used as the target application for functional and performance testing in the remaining 
chapters of the book. In this chapter, we will build a simple web services based 
application using Apache Axis2 open source web services framework. The primary 
objective of building this sample application is to use it in all demonstrations of soapUI 
features. As we will not discuss any topics related to soapUI or web services testing 
in general in this chapter, you may skip the details and download the sample web 
services project from http://www.PacktPub.com/support.

Chapter 3, First Steps with soapUI and Projects, serves as a guide for getting started with 
soapUI projects. Based on one of the web services that we built as part of the sample 
web services project in Chapter 2, The Sample Project, we will discuss the schema and 
WSDL of the web service in detail. We will use soapUI to invoke the operations of 
sample web service and discuss the SOAP requests, responses, and faults.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 2 ]

Chapter 4, Working with Your First TestSuite, demonstrates the basic constructs of a 
soapUI project—TestSuites, TestCases, and TestSteps—which prepares you for the 
next chapters of the book. We will also look into the validation of responses using 
assertions and soapUI properties.

Chapter 5, Load and Performance Testing with soapUI, covers the steps that you 
would have to follow when using soapUI as a load and performance testing  
tool. We will demonstrate the load test strategies provided by soapUI and the  
load test specific assertions.

Chapter 6,Web Services Simulation with soapUI, briefly describes how web services can 
be simulated using soapUI. We will demonstrate the usage of soapUI mock services 
model and static as well as dynamic mock responses.

Chapter 7, Advanced Functional Testing with soapUI, introduces the testing aspects of 
web services extensions such as WS-Security and WS-Addressing. We will use an 
improved version of the sample web services project which we built in Chapter 2, 
The Sample Project for the demonstrations in this chapter.

Chapter 8, Getting Started with REST Testing, introduces the concepts related to 
RESTful web services and how soapUI can be utilized in RESTful services testing. 
We will demonstrate the use of soapUI in RESTful services testing by using a 
publicly hosted sample web application.

Chapter 9, Testing Databases with soapUI, briefly describes the direct database query 
invocations of soapUI. In this chapter, we will discuss the database testing features 
provided by soapUI such as JDBC requests and assertions.

Chapter 10, JMS Testing with soapUI, demonstrates the use of JMS in soapUI. By 
exposing one of the sample web services over JMS transport, we will explore  
the JMS testing capabilities provided by soapUI. 

Chapter 11, Extending soapUI with Scripting, introduces the scripting facilities given 
by soapUI in order to extend the default behavior of soapUI tests. We will look into 
the use of soapUI API methods through Groovy scripts inside our tests.

Chapter 12, Automated Testing with soapUI, demonstrates various automated testing 
approaches with soapUI. In this chapter, we will discuss the integration of soapUI 
tests with build tools such as Apache Maven.

Chapter 13, Miscellaneous Topics, introduces some useful tools integrated with soapUI 
such as WS-I validation tool and the utilities provided by external web services 
framework such as Apache Axis2. This chapter also demonstrates the use of soapUI 
when testing services by sending attachments.



Preface

[ 3 ]

What you need for this book
We will make use of quite a lot of open source software to run the code samples in 
this book. Firstly, you should install soapUI 4.0.1 or later version as explained in 
Chapter 1, Web Services Testing and soapUI. You would require MySQL and Apache 
Axis2-1.6.1 or later version to run the sample web services. You will also need 
Apache Ant to build the sample web services project. Apache Rampart, Apache 
Maven, Apache ActiveMQ, and Apache Wink open source libraries are required  
for some demonstrations as explained in the respective chapters.

Who this book is for
If you are a part of a team that builds service-oriented solutions or makes use of web 
services in your project, and your primary involvement is testing such a solution, 
then this book is the ideal reference for you. This book will help you to understand 
the common challenges of SOA testing and how soapUI can be utilized effective 
manner in testing your applications.

This book would also be a good reference for developers and QA engineers who do 
researches and evaluations on various commercial and open source web services 
testing tools. If you are an experienced software professional or a novice tester, you 
will quickly be able to learn the most important features of soapUI by following the 
simple step-by-step instructions given in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "The <s:Body> element carries the actual 
message payload."

A block of code is set as follows:

CREATE TABLE IF NOT EXISTS ROOM_T(
      room_number INT NOT NULL, 
      room_type VARCHAR(100) NOT NULL, 
      room_size varchar(100) NOT NULL, 
      PRIMARY KEY(room_number));

Any command-line input or output is written as follows:

create database HOTEL_RESERVATION_DB;



Preface

[ 4 ]

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "You can 
check the Create a desktop icon checkbox to create an icon on the desktop so can 
you can easily launch soapUI".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this book 
elsewhere, you can visit http://www.PacktPub.com/support and register to have 
the files e-mailed directly to you.



Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Web Services  
Testing and soapUI

Web services are one of the key building blocks of service-oriented solutions. 
Because of their usage and importance in the enterprise applications, the project 
teams are expected to be knowledgeable and familiar with the technologies which 
are associated with web services and service-oriented architecture(SOA). The 
testing aspect of web services in particular is one of the key topics which needs to 
be discussed when you work with web services.

Web servics testing can be performed using many approaches. The client APIs 
included in web service frameworks such as Apache Axis2 can be used to 
programatically invoke web services. In addition to that, number of properitory 
and open source tools are avaialble to test web services automatically. soapUI  
is one such free and open source testing tool that suppots functional and  
non-functional evaluations of web services.   

We will discuss the following topics in this chapter which will provide you with  
an introduction to the basic concepts of SOA, web services testing, and soapUI:

• Overview of some of the key characteristics of web services
• The role of web services in SOA
• Approaches of testing web services
• Web services testing challenges
• Introduction to soapUI
• Installing soapUI



Web Services Testing and soapUI

[ 8 ]

SOA and web services
SOA is a distinct approach for separating concerns and building business solutions 
utilizing loosely coupled and reusable components. SOA is no longer a nice-to-have 
feature for most of the enterprises and it is widely used in organizations to achieve a 
lot of strategic advantages. By adopting SOA, organizations can enable their business 
applications to quickly and efficiently respond to business, process, and integration 
changes which usually occur in any enterprise environment.

Service-oriented solutions
If a software system is built by following the principles associated with SOA, it can 
be considered as a service-oriented solution. Organizations generally tend to build 
service-oriented solutions in order to leverage flexibility in their businesses, merge or 
acquire new businesses, and achieve competitive advantages. To understand the use 
and purpose of SOA and service-oriented solutions, let's have a look at a simplified 
case study.

Case study
Smith and Co. is a large motor insurance policy provider located in North America. 
The company uses a software system to perform all their operations which are 
associated with insurance claim processing. The system consists of various modules 
including the following:

• Customer enrollment and registration
• Insurance policy processing
• Insurance claim processing
• Customer management
• Accounting
• Service providers management

With the enormous success and client satisfaction of the insurance claims processed 
by the company during the recent past, Smith and Co. has acquired InsurePlus Inc., 
one of its competing insurance providers, a few months back.

InsurePlus has also provided some of the insurance motor claim policies which are 
similar to those that Smith and Co. provides to their clients. Therefore, the company 
management has decided to integrate the insurance claim processing systems used 
by both companies and deliver one solution to their clients.



Chapter 1

[ 9 ]

Smith and Co. uses a lot of Microsoft(TM) technologies and all of their software 
applications, including the overall insurance policy management system, are built 
on .NET framework. On the other hand, InsurePlus uses J2EE heavily, and their 
insurance processing applications are all based on Java technologies. To worsen 
the problem of integration, InsurePlus consists of a legacy customer management 
application component as well, which runs on an AS-400 system.

The IT departments of both companies faced numerous difficulties when they  
tried to integrate the software applications in Smith and Co. and InsurePlus Inc.  
They had to write a lot of adapter modules so that both applications would 
communicate with each other and do the protocol conversions as needed.

In order to overcome these and future integration issues, the IT management  
of Smith and Co. decided to adopt SOA into their business application  
development methodology and convert the insurance processing system into  
a service-oriented solution.

As the first step, a lot of wrapper services (web services which encapsulate the logic 
of different insurance processing modules) were built, exposing them as web services. 
Therefore the individual modules were able to communicate with each other with 
minimum integration concerns. By adopting SOA, their applications used  a common 
language, XML, in message transmission and hence a heterogeneous systems such 
as the .NET based insurance policy handling system in Smith and Co. was able to 
communicate with the Java based applications running on InsurePlus Inc.

By implementing a service-oriented solution, the system at Smith and Co. was able  
to merge with a lot of other legacy systems with minimum integration overhead.

Building blocks of SOA
When studying typical service-oriented solutions, we can identify three major 
building blocks as follows:

• Web services
• Mediation
• Composition

Web services
Web services are the individual units of business logic in SOA. Web services 
communicate with each other and other programs or applications by sending 
messages. Web services consist of a public interface definition which is a central 
piece of information that assigns the service an identity and enables its invocation.



Web Services Testing and soapUI

[ 10 ]

The service container is the SOA middleware component where the web service 
is hosted for the consuming applications to interact with it. It allows developers 
to build, deploy, and manage web services and it also represents the server-side 
processor role in web service frameworks. A list of commonly used web service 
frameworks can be found at http://en.wikipedia.org/wiki/List_of_web_
service_frameworks; here you can find some popular web service middleware such 
as Windows Communication Foundation (WCF), Apache CXF, Apache Axis2, and 
so on. We will use Apache Axis2 as the service container for sample projects within 
the context of this book. Apache Axis2 can be found at http://axis.apache.org/.

The service container contains the business logic, which interacts with the service 
consumer via a service interface. This is shown in the following diagram:

Mediation
Usually, the message transmission between nodes in a service-oriented solution 
does not just occur via the typical point-to-point channels. Instead, once a message 
is received, it can be flowed through multiple intermediaries and subjected to 
various transformation and conversions as necessary. This behavior is commonly 
referred to as message mediation and is another important building block in 
service-oriented solutions. Similar to how the service container is used as the 
hosting platform for web services, a broker is the corresponding SOA middleware 
component for message mediation. Usually, enterprise service bus (ESB) acts as a 
broker in service-oriented solutions.

Composition
In service-oriented solutions, we cannot expect individual web services running 
alone to provide the desired business functionality. Instead, multiple web services 
work together and participate in various service compositions. Usually, the web 
services are pulled together dynamically at the runtime based on the rules specified 
in business process definitions. The management or coordination of these business 
processes are governed by the process coordinator, which is the SOA middleware 
component associated with web service compositions.



Chapter 1

[ 11 ]

We looked into the primary building blocks of service-oriented solutions and the 
corresponding SOA middleware components. Next, we are going to discuss some of 
the distinguished elements associated specifically with web services. These are SOAP 
messaging, Web Services Description Language (WSDL), message exchanging 
patterns, and RESTful services.

Simple Object Access Protocol
Simple Object Access Protocol (SOAP) can be considered as the foremost messaging 
standard for use with web services. It is defined by the World Wide Web Consortium 
(W3C) at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ as follows:

SOAP is a lightweight protocol for exchange of information in a decentralized, 
distributed environment. It is an XML based protocol that consists of three parts: 
an envelope that defines a framework for describing what is in a message and how 
to process it, a set of encoding rules for expressing instances of application-defined 
datatypes, and a convention for representing remote procedure calls and responses.

The SOAP specification has been universally accepted as the standard transport 
protocol for messages processed by web services. There are two different versions of 
SOAP specification and both of them are widely used in service-oriented solutions. 
These two versions are SOAP v1.1 and SOAP v1.2.

Regardless of the SOAP specification version, the message format of a SOAP 
message still remains intact. A SOAP message is an XML document that consists of a 
mandatory SOAP envelope, an optional SOAP header, and a mandatory SOAP body.

The structure of a SOAP message is shown in the following diagram:

www.allitebooks.com

http://www.allitebooks.org


Web Services Testing and soapUI

[ 12 ]

The SOAP Envelope is the wrapper element which holds all child nodes inside a 
SOAP message.

The SOAP Header element is an optional block where the meta information is 
stored. Using the headers, SOAP messages are capable of containing different types 
of supplemental information related to the delivery and processing of messages. 
This indirectly provides the statelessness for web services as by maintaining SOAP 
headers, services do not necessarily need to store message-specific logic. Typically, 
SOAP headers can include the following:

• Message processing instructions
• Security policy metadata
• Addressing information
• Message correlation data
• Reliable messaging metadata

The SOAP body is the element where the actual message contents are hosted. These 
contents of the body are usually referred to as the message payload.

Let's have a look at a sample SOAP message and relate the preceding concepts 
through the following diagram:



Chapter 1

[ 13 ]

In this example SOAP message, we can clearly identify the three elements; envelope, 
body, and header. The header element includes a set of child elements such as 
<wsa:To>, <wsa:ReplyTo>, <wsa:Address>, <wsa:MessageID>, and <wsa:Action>. 
These header blocks are part of the WS-Addressing specification. Similarly, any 
header element associated with WS-* specifications can be included inside the SOAP 
header element.

The <s:Body> element carries the actual message payload. In this example, it is the 
<p:echoString> element with a one child element.

When working with SOAP messages, identification of the version of 
SOAP message is one of the important requirements. At first glance, 
you can determine the version of the specification used in the SOAP 
message through the namespace identifier of the <Envelope> 
element. If the message conforms to SOAP 1.1 specification, it 
would be http://schemas.xmlsoap.org/soap/envelope/, 
otherwise http://www.w3.org/2003/05/soap-envelope is 
the name space identifier of SOAP 1.2 messages.

Alternatives to SOAP
Though SOAP is considered as the standard protocol for web services 
communication, it is not the only possible transport protocol which is used. SOAP 
was designed to be extensible so that the other standards could be integrated 
into it. The WS-* extensions such as WS-Security, WS-Addressing, and WS-
ReliableMessaging are associated with SOAP messaging due to this extensible 
nature. In addition to the platform and language agnosticism, SOAP messages can  
be transmitted over various transports such as HTTP, HTTPS, JMS, and SMTP 
among others. However, there are a few drawbacks associated with SOAP 
messaging. The performance degradations due to heavy XML processing and the 
complexities associated with the usage of various WS-* specifications are two of 
the most common disadvantages of the SOAP messaging model. Because of these 
concerns, we can identify some alternative approaches to SOAP.

REST
Due to the complexities accompanied with the SOAP model, Representational State 
Transfer (REST) architecture has emerged as a result. RESTful web services can 
be considered as a lightweight alternative to the bulky and complex SOAP based 
web service standards. In RESTful web services, the emphasis is on point-to-point 
communication over HTTP, primarily using plain old XML (POX) messages. We will 
discuss RESTful web services in detail in Chapter 8, Getting started with REST Testing.



Web Services Testing and soapUI

[ 14 ]

Java Script Object Notation
Java Script Object Notation (JSON) is a lightweight data exchange format similar 
to XML. It is based on a subset of JavaScript language. JSON uses key value pairs to 
represent data which are carried inside the message. The following example shows 
how the XML payload of a SOAP message can be represented in JSON:

The corresponding JSON format of the preceding XML payload is represented by:

You may refer to http://www.json.org for more details about JSON.

Web Services Description Language
According to the WSDL 1.1 specification, WSDL is defined as:

WSDL is an XML format for describing network services as a set of endpoints 
operating on messages containing either document-oriented or procedure-oriented 
information. The operations and messages are described abstractly, and then bound 
to a concrete network protocol and message format to define an endpoint. Related 
concrete endpoints are combined into abstract endpoints (services)

In simple terms, WSDL provides a formal definition of the web service through 
abstract and concrete definitions of the interface. The following diagram shows  
the main structure of a WSDL document:



Chapter 1

[ 15 ]

WSDL is an XML document with a <definitions> element at the root and the child 
elements, <types>, <message>, <portType>, and <binding>. These can be explained 
as follows:

• The <types> element is used to define the data types used by the web service 
usually through a XML schema. The schema can be defined inline as a child 
element of <types> or can be imported from an external URL.

• The <message> element defines an abstract representation of all the messages 
used by the web service. A message consists of logical parts, each of which is 
associated with a definition within some type in the XML schema of the web 
service. The following image is an example of a message:

• The <portType> element is an abstract representation of the operations and 
message exchange patterns used in the web service. Operations represent 
a specific action performed by a web service and which can be related to 
the public methods used by a program. Operations have input and output 
parameters and those are represented as messages. Hence, an operation 
consists of sets of input and output messages. This is evident from the 
following image:

In the preceding example, the SampleServicePortType element includes 
a single child element, <wsdl:operation name="echoString">, which 
itself includes two child elements to define the input and output messages 
processed by the echoString operation.

• The <binding> element connects the abstract web service interface defined 
by <portType> and <message> elements into a physical transport protocol. A 
binding represents a particular transport technology that the service uses to 
communicate. For example, SOAP v1.1 is one such commonly used binding.



Web Services Testing and soapUI

[ 16 ]

We will discuss about the WSDL in detail in Chapter 2, The Sample Project, using the 
one that is used in the sample project.

Message exchanging patterns
As we have already discussed, the web services communicate with each other and 
the other programs by sending messages. If we consider two SOAP processing 
nodes, the communication pattern between the two entities can be defined as a 
message exchanging pattern (MEP). The primary message exchanging patterns are:

• Request-response
• Fire and forget

In a request-response pattern, when a source entity (service requester) transmits 
a message to a destination (service provider), the provider should respond to the 
requester. This is the most commonly used message exchanging pattern and we  
will use this in most of the examples in this book.

In the following diagram, a service requester sends a SOAP request message to a 
service provider:

Upon receiving the SOAP request message, the service provider responds with a 
SOAP response as shown in the following diagram:



Chapter 1

[ 17 ]

service provider

<soapenv:Envelope xmlns:soapenv=”http://www.w3.org/2003/05/soap-envelope”>
<soapenv:Body>

<ns:echoStringResponse xmlns:ns=”http://test.org”>
<ns:return>soapui</ns:return>

</ns:echoStringResponse>
</soadenv:Body>

</soapenv:Envelope>

When a response to a request message is not expected from a web service (or service 
provider), it is known as a fire and forget message exchange pattern. For example, if 
we send a ping request to a web service, we do not expect a response message back.

SOAP Faults
Before concluding our discussion on web services and the associated concepts, we 
should look at the fault handling mechanism of web services. Faults can be returned 
by web services due to various reasons. For example, if the request message does 
not conform to the XML schema of web service, the service responds back with a 
SOAP Fault. The SOAP Fault element is used to carry such faults occurred during 
web service communication. This element must be included inside body of a SOAP 
message. A typical SOAP 1.1 Fault message consists of the following child elements:

• faultcode: The faultcode element is used to define the type of the fault. 
For example, if the problem of message transmission is due to the server, 
the associated faultcode is Server. Similarly, we can use VersionMismatch, 
MustUnderstand and Client error codes as appropriate.

• faultstring: The faultstring element is intended to provide a human 
readable explanation about the fault. 

• faultactor: The faultactor element provides an indication about the 
responsible party who caused the fault to occur in the message path.

• detail: The detail element is used to carry application specific error 
information related to the body element. For example, if the payload of the 
SOAP request is unable cannot be processed by web service, the associated 
response should include the detail element inside the SOAP Fault.



Web Services Testing and soapUI

[ 18 ]

In the case of SOAP v1.2 messaging, faultcode is renamed to Code and 
faultstring is renamed to Reason. In addition to that, a SOAP v1.2 Fault message 
can include the optional child elements, Node, Role, and Detail. A detailed 
explanation of SOAP 1.1 Faults can be found at http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/#_Toc478383507. SOAP 1.2 Faults are explained in detail 
at http://www.w3.org/TR/soap12-part1/#soapfault.

Approaches of testing web services
We discussed a set of concepts most associated with web services. Now, it is time to 
look in to the testing aspects of web services. As we noticed, web services are loosely 
coupled and autonomous components which are individual units of business logic in 
SOA. This facilitates a distinguished approach for testing web services. Because of the 
loosely coupled nature, the services do not maintain tight, cross-service dependencies 
with each other. Therefore, once a particular web service is implemented, it can be 
tested independent from others.

This gives the ability to testers to follow a component level testing methodology. 
Before moving into various integrations, a web service can be tested to verify both 
functional and non-functional requirements. Once the service is enhanced with 
different attributes such as security policies, then such a service can also be tested 
individually to ensure that it functions properly before taking the integration 
scenarios into account. This gives great flexibility for testers and provides agility  
to testing processes.

We can identify a set of common approaches for testing web services as follows:

• Unit testing
• Functional testing of web services
• Integration testing of web services
• Performance testing

Let's discuss each of these approaches in detail.



Chapter 1

[ 19 ]

Unit testing of web services
A web service is a unit of business logic and it consists of one or more operations. 
These operations must be tested individually in order to make sure the intended 
business problems are addressed by web service operations. Therefore, similar to 
how individual methods in a computer program are tested as units, web service 
operations must also be unit tested. Unit tests can be developed using the unit test 
framework associated with the programming language which is used to implement 
the web services. For example, if web services are written in Java, JUnit framework 
can be used as the unit testing framework. Generally, it is the responsibility of the 
author of the web service to write a sufficient number of unit tests to cover the logic 
of the web service operations.

Functional testing
Once a web service is deployed in a service container, it is subjected to a 
comprehensive functional verification. The purpose of functional testing of a web 
service is to ensure that the expected business functionality is given by the web 
service. There are many approaches to perform functional testing as explained 
below.

Tool assisted testing
The primary objective of using tools for web service testing is to support the 
automatic generation and submission of web service requests. As the web service 
interface is a machine readable XML document, it is not an easy task to read the 
WSDL and derive tests manually. Therefore, tools can be used to point to the WSDL 
and generate the corresponding requests automatically, so that the testers can send 
them to the service with or without alterations. soapUI is a good example of such a 
testing tool, which can be used in functional testing of web services.

Using client APIs provided by service container 
middleware
The life for a web service is given by the service container middleware where the 
service is hosted. Usually, the middleware providers ship the associated client API 
libraries which can be used to invoke web services programmatically without using 
any third party tool.



Web Services Testing and soapUI

[ 20 ]

Integration testing of web services
Web services do not essentially run alone. Instead they are integrated with multiple 
components such as brokers or service coordinators. Once a service is integrated or 
joined with another component, we should carry out tests to make sure that such 
integrations do not break the system. For example, in a service-oriented solution, if a 
service consumer application sends a message to a web service but the message does 
not conform to the advertised schema of the web service. In this case, the web service 
usually responds with a SOAP fault. However, if we want to take such a request and 
transform the request SOAP message such that it is valid according to the schema, 
then we do not want to ask the consumers of our web service to change the client 
applications as the service schema is modified. This type of message transformation 
is achieved by using a broker component, in other words, enterprise service bus 
(ESB) middleware. According to the transformation rules defined in the enterprise 
service bus, the request is converted into the correct format and forwarded to the web 
service. This is a typical example of web service integration. In order to test this type of 
integration, the request message should be forwarded to the ESB component instead of 
directly sending it to the web service. Tools such as soapUI can easily be used to send 
the messages to desired target locations appropriately.

Performance testing of web services
Once we are satisfied with the functional aspects of the web service, it should be 
tested thoroughly for performance. This includes load and stress testing the web 
service as well as measuring the performance under various conditions. We can 
use various open source or commercial tools in web services performance testing. 
Apache JMeter (found at http://jmeter.apache.org/) is a good example of an 
open source testing tool which can be used to test web services. The functional tests 
which we create on soapUI can easily be extended to test the performance of web 
services. We will discuss the performance testing capabilities of soapUI in detail in 
Chapter 5, Load and Performance Testing with soapUI.

The common challenges of Web services 
testing
When compared to traditional testing approaches, there are some unique challenges 
associated with web services testing.



Chapter 1

[ 21 ]

Use of external web services
The autonomous and loosely coupled nature of web services introduces a greater 
level of scalability and extensibility to the system. All services included in a system 
are not necessarily built in-house. Some web services can be developed and hosted 
by third parties. These services can be dynamically discovered and used according to 
the business requirements. Though this accelerates the delivery of solutions, testing 
such a system becomes complex because the quality assurance and availability of the 
third party services are out of your control.

Implications of using complex standards and 
protocols 
Web services, especially SOAP-based services can use various WS-* specifications. 
When testing web services which adhere to specifications such as WS-Security, the 
tester should possess a fair amount of knowledge about the standards and concepts 
to carry out testing effectively. This introduces a higher learning curve for testers to 
get started with the testing of web services.

Web services can also be exposed over multiple transport protocols. Thus, testing is 
not limited to one particular transport such as HTTP. The same web service can be 
made accessible over transports such as JMS or VFS which requires changes in the 
testing setup as well as a different set of test scenarios.

Headless nature of web services
In traditional web application testing, test scenarios can be identified quite easily by 
studying the GUI of the components. As we discussed previously, the operations of 
web services are exposed to the outside world via machine-readable service contracts 
(such as WSDLs). Thus, during the early stages of web services development, testers 
need to use WSDLs as the reference for the derivation of test scenarios which can be 
difficult as compared to exploring a GUI.

As we proceed with the chapters of this book, we will learn how soapUI  
addresses some of the aforementioned challenges and make the life of a web  
services tester easier.

We have discussed the fundamentals of SOA and web services testing. Now,  
we are ready to explore the world of web services testing with soapUI.

www.allitebooks.com

http://www.allitebooks.org


Web Services Testing and soapUI

[ 22 ]

What is soapUI?
The primary objective of designing testing tools is to assist people in testing software 
by reducing the time taken by test execution. There are different types of tools which 
can be used for functional and non-functional testing. Some of the tools are designed 
to automate user interface based interactions and some are used to derive various 
types of requests messages automatically and transmit them to applications with or 
without modifications. Some tools support both of these aspects.

soapUI is a tool which can be used for both functional and non-functional testing. 
It is not limited to web services, though it is the de-facto tool used in web services 
testing. In web services testing, soapUI is capable of performing the role of both 
client and service. It enables users to create functional and non-functional tests 
quickly and in an efficient manner by using a single environment.

The first release of soapUI (v1.0) was in October 2005. Ole Lensmer, while working in 
a project related to SOA, felt the need for a testing tool to support agile development. 
Therefore, he started to develop soapUI in his spare time. Eventually, the project was 
open sourced and the community grew. Ever since, a number of versions have been 
released with various new features and enhancements and the newest version of 
soapUI is 4.0.1 at the time of writing this book.

The originator of soapUI, Ole Lensmer was managing the project releases through a 
company called Eviware for the past few years. In July 2011, Eviware was acquired 
by SmartBear Software (http://smartbear.com/) and now soapUI is part of 
SmartBear Software. 

soapUI is a free and open source utility, which means you can utilize the various 
features provided by the tool freely as well as you are allowed to make modifications 
to the source code of soapUI and suit it according to your requirements. soapUI 
is licensed under the terms of the GNU Lesser General Public License (LGPL). It 
has been implemented purely using Java platform hence it runs on most operating 
systems out of the box.

It should be noted that soapUI is also distributed as a non-free commercial version 
known as soapUI Pro, which basically provides users with custom utilities and 
enhanced production level testing capabilities. All our discussions and examples are 
based on the free version of soapUI for your convenience.

soapUI v4.0.1 was the newest version at the time of writing the book. 
Therefore, it is used throughout the context of this book. However, 
we will not discuss any version specific topics, so the older 3.x 
versions of soapUI can also be used to try out the sample projects 
and demonstrations.



Chapter 1

[ 23 ]

Capabilities of soapUI
The primary goal of the authors of soapUI is to provide users with a simple and  
user-friendly utility which can be used to create and run functional as well as  
non-functional tests through a single test environment. Based on that objective, 
soapUI has become the world's leading SOA and web service testing tool. soapUI 
can be installed with no configuration overhead in most of the common operating 
systems which allow users to start using the tool without spending time on 
configuring various installation prerequisites.

By using the easy-to-use Java Swing-based GUI, you can start creating functional 
tests with zero coding. Eventually, the same functional tests can be used for load 
and performance testing through the same test environment. This gives users a great 
flexibility since all functional and non-functional tests can be managed through a 
single point of access.

Let's look at some of the important features of soapUI which we are planning to 
discuss in the following chapters.

• Complete coverage of functional aspects of web services and web 
applications: soapUI supports most of the standards used in web 
applications, such as message transmission through HTTP, HTTPS transport 
as well as JMS. It also supports testing SOAP and RESTful web services. 
Specifically, soapUI supports most of the web service specifications such as 
WS-Security, WS-Addressing, among others.

• Service mocking: Using soapUI mock services, you can simulate the web 
services before they are actually implemented. This gives you the ability to 
test the web service consumer applications without waiting until the web 
service providers are implemented.

• Scripting: Either using Groovy or JavaScript, soapUI allows you to do various 
pre- or post-processing test configurations such as dynamic mock responses, 
initialize or cleanup tests, dynamic mock operation dispatching, and so on.

• Functional testing : soapUI lets you do functional verifications against 
web services, web applications, and JDBC data sources. You can validate 
responses of your tests using various in-built and custom assertions. It also 
allows you to add conditional test steps to control the test execution flow.

• Performance testing: With just a few clicks, you can generate performance 
and load tests quickly using soapUI.

• Test automation: soapUI can be integrated into automated test frameworks 
such as JUnit, and the tests can also be launched through Apache Maven 
and Apache Ant build frameworks. It can also be integrated into continuous 
integration tools such as Hudson or Bamboo.



Web Services Testing and soapUI

[ 24 ]

In addition to the preceding features, the proprietary version of soapUI, soapUI 
Pro, provides users with data-driven testing capabilities, HTTP recording, and test 
reporting facilities which are not in scope of this book.

Installing soapUI
We looked at the major features provided by soapUI and discussed the tool in 
general. It is time to explore the easy and straightforward soapUI installation on 
some of the popular operating systems.

System requirements
To be able to run soapUI, you should have Java Development Kit (JDK) v1.6 
running in your system. As soapUI is implemented in Java, it runs on many 
operating systems including Windows XP, Windows Vista, Windows 7, Windows 
Server 2003, Windows Server 2008, various Linux flavors such as Ubuntu, Red Hat, 
Fedora, SuSE, and CentOS, and Mac OS X v10.4 or higher.

We can summarize the system requirements to install and run soapUI as follows:

Operating 
System

Java 
version

Memory Processor Disk Space

Microsoft 
Windows 
XP 
Microsoft 
Windows 
Vista 
Microsoft 
Windows 
Server 2003
and
Microsoft 
Windows 
Server 2008

JDK v1.6.x 512 MB 
(minimum)

1 GHz or 
higher, 32 
or 64-bit 
processor

200 MB hard disk space 
(minimum)



Chapter 1

[ 25 ]

Operating 
System

Java 
version

Memory Processor Disk Space

Linux:
Ubuntu
Red Hat
Fedora
CentOS
and
SuSE

JDK v1.6.x 512 MB 
(minimum)

1 GHz or 
higher, 32 
or 64-bit 
processor

240 MB hard disk space 
(minimum)

Mac OS:
Mac OS X 
v10.4 or 
higher 
Mac OS 
X Server 
v10.4 or 
higher 

JDK v1.6.x 512 MB 
(minimum)

1 GHz or 
higher, 32 
or 64-bit 
processor

140 MB hard disk space 
(minimum)

Let's discuss the installation procedure of soapUI in each of the preceding operating 
systems in detail.

Installing soapUI on Linux
soapUI is distributed as two different installers for your convenience. You could 
either download the binary archive (ZIP) of the installer or the installer script.

First, we will look at the installation procedure of the binary archive. Perform the 
following steps:

1. Download the Linux binary zip version (for example soapui-4.0.1-linux-
bin.zip) of the latest soapUI release from http://www.soapui.org.

2. Extract the downloaded binary distribution into a directory in your local file 
system, for example /home/user/soapui.

We will refer to the extracted directory as SOAPUI_HOME.

3. Go to SOAPUI_HOME/bin and run the soapui.sh startup script as follows:
./soapui.sh. This will launch the soapUI graphical user interface.



Web Services Testing and soapUI

[ 26 ]

If you encounter a Permission denied error when running the 
soapui.sh script, make sure to change the file permission 
mode by granting executable privileges to the user by 
executing the chmod command as chmod 755 soapui.sh.

You can also install soapUI using the Linux installer by performing the  
following steps:

1. Download a soapUI Linux installer (for example soapUI-x32-4_0_1.sh) 
from http://www.soapui.org.

2. After the file is downloaded, give executable permissions by running the 
command, chmod 755 soapUI-x32-4_0_1.sh.

3. Run the installer as follows: ./soapUI-x32-4_0_1.sh.
4. This will launch the installer UI as shown in the following screenshot:

Now, you can proceed through the installation wizard. You will be asked to accept 
the license agreement at the next step of the wizard. Simply click on I accept the 
agreement option and click on Next. You will be required to specify a destination 
directory for soapUI to be installed.



Chapter 1

[ 27 ]

At the next step of the installation wizard, you can select which components you 
need to include in soapUI, such as; Hermes JMS, soapUI source files, and tutorials. 
Simply accept all options and click on Next. You will be prompted with the license 
agreement for Hermes components at the next step. Accept the license agreement 
and click on Next to proceed through the wizard. Then, you will be asked to 
specify a directory for soapUI tutorials. Enter a location which is in your filesystem 
and click on Next. You will be asked for a directory where soapUI symlinks are 
created for executables such as the soapui.sh file. Enter a directory and click on 
Next. You can check the Create a desktop icon checkbox to create an icon on the 
desktop so can you can easily launch soapUI. Finally, click on the Next button to 
start the installation.

The soapUI installation screen will look like the following screenshot:

soapUI installation on Windows
Similar to the preceding installation procedure on Linux, soapUI can be installed  
on a Windows operating system either using Windows installer or Windows 
binary archive.



Web Services Testing and soapUI

[ 28 ]

Let's look at the installation steps of Windows binary archive. They are as follows:

1. Download the Windows binary zip version (for example soapui-4.0.1-
windows-bin.zip) of the latest soapUI release from 
http://www.soapui.org.

2. Extract the downloaded binary distribution into a directory in your local 
filesystem, for example C:/soapui.

We will refer to the extracted directory as SOAPUI_HOME. 
This will launch the soapUI GUI.

3. Go to SOAPUI_HOME/bin and run the soapui.bat startup script by executing 
the command: soapui.bat.

The steps for soapUI installation using the Windows installer are almost the same as 
the steps given in the Linux installer. You just need to double-click on the installer 
(soapUI-x32-4_0_1.exe) and it will launch the soapUI installation wizard.

Installing soapUI on MacOS
soapUI installation on Mac OS is straightforward and similar to the preceding steps 
which we described for Linux and Windows installers.

A glance at soapUI user interface
soapUI is a self-explanatory testing tool. The easy-to-use user interface makes it 
simple to work with soapUI for any type of user. With a few clicks, you can start 
testing a web service or a web application with minimum effort. This highly usable 
and flexible user interface helped soapUI to become the most user-friendly and easier 
SOA and web service testing tool among the testing community.



Chapter 1

[ 29 ]

Once soapUI is launched, you will be shown the starter user interface as shown in 
the following screenshot:



Web Services Testing and soapUI

[ 30 ]

In soapUI, all tests are organized under a central element, known as Projects. Just by 
right-clicking on the Projects node in the left-hand side pane in soapUI GUI, a new 
soapUI project can be created as shown in the following screenshot:

I will leave it to you to navigate through the rest of the UI elements on your own before 
starting with sample projects. You will find a lot of materials on the soapUI official 
website related to these features. We will explore through the soapUI user interface as 
we proceed through the demonstrations and samples in the rest of the chapters.

Summary
Web services are the individual units of business logic in SOA. In order to test web 
services, we must possess a good understanding about SOA and web services as well 
as the associated technological components. This chapter has been dedicated to build 
that foundation.

We started to look into soapUI, the world's leading and most complete SOA and 
web services testing tool. We discussed the primary goals and objectives of using 
soapUI in web services testing. We looked at a bit of history of soapUI and its 
distribution models. Finally, the steps of installing soapUI on Linux, Windows,  
and Mac OS were explained.

Now, we have soapUI running on our systems. Let's get our hands dirty with a 
sample project in the next chapter.



The Sample Project
In this book, we follow a hands-on approach for learning web services testing with 
soapUI. We strongly recommend you to have your computer with you while reading 
the book and try out the test scenarios which will be described throughout this book.

In this chapter, we will be covering the following topics:

• Getting the project environment ready
• Designing the web services
• Implementing the web services
• Deploying the web services

As the first step of hands-on learning, we will introduce a sample project in this 
chapter. Our objective is to build a simple yet comprehensive project which covers 
the considerable amount of features related to web services testing. We will design 
and build a sample project with a few web services. We start from scratch, following 
the code-first web service development approach where we write Java classes first 
and then deploy them in a web service container.

There are two ways of developing web services; contract-first 
and code-first approaches. In a contract-first approach, the web 
service definition or the WSDL is created initially and the service 
implementation is done after that. In a code-first approach, the 
service implementation classes are developed at the beginning and 
usually the WSDL is automatically generated by the service container 
in which the web service is deployed. In our sample project, we will 
follow the second approach, code-first web service development, 
since it is relatively easier when creating web services from scratch.

www.allitebooks.com

http://www.allitebooks.org


The Sample Project

[ 32 ]

We will not discuss any testing aspects within this chapter. Our focus is to build the 
foundation for the later chapters in this book, where we plan to use soapUI to test the 
sample project. If you think that you can move ahead with soapUI without spending 
time on the web services sample project, you will just use the outcome of the project, 
which are a set of web services.

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit 
http://www.PacktPub.com/support and register to have 
the files e-mailed directly to you.

If you decided to skip the sample project and just use the resulting web services,  
the following steps will help you to quickly deploy and use the web services 
with soapUI:

1. Download the web services sample from http://www.PacktPub.com/
support. Extract WebServicesSample-Deliverable.zip to your local 
file system. You will find HotelReservation.aar file and dbscripts 
folder at the root of the extracted folder.

2. Run dbscripts/HotelReservationDBSchema.sql on your MySQL 
database server to create the sample database and tables.

3. Modify the values of mysql.host, mysql.port, mysql.username, and 
mysql.password properties in mysql.properties file which can be found 
inside conf folder of HotelReservation.aar.

4. Deploy HotelReservation.aar in Apache Axis2 (see Deploying web services 
section at the end of this chapter to find out how to deploy web services in 
Apache Axis2) and use it in all the soapUI tests which we will be working in 
the rest of the chapters.

5. You can refer to the README.txt of WebServicesSample-Deliverable.zip 
for more information about the installation procedure.



Chapter 2

[ 33 ]

The problem domain
Our project will be based on a hypothetical Hotel Reservation System, which is 
targeted for use by an administrative staff of a hotel. The system consists of three 
basic functions as follows:

1. Guest management
2. Room management
3. Reservation management

Let's look at the high level architecture of the sample hotel reservation application 
that we are going to discuss in this chapter:

The hotel reservation system comprises of three fundamental entities; Guest, Room, 
and Reservation. Each guest is identified by name, address, and age. The rooms are 
identified by room number, room type, and room size. A room reservation is done 
by assigning a guest to a room.



The Sample Project

[ 34 ]

We are not going to make our project too complicated since our focus is to derive 
a set of web services for testing with soapUI in the next chapters. Therefore, we 
deliberately omit some interrelationships between these entities. For example,  
we assume that a guest can do only one reservation at a time.

Project pre-requisites
Before starting to implement the project, let's make the project environment ready.

Java 
We are going to develop the sample project using Java. Therefore, make sure to 
install JDK1.6 or later version in your machine.

Apache Ant 
We will be using Apache Ant to build our project. Of course, you may use any build 
tool you prefer.

You can download the latest version of Apache Ant from http://ant.apache.org/
bindownload.cgi and follow the installation guide to set up Ant on your machine.

MySQL
MySQL will be used as the database management system in our sample project.  
All data used in sample hotel reservation system will be stored in a MySQL database. 
Therefore, we should set up MySQL in our machines. We can download MySQL 
from http://www.mysql.com/downloads/mysql/ and follow the instructions 
given in the installation guide to set it up on your machine.

Setting up Apache Axis2
There are numerous web service frameworks which can be used in web services 
development and deployment. Apache CXF (http://cxf.apache.org/) and 
Apache Axis2 (http://axis.apache.org/axis2/java/core/) are two examples 
of popular open source web service frameworks. The pure RESTful web service 
frameworks such as RESTeasy (https://www.jboss.org/resteasy/) can also 
be used in web services implementation. 



Chapter 2

[ 35 ]

We will use Apache Axis2 web services framework in our sample project because 
Apache Axis2 is primarily a SOAP based web services engine and our sample project 
is focused on a set of SOAP-based web services. Let's set up Axis2 on our machine 
according to the following steps:

1. You can download the binary distribution of Apache Axis2 from 
http://axis.apache.org/axis2/java/core/download.cgi. 
Download the binary and extract it into a folder in your file system.

Apache Axis2-1.6.1 was the latest version at the time of writing 
the book. You may download the same or the latest version.

2. Let the extracted folder of the Axis2 binary distribution be AXIS2_HOME. 
Open a command window or shell and change the directory to  
AXIS2_HOME/bin.

3. Export the AXIS2_HOME environment variable as follows:
In Linux:
export AXIS2_HOME=/home/user/axis2-1.6.1

In Windows:
      set AXIS2_HOME=/home/user/axis2-1.6.1

4. Start Axis2 server by executing axis2server.sh or axis2server.bat 
as follows:
sh axis2server.sh

Setting up project source directories
As of now, we have configured the Java runtime environment, Apache Ant,  MySQL 
database management system, and Apache Axis2. Now, we are going to set up the 
source folder structure of our sample web services development project so that we 
can start adding code.

1. Create a directory in your file system, let's name it as sample-project.
2. Create the following sub-directories under the sample-project folder:

 ° src: It is used to store the java source files
 ° build: The ant build.xml file will be stored here
 ° conf: It is used to store all configuration files



The Sample Project

[ 36 ]

Designing the web services
Our sample hotel reservation system is implemented using SOAP-based web 
services. As per the three basic entities used in the system, we can plan to have  
three web services explained as follows:

• GuestManagementService:
GuestManagementService will be used to add, delete, or retrieve the details 
of guests in system. This web service consists of the following methods:

 ° addGuest (name, address, age)
 ° getGuestDetails (name)
 ° deleteGuest (name)

• RoomManagementService:
Adding, deleting, and retrieving the details of rooms are managed by  
the RoomManagementService which includes the following methods:

 ° addRoom (roomNumber, roomType, roomSize)
 ° getRoomDetails (roomNumber)
 ° deleteRoom (roomNumber)

• ReservationService:
ReservationService is used to manage the room reservations of the system, 
such as creating a new reservation, finding out the reservation details of 
a particular room, and removing an existing reservation. The following 
methods are included in this web service:

 ° addReservation (roomNumber, guestName, reserved_from, 
reserved_to)

 ° getReservationDetails (roomNumber)
 ° removeReservation (reservationID)

Creating the database
We use a MySQL database to store the information in our sample hotel management 
system. Let's create the database and add three tables corresponding to the previous 
three entities.

1. Open a MySQL shell or an editor and enter the following statement:
create database HOTEL_RESERVATION_DB;



Chapter 2

[ 37 ]

2. Add the following three tables to the database:
USE HOTEL_RESERVATION_DB;

    

CREATE TABLE IF NOT EXISTS GUEST_T(

            name VARCHAR(100) NOT NULL, 

   address VARCHAR(200), 

   age INT NOT NULL, 

   PRIMARY KEY(name));

   

CREATE TABLE IF NOT EXISTS ROOM_T(

   room_number INT NOT NULL, 

   room_type VARCHAR(100) NOT NULL, 

   room_size varchar(100) NOT NULL, 

   PRIMARY KEY(room_number));

CREATE TABLE IF NOT EXISTS RESERVATION_T(

  res_id INT NOT NULL AUTO_INCREMENT, 

   guest_name VARCHAR(100) NOT NULL, 

   room_no INT NOT NULL, 

   reserved_from DATE NOT NULL, 

   reserved_to DATE NOT NULL, 

   PRIMARY KEY(res_id), 

   FOREIGN KEY(guest_name) references 
GUEST_T(name),

   FOREIGN KEY(room_no) references ROOM_T(room_
number));

Now, we have the database schema ready for our system. Let's proceed with 
implementing the web services.

Implementing the web services
As we have seen under Designing the web services section, we are going to 
use three different web services to handle the guest, room, and reservation 
management functions. We have also discussed that three MySQL tables are  
used to store information in each of these web services. Let's put together  
all these elements and start to implement our system.



The Sample Project

[ 38 ]

First, we should define the guest, room, and reservation Java beans which are used 
as data transferring objects in our system.

The complete source of all Java bean classes can be found at src\com\sample\
reservation\dto folder of the code bundle.

• Guest.java:
Guest.java is a Java bean which represents a guest entity in our system. 
The class consists of the name, address, and age variables as well as their 
corresponding getter/setter methods.

 package com.sample.reservation.dto;

public class Guest {

    private String name;
    private String address;
    private int age;

    public Guest(String name, String address, int age) {
           }

    public Guest() {
        
    }

    public String getName() {
    }

    public void setName(String name) {
    }

    public String getAddress() {
            }

    public void setAddress(String address) {
    }

    public int getAge() {
            }

    public void setAge(int age) {
    }
}



Chapter 2

[ 39 ]

• This is a simple Java bean and the code itself explains the purpose of this 
particular class. You may save this class under the src folder according to 
the package structure.
Similarly, let's add Room and Reservation bean classes.

• Room.java:
Room.java is a Java bean which represents a room entity in our system. 
The code for the same is as follows:
package com.sample.reservation.dto;

public class Room {

    private int roomNumber;
    private String roomType;
    private String roomSize;

    public Room(int roomNumber, String roomType, String roomSize) 
{
       

       

       

    }

    public Room(){
        
    }

    public int getRoomNumber() {
           }

    public void setRoomNumber(int roomNumber) {
    }

    public String getRoomType() {
    }

    public void setRoomType(String roomType) {

    }

    public String getRoomSize() {
       
    }

    public void setRoomSize(String roomSize) {
       

    }
}



The Sample Project

[ 40 ]

• Reservation.java:
Reservation.java is a Java bean for the reservation entity in our system. 
The code for the same is as follows:
package com.sample.reservation.dto;

public class Reservation {

    private int reservationID;
    private String guestName;
    private int roomNumber;
    private Date reserved_from;
    private Date reserved_to;

    public Date getReserved_from() {
    }

    public void setReserved_from(Date reserved_from) {
    }

    public Date getReserved_to() {
    }

    public void setReserved_to(Date reserved_to) {

    }

    

    public int getReservationID() {
    
    }

    public void setReservationID(int reservationID) {
    }

    public String getGuestName() {
    }



Chapter 2

[ 41 ]

    public void setGuestName(String guestName) {
    }

    public int getRoomNumber() {

    }

    public void setRoomNumber(int roomNumber) {

    }
}

Since we have the three Java beans ready, the method signatures of the three  
web service classes, which we are going to implement shortly, will look like the 
following. These classes will be exposed as web services in our sample application.

• GuestManagementService:
GuestManagementService class consists of addGuest, getGuestDetails, 
and deleteGuest methods.
public class GuestManagementService {

//A new guest is added to the system by invoking this method. The 
//method returns true if the guest is added successfully. 
    public boolean addGuest(String name, String address, int age){

    }

//Details of an existing guest are retrieved using this method
    public Guest getGuestDetails(String guestName){       

    }

//An existing guest is deleted by invoking this method. We can  
//implement this method to return a boolean similar to addGuest() 
//method. However, inorder to demonstrate IN-ONLY message exchange 
//pattern, let's keep it void.
    public void deleteGuest(String guestName){    

    }
}

www.allitebooks.com

http://www.allitebooks.org


The Sample Project

[ 42 ]

• RoomManagementService:
RoomManagementService includes three methods, addRoom, 
getRoomDetails, and deleteRoom as follows:
public class RoomManagementService {

//A new room is added to the system by invoking this method.  
//The method returns true if the room is added successfully

    public boolean addRoom(int roomNumber, String roomType, String 
roomSize){        

    }

//Details of an existing room are retrieved using this method

    public Room getRoomDetails(int roomNumber){

    }

// An existing room can be deleted by invoking this method

    public void deleteRoom(int roomNumber){

    }
}

• ReservationService:
ReservationService consists of addReservation, getReservationDetails, 
and removeReservation methods follows:

public class ReservationService {

//A hotel room is reserved for a guest by invoking this method 
    public boolean addReservation(int roomNumber, String 
guestName, Date reserved_from, Date reserved_to){

    }
//Details of an existing reservation can be found out by calling  
//this method
public Reservation getReservationDetails(int RoomNumber) {

}



Chapter 2

[ 43 ]

// An existing reservation can be deleted by invoking this method

public void removeReservation(int reservationID) {

}
            
}

Web services fault handling
Did we think about the scenarios such as trying to add a guest who is already 
available in GUEST_T table? Or did we try to delete a non-existing room? We 
need to handle these exceptional cases and provide users with meaningful errors. 
We can implement exception classes associated with each of the above web service 
classes as follows.

Create a new package, com.sample.reservation.exception and add the following 
three exception classes:

• Exception 1:
public class GuestManagementException extends Exception {

    private String message;

    public GuestManagementException() {

    }

    public GuestManagementException(String message) {

        super(message);

    }

    public String getMessage() {

        return super.getMessage();

    }

    public void setMessage(String message) {

        this.message = message;

    }

}



The Sample Project

[ 44 ]

• Exception 2:
public class RoomManagementException extends Exception {

    private String message;

    public void setMessage(String message) {

        this.message = message;

    }

     public String getMessage() {

        return super.getMessage();

    }

    public RoomManagementException() {

    }

    public RoomManagementException(String message) {

        super(message);

    }

   

}

• Exception 3:

   public class ReservationManagementException extends Exception{
    public ReservationManagementException() {
    }

    public ReservationManagementException(String message) {
        super(message);
    }

   public String getMessage() {
        return super.getMessage();



Chapter 2

[ 45 ]

    }

    public void setMessage(String message) {
        this.message = message;
    }
    private String message;

}

Managing database operations
It is a recommended programming practice to manage all database interactions 
through a separate module or a class. Therefore, we can have a class dedicated to 
database storage handling tasks. Let this class be Storage.java and have it under 
a new package, com.sample.reservation.database.

The Storage.java class is used to establish the connection to the database and 
execute SQL queries in each method invocation of the web service implementation 
classes. For example, if the addGuest() method of GuestManagementService is 
called, the corresponding addGuest() method of the Storage class handles the 
database interactions. Similarly, for all the methods in web service implementation 
classes, we can have the corresponding methods in Storage.java class.

Let's have a look at how we handle the CRUD (Create Read Update Delete) 
operations associated with the GuestManagementService using Storage.java 
The complete source code of Storage.java class can be found at src\com\sample\
reservation\database\Storage.java in the code bundle.

public class Storage {

//First, we need to establish the jdbc connection with HOTEL_  
//RESERVATION_DB
//We will read the MySQL database connection details from a property 
//file, which will be placed at the conf directory of Web Service  
//Archive file (HotelReservation.aar)
    private Connection getConnection(){
//JDBC connection handling logic will be inserted here
//We read username, password, hostname(or IP) and port of mysql  
//database from mysql.properties file which is placed at the conf  
//directory of the web service archive.
    }    

//The method corresponding to addGuest() in GuestManagementService.



The Sample Project

[ 46 ]

    // This is used to add a new guest to GUEST_T table

    public boolean addGuest(Guest guest) {
        //Check whether the guest already exists before adding a new 
//guest
        if (getGuestDetails(guest.getName()) == null) {
                //Execute INSERT SQL Query to add a new row to  
//GUEST_T table
                String sqlStatement = "INSERT INTO GUEST_T VALUES ('" 
+ guest.getName()
                        + "','" + guest.getAddress() + "', " + guest.
getAge() + ")";
                statement.execute(sqlStatement);
    }
//The method corresponding to the getGuestDetails() in  
//GuestManagementService.

    // This is used to get details of a particular guest from  
//GUEST_T table

    public Guest getGuestDetails(String name)  {
        //Execute SELECT SQL Query to retrieve the corresponding row 
//from GUEST_T table

        String sqlStatement = "SELECT * FROM GUEST_T WHERE name = '" + 
name + "'";
    }
     //The method corresponding to the deleteGuest() in  
//GuestManagementService
    //This is used to delete a guest from GUEST_T table
    public void deleteGuest(String name) {
        if (getGuestDetails(name) != null) {

                //Execute DELETE SQL Query to retrieve the  
//corresponding row from GUEST_T table

                String sqlStatement = "DELETE FROM GUEST_T WHERE name 
= '" + name + "'";
    }
}

As Storage.java is a JDBC connection handler, it simply manages all the database 
related transactions involved in our sample project. If a database related error is 
thrown during these transactions, we handle those errors via a separate exception 
class, StorageException.java.



Chapter 2

[ 47 ]

The complete source code of StorageException.java class can be found at 
src\com\sample\reservation\exception\StorageException.java in the 
code bundle.

Now, you should be able to compile the classes we have implemented up to now. 
If you are working on this project using an integrated Java development 
environment (IDE), such as Eclipse, you can compile the project very easily.  
Make sure to add the MySQL JDBC driver jar to the classpath since it is  
required to establish the MySQL database connection. You can download the 
MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/.

If you do not wish to use any Java IDE, you could use the ant build script (build.
xml) given in build folder of the code bundle.

Before making all the service implementation classes available as 
real web services, it is recommended to test the Storage.java 
class separately to ensure that the database transactions are done 
properly. You can add a simple Junit test to test each method of 
Storage.java.

Completing the web service implementation 
classes
Under Designing web services section, we looked at the method signatures of all the 
three web service classes, GuestManagementService, RoomManagementService, 
and ReservationService. It is time to conclude our discussion on web service 
implementation classes since we have all the dependent classes ready by now. As 
an example, we will look at the implementation of GuestManagementService.java.

The complete source code of all the three web service implementation 
classes can be found under src\com\sample\reservation folder 
of the code bundle.

public class GuestManagementService {

    //Adding a new guest to the system.
    //We create a new Guest object and call addGuest() operation of
    //Storage class to insert the new guest record to GUEST_T table

    public boolean addGuest(String name, String address, int age)
            



The Sample Project

[ 48 ]

        Guest guest = new Guest();
        guest.setName(name);
        guest.setAddress(address);
        guest.setAge(age);

        Storage storage = new Storage();
       
            storage.addGuest(guest);
            return true;
               }

    }

    //retrieving the details of a guest.
    //By calling getGuestDetails() method of Storage class
    // we get the corresponding guest record from GUEST_T table

    public Guest getGuestDetails(String guestName)   {
        Storage storage = new Storage();
        
            Guest guest = storage.getGuestDetails(guestName);
              return guest;
                }

    //Deleting an existing guest.
    //We call deleteGuest() method of Storage class to delete a guest 
//from GUEST_T table 

    public void deleteGuest(String guestName)  {

        Storage storage = new Storage();

        
            Guest guest = storage.getGuestDetails(guestName);
            storage.deleteGuest(guest.getName());
        }

Deploying web services
Though we developed all the Java classes included in our sample hotel reservation 
system, we have not made them web services yet. In other words, still, our three 
web service implementation classes cannot be invoked by a web service client, such 
as soapUI. In this section, we make a deployable artifact so that we can deploy the 
services in a service container such as Apache Axis2.



Chapter 2

[ 49 ]

There are multiple ways of deploying a web service in the Apache Axis2 SOAP 
engine. We will use the service archive-based deployment mechanism where we 
create a deployable archive with all service artifacts and copy that into the Axis2 
server's deployment folder. In this mechanism, the deployable artifact is known  
as an Axis2 Archive (aar).

In order to deploy an Axis2 service as an aar file, a deployment descriptor should be 
included with it. The Axis2 deployment descriptor is known as services.xml and 
must be placed inside the META-INF folder of the aar file. The services.xml tells 
the Axis2 engine the details such as what services are included in the service archive, 
what operations are exposed through the web service, and so on.

Since we have three different web services, we can either deploy them as three Axis2 
archives (aar) or include everything in a single archive. In our sample project, we 
will bundle all service implementation classes and the dependencies to a single 
service archive. Since we follow the second approach, we need to consider the Axis2 
service group concept where we can associate multiple services inside a group and 
deploy together.

With all these details, the services.xml of our web services look like the following.

Note that only the GuestManagementService is shown here. The complete 
services.xml file can be found in conf folder in the code bundle.

<serviceGroup name="HotelReservation">
    <service name="GuestManagementService"
             targetNamespace="http://sample.com/reservation/guest">
        <description>
            Guest management web service
        </description>
        <schema schemaNamespace="http://sample.com/reservation/guest/
types"
                elementFormDefaultQualified="true">
            <mapping namespace="http://sample.com/reservation/guest/
types"
                     package="com.sample.reservation.dto"/>
        </schema>
        <messageReceivers>

            <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-
only"
                             class="org.apache.axis2.rpc.receivers.
RPCInOnlyMessageReceiver"/>
            <messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-
out"



The Sample Project

[ 50 ]

                             class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>
        </messageReceivers>
        <parameter name="ServiceClass">com.sample.reservation.
GuestManagementService</parameter>
        <operation name="addGuest" mep="http://www.w3.org/2006/01/
wsdl/in-out">
            <actionMapping>urn:addGuest</actionMapping>
            <messageReceiver class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>
        </operation>
        <operation name="getGuestDetails" mep="http://www.
w3.org/2006/01/wsdl/in-out">
            <actionMapping>urn:getGuestDetails</actionMapping>
            <messageReceiver class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>
        </operation>
        <operation name="deleteGuest" mep="http://www.w3.org/2006/01/
wsdl/in-only">
            <actionMapping>urn:deleteGuest</actionMapping>
            <messageReceiver class="org.apache.axis2.rpc.receivers.
RPCInOnlyMessageReceiver"/>
        </operation>
    </service>
</serviceGroup>

Here, all web services are grouped under the <serviceGroup> element. You can 
find that the service implementation class is described as a parameter, <parameter 
name="ServiceClass">. A complete explanation of services.xml descriptor is 
beyond the scope of this book. You can find more information on this at http://
axis.apache.org/axis2/java/core/docs/axis2config.html#Service_
Configuration.

After completing services.xml for all the three web services, make sure to copy it 
to conf folder in our project structure.

We should also make sure to update the following properties in conf/mysql.
properties file which we use to read the database connection details:

mysql.host: It is the host name or IP address of the mysql database server

mysql.port: It is the port in which mysql server is running

mysql.username: It is the root user of mysql database

mysql.password:It is the password of the root user 



Chapter 2

[ 51 ]

Now, we are ready to build the whole project and generate an Axis2 archive (aar) 
file. For that, you can use the ant build.xml given under build folder of the code 
bundle. Copy the build.xml to the build sub-folder in your project folder. When 
you run ant command from build directory, it will create HotelReservation.aar 
under the project root directory with the following structure:

Once you have HotelReservation.aar, you are ready to deploy it in Apache 
Axis2. You can copy HotelReservation.aar to AXIS2_HOME/repository/
services folder.

Take a look at the following example:

cd sample-project

        cp HotelReservation.aar /home/user/axis2-1.6.1/repository/
services/

At this point, make sure to copy the MySQL JDBC driver which 
you may have downloaded from http://www.mysql.com/
downloads/connector/j/ to AXIS2_HOME/lib folder to 
facilitate jdbc connectivity between web service implementation 
classes and MySQL database.

www.allitebooks.com

http://www.allitebooks.org


The Sample Project

[ 52 ]

If you have already started the server, the services will automatically be deployed. 
If not, simply restart the Axis2 Server. Open a web browser and access http://
localhost:8080/axis2/services/, you will find the three web services as shown 
in the next screenshot:

You should be able to see the WSDLs of each of these web services by accessing 
following URLs:

http://localhost:8080/axis2/services/GuestManagementService?wsdl

http://localhost:8080/axis2/services/RoomManagementService?wsdl

http://localhost:8080/axis2/services/ReservationService?wsdl



Chapter 2

[ 53 ]

Summary
We dedicated this chapter to create a sample project, which used a few web services 
to implement a simple hotel room reservation system. We started from scratch 
and created three Plain Old Java Objects (POJOs). Then we exposed them as 
web services by deploying in Apache Axis2. These three web services, namely 
GuestManagementService, RoomManagementService, and ReservationService  
will be used throughout this book. All our discussions of soapUI will be based on 
these services. Hence, even if you did not follow the sample project, it is advisable to 
download WebServicesSample-Deliverable.zip from http://www.PacktPub.com/
support, follow the instructions given in README.txt to deploy HotelReservation.
aar on Apache Axis2, and get the services ready to try out the soapUI samples which 
we will discuss in the next chapters.





First Steps with soapUI  
and Projects

As we have completed building our sample web services project, it is time to 
discover the testing aspects of web services with soapUI. In this chapter, we will  
look into the basics of web services testing using the features provided by soapUI. 
We plan to cover the following topics in this chapter:

• Detailed study of the sample guest management web service
• How to build a soapUI project to invoke operations of the sample service
• Study SOAP requests, responses, and faults using the sample service

Invoking web services through soapUI is pretty straightforward as compared to most 
of the other alternative tools such as Apache JMeter. What we will be focused on is 
how soapUI features can be utilized in an effective manner so that we can achieve 
the maximum test coverage in web services testing. In order to fulfill our objectives, 
it is essential to have a good understanding about the functional aspects of the web 
services which are going to be tested, as well as the fundamental mechanism of the 
SOAP request and response handling in soapUI.

Understanding the web services 
definition
In the previous chapter, we developed three different web services, as follows:

• GuestManagementService

• RoomManagementService

• ReservationService



First Steps with soapUI and Projects

[ 56 ]

Out of these three services, we will focus on the WSDL of the 
GuestManagementService in this chapter. Once you are familiar with interpreting 
GuestManagementService, you will be able to follow up with the other two services.

If you have not already done so, make sure to start axis2server by running 
axis2server startup script (axis2server.bat or axis2server.sh) from 
AXIS2_HOME/bin.

Open a browser and navigate to http://localhost:8080/services/
GuestManagementService?wsdl. You will find the structure of the WSDL 
of the service similar to the following diagram:

We will look into each of the key elements shown in the preceding diagram 
depicting the WSDL structure of the web service.

Schema
First, notice the schema section of the WSDL under the wsdl:types element, where 
the data types used by web service are explicitly defined. We are not going to dig deep 
into the schema of our web service, but let's have a look at the addGuest element. 



Chapter 3

[ 57 ]

The addGuest element has the following XML fragment:
<xs:element name="addGuest">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" name="name" nillable="true" 
type="xs:string"/>
<xs:element minOccurs="0" name="address" nillable="true" 
type="xs:string"/>
<xs:element minOccurs="0" name="age" type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:element>

We can identify the three elements associated with the addGuest root element, name, 
age and address, in the preceding portion of the schema. If you recall the data types 
which we defined when implementing GuestManagementService in the previous 
chapter, these data types given in the schema corresponded to what we described 
there. When we invoke the service, we should send a message which conforms 
to the service schema. In short, if we send the age of a guest as a string value, the 
service will respond with a fault since one of the data types of our request does not 
match with the schema definition. Similarly, I will leave you to go through the other 
elements defined in the schema of the GuestManagementService.

Now, we should understand the other elements in our WSDL. A better way to 
understand the WSDLs is to start with the portType element which defines the 
service interface.

portType
Let's have a look at the GuestManagementServicePortType element. We 
can identify the abstract definitions of the three operations exposed by 
GuestManagementService under that element, as follows:

• addGuest

• deleteGuest

• getGuestDetails

Under these operations, the input, output, and fault messages which are exchanged 
between service consumer and provider are defined. As you can see, each of the 
operations include a fault message. The addGuest and getGuestDetails operations 
are defined as request-response MEP since both of them consist of input and output 
messages. The deleteGuest operation is a one-way operation as it does not have an 
output message. You can correlate this behavior to the method signatures of these 
operations given in the GuestManagementService implementation class.



First Steps with soapUI and Projects

[ 58 ]

As we have looked into the portType element in the WSDL of our web service, we 
can proceed with understanding another important element in the service definition.

binding
The binding elements describe the concrete details of using a portType with a given 
protocol. In other words, a portType element is an abstract definition of a service 
interface, which does not provide information on how messages are represented on 
the wire. The binding elements associate the portType elements with concrete wire 
protocol definition. There are three bindings which can be identified in our WSDL. 
These are as follows:

• SOAP 1.1 binding
• SOAP 1.2 binding
• HTTP binding

In our service, both SOAP 1.1 and SOAP 1.2 bindings use HTTP transport only. 
You can notice it in the following element:

<wsdl:binding name="GuestManagementServiceSoap11Binding" type="tns:Gue
stManagementServicePortType">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" 
style="document"/>

You will also observe that the default style of the service is given as document.

If we study the SOAP 1.1 binding further, we can identify that all three operations of 
the GuestManagementService are defined with concrete message details. For example, 
addGuest operation is described under the SOAP 1.1 binding element as follows:

<wsdl:operation name="addGuest">
<soap:operation soapAction="urn:addGuest"  style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="GuestManagementServiceGuestManagementException">
<soap:fault use="literal" name="GuestManagementServiceGuestManagement
Exception"/>
</wsdl:fault>
</wsdl:operation>



Chapter 3

[ 59 ]

As shown in the preceding XML fragment, urn:addGuest is the soapAction HTTP 
header defined for the addGuest operation. Similarly, all other operations include a 
soapAction HTTP header.

The addGuest operation emulates request-response MEP. Therefore, it includes 
input and output elements. As these requests and responses are SOAP messages, 
they consist of the <soap:body> element. This element defines how the message 
parts appear inside the SOAP body of the SOAP envelope. The type of encoding 
that is used to translate the abstract message parts into a concrete representation  
is specified by the use attribute of the SOAP body element.

In short, the addGuest operation uses document/literal SOAP style/use 
attributes. Therefore, the input message (request) for the addGuest operation 
can be represented as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Body>
<a:addGuest xmlns:a="http//sample.com/reservation/guest/types">
<name>John</name>
<address>Colombo, Sri Lanka</address>
<age>32</age>
</a:addGuest>
</soapenv:Body>
</soapenv:envelope>

Because the addGuest operation is defined as document style, the SOAP body simply 
includes an instance of the addGuest element defined under the XML schema of 
GuestManagementService.

A further explanation on all WSDL bindings are out of the scope of this book. Hence, 
we will limit our discussion on SOAP 1.1 binding to what we have discussed and 
proceed with the <wsdl:service> element.

Service
According to the WSDL 1.1 specification, a service groups a set of related ports 
together. In our WSDL, we can identify three ports or endpoints described  
as follows:

<wsdl:service name="GuestManagementService">
<wsdl:port name="GuestManagementServiceHttpSoap11Endpoint" binding="tn
s:GuestManagementServiceSoap11Binding">
<soap:address location="http://localhost:8080/ 
axis2/services/GuestManagementService.
GuestManagementServiceHttpSoap11Endpoint/"/>



First Steps with soapUI and Projects

[ 60 ]

0</wsdl:port>
<wsdl:port name="GuestManagementServiceHttpSoap12Endpoint" binding="tn
s:GuestManagementServiceSoap12Binding">
<soap12:address location="http://localhost:8080/ 
axis2/services/GuestManagementService.
GuestManagementServiceHttpSoap12Endpoint/"/>
</wsdl:port>
<wsdl:port name="GuestManagementServiceHttpEndpoint" binding="tns:Gues
tManagementServiceHttpBinding">
<http:address location="http://localhost:8080/axis2/services/
GuestManagementService.GuestManagementServiceHttpEndpoint/"/>
</wsdl:port>
</wsdl:service>

Under the service element, each port is assigned to a particular binding 
and defines the address details specific to that binding. For example, the 
SOAP 1.1 binding of GuestManagementService is exposed at the location, 
http://localhost:8080/axis2/services/GuestManagementService.
GuestManagementServiceHttpSoap11Endpoint.

Therefore, if you want to invoke GuestManagementService by sending a SOAP 1.1 
request, you should use the preceding URL.

So far, we have discussed all the important details specific to our web service. We 
have even constructed a sample SOAP request by adhering to the WSDL of service. 
However, deriving SOAP requests by hand is a time consuming and complex 
approach. On the other hand, in a web service equation, the consuming applications 
of web services should be able to send as well as receive and interpret the SOAP 
messages. As a result of this, we should use a tool which has the ability to invoke 
web services and interpret service responses at minimum.

The most trivial use case of soapUI is to support SOAP message delivery. We  
are going to look into our first soapUI project so that we can send the first SOAP 
request to GuestManagementService.

Creating a soapUI project
All your work which you carry out with soapUI is based on projects. Therefore, 
projects can be considered as the central masterpiece in soapUI. Whatever you do, 
except the activities related to tools such as Axis2 WSDL2Java, perform under a project. 
Let's create our first soapUI project. Perform the following steps to create a project:

1. Start soapUI.
2. Select File | New soapUI Project from the main menu.



Chapter 3

[ 61 ]

In a fresh soapUI instance, if you add a new project in this way, the 
project is added under the default workspace. If you want to add 
the project into a different workspace, you can do so by creating a 
new workspace or use an existing workspace. We will discuss more 
about workspaces in the next chapter.

3. Once the New soapUI Project dialog box is launched as shown in the 
following screenshot, enter HotelReservationProject as the name 
of the project. In our example, the initial WSDL will be the definition 
of GuestManagementService. We can find out the web service 
definition by appending the ?wsdl suffix at the end of the endpoint 
URL. Therefore, enter http://localhost:8080/axis2/services/
GuestManagementService?wsdl as the initial WSDL as shown in the 
following screenshot:

You should also keep in mind that it is not mandatory to have an 
initial WSDL for creating a new soapUI project. You can create a 
soapUI project without an initial WSDL and add WSDL later. Also, 
if you create the project for testing a RESTful web service or a web 
application, having an initial WSDL does not make sense. However, 
an initial WSDL will make testing easier for a novice user if the 
project is used purely for SOAP based web services testing.

4. You will also find a few selections in the New soapUI Project dialog box 
such as Create Requests, Create TestSuite, Create MockService and so on. 
We will look into all these options within the next chapters. For now, just 
select the default option.



First Steps with soapUI and Projects

[ 62 ]

5. With the default Create Requests option, soapUI generates sample requests 
for all operations exposed in your web service. In other words, with this 
option selected, we should be able to see the SOAP requests generated by 
soapUI which can be used to invoke addGuest, getGuestDetails, and 
deleteGuest operations of the GuestManagementService.

6. Now, we can save our new soapUI project by clicking on Saves all projects 
in the current workspace icon which can be found on the main tool bar. 
Or else, we can select the project and press Ctrl + S to save the individual 
project. Either way, soapUI saves the project in your filesystem with the 
name, <project name>-soapui-project.xml.

Once the new soapUI project is created with an initial WSDL, you can 
find that soapUI automatically generates requests for all operations under  
the two SOAP bindings. In our example, we should be able to see six  
requests divided among GuestManagementServiceSoap11Binding 
and GuestManagementServiceSoap12Binding.



Chapter 3

[ 63 ]

When adding a WSDL or creating a project with an initial WSDL, soapUI scans 
through all SOAP bindings which appear in the WSDL and finds out the operations 
exposed by the service. Then it generates the requests corresponding to those 
operations according to the XML schema of the service.

As we have just discussed, when we have the WSDL of the web service with all 
bindings, portTypes, service elements, and schema, it is possible to derive a 
SOAP request by hand. What soapUI does is it handles all the complexities and 
gets it done for you.

Let's look at the addGuest request generated by soapUI in the following screenshot:

As you can see in the preceding image, the SOAP 1.1 request message is shown  
at the left-hand side pane of the request editor. You can open the request editor 
by double-clicking on the corresponding SOAP request in the project tree at the 
right-hand side pane or by right-clicking on the SOAP request and selecting Show 
Request Editor. Compare the request payload (the <typ:addGuest> element) of 
this message with the request which we have derived by hand at the end of the 
Understanding the web service definition section. You will find both of them to 
be similar.



First Steps with soapUI and Projects

[ 64 ]

Invoking the guest management  
web service
Before going deep inside SOAP requests, we will look into invoking our sample 
web service. We will invoke the addGuest operation and add a new guest in our 
sample hotel reservation system. Next, we will get the details of the added guest by 
calling getGuestDetails operation. Finally, we will delete the guest by invoking the 
deleteGuest operation. This can be performed as described in the following steps:

1. Select Request1 which appears under the addGuest operation, shown in the 
left-hand side pane in the soapUI project.

2. In the request editor, which appears at the right-hand side, you will find  
the SOAP 1.1 request which is supposed to be used in invoking the  
addGuest operation.

3. The inputs which should be specified by the user are denoted by ? in the 
request editor. Replace them with the appropriate input values as shown  
in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">
   <soapenv:Header/>
   <soapenv:Body>
      <typ:addGuest>
         <!--Optional:-->
         <typ:name>Saman</typ:name>
         <!--Optional:-->
         <typ:address>Colombo, Sri Lanka</typ:address>
         <!--Optional:-->
         <typ:age>24</typ:age>
      </typ:addGuest>
   </soapenv:Body>
</soapenv:Envelope>

4. By default, soapUI automatically adds the endpoint associated with SOAP 
1.1 binding and gives it as the default endpoint for you to direct the request. 
This is shown in the following screenshot: 



Chapter 3

[ 65 ]

If you carefully look at this endpoint, it is the same endpoint which 
you can find at the <wsdl:port name="GuestManagmentServiceHtt
pSoap11Endpoint"> element under the <wsdl:service> element in 
GuestManagementService WSDL. soapUI allows you to edit this 
endpoint or target your request to a totally different endpoint.

In the situations where your web service container is changed, you will 
need to change the default endpoint location. For example, say you 
decide to move away from the Axis2 SOAP engine and use a different 
service container. In such a case, you can change the endpoint easily 
through the soapUI request editor. Also, when the same web service is 
deployed across multiple environments such as Development, Testing, 
or Production, you can change the target endpoint and submit the 
request to the service which is deployed in a particular environment. 

5. For now, let's proceed with the defaults. Click on the run icon which appears 
at the top-left corner in the soapUI request pane to submit the request to the 
given endpoint.

6. Once the request is sent to the endpoint, you will notice the response appears 
at the right-hand side pane of the soapUI request editor as shown in the 
following screenshot:

We get the response with <ns:return>true</ns:return> as the 
SOAP body, if a guest is successfully added to the system. Compare 
this behavior with the method signature of addGuest method in the 
GuestManagementService implementation class where we have defined 
boolean as the return value.



First Steps with soapUI and Projects

[ 66 ]

Now, we have added a new guest to the system. Let's check if it has  
actually been added to the system by calling the getGuestDetails 
operation. Perform the following steps to check if a guess has been  
added to the system:

1. Select Request1 which appears under the getGuestDetails operation 
in the left-hand side pane in soapUI project.

2. The request editor will show the corresponding SOAP 1.1 request. 
Replace ? with the name of the guest which we have added to the 
system, as shown in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:typ="http//sample.com/reservation/
guest/types">
   <soapenv:Header/>
   <soapenv:Body>
      <typ:getGuestDetails>
         <!--Optional:-->
         <typ:guestName>Saman</typ:guestName>
      </typ:getGuestDetails>
   </soapenv:Body>
</soapenv:Envelope>

3. Click on the run icon to submit the request to the default  
SOAP 1.1 endpoint.

4. The response will contain the corresponding guest details as follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/">
   <soapenv:Body>
      <ns:getGuestDetailsResponse xmlns:ns="http//sample.
com/reservation/guest/types">
         <ns:return xsi:type="ns:Guest" xmlns:ax21="http://
exception.reservation.sample.com/xsd" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance">
            <ns:address>Colombo, Sri Lanka</ns:address>
            <ns:age>24</ns:age>
            <ns:name>Saman</ns:name>
         </ns:return>
      </ns:getGuestDetailsResponse>
   </soapenv:Body>
</soapenv:Envelope>

7. We have invoked both addGuest and getGuestDetails operations using 
soapUI. The only remaining operation to be invoked is deleteGuest.



Chapter 3

[ 67 ]

Similar to the addGuest and getGuestDetails operations, select Request1 
under the deleteGuest operation in the left-hand side pane of soapUI. 
Replace ? of guestName element with the name of the guest which we 
have added to the system, as shown in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">
   <soapenv:Header/>
   <soapenv:Body>
      <typ:deleteGuest>
         <!--Optional:-->
         <typ:guestName>Saman</typ:guestName>
      </typ:deleteGuest>
   </soapenv:Body>
</soapenv:Envelope>

8. Submit the request to the default SOAP 1.1 endpoint by clicking on the  
run icon.

This time, you will not get any SOAP response back. Why do we expect this 
behavior? Think about how we implemented the deleteGuest operation in the 
GuestManagementService implementation class. There, we specified the method 
as void:

public void deleteGuest(String guestName){ }

If you invoke the getGuestDetails operation again for the deleted guest, you can 
ensure that the guest has actually been removed from the system.

Now, we have invoked all operations of the GuestManagementService 
using soapUI. Similarly, you can try out the other two web services 
(RoomManagementService and ReservationService) as well. It will be a good 
idea to further look into some of the preceding requests and response messages  
to get a better understanding about web service invocation, as well as the  
important features provided by soapUI for request and response handling.

A detailed look at SOAP requests and 
responses
We invoked three operations in GuestManagementService using soapUI. As 
we have observed, addGuest and getGuestDetails operations are examples 
for request-response MEP, whereas the deleteGuest operation emulates a 
one-way pattern.



First Steps with soapUI and Projects

[ 68 ]

Add another guest to the system by running an addGuest operation. In the request 
editor, switch to the Raw tab from the default XML view in both request and 
response. This is shown in the following screenshot:

The Raw view of the request shows the HTTP header block. In the response pane, 
the Raw view shows the HTTP headers as well as the HTTP body, which includes 
the SOAP response message. We can see that the HTTP 200 successful response code 
in the response message.

In request HTTP headers, take a note of the User-Agent header. Since soapUI 
uses the Jakarta Commons HttpClient component from the Apache HTTP 
Components project as the request submission client, the value is set to  
Jakarta Commons-HttpClient/3.1.

By default, a soapUI request uses UTF-8 encoding as the character set, hence you 
can see it as a part of the Content-Type header:

Content-Type: text/xml;charset=UTF-8

You can change these properties as you wish through the Request Properties 
pane in soapUI, shown in the following screenshot:



Chapter 3

[ 69 ]

It is best to name each of the requests meaningfully without using the default 
Request1 for each of the requests. You can edit the request name as well through 
the Request Properties pane.



First Steps with soapUI and Projects

[ 70 ]

If we invoke the deleteGuest operation, an empty response can be observed in the 
XML view of the request editor. If you look at the Raw view of the response, you 
will be able to find the following HTTP header:

HTTP/1.1 202 Accepted

Date: Sat, 31 Dec 2011 02:02:38 GMT

Server: Simple-Server/1.1

Transfer-Encoding: chunked

Can you explain why this response does not have a body? As we discussed earlier, 
deleteGuest uses one-way MEP, therefore the service does not return a response 
upon receiving a request SOAP message. Instead, in one-way messaging, the service 
should respond back with HTTP 202 Accepted status if the request is accepted by 
the service and no error has occurred.

So far, we have explored requests and responses which conform to 
SOAP 1.1 specification. All requests which are categorized under 
GuestManagementServiceSoap12Binding are SOAP 1.2 messages. You can find 
it out simply by looking at the namespace URL of the Envelope element in the 
SOAP message:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

When you submit a SOAP 1.2 request to the GuestManagementService, it responds 
back with a SOAP 1.2 response.

Generating SOAP Faults
We discussed a few of the positive scenarios associated with the 
GuestManagementService of our sample hotel reservation system. Our discussion 
on soapUI requests and responses cannot be concluded until we explore the failure 
scenarios related to the web service. What will happen if we try to add an existing 
guest to the system? We have implemented our service implementation class to 
handle these types of scenarios such that the service responds with a fault in case 
of a failure.

We will look into a possible failure case where an existing guest is going to be added 
to the system.



Chapter 3

[ 71 ]

In a preceding example, where we added the guest called Saman, submit the 
same request again. As the guest has already been added to the system, the 
GuestManagementService should respond back with a fault. (Look at how we 
handled the fault in the Web services fault handling section of Chapter 2, The Sample 
Project) Note that we implemented our sample service in a way so that it throws an 
error if we invoke the addGuest operation with a name of an existing guest. We did 
that just for the simplicity of our sample application and you should not interpret 
it as a behavior of a real production system. The SOAP Fault corresponding to the 
addGuest operation will be as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
   <soapenv:Body>
      <soapenv:Fault>
         <faultcode>soapenv:Server</faultcode>
         <faultstring>Guest already Exists</faultstring>
         <detail>
            <ns:GuestManagementServiceGuestManagementException 
xmlns:ns="http//sample.com/reservation/guest/types">
               <GuestManagementException xsi:type="ax21:GuestM
anagementException" xmlns="http//sample.com/reservation/guest/
types" xmlns:ax21="http://exception.reservation.sample.com/xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
                  <ax21:message>Guest already Exists</ax21:message>
               </GuestManagementException>
            </ns:GuestManagementServiceGuestManagementException>
         </detail>
      </soapenv:Fault>
   </soapenv:Body>
</soapenv:Envelope>

If you look at the Raw view of the SOAP Fault, you will find the following HTTP 
header block:

HTTP/1.1 500 Guest already Exists
Date: Fri, 30 Dec 2011 14:35:41 GMT
Server: Simple-Server/1.1
Transfer-Encoding: chunked
Content-Type: text/xml; charset=UTF-8

You can see the HTTP 500 response with the error message, Guest already Exists.

Similarly, you may try out the other possible faulty scenarios with the rest of the  
web services in our sample system in order to familiarise yourself with the SOAP 
Fault handling.



First Steps with soapUI and Projects

[ 72 ]

Summary
We looked into our first soapUI project in this chapter. Out of the three web services 
which we implemented in the previous chapter, the guest management web service 
was used to add a new guest to the system, view the details of the guest, and delete 
the guest from the system. We invoked all these operations of our sample service 
using soapUI. We studied the request generated by soapUI and related it to the 
contents of WSDL of GuestManagementService. We also had a detailed discussion 
on two different views of requests and responses presented by soapUI. In the Raw 
view, we were able to see the message with HTTP headers, and the XML view 
showed just the SOAP envelope of the message. We also discussed about failure 
cases of web service invocations and had a look at a SOAP Fault.

We are going to extend our project to a full comprehensive test suite in the  
next chapter.



Working with Your  
First TestSuite

In the previous chapter, we discussed the basics of soapUI projects. When you are 
testing an individual service or a complete service-oriented solution, it is not just 
sufficient to create a project with multiple SOAP requests and manually execute and 
validate the responses of them one by one. Instead, we should follow some mechanism 
to execute our tests in a well organized manner, so that, we could minimize some 
unnecessary delays and focus on achieving a greater level of test coverage.

soapUI TestSuites are one of the key building blocks in a project which allow us to 
structure and execute functional tests. In this chapter, we will look into the following 
high-level topics of building a comprehensive test suite in order to test our sample 
hotel room reservation system:

• Creating a TestSuite
• Running the TestSuite
• Adding test assertions
• Adding properties to the tests

A sample test scenario
We have built a sample hotel reservation system in Chapter 2, The Sample Project, and 
invoked one of its services in Chapter 3, First Steps with soapUI and Projects. However, 
we did not do a complete end-to-end workflow with our system. Let's think about 
the following scenario:



Working with Your First TestSuite

[ 74 ]

A new guest has arrived to the hotel. An operator of the hotel reservation system 
registers the new guest in system, looks for a room, and reserves it for the guest.

This is the preliminary use case of our sample system. All three web services which 
we discussed previously, GuestManagementService, RoomManagementService, 
and ReservationService take part in this scenario. How are we going to test this 
particular scenario using soapUI? Will it be enough to create a project and add SOAP 
requests to execute the relevant operations of each web service individually, as we 
did in Chapter 3, First Steps with soapUI and Projects?

The answer will be yes, if we need to execute this particular scenario once and for 
all. However, we do not live in a world where software is built in a single run, tested 
once and used in production. Instead, there are a large number of iterations per 
release cycle as well as multiple versions. In such cases, if we do not maintain our 
tests in a reusable and structured manner, we will end up in a chaos.

We are going to use some of the important constructs of soapUI to build a 
comprehensive test suite to verify the preceding scenario. Open soapUI and start  
our journey of exploring more exciting features!

Creating a TestSuite
A soapUI functional test consists of three key elements as follows:

• TestStep: A TestStep is the foundation of any functional test. It is used to 
manage the execution flow of the test and validate the test results. A TestStep 
is directly associated with a TestCase.

• TestCase: In a soapUI project, a TestCase is a collection of TestSteps 
organized for testing some functionality of the service under test.

• TestSuite: A TestSuite is a collection of TestCases which work together as a 
logical unit to test some specific functionality.

The structure of these elements in a soapUI project can be represented in a diagram 
as follows:



Chapter 4

[ 75 ]

We will discuss each of these elements in detail while we go through our sample 
TestSuite. Without spending more time on theoretical aspects, let's start to build  
our soapUI project.

Our first scenario, as we just described, is a relatively simple one. Open the 
HotelReservationProject in soapUI which we have created in the previous chapter. 
We have already added the WSDL of GuestManagementService there.

In this exercise, we will remove the SOAP 1.2 binding from 
each web service as we do not have to bother about SOAP 
versions at this moment. Therefore, you may remove 
GuestManagementServiceSoap12Binding (interface) 
from the project.



Working with Your First TestSuite

[ 76 ]

In addition to the WSDL of GuestManagementService, we will need to add the 
rest of the WSDLs of our sample hotel reservation system by performing the 
following steps:

1. Right-click on the HotelReservationProject and select Add WSDL. You will 
be prompted to specify the URL or Browse in the file system for a WSDL. 
This is shown in the following screenshot:

2. We are going to add WSDL URL of the RoomManagementService. The 
WSDL which has been automatically generated by Apache Axis2, can be 
accessed by navigating your web browser to http://localhost:8080/
axis2/services/RoomManagementService?wsdl. Once you have made 
sure that the WSDL is accessible in the browser, specify the WSDL URL of 
RoomManagementService (http://localhost:8080/axis2/services/
RoomManagementService?wsdl) as the WSDL location.

3. Uncheck the Create TestSuite check box so that we can manually add a 
TestSuite as we preferred.

If we select the Create TestSuite option, soapUI automatically 
generates a test suite for the imported WSDL. soapUI scans 
through the WSDL and extracts all the operations. Then it 
generates test cases for each of the operations. By default, one 
TestCase for each operation is created. So, if you have five 
operations in the WSDL, you will automatically get five TestCases.

4. Leave the Create Requests check box checked and click on OK.
5. Now, you will notice that the RoomManagementService 

interface is also added to our project. Make sure to remove the 
RoomManagementServiceSoap12Binding from the project. Similarly, 
repeat the preceding steps to add ReservationService as well.

http://localhost:8080/axis2/services/RoomManagementService?wsdl
http://localhost:8080/axis2/services/RoomManagementService?wsdl


Chapter 4

[ 77 ]

6. As of now, our project structure will be similar to the following screenshot:

Under each service interface, you can see the operations corresponding to the 
operations defined in the respective WSDL. soapUI represents the MEP used by a 
particular operation using two distinct icons as shown in the following screenshot:

As addGuest operation uses request-response MEP, it is denoted by two circular 
arrow heads. The deleteGuest operation is denoted by a single arrow head since 
it is a one-way operation.

Now, think about our first test scenario again and decompose it into a few steps  
for clarity.

• Add a few hotel rooms to the system
• Upon the arrival of a new guest, a receptionist at the hotel registers the new 

guest in the system
• Finally, the receptionist reserves an available room for the guest



Working with Your First TestSuite

[ 78 ]

This particular scenario involves a few web service calls. New rooms can be  
added to the system by invoking RoomManagementService. Guest registration 
can be done through GuestManagementService. Finally the room reservation 
will be done by calling ReservationService. Though these three web services 
are logically related to each other, we have implemented our system in a way  
that they can be invoked independently.

Adding TestCases
We are ready to test our scenario. First, we are going to check whether the 
RoomManagementService works as expected. We can add a single TestCase to test 
each of the operations in RoomManagementService or we can add separate TestCases 
for operations. The choice depends on the functionality of service or operations. If 
the service has a large number of operations it will be a good idea to add a separate 
TestCase for each operation. In our case, we have a maximum number of three 
operations per service. Therefore, we may add one TestCase for a service. For the 
sake of completeness of the topic, we are going to follow the first approach where we 
add a separate test case for each operation; this gives us three test cases. Perform the 
following steps to generate TestCases:

1. Right-click on RoomManagementServiceSoap11Binding in the left-hand 
side menu of the project and select Generate TestSuite. Then the Generate 
TestSuite window will be seen as shown in the following screenshot:

2. Accept the default options and click on OK, so that we will have one test case 
for each operation.



Chapter 4

[ 79 ]

3. Specify RoomManagementServiceTestSuite as the name of the TestSuite.
4. Now, we will have a TestSuite with three TestCases as follows:

 ° addRoom TestCase
 ° deleteRoom TestCase
 ° getRoomDetails TestCase

5. Each of these TestCases consist of one TestStep. We will look into each of the 
TestCases in the following sections.

addRoom TestCase
addRoom is our preliminary TestCase which is used to add a new room record into 
the system. Initially, we do not include any additional TestSteps into this TestCase. 
We accept the default test steps generated by soapUI and proceed.

The addRoom TestCase editor can be opened by double-clicking on addRoom 
TestCase in the left-hand side menu or right-clicking on the TestCase and selecting 
Show TestCase Editor. If you open the TestCase Editor in either of these ways, it 
will be similar to the following screenshot:



Working with Your First TestSuite

[ 80 ]

You can see that our TestCase includes one TestStep named addRoom. If you double 
click on the addRoom TestStep, you will recognize it as a usual SOAP request.

SOAP request is one of the different set of TestSteps included in soapUI TestCases. 
soapUI provides you with various TestSteps which perform different types of test 
execution tasks. For example, HTTP Request TestStep can be used to send a raw HTTP 
message to a web page or a service. If you want to hold the execution of the current 
TestCase for a specified time, you can use Delay TestStep. JDBC Request TestStep can 
be used to invoke a SQL query in a database while running the TestCase.

As we are exploring soapUI in detail within the context of this book, we will use 
almost all of these TestSteps given in soapUI. For the moment, let's use the default 
SOAP request TestStep as follows:

1. Double-click on the addRoom TestStep which is under addRoom 
TestCase in the left-hand side menu of the project. This will open the 
SOAP request which can be forwarded to the addRoom operation in 
RoomManagementService.

2. Replace the ? entries with appropriate values. For example:
<typ:roomNumber>101</typ:roomNumber>
<typ:roomType>Standard</typ:roomType>
<typ:roomSize>Double</typ:roomSize>

As we are ready with everything needed to test, we can run the addRoom TestCase 
now. However, we will wait until we have completed the rest of the operations in 
RoomManagementService.

If you look at the structure of the RoomManagementServiceTestSuite, the test cases 
are organized by soapUI under a specific order. addRoom TestCase is at the top and 
getRoomDetails TestCase is at the bottom. When running the TestSuite, soapUI 
executes the TestCases sequentially as they appear in the tree view of the TestSuite. 
Therefore, when we run RoomManagementServiceTestSuite, addRoom TestCase 
will be executed first. After that, the deleteRoom TestCase will be executed. Finally, 
the getRoomDetails TestCase will be executed.

Therefore, if were to execute this in the default order, after you add a room, it 
will be deleted instantly by the execution of deleteRoom TestCase. When the 
getRoomDetails TestCase executes at last, you always get a SOAP Fault since the 
particular room does not exist. Because of this, you should reorganize the order 
of execution of TestCases by moving the getRoomDetails TestCase to follow the 
addRoom TestCase in the TestSuite tree view of the soapUI project.

You can do this by clicking on the getRoomDetails TestCase and dragging it to be 
placed after addRoom Test Case.



Chapter 4

[ 81 ]

getRoomDetails TestCase
Similar to the addRoom TestCase, getRoomDetails TestCase also consists of a single 
SOAP request TestStep. Perform the following steps to update the getRoomDetails 
TestStep:

1. Double click on the getRoomDetails TestStep. The SOAP request, which will 
be sent to the getRoomDetails operation, will be opened up.

2. Replace ? with the same room number we specified in the previous TestCase 
as follows:
<typ:roomNumber>101</typ:roomNumber>

deleteRoom TestCase
We can execute the whole TestSuite once we complete the configuration of 
deleteRoom TestCase. deleteRoom TestCase includes a single SOAP request 
TestStep. The room which has been added after executing addRoom TestCase is 
supposed to be removed from the system by executing the deleteRoom TestCase. 
Therefore, follow the same steps as in the preceding TestCases and specify the same 
room number which has been previously added in the SOAP request:

<typ:roomNumber>101</typ:roomNumber>

Running the first TestSuite
In the preceding section, we have added three TestCases under the 
RoomManagementService TestSuite. SoapUI provides users with the 
facility to execute each TestCase individually as well as everything together.

In each TestCase, you will find the small green arrow icon which can be used  
to execute the TestCase alone as shown in the following screenshot:



Working with Your First TestSuite

[ 82 ]

Instead of executing each TestCase one by one, we are going to execute the whole 
TestSuite by performing the following steps:

1. Double-click on RoomManagementServiceTestSuite in the left-hand side 
menu of our soapUI project. This will open a detailed view of the TestSuite 
where you can see three TestCases which consists of the TestSuite.

2. We have completed updating all our TestSteps in the preceding section. 
Therefore, just click on the run icon (the small green arrow) which appears  
at the top-left corner of the TestSuite view.

3. Once the test execution is over, you will see something similar to the 
following screenshot:

4. All TestCases are marked in green denoting the success of the test. If you 
double-click on the green bars, the associated TestCase will be opened. Then 
click on the relevant TestStep. You can see the SOAP requests and responses 
which were submitted to the web service.

5. If you check the response of the SOAP request TestStep of addRoom 
TestCase, you will notice that the room has been added correctly to the 
system. Similarly, if you check the SOAP response of getRoomDetails 
TestCase, it will include the information of the added room as follows:

 <ns:return xsi:type="ns:Room" xmlns:ax23="http://exception.
reservation.sample.com/xsd" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
            <ns:roomNumber>101</ns:roomNumber>
            <ns:roomSize>Double</ns:roomSize>
            <ns:roomType>Standard</ns:roomType>
         </ns:return>



Chapter 4

[ 83 ]

With this, we can confirm that the room has been added to the system.

Now, is this the correct approach of verifying the success or failure of our test? Do 
we need to open the response messages of each and every request in TestSteps to 
find out what goes wrong or not? If this is the way we verify the status of tests, 
can this be considered as automated testing? If the preceding is all we can get from 
soapUI, what is the advantage of including SOAP requests under TestSuites and 
TestCases instead of directly sending them as we did in Chapter 3, First Steps with 
soapUI and Projects?

By now, we all have a lot of questions like these. We expect to find answers for all of 
these concerns before ending this chapter.

Let's do another simple test. In the preceding RoomManagementService TestSuite, 
disable deleteRoom TestCase (right-click on the test case and select the Disable Test 
Case option).

Add another room (for example, room number 102) by executing the TestSuite. After 
executing the test, you will notice that the new room is added to the system. Now, 
execute the TestSuite again.

The test is successful again! You will notice that both addRoom TestCase and 
getRoomDetails TestCase are shown as passed with a green status bar. Click on the 
finished addRoom TestCase and double-click on addRoom TestStep. This will open 
the SOAP request and response as we saw earlier. This time, you will notice that we 
got a SOAP Fault as the response as we tried to add a room which has already been 
added. The SOAP Fault would be as follows:

  <soapenv:Fault>
         <faultcode>soapenv:Server</faultcode>
         <faultstring>Room already Exists</faultstring>

Though we got a SOAP Fault, why does soapUI show it as a passed test?

soapUI does not read our mind. We need to instruct it to fail tests if some conditions 
are not satisfied. In other words, we need to have a mechanism to validate the 
responses which we get as a result of TestStep execution. We can validate them by 
manually reading the responses as we did before. However, when executing complex 
test suites automatically, we cannot look and read each and every response manually 
to figure out the status of tests. Test assertions come into action in this situation.



Working with Your First TestSuite

[ 84 ]

Adding test assertions
Assertions allow users to validate the responses by comparing some properties of 
the message with expected values. In soapUI, assertions are applied to TestSteps. 
There are many predefined assertions available for us to use in soapUI tests. Some 
assertions are applicable only for a specific set of TestSteps whereas some are 
common for any TestStep.

You can add any number of assertions to a TestStep. After the TestStep is executed, 
all of the associated assertions are applied to the response. The TestStep is failed if 
any of the assertions fail.

Let's continue our discussion on assertions with our sample TestSuite.

We are going to add an assertion to addRoom TestStep in our project as follows:

1. Open addRoom TestStep by double-clicking on addRoom TestStep under the 
addRoom TestCase in soapUI project.

2. You will notice the add an assertion to this item icon at the top-left corner of 
TestStep editor. Click on that icon. The Select Assertion dialog box will open 
as shown in the following screenshot:

3. You can find all assertions provided by soapUI in the preceding dialog box. 
During the course of this book, we will cover most of these assertions. In this 
example, let's use a few simple assertions.

Not SOAP Fault assertion
First, let's check whether we get a valid SOAP response instead of a fault. For that, 
we need to add a Not SOAP Fault assertion which evaluates the response to check 
whether it is a SOAP Fault or a valid SOAP response. If the response is a SOAP Fault, 
the TestStep will be marked as failed. To add a Not SOAP Fault assertion, perform 
the following steps:

1. Select Not SOAP Fault assertion from the Select Assertion drop down and 
click on OK.



Chapter 4

[ 85 ]

2. Execute the RoomManagementService TestSuite again. This time the status 
of the TestSuite will be marked as failed in a red color. You will also notice 
that the reason for the TestSuite failure is the addRoom TestCase.

3. Select the addRoom TestCase and open the addRoom TestStep. The 
assertion result will be given at the bottom of the TestStep result view  
as shown in the following screenshot:

4. As you can see, we got a SOAP Fault as we tried to add an existing room to 
the system. We added an assertion, Not SOAP Fault, to check whether the 
response is a SOAP fault or not. In this case, the assertion evaluated the test 
to be failed as the response was a fault.

5. We know that if we execute this particular TestSuite again and again without 
any modification, we should get a SOAP Fault as we did earlier. Now, let's 
check whether we get the correct fault string in SOAP Fault. In order to check 
that, we can use multiple assertions. We will use XPath Match assertion first.



Working with Your First TestSuite

[ 86 ]

XPath Match assertion
An XPath Match assertion is used to compare the result of an XPath expression with a 
predefined value. We are going to check the SOAP response of the addRoom TestStep 
to evaluate whether it contains the expected fault string in case of a SOAP Fault.

1. In the same addRoom TestStep which we just used, select the XPath Match 
assertion from the Select Assertion dialog box.

2. Specify the XPath expression and expected result as follows:
 ° XPath Expression: //soapenv:Fault/faultstring
 ° Expected Result: Room already Exists

The XPath Match Configuration window will look like the following 
screenshot:

3. When you specify the XPath expression as shown in the preceding 
screenshot, make sure to declare any namespace prefix which you  
use in the expression. In our case, we declare the namespace prefix  
of soapenv as follows:
declare namespace soapenv="http://schemas.xmlsoap.org/soap/
envelope/"



Chapter 4

[ 87 ]

4. Note that all namespaces must be declared before they are used in 
the XPath expression.

5. If you are adding an XPath assertion based on a valid response message, the 
namespaces can automatically be declared by selecting the Declare button in 
the XPath expression editor. soapUI adds all namespace declarations of the 
current message to the XPath expression.

6. You can specify the expected result of the evaluation of the XPath expression 
in the Expected Result editor. According to the SOAP Fault message in 
our example, the expected output of the //soapenv:Fault/faultstring 
expression is a string value, Room already Exists.

Similar to the namespace declaration, if you specify the expected 
result based on a valid response message, the result can 
automatically be retrieved by clicking on Select from current 
button in the Expected Result editor. soapUI evaluates the XPath 
expression which is specified in the XPath expression editor 
against the current message and returns the expected result.

7. After configuring the XPath expression and the expected result, click on Save 
to add the new assertion into the addRoom TestStep.

8. Execute the RoomManagementService TestSuite again. In the addRoom 
TestStep, you could observe two assertion results; a Not SOAP Fault 
assertion with a failed status and an XPath Match assertion with a pass state.

9. Here, the XPath Match assertion has been evaluated to true, as we got a 
SOAP Fault with the fault string, Room already Exists.

10. We have added two assertions for the addRoom TestStep. We have tested 
both of them for the failure case. If we execute this TestStep again with a 
new room number value, we will get a failure for XPath Match assertion as it 
checks the content of a SOAP Fault message. For now, just disable this XPath 
assertion by right-clicking on the assertion.

11. You can add another XPath assertion to check the success case of our test.  
For that, you can simply check the content of the SOAP response by an 
expression as follows:

 ° XPath Expression: declare namespace ns='http//sample.com/
reservation/room/types';

//ns:addRoomResponse/ns:return

 ° Expected Result: true



Working with Your First TestSuite

[ 88 ]

The Contains assertion
The Contains assertion is another simple and straightforward assertion which 
can be used to verify the existence of some text in response messages. Let's add a 
Contains assertion to the getRoomDetails TestStep in our example by performing 
the following steps:

1. In the getRoomDetails TestStep, select the Contains assertion from the Select 
Assertion dialog box.

2. The Contains Assertion dialog box will be shown where we can specify the 
content to be checked in response.

3. The response of getRoomDetails can always contain a string value, 
Standard, Luxury or Suite depending on the room type. Therefore, we can 
check the existence of those strings using a regular expression as follows:

 ° Regular Expression: (?s).*(Standard|Suite|Luxury).*

The Contains Assertion window would look like the following screenshot:

4. In the Contains assertion, the content which we look for can either be a 
string value or a regular expression. If we use a regular expression as in this 
example, we must check the Use token as Regular Expression check box, 
otherwise the expression we specify as the content will be considered as a 
pure string value.

5. Execute the RoomManagementService TestSuite again with a new room 
number. The getRoomDetails TestStep will be marked as passed.

6. We have done some preliminary modifications in our first TestSuite. 
However we are not done yet. We have not executed our whole test scenario 
yet. Before doing that, let's discuss another important construct in soapUI 
functional tests – properties.



Chapter 4

[ 89 ]

Adding properties to soapUI tests
Properties can be considered as place-holders in a soapUI project. Properties are used 
to parameterize the execution of tests. In soapUI, properties can be defined at many 
levels in a project. You can define the properties which are common to your project 
at the project level. TestSuite and TestCase specific properties can be defined at their 
respective levels. Let's dive into the details of properties with our example project.

In our project, the project specific properties can be defined in the Custom Properties 
tab as shown in the following screenshot:

For example, we can define a property called Test at the project level as shown in the 
preceding screenshot. This property can be accessed from anywhere in our project 
through property expansions. For example, ${#Project#Test}.

A property can also be considered as a variable in a computer program. If we want 
to define something which can be used somewhere else, we can use properties. 
Therefore, in our sample HotelReservation project, we can make use of the 
properties at various levels.

We have organized our project into TestSuites, and each TestSuite deals with one 
web service. So, the web service specific properties can be defined at the TestSuite 
level by performing the following steps:

1. Select RoomManagementService TestSuite in the left-hand side menu in 
our soapUI project. You would observe the Test Properties tab at the bottom 
where we can define custom properties specific to the TestSuite.

2. In RoomManagementService TestSuite, we have three test cases and 
three test steps. In all these elements, we send the SOAP request message 
to a common web service endpoint. Also, the web service endpoint 
always consists of the following format :http://<host>:<port>/axis2/
services/<serviceName>.



Working with Your First TestSuite

[ 90 ]

3. Without repeating this everywhere in our TestSuite, we can easily define 
some properties at the TestSuite level so that in case the service is moved 
into a different host or different environments, or the port or service name is 
changed, we do not need to change these in all the references in our project. 
We can simply change the value of properties.

4. Add three properties under RoomManagementService TestSuite as follows:
host = localhost
httpport = 8080
servicename = RoomManagementService

5. Now, we can access these properties through property expansions from 
anywhere in our TestSuite. For example, go to each of the three TestSteps 
and open the associated requests, addRoom, getRoomDetails, and 
deleteRoom. Go to the Test Properties tab of the request and edit the 
endpoint (or you can choose the [edit current..] option from the endpoint 
URL) as: http://${#TestSuite#host}:${#TestSuite#httpport}/
axis2/services/${#TestSuite#servicename}.

Reading property values from a file
Usually, the properties are managed externally to the projects so that the property 
values can be updated without affecting the project settings. In soapUI, without 
defining the property value at the TestSuite, TestCase or TestStep level, we can read 
them from an external file. To read the properties from an external file, perform the 
following steps:

1. Go back to the Test Properties section under the RoomManagementService 
TestSuite.

2. Remove the existing values of all three properties.
3. Create a file called roommgtservice.properties in the filesystem. 

The content of the property file can be key-value pairs as follows:
host=localhost

httpport=8080

servicename=RoomManagementService

4. Click on Loads property values from an external file icon which appears at 
the Test Properties tab as shown in the following screenshot:



Chapter 4

[ 91 ]

5. The Load Properties dialog box will be opened. Browse for the 
roommgtservice.properties file (the one just created) in your filesystem 
and click on OK.

6. If the properties are loaded successfully, a message will be prompted as: 
Added/Updated 3 properties from file.

7. Replace the endpoint URL with the property expansions as we did earlier. 
Execute a TestStep (for example, getRoomDetails) and see the HTTP 
headers. You will notice that the endpoint URL is constructed by reading  
the properties from the file.

Note that the preceding property values are not dynamically loaded 
from the property file into the soapUI project. If you make an update in 
the property file, you should reload the file in order to reflect the change.

Transferring property values between 
TestSteps
Think about a scenario where you need to extract some value from a response 
message and include it in the subsequent request(s). In such a case, we need to have 
a mechanism to retrieve a specified value and transfer it to the other elements of the 
project. soapUI brings this functionality through the Property Transfer TestStep.

Let's walk through our sample project to understand this important feature. 
We still have not associated TestSuites for GuestManagementService and 
ReservationService. In order to complete our end-to-end room reservation 
scenario, let's add TestSuites for both these services by performing the  
following steps:

1. As we did in the Creating a TestSuite section, add two TestSuites, one each 
for GuestManagementService and ReservationService.

2. Now, you will have three TestSuites with each having three TestCases.



Working with Your First TestSuite

[ 92 ]

3. Add a new room by executing the addRoom TestCase of the 
RoomManagementService TestSuite. Specify the room details 
as follows:
room_number=201
room_type=Suite
room_size=Double

4. Add a new guest by executing the addGuest TestCase of the 
GuestManagementService TestSuite. Specify the following details 
for the new guest:
name=saman
address=Colombo
age = 32

5. Now, we need to reserve a room for the new guest by invoking 
ReservationService. We can do this by executing the addReservation 
TestCase of the ReservationService TestSuite. You can specify the following 
inputs in the addReservation SOAP request:
Room Number=201
Guest Name=Saman
Reserved From = 2012-01-25
Reserved To = 2012-01-27

What are we going to do here? We have implemented the reservation service in 
a way so that we would use it to explore some interesting features in soapUI. 
Therefore, let's assume the checkout procedure of our system is as follows:

The new guest Saman has requested to check out from the hotel. The reception of the 
hotel finds out which hotel room was occupied by the guest. Then they access our 
hotel reservation application and do a web service call to get the reservation details 
associated with the room number. Then, the hotel staff verify that the guest had 
occupied the specified room, the check-in and check-out dates, and so on.

Finally, the hotel staff remove the associated reservation record.

Think about this scenario with the web services we used in our system. The details 
associated with a reservation is obtained by calling the getReservationDetails 
operation of ReservationService. In order to remove the reservation from the 
system, we will call the removeReservation operation. The removeReservation 
operation can only be invoked with a reservationID. The reservationID is an 
auto generated identity primarily used as the key of a particular reservation. By 
invoking the getReservationDetails operation, we can get the reservationID 
and then use that particular ID to invoke the removeReservation operation.



Chapter 4

[ 93 ]

As a tester of this system, you can manually call each of these operations and do 
what is necessary. But how should we use soapUI to correlate the requests and 
responses like these?

Our objective is to execute getReservationDetails TestCase and extract the 
reservationID from the response, then use that reservationID value in 
removeReservationTestCase. So, we are going to define a property which is 
common to both getReservationDetails TestCase and removeReservation TestCase. 
The ideal place to define this property is at the TestSuite level. To achieve this, 
perform the following steps:

1. Select ReservationService TestSuite from the soapUI project tree and click 
on the Test Properties tab.

2. Add a new property resID and keep the empty value.
3. Now, select the getReservationDetails TestCase. We are going to create a 

Property Transfer TestStep which will be used to transfer a specified value 
from a previous TestStep to the subsequent requests. Right-click on the 
TestStep element and select Add Step | Property Transfer.

4. You will be asked to specify a name for the step. Enter Reservation 
Property Transfer.

5. The Reservation Property Transfer window will be opened for us to 
add one or more transfers as shown in the following:



Working with Your First TestSuite

[ 94 ]

Here, in the property transfer window, the left-hand side pane lists down the 
transfers configured in this TestStep. Let's add a new transfer and discuss the 
rest of the features associated with it.

6. Click on the Adds a new property transfer icon at the top-left corner in the 
preceding property transfer window. You will be prompted to enter a name 
for the transfer. Enter ReservationIDTransfer.

7. Once the transfer is created, you can use Source and Target panes to specify 
the relevant XPath expressions to extract and replace property values. First, 
let's have a look at the Source pane. In the drop-down box next to Source, 
you can see various levels of soapUI projects which can be used as the source 
of property transfers. By default the closest TestStep will be shown. In our 
case, it is the getReservationDetails TestStep. The drop-down list next to 
Property shows the source property which is used in the transfer, which can 
either be request, response, or service endpoint.

8. We will select Response as we need to extract the reservationID from the 
response message. The Source pane would look like the following screenshot:

9. Now, we need to specify the XPath expression to extract a value from the 
getReservationDetails SOAP response. The response will be similar to 
the following:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
   <soapenv:Body>
      <ns:getReservationDetailsResponse xmlns:ns="http//sample.
com/reservation/res/types">
         <ns:return xsi:type="ns:Reservation" xmlns:ax25="http://
exception.reservation.sample.com/xsd" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance">
            <ns:guestName>saman</ns:guestName>
            <ns:reservationID>16</ns:reservationID>
            <ns:reserved_from>2012-01-25</ns:reserved_from>
            <ns:reserved_to>2012-01-27</ns:reserved_to>
            <ns:roomNumber>201</ns:roomNumber>
         </ns:return>
      </ns:getReservationDetailsResponse>
   </soapenv:Body>
</soapenv:Envelope>



Chapter 4

[ 95 ]

As we already have this response in soapUI (if not, run getReservationDetails 
TestStep once), we can declare namespaces associated with the XPath 
expression by clicking on the ns icon on the toolbar of the property transfer 
window. Once you are done with it, specify the XPath expression as  
//ns:getReservationDetailsResponse/ns:return/ns:reservationID.

10. Now, we need to specify the target where we want to transfer the value 
extracted from the above XPath expression. We can use the Target pane at 
the bottom of the property transfer window for that.

11. Similar to the Source, we can select one of the levels of the soapUI project to 
which the property value must be transferred to. In our example, we need 
to transfer the property value to the resID property which we have defined 
at the TestSuite level. Select ReservationServiceTestSuite as the Target 
and select resID from the drop-down list next to Property. With this, our 
property transfer configuration will be like the following screenshot:



Working with Your First TestSuite

[ 96 ]

In soapUI, the properties can be transferred to various targets based 
on the requirement. If we want to transfer the extracted value from 
a response to the subsequent requests, then we can specify the 
XPath expression of the request as the target.
But in our example, we do not transfer the reservationID 
to another request in the same TestCase. Instead, we extract 
a value from a TestStep in getReservationDetails TestCase 
and pass it to the removeReservation TestStep which is inside 
removeReservation TestCase. In other words, we do not pass 
property values in between TestSteps in the same TestCase level. 
Because of this reason, we created a property which is common to 
both TestCases and assigned the property a value.

12. We have completed the property transfer settings. Now, we can parameterize 
the value of the <typ:reservationID> element in removeReservation SOAP 
request to read resID TestCase level property from the preceding property 
transfer. To do that, update the removeReservation SOAP request of the 
removeReservation TestCase as follows: 
 <typ:reservationID>${#TestSuite#resID}</typ:reservationID>

13. Select the ReservationTestSuite and click on the run icon in the detailed 
TestSuite view (Make sure to disable addReservation TestCase since 
we have already added the same reservation previously). You will see 
that all TestCases will be executed. Have a look at the Test Properties 
tab at the TestSuite. You will notice that a value is assigned to the resID 
property, which is the autogenerated reservationID given in the 
getReservationDetails response.

We went through all the services in our sample hotel room reservation system and 
explored various functional testing features of soapUI. As an exercise, you could put 
all those together and create a comprehensive TestSuite with various assertions and 
try on your own.



Chapter 4

[ 97 ]

Summary
Functional testing is a key for a success of any software development project. We can 
do functional testing manually or using automated tools. soapUI provides users with 
support for functional testing through various approaches. In this chapter we looked 
at building our first functional TestSuite to test the sample application which we 
developed in Chapter 2, The Sample Project. We discussed the basic constructs of any 
soapUI project, TestSuites, TestCases, and TestSteps. We made use of different types 
of assertions to verify the output of the tests. Finally, we looked into the soapUI 
properties and the transferring of property values between requests and responses.

The next chapter will be an extension of this and we are planning to discuss some 
advanced topics of web services testing using soapUI.





Load and Performance  
Testing with soapUI

Web services testing cannot be concluded merely focusing on the functional aspects 
of the system. It is always required to do an assessment about the non-functional 
requirements expected from a service-oriented solution. Regardless of the architectural 
style being used, non-functional aspects must be fulfilled by a system. No matter how 
intuitive the user interface of your application is, if it counts in minutes to load the 
pages or crashes when multiple users access it, your users will not think again to use 
such an application. In most of the situations, non-functional requirements such as 
performance and scalability are validated using tools. soapUI, being the de-facto utility 
for functional testing of service oriented solutions, can also be used in non-functional 
testing. There are some key advantages of using soapUI over other open source tools, 
such as Apache Jmeter, for non-functional testing:

• Without redesigning separate tests for non-functional testing, soapUI allows 
you to extend the existing functional TestCases as load tests and execute 
them with a minimum set of configurations

• soapUI provides us with set of pre-built load testing strategies which can be 
used out of the box in non-functional testing

• soapUI can seamlessly be integrated into loadUI (http://www.loadui.org/), 
which is a complete open source load testing solution

We will examine the following topics in this chapter:

• Introduction to the performance testing aspects of web services
• Planning for web service performance testing
• Working with load tests in soapUI
• Performance test statistics and reporting in soapUI
• Using load test assertions



Load and Performance Testing with soapUI

[ 100 ]

Non-functional testing of web services
There are multiple non-functional requirements expected from the web services 
which are included in your SOA. A few of these non-functional aspects can be:

• Scalability
• Usability
• Performance
• Extensibility
• Reliability

Web services are dealt with relatively complex XML message processing. As one of 
the promises of using web services is to communicate with heterogeneous systems, 
there are a lot of heavy XML serialization/de-serialization tasks used. These 
complexities multiply by greater levels when the messages are enriched with various 
Quality of Service (QoS) options such as the WS-* headers. For example, when 
SOAP messages are secured with message-level security policies such as encryption, 
the SOAP engine has to process all security headers in addition to the raw SOAP 
message in order to dispatch the message to the correct method of the service 
implementation class. With these facts, we can argue that there can be a considerable 
slowness introduced by SOAP web services. Because of that, it is essential to test the 
non-functional aspects such as performance and scalability of web services before 
moving them into production.

When testing a service-oriented solution, it is of utmost importance to test your web 
services individually to assess both functional as well as non-functional requirements. 
Before integrating the web services with the rest of the consuming applications or 
other web services, you should carry out sufficient level of non-functional testing. In 
most cases, when you publish a web service for consumers, you are expected to define 
a valid Service-level Agreement (SLA). Hence, it is important to do performance 
or scalability tests with individual web services beforehand and verify whether the 
published SLA figures are realistic and achievable.

We can identify many reasons for the poor performances of web services and 
service-oriented solutions. These include the following:

• Issues of SOA middleware used in your solution
• Architectural and design issues of web services
• Issues of message routing and transform rules



Chapter 5

[ 101 ]

Your overall service-oriented solution can fail and underperform if you choose an 
SOA middleware which itself suffers from various performance drawbacks. Even 
if your middleware vendor advertises attractive figures about performance, you 
should do a comprehensive set of non-functional testing in your SOA with the 
selected middleware stack.

Even if you use the best commercial or open source SOA middleware stack, if you 
design the solution wrong, you will experience a lot of performance drawbacks. If 
the WSDL of the web service is not designed correctly or the service implementation 
is not done appropriately according to the volume of messages transferred in your 
system, you can expect various performance issues.

Performance degradation of a service-oriented solution is not resulted merely due 
to the web services. As we discussed in Chapter 1, Web Services Testing and soapUI, 
the configurations used in other key building blocks of an SOA, such as broker and 
process coordinator, can also contribute to the performance problems. If there are 
routing algorithms which are not tuned properly, the overall throughput of message 
processing in your solution can be affected.

Performance testing
Out of the various non-functional requirements, which we have discussed above, our 
focus will be on performance testing during this chapter.

As defined on Wikipedia (http://en.wikipedia.org/wiki/
Software_performance_testing), performance testing is in 
general testing that determines how a system performs in terms of 
responsiveness and stability under a particular work load.

Load testing is a specific form of performance testing that is conducted to assess the 
behavior of the system under a specific load. In soapUI, though we generally use 
the term "load testing" for all types of non-functional testing, we can do all types of 
performance assessments of web services such as load, stress, and endurance.



Load and Performance Testing with soapUI

[ 102 ]

Planning for web service performance 
testing
As with any types of testing, performance testing must also be planned properly in 
order to achieve the correct results. Web service performance test planning can be 
described in a set of steps, as follows:

• Identify the expected performance requirements
• Study the service contract
• Analyze service integration scenarios
• Identify message volume, size, and transmission rate

The expected performance requirements can be specific to your needs. For example, 
your SLA of a web service includes a phrase stating that the published web service 
must serve the consumer within 5 ms at peak hours, or the service should be 
available (up and running) 99.99 percent of the time. Depending on the SLA, you 
should plan for what types of performance tests need to be done. If the SLA defines 
99.99 percent up time, you must plan for a sufficient round of endurance tests to 
make sure there are no memory leaks or threading issues when the service runs over 
a long period.

One of the major promises of using web services in SOA is to achieve loose 
coupling through well-defined interfaces. As we have discussed in previous 
chapters, the web service contract, WSDL plays a major role in your SOA. The 
performance of your web services are directly related to the design constraints 
of the WSDLs. Therefore, it is important to study the message exchange patterns, 
operations, bindings, and transports defined in the WSDL to decide the most 
appropriate performance testing mechanism. 

Though it is recommended to start with assessing the performance of individual web 
services first, we cannot expect that the web services stay alone as silos in a typical 
service oriented solution. One web service can be consumed by multiple applications 
in various different ways. We need to identify these integration patterns when 
deciding the performance testing approaches.

There can be multiple types of message exchanging between web services. SOAP, 
pure XML messages or JSON messages can be a few examples. Even with one 
particular message type, there can be different payload sizes. Some messages can 
transmit large binary attachments. Some can include custom SOAP or HTTP headers. 
Millions of messages can be consumed by web services per day. Likewise, we need 
to have a good understanding about message consumption and volume in web 
services when planning performance tests.



Chapter 5

[ 103 ]

Using soapUI for performance testing
Let's look at how soapUI can help to achieve the performance objectives of your 
web services. As we discussed above, performance testing of web services is not just 
running SOAP or XML messages in a loop to overload the service. It should be a 
well-planned activity which must be aligned with the performance expectations of 
the overall service-oriented solution. As soapUI supports multiple message formats 
such as SOAP and JSON through a single interface, you can run multiple types of 
performance tests. In your SOA, you can have different types of services, some with 
pure SOAP, some with JSON, and some with plain old XML over HTTP. You do not 
want to maintain completely different test scripts or tools to verify performance of 
web services, which consumes different message types. soapUI allows you to have 
everything in a common place and maintain tests from a single interface.

Once your service is secured with a WS-Security policy such as token authentication, 
soapUI allows you to extend your functional security tests to performance tests in 
no time. This helps you to assess the performance impact on your services after 
applying WS-Security policies.

Also, soapUI allows users to configure various load testing options such as 
introducing delays in between threads to simulate real-world use cases and run tests 
in burst mode to stress test services.

We will look into how soapUI can be used in performance testing in the following 
sections. As we did before, we will be proceeding with our sample hotel reservation 
application and discuss various performance testing aspects provided by soapUI.

Working with load tests in soapUI
In Chapter 4, Working with Your First TestSuite, we created a TestSuite for the 
RoomManagementService interface. Similarly, create another TestSuite for 
GuestManagementService and name it GuestManagementServiceTestSuite. 
We are going to load test the getGuestDetails operation in the GuestManagement 
service. To do this, follow these steps:

1. In HotelReservationProject, select the getGuestDetails TestCase under 
GuestManagementServiceTestSuite. You will notice the Load Tests (0) 
node there.
Right-click on it or press Ctrl + N to create a new load test. You will be 
asked to enter a name for the load test; specify getGuestDetailsLoadTest 
as the name.



Load and Performance Testing with soapUI

[ 104 ]

2. The detailed view of getGuestDetailsLoadTest will be opened as shown in 
the following screenshot. There is only one TestStep, getGuestDetails, in 
the load test. This is because the getGuestDetails TestCase includes a single 
TestStep. If your TestCase contains a number of different TestSteps such as 
SOAP requests, property transfer, and JDBC requests, all of them will be 
added automatically to the corresponding load test.

Let's run this test with the default option and look at the results. You can execute the 
test by clicking on the green arrow icon at the load test toolbar. When you start the 
test, the progress will be indicated at the upper-right corner. 

Limit of a load test
Limit defines the load test execution interval. There are two variables for limit; the 
limit value and limit type. In the 4.0.1 Version of soapUI, there are three limit types; 
Total Runs, Seconds and Runs per Thread, as shown in the following screenshot:



Chapter 5

[ 105 ]

The Total Runs limit type is used to set the number of times the TestCase needs to 
be executed during each load test run. If we set 60 total runs, you will notice that the 
TestCase is executed 60 times. Therefore, if a particular TestCase has N TestSteps, all 
N steps will be executed 60 times.

If we set the limit type as Seconds, the test will be run till the specified time is over. 
If we set 60 seconds as the limit, the test will be over in one minute. Once the test is 
started, you can see a log similar to the following in the load test log which is at the 
bottom of the load test window:

LoadTest started at Sat Mar 31 14:21:25 IST 2012

Once the test is finished, the following log message will be shown:

LoadTest ended at Sat Mar 31 14:22:25 IST 2012

This implies that if you select the limit in seconds, the test will be run for the 
specified duration.

The individual message-specific logs that print in the soapUI log 
are disabled during load tests to preserve memory and resource 
usage. You will notice the INFO:Disabling logs during 
loadtests message in the soapUI log when running load tests.

The Runs per thread limit type can be used to set TestCase runs per threads as 
needed. For example, if we set the limit as 5 runs per thread and the thread count is 
2, TestCase will run 10 times.

Threads in a soapUI load test
Threads act as virtual users in a load test. If the thread count is set as N, soapUI 
creates N number of clones of the associated TestCase and executes them. You can 
set as many threads as required based on the capability of handling resources of the 
system in which soapUI runs on.



Load and Performance Testing with soapUI

[ 106 ]

Load test strategies of soapUI
SoapUI allows you to simulate different types of load on web services using multiple 
load test strategies. In the free version of soapUI 4.0.1, we can identify the following 
types of load test strategies:

• Simple
• Burst
• Thread
• Variance

Each of these strategies has corresponding strategy type variables such as Test Delay 
and Random, as shown in the following screenshot:

Simple load strategy
The default load test strategy of a soapUI load test is simple. In our 
getGuestDetailsLoadTest example, we made use of the simple strategy. In simple 
strategy, Test Delay defines the delay between each test run. Random is used to 
set the relative amount of randomization for test delay. If Test Delay is 1000 ms 
and Random is 0, each test will be executed in intervals of 1 second. If Random 
is 1, all tests will be executed in random delay between each other relative to the 
Test Delay value.

Let's summarize the simple load strategy using our getGuestDetailsLoadTest 
example. Set the load test parameters as follows:

• Threads = 2
• Strategy = Simple
• Test Delay = 5000
• Random = 0
• Limit = 30 seconds

Now, run the test and observe the results. You will notice that the cnt value (total 
number of times a TestStep executed) is increased by 2 in intervals of 5 seconds. As we 
have defined two threads, getGuestDetails TestCase will be executed by these two 
threads at 5 second intervals (the test delay is 5000 ms and there is no randomization). 



Chapter 5

[ 107 ]

First you will notice that the cnt value is 2 as two threads started immediately. Then 
after 5 seconds, cnt will be 4. Likewise the TestCase will be executed in 5 second 
intervals by two threads for 30 seconds. If we set Random as 1, all test runs will be 
executed with a random delay between each other.

The simple load strategy is ideal for web service benchmarking. 
With the Random value set to 0 , you can assess the performance of 
your web service in successive SOA middleware version upgrades or 
web service updates, and check whether there are any performance 
degradation issues due to version upgrades.

You can also carry out stress tests with a simple load strategy. By setting no 
randomization and Test Delay as 0, you can simulate a burst in the target web service. 

Burst load strategy
Burst load strategy can be used to generate a rapid load on the target web service. 
With this mode, TestCases are executed in bursts without a pre-defined delay 
between each of them.

If you change the load strategy to burst, the associated load strategy parameters are 
displayed at the right as shown in the preceding screenshot. Burst Delay represents 
the delay between bursts. In our example, the burst delay is set to 60 seconds, which 
means there will be a 1 minute delay in between each burst run. Burst Duration is 
used to define the number of seconds that the burst runs on the target service. We 
have defined 10 seconds for the burst. In other words, soapUI goes into sleep mode 
during the 60 second burst delay and does not send any requests to the target web 
service. After 60 seconds, the configured number of threads will start to run and 
generate a sudden traffic for 10 seconds (burst duration).

Let's run the test and observe the results. Make sure you have set the burst mode 
load testing parameters as follows. It is important to set enough thread count for 
burst mode as we want to generate a relatively large traffic in a short period of  
time on the target service.

• Threads = 100
• Strategy = Burst



Load and Performance Testing with soapUI

[ 108 ]

• Burst Delay = 60 seconds
• Burst Duration = 10 seconds
• Limit = 300 seconds

You will notice that, as you start the test, there will be no updates on traffic for 60 
seconds. After 60 seconds, you will notice a sudden increase of message count (cnt) 
which will last for 10 seconds. Next, there will be another 60 seconds sleep time. This 
will continue for 5 minutes.

The recommended stress testing approach is to use burst mode in 
soapUI load testing. You can overload the web services and find out 
breaking points in your services by using burst load testing strategy.

Thread load strategy
Thread load strategy is another useful approach for simulating load. In this strategy, 
the thread count will be increased gradually from start threads values to end threads 
values. If you want to monitor the behavior of web services with an increasing 
thread count, this approach is ideal:

Let's reconfigure our sample getGuestDetailsLoadTest with the thread strategy:

• Threads = 10
• Strategy = Thread
• Start Threads = 1
• End Threads = 10
• Limit = 60 seconds

As the limit value is set to 60 seconds and the start and end thread values are 1 to 10, 
we can assume that each thread runs for at least 6 seconds. Run the test and monitor 
the behavior. While the test is running, you could observe that the Threads value at 
the left of the strategy bar is increased from 1 to 10 in intervals of nearly 6 seconds.



Chapter 5

[ 109 ]

Variance strategy
As the name implies, this strategy varies the number of threads over time. Within a 
defined interval, the number of threads will decrease and increase as per the given 
variance value simulating a more realistic load on the target web service.

We can look at the behavior of our load test with variance strategy. Reconfigure 
getGuestDetailsLoadTest with the following values and run the test:

• Threads = 10
• Strategy = Variance
• Interval = 60
• Variance = 0.5
• Limit = 60 seconds

Once you start the test, the thread count shown at the upper-left corner of the 
strategy bar will be increased from 10 to 15, within 12 seconds. Next, the thread 
count will be decreased to 5. Finally, the test will be completed with the original 
thread count (10). The thread count varied by 5 since we set the variance value as 0.5.

As we have used direct JDBC calls without optimizing queries 
in our sample hotel reservation system, you may encounter 
JDBC errors such as com.mysql.jdbc.exceptions.jdbc4.
CommunicationsException when stress testing the system 
with an increased number of threads. Adjust the thread count 
to a relatively small value in order to avoid these failures while 
trying out samples in this chapter.

Note that, though we have changed the same test with different strategies for the 
sake of demonstration, you can have four different load tests, each with a different 
load strategy. Then you can run all of these load tests sequentially to generate 
extensive load on the system.



Load and Performance Testing with soapUI

[ 110 ]

A closer look at the load test report and 
statistics of soapUI
We have already seen the load test results produced by soapUI under different load 
strategies. However, we did not discuss what each of the figures is and the usage of 
different statistics graphs. In simple words, after each load test execution, soapUI 
produces a statistics table with the following fields for each TestStep as well as 
summary for the overall TestCase:

• min: This defines the minimum response time taken by TestStep
• max: This defines the maximum response time
• avg: This defines the average response time
• last: This defines the average response time for the last run
• cnt: This defines the total number of times a TestStep has been executed
• tps: This defines the number of transactions per second
• bytes: This defines the total bytes transferred
• bps: This defines the bytes per second
• err: This defines the number of errors occurred
• rat: This defines the percentage of failed requests

You could run multiple load tests with different strategies and collect the statistics 
such as tps, bps, and avg and use them as baseline performance metrics for your 
web services.

In addition to the statistics table, you will find the LoadTest Log tab at the bottom 
of the load test window, as shown in the following screenshot. In this, we can filter 
the load test results by types and TestSteps. We can either filter out log messages or 
status of the TestStep execution. You can right-click on each of the failed TestSteps 
and select the Show Message Exchange option to look at the request and response 
messages to debug the failures. If your load test includes multiple TestSteps, you can 
view the log of individual TestSteps at the right corner of LoadTest Log toolbar. You 
can do this by choosing the relevant step from the Show Steps drop-down menu.



Chapter 5

[ 111 ]

By default, soapUI load tests generate two useful statistics graphs based on the 
test results included in the statistics table. A statistics graph is used to show the 
variations of statistics such as tps and bps of a load test as the test progresses. A 
statistics history graph shows the accumulated statistics of the load test. Let's run 
getGuestDetailsLoadTest with the thread strategy using 1 to 20 threads in 5 minutes 
and see the statistics graph. The result will be as follows:



Load and Performance Testing with soapUI

[ 112 ]

If you look at the statistics graph with the default options, you can clearly observe 
how the average response time and the TPS and BPS values change as the thread 
count increases. If your TestCase includes more than one TestStep, the statistics 
relevant to the particular TestStep can be filtered by the Select Step drop-down 
menu at the upper-left corner of the statistics toolbar.

The Resolution drop-down menu is used to set the frequency of updating the 
statistics graph. The default value, data updates the graph with same interval as the 
statistics table. You should also keep in mind that the statistics graphs show relative 
data and do not display the exact statistics related to the TestCase executions. 
Therefore, if you want to analyze the exact statistical figures, you should use the 
corresponding statistics table. The graph can be used to visualize the variations of 
service performance.

You can also export the statistics data into a file and refer to it later. In statistics 
toolbar of load test window, there is an option to export statistics to a file. This 
is available in the statistics table as well as both history and statistics graphs. If 
you export the data, it will be saved as a CSV file so that you can use any tool to 
manipulate the graphs or analyze results as you wish.

Using load test assertions in soapUI
Assertions are compulsory for automated tests regardless of the nature of the tests. 
As we used many assertions in functional testing, we must use the appropriate 
assertions for non-functional tests. soapUI allows you to configure assertions to 
verify the performance of web services under test. In this section, we are going to 
look at how different types of load test related assertions can be used.

soapUI provides us with five different assertions to use inside load/performance 
tests. These are as follows:

• Max Errors
• Step Average
• Step TPS
• Step Maximum
• Step Status

You can configure load test assertions using three different approaches:

• Select the LoadTest Assertions tab at the bottom of the load test editor. 
Then, you can add assertions by selecting the add assertion icon at the top  
left corner of the LoadTest Assertions tab.

• Right-click on the LoadTest Assertions tab and select Add Assertion.



Chapter 5

[ 113 ]

• Right-click on the individual TestStep of the statistics table and select Add 
Assertion. You will see the Add Assertion window as follows:

The Max Errors assertion
The Max Errors assertion can be used to verify whether the associated TestCase or 
TestStep does not exceed the given max absolute errors or max relative errors count. 
If you select the Max Errors assertion from the Add Assertion selection box, the 
corresponding assertion dialog will be opened where you can specify the options 
for the assertion. In the Max Errors assertion, you can specify a user-friendly name 
to uniquely identify the assertion. Max absolute errors can be used to define the 
maximum number of errors that the test can accept before failing.

Configure the options in the Max Errors assertion as follows for our sample 
getGuestDetailsLoadTest:

• Max absolute errors = 30
• Max relative errors = 1
• TestStep = Any

Start the test and after few seconds stop Axis2Server.sh so that some of the 
TestSteps will fail. When the error count exceeds 30, an error message will pop up:

LoadTest failed; Maximum number of errors [30] exceeded for step 
[getGuestDetails]

Note that we have set the Max relative errors value to 1, so that all absolute errors 
will be treated as relative errors. Max relative errors define the percentage of the 
absolute errors and if we want to take all errors into consideration, we can set Max 
relative errors to 1.



Load and Performance Testing with soapUI

[ 114 ]

The Step Average assertion
The Step Average assertion can be used to assert the average step time of a TestStep 
or TestCase in a load test. You need to specify the following options for the Step 
Average assertion:

• Name: This is any user-friendly name.
• Minimum Requests: Before applying the assertion, the number of requests 

that should be processed by soapUI must be specified here.
• Max average: This is the maximum allowed average step time value. If the 

average value exceeds this, an assertion error will be logged.
• Max errors: This defines the maximum number of errors allowed before 

failing the test. If we set -1 as the max errors, the test will not fail on errors 
and the errors will be recorded in LoadTest Log.

• Sample Interval: Step Average cannot be measured by applying an assertion 
to each and every TestStep run. Instead, the assertion is applied at the 
intervals defined in the sample interval field. Suppose the sample interval is 
set to 10, the assertion will be applied on each 10 second intervals to assert 
whether the actual average exceeds the Max average.

Configure the previous options in the Step Average assertion as follows for our 
sample getGuestDetailsLoadTest:

• Minimum Requests: 20
• Max Average: 1
• Max errors: 10
• Sample Interval: 10
• TestStep: getGuestDetails

When you run the load test, an error message will pop up after you get 10 errors as 
shown in the following screenshot:



Chapter 5

[ 115 ]

In the preceding assertion configuration, if you specify -1 as Max Errors, the test will 
not fail. Instead, you will notice the messages similar to the following in LoadTest Log.

Average [15] exceeds limit [1] [thread index=4]

Step TPS assertion
The Step TPS assertion is similar to the Step Average assertion, however it checks 
that a TPS value of a TestStep does not go below a specified value. Let's add a Step 
TPS assertion to the sample getGuestDetailsLoadTest and look at how it works. We 
can specify the following values for the assertion options:

• Name: We can specify any user-friendly name.
• Minimum Requests: Before applying the assertion, the number of requests 

that should be processed by soapUI must be specified here. We will specify 
10 as minimum requests.

• Minimum TPS: Minimum transactions per second value. If the actual TPS 
value of TestStep is lower than this value, an error is logged in LoadTest Log. 
We will set 10 as the minimum TPS value.

• Max errors: Maximum number of errors allowed before failing the test. We 
will set -1 as the max errors, so that the test will not fail on errors.

• TestStep: The target TestStep which needs to be asserted. We will specify 
"Any" as the value to apply the assertion for any TestStep in the load test.

Run the TestCase and check LoadTest Log. You will see error messages such as the 
following in LoadTest Log:

TPS[5] is less than limit[10][threadIndex=1]

The Step Maximum assertion
The Step Maximum assertion is another assertion included in soapUI load tests. It 
can be used to assert the maximum response time of TestStep or TestCase. As we did 
before, we will add this assertion into our sample test and look at the behavior. The 
following are the options associated with the Step Maximum assertion:

• Name: We can specify any user-friendly name.
• Minimum Requests: Before applying the assertion, this is the number 

of requests that should be processed by soapUI. We will specify 10 as 
minimum requests.



Load and Performance Testing with soapUI

[ 116 ]

• Max time: This specifies the maximum response time allowed for the 
TestStep. If the maximum response time exceeds the given Max time value, 
an error is logged in the LoadTest Log. We will specify 5 as Max time.

• Max errors: This defines the maximum number of errors allowed before 
failing the test. We will set -1 as the max errors, so that the test will not fail 
on errors.

• TestStep: This is the target TestStep which needs to be asserted. We will 
specify Any as the value to apply the assertion for any TestStep in the 
load test.

Run the TestCase and check LoadTest Log. You will see error messages similar to 
the following in the LoadTest Log.

Time[11] exceeds limit[5][threadIndex1]

The Step Status assertion
The last load test assertion which needs to be discussed is the Step Status assertion. 
The Step Status assertion is added to any load test by default. This assertion simply 
verifies the execution status of the associated TestCase or TestStep. You will find the 
following options associated with the Step Status assertion:

• Name: This is a user-friendly name to identify the assertion easily.
• Minimum Requests: The minimum requests option determines how many 

requests should be processed by soapUI before applying the assertion.
• Max errors: Maximum number of errors allowed before failing the test. We 

will set -1 as the max errors, so that the test will not fail on errors.
• TestStep: The target TestStep which needs to be asserted. We will specify 

"Any" as the value to apply the assertion for any TestStep in the load test.

Run the test and check Load Test Log. You can introduce a failure by shutting down 
Axis2Server or disconnecting the MySQL database connection.

The Minimum requests option is applicable for most of the load 
test assertions. It is advised to specify an appropriate value for this 
in order to avoid assertion errors during the startup of a load test, 
and allow TestSteps or TestCase to run freely for some time before 
measuring up various figures.



Chapter 5

[ 117 ]

LoadTest options
We can set some options, which are applicable for all TestSteps inside a particular 
load test regardless of the usage of different assertions. By clicking on the LoadTest 
Options icon in the toolbar of the LoadTest window, you can open the LoadTest 
Options dialog box. Some of the important settings included there are:

• Thread Startup Delay: We can introduce a delay in milliseconds before 
starting any thread. The default value is zero therefore there will not be a 
delay when starting threads.

• Close connections between each request: This is to set connections as 
keep-alive. By default, soapUI uses keep-alive connections.

• Sample interval: This is used to specify the time in milliseconds to set the 
interval to collect statistics during a test run. In order to preserve resources  
of the machine which runs soapUI, we need to set an optimum time for the 
sample interval.

We are not going to discuss all settings given in LoadTest options. You can hover the 
mouse pointer over any option and find out the purpose of these options.

Similar to the functional tests, soapUI allows you to specify setup and tear down 
scripts for load tests. Also, there is a set of load test related properties available for 
you to use in scripts.

Also, load tests can be invoked through command-line or shell, allowing you to 
integrate them into continuous integration systems or automated test frameworks. 
We will look into the command-line test runners in Chapter 13, Automated Testing 
with soapUI.

Summary
Non-functional testing is an extremely important activity in any service-oriented 
project. Performance, scalability, and usability are some of the key non-functional 
attributes expected from any application. In this chapter, we looked into the usage of 
soapUI to do performance tests of web services. First, we discussed why it is important 
to consider performance implications in an SOA. We proceeded with describing 
performance test planning of web services. Next, we looked at how soapUI can be used 
for various performance tests with our usual hotel reservation sample project. Finally, 
we discussed LoadTest-specific assertions provided by soapUI.





Web Service Simulation  
with soapUI

Simulation is not specific to the world of web services and SOA. It is coupled with 
most of the industrial scenarios. When manufacturing a new model of your favorite 
motor car, it usually goes through multiple simulations to mimic the representation 
and behavior of the final product. The massive and complex constructions are never 
done without simulations. Similarly, in large service-oriented projects, there are 
many situations where we need to mimic the behavior of web services and other 
entities that comprise the solution. Mock services or in simple terms, mocking, is a 
highly useful and important practice in the development and testing of web services. 
We will cover the following topics in this chapter which are related to the simulation 
of web services in soapUI:

• Mocking in web services testing
• Mock services with soapUI
• Dispatching styles of soapUI mock operations
• Using static and dynamic mock responses 

Mocking in software testing
Before we delve into the details of web service simulation, it will be beneficial to 
discuss the basic use of mocking in software testing.



Web Service Simulation with soapUI

[ 120 ]

If you are familiar with unit testing, mock objects should not be a strange 
term. Specially, in Test-driven Development (TDD), mock objects are used to 
test the functionality of a feature without actually calling the complex and real 
implementation classes. When the objects you are testing rely on other objects or  
are bound with complex environments, it is not always practical to instantiate them. 
Instead, a mock object, which conforms to the interface of the real object, can be 
used to mimic the behavior of the original. For example, when you are building an 
application, which uses a database, you do not want to wait till the database team 
implements the database-specific code. Instead, you would use mock objects to 
simulate the database modules.

The complete explanation of mock objects and TDD is out of the 
scope of this book . You may find Test-Driven Development: By Example 
(http://www.amazon.com/Test-Driven-Development-Kent-
Beck/dp/0321146530) by Kent Beck, a useful reference.

Mocking in web services testing
Mock services come in handy for web services testing in many ways. In simple 
terms, when you do not have access to the real web service, you have no option other 
than to simulate that service. Apart from that, what are the common situations where 
service mocking is highly desired?

Mock services and contract-first web service 
development
You may have remembered that we discussed two SOAP web services development 
approaches in Chapter 1, Web Services Testing and soapUI—code first and contract first. 
Though we followed the code-first methodology when implementing our sample 
web services project during Chapter 2, The Sample Project, the recommended web 
service development practice is contract first. In the contract-first methodology, you 
start from the web service's contract, in other words, the WSDL. Though there are 
many reasons for recommending contract first as the better choice over code first, 
the primary reason is its flexibility. When you start with the service implementation 
class, you cannot guarantee that the auto-generated WSDL remains intact when 
you change your SOAP engine (service container). Also, if you change a method 
signature of the service implementation class, the WSDL will also be changed 
accordingly, which directly affects the consumers of your service. However, if you 
start with WSDL, you can minimize such changes of consumers by introducing 
proper versions for schemas.



Chapter 6

[ 121 ]

In contract-first methodology, the WSDL is written first by gathering the business 
requirements of the web service. Once the WSDL is defined, the service developers 
implement the business logic of the web service. Usually, the SOAP engine (or web 
service development framework) provides the developers with tools to generate the 
service skeleton so that the developers can focus on the business logic.

While the service is being implemented in a preferred programming language, 
deployed in the web service's container, what should the testers do? Do they just 
focus on designing the test cases?

In agile methodologies, we compete with time. There is no time for waiting or idling, 
but every second is spent effectively to be productive. In service-oriented solution 
testing, it is always important to begin the testing cycle as early as possible. Testers 
are not expected to wait till the web service implementation and deployment is over.

Mock services are a great way of getting testing early into the picture of a 
service-oriented project. Once the WSDL of the web service is ready, you can 
simulate the service implementation and start testing the consumer applications.

Simulating services that are not accessible
Regardless of the service development approach (contract-first or code-first), there 
are situations in which some of the web services are not in your control. Due to the 
heterogeneous and distributed nature of the components of SOA, some of your 
services may connect to services which are outside of your organization. Sometimes 
these services are blocked by firewalls. In some cases, these external services are not 
completed though the internal web services are ready for testing. Sometimes, your 
service-oriented solution may integrate with commercial pay-per-use web services. 
For testing, it is not cost effective to use such services. In these and many other cases, 
mock services help you to mimic the behavior of inaccessible, unavailable, or paid 
web services.

Dealing with test environmental restrictions
As we discussed before, early testing is highly desirable in agile testing, specially 
with service-oriented solutions. When building complex SOA-based solutions, which 
has multiple integrations, you cannot confirm the end-to-end functionality of your 
system till all services are deployed and integrated with various sub systems. For 
example, if you want to test a monitoring module of a solution, how do you test it if 
all services are not ready? Or else, if you want to test a message transformation rule 
at the Enterprise Service Bus (ESB) layer, how should you continue testing if the 
associated web service is not available? Mock services can be used to overcome  
these limitations by adding them instead of the real services in test setups.



Web Service Simulation with soapUI

[ 122 ]

In the following sections, we will look into how the MockService functionality of 
soapUI can be used to achieve the above objectives.

Mock services with soapUI
We briefly discussed service mocking in general and the purpose and objectives 
of service simulation. Now, it is time to apply the theory into practice. As we did 
in previous chapters, we will explore the soapUI service mocking features by 
simulating web services in our sample Hotel Reservation System.

soapUI allows you to create a simulation of the web service from its WSDL.  
This simulation is known in a soapUI project as a MockService. A consumer 
application can connect to the MockService as if it is the real web service.

Suppose one of the web services of our sample Hotel Reservation System are 
consumed by some other service-oriented solution. Let's call this solution solution 
B for simplicity. The solution B is almost done whereas the services of our Hotel 
Reservation System are still being implemented. The quality assurance team of 
solution B follows an agile testing approach and they do not wish to wait until all 
services of the Hotel Reservation System are ready. Instead, they are going to create 
mock services to mimic the functionality provided by hotel reservation services and 
continue the testing of solution B.

In this example, we represent the testing team of solution B, so we 
do not have access to any of the web services that we created in the 
previous chapters. However, we do have the WSDLs of those web 
services. Therefore, I assume that you saved a copy of the WSDLs 
of GuestManagementService, RoomManagementService, and 
ReservationService in your filesystem during the previous chapters. If 
not, simply access http://localhost:8080/axis2/services/
GuestManagementService?wsdl through your browser, open the 
source view, and save the file as GuestManagementService.wsdl.

We are going to look into the details of how soapUI assists the testers of solution B  
in service simulation:

1. Create a new soapUI project. Name it HotelReservationMockServices. 
Browse for GuestManagementService.wsdl in your filesystem and enter 
it as the initial WSDL.

2. Accept the default settings and click on OK.
3. Once the project is created, remove the SOAP-1.2 binding as we did in the 

previous samples.



Chapter 6

[ 123 ]

Now, we can create a mock service to simulate the GuestManagementService. 
Before that, we should discuss the MockService model used in a soapUI project so 
that we will have a better understanding when moving further with the examples.

The structure of soapUI MockService
We can identify three basic elements in the soapUI MockService 
model—MockService, MockOperations, and MockResponses.

A MockService can include any number of MockOperations that in turn contain 
multiple MockResponses as shown in the preceding diagram. MockOperations 
represent operations of the WSDL that is imported in the soapUI project. 
MockResponses are the response messages that correspond to those operations. 
When you create a MockService and ask soapUI to run the service, it can act as 
the real web service simulation. As the MockService is created from the WSDL 
of a real web service, the MockOperations are automatically created from the 
<wsdl:operation> element under each binding of the WSDL. As the schema of the 
WSDL contains the definition of the SOAP responses, MockResponses are created by 
soapUI from the respective response elements corresponded to operations.



Web Service Simulation with soapUI

[ 124 ]

Let's create a MockService for GuestManagementService and continue our discussion:

1. Select the HotelReservationMockServices project that we created earlier and 
right-click on the GuestManagementServiceSoap11Binding interface. Next, 
select the Generate MockService option.

2. We do not expect to simulate all three operations in 
GuestManagementService. Hence, select the addGuest and 
getGuestDetails operations as shown in the preceding screenshot.

3. When generating the MockService, we can change the URL where the mock 
service is hosted. By default, the service is hosted in a path which is prefixed 
with the interface name. For example:
/mock<interfacename>

4. soapUI hosts the generated mock service in the embedded Jetty server which 
runs on port 8088. We can change the default port as needed.

5. When you click on OK, as shown in the preceding screenshot, 
you will be asked to enter a name for the MockService. Enter 
GuestManagementMockService.



Chapter 6

[ 125 ]

6. Once the MockService is created, soapUI will show the MockService details 
with the corresponding MockOperations as follows:

MockService details
The MockService Properties tab at the left-hand side pane can be used to edit the 
default properties of the MockService. For example, you can emulate WS-Security  
for your service through the Default outgoing WSS property. If you want to verify 
how your consumer applications react when sending a SOAP message without a 
SOAP Action HTTP header, you can set the Require SOAP Action property to 
true. In the same way, you can edit the default mock service properties and test 
the consumer applications.



Web Service Simulation with soapUI

[ 126 ]

In the right pane of the above screen, soapUI allows to do some pre- and post-
processing for the MockService. Start Script can be used to call a Groovy script 
at the time of the mock service start. Usually, if we want to initialize some global 
resources such as database connections, we can call Start Script. Stop Script is 
called when the mock service is stopped. When the MockService receives a request, 
OnRequest Script can be called. For example, if you want to mediate the original 
request before dispatching to service, you can include a Groovy script as OnRequest 
Script. Similarly, AfterRequest Script is called after a request is processed by the 
MockService.

Once we check all properties and options associated with the MockService, we can 
start the mock service by clicking on the green arrow icon at the upper-left corner of 
the preceding screen. The status of the MockService can be found at the soapUI log at 
the bottom pane.

INFO:Started mockService [GuestManagementMockService] on port [8088] at 
path [/mockGuestManagementServiceSoap11Binding]

MockOperation details
Double-clicking on one of the MockOperations in the preceding screen will bring up 
the MockOperation details window as shown in the following screenshot:



Chapter 6

[ 127 ]

Out of the many properties given in MockOperation details window, we should clear 
ourselves about the Dispatch style property as it is utmost important in determining 
the mock response.

Dispatching styles of MockOperation
A MockOperation can include multiple MockResponses. Therefore, when we send 
a request to the MockService and subsequently dispatch to the MockOperation, 
there should be a way to determine to which MockResponse the request must be 
forwarded to. The dispatch style of the MockOperation is used to select the preferred 
dispatching mechanism for mock responses. The soapUI Mock Services model 
supports the following dispatch styles:

• SEQUENCE: This is the default dispatching style. With this style, when 
sending requests to the MockOperation, MockResponses are selected 
iteratively one after the other as they appear in the MockResponses list.  
For example, when we have two MockResponses, response1 and response2 
under the MockOperation, if you send two requests to the MockService, 
the first request will be dispatched to response1 and the second will be 
dispatched to response2.

• SCRIPT: This dispatching style gives the ability to control responses based 
on Groovy scripting. The MockResponse is determined by the execution of 
the specified script.

• RANDOM: This style chooses the MockResponses randomly without 
any order.

• QUERY_MATCH: This style returns MockResponse by evaluating multiple 
XPath expressions. For example, you can specify multiple query matches that 
are basically XPath expressions applied on requests, the expected value of 
the XPath expression and the MockResponse to which the request must be 
dispatched to.



Web Service Simulation with soapUI

[ 128 ]

Suppose we need to dispatch requests to MockResponses based on the 
different values of the requests. In that case, we can define multiple XPath 
expressions to extract the desired values and forward requests to the 
corresponding MockResponses as shown in the following screenshot:

In the preceding example, there are two Mock Responses, addGuest Success 
Response and addGuest Fault Response. There are two XPath match 
queries, match1 and match2; each of them act on the request and extract 
some value which is defined under the Expected Value field in XPath query 
editor. If the value returned by the XPath expression matches the expected 
value, the request is forwarded to the response which is defined under the 
Dispatch to drop-down list. Using this style, you can use different XPath 
queries to evaluate different types of requests and dispatch the requests to 
MockResponses appropriately.

• XPATH: This dispatching method is used to dispatch the request to a 
response based on the XPATH expression result of the request.

We will look into the use cases of some of the important MockResponse dispatching 
styles later in this chapter.



Chapter 6

[ 129 ]

MockResponse details
Double-clicking on a MockResponse in the MockResponses list in a MockOperation 
detail window will bring up the MockResponse editor.

Similar to the MockService and MockOperation, we can configure the properties 
associated with the MockResponses from the left-hand side pane. We can configure 
the HTTP headers of the response from the Headers section in the right-hand side 
pane, under the mock response editor. Also, we can even insert an attachment for the 
response. A response-specific dynamic content can also be generated by specifying a 
script at the response level.

soapUI mock services in action
In the following sections, we will move forward with our sample MockService with 
trying out the various options which we discussed previously. First, we will look 
into the simplest use case, where we use a static MockResponse.



Web Service Simulation with soapUI

[ 130 ]

Static responses – the basic scenario
Creating a static MockResponse in soapUI is pretty straightforward. You may 
question whether the static responses are used in real-world scenarios. Though 
static MockResponses are simple they are of course very useful in a lot of enterprise 
integration test scenarios.

Service chaining
In a typical service-oriented solution, the messages can be transmitted through 
multiple hops before reaching the destination. We cannot always expect single client 
to service message exchange. Service chaining is a concept where the response of 
one service acts as an input for another service. When testing such a service chaining 
scenario, static MockResponses can be used if some of the services are not completely 
available at the time of testing.

Content-based routing
If an Enterprise Service Bus (ESB) is used as a broker in your SOA, you should test 
the various routing rules defined at the ESB level. In case the web services are not 
ready for testing, you can use a static MockResponse and test the routing rules. You 
can even set custom HTTP headers in MockResponses and test the HTTP header 
based routing mechanisms.

Message transformation
Static MockResponses can be used to test the message transformation rules usually 
defined at the ESB layer of your service-oriented solution. Suppose there is an XSLT 
transformation before sending back the web service response in your solution. If the 
web service is not available for testing, you can use a static MockResponse and test 
the XSLT transformation rules. 

We will create a static MockResponse to simulate the getGuestDetails operation. 
To do this, follow these steps:

1. Double-click on the getGuestDetails operation of the operations list which 
appears under GuestManagementMockService. The getGuestDetails 
MockOperation details window will be opened and you will see one 
response (Response 1) in the list. Double-click on Response 1 to open the 
MockResponse editor.



Chapter 6

[ 131 ]

2. Replace the ? values of the response as follows. As you can see, this is a static 
MockResponse with hard-coded data:
  <typ:getGuestDetailsResponse>
       <typ:return>
       <typ:address>Colombo, Sri Lanka</typ:address>
        <typ:age>30</typ:age>
         <typ:name>Saman</typ:name>
     </typ:return>
  </typ:getGuestDetailsResponse>

3. For any request which is received by GuestManagementMockService, 
this particular static response will be returned. Now, select 
the SOAP request of the getGuestDetails operation from the 
GuestManagementServiceSoap11Binding interface. Change the endpoint 
to http://hostname:8088/mockGuestManagementServiceSoap11Binding 
so that the request will be forwarded to the MockService and submit  
the request.

4. You will get the static response that we defined above.

As we discussed earlier, the static response are very useful for the test scenarios 
where the actual data of the response payload is not important.

Using dynamic responses
In our first example of the dynamic responses, we are going to simulate the  
behavior of the getGuestDetails MockOperation with multiple responses 
instead of a hard-coded static response. The response will be chosen according  
to the guestName value of the SOAP request:

1. Rename Response 1 of getGuestDetails MockOperation to something 
meaningful; for example, ValidResponse.

2. Add two more responses and name them soapFaultResponse and 
EmptyResponse.



Web Service Simulation with soapUI

[ 132 ]

3. Now, you will have three responses: ValidResponse, soapFaultResponse, 
EmptyResponse. Our objective is to see how our system reacts to 
these responses.

4. Double-click on soapFaultResponse and replace the content with the 
following soap Fault message:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
   <soapenv:Body>
      <soapenv:Fault>
         <faultcode>soapenv:Server</faultcode>
         <faultstring>Guest does not exist</faultstring>
         <detail>
            <ns:GuestManagementServiceGuestManagementException 
xmlns:ns="http//sample.com/reservation/guest/types">
               <GuestManagementException xsi:type="ax21:GuestM
anagementException" xmlns="http//sample.com/reservation/guest/
types" xmlns:ax21="http://exception.reservation.sample.com/xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">



Chapter 6

[ 133 ]

                  <ax21:message>Guest does not exist</
ax21:message>
               </GuestManagementException>
            </ns:GuestManagementServiceGuestManagementException>
         </detail>
      </soapenv:Fault>
   </soapenv:Body>
</soapenv:Envelope>

5. EmptyResponse should be something like the following:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">
   <soapenv:Header/>
   <soapenv:Body>
      <typ:getGuestDetailsResponse>
           <typ:return>
            <typ:address></typ:address>
            <typ:age></typ:age>
            <typ:name></typ:name>
         </typ:return>
      </typ:getGuestDetailsResponse>
   </soapenv:Body>
</soapenv:Envelope>

6. In this example, the response is chosen out of the above three 
MockResponses. The selection is based on the <typ:guestName> value in 
the SOAP request. If the value is "valid", we will dispatch the request to 
the ValidResponse MockResponse. If the value is "fault", the request will 
be dispatched to the soapFaultResponse MockResponse. Finally, if the 
guestName value is "empty", the EmptyResponse MockResponse will 
be returned.

7. To achieve this, we cannot use the default SEQUENCE dispatch style 
which simply iterates through the three response messages. We need to 
decide the response based on the content of the request. Therefore, we need 
to have some kind of a script to read the request and dispatch to the relevant 
MockResponse. We are going to use the SCRIPT style for dispatching.

8. In getGuestDetails MockOperation editor, select SCRIPT from the Dispatch 
drop-down list.

9. Add the following script:
def payload = new com.eviware.soapui.support.
XmlHolder(mockRequest.requestContent)
def guestname = payload["//typ:getGuestDetails/typ:guestName"]
def response = "";



Web Service Simulation with soapUI

[ 134 ]

if(guestname.equals("valid")){
  response="ValidResponse"
}else if(guestname.equals("fault")){
  response="soapFaultResponse"
}else if(guestname.equals("empty")){
  response="EmptyResponse"
}else {
  response="ValidResponse"
}
return response

Here, the requests are dispatched to the MockResponses based on the 
guestName value of the SOAP request message. The XmlHolder object is 
used to hold the current SOAP request message. An XPath expression is 
passed as an argument to the constructor of the XmlHolder object to extract 
the guestName value. Then the appropriate response is chosen evaluating 
the guestName value.
With the dispatching script, the getGuestDetails MockOperation editor will 
look similar to the following:



Chapter 6

[ 135 ]

10. Now, open the getGuestDetails SOAP request editor and send a request 
with the guestName "fault":
<typ:guestName>fault</typ:guestName>

You will get the soapFaultResponse. Similarly, try with the other responses.

The above methodology is quite helpful if you need to verify the  
middleware-oriented operations of your solution such as message mediations, 
transformation rules, and so on, when the web services are not ready for testing.

We looked at the MockResponse dispatching at the MockOperations level. Without 
using multiple responses, we can dynamically generate the MockResponse by 
including a script at the MockResponse level. The following example will guide you 
through the steps of responding with a dynamic MockResponse based on the content 
of the SOAP request.

As we saw in Chapter 2, The Sample Project, the GuestManagementService consists 
of the service implementation class and the associated database operation handling 
class (in our example, it is Storage.java). Think about a scenario where this 
database handling class is not ready for testing, but you need to test some consumer 
applications. In that case, you cannot just use static MockResponses, as you need to 
make sure the data is correctly handled by the consumer application. In other words, 
the correctness of the data is important for testing.

We are going to retrieve the data from the database according to the content of the 
SOAP request message. When the getGuestDetails SOAP request is sent with the 
guestName, the GUEST_T table of the HOTEL_RESERVATION_DB database is queried to 
find out the associated record. Then the MockResponse is updated with the retrieved 
data and sent back to the client.

1. The MockService level is the most suitable location to initialize the database 
connection. When the MockService is started, the database connection is 
established. Open the GuestManagementMockService editor and click 
on Start Script. Add the following script in the script editor:
import groovy.sql.Sql
com.eviware.soapui.support.GroovyUtils.registerJdbcDriver("com.
mysql.jdbc.Driver") 
def sql = Sql.newInstance("jdbc:mysql://localhost:3306/HOTEL_
RESERVATION_DB","root","root","com.mysql.jdbc.Driver")
log.info "Succesfully connected to database"
context.dbConnection = sql



Web Service Simulation with soapUI

[ 136 ]

By calling registerdbDriver() method, the MySQL JDBC driver is 
registered with soapUI so that we can issue calls to the MySQL database 
from the Groovy script.  First, we need to set up the MySQL database 
instance using the Sql.newInstance(dbpath, dbuser, dbpassword, 
dbdriver) factory method. We will save this connection in the context 
(context.dbConnection) so that it will be available for all scripts under 
the MockService.

2. Establishing the connection to the database is not just enough. We should close 
the connection when our tasks with the database are over. We established the 
connection at MockService level; hence we can close the connection at the same 
level. Click on Stop Script and add the following script:
if( context.dbConnection != null )
{
log.info "Closing database connection"
context.dbConnection.close()
}

3. We can restart the MockService now. Before that, make sure to copy the 
MySQL JDBC driver (which we used in Chapter 2, The Sample Project) to 
SOAPUI_HOME/bin/ext and restart soapUI.
Once soapUI is restarted, restart the MockService. You will see the  
following log if the database connection is successful. The logs related  
to the running scripts can be found at the script log, which is at the 
bottom of the MockService editor.
INFO:Succesfully connected to database

4. Now, we need to configure the MockResponse to retrieve the data from 
the database table based on the request content. For that, we can insert 
a Groovy script at the MockResponse level. Click on the ValidResponse 
MockResponse that appears in the getGuestDetails operation.

5. Click on Script in the MockResponse editor and add the following script:
def holder = new com.eviware.soapui.support.XmlHolder(mockRequest.
requestContent)

def name = holder["//typ:getGuestDetails/typ:guestName"]
def sql = context.dbConnection
def res = sql.firstRow("select address from GUEST_T where name = 
?", [name])
context.address=res.address



Chapter 6

[ 137 ]

Here, the database connection is obtained from the context. The first row 
entity of the ResultSet is obtained by passing a SQL query as the argument. 
In the SQL query, we pass the name value which we captured by executing 
the XPath statement on the request message. This SQL query returns the 
address value of the corresponding guest. Then we set the address value 
which we got from the GUEST_T table to the ${address} property which 
we set at the response (see the following screenshot):

6. Now, populate the GUEST_T table of the HOTEL_RESERVATION_DB database 
with some guest records (see Chapter 2, The Sample Project).

7. Edit a getGuestDetails SOAP request message with a name of the user who 
is in the GUEST_T table:
<typ:guestName>Chanmira</typ:guestName>

8. Submit the request to GuestManagementMockService.
9. You will get the response with the corresponding address value which 

should be the address of the guest in GUEST_T table.



Web Service Simulation with soapUI

[ 138 ]

We extracted the address of the guest from the GUEST_T table in the database without 
actually calling the web service. We used the MockResponse generated by soapUI 
from the WSDL and did the simple Groovy scripting to query the database and set 
the data in the response.

Summary
This chapter guided you through one of the most important aspect of web services 
and SOA testing, service simulation. We have discussed the situations where 
the service mocking is required in general. Then we went through how soapUI 
facilitates you to create mock services. The MockService model of soapUI consists 
of three key elements known as MockService, MockOperation and MockResponse. 
We briefly discussed each of these elements using examples. We also looked into 
MockResponse dispatching methods and how one MockResponse can be chosen 
from multiple responses inside a MockOperation. With Groovy scripting facilities, 
soapUI allows us to do various manipulations on mock services, hence dynamic 
response generation is not a complex task for a soapUI user. 



Advanced Functional  
Testing with soapUI

In SOA, many types of Quality of Service (QoS) requirements have to be fulfilled 
in order to provide the web service consumers with a satisfactory level of service. 
Especially in SOAP-based services, different kinds of mechanisms are used to assure 
guaranteed message delivery and secure communication among the participants 
of message routing chain. These mechanisms commonly referred to as web service 
extensions, provide the necessary QoS aspects expected from web services.

One of the greatest advantages of using soapUI for web service testing is that it can 
be used in testing web services that make use of various web service extensions. 
Although there are free and commercial tools which can be used to directly invoke 
web services, most of the tools are unable to continue the operations if the web 
services under testing are configured with different QoS aspects. This chapter is 
dedicated to discussing the capabilities of soapUI in testing various web service 
extensions such as WS-Addressing and WS-Security. These extensions are applicable 
for both sides of the web service equation. In other words, we should configure the 
extensions at the web service level as well as the client (soapUI) level. Because of 
that, first, we will look into enabling the necessary QoS features in our sample web 
services project. Then, we will make use of soapUI to test the sample web services 
which are configured with the web service extensions.

The following topics related to web services extensions and soapUI that we will be 
covering in this chapter are as follows:

• Introduction to web services extensions
• WS-Addressing
• WS-Security



Advanced Functional Testing with soapUI

[ 140 ]

• Configuring Apache Axis2 for WS-Addressing and WS-Security
• Testing WS-Addressing with soapUI
• Testing WS-Security with soapUI

Introduction to web services extensions
Web services extensions are used to provide additional capabilities to web services. 
For example, if we want to protect web services from unauthorized access, we can 
make use of the relevant web services extension. Web services extensions are usually 
governed by a set of specifications referred to as the WS-* standards. For example:

• WS-Addressing
• WS-Policy
• WS-Security
• WS-ReliableMessaging
• WS-Discovery
• WS-Transfer
• WS-AtomicTransaction

There are different types of specifications which address various aspects of web 
services in order to extend the core features. These specifications are governed by 
various standard bodies such as W3C (http://www.w3.org/) and OASIS standards 
(https://www.oasis-open.org/standards).

Web service frameworks adhere to most of these specifications in order to be 
interoperable with each other. For example, Apache Axis2 implemented WS-Security 
specification; so, we can communicate with any service that is deployed on Axis2 
via a .NET service or client, that adheres to the same specification. Like-wise, it is 
the responsibility of the relevant SOAP engine providers to implement the WS-* 
specifications to work seamlessly with the other frameworks which support the  
WS-* standards.

The extensible nature of the SOAP messaging model allows us to plug in different 
web services extensions to raw SOAP messages. All these extensions are included 
inside the header element of SOAP messages. Thus, if you want to invoke a web 
service with WS-Security, you must send the request message with the necessary 
WS-Security headers adhering to the WS-Security specifications.



Chapter 7

[ 141 ]

A SOAP Envelope structure is shown in the following diagram:

One or two chapters of this book are not sufficient to discuss all of these WS-* 
specifications. Therefore, we will limit our discussion to WS-Addressing and WS-
Security specifications which are widely used by the SOAP web services community.

What is WS-Addressing
Web Service Addressing (WS-Addressing) provides mechanisms to address 
web services in a transport neutral manner. In the SOAP world, without having 
WS-Addressing, we make use of the facilities provided by the underlying transport 
protocol (for example, HTTP, FTP or JMS) to route the messages between the SOAP 
nodes. However, by using WS-Addressing, the messages can be routed in a generic 
way independent of the transport protocol that is used. As WS-Addressing is used 
by many of the other WS-* specifications, it is one of the preliminary building blocks 
of WS-* standards. The W3C Web Services Addressing Working Group (http://
www.w3.org/2002/ws/addr/) made available version 1.0 of the WS-Addressing 
recommendation (http://www.w3.org/2002/ws/addr/) in May 2006, and it is 
considered as the mainstream specification.

There are two constructs that are defined by the WS-Addressing specification.



Advanced Functional Testing with soapUI

[ 142 ]

Endpoint references
An endpoint is an entity to which a message can be addressed. An endpoint 
reference is a collection of three abstract properties, address, reference parameters, 
and metadata. Out of these, address is a mandatory property, which must be 
available in any endpoint reference element. An example of an endpoint reference 
element is as follows:

<wsa:EndpointReference>
      <wsa:Address>http://localhost:8080/axis2/services/
GuestManagementService/</wsa:Address>
</wsa:EndpointReference>

Here, the <wsa:Address> element is used to define the endpoint location of 
GuestManagementWebService.

Message addressing properties
Message addressing properties are used to convey end-to-end message characteristics 
of source and destination endpoints. The following are the basic set of message 
addressing properties. Out of these, wsa:Action is the only mandatory property.

• wsa:To: This property specifies the destination URL. If not present, 
the destination will be considered as http://www.w3.org/2005/08/
addressing/anonymous.

• wsa:From: This property specifies the source endpoint reference (that is, 
where the message comes from).

• wsa:ReplyTo: This property specifies the endpoint reference for the intended 
receiver (that is, to whom the reply of the message would be sent).

• wsa:FaultTo: This property specifies where to send the fault messages in 
case of a fault. If this is not present, the fault will be sent to the endpoint 
where the request came from.

• wsa:Action: This property specifies the action of message. In other words, 
this property is used to dispatch the message to the correct operation of web 
service upon receiving a request message.

• wsa:MessageID: This property specifies the ID which uniquely identifies 
the message.

• wsa:RelatesTo: This property specifies the message ID of the related message.



Chapter 7

[ 143 ]

According to the 3.4 Formulating a Reply Message section at 
http://www.w3.org/TR/2006/REC-ws-addr-core-
20060509/#formreplymsg of the WS-Addressing specification, 
the wsa:MessageID property is mandatory for the request-
response MEP. Therefore, if you invoke an operation expecting a 
response back, you should send the messageID with the request.

What is WS-Security
Traditionally, the communication between the SOAP nodes is secured using the 
mechanisms provided by the underlying transport protocol. For example, SSL is a 
widely used transport-level security mechanism. However, SOAP messages can be 
transmitted over various transport protocols such as SMTP and JMS. So the transport 
level security is never sufficient. In SOA, we cannot always expect messages are 
delivered from one source to destination. Messages can be routed through many 
hops using different transport protocols and different security domains. Transport 
level security mechanisms only address point-to-point security. However, in 
complex service-oriented solutions, we need to consider end-to-end security aspects. 
WS-Security facilitates this end-to-end security by maintaining integrity and 
confidentiality of messages.

Leveraging existing industry standards such as X.509 and Kerberos tokens for 
authentication, XML encryption, and XML signature to encrypt and digitally sign 
XML documents, WS-security extends those standards to be used with the SOAP 
messages. WS-Security is not a standalone specification, which solely manages 
security in web services. It is associated with many of the following specifications:

WS-Policy
The WS-Policy (http://schemas.xmlsoap.org/ws/2004/09/policy/) defines a 
framework for allowing web services to express their constraints and requirements 
as policy assertions.

WS-SecurityPolicy
As stated in WS-SecurityPolicy specification (http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/v1.2/ws-securitypolicy.html), WS-SecurityPolicy 
defines a set of security policy assertions that describe how messages are to be 
secured based on the WS-Policy framework. 



Advanced Functional Testing with soapUI

[ 144 ]

WS-Trust
WS-Trust specification (http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/
ws-trust.html) provides extensions to WS-Security specification which defines 
methods for issuing, renewing, and validating security tokens. It also defines the 
ways to establish, assess the presence of, and to broker trust relationships.

WS-SecureConversation
WS-SecureConversation specification (http://docs.oasis-open.org/ws-sx/
ws-secureconversation/v1.4/ws-secureconversation.html) provides secure 
communication between web services using session keys. It defines a mechanism to 
establish security contexts for multiple exchanges of a SOAP message.

Configuring Apache Axis2 for WS-
Addressing and WS-Security
As we discussed early in the chapter, it is the responsibility of the service container 
(SOAP web services engine) to implement the necessary WS-* specifications and 
make sure that it is interoperable with the rest of the web service frameworks. Using 
the modular and pluggable architecture, Apache Axis2 extends its functionality over 
almost all types of WS-* standards. The following are some of the modules which 
implement various WS-* specifications on top of the Apache Axis2:

• Addressing: This module is an implementation of the WS-Addressing 
specification

• Apache Rampart: This module implements the WS-Security, WS-
SecureConversation, and WS-SecurityPolicy specifications on Axis2

• Sandesha2: This module is an implementation of the 
WS-ReliableMessaging specification

• Rahas: This module is an implementation of the WS-Trust specification

In this section, we will look into enabling the WS-* extensions at the server side. 
Obviously, in order to enable WS-Security for web services hosted in Apache  
Axis2, we must configure the Apache Rampart module. First, we will look into 
the configurations for the WS-Addressing specification in Apache Axis2.



Chapter 7

[ 145 ]

WS-Addressing in Apache Axis2
There is no configuration required in Axis2 to switch on WS-Addressing support for 
web services. By default, the addressing module is globally engaged for all services 
hosted in Axis2 by using the following parameter in the axis2.xml descriptor file 
located at AXIS2_HOME/conf as:

 <module ref="addressing"/> 

This implies that any service hosted in Apache Axis2 is capable of interpreting  
WS-Addressing headers. Therefore, if you send a request with WS-Addressing 
headers (for example, wsa:Action), Axis2 can process them and send back the 
response with the relevant headers.

WS-Security in Apache Axis2
Enabling WS-Security for services hosted in Axis2 is not as straightforward as 
configuring WS-Addressing. Apache Rampart module is used to secure the 
messages, which are processed by Axis2. We need to download and install Apache 
Rampart separately in order to integrate it with Axis2.

Follow these steps to integrate Apache Rampart with Apache Axis2:

1. Download Apache Rampart-1.6.1 binary from http://axis.apache.org/
axis2/java/rampart/download/1.6.1/download.cgi that is compatible 
with Apache Axis2 v1.6.1 – the one used in this book.

2. Extract the downloaded binary distribution into a location in your filesystem. 
Let's refer to it as RAMPART_HOME.

3. Copy all JAR files included in RAMPART_HOME/lib to AXIS2_HOME/lib.
4. Copy all the module files (.mar) included in RAMPART_HOME/modules into 

AXIS2_HOME/repository/modules.
5. Restart Axis2 server.

We can simply engage the Rampart module globally, similar to the Addressing 
module, but it is not a common practice as we cannot expect that all services hosted 
in Axis2 are secured with the WS-Security policies. Therefore, we selectively 
configure security for the services, which need to be secured.

We will discuss the details of securing services in the following sections.



Advanced Functional Testing with soapUI

[ 146 ]

Testing the WS-Addressing with soapUI
When we communicate with a web service, which expects the WS-Addressing 
information in the requested SOAP messages, we can follow a programmatic 
approach to write a client program using the APIs provided by the underlying 
web services framework and insert WS-Addressing headers manually. Almost 
all SOAP web services stacks provide users with client APIs which facilitate 
such programmatic invocations with WS-* extensions. Instead of spending an 
unneccessarily long time writing client programs from scratch, you can use 
soapUI to submit messages with the WS-Addressing headers and validate the 
responses automatically. We are going to extend our sample HotelReservation 
soapUI project to test GuestManagementService with WS-Addressing. To test 
GuestManagementService, perform the following steps:

1. Select the getGuestDetails TestCase of the GuestManagementService 
TestSuite. Open the getGuestDetails SOAP request.

2. Click on the WS-A tab which is located at the bottom of the request editor 
window. This will open the WS-Addressing properties window as shown  
in the following screenshot:



Chapter 7

[ 147 ]

3. Select the following properties and submit the request:
1. Check the checkbox in front of Enable WS-A addressing.
2. Set Must Understand to True by selecting it from the drop-down list.
3. Check the checkbox in front of Add default wsa:Action.
4. Check the checkbox in front of Add default wsa:To.
5. Check the checkbox for Randomly generate MessageId.

4. Have a look at the Raw view of the request. You will notice the following 
WS-A headers:
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Action soapenv:mustUnderstand="1">urn:getGuestDetails</
wsa:Action>
<wsa:MessageID soapenv:mustUnderstand="1">uuid:cb993b0b-041d-43ca-
810d-f57ca4544b68</wsa:MessageID>
<wsa:To soapenv:mustUnderstand="1">http://
localhost:8080/axis2/services/GuestManagementService.
GuestManagementServiceHttpSoap11Endpoint/</wsa:To>
</soapenv:Header>

In case you see an empty HTTP body in the Raw view, which prevents 
showing the SOAP message, the following steps will help you to 
configure the soapUI request editor appropriately: 

• Open the soapUI Preferences window by selecting the Sets 
Global soapUI Preferences icon at the tool bar.

• Click on UI Settings. Increase the default value of Size of Raw 
Request Message to Show.

We have already discussed the usage of message addressing properties 
such as wsa:Action and wsa:To in the previous sections. In addition to the 
message addressing properties defined by the WS-Addressing specification, 
soapUI allows us to set the mustUnderstand property for request messages.

According to the SOAP 1.1 specification, the mustUnderstand 
attribute can be used to indicate whether a header entry is mandatory or 
optional for the recipient to process. The value of the mustUnderstand 
attribute is either 1 or 0. If a header element is tagged with the SOAP 
mustUnderstand attribute with a value of 1, the recipient of that 
header entry either must obey the semantics and process correctly to 
those semantics, or must fail processing the message.



Advanced Functional Testing with soapUI

[ 148 ]

To demonstrate the usage of the mustUnderstand property, you can 
simply set mustUnderstand to true in the soapUI addressing properties 
section, disable addressing at Axis2 level (comment out the line <module 
ref="addressing"/> from the axis2.xml file) and restart the Axis2 server. 
Then, resubmit the preceding SOAP request. You will get the following error:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
   <soapenv:Body>
      <soapenv:Fault xmlns:axis2ns1="http://schemas.xmlsoap.org/
soap/envelope/">
         <faultcode>axis2ns1:MustUnderstand</faultcode>
         <faultstring>Must Understand check failed for header 
http://www.w3.org/2005/08/addressing : Action</faultstring>
         <detail/>
      </soapenv:Fault>
   </soapenv:Body>
</soapenv:Envelope>

In simple terms, we sent a request with the mustUnderstand property set to 
true, which implies that the server must process the header block or return a 
fault. As WS-Addressing is disabled at the server side, the web service could 
not interpret the header hence it threw the preceding fault.
The real advantage of using soapUI as a WS-Addressing client is that we can 
simply set the message addressing properties and test the functionality of the 
solution under test. By specifying an endpoint URL of another web service 
as the wsa:ReplyTo header, the response message can be directed to that 
particular service instead of sending it back to the client. We can also specify 
the wsa:FaultTo header to a different web service endpoint and forward the 
fault messages to it.

5. We looked at the WS-A headers of the request SOAP message. The response 
headers for the preceding request will be similar to the following:
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
      <wsa:Action>urn:getGuestDetailsResponse</wsa:Action>
      <wsa:RelatesTo>uuid:cb993b0b-041d-43ca-810d-f57ca4544b68</
wsa:RelatesTo>
   </soapenv:Header>

6. The web service responded with two addressing headers, wsa:Action and 
wsa:RelatesTo. The wsa:RelatesTo header represents the messageID of the 
related message, in other words the messageID of the request. It is obvious 
that uuid:cb993b0b-041d-43ca-810d-f57ca4544b68 is the messageID of 
the SOAP request (as seen in the preceding SOAP request header).



Chapter 7

[ 149 ]

Validating the WS-Addressing responses
SoapUI provides us with WS-Addressing specific assertions to automatically validate 
the headers of the response message. The WS-Addressing response assertion can 
be used to validate that the last received response contains valid WS-Addressing 
headers. To validate the WS-Addressing response, perform the following steps:

1. Click on the Select Assertion icon at the bottom of the TestStep window and 
select the WS-Addressing Response assertion.

2. The WS-A properties to assert dialog box will be opened as shown in the 
following figure:

We can select which message-addressing properties of the response we need 
to assert from the preceding dialog box. In our sample, we can check whether 
the wsa:Action header exists in the response and wsa:RelatesTo header 
equal to the request's messageID. Setting the relevant property's assertion 
depends on the usage of WS-Addressing in your solution.

Generally, WS-Addressing related issues can occur due to the 
misconfiguration of the service container or bugs in the particular 
version of the service container. Therefore, it is always advisable 
to assert the presence of at least the wsa:Action mandatory 
message addressing property.

3. Once you add the assertion with the relevant properties and submit a 
request, you will get the response results as follows:

WS-Addressing Response – VALID



Advanced Functional Testing with soapUI

[ 150 ]

Testing WS-Security with soapUI
soapUI makes use of the Apache WSS4J project for providing WS-Security support. 
More information about Apache WSS4J can be found at  
http://ws.apache.org/wss4j/.

We can discuss the usage of soapUI as a WS-Security client in two 
basic aspects:

• Authentication using transport binding assertions
• Signature using asymmetric binding assertions

We will look into these subtopics during the remainder of this chapter. We use our 
sample Hotel Reservation web services to demonstrate the preceding topics.

Web service authentication
Authentication is required to identify the entity or entities involved in the web 
service message transmission. WS-Security provides multiple ways in which 
one can authenticate a user when they need to access a service. UsernameToken 
authentication is one such mechanism which is used to pass around caller credentials 
through a username and password combination as shown in the following diagram:



Chapter 7

[ 151 ]

The preceding diagram shows how the user credentials are placed inside a SOAP 
message header block when UsernameToken authentication is used. There are two 
ways in which passwords can be passed between client and service when using 
UsernameToken authentication; clear text and digest. In the case of clear text type, the 
username token carries the actual password. In the digest type, the client creates a 
digest of the actual password and sends it to the service, this serves better protection 
as compared to a plain text password type.

In our first sample, we will use UsernameToken authentication to secure the 
GuestManagementService and use soapUI to pass credentials to the service. To do 
that, first we will configure WS-Security at the server side.

Securing GuestManagementService
As we discussed in the WS-Security in Apache Axis2 section, the Apache Rampart 
module provides the necessary WS-Security constructs for the services deployed on 
Axis2. We need to carry out a set of steps to enable UsernameToken authentication 
for GuestManagementService to be deployed on Axis2.

We need to advertise to the rest of the world that our GuestManagementService 
is accessible only by submitting proper credentials. The WS-SecurityPolicy 
specification allows us to define a security policy for our service and expose it so that 
any consumer can look into the policy and find out how to talk to the service. Thus, 
our first task is to construct the relevant security policy as shown in the following 
XML document:

<wsp:Policy wsu:Id="UTOverTransport" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" 
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
        <wsp:ExactlyOne>
          <wsp:All>
            <sp:TransportBinding xmlns:sp="http://schemas.xmlsoap.org/
ws/2005/07/securitypolicy">
              <wsp:Policy>
                <sp:TransportToken>
                  <wsp:Policy>
                    <sp:HttpsToken RequireClientCertificate="false"/>
                  </wsp:Policy>
                </sp:TransportToken>
                <sp:AlgorithmSuite>
                  <wsp:Policy>
                    <sp:Basic128/>
                  </wsp:Policy>



Advanced Functional Testing with soapUI

[ 152 ]

                </sp:AlgorithmSuite>
                <sp:Layout>
                  <wsp:Policy>
                    <sp:Lax/>
                  </wsp:Policy>
                </sp:Layout>
                <sp:IncludeTimestamp/>
              </wsp:Policy>
            </sp:TransportBinding>

            <sp:SignedSupportingTokens xmlns:sp="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy">
                <wsp:Policy>
                    <sp:UsernameToken sp:IncludeToken="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient" 
/>
              </wsp:Policy>
            </sp:SignedSupportingTokens>
            <ramp:RampartConfig xmlns:ramp="http://ws.apache.org/
rampart/policy">
<ramp:passwordCallbackClass>com.sample.reservation.security.    
PWCBHandler</ramp:passwordCallbackClass>
            </ramp:RampartConfig>
          </wsp:All>
        </wsp:ExactlyOne>
    </wsp:Policy>

It is out of the scope of this book to explain each element of the preceding security 
policy. However, we can identify two main policy assertions in the above policy, a 
sp:TransportBinding assertion and a SignedSupportingToken assertion.

A policy assertion is a way of defining a requirement, constraint 
or a property. The WS Security policy language introduces a set of 
security policy assertions to enable security requirements of web 
services to be able to be stated in a standard, interoperable manner.

In the preceding policy, the TransportBinding assertion is used for handing over 
the message protection to the underlying transport layer. The required transport is 
configured through the <sp:TransportToken> element.



Chapter 7

[ 153 ]

Ideally, we should use HTTPS as the transport medium as we 
rely on the underlying transport for message protection. But for 
the simplicity in configurations at the server side, we use HTTP 
transport. Therefore, when we include the preceding security 
policy in the sample GuestManagementService, we will 
remove the <sp:HttpsToken RequireClientCertificate=
"false"/> element. However, we need to keep in mind that it is 
not recommended to use HTTP transport when UsernameToken 
authentication is used with plain text passwords. I will leave it to 
you to try out the sample with HTTPS.

We also used SignedSupportingToken assertion in our policy. Supporting tokens 
are used to provide additional claims for the client. In case of TransportBinding, the 
message is signed outside the message's XML by the underlying transport protocol 
and the signature itself is not part of the message. Because of that, you will not find 
the signature in the SOAP request when UsernameToken authentication is used.

The last assertion, RampartConfig is used to provide Apache Rampart specific 
configuration details such as the passwordCallbackClass which is used to provide 
passwords that are needed to validate incoming username tokens.

We have defined com.sample.reservation.security.PWCBHandler as the callback 
handler class. Now, we need to implement this particular class and make it available 
at the web service's class path by performing the following steps:

1. Open the hotel reservation sample project which we worked on in  
Chapter 2, The Sample Project and add the following class inside a new 
package, com.sample.reservation.security, as follows:
package com.sample.reservation.security;

import org.apache.ws.security.WSPasswordCallback;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import java.io.IOException;

public class PWCBHandler implements CallbackHandler {

    public void handle(Callback[] callbacks) throws IOException,
                                                    
UnsupportedCallbackException {



Advanced Functional Testing with soapUI

[ 154 ]

        for (int i = 0; i < callbacks.length; i++) {

            WSPasswordCallback pwcb = (WSPasswordCallback) 
callbacks[i];
//Usage value is set to USERNAME_TOKEN_UNKNOWN when the Rampart  
// engine 
//wants the password callback handler to validate the username and 
// password in the username token.
if (pwcb.getUsage() == WSPasswordCallback.USERNAME_TOKEN_UNKNOWN) 
{
                if (pwcb.getIdentifer().equals("charitha") && 
pwcb.getPassword().equals("charitha")) {
                    return;
                } else {
                    throw new UnsupportedCallbackException(callbac
ks[i], "check failed");
                }
            }

        }
    }
}

The complete source code of the PWCBHandler.java class can 
be found at src\com\sample\reservation\security\
PWCBHandler.java in the code bundle of this chapter.

2. Now, we need to engage the Rampart module at the service level in order  
to enable WS-Security for GuestManagementService. Open the services.
xml file which can be found inside the conf folder of the sample project. Add 
the following element under <service name="GuestManagementService"> 
as follows:
<module ref="rampart" />

3. Also, add the security policy which we discussed previously, at the same 
level in services.xml.

4. Finally, the GuestManagementService element in services.xml will be 
similar to the following XML document:
<service name="GuestManagementService">
        <description>
         <wsp:Policy wsu:Id="UTOverTransport">
            ..



Chapter 7

[ 155 ]

             ..
            ..
            </wsp:Policy>
           <module ref="rampart" />
            <schema>
            <messageReceivers>
           <parameter name="ServiceClass">com.sample.reservation.
GuestManagementService</parameter>
        <operation name="addGuest" mep="http://www.w3.org/2006/01/
wsdl/in-out">
      -------
    </service>

The complete services.xml file with the security policy can be found 
in the conf folder within the chapter 7 folder of the code bundle.

5. Now, we should rebuild our sample hotel reservation service because we 
need to include a new class, PWCBHandler.java and we have also done some 
modifications in the services.xml file.

If you are using a Java IDE such as Eclipse or Intellij IDEA, you could 
easily compile the preceding PWCBHandler.java by including the 
AXIS2_HOME/lib folder in the class path. If not, you can use the ant 
build script given in the code bundle associated with this chapter. 
Make sure to follow the instructions in the README.txt file of the 
code bundle when building the service.

6. Once the service is built, redeploy HotelReservation.aar in the Apache 
Axis2 server. (You can simply remove the existing service archive and deploy 
the updated one).

7. Check the autogenerated WSDL of the GuestManagementService 
by accessing http://localhost:8080/axis2/services/
GuestManagementService?wsdl. You will find the UTOverTransport policy 
element in there.



Advanced Functional Testing with soapUI

[ 156 ]

Testing the secured GuestManagementService  
with soapUI
So far, we have discussed securing GuestManagementService. Since we have 
done the necessary WS-Security configurations at the server side, let's proceed 
with invoking the service with soapUI. If we submit the SOAP request of the 
getGuestDetails TestStep in GuestManagementServiceTestSuite without any 
security-related configurations, we should get a SOAP Fault similar to the following:

<soapenv:Fault xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
<faultcode>wsse:InvalidSecurity</faultcode>
<faultstring>Missing wsse:Security header in request</faultstring>
<detail />
</soapenv:Fault>

We got this error because we did not instruct soapUI to insert the WS-Security 
headers to the request. The security policy which we configured previously at the 
server side looked for the headers and as those were not available in the request, it 
returned a SOAP Fault.

There are multiple ways to configure WS-Security for outgoing requests in soapUI. 
The simplest possible mechanism is to configure it at the SOAP request level 
using the TestRequest Properties. You will find the following WS-Security-related 
properties at the TestRequest Properties pane:

• Username: This property has the username of the user who invokes 
the service.

• Password: This property has the password of the user.
• Domain: This property has the domain to use if the request requires NTLM 

authentication (this is not applicable for our sample use case).
• WSS-Password Type: This property determines how the password is carried 

over a SOAP message, as clear text or digest.
• WSS-TimeToLive: This value specifies the time period in seconds during 

which the request is considered as valid. In simple terms we can consider this 
as the life time of the message. In secure communications, timelines of data is 
a very important factor so that the replay attacks can be avoided by making 
sure the request message is not an expired one.

• SSL Keystore: This specifies the path of the key store when using SSL (we do 
not use SSL in our example).



Chapter 7

[ 157 ]

Specify the values for the security-related properties as shown in the preceding 
screenshot. We have given 60 seconds as WSS TimeToLive assuming it will not  
take 60 seconds for a request message to reach the service.

Submit the request and look at the Raw view of the message, it will look as follows:

<Header>
    <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd" mustUnderstand="1">
    <wsu:Timestamp xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-4">
    <wsu:Created>2012-05-01T12:58:55Z</wsu:Created>
    <wsu:Expires>2012-05-01T12:59:55Z</wsu:Expires>
</wsu:Timestamp>
<wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-3">
<wsse:Username>charitha</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#PasswordText">charitha</
wsse:Password>
<wsse:Nonce EncodingType="http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">KE00ltP/538A8Pco3w/Sew==</wsse:Nonce>
<wsu:Created>2012-05-01T12:58:55.362Z</wsu:Created>
</wsse:UsernameToken>
</wsse:Security>
</Header>

The header block of the request will be similar to the preceding XML document. 
Make a note of the <wsu:Timestamp> element which includes two child elements, 
<wsu:Created> and <wsu:Expires>. These elements are added because we have 
specified the WSS TimetoLive value as a TestRequest property. The difference 
between the <wsu:Created> value and the <wsu:Expires> value is exactly 60 seconds 
which matches with the WSS TimetoLive value we have specified in the request.



Advanced Functional Testing with soapUI

[ 158 ]

Also look at the <wsse:Password Type="http://docs.oasis-open.
org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordText"> element which defines that the password is a plain text value.

In addition to the WS-Security properties which we have been specified in the 
soapUI test request, we can identify the <wsse:Nonce> element in the preceding 
request which has been added by soapUI (Apache WSS4J rather) itself. A nonce is a 
random value that the sender creates to include in each UsernameToken that it sends. 
According to the UsernameToken profile, this specifies a cryptographically random 
nonce. Each message including a <wsse:Nonce> element must use a new nonce 
value in order for the web service producers to detect replay attacks.

It should be well understood that the load testing with soapUI is not 
another form of message replay attacks. When you add the preceding 
getGuestDetails TestStep to a load test, soapUI generates a unique 
message with each run. Hence, each instance of the message will have 
its own TimeStamp value as well as nonce. 

The response header, which is related to the preceding request message, will be 
similar to the following XML document:

<soapenv:Header>
      <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd">
         <wsu:Timestamp wsu:Id="Timestamp-748" xmlns:wsu="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">
            <wsu:Created>2012-05-01T12:58:55Z</wsu:Created>
            <wsu:Expires>2012-05-01T13:03:55Z</wsu:Expires>
         </wsu:Timestamp>
      </wsse:Security>
   </soapenv:Header>

According to the <wsu:Timestamp> element's value, the life time of the response 
is 5 minutes by default. We can configure this in the WS-Security policy of 
GuestManagementService.



Chapter 7

[ 159 ]

Project level WS-Security configurations in 
soapUI
So far, we have discussed configuring WS-Security at the individual TestRequest 
levels. However, it is usually required to apply security configurations at the project 
level so that the WS-Security settings can be used in multiple levels in a soapUI 
project. For example, the project level WS-Security configurations can be shared 
by all TestSuites, thereby all outgoing requests and responses can make use of the 
security configurations.

Let's look at how we can repeat the preceding UsernameToken authentication test 
by configuring WS-Security at the soapUI project level. Before that, make sure to 
clear the TestRequest level WS-Security properties which we updated previously. To 
configure the WS-Security at the soapUI project level,perform the following steps:

1. Right-click on the HotelReservationProject and select Show Project View. 
Select the WS-Security Configurations tab. By default, the outgoing 
WS-Security Configurations tab is selected. Outgoing WS-Security 
configurations are used to apply security configurations for the messages, 
that go out of soapUI. When soapUI acts as the SOAP sender, the outgoing 
security configurations are used.

2. Click on the Add new outgoing WSS configuration icon. As we can have 
multiple outgoing WSS configurations, we should specify a unique name for 
the configuration. Specify UTConfig as the name.

3. Each WSS configuration can include many WSS entries which are used 
to provide encryption properties, Timestamp configurations, Signature 
properties, SAML configurations, or UsernameToken properties.

4. Enter the username and password, which we have specified in 
GuestManagementService in the previous example as the default username 
and password. These default values will be used in all the child WS entries 
associated with the WSS configuration.

5. Now, select the UTConfig WSS configuration and click on the add a new 
WSS entry icon which is at the bottom pane of the window.



Advanced Functional Testing with soapUI

[ 160 ]

6. Select the Username option from the combo box  in the Add WSS Entry 
dialog box, that is prompted as shown in the following screenshot:

7. The WSS Username entry will be opened in a new tab where you can 
specify UsernameToken specific properties such as Username, Password, 
Nonce, and WSS Password Type. These are the same settings which we have 
entered when configuring UsernameToken authentication at the individual 
TestRequest level.

8. As we added a default username and password, it is not necessary to repeat 
the credentials again inside the WSS Username entry. However, we can 
override the default username/password values which have been specified 
in the WSS configuration.

9. Select the Adds a nonce option which will include the nonce value for each 
request, and select the Adds a created option which will add <wsu:Created> 
value. Also, select the Password Type as PasswordText.

10. According to the WS-Security policy that we have added for 
GuestManagementService, it is not sufficient to have the preceding values 
when interacting with the service. We should include a Timestamp value in 
each request. Therefore, click on the Adds a new WSS entry icon and select 
Timestamp. This will add a Timestamp WSS entry. Specify a valid Time to 
Live value (for example, 60 seconds).



Chapter 7

[ 161 ]

11. We have completed the WSS configuration of UsernameToken authentication. 
Now, we need to apply these configurations into the SOAP requests that 
need to be authenticated. Open the getGuestDetails TestRequest, which is 
under GuestManagementServiceTestSuite, and click on the Aut tab which 
is at the bottom corner. Locate the Outgoing WSS drop-down list and select 
the UTConfig WSS configuration where we have configured the necessary 
UsernameToken properties.

12. Submit the request and observe the request and response headers.

Testing asymmetric binding policy with 
soapUI
In the previous section, we looked into two approaches of testing a service secured 
with transport binding assertion. In this section, we will secure a different service in 
our sample project using an asymmetric binding policy.

Asymmetric binding
In web services communication, when both the service requestor and provider 
possess their own key pairs, it can be considered as an asymmetric binding use case.

According to WS-Security policy specification (http://docs.
oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html#_Toc161826560), the 
asymmetric binding assertion is used in scenarios in which message 
protection is provided by means in WSS:SOAP Message security 
using the asymmetric key (public key) technology.

In asymmetric binding, the sender derives a shared key and encrypts the message 
using the shared key. Then the sender encrypts the shared key using the public 
key of the recipient and signs the message using his/her private key. The recipient 
decrypts the shared key using his/her private key and decrypts the message using 
the decrypted shared key. Then, the recipient can verify the signature of the message 
using the public key of the sender.



Advanced Functional Testing with soapUI

[ 162 ]

We are not going to discuss all topics such as XML encryption, XML 
signature, and public key infrastructure, which are related to the 
scenario we are going to demonstrate. These topics cannot be covered 
as part of a chapter in this book. So I would assume you possess basic 
knowledge about the cryptographical concepts which we will use in 
this section. You can find more information about these topics from 
the Internet. For example:

• http://en.wikipedia.org/wiki/Public-key_
cryptograpy

• http://msdn.microsoft.com/en-us/library/
ms229749.aspx

Signing SOAP messages
We will demonstrate the use of asymmetric binding with soapUI by sending a 
signed message to RoomManagementService. Signing a SOAP message ensures 
the integrity of the message, where the message is not tampered with during transit 
between the sender and reciever. This also ensures non-repudiation of messages 
which guarantees that the sender of a message cannot later deny having sent the 
message and the recipient cannot deny having received the message. Signing a 
message involves the following preliminary steps:

1. Create a digest value of the message – a Digest is a hash value which is 
computed through a cryptographic hashing algorithm. Generally, altering 
the message will change the corresponding hash value, so it is used in digital 
signatures to ensure the integrity of messages.

2. Encrypt the digest value using the private key of sender (in our case, the 
sender is soapUI).

3. Sender submits the message along with the encrypted digest value.
4. Decrypt the encrypted digest value using the public key of sender. This 

returns the pure hash value of the message.
5. The receiver creates a digest value of the received message using the same 

hashing algorithm (as it is the first task of receiver to validate the signature) and 
ensures that the generated hash value equals the decrypted digest value.

In order to digitally sign the SOAP messages through soapUI, we need to have a 
set of resources in hand. The key stores are the first prerequisite to have for signing 
a message. A key store is a file which contains the key and certificate entries in an 
encrypted form. A key store is protected by a password. Also, the private keys stored 
in key stores are separately protected using passwords.



Chapter 7

[ 163 ]

1. First, we need to create key stores for both web service and client to store 
their respective public/private keys. Generating keys can be done using the 
Java key tool which is a key and certificate management utility. keytool is a 
part of the standard java development kit (JDK).

2. Let's first create a key store for the client (soapUI). Open a command window 
or shell and enter the following command to create the client key store:
keytool -genkey -alias clientks -keyalg RSA -keystore clientks.jks 
-storepass clientks

This will prompt the following questions. Make sure to provide answers as 
per your environment:
What is your first and last name?

  [Unknown]:  Charitha Kankanamge

What is the name of your organizational unit?

  [Unknown]:  QA

What is the name of your organization?

  [Unknown]:  Test

What is the name of your City or Locality?

  [Unknown]:  Colombo

What is the name of your State or Province?

  [Unknown]:  Western

What is the two-letter country code for this unit?

  [Unknown]:  LK

Is CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo, ST=Western, 
C=LK correct?

  [no]:  yes

Enter key password for <clientks>

  (RETURN if same as keystore password):

You will find the client key store, clientks.jks at the location where you 
launched the preceding command. Make a note of the key store password 
and private key password (both are clientks in our example).

3. Similarly, create a server key store for RoomManagementService as follows :
keytool -genkey -alias serviceks -keyalg RSA -keystore serviceks.
jks -storepass serviceks

4. Note that, the key store password of the service key store, serviceks.jks is 
serviceks and the private key password is also the same.



Advanced Functional Testing with soapUI

[ 164 ]

5. Next, we need to export the public certificate of the client to the service key 
store. In order to do that, the public certificate of the client must be taken out 
from the client key store, which is explained as follows:

keytool -export -alias clientks -keystore clientks.jks -file 
client.cert

This will prompt for the keystore password and enter 'clientks'. Then, the 
certificate will be stored in a file called client.cert.

6. Now, this certificate can be imported into the service key store as follows:
keytool -import -file client.cert -keystore serviceks.jks 
-storepass serviceks -alias clientks

7. Entering the preceding command will result in the following:
Owner: CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo, 
ST=Western, C=LK

Issuer: CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo, 
ST=Western, C=LK

Serial number: 4fa1477c

Valid from: Wed May 02 20:11:00 IST 2012 until: Tue Jul 31 
20:11:00 IST 2012

Certificate fingerprints:

     MD5:  1D:4B:FF:8A:24:D5:F9:58:D8:C3:FD:71:7F:7C:70:71

     SHA1: D6:88:1A:06:7A:5B:4B:34:56:7B:48:A1:9B:C5:AA:B1:B8:91:7
2:1C

     Signature algorithm name: SHA1withRSA

     Version: 3

Trust this certificate? [no]:  yes

Certificate was added to keystore

8. Similarly, we can import the public certificate of the service into the client 
key store as follows:
keytool -export -alias serviceks -keystore serviceks.jks -file 
service.cert

keytool -import -file service.cert -keystore clientks.jks 
-storepass clientks -alias serviceks

9. Now, we possess both client and service key stores. We can proceed with 
securing the web service.



Chapter 7

[ 165 ]

Both serviceks.jks and clientks.jks keystore files can be found in the 
keystores folder within the chapter 7 folder of the code bundle.

Securing RoomManagementService
I hope you remember how we secured the GuestManagementService in the previous 
section using the UsernameToken WS-Security policy. Similarly, now we are going 
to secure RoomManagementService using an asymmetric binding security policy by 
performing the following steps:

1. Open the services.xml file, which can be found inside the conf folder of 
the sample hotel reservation project and add the following policy as a child 
of the <service name="RoomManagementService"> element:
 <wsp:Policy wsu:Id="SigOnly"
                xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
                xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/
policy">
        <wsp:ExactlyOne>
            <wsp:All>
                <sp:AsymmetricBinding xmlns:sp="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy">
                 <wsp:Policy>
                        <sp:InitiatorToken>
                            <wsp:Policy>
                                <sp:X509Token
                                        sp:IncludeToken="http://
schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/
AlwaysToRecipient">
                                    <wsp:Policy>
                                        <sp:RequireThumbprintRefer
ence/>
                                        <sp:WssX509V3Token10/>
                                    </wsp:Policy>
                                </sp:X509Token>
                            </wsp:Policy>
                        </sp:InitiatorToken>
                        <sp:RecipientToken>
                            <wsp:Policy>
                                <sp:X509Token
                                        sp:IncludeToken="http://
schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">



Advanced Functional Testing with soapUI

[ 166 ]

                                    <wsp:Policy>
                                        <sp:RequireThumbprintRefer
ence/>
                                        <sp:WssX509V3Token10/>
                                    </wsp:Policy>
                               </sp:X509Token>
                            </wsp:Policy>
                        </sp:RecipientToken>
                        <sp:AlgorithmSuite>
                            <wsp:Policy>
                                <sp:TripleDesRsa15/>
                            </wsp:Policy>
                        </sp:AlgorithmSuite>
                        <sp:Layout>
                            <wsp:Policy>
                                <sp:Strict/>
                            </wsp:Policy>
                        </sp:Layout>
                        <sp:IncludeTimestamp/>
                        <sp:OnlySignEntireHeadersAndBody/>
                    </wsp:Policy>
                </sp:AsymmetricBinding>
                <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/
ws/2005/07/securitypolicy">
                    <wsp:Policy>
                        <sp:MustSupportRefKeyIdentifier/>
                        <sp:MustSupportRefIssuerSerial/>
                    </wsp:Policy>
                </sp:Wss10>
                <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.
org/ws/2005/07/securitypolicy">
                    <sp:Body/>
                </sp:SignedParts>
                <ramp:RampartConfig xmlns:ramp="http://ws.apache.
org/rampart/policy">
                    <ramp:user>serviceks</ramp:user>
                    <ramp:passwordCallbackClass>com.
sample.reservation.security.PWCBSignatureHandler</
ramp:passwordCallbackClass>
                    <ramp:signatureCrypto>
                        <ramp:crypto provider="org.apache.
ws.security.components.crypto.Merlin">



Chapter 7

[ 167 ]

                            <ramp:property name="org.apache.
ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
 <ramp:property name="org.apache.ws.security.crypto.merlin.
file">serviceks.jks</ramp:property>
                           <ramp:property name="org.apache.
ws.security.crypto.merlin.keystore.password">serviceks</
ramp:property>
                        </ramp:crypto>
                    </ramp:signatureCrypto>
                </ramp:RampartConfig>
            </wsp:All>
        </wsp:ExactlyOne>
    </wsp:Policy>

You will be interested to see the asymmetric binding policy assertion in the 
preceding policy which specifies the keys used for signing and verification 
of signatures. The <sp:InitiatorToken> and <sp:RecipientToken> 
are the two main elements inside the asymmetric binding assertion. The 
InitiatorToken element specifies the token used by the client (sender) for 
signing whereas the RecipientToken defines the tokens used by the service 
for signing. 
We already saw the usage of the RampartConfig assertion in the 
UsernameToken policy. In this policy, the RampartConfig assertion is used 
to refer to the key stores and certificates used for signing and verifying the 
signatures of the messages. Here, the value of <ramp:user> element is the 
username used to retrieve the password of the corresponding private key 
from the CallbackHandler.

2. The <ramp:passwordCallbackClass> element is used to retrieve the 
password of the private key that is used for signing. We will write a new 
password callback handler class, com.sample.reservation.security.
PWCBSignatureHandler.java, as follows:
package com.sample.reservation.security;

import org.apache.ws.security.WSPasswordCallback;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import java.io.IOException;

public class PWCBSignatureHandler implements CallbackHandler {



Advanced Functional Testing with soapUI

[ 168 ]

    public void handle(Callback[] callbacks) throws IOException,
                                                    
UnsupportedCallbackException {
        WSPasswordCallback pwcb = (WSPasswordCallback) 
callbacks[0];

        String id = pwcb.getIdentifer();
        int usage = pwcb.getUsage();
//Usage value is SIGNATURE when rampart wants to get the pass  
// phrase of the private key of the keypair when it wants to  
// create a signature in an outgoing message
        if (usage == WSPasswordCallback.SIGNATURE) {
            // Logic to get the private key password for given  
// alias
            if ("serviceks".equals(id)) {
                pwcb.setPassword("serviceks");
            } else if ("clientks".equals(id)) {
                pwcb.setPassword("clientks");
            }
        }
    }
}

The complete source code of the PWCBSignatureHandler.java 
class can be found at src\com\sample\reservation\security\
PWCBSignatureHandler.java in the the chapter 7 folder of the 
code bundle..

3. Engage the Rampart module by adding the following element 
in the services.xml file in order to enable WS-Security for 
RoomManagementService:
<module ref="rampart" />

The complete services.xml file with the security policy can be 
found at conf folder within the chapter 7 folder of the code bundle.

4. Now, we can rebuild our sample service by including the libraries in AXIS2_
HOME/lib in the class path. We must also make sure to copy the service key 
store (serviceks.jks) into the root of the service archive.

You can use the ant build script given in the code bundle associated 
with this chapter to build the service with all of the preceding 
configurations.



Chapter 7

[ 169 ]

5. Deploy the HotelReservation.aar file again. When you access the WSDL 
URL of RoomManagementService (http://localhost:8080/axis2/
services/RoomManagementService?wsdl), you will see that the auto-
generated WSDL is updated with the signature policy.

Testing secured RoomManagementService  
with soapUI
We completed the configurations at the web service side which are required for 
securing the service with an asymmetric binding policy. Our next objective is to 
invoke this secured service using soapUI. In order to do that we need to construct the 
corresponding asymmetric binding security policy in soapUI project configuration. 
We have already witnessed that enabling asymmetric binding policy for a web 
service requires a lot more configurations than the UsernameToken scenario. This is 
true for the client side as well. In soapUI, we need to complete the following tasks in 
order to submit a digitally signed message to the preceding web service:

1. Specify the key pairs used to create the signature and passwords to access the 
key store and private key.

2. Specify the set of algorithms used for digest generation, signature, and 
signature canonicalization.

3. Specify the parts of the message which need to be signed.
In this section, we will go through the detailed configurations of the soapUI project 
to fulfill the preceding work items

1. Open Project view of the HotelReservationProject.
2. First, we will specify the key stores which are required for our scenario. In 

asymmetric binding, the client (soapUI) signs the request using its private 
key. The private key is stored in the clientks.jks file. Also, the client 
decrypts the encrypted digest value of the response using the service's  
public key which is also stored inside clientks.jks.

3. Click on the Keystores/Certificates tab and select the + icon to add a new 
key store. Browse for the clientks.jks file in your filesystem and specify 
its password as clientks.

4. Enter clientks as the Default Alias and Alias Password. We will point to 
the private key which is used to sign the request using the default alias and 
use the alias password as the private key password.



Advanced Functional Testing with soapUI

[ 170 ]

5. The new key store will be listed in the Keystores/Certificates windows as 
shown in the following screenshot:

6. The Status column shows the loading status of the given key store. This will 
report an error if the key store location is invalid.

Outgoing WS-Security configurations
Now, we will add an Outgoing WS-Security configuration for our project as follows:

1. Click on the Outgoing WS-Security Configurations tab and click 
on the + icon to add a new outgoing WSS configuration. Specify 
SignOutgoingConfig as the unique name of outgoing WSS configuration. 
We will keep the Default Username/Alias, Default Password, Actor, and 
Must Understand fields blank as we do not want to use the default values 
for child WSS entries.

2. As we did in UTConfig WSS configuration previously, we can add 
multiple WSS entries for a WSS configuration. Select the newly added 
SignOutgoingConfig and click on the + icon at the bottom of the pane to add 
a new WSS entry. Select Signature as the entry and click on OK.

3. You will notice the following properties of the Signature WSS entry:
 ° Keystore: It is the key store which holds the private key used to sign 

the message. For example, clientks.jks
 ° Alias: It is the alias of the private key, for example, clientks
 ° Password : It is the private key password, for example, clientks
 ° Key Identifier Type: It defines which key identifier type to use for 

signature. For example, Binary Security Token or X509 certificate
 ° Signature Algorithm: This is the algorithm used for generating a 

signature using an asymmetric key. WS-SecurityPolicy specification 
recommends to use RsaSha1 algorithm which is identified by the URI; 
http://www.w3.org/2000/09/xmldsig#rsa-sha1. In our example, 
we can select that or use the default as the signature algorithm.



Chapter 7

[ 171 ]

 ° Signature Canonicalization: The XML canonicalization (www.
w3.org/TR/xml-exc-c14n/) is part of the XML digital signature. 
There are various canonicalization algorithms and each represents 
using their identifier in soapUI WSS entry properties. In our example, 
we will leave the default signature canonicalization as it is.

 ° Digest Algorithm: This specifies the algorithm used for generating 
a message digest value. Once selected, this will include in 
<ds:DigestMethod> element in SOAP header of the request. You 
can use the default or whatever algorithm is preferred. We will select  
http://www.w3.org/2000/09/xmldsig#sha1.

Selecting default as the digest algorithm returns an 
error, XMLSignatureException, in soapUI v4.0.1.

4. Check the Use Single Certificate checkbox, this instructs soapUI to use a 
single certificate for signing.

5. Parts defines what parts of the SOAP message should be signed. We can 
specify multiple parts by clicking on Add new part + icon. The Parts table 
consists of four columns:

 ° ID: This column is used to specify a unique ID of the XML element 
to be signed

 ° Name: This column is for specifying the name of the XML element 
(for example, Body)

 ° Namespace: This column has the associated namespace of the 
XML element

 ° Encode: This column states how the signing should be done related 
to an XML element
There are two possible values, content and element. Element 
encoding can be used if we want to sign the whole XML element. 
Content encoding can be used to sign inner parts of XML elements.

6. In our example, we will use the following values in the Parts table:
 ° ID: empty
 ° Name: Body
 ° Namespace: http://schemas.xmlsoap.org/soap/envelope/
 ° Encode : Content

If we leave the Parts table empty, soapUI signs the SOAP body of 
the request by default



Advanced Functional Testing with soapUI

[ 172 ]

7. Once completed, the Signature properties of the SignOutgoingConfig 
outgoing WSS configuration will be similar to the following screenshot:

8. Now, if you just associate this configuration with a SOAP request and 
submit, you will get a SOAP Fault with the Missing Timestamp fault string. 
You should be able to explain the reason for that by looking at the security 
policy of RoomManagementService.
In the WS-Security policy of the service, <sp:IncludeTimestamp/> tells the 
requestor to always send a timestamp with a request.

9. In order to send the Timestamp with the request, we need to add Timestamp 
WSS entry as we did in UsernameToken scenario. Click on the + icon in the 
bottom pane of the SignOutgoingConfig outgoing WSS configuration and 
select Timestamp from the Add WSS Entry drop-down menu. Specify the 
sufficient TimeToLive value in seconds (for example 60 seconds).

Incoming WS-Security configurations
Now, we are done with the outgoing security configurations of the soapUI project. 
However, the responses we get from the service are also secured by the service in 
the same manner. Therefore, we should configure soapUI to interpret and process 
the responses. Incoming WS-Security configurations provide us with the necessary 
settings required to process the responses as follows:

1. Click on the Incoming WS-Security Configurations tab. Click on 
the + icon at the top-left corner of the configuration tab to add a new 
incoming WSS configuration.



Chapter 7

[ 173 ]

2. Enter SignIncomingConfig as the name of the configuration. Once we get 
the secured response, soapUI needs to verify the signature of the message 
using the public key of the service which can be found at the client key store. 
Therefore, select clientks.jks as the Signature key store.

3. Finally, make sure to specify the password (clientks) of the Signature key 
store. This is shown in the following screenshot:

Applying WS-Security configurations to the SOAP request
We are ready to apply the Outgoing and Incoming WSS configurations into a SOAP 
request which invokes RoomManagementService as follows:

1. Select the getRoomDetails TestStep of RoomManagementServiceTestSuite. 
Select the Aut (authentication and security related settings) tab which is at 
the bottom corner of the request window. 

2. Select Outgoing WSS and Incoming WSS which we have been just configured. 
This will associate the out-flow and in-flow security to the SOAP request.



Advanced Functional Testing with soapUI

[ 174 ]

3. Run the test. You will see the following security headers of the request in the 
Raw view of the message. Analyze these header values with the Outgoing 
WSS configuration properties which we have specified in the soapUI project:
<soapenv:Header><wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd"><wsu:Timestamp wsu:Id="Timestamp-37" xmlns:wsu="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"><wsu:Created>2012-05-03T03:19:08.667Z</
wsu:Created><wsu:Expires>2012-05-03T03:20:08.667Z</wsu:Expires></
wsu:Timestamp><wsse:BinarySecurityToken EncodingType="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3" wsu:Id="CertId-602C22F25E72EF3491133601514866237" 
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">MIICTTCCAbagAwIBAgIET6FHfDANBgk
qhkiG9w0BAQUFADBrMQswCQYDVQQGEwJMSzEQMA4GA1UECBMHV2VzdGVybjEQMA
4GA1UEBxMnHwsnYPKT006UgCLAGr5XkeII/7qH4yr4MHmvMu6qURLSFm8afrgvY
aic=</wsse:BinarySecurityToken><ds:Signature Id="Signature-35" 
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/
xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>
<ds:Reference URI="#id-36">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
<ds:DigestValue>eICjYxx0xAb/lFPCuO50NLJLGRo=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>
a6RMP79BpjunwwUn6b9vupaUU91iza42QTAnxRhg9MZfXO3Nnc 
M4xdbxxkpjVzp6ukDIheGFn95q
osUzeRfYXYM40WqWpOrCJErmWopbLeuOoqRIMyP0Q411SdRTqLYyD/
rBvPFnivut78eb8rBm2b4M
Kq722BVCyRYcpSlTGhA=
</ds:SignatureValue>



Chapter 7

[ 175 ]

<ds:KeyInfo Id="KeyId-602C22F25E72EF3491133601514866238">
<wsse:SecurityTokenReference wsu:Id="STRId-602C22F25E72
EF3491133601514866239" xmlns:wsu="http://docs.oasis-open.
org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"><wsse:Reference URI="#CertId-602C22F25E72
EF3491133601514866237" ValueType="http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/></
wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature></wsse:Security></soapenv:Header> 

Validating WS-Security responses
Similar to the WS-Addressing specific assertion, soapUI provides us with an 
assertion to automatically validate secured responses. WS-Security Status assertion 
can be used to validate that the last received message contained valid WS-Security 
headers as follows:

Click on Adds an assertion to this item icon at the bottom of the getRoomDetails 
SOAP request editor and select the WS-Security Status assertion as shown in the 
following screenshot:

This assertion validates the WS-Security headers in the last response message and 
reports as VALID when the WS-Security headers are present.



Advanced Functional Testing with soapUI

[ 176 ]

Summary
Web service extensions play a key role in service-oriented architecture.  
WS-Addressing and WS-Security are two such standards which are commonly 
used in service oriented solutions. Although most of the web service testing  
tools are capable of directly invoking the services, if the services are configured 
with various Quality of Service features such as the WS-Security, it is complex  
or impossible to use tools in testing. This is not the case with soapUI. soapUI 
provides users with simple and UI based utilities to quickly configure web  
services extensions and submit the requests including various WS-* headers.

In this chapter, we looked into the details of using secure SOAP message 
transmissions in soapUI. We discussed two security-binding mechanisms, 
TransportBinding through UsernameToken and asymmetric binding using  
an XML signature. WS-Security is a relatively complex subject, so the reader  
should refer to the relevant specifications when trying out the samples given  
in this chapter.



Getting Started with  
REST Testing

There are various technologies that can be used to implement interoperability 
between heterogeneous applications. As we discussed in previous chapters, web 
services technology can be considered as the de facto standard for enterprise 
integration. We can identify two distinguished mechanisms in implementing web 
services, namely, SOAP based web services and RESTful web services. So far, 
we looked into the various aspects of SOAP-based web services and how soapUI 
facilitates the testing of SOAP web services. Our sample hotel reservation application 
has also been completely based on SOAP based web services where we used the 
SOAP messaging model. The WSDL is used to describe web services as well as SOAP 
web service extensions such as WS-Addressing, WS-Security, and so on. (Chapter 7, 
Advanced Functional Testing with soapUI)

SOAP versus REST has been a debatable topic over the last few years. Due to the 
simplicity and extensive use of popular web-based technologies such as HTTP, 
REST has become popular among developers. However, some people argue that the 
true advantages of web services such as extensibility, message-level security, and 
addressing cannot be achieved through RESTful services, thus SOAP can still be 
considered as the standard way of implementing web services. In this chapter, we 
will explore the world of testing RESTful web services using soapUI with the help  
of the following topics:

• Introduction to REST
• Testing RESTful APIs using soapUI
• REST services in soapUI
• REST parameters
• Functional testing of REST services using soapUI
• WADL



Getting Started with REST Testing

[ 178 ]

Introduction to REST
In his doctoral dissertation (http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm), Roy Fielding introduced the term 
"REST". Representational State Transfer (REST) can be defined as an architectural 
style for designing software systems. REST is not a specification or W3C standard 
such as SOAP or WS-* stack. Because of that, working with RESTful services 
is relatively easier and you do not usually need to use specific middleware 
frameworks. Most often, the standard libraries included in programming 
languages can be used directly.

The key principles of REST are as follows:

• Represent everything with a unique ID; a URI
• Make use of standard HTTP methods such as GET, POST, DELETE, and PUT
• Link resources together
• Resources can have multiple representations
• Stateless communication

Let's discuss each of these concepts briefly to get a preliminary understanding about 
RESTful services.

Represent everything with URIs
In REST, any named information is considered as a resource. Therefore, an image, 
person, or a document can be considered as examples of resources. Each resource can 
distinguishably be identified using a unique ID; a URI. The following represent two 
distinct resources:

• http://test.com/products/0020: Represents the product with ID 0020
• http://test.com/orders/2012/01: Represents all orders placed in 

2012 January

With this approach, any resource can be identified by its URI. When designing 
RESTful services, it is best practice to map all the resources which are exposed  
to the outside world through proper directory-structure like URIs.



Chapter 8

[ 179 ]

Using standard HTTP methods
REST is built based on the proper use of HTTP methods. Because of the sole HTTP 
based interactions, in a way, the World Wide Web (WWW) can be viewed as a 
complete representation of a REST-based architecture. As HTTP is the standard 
and widely adopted transport protocol in web, it can be used to access any resource 
including HTML pages, images, and videos. For clients to interact with resources 
exposed by our services, we should implement the HTTP methods correctly.  
We can access resources through HTTP by specifying two elements:

• HTTP verb: This is the action to be performed on the resource
• Resource Identifier: This is the URI of the resource which needs to be accessed

For example, we can retrieve details about the product with product ID 0020 using 
the following pattern:

GET http://test.com/products/0020

The HTTP specification defines a set of verbs and their purpose. We can summarize 
the commonly used HTTP methods  as shown in the following table:

HTTP Verb Description
GET Retrieves a resource identified by the URI. Can be compared to 

READ operation.
POST Creates a new resource. Can be compared to the CREATE operation.
PUT Updates resource with the provided data or creates the resource if it 

does not exist. Can be compared to the UPDATE operation.
DELETE Deletes the resource identified by the URI. Can be compared to the 

DELETE operation.

The HTTP verbs provide a uniform interface to interact with resources. In order 
to build truly RESTful applications, we should make sure we use the appropriate 
HTTP verbs for the correct purposes. For instance, we should not use HTTP GET  
to trigger something transactional on the server which violates the intended use  
of the GET method.

Linking resources together
Resources can be related to each other. For example, one document can be linked 
to another document. It is always a good RESTful design practice to not include too 
much information in a single resource. Rather, a resource should contain links to 
additional information similar to how HTML pages are linked. As links are URIs, 
they can point to resources which are managed outside your application.



Getting Started with REST Testing

[ 180 ]

Multiple representations of resources
With REST, multiple representations of resources can be provided for different 
needs. As REST is purely HTTP oriented, the content negotiation (http://
en.wikipedia.org/wiki/Content_negotiation) principle can be used to achieve 
different representations of the same resource. With this, a client can request the 
preferred response format using the Accept HTTP header and the server responds 
with a representation of the resource in the requested format. Having multiple 
representations of the same resource will help in many ways. Information about 
your application can be accessed by various types of clients who consume different 
representations such as HTML and XML.

Stateless communication
REST mandates that a server should not retain communication state of the clients 
beyond a single request. This is very important to achieve loose coupling among 
RESTful services and client applications. When a client communicates with a server, 
the request should contain all the necessary information that must be present 
in order to access and use the server. It should not assume that the server holds 
information about the state of the client. With stateless communication, the server 
does not require to maintain information about the client's state, thus it does not get 
overwhelmed by multiple clients accessing the server simultaneously.

We looked into the key principles of REST. It is time for us to use soapUI to invoke a 
RESTful service as we started discussion on SOAP services testing in Chapter 3, First 
Steps with soapUI and Projects.

Testing RESTful APIs using soapUI
You may be wondering why I introduced a new term "API" instead of "services" to 
start off the topic. Be it REST or SOAP, web services can be considered as another 
form of APIs. With the widespread adoption of mobile devices and service-
oriented computing, business organizations have begun to expose applications and 
services to external parties. These third party developers have built applications to 
integrate with the systems of API providers allowing the providers to extend the 
capabilities of their businesses as well as helping the third party developers to earn 
their own livelihood.

Today, there are enormous applications built by the third party developers based 
on the APIs exposed by many vendors. For example, big names such as Twitter, 
Facebook, Google, and Amazon expose their key features as APIs to the outside 
world allowing developers to build various applications.



Chapter 8

[ 181 ]

Due to the easy-usage and lightweight nature of REST, most of those popular APIs 
are offered as purely RESTful interfaces. The testing of REST APIs can be done 
either using the utilities provided by the API provider or by an external tool such 
as soapUI. Usually, when APIs are provided through an API management solution 
such as Apigee, Mashery, or WSO2, the API management solution provides you 
with facilities to test the APIs. However, merely sending messages to APIs is not 
sufficient if you are an API provider or a consumer who wants to build third party 
applications. soapUI brings with it RESTful services/API testing facilities which 
allows us to use various functional and performance testing capabilities.

Without further discussion, let's start using soapUI for RESTful service testing. We 
can find a large number of APIs such as Google+ and Google Maps at the Google 
Developers portal (https://developers.google.com/) which can freely be 
tried out. As these Google APIs are truly RESTful in nature and readily available 
for use, we are not going to spend time on writing our own RESTful service for 
demonstration purposes. To use any Google API, you must first create a Google 
account (if you do not have one) and then request an API key. We can do so by 
performing the following steps:

1. Create a Google account if you do not already have one. 
2. Access the Google Developers portal at https://developers.google.com/.  
3. Click on the API Console which can be found under the Developer Tools.
4. Log into the API console (https://code.google.com/apis/console/) 

using your Google account.
5. Click on Create project to start using Google APIs.
6. You will find the list of Google API offerings such as Analytics API,  

Blogger API, Places API, and so on. For our demonstration, we will use 
Google Places API. Locate the Places API in the services list and click on  
the on/off icon to make it active.

7. You will be prompted to register your organization and website URL.  
Enter something valid and click on Submit. This will direct you to the 
terms of services page. Accept the terms and conditions.

8. Now, go to the API Access page by clicking on API Access in left menu. 
You will find your API key at the bottom of the page under the Simple 
API Access section.



Getting Started with REST Testing

[ 182 ]

9. Now, we possess an API key to try out the Google Places API. 

The Google Places API gives information about various places. 
According to the API documentation (https://developers.
google.com/maps/documentation/places/), place requests 
specify locations such as latitude/longitude coordinates and the 
following basic searches are exposed through the API:

• Place Searches: This returns a list of nearby places based on a 
user's location

• Place Details requests: This returns a detailed information 
about a specific place

• Place check-ins: This allows to report that a user has checked 
into a place

• Place reports: This allows to add new places and delete places 
Make sure to carefully read the API documentation before you try out 
the sample, which we will try out in the next section.

REST Services in soapUI
All REST testing capabilities of soapUI are based on a logical representation known 
as REST service. We should not confuse this with the term "service" here since it 
is not a service implementation but a mapping of the RESTful service that is being 
invoked. We can add as many REST Services as we can in a soapUI project; each 
represents a particular RESTful service. The REST service model in soapUI can be 
represented as shown in the following diagram:



Chapter 8

[ 183 ]

Each REST service consists of a number of resources. As we discussed at the 
beginning of the chapter, resources represent any named information that is 
identified as URIs. So, each resource can be addressed through a specific URI. For 
example, the guests' resource can be accessed through URI path /guests whereas 
guest resource is found at the/guest/{guestName} URI.

A resource may have child resources. The complete URI of the child resource is a 
concatenation of the parent resource URI with its own.

Resources can have multiple methods. As we just discussed, a fundamental principle 
of RESTful services is the existence of multiple representations of resources. 
Therefore, the same resource can be manipulated through multiple HTTP methods. 
Thus, the same resource URI can be made accessible via HTTP GET and POST, 
depending on the requirements.

Requests are the leaf nodes of the soapUI REST service hierarchy, which represents 
the actual request message based on the HTTP method.

We will look into each of the above entities with a sample REST service by 
performing the following steps: 

1. Create a new soapUI project and name it GooglePlaces. We can select the 
Add REST Service option in the New soapUI project dialog box and click on 
OK to create the service on-the-fly. Note that we do not want to mix things 
by including the REST service inside the same hotel reservation project which 
we used to demonstrate the SOAP web services.

2. The New REST Service dialog box will be opened as shown in the 
following screenshot:



Getting Started with REST Testing

[ 184 ]

Enter GooglePlacesAPI as the service name. The endpoint is the base 
URL of the API which we are going to invoke. In our case, the base URL  
is https://maps.googleapis.com.

soapUI provides us with a very useful option to extract the resource and 
the associated method automatically from the endpoint URL. Otherwise, 
we can manually create the REST resource in the next dialog box. For 
soapUI to extract the resources and methods, the endpoint URL should 
contain the query strings and URL parameters. Usually, the request URL 
format of an API is given in the corresponding API documentation. In 
the Google Places API document, we can find the general format of the 
request URL for the place search request as: 
https://maps.googleapis.com/maps/api/place/search/
output?parameters

You will find the details about the parameters which must be included 
in a place search request in the same section of the API documentation. 
According to it, a complete URL for a place search request will be similar 
to the following:
https://maps.googleapis.com/maps/api/place/search/
json?location=-33.8670522,151.1957362&radius=500&types
=food&name=harbour&sensor=false&key=AddYourOwnKeyHere

This is the exact same request given as an example in the API 
documentation. This URL shows the search request for places of type 
food within 500 m radius of a point in Sydney Australia.

3. As we have an example of the complete URL of a particular place search, 
enter it as the endpoint URL and select the Extract Resource and Method 
from specified endpoint option as shown in the following screenshot:



Chapter 8

[ 185 ]

4. Once you click on OK in the preceding dialog, the New Rest Resource dialog 
will be displayed. Enter a valid resource name (for example, "places") and 
click on OK as shown in the following screenshot:

Here, you can see that the all query parameters have been extracted from 
the endpoint URL which we specified in the previous step. If there are any 
additional parameters that need to be captured, we can use the Extract 
Params button. Also, we can add new parameters or remove existing 
parameters using the Parameters tool bar which is on top of the 
parameters table.

Note that the parameters which are defined at the resource level 
are visible to all child entities in a REST service. This means these 
parameters can be accessed from REST methods as well as requests.



Getting Started with REST Testing

[ 186 ]

5. Now, we can add a REST method to access our places resource. Apparently, 
the request should be an HTTP GET because we just do a search on places 
and do not want to add, update, or delete a resource. Therefore, specify GET 
as the HTTP method. Enter searchPlaces as the method name as shown in 
the following screenshot:

We can add HTTP method specific parameters in the Parameters table. 
Parameters defined at the method level are available for all requests defined 
under the method. In our example, we do not have any method specific 
parameters since we have defined everything at the resource level. By 
selecting the Creates and opens request option, we can proceed to 
creating a request for this HTTP method in the next window.

6. Finally, the REST request editor will be displayed as shown in the  
following screenshot:



Chapter 8

[ 187 ]

You can observe that the parameters which were extracted and defined at 
the resource level are shown in request editor. Regardless of the level of the 
REST service in which the parameters are defined, all parameters should be 
part of the request and are accessible from the request level. Therefore, the 
Parameters table in the request editor can be considered as an aggregation 
of all parameters.

At the top of the request editor, the endpoint is shown as  
https://maps.googleapis.com.

Under that, you can find the full path of the request. Actually, the complete 
path of the request will be a concatenation of the endpoint and the full path 
[endpoint+full path]. If we want to update the existing parameter list with  
a new URL, we can click on the Updates this Requests params from 
a specified URL icon, which can be found at the top of the request editor.



Getting Started with REST Testing

[ 188 ]

Now, we can send the request. Before that, make sure to replace the key 
parameter value with your API key, which you created at the time of 
registration at the Google developers website.

7. Click on the green arrow icon at the top-left corner to submit the HTTP GET 
request. You will get a response and it will be shown in XML format by 
default. Click on the JSON tab to view the response in JSON format.

You will find some elements which we have not seen with the SOAP request editor 
but are specific to the REST requests and responses. Two of such are the request and 
response representation tabs.

Request and response representation 
As we discussed earlier, the fundamental feature of RESTful services is the ability of 
resources to provide multiple representations. This is achieved basically using the 
HTTP content-negotiation mechanism. Each method in a resource can have multiple 
request and response representations.

Right-click on the searchPlaces method and select Show Method viewer. Open 
the Representations tab. Once you send the first request of a particular method, 
a default response representation is added automatically based on the received 
response (the automatic creation of representations from the response messages can 
be turned off by deselecting the Auto-Create option at the bottom of the response 
editor). Therefore, we can see a response representation is already added in the table 
as shown in the following screenshot:

Depending on the REST service which you consume, you can add as many response 
representations as you wish. You can specify different media types or status codes 
for the responses in Representations table. When sending the request, you can 
specify the required media type in the Accept drop-down box which can be found 
at the top-left corner of the request editor. The Accept drop-down box of the request 
editor is auto-populated with the response representations which were specified in 
the Representations table as shown in the following screenshot:



Chapter 8

[ 189 ]

Using this response representation approach, you can achieve content negotiation of 
REST resources.

Representations are not limited to the responses. You can specify representations for 
requests as well as fault messages. By clicking on the + icon in the Representations 
tab, you can select the representation type for a method. As with responses, a 
representation of the fault type will also be populated automatically once you  
get a fault response.

The representations which you added at the method level will be available at the 
request level hence the request and response editors also show the corresponding 
representations.

I'm not planning to take you through all methods exposed by the Google Places API. 
You can try them on your own and become more familiar with the REST service 
model in soapUI. However, we will discuss the Place Check-Ins API in detail as it 
makes use of the HTTP POST requests.

Using POST or PUT requests in soapUI REST 
services
We will use the Place Check-Ins API (https://developers.google.com/places/
documentation/actions#PlaceCheckinRequests) of the Google Places API to 
demonstrate the POST method handling in soapUI REST services. As per the API 
documentation, once we have a reference parameter from the response of Place 
Search (you can find the response message in the soapUI response editor in the 
preceding Google Place Search API method invocation), we can use it to indicate that 
a user has checked into that place. A place check-in request is of the following form:

POST https://maps.googleapis.com/maps/api/place/check-in/
xml?sensor=true_or_false&key=AddYourOwnKeyHere



Getting Started with REST Testing

[ 190 ]

As this URL represents another resource based on the endpoint, https://maps.
googleapis.com, we can include place check-in resources under the same REST 
service which we created previously.

Let's add an HTTP POST method to the REST service by performing the 
following steps: 

1. Right-click on the Google PlacesAPI REST service and select New Resource. 
Enter placecheckins as the resource name. Enter the preceding place 
checkin request URL (https://maps.googleapis.com/maps/api/
place/check-in/xml?sensor=true&key=AddYourOwnKeyHere) as 
the resource path.

2. Click on the Extract Params to extract the parameters from the preceding 
URL and click on OK.

3. Add a new REST Method for this resource. Give placeCheckin as the 
method name. Make sure to select POST as the HTTP method. Click on 
OK to add the new HTTP method.

4. The request editor will be displayed for the POST request. You will notice a 
specific text area in the request pane to add the POST request body. Enter the 
following XML element in the POST request body and submit the request. 
Make sure to replace AddYourOwnKeyHere string with your API key 
which you used in the previous example.

<CheckInRequest>
<reference>CnRsAAAAgiDEO99XwaV8DrfbOuYzNloCFVSOg-
eB6nfHVnqic56Tbf1-RMvwfOr4Y7c1zwJzHGJ6BNXG_lzztACgHs5_LN0REaOtuMh
5dsjU8VsaLc9vkbpwc9jfS-V32FddVCLxMNEo6doD60f-l7RlnhaC_xIQOUQ9G0sW-
uKGpc7F4dYdNxoUJya-FxUMqpqtWEp_tCk3QP6uXzg</reference>
</CheckInRequest>

Note that the reference value has been captured from the response of the previous 
place search request. This is shown in the following screenshot:



Chapter 8

[ 191 ]

You will notice the Media Type drop down box in the POST message content editor 
which can be used to select a media type for the request from a pre-populated list 
of standard media types or add any other value. In our case, we can either use 
application/xml or application/json media types. When you select different media 
types and submit the request, the corresponding request representation is added to 
the representations tab in the request editor.

Reading POST message content from a file
Let's see how we can read the content of a POST request from a file without 
specifying it in the POST message content editor:

1. First, we need to clear the message content in the POST message editor and 
leave it blank.

2. Copy the request message content into a file in your file system. Name the 
file request.xml.

3. Click on the Attachments tab which can be found at the bottom of the 
request editor.

4. Click on the + icon to add an attachment. Browse for the request.xml in 
your filesystem and click on Open. You will be asked if you wish to cache 
the attachment in request. Click on Yes.



Getting Started with REST Testing

[ 192 ]

5. The file will be listed as an attachment with the content type as text/xml. 
Now, if you just submit the request with these details, you will receive the 
response as HTTP 400 bad request. The reason being that the media type 
of the request has been set to application/xml but the content type of the 
attachment is text/xml. Therefore, make sure to change the content type of 
the attachment into the media type value of the POST request, in our case, 
application/xml.

6. Now, submit the request again. You will get a successful response. Look at 
the Raw view of the request. You will notice that the content of the file has 
been inserted into the message body.

In the POST request message content editor, you will see an option to select the 
Post QueryString. This can be used to put a query string of the request into the 
POST body. Once you select this option, you will notice that the query strings (the 
parameters preceded by ? in the request URL) are appended to the POST body and 
the content type is changed to application/x-www-form-urlencoded as shown in 
the following message:

POST https://maps.googleapis.com/maps/api/place/check-in/xml HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: application/x-www-form-urlencoded

User-Agent: Jakarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Content-Length: 55

sensor=true&key=dummykeyvalue

We looked into how soapUI REST services handle HTTP POST requests. The same 
options can be applied to HTTP PUT requests as well. If the HTTP method is PUT, 
the associated request includes a request content editor similar to POST requests.



Chapter 8

[ 193 ]

Inserting the HTTP Basic Authentication 
header to requests
The Aut tab at the bottom of the request editor allows us to configure security 
settings for the requests. As WS-Security is not applicable in the context of RESTful 
services, a possible alternative is to use HTTP(S) basic authentication. Let's look 
at how we can insert basic authentication into the requests by performing the 
following steps:

1. Click on the Aut tab at the bottom of the request pane. Enter a valid 
username and password according to your RESTful service (in our example, 
we are accessing Google Places API which does not expect Basic Auth 
headers. So we can just use any credential).

2. Usually the servers secured with basic authentication challenge the 
authentication headers, so you can just submit the request. If we want soapUI 
to send credentials, if there is no challenge from the server side, continue 
with the following steps.

3. Click on the Global soapUI Preferences icon in the main tool bar. Then click 
on the HTTP settings tab.

4. Locate the Authenticate Preemptively parameter and select Adds 
authentication information to outgoing request.

5. With these settings, resubmit the previous POST request. You will see the 
basic authentication headers in the Raw view of the message as follows:
POST https://maps.googleapis.com/maps/api/place/check-in/
xml?sensor=true&key=dummykey HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: application/x-www-form-urlencoded

Authorization: Basic c3NhZGFzOnNhYXNhc2E=

User-Agent: Jarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Content-Length: 250

<CheckInRequest>
  <reference>CmRYAAAAciqGsTRX1mXRvuXSH2ErwW-jCINE1
aLiwP64MCWDN5vkXvXoQGPKldMfmdGyqWSpm7BEYCgDm-iv7Kc
2PF7QA7brMAwBbAcqMr5i1f4PwTpaovIZjysCEZTry8Ez30wpE-
hCNCXpynextCld2EBsDkRKsGhSLayuRyFsex6JA6NPh9dyupoTH3g</reference>
</CheckInRequest>



Getting Started with REST Testing

[ 194 ]

REST parameters
We have already worked with some REST parameters in the previous examples. 
However, we have not yet looked into all the possible parameter types included 
in a soapUI REST service.

Parameters are used to include additional information in a request. For example, 
our initial place search request URL (https://maps.googleapis.com/maps/api/
place/search/json?location=-33.8670522,151.1957362&radius=500&types=
food&name=harbour&sensor=false&key=dummykey) includes multiple parameters. 
Let's go through the common REST parameters included in soapUI.

Query parameters
Query parameters are the most commonly used parameter type in request URLs.  
A query string is appended to the request URL with a leading "?" followed by  
name/value pairs.

If you look at the resource viewer of the places resource, you can identify 
the extracted parameters; each of them is in the QUERY style as shown in 
the following screenshot:

Template parameters
Template parameters can be used to parameterize request URL paths. This can be 
better explained using an example, which we will explore in the following scenario.

Suppose we are invoking a RESTful service which implements a defect (bug) 
management solution. This application allows you to submit new defects, retrieve 
all defects, or get information about a specific defect.



Chapter 8

[ 195 ]

We will use a sample SimpleDefects application which is part of the 
Apache Wink distribution. You can download the Apache Wink binary 
from http://incubator.apache.org/wink/downloads.html 
and find the sample in the/examples/apps/SimpleDefects folder.

Assume the URL to get details of a particular defect (say the defect with ID 2) is  
http://localhost:8080/SimpleDefects/rest/defects/2.

Now, we may have a corresponding resource in a soapUI REST service as shown  
in the following screenshot:

We can add an HTTP GET method and the associated request for this particular 
resource. However, for each invocation, we will get the details of the defect ID 2. 
How can we request different defects without changing the URL?

Template parameters help us in these types of situations. Click on the + icon of the 
resource viewer and add a new parameter (name it defectid). Specify a default 
value and select TEMPLATE as the style of the parameter.

Now, in the resource path, parameterize the defect ID as {defectid}.

For example: /SimpleDefects/rest/defects/{defectid} as shown in the 
following screenshot:

Submit the request associated with the GET method of this particular resource. You 
will notice that the defectid is replaced with the default value of the parameter.



Getting Started with REST Testing

[ 196 ]

Matrix parameters
Matrix parameters are another type of request parameter used in a URL. However, 
this is not widely used today. In a way, matrix parameters closely resemble query 
parameters. However, the most notable difference is that the matrix parameters can 
appear anywhere in the path.

For example: http://server/products;order=random;color=red/2012/location.

You can learn more about matrix parameters at http://www.w3.org/
DesignIssues/MatrixURIs.html.

If we add a matrix parameter called matrixparam to the places resource of the 
GooglePlacesAPI REST service, the request message will be similar to the 
following HTTP headers:

GET https://maps.googleapis.com/maps/api/place/search/json;matrixparam
=matrixparamvalue?sensor=true&location=-33.8670522%2C151.1957362&types
=food&name=harbour&key=dummykey&radius=500 HTTP/1.1

Header parameters
Header parameters are different from the preceding set of parameters because they 
are added to the HTTP header of the request instead of the request URL. Suppose 
we need to add a header parameter in the searchPlaces HTTP GET method of the 
GooglePlacesAPI REST service. Then, we can add a new method parameter and 
select HEADER as the style as shown in the following screenshot:

When you submit the corresponding request of the searchPlaces HTTP GET method, 
you will notice the preceding header parameter is added as a custom HTTP header. 
This can be observed in the raw view of  the HTTP GET message, shown as follows:

GET https://maps.googleapis.com/maps/api/place/search/
json?sensor=true&location=-33.8670522%2C151.1957362&types=food&name=ha
rbour&key=dummykey&radius=500 HTTP/1.1



Chapter 8

[ 197 ]

Accept-Encoding: gzip,deflate

customHeader: customValue

Accept: application/xml

User-Agent: Jakarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Functional testing of REST services
We came across several features provided by soapUI to invoke RESTful services. 
The true advantage of using soapUI to test RESTful services is that we can get the 
comprehensive functional testing support provided by soapUI out-of-the-box with 
REST services as well. In this section, we will look into the integration of REST 
requests into TestCases so that they can be managed through TestSuites and  
validate the responses using various assertions.

Let's insert a REST test request (Request 1) of the searchPlaces HTTP GET method of 
the GooglePlaces project into a soapUI TestSuite by performing the following steps:

1. Right-click on the GooglePlaces project and select New TestSuite. Name it 
GooglePlacesTestSuite.

2. Once GooglePlacesTestSuite is added to the project, right-click on it and 
select New TestCase. Name it searchPlaceTestCase.

3. Now, right-click on searchPlaceTestCase and select Add Step | REST Test 
Request. Enter a name for the test step.

4. A pop-up menu appears with a drop-down list to select the REST methods 
and the corresponding REST requests which are included in the soapUI 
project. The list contains all the REST methods and REST requests in your 
soapUI project as shown in the following screenshot:



Getting Started with REST Testing

[ 198 ]

5. Select the searchPlaces method from the drop-down list and click on OK. 
The new REST request will be added to the TestCase. Now, this can be used 
for the usual functional tests which we have already looked at in the previous 
chapters. As the REST test request is just another TestStep, we can include it 
in a load test and carry out the performance tests of RESTful services too.

6. Click on the Assertions tab at the bottom of the REST test request editor. 
If you click on the Add an assertion to this item icon, you will see a list of 
allowed assertions which support REST requests. There is no REST-specific 
assertion but we can use the assertions such as XPath Match or script to 
validate the response as required.

In the preceding procedure, we started with the TestSuite and added 
the REST test request into the TestCase. This can be considered as a 
Top-down approach. Instead of that, we can also follow a Bottom-up  
approach where we can directly add a given REST request to a 
TestCase by clicking on Add this REST request to a TestCase icon 
which is at the top left corner of the request editor.

We covered a considerable level of detail about RESTful services testing in the 
previous sections. We will conclude this chapter by discussing a bit about the  
Web Application Description Language (WADL).

WADL
WADL is designed to provide a machine process-able description of 
HTTP-based web applications. We can find more information about  
WADL in the latest version of the W3C submission of the WADL  
specification at http://www.w3.org/Submission/wadl/.

We discussed WSDL when we first looked into the SOAP based web services. 
Though WSDL can be used to describe SOAP-based web services in a comprehensive 
manner, it has limitations with HTTP operations such as PUT and DELETE, among 
others. As REST services often deal with HTTP methods, WSDL is not a good option 
for documenting RESTful services. More precisely, WSDL 1.1 is not a good choice 
for RESTful services. Later on, WSDL 2.0 specification was launched to address the 
concerns encountered with WSDL 1.1, and it provides better support for RESTful 
services over WSDL 1.1.

WADL can be considered as an alternative to WSDL 2.0. WADL is lightweight and 
easier to understand than the WSDL specification. Hence, it is much appropriate for 
documenting RESTful services.



Chapter 8

[ 199 ]

However, in the REST world, the services are usually documented by textual 
description (for example, Google API documentation) and WADL is still not a 
widely adopted concept.

When we create a REST service from an endpoint , the WADL of the service is 
automatically generated for us by soapUI. We can access the generated WADL by 
performing the following steps: 

1. Right-click on the GooglePlacesAPI service of the GooglePlaces project and 
select Show Service Viewer.

2. In the service viewer, click on the WADL Content tab to open the WADL of 
the service as shown in the following screenshot:

As with SOAP based services, we can create a REST service from an initial WADL 
and generate a TestSuite for the imported WADL automatically. Let's see how we 
can create a TestSuite from an imported WADL.

1. In the preceding WADL content window of the GooglePlacesAPI service 
viewer, click on the Exports the entire WADL and included/imported files 
to a local directory icon. This will export the WADL into your filesystem.

2. Now, we have a complete WADL to start with. Click on File | New soapUI 
Project and use GooglePlaces-WADLFirst as the name of the project. 
Browse for the WADL which has been saved in your filesystem in the 
previous step and specify it as the initial WADL.



Getting Started with REST Testing

[ 200 ]

3. Select the Create TestSuite option and click on OK. This will open the 
Generate TestSuite dialog box as shown in the following screenshot:

Here, you can see the resources were extracted and listed from the given 
WADL definition. Click on OK and leave the default options intact.

4. Enter a name for the TestSuite and continue. You will see a new project is 
created with a REST service and two resources. Also, a TestSuite is created 
with two TestCases for each resource in the REST service.

Now, submit the REST requests which are included in each HTTP method and 
observe the results.

Summary
RESTful web services are a lightweight alternative to SOAP-based services. Due to 
popularity and high demand of public API offerings such as Twitter and Google, 
the RESTful services have become a key ingredient in web application development. 
In this chapter, we looked into the testing aspects of RESTful web services using 
soapUI. Deviating from our sample hotel reservation application, which is purely 
SOAP based web service implementation, we used a public API offering hosted at 
the Google developers portal as the sample RESTful service. We went through some 
fundamentals of REST theory and proceeded with discussing various REST testing 
features provided by soapUI.



Testing Databases  
with soapUI

Data handling is a key requirement expected from any software regardless of the 
architectural style used to build them. In SOA, there can be various heterogeneous 
application integrations. An application that runs on the Oracle database can be 
communicated with a data processing web service which connects to an MS SQL 
database. The brokering middleware solutions such as Enterprise Service Buses 
(ESB) facilitate the necessary data format transformations, which need to be 
happening when communicating incompatible systems. Before the web services 
take part in such integrations, it is always recommended to verify the data-related 
operations in isolation. In other words, when your database schemas are ready, 
testers can start testing the integrity of the databases used in your solution. By  
testing the database schema in advance without waiting to access data through  
web service interfaces, testers can utilize time effectively and explore potential  
test failure scenarios.

soapUI provides users with a data interface which can be used to interact with any 
DBMS. We will discuss the following topics in this chapter, which are related to 
database testing aspects of soapUI:

• Testing data in isolation
• JDBC Request TestStep in soapUI
• JDBC test assertions



Testing Databases with soapUI

[ 202 ]

Testing data in isolation
There can be several reasons for testing data separately from other applications. In 
web services testing, you may need to read data from multiple tables and analyze 
them before actually consuming data through services. Sometimes, it is important  
to isolate the bugs in a system by calling databases directly. Let's look at the 
following example:

Service A needs to go through a brokering middleware (data transformer) in order 
to be compatible with the data formats accepted by Service B. The data transformer 
is used to transform the data into the format that conforms to the schema of Service 
B. Suppose a bug that is related to the data handling is uncovered when performing 
integration testing of services. Such a defect can occur due to an issue at individual 
services, issue of the logic in data transformer, or data in the database itself. In this 
type of situation, the testers usually try to isolate the bugs by calling databases 
through separate SQL client applications. Without moving into separate SQL 
applications, if the tool that we use for service testing is able to directly call  
database and assert data, we can effectively carry out testing.

soapUI brings JDBC testing capabilities to the web services testing to help testers  
to incorporate JDBC-level verifications as part of services testing.

This chapter is not for general data testing. We are exploring the 
capabilities of soapUI in the context of databases. You can use JDBC 
API within unit tests to test most of the data-related operations in an 
application. The advantage of bringing JDBC tests to soapUI is to have 
database verifications inside the same soapUI project to manage all 
service testing from a central location.



Chapter 9

[ 203 ]

Setting up soapUI to connect to the 
database
We will use our sample HOTEL_RESERVATION_DB MySQL database in the examples 
of this chapter. To make soapUI aware of our MySQL database, we need to include 
the MySQL JDBC driver inside soapUI binary distribution. We have already 
configured soapUI to connect to the MySQL database in Chapter 6, Web Service 
Simulation with soapUI. There, we have performed the following two steps to 
configure soapUI with MySQL: 

1. Downloading MySQL JDBC driver from http://dev.mysql.com/
downloads/connector/j/.

2. Copying the driver JAR file to soapUI_HOME/bin/ext and restart soapUI.

JDBC Request TestStep
soapUI allows you to manage database operations using a TestStep called JDBC 
Request. You can add JDBC Request TestStep to an existing TestCase by right-clicking 
on TestCase level and selecting Add Step | JDBC Request. This will ask you to specify 
a name for the TestStep. Once a name is given for the TestStep, the JDBC Request 
TestStep editor will be opened as shown in the following screenshot:



Testing Databases with soapUI

[ 204 ]

JDBC Request TestStep can be used to send JDBC calls to a database table. The 
request editor consists of a request pane where you can define database specific 
configurations and soapUI project-related properties. The response pane shows the 
data retrieved from a database table in XML format. Also in the lower-right pane, 
you can find some JDBC Request-specific properties such as Query Timeout and 
Fetch Size.

Now, we are going to make use of JDBC Request TestStep inside our sample Hotel 
Reservation soapUI project. As we did in the previous chapters, let's go through the 
simplest scenario first.

1. Let's add a JDBC Request to the addGuest TestCase which is under 
GuestManagemetnServiceTestSuite:

2. Rename JDBC Request to something meaningful (for example, 
selectGuests JDBC Request) by right-clicking on TestStep and 
selecting Rename.

3. Now, we must configure the JDBC Request. As we are connecting to a 
MySQL database, specify com.mysql.jdbc.Driver as the driver.

4. Enter the following as the Connection String:
jdbc:mysql://localhost:3306/HOTEL_RESERVATION_
DB?user=root&password=root



Chapter 9

[ 205 ]

The connection string value depends on the JDBC driver used to connect 
to the database. As we have used MySQL Connector/J driver, the 
connection string should be in the following format:

jdbc:mysql://[host]:[port]/[database]?[property]
[=value]

5. Click on the TestConnection button to check whether you can connect to the 
database using the given driver and connection string. If successful, you will 
get a confirmation.

6. Now, we can specify a SQL expression to do one of the CRUD (create, read, 
update, or delete) operations on a table in HOTEL_RESERVATION_DB. Let's 
select all rows from the GUEST_T table first:
select * from GUEST_T

7. Submit the JDBC Request by clicking on the green arrow icon at the upper-
left corner of the request editor. You will get the response in XML format as 
shown in the following screenshot:



Testing Databases with soapUI

[ 206 ]

The JDBC Request TestStep is dependent on the underlying JDBC driver on SQL 
query execution. Therefore, it supports all SQL statements supported by the JDBC 
driver. If you send an in-only query such as insert, update, or delete, you will get 
an XML response as follows to indicate the status of the query execution:

<Results>
    <UpdateCount>1</UpdateCount>
</Results>

JDBC Request properties
You will observe a default set of properties at the lower-right pane of JDBC  
Request TestStep:

Let's look at each of these default JdbcRequestTestStep properties. Similar to 
the other TestSteps in soapUI, Name and Description can be used to specify a 
meaningful name and description as needed for your test. The other properties are 
explained as follows:

• Max Rows: This property defines the maximum number of rows that 
should be included in the JDBC response. For example, if we set the  
Max Rows value to 2, the ResultSet element of the response will 
include only 2-row elements.

• Query Timeout: This property can be used to set the maximum time for 
executing a given SQL query specified in a JDBC Request. The timeout value 
should be specified in milliseconds. The default is 0 ms, which means there 
is no limit for the timeout. If Query Timeout is set to 1, the JDBC call will 
get timed out if it takes more than 1 millisecond for SQL query execution.



Chapter 9

[ 207 ]

• Fetch Size: This is the number of rows retrieved by the JDBC driver from 
the database at a time as scrolling through ResultSet. In other words, if the 
Fetch Size property is set to 100 and if you want to retrieve 1000 rows from 
the database, there will be 10 round trips between the database and soapUI. 
As it implies, the Max Rows value should be greater than or equal fetch size. 
The default fetch size is specific to the database and JDBC driver. In MySQL, 
ResultSets are completely retrieved and stored in memory by default.

JDBC test assertions
As we used various assertions with SOAP request TestStep, JDBC Request can 
also make use of most of those assertions. In soapUI, most of the assertions are 
independent from the TestSteps. Hence, the assertions such as contains and Xpath 
match can be used with JDBC Request TestStep as they are. By clicking on the Adds 
an assertion to this item icon at the top menu of JDBC Request TestStep, you can 
find out what assertions are supported by the TestStep. In addition to the generic 
assertions, you will find two JDBC Request TestStep-specific assertions there:

• JDBC Timeout: This assertion can be used to verify whether the current SQL 
query is executed within the specified Query Timeout property value

• JDBC Status: In order to check whether the SQL statement is executed 
successfully, we can use the JDBC Status assertion

Let's add a JDBC assertion to our sample selectGuests JDBC Request in 
GuestManagementServiceTestSuite:

1. Select selectGuests JDBC Request and click on add assertion icon 
which is at the top menu of the JDBC request editor.

2. Select the JDBC Timeout assertion from the Select Assertion 
drop-down menu.

3. Now, submit the JDBC request. The assertion status will be shown as VALID.
4. Specify 1 ms as Query Timeout property so that the request will get timed out.



Testing Databases with soapUI

[ 208 ]

5. Run the test again. This time, you will see an assertion failure as shown in the 
following screenshot:

Stored procedures with JDBC Request 
TestStep
soapUI allows us to call existing stored procedures included in databases. If you 
want to invoke a stored procedure through JDBC Request TestStep, there is an 
option in SQL Query to denote it as a stored procedure. As shown in the following 
screenshot, you can check the Select if this is a stored procedure checkbox:



Chapter 9

[ 209 ]

Accessing soapUI properties from SQL query
I hope you remember how we used properties to transfer values in between 
TestSuites, TestCases, and TestSteps in Chapter 4, Working with Your First TestSuite. 
Similarly, we can set properties at various levels in a soapUI project and read their 
values inside SQL queries in JDBC Request TestStep. Let's look at our sample 
TestSuite again. Suppose we need to set a property common to all TestSteps inside 
addGuest TestCase. For the sake of simplicity, let's set the name of a guest as a 
TestCase-level property. In the SQL query of selectGuests JDBC Request, we can 
read this property value (name of the guest) without hard-coding the guest name in 
the SQL statement. Let's look at how we can read properties inside SQL statements:

1. Suppose we modify the SQL query of selectGuests JDBC Request to read 
details of a specific guest record:
select * from GUEST_T where name = 'charitha'



Testing Databases with soapUI

[ 210 ]

2. We are going to read the name of the guest from a TestCase-level property. 
Therefore, add a GuestName property at addGuest TestCase level, as shown 
in the following screenshot:

3. Set the GuestName property. Here, it is set to charitha.
4. Now, select the SQL query text area and move the mouse pointer to  

the = part of the select statement. Then right-click and select Get Data. 
You can select properties from multiple levels. In this example, we will  
select the GuestName property from addGuest TestCase, as shown in 
the following screenshot:



Chapter 9

[ 211 ]

5. Once you select the property, the SQL statement will be similar to  
the following:
select * from GUEST_T where name='${#TestCase#GuestName}

6. Submit the request. The row that corresponds to the given GuestName 
property will be retrieved and shown in the results pane.

soapUI provides you with another very useful property that is specific to the JDBC 
Request TestStep. It is the ResponseAsXml property that can be used to manipulate 
the result of a SQL query.



Testing Databases with soapUI

[ 212 ]

Let's look at how we can use the ResponseAsXml property using an example. We 
are going to submit the selectGuests request first and get the response. Then we will 
extract the name of a guest from the first row of the result set and submit another 
JDBC Request to delete the particular guest.

1. Add a JDBC Request TestStep as a child in addGuest TestCase. Name the 
TestStep as deleteGuest.

2. Modify the SQL query of selectGuests JDBC Request to retrieve all rows 
from GUEST_T table and submit the request:
select * from GUEST_T

3. Now, select the deleteGuest request and locate the SQL query. We want 
to delete an existing guest from the table. We are going to extract the 
guest name from the result of the selectGuests JDBC Request using 
ResponseAsXML property.

4. Enter SQL query as delete from GUEST_T where name='' and right-click 
at the end of the statement. Then select Get Data | [Step 1: selectGuests] | 
Property[ResponseAsXML].

5. This will open up a dialog box, as shown in the following screenshot, where 
you can specify an XPath expression to extract the required element(s) from 
the response of the selectGuests request:



Chapter 9

[ 213 ]

We need to extract the guest name from the first row of the result set. 
Therefore, the XPath expression will be:
//ResultSet/Row[1]/GUEST_T.NAME

6. Once you add the XPath expression, the SQL query will be similar to the 
following:
delete from GUEST_T where name='${selectGuests#ResponseAsXml#//
ResultSet/Row[1]/GUEST_T.NAME}'

7. Submit the deleteGuest JDBC Request. If you run the selectGuests request 
again, you will find that a guest record will be deleted from the table.

Summary
Data is a vital resource of any software. In SOA projects, data is subjected to go 
through various transformations and conversions when transmitting from a source 
to destination. Due to the complex integrations of service-oriented solutions, isolating 
data-related issues is usually a tedious activity. Therefore, it is important to include 
a sufficient amount of tests which directly communicate with the databases of your 
SOA instead of testing through web service interfaces. soapUI allows us to directly 
call database tables using JDBC Request TestStep. In this chapter, we looked at how 
soapUI can be used to test databases. We discussed about the properties associated 
with JDBC requests and how assertions can be used to validate database transactions. 





JMS Testing with soapUI
It is a common practice to use different transport protocols in SOA. Usually, when 
integrating heterogeneous systems, we need to make use of various transports as 
well as messaging systems. So far, all our discussions on soapUI have been based  
on HTTP and HTTPS transports, which are the most common transport mediums 
used in SOA. In this chapter, we are going to explore the world of JMS with soapUI.

soapUI allows us to send SOAP messages to web services which are exposed 
over JMS transport. soapUI is integrated with an open source JMS management 
application, HermesJMS, which can be used to communicate with various JMS 
providers such as JbossMQ, IBM WebSphere MQ, ActiveMQ, and so on. We will  
be using Apache ActiveMQ as the JMS broker (provider) in this chapter.

We are planning to cover the following topics in this chapter:

• Introduction to JMS
• Configuring the Apache ActiveMQ JMS provider
• Integrating JMS in soapUI
• Working with JMS messaging in soapUI
• Validating JMS responses
• Verifying end-to-end JMS message delivery using the sample project

Introduction to JMS
The Java Message Service (JMS) is used to develop business applications that 
asynchronously send and receive messages. It has been defined under the JSR 914 
specification (http://jcp.org/aboutJava/communityprocess/final/jsr914/
index.html). In simpler terms, JMS is a set of interfaces and associated semantics 
that define how a JMS client accesses the facilities of an enterprise messaging 
product. JMS guarantees the reliable delivery of messages between heterogeneous 
systems and maximizes the loose-coupling nature of components.



JMS Testing with soapUI

[ 216 ]

There are two message delivery models used by JMS.

• Point-to-point or queuing model:
In this model, the messages are delivered to a destination known as a queue 
and then one of the consumers registered for the queue reads the message. 
In other words, there can be multiple senders of messages but only a single 
receiver can exist.

• Publish and subscribe model:
This is analogous to a news bulletin board. In this model, zero or more 
subscribers may register their interest in receiving messages on a particular 
message topic. Multiple publishers send messages to the topic. Then, all the 
subscribers of the topic receive the message sent to that particular topic.

JMS consists of the following key elements:

• JMS provider: This is an implementation of JMS specification. For example, 
Jboss MQ, Apache ActiveMQ

• JMS consumer: This is a JMS client that receives the message
• JMS producer: This is a JMS client that creates and sends the message
• JMS message: This is an object that is used to communicate information 

between JMS clients

In order to use JMS, we should have a JMS provider, which can manage the sessions, 
queues, and topics. We will use Apache ActiveMQ as the provider (JMS broker) in 
the context of this book.

Setting up Apache ActiveMQ
Though soapUI can be used with any JMS provider which is supported by 
HermesJMS, we will use Apache ActiveMQ, one of the most powerful, enterprise 
grade open source JMS brokers. Let's set it up first before using it with soapUI.

1. Download the latest stable version of Apache ActiveMQ from  
http://activemq.apache.org/download.html.

At the time of writing, Apache ActiveMQ-5.3.0 was the latest stable 
version. Hence it has been used in all the samples and demonstrations.



Chapter 10

[ 217 ]

2. Extract the binary distribution to a directory in your file system. Let it be 
ACTIVE_MQ_HOME. Now, go to ACTIVE_MQ_HOME/bin and start the broker.

 ° In Windows:
Type activemq and hit Enter

 ° In Linux:

Type sh activemq or ./activemq

If the startup is successful, you will see a log message similar to the 
following:

INFO | ActiveMQ JMS Message Broker (localhost, ID:HO
ST1-59724-1334377142200-0:0) started

3. Once the server is started, you can access the ActiveMQ management console 
through http://localhost:8161/admin/. Also make a note of the listener 
port used by the broker. It will be 61616 by default.

Now, we have the Apache ActiveMQ JMS provider configured and running. Our 
objective is to use soapUI to communicate with this particular JMS provider. In order 
to do that, we cannot directly use soapUI to submit a message to a queue or topic 
defined in ActiveMQ. soapUI uses an intermediary tool to facilitate the delivery of 
messages in between soapUI and JMS provider. HermesJMS acts as the intermediary 
between soapUI and JMS providers.

JMS integration in soapUI
HermesJMS is included as part of the soapUI installer. If you followed the steps of 
soapUI installation through the installer in Chapter1, Web Services Testing and soapUI, 
you may have already set up soapUI with HermesJMS.



JMS Testing with soapUI

[ 218 ]

If you installed soapUI using a binary installer or excluded HermesJMS at the time of 
the installation, make sure to set it up with soapUI as explained in the following steps:

1. Download the latest version of HermesJMS from http://sourceforge.net/
projects/hermesjms/files/hermesjms/1.14/.

2. Run the installer as follows:
–java -jar hermes-installer-X.XX.jar

3. Follow the instructions given in the installation wizard and complete the 
installation. Once installed, HermesJMS management console will be shown 
as follows:

Regardless of having soapUI, now you can manage JMS sessions, queues, and topics 
of your preferred JMS provider using the HermesJMS management console shown 
in the previous screenshot. However, we are not planning to spend much time on 
the standalone HermesJMS application since our goal is to embed it with in soapUI. 
Therefore, let's integrate HermesJMS with soapUI.

1. Start soapUI and open the soapUI preferences window by selecting 
File | Preferences.

2. Locate the Tools tab and set the path of HermesJMS installation.



Chapter 10

[ 219 ]

3. Now, we can open HermesJMS through soapUI. If you have already started 
the standalone HermesJMS application, make sure to close it first. Select 
Tools | HermesJMS from the soapUI main menu to open the HermesJMS 
management console.
When HermesJMS is integrated with soapUI, we can simply add any JMS 
provider (broker) supported by HermesJMS and let soapUI submit the SOAP 
requests to that particular broker. Let's add the Apache ActiveMQ instance 
which we have configured previously as the JMS provider.

4. In order to access a JMS provider, HermesJMS wants us to create a new 
session with adequate information. Access the HermesJMS console and 
click on the Create new JMS session icon in the configuration tool bar. The 
Preferences dialog box will be opened.

5. In order for HermesJMS to access the JMS providers, we must make the 
relevant provider libraries available in the HermesJMS classpath. HermesJMS 
uses classpath groups to manage the libraries required for providers. 
Select the Providers tab at the bottom of the Preferences dialog box to 
manage classpath groups. We can add as many classpath groups as needed 
depending on the JMS providers which will be used. In our samples, we will 
use Apache ActiveMQ as the provider. Hence, we will add one classpath 
group which contains the ActiveMQ libraries which are essential for 
HermesJMS to communicate with the ActiveMQ broker.

6. Right-click on the Classpath Groups tab, select Add Group, and enter a 
name for the group (For example ActiveMQGroup).

7. Right-click on the Library tab associated with ActiveMQGroup and select 
Add JAR(s). Browse for the following two jars inside the lib subdirectory of 
your ActiveMQ installation (ACTIVE_MQ_HOME/lib):

 ° activemq-core-5.3.0.jar

 ° geronimo-j2ee-management_1.0_spec-1.0.jar

When adding the libraries, HermesJMS will prompt an option to 
scan the JAR(s) for JMS connection factories. Make sure to scan in 
order to avoid Connection Factory class loading problems in next 
configuration steps.

Make sure to apply the changes in the classpath groups by clicking on the 
Apply button at the bottom of the Preferences dialog box.



JMS Testing with soapUI

[ 220 ]

8. Once completed, the ClasspathGroups dialog box will appear similar to 
the following screenshot:

9. Now, we can configure the new session with the ActiveMQ provider. Select 
the Sessions tab in the Preferences dialog box. Specify a name for the session 
in the Session combo box. (For example, ActiveMQSession). Click on the 
Apply button to save the changes.

10. Next, we need to configure the connection factory so that HermesJMS 
can connect to ActiveMQ. Select ActiveMQGroup which we have created 
previously from the Loader combo box in the Preferences window. If you 
cannot see ActiveMQGroup there, close the Preferences dialog box and 
open it again. Once you select ActiveMQGroup as the loader, the associated 
Connection Factory classes will get loaded in the Class drop-down menu.



Chapter 10

[ 221 ]

11. Select org.apache.activemq.ActiveMQConnectionFactory as the Connection 
Factory class. Add the following property by right-clicking on the 
Connection Factory table and selecting the Add property:
BrokerURL = tcp://localhost:61616

12. We also need to configure the JMS provider plugin so that HermesJMS can 
effectively perform tasks such as queue watching. The plugin configuration 
specifies more details than what we provide under the Connection Factory 
settings. Select ActiveMQ from the Plug In drop-down and add the 
following two properties: 
BrokerName = localhost

serviceURL = service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

13. Click on Apply to save the changes.
14. Next, we can configure queues and/or topics. Right-click on the 

Destinations pane in the Preferences dialog box and click on Add to add 
a new destination. The Destination properties dialog box will be opened. 
Specify the following values in it:

 ° Name: Q1 (this name will be used to locate the destination)
 ° Short Name: Q1
 ° Domain: Queue



JMS Testing with soapUI

[ 222 ]

15. Click on Apply to save everything. Finally, our HermesJMS session will look 
like the following:

Working with JMS messaging in soapUI
We have integrated HermesJMS into soapUI and configured with a destination 
(queue) in the Apache ActiveMQ provider. Let's look at how a usual SOAP request 
can be forwarded to a JMS queue using soapUI. Obviously, if we want to use a 
different transport other than HTTP or HTTPs, we need to add the corresponding 
endpoint into the soapUI request editor. We could find the JNDI name of the 
JMS queue and edit an existing HTTP(s) endpoint to change it to a JMS endpoint. 
However, we cannot do this straightaway without configuring the relevant JNDI 
look-up mechanisms. Because of that reason, we used HermesJMS to configure the 
provider connections, the Connection Factory settings, and so on. Now, with all 
these in hand, we can use soapUI to submit messages to JMS destinations.



Chapter 10

[ 223 ]

Let's start with our sample Hotel Reservation soapUI project. In this example, we 
will just place one of the SOAP requests into a queue in ActiveMQ and browse the 
message through HermesJMS.

1. Select GuestManagementServiceSoap11Binding in 
HotelReservationProject from the soapUI project navigator.

2. Right-click and select Add JMS endpoint.

3. Browse for the HermesJMS configuration directory. By default, this can be 
found in the root directory of the HermesJMS installation. (HermesJMS_HOME/
cfg). Next, we can select one of the available HermesJMS sessions. In our 
example, we have created only one session called ActiveMQSession.

4. Once you select the session, the destinations defined under the session 
configuration will be populated in the Send/publish destination and 
Receive/Subscribe destination drop-down lists. For this example, let's select 
Q1 queue as the Send/Publish destination and leave Receive/Subscribe 
destination blank. This implies that we are going to submit the request to a 
queue and do not expect to receive/read the response message.

5. After adding the JMS endpoint, look at the endpoints list by selecting one of 
the SOAP requests in the request editor. You will find an endpoint similar to 
the following:
jms://ActiveMQSession::queue_Q1

6. Select the SOAP request of the getGuestDetails operation in 
GuestManagementServiceSoap11Binding, change the endpoint to the 
previously mentioned jms endpoint and submit the request.



JMS Testing with soapUI

[ 224 ]

7. Now, open the HermesJMS console and browse for the queue, Q1, in 
ActiveMQSession. You will find the <getGuestDetails> SOAP request is 
placed in the queue.

8. You can also look at the content of the message by browsing the queue, Q1, 
in the ActiveMQ management console. Just access http://localhost:8161/
admin/browse.jsp?JMSDestination=Q1 and check the messages.

9. Let's add another JMS endpoint to the same binding. This time, we will 
specify the same queue, Q1, as both Send/Publish destination and Receive/
Subscribe destinations. So, when a message is placed in Q1, it will instantly 
be picked up by consumers from the same queue. Once the JMS endpoint is 
added, you will find a new endpoint which looks like the following:
jms://ActiveMQSession::queue_Q1::queue_Q1

10. Change the endpoint as previously mentioned and submit the same 
getGuestDetails SOAP request. Since we sent and received a message 
from the same queue, the response pane of soapUI will show the message 
which has been delivered to the consumers.



Chapter 10

[ 225 ]

But, you will not find the corresponding message if you browse Q1 in the 
HermesJMS console. It is because the message is enqueued and dequeued instantly 
as we specified the Receive/Subscribe destination field when sending the message. 
However, you can find out that the Messages Dequeued column associated with Q1 
is updated in the ActiveMQ management console as you send messages.

You can see in the previous image that soapUI shows the headers of the JMS 
message as key-value pairs in the bottom pane of the SOAP response editor. We can 
also set various JMS headers such as JMSPriority, TimeToLive when submitting the 
message. These JMS request headers can be set in the JMS Headers tab of the soapUI 
request editor. We can also create and set properties for messages if we need values 
in addition to those provided by the header fields. These additional properties can be 
set in the JMS Property section in the soapUI SOAP request editor.



JMS Testing with soapUI

[ 226 ]

The JMS API defines a set of message types (also known as body formats) to send 
and receive data in many different forms. With soapUI, we can use three major 
message types:

1. Text Message:
This message type carries a java.lang.String object. This can be used to 
transport plain-text and XML messages.

2. Bytes Message:
The payload is stored as an array of bytes. This can be used to transmit data 
when the data format is native to the application and the JMS client does not 
know the message payload type.

3. Map Message:
Message payload is stored as a set of name-value pairs. This message  
type is useful for transmitting keyed data that can change from one 
message to the next.

By default, the message body format is set to text and this can be changed by 
selecting the Send As Bytes Message option.

Validating JMS responses
Regardless of the transport protocol used in communication, we can use most of the 
general SOAP assertions to validate the response messages used in web services. 
However, in addition to the generic assertions, soapUI provides us with two 
assertions which are specific to JMS transport:

• JMS Status
• JMS Timeout

• JMS Status:
The JMS Status assertion can be used to validate the status of the 
communication. For example, it can be used to check whether there  
are any JMS specific errors in the response.

• JMS Timeout:
The JMS Timeout assertion can be used to verify whether the message 
is received within the configured timeout period.



Chapter 10

[ 227 ]

Let's use these assertions in our sample project and discuss further.

1. Select GuestManagementServiceTestSuite in our sample 
HotelReservationProject and locate the getGuestDetails TestCase.

2. Select the getGuestDetails SOAP request and select jms://
ActiveMQSession::queue_Q1::queue_Q1 as the endpoint (assuming 
this JMS endpoint has already been configured in a previous step).

3. Click on Adds an assertion to this item icon and select the JMS 
Status assertion.

4. Shut down the ActiveMQ broker and submit the request. You will get an 
assertion failure with the message as follows: 
JMS Status – FAILED.

In this case, the JMS status has been given as failed because soapUI could not 
connect to the broker. Therefore, if we want to validate the communication 
errors between soapUI and the JMS provider, the JMS Status assertion can 
be used quite easily.

Now, let's look at the usage of the JMS Timeout assertion. To do that, we should 
specify a non-zero time-out value as a SOAP test request property.

1. Select the getGuestDetails TestStep. In the TestRequest properties tab at 
the right-hand side pane, specify 1 in the Timeout (the timeout value should 
be specified in milliseconds) field.

2. In the getGuestDetails SOAP request editor, click on the Add an 
assertion to this item icon and select the JMS Timeout assertion.

3. Submit the request. You will get an assertion failure with the  
following message:

JMS Timeout – FAILED

JMS Message timeout error! Message is not received within 1ms.

Due to the various application level changes as well as configuration settings 
of the JMS provider, messages can be timed out. In order to validate those 
cases, we can define an optimum time-out value for the requests and use  
the JMS Timeout assertion to validate them.



JMS Testing with soapUI

[ 228 ]

So far, we have discussed about JMS transport, the Apache ActiveMQ JMS provider, 
and the use of JMS inside soapUI. However, we did not go beyond just placing 
a message to a JMS destination (queue or topic) through soapUI. We cannot 
conclude our discussion without exposing one of the web services of our sample 
hotel reservation system over JMS and verifying an end-to-end message flow using 
soapUI. In the next section, we will look into configuring our sample project on JMS 
transport and using soapUI to test end-to-end message delivery. 

Verifying end-to-end JMS message delivery 
using the sample project
In previous examples, we use the sample HotelReservation soapUI project just to 
submit requests to a queue in ActiveMQ. Though we have placed those messages in 
a queue, those were not consumed by our sample hotel reservation web services. In 
order to test the end-to-end functionality, we need to configure the web services so 
that they are aware of the messaging queues and consume the messages. For that, we 
will go through the following steps: 

1. Enable JMS transport in Apache Axis2, so that all web services hosted in 
Axis2 will be exposed over JMS.

2. Configure a new session in HermesJMS to use a new ActiveMQ destination.
3. Add a new JMS endpoint in the soapUI project and test the message flow.

Configuring JMS in Apache Axis2
By default, all web services hosted in Apache Axis2 are exposed over HTTP 
transport. Therefore, all our web services, namely GuestManagementService, 
RoomManagementService, and ReservationService, include HTTP endpoints only. 
We can find this out by looking at the auto-generated WSDLs of these web services.

Axis2 uses two constructs, TransportReceiver and TransportSender to handle 
messages which comes in and goes out from the Axis2 engine. Any message which 
comes into Axis2 goes through the transport receiver and the messages which are 
sent out, go through the transport sender. Based on the transports used, we can have 
multiple transport receivers and senders in the Axis2 engine. Therefore, in order to 
enable JMS transport, we should configure the JMS specific transport receiver and 
sender. We can configure these in axis2.xml configuration file which can be found 
at the AXIS2_HOME/conf directory. Add the following element into axis2.xml in 
order to specify the transport receiver for JMS. 



Chapter 10

[ 229 ]

You can configure new transport receivers under the following section in axis2.xml:

<!-- This is where you'd put custom transports.  See the transports 
project -->
    <!-- for more.  http://ws.apache.org/commons/transport                      
-->
<transportReceiver name="jms" class="org.apache.axis2.transport.jms.
JMSListener">

        <parameter name="myTopicConnectionFactory">

         <parameter name="java.naming.factory.initial">org.apache.
activemq.jndi.ActiveMQInitialContextFactory</parameter>

         <parameter name="java.naming.provider.url">tcp://
localhost:61616</parameter>

         <parameter name="transport.jms.ConnectionFactoryJNDIName">To
picConnectionFactory</parameter>

        </parameter>

        <parameter name="myQueueConnectionFactory">

         <parameter name="java.naming.factory.initial">org.apache.
activemq.jndi.ActiveMQInitialContextFactory</parameter>

         <parameter name="java.naming.provider.url">tcp://
localhost:61616</parameter>

         <parameter name="transport.jms.ConnectionFactoryJNDIName">Qu
eueConnectionFactory</parameter>

        </parameter>

        <parameter name="default">

         <parameter name="java.naming.factory.initial">org.apache.
activemq.jndi.ActiveMQInitialContextFactory</parameter>

         <parameter name="java.naming.provider.url">tcp://
localhost:61616</parameter>



JMS Testing with soapUI

[ 230 ]

         <parameter name="transport.jms.ConnectionFactoryJNDIName">Qu
eueConnectionFactory</parameter>

        </parameter>

    </transportReceiver>

In this configuration, three connection factories are defined. One for a queue, one for 
a topic, and a default Connection Factory. As we have discussed before, connection 
factories are essential to make connections with a JMS provider, such as Apache 
ActiveMQ.

Note that the default Connection Factory will be used by our sample web services. If 
we do not explicitly specify the Connection Factory and the associated destination to 
be used in services.xml of each of the web services, a JMS queue will automatically 
be created with the service name. So, we will have queues for all our web services 
with the names, GuestManagementService, RoomManagementService, and 
ReservationService.

Similar to the transport receiver configuration, add the following element under the 
Transport Outs section of axis2.xml to specify the JMS transport sender:

<transportSender name="jms"

                     class="org.apache.axis2.transport.jms.
JMSSender"/>

Now, we have configured both transport receiver and sender in axis2.xml. We 
need to make the relevant JMS provider libraries available in Axis2 classpath as 
we did with HermesJMS. Copy activemq-core-5.3.0.jar,  geronimo-j2ee-
management_1.0_spec-1.0.jar and geronimo-jms_1.1_spec-1.1.1.jar from 
ACTIVE_MQ_HOME/lib to the AXIS2_HOME/lib directory. In addition to that, due to 
a change in Axis2-kernal in Axis2-1.6.1 distribution, you need to copy the following 
two libraries to AXIS2_HOME/lib:

• axis2-transport-jms-1.0.0.jar

• axis2-transport-base-1.0.0.jar

You can download these two jar files from http://axis.apache.org/axis2/java/
transports/download.cgi.

After copying all these libraries, restart the Axis2 server. You will notice log 
messages similar to the following at the server startup:

[INFO] JMS Transport Receiver (Listener) initialized...



Chapter 10

[ 231 ]

Since we have enabled JMS transport globally at axis2.xml configuration file, 
all web services hosted in Axis2 will include a new JMS endpoint. Open the 
auto-generated WSDL of GuestManagementService by accessing http://
localhost:8080/axis2/services/GuestManagementService?wsdl. You will 
notice the JMS endpoints there shown as follows:

<wsdl:port name="GuestManagementServiceJmsSoap11Endpoint" bind
ing="axis2:GuestManagementServiceSoap11Binding"><soap:address 
location="jms:/GuestManagementService?transport.jms.ConnectionFact
oryJNDIName=QueueConnectionFactory&java.naming.provider.url=tcp://
localhost:61616&java.naming.factory.initial=org.apache.activemq.jndi.
ActiveMQInitialContextFactory"/></wsdl:port>

According to this, if we want to send a request to GuestManagementService through 
JMS, we must use the previous endpoint location URL. With this endpoint URL, 
the message will be placed in a queue, named as GuestManagementService, inside 
ActiveMQ. Since we have configured axis2.xml with the default Connection 
Factory settings, Axis2 will pick up the message from the queue and dispatch to the 
relevant service operation.

Configuring a session in HermesJMS
We are going to use soapUI to submit the SOAP request to the JMS queue, which is 
used by GuestManagementService. Therefore, we should create a new session and 
destination in HermesJMS as we did in previous examples.

1. Start by creating a new HermesJMS session. We can use the same provider, 
which we used previously. Therefore, use ActiveMQGroup as the classpath 
group. Give Axis2Session as the name of the session.

2. In Connection Factory configuration in HermesJMS preferences dialog 
box, select ActiveMQGroup as the loader. Select org.apache.activemq.
ActiveMQConnectionFactory as the connection factory class and add the 
following property:
BrokerURL = tcp://localhost:61616

3. In the Plug In configuration, select ActiveMQ and add the following two 
properties:
BrokerName = localhost

serviceURL = service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi



JMS Testing with soapUI

[ 232 ]

4. Click on Apply and add a new destination by right-clicking on the 
Destinations pane. Specify the following properties:

 ° Name:GuestManagementService
 ° ShortName: GuestManagementService
 ° Domain: Queue

As we discussed previously, Apache ActiveMQ creates queues for each of the three 
web services with their names. Therefore, name of the queue corresponding to the 
GuestManagementService is GuestManagementService. After all that, our new 
HermesJMS session will look like the following:



Chapter 10

[ 233 ]

Adding a JMS endpoint in soapUI
Since we have configured the JMS destination through HermesJMS, we can add a 
new JMS endpoint in soapUI.

1. Select GuestManagementServiceSoap11Binding in 
HotelReservationProject from the soapUI project navigator.

2. Right-click and select Add JMS endpoint. Select Axis2Session as the session. 
Select GuestManagementService as the Send/Publish destination field. 
Leave Receive/Subscribe destination empty.

We are going to invoke a deleteGuest one-way operation through 
JMS. Because of that, we do not expect a response message and leave 
Receive/Subscribe destination empty.

3. Finally, you will find the JMS endpoint similar to the following in the 
endpoint list of our soapUI project:
jms://Axis2Session::queue_GuestManagementService

4. Next, select GuestManagementServiceTestSuite and locate the 
deleteGuest TestStep. We will invoke the deleteGuest operation by 
submitting a SOAP request through JMS transport.

5. Select the above JMS endpoint in deleteGuest SOAP request editor. Add 
an existing Guestname for <typ:guestName> in the payload of the SOAP 
message.

6. Submit the request. Since the deleteGuest is a one-way operation, you 
will not get a response. Check the GUEST_T table in HOTEL_RESERVATION_DB. 
You will notice that the corresponding guest record has been removed from 
the table.

Summary
The integration of heterogeneous systems is one of the objectives of adopting SOA 
in enterprise software development. In such systems, we usually have to deal with 
multiple transport protocols. soapUI as the complete SOA testing platform, allows 
users to extend test cases to deliver messages through JMS transport. By integrating 
HermesJMS, an open source JMS management application, soapUI facilitates 
submitting and receiving SOAP messages to JMS destinations. In this chapter, we 
looked at JMS integration in soapUI using multiple examples. We demonstrated the 
use of JMS in soapUI with our sample Hotel Reservation project and tested an end-
to-end work flow.





Extending soapUI  
with Scripting

The default features and utilities provided by soapUI are more than enough for us 
to explore the world of web services testing and build flexible test suites. When we 
become more and more familiar with the standard features of soapUI, we naturally 
tend to think about the extension possibilities. We need to extend the default 
functionalities provided by soapUI due to various reasons. For example:

• To minimize overhead maintenance of soapUI tests.
• Automated or manual execution of tests becomes a pain if we are  

supposed to do dramatic changes of tests when moving between  
various environments such as development, staging, and production,  
or when upgrading the services.

• To reduce complexities of building tests.
• To look for possibilities of avoiding repetitive manual tasks when writing 

tests. If we want to add the same assertion for hundreds of test suites again 
and again, we need to think about ways of extending the existing soapUI 
assertion features to facilitate that.

soapUI provides us with options to extend the default behavior of tests using 
various scripting mechanisms. soapUI allows us to use either Groovy or JavaScript 
as the possible scripting choices. In this chapter, we will look into the scripting 
capabilities given by soapUI using Groovy scripting language. Though JavaScript 
can also be used in scripting, Groovy is the natural choice for extending soapUI as 
there are optimizations added to Groovy libraries by soapUI developers in order 
to facilitate seamless integration with soapUI as well as it is widely used by the 
soapUI community.



Extending soapUI with Scripting

[ 236 ]

We will look into the following topics in this chapter:

• Introduction to Groovy scripting
• Groovy scripting in soapUI
• soapUI ModelItems
• Request and response handling using scripts
• soapUI script assertion

Introduction to Groovy scripting 
language
As we are going to use Groovy scripts throughout this chapter, we should prepare 
in advance by familiarizing ourselves with the basics of Groovy. If you possess 
some knowledge about Groovy or have experience of working with it, you can skip 
reading this section.

What is Groovy?
Groovy is a dynamic programming language in which most of the program 
execution processes are done at runtime instead of compile time. Groovy can be 
categorized into the same family of scripting languages such as Ruby, Perl, or 
JavaScript. As we already know, learning a new language is a tedious activity 
because we need to learn the syntax, control structures, declarations, and so on for 
the new language. However, this is not true for Groovy if you already know the 
fundamentals of Java. Groovy uses Java-like bracket syntax and most Java code is 
syntactically valid in Groovy. Groovy scripts run on JVM similar to Java programs, 
hence we do not need to install and configure additional libraries. Groovy is a 
loosely-typed language, which means there is no need to define the data types for 
the variables and for the return types of the methods.

Let's go through some basic principles of Groovy with examples. In order to try out 
the simple Groovy examples that we are going to try out, you can use the following 
two approaches:

• Download the latest version of Groovy binary distribution from 
http://groovy.codehaus.org/Download (at the time of writing, the 
latest stable version was Groovy 1.8). Install Groovy on your machine  
as per the instructions given in the official Groovy installation guide  
(http://groovy.codehaus.org/Installing+Groovy). Then, you 
can use the interactive Groovy shell to write and run the example  
Groovy scripts.



Chapter 11

[ 237 ]

• Use soapUI Groovy Script TestStep to test the sample scripts.

We will use the second approach as it minimizes the setup time and we can quickly 
try out some basic principles of the Groovy scripting language.

We will use a new workspace and a project in soapUI for Groovy examples as these 
are not a part of our sample hotel reservation project. Go to File | New workspace 
and add a new workspace in soapUI. Name it GroovyExamplesWorkspace. Once 
the new workspace is created, right-click on it and add a new soapUI project. Name 
the project GroovyExamplesProject. We do not add an initial WSDL for the project 
as we are not going to test any web services using this project. Now, add a new 
TestSuite and a TestCase in the project. Add a new Groovy Script Test Step by 
right-clicking on the TestCase and selecting Add Step, then selecting Groovy Script 
out of the steps available in the list. Finally, we will get a Groovy Script editor, as 
shown in the following screenshot, where we can try out the example scripts.

As we use Groovy Script Test Step in soapUI as an editor to write Groovy scripts, 
we will synonymously call it Groovy editor within this section of the book.

HelloWorld with Groovy
Let's begin with the usual HelloWorld script. Write the following script in the soapUI 
Groovy Script editor:

//Print "Hello soapUI" string in console
print "Hello soapUI\n" 

Run the script by clicking on the green arrow icon which is at the upper-left corner  
of the script editor. You will observe the output in the soapUI startup console.



Extending soapUI with Scripting

[ 238 ]

Variable and object declaration in Groovy
As with any programming language, variables or objects must be declared before 
they are referenced by somewhere else. The variables can be declared with the 
keyword def, as shown in the following script:

def name = "soapui" //declare variable name and assign value soapui

We can even declare variables without the def keyword. You can assign 
any object to variables defined with def, and return any kind of object if a 
method is declared returning def. Remember, if you declare the variable 
with def, there is no need to specify a type. Therefore, the following 
declaration is unnecessary:

def String name ="soapui"

To read the value of a variable, you can just prefix the variable name with $ as in 
Case 1 or append it as in Java (Case 2).

• Case 1:
def name = "soapui"
print "Hello $name \n"

• Case 2:

def name ="soapui"
print "Hello " +name

By default the standard Java packages such as java.lang.*, java.util.*, java.
io.*, and so on, are included by Groovy interpreter. Thus, the objects in Groovy can 
be declared in the same way as we do with Java. The following code will instantiate 
String object.

def strObject = new String("soapui") 

Groovy has support for two collection data types:

• Lists: These are used to store ordered collections of data. A list can be 
declared as follows:
myList = [0, 32, -90, 45, 89923]

The above statement declares a list object, which holds integer values. We 
can access a value stored in list with myList[n], where n is the index of list. 



Chapter 11

[ 239 ]

• Maps: These store different types of data in key-value pairs. For example, 
consider the following script:
myMap = ["key1":"soapui", "key2":100, "key3":30.05] //different  
// types of data are stored in a map 
println myMap["key2"] //access the value assigned to "key2"
println myMap.key2 //another way of accessing value assigned to  
// key2

Control structures in Groovy
The syntax of control structures such as "if-else", "for", and "while" are very similar to 
what we have in Java. Look at the following code snippet:

status = true
strObject = new String("Hello")
myList = ["1","2", "3"]
 
if (status && strObject && myList) { //All will evaluate to true 
    println "Condition is true" 
}else{
    println "Condition is false"
} 

Run the code snippet and you will get Condition is true as the output. Here, 
strObject (String object) and myList (Collection object) will return false only if 
either of the two or both are null or empty. The syntax of the for loop is similar to  
the following:

for(Object in IterableObject){
    // Set of Statements.
}

IterableObject is a composite object which has multiple child entries so that it 
can be iterated. In order to understand the behavior of loops in Groovy, run the 
following code and check the output:

def names = ["Saman", "Nethul", "Risith", "Charitha"] // A List  
// object holdingnames
for(name in names){//Iterate over the elements in names list
    println name
}



Extending soapUI with Scripting

[ 240 ]

Class and method declarations in Groovy
Declaration of classes in Groovy is almost the same as it is in Java. Let's figure it out 
with an example:

class Employee{
 

    private def id
    private def name
    def address
 

    public Employee(){
    }
 

    Employee(id, name, address){
        this.id = id
        this.name = name
        this.address = address
    }
 

    public String getId(){
        return id
    }
 

    def setId(id){
        this.id = id
    }
 

    public String getName(){
        return name
    }
 

    def setName(name){
        this.name = name
    }
 

   static main(arguments){
 

        def emp1 = new Employee("100", "Charitha", "Colombo")
        println("Employee name is "+emp1.getName())
    
    }
}

The output of the above code will be as follows:

Employee name is Charitha



Chapter 11

[ 241 ]

You may notice that in the variable declarations section, we did not explicitly 
mention the data types of id, name, and address variables. We also did not specify 
what the access modifiers were. As Groovy is a loosely-typed language, we do not 
want to specify the data types and access modifiers. The default access modifier of 
Groovy is public.

We discussed the fundamentals which are required to proceed with the rest of  
the sections in this chapter. It is out of the scope of this book to cover large amount  
of concepts about Groovy programming. Therefore, it is recommended for you 
to read the resources available on the official Groovy website (http://groovy.
codehaus.org).

Groovy scripting in soapUI
There are many reasons for using Groovy scripts in a soapUI project:

• To dynamically generate Mock Responses when simulating web services
• To add arbitrary functionality to TestCases using Groovy Script TestStep
• To use as Setup/TearDown scripts to initialize, and cleanup TestSuites  

and TestCases
• To use as Start/Stop scripts in initializing/cleaning up mock services
• To dynamically generate TestRequests and assertions based on  

database contents
• The OnRequest and AfterRequest scripts in Mock Services
• To perform arbitrary functionality during property expansion

We have discussed some of the scripting possibilities during Chapter 6, Web Service 
Simulation with soapUI, where we looked into the usage of scripts in Mock Services. 
We will see the other widely used patterns associated with Groovy scripting and 
soapUI during this chapter.

The Groovy scripts inside soapUI have access to the following context-related 
variables:

• context

• testRunner

In addition to the previous context-related properties, soapUI also provides us with 
a standard log4j Logger object—log—that can be used in scripts at any level in a 
soapUI project.



Extending soapUI with Scripting

[ 242 ]

The context object
The context object holds information about a particular test run session. It can be 
used to read and write/update context-specific variables. There are different contexts 
available in a soapUI project, for example:

• LoadTestRunContext: This holds context information about the loadtest 
run session

• MockRunContext: This context is available for the duration of a Mock 
Services' execution

• SubmitContext: This is available during one submit of a request
• TestRunContext: This is available during a TestCase execution and all 

scripts in a TestCase run have access to the TestRunContext

Without digging into details, let's look at the usage of the context object using 
a simple example:

1. Open the HotelReservation project in soapUI and add a Groovy 
Script TestStep into getRoomDetails TestCase. Name the test step 
GroovyTestScript1.

2. Add the following script in script editor and run the test step by clicking  
on the green arrow icon which is in the upper-left corner of the Groovy  
Script editor:
//Get the name of current TestStep
log.info(context.getCurrentStep().getLabel()) 
//Get the name of parent TestCase
log.info(context.getTestCase().getLabel()) 
//Get the name of TestSuite
log.info(context.getTestCase().getTestSuite().getLabel())  
log.info(context.getTestCase().getTestSuite().getProject().
getName()) //Get the name of the soapUI project

You will find the output of test run at the Log Output window which 
appears right below the script editor. It will look similar to the following.
Fri May 04 22:13:43 IST 2012:INFO:GroovyTestScript

Fri May 04 22:13:43 IST 2012:INFO:getRoomDetails TestCase

Fri May 04 22:13:43 IST 2012:INFO:RoomManagementServiceTestSuite

Fri May 04 22:13:43 IST 2012:INFO:HotelReservationProject

The statements of the script and the output are self explanatory. We just witnessed 
the usage of the context object at an individual TestStep run of a project. In other 
words, we made use of in implementation of the SubmitContext interface.



Chapter 11

[ 243 ]

Script Logs are used to show the log messages dumped by scripts 
invoked from various levels of the project. There are two instances of 
script logs provided by soapUI. Groovy Script TestStep includes a Log 
Output pane at the bottom of the editor which shows the log output if 
you run the Groovy Script individually. There is also a script log tab at 
the bottom of the log toolbar, which displays the log messages dumped 
by execution of Groovy Scripts from the TestCase and TestSuite levels of 
the soapUI project. These two logs are shown in the following image.

The context object is useful in situations where you want to read the property 
values of TestStep. For example, we have a property, Endpoint, defined at 
getRoomDetails SOAP Request TestStep. We can simply read the value of this 
property using a context object, as shown in the following script:

EndPointProp = context.getProperty("getRoomDetails","Endpoint")

Note that you cannot read the property value from a TestStep of a different TestCase 
using this method. The following will return null as deleteRoom TestStep is in a 
different TestCase:

EndPointProp2 = context.getProperty("deleteRoom","Endpoint")
log.info(EndPointProp2)



Extending soapUI with Scripting

[ 244 ]

Now, let's do another test to find out what properties are available during a single 
run of a TestStep. Add the following script in the editor of Groovy Script TestStep 
and run the test step:

String[] props= context.getPropertyNames() 
for (prop in props){
log.info(prop)
}

Here, we read all property names of the current context into a string array and 
iterate over the values. You will see the following output. There are three built-in 
properties associated with the context of request submission—RunCount, log, and 
ThreadIndex:

Sat May 05 09:59:10 IST 2012:INFO:RunCount

Sat May 05 09:59:10 IST 2012:INFO:log

Sat May 05 09:59:10 IST 2012:INFO:ThreadIndex

Double-click on the getRoomDetails TestCase to open the getRoomDetails 
TestCase editor. Now, you will have the getRoomDetails SOAP Test request 
and GroovyTestScript1 TestSteps under the TestCase. Run the getRoomDetails 
TestCase by selecting the green arrow icon at the top of the getRoomDetails 
TestCase and look at the output. This time you will see 19 properties such as 
httpMethod, requestUri, and postMethod, which are available at the TestCase 
context of the run session.

In addition to the built-in properties, we can set the properties and retrieve them 
later during a particular test run.

PropertyVal=new String("This is a property value")
//Setting a value to property1
context.setProperty("property1", PropertyVal) 
//Reading property1's value
readPropval1 = context.getProperty("property1") 

The context.expand (<String>) method is a useful method, which is inherited 
from the com.eviware.soapui.model.support.AbstractAdminContext base class. 
This can be used in multiple situations and the simplest usage is for accessing a 
custom property at a different level of a test. If we have a custom property at project 
level (for example, Test), then we can use the expand method to read the property 
value from a script which runs from the TestStep level:

log.info(context.expand( '${#Project#Test}'))



Chapter 11

[ 245 ]

The context object is very useful if we want to store some value in one TestStep and 
use it in subsequent script test steps:

1. Add another GrovyScript TestStep in the getRoomDetails TestCase. 
Let's name it GroovyTestScript2:

2. Add the following into GroovyTestScript1 to define a new property,  
holder in context:
context.holder="testing"

3. Now, add the following in GroovyTestScript2 to read the property value:
holderValue = context.getProperty("holder")
log.info(holderValue)

Once you run the getRoomDetails TestCase, you will see the log output of 
GroovyTestScript2 run which prints testing as the result. In this example, 
context represented an instance of TestCaseRunContext where the context 
is visible inside TestCase.

The testRunner variable
The testRunner variables are used to execute tests in a soapUI project. The sub 
interfaces of the com.eviware.soapui.model.testsuite.TestRunner interface 
(http://www.soapui.org/apidocs/com/eviware/soapui/model/testsuite/
TestRunner.html) are used to execute various elements of a soapUI Project. For 
example, the com.eviware.soapui.model.testsuite.TestCaseRunner interface, 
that extends com.eviware.soapui.model.testsuite.TestRunner, defines a set of 
methods to manipulate soapUI TestCases. In this section, we will look into the usage 
of testRunner inside a soapUI project.

The testRunner interfaces provide methods such as start, cancel, and fail to 
control the test execution. Follow these steps to see how testRunner can be used to 
control test execution flow:

1. Add the following statement in GroovyTestScript1 and run the 
getRoomDetails TestCase from the getRoomDetails TestCase editor:
testRunner.cancel("CANCELLED THE TEST")

2. You will see that the further executions of TestCase immediately stop when 
they reach the preceding statement and the CANCELLED THE TEST message 
is logged at the TestCase log. This is useful if you want to cancel the test run, 
based on evaluation of certain conditions.



Extending soapUI with Scripting

[ 246 ]

Let's look at how we can invoke a different TestCase in a different TestSuite using 
testRunner.

Suppose in our sample HotelReservation project, the addReservation TestCase 
should fail if the corresponding room does not exist in the system (note that, in 
the ReservationService implementation, we have not added a validation to check 
the availability of rooms). Thus, before invoking the addReservation TestCase, we 
may need to check the existence of the room which is going to be reserved. In this 
case, of course we can directly use the Run TestCase TestStep. However, let's try 
to use a GroovyScript TestStep as a child of addReservation TestCase to invoke 
getRoomDetails TestCase so that we can look in to the possibilities of using the 
testRunner object: 

1. Select ReservationServiceTestSuite and add Groovy Script TestStep as an 
immediate child of addReservation TestCase. Name it findRoomScript.

2. Add the following script:
import com.eviware.soapui.model.testsuite.TestRunner.Status

//Get hold of the getRoomDetails TestCase which is at a different 
// TestSuite than the current Suite
def getRoomDetailsTestCase = testRunner.testCase.testSuite.
project.testSuites["RoomManagementServiceTestSuite"].
testCases["getRoomDetails TestCase"]
//Run the getRoomDetails TestCase synchronously
def testcaserunner = getRoomDetailsTestCase.run(null, false)

//Fail if getRoomDetails TestCase fail
assert testcaserunner.status == Status.FINISHED

Here, we first got a reference to getRoomDetails TestCase. Then, we 
invoked the run(stringToObjectMap properties, boolean async) 
method of the WsdlTestCase class (com.eviware.soapui.impl.wsdl.
testcase.WsdlTestCase) that implemented the TestCase interface 
(http://www.soapui.org/apidocs/com/eviware/soapui/impl/wsdl/
testcase/WsdlTestCase.html). Finally, we used assert statement to 
check the status of the TestCase execution.



Chapter 11

[ 247 ]

3. Give an existing room number as value in <typ:roomNumber> in 
getRoomDetails SOAP request. Also, specify the same room number in the 
addReservation SOAP request. Run ReservationTestSuite. Make sure to 
disable GroovyTestScript2 TestStep, which has been added previously to 
cancel the execution of getRoomDetails TestCase:

The TestCase log will be updated with the results, where you can find the 
findRoomScript is marked in green, denoting the success of execution of the 
getRoomDetails TestCase.

4. Now, submit the getRoomDetails TestStep of RoomManagementService 
TestSuite with a non-existing room number. We should add an assertion to 
denote that the getRoomDetails TestStep of the getRoomDetails TestCase 
fails if we submit the getRoomDetails SOAP request with a non-existing 
room. Thus, add the Not SOAP Fault assertion to getRoomDetails SOAP 
Request TestStep.



Extending soapUI with Scripting

[ 248 ]

5. Run the addReservation TestCase of ReservationTestSuite again. You will 
get a test failure, as shown in the following screenshot:

soapUI ModelItems
ModelItems are the preliminary building blocks of a soapUI project. The elements 
such as projects, test suites, test cases, test steps, mock services, mock responses, and 
assertions are all implemented as ModelItems. The com.eviware.soapui.model.
ModelItem interface (http://www.soapui.org/apidocs/com/eviware/soapui/
model/ModelItem.html) is the super interface which defines the general behavior 
of all soapUI model items.

When you get hold of a ModelItem in your script, you can use the corresponding 
getters to retrieve values such as id, name, and description of a ModelItem.

getRoomDetailsTestCase.name

Also, ModelItems provide us with various methods to access parent and child entities.

Let's look at some methods in TestCase ModelItem that are frequently used to 
retrieve TestSteps in a TestCase:

• getTestStepByName(String stepName): To retrieve a specific test step 
inside a TestCase



Chapter 11

[ 249 ]

• getTestStepCount(): To get the TestStep count of a TestCase
• getTestStepList(): To get list of TestSteps included in a TestCase

Add the following script as a Groovy Script TestStep in any of the TestSuites in the 
HotelReservation sample project and run the TestStep:

def getGuestDetailsTestCase = testRunner.testCase.testSuite.project.te
stSuites["GuestManagementServiceTestSuite"].testCases["getGuestDetails 
TestCase"]

//To get specific test step
getGuestDetailssoapStep = getGuestDetailsTestCase.getTestStepByName("g
etGuestDetails")
log.info("Name of the TestStep: "+getGuestDetailssoapStep.getLabel())

//To get test step count
log.info("Number of TestSteps in getGuestDetails TestCase: 
"+getGuestDetailsTestCase.getTestStepCount())

//To get all test steps 
for(teststep in getGuestDetailsTestCase.getTestStepList())
log.info("Name of the TestStep in getGuestDetails TestCase: 
"+teststep.getName())

Assuming that we have two TestSteps, getGuestDetails and Delay, in the 
getGuestDetails TestCase, the script log output will show results similar to the 
following:

INFO:Name of the TestStep: getGuestDetails
INFO:Number of TestSteps in getGuestDetails TestCase: 2
INFO:Name of the TestStep in getGuestDetails TestCase: getGuestDetails
INFO:Name of the TestStep in getGuestDetails TestCase: Delay

Once we get hold of the TestStep object as described above, we can try out many 
interesting things. Suppose we want to add an assertion to a specific step in a 
TestCase, we can obtain the required TestCase first, traverse through all the 
TestSteps of the TestCase and add the necessary assertion programmatically as 
shown in the following script:

import com.eviware.soapui.impl.wsdl.teststeps.*
def getGuestDetailsTestCase = testRunner.testCase.testSuite.project.te
stSuites["GuestManagementServiceTestSuite"].testCases["getGuestDetails 
TestCase"]

//Define the type of assertion
def soapAssertion ="SOAP Response"



Extending soapUI with Scripting

[ 250 ]

//Retrieve all TestSteps in getGuestDetailsTestCase
for(testStep in getGuestDetailsTestCase.getTestStepList()) {
  //Check whether the TestStep is a SOAP Request TestStep
    if(testStep instanceof WsdlTestRequestStep) 
       testStep.addAssertion(soapAssertion)
}

As we accessed the child TestSteps of the getGuestDetails TestCase, the parent 
TestSuite can also be retrieved using getGuestDetailsTestCase.getTestSuite().

We looked into some preliminary methods of soapUI ModelItems which can be 
used to manipulate various elements and operations in a soapUI project. So far, 
we have worked with scripts which have been inside Groovy Script TestSteps. 
However, Groovy Script step is not the only place where you can write your script. 
There are more:

• Setup and TearDown Scripts at TestCase, TestSuite level which can be used 
to initialize and clean up various resources used in a soapUI test

• Load Script at project level which is used to run a script after loading  
the project

• Script assertion to introduce arbitrary validation on response
• MockService-specific scripts

As we have already discussed the last scripting option, MockService-specific scripts 
during Chapter 6, Web Service Simulation with soapUI, we will continue our discussion 
based on the rest of the scripting options.

Setup and TearDown scripts in soapUI
Setup and TearDown scripts can be used for many purposes. In particular, 
if you want to initialize something which is applicable for the whole TestSuite  
or TestCase, the Setup script will be the most appropriate option. Let's look at  
how we can initialize database connection in RoomManagementServiceTestSuite 
using Setup Script:

1. Right-click on RoomManagementServiceTestSuite and select Show 
TestSuiteEditor.

2. Select Setup Script at the bottom pane and add the following script:
import groovy.sql.Sql;
def DBdriver="com.mysql.jdbc.Driver"
def DBpath="jdbc:mysql://localhost:3306/HOTEL_RESERVATION_DB"
def username='root'
def password='root'



Chapter 11

[ 251 ]

try {
DBconnection = Sql.newInstance(DBpath, username, password, 
DBdriver);
context.setProperty("dbConProp", DBconnection)
} catch (Exception e) {
log.error "Could not establish connection to the database."
}

Here, we used Groovy SQL library to establish a database connection to our 
sample HOTEL_RESERVATION_DB. Once the connection is established, in order 
to use the connection from anywhere in the TestSuite, we set the connection 
as a context property, dbConProp:

3. Now, we can use this connection within the RoomManagementTestSuite. In 
order to demonstrate the usage of the connection, let's add a simple Groovy 
Script TestStep under the addRoom TestCase:
def statement = "insert into ROOM_T values(500, 'Luxury', 
'Double')"
def DBCon = context.getProperty("dbConProp")
DBCon.execute(statement)



Extending soapUI with Scripting

[ 252 ]

Here, we simply used the dbConProp context property to execute a SQL 
query. Run RoomManagementServiceTestSuite and query the ROOM_T table. 
You will find the query has been executed successfully.
Similarly, TearDown Scripts can be used to close database connections at the 
end of the TestSuite execution.

4. Click on the TearDown Script tab at the bottom pane of 
RoomManagementServiceTestSuite and add the following script to close 
the database connection:

def DBCon = context.getProperty("dbConProp")
DBCon.close()

Load Script at soapUI project level
If we need to do something common for the whole project, we can invoke a script 
at the project level. In the soapUI project view, you will find Load Script and Save 
Script tabs at the bottom pane, where you can specify a script at the project level and 
run it just after loading the project.

In SOA testing, we usually need to use the same soapUI project in multiple 
environments. Before deploying the web services in the QA environment, 
developers may execute the whole set of test suites in the development 
environment. Similarly, the same tests will be executed in the staging environment 
before moving the services into production. Usually, in all these cases, nothing 
but the service endpoints are changed. Therefore, it will be necessary to change 
all endpoint URLs when moving the TestSuites among different environments. 
To address that, we can use a simple Groovy script at the project level and run it 
before deploying the test in different test environments.

Assume the following are the URLs of three of our sample web services when they 
are deployed in the QA environment:

• http://QAServer:8080/axis2/services/GuestManagementService

• http://QAServer:8080/axis2/services/RoomManagementService

• http://QAServer:8080/axis2/services/ReservationService

Let's look at how we can change the existing endpoints of the SOAP request 
TestSteps in our sample project when moving the test into the QA environment.

1. Right-click on HotelReservationProject and select Show Project View. Then 
click on the Load Script tab on the bottom pane to open the script editor.



Chapter 11

[ 253 ]

2. Add the following script:
//Define three web service endpoints 
def GuestQAEndpoint = "http://QAServer:8080/axis2/services/
GuestManagementService"
def RoomQAEndpoint = "http://QAServer:8080/axis2/services/
RoomManagementService"
def ReservationQAEndpoint = "http://QAServer:8080/axis2/services/
ReservationService"
 //Get all TestSuites inside HotelReservationProject
 testSuiteList = project.getTestSuites()
 //Iterate through each TestSuite
 testSuiteList.each
 {
 //Rerieve a particular TestSuite by its name
 testSuite = project.getTestSuiteByName(it.key)
 //Get all TestCases inside particular TestSuite
 testCaseList = testSuite.getTestCases()
//Iterate over each TestCase of a particular TestSuite
 testCaseList.each
  {
  //Retrieve specific TestCase by its name
  testCase = testSuite.getTestCaseByName(it.key)
  //We do not want to set endponts for all TestSteps in a  
// TestCase. So, get only the SOAP Request TestSteps
  soapTestStepsList = testCase.getTestStepsOfType(com.eviware.
soapui.impl.wsdl.teststeps.WsdlTestRequestStep.class) 
  //Iterate over each SOAP Request TestStep in a TestCase
  soapTestStepsList.each
   {
   //Assign the relevant endpoint
   if(testSuite.name == "GuestManagementServiceTestSuite"){
   it.properties['Endpoint'].value = GuestQAEndpoint
   } else if (testSuite.name == "RoomManagementServiceTestSuite"){
    it.properties['Endpoint'].value = RoomQAEndpoint
   }else {
    it.properties['Endpoint'].value = ReservationQAEndpoint
   }
  }
  }
 }



Extending soapUI with Scripting

[ 254 ]

We will not go through each line in the previous script as everything is 
explained as inline comments. Note that we used Groovy closure style 
looping and the keyword it (it.key) to get the specific TestCase and 
TestSuite names from the list objects.

3. Run the script by clicking on the green arrow icon at the upper-left 
corner of the Script window. Check the SOAP Request TestSteps of  
each TestSuite. You will notice that the default endpoints of all SOAP 
requests are changed accordingly.

We will discuss the Script assertion as part of response handling through scripts.

Request and response handling using 
Scripts
So far, we have discussed about manipulating individual elements such as projects, 
test cases, and test steps of a soapUI project. However, we have not specifically 
looked into the different operations which can be carried out on request and 
response messages. soapUI provides us with a few important APIs to use with 
request and response messages:

• com.eviware.soapui.support.GroovyUtils: The API documentation of 
the GroovyUtils class (http://www.soapui.org/apidocs/com/eviware/
soapui/support/GroovyUtils.html) provides us with all the necessary 
information to use this API.

• com.eviware.soapui.support.XmlHolder: This is a very useful API to 
act upon XML request and response messages. More details about the API 
can be found at the official API documentation (http://www.soapui.org/
apidocs/com/eviware/soapui/support/XmlHolder.html)

• com.eviware.soapui.model.iface.MessageExchange: This interface 
represents an exchange of request and response messages using various API 
methods. For more details, visit http://www.soapui.org/apidocs/com/
eviware/soapui/model/iface/MessageExchange.html.

Let's find out the basic usage of each of these classes using our sample project.

1. Add a new Groovy Script TestStep under the getRoomDetails TestCase of 
RoomManagementServiceTestSuite.

2. Add the following script:
def xmlHolder = new com.eviware.soapui.support.XmlHolder(context, 
"getRoomDetails#Response")
log.info xmlHolder.getXml() 



Chapter 11

[ 255 ]

Here, we created a new XmlHolder object which makes use of WsdlTestStep 
context variable and response of getRoomDetails request through property 
expansion. Submit the getRoomDetails TestStep once so that we will have a 
valid response in context. Then, run the Groovy script which will execute the 
script against the last received response message. You will find the response 
SOAP message in the script log.

3. We can get hold of the response XML message using the GroovyUtils class 
as follows:
def groovyUtils = new com.eviware.soapui.support.
GroovyUtils(context)
def xmlHolder = groovyUtils.getXmlHolder("getRoomDetails#Respon
se")
log.info xmlHolder.getXml()

4. Similarly, the request message can also be accessed:
def xmlHolder = new com.eviware.soapui.support.XmlHolder(context, 
"getRoomDetails#Request")

Once you get hold of request and response messages, you can do various XML 
manipulations through the methods included in the XmlHolder class such as 
getDomNode(xpath) and getNodeValue(xpath).

Script assertion
Script assertion is another type of assertion that can be used to validate the 
responses. The major advantage of using script assertion over the other assertions is 
you have much more control over the messages exchanged. Thus, you can validate 
the message content or headers using Groovy or JavaScript.

1. Open the getRoomDetails test request editor. Click on the Assertions tab at 
the bottom pane and select the Adds an assertion to this item option. Select 
Script Assertion and click on OK:



Extending soapUI with Scripting

[ 256 ]

2. At the upper-right of the script editor, you will notice the message, "Script is 
invoked with log, context and messageExchange variables". Thus, you can 
use these variables to access request and response messages to do various 
content level validations.

3. The com.eviware.soapui.model.iface.MessageExchange interface 
represents an exchange of request and response message in a test run. 
Therefore, we can use the methods exposed by this interface such as 
getResponseContent() and getResponseHeaders() to access the request 
and response messages.

4. Add the following script in the script assertion editor and run the 
getRoomDetails TestCase:

import com.eviware.soapui.support.XmlHolder
def responseHolder = new XmlHolder(messageExchange.
getResponseContentAsXml())
def requestHolder = new XmlHolder(messageExchange.
getRequestContentAsXml()) 
assert responseHolder["//ns:roomNumber"] == requestHolder["//
typ:roomNumber"]

We used two XmlHolder objects to hold request and response. Request and 
response messages were retrieved by calling the getReponseContentAsXml 
and getRequestContentAsXml methods of the messageExchange object.

This is a trivial example which we used to demonstrate the usage of script  
assertion in a soapUI project. By using the context and messageExchange 
variables, you can try out much advanced and comprehensive operations on  
request and response messages.

Summary
The default behavior of tests can be extended by scripting facilities included in 
soapUI. Using Groovy or JavaScript, more control over the tests can be gained  
and hence, custom functionalities for your soapUI tests can be introduced. As the 
soapUI APIs are accessible through scripting, many useful methods can be used  
in your soapUI tests. In this chapter, we looked into the scripting possibilities 
of soapUI using the Groovy scripting language. First, we had a glance at the 
fundamentals of the Groovy scripting language. We discussed many reasons  
for using scripts in a soapUI project. The two important context-related  
variables—context and testRunner  - have been introduced and explained 
using simple examples. We also looked into the ModelItems, the preliminary 
categorization of elements in a soapUI project. Finally, we went through  
examples of using scripts at various levels of a soapUI project.



Automated Testing  
with soapUI

Automated testing is the process of executing the existing manual tests using 
software. As we discussed throughout the book, the soapUI tests can simply be 
triggered via the intuitive user interface of soapUI. Will that be sufficient when 
testing the components including web services in your service-oriented solution? 
Isn't it a tedious and time-consuming task for your Quality Assurance (QA) team  
to run the soapUI TestSuites manually through user interface against each build? 
Can we minimize the human intervention when running soapUI tests?

The automated execution of soapUI tests can be considered as a possible answer 
for most of these questions. Even if we have an approach to run the soapUI tests 
automatically, we cannot gain the complete advantage of test automation, if we do 
not integrate the tests in to the build process and triggering them automatically with 
each build cycle. There are various mechanisms that can be adopted to achieve much 
ROI (Return-On-Investment) from test automation. This chapter will give you a 
quick overview on the test automation possibilities of soapUI projects by taking you 
through the following topics:

• An introduction to automated testing
• Continuous Integration
• soapUI JUnit integration
• Command-line execution of soapUI tests
• Maven soapUI plugin



Automated Testing with soapUI

[ 258 ]

Test automation
According to Wikipedia (http://en.wikipedia.org/wiki/Test_automation);

Test automation is the use of software to control the execution of tests, the 
comparison of actual outcomes to predicted outcomes, the setting up of test 
preconditions, and other test control and test reporting functions.

We do not want to stress the fact that manual execution of tests is an exhausting, 
time consuming, and tedious process. In modern agile projects, the separation 
between independent Quality Assurance teams and development teams has 
become too narrowed. Quality is not the sole responsibility of a separate QA team. 
Everyone in a project equally owns the quality of the deliverables and contributes 
to the testing process. Therefore, Quality Assurance is no longer an independent 
or isolated activity, which used to happen at the final phases of a product release. 
Instead, more rigorous and agile testing processes are becoming popular among 
software development teams. One of the reasons for adopting more agile processes 
is the demand of frequent product/project releases. As we discussed in Chapter 1, 
Web Services Testing and soapUI, quickly adapting to business, process, or integration 
changes are one of the key promises of SOA. Therefore, it is evident that the SOA 
projects should follow an agile software development and testing approach to 
facilitate frequent releases and gain faster feedback by sharing products early with 
the relevant stakeholders.

How does test automation help in agile SOA projects? The common benefits of test 
automation are equally applicable for SOA as well. We are not going to spend time 
discussing the benefits of test automation in general because it is a well-known and 
popular topic which can easily be found out by browsing the Internet.

Why is test automation essential in SOA?
Regardless of the nature of the architectural style, which you use in your projects, 
test automation gives you a lot of benefits. However, test automation is an absolutely 
necessary factor in SOA.

1. Service-oriented solutions comprise of geographically distributed  
and heterogeneous components. Therefore, manual testing of  
individual components as well as the interactions among each other  
is not always possible.

2. The frequency of releases is comparatively high in service-oriented  
projects. Due to the demand of quickly reacting to the business, process,  
or technological changes, the releases occur quite often. Thus, a fast  
approach is required to provide the feedback about the system under test.



Chapter 12

[ 259 ]

3. Majority of the components of a service oriented solution are headless. In 
other words, the components do not include a user interface for human 
interaction but the machine-processable interfaces. Therefore, these 
components are naturally fit into automated testing.

4. Re-usability is one of the key principles of SOA. Therefore, one service (or 
component in general) can be used by many different consumers. Most of 
the times, the potential consumers cannot be predicted in advance and the 
usage pattern of services can be varied. The automated TestSuites are the 
only solution to address large number of integration combinations in such a 
dynamically changing system.

5. The low-level components such as web services are totally message-
oriented applications. To test these components need access to the message 
level and work with various message types (for example, SOAP, JSON) 
as well as transports (HTTP(S), JMS, VFS, FTP, and so on). Though you 
can capture the test scenarios and carry out the first round of functional 
tests manually using a tool such as soapUI, regression testing of message-
oriented tests is an unnecessarily time consuming and tedious task if the 
tests are not triggered automatically.

Test automation frees up the tester's time to do more effective and exploratory 
tests which are crucial for the success of quality assurance of service oriented 
solutions. Because of the complexity due to the integrations and heterogeneous 
nature, deriving test scenarios of a service oriented solution is not a simple and 
straightforward task. Hence, the automated tests must be used as a time saver for 
testers to think about end-to-end system test cases and more exploratory testing. 
Based on these facts, we can conclude that the test automation is just not another 
nice-to-have activity when it comes to SOA. As we have discussed so far in this book, 
we can use soapUI to build a comprehensive functional or non-functional test suite 
to test web services included in Service-oriented solutions. The web services in our 
solution will not just be delivered after one test cycle but will go through multiple 
iterations which involve bug fixes as well as various enhancements. Therefore, 
we must plan to repeat the tests in multiple cycles. In order to do that, just having 
a soapUI project with multiple TestSuites is not necessary. We need to find a 
mechanism to automatically execute the tests and report results.



Automated Testing with soapUI

[ 260 ]

The automatic execution of soapUI tests can be done in two different approaches. 
Once the web services, which are under test, are built and ready for testing, we can 
automatically trigger the tests separately from the build environment. Or else, test 
automation can be combined with the build automation process and trigger the 
soapUI tests as part of the build process. The latter approach is commonly referred 
to as continuous testing and which can be considered as the ideal approach for 
automating tests in SOA. Continuous testing is a part of a more generic process, 
Continuous Integration (CI) where pieces of the software components integrate 
early and often to improve the overall quality and effectiveness of the software 
development process.

Continuous Integration (CI)
Continuous Integration, as the term implies, is the process of integrating individual 
units of source code in frequent cycles. During these frequent integration cycles, 
automated builds and tests are used to detect integration errors as early as possible 
and prevent them from introducing into the mainstream software product.

The summarized representation of the functions of a continuous integration system 
can be shown as follows:

The previous image and the introductory discussions on Continuous 
Integration are based on the book, Continuous Integration – Improving 
Software Quality and Reducing Risk by Paul Duvall, Steve Matyas, 
Andrew Glover (http://www.integratebutton.com/). I would 
recommend you to read that book to learn more about continuous 
integration and the related topics. We will only discuss the basic 
components of Continuous Integration systems in this chapter.



Chapter 12

[ 261 ]

In general, any continuous integration system performs the following tasks:

1. Developers commit the code changes to the version control repository such 
as SVN, CVS, or VisualSourceSafe.

2. The Continuous Integration (CI) server is configured to poll the version 
control repository for changes in pre-defined time intervals (hourly, nightly, 
or at every commit based on the nature and complexity of the code base of 
your project).

3. The CI server detects the changes in version control repository, thus it 
retrieves the latest copy of the code base from the repository.

4. The CI server executes the build script (for example, in the case of Apache 
maven, the pom.xml file, or build.xml if the build tool is Apache Ant) which 
involves compilation of source code, preparing the databases, running 
automated tests, deploying the software into the deployment servers.

5. Finally, the CI server notifies the relevant parties about the status of the  
build through an email.

As we can understand from these steps, automated tests play a key role in a CI 
system. Since SOA is based on agile methodologies, it is extremely important to have 
a properly managed CI system in your SOA projects. The continuous testing of a CI 
system is not merely the unit tests which automatically validate the functionality 
of the logic of individual pieces of code in your service oriented solutions. The 
continuous testing must be performed to verify the functionalities of individual web 
services, service integrations, as well as business processes which are formed by 
multiple service compositions.

In order to test the services as well as service compositions in a service oriented 
project, the web service test suites must also be executed as part of the build cycle 
without maintaining them separately. soapUI provides us with various integration 
facilities with build tools, such as Apache Maven and Apache Ant, as well as the 
test frameworks, such as JUnit, which allow us to execute soapUI tests as part of a 
Continuous Integration system.

Let's proceed with discussing each of these integration facilities one by one.

soapUI JUnit integration
JUnit (http://junit.org/) is a framework to write repeatable tests in Java. As 
the name implies, the primary purpose of JUnit is to verify the functionality of 
individual units of code. However, by integrating with the external libraries, JUnit 
tests can be extended to verify integration as well as system tests.



Automated Testing with soapUI

[ 262 ]

Since the examples are the best way to describe something, without spending 
time on abstract descriptions, let's look into adding a JUnit test into our sample 
HotelReservation project.

1. Open the hotel_reservation project in your favorite Integrated 
Development Environment (IDE). (Please revisit Chapter 2, The Sample 
Project to recap your memory on the project structure and location.)

2. Create a test directory at the root of the project, that is, SAMPLE_PROJECT_
HOME/test(for example, /home/charitha/soapui-projects/sample-
project/hotel_reservation-1.0/test).

3. Add a new package, com.test.soapuitest under the test directory and 
add a new JUnit TestCase with a single test method as follows:
package com.test.soapuitest;

import junit.framework.TestCase;

public class HotelReservationSoapUITest extends TestCase {

    public void testSoapUITestRunner() {
        //Run soapUI TestSuites
    }

}

Make sure to download the latest version of JUnit jar (at the time 
of writing, Junit-4.10.jar) from https://github.com/
KentBeck/junit/downloads and add it to the classpath of 
your sample project.

4. soapUI provides us with a standalone testrunner class called 
SoapUITestCaseRunner (http://www.soapui.org/apidocs/com/eviware/
soapui/tools/SoapUITestCaseRunner.html) which can be used to run 
soapUI tests from any class, command line, or from the Apache Maven build 
script. We will instantiate an object of this class inside our JUnit test and 
invoke the methods to run the soapUI TestSuites or whole project at once.

Before referring to the soapUI libraries from JUnit, make sure to 
add the SOAPUI_HOME/lib directory and SOAPUI_HOME/bin/
soapui-4.0.1.jar library into the classpath of the sample project.



Chapter 12

[ 263 ]

5. Let's implement the testSoapUITestRunner() method in our JUnit 
TestCase. First, we will initialize an object of the SoapUITestCaseRunner 
class. By looking at the API documentation of this class, we can find out all 
the methods of it. Out of them, we will use the setProjectFile (String 
projectFile) method to define the soapUI project file which contains the 
tests to be run. We will also use the run() method to execute the whole tests 
included in our soapUI project.
public void testSoapUITestRunner() {
        SoapUITestCaseRunner soapUITestCaseRunner = new 
SoapUITestCaseRunner();
        soapUITestCaseRunner.setProjectFile("/home/charitha/
soapui-projects/HotelReservationProject-soapui-project.xml");
        try {
            soapUITestCaseRunner.run();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

Note that, in the setProjectFile() method, the absolute path of the 
location of our sample hotel reservation soapUI project has been given. 

6. Now, run this JUnit test case. You will notice a set of log messages as follows:
[SoapUITestCaseRunner] Finished running soapUI testcase [addGuest 
TestCase], time taken: 137ms, status: FINISHED

[SoapUITestCaseRunner] Running soapUI testcase [deleteGuest 
TestCase]

[SoapUITestCaseRunner] running step [deleteGuest]

[SoapUITestCaseRunner] Finished running soapUI testcase 
[deleteGuest TestCase], time taken: 50ms, status: FINISHED

….....

[SoapUITestCaseRunner] Finished running soapUI testcase 
[getGuestDetails TestCase], time taken: 50ms, status: FINISHED

[SoapUITestCaseRunner] Project [HotelReservationProject] finished 
with status [FINISHED] in 481ms

Also, if any of the soapUI tests fail or errors occur, the run() method 
throws an exception and the details of the failed test step will be logged, 
shown as follows:
java.lang.Exception: Not SOAP Fault in [deleteGuest] failed;

[null/empty response]

Status: FAILED

Time Taken: 20

Size: 0



Automated Testing with soapUI

[ 264 ]

Obviously, you do not have much control over the test execution if you just 
execute the whole soapUI project in the previous approach. We should be 
able to run individual TestCases via JUnit.

7. soapUI provides us with various API classes to deal with individual test 
elements of a soapUI project. One of the most useful implementations is com.
eviware.soapui.impl.wsdl.WsdlProject (see the API documentation, 
http://www.soapui.org/apidocs/com/eviware/soapui/impl/wsdl/
WsdlProject.html) which can be used to retrieve individual TestSuites and 
TestCases from a given soapUI project so that they can be executed as we 
wish through any Java class.

8. Let's redo our first test in a different manner without just executing all 
TestCases. Create another test method shown as follows:
public void testSoapUIHotelReservation()
            throws XmlException, IOException, SoapUIException {
        //Create a new WsdlProject instance by specifying the  
//absolute path of sample HotelReservation soapUI project
        WsdlProject project = new WsdlProject("/home/charitha/
soapui-projects/HotelReservationProject-soapui-project.xml");
        //Retrieve all TestSuites included in the sample  
//HotelReservation soapUI project
        List<TestSuite> testSuiteList = project.
getTestSuiteList();
        //Iterate over all TestSuites in the project
        for (TestSuite ts : testSuiteList) {
            System.out.println("******Running " + ts.getName() + 
"***********");
            //Retrieve all TestCases under a particular TestSuite
            List<com.eviware.soapui.model.testsuite.TestCase> 
testCaseList = ts.getTestCaseList();
            //Iterate over all TestCases in the particular  
//TestSuite
            for (com.eviware.soapui.model.testsuite.TestCase 
testcase : testCaseList) {
                System.out.println("******Running " + testcase.
getName() + "***********");
                //Run the specific TestCase
                TestRunner testCaseRunner = testcase.run(new 
PropertiesMap(), false);
                //Verify whether the testCase is finished  
//successfully or failed due to the assertion failures
                assertEquals(TestRunner.Status.FINISHED, 
testCaseRunner.getStatus());
            }
        }
    }



Chapter 12

[ 265 ]

As the inline code comments explained, we first created an instance of the 
WsdlProject class by passing the absolute path of our sample hotel reservation 
soapUI project as a constructor argument. Then we iterate over the TestSuites  
and TestCases to run TestCases individually. Once you run the above method,  
you will notice that all twelve TestCases of the HotelReservation soapUI project 
will be run sequentially. If there are any assertion failures, you will see an output 
similar to the following:

******Running addRoom TestCase***********

junit.framework.AssertionFailedError: expected:<FINISHED> but 
was:<FAILED>

In the previous test method, if we want to run a specific TestCase of a TestSuite, we 
can simply call the getTestCaseByName (String TestCaseName) method as follows: 

com.eviware.soapui.model.testsuite.TestCase getRoomDetailsTestCase = 
ts.getTestCaseByName("getRoomDetails TestCase");

Now, you may possess some understanding about how soapUI tests can be invoked 
from a JUnit TestCase. By integrating your soapUI tests into the mainstream test 
framework (JUnit) of your Service-oriented solution in this manner, you could let the 
soapUI tests run as part of the build process very easily.

Depending on your build tool, you can invoke JUnit tests automatically as part of the 
build process. In Apache Ant, JUnit tests can be launched using the JUnit task. You 
can refer to the official documentation of the Apache Ant JUnit task at http://ant.
apache.org/manual/Tasks/junit.html.

Here is an excerpt from a build.xml that can be used to launch the previous 
HotelReservationSoapUITest class.

We should define the classpath libraries to compile the source code of the JUnit test 
and refer from Ant JUnit task.

<path id="test.lib.class.path">
  <pathelement location="/home/charitha/soapui-projects/
sample-project/junit-4.10.jar" />
        <pathelement location="/home/charitha/soapui-projects/
soapui-4.0.1/bin/soapui-4.0.1.jar" />
        <fileset dir="/home/charitha/soapui-projects/soapui-4.0.1/
lib">
   <include name="**/*.jar"/>
  </fileset>
  <pathelement location="${build.dir}" />
 </path>  



Automated Testing with soapUI

[ 266 ]

The JUnit task will be similar to the following. Note that the plain formatter is used 
to generate a test report in text format.

<target name="junit" depends="compile">
  <junit printsummary="on" fork="true" haltonfailure="no">
   <classpath refid="test.lib.class.path" />
   <formatter type="plain" />
   <batchtest todir="${test.report.dir}">
    <fileset dir="${t est.src.dir}">
     <include name="**/*SoapUI*.java" />
    </fileset>
   </batchtest>
  </junit>
 </target>

We looked into the possibility of running soapUI tests through the JUnit test 
framework and how those tests can be launched using the Apache Ant build  
tool. If you are using Apache Ant as the build tool in your continuous integration 
system, now you should be able to integrate your soapUI tests into your build 
system very easily.

In the previous examples, we launched soapUI testrunners programmatically from 
the JUnit TestCases. However, without using any test automation framework, you 
can directly run your soapUI tests using the command line scripts which are shipped 
with soapUI distribution. We will discuss the command line execution of the soapUI 
tests in the following section.

soapUI command line executions
soapUI provides us with a set of easy-to-use batch scripts to launch soapUI tests 
from the command line so that the tests can be invoked without opening the soapUI 
graphical interface separately. This is very useful in test automation because you can 
just call the batch scripts from your automated build scripts (Ant or any other script) 
and integrate into your build system right-away.

You will find the following runner scripts inside the SOAPUI_HOME/bin directory:

• testrunner.sh {bat}: This can be used to run any soapUI functional test 
from command line

• loadtestrunner.sh {bat}: Any soapUI load test can be launched from 
the command line through this script

• mockservicerunner.sh{bat}: soapUI mock services can be run 
straightaway from the command line using this script



Chapter 12

[ 267 ]

• toolrunner.sh {bat}: This can be used to launch the tools included in 
soapUI such as Axis2, CXF, and so on

• securitytestrunner.sh{bat}: This can be used to run the security tests 
such as SQL injection, boundary scan, cross-site scripting, and so on from  
the command line

Invoking a soapUI command line functional  
test runner
Since all of the command line tools follow a common pattern, by studying one script, 
we should be able to use the others in a similar manner. Therefore, let's focus on a 
functional testrunner script and its usage.

1. Go to SOAPUI_HOME/bin and just run testrunner.sh or testrunner.bat 
depending on your operating system.

 ° In Windows, open a command window and type testrunner.bat 
and press Enter

 ° In Linux, open a shell, type sh testrunner.sh and press Enter

This will print the usage of the testrunner script shown as follows. 
All the available options of the testrunner script can be found when 
you run the command. 

/soapui-projects/soapui-4.0.1/bin $ sh testrunner.sh 

================================

=

= SOAPUI_HOME = /home/charitha/soapui-projects/soapui-4.0.1

=

================================

soapUI 4.0.1 TestCase Runner

usage: testrunner [options] <soapui-project-file>

 -v    Sets password for soapui-settings.xml file



Automated Testing with soapUI

[ 268 ]

 -t    Sets the soapui-settings.xml file to use

 -A    Turns on exporting of all results using folders instead of 
long filenames

You can find a clear and detailed description about all these options 
in the soapUI official documentation (http://www.soapui.org/
Test-Automation/functional-tests.html). Therefore we 
will not spend time to go through each of them.

2. Let's launch the testrunner script without any options and look at 
the output.
sh testrunner.sh /home/charitha/soapui-projects/
HotelReservationProject-soapui-project.xml

3. Here, the testrunner executes all the TestSuites and TestCases included 
in the specified soapUI project file. You will see the output of the test in  
the testrunner console as follows:
09:28:48,262 INFO  [log] GuestManagementServiceTestSuite

09:28:48,322 INFO  [log] ReservationServiceTestSuite

09:28:48,322 INFO  [log] RoomManagementServiceTestSuite

09:28:48,342 INFO  [SoapUITestCaseRunner] Running soapUI tests in 
project [HotelReservationProject]

09:28:48,343 INFO  [SoapUITestCaseRunner] Running Project 
[HotelReservationProject], runType = SEQUENTIAL

09:28:48,434 INFO  [SoapUITestCaseRunner] Running soapUI testcase 
[addGuest TestCase]

09:28:48,440 INFO  [SoapUITestCaseRunner] running step [addGuest]

09:28:48,655 INFO  [SoapUITestCaseRunner] Assertion [Not SOAP 
Fault] has status VALID

09:28:48,656 INFO  [SoapUITestCaseRunner] Finished running soapUI 
testcase [addGuest TestCase], time taken: 211ms, status: FINISHED



Chapter 12

[ 269 ]

09:28:48,656 INFO  [SoapUITestCaseRunner] Running soapUI testcase 
[deleteGuest TestCase]

09:28:48,657 INFO  [SoapUITestCaseRunner] Finished running soapUI 
testcase [deleteGuest TestCase], time taken: 0ms, status: FINISHED

09:28:48,657 INFO  [SoapUITestCaseRunner] Running soapUI testcase 
[getGuestDetails TestCase]

09:28:48,657 INFO  [SoapUITestCaseRunner] running step 
[getGuestDetails]

09:28:48,697 INFO  [SoapUITestCaseRunner] Assertion [SOAP 
Response] has status VALID

09:28:48,697 INFO  [SoapUITestCaseRunner] Assertion [SOAP 
Response] has status VALID

09:28:48,697 INFO  [SoapUITestCaseRunner] Assertion [SOAP Response 
1] has status VALID

09:28:48,697 INFO  [SoapUITestCaseRunner] Assertion [SOAP Response 
2] has status VALID

09:28:48,697 INFO  [SoapUITestCaseRunner] Finished running soapUI 
testcase [getGuestDetails TestCase], time taken: 39ms, status: 
FINISHED

09:28:48,698 INFO  [SoapUITestCaseRunner] Project 
[HotelReservationProject] finished with status [FINISHED] in 352ms

Note that, we have disabled some TestSuites in 
HotelReservationProject for the demonstration 
purposes, hence you may observe a different output 
than the one mentioned previously.

4. With the command line testrunner, we can selectively run TestSuites as 
well as TestCases. For example, we can run the getGuestDetails TestCase 
directly from the testrunner script.
sh testrunner.sh -c "getGuestDetails TestCase"  -r /home/charitha/
soapui-projects/HotelReservationProject-soapui-project.xml



Automated Testing with soapUI

[ 270 ]

5. Since we inserted the-r option, soapUI prints a simple summary report at 
the end of the test execution shown as follows:

SoapUI 4.0.1 TestCaseRunner Summary

-----------------------------

Time Taken: 169ms

Total TestSuites: 0

Total TestCases: 1 (0 failed)

Total TestSteps: 1

Total Request Assertions: 4

Total Failed Assertions: 0

Total Exported Results: 0

By specifying the-j option in the previous command, we can generate 
a JUnit compatible XML report (in our example, a report called TEST-
GuestManagementServiceTestSuite.xml will be created at SOAPUI_HOME/
bin directory where you launched the previous command) which can then 
be directly integrated with the rest of your JUnit based test reports.

Invoking test runners from the soapUI 
graphical user interface
SoapUI TestRunners are just not for the purpose of running through the command 
line. They can even be launched within the soapUI graphical interface. Let's see how 
the functional TestRunner can be invoked from the soapUI interface.

1. Right-click on HotelReservationProject in the soapUI navigator pane and 
select Launch TestRunner.



Chapter 12

[ 271 ]

2. The Launch TestRunner window will be opened as shown in the 
following screenshot:

3. The same command line arguments which we used in the testrunner scripts 
can be specified in the previous window. Use the following argument values 
to run the getGuestDetails TestCase from the TestRunner:

 ° TestSuite: GuestManagementServiceTestSuite
 ° TestCase: getGuestDetails TestCase
 ° TestRunner path: /home/charitha/soapui-projects/

soapui-4.0.1/bin (Browse or type the location of SOAPUI_HOME/
bin)

4. Apart from the aforementioned set of arguments, we can specify the 
additional options from the other tabs of the Launch TestRunner window 
(Overrides, Reports, Properties, and Custom Args tabs). For our example, 
let's select the Reports tab and select the Print Report option.



Automated Testing with soapUI

[ 272 ]

5. Finally, click on the Launch button to run the testrunner file. You will see 
the output similar to the following:

We looked at launching the functional testrunner from the command line as 
well as a soapUI graphical interface. Similarly, we can use the other runners 
(loadtestrunner.sh{bat} and so on) as well. You can find more information about 
the other runners from the soapUI official documentation.

Depending on your requirements, you can either use the command line testrunner 
scripts or launch your soapUI tests from JUnit when you need to integrate soapUI 
into your continuous integration systems. Launching soapUI tests from testrunner 
scripts can be comparatively easier for novice users because they do not want to 
learn soapUI API methods to invoke soapUI tests. Also, the testrunner invocation 
is pretty straightforward. If you decide to launch soapUI tests from the command 
line testrunner then your build tool can be configured to run the script with 
arguments. In the case of Apache Ant, the exec task which is used to execute system 
commands can be used as shown in the following example:

<project name="Ant-soapUITestRunner" default="soapui-tests-cmdline" 
basedir=".">
<target name="soapui-tests-cmdline">
        <exec executable="/home/charitha/soapui-projects/soapui-4.0.1/
bin/testrunner.sh" failonerror="yes">
                <arg value="-r"/>



Chapter 12

[ 273 ]

                <arg path="/home/charitha/soapui-book/
HotelReservationProject-soapui-project.xml"/>
        </exec>
</target>
</project>

Maven soapUI plugin
Apache Maven (http://maven.apache.org/) is a Java-based project management 
and build tool which is used by a plethora of commercial and open source Java 
applications. Maven does almost all of its build and project management tasks using 
various plugins. There are some core plugins maintained by the Apache Maven 
project, such as complier plugin which compiles the Java source, surefire plugin which 
executes JUnit tests, site plugin which generates website for a project, and so on.

Apart from the plugins supported by the Maven project, there are plugins developed 
by other parties. The Maven selenium plugin (http://mojo.codehaus.org/
selenium-maven-plugin/)for launching and running selenium tests from the 
Maven build process, Maven clover plugin (http://maven.apache.org/plugins/
maven-clover-plugin/2.4/index.html) to find the code coverage are some of the 
popular Maven plugins which are supported by respective tooling projects. Because 
of the popularity of Maven in Java projects, when a testing tool is released, the 
associated Maven plugin will also be made available. This is true for soapUI too.

The Maven soapUI plugin is used to execute soapUI tests as part of a Maven build 
cycle. If you are already familiar with Maven, integrating the soapUI plugin will 
be surprisingly easy. For the benefit of everyone, let's proceed with our sample 
HotelReservation soapUI project and see how the Maven soapUI plugin can be used.

Maven projects have their own structure. Note that we did not use Maven for 
building our sample HotelReservation project in Chapter 2, The Sample Project. 
Without going back and modifying the sample project to build using Maven, just 
for the purpose of demonstrating soapUI maven plugin, we will create a separate 
Maven project. By using the Maven Archetype plugin (http://maven.apache.org/
archetype/maven-archetype-plugin/), we can create a working Maven project 
structure in a matter of seconds. Let's go through each step in detail:

1. If you do not have Maven running in your system, download and install 
Apache Maven2 or Maven3 latest build from http://maven.apache.org/
download.html.

2. Once Maven is installed, verify whether it is running by issuing an mvn 
version command.



Automated Testing with soapUI

[ 274 ]

3. Create a new root directory for the sample Maven project in your file system. 
(for example, /home/charitha/soapui-projects/maven-project).

4. Go to the newly created directory and enter the following command to create 
a standard Maven project structure:
mvn archetype:create -DgroupId=com.soapui.test -DartifactId=HotelR
eservationSoapUITests

This will generate a Maven project structure similar to the following:

5. The Maven archetype plugin creates the required project structure as well as 
a root POM file.
Since we are not going to use the auto-generated test class (AppTest.
java) and the sample application (App.java), remove the main 
directory as well as the HotelReservationSoapUITests/src/test/
java sub directory. Create a new sub directory, resources under 
HotelReservationSoapUITests/src/test and copy our sample 
HotelReservation soapUI project file (HotelReservationProject-
soapui-project.xml) to the resources directory.

6. Now, open the generated pom.xml file and remove the JUnit dependency. 
(We do not run any JUnit tests hence the JUnit dependency is not required.)

7. Then, we need to do the configurations specific to the Maven soapUI plugin. 
First, add the eviware Maven2 repository to the pom.xml.
<pluginRepositories>
        <pluginRepository>
                <id>eviwarePluginRepository</id>
                <url>http://www.eviware.com/repository/maven2/ 
</url>
        </pluginRepository>
</pluginRepositories>



Chapter 12

[ 275 ]

8. Next, add the soapUI plugin configuration to pom.xml.
<build>

<plugins>

 <plugin>

        <groupId>eviware</groupId>

        <artifactId>maven-soapui-plugin</artifactId>

        <version>4.0.1</version>

        <configuration>

          <projectFile>src/test/resources/HotelReservationProject-
soapui-project.xml</projectFile>

        </configuration>

        <executions>

          <execution>

            <id>soap-webservice-test</id>

            <phase>integration-test</phase>

            <goals>

              <goal>test</goal>

            </goals>

          </execution>

        </executions>

      </plugin>

</plugins>

</build>



Automated Testing with soapUI

[ 276 ]

9. Here, we used the 4.0.1 version of the Maven soapUI plugin, which was the 
latest at the time of writing. The <configuration> element is used to define 
the soapUI specific settings associated with the plugin such as projectFile, 
testSuite, testCase, and so on. In this example, we run all TestSuites in 
the soapUI project without selection. Therefore, we just specified the 
<projectFile> element.
soapUI tests can be executed as part of the integration test phase. Thus, we 
have given <phase>integration-test</phase> as the phase where the 
plugin is executed.

10. Save the pom.xml and run the following Maven goal:
mvn eviware:maven-soapui-plugin:test

This will run all soapUI tests included in HotelReservationProject-
soapui-project.xml and return the output similar to the following (note 
that, I have enabled only the GuestManagementServiceTestSuite in the 
project to simplify the demonstration):

 ~/soapui-projects/maven-project/HotelReservationSoapUITests $ mvn 
eviware:maven-soapui-plugin:test 

[INFO] Scanning for projects...

                                                                    

[INFO] -----------------------------------------------------------
-------------

[INFO] Building HotelReservationSoapUITests 1.0-SNAPSHOT

[INFO] -----------------------------------------------------------
-------------

soapUI 4.0.1 Maven2 TestCase Runner

18:44:10,165 INFO  [WsdlProject] Loaded project from [file:/home/
charitha/soapui-book/maven-project/HotelReservationSoapUITests/
src/test/resources/HotelReservationProject-soapui-project.xml]

18:44:11,037 INFO  [log] GuestManagementServiceTestSuite

18:44:11,097 INFO  [SoapUITestCaseRunner] Running soapUI tests in 
project [HotelReservationProject]

18:44:11,098 INFO  [SoapUITestCaseRunner] Running Project 
[HotelReservationProject], runType = SEQUENTIAL



Chapter 12

[ 277 ]

18:44:11,166 INFO  [SoapUITestCaseRunner] Running soapUI testcase 
[addGuest TestCase]

18:44:11,172 INFO  [SoapUITestCaseRunner] running step [addGuest]

18:44:11,337 INFO  [SoapUITestCaseRunner] Assertion [Not SOAP 
Fault] has status VALID

18:44:11,339 INFO  [SoapUITestCaseRunner] running step 
[getGuestDetails]

18:44:11,378 INFO  [SoapUITestCaseRunner] Assertion [SOAP 
Response] has status VALID

18:44:11,378 INFO  [SoapUITestCaseRunner] Assertion [SOAP 
Response] has status VALID

18:44:11,379 INFO  [SoapUITestCaseRunner] Assertion [SOAP Response 
1] has status VALID

18:44:11,379 INFO  [SoapUITestCaseRunner] Assertion [SOAP Response 
2] has status VALID

18:44:11,379 INFO  [SoapUITestCaseRunner] Finished running soapUI 
testcase [getGuestDetails TestCase], time taken: 39ms, status: 
FINISHED

18:44:11,379 INFO  [SoapUITestCaseRunner] Project 
[HotelReservationProject] finished with status [FINISHED] in 278ms

11. If we want to gain more control over test execution, we can configure the 
Maven soapUI plugin with various settings. Simply specify the following 
property under the <configuration> element of the soapUI plugin to 
invoke the getGuestDetails TestCase.

<configuration>

          <projectFile>src/test/resources/HotelReservationProject-
soapui-project.xml</projectFile>

          <testCase>getGuestDetails TestCase</testCase>

 </configuration>

Similarly, you can run a specific TestSuite.
<testSuite>RoomManagementServiceTestSuite</testSuite>



Automated Testing with soapUI

[ 278 ]

You can find all the settings of the Maven soapUI plugin at 
http://www.soapui.org/Test-Automation/maven-
2x.html which explains the usage of each setting.

We looked at one of the goals out of the four different goals provided by the 
Maven soapUI plugin. The maven-soapui-plugin:test goal can be used to 
execute soapUI functional tests as part of the Maven build process as explained in 
the previous example. Apart from that, the maven-soapui-plugin:loadtest goal 
is used to run soapUI load tests. Maven-soapui-plugin:tool and maven-soapui-
plugin:mock goals can be used to execute soapUI tools such as Axis2 Wsdl2Java 
and mock services respectively.

You can also execute multiple soapUI projects within a particular Maven build 
process. In order to do that, multiple executions of the plugin can be defined and 
include in a common life cycle phase.

• Suppose we have two soapUI project files, HotelReservationProject-
soapui-project1.xml and HotelReservationProject-soapui-project2.
xml. Then, we can include them in two different executions with a unique ID 
as shown in the following code:
<plugin>

        <groupId>eviware</groupId>

        <artifactId>maven-soapui-plugin</artifactId>

        <version>4.0.1</version>

        <executions>

          <execution>

            <id>soap-webservice-test1</id>

            <phase>integration-test</phase>

            <goals>

              <goal>test</goal>

            </goals>



Chapter 12

[ 279 ]

          <configuration>

          <projectFile>${basedir}/src/test/resources/
HotelReservationProject-soapui-project1.xml</projectFile>

          </configuration>

          </execution>

           <execution>

            <id>soap-webservice-test2</id>

            <phase>integration-test</phase>

            <goals>

              <goal>test</goal>

            </goals>

          <configuration>

          <projectFile>${basedir}/src/test/resources/
HotelReservationProject-soapui-project2.xml</projectFile>

          </configuration>

          </execution>

        </executions>

      </plugin>

• Now, if you run a mvn integration-test goal, both soapUI projects will be 
executed sequentially in the order they were defined inside the plugin.



Automated Testing with soapUI

[ 280 ]

Summary
Test automation is not another Nice-to-Have task when it comes to service-oriented 
solutions. In order to achieve the real advantages of SOA adoption, automated 
testing should play a key role and it must be part of the mainstream build process. In 
this chapter, we discussed the necessities of having automated tests in SOA projects. 
Then, we summarized the steps involved in Continuous Integration (CI) systems and 
why CI is important in SOA. soapUI facilitates the automatic execution of tests using 
multiple approaches. First, we looked into the integration of soapUI with the JUnit 
test framework and invoked soapUI tests as part of JUnit tests. Then, we discussed 
how those JUnit tests can be run continuously from Apache Ant. We also looked into 
the command line testrunner scripts provided by soapUI. Finally, we went through 
a sample Maven project to demonstrate how the Maven soapUI plugin can be used 
to run soapUI tests as part of the Maven build cycle.



Miscellaneous Topics
Starting from a sample hotel reservation application, we explored most of the key 
features provided by the world's leading web services testing tool, soapUI. At the 
beginning of the book, we discussed the key elements of a soapUI project such as 
TestSuites, TestCases, and TestSteps. Our discussions have not just been limited to 
functional testing. We looked into the use of soapUI in load and performance testing 
as well. Then, we moved forward with the topics such as web service simulation, 
RESTful services testing, JMS testing, JDBC testing, and test automation. In between, 
we discussed about the scripting capabilities of soapUI and the advanced web 
services testing topics, such as WS-Security.

There are some useful topics which we did not include in the previous chapters, 
but we believe they must be discussed separately before concluding the book. 
For example, most SOA developers and testers prefer to use soapUI directly from 
their preferred Integrated Development Environments (IDEs) instead of using a 
separate soapUI installation. Also, there are some general features such as external 
web service framework integrations, which we cannot categorize into one particular 
chapter of the book. Therefore, we dedicate this chapter to discussing some useful 
auxiliary features of soapUI. We will focus on the following miscellaneous topics in 
this chapter:

• soapUI Eclipse plugin
• soapUI Intellij IDEA plugin
• WS-I validation using soapUI
• soapUI integration with external web services frameworks
• Sending attachments with SOAP messages using soapUI



Miscellaneous Topics

[ 282 ]

soapUI IDE plugins
IDE plugins are software components that add functional extensions on top of a 
particular IDE. In particular, the IDE plugins are used by developers to run various 
tools inside the development environment which is more effective than launching 
tools separately. soapUI provides us with a few IDE plugins which allow us to 
build and run soapUI tests from within popular IDEs such as Eclipse (http://www.
eclipse.org), Intellij IDEA (http://www.jetbrains.com/idea/), or NetBeans 
(http://netbeans.org/).

soapUI Eclipse plugin
The soapUI eclipse plugin brings all the features provided by the standard soapUI 
desktop application into Eclipse IDE. Adding the soapUI plugin into Eclipse is pretty 
straightforward; follow these steps:

1. Open Eclipse IDE (this plugin supports Eclipse version 3.4 or later).
2. Go to Help | Install New Software ….
3. Enter http://www.soapui.org/eclipse/update as the update site in 

the Work with: textbox and click on Add.
4. Enter the name of the installation as soapUI and click on OK.



Chapter 13

[ 283 ]

5. Select soapUI Feature, as shown in the preceding screenshot, and click on 
Next. Review the installation and licenses in the next screen of the wizard 
and click on Finish. After a few minutes, depending on the speed of your 
Internet connection, the soapUI plugin will be installed.

6. Restart Eclipse to take effect on the new plugin installation.
7. In the Eclipse main toolbar, go to Window | Open Perspective | Other and 

select soapUI. This will open our familiar soapUI project explorer, as shown 
in the following screenshot:

Now, we can create new soapUI projects and proceed with the usual soapUI  
features inside Eclipse. In addition to the general preferences, we can configure 
the soapUI settings in the Eclipse preferences editor by navigating to Window | 
Preferences | soapUI.



Miscellaneous Topics

[ 284 ]

soapUI IntelliJ IDEA plug-in
IntelliJ IDEA (http://www.jetbrains.com/idea/) is a commercial IDE which 
is widely popular among developers due to its extremely rich set of features and 
productivity enhancements. The soapUI IntelliJ IDEA plugin is also similar to the 
Eclipse plugin, which can be used to integrate soapUI into the IDE and launch any 
soapUI project from within the IDE.

There are multiple ways to install plugins in IDEA:

• Downloading the soapUI IntelliJ plugin from http://sourceforge.net/
projects/soapui/files/soapui-intellij-plugin/ and installing it 
in IDEA

• Installing the plugin using the IntelliJ IDEA plugin manager UI

Note that the direct link for installing the soapUI plugin is 
available only in IntelliJ IDEA 8.0 or later versions.

In the following demonstration, we will install the soapUI plugin using a third 
approach, the direct link of the soapUI plugin install option:

1. Open IntelliJ IDEA and select Tools from the top menu and go to 
Webservices | Install SoapUI. This will download the latest version of the 
soapUI plugin from the plugin repository and install it in your IDE.

2. Restart IDE. You will see a "SoapUI" option under the Tools menu, as shown 
in the following screenshot:



Chapter 13

[ 285 ]

3. Select Start SoapUI to start soapUI inside IntelliJ IDEA. Once soapUI is 
started, the Start SoapUI menu option will be changed to Close SoapUI.

4. Now, select Window in the top menu and go to Tool Windows | soapUI 
Navigator. This will open the soapUI navigator which we are familiar with, 
in the soapUI desktop version, inside IntelliJ IDEA:

WS-I validation using soapUI
The ability to work with heterogeneous systems in a seamless manner is one of 
the key promises of SOA and web services. In order for multiple vendor platforms 
to operate with each other, every participant of a heterogeneous system should 
follow a common set of standards and rules. The Web Services Interoperability 
Organization (WS-I) http://www.ws-i.org, which recently became part of the 
Organization for the Advancement of Structured Information Standards (OASIS), 
defines the best practices for web services' interoperability. WS-I provides web 
services' developers with various deliverables such as profiles, sample applications, 
and testing tools.

According to Wikipedia, WS-I profile is a set of named web services 
specifications at specific revision levels, together with a set of 
implementation and interoperability guidelines recommending how 
the specifications may be used to develop interoperable web services.



Miscellaneous Topics

[ 286 ]

Among the multiple profiles defined by WS-I, the basic profile (http://www.ws-i.
org/deliverables/workinggroup.aspx?wg=basicprofile) defines the best 
practices and guidelines for the interoperability of core web services specifications 
such as SOAP and WSDL. Therefore, the basic profile can be used to validate WSDLs 
and SOAP messages in service-oriented solutions. To validate the conformance with 
WS-I profiles, WS-I develops multiple testing tools, which can be downloaded from 
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools.

These WS-I conformance testing tools are embedded into soapUI distribution by 
default. You can find the WS-I Testing Tools V1.1, which can be used to validate the 
conformance against the Basic Profile V1.0 and 1.1 as well as Simple Soap Binding 
Profile V1.0 inside the SOAPUI_HOME/wsi-test-tools directory.

In this section, we will look at how one of the WSDLs of our sample hotel reservation 
soapUI project can be validated using WS-I testing tools:

1. Right-click on GuestManagementServiceSoap11Binding in the hotel 
reservation soapUI project and select Show Interface Viewer. You will see 
the WS-I Compliance tab in the interface viewer which allows us to create a 
WS-I conformance report for the selected interface.

2. Before generating the report, let's have a look at various options which can 
be used in report generation. Click on the Sets WS-I report creation options 
icon, which brings up the soapUI Preferences dialog box as shown in the 
following screenshot:



Chapter 13

[ 287 ]

3. The default location of the WSI tool kit is shown in the preceding preferences 
dialog box. Select an output directory for the report. You can also modify 
some of the WS-I analyzer configuration options through this dialog. Keep 
those options intact and click on OK. This will generate a WSI compliance 
report and save it in the location that we specified. The report will also be 
shown under the WS-I compliance tab as shown in the following screenshot:

In the soapUI version that we used in this book (soapUI-4.0.1), the WS-I 
compliance report is saved in the /tmp directory if the WS-I validation generates 
non-conformance errors of the WSDL. You will experience this with our sample 
GuestManagementService. After the validation of WSDL, if you open the generated 
XML report, which can be found in the /tmp directory of your filesystem 
(for example, /tmp/wsi-report4252591991256058421), you will come 
across the assertion failures similar to the following:

<assertionResult id="BP2703" result="failed">

      <failureDetail xml:lang="en" >Exception: 

org.xml.sax.SAXException: Error: cvc-complex-type.2.4.a: Invalid 
content was found starting with element &apos;wsdl:fault&apos;. One of 
&apos;{&quot;http://schemas.xmlsoap.org/wsdl/&quot;:output}&apos; is 
expected.



Miscellaneous Topics

[ 288 ]

Now, in order for you to understand the exact meaning of these types of errors, 
check the given assertionResult ID in the Basic Profile-1.1 Test Assertion 
Document (TAD), which can be found in the SOAPUI_HOME/wsi-test-tools/
common/profiles directory. According to that document, the assertionID value 
BP2703 will represent the following WS-I basic profile conformance assertion:

<!--  _________________BP2703___________________   -->

    <testAssertion id="BP2703" entryType="definitions" type="required" 
enabled="true">

      <context>For a candidate description within a WSDL document</
context>

       <assertionDescription>If it uses the WSDL namespace, then 
it conforms to the schema located at http://schemas.xmlsoap.org/
wsdl/2003-02-11.xsd, and if it uses the WSDL-SOAP binding namespace 
then it conforms to the schema located at http://schemas.xmlsoap.org/
wsdl/soap/2003-02-11.xsd.</assertionDescription>

      <failureMessage>WSDL definition does not conform to the schema 
located at http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd for 
some element using the WSDL-SOAP binding namespace, or does not 
conform to the schema located at http://schemas.xmlsoap.org/wsdl/2003-
02-11.xsd for some element using the WSDL namespace.</failureMessage>

      <failureDetailDescription>Error message from the XML parser.</
failureDetailDescription>

Similarly, you can find out the conformity errors of your WSDL and correct them as 
suggested in the assertion results.

soapUI integration with external web 
services' frameworks
soapUI cannot only be considered as purely a web service testing tool. As we 
discussed in previous chapters, soapUI provides us with the features to work with 
both client and server side of the general web service equation. SOAP message 
transmission over HTTP or JMS, RESTful service invocations are the obvious 
examples of using soapUI as a web service client. The mock service generation can  
be considered a good example for service hosting capabilities provided by soapUI.



Chapter 13

[ 289 ]

In SOA, services are built using various commercial or open source web services 
frameworks. For example, one may use Apache CXF (http://cxf.apache.org) to 
develop and host the web services whereas another may use Jboss (http://www.
jboss.org/jbossws/) or Apache Axis2 for the same purpose. Many of these web 
service frameworks provide web service developers with numerous tools to assist 
them in web service development and testing tasks. With soapUI, you can directly 
make use of the tools provided by your favorite web services framework. In this 
section, we will look into integrating soapUI with some of the external tools.

If you select the Tools option from the top menu of soapUI, you will find a number 
of utilities provided by external web service frameworks:



Miscellaneous Topics

[ 290 ]

All these options directly invoke the tools such as WSDL2Java, associated with a 
particular web services' framework and return the results. To make use of a tool 
included in a particular web services' framework, you must first configure the 
location of the web services framework in soapUI Preferences:

1. As we have already used the Apache Axis2 web services framework in our 
sample project, let's specify its location in the soapUI Preferences dialog box, 
as shown in the following screenshot:

2. WSDL2Java is a tool given by most of the web services frameworks 
to generate client-side artifacts (stubs) or service skeletons from 
WSDLs. We are going to create client-side artifacts from WSDL of 
GuestManagementService using the Axis2 WSDL2Java tool. Click 
on the Tools option in top menu and select Axis2 Artifacts.



Chapter 13

[ 291 ]

3. The Axis2 artifacts window will be opened as shown in the following 
screenshot. Enter the URL of the GuestManagementService WSDL and 
specify an output directory. Keeping the other options intact, click  
on Generate.

When you click on Generate, soapUI invokes the wsdl2Java.sh or wsdl2java.bat 
script located in the AXIS2_HOME/bin directory. You will find the generated artifacts 
in the specified output directory.

Axis2 WSDL2Java script generates the src directory and an ant build.xml file 
when you run the script with the default options. The src directory contains the 
stub classes which can be imported when creating a Java client to invoke web 
services programmatically.

Make sure to set executable permissions for AXIS2_HOME/bin/
wsdl2java.sh script if you come across a "permission denied" 
error when running Axis2 WSDL2Java tool from soapUI.

Depending on the web services framework you use, follow a similar approach with 
the other tools such as Apache CXF, Axis2 1.1, or .NET 2.0.  



Miscellaneous Topics

[ 292 ]

Sending attachments with SOAP 
messages using soapUI
Attachments are one of the important aspects of any message transmission facility. 
Attachments are commonly used in transport mechanisms such as MAIL (for 
example, SMTP) where the attachments are included as part of the mail message. 
In all our examples which we have discussed so far, the payload of SOAP messages 
represented simple XML elements with primitive data types. However, in the real 
world, we do not just transmit raw XML through SOAP messages. SOAP messages 
are transmitted along with images, PDF documents, or some other binary data.  
There are multiple approaches used to send attachments with SOAP messages:

• Base64 encoding: Data is embedded as an element or attribute value 
inside the payload of the SOAP message using Base64 encoding.  
(http://en.wikipedia.org/wiki/Base64).
For example:
<x:data xmlns:x="http://test.data.com" >
  
</x:data>

Because of its inefficiency and performance concerns of decoding the 
messages, this mechanism is not considered as a good solution for 
attachment transmission in SOAP messaging.

• SOAP with Attachments (SwA): SOAP with Attachments 
(http://www.w3.org/TR/SOAP-attachments) is an approach that is 
analogous to attaching binary files to e-mails. Binary data is put completely 
outside of the SOAP envelope by including a reference to the binary file:
Content-Type: multipart/related

type="text/xml"

--MIME_boundary

Content-Type:text/xml; charset=UTF-8

Content-Transfer-Encoding: binary

Content-id=<main>

<?xml version="1.0" encoding="UTF-8"?>



Chapter 13

[ 293 ]

<soapenv:Envelope>

…

<data href="cid:attachment"/>

…

</soapenv:Envelope>

--MIME_boundary

Content-Type:application/octet-stream

Content-Transfer-Encoding: binary

Content-id=<attachment>

--MIME_boundary

The attachment is referred using the content ID (CID) or content location 
as shown in the preceding code. Though many web service frameworks 
support SOAP with Attachments, it has now been superseded by the much 
enhanced attachment processing mechanisms such as the SOAP Message 
Transmission Optimization Mechanism (MTOM).

• MTOM (SOAP Message Transmission Optimization Mechanism): MTOM 
(http://www.w3.org/TR/soap12-mtom/) is a more efficient method of 
sending binary data to and from web services with combining Base64 
encoding and SOAP With Attachments. In MTOM, binary data does not 
reside outside SOAP envelope as in SOAP With Attachments. This is 
achieved through a technology known as XML-binary Optimized  
Packaging (XOP).
soapUI supports all of the above attachment-handling mechanisms. You can 
find more details about how soapUI supports these approaches in the soapUI 
official documentation (http://www.soapui.org/SOAP-and-WSDL/adding-
headers-and-attachments.html). In this section, we will look into using 
soapUI to attach a binary file to a SOAP message using MTOM as it is the 
commonly used attachment transmission mechanism.



Miscellaneous Topics

[ 294 ]

Deploying an MTOM-enabled web service
Apache Axis2 includes an MTOM sample service that we can use out of the box to 
demonstrate our scenario:

1. Go to the AXIS2_HOME/samples/mtom directory and follow the README.txt 
to deploy sample-mtom.aar in axis2server.

2. Once the service is deployed, access http://localhost:8080/axis2/
services/MTOMSample?wsdl and check whether you can retrieve the 
auto-generated WSDL of the service.
This web service consists of a single operation, attachment, that accepts a 
string value as file name/file path, and a binary attachment. This service  
will save the content of the attachment into a new file at the given file path.

Using soapUI to send an attachment to the web 
service
As we have the service ready, let's see how we can use soapUI to send a SOAP 
request to the above web service with an attachment:

1. Create a new soapUI project, MTOM Test Project. Enter http://
localhost:8080/axis2/services/MTOMSample?wsdl as the initial WSDL.

2. Once the project is created, look at the generated SOAP request under 
MTOMServiceSOAP11Binding:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:mtom="http://ws.apache.org/axis2/mtomsample/" 
xmlns:xm="http://www.w3.org/2005/05/xmlmime">
   <soapenv:Header/>
   <soapenv:Body>
      <mtom:AttachmentRequest>
          <mtom:fileName>?</mtom:fileName>
           <mtom:binaryData xm:contentType="application/?">c
id:228548525934</mtom:binaryData>
      </mtom:AttachmentRequest>
   </soapenv:Body>
</soapenv:Envelope>

The SOAP payload of the request consists of two elements—fileName 
and binaryData.

As the fileName value is just a string, we can give any string value as 
the filename. But how should we specify the second parameter of the 
payload—the binary attachment?



Chapter 13

[ 295 ]

3. SoapUI allows us to add attachments to SOAP requests through a separate 
Attachments tab that can be found at the bottom of the request editor. Select 
the Attachments tab and click on the Adds an attachment icon that is at the 
upper-left corner of the Attachments tab.

4. A file browser will be launched where we can select a file to be attached. 
Browse to a file in your filesystem (for example, a PNG or GIF image).

5. A message box will appear, requesting to cache the attachment in the request. 
If we click on Yes, the attachment is cached by creating a local copy of the 
attachment inside soapUI, so that the subsequent requests do not read the 
attachment from the absolute file path. Otherwise, the absolute path of the 
attachment is stored by soapUI in the Name column of the Attachment table. 
In our example, click on Yes to cache the attachments in the requests.

The name of the file which is to be attached to the request is given in the  
first column in the attachments table. The content type of the attachment  
is captured according to the selected binary file.
In this example, we are using a GIF image, hence image/gif is the content 
type of the attachment. The size of the attachment is given in bytes under 
the Size column. The Part column shows the MIME part as defined by the 
binding of the WSDL of the web service. MIME part value should explicitly 
be chosen if the operation is defined to use MIME attachments in the 
corresponding WSDL. As we are using MTOM, this can be kept blank.



Miscellaneous Topics

[ 296 ]

The type column shows the attachment type, which can be CONTENT, 
MIME, SWAREF, XOP, or UNKNOWN. The type is a read-only value, 
hence it cannot be changed for a particular request. For MTOM, the 
attachment type will be XOP. ContentID represents the content ID as given 
in the MIME part definition of the associated WSDL of the service. In our 
example, as we use MTOM attachment transmission, the ContentID of the 
attachment can be the same as the attachment name.

6. Replace ? of the <mtom:fileName> element with a target file path (for 
example, /home/user/logo.gif) (if you just specify file name without 
specifying the file path, it will be saved in the AXIS2_HOME/bin directory).

7. We must change the CID value of the <mtom:binaryData> element with the 
ContentID of the attachment, shown as follows:
<mtom:binaryData xm:contentType="application/?">cid:asf-logo.gif</
mtom:binaryData>

8. Now, we have included an attachment to the SOAP request. However, 
we have not instructed soapUI to use the MTOM attachment transmission 
mechanism. If you look at the Request Properties at the left pane, you will 
find multiple attachment-specific properties:

Some of these properties are applicable only for the response attachments.
 ° Enable MTOM: This property instructs soapUI to use MTOM in 

transferring binary data.
 ° Force MTOM: This property is used to enforce soapUI to use MTOM 

for any SOAP request regardless of having any attachment. If the 
SOAP response message includes an attachment, it is separately 
shown in the Attachments tab of response editor. Instead of that, the 
complete response can be shown with attachments inline in the XML 
view of response editor by setting the Inline Response Attachments 
property to true.

 ° Expand MTOM Attachments: This property can be used to extract 
the binary data of the response and include it as a child of the payload 
of the response. The attachment will be separately shown under the 
response's Attachments tab as shown in the following screenshot:



Chapter 13

[ 297 ]

 ° Disable multiparts: This property can be used when sending or 
receiving multiple attachments to pack attachments with the same 
type into a multipart attachment.

9. To encode the MTOM attachment in accordance with the corresponding 
binary type defined in WSDL (base64Binary or hexBinary), we can set the 
Encode Attachments property to true.

10. By setting the Enable Inline Files property to true, a file can be attached 
to a request just by specifying file:<file name>.
Note that the description just given is a very brief description of the 
attachment related properties. You can find more information about these 
properties in http://www.soapui.org/SOAP-and-WSDL/adding-headers-
and-attachments.html.

11. In our example, we just set the Enable MTOM property to true and keep the 
other options as they are. Now, submit the request by clicking on the arrow 
icon at the top of the request editor.

12. You will get the following response:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
   <soapenv:Body>
      <ns2:AttachmentResponse xmlns:ns2="http://
ws.apache.org/axis2/mtomsample/">File saved succesfully.</
ns2:AttachmentResponse>
   </soapenv:Body>
</soapenv:Envelope>



Miscellaneous Topics

[ 298 ]

Check that a file with the name given in the request will be saved in the specified 
location. Have a detailed look at the request message by selecting the Raw view. 
You can see the <inc:include> element inside the payload which is used to mark 
where the binary data is, as follows:

POST http://localhost:8080/axis2/services/MTOMSample.
MTOMSampleSOAP11port_http/ HTTP/1.1

Accept-Encoding: gzip,deflate

SOAPAction: "attachment"

Content-Type: multipart/related; type="application/xop+xml"; 
start="<rootpart@soapui.org>"; start-info="text/xml"; 
boundary="----=_Part_60_92678960.1341151455014"

MIME-Version: 1.0

User-Agent: Jakarta Commons-HttpClient/3.1

Host: localhost:8080

Content-Length: 6910

------=_Part_60_92678960.1341151455014

Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"

Content-Transfer-Encoding: 8bit

Content-ID: <rootpart@soapui.org>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:mtom="http://ws.apache.org/axis2/mtomsample/" 
xmlns:xm="http://www.w3.org/2005/05/xmlmime">
   <soapenv:Header/>
   <soapenv:Body>
      <mtom:AttachmentRequest>
         <!--Optional:-->
         <mtom:fileName>/home/charitha/my.gif</mtom:fileName>
         <!--Optional:-->

        <mtom:binaryData xm:contentType="application/?"><inc:Inclu
de href="cid:asf-logo.gif" xmlns:inc="http://www.w3.org/2004/08/xop/
include"/></mtom:binaryData>



Chapter 13

[ 299 ]

      </mtom:AttachmentRequest>
   </soapenv:Body>
</soapenv:Envelope>

------=_Part_60_92678960.1341151455014

Content-Type: image/gif; name=asf-logo.gif

Content-Transfer-Encoding: binary

Content-ID: <asf-logo.gif>

Content-Disposition: attachment; name="asf-logo.gif"; 
filename="asf-logo.gif"

Summary
In this chapter, we discussed some important topics which in a way did not fit  
in neatly in the previous chapters. We started off by looking into two important 
plug-ins, which allow us to integrate soapUI into Eclipse and IntelliJ IDEA 
Integrated Development Environments (IDEs). Then, we discussed validating 
WSDLs against WS-I Basic Profile using the embedded WS-I validation tool. We 
also looked at the options provided by soapUI to consume some useful tools such 
as WSDL2Java, which are included in popular web services frameworks such as 
Apache Axis2, CXF, and .NET 2.0. Finally, we had a brief look at the attachment 
processing capabilities of soapUI by focusing on the MTOM attachment  
transmission mechanism.





Index
Symbols
<binding> element, WSDL  15
<message> element, WSDL  15
<portType> element, WSDL  15
<serviceGroup> element  50
<types> element, WSDL  15
<wsa:Address> element  142
<wsdl:operation> element  123

A
Accept drop-down box  188
addGuest element  57, 59
addGuest operation  59, 64, 68, 77
addGuest request  63
addressing module  144
Add REST Service option  183
addRoom TestCase  79, 80
AddYourOwnKeyHere string   190
Apache ActiveMQ

about  215
setting up  216, 217

Apache Ant
URL, for downloading  34

Apache Axis2
about  294
binary distribution downloading,  

URL for  35
configuring, for WS-Addressing  144
configuring, for WS-Security  144
JMS, configuring  228-231
setting up  35
URL  34
WS-Addressing  145
WS-Security  145

Apache CXF
URL  34, 289

Apache JMeter
URL  20

Apache Rampart module
about  144
with Apache Axis2  145

assertions. See  JDBC test assertions
Assertions tab  198
assymetric binding

about  161
RoomManagementService,  

securing  165-168
secured RoomManagementService,  

testing with soapUI  169, 170
SOAP messages, signing  162-164

attachments
sending to web services soapUI  

used  294-298
sending with SOAP messages, soapUI  

used  292, 293
Authenticate Preemptively parameter  193
Auto-Create option   188
Aut tab  193
Axis2 Archive (aar)  49
Axis2 artifacts window  291

B
Base64 encoding  292
Basic Profile

URL  286
Basic Profile-1.1 Test Assertion Document 

(TAD)  288
body, SOAP

message payload  12



[ 302 ]

broker  10
burst load strategy  107, 108
bytes message  226

C
CI

about  260
functions, representing  260
tasks  261

class declaration, Groovy  240
ClasspathGroups dialog box  220
Classpath Groups tab  219
Close connections between each request, 

LoadTest option  117
com.eviware.soapui.model.iface. 

MessageExchange API  254
com.eviware.soapui.support.GroovyUtils 

API  254
com.eviware.soapui.support.XmlHolder  

API  254
command line executions, soapUI

about  266
soapUI command-line functional test  

runner, invoking  267-270
test runners from soapUI graphical user 

interface, invoking  270-272
composition  10, 11
Contains assertion  88
context.expand (<String>) method  244
context object  242-245
Continuous integration. See  CI
continuous testing  260
contract-first methodology  121
contract-first web service development  120
control structures, Groovy  239
Create Requests check box  76
Create Requests option  62
Creates and opens request option  186
Create TestSuite option  76
CRUD (Create Read Update Delete)  45

D
data

testing, in isolation  202
data handling  201
Default outgoing WSS property  125

def keyword  238
DELETE  179
deleteGuest operation  67, 70, 77
deleteRoom TestCase  81
Destination properties dialog box  221
detail element  17
digest  162
Disable multiparts property  297
domain property  156
dynamic responses

using  131-137

E
Eclipse

URL  282
Enable Inline Files property  297
Enable MTOM property  296
endpoint references  142
end-to-end JMS message delivery

verifying, sample project used  228
Enterprise Service Buses. See  ESB
Enterprise Service Bus. See  ESB
envelope, SOAP  12
ESB  10, 121, 130, 201
Expand MTOM Attachments property  296
external web services frameworks

soapUI, integrating with  288-291
Extract Params button  185

F
faultcode element  17
faultstring element  17
Fetch Size property  207
fire and forget pattern, MEP  16
Force MTOM property  296
functional testing

about  19, 23
of REST services  197, 198

G
Generate TestSuite dialog box  200
GET  179
getGuestDetails operation  67, 136, 223
getGuestDetails TestStep  227
getRoomDetails TestCase  81



[ 303 ]

getTestStepByName(String stepName) 
method  248

getTestStepCount() method  249
getTestStepList() method  249
Google Developers

URL  181
Groovy

about  236
binary distribution, URL for  

downloading  236
class declaration  240
control structures  239
editor  237
HelloWorld script  237
lists, data types  238
loosely-typed language  236
maps, data types  239
object declaration  238
scripting, in soapUI  241
variable declaration  238, 241

Groovy scripting, soapUI
about  241
context object  242-245
testRunner variable  245-247

Guest.java  38, 39
GuestManagementService

about  103
securing  151-155
testing, with soapUI  156-158

GuestManagementService class  41
GuestManagementServicePortType  

element  57
GuestManagementService web service  36
guest management web service

invoking  64-67
GuestName property  210

H
header element, SOAP  12
header paramaters  196
HermesJMS

about  215
session, configuring  231

HotelReservationSoapUITest class  265
HTTP 202 Accepted status  70

HTTP Basic Authentication header
to requests, inserting  193

HTTP binding  58
HTTP POST method 

adding  190
HTTP verb  179

I
IDE. See  IDEs
IDEA

plugins, installing  284
IDEs  262, 281
Incoming WS-Security configurations  172
installation

soapUI, on Linux  25, 27
soapUI, on MacOS  28
soapUI, on Windows  27, 28
soapUI, requisites  24

Integrated Development Environments.  
See  IDEs

IntelliJ IDEA
URL  284

IterableObject object  239

J
Java

URL, for downloading  34
Java Message Service. See  JMS
Java Script Object Notation. See  JSON
Jboss

URL  289
JDBC Request

Fetch Size property  207
Max Rows property  206
Query Timeout property  206
TestStep  203, 204, 206
TestStep, properties  206
TestStep, stored procedures  208

JDBC Status assertion  207
JDBC test assertions

about  207
adding, to sample  207

JDBC Timeout assertion  207
JMS

about  215
configuring, in Apache Axis2  228-231



[ 304 ]

endpoint, adding in soapUI  233
integrating, in soapUI  217-220
JMS consumer  216
JMS producer  216
JMS provider  216
JMS Status  226
JMS Timeout  226
key elements  216
message delivery models  216
messaging, in soapUI  222-226
responses, validating  226, 227

JMS consumer  216
JMS message  216
JMS producer  216
JMS provider  216
JMS Status  226
JMS Timeout  226
JSON

about  14
format  14

JSR 914 specification
URL  215

JUnit
URL  261

K
key store  162

L
Lesser General Public License. See  LGPL
LGPL  22
limit type  104
limit value  104
Linux

soapUI, installing  25, 27
lists, data types  238
Load Properties dialog box  91
Load Script tab  252, 254
load strategy

burst load strategy  107, 108
simple load strategy  106, 107
thread load strategy  108
variance strategy  109

load test assertions
configuring, approaches for  112
Max Errors assertion  113

Step Average assertion  114
Step Maximum assertion  115
Step Status assertion  116
Step TPS assertion  115
using, in soapUI  112

LoadTestRunContext  242
load tests

about  101
in soapUI  103, 104
limits  104, 105
options  117
strategies, of soapUI  106
threads  105

log  241
loosely-typed language  236

M
map message  226
maps, data types  239
matrix paramaters  196
Maven Archetype plugin

URL  273
Maven clover plugin

URL  273
Maven selenium plugin

URL  273
Maven soapUI plugin  273-279
Max Errors assertion  113
Max Rows property  206
mediation  10
MEP

about  16
fire and forget pattern  16
request-response pattern  16

message addressing properties  142
message delivery models

point-to-point model  216
publish and subscribe model  216

message exchanging pattern. See  MEP
message mediation  10
message transformation  130, 131
message types

bytes message  226
map message  226
text message  226

Missing Timestamp fault  172



[ 305 ]

mocking
about  119
in software testing  119
in web services testing  120

mock objects
about  120
URL  120

MockOperation
about  126
styles, dispatching  127

MockOperation, dispatching styles
QUERY_MATCH  127
RANDOM  127
SCRIPT  127
SEQUENCE  127
XPATH  128

MockResponse  129
MockRunContext  242
MockService details  126
mock services

and contract-first web service  
development  120

with soapUI  122
ModelItems  248
MTOM  293
MTOM-enabled web service

deploying  294
mustUnderstand property  148
MySQL

URL, for downloading  34
mysql.host  50
MySQL jdbc driver

URL  47
mysql.password  50
mysql.port  50
mysql.username  50

N
NetBeans

URL  282
New soapUI Project dialog box  61
nonce  158
non-functional testing

of web services  100, 101
Not SOAP Fault assertion  84, 85, 247

O
OASIS  285
OASIS standards

URL  140
object declaration, Groovy  238
Organization for the Advancement of 

Structured Information Standards. 
See  OASIS

Outgoing WS-Security  
configurations  170-172

P
Parameters tool bar  185
password property  156
performance testing

about  23
for web services  102
of web services  101
soapUI, using  103

Place Check-Ins API
URL  189

places resource  194
Plug In drop-down  221
point-to-point model  216
policy assertion  152
POST  179
POST message content

reading, from file  191, 192
pre-requisites

for sample project  34
project

issues  33
pre-requisites  34
sample project, pre-requisites  34

project, prerequisites
Apache Ant  34
Apache Axis2, setting up  35
Java  34
MySQL  34
project source directories, setting up  35

project source directories
setting up  35



[ 306 ]

properties
adding, to soapUI tests  89, 90
reading, from file  90, 91
values, transferring between  

TestSteps  91-96
publish and subscribe model  216
PUT  179

Q
QoS  100, 139
Quality of Service. See  QoS
QUERY_MATCH, dispatching style  127
query paramaters  194
Query Timeout property  206
queuing model. See  point-to-point model

R
Rahas module  144
RampartConfig assertion  167
RANDOM, dispatching style  127
Raw view  68
registerdbDriver() method  136
Representational State Transfer. See  REST
Representations tab  188
request handling

scripts used  254, 255
Request Properties pane  68, 69
request-response pattern, MEP  16
Require SOAP Action property  125
Reservation.java  40, 41
Reservation Property Transfer window  93
ReservationService web service  36, 42
Resource Identifier  179
ResponseAsXml property  211, 212
response handling

scripts used  254, 255
REST

about  13, 178
principles  178
resources, linking  179
resources, multi-representation  180
Standard HTTP Methods  179
stateless communication  180
URIs  178
versus SOAP  177

RESTeasy
URL  34

RESTful APIs
testing, SOAP used  180-182

REST Parameters
about  194
header paramaters  196
matrix paramaters  196
query paramaters  194
template paramaters  194, 195

REST service  182, 183
Room.java  39
RoomManagementService

securing  165-168
RoomManagementService class  42
RoomManagementService web service  36
run() method  263
Runs per thread limit type  105

S
Sample interval, LoadTest option  117
Sandesha2 module  144
Save Script tab  252, 254
script assertion  255, 256
SCRIPT, dispatching style  127
script log tab  243
searchPlaces method  198
Select Assertion dialog box  84
Select from current button  87
Send As Bytes Message option  226
SEQUENCE, dispatching style  127
service  59, 60
service chaining  130
Service-level Agreement (SLA)  100
service-oriented architecture. See  SOA
service-oriented solutions

about  8
case study  8, 9

services.xml descriptor
URL  50

session
configuring, in HermesJMS  231

setProjectFile() method  263
Setup script  250, 251, 252
SignedSupportingToken assertion  153



[ 307 ]

SimpleDefects
URL  195

simple load strategy  106, 107
Simple Object Access Protocol. See  SOAP
SmartBear Software

URL  22
SOA

about  8
building blocks  9
composition  10
mediation  10
service-oriented solutions  8
test automation, advantages  258-260
web services  9, 10

SOAP
about  11
alternatives  13
body  12
envelope  12
faults  17
header element  12
message, structure  11
used, for testing soapUI  180-182
versus REST  177

SOAP 1.1 binding  58
SOAP 1.2 binding  58
SOAP Envelope

structure  141
SOAP, faults

detail element  17
faultactor element  17
faultcode element  17
faultstring element  17
generating  70, 71
URL  18

SOAP messages
attachments sending, soapUI used  292, 293
signing  162-164

SOAP Message Transmission Optimization 
Mechanism. See  MTOM

SOAP request
about  80
configurations, applying to WS-Security 

configurations  173, 174
soapUI

about  22, 235
advantages, for web service testing  139

configuring, with MySQL  203
features  23
Groovy scripting  241
GuestManagementService, testing  156-158
installing, on Linux  25-27
installing, on MacOS  28
installing, on Windows  27, 28
installing, requisites  24, 25
integrating, with external web services 

frameworks  288-291
JMS endpoint, adding  233
JMS, integrating  217-221
JMS messaging  222-226
Load Script tab  252-254
load test assertions, using  112
load test report  110, 112
load tests  103, 104
load test strategies  106
project level WS-Security  

configurations  159-161
properties, accessing from  

SQL query  209-213
Save Script tab  252, 254
secured RoomManagementService,  

testing  169, 170
setting up, for database connect  203
Setup script  250-252
statistics report  110, 112
TearDown script  250-252
used, for sending messages with SOAP 

messages  292, 293
used, for WS-I validation  285-288
user interface  28, 30
using, to send attachment to web service  

294-298
web services, using with  32
WS-Addressing, testing  146-148
WS-Security, testing  150

soapUI command line executions  266
soapUI command-line functional  

test runner
invoking  267-270

soapUI Eclipse plugin  282, 283
soapUI functional test

TestCase  74
TestStep  74
TestSuite  74



[ 308 ]

soapUI graphical user interface
test runners, invoking from  270-272

soapUI IDE plugins
about  282
soapUI Eclipse plugin  282, 283
soapUI IntelliJ IDEA plug-in  284, 285

soapUI IntelliJ IDEA plug-in  284, 285
soapUI JUnit integration  261-266
soapUI load test

threads  105
soapUI MockService

about  123, 124
dynamic responses, using  131-138
in action  129
MockOperation  126
MockOperation. styles dispatching  127, 128
MockResponse  129
MockService details  126
static MockResponses  130

soapUI Preferences window  147
soapUI project

creating  60-63
soapUI REST services

about  182-188
functional testing  197, 198
HTTP Basic Authentication header to  

requests, inserting  193
POST message content,  

reading from file  191, 192
POST requests, using  189-191
PUT requests, using  189-191
request representation  188
response representation  188

SoapUITestCaseRunner class  263
soapUI tests

properties, adding  89, 90
soapUI TestSuites. See  TestSuite
SOAP with Attachments. See  SwA
SSL Keystore property  156
standard HTTP methods  179
Start SoapUI menu option  285
static responses

about  130
content-based routing  130
message transformation  130, 131
service chaining  130

Step Average assertion  114
Step Maximum assertion  115
Step Status assertion  116
Step TPS assertion  115
StorageException.java class  47
Storage.java class  45
SubmitContext  242
SwA  292

T
TearDown script  250-252
template paramaters  195
test automation

about  257, 258
advantages, in SOA  258-260
wikipedia, URL  258

TestCase
about  74
adding  78, 79
addRoom TestCase  79, 80
deleteRoom TestCase  81
getRoomDetails TestCase  81

TestConnection button  205
Test-driven Development (TDD)

about  120
URL  120

TestRequest property  157
TestRunContext  242
test runners

invoking, from soapUI graphical user  
interface  270-272

testRunner variable  245, 247
testSoapUITestRunner() method  263
TestStep

about  74
property values, transferring  

between  91-96
TestStep assertions

about  84
addRoom TestStep, assertion adding to  84
Contains assertion  88
Not SOAP Fault assertion  84, 85
XPath Match assertion  86, 87

TestSuite
about  73, 74
addGuest operation  77



[ 309 ]

addRoom TestCase  79, 80
Contains assertion  88
Create Requests check box  76
Create TestSuite option  76
deleteGuest operation  77
deleteRoom TestCase  81
getRoomDetails TestCase  81
hotel reservation system, sample  76
Not SOAP Fault assertion  84, 85
running  81-83
soapUI functional test, key elements  74
test assertions, running  84
TestCase  74
TestCases, adding  78, 79
test scenario  73, 74
TestStep  74
TestSuite  74
XPath Match assertion  86, 87

text message  226
thread load strategy  108
Thread Startup Delay, LoadTest option  117
tool assisted testing  19
Tools option  289
Total Runs limit type  105
TransportBinding assertion  152

U
unit testing  19
User-Agent header  68
username property  156
UsernameToken  

authentication  150, 151, 159

V
variable declaration, Groovy  238
variance strategy  109

W
W3C

about  11
URL  140

W3C Web Services Addressing Working 
Group

URL  141

WADL  198-200
Web Application Description Language.  

See  WADL
Web Service Addressing. See  

WS-Addressing
web service performance testing

planning for  102
web services

about  7, 9, 55, 56
attachment sending to,  

soapUI used  294-298
authentication  150
binding element  58, 59
database, creating  36
database operations, managing  45-47
deploying  45-51
designing  36
developing, ways for  31
exception classes  43-45
external web services, using  21
fault handling  43
frameworks, URL  10
functional testing  19
GuestManagementService  36, 55
implementation class, completing  47, 48
implementing  37-41
integration testing  20
non-functional testing  100, 101
performance testing  20, 101
portType  57, 58
ReservationService  36, 55
RoomManagementService  36, 55
sample, downloading URL for  32
schema section  56
testing  99
testing, approaches  18
tool assisted testing  19
unit testing  19
using, with soapUI  32
WSDLs, URL for  52

Web Services Description Language. See  
WSDL

web services extensions  140
web services, implementation

Guest.java  38, 39
Reservation.java  40, 41
Room.java  39



[ 310 ]

Web Services Interoperability Organization. 
See  WS-I

web services testing, mocking in
about  120
mock services and contract-first web service 

development  120, 121
test environmental restrictions, dealing 

with  121
unaccessible services, simulating  121

Wikipedia
URL  101

Windows
soapUI, installing  27, 28

Windows Communication Foundation 
(WCF)  10

World Wide Web Consortium. See  W3C
World Wide Web (WWW)  179
wsa:Action header  149
wsa:Action property  142
wsa:FaultTo property  142
wsa:From property  142
wsa:MessageID property  142
wsa:RelatesTo header  148
wsa:RelatesTo property  142
wsa:ReplyTo header  148
wsa:Reply to property  142
wsa:To property  142
WS-Addressing

about  141
Apache Axis2, configuring for  144
endpoint references  142
in Apache Axis2  145
message addressing properties  142
responses, validating  149
testing, with soapUI  146-148

WS-Addressing recommendation
URL  141

WSDL
<binding> element  15
<message> element  15
<portType> element  15
<types> element  15
about  14

wsdl:types element  56

WSDL2Java tool  290
WS-I  285
WS-I multiple testing tools

URL  286
WS-I profile  285
WS-I validation

soapUI used  285-288
WS-Policy  143
WS-SecureConversation  144
WS-Security

about  143
Apache Axis2, configuring for  144
configurations, applying to SOAP  

request  173, 174
in Apache Axis2  145
project level configurations,  

in soapUI  159-161
testing, with soapUI  150
validity responses  175
WS-Policy  143
WS-SecureConversation  144
WS-SecurityPolicy  143
WS-Trust  144

WS-SecurityPolicy  143
WS-Security, properties

domain property  156
password property  156
SSL Keystore property  156
username property  156
WSS-Password Type property  156
WSS-TimeToLive property  156

WS-Security Status assertion  175
WSS-Password Type property  156
WSS-TimeToLive property  156
WS-Trust  144

X
XML-binary Optimized Packaging.  

See  XOP
XmlHolder object  134
XOP  293
XPATH, dispatching style  128
XPath Match assertion  86, 87



Thank you for buying 
Web Services Testing with soapUI

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Selenium 1.0 Testing Tools: 
Beginner's Guide  
ISBN: 978-1-84951-026-4             Paperback: 232 pages

Test your web applications with multiple browsers 
using the selenium Framework to ensure the quality 
of web applications

1. Save your valuable time by using Selenium to 
record, tweak and replay your test scripts 

2. Get rid of any bugs deteriorating the quality of 
your web applications 

3. Take your web applications one step closer to 
perfection using Selenium tests 

4. Packed with detailed working examples  
that illustrate the techniques and tools  
for debugging 

Python Testing Cookbook
ISBN: 978-1-84951-466-8            Paperback: 364 pages

Over 70 simple but incredibly effective recipes for 
taking control of automated testing using powerful 
Python testing tools

1. Learn to write tests at every level using a 
variety of Python testing tools 

2. The first book to include detailed screenshots 
and recipes for using Jenkins continuous 
integration server (formerly known as Hudson) 

3. Explore innovative ways to introduce 
automated testing to legacy systems 

4. Written by Greg L. Turnquist – senior software 
engineer and author of Spring Python 1.1 

Please check www.PacktPub.com for information on our titles



Software Testing with Visual 
Studio Team System 2008
ISBN: 978-1-84719-558-6            Paperback: 356 pages

A comprehensive and concise guide to testing your 
software applications with Visual Studio Team 
System 2008

1. Test your software applications with Visual 
Studio Team System 2008 and rest assured of 
its quality 

2. Create a structured testing environment for 
your applications to produce reliable products 

3. Comprehensive yet concise guide with a lot of 
examples and clear explanations 

4. No knowledge of software testing is required, 
only basic knowledge of Visual Studio 2008 
operation is expected 

Software Testing using Visual 
Studio 2010
ISBN: 978-1-84968-140-7            Paperback: 400 pages

A step by step guide understand the features and 
concepts of testing applications using Visual Studio

1. Master all the new tools and techniques in 
Visual Studio 2010 and the Team Foundation 
Server for testing applications 

2. Customize reports with Team foundation 
server. 

3. Get to grips with the new Test Manager tool for 
maintaining Test cases 

4. Take full advantage of new Visual Studio 
features for testing an application's User Interface 

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Web Services Testing and soapUI
	SOA and web services
	Service-oriented solutions
	Case study
	Building blocks of SOA


	Simple Object Access Protocol
	Alternatives to SOAP
	REST
	Java Script Object Notation

	Web Services Description Language
	Message exchanging patterns
	SOAP Faults
	Approaches of testing web services
	Unit testing of web services
	Functional testing
	Tool assisted testing
	Using client APIs provided by service container middleware

	Integration testing of web services
	Performance testing of web services
	The common challenges of Web services testing
	Use of external web services
	Implications of using complex standards and protocols 
	Headless nature of web services


	What is soapUI?
	Capabilities of soapUI
	Installing soapUI
	System requirements
	Installing soapUI on Linux
	soapUI installation on Windows
	Installing soapUI on MacOS

	A glance at soapUI user interface
	Summary

	Chapter 2: The Sample Project
	The problem domain
	Project pre-requisites
	Java 
	Apache Ant 
	MySQL
	Setting up Apache Axis2
	Setting up project source directories

	Designing the web services
	Creating the database

	Implementing the web services
	Web services fault handling
	Managing database operations
	Completing the web service implementation classes

	Deploying web services
	Summary

	Chapter 3: First Steps with soapUI and Projects
	Understanding the web services definition
	Schema
	portType
	binding
	Service

	Creating a soapUI project
	Invoking the guest management 
web service
	A detailed look at SOAP requests and responses
	Generating SOAP Faults
	Summary

	Chapter 4: Working with Your First TestSuite
	A sample test scenario
	Creating a TestSuite
	Adding TestCases
	addRoom TestCase
	getRoomDetails TestCase
	deleteRoom TestCase


	Running the first TestSuite
	Adding test assertions
	Not SOAP Fault assertion
	XPath Match assertion
	The Contains assertion


	Adding properties to soapUI tests
	Reading property values from a file
	Transferring property values between TestSteps

	Summary

	Chapter 5: Load and Performance Testing with soapUI
	Non-functional testing of web services
	Performance testing

	Planning for web service performance testing
	Using soapUI for performance testing
	Working with load tests in soapUI
	Limit of a load test
	Threads in a soapUI load test
	Load test strategies of soapUI
	Simple load strategy
	Burst load strategy
	Thread load strategy
	Variance strategy

	A closer look at the load test report and statistics of soapUI
	Using load test assertions in soapUI
	The Max Errors assertion
	The Step Average assertion
	Step TPS assertion
	The Step Maximum assertion
	The Step Status assertion
	LoadTest options


	Summary

	Chapter 6: Web Service Simulation with soapUI
	Mocking in software testing
	Mocking in web services testing
	Mock services and contract-first web service development
	Simulating services that are not accessible
	Dealing with test environmental restrictions

	Mock services with soapUI
	The structure of soapUI MockService
	MockService details
	MockOperation details
	Dispatching styles of MockOperation
	MockResponse details


	soapUI mock services in action
	Static responses – the basic scenario
	Using dynamic responses

	Summary

	Chapter 7: Advanced Functional Testing with soapUI
	Introduction to web services extensions
	What is WS-Addressing
	What is WS-Security
	WS-Policy
	WS-SecurityPolicy
	WS-Trust
	WS-SecureConversation


	Configuring Apache Axis2 for WS-Addressing and WS-Security
	WS-Addressing in Apache Axis2
	WS-Security in Apache Axis2

	Testing the WS-Addressing with soapUI
	Validating the WS-Addressing responses

	Testing WS-Security with soapUI
	Web service authentication
	Securing GuestManagementService
	Testing the secured GuestManagementService 
with soapUI

	Project level WS-Security configurations in soapUI

	Testing asymmetric binding policy with soapUI
	Asymmetric binding
	Signing SOAP messages
	Securing RoomManagementService
	Testing secured RoomManagementService 
with soapUI


	Validating WS-Security responses
	Summary

	Chapter 8: Getting Started with REST Testing
	Introduction to REST
	Represent everything with URIs
	Using standard HTTP methods
	Linking resources together
	Multiple representations of resources
	Stateless communication

	Testing RESTful APIs using soapUI
	REST Services in soapUI
	Request and response representation 
	Using POST or PUT requests in soapUI REST services
	Reading POST message content from a file
	Inserting the HTTP Basic Authentication header to requests

	REST parameters
	Query parameters
	Template parameters
	Matrix parameters
	Header parameters

	Functional testing of REST services
	WADL
	Summary

	Chapter 9: Testing Databases with soapUI
	Testing data in isolation
	Setting up soapUI to connect to the database
	JDBC Request TestStep
	JDBC Request properties

	JDBC test assertions
	Stored procedures with JDBC Request TestStep
	Accessing soapUI properties from SQL query

	Summary

	Chapter 10: JMS Testing with soapUI
	Introduction to JMS
	Setting up Apache ActiveMQ

	JMS integration in soapUI
	Working with JMS messaging in soapUI
	Validating JMS responses
	Verifying end-to-end JMS message delivery using the sample project
	Configuring JMS in Apache Axis2

	Configuring a session in HermesJMS
	Adding a JMS endpoint in soapUI

	Summary

	Chapter 11: Extending soapUI with Scripting
	Introduction to Groovy scripting language
	What is Groovy?
	HelloWorld with Groovy
	Variable and object declaration in Groovy
	Control structures in Groovy
	Class and method declarations in Groovy

	Groovy scripting in soapUI
	The context object
	The testRunner variable

	soapUI ModelItems
	Setup and TearDown scripts in soapUI
	Load Script at soapUI project level

	Request and response handling using Scripts
	Script assertion

	Summary

	Chapter 12: Automated Testing with soapUI
	Test automation
	Why is test automation essential in SOA?
	Continuous Integration (CI)

	soapUI JUnit integration
	soapUI command line executions
	Invoking a soapUI command line functional 
test runner
	Invoking test runners from the soapUI graphical user interface

	Maven soapUI plugin
	Summary

	Chapter 13: Miscellaneous Topics
	soapUI IDE plugins
	soapUI Eclipse plugin
	soapUI IntelliJ IDEA plug-in

	WS-I validation using soapUI
	soapUI integration with external web services' frameworks
	Sending attachments with SOAP messages using soapUI
	Deploying an MTOM-enabled web service
	Using soapUI to send an attachment to the web service


	Summary

	Index



