Web Services Testing
with soapUl

Build high quality service-oriented solutions by learning easy and
efficient web services testing with this practical, hands-on guide

PACKT

.alitebooks.col

http://www.allitebooks.org

Web Services Testing
with soapUl

Build high quality service-oriented solutions by
learning easy and efficient web services testing
with this practical, hands-on guide

Charitha Kankanamge

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Web Services Testing with soapUlI

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012
Production Reference: 1191012

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-566-5
www . packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail . com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Charitha Kankanamge

Reviewers
Evanthika Amarasiri

Bindu Laxminarayan

Ajay Pawar

Acquisition Editor
Kartikey Pandey

Lead Technical Editors
Hithesh Uchil

Azharuddin Sheikh

Technical Editors
Vrinda Amberkar

Ankita Meshram

Prashant Salvi

Project Coordinators
Sai Gamare

Shraddha Vora

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'Silva

Aditi Gajjar

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Charitha Kankanamge is Manager, Quality Assurance and Senior Technical
Lead at WSO2 with more than 9 years of experience in Software Quality Assurance.
Charitha is specialized in SOA and middleware testing. He lead the WSO2 QA
team since 2007. He is also a committer of the Apache Software Foundation
contributing to Apache web services project. Charitha is interested in researching
new technologies in software-testing space as well as new trends in agile and
exploratory testing processes.

Prior to joining WSO2, Charitha has worked at Virtusa inc. for 3 years where he
was involved in multiple on-site and off-shore project assignments. In his rare
offline moments, he enjoys playing guitar and watching movies.

Charitha has been involved in reviewing two books, Apache Jmeter, Emilly H.
Halili and Quick Start Apache Axis2, Deepal Jayasinghe both being published by
Packt Publishing.

Charitha can be reached through his blog;:

http://charithaka.blogspot.com

[vww allitebooks.cond

http://www.allitebooks.org

Acknowledgement

Making a book reality takes many dedicated people, and it is my great pleasure to
acknowledge their contributions.

First, I'd like to thank Packt Publishers, in particular, Kartikey Pandey - Senior
Acquisition Editor, who proposed me to write this book. I'm grateful for all the
help I got from the editorial staff at Packt Publishers in reviewing this book,
specially Hithesh Uchil - Lead Technical Editor and Sai Gamare who coordinated
the progress of writing, by ensuring that I stayed on track.

This book has benefited from a great set of technical reviewers. I'd like to thank

each of them for volunteering their time reviewing drafts of this book and providing
valuable feedback. Specially, my colleague at WSO2 QA team, Evanthika Amarasiri
who carried out in-depth quality assurance process in all chapters by executing

each sample.

I sincerely thank my wife, Thushari for her patience, support, and understanding
throughout the writing process. Many thanks to my beloved parents who raised me,
made me the person who I am today by providing their insightful guidance in all
aspects of my life.

Though I'm unable to name individually, I would like to extend my heartfelt
gratitude to many colleagues at WSO2, who never hesitated to give their support to
the fullest extent, whenever I requested help on various subject matters. I must thank
Dr. Sanjiva Weerawarana, Founder, Chairman and CEO of WSO2, Inc. whose vision
inspires me and guides me to accomplish my career aspirations.

Finally, a big thank goes to the developers and contributors of Smartbear software
for making soapUI the world's best open source web services testing tool.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Evanthika Amarasiri joined 99X Techonology (former Eurocenter DDC Ltd.) in
2000 as a trainee QA Engineer. She has become competent in testing applications
based on Java, C++, VB and .NET, Lotus Notes, and in mobile application testing
(Symbian and J2ME). While she was working there, she studied for her B.Sc.

in Information Systems at the Informatics Institute of Technology, Sri Lanka,
which was affiliated to the Manchester Metropolitan University, UK. She left 99X
Technology in 2006 and joined WSO2 Lanka (Pvt) Limited (in the same year) as a
Software Engineer - Quality Assurance. From 2006 to date, she has worked with
several leading middleware products of WSO2. During her stay at WSO2 she has
gained experience and knowledge on different kinds of web technologies, operating
systems, databases, application servers, and many QA testing tools. She has also
gained extensive experience in functional, usability, performance testing, as well
as QA test planning. By contributing to the Apache Synapse, which is a free and
open source software project, she has become a committer for the same. Currently
she is working as a Quality Assurance Technical Lead and is also a member of the
Management Committee in the Integration Technology team of WSO?2.

I would like to thank my loving husband and my mother for all

the support given while reviewing this book. Also, a special thank
goes to my team mates for all the valuable inputs given, to make the
review process a success. My sincere gratitude goes to Charitha, the
author of the book, for selecting me as a reviewer for his book. He is
a great teacher/leader who has inspired us with his work. Without
his guidance and support, I would not have made this far in my
career. I wish him all the best for his future endeavors.

[vww allitebooks.cond

http://www.allitebooks.org

Bindu Laxminarayan is an expert in Software Testing and Quality Assurance
with expertise in Test Automation Framework Design and Development. Over

the last 7 years, she has worked on various testing tools including but not limited
to SOAPUI, Jmeter and selenium on RESTful and SOAP Web Services. She is
currently working on Test Automation of Cloud Web Services and design patterns
in Automated Testing. Over the last two years she has presented at work on
StarEast Conference.

Ajay Pawar is an IBM middleware consultant having more than a decade of
experience. He is Director at ePower Consultancy Services UK. Ltd.

He started his career working on technologies such as Java, Java Swing, Java
EE, and then extended his experience in SOA world. He is an expert in IBM
middleware tools such as WebSphere Process Server (WPS), WebSphere
Integration Developer (WID), WebSphere MQ (WMQ), and Websphere Service
Registry and Repository (WSRR). He has also good flair for web services testing.
He is proficient in soapUI tool and he used it extensively for manual as well as
automation testing.

I would like to thank my wife Hema, sweet daughter Aarohi, and a
cute baby Vihaan for their constant support.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www. PacktPub . com for support files and downloads related

to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

IB] PACKT! i1

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

This book is dedicated to my parents, who have raised me to be the person I am today
and my beloved wife Thushari and my loving kids, Risith and Nethul.

Table of Contents

Preface 1
Chapter 1: Web Services Testing and soapUl 7
SOA and web services 8
Service-oriented solutions 8
Case study 8
Building blocks of SOA 9
Simple Object Access Protocol 1"
Alternatives to SOAP 13
REST 13
Java Script Object Notation 14
Web Services Description Language 14
Message exchanging patterns 16
SOAP Faults 17
Approaches of testing web services 18
Unit testing of web services 19
Functional testing 19
Tool assisted testing 19
Using client APIs provided by service container middleware 19
Integration testing of web services 20
Performance testing of web services 20
The common challenges of Web services testing 20
Use of external web services 21
Implications of using complex standards and protocols 21
Headless nature of web services 21
What is soapUl? 22
Capabilities of soapUl 23
Installing soapUl 24
System requirements 24

Table of Contents

Installing soapUl on Linux 25
soapUl installation on Windows 27
Installing soapUl on MacOS 28

A glance at soapUl user interface 28
Summary 30
Chapter 2: The Sample Project 31
The problem domain 33
Project pre-requisites 34
Java 34
Apache Ant 34
MySQL 34
Setting up Apache Axis2 34
Setting up project source directories 35
Designing the web services 36
Creating the database 36
Implementing the web services 37
Web services fault handling 43
Managing database operations 45
Completing the web service implementation classes 47
Deploying web services 48
Summary 53
Chapter 3: First Steps with soapUl and Projects 55
Understanding the web services definition 55
Schema 56
portType 57
binding 58
Service 59
Creating a soapUl project 60
Invoking the guest management web service 64
A detailed look at SOAP requests and responses 67
Generating SOAP Faults 70
Summary 72
Chapter 4: Working with Your First TestSuite 73
A sample test scenario 73
Creating a TestSuite 74
Adding TestCases 78
addRoom TestCase 79
getRoomDetails TestCase 81

deleteRoom TestCase

81

Lii]

Table of Contents

Running the first TestSuite 81
Adding test assertions 84
Not SOAP Fault assertion 84
XPath Match assertion 86
The Contains assertion 88
Adding properties to soapUl tests 89
Reading property values from a file 90
Transferring property values between TestSteps 91
Summary 97
Chapter 5: Load and Performance Testing with soapUl 99
Non-functional testing of web services 100
Performance testing 101
Planning for web service performance testing 102
Using soapUl for performance testing 103
Working with load tests in soapUl 103
Limit of a load test 104
Threads in a soapUl load test 105
Load test strategies of soapUl 106
Simple load strategy 106
Burst load strategy 107
Thread load strategy 108
Variance strategy 109

A closer look at the load test report and statistics of soapUl 110
Using load test assertions in soapUl 112
The Max Errors assertion 113
The Step Average assertion 114
Step TPS assertion 115
The Step Maximum assertion 115
The Step Status assertion 116
LoadTest options 117
Summary 117
Chapter 6: Web Service Simulation with soapUl 119
Mocking in software testing 119
Mocking in web services testing 120
Mock services and contract-first web service development 120
Simulating services that are not accessible 121
Dealing with test environmental restrictions 121
Mock services with soapUl 122
The structure of soapUl MockService 123
MockService details 125
MockOperation details 126
Dispatching styles of MockOperation 127
MockResponse details 129

[iii]

Table of Contents

soapUl mock services in action 129
Static responses — the basic scenario 130
Using dynamic responses 131

Summary 138

Chapter 7: Advanced Functional Testing with soapUI 139

Introduction to web services extensions 140
What is WS-Addressing 141
What is WS-Security 143

WS-Policy 143
WS-SecurityPolicy 143
WS-Trust 144
WS-SecureConversation 144
Configuring Apache Axis2 for WS-Addressing and WS-Security 144
WS-Addressing in Apache Axis2 145
WS-Security in Apache Axis2 145
Testing the WS-Addressing with soapUl 146
Validating the WS-Addressing responses 149
Testing WS-Security with soapUI 150
Web service authentication 150
Securing GuestManagementService 151
Testing the secured GuestManagementService with soapUI 156
Project level WS-Security configurations in soapUl 159

Testing asymmetric binding policy with soapUl 161

Asymmetric binding 161
Signing SOAP messages 162
Securing RoomManagementService 165
Testing secured RoomManagementService with soapUlI 169

Validating WS-Security responses 175

Summary 176

Chapter 8: Getting Started with REST Testing 177

Introduction to REST 178
Represent everything with URIs 178
Using standard HTTP methods 179
Linking resources together 179
Multiple representations of resources 180
Stateless communication 180

Testing RESTful APIs using soapUl 180

REST Services in soapUl 182
Request and response representation 188
Using POST or PUT requests in soapUl REST services 189
Reading POST message content from a file 191
Inserting the HTTP Basic Authentication header to requests 193

[iv]

Table of Contents

REST parameters 194
Query parameters 194
Template parameters 194
Matrix parameters 196
Header parameters 196

Functional testing of REST services 197

WADL 198

Summary 200

Chapter 9: Testing Databases with soapUl 201

Testing data in isolation 202

Setting up soapUl to connect to the database 203

JDBC Request TestStep 203
JDBC Request properties 206

JDBC test assertions 207
Stored procedures with JDBC Request TestStep 208
Accessing soapUl properties from SQL query 209

Summary 213

Chapter 10: JMS Testing with soapUl 215

Introduction to JMS 215
Setting up Apache ActiveMQ 216

JMS integration in soapUl 217
Working with JMS messaging in soapUlI 222
Validating JMS responses 226
Verifying end-to-end JMS message delivery using the sample project 228

Configuring JMS in Apache Axis2 228
Configuring a session in HermesJMS 231
Adding a JMS endpoint in soapUl 233

Summary 233

Chapter 11: Extending soapUl with Scripting 235

Introduction to Groovy scripting language 236
What is Groovy? 236
HelloWorld with Groovy 237
Variable and object declaration in Groovy 238
Control structures in Groovy 239
Class and method declarations in Groovy 240

Groovy scripting in soapUl 241
The context object 242
The testRunner variable 245

[v]

Table of Contents

soapUl Modelltems 248
Setup and TearDown scripts in soapUI 250
Load Script at soapUl project level 252

Request and response handling using Scripts 254
Script assertion 255

Summary 256

Chapter 12: Automated Testing with soapUI 257

Test automation 258
Why is test automation essential in SOA? 258
Continuous Integration (CI) 260

soapUl JUnit integration 261

soapUl command line executions 266
Invoking a soapUl command line functional test runner 267
Invoking test runners from the soapUl graphical user interface 270

Maven soapUl plugin 273

Summary 280

Chapter 13: Miscellaneous Topics 281

soapUl IDE plugins 282
soapUl Eclipse plugin 282
soapUl Intellid IDEA plug-in 284

WS-I validation using soapUl 285

soapUl integration with external web services' frameworks 288

Sending attachments with SOAP messages using soapUl 292

Deploying an MTOM-enabled web service 294
Using soapUl to send an attachment to the web service 294
Summary 299
Index 301

[vil

Preface

This book is all about using soapUI for functional and performance testing of
service-oriented solutions. soapUI can be used to test various aspects of a
service-oriented solution without merely playing the role of a web service
invocation tool. We will follow a simple tutorial-style approach throughout

the book in which we will explore all key features provided by soapUI based
on a sample web services project. This book is ideally designed to guide readers
to get more detailed insight on soapUI by doing a lot of hands-on exercises.

What this book covers

Chapter 1, Web Services Testing and soapUl, introduces soapUI by giving an overview
of its history, features, and installation of soapUI in your computer. We will begin
our journey towards learning soapUI by discussing some key characteristics of SOA,
Web services and Web services testing in general.

Chapter 2, The Sample Project, introduces the sample web services project which will be
used as the target application for functional and performance testing in the remaining
chapters of the book. In this chapter, we will build a simple web services based
application using Apache Axis2 open source web services framework. The primary
objective of building this sample application is to use it in all demonstrations of soapUI
features. As we will not discuss any topics related to soapUI or web services testing

in general in this chapter, you may skip the details and download the sample web
services project from http: //www.PacktPub.com/support.

Chapter 3, First Steps with soapUI and Projects, serves as a guide for getting started with
soapUI projects. Based on one of the web services that we built as part of the sample
web services project in Chapter 2, The Sample Project, we will discuss the schema and
WSDL of the web service in detail. We will use soapUI to invoke the operations of
sample web service and discuss the SOAP requests, responses, and faults.

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Chapter 4, Working with Your First TestSuite, demonstrates the basic constructs of a
soapUI project — TestSuites, TestCases, and TestSteps —which prepares you for the
next chapters of the book. We will also look into the validation of responses using
assertions and soapUI properties.

Chapter 5, Load and Performance Testing with soapUI, covers the steps that you
would have to follow when using soapUI as a load and performance testing
tool. We will demonstrate the load test strategies provided by soapUI and the
load test specific assertions.

Chapter 6,Web Services Simulation with soapUI, briefly describes how web services can
be simulated using soapUI We will demonstrate the usage of soapUI mock services
model and static as well as dynamic mock responses.

Chapter 7, Advanced Functional Testing with soapUl, introduces the testing aspects of
web services extensions such as WS-Security and WS-Addressing. We will use an
improved version of the sample web services project which we built in Chapter 2,
The Sample Project for the demonstrations in this chapter.

Chapter 8, Getting Started with REST Testing, introduces the concepts related to
RESTful web services and how soapUI can be utilized in RESTful services testing.
We will demonstrate the use of soapUI in RESTful services testing by using a
publicly hosted sample web application.

Chapter 9, Testing Databases with soapUI, briefly describes the direct database query
invocations of soapUL. In this chapter, we will discuss the database testing features
provided by soapUI such as JDBC requests and assertions.

Chapter 10, JMS Testing with soapUI, demonstrates the use of JMS in soapUI. By
exposing one of the sample web services over JMS transport, we will explore
the JMS testing capabilities provided by soapUI.

Chapter 11, Extending soapUl with Scripting, introduces the scripting facilities given
by soapUI in order to extend the default behavior of soapUI tests. We will look into
the use of soapUI API methods through Groovy scripts inside our tests.

Chapter 12, Automated Testing with soapUl, demonstrates various automated testing
approaches with soapUI. In this chapter, we will discuss the integration of soapUI
tests with build tools such as Apache Maven.

Chapter 13, Miscellaneous Topics, introduces some useful tools integrated with soapUI
such as WS-I validation tool and the utilities provided by external web services
framework such as Apache Axis2. This chapter also demonstrates the use of soapUI
when testing services by sending attachments.

[2]

Preface

What you need for this book

We will make use of quite a lot of open source software to run the code samples in
this book. Firstly, you should install soapUI 4.0.1 or later version as explained in
Chapter 1, Web Services Testing and soapUI. You would require MySQL and Apache
Axis2-1.6.1 or later version to run the sample web services. You will also need
Apache Ant to build the sample web services project. Apache Rampart, Apache
Maven, Apache ActiveMQ, and Apache Wink open source libraries are required
for some demonstrations as explained in the respective chapters.

Who this book is for

If you are a part of a team that builds service-oriented solutions or makes use of web
services in your project, and your primary involvement is testing such a solution,
then this book is the ideal reference for you. This book will help you to understand
the common challenges of SOA testing and how soapUI can be utilized effective
manner in testing your applications.

This book would also be a good reference for developers and QA engineers who do
researches and evaluations on various commercial and open source web services
testing tools. If you are an experienced software professional or a novice tester, you
will quickly be able to learn the most important features of soapUI by following the
simple step-by-step instructions given in this book.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The <s :Body> element carries the actual
message payload."

A block of code is set as follows:

CREATE TABLE IF NOT EXISTS ROOM_T (
room number INT NOT NULL,
room_ type VARCHAR(100) NOT NULL,
room_ size varchar(100) NOT NULL,
PRIMARY KEY (room number)) ;

Any command-line input or output is written as follows:

create database HOTEL RESERVATION DB;

[31]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
check the Create a desktop icon checkbox to create an icon on the desktop so can
you can easily launch soapUI".

“ Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub. com. If you purchased this book
elsewhere, you can visit http: //www.PacktPub.com/support and register to have
the files e-mailed directly to you.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Web Services
Testing and soapUlI

Web services are one of the key building blocks of service-oriented solutions.
Because of their usage and importance in the enterprise applications, the project
teams are expected to be knowledgeable and familiar with the technologies which
are associated with web services and service-oriented architecture(SOA). The
testing aspect of web services in particular is one of the key topics which needs to
be discussed when you work with web services.

Web servics testing can be performed using many approaches. The client APIs
included in web service frameworks such as Apache Axis2 can be used to
programatically invoke web services. In addition to that, number of properitory
and open source tools are avaialble to test web services automatically. soapUI
is one such free and open source testing tool that suppots functional and
non-functional evaluations of web services.

We will discuss the following topics in this chapter which will provide you with
an introduction to the basic concepts of SOA, web services testing, and soapUI:
* Overview of some of the key characteristics of web services
* The role of web services in SOA
* Approaches of testing web services
* Web services testing challenges
* Introduction to soapUI

* Installing soapUI

Web Services Testing and soapUI

SOA and web services

SOA is a distinct approach for separating concerns and building business solutions
utilizing loosely coupled and reusable components. SOA is no longer a nice-to-have
feature for most of the enterprises and it is widely used in organizations to achieve a
lot of strategic advantages. By adopting SOA, organizations can enable their business
applications to quickly and efficiently respond to business, process, and integration
changes which usually occur in any enterprise environment.

Service-oriented solutions

If a software system is built by following the principles associated with SOA, it can
be considered as a service-oriented solution. Organizations generally tend to build
service-oriented solutions in order to leverage flexibility in their businesses, merge or
acquire new businesses, and achieve competitive advantages. To understand the use
and purpose of SOA and service-oriented solutions, let's have a look at a simplified
case study.

Case study
Smith and Co. is a large motor insurance policy provider located in North America.
The company uses a software system to perform all their operations which are
associated with insurance claim processing. The system consists of various modules
including the following:

* Customer enrollment and registration

* Insurance policy processing

* Insurance claim processing

* Customer management

* Accounting

* Service providers management
With the enormous success and client satisfaction of the insurance claims processed

by the company during the recent past, Smith and Co. has acquired InsurePlus Inc.,
one of its competing insurance providers, a few months back.

InsurePlus has also provided some of the insurance motor claim policies which are
similar to those that Smith and Co. provides to their clients. Therefore, the company
management has decided to integrate the insurance claim processing systems used
by both companies and deliver one solution to their clients.

[8]

Chapter 1

Smith and Co. uses a lot of Microsoft(TM) technologies and all of their software
applications, including the overall insurance policy management system, are built
on .NET framework. On the other hand, InsurePlus uses J2EE heavily, and their
insurance processing applications are all based on Java technologies. To worsen
the problem of integration, InsurePlus consists of a legacy customer management
application component as well, which runs on an AS-400 system.

The IT departments of both companies faced numerous difficulties when they
tried to integrate the software applications in Smith and Co. and InsurePlus Inc.
They had to write a lot of adapter modules so that both applications would
communicate with each other and do the protocol conversions as needed.

In order to overcome these and future integration issues, the IT management
of Smith and Co. decided to adopt SOA into their business application
development methodology and convert the insurance processing system into
a service-oriented solution.

As the first step, a lot of wrapper services (web services which encapsulate the logic
of different insurance processing modules) were built, exposing them as web services.
Therefore the individual modules were able to communicate with each other with
minimum integration concerns. By adopting SOA, their applications used a common
language, XML, in message transmission and hence a heterogeneous systems such

as the .NET based insurance policy handling system in Smith and Co. was able to
communicate with the Java based applications running on InsurePlus Inc.

By implementing a service-oriented solution, the system at Smith and Co. was able
to merge with a lot of other legacy systems with minimum integration overhead.

Building blocks of SOA

When studying typical service-oriented solutions, we can identify three major
building blocks as follows:

* Web services

* Mediation

* Composition

Web services

Web services are the individual units of business logic in SOA. Web services
communicate with each other and other programs or applications by sending
messages. Web services consist of a public interface definition which is a central
piece of information that assigns the service an identity and enables its invocation.

[o]

Web Services Testing and soapUI

The service container is the SOA middleware component where the web service

is hosted for the consuming applications to interact with it. It allows developers

to build, deploy, and manage web services and it also represents the server-side
processor role in web service frameworks. A list of commonly used web service
frameworks can be found at http://en.wikipedia.org/wiki/List of web
service_frameworks; here you can find some popular web service middleware such
as Windows Communication Foundation (WCF), Apache CXF, Apache Axis2, and
so on. We will use Apache Axis2 as the service container for sample projects within
the context of this book. Apache Axis2 can be found at http://axis.apache.org/.

The service container contains the business logic, which interacts with the service
consumer via a service interface. This is shown in the following diagram:

service consumer
message business logic

=

service container

service interface

Mediation

Usually, the message transmission between nodes in a service-oriented solution
does not just occur via the typical point-to-point channels. Instead, once a message
is received, it can be flowed through multiple intermediaries and subjected to
various transformation and conversions as necessary. This behavior is commonly
referred to as message mediation and is another important building block in
service-oriented solutions. Similar to how the service container is used as the
hosting platform for web services, a broker is the corresponding SOA middleware
component for message mediation. Usually, enterprise service bus (ESB) acts as a
broker in service-oriented solutions.

Composition

In service-oriented solutions, we cannot expect individual web services running
alone to provide the desired business functionality. Instead, multiple web services
work together and participate in various service compositions. Usually, the web
services are pulled together dynamically at the runtime based on the rules specified
in business process definitions. The management or coordination of these business
processes are governed by the process coordinator, which is the SOA middleware
component associated with web service compositions.

[10]

Chapter 1

We looked into the primary building blocks of service-oriented solutions and the
corresponding SOA middleware components. Next, we are going to discuss some of
the distinguished elements associated specifically with web services. These are SOAP
messaging, Web Services Description Language (WSDL), message exchanging
patterns, and RESTful services.

Simple Object Access Protocol

Simple Object Access Protocol (SOAP) can be considered as the foremost messaging
standard for use with web services. It is defined by the World Wide Web Consortium
(W3C) at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ as follows:

SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. It is an XML based protocol that consists of three parts:
an envelope that defines a framework for describing what is in a message and how
to process it, a set of encoding rules for expressing instances of application-defined
datatypes, and a convention for representing remote procedure calls and responses.

The SOAP specification has been universally accepted as the standard transport
protocol for messages processed by web services. There are two different versions of
SOAP specification and both of them are widely used in service-oriented solutions.
These two versions are SOAP v1.1 and SOAP v1.2.

Regardless of the SOAP specification version, the message format of a SOAP
message still remains intact. A SOAP message is an XML document that consists of a
mandatory SOAP envelope, an optional SOAP header, and a mandatory SOAP body.

The structure of a SOAP message is shown in the following diagram:

/ SOAP Envelope \

Header

Body

[11]

[vww allitebooks.cond

http://www.allitebooks.org

Web Services Testing and soapUI

The SOAP Envelope is the wrapper element which holds all child nodes inside a
SOAP message.

The SOAP Header element is an optional block where the meta information is
stored. Using the headers, SOAP messages are capable of containing different types
of supplemental information related to the delivery and processing of messages.
This indirectly provides the statelessness for web services as by maintaining SOAP
headers, services do not necessarily need to store message-specific logic. Typically,
SOAP headers can include the following;:

* Message processing instructions

* Security policy metadata

* Addressing information

* Message correlation data

* Reliable messaging metadata

The SOAP body is the element where the actual message contents are hosted. These
contents of the body are usually referred to as the message payload.

Let's have a look at a sample SOAP message and relate the preceding concepts
through the following diagram:

<s:Envelope xmins:s="http:/www.w3.0rg/2003/05/soap-envelope"
xmins:wsa="http://www.w3.0rg/2005/08/addressing">

<s:Header>
<wsa:To=hitp:/(10.216.118.138:
9764/services/SampleService/</wsa:To>
<wsa:ReplyTo>

<wsa:Address>http://www.w3.
org/2005/08/addressing/anonymous</wsa:Address>
</wsa:ReplyTo>
<wsa:MessagelD=http:/fidentifiers.test.
com/messageid/1318735830461/6441546070</wsa:MessagelD>
<wsa:Action>urn:echoString</wsa:Action>
=/s:Header>

<5:Body>

<p:echoString xmins:p="http://test.org">

<xs:s xmins:xs="http://test.org">soapui</xs:s>
</p:echoString=

</s:Body>

</s:Envelope>

[12]

Chapter 1

In this example SOAP message, we can clearly identify the three elements; envelope,
body, and header. The header element includes a set of child elements such as
<wsa:To>, <wsa:ReplyTo>, <wsa:Address>, <wsa:MessageID>, and <wsa:Actions.
These header blocks are part of the WS-Addressing specification. Similarly, any
header element associated with WS-* specifications can be included inside the SOAP
header element.

The <s :Body> element carries the actual message payload. In this example, it is the
<p:echoStrings> element with a one child element.

When working with SOAP messages, identification of the version of

SOAP message is one of the important requirements. At first glance,

you can determine the version of the specification used in the SOAP

~ message through the namespace identifier of the <Envelope>
element. If the message conforms to SOAP 1.1 specification, it
would be http://schemas.xmlsoap.org/soap/envelope/,
otherwise http://www.w3.0rg/2003/05/soap-envelope is
the name space identifier of SOAP 1.2 messages.

Alternatives to SOAP

Though SOAP is considered as the standard protocol for web services
communication, it is not the only possible transport protocol which is used. SOAP
was designed to be extensible so that the other standards could be integrated

into it. The WS-* extensions such as WS-Security, WS-Addressing, and WS-
ReliableMessaging are associated with SOAP messaging due to this extensible
nature. In addition to the platform and language agnosticism, SOAP messages can
be transmitted over various transports such as HTTP, HTTPS, JMS, and SMTP
among others. However, there are a few drawbacks associated with SOAP
messaging. The performance degradations due to heavy XML processing and the
complexities associated with the usage of various WS-* specifications are two of
the most common disadvantages of the SOAP messaging model. Because of these
concerns, we can identify some alternative approaches to SOAP.

REST

Due to the complexities accompanied with the SOAP model, Representational State
Transfer (REST) architecture has emerged as a result. RESTful web services can

be considered as a lightweight alternative to the bulky and complex SOAP based
web service standards. In RESTful web services, the emphasis is on point-to-point
communication over HTTP, primarily using plain old XML (POX) messages. We will
discuss RESTful web services in detail in Chapter 8, Getting started with REST Testing.

[13]

Web Services Testing and soapUI

Java Script Object Notation

Java Script Object Notation (JSON) is a lightweight data exchange format similar
to XML. It is based on a subset of JavaScript language. JSON uses key value pairs to
represent data which are carried inside the message. The following example shows
how the XML payload of a SOAP message can be represented in JSON:

<p:echoString xmins:p="http://test.org">
<data>soapui<data>
</p:echoString>

The corresponding JSON format of the preceding XML payload is represented by:

‘ {"p:echoString": {"@xmins":{"p":"test.org"}, "data":{"$":"soapui"}}} ‘

You may refer to http://www.json.org for more details about JSON.

Web Services Description Language

According to the WSDL 1.1 specification, WSDL is defined as:

WSDL is an XML format for describing network services as a set of endpoints
operating on messages containing either document-oriented or procedure-oriented
information. The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an endpoint. Related
concrete endpoints are combined into abstract endpoints (services)

In simple terms, WSDL provides a formal definition of the web service through
abstract and concrete definitions of the interface. The following diagram shows
the main structure of a WSDL document:

/ WSDL Definition \

Types

Message

PortType

Binding

[14]

Chapter 1

WSDL is an XML document with a <definitions> element at the root and the child
elements, <types>, <message>, <portType>, and <bindings. These can be explained
as follows:

* The <types> element is used to define the data types used by the web service
usually through a XML schema. The schema can be defined inline as a child
element of <types> or can be imported from an external URL.

* The <message> element defines an abstract representation of all the messages
used by the web service. A message consists of logical parts, each of which is
associated with a definition within some type in the XML schema of the web
service. The following image is an example of a message:

<wsdl:message name="echoStringRequest">

<wsdl:part name="parameters" element="ns:echoString"/>
</wsdl:message>

<wsdl:message name="echoStringResponse">

<wsdl:part name="parameters" element="ns:echoStringResponse”/>
</wsdl:message>

* The <portType> element is an abstract representation of the operations and
message exchange patterns used in the web service. Operations represent
a specific action performed by a web service and which can be related to
the public methods used by a program. Operations have input and output
parameters and those are represented as messages. Hence, an operation
consists of sets of input and output messages. This is evident from the
following image:

<wsdl:portType name="SampleServicePortType">

<wsdl:operation name="echoString">

<wsdl:input message="ns:echoStringRequest" wsaw:Action="urn:echoString"/>
<wsdl:output message="ns:echoStringResponse" wsaw:Action="urn:echoStringResponse"/>
</wsdl:operation>

</wsdl:portType>

In the preceding example, the sampleServicePortType element includes
a single child element, <wsdl:operation name="echoString"s>, which
itself includes two child elements to define the input and output messages
processed by the echostring operation.

* The <binding> element connects the abstract web service interface defined
by <portType> and <message> elements into a physical transport protocol. A
binding represents a particular transport technology that the service uses to
communicate. For example, SOAP v1.1 is one such commonly used binding.

[15]

Web Services Testing and soapUI

We will discuss about the WSDL in detail in Chapter 2, The Sample Project, using the
one that is used in the sample project.

Message exchanging patterns

As we have already discussed, the web services communicate with each other and
the other programs by sending messages. If we consider two SOAP processing
nodes, the communication pattern between the two entities can be defined as a
message exchanging pattern (MEP). The primary message exchanging patterns are:

* Request-response

* Fire and forget
In a request-response pattern, when a source entity (service requester) transmits
a message to a destination (service provider), the provider should respond to the

requester. This is the most commonly used message exchanging pattern and we
will use this in most of the examples in this book.

In the following diagram, a service requester sends a SOAP request message to a
service provider:

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope” >
<s:Body>
<p:echoString xmins:p="http://test.org” >
<xs:s xmIns:xs="http://test.org” >soapui</xs:s>
</p:echoString>
</s:Body>
</s:Envelope>

\4

service requester

Upon receiving the SOAP request message, the service provider responds with a
SOAP response as shown in the following diagram:

[16]

Chapter 1

<soapenv:Envelope xmins:soapenv="http://www.w3.0rg/2003/05/soap-envelope” >
<soapenv:Body>
<ns:echoStringResponse xmins:ns="http://test.org” >
<ns:return>soapui</ns:return>
</ns:echoStringResponse>
</soadenv:Body>
</soapenv:Envelope >

service provider

When a response to a request message is not expected from a web service (or service
provider), it is known as a fire and forget message exchange pattern. For example, if
we send a ping request to a web service, we do not expect a response message back.

SOAP Faults

Before concluding our discussion on web services and the associated concepts, we
should look at the fault handling mechanism of web services. Faults can be returned
by web services due to various reasons. For example, if the request message does
not conform to the XML schema of web service, the service responds back with a
SOAP Fault. The SOAP Fault element is used to carry such faults occurred during
web service communication. This element must be included inside body of a SOAP
message. A typical SOAP 1.1 Fault message consists of the following child elements:

faultcode: The faultcode element is used to define the type of the fault.
For example, if the problem of message transmission is due to the server,
the associated faultcode is Server. Similarly, we can use VersionMismatch,
MustUnderstand and Client error codes as appropriate.

faultstring: The faultstring element is intended to provide a human
readable explanation about the fault.

faultactor: The faultactor element provides an indication about the
responsible party who caused the fault to occur in the message path.

detail: The detail element is used to carry application specific error
information related to the body element. For example, if the payload of the
SOAP request is unable cannot be processed by web service, the associated
response should include the detail element inside the SOAP Fault.

[17]

Web Services Testing and soapUI

In the case of SOAP v1.2 messaging, faultcode is renamed to Code and
faultstring is renamed to Reason. In addition to that, a SOAP v1.2 Fault message
can include the optional child elements, Node, Role, and Detail. A detailed
explanation of SOAP 1.1 Faults can be found at http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/#_ Toc478383507. SOAP 1.2 Faults are explained in detail

at http://www.w3.org/TR/socapl2-partl/#soapfault.

Approaches of testing web services

We discussed a set of concepts most associated with web services. Now, it is time to
look in to the testing aspects of web services. As we noticed, web services are loosely
coupled and autonomous components which are individual units of business logic in
SOA. This facilitates a distinguished approach for testing web services. Because of the
loosely coupled nature, the services do not maintain tight, cross-service dependencies
with each other. Therefore, once a particular web service is implemented, it can be
tested independent from others.

This gives the ability to testers to follow a component level testing methodology.
Before moving into various integrations, a web service can be tested to verify both
functional and non-functional requirements. Once the service is enhanced with
different attributes such as security policies, then such a service can also be tested
individually to ensure that it functions properly before taking the integration
scenarios into account. This gives great flexibility for testers and provides agility
to testing processes.

We can identify a set of common approaches for testing web services as follows:

* Unit testing
* Functional testing of web services
* Integration testing of web services

* Performance testing

Let's discuss each of these approaches in detail.

[18]

Chapter 1

Unit testing of web services

A web service is a unit of business logic and it consists of one or more operations.
These operations must be tested individually in order to make sure the intended
business problems are addressed by web service operations. Therefore, similar to
how individual methods in a computer program are tested as units, web service
operations must also be unit tested. Unit tests can be developed using the unit test
framework associated with the programming language which is used to implement
the web services. For example, if web services are written in Java, JUnit framework
can be used as the unit testing framework. Generally, it is the responsibility of the
author of the web service to write a sufficient number of unit tests to cover the logic
of the web service operations.

Functional testing

Once a web service is deployed in a service container, it is subjected to a
comprehensive functional verification. The purpose of functional testing of a web
service is to ensure that the expected business functionality is given by the web
service. There are many approaches to perform functional testing as explained
below.

Tool assisted testing

The primary objective of using tools for web service testing is to support the
automatic generation and submission of web service requests. As the web service
interface is a machine readable XML document, it is not an easy task to read the
WSDL and derive tests manually. Therefore, tools can be used to point to the WSDL
and generate the corresponding requests automatically, so that the testers can send
them to the service with or without alterations. soapUI is a good example of such a
testing tool, which can be used in functional testing of web services.

Using client APIs provided by service container
middleware

The life for a web service is given by the service container middleware where the
service is hosted. Usually, the middleware providers ship the associated client API
libraries which can be used to invoke web services programmatically without using
any third party tool.

[19]

Web Services Testing and soapUI

Integration testing of web services

Web services do not essentially run alone. Instead they are integrated with multiple
components such as brokers or service coordinators. Once a service is integrated or
joined with another component, we should carry out tests to make sure that such
integrations do not break the system. For example, in a service-oriented solution, if a
service consumer application sends a message to a web service but the message does
not conform to the advertised schema of the web service. In this case, the web service
usually responds with a SOAP fault. However, if we want to take such a request and
transform the request SOAP message such that it is valid according to the schema,
then we do not want to ask the consumers of our web service to change the client
applications as the service schema is modified. This type of message transformation

is achieved by using a broker component, in other words, enterprise service bus

(ESB) middleware. According to the transformation rules defined in the enterprise
service bus, the request is converted into the correct format and forwarded to the web
service. This is a typical example of web service integration. In order to test this type of
integration, the request message should be forwarded to the ESB component instead of
directly sending it to the web service. Tools such as soapUI can easily be used to send
the messages to desired target locations appropriately.

Performance testing of web services

Once we are satisfied with the functional aspects of the web service, it should be
tested thoroughly for performance. This includes load and stress testing the web
service as well as measuring the performance under various conditions. We can
use various open source or commercial tools in web services performance testing.
Apache JMeter (found at http://jmeter.apache.org/) is a good example of an
open source testing tool which can be used to test web services. The functional tests
which we create on soapUI can easily be extended to test the performance of web
services. We will discuss the performance testing capabilities of soapUI in detail in
Chapter 5, Load and Performance Testing with soapUL.

The common challenges of Web services
testing

When compared to traditional testing approaches, there are some unique challenges
associated with web services testing.

[20]

Chapter 1

Use of external web services

The autonomous and loosely coupled nature of web services introduces a greater
level of scalability and extensibility to the system. All services included in a system
are not necessarily built in-house. Some web services can be developed and hosted
by third parties. These services can be dynamically discovered and used according to
the business requirements. Though this accelerates the delivery of solutions, testing
such a system becomes complex because the quality assurance and availability of the
third party services are out of your control.

Implications of using complex standards and
protocols

Web services, especially SOAP-based services can use various WS-* specifications.
When testing web services which adhere to specifications such as WS-Security, the
tester should possess a fair amount of knowledge about the standards and concepts
to carry out testing effectively. This introduces a higher learning curve for testers to
get started with the testing of web services.

Web services can also be exposed over multiple transport protocols. Thus, testing is
not limited to one particular transport such as HTTP. The same web service can be
made accessible over transports such as JMS or VFS which requires changes in the
testing setup as well as a different set of test scenarios.

Headless nature of web services

In traditional web application testing, test scenarios can be identified quite easily by
studying the GUI of the components. As we discussed previously, the operations of
web services are exposed to the outside world via machine-readable service contracts
(such as WSDLs). Thus, during the early stages of web services development, testers
need to use WSDLs as the reference for the derivation of test scenarios which can be
difficult as compared to exploring a GUI.

As we proceed with the chapters of this book, we will learn how soapUI
addresses some of the aforementioned challenges and make the life of a web
services tester easier.

We have discussed the fundamentals of SOA and web services testing. Now,
we are ready to explore the world of web services testing with soapUI.

[21]

[vww allitebooks.cond

http://www.allitebooks.org

Web Services Testing and soapUI

What is soapUl?

The primary objective of designing testing tools is to assist people in testing software
by reducing the time taken by test execution. There are different types of tools which
can be used for functional and non-functional testing. Some of the tools are designed
to automate user interface based interactions and some are used to derive various
types of requests messages automatically and transmit them to applications with or
without modifications. Some tools support both of these aspects.

soapUl is a tool which can be used for both functional and non-functional testing.
It is not limited to web services, though it is the de-facto tool used in web services
testing. In web services testing, soapUI is capable of performing the role of both
client and service. It enables users to create functional and non-functional tests
quickly and in an efficient manner by using a single environment.

The first release of soapUI (v1.0) was in October 2005. Ole Lensmer, while working in
a project related to SOA, felt the need for a testing tool to support agile development.
Therefore, he started to develop soapUI in his spare time. Eventually, the project was
open sourced and the community grew. Ever since, a number of versions have been
released with various new features and enhancements and the newest version of
soapUl is 4.0.1 at the time of writing this book.

The originator of soapUI, Ole Lensmer was managing the project releases through a
company called Eviware for the past few years. In July 2011, Eviware was acquired
by SmartBear Software (http://smartbear.com/) and now soapUl is part of
SmartBear Software.

soapUl is a free and open source utility, which means you can utilize the various
features provided by the tool freely as well as you are allowed to make modifications
to the source code of soapUI and suit it according to your requirements. soapUI

is licensed under the terms of the GNU Lesser General Public License (LGPL). It
has been implemented purely using Java platform hence it runs on most operating
systems out of the box.

It should be noted that soapUl is also distributed as a non-free commercial version
known as soapUI Pro, which basically provides users with custom utilities and
enhanced production level testing capabilities. All our discussions and examples are
based on the free version of soapUI for your convenience.

soapUI v4.0.1 was the newest version at the time of writing the book.
Therefore, it is used throughout the context of this book. However,
%‘\ we will not discuss any version specific topics, so the older 3.x
g versions of soapUI can also be used to try out the sample projects
and demonstrations.

[22]

Chapter 1

Capabilities of soapUl

The primary goal of the authors of soapUl is to provide users with a simple and
user-friendly utility which can be used to create and run functional as well as
non-functional tests through a single test environment. Based on that objective,
soapUI has become the world's leading SOA and web service testing tool. soapUI
can be installed with no configuration overhead in most of the common operating
systems which allow users to start using the tool without spending time on
configuring various installation prerequisites.

By using the easy-to-use Java Swing-based GUI, you can start creating functional
tests with zero coding. Eventually, the same functional tests can be used for load
and performance testing through the same test environment. This gives users a great
flexibility since all functional and non-functional tests can be managed through a
single point of access.

Let's look at some of the important features of soapUI which we are planning to
discuss in the following chapters.

* Complete coverage of functional aspects of web services and web
applications: soapUI supports most of the standards used in web
applications, such as message transmission through HTTP, HTTPS transport
as well as JMS. It also supports testing SOAP and RESTful web services.
Specifically, soapUI supports most of the web service specifications such as
WS-Security, WS-Addressing, among others.

* Service mocking: Using soapUI mock services, you can simulate the web
services before they are actually implemented. This gives you the ability to
test the web service consumer applications without waiting until the web
service providers are implemented.

* Scripting: Either using Groovy or JavaScript, soapUI allows you to do various
pre- or post-processing test configurations such as dynamic mock responses,
initialize or cleanup tests, dynamic mock operation dispatching, and so on.

* Functional testing : soapUI lets you do functional verifications against
web services, web applications, and JDBC data sources. You can validate
responses of your tests using various in-built and custom assertions. It also
allows you to add conditional test steps to control the test execution flow.

* Performance testing: With just a few clicks, you can generate performance
and load tests quickly using soapUI.

* Test automation: soapUI can be integrated into automated test frameworks
such as JUnit, and the tests can also be launched through Apache Maven
and Apache Ant build frameworks. It can also be integrated into continuous
integration tools such as Hudson or Bamboo.

[23]

Web Services Testing and soapUI

In addition to the preceding features, the proprietary version of soapUI, soapUI
Pro, provides users with data-driven testing capabilities, HTTP recording, and test
reporting facilities which are not in scope of this book.

Installing soapUl

We looked at the major features provided by soapUI and discussed the tool in
general. It is time to explore the easy and straightforward soapUl installation on
some of the popular operating systems.

System requirements

To be able to run soapUl, you should have Java Development Kit (JDK) v1.6
running in your system. As soapUI is implemented in Java, it runs on many
operating systems including Windows XP, Windows Vista, Windows 7, Windows
Server 2003, Windows Server 2008, various Linux flavors such as Ubuntu, Red Hat,
Fedora, SuSE, and CentOS, and Mac OS X v10.4 or higher.

We can summarize the system requirements to install and run soapUI as follows:

Operating Java Memory Processor Disk Space

System version

Microsoft JDKv1.6.x 512 MB 1GHzor 200 MB hard disk space
Windows (minimum) higher, 32 (minimum)

XP or 64-bit

processor

Microsoft
Windows
Vista

Microsoft
Windows
Server 2003

and

Microsoft
Windows
Server 2008

[24]

Chapter 1

Operating Java Memory Processor Disk Space
System version
Linux: JDKv1.6.x 512 MB 1GHzor 240 MB hard disk space
Ubuntu (minimum) higher, 32 (minimum)
or 64-bit
Red Hat processor
Fedora
CentOS
and
SuSE
Mac OS: JDKvl.6.x 512 MB 1GHzor 140 MB hard disk space
Mac OS X (minimum) higher, 32 (minimum)
v10.4 or or 64-bit
hi gh or processor
Mac OS
X Server
v10.4 or
higher

Let's discuss the installation procedure of soapUI in each of the preceding operating

systems in detail.

Installing soapUl on Linux

soapUl is distributed as two different installers for your convenience. You could
either download the binary archive (ZIP) of the installer or the installer script.

First, we will look at the installation procedure of the binary archive. Perform the

following steps:

1. Download the Linux binary zip version (for example soapui-4.0.1-linux-
bin.zip) of the latest soapUl release from http://www.soapui.org.

2. Extract the downloaded binary distribution into a directory in your local file
system, for example /home/user/soapui.

[We will refer to the extracted directory as SOAPUI_HOME.]

3. Go to SOAPUI_HOME/bin and run the soapui . sh startup script as follows:
. /soapui . sh. This will launch the soapUI graphical user interface.

[25]

Web Services Testing and soapUI

\ If you encounter a Permission denied error when running the
~ soapui . sh script, make sure to change the file permission
Q mode by granting executable privileges to the user by
executing the chmod command as chmod 755 soapui.sh.

You can also install soapUI using the Linux installer by performing the
following steps:

1. Download a soapUI Linux installer (for example soapUI-x32-4_0_1.sh)
from http://www.soapui.org.

2. After the file is downloaded, give executable permissions by running the
command, chmod 755 soapUI-x32-4 0_1.sh.

Run the installer as follows: . /soapUI-x32-4 0 1.sh.

This will launch the installer UI as shown in the following screenshot:

Setup - soapUl 4.0.1

Welcome to the soapUl
4.0.1 Setup Wizard

This will install soaplJ! 4.0.1 on your
computer.

It is recarnmended that you close all other
applications before continuing.

Click Mext to continue, or Cancel to exit
Setup.

|Next >_| | Cancel |

Now, you can proceed through the installation wizard. You will be asked to accept
the license agreement at the next step of the wizard. Simply click on I accept the
agreement option and click on Next. You will be required to specify a destination
directory for soapUI to be installed.

[26]

Chapter 1

At the next step of the installation wizard, you can select which components you
need to include in soapU]I, such as; Hermes JMS, soapUI source files, and tutorials.
Simply accept all options and click on Next. You will be prompted with the license
agreement for Hermes components at the next step. Accept the license agreement
and click on Next to proceed through the wizard. Then, you will be asked to
specify a directory for soapUI tutorials. Enter a location which is in your filesystem
and click on Next. You will be asked for a directory where soapUI symlinks are
created for executables such as the soapui . sh file. Enter a directory and click on
Next. You can check the Create a desktop icon checkbox to create an icon on the
desktop so can you can easily launch soapUI. Finally, click on the Next button to
start the installation.

The soapUl installation screen will look like the following screenshot:

0¢ Setup - soapUl 4.0.1 ‘

Installing @
Please wait while Setup installs soaplUl 4.0.1 on your ~ "
COmpuUter.

Extracting files...
sourcefjava/com/eviware/soapuifimpl/wsdl/actions/iface/to...

—'

Cancel

soapUl installation on Windows

Similar to the preceding installation procedure on Linux, soapUI can be installed
on a Windows operating system either using Windows installer or Windows
binary archive.

[27]

Web Services Testing and soapUI

Let's look at the installation steps of Windows binary archive. They are as follows:

1. Download the Windows binary zip version (for example soapui-4.0.1-
windows-bin.zip) of the latest soapUI release from
http://www.soapui.org.

2. Extract the downloaded binary distribution into a directory in your local
filesystem, for example C: /soapui.

We will refer to the extracted directory as SOAPUI_HOME.
2= This will launch the soapUI GUIL

3. Go to SOAPUI_HOME/bin and run the soapui.bat startup script by executing
the command: soapui.bat.

The steps for soapUI installation using the Windows installer are almost the same as
the steps given in the Linux installer. You just need to double-click on the installer
(soapUI-x32-4_0_ 1.exe) and it will launch the soapUI installation wizard.

Installing soapUl on MacOS

soapUlI installation on Mac OS is straightforward and similar to the preceding steps
which we described for Linux and Windows installers.

A glance at soapUl user interface

soapUl is a self-explanatory testing tool. The easy-to-use user interface makes it
simple to work with soapUI for any type of user. With a few clicks, you can start
testing a web service or a web application with minimum effort. This highly usable
and flexible user interface helped soapUI to become the most user-friendly and easier
SOA and web service testing tool among the testing community.

[28]

Chapter 1

Once soapUl is launched, you will be shown the starter user interface as shown in

the following screenshot:

soapll 40.]

Eile Tools Desktop Help

Bam @es © A RBO0E

Search Foruml

Workspace Properties

Property Value
MName Projects
Description
File C\Users\charitha\d...
Project Root

soapUlI Starter Page:

e
loadUI <= soapUli

Get to know the soapUl Runner in loadUl

with the Loadi ro Tral

g N
Read more W Download Trial
loadUl+soapUl overview Free 14 day evaluation

C' & 0apUl Pro Tral is included

The Forum is Online Documentation Follow us:
your friend at your service (in] + 1 1
» To scapUl forum %» Te sospUl documentation

m

soapUllog httplog jettylog errorlog wsrmlog memory log

[29]

Web Services Testing and soapUI

In soapU], all tests are organized under a central element, known as Projects. Just by
right-clicking on the Projects node in the left-hand side pane in soapUI GUI, a new
soapUI project can be created as shown in the following screenshot:

% soapUl 4.0.1

Eile Tools Desktop Help
Bae 08 © X EOR

- I 'soapUI Starter Page

Proje=s
New scEpUI Project Ctrl-N
Import [Creates a new soapUl Project in this workspace

Import Packed Project

Mavigator

Import Remote Project

Save All Projects ChrHHAl-5

Rename F2

New Workspace

Warksp Switch Workspace

g Clear Workspace

MName
Descrig

Online Help F1

I will leave it to you to navigate through the rest of the UI elements on your own before
starting with sample projects. You will find a lot of materials on the soapUI official
website related to these features. We will explore through the soapUI user interface as
we proceed through the demonstrations and samples in the rest of the chapters.

Summary

Web services are the individual units of business logic in SOA. In order to test web
services, we must possess a good understanding about SOA and web services as well
as the associated technological components. This chapter has been dedicated to build
that foundation.

We started to look into soapUl, the world's leading and most complete SOA and
web services testing tool. We discussed the primary goals and objectives of using
soapUI in web services testing. We looked at a bit of history of soapUI and its
distribution models. Finally, the steps of installing soapUI on Linux, Windows,
and Mac OS were explained.

Now, we have soapUI running on our systems. Let's get our hands dirty with a
sample project in the next chapter.

[30]

The Sample Project

In this book, we follow a hands-on approach for learning web services testing with
soapUI. We strongly recommend you to have your computer with you while reading
the book and try out the test scenarios which will be described throughout this book.

In this chapter, we will be covering the following topics:

* Getting the project environment ready
* Designing the web services
* Implementing the web services

* Deploying the web services

As the first step of hands-on learning, we will introduce a sample project in this
chapter. Our objective is to build a simple yet comprehensive project which covers
the considerable amount of features related to web services testing. We will design
and build a sample project with a few web services. We start from scratch, following
the code-first web service development approach where we write Java classes first
and then deploy them in a web service container.

There are two ways of developing web services; contract-first
and code-first approaches. In a contract-first approach, the web
service definition or the WSDL is created initially and the service

M implementation is done after that. In a code-first approach, the
service implementation classes are developed at the beginning and
usually the WSDL is automatically generated by the service container
in which the web service is deployed. In our sample project, we will
follow the second approach, code-first web service development,
since it is relatively easier when creating web services from scratch.

[vww allitebooks.cond

http://www.allitebooks.org

The Sample Project

We will not discuss any testing aspects within this chapter. Our focus is to build the
foundation for the later chapters in this book, where we plan to use soapUI to test the
sample project. If you think that you can move ahead with soapUI without spending
time on the web services sample project, you will just use the outcome of the project,
which are a set of web services.

Downloading the example code

M You can download the example code files for all Packt books you
have purchased from your account at http: //www. PacktPub.
Q com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

If you decided to skip the sample project and just use the resulting web services,
the following steps will help you to quickly deploy and use the web services
with soapUL:

1. Download the web services sample from http://www.PacktPub.com/
support. Extract webServicesSample-Deliverable.zip to your local
file system. You will find HotelReservation.aar file and dbscripts
folder at the root of the extracted folder.

2. Rundbscripts/HotelReservationDBSchema.sgl on your MySQL
database server to create the sample database and tables.

3. Modify the values of mysql.host, mysqgl.port, mysql.username, and
mysql .password properties in mysqgl . properties file which can be found
inside conf folder of HotelReservation.aar.

4. Deploy HotelReservation.aar in Apache Axis2 (see Deploying web services
section at the end of this chapter to find out how to deploy web services in
Apache Axis2) and use it in all the soapUI tests which we will be working in
the rest of the chapters.

5. You can refer to the README. txt of WebServicesSample-Deliverable.zip
for more information about the installation procedure.

[32]

Chapter 2

The problem domain

Our project will be based on a hypothetical Hotel Reservation System, which is
targeted for use by an administrative staff of a hotel. The system consists of three

basic functions as follows:

1. Guest management
2. Room management

3. Reservation management

Let's look at the high level architecture of the sample hotel reservation application
that we are going to discuss in this chapter:

Guest

name: String
address: String
age: int

Reservation

reservation|D: int
reserved_form: Date
reserved_to: Date

Room

roomNumber: int
roomType: String
roomSize: String

The hotel reservation system comprises of three fundamental entities; Guest, Room,
and Reservation. Each guest is identified by name, address, and age. The rooms are
identified by room number, room type, and room size. A room reservation is done

by assigning a guest to a room.

[33]

The Sample Project

We are not going to make our project too complicated since our focus is to derive
a set of web services for testing with soapUI in the next chapters. Therefore, we
deliberately omit some interrelationships between these entities. For example,
we assume that a guest can do only one reservation at a time.

Project pre-requisites

Before starting to implement the project, let's make the project environment ready.

Java

We are going to develop the sample project using Java. Therefore, make sure to
install JDK1.6 or later version in your machine.

Apache Ant

We will be using Apache Ant to build our project. Of course, you may use any build
tool you prefer.

You can download the latest version of Apache Ant from http://ant.apache.org/
bindownload.cgi and follow the installation guide to set up Ant on your machine.

MySQL

MySQL will be used as the database management system in our sample project.

All data used in sample hotel reservation system will be stored in a MySQL database.
Therefore, we should set up MySQL in our machines. We can download MySQL
from http://www.mysql.com/downloads/mysql/ and follow the instructions

given in the installation guide to set it up on your machine.

Setting up Apache Axis2

There are numerous web service frameworks which can be used in web services
development and deployment. Apache CXF (http://cxf.apache.org/) and
Apache Axis2 (http://axis.apache.org/axis2/java/core/) are two examples
of popular open source web service frameworks. The pure RESTful web service
frameworks such as RESTeasy (https://www.jboss.org/resteasy/) can also
be used in web services implementation.

[34]

Chapter 2

We will use Apache Axis2 web services framework in our sample project because
Apache Axis2 is primarily a SOAP based web services engine and our sample project
is focused on a set of SOAP-based web services. Let's set up Axis2 on our machine
according to the following steps:

1. You can download the binary distribution of Apache Axis2 from
http://axis.apache.org/axis2/java/core/download.cgi.
Download the binary and extract it into a folder in your file system.

1
~ Apache Axis2-1.6.1 was the latest version at the time of writing
the book. You may download the same or the latest version.

2. Let the extracted folder of the Axis2 binary distribution be AX1s2_HOME.
Open a command window or shell and change the directory to
AXIS2_HOME/bin.

3. Export the AX152 HOME environment variable as follows:
In Linux:
export AXIS2 HOME=/home/user/axis2-1.6.1
In Windows:
set AXIS2 HOME=/home/user/axis2-1.6.1

4. Start Axis2 server by executing axis2server.sh or axis2server.bat
as follows:

sh axis2server.sh

Setting up project source directories

As of now, we have configured the Java runtime environment, Apache Ant, MySQL
database management system, and Apache Axis2. Now, we are going to set up the
source folder structure of our sample web services development project so that we
can start adding code.

1. Create a directory in your file system, let's name it as sample-project.

2. Create the following sub-directories under the sample-project folder:

o

src: It is used to store the java source files
° build: The ant build.xml file will be stored here

o

conf: It is used to store all configuration files

[35]

The Sample Project

Designing the web services

Our sample hotel reservation system is implemented using SOAP-based web
services. As per the three basic entities used in the system, we can plan to have
three web services explained as follows:

GuestManagementService:

GuestManagementService will be used to add, delete, or retrieve the details
of guests in system. This web service consists of the following methods:

° addGuest (name, address, age)

° getGuestDetails (name)

° deleteGuest (name)

RoomManagementService:

Adding, deleting, and retrieving the details of rooms are managed by
the RoomManagementService which includes the following methods:

° addRoom(roomNumber,roomType,roomsize)

° getRoomDetails (roomNumber)

° deleteRoom (roomNumber)

ReservationService:

ReservationService is used to manage the room reservations of the system,
such as creating a new reservation, finding out the reservation details of

a particular room, and removing an existing reservation. The following
methods are included in this web service:

° addReservation(roomNumber,guestName,reserved_from,

reserved_to)

° getReservationDetails(roomNumber)

° removeReservation (reservationID)

Creating the database

We use a MySQL database to store the information in our sample hotel management
system. Let's create the database and add three tables corresponding to the previous
three entities.

1. Open a MySQL shell or an editor and enter the following statement:

create database HOTEL RESERVATION DB;

[36]

Chapter 2

2. Add the following three tables to the database:
USE HOTEL_RESERVATION_DB;

CREATE TABLE IF NOT EXISTS GUEST T(
name VARCHAR (100) NOT NULL,
address VARCHAR (200),
age INT NOT NULL,
PRIMARY KEY (name)) ;

CREATE TABLE IF NOT EXISTS ROOM T (
room number INT NOT NULL,
room_type VARCHAR(100) NOT NULL,
room_size varchar(100) NOT NULL,
PRIMARY KEY (room number)) ;

CREATE TABLE IF NOT EXISTS RESERVATION_ T (
res_id INT NOT NULL AUTO_ INCREMENT,
guest name VARCHAR(100) NOT NULL,
room no INT NOT NULL,
reserved from DATE NOT NULL,
reserved_to DATE NOT NULL,
PRIMARY KEY (res_id),

FOREIGN KEY (guest name) references
GUEST_T (name) ,

FOREIGN KEY (room no) references ROOM T (room
number)) ;

Now, we have the database schema ready for our system. Let's proceed with
implementing the web services.

Implementing the web services

As we have seen under Designing the web services section, we are going to
use three different web services to handle the guest, room, and reservation
management functions. We have also discussed that three MySQL tables are
used to store information in each of these web services. Let's put together
all these elements and start to implement our system.

[37]

The Sample Project

First, we should define the guest, room, and reservation Java beans which are used
as data transferring objects in our system.

The complete source of all Java bean classes can be found at src\com\sample\
reservation\dto folder of the code bundle.

* Guest.java:

Guest.java is a Java bean which represents a guest entity in our system.
The class consists of the name, address, and age variables as well as their
corresponding getter/setter methods.

package com.sample.reservation.dto;
public class Guest

private String name;

private String address;

private int age;

public Guest (String name, String address, int age) {

}

public Guest() {

public String getName () {

public void setName (String name) {

public String getAddress()

}

public void setAddress (String address)

public int getaAge() ({

}

public void setAge (int age) {

[38]

Chapter 2

This is a simple Java bean and the code itself explains the purpose of this
particular class. You may save this class under the src folder according to
the package structure.

Similarly, let's add Room and Reservation bean classes.

Room.java:

Room. java is a Java bean which represents a room entity in our system.
The code for the same is as follows:

package com.sample.reservation.dto;
public class Room

private int roomNumber;
private String roomType;
private String roomSize;

public Room(int roomNumber, String roomType, String roomSize)

public Room() {

public int getRoomNumber ()
1
public void setRoomNumber (int roomNumber) {

public String getRoomType () {

public void setRoomType (String roomType) {

public String getRoomSize()

public void setRoomSize (String roomSize) {

[39]

The Sample Project

* Reservation.java:

Reservation.java is a Java bean for the reservation entity in our system.
The code for the same is as follows:

package com.sample.reservation.dto;

public class Reservation {

private int reservationID;
private String guestName;
private int roomNumber;
private Date reserved from;
private Date reserved to;

public Date getReserved from() {

}

public void setReserved from(Date reserved from) {

}

public Date getReserved to() {

}

public void setReserved to(Date reserved to) {

public int getReservationID () {

public void setReservationID (int reservationlID) {

}

public String getGuestName () {

}

[40]

Chapter 2

public void setGuestName (String guestName) {

}

public int getRoomNumber ()

public void setRoomNumber (int roomNumber)

}

Since we have the three Java beans ready, the method signatures of the three
web service classes, which we are going to implement shortly, will look like the
following. These classes will be exposed as web services in our sample application.

GuestManagementService:

GuestManagementService class consists of addGuest, getGuestDetails,
and deleteGuest methods.

public class GuestManagementService

//A new guest is added to the system by invoking this method. The
//method returns true if the guest is added successfully.

public boolean addGuest (String name, String address, int age) {

etails of an existing guest are retrieved using is metho
//Detail £ isti t tri d i thi thod
public Guest getGuestDetails (String guestName) {

//BAn existing guest is deleted by invoking this method. We can
//implement this method to return a boolean similar to addGuest ()
//method. However, inorder to demonstrate IN-ONLY message exchange
//pattern, let's keep it void.

public void deleteGuest (String guestName) {

[41]

vww allitebooks.conl

http://www.allitebooks.org

The Sample Project

RoomManagementService:

RoomManagementService includes three methods, addroom,
getRoomDetails, and deleteRoom as follows:

public class RoomManagementService

//A new room is added to the system by invoking this method.
//The method returns true if the room is added successfully

public boolean addRoom(int roomNumber, String roomType, String
roomSize) {

//Details of an existing room are retrieved using this method

public Room getRoomDetails (int roomNumber){

// An existing room can be deleted by invoking this method

public void deleteRoom(int roomNumber){

}

ReservationService:

ReservationService consists of addReservation, getReservationDetails,
and removeReservation methods follows:

public class ReservationService

//A hotel room is reserved for a guest by invoking this method

public boolean addReservation (int roomNumber, String
guestName, Date reserved from, Date reserved_ to) {

}

//Details of an existing reservation can be found out by calling
//this method

public Reservation getReservationDetails (int RoomNumber) {

[42]

Chapter 2

// An existing reservation can be deleted by invoking this method

public void removeReservation (int reservationID) {

Web services fault handling

Did we think about the scenarios such as trying to add a guest who is already
available in GUEST_T table? Or did we try to delete a non-existing room? We

need to handle these exceptional cases and provide users with meaningful errors.
We can implement exception classes associated with each of the above web service
classes as follows.

Create a new package, com. sample.reservation.exception and add the following
three exception classes:

* Exception 1:

public class GuestManagementException extends Exception

private String message;

public GuestManagementException()

}

public GuestManagementException (String message) {
super (message) ;

}

public String getMessage() {
return super.getMessage() ;

}

public void setMessage (String message) {

this.message = message;

[43]

The Sample Project

* Exception 2:

public class RoomManagementException extends Exception
private String message;
public void setMessage (String message) {

this.message = message;

public String getMessage() {

return super.getMessage () ;

public RoomManagementException() {

public RoomManagementException (String message)

super (message) ;

}
* Exception 3:

public class ReservationManagementException extends Exception({
public ReservationManagementException() {

}

public ReservationManagementException (String message) {
super (message) ;

public String getMessage() {
return super.getMessage () ;

[44]

Chapter 2

public void setMessage (String message) {
this.message = message;

}

private String message;

Managing database operations

It is a recommended programming practice to manage all database interactions
through a separate module or a class. Therefore, we can have a class dedicated to
database storage handling tasks. Let this class be Storage.java and have it under
anew package, com.sample.reservation.database.

The storage.java class is used to establish the connection to the database and
execute SQL queries in each method invocation of the web service implementation
classes. For example, if the addGuest () method of GuestManagementService is
called, the corresponding addGuest () method of the Storage class handles the
database interactions. Similarly, for all the methods in web service implementation
classes, we can have the corresponding methods in Storage . java class.

Let's have a look at how we handle the CRUD (Create Read Update Delete)
operations associated with the GuestManagementService using Storage.java

The complete source code of Storage.java class can be found at src\com\sample\
reservation\database\Storage.java in the code bundle.

public class Storage {

//First, we need to establish the jdbc connection with HOTEL
//RESERVATI ON_DB
//We will read the MySQL database connection details from a property
//file, which will be placed at the conf directory of Web Service
//Archive file (HotelReservation.aar)

private Connection getConnection()
//JDBC connection handling logic will be inserted here
//We read username, password, hostname (or IP) and port of mysqgl
//database from mysqgl.properties file which is placed at the conf
//directory of the web service archive.

}

//The method corresponding to addGuest () in GuestManagementService.

[45]

The Sample Project

// This is used to add a new guest to GUEST T table

public boolean addGuest (Guest guest)
//Check whether the guest already exists before adding a new
//guest
if (getGuestDetails(guest.getName()) == null)
//Execute INSERT SQL Query to add a new row to
//GUEST_T table
String sglStatement = "INSERT INTO GUEST T VALUES ('"
+ guest.getName ()
+ "', '" 4+ guest.getAddress() + "', " + guest.
getAge () + ")";
statement .execute (sglStatement) ;

}

//The method corresponding to the getGuestDetails() in
//GuestManagementService.

// This is used to get details of a particular guest from
//GUEST_T table

public Guest getGuestDetails(String name)

//Execute SELECT SQL Query to retrieve the corresponding row
//from GUEST T table

String sglStatement = "SELECT * FROM GUEST T WHERE name = '" +
name + "'";

}

//The method corresponding to the deleteGuest() in
//GuestManagementService
g9

//This is used to delete a guest from GUEST T table
public void deleteGuest (String name) {
if (getGuestDetails(name) != null) {

//Execute DELETE SQL Query to retrieve the
//corresponding row from GUEST T table

String sglStatement = "DELETE FROM GUEST T WHERE name
= Tn + name + mrn ;

}
}

As Storage. java is a JDBC connection handler, it simply manages all the database
related transactions involved in our sample project. If a database related error is
thrown during these transactions, we handle those errors via a separate exception
class, StorageException.java.

[46]

Chapter 2

The complete source code of StorageException.java class can be found at
src\com\sample\reservation\exception\StorageException.java in the
code bundle.

Now, you should be able to compile the classes we have implemented up to now.
If you are working on this project using an integrated Java development
environment (IDE), such as Eclipse, you can compile the project very easily.
Make sure to add the MySQL JDBC driver jar to the classpath since it is

required to establish the MySQL database connection. You can download the
MySQL JDBC driver from http://www.mysqgl.com/downloads/connector/j/.

If you do not wish to use any Java IDE, you could use the ant build script (build.
xml) given in build folder of the code bundle.

Before making all the service implementation classes available as
M real web services, it is recommended to test the Storage. java
Q class separately to ensure that the database transactions are done
properly. You can add a simple Junit test to test each method of
Storage.java.

Completing the web service implementation
classes

Under Designing web services section, we looked at the method signatures of all the
three web service classes, GuestManagementService, RoomManagementService,
and ReservationService. It is time to conclude our discussion on web service
implementation classes since we have all the dependent classes ready by now. As
an example, we will look at the implementation of GuestManagementService.java.

The complete source code of all the three web service implementation

classes can be found under src\com\sample\reservation folder
s
of the code bundle.

public class GuestManagementService {
//Adding a new guest to the system.
//We create a new Guest object and call addGuest () operation of

//Storage class to insert the new guest record to GUEST T table

public boolean addGuest (String name, String address, int age)

[47]

The Sample Project

Guest guest = new Guest();
guest .setName (name) ;
guest.setAddress (address) ;
guest.setAge (age) ;

Storage storage = new Storage() ;

storage.addGuest (guest) ;
return true;

}

//retrieving the details of a guest.
//By calling getGuestDetails () method of Storage class
// we get the corresponding guest record from GUEST T table

public Guest getGuestDetails (String guestName) {
Storage storage = new Storage() ;

Guest guest = storage.getGuestDetails (guestName) ;

return guest;

}

//Deleting an existing guest.
//We call deleteGuest () method of Storage class to delete a guest
//from GUEST T table

public void deleteGuest (String guestName) {

Storage storage = new Storage() ;

Guest guest = storage.getGuestDetails (guestName) ;
storage.deleteGuest (guest.getName ()) ;

Deploying web services

Though we developed all the Java classes included in our sample hotel reservation
system, we have not made them web services yet. In other words, still, our three
web service implementation classes cannot be invoked by a web service client, such
as soapUL. In this section, we make a deployable artifact so that we can deploy the
services in a service container such as Apache Axis2.

[48]

Chapter 2

There are multiple ways of deploying a web service in the Apache Axis2 SOAP
engine. We will use the service archive-based deployment mechanism where we
create a deployable archive with all service artifacts and copy that into the Axis?2
server's deployment folder. In this mechanism, the deployable artifact is known
as an Axis2 Archive (aar).

In order to deploy an Axis2 service as an aar file, a deployment descriptor should be
included with it. The Axis2 deployment descriptor is known as services.xml and
must be placed inside the META- INF folder of the aar file. The services.xml tells
the Axis2 engine the details such as what services are included in the service archive,
what operations are exposed through the web service, and so on.

Since we have three different web services, we can either deploy them as three Axis2
archives (aar) or include everything in a single archive. In our sample project, we
will bundle all service implementation classes and the dependencies to a single
service archive. Since we follow the second approach, we need to consider the Axis2
service group concept where we can associate multiple services inside a group and
deploy together.

With all these details, the services.xml of our web services look like the following.

Note that only the GuestManagementService is shown here. The complete
services.xml file can be found in conf folder in the code bundle.

<serviceGroup name="HotelReservation"s
<service name="GuestManagementService"
targetNamespace="http://sample.com/reservation/guest">

<description>
Guest management web service
</description>
<schema schemaNamespace="http://sample.com/reservation/guest/
types"
elementFormDefaultQualified="true">
<mapping namespace="http://sample.com/reservation/guest/
types"
package="com.sample.reservation.dto"/>
</schema>
<messageReceiverss>
<messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-
only"

class="org.apache.axis2.rpc.receivers.
RPCInOnlyMessageReceiver"/>
<messageReceiver mep="http://www.w3.org/2006/01/wsdl/in-
out"

[49]

The Sample Project

class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>

</messageReceiverss>

<parameter name="ServiceClass">com.sample.reservation.
GuestManagementService</parameters
<operation name="addGuest" mep="http://www.w3.org/2006/01/
wsdl/in-out">
<actionMapping>urn:addGuest</actionMapping>

<messageReceiver class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>
</operation>
<operation name="getGuestDetails" mep="http://www.
w3.0rg/2006/01/wsdl/in-out">
<actionMapping>urn:getGuestDetails</actionMapping>

<messageReceiver class="org.apache.axis2.rpc.receivers.
RPCMessageReceiver"/>
</operation>
<operation name="deleteGuest" mep="http://www.w3.0rg/2006/01/
wsdl/in-only">
<actionMapping>urn:deleteGuest</actionMapping>

<messageReceiver class="org.apache.axis2.rpc.receivers.
RPCInOnlyMessageReceiver"/>

</operation>
</service>
</serviceGroup>

Here, all web services are grouped under the <serviceGroup> element. You can
find that the service implementation class is described as a parameter, <parameter
name="ServiceClass">. A complete explanation of services.xml descriptor is

beyond the scope of this book. You can find more information on this at http://
axis.apache.org/axis2/java/core/docs/axis2config.html#Service
Configuration.

After completing services.xml for all the three web services, make sure to copy it
to conf folder in our project structure.

We should also make sure to update the following properties in conf /mysql.
properties file which we use to read the database connection details:

mysqgl.host: It is the host name or IP address of the mysql database server
mysql.port: It is the port in which mysql server is running
mysqgl.username: It is the root user of mysql database

mysql . password:It is the password of the root user

[50]

Chapter 2

Now, we are ready to build the whole project and generate an Axis2 archive (aar)
file. For that, you can use the ant build.xml given under build folder of the code
bundle. Copy the build.xml to the build sub-folder in your project folder. When
you run ant command from build directory, it will create HotelReservation.aar
under the project root directory with the following structure:

Once you have HotelReservation.aar, you are ready to deploy it in Apache
Axis2. You can copy HotelReservation.aar to AXIS2_ HOME/repository/
services folder.

Take a look at the following example:

cd sample-project

cp HotelReservation.aar /home/user/axis2-1.6.1/repository/
services/

At this point, make sure to copy the MySQL JDBC driver which
you may have downloaded from http://www.mysql.com/
% downloads/connector/j/ to AXIS2 HOME/1lib folder to
T facilitate jdbc connectivity between web service implementation
classes and MySQL database.

[51]

[vww allitebooks.cond

http://www.allitebooks.org

The Sample Project

If you have already started the server, the services will automatically be deployed.
If not, simply restart the Axis2 Server. Open a web browser and access http://
localhost:8080/axis2/services/, you will find the three web services as shown
in the next screenshot:

x - o

= & | @ localhost % A

Deployed services

ReservationService

Available operations

e addReservation

RoomManagementService
Available operations
 deleteRoom

e getRoomDetails
e addRoom

GuestManagementService
Available operations
« getGuestDetails

e deleteGuest
¢ addGuest

Version
Available operations

* getVersion

You should be able to see the WSDLs of each of these web services by accessing
following URLs:

http://localhost:8080/axis2/services/GuestManagementService?wsdl
http://localhost:8080/axis2/services/RoomManagementService?wsdl

http://localhost:8080/axis2/services/ReservationService?wsdl

[52]

Chapter 2

Summary

We dedicated this chapter to create a sample project, which used a few web services
to implement a simple hotel room reservation system. We started from scratch

and created three Plain Old Java Objects (POJOs). Then we exposed them as

web services by deploying in Apache Axis2. These three web services, namely
GuestManagementService, RoomManagementService, and ReservationService
will be used throughout this book. All our discussions of soapUI will be based on
these services. Hence, even if you did not follow the sample project, it is advisable to
download WwebServicesSample-Deliverable.zip from http://www.PacktPub.com/
support, follow the instructions given in README. txt to deploy HotelReservation.
aar on Apache Axis2, and get the services ready to try out the soapUI samples which
we will discuss in the next chapters.

[53]

First Steps with soapUI
and Projects

As we have completed building our sample web services project, it is time to
discover the testing aspects of web services with soapUL. In this chapter, we will
look into the basics of web services testing using the features provided by soapUI.
We plan to cover the following topics in this chapter:

* Detailed study of the sample guest management web service

* How to build a soapUI project to invoke operations of the sample service

* Study SOAP requests, responses, and faults using the sample service
Invoking web services through soapUl is pretty straightforward as compared to most
of the other alternative tools such as Apache JMeter. What we will be focused on is
how soapUI features can be utilized in an effective manner so that we can achieve
the maximum test coverage in web services testing. In order to fulfill our objectives,
it is essential to have a good understanding about the functional aspects of the web

services which are going to be tested, as well as the fundamental mechanism of the
SOAP request and response handling in soapUI.

Understanding the web services
definition
In the previous chapter, we developed three different web services, as follows:

® GuestManagementService

® RoomManagementService

® ReservationService

First Steps with soapUl and Projects

Out of these three services, we will focus on the WSDL of the
GuestManagementService in this chapter. Once you are familiar with interpreting
GuestManagementService, you will be able to follow up with the other two services.

If you have not already done so, make sure to start axis2server by running
axis2server startup script (axis2server.bat or axis2server.sh) from
AXIS2_HOME/bin.

Open a browser and navigate to http://localhost:8080/services/
GuestManagementService?wsdl. You will find the structure of the WSDL
of the service similar to the following diagram:

— =
definitions

typesischema

messages

getGuestDetailsRequest
getGuestDetailsResponse
addGuestRequest
addGuestResponse
deleteGuestRequest
GuestManage mentException

POTtTYpES

GuestManage mentServicePorType

Bindings

GuestManagementServiceSoap 11Binding
GuestManagementServiceSoap 11Binding
GuestManagementServiceHttpBinding

Services
GuesiManagementService

i I

We will look into each of the key elements shown in the preceding diagram
depicting the WSDL structure of the web service.

Schema

First, notice the schema section of the WSDL under the wsd1l : types element, where
the data types used by web service are explicitly defined. We are not going to dig deep
into the schema of our web service, but let's have a look at the addGuest element.

[56]

Chapter 3

The addGuest element has the following XML fragment:

<xs:element name="addGuest">

<xs:complexType>

<XS:sequence>

<xs:element minOccurs="0" name="name" nillable="true"
type="xs:string"/>

<xs:element minOccurs="0" name="address" nillable="true"
type="xs:string"/>

<xs:element minOccurs="0" name="age" type="xs:int"/>
</xs:sequence>

</xs:complexType>

</xs:element>

We can identify the three elements associated with the addGuest root element, name,
age and address, in the preceding portion of the schema. If you recall the data types
which we defined when implementing GuestManagementService in the previous
chapter, these data types given in the schema corresponded to what we described
there. When we invoke the service, we should send a message which conforms

to the service schema. In short, if we send the age of a guest as a string value, the
service will respond with a fault since one of the data types of our request does not
match with the schema definition. Similarly, I will leave you to go through the other
elements defined in the schema of the GuestManagementService.

Now, we should understand the other elements in our WSDL. A better way to
understand the WSDLs is to start with the portType element which defines the
service interface.

portType
Let's have a look at the GuestManagementServicePortType element. We

can identify the abstract definitions of the three operations exposed by
GuestManagementService under that element, as follows:

® addGuest
® deleteGuest
® getGuestDetails

Under these operations, the input, output, and fault messages which are exchanged
between service consumer and provider are defined. As you can see, each of the
operations include a fault message. The addGuest and getGuestDetails operations
are defined as request-response MEP since both of them consist of input and output
messages. The deleteGuest operation is a one-way operation as it does not have an
output message. You can correlate this behavior to the method signatures of these
operations given in the GuestManagementService implementation class.

[57]

First Steps with soapUl and Projects

As we have looked into the portType element in the WSDL of our web service, we
can proceed with understanding another important element in the service definition.

binding

The binding elements describe the concrete details of using a portType with a given
protocol. In other words, a portType element is an abstract definition of a service
interface, which does not provide information on how messages are represented on
the wire. The binding elements associate the portType elements with concrete wire
protocol definition. There are three bindings which can be identified in our WSDL.
These are as follows:

* SOAP 1.1 binding
* SOAP 1.2 binding
e HTTP binding

In our service, both SOAP 1.1 and SOAP 1.2 bindings use HTTP transport only.
You can notice it in the following element:

<wsdl :binding name="GuestManagementServiceSoapllBinding" type="tns:Gue
stManagementServicePortType" >

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

You will also observe that the default style of the service is given as document.

If we study the SOAP 1.1 binding further, we can identify that all three operations of
the GuestManagementService are defined with concrete message details. For example,
addGuest operation is described under the SOAP 1.1 binding element as follows:

<wsdl:operation name="addGuest">

<soap:operation soapAction="urn:addGuest" style="document"/>
<wsdl:inputs>

<soap:body use="literal"/>

</wsdl:inputs>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

<wsdl:fault name="GuestManagementServiceGuestManagementException">
<soap:fault use="literal" name="GuestManagementServiceGuestManagement
Exception"/>

</wsdl:fault>

</wsdl:operation>

[58]

Chapter 3

As shown in the preceding XML fragment, urn:addGuest is the soapAction HTTP
header defined for the addGuest operation. Similarly, all other operations include a
soapaAction HTTP header.

The addGuest operation emulates request-response MEP. Therefore, it includes
input and output elements. As these requests and responses are SOAP messages,
they consist of the <soap:body> element. This element defines how the message
parts appear inside the SOAP body of the SOAP envelope. The type of encoding
that is used to translate the abstract message parts into a concrete representation
is specified by the use attribute of the SOAP body element.

In short, the addGuest operation uses document/literal SOAP style/use
attributes. Therefore, the input message (request) for the addGuest operation
can be represented as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">

<soapenv:Body>

<a:addGuest xmlns:a="http//sample.com/reservation/guest/types">
<name>John</name>

<address>Colombo, Sri Lanka</address>

<age>32</age>

</a:addGuest>

</soapenv:Body>

</soapenv:envelope>

Because the addGuest operation is defined as document style, the SOAP body simply
includes an instance of the addGuest element defined under the XML schema of
GuestManagementService.

A further explanation on all WSDL bindings are out of the scope of this book. Hence,
we will limit our discussion on SOAP 1.1 binding to what we have discussed and
proceed with the <wsdl:services> element.

Service

According to the WSDL 1.1 specification, a service groups a set of related ports
together. In our WSDL, we can identify three ports or endpoints described
as follows:

<wsdl:service name="GuestManagementService">

<wsdl :port name="GuestManagementServiceHttpSoapllEndpoint" binding="tn
s:GuestManagementServiceSoapllBinding" >

<soap:address location="http://localhost:8080/
axis2/services/GuestManagementService.
GuestManagementServiceHttpSoapllEndpoint/"/>

[59]

First Steps with soapUl and Projects

0</wsdl:port>

<wsdl:port name="GuestManagementServiceHttpSoapl2Endpoint" binding="tn
s:GuestManagementServiceSoapl2Binding" >

<soapl2:address location="http://localhost:8080/
axis2/services/GuestManagementService.
GuestManagementServiceHttpSoapl2Endpoint/"/>

</wsdl:port>

<wsdl:port name="GuestManagementServiceHttpEndpoint" binding="tns:Gues
tManagementServiceHttpBinding">

<http:address location="http://localhost:8080/axis2/services/
GuestManagementService.GuestManagementServiceHttpEndpoint/"/>
</wsdl:port>

</wsdl:service>

Under the service element, each port is assigned to a particular binding
and defines the address details specific to that binding. For example, the
SOAP 1.1 binding of GuestManagementService is exposed at the location,
http://localhost:8080/axis2/services/GuestManagementService.
GuestManagementServiceHttpSoapllEndpoint.

Therefore, if you want to invoke GuestManagementService by sending a SOAP 1.1
request, you should use the preceding URL.

So far, we have discussed all the important details specific to our web service. We
have even constructed a sample SOAP request by adhering to the WSDL of service.
However, deriving SOAP requests by hand is a time consuming and complex
approach. On the other hand, in a web service equation, the consuming applications
of web services should be able to send as well as receive and interpret the SOAP
messages. As a result of this, we should use a tool which has the ability to invoke
web services and interpret service responses at minimum.

The most trivial use case of soapUl is to support SOAP message delivery. We
are going to look into our first soapUI project so that we can send the first SOAP
request to GuestManagementService.

Creating a soapUl project

All your work which you carry out with soapUI is based on projects. Therefore,
projects can be considered as the central masterpiece in soapUIL Whatever you do,
except the activities related to tools such as Axis2 WSDL2]Java, perform under a project.
Let's create our first soapUI project. Perform the following steps to create a project:

1. Start soapUL

2. Select File | New soapUI Project from the main menu.

[60]

Chapter 3

In a fresh soapUl instance, if you add a new project in this way, the
M project is added under the default workspace. If you want to add
Q the project into a different workspace, you can do so by creating a
new workspace or use an existing workspace. We will discuss more
about workspaces in the next chapter.

Once the New soapUI Project dialog box is launched as shown in the
following screenshot, enter HotelReservationProject as the name
of the project. In our example, the initial WSDL will be the definition
of GuestManagementService. We can find out the web service
definition by appending the »wsd1 suffix at the end of the endpoint
URL. Therefore, enter http://localhost:8080/axis2/services/
GuestManagementService?wsdl as the initial WSDL as shown in the
following screenshot:

New soapUl Project k

New soapUl Project _ﬁ.
Creates a new soapUl Froject in this workspace

Froject Mame: |HmeIReser\.'ati0nProject |

Initial WSDL/WADL: |lost:8080,’axis2,-'ser\.ficestuestl'\danagementSer\.ﬂce?‘v\rsdl| [Browse...]

Create Requests: Create sample requests for all operations?

Create TestSuite: [] Creates a TestSuite for the imported WSDL or WADL

Create MockSenvice: [[] Creates a Web Senvice Simulation of the importad WSDL

Add REST Service:

Relative Faths: ["]stores all file paths in project relatively to project file (requires save)

Create Web TestCase: [| Creates a TestCase with a Web Recording session for functional web tasting

You should also keep in mind that it is not mandatory to have an
initial WSDL for creating a new soapUI project. You can create a
soapUI project without an initial WSDL and add WSDL later. Also,
%@»\ if you create the project for testing a RESTful web service or a web
’ application, having an initial WSDL does not make sense. However,
an initial WSDL will make testing easier for a novice user if the
project is used purely for SOAP based web services testing.

You will also find a few selections in the New soapUI Project dialog box
such as Create Requests, Create TestSuite, Create MockService and so on.
We will look into all these options within the next chapters. For now, just

select the default option.

[61]

First Steps with soapUl and Projects

5. With the default Create Requests option, soapUI generates sample requests
for all operations exposed in your web service. In other words, with this
option selected, we should be able to see the SOAP requests generated by
soapUI which can be used to invoke addGuest, getGuestDetails, and
deleteGuest operations of the GuestManagementService.

6. Now, we can save our new soapUI project by clicking on Saves all projects
in the current workspace icon which can be found on the main tool bar.
Or else, we can select the project and press Ctrl + S to save the individual
project. Either way, soapUI saves the project in your filesystem with the
name, <project names>-soapui-project.xml.

Once the new soapUI project is created with an initial WSDL, you can
find that soapUI automatically generates requests for all operations under
the two SOAP bindings. In our example, we should be able to see six
requests divided among GuestManagementServiceSoap11Binding

and GuestManagementServiceSoap12Binding.

soapll
File Tools Desktop Help

B ali @é @ %loﬁ SearchFuruml

Projects
=&
E} I GuesthManagementServiceSoapl1Binding
¢ B2 addGuest
: 38 Requestl
[F =+ deleteGuest
Loge Request1
¢ getGuestDetails
: &% Requestl
= l GuestManagementServiceSoapl2Binding
- & addGuest
Loge Request1
E} = deleteGuest
e ER Requestl
= ’2: getGuestDetails
&% Requestl

Project Properties r Custem Properties |
Property Value

MName HotelReservationProject
Description
File
Resource Root
Cache Definitions true
Project Password
Script Language Groovy
Hermes Config §[#SystemFuser.homef.hermes
! | soapUllog http leg jetty log errorleg wsrmleg memory log

[62]

Chapter 3

When adding a WSDL or creating a project with an initial WSDL, soapUI scans
through all SOAP bindings which appear in the WSDL and finds out the operations
exposed by the service. Then it generates the requests corresponding to those
operations according to the XML schema of the service.

As we have just discussed, when we have the WSDL of the web service with all
bindings, portTypes, service elements, and schema, it is possible to derive a
SOAP request by hand. What soapUI does is it handles all the complexities and
gets it done for you.

Let's look at the addGuest request generated by soapUI in the following screenshot:

B |_." i¢ Requestl
[B9] Projects - - -
e 1 . X P =B OO & = http://localhost:8080/ axis2/services/GuestManagementService,
L E}@ HotelReservationProject
BI GuestManagementServiceSoapl1Bin g <soapenv: Envelope xmlns:soapenv="htt.p:ffschemas.xmlsoap.orgfsoapfenvel:;
E}f(—_,’ addGuest = <soapenv:Header />
H __gg Requestl = <soapenv:EBody>
> deleteGuest = <typ: addGussts
[, < —-Opticnal - -->
a¢ Requestl “Lypinamer? < /Lypinanes
B+ getGuestDetails i --Optionali--x
1 Requestl <typ:address=?</typ: addressy
- X GuestManagementServiceSoapl2Bin <! —-Optional:--»
B+ addGuest “Eypiager?e/Typiager
-E2 Requestl </typ: addGuests
-+ deleteGuest “fzoapenv:Bodys

: </ soapenv:Envelope>
LG8 Requestl ® P

B+ getGuestDetails
- E8 Requestl

As you can see in the preceding image, the SOAP 1.1 request message is shown

at the left-hand side pane of the request editor. You can open the request editor
by double-clicking on the corresponding SOAP request in the project tree at the
right-hand side pane or by right-clicking on the SOAP request and selecting Show
Request Editor. Compare the request payload (the <typ:addGuest> element) of
this message with the request which we have derived by hand at the end of the
Understanding the web service definition section. You will find both of them to

be similar.

[63]

First Steps with soapUl and Projects

Invoking the guest management
web service

Before going deep inside SOAP requests, we will look into invoking our sample

web service. We will invoke the addGuest operation and add a new guest in our
sample hotel reservation system. Next, we will get the details of the added guest by
calling getGuestDetails operation. Finally, we will delete the guest by invoking the
deleteGuest operation. This can be performed as described in the following steps:

1. Select Requestl which appears under the addGuest operation, shown in the
left-hand side pane in the soapUI project.

2. In the request editor, which appears at the right-hand side, you will find
the SOAP 1.1 request which is supposed to be used in invoking the
addGuest operation.

3. The inputs which should be specified by the user are denoted by ? in the
request editor. Replace them with the appropriate input values as shown
in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">

<soapenv:Header/ >
<soapenv:Body>
<typ:addGuest>
<!--Optional:-->
<typ:name>Saman</typ:name>
<!--Optional:-->
<typ:address>Colombo, Sri Lanka</typ:address>
<!--Optional:-->
<typ:age>24</typ:age>
</typ:addGuest>
</soapenv:Body>
</soapenv:Envelope>

4. By default, soapUI automatically adds the endpoint associated with SOAP
1.1 binding and gives it as the default endpoint for you to direct the request.
This is shown in the following screenshot:

i Requestl i
P = @O

&

%+ ®

[64]

Chapter 3

If you carefully look at this endpoint, it is the same endpoint which
you can find at the <wsdl:port name="GuestManagmentServiceHtt
pSoapllEndpoint"s element under the <wsdl:services element in
GuestManagementService WSDL. soapUl allows you to edit this
endpoint or target your request to a totally different endpoint.

In the situations where your web service container is changed, you will

need to change the default endpoint location. For example, say you
N decide to move away from the Axis2 SOAP engine and use a different
service container. In such a case, you can change the endpoint easily
through the soapUI request editor. Also, when the same web service is
deployed across multiple environments such as Development, Testing,
or Production, you can change the target endpoint and submit the
request to the service which is deployed in a particular environment.

5. For now, let's proceed with the defaults. Click on the run icon which appears
at the top-left corner in the soapUI request pane to submit the request to the
given endpoint.

6. Once the request is sent to the endpoint, you will notice the response appears
at the right-hand side pane of the soapUI request editor as shown in the
following screenshot:

Request 1 o [
P = EOD R = http://localhost:8080/ axis2/ services/GuestManagementService.GuesthanagementServiceHttpSoapl1Endpoint/ " % + @\.'
g |<sospenv: Envelops xmlns:soapenv:“h::p:ffschemas.xmlg:_; o |*sospenv: Envelops xulns: sospenv="http://schenas. sulsoap. cr{s
= <soaperv:Header /> =4 <soaperw: Bodys
= <soapenv:Bodys = <ns:addGuestResponse xulns:ns="http//sauple.con/rese
= <typ:addGuests = “ns:returnFtrue</ns: return:

<! —-Opticmal:——> </n=s: addGusst Basponsas
“typ hame=>Sanan< /Cyp nane s = soapenv: Bodys
<f--Optiomal:-—= </soapenv: Enveloper

<typ:addressrColonbo, Sri Lanka</typ:addres)
< ——Optional - ——»
<typ:age=24f/eyp: age=
</typ:addGuests
</soapenv:Body>

< /soapenv: Envelopes

We get the response with <ns:return>true</ns:returns as the

SOAP body, if a guest is successfully added to the system. Compare

this behavior with the method signature of addGuest method in the
GuestManagementService implementation class where we have defined
boolean as the return value.

[65]

First Steps with soapUl and Projects

Now, we have added a new guest to the system. Let's check if it has
actually been added to the system by calling the getGuestDetails
operation. Perform the following steps to check if a guess has been

added to the system:

1. Select Requestl which appears under the getGuestDetails operation
in the left-hand side pane in soapUI project.

2. The request editor will show the corresponding SOAP 1.1 request.
Replace ? with the name of the guest which we have added to the
system, as shown in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:typ="http//sample.com/reservation/
guest/types">

<soapenv:Header/>
<soapenv:Body>
<typ:getGuestDetailss>
<!--Optional:-->
<typ:guestName>Saman</typ:guestName>
</typ:getGuestDetailss>
</soapenv:Body>
</soapenv:Envelope>

3. Click on the run icon to submit the request to the default
SOAP 1.1 endpoint.

4. The response will contain the corresponding guest details as follows.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" >

<soapenv:Body>

<ns:getGuestDetailsResponse xmlns:ns="http//sample.
com/reservation/guest/types">
<ns:return xsi:type="ns:Guest" xmlns:ax2l="http://

exception.reservation.sample.com/xsd" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance" >

<ns:address>Colombo, Sri Lanka</ns:address>
<ns:age>24</ns:age>
<ns:name>Saman</ns:name>
</ns:returns
</ns:getGuestDetailsResponse>
</soapenv:Body>
</soapenv:Envelope>

7. We have invoked both addGuest and getGuestDetails operations using
soapUI. The only remaining operation to be invoked is deleteGuest.

[66]

Chapter 3

Similar to the addGuest and getGuestDetails operations, select Requestl
under the deleteGuest operation in the left-hand side pane of soapUI.
Replace ? of guestName element with the name of the guest which we
have added to the system, as shown in the following XML fragment:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">
<soapenv:Header/>
<soapenv:Body>
<typ:deleteGuest>
<!--Optional:-->
<typ:guestName>Saman</typ:guestName>
</typ:deleteGuest>
</soapenv:Body>
</soapenv:Envelope>

8. Submit the request to the default SOAP 1.1 endpoint by clicking on the
run icon.

This time, you will not get any SOAP response back. Why do we expect this
behavior? Think about how we implemented the deleteGuest operation in the
GuestManagementService implementation class. There, we specified the method
as void:

public void deleteGuest (String guestName) { }

If you invoke the getGuestDetails operation again for the deleted guest, you can
ensure that the guest has actually been removed from the system.

Now, we have invoked all operations of the GuestManagementService

using soapUI. Similarly, you can try out the other two web services
(RoomManagementService and ReservationService) as well. It will be a good
idea to further look into some of the preceding requests and response messages
to get a better understanding about web service invocation, as well as the
important features provided by soapUI for request and response handling.

A detailed look at SOAP requests and
responses

We invoked three operations in GuestManagementService using soapUL As
we have observed, addGuest and getGuestDetails operations are examples
for request-response MEP, whereas the deleteGuest operation emulates a
one-way pattern.

[67]

First Steps with soapUl and Projects

Add another guest to the system by running an addGuest operation. In the request
editor, switch to the Raw tab from the default XML view in both request and
response. This is shown in the following screenshot:

iF Requestl :

)| B

P =i E 0D

http://localhost:8080/axis2/services/ GuestManagementService.GuestManagementServiceHttpSoapl1Endpoint/ - |

o %
2

+

=

Accept-Enceding: gzip,deflate

Content-Type: text/xml;charset=UTF-8
SOAPAction: "urn:getGuestDetails”
User-Agent: Jakarta Commons-HttpClient/3 1
Host: localhost:8080

Centent-Length: 344

=
=
=2
=
&
=

k POST http://localhost:8080/ axis2/services/GuesthManagementService. Gur =

<
L

HTTR/1.1 200 OK

Date: Sat, 21 Jul 2012 04:18:31 GMT
Server: Simple-Server/1.1
Transfer-Encoding: chunked
Content-Type: text/xml; charset=UTF-8

Ranay | XML

<l version="10" encoding="UTF-8'?> <soapenv:Envelope xminsisoapenv="http://sc

[r] G

The Raw view of the request shows the HTTP header block. In the response pane,
the Raw view shows the HTTP headers as well as the HTTP body, which includes
the SOAP response message. We can see that the HTTP 200 successful response code

in the response message.

In request HTTP headers, take a note of the User-Agent header. Since soapUI
uses the Jakarta Commons HttpClient component from the Apache HTTP
Components project as the request submission client, the value is set to

Jakarta Commons-HttpClient/3.1.

By default, a soapUI request uses UTF-8 encoding as the character set, hence you
can see it as a part of the Content-Type header:

Content-Type: text/xml;charset=UTF-8

You can change these properties as you wish through the Request Properties
pane in soapUl, shown in the following screenshot:

[68]

Chapter 3

Fila Tools Desktop Help

Bam @684 © X EO0 B

:

Mavigator

- addGuast
i% Reguest 1
- =+ daleteGuest
.

a2 Request 1

.. 52 Pomiioct 1

EI% HotalReservationProject
E} I GuestManagementienviceSoap 1 1Binding

2 getGuestDetails

Reguest Properties

Property Value
Name Request 1
Description
Message Size 336
Encoding UTF-8
Endpoint http: //localhost: 8080 faxis2 /serv...
Timeout
Bind Address
Follow Radiracts true
Usernamsa
Passwaord
Domain
Wss-Password Type
W5S TimeToLive
S5L Keystora
Skip S0OAP Action falsa
Enakle MTOM falsa
Force MTOM falsa
Inline Rasponsa Attachmeants falsa
Expand MTOM Attachmants falsa
Disablz multiparts true
Encode Attachments false
Enable Inlina Filas false
Strip whitespaces false
Pamnua Frmmntee Cantant falca

It is best to name each of the requests meaningfully without using the default

Requestl for each of the requests. You can edit the request name as well through

the Request Properties pane.

[69]

First Steps with soapUl and Projects

If we invoke the deleteGuest operation, an empty response can be observed in the
XML view of the request editor. If you look at the Raw view of the response, you
will be able to find the following HTTP header:

HTTP/1.1 202 Accepted
Date: Sat, 31 Dec 2011 02:02:38 GMT
Server: Simple-Server/1l.1

Transfer-Encoding: chunked

Can you explain why this response does not have a body? As we discussed earlier,
deleteGuest uses one-way MEP, therefore the service does not return a response
upon receiving a request SOAP message. Instead, in one-way messaging, the service
should respond back with HTTP 202 Accepted status if the request is accepted by
the service and no error has occurred.

So far, we have explored requests and responses which conform to

SOAP 1.1 specification. All requests which are categorized under
GuestManagementServiceSoap12Binding are SOAP 1.2 messages. You can find
it out simply by looking at the namespace URL of the Envelope element in the
SOAP message:

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope">

When you submit a SOAP 1.2 request to the GuestManagementService, it responds
back with a SOAP 1.2 response.

Generating SOAP Faults

We discussed a few of the positive scenarios associated with the
GuestManagementService of our sample hotel reservation system. Our discussion
on soapUI requests and responses cannot be concluded until we explore the failure
scenarios related to the web service. What will happen if we try to add an existing
guest to the system? We have implemented our service implementation class to
handle these types of scenarios such that the service responds with a fault in case
of a failure.

We will look into a possible failure case where an existing guest is going to be added
to the system.

[70]

Chapter 3

In a preceding example, where we added the guest called Saman, submit the

same request again. As the guest has already been added to the system, the
GuestManagementService should respond back with a fault. (Look at how we
handled the fault in the Web services fault handling section of Chapter 2, The Sample
Project) Note that we implemented our sample service in a way so that it throws an
error if we invoke the addGuest operation with a name of an existing guest. We did
that just for the simplicity of our sample application and you should not interpret

it as a behavior of a real production system. The SOAP Fault corresponding to the
addGuest operation will be as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">

<soapenv:Body>
<soapenv:Fault>
<faultcode>soapenv:Server</faultcode>
<faultstring>Guest already Exists</faultstring>
<detail>

<ns:GuestManagementServiceGuestManagementException
xmlns:ns="http//sample.com/reservation/guest/types">

<GuestManagementException xsi:type="ax21l:GuestM
anagementException" xmlns="http//sample.com/reservation/guest/
types" xmlns:ax2l="http://exception.reservation.sample.com/xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<ax2l:message>Guest already Exists</ax2l:message>
</GuestManagementException>
</ns:GuestManagementServiceGuestManagementException>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

If you look at the Raw view of the SOAP Fault, you will find the following HTTP
header block:

HTTP/1.1 500 Guest already Exists
Date: Fri, 30 Dec 2011 14:35:41 GMT
Server: Simple-Server/1l.1
Transfer-Encoding: chunked
Content-Type: text/xml; charset=UTF-8

You can see the HTTP 500 response with the error message, Guest already Exists.

Similarly, you may try out the other possible faulty scenarios with the rest of the
web services in our sample system in order to familiarise yourself with the SOAP
Fault handling.

[71]

First Steps with soapUl and Projects

Summary

We looked into our first soapUI project in this chapter. Out of the three web services
which we implemented in the previous chapter, the guest management web service
was used to add a new guest to the system, view the details of the guest, and delete
the guest from the system. We invoked all these operations of our sample service
using soapUI We studied the request generated by soapUI and related it to the
contents of WSDL of GuestManagementService. We also had a detailed discussion
on two different views of requests and responses presented by soapUI In the Raw
view, we were able to see the message with HTTP headers, and the XML view
showed just the SOAP envelope of the message. We also discussed about failure
cases of web service invocations and had a look at a SOAP Fault.

We are going to extend our project to a full comprehensive test suite in the
next chapter.

[72]

Working with Your
First TestSuite

In the previous chapter, we discussed the basics of soapUI projects. When you are
testing an individual service or a complete service-oriented solution, it is not just
sufficient to create a project with multiple SOAP requests and manually execute and
validate the responses of them one by one. Instead, we should follow some mechanism
to execute our tests in a well organized manner, so that, we could minimize some
unnecessary delays and focus on achieving a greater level of test coverage.

soapUI TestSuites are one of the key building blocks in a project which allow us to
structure and execute functional tests. In this chapter, we will look into the following
high-level topics of building a comprehensive test suite in order to test our sample
hotel room reservation system:

* Creating a TestSuite
* Running the TestSuite
* Adding test assertions

* Adding properties to the tests

A sample test scenario

We have built a sample hotel reservation system in Chapter 2, The Sample Project, and
invoked one of its services in Chapter 3, First Steps with soapUI and Projects. However,
we did not do a complete end-to-end workflow with our system. Let's think about
the following scenario:

Working with Your First TestSuite

A new guest has arrived to the hotel. An operator of the hotel reservation system
registers the new guest in system, looks for a room, and reserves it for the guest.

This is the preliminary use case of our sample system. All three web services which
we discussed previously, GuestManagementService, RoomManagementService,

and ReservationService take part in this scenario. How are we going to test this
particular scenario using soapUI? Will it be enough to create a project and add SOAP
requests to execute the relevant operations of each web service individually, as we
did in Chapter 3, First Steps with soapUI and Projects?

The answer will be yes, if we need to execute this particular scenario once and for
all. However, we do not live in a world where software is built in a single run, tested
once and used in production. Instead, there are a large number of iterations per
release cycle as well as multiple versions. In such cases, if we do not maintain our
tests in a reusable and structured manner, we will end up in a chaos.

We are going to use some of the important constructs of soapUI to build a
comprehensive test suite to verify the preceding scenario. Open soapUI and start
our journey of exploring more exciting features!

Creating a TestSuite

A soapUlI functional test consists of three key elements as follows:

* TestStep: A TestStep is the foundation of any functional test. It is used to
manage the execution flow of the test and validate the test results. A TestStep
is directly associated with a TestCase.

* TestCase: In a soapUI project, a TestCase is a collection of TestSteps
organized for testing some functionality of the service under test.

* TestSuite: A TestSuite is a collection of TestCases which work together as a
logical unit to test some specific functionality.

The structure of these elements in a soapUI project can be represented in a diagram
as follows:

[74]

Chapter 4

/ TestSuite \

/ TestCase \

TestStep

N J

< 4

We will discuss each of these elements in detail while we go through our sample
TestSuite. Without spending more time on theoretical aspects, let's start to build
our soapUI project.

Our first scenario, as we just described, is a relatively simple one. Open the
HotelReservationProject in soapUI which we have created in the previous chapter.
We have already added the WSDL of GuestManagementService there.

In this exercise, we will remove the SOAP 1.2 binding from
each web service as we do not have to bother about SOAP
% versions at this moment. Therefore, you may remove
e GuestManagementServiceSoapl2Binding (interface)
from the project.

[75]

Working with Your First TestSuite

In addition to the WSDL of GuestManagementService, we will need to add the
rest of the WSDLs of our sample hotel reservation system by performing the
following steps:

1.

Right-click on the HotelReservationProject and select Add WSDL. You will
be prompted to specify the URL or Browse in the file system for a WSDL.
This is shown in the following screenshot:

Add WSDL

k
Add WSDL @
Creates a WsDL Interface from a WSDL definition
WsDL Location: | [Browse...]
Create Requests:
Create Tast5uita:
Create MockService:

We are going to add WSDL URL of the RoomManagementService. The
WSDL which has been automatically generated by Apache Axis2, can be
accessed by navigating your web browser to http://localhost:8080/
axis2/services/RoomManagementService?wsdl. Once you have made
sure that the WSDL is accessible in the browser, specify the WSDL URL of
RoomManagementService (http ://localhost:8080/axis2/services/
RoomManagementService?wsdl) as the WSDL location.

Uncheck the Create TestSuite check box so that we can manually add a
TestSuite as we preferred.

If we select the Create TestSuite option, soapUI automatically
. generates a test suite for the imported WSDL. soapUI scans
% through the WSDL and extracts all the operations. Then it
L generates test cases for each of the operations. By default, one
TestCase for each operation is created. So, if you have five
operations in the WSDL, you will automatically get five TestCases.

Leave the Create Requests check box checked and click on OK.

Now, you will notice that the RoomManagementService

interface is also added to our project. Make sure to remove the
RoomManagementServiceSoap12Binding from the project. Similarly,
repeat the preceding steps to add ReservationService as well.

[76]

http://localhost:8080/axis2/services/RoomManagementService?wsdl
http://localhost:8080/axis2/services/RoomManagementService?wsdl

Chapter 4

6. As of now, our project structure will be similar to the following screenshot:

Under each service interface, you can see the operations corresponding to the

T

o

Tools Deskiop Help

@ |

aB 08 O X EBEOB

MNavigator

=& HotelReservationProject|
- I GusstManagemsntServiceSoapl1Binding

=+ dealeteCuast

B2 getGuestDetails

= X ReservationSeniceSoap11Binding

- addReservation

& getRaesarvationDetails

E- =+ removeReservation

= X RoomManagzmentSendceSoapl1Binding
-2 addRoom

=+ deleteRoom

B2 getRoomDetails

""c_—»’ addCuest @

operations defined in the respective WSDL. soapUI represents the MEP used by a
particular operation using two distinct icons as shown in the following screenshot:

-2 [addCuest

-+ deleteGuest

As addGuest operation uses request-response MEP, it is denoted by two circular
arrow heads. The deleteGuest operation is denoted by a single arrow head since
it is a one-way operation.

Now, think about our first test scenario again and decompose it into a few steps

for clarity.

Add a few hotel rooms to the system

Upon the arrival of a new guest, a receptionist at the hotel registers the new
guest in the system

Finally, the receptionist reserves an available room for the guest

[77]

Working with Your First TestSuite

This particular scenario involves a few web service calls. New rooms can be
added to the system by invoking RoomManagementService. Guest registration
can be done through GuestManagementService. Finally the room reservation
will be done by calling ReservationService. Though these three web services
are logically related to each other, we have implemented our system in a way
that they can be invoked independently.

Adding TestCases

We are ready to test our scenario. First, we are going to check whether the
RoomManagementService works as expected. We can add a single TestCase to test
each of the operations in RoomManagementService or we can add separate TestCases
for operations. The choice depends on the functionality of service or operations. If
the service has a large number of operations it will be a good idea to add a separate
TestCase for each operation. In our case, we have a maximum number of three
operations per service. Therefore, we may add one TestCase for a service. For the
sake of completeness of the topic, we are going to follow the first approach where we
add a separate test case for each operation; this gives us three test cases. Perform the
following steps to generate TestCases:

1. Right-click on RoomManagementServiceSoapl1Binding in the left-hand
side menu of the project and select Generate TestSuite. Then the Generate
TestSuite window will be seen as shown in the following screenshot:

Generate TestSuite

Generate TestSuite {@a}
Cenearates Testiuite with TestCasa(s) for all Operations in this Interface
Style: (#) One TestCase for each Operation

Single TestCase with one Request for each Operation
Request Content: Use existing Requests in Interface
Create new empty recuests
Operations: addRoom

deleteRoom

getRoomDetails

Select all Unselect all

Generate LoadTest: [] Generates a default LoadTest for each created TestCase

2. Accept the default options and click on OK, so that we will have one test case
for each operation.

[78]

Chapter 4

Specify RoomManagementServiceTestSuite as the name of the TestSuite.

Now, we will have a TestSuite with three TestCases as follows:

° addRoom TestCase

° deleteRoom TestCase

° getRoomDetails TestCase

5. Each of these TestCases consist of one TestStep. We will look into each of the
TestCases in the following sections.

addRoom TestCase

addRoom is our preliminary TestCase which is used to add a new room record into
the system. Initially, we do not include any additional TestSteps into this TestCase.

We accept the default test steps generated by soapUI and proceed.

The addRoom TestCase editor can be opened by double-clicking on addRoom
TestCase in the left-hand side menu or right-clicking on the TestCase and selecting

Show TestCase Editor. If you open the TestCase Editor in either of these ways, it

will be similar to the following screenshot:

soapUl 4.0.1

le Tools Deskiop Help

@ |
iz

Search Forum|

B s 0 X EOB

f =

z

& |2 B HotzlReservationProjact

= I GuestManagememsServiceSoap11Binding
I ReservationSenviceSoap11Binding
I RoomManagememsServiceSoap11Binding
= B RoomManagemenmseniceTestSuite

L}

) addRoom TestCase

- Sacurity Tests ()
o deletzRoom TestCasa
= getRoomDetails TestCase

| = addRoom TestCase

P XS mm e X DG

fTeslSleps ‘
it = 1eMET IR LETeEd E

addRoom

Description Properties Setup Script TearDown Script

O 'm X
[TestCasa Properties | Test Propertias |
Properny Valug
amea addRoom TestCase TestCase Log
Proparties soapll log huplog Jemylog errorlog wsrmlog memorylog script log tools

[79]

Working with Your First TestSuite

You can see that our TestCase includes one TestStep named addRoom. If you double
click on the addRoom TestStep, you will recognize it as a usual SOAP request.

SOAP request is one of the different set of TestSteps included in soapUI TestCases.
soapUI provides you with various TestSteps which perform different types of test
execution tasks. For example, HTTP Request TestStep can be used to send a raw HTTP
message to a web page or a service. If you want to hold the execution of the current
TestCase for a specified time, you can use Delay TestStep. JDBC Request TestStep can
be used to invoke a SQL query in a database while running the TestCase.

As we are exploring soapUI in detail within the context of this book, we will use
almost all of these TestSteps given in soapUI For the moment, let's use the default
SOAP request TestStep as follows:

1. Double-click on the addRoom TestStep which is under addRoom
TestCase in the left-hand side menu of the project. This will open the
SOAP request which can be forwarded to the addRoom operation in
RoomManagementService.

2. Replace the ? entries with appropriate values. For example:

<typ:roomNumber>101l</typ:roomNumber>
<typ:roomType>Standard</typ:roomType>
<typ:roomSize>Double</typ:roomSize>

As we are ready with everything needed to test, we can run the addRoom TestCase
now. However, we will wait until we have completed the rest of the operations in
RoomManagementService.

If you look at the structure of the RoomManagementServiceTestSuite, the test cases
are organized by soapUI under a specific order. addRoom TestCase is at the top and
getRoomDetails TestCase is at the bottom. When running the TestSuite, soapUI
executes the TestCases sequentially as they appear in the tree view of the TestSuite.
Therefore, when we run RoomManagementServiceTestSuite, addRoom TestCase
will be executed first. After that, the deleteRoom TestCase will be executed. Finally,
the getRoomDetails TestCase will be executed.

Therefore, if were to execute this in the default order, after you add a room, it
will be deleted instantly by the execution of deleteRoom TestCase. When the
getRoomDetails TestCase executes at last, you always get a SOAP Fault since the
particular room does not exist. Because of this, you should reorganize the order
of execution of TestCases by moving the getRoomDetails TestCase to follow the
addRoom TestCase in the TestSuite tree view of the soapUI project.

You can do this by clicking on the getRoomDetails TestCase and dragging it to be
placed after addRoom Test Case.

[80]

Chapter 4

getRoomDetails TestCase

Similar to the addRoom TestCase, getRoomDetails TestCase also consists of a single
SOAP request TestStep. Perform the following steps to update the getRoomDetails
TestStep:

1. Double click on the getRoomDetails TestStep. The SOAP request, which will
be sent to the getRoomDetails operation, will be opened up.

2. Replace ? with the same room number we specified in the previous TestCase
as follows:

<typ:roomNumber>101l</typ:roomNumber>

deleteRoom TestCase

We can execute the whole TestSuite once we complete the configuration of
deleteRoom TestCase. deleteRoom TestCase includes a single SOAP request
TestStep. The room which has been added after executing addRoom TestCase is
supposed to be removed from the system by executing the deleteRoom TestCase.
Therefore, follow the same steps as in the preceding TestCases and specify the same
room number which has been previously added in the SOAP request:

<typ:roomNumber>101l</typ:roomNumber>

Running the first TestSuite

In the preceding section, we have added three TestCases under the
RoomManagementService TestSuite. SoapUI provides users with the
facility to execute each TestCase individually as well as everything together.

In each TestCase, you will find the small green arrow icon which can be used
to execute the TestCase alone as shown in the following screenshot:

| < addRoom TestCase
P XSy = w2 6D

[81]

Working with Your First TestSuite

Instead of executing each TestCase one by one, we are going to execute the whole
TestSuite by performing the following steps:

1.

Double-click on RoomManagementServiceTestSuite in the left-hand side
menu of our soapUI project. This will open a detailed view of the TestSuite
where you can see three TestCases which consists of the TestSuite.

We have completed updating all our TestSteps in the preceding section.
Therefore, just click on the run icon (the small green arrow) which appears
at the top-left corner of the TestSuite view.

Once the test execution is over, you will see something similar to the
following screenshot:

"B RoomManagementServiceTestSuite © o B
> X 2 0 @
TestCasas
®

addRoom TestCase

getRoomDetails TestCase

delaeteRoom TestCase

All TestCases are marked in green denoting the success of the test. If you
double-click on the green bars, the associated TestCase will be opened. Then
click on the relevant TestStep. You can see the SOAP requests and responses
which were submitted to the web service.

If you check the response of the SOAP request TestStep of addRoom
TestCase, you will notice that the room has been added correctly to the
system. Similarly, if you check the SOAP response of getRoomDetails
TestCase, it will include the information of the added room as follows:

<ns:return xsi:type="ns:Room" xmlns:ax23="http://exception.
reservation.sample.com/xsd" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" >

<ns:roomNumber>101</ns: roomNumber>

<ns:roomSize>Double</ns:roomSize>

<ns:roomType>Standard</ns:roomType>
</ns:returns

[82]

Chapter 4

With this, we can confirm that the room has been added to the system.

Now, is this the correct approach of verifying the success or failure of our test? Do
we need to open the response messages of each and every request in TestSteps to
find out what goes wrong or not? If this is the way we verify the status of tests,
can this be considered as automated testing? If the preceding is all we can get from
soapUI, what is the advantage of including SOAP requests under TestSuites and
TestCases instead of directly sending them as we did in Chapter 3, First Steps with
soapUl and Projects?

By now, we all have a lot of questions like these. We expect to find answers for all of
these concerns before ending this chapter.

Let's do another simple test. In the preceding RoomManagementService TestSuite,
disable deleteRoom TestCase (right-click on the test case and select the Disable Test
Case option).

Add another room (for example, room number 102) by executing the TestSuite. After
executing the test, you will notice that the new room is added to the system. Now,
execute the TestSuite again.

The test is successful again! You will notice that both addRoom TestCase and
getRoomDetails TestCase are shown as passed with a green status bar. Click on the
finished addRoom TestCase and double-click on addRoom TestStep. This will open
the SOAP request and response as we saw earlier. This time, you will notice that we
got a SOAP Fault as the response as we tried to add a room which has already been
added. The SOAP Fault would be as follows:

<soapenv:Faults>
<faultcode>soapenv:Server</faultcodes>
<faultstring>Room already Exists</faultstrings>

Though we got a SOAP Fault, why does soapUI show it as a passed test?

soapUI does not read our mind. We need to instruct it to fail tests if some conditions
are not satisfied. In other words, we need to have a mechanism to validate the
responses which we get as a result of TestStep execution. We can validate them by
manually reading the responses as we did before. However, when executing complex
test suites automatically, we cannot look and read each and every response manually
to figure out the status of tests. Test assertions come into action in this situation.

[83]

Working with Your First TestSuite

Adding test assertions

Assertions allow users to validate the responses by comparing some properties of
the message with expected values. In soapUI, assertions are applied to TestSteps.
There are many predefined assertions available for us to use in soapUI tests. Some
assertions are applicable only for a specific set of TestSteps whereas some are
common for any TestStep.

You can add any number of assertions to a TestStep. After the TestStep is executed,
all of the associated assertions are applied to the response. The TestStep is failed if
any of the assertions fail.

Let's continue our discussion on assertions with our sample TestSuite.
We are going to add an assertion to addRoom TestStep in our project as follows:

1. Open addRoom TestStep by double-clicking on addRoom TestStep under the
addRoom TestCase in soapUI project.

2. You will notice the add an assertion to this item icon at the top-left corner of
TestStep editor. Click on that icon. The Select Assertion dialog box will open
as shown in the following screenshot:

Select Assertion
Select assertion to add
& Invalid HTTF Status Codes |

Invalid HTTP Status Codes -
M5 Timeout

WS5-Security Statu

3. You can find all assertions provided by soapUI in the preceding dialog box.
During the course of this book, we will cover most of these assertions. In this
example, let's use a few simple assertions.

Not SOAP Fault assertion

First, let's check whether we get a valid SOAP response instead of a fault. For that,
we need to add a Not SOAP Fault assertion which evaluates the response to check
whether it is a SOAP Fault or a valid SOAP response. If the response is a SOAP Fault,
the TestStep will be marked as failed. To add a Not SOAP Fault assertion, perform
the following steps:

1. Select Not SOAP Fault assertion from the Select Assertion drop down and
click on OK.

[84]

Chapter 4

2. Execute the RoomManagementService TestSuite again. This time the status
of the TestSuite will be marked as failed in a red color. You will also notice
that the reason for the TestSuite failure is the addRoom TestCase.

3. Select the addRoom TestCase and open the addRoom TestStep. The
assertion result will be given at the bottom of the TestStep result view
as shown in the following screenshot:

@ addRoom
P e 2 [@ O [] [http:Hlocalhost:8080,'a><is2,’sewices,’RoomManagementSem‘ce ']V
—_ Fsoapenv:En\te]ope xmlns:soapenv="http: //schia ; — |=soapenv:Envelope xmlns:soapenv="http:/schemas. xmn|a
E =soapeny: Header M | E =soapenv:Body= |
=soapenyv: Body= =soapeny: Faul =
% =typ:addRoon= % =faultcode=soapenv: Server=sfaultcode=
o <l--Oprional:--» o =faultstring=Room already Exists=/faultst
=typ: roonlunber=-101=typ: roonMumnbe =detail=
<l--Dptignals--= =ns: RoonManagenentServiceRoonManagenen
=typiroonTypes5ui te=Typ: roomTypes =RoomManagementException xsi:type="
<l--Oprional:--> =axz5:message=Foom already Exist
=typrroonsizesDouble= typ: roomsize: = /RoomManagementException=
=Stypr addRoon= =/ns: RoomManagementServiceRoonManagens
=/ssoapenv: Body= =/detail=
=/s0apeny:Enwvelopes= =/soapeny:Faul =
= /s0apenv: Body=
= =/soapenv: Envelopes =
[DEEE »
Hea .. Agach.. ... W.. Headers (5) Attachments (0)
T X & v (7]

@ Mot SOAP Fault - FAILED
-> Response is a SOAP Fault

I. Assartions (1)‘ Request Log (2)

4. Asyou can see, we got a SOAP Fault as we tried to add an existing room to
the system. We added an assertion, Not SOAP Fault, to check whether the
response is a SOAP fault or not. In this case, the assertion evaluated the test
to be failed as the response was a fault.

5. We know that if we execute this particular TestSuite again and again without
any modification, we should get a SOAP Fault as we did earlier. Now, let's
check whether we get the correct fault string in SOAP Fault. In order to check
that, we can use multiple assertions. We will use XPath Match assertion first.

[85]

Working with Your First TestSuite

XPath Match assertion

An XPath Match assertion is used to compare the result of an XPath expression with a
predefined value. We are going to check the SOAP response of the addRoom TestStep
to evaluate whether it contains the expected fault string in case of a SOAP Fault.

1.

In the same addRoom TestStep which we just used, select the XPath Match
assertion from the Select Assertion dialog box.

Specify the XPath expression and expected result as follows:

e}

XPath Expression: //soapenv:Fault/faultstring

o

Expected Result: Room already Exists

The XPath Match Configuration window will look like the following
screenshot:

XPath Match Configuration

Specify xpath expression and expected result
declare namespaces with declare namespace <prefixs='<namespace>';

Declare

XPath Expression

declare namespace soapenv="http://schemas.xmlsoap.org/soap/envelope /"
J/soapeny Fault/faultstring

.5

Expected Result

Select from current Test [| Allow Wildcards [] lgnore namespace pre... [lagnore XML Comments

Foom already Exists

Cancel

When you specify the XPath expression as shown in the preceding
screenshot, make sure to declare any namespace prefix which you

use in the expression. In our case, we declare the namespace prefix
of soapenv as follows:

declare namespace soapenv="http://schemas.xmlsoap.org/soap/
envelope/"

[86]

Chapter 4

10.

11.

Note that all namespaces must be declared before they are used in
the XPath expression.

If you are adding an XPath assertion based on a valid response message, the
namespaces can automatically be declared by selecting the Declare button in
the XPath expression editor. soapUI adds all namespace declarations of the
current message to the XPath expression.

You can specify the expected result of the evaluation of the XPath expression
in the Expected Result editor. According to the SOAP Fault message in

our example, the expected output of the //soapenv:Fault/faultstring
expression is a string value, Room already Exists.

Similar to the namespace declaration, if you specify the expected
. result based on a valid response message, the result can
% automatically be retrieved by clicking on Select from current
< button in the Expected Result editor. soapUI evaluates the XPath
expression which is specified in the XPath expression editor
against the current message and returns the expected result.

After configuring the XPath expression and the expected result, click on Save
to add the new assertion into the addRoom TestStep.

Execute the RoomManagementService TestSuite again. In the addRoom
TestStep, you could observe two assertion results; a Not SOAP Fault
assertion with a failed status and an XPath Match assertion with a pass state.

Here, the XPath Match assertion has been evaluated to true, as we got a
SOAP Fault with the fault string, Room already Exists.

We have added two assertions for the addRoom TestStep. We have tested
both of them for the failure case. If we execute this TestStep again with a
new room number value, we will get a failure for XPath Match assertion as it
checks the content of a SOAP Fault message. For now, just disable this XPath
assertion by right-clicking on the assertion.

You can add another XPath assertion to check the success case of our test.
For that, you can simply check the content of the SOAP response by an
expression as follows:

° XPath Expression: declare namespace ns='http//sample.com/
reservation/room/types';

//ns:addRoomResponse/ns: return

Expected Result: true

[87]

Working with Your First TestSuite

The Contains assertion

The Contains assertion is another simple and straightforward assertion which
can be used to verify the existence of some text in response messages. Let's add a
Contains assertion to the getRoomDetails TestStep in our example by performing
the following steps:

1.

In the getRoomDetails TestStep, select the Contains assertion from the Select
Assertion dialog box.

The Contains Assertion dialog box will be shown where we can specify the
content to be checked in response.

The response of getRoomDetails can always contain a string value,
Standard, Luxury or Suite depending on the room type. Therefore, we can
check the existence of those strings using a regular expression as follows:

Regular Expression: (?s).*(Standard | Suite | Luxury).*

The Contains Assertion window would look like the following screenshot:

Contains Assertion
Contains Assertion $)
Specify options &
Content: (7s).*(5tandard|Suite| Luxury. >
lgnore Case: [J1gnore case in comparison
Regular Expression: IUse token as Regular Exprassion

In the Contains assertion, the content which we look for can either be a
string value or a regular expression. If we use a regular expression as in this
example, we must check the Use token as Regular Expression check box,
otherwise the expression we specify as the content will be considered as a
pure string value.

Execute the RoomManagementService TestSuite again with a new room
number. The getRoomDetails TestStep will be marked as passed.

We have done some preliminary modifications in our first TestSuite.
However we are not done yet. We have not executed our whole test scenario
yet. Before doing that, let's discuss another important construct in soapUI
functional tests - properties.

[88]

Chapter 4

Adding properties to soapUl tests

Properties can be considered as place-holders in a soapUI project. Properties are used
to parameterize the execution of tests. In soapUI, properties can be defined at many
levels in a project. You can define the properties which are common to your project

at the project level. TestSuite and TestCase specific properties can be defined at their
respective levels. Let's dive into the details of properties with our example project.

In our project, the project specific properties can be defined in the Custom Properties
tab as shown in the following screenshot:

=] [HotelReservationFroject|

© - T GuesiManagementsendcesoapllBinding
- ---I ResarvationserviceSoap 11Binding

- X RoomManagemamsericeSoap11Binding
- B RoomManagementSendceT estsuite
---E“ GuestManagementsenicaT estSuite

| Mavigataor |

[»

Ll

rProject Propartias rCustom Propertias |

JE::AV@EI@EE@

Mame

Value

valuel

For example, we can define a property called Test at the project level as shown in the
preceding screenshot. This property can be accessed from anywhere in our project
through property expansions. For example, $ {#Project#Test}.

A property can also be considered as a variable in a computer program. If we want
to define something which can be used somewhere else, we can use properties.
Therefore, in our sample HotelReservation project, we can make use of the

properties at various levels.

We have organized our project into TestSuites, and each TestSuite deals with one
web service. So, the web service specific properties can be defined at the TestSuite

level by performing the following steps:

1. Select RoomManagementService TestSuite in the left-hand side menu in
our soapUI project. You would observe the Test Properties tab at the bottom
where we can define custom properties specific to the TestSuite.

2. In RoomManagementService TestSuite, we have three test cases and
three test steps. In all these elements, we send the SOAP request message
to a common web service endpoint. Also, the web service endpoint
always consists of the following format :http://<host>:<port>/axis2/

services/<serviceNames.

[89]

Working with Your First TestSuite

3.

Without repeating this everywhere in our TestSuite, we can easily define
some properties at the TestSuite level so that in case the service is moved
into a different host or different environments, or the port or service name is
changed, we do not need to change these in all the references in our project.
We can simply change the value of properties.

Add three properties under RoomManagementService TestSuite as follows:

host = localhost
httpport = 8080
servicename = RoomManagementService

Now, we can access these properties through property expansions from
anywhere in our TestSuite. For example, go to each of the three TestSteps
and open the associated requests, addRoom, getRoomDetails, and
deleteRoom. Go to the Test Properties tab of the request and edit the
endpoint (or you can choose the [edit current..] option from the endpoint
URL) as: http://${#TestSuite#host}:${#TestSuite#httpport}/
axis2/services/${#TestSuite#servicename}.

Reading property values from a file

Usually, the properties are managed externally to the projects so that the property
values can be updated without affecting the project settings. In soapUI, without
defining the property value at the TestSuite, TestCase or TestStep level, we can read
them from an external file. To read the properties from an external file, perform the
following steps:

1.

Go back to the Test Properties section under the RoomManagementService
TestSuite.

Remove the existing values of all three properties.

Create a file called roommgtservice.properties in the filesystem.
The content of the property file can be key-value pairs as follows:

host=1localhost
httpport=8080

servicename=RoomManagementService

Click on Loads property values from an external file icon which appears at
the Test Properties tab as shown in the following screenshot:

[90]

Chapter 4

rTestSuite Froperties |/Test Properties |

t: = L + O |@E|L—;é

Marme . | Value |
host | Loads property walues from an external file|
httpport

senvicenames

5. The Load Properties dialog box will be opened. Browse for the
roommgtservice.properties file (the one just created) in your filesystem
and click on OK.

6. If the properties are loaded successfully, a message will be prompted as:
Added/Updated 3 properties from file.

7. Replace the endpoint URL with the property expansions as we did earlier.
Execute a TestStep (for example, getRoomDetails) and see the HTTP
headers. You will notice that the endpoint URL is constructed by reading
the properties from the file.

Note that the preceding property values are not dynamically loaded
% from the property file into the soapUI project. If you make an update in
"~ the property file, you should reload the file in order to reflect the change.

Transferring property values between
TestSteps

Think about a scenario where you need to extract some value from a response
message and include it in the subsequent request(s). In such a case, we need to have
a mechanism to retrieve a specified value and transfer it to the other elements of the
project. soapUI brings this functionality through the Property Transfer TestStep.

Let's walk through our sample project to understand this important feature.
We still have not associated TestSuites for GuestManagementService and
ReservationService. In order to complete our end-to-end room reservation
scenario, let's add TestSuites for both these services by performing the
following steps:

1. Aswe did in the Creating a TestSuite section, add two TestSuites, one each
for GuestManagementService and ReservationService.

2. Now, you will have three TestSuites with each having three TestCases.

[91]

Working with Your First TestSuite

3. Add a new room by executing the addRoom TestCase of the
RoomManagementService TestSuite. Specify the room details
as follows:

room number=201
room_type=Suite
room_size=Double

4. Add anew guest by executing the addGuest TestCase of the
GuestManagementService TestSuite. Specify the following details
for the new guest:

name=saman
address=Colombo
age = 32

5. Now, we need to reserve a room for the new guest by invoking
ReservationService. We can do this by executing the addReservation
TestCase of the ReservationService TestSuite. You can specify the following
inputs in the addReservation SOAP request:

Room Number=201

Guest Name=Saman

Reserved From = 2012-01-25
Reserved To = 2012-01-27

What are we going to do here? We have implemented the reservation service in
a way so that we would use it to explore some interesting features in soapUL
Therefore, let's assume the checkout procedure of our system is as follows:

The new guest Saman has requested to check out from the hotel. The reception of the
hotel finds out which hotel room was occupied by the guest. Then they access our
hotel reservation application and do a web service call to get the reservation details
associated with the room number. Then, the hotel staff verify that the guest had
occupied the specified room, the check-in and check-out dates, and so on.

Finally, the hotel staff remove the associated reservation record.

Think about this scenario with the web services we used in our system. The details
associated with a reservation is obtained by calling the getReservationDetails
operation of ReservationService. In order to remove the reservation from the
system, we will call the removeReservation operation. The removeReservation
operation can only be invoked with a reservationID. The reservationIDis an
auto generated identity primarily used as the key of a particular reservation. By
invoking the getReservationDetails operation, we can get the reservationID
and then use that particular ID to invoke the removeReservation operation.

[92]

Chapter 4

As a tester of this system, you can manually call each of these operations and do
what is necessary. But how should we use soapUI to correlate the requests and

responses like these?

Our objective is to execute getReservationDetails TestCase and extract the
reservationID from the response, then use that reservationID value in

removeReservationTestCase. S0, we are going to define a property which is

common to both getReservationDetails TestCase and removeReservation TestCase.
The ideal place to define this property is at the TestSuite level. To achieve this,

perform the following steps:

1. Select ReservationService TestSuite from the soapUI project tree and click

on the Test Properties tab.
Add a new property resID and keep the empty value.

Now, select the getReservationDetails TestCase. We are going to create a
Property Transfer TestStep which will be used to transfer a specified value
from a previous TestStep to the subsequent requests. Right-click on the

TestStep element and select Add Step | Property Transfer.

4. You will be asked to specify a name for the step. Enter Reservation
Property Transfer.

5. The Reservation Property Transfer window will be opened for us to
add one or more transfers as shown in the following:

* Reservation Property Transfer
oL Qo NS

Transfers Source: Property.

Chd
Target: Property:

[93]

Working with Your First TestSuite

Here, in the property transfer window, the left-hand side pane lists down the
transfers configured in this TestStep. Let's add a new transfer and discuss the
rest of the features associated with it.

6. Click on the Adds a new property transfer icon at the top-left corner in the
preceding property transfer window. You will be prompted to enter a name
for the transfer. Enter ReservationIDTransfer.

7. Once the transfer is created, you can use Source and Target panes to specify
the relevant XPath expressions to extract and replace property values. First,
let's have a look at the Source pane. In the drop-down box next to Source,
you can see various levels of soapUI projects which can be used as the source
of property transfers. By default the closest TestStep will be shown. In our
case, it is the getReservationDetails TestStep. The drop-down list next to
Property shows the source property which is used in the transfer, which can
either be request, response, or service endpoint.

8. We will select Response as we need to extract the reservationID from the
response message. The Source pane would look like the following screenshot:

oy @ s

Source: |z getReservationDetails | Froperty. |Response -

9. Now, we need to specify the XPath expression to extract a value from the
getReservationDetails SOAP response. The response will be similar to
the following:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Body>

<ns:getReservationDetailsResponse xmlns:ns="http//sample.
com/reservation/res/types">

<ns:return xsi:type="ns:Reservation" xmlns:ax25="http://
exception.reservation.sample.com/xsd" xmlns:xsi="http://www.
w3.org/2001/XMLSchema—instance">

<ns:guestName>saman</ns:guestName>
<ns:reservationID>16</ns:reservationID>
<ns:reserved from>2012-01-25</ns:reserved froms
<ns:reserved to>2012-01-27</ns:reserved_to>
<ns:roomNumber>201</ns: roomNumber>
</ns:returns>
</ns:getReservationDetail sResponse>
</soapenv:Body>
</soapenv:Envelope>

[94]

Chapter 4

As we already have this response in soapUI (if not, run getReservationDetails

TestStep once), we can declare namespaces associated with the XPath

expression by clicking on the ns icon on the toolbar of the property transfer

window. Once you are done with it, specify the XPath expression as

//ns:getReservationDetailsResponse/ns:return/ns:reservationID.

10. Now, we need to specify the target where we want to transfer the value

extracted from the above XPath expression. We can use the Target pane at
the bottom of the property transfer window for that.

11. Similar to the Source, we can select one of the levels of the soapUI project to
which the property value must be transferred to. In our example, we need
to transfer the property value to the resID property which we have defined

at the TestSuite level. Select ReservationServiceTestSuite as the Target
and select resID from the drop-down list next to Property. With this, our
property transfer configuration will be like the following screenshot:

* Reservation Property Transfer
i LS b = @
Transfers

Feservation|DTransfer

Source: [[if] getResenvationDetails v| Property.

declare namespace ns="http//sample.com/reservation/res/types’;
//ns:getReservationDetailsResponse/ns return/ns: reservationlD

L%

Target: [Ei ReservationsenviceTe... | Propery
Fail transfer on error [w] Set null on missing source
Transfer text content [11gnore empty/missing values
[] Transfer to all [] Use XQuery

[C] Entitize transferred valua(s) [Transfer Child Nodes

[95]

Working with Your First TestSuite

12.

13.

In soapU], the properties can be transferred to various targets based
on the requirement. If we want to transfer the extracted value from
a response to the subsequent requests, then we can specify the
XPath expression of the request as the target.

. Butin our example, we do not transfer the reservationID
% to another request in the same TestCase. Instead, we extract
~ a value from a TestStep in getReservationDetails TestCase

and pass it to the removeReservation TestStep which is inside
removeReservation TestCase. In other words, we do not pass
property values in between TestSteps in the same TestCase level.
Because of this reason, we created a property which is common to
both TestCases and assigned the property a value.

We have completed the property transfer settings. Now, we can parameterize
the value of the <typ:reservationID> element in removeReservation SOAP
request to read resID TestCase level property from the preceding property
transfer. To do that, update the removeReservation SOAP request of the
removeReservation TestCase as follows:

<typ:reservationID>${#TestSuite#fresID}</typ:reservationID>

Select the ReservationTestSuite and click on the run icon in the detailed
TestSuite view (Make sure to disable addReservation TestCase since

we have already added the same reservation previously). You will see
that all TestCases will be executed. Have a look at the Test Properties
tab at the TestSuite. You will notice that a value is assigned to the resID
property, which is the autogenerated reservationID given in the
getReservationDetails response.

We went through all the services in our sample hotel room reservation system and
explored various functional testing features of soapUI. As an exercise, you could put
all those together and create a comprehensive TestSuite with various assertions and
try on your own.

[96]

Chapter 4

Summary

Functional testing is a key for a success of any software development project. We can
do functional testing manually or using automated tools. soapUI provides users with
support for functional testing through various approaches. In this chapter we looked
at building our first functional TestSuite to test the sample application which we
developed in Chapter 2, The Sample Project. We discussed the basic constructs of any
soapUI project, TestSuites, TestCases, and TestSteps. We made use of different types
of assertions to verify the output of the tests. Finally, we looked into the soapUI
properties and the transferring of property values between requests and responses.

The next chapter will be an extension of this and we are planning to discuss some
advanced topics of web services testing using soapUI.

[97]

Load and Performance
Testing with soapUl

Web services testing cannot be concluded merely focusing on the functional aspects

of the system. It is always required to do an assessment about the non-functional
requirements expected from a service-oriented solution. Regardless of the architectural
style being used, non-functional aspects must be fulfilled by a system. No matter how
intuitive the user interface of your application is, if it counts in minutes to load the
pages or crashes when multiple users access it, your users will not think again to use
such an application. In most of the situations, non-functional requirements such as
performance and scalability are validated using tools. soapUI, being the de-facto utility
for functional testing of service oriented solutions, can also be used in non-functional
testing. There are some key advantages of using soapUI over other open source tools,
such as Apache Jmeter, for non-functional testing;:

Without redesigning separate tests for non-functional testing, soapUI allows
you to extend the existing functional TestCases as load tests and execute
them with a minimum set of configurations

soapUI provides us with set of pre-built load testing strategies which can be
used out of the box in non-functional testing

soapUI can seamlessly be integrated into loadUI (http://www.loadui.org/),
which is a complete open source load testing solution

We will examine the following topics in this chapter:

Introduction to the performance testing aspects of web services
Planning for web service performance testing

Working with load tests in soapUI

Performance test statistics and reporting in soapUI

Using load test assertions

Load and Performance Testing with soapUl

Non-functional testing of web services

There are multiple non-functional requirements expected from the web services
which are included in your SOA. A few of these non-functional aspects can be:

* Scalability

* Usability

* Performance
* Extensibility
* Reliability

Web services are dealt with relatively complex XML message processing. As one of
the promises of using web services is to communicate with heterogeneous systems,
there are a lot of heavy XML serialization/de-serialization tasks used. These
complexities multiply by greater levels when the messages are enriched with various
Quality of Service (QoS) options such as the WS-* headers. For example, when
SOAP messages are secured with message-level security policies such as encryption,
the SOAP engine has to process all security headers in addition to the raw SOAP
message in order to dispatch the message to the correct method of the service
implementation class. With these facts, we can argue that there can be a considerable
slowness introduced by SOAP web services. Because of that, it is essential to test the
non-functional aspects such as performance and scalability of web services before
moving them into production.

When testing a service-oriented solution, it is of utmost importance to test your web
services individually to assess both functional as well as non-functional requirements.
Before integrating the web services with the rest of the consuming applications or
other web services, you should carry out sufficient level of non-functional testing. In
most cases, when you publish a web service for consumers, you are expected to define
a valid Service-level Agreement (SLA). Hence, it is important to do performance

or scalability tests with individual web services beforehand and verify whether the
published SLA figures are realistic and achievable.

We can identify many reasons for the poor performances of web services and
service-oriented solutions. These include the following;:

* Issues of SOA middleware used in your solution

* Architectural and design issues of web services

* Issues of message routing and transform rules

[100]

Chapter 5

Your overall service-oriented solution can fail and underperform if you choose an
SOA middleware which itself suffers from various performance drawbacks. Even
if your middleware vendor advertises attractive figures about performance, you
should do a comprehensive set of non-functional testing in your SOA with the
selected middleware stack.

Even if you use the best commercial or open source SOA middleware stack, if you
design the solution wrong, you will experience a lot of performance drawbacks. If
the WSDL of the web service is not designed correctly or the service implementation
is not done appropriately according to the volume of messages transferred in your
system, you can expect various performance issues.

Performance degradation of a service-oriented solution is not resulted merely due
to the web services. As we discussed in Chapter 1, Web Services Testing and soapUl,
the configurations used in other key building blocks of an SOA, such as broker and
process coordinator, can also contribute to the performance problems. If there are
routing algorithms which are not tuned properly, the overall throughput of message
processing in your solution can be affected.

Performance testing

Out of the various non-functional requirements, which we have discussed above, our
focus will be on performance testing during this chapter.

As defined on Wikipedia (http://en.wikipedia.org/wiki/

% Software_performance_testing), performance testing is in
= general testing that determines how a system performs in terms of

responsiveness and stability under a particular work load.

Load testing is a specific form of performance testing that is conducted to assess the
behavior of the system under a specific load. In soapUlI, though we generally use
the term "load testing" for all types of non-functional testing, we can do all types of
performance assessments of web services such as load, stress, and endurance.

[101]

Load and Performance Testing with soapUl

Planning for web service performance
testing

As with any types of testing, performance testing must also be planned properly in
order to achieve the correct results. Web service performance test planning can be
described in a set of steps, as follows:

* Identify the expected performance requirements
* Study the service contract
* Analyze service integration scenarios

* Identify message volume, size, and transmission rate

The expected performance requirements can be specific to your needs. For example,
your SLA of a web service includes a phrase stating that the published web service
must serve the consumer within 5 ms at peak hours, or the service should be
available (up and running) 99.99 percent of the time. Depending on the SLA, you
should plan for what types of performance tests need to be done. If the SLA defines
99.99 percent up time, you must plan for a sufficient round of endurance tests to
make sure there are no memory leaks or threading issues when the service runs over
a long period.

One of the major promises of using web services in SOA is to achieve loose
coupling through well-defined interfaces. As we have discussed in previous
chapters, the web service contract, WSDL plays a major role in your SOA. The
performance of your web services are directly related to the design constraints
of the WSDLs. Therefore, it is important to study the message exchange patterns,
operations, bindings, and transports defined in the WSDL to decide the most
appropriate performance testing mechanism.

Though it is recommended to start with assessing the performance of individual web
services first, we cannot expect that the web services stay alone as silos in a typical
service oriented solution. One web service can be consumed by multiple applications
in various different ways. We need to identify these integration patterns when
deciding the performance testing approaches.

There can be multiple types of message exchanging between web services. SOAP,
pure XML messages or JSON messages can be a few examples. Even with one
particular message type, there can be different payload sizes. Some messages can
transmit large binary attachments. Some can include custom SOAP or HTTP headers.
Millions of messages can be consumed by web services per day. Likewise, we need
to have a good understanding about message consumption and volume in web
services when planning performance tests.

[102]

Chapter 5

Using soapUl for performance testing

Let's look at how soapUI can help to achieve the performance objectives of your
web services. As we discussed above, performance testing of web services is not just
running SOAP or XML messages in a loop to overload the service. It should be a
well-planned activity which must be aligned with the performance expectations of
the overall service-oriented solution. As soapUI supports multiple message formats
such as SOAP and JSON through a single interface, you can run multiple types of
performance tests. In your SOA, you can have different types of services, some with
pure SOAP, some with JSON, and some with plain old XML over HTTP. You do not
want to maintain completely different test scripts or tools to verify performance of
web services, which consumes different message types. soapUI allows you to have
everything in a common place and maintain tests from a single interface.

Once your service is secured with a WS-Security policy such as token authentication,
soapUI allows you to extend your functional security tests to performance tests in
no time. This helps you to assess the performance impact on your services after
applying WS-Security policies.

Also, soapUI allows users to configure various load testing options such as
introducing delays in between threads to simulate real-world use cases and run tests
in burst mode to stress test services.

We will look into how soapUI can be used in performance testing in the following
sections. As we did before, we will be proceeding with our sample hotel reservation
application and discuss various performance testing aspects provided by soapUL

Working with load tests in soapUl

In Chapter 4, Working with Your First TestSuite, we created a TestSuite for the
RoomManagementService interface. Similarly, create another TestSuite for
GuestManagementService and name it GuestManagementServiceTestSuite.
We are going to load test the getGuestDetails operation in the GuestManagement
service. To do this, follow these steps:

1. In HotelReservationProject, select the getGuestDetails TestCase under
GuestManagementServiceTestSuite. You will notice the Load Tests (0)
node there.

Right-click on it or press Ctrl + N to create a new load test. You will be
asked to enter a name for the load test; specify getGuestDetailsLoadTest
as the name.

[103]

Load and Performance Testing with soapUl

2. The detailed view of getGuestDetailsLoadTest will be opened as shown in
the following screenshot. There is only one TestStep, getGuestDetails, in
the load test. This is because the getGuestDetails TestCase includes a single
TestStep. If your TestCase contains a number of different TestSteps such as
SOAP requests, property transfer, and JDBC requests, all of them will be

added automatically to the corresponding load test.

soapUl 4.0.1

File Tools Deskiop Help

Ba@m o8 © X EBOR Search Forum|

=- S getGuestDetails TestCase

B gerCuastDatails
= Load Tests (1)
. b getGuestDetallsLoadTest

5 = (& getGuestDetailsLoadTest i

@ I ReservationseniceSoapllBinding P N

= o 2 .

&t X RoomManagementSeniceSoap 11Bind P xXEH B 0@ umit: | |

=|| B RoomManagemantServiceTestSuita Threads: | 5[5 strateay [Simple ~] Test Delay 1000 Random
B GuestManagementservceT estsuite Test Step | min | max | ava | tast | em | tps | bves | bps | ra_[B
@ addGuest TestCase getGuestDatails [l 0 0 0 0)
& o delateGuest TestCase TesiCase: o o 2 9 0

W Sacurity Tests (0) % 8 Show Types: [_ Al -

4

ReservationsenviceT estSuite
T ‘ time 2 ype | step ==
LoadTest Properties =
Property ‘ Valug
MName getGuestDetailsLo
Description
0 entries
LoadTest Log| LoadTest Assertions Setup Script TearDown Script
soapUllog Mg log jettylog errorlog wsrmlog memory log

Let's run this test with the default option and look at the results. You can execute the

test by clicking on the green arrow icon at the load test toolbar. When you start the

test, the progress will be indicated at the upper-right corner.

Limit of a load test

Limit defines the load test execution interval. There are two variables for limit; the

limit value and limit type. In the 4.0.1 Version of soapU]I, there are three limit types;

Total Runs, Seconds and Runs per Thread, as shown in the following screenshot:

[104]

Chapter 5

Limit: | &0[& [Total Runs [o

S Total Runs

Q000 | Rand

:I aneem I:Secunds o
' | cnt | Ips | Funs per Thread | rat IE5

The Total Runs limit type is used to set the number of times the TestCase needs to
be executed during each load test run. If we set 60 total runs, you will notice that the
TestCase is executed 60 times. Therefore, if a particular TestCase has N TestSteps, all
N steps will be executed 60 times.

If we set the limit type as Seconds, the test will be run till the specified time is over.
If we set 60 seconds as the limit, the test will be over in one minute. Once the test is
started, you can see a log similar to the following in the load test log which is at the
bottom of the load test window:

LoadTest started at Sat Mar 31 14:21:25 IST 2012

Once the test is finished, the following log message will be shown:

LoadTest ended at Sat Mar 31 14:22:25 IST 2012

This implies that if you select the limit in seconds, the test will be run for the
specified duration.

The individual message-specific logs that print in the soapUI log

are disabled during load tests to preserve memory and resource
s usage. You will notice the INFO:Disabling logs during

loadtests message in the soapUI log when running load tests.

The Runs per thread limit type can be used to set TestCase runs per threads as
needed. For example, if we set the limit as 5 runs per thread and the thread count is
2, TestCase will run 10 times.

Threads in a soapUl load test

Threads act as virtual users in a load test. If the thread count is set as N, soapUI
creates N number of clones of the associated TestCase and executes them. You can
set as many threads as required based on the capability of handling resources of the
system in which soapUI runs on.

[105]

Load and Performance Testing with soapUl

Load test strategies of soapUl

SoapUI allows you to simulate different types of load on web services using multiple
load test strategies. In the free version of soapUI 4.0.1, we can identify the following
types of load test strategies:

* Simple
e Burst
e Thread

e Variance

Each of these strategies has corresponding strategy type variables such as Test Delay
and Random, as shown in the following screenshot:

Threads: 5[5 strategy [Simple w] Test Delay 1000| Random 05

| Test Step | B_urst X | avy | last | cnt | tps | byte
getCuestDetails i'r:”pled 4} In} Iu} 0 0
(=]
TestCase: | r._a 0 0 0 0 0
Variance

Simple load strategy

The default load test strategy of a soapUI load test is simple. In our
getGuestDetailsLoadTest example, we made use of the simple strategy. In simple
strategy, Test Delay defines the delay between each test run. Random is used to
set the relative amount of randomization for test delay. If Test Delay is 1000 ms
and Random is 0, each test will be executed in intervals of 1 second. If Random

is 1, all tests will be executed in random delay between each other relative to the
Test Delay value.

Let's summarize the simple load strategy using our getGuestDetailsLoadTest
example. Set the load test parameters as follows:

* Threads =2

* Strategy = Simple

* Test Delay = 5000

* Random =0

* Limit = 30 seconds
Now, run the test and observe the results. You will notice that the cnt value (total
number of times a TestStep executed) is increased by 2 in intervals of 5 seconds. As we

have defined two threads, getGuestDetails TestCase will be executed by these two
threads at 5 second intervals (the test delay is 5000 ms and there is no randomization).

[106]

Chapter 5

First you will notice that the cnt value is 2 as two threads started immediately. Then
after 5 seconds, cnt will be 4. Likewise the TestCase will be executed in 5 second
intervals by two threads for 30 seconds. If we set Random as 1, all test runs will be
executed with a random delay between each other.

The simple load strategy is ideal for web service benchmarking.
With the Random value set to 0, you can assess the performance of
your web service in successive SOA middleware version upgrades or
web service updates, and check whether there are any performance
degradation issues due to version upgrades.

A

You can also carry out stress tests with a simple load strategy. By setting no
randomization and Test Delay as 0, you can simulate a burst in the target web service.

Burst load strategy

Burst load strategy can be used to generate a rapid load on the target web service.
With this mode, TestCases are executed in bursts without a pre-defined delay
between each of them.

P XEEH»2 KOO Lmit: [300[%] [Seconds ~ [aEE
Threads: 100[%] Strategy [Burst v| Burst Delay Burst Duration
| Test Step | min | max | ava | last | cnt r| tps | bytes | bps | arr | rat F;|
getGuestDetails 163 215 11 2501 9514 2181.. 71547 0 0=~
TestCase: 4 163 215 11 2501 9514 2181 71547 0 0

If you change the load strategy to burst, the associated load strategy parameters are
displayed at the right as shown in the preceding screenshot. Burst Delay represents
the delay between bursts. In our example, the burst delay is set to 60 seconds, which
means there will be a 1 minute delay in between each burst run. Burst Duration is
used to define the number of seconds that the burst runs on the target service. We
have defined 10 seconds for the burst. In other words, soapUI goes into sleep mode
during the 60 second burst delay and does not send any requests to the target web
service. After 60 seconds, the configured number of threads will start to run and
generate a sudden traffic for 10 seconds (burst duration).

Let's run the test and observe the results. Make sure you have set the burst mode
load testing parameters as follows. It is important to set enough thread count for
burst mode as we want to generate a relatively large traffic in a short period of
time on the target service.

* Threads =100
* Strategy = Burst

[107]

Load and Performance Testing with soapUl

* Burst Delay = 60 seconds
* Burst Duration = 10 seconds

e Limit = 300 seconds

You will notice that, as you start the test, there will be no updates on traffic for 60
seconds. After 60 seconds, you will notice a sudden increase of message count (cnt)
which will last for 10 seconds. Next, there will be another 60 seconds sleep time. This
will continue for 5 minutes.

The recommended stress testing approach is to use burst mode in
soapUI load testing. You can overload the web services and find out
’ breaking points in your services by using burst load testing strategy.

Thread load strategy

Thread load strategy is another useful approach for simulating load. In this strategy,
the thread count will be increased gradually from start threads values to end threads
values. If you want to monitor the behavior of web services with an increasing
thread count, this approach is ideal:

P XEHEH» e Limit: | 502 [Seconds ~|

Thraads: 10|§] strategy |Thread | Stant Threads 1|§] End Threads 10|§]
| Test Step | min | max | avwa | Jast | ent <] tps | bves | bps | err | ra [E]
getGuastDetails 3 226 B8.35 6 27349 1,120... 2794... 842711 0 Q|
TestCase: 3 226 B8.35 6 273491,120... 2794, 842711 0 Q

Let's reconfigure our sample getGuestDetailsLoadTest with the thread strategy:

* Threads =10

* Strategy = Thread

* Start Threads =1

* End Threads =10

* Limit = 60 seconds
As the limit value is set to 60 seconds and the start and end thread values are 1 to 10,
we can assume that each thread runs for at least 6 seconds. Run the test and monitor

the behavior. While the test is running, you could observe that the Threads value at
the left of the strategy bar is increased from 1 to 10 in intervals of nearly 6 seconds.

[108]

Chapter 5

Variance strategy

As the name implies, this strategy varies the number of threads over time. Within a
defined interval, the number of threads will decrease and increase as per the given
variance value simulating a more realistic load on the target web service.

P XEEHew XM Limit: | 50[%] [seconds ~| [EEE
Threads: 10[5] strategy [Variance w| Interval [80| Variance [0.5]
| Teast Step | min | max | avg | last | cnt f| 1ps | bytes | bps | err | rat F;l
getGuestDetails 4 228 8.05 12 33625 1,157... 1234... 870178 0 0|~
TestCase: 4 228 8.05 12 33625 1,157... 1234, 870178 Q 0

We can look at the behavior of our load test with variance strategy. Reconfigure
getGuestDetailsLoadTest with the following values and run the test:

* Threads =10

* Strategy = Variance
* Interval =60

* Variance =0.5

* Limit = 60 seconds

Once you start the test, the thread count shown at the upper-left corner of the
strategy bar will be increased from 10 to 15, within 12 seconds. Next, the thread
count will be decreased to 5. Finally, the test will be completed with the original
thread count (10). The thread count varied by 5 since we set the variance value as 0.5.

As we have used direct JDBC calls without optimizing queries
in our sample hotel reservation system, you may encounter
+ JDBC errors such as com.mysqgl . jdbc.exceptions.jdbc4.
CommunicationsException when stress testing the system
’ with an increased number of threads. Adjust the thread count
to a relatively small value in order to avoid these failures while
trying out samples in this chapter.

Note that, though we have changed the same test with different strategies for the
sake of demonstration, you can have four different load tests, each with a different
load strategy. Then you can run all of these load tests sequentially to generate
extensive load on the system.

BE getiouestDetails TestCase

#-3= Test Steps (1)
Load Tests {4)
[aetCuestDetailsSimplestratzay]
getCuestDetailsBurststrategy
gatCuastDatailsThraadstrategy |
gerGuestDetailsVariancestrategy [

[109]

Load and Performance Testing with soapUl

A closer look at the load test report and

statistics of soapUl

We have already seen the load test results produced by soapUI under different load
strategies. However, we did not discuss what each of the figures is and the usage of
different statistics graphs. In simple words, after each load test execution, soapUI
produces a statistics table with the following fields for each TestStep as well as
summary for the overall TestCase:

* min: This defines the minimum response time taken by TestStep
* max: This defines the maximum response time
* avg: This defines the average response time
* last: This defines the average response time for the last run
* cnt: This defines the total number of times a TestStep has been executed
* tps: This defines the number of transactions per second
* Dbytes: This defines the total bytes transferred
* Dbps: This defines the bytes per second
* err: This defines the number of errors occurred
* rat: This defines the percentage of failed requests
You could run multiple load tests with different strategies and collect the statistics

such as tps, bps, and avg and use them as baseline performance metrics for your
web services.

In addition to the statistics table, you will find the LoadTest Log tab at the bottom

of the load test window, as shown in the following screenshot. In this, we can filter
the load test results by types and TestSteps. We can either filter out log messages or
status of the TestStep execution. You can right-click on each of the failed TestSteps
and select the Show Message Exchange option to look at the request and response
messages to debug the failures. If your load test includes multiple TestSteps, you can
view the log of individual TestSteps at the right corner of LoadTest Log toolbar. You
can do this by choosing the relevant step from the Show Steps drop-down menu.

[110]

Chapter 5

Xy show Types: l’ All -

1

~| show steps

time 4 ype ‘

step

message

?2012-04-0109:19:04:591
2012-04-0108:13:15:192
2012-04-0109:13:15:330
2012-04-0109:13:15:547
2012-04-0109:13:15:556
2012-04-0109:13:16:027
2012-04-0109:13:16:098
2012-04-0109:19:16:171
2012-04-0109:19:16:373
2012-04-0109:19:16:512
2012-04-0109:19:16:709
2012-04-0109:19:16:794
2012-04-01 09:13:16:847
2012-04-01 09:19:17:060
2012-04-0109:19:17:246
2012-04-0109:19:17:287
2012-04-0109:19:17:594
012-04-01 091917 A4

Message

Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status
Step Status

1am Stati

getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
getGuestDetails
natCuactNatail

(287

LoadTest started at Sun Apr 01 09:19:04 IST 2012
TestStep [getCuestDeatails] result status is FAILED; [j...
TestStep [getCuestDetails] result status is FAILED, [j...
TestStep [getCuestDetails] result status is FAILED; [j... |#3
TestStep [getCuestDetails] result status is FAILED, [j...
TestStep [getCuestDetails] result status is FAILED, [j...
TestStep [getCuestDetails] result status is FAILED, [j...
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getGuestDetails] result status is FAILED; [j
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getCuestDetails] result status is FAILED; [j
TestStep [getGuestDetails] result status is FAILED; [j
TestStep [getGuestDetails] result status is FAILED; [j
TestStep [getGuestDetails] result status is FAILED; [j
TactStan [natCusctDiatails] racult statns is EAIED: [

42 entries

LoadTest Log| LoadTest Assertions Setup Script TearDown Script

By default, soapUI load tests generate two useful statistics graphs based on the

test results included in the statistics table. A statistics graph is used to show the
variations of statistics such as tps and bps of a load test as the test progresses. A
statistics history graph shows the accumulated statistics of the load test. Let's run
getGuestDetailsLoadTest with the thread strategy using 1 to 20 threads in 5 minutes
and see the statistics graph. The result will be as follows:

.Statistics for [getGuestDetailsThreadStrategy] :

o B

Seect step: Resaltion g |

m @

e

f .
4]
B ThreadCount M Average (ms) B ErrorCount B Transaction/Sec [Bytes/Sec

[111]

Load and Performance Testing with soapUl

If you look at the statistics graph with the default options, you can clearly observe
how the average response time and the TPS and BPS values change as the thread
count increases. If your TestCase includes more than one TestStep, the statistics
relevant to the particular TestStep can be filtered by the Select Step drop-down
menu at the upper-left corner of the statistics toolbar.

The Resolution drop-down menu is used to set the frequency of updating the
statistics graph. The default value, data updates the graph with same interval as the
statistics table. You should also keep in mind that the statistics graphs show relative
data and do not display the exact statistics related to the TestCase executions.
Therefore, if you want to analyze the exact statistical figures, you should use the
corresponding statistics table. The graph can be used to visualize the variations of
service performance.

You can also export the statistics data into a file and refer to it later. In statistics
toolbar of load test window, there is an option to export statistics to a file. This
is available in the statistics table as well as both history and statistics graphs. If
you export the data, it will be saved as a CSV file so that you can use any tool to
manipulate the graphs or analyze results as you wish.

Using load test assertions in soapUl

Assertions are compulsory for automated tests regardless of the nature of the tests.
As we used many assertions in functional testing, we must use the appropriate
assertions for non-functional tests. soapUI allows you to configure assertions to
verify the performance of web services under test. In this section, we are going to
look at how different types of load test related assertions can be used.

soapUI provides us with five different assertions to use inside load/performance
tests. These are as follows:

* Max Errors

* Step Average

e Step TPS

* Step Maximum

* Step Status

You can configure load test assertions using three different approaches:

e Select the LoadTest Assertions tab at the bottom of the load test editor.
Then, you can add assertions by selecting the add assertion icon at the top
left corner of the LoadTest Assertions tab.

* Right-click on the LoadTest Assertions tab and select Add Assertion.

[112]

Chapter 5

* Right-click on the individual TestStep of the statistics table and select Add
Assertion. You will see the Add Assertion window as follows:

Add Assertion

ﬁ Select assertion type to add
Max Errors -

Max Errors
ﬂStep Anmrage
Step TPS

The Max Errors assertion

The Max Errors assertion can be used to verify whether the associated TestCase or
TestStep does not exceed the given max absolute errors or max relative errors count.
If you select the Max Errors assertion from the Add Assertion selection box, the
corresponding assertion dialog will be opened where you can specify the options
for the assertion. In the Max Errors assertion, you can specify a user-friendly name
to uniquely identify the assertion. Max absolute errors can be used to define the
maximum number of errors that the test can accept before failing.

Configure the options in the Max Errors assertion as follows for our sample
getGuestDetailsLoadTest:

* Max absolute errors = 30

* Maxrelative errors =1

* TestStep = Any

Start the test and after few seconds stop Axis2Server.sh so that some of the
TestSteps will fail. When the error count exceeds 30, an error message will pop up:

LoadTest failed; Maximum number of errors [30] exceeded for step
[getGuestDetails]

Note that we have set the Max relative errors value to 1, so that all absolute errors
will be treated as relative errors. Max relative errors define the percentage of the
absolute errors and if we want to take all errors into consideration, we can set Max
relative errors to 1.

[113]

Load and Performance Testing with soapUl

The Step Average assertion

The Step Average assertion can be used to assert the average step time of a TestStep
or TestCase in a load test. You need to specify the following options for the Step
Average assertion:

Name: This is any user-friendly name.

Minimum Requests: Before applying the assertion, the number of requests
that should be processed by soapUI must be specified here.

Max average: This is the maximum allowed average step time value. If the
average value exceeds this, an assertion error will be logged.

Max errors: This defines the maximum number of errors allowed before
failing the test. If we set -1 as the max errors, the test will not fail on errors
and the errors will be recorded in LoadTest Log.

Sample Interval: Step Average cannot be measured by applying an assertion
to each and every TestStep run. Instead, the assertion is applied at the
intervals defined in the sample interval field. Suppose the sample interval is
set to 10, the assertion will be applied on each 10 second intervals to assert
whether the actual average exceeds the Max average.

Configure the previous options in the Step Average assertion as follows for our
sample getGuestDetailsLoadTest:

Minimum Requests: 20
Max Average: 1

Max errors: 10

Sample Interval: 10
TestStep: getGuestDetails

When you run the load test, an error message will pop up after you get 10 errors as
shown in the following screenshot:

Error ‘—'&

@ LoadTest failed; Maximum number of errors [10] for assertion [Step Average] exceeded

oK

[114]

Chapter 5

In the preceding assertion configuration, if you specify -1 as Max Errors, the test will
not fail. Instead, you will notice the messages similar to the following in LoadTest Log.

Average [15] exceeds limit [1] [thread index=4]

Step TPS assertion

The Step TPS assertion is similar to the Step Average assertion, however it checks
that a TPS value of a TestStep does not go below a specified value. Let's add a Step
TPS assertion to the sample getGuestDetailsLoadTest and look at how it works. We
can specify the following values for the assertion options:

* Name: We can specify any user-friendly name.

* Minimum Requests: Before applying the assertion, the number of requests
that should be processed by soapUI must be specified here. We will specify
10 as minimum requests.

* Minimum TPS: Minimum transactions per second value. If the actual TPS
value of TestStep is lower than this value, an error is logged in LoadTest Log.
We will set 10 as the minimum TPS value.

* Max errors: Maximum number of errors allowed before failing the test. We
will set -1 as the max errors, so that the test will not fail on errors.

* TestStep: The target TestStep which needs to be asserted. We will specify
"Any" as the value to apply the assertion for any TestStep in the load test.

Run the TestCase and check LoadTest Log. You will see error messages such as the
following in LoadTest Log;:

TPS[5] is less than 1limit[10] [threadIndex=1]

The Step Maximum assertion

The Step Maximum assertion is another assertion included in soapUI load tests. It
can be used to assert the maximum response time of TestStep or TestCase. As we did
before, we will add this assertion into our sample test and look at the behavior. The
following are the options associated with the Step Maximum assertion:

* Name: We can specify any user-friendly name.

* Minimum Requests: Before applying the assertion, this is the number
of requests that should be processed by soapUI We will specify 10 as
minimum requests.

[115]

Load and Performance Testing with soapUl

Max time: This specifies the maximum response time allowed for the
TestStep. If the maximum response time exceeds the given Max time value,
an error is logged in the LoadTest Log. We will specify 5 as Max time.

Max errors: This defines the maximum number of errors allowed before
failing the test. We will set -1 as the max errors, so that the test will not fail
ON errors.

TestStep: This is the target TestStep which needs to be asserted. We will
specify Any as the value to apply the assertion for any TestStep in the
load test.

Run the TestCase and check LoadTest Log. You will see error messages similar to
the following in the LoadTest Log.

Time[11l] exceeds limit [5] [threadIndexl]

The Step Status assertion

The last load test assertion which needs to be discussed is the Step Status assertion.

The Step Status assertion is added to any load test by default. This assertion simply

verifies the execution status of the associated TestCase or TestStep. You will find the
following options associated with the Step Status assertion:

Name: This is a user-friendly name to identify the assertion easily.

Minimum Requests: The minimum requests option determines how many
requests should be processed by soapUI before applying the assertion.

Max errors: Maximum number of errors allowed before failing the test. We
will set -1 as the max errors, so that the test will not fail on errors.

TestStep: The target TestStep which needs to be asserted. We will specify
"Any" as the value to apply the assertion for any TestStep in the load test.

Run the test and check Load Test Log. You can introduce a failure by shutting down
Axis2Server or disconnecting the MySQL database connection.

The Minimum requests option is applicable for most of the load
test assertions. It is advised to specify an appropriate value for this

% in order to avoid assertion errors during the startup of a load test,
and allow TestSteps or TestCase to run freely for some time before
measuring up various figures.

[116]

Chapter 5

LoadTest options

We can set some options, which are applicable for all TestSteps inside a particular
load test regardless of the usage of different assertions. By clicking on the LoadTest
Options icon in the toolbar of the LoadTest window, you can open the LoadTest
Options dialog box. Some of the important settings included there are:

* Thread Startup Delay: We can introduce a delay in milliseconds before
starting any thread. The default value is zero therefore there will not be a
delay when starting threads.

* Close connections between each request: This is to set connections as
keep-alive. By default, soapUI uses keep-alive connections.

* Sample interval: This is used to specify the time in milliseconds to set the
interval to collect statistics during a test run. In order to preserve resources
of the machine which runs soapUI, we need to set an optimum time for the
sample interval.

We are not going to discuss all settings given in LoadTest options. You can hover the
mouse pointer over any option and find out the purpose of these options.

Similar to the functional tests, soapUI allows you to specify setup and tear down
scripts for load tests. Also, there is a set of load test related properties available for
you to use in scripts.

Also, load tests can be invoked through command-line or shell, allowing you to
integrate them into continuous integration systems or automated test frameworks.
We will look into the command-line test runners in Chapter 13, Automated Testing
with soapUL.

Summary

Non-functional testing is an extremely important activity in any service-oriented
project. Performance, scalability, and usability are some of the key non-functional
attributes expected from any application. In this chapter, we looked into the usage of
soapUI to do performance tests of web services. First, we discussed why it is important
to consider performance implications in an SOA. We proceeded with describing
performance test planning of web services. Next, we looked at how soapUI can be used
for various performance tests with our usual hotel reservation sample project. Finally,
we discussed LoadTest-specific assertions provided by soapUL

[117]

Web Service Simulation
with soapUl

Simulation is not specific to the world of web services and SOA. It is coupled with
most of the industrial scenarios. When manufacturing a new model of your favorite
motor car, it usually goes through multiple simulations to mimic the representation
and behavior of the final product. The massive and complex constructions are never
done without simulations. Similarly, in large service-oriented projects, there are
many situations where we need to mimic the behavior of web services and other
entities that comprise the solution. Mock services or in simple terms, mocking, is a
highly useful and important practice in the development and testing of web services.
We will cover the following topics in this chapter which are related to the simulation
of web services in soapUI:

* Mocking in web services testing
* Mock services with soapUI

* Dispatching styles of soapUI mock operations

* Using static and dynamic mock responses

Mocking in software testing

Before we delve into the details of web service simulation, it will be beneficial to
discuss the basic use of mocking in software testing.

Web Service Simulation with soapUI

If you are familiar with unit testing, mock objects should not be a strange

term. Specially, in Test-driven Development (TDD), mock objects are used to

test the functionality of a feature without actually calling the complex and real
implementation classes. When the objects you are testing rely on other objects or
are bound with complex environments, it is not always practical to instantiate them.
Instead, a mock object, which conforms to the interface of the real object, can be
used to mimic the behavior of the original. For example, when you are building an
application, which uses a database, you do not want to wait till the database team
implements the database-specific code. Instead, you would use mock objects to
simulate the database modules.

. The complete explanation of mock objects and TDD is out of the
% scope of this book . You may find Test-Driven Development: By Example
s (http://www.amazon.com/Test-Driven-Development -Kent -
Beck/dp/0321146530) by Kent Beck, a useful reference.

Mocking in web services testing

Mock services come in handy for web services testing in many ways. In simple
terms, when you do not have access to the real web service, you have no option other
than to simulate that service. Apart from that, what are the common situations where
service mocking is highly desired?

Mock services and contract-first web service
development

You may have remembered that we discussed two SOAP web services development
approaches in Chapter 1, Web Services Testing and soapUI — code first and contract first.
Though we followed the code-first methodology when implementing our sample
web services project during Chapter 2, The Sample Project, the recommended web
service development practice is contract first. In the contract-first methodology, you
start from the web service's contract, in other words, the WSDL. Though there are
many reasons for recommending contract first as the better choice over code first,
the primary reason is its flexibility. When you start with the service implementation
class, you cannot guarantee that the auto-generated WSDL remains intact when

you change your SOAP engine (service container). Also, if you change a method
signature of the service implementation class, the WSDL will also be changed
accordingly, which directly affects the consumers of your service. However, if you
start with WSDL, you can minimize such changes of consumers by introducing
proper versions for schemas.

[120]

Chapter 6

In contract-first methodology, the WSDL is written first by gathering the business
requirements of the web service. Once the WSDL is defined, the service developers
implement the business logic of the web service. Usually, the SOAP engine (or web
service development framework) provides the developers with tools to generate the
service skeleton so that the developers can focus on the business logic.

While the service is being implemented in a preferred programming language,
deployed in the web service's container, what should the testers do? Do they just
focus on designing the test cases?

In agile methodologies, we compete with time. There is no time for waiting or idling,
but every second is spent effectively to be productive. In service-oriented solution
testing, it is always important to begin the testing cycle as early as possible. Testers
are not expected to wait till the web service implementation and deployment is over.

Mock services are a great way of getting testing early into the picture of a
service-oriented project. Once the WSDL of the web service is ready, you can
simulate the service implementation and start testing the consumer applications.

Simulating services that are not accessible

Regardless of the service development approach (contract-first or code-first), there
are situations in which some of the web services are not in your control. Due to the
heterogeneous and distributed nature of the components of SOA, some of your
services may connect to services which are outside of your organization. Sometimes
these services are blocked by firewalls. In some cases, these external services are not
completed though the internal web services are ready for testing. Sometimes, your
service-oriented solution may integrate with commercial pay-per-use web services.
For testing, it is not cost effective to use such services. In these and many other cases,
mock services help you to mimic the behavior of inaccessible, unavailable, or paid
web services.

Dealing with test environmental restrictions

As we discussed before, early testing is highly desirable in agile testing, specially
with service-oriented solutions. When building complex SOA-based solutions, which
has multiple integrations, you cannot confirm the end-to-end functionality of your
system till all services are deployed and integrated with various sub systems. For
example, if you want to test a monitoring module of a solution, how do you test it if
all services are not ready? Or else, if you want to test a message transformation rule
at the Enterprise Service Bus (ESB) layer, how should you continue testing if the
associated web service is not available? Mock services can be used to overcome

these limitations by adding them instead of the real services in test setups.

[121]

Web Service Simulation with soapUI

In the following sections, we will look into how the MockService functionality of
soapUI can be used to achieve the above objectives.

Mock services with soapUl

We briefly discussed service mocking in general and the purpose and objectives
of service simulation. Now, it is time to apply the theory into practice. As we did
in previous chapters, we will explore the soapUI service mocking features by
simulating web services in our sample Hotel Reservation System.

soapUI allows you to create a simulation of the web service from its WSDL.
This simulation is known in a soapUI project as a MockService. A consumer
application can connect to the MockService as if it is the real web service.

Suppose one of the web services of our sample Hotel Reservation System are
consumed by some other service-oriented solution. Let's call this solution solution
B for simplicity. The solution B is almost done whereas the services of our Hotel
Reservation System are still being implemented. The quality assurance team of
solution B follows an agile testing approach and they do not wish to wait until all
services of the Hotel Reservation System are ready. Instead, they are going to create
mock services to mimic the functionality provided by hotel reservation services and
continue the testing of solution B.

In this example, we represent the testing team of solution B, so we
do not have access to any of the web services that we created in the
previous chapters. However, we do have the WSDLs of those web
services. Therefore, I assume that you saved a copy of the WSDLs

% of GuestManagementService, RoomManagementService, and

T ReservationService in your filesystem during the previous chapters. If

not, simply access http://localhost:8080/axis2/services/
GuestManagementService?wsdl through your browser, open the
source view, and save the file as GuestManagementService.wsdl.

We are going to look into the details of how soapUI assists the testers of solution B
in service simulation:

1. Create a new soapUlI project. Name it HotelReservationMockServices.
Browse for GuestManagementService.wsdl in your filesystem and enter
it as the initial WSDL.

Accept the default settings and click on OK.

3. Once the project is created, remove the SOAP-1.2 binding as we did in the
previous samples.

[122]

Chapter 6

Now, we can create a mock service to simulate the GuestManagementService.
Before that, we should discuss the MockService model used in a soapUI project so
that we will have a better understanding when moving further with the examples.

The structure of soapUl MockService

We can identify three basic elements in the soapUI MockService
model —MockService, MockOperations, and MockResponses.

MockService

MockOperation 1 MockOperation n

MockResponse 1 MockResponse 2

A MockService can include any number of MockOperations that in turn contain
multiple MockResponses as shown in the preceding diagram. MockOperations
represent operations of the WSDL that is imported in the soapUI project.
MockResponses are the response messages that correspond to those operations.
When you create a MockService and ask soapUI to run the service, it can act as

the real web service simulation. As the MockService is created from the WSDL

of a real web service, the MockOperations are automatically created from the
<wsdl:operation> element under each binding of the WSDL. As the schema of the
WSDL contains the definition of the SOAP responses, MockResponses are created by
soapUI from the respective response elements corresponded to operations.

[123]

Web Service Simulation with soapUI

Let's create a MockService for GuestManagementService and continue our discussion:

1. Select the HotelReservationMockServices project that we created earlier and
right-click on the GuestManagementServiceSoap11Binding interface. Next,
select the Generate MockService option.

Generate MockService

Generate MockService L,
Set options for generated MockOperations for this Interface ﬁ

MockSservice: <Creates>

Operations: addGuest
[] deleteGuest
getCuestDetails

Select all Unselact all

Path: |fmockGuestManagementServiceSoap11E!inding |

Port: |8088 |

Add Endpoint: [w] Adds the MockSenices endpoint to the mocked Interface

Start MockService: [] Starts the MockService immediately

2. We do not expect to simulate all three operations in
GuestManagementService. Hence, select the addGuest and
getGuestDetails operations as shown in the preceding screenshot.

3. When generating the MockService, we can change the URL where the mock
service is hosted. By default, the service is hosted in a path which is prefixed
with the interface name. For example:

/mock<interfacename>

4. soapUI hosts the generated mock service in the embedded Jetty server which
runs on port 8088. We can change the default port as needed.

5. When you click on OK, as shown in the preceding screenshot,
you will be asked to enter a name for the MockService. Enter
GuestManagementMockService.

[124]

Chapter 6

6. Once the MockService is created, soapUI will show the MockService details
with the corresponding MockOperations as follows:

soapUl 4.0.1 - |
File Tools Deskiop Help
Bal 8484 0 X EO0R Search Forum| g8 @
§ = 1 GuestMan MockService 7
]
g Bh HotzlReservationMockSarvicas boIX
= I GuestManagememsServiceSoap11Binding rm‘

= ¥ GuestManagemanthockService @
< addCuest
< gatGuastDetails . addGuest

Bh HotelResenvationProjact

& getGuestDetails

[MockService Properties | Test Propertias = —
MockService Description
Propery | Walue [5|
g:;n;ip”m Cuzsthlanagementiiockse... Properties StartScript Stop Script OnRequest Script AfterRequest Script
Path /mockGuastManagemsants...
Fort EREE Enable O 5
Match SOAF Version false
Require S0AP Action false
Dispatch Responses false
Incoming Wss

Default Outgoing Wss

Message Log

[l

Properties soapUl log jemylog errorlog wsrmlog memory log

MockService details

The MockService Properties tab at the left-hand side pane can be used to edit the
default properties of the MockService. For example, you can emulate WS-Security
for your service through the Default outgoing WSS property. If you want to verify
how your consumer applications react when sending a SOAP message without a
SOAP Action HTTP header, you can set the Require SOAP Action property to
true. In the same way, you can edit the default mock service properties and test

the consumer applications.

[125]

Web Service Simulation with soapUI

In the right pane of the above screen, soapUI allows to do some pre- and post-
processing for the MockService. Start Script can be used to call a Groovy script

at the time of the mock service start. Usually, if we want to initialize some global
resources such as database connections, we can call Start Script. Stop Script is
called when the mock service is stopped. When the MockService receives a request,
OnRequest Script can be called. For example, if you want to mediate the original
request before dispatching to service, you can include a Groovy script as OnRequest
Script. Similarly, AfterRequest Script is called after a request is processed by the
MockService.

Once we check all properties and options associated with the MockService, we can
start the mock service by clicking on the green arrow icon at the upper-left corner of
the preceding screen. The status of the MockService can be found at the soapUI log at
the bottom pane.

INFO:Started mockService [GuestManagementMockService] on port [8088] at
path [/mockGuestManagementServiceSoapllBinding]

MockOperation details

Double-clicking on one of the MockOperations in the preceding screen will bring up
the MockOperation details window as shown in the following screenshot:

soapUl 4.0.1

File Tools Deskiop Help

Bal @4 © XEOM Search Forum | |28 @
5 = " addGuest :
@ - o
= | . i 8 Interface [GuestManagementServiceSoapllBinding v| Operation(addGuest] @
) HotelReservationMockservices
= _ - X GCuestManagementSendceSoap11Binding MockResponsas

; E}X GCuestManagementMockService H

; =% addGuest

“if Response 1 if Response 1

| @ getGuestDetails =

Lo

MockOperation Properties

Property | value Dispatch: |SEQUENCE ~| Default Response: |Response 1 -

Mame addCuast SCRIPT

Description SEQUENCE

WsDL Operation addGuast QUERY_MATCH

Dispatch Style SEQUENCE WPATH

RANDOM
Dispatch (SEQUENCE)
|-
4] D
soapUl log |http leg| jettylog errorlog wsrm log memory log

[126]

Chapter 6

Out of the many properties given in MockOperation details window, we should clear
ourselves about the Dispatch style property as it is utmost important in determining
the mock response.

Dispatching styles of MockOperation

A MockOperation can include multiple MockResponses. Therefore, when we send

a request to the MockService and subsequently dispatch to the MockOperation,
there should be a way to determine to which MockResponse the request must be
forwarded to. The dispatch style of the MockOperation is used to select the preferred
dispatching mechanism for mock responses. The soapUI Mock Services model
supports the following dispatch styles:

SEQUENCE: This is the default dispatching style. With this style, when
sending requests to the MockOperation, MockResponses are selected
iteratively one after the other as they appear in the MockResponses list.

For example, when we have two MockResponses, responsel and response2
under the MockOperation, if you send two requests to the MockService,
the first request will be dispatched to responsel and the second will be
dispatched to response2.

SCRIPT: This dispatching style gives the ability to control responses based
on Groovy scripting. The MockResponse is determined by the execution of
the specified script.

RANDOM: This style chooses the MockResponses randomly without
any order.

QUERY_MATCH: This style returns MockResponse by evaluating multiple
XPath expressions. For example, you can specify multiple query matches that
are basically XPath expressions applied on requests, the expected value of
the XPath expression and the MockResponse to which the request must be
dispatched to.

[127]

Web Service Simulation with soapUI

Suppose we need to dispatch requests to MockResponses based on the
different values of the requests. In that case, we can define multiple XPath
expressions to extract the desired values and forward requests to the
corresponding MockResponses as shown in the following screenshot:

Projects

E-@ HotelReservaticnMockServic

#- T GuestManagementServic

&I GuestManagementiock|
= addGuest

-+ 5% addGuest Succes:

2% addGuest Fault R

> getGuestDetails

2! ValidResponse

¢ soapFaultRespon:

- if EmptyResponse

. addGuest

i & InterFace[GuestManaaementSemcaSoaallEmqu | Operation [addGuest

MockResponses

20
ar

if addGuest Success Response

i¢ addGuest Fault Response

Dispatch: |QUERY_MATCH | Default Response: |addGuest Fault Respon... +

N
b i 2 3 "= Extract

matchl

match2 KPath: declare namespace typ="http//sample.com/reservation/guest/types’;
declare namespace soapenv='http://schemas.xmlsoap.org/soap/envelo
/itypiaddGuest/typiname

Expected Value: |valid

Dispatch to: addGuest Success Resp... v

Disabled: [] Disables this Query

- . maaaaaaaD

|

| Dispatch (QUERYMATCH)|

In the preceding example, there are two Mock Responses, addGuest Success
Response and addGuest Fault Response. There are two XPath match
queries, matchl and match2; each of them act on the request and extract
some value which is defined under the Expected Value field in XPath query
editor. If the value returned by the XPath expression matches the expected
value, the request is forwarded to the response which is defined under the
Dispatch to drop-down list. Using this style, you can use different XPath
queries to evaluate different types of requests and dispatch the requests to
MockResponses appropriately.

* XPATH: This dispatching method is used to dispatch the request to a

response

based on the XPATH expression result of the request.

We will look into the use cases of some of the important MockResponse dispatching
styles later in this chapter.

[128]

Chapter 6

MockResponse details

Double-clicking on a MockResponse in the MockResponses list in a MockOperation
detail window will bring up the MockResponse editor.

soapUl 4.0.1 -8
File Tools Desktop Help
Bad @08 O XEOE S=arch Forum & @
5 = ¢ Responsel 7 i E
g =& HotelRasarvationMockSanvices - .
= &I GuestManagementServiceSoap11Binding # @O %+ @
= E ‘2 addGuest = |=soapenviEnvelope znins:soapenv="htt/& ; 1 [<soapenv:Envelope xnlns:soapenv="htrp: /- &
{22 Request 1 § =soapeny:Header, s 1 § <soapenv: Headers
: mHEE =soapeny:Bodys |—| =soapenw:Bady=
B deleteGuest z =typ:addouests z =typ:addGuestResponses
& getGuestDetails o <l--Optional:--» = | <l--Dptionali--»
- L GuastManagementMockSance <typinane=T=/typ: nanss <typ:return=false</typ: return=
Bt addfuest - <l--Oprional:--= = /typ:addiuestResponses
<typraddress=T</oypt address) </s0apeny: Bodys
rnuluckRespunse Properties rCustum Properties <l--Dptional:--» =/soapeny: Envelopes
<typ:agesT=/typ:ages
Froperty ‘ Value =/typ:addiuest=
MName Response 1 =/s0apenyiBody=
Description =s/s0apenviEnvelopes
Message Size 332
Encoding UTF-8
Outgoing WSS
Enable MTOM false
Force MTOM false
Enable multiparts true
Encode Attachmeants false L
Strip whitespaces false 4 4
Remove Empty Cantent false [« [L4 B | [»
Entitize Propenties false
Enatle Inline Files false Headers (6) Attachments (J) Script Headers (1) Attachments (3) W3-4
Response HTTP-Status 1:1
Response Dalay 0
Response Compression <autox |
WS-Addressing false
||
4] ID
Properties sgapUllog http log jettylog error log memory log

Similar to the MockService and MockOperation, we can configure the properties
associated with the MockResponses from the left-hand side pane. We can configure
the HTTP headers of the response from the Headers section in the right-hand side
pane, under the mock response editor. Also, we can even insert an attachment for the
response. A response-specific dynamic content can also be generated by specifying a
script at the response level.

soapUl mock services in action

In the following sections, we will move forward with our sample MockService with
trying out the various options which we discussed previously. First, we will look
into the simplest use case, where we use a static MockResponse.

[129]

Web Service Simulation with soapUI

Static responses — the basic scenario

Creating a static MockResponse in soapUl is pretty straightforward. You may
question whether the static responses are used in real-world scenarios. Though
static MockResponses are simple they are of course very useful in a lot of enterprise
integration test scenarios.

Service chaining

In a typical service-oriented solution, the messages can be transmitted through
multiple hops before reaching the destination. We cannot always expect single client
to service message exchange. Service chaining is a concept where the response of
one service acts as an input for another service. When testing such a service chaining
scenario, static MockResponses can be used if some of the services are not completely
available at the time of testing.

Content-based routing

If an Enterprise Service Bus (ESB) is used as a broker in your SOA, you should test
the various routing rules defined at the ESB level. In case the web services are not
ready for testing, you can use a static MockResponse and test the routing rules. You
can even set custom HTTP headers in MockResponses and test the HTTP header
based routing mechanisms.

Message transformation

Static MockResponses can be used to test the message transformation rules usually
defined at the ESB layer of your service-oriented solution. Suppose there is an XSLT
transformation before sending back the web service response in your solution. If the
web service is not available for testing, you can use a static MockResponse and test
the XSLT transformation rules.

We will create a static MockResponse to simulate the getGuestDetails operation.
To do this, follow these steps:

1. Double-click on the getGuestDetails operation of the operations list which
appears under GuestManagementMockService. The getGuestDetails
MockOperation details window will be opened and you will see one
response (Response 1) in the list. Double-click on Response 1 to open the
MockResponse editor.

[130]

Chapter 6

2.

4.

Replace the ? values of the response as follows. As you can see, this is a static
MockResponse with hard-coded data:

<typ:getGuestDetailsResponse>
<typ:return>
<typ:address>Colombo, Sri Lanka</typ:address>
<typ:age>30</typ:age>
<typ:name>Saman</typ:name>
</typ:returns>
</typ:getGuestDetailsResponses>

For any request which is received by GuestManagementMockService,

this particular static response will be returned. Now, select

the SOAP request of the getGuestDetails operation from the
GuestManagementServiceSoap11Binding interface. Change the endpoint
tohttp://hostname:8088/mockGuestManagementServiceSoapllBinding
so that the request will be forwarded to the MockService and submit

the request.

You will get the static response that we defined above.

As we discussed earlier, the static response are very useful for the test scenarios
where the actual data of the response payload is not important.

Using dynamic responses

In our first example of the dynamic responses, we are going to simulate the
behavior of the getGuestDetails MockOperation with multiple responses
instead of a hard-coded static response. The response will be chosen according
to the guestName value of the SOAP request:

1.

Rename Response 1 of getGuestDetails MockOperation to something
meaningful; for example, validResponse.

Add two more responses and name them soapFaultResponse and
EmptyResponse.

[131]

Web Service Simulation with soapUI

3. Now, you will have three responses: validResponse, soapFaultResponse,
EmptyResponse. Our objective is to see how our system reacts to

these responses.

soapUl 4.0.1 o
file Tools Deskiop Help
abB 08 € XEO0B Search Farum| |th @
s = % getGuestDetails : i S ¥ H
] =~ X GuestManagementSaniceSoap11Binding
& . s s0 -
3 &2 addCusst i & Imerface [GuastManagememseniceSoan11Binding] @
=z 2 Request 1 | MockResponses
-+ daletaGuast .
B¢ getGuestDatails o
.32 Request 1 ¢ ValidResponse
= K GuesthManagementMockService i soapFaultResponse
G 2l
£ = i EmpryResponse
(MuckRespunse Properties rCustum Properties
Property | WValug
Mame EmptyResponse
Description
Message Size 544
Encoding UTF-8
Outgoing Wss
Enable MTOM false
Force MTOM false
Enable multiparts true
Encode Attachmeants false
Strip whitespaces false Dispatch: [SEQUENCE ~| Default Response: |ValidResponse -
Remowve Empty Content false
Entitize Properties false
Enabile Inline Files false 7
Responss HTTP-Status Dispatch GEQUENCE)
Response Delay Q
Response Compression <auto> [~
W5-Addressing false
4 »
Properties soapUl log hitp log jettylog error log memaory log

4. Double-click on soapFaultResponse and replace the content with the
following soap Fault message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/

envelope/">
<soapenv:Body>

<soapenv:Fault>
<faultcodes>soapenv:Server</faultcode>
<faultstring>Guest does not exist</faultstring>

<detail>

<ns:GuestManagementServiceGuestManagementException
xmlns:ns="http//sample.com/reservation/guest/types" >
<GuestManagementException xsi:type="ax21l:GuestM
anagementException" xmlns="http//sample.com/reservation/guest/
types" xmlns:ax2l="http://exception.reservation.sample.com/xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

[132]

Chapter 6

<ax2l:message>Guest does not exist</
ax2l:message>
</GuestManagementExceptions>
</ns:GuestManagementServiceGuestManagementExceptions>
</details>
</soapenv:Fault>

</soapenv:Body>
</soapenv:Envelope>

EmptyResponse should be something like the following:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:typ="http//sample.com/reservation/guest/types">
<soapenv:Header/ >
<soapenv:Body>
<typ:getGuestDetailsResponse>
<typ:return>
<typ:address></typ:address>
<typ:age></typ:age>
<typ:name></typ:name>
</typ:returns>
</typ:getGuestDetailsResponses>
</soapenv:Body>
</soapenv:Envelope>

In this example, the response is chosen out of the above three
MockResponses. The selection is based on the <typ: guestName> value in
the SOAP request. If the value is "valid", we will dispatch the request to
the ValidResponse MockResponse. If the value is "fault", the request will
be dispatched to the soapFaultResponse MockResponse. Finally, if the
guestName value is "empty", the EmptyResponse MockResponse will

be returned.

To achieve this, we cannot use the default SEQUENCE dispatch style

which simply iterates through the three response messages. We need to
decide the response based on the content of the request. Therefore, we need
to have some kind of a script to read the request and dispatch to the relevant
MockResponse. We are going to use the SCRIPT style for dispatching.

In getGuestDetails MockOperation editor, select SCRIPT from the Dispatch
drop-down list.

Add the following script:

def payload = new com.eviware.soapui.support.

XmlHolder (mockRequest . requestContent)

def guestname = payload["//typ:getGuestDetails/typ:guestName"]
def response = "";

[133]

Web Service Simulation with soapUI

if (guestname.equals ("valid")) {
response="ValidResponse"

}else if (guestname.equals("fault")) {
response="soapFaultResponse"

}else if (guestname.equals ("empty")) {
response="EmptyResponse"

}else {
response="ValidResponse"

}

return response

Here, the requests are dispatched to the MockResponses based on the
guestName value of the SOAP request message. The xm1Holder object is
used to hold the current SOAP request message. An XPath expression is
passed as an argument to the constructor of the xml1Holder object to extract
the guestName value. Then the appropriate response is chosen evaluating
the guestName value.

With the dispatching script, the getGuestDetails MockOperation editor will
look similar to the following:

soapUl 4.0.1 -|o

le Tools Desktop Help

Bab e © X EOE Search Forum| |t @
B = . getGuestDetails i] |
g [z

-2 i Z Interface|CuestManagementServiceSoapllBinding «| Operation|getCuestDeatails - (7]
SE] HotelReservationMockServices o [] &] -
= &= I GuestManagementServiceSoapl1Binding MockResponses

@ addCuest E
32 Request 1
#- = deleteCuast

- getGuestDetails i soapFaultResponse
32 Request 1 if EmpryResponse
uestManagementMockSenvice

% ValidResponse

=3
* addCuest
-7 getGuestDetails Dispatch: |SCRIPT ~| Default Response: |ValidResponse -

§o.. 30 i
: ;; ValidResponse ¥ Script is invoked with 1og, context, requestContext, mockRequest and mockdperation variables @
a¢ soapFaultResponse

def payload = new com.ewiware.soapui.support.XnTHolder{mockRequest. requestContent)

e 38 EmptyResponse .) .
B HotalResarvationPraject def guestname = payload ["//Typ: getluestietails Typ:guestiane "]
def response = "";
MaockOperation Properties if{guestnane. equals("valid® 134
Property Value response="%alidResponse"
Name getGuestDetails relse dflguestnane. equalss fault"ia{
Description response="soapFaultResponse"
WsDL Operation getGuestDetails relse [dflguestname. equalsi enpty"33{
Dispatch Style SCRIPT response="EnptyResponse”
relse
response="validResponse" |
i e
1] ID

Dispatch (3CRIPT)

(|

soapUllog http log jettylog errorlog wsrmlog memory log [script log

[134]

Chapter 6

10. Now, open the getGuestDetails SOAP request editor and send a request
with the guestName "fault":

<typ:guestName>fault</typ:guestName>
You will get the soapFaultResponse. Similarly, try with the other responses.

The above methodology is quite helpful if you need to verify the
middleware-oriented operations of your solution such as message mediations,
transformation rules, and so on, when the web services are not ready for testing.

We looked at the MockResponse dispatching at the MockOperations level. Without
using multiple responses, we can dynamically generate the MockResponse by
including a script at the MockResponse level. The following example will guide you

through the steps of responding with a dynamic MockResponse based on the content
of the SOAP request.

As we saw in Chapter 2, The Sample Project, the GuestManagementService consists

of the service implementation class and the associated database operation handling
class (in our example, it is Storage . java). Think about a scenario where this
database handling class is not ready for testing, but you need to test some consumer
applications. In that case, you cannot just use static MockResponses, as you need to
make sure the data is correctly handled by the consumer application. In other words,
the correctness of the data is important for testing.

We are going to retrieve the data from the database according to the content of the
SOAP request message. When the getGuestDetails SOAP request is sent with the
guestName, the GUEST_T table of the HOTEL._RESERVATION_ DB database is queried to
find out the associated record. Then the MockResponse is updated with the retrieved
data and sent back to the client.

1. The MockService level is the most suitable location to initialize the database
connection. When the MockService is started, the database connection is
established. Open the GuestManagementMockService editor and click
on Start Script. Add the following script in the script editor:
import groovy.sqgl.Sqgl
com.eviware.soapui.support.GroovyUtils.registerdJdbcDriver ("com.
mysqgl.jdbc.Driver")
def sgl = Sgl.newInstance ("jdbc:mysqgl://localhost:3306/HOTEL
RESERVATION DB", "root", "root", "com.mysql.jdbc.Driver")
log.info "Succesfully connected to database"
context .dbConnection = sql

[135]

Web Service Simulation with soapUI

By calling registerdbbriver () method, the MySQL JDBC driver is
registered with soapUI so that we can issue calls to the MySQL database
from the Groovy script. First, we need to set up the MySQL database
instance using the sql .newInstance (dbpath, dbuser, dbpassword,
dbdriver) factory method. We will save this connection in the context
(context.dbConnection) so that it will be available for all scripts under
the MockService.

2. Establishing the connection to the database is not just enough. We should close
the connection when our tasks with the database are over. We established the
connection at MockService level; hence we can close the connection at the same
level. Click on Stop Script and add the following script:

if (context.dbConnection != null)

{

log.info "Closing database connection"
context .dbConnection.close ()

}

3. We can restart the MockService now. Before that, make sure to copy the
MySQL JDBC driver (which we used in Chapter 2, The Sample Project) to
SOAPUI_HOME/bin/ext and restart soapUI.

Once soapUl is restarted, restart the MockService. You will see the
following log if the database connection is successful. The logs related
to the running scripts can be found at the script log, which is at the
bottom of the MockService editor.

INFO:Succesfully connected to database

4. Now, we need to configure the MockResponse to retrieve the data from
the database table based on the request content. For that, we can insert
a Groovy script at the MockResponse level. Click on the ValidResponse
MockResponse that appears in the getGuestDetails operation.

5. Click on Script in the MockResponse editor and add the following script:

def holder = new com.eviware.soapui.support.XmlHolder (mockRequest.
requestContent)

def name = holder["//typ:getGuestDetails/typ:guestName"]

def sgl = context.dbConnection
def res = sqgl.firstRow("select address from GUEST T where name =
?", [name])

context.address=res.address

[136]

Chapter 6

Here, the database connection is obtained from the context. The first row
entity of the ResultSet is obtained by passing a SQL query as the argument.
In the SQL query, we pass the name value which we captured by executing
the XPath statement on the request message. This SQL query returns the
address value of the corresponding guest. Then we set the address value
which we got from the GUEST_T table to the ${address} property which
we set at the response (see the following screenshot):

soapUl 4.0.1

File Tools

Deskiop Help

fi)
&

B os O XEOR

Search Forum

it @

validResponse 3

Mavigator
= "

=B HotelResarvationMockServices

E0m

T+ @

=s0apeny: Envel

=soapenwiEnwelope xnlns:soapenu="http: //schenas. xnlsoap.org/soap/envelope/" |~

- X GuestManagemantSeniceSoap11l
=@ addGuest

“- §2 Raquest 1

B K GuestM anagementMockService

=saapenviBo

Rawr) XML 3% |22

=/soapenv:B
</s0apenv:Enve

=spapeny:iHe{ |

»
vA

[Raw| XML

=s0apeny: Header~
=soapeny: Bady=

e S Reguest 1 ~typiget <typ:getGuesthetailsResponses
=+ deletaCuast =l--D =l--Dprional-->
- . =typ: =typ:return=

B & gatGuestDerails </ typoe <l--Dprional:--=

=typ:address=${addressi=/typ:address=|
<l--Optionali--=

< addGuest

HotelReservationProject

—— 1|

- if Response 1
gatCuestDetails

<Typiages= Typ: ages
<l--Dptional:--»

i2 validRasponse -

213 HIVURSU Wi 10y, LUNLEAL, | SHUSLLUILEAL, NULAMEYUSSL GIU IULRIS WIS ®

H it soapFaultResponse
- 3E EmptyRasponse

def sq1 = context.dhConnection

context.address=res. addrass

def holder = new con.eviware.soapui.support.Xn1Holder (mockRequest. reguestConter =
def name = holder["//TypigeTluestDetails Tvp: questiane"]

def res = sgl.firstRow{"select address from GUEST_T where name = 7",

Headers (0) Attachments (0) WS-A

[name] }

Custom Fropertias
MockResponse Properties

‘ Froparty | Value ‘
|Name validRespanse [2] | |47

IC

Properties

soapUl log http log jettylog error log wsrm log memory log

Now, populate the GUEST T table of the HOTEL_RESERVATION DB database

with some guest records (see Chapter 2, The Sample Project).

Edit a getGuestDetails SOAP request message with a name of the user who

is in the GUEST T table:
<typ:guestName>Chanmira</typ:guestName>

Submit the request to GuestManagementMockService.

You will get the response with the corresponding address value which
should be the address of the guest in GUEST T table.

[137]

Web Service Simulation with soapUI

We extracted the address of the guest from the GUEST T table in the database without
actually calling the web service. We used the MockResponse generated by soapUI
from the WSDL and did the simple Groovy scripting to query the database and set
the data in the response.

Summary

This chapter guided you through one of the most important aspect of web services
and SOA testing, service simulation. We have discussed the situations where

the service mocking is required in general. Then we went through how soapUI
facilitates you to create mock services. The MockService model of soapUI consists
of three key elements known as MockService, MockOperation and MockResponse.
We briefly discussed each of these elements using examples. We also looked into
MockResponse dispatching methods and how one MockResponse can be chosen
from multiple responses inside a MockOperation. With Groovy scripting facilities,
soapUI allows us to do various manipulations on mock services, hence dynamic
response generation is not a complex task for a soapUI user.

[138]

Advanced Functional
Testing with soapUl

In SOA, many types of Quality of Service (QoS) requirements have to be fulfilled
in order to provide the web service consumers with a satisfactory level of service.
Especially in SOAP-based services, different kinds of mechanisms are used to assure
guaranteed message delivery and secure communication among the participants

of message routing chain. These mechanisms commonly referred to as web service
extensions, provide the necessary QoS aspects expected from web services.

One of the greatest advantages of using soapUI for web service testing is that it can
be used in testing web services that make use of various web service extensions.
Although there are free and commercial tools which can be used to directly invoke
web services, most of the tools are unable to continue the operations if the web
services under testing are configured with different QoS aspects. This chapter is
dedicated to discussing the capabilities of soapUI in testing various web service
extensions such as WS-Addressing and WS-Security. These extensions are applicable
for both sides of the web service equation. In other words, we should configure the
extensions at the web service level as well as the client (soapUI) level. Because of
that, first, we will look into enabling the necessary QoS features in our sample web
services project. Then, we will make use of soapUI to test the sample web services
which are configured with the web service extensions.

The following topics related to web services extensions and soapUI that we will be
covering in this chapter are as follows:

* Introduction to web services extensions

* WS-Addressing

* WS-Security

Advanced Functional Testing with soapUI

* Configuring Apache Axis2 for WS-Addressing and WS-Security
* Testing WS-Addressing with soapUI
* Testing WS-Security with soapUI

Introduction to web services extensions

Web services extensions are used to provide additional capabilities to web services.
For example, if we want to protect web services from unauthorized access, we can
make use of the relevant web services extension. Web services extensions are usually
governed by a set of specifications referred to as the WS-* standards. For example:

* WS-Addressing

* WS-Policy

* WS-Security

* WS-ReliableMessaging
* WS-Discovery

* WS-Transfer

e WS-AtomicTransaction

There are different types of specifications which address various aspects of web
services in order to extend the core features. These specifications are governed by
various standard bodies such as W3C (http://www.w3.org/) and OASIS standards
(https://www.oasis-open.org/standards).

Web service frameworks adhere to most of these specifications in order to be
interoperable with each other. For example, Apache Axis2 implemented WS-Security
specification; so, we can communicate with any service that is deployed on Axis2

via a .NET service or client, that adheres to the same specification. Like-wise, it is

the responsibility of the relevant SOAP engine providers to implement the WS-*
specifications to work seamlessly with the other frameworks which support the
WS-* standards.

The extensible nature of the SOAP messaging model allows us to plug in different
web services extensions to raw SOAP messages. All these extensions are included
inside the header element of SOAP messages. Thus, if you want to invoke a web
service with WS-Security, you must send the request message with the necessary
WS-Security headers adhering to the WS-Security specifications.

[140]

Chapter 7

A SOAP Envelope structure is shown in the following diagram:

SOAP Envelope

Headers

WS-Addressing
WS-Security
WS-ReliableMessaging
WS-Transfer etc..

Body

One or two chapters of this book are not sufficient to discuss all of these WS-*
specifications. Therefore, we will limit our discussion to WS-Addressing and WS-
Security specifications which are widely used by the SOAP web services community.

What is WS-Addressing

Web Service Addressing (WS-Addressing) provides mechanisms to address

web services in a transport neutral manner. In the SOAP world, without having
WS-Addressing, we make use of the facilities provided by the underlying transport
protocol (for example, HTTP, FIP or JMS) to route the messages between the SOAP
nodes. However, by using WS-Addressing, the messages can be routed in a generic
way independent of the transport protocol that is used. As WS-Addressing is used
by many of the other WS-* specifications, it is one of the preliminary building blocks
of WS-* standards. The W3C Web Services Addressing Working Group (http://
www.w3.0rg/2002/ws/addr/) made available version 1.0 of the WS-Addressing
recommendation (http://www.w3.0rg/2002/ws/addr/) in May 2006, and it is
considered as the mainstream specification.

There are two constructs that are defined by the WS-Addressing specification.

[141]

Advanced Functional Testing with soapUI

Endpoint references

An endpoint is an entity to which a message can be addressed. An endpoint
reference is a collection of three abstract properties, address, reference parameters,
and metadata. Out of these, address is a mandatory property, which must be
available in any endpoint reference element. An example of an endpoint reference
element is as follows:

<wsa:EndpointReference>

<wsa:Address>http://localhost:8080/axis2/services/
GuestManagementService/</wsa:Address>

</wsa:EndpointReference>

Here, the <wsa:Address> element is used to define the endpoint location of
GuestManagementWebService.

Message addressing properties

Message addressing properties are used to convey end-to-end message characteristics
of source and destination endpoints. The following are the basic set of message
addressing properties. Out of these, wsa :Action is the only mandatory property.

* wsa:To: This property specifies the destination URL. If not present,
the destination will be considered as http://www.w3.0rg/2005/08/
addressing/anonymous.

* wsa:From: This property specifies the source endpoint reference (that is,
where the message comes from).

* wsa:ReplyTo: This property specifies the endpoint reference for the intended

receiver (that is, to whom the reply of the message would be sent).

* wsa:FaultTo: This property specifies where to send the fault messages in
case of a fault. If this is not present, the fault will be sent to the endpoint
where the request came from.

* wsa:Action: This property specifies the action of message. In other words,
this property is used to dispatch the message to the correct operation of web
service upon receiving a request message.

* wsa:MessageID: This property specifies the ID which uniquely identifies
the message.

* wsa:RelatesTo: This property specifies the message ID of the related message.

[142]

Chapter 7

According to the 3.4 Formulating a Reply Message section at
A http://www.w3.0rg/TR/2006 /REC-ws-addr-core-
& 20060509/ #formreplymsg of the WS-Addressing specification,
Z— the wsa:MessageID property is mandatory for the request-
response MEP. Therefore, if you invoke an operation expecting a
response back, you should send the messageID with the request.

What is WS-Security

Traditionally, the communication between the SOAP nodes is secured using the
mechanisms provided by the underlying transport protocol. For example, SSL is a
widely used transport-level security mechanism. However, SOAP messages can be
transmitted over various transport protocols such as SMTP and JMS. So the transport
level security is never sufficient. In SOA, we cannot always expect messages are
delivered from one source to destination. Messages can be routed through many
hops using different transport protocols and different security domains. Transport
level security mechanisms only address point-to-point security. However, in
complex service-oriented solutions, we need to consider end-to-end security aspects.
WS-Security facilitates this end-to-end security by maintaining integrity and
confidentiality of messages.

Leveraging existing industry standards such as X.509 and Kerberos tokens for
authentication, XML encryption, and XML signature to encrypt and digitally sign
XML documents, WS-security extends those standards to be used with the SOAP
messages. WS-Security is not a standalone specification, which solely manages
security in web services. It is associated with many of the following specifications:

WS-Policy
The WS-Policy (http://schemas.xmlsoap.org/ws/2004/09/policy/) defines a

framework for allowing web services to express their constraints and requirements
as policy assertions.

WS-SecurityPolicy

As stated in WS-SecurityPolicy specification (http://docs.ocasis-open.org/ws-
sx/ws-securitypolicy/vl.2/ws-securitypolicy.html), WS-SecurityPolicy
defines a set of security policy assertions that describe how messages are to be
secured based on the WS-Policy framework.

[143]

Advanced Functional Testing with soapUI

WS-Trust

WS-Trust specification (http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/
ws-trust.html) provides extensions to WS-Security specification which defines
methods for issuing, renewing, and validating security tokens. It also defines the
ways to establish, assess the presence of, and to broker trust relationships.

WS-SecureConversation

WS-SecureConversation specification (http://docs.oasis-open.org/ws-sx/
ws-secureconversation/vl.4/ws-secureconversation. html) provides secure
communication between web services using session keys. It defines a mechanism to
establish security contexts for multiple exchanges of a SOAP message.

Configuring Apache Axis2 for WS-
Addressing and WS-Security

As we discussed early in the chapter, it is the responsibility of the service container
(SOAP web services engine) to implement the necessary WS-* specifications and
make sure that it is interoperable with the rest of the web service frameworks. Using
the modular and pluggable architecture, Apache Axis2 extends its functionality over
almost all types of WS-* standards. The following are some of the modules which
implement various WS-* specifications on top of the Apache Axis2:

* Addressing: This module is an implementation of the WS-Addressing
specification

* Apache Rampart: This module implements the WS-Security, WS-
SecureConversation, and WS-SecurityPolicy specifications on Axis2

* Sandesha2: This module is an implementation of the
WS-ReliableMessaging specification

* Rahas: This module is an implementation of the WS-Trust specification

In this section, we will look into enabling the WS-* extensions at the server side.
Obviously, in order to enable WS-Security for web services hosted in Apache
Axis2, we must configure the Apache Rampart module. First, we will look into
the configurations for the WS-Addressing specification in Apache Axis2.

[144]

Chapter 7

WS-Addressing in Apache Axis2

There is no configuration required in Axis2 to switch on WS-Addressing support for
web services. By default, the addressing module is globally engaged for all services
hosted in Axis2 by using the following parameter in the axis2.xml descriptor file
located at AXIS2 HOME/conf as:

<module ref="addressing"/>

This implies that any service hosted in Apache Axis2 is capable of interpreting

WS-Addressing headers. Therefore, if you send a request with WS-Addressing
headers (for example, wsa:Action), Axis2 can process them and send back the
response with the relevant headers.

WS-Security in Apache Axis2

Enabling WS-Security for services hosted in Axis2 is not as straightforward as
configuring WS-Addressing. Apache Rampart module is used to secure the
messages, which are processed by Axis2. We need to download and install Apache
Rampart separately in order to integrate it with Axis2.

Follow these steps to integrate Apache Rampart with Apache Axis2:

1. Download Apache Rampart-1.6.1 binary from http://axis.apache.org/
axis2/java/rampart/download/1.6.1/download.cgi thatis compatible
with Apache Axis2 v1.6.1 - the one used in this book.

2. Extract the downloaded binary distribution into a location in your filesystem.
Let's refer to it as RAMPART HOME.

3. Copy all JAR files included in RAMPART HOME/1lib to AXIS2_ HOME/1lib.

Copy all the module files (. mar) included in RAMPART HOME/modules into
AXIS2 HOME/repository/modules.

5. Restart Axis2 server.
We can simply engage the Rampart module globally, similar to the Addressing
module, but it is not a common practice as we cannot expect that all services hosted

in Axis2 are secured with the WS-Security policies. Therefore, we selectively
configure security for the services, which need to be secured.

We will discuss the details of securing services in the following sections.

[145]

Advanced Functional Testing with soapUI

Testing the WS-Addressing with soapUI

When we communicate with a web service, which expects the WS-Addressing
information in the requested SOAP messages, we can follow a programmatic
approach to write a client program using the APIs provided by the underlying
web services framework and insert WS-Addressing headers manually. Almost
all SOAP web services stacks provide users with client APIs which facilitate
such programmatic invocations with WS-* extensions. Instead of spending an
unneccessarily long time writing client programs from scratch, you can use
soapUI to submit messages with the WS-Addressing headers and validate the
responses automatically. We are going to extend our sample HotelReservation
soapUI project to test GuestManagementService with WS-Addressing. To test
GuestManagementService, perform the following steps:

1. Select the getGuestDetails TestCase of the GuestManagementService
TestSuite. Open the getGuestDetails SOAP request.

2. Click on the WS-A tab which is located at the bottom of the request editor
window. This will open the WS-Addressing properties window as shown
in the following screenshot:

Enable WS-A addressing: [] Enabile/Disakble WS-A addrassing

Must understand: MOME =
W5-AVersion: 200508 -

Add default wsa:Action: [[] Add default wsa: Action

Action: |urn: g2tGuestDetails |
Add default wsa:To: [] Add default wsa:To

To: | |
Reply to: | |

Reph/To Refarence Parameters:

Generate MessagelD: [] Randomly generate Messageld

MessagelD: | |

From:

FaultTo Reference Farameters:

|
Fault to: | |

1]

ALt Artachments () |WS-A| W5-EM M5 Headers JMS Properties (Q)

[146]

Chapter 7

3. Select the following properties and submit the request:
1. Check the checkbox in front of Enable WS-A addressing.
Set Must Understand to True by selecting it from the drop-down list.
Check the checkbox in front of Add default wsa:Action.
Check the checkbox in front of Add default wsa:To.
Check the checkbox for Randomly generate Messageld.

ARSI

4. Have alook at the Raw view of the request. You will notice the following
WS-A headers:

<soapenv:Header xmlns:wsa="http://www.w3.0rg/2005/08/addressing" >
<wsa:Action soapenv:mustUnderstand="1">urn:getGuestDetails</
wsa:Action>

<wsa:MessageID soapenv:mustUnderstand="1">uuid:cb993b0b-041d-43ca-
810d-£f57ca4544b68</wsa:MessageID>

<wsa:To soapenv:mustUnderstand="1">http://
localhost:8080/axis2/services/GuestManagementService.
GuestManagementServiceHttpSoapllEndpoint/</wsa:To>
</soapenv:Header>

In case you see an empty HTTP body in the Raw view, which prevents
showing the SOAP message, the following steps will help you to
configure the soapUI request editor appropriately:

* Open the soapUI Preferences window by selecting the Sets
g Global soapUI Preferences icon at the tool bar.

* Click on UI Settings. Increase the default value of Size of Raw
Request Message to Show.

We have already discussed the usage of message addressing properties
such as wsa:Action and wsa: To in the previous sections. In addition to the
message addressing properties defined by the WS-Addressing specification,
soapUI allows us to set the mustUnderstand property for request messages.

According to the SOAP 1.1 specification, the mustUnderstand
attribute can be used to indicate whether a header entry is mandatory or
» optional for the recipient to process. The value of the mustUnderstand
%»\ attribute is either 1 or 0. If a header element is tagged with the SOAP
’ mustUnderstand attribute with a value of 1, the recipient of that
header entry either must obey the semantics and process correctly to
those semantics, or must fail processing the message.

[147]

Advanced Functional Testing with soapUI

To demonstrate the usage of the mustUnderstand property, you can
simply set mustUnderstand to true in the soapUI addressing properties
section, disable addressing at Axis2 level (comment out the line <module
ref="addressing"/> from the axis2.xml file) and restart the Axis2 server.
Then, resubmit the preceding SOAP request. You will get the following error:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Body>
<soapenv:Fault xmlns:axis2nsl="http://schemas.xmlsoap.org/
soap/envelope/">
<faultcode>axis2nsl:MustUnderstand</faultcode>

<faultstring>Must Understand check failed for header
http://www.w3.0rg/2005/08/addressing : Action</faultstring>

<detail/>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

In simple terms, we sent a request with the mustUnderstand property set to
true, which implies that the server must process the header block or return a
fault. As WS-Addressing is disabled at the server side, the web service could
not interpret the header hence it threw the preceding fault.

The real advantage of using soapUI as a WS-Addressing client is that we can
simply set the message addressing properties and test the functionality of the
solution under test. By specifying an endpoint URL of another web service
as the wsa:ReplyTo header, the response message can be directed to that
particular service instead of sending it back to the client. We can also specify
the wsa:FaultTo header to a different web service endpoint and forward the
fault messages to it.

5. Welooked at the WS-A headers of the request SOAP message. The response
headers for the preceding request will be similar to the following;:

<soapenv:Header xmlns:wsa="http://www.w3.0rg/2005/08/addressing" >
<wsa:Action>urn:getGuestDetailsResponse</wsa:Action>
<wsa:RelatesTo>uuid:cb993b0b-041d-43ca-810d-f57ca4544b68</
wsa:RelatesTo>
</soapenv:Header>

6. The web service responded with two addressing headers, wsa:Action and
wsa:RelatesTo. The wsa:RelatesTo header represents the messageID of the
related message, in other words the messageID of the request. It is obvious
that uuid:cb993b0b-041d-43ca-810d-f57ca4544b68 is the messageID of
the SOAP request (as seen in the preceding SOAP request header).

[148]

Chapter 7

Validating the WS-Addressing responses

SoapUI provides us with WS-Addressing specific assertions to automatically validate
the headers of the response message. The WS-Addressing response assertion can

be used to validate that the last received response contains valid WS-Addressing
headers. To validate the WS-Addressing response, perform the following steps:

1. Click on the Select Assertion icon at the bottom of the TestStep window and
select the WS-Addressing Response assertion.

2. The WS-A properties to assert dialog box will be opened as shown in the
following figure:

WS-A properties to assert

W5-A properties to assert

Specify options ?
wsaAction: |Chec|-< If 'wsa:Action’ exists and has the right \.'alue|

wsaTo: [[] Check if ‘wsa:To' exists

wsa FelatesTo: [Check if 'wsa:RelatesTo' exists and is equal to request MessagelD

wsaRephyTo ReferenceParameters: [| Check if 'wsa:ReplyTo' ReferenceParameters axist

wsa FaultTo ReferenceParameters: [| Check if 'wsa:FaultTo' ReferenceParameters exist

We can select which message-addressing properties of the response we need
to assert from the preceding dialog box. In our sample, we can check whether
the wsa:Action header exists in the response and wsa:RelatesTo header
equal to the request's messageID. Setting the relevant property's assertion
depends on the usage of WS-Addressing in your solution.

Generally, WS-Addressing related issues can occur due to the
misconfiguration of the service container or bugs in the particular
%@‘\ version of the service container. Therefore, it is always advisable
’ to assert the presence of at least the wsa : Act ion mandatory
message addressing property.

3. Once you add the assertion with the relevant properties and submit a
request, you will get the response results as follows:

WS-Addressing Response - VALID

[149]

Advanced Functional Testing with soapUI

Testing WS-Security with soapUl

soapUI makes use of the Apache WSS54] project for providing WS-Security support.
More information about Apache WSS54] can be found at
http://ws.apache.org/wss4j/.

We can discuss the usage of soapUI as a WS-Security client in two
basic aspects:

* Authentication using transport binding assertions
* Signature using asymmetric binding assertions

We will look into these subtopics during the remainder of this chapter. We use our
sample Hotel Reservation web services to demonstrate the preceding topics.

Web service authentication

Authentication is required to identify the entity or entities involved in the web
service message transmission. WS-Security provides multiple ways in which

one can authenticate a user when they need to access a service. UsernameToken
authentication is one such mechanism which is used to pass around caller credentials
through a username and password combination as shown in the following diagram:

Request SOAP
message

Client SOAP Header

<Security>

<UsernameToken>

<Username >charitha</Username>
<Password>password </Password >
</UsernameToken>

</Security>

Web Service

[150]

Chapter 7

The preceding diagram shows how the user credentials are placed inside a SOAP
message header block when UsernameToken authentication is used. There are two
ways in which passwords can be passed between client and service when using
UsernameToken authentication; clear text and digest. In the case of clear text type, the
username token carries the actual password. In the digest type, the client creates a
digest of the actual password and sends it to the service, this serves better protection
as compared to a plain text password type.

In our first sample, we will use UsernameToken authentication to secure the
GuestManagementService and use soapUI to pass credentials to the service. To do
that, first we will configure WS-Security at the server side.

Securing GuestManagementService

As we discussed in the WS-Security in Apache Axis2 section, the Apache Rampart
module provides the necessary WS-Security constructs for the services deployed on
Axis2. We need to carry out a set of steps to enable UsernameToken authentication
for GuestManagementService to be deployed on Axis2.

We need to advertise to the rest of the world that our GuestManagementService

is accessible only by submitting proper credentials. The WS-SecurityPolicy
specification allows us to define a security policy for our service and expose it so that
any consumer can look into the policy and find out how to talk to the service. Thus,
our first task is to construct the relevant security policy as shown in the following
XML document:

<wsp:Policy wsu:Id="UTOverTransport" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" >
<wsp:ExactlyOnes>
<wsp:All>
<sp:TransportBinding xmlns:sp="http://schemas.xmlsoap.org/
ws/2005/07/securitypolicy">
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken RequireClientCertificate="false"/>
</wsp:Policy>
</sp:TransportToken>
<sp:AlgorithmSuites>
<wsp:Policy>
<sp:Basicl28/>
</wsp:Policy>

[151]

Advanced Functional Testing with soapUI

</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policys>
<sp:Lax/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
</wsp:Policy>
</sp:TransportBinding>

<sp:SignedSupportingTokens xmlns:sp="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policys>
<sp:UsernameToken sp:IncludeToken="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/AlwaysToRecipient™
/>
</wsp:Policy>
</sp:SignedSupportingTokens>
<ramp:RampartConfig xmlns:ramp="http://ws.apache.org/
rampart/policy">
<ramp:passwordCallbackClass>com.sample.reservation.security.
PWCBHandler</ramp:passwordCallbackClass>
</ramp:RampartConfig>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

It is out of the scope of this book to explain each element of the preceding security
policy. However, we can identify two main policy assertions in the above policy, a
sp:TransportBinding assertion and a SignedSupportingToken assertion.

A policy assertion is a way of defining a requirement, constraint

or a property. The WS Security policy language introduces a set of
s security policy assertions to enable security requirements of web

services to be able to be stated in a standard, interoperable manner.

In the preceding policy, the TransportBinding assertion is used for handing over
the message protection to the underlying transport layer. The required transport is
configured through the <sp: TransportToken> element.

[152]

Chapter 7

Ideally, we should use HTTPS as the transport medium as we
rely on the underlying transport for message protection. But for
the simplicity in configurations at the server side, we use HTTP
. transport. Therefore, when we include the preceding security
% policy in the sample GuestManagementService, we will

L remove the <sp:HttpsToken RequireClientCertificate=
"false"/> element. However, we need to keep in mind that it is
not recommended to use HTTP transport when UsernameToken
authentication is used with plain text passwords. I will leave it to
you to try out the sample with HTTPS.

We also used signedSupportingToken assertion in our policy. Supporting tokens
are used to provide additional claims for the client. In case of TransportBinding, the
message is signed outside the message's XML by the underlying transport protocol
and the signature itself is not part of the message. Because of that, you will not find
the signature in the SOAP request when UsernameToken authentication is used.

The last assertion, RampartConfig is used to provide Apache Rampart specific
configuration details such as the passwordCallbackClass which is used to provide
passwords that are needed to validate incoming username tokens.

We have defined com.sample.reservation.security.PWCBHandler as the callback
handler class. Now, we need to implement this particular class and make it available
at the web service's class path by performing the following steps:

1. Open the hotel reservation sample project which we worked on in
Chapter 2, The Sample Project and add the following class inside a new
package, com. sample.reservation.security, as follows:

package com.sample.reservation.security;

import org.apache.ws.security.WSPasswordCallback;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;
import java.io.IOException;

public class PWCBHandler implements CallbackHandler

public void handle (Callback[] callbacks) throws IOException,

UnsupportedCallbackException

[153]

Advanced Functional Testing with soapUI

for (int i = 0; i < callbacks.length; i++) {

WSPasswordCallback pwcb = (WSPasswordCallback)
callbacks[i] ;
//Usage value is set to USERNAME TOKEN UNKNOWN when the Rampart
// engine
//wants the password callback handler to validate the username and
// password in the username token.
if (pwcb.getUsage() == WSPasswordCallback.USERNAME TOKEN UNKNOWN)

{

if (pwcb.getIdentifer().equals("charitha") &&

pwcb.getPassword () .equals ("charitha")) {
return;
} else {
throw new UnsupportedCallbackException (callbac
ks[i], "check failed");
}
}
}

» The complete source code of the PWCBHandler . java class can
% be found at src\com\sample\reservation\security\
’ PWCBHandler. java in the code bundle of this chapter.

2. Now, we need to engage the Rampart module at the service level in order
to enable WS-Security for GuestManagementService. Open the services.
xml file which can be found inside the conf folder of the sample project. Add
the following element under <service name="GuestManagementService">
as follows:

<module ref="rampart" />

3. Also, add the security policy which we discussed previously, at the same
level in services.xml.

4. Finally, the GuestManagementService element in services.xml will be
similar to the following XML document:

<service name="GuestManagementService"s>
<description>
<wsp:Policy wsu:Id="UTOverTransport">

[154]

Chapter 7

</wsp:Policy>

<module ref="rampart" />

<schema>

<messageReceivers>

<parameter name="ServiceClass">com.sample.reservation.
GuestManagementService</parameters>

<operation name="addGuest" mep="http://www.w3.org/2006/01/

wsdl/in-out">

</service>

The complete services.xml file with the security policy can be found
Zs— in the conf folder within the chapter 7 folder of the code bundle.

5. Now, we should rebuild our sample hotel reservation service because we
need to include a new class, PWCBHandler . java and we have also done some
modifications in the services.xml file.

If you are using a Java IDE such as Eclipse or Intellij IDEA, you could
. easily compile the preceding PWCBHandler . java by including the
% AXIS2 HOME/1lib folder in the class path. If not, you can use the ant
/~— build script given in the code bundle associated with this chapter.
Make sure to follow the instructions in the README . txt file of the
code bundle when building the service.

6. Once the service is built, redeploy HotelReservation.aar in the Apache
Axis2 server. (You can simply remove the existing service archive and deploy
the updated one).

7. Check the autogenerated WSDL of the GuestManagementService
by accessing http://localhost:8080/axis2/services/
GuestManagementService?wsdl. You will find the UToverTransport policy
element in there.

[155]

Advanced Functional Testing with soapUI

Testing the secured GuestManagementService
with soapUl

So far, we have discussed securing GuestManagementService. Since we have

done the necessary WS-Security configurations at the server side, let's proceed

with invoking the service with soapUI If we submit the SOAP request of the
getGuestDetails TestStep in GuestManagementServiceTestSuite without any
security-related configurations, we should get a SOAP Fault similar to the following:

<soapenv:Fault xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/
0asis-200401l-wss-wssecurity-secext-1.0.xsd">
<faultcode>wsse:InvalidSecurity</faultcode>

<faultstring>Missing wsse:Security header in request</faultstrings
<detail />

</soapenv:Fault>

We got this error because we did not instruct soapUI to insert the WS-Security
headers to the request. The security policy which we configured previously at the
server side looked for the headers and as those were not available in the request, it
returned a SOAP Fault.

There are multiple ways to configure WS-Security for outgoing requests in soapUI.
The simplest possible mechanism is to configure it at the SOAP request level

using the TestRequest Properties. You will find the following WS-Security-related
properties at the TestRequest Properties pane:

* Username: This property has the username of the user who invokes
the service.

* Password: This property has the password of the user.

* Domain: This property has the domain to use if the request requires NTLM
authentication (this is not applicable for our sample use case).

* WSS-Password Type: This property determines how the password is carried
over a SOAP message, as clear text or digest.

* WSS-TimeToLive: This value specifies the time period in seconds during
which the request is considered as valid. In simple terms we can consider this
as the life time of the message. In secure communications, timelines of data is
a very important factor so that the replay attacks can be avoided by making
sure the request message is not an expired one.

* SSL Keystore: This specifies the path of the key store when using SSL (we do
not use SSL in our example).

[156]

Chapter 7

TestRequest Properties |/ Test Properties |
Property | Value

Interface GuestManagementServiceSoapl1Binding
Operation getGuestDetails
Username charitha
Passward -
Domain
W55-Password Type PasswordText
W35 TimeTolive 60
S5L Keystore

Specify the values for the security-related properties as shown in the preceding
screenshot. We have given 60 seconds as WSS TimeToLive assuming it will not
take 60 seconds for a request message to reach the service.

Submit the request and look at the Raw view of the message, it will look as follows:

<Header>
<wsse:Security xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-secext-1.0.xsd" mustUnderstand="1">
<wsu:Timestamp xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Timestamp-4">
<wsu:Created>2012-05-01T12:58:55%</wsu:Created>
<wsu:Expires>2012-05-01T12:59:55%</wsu:Expires>
</wsu:Timestamp>
<wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0asis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="UsernameToken-3">
<wsse:Username>charitha</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/casis-

200401-wss-username-token-profile-1.0#PasswordText">charitha</
wsse:Passwords>

<wsse:Nonce EncodingType="http://docs.oasis-open.org/
wss/2004/01/0asis-200401-wss-soap-message-security-
1.0#Base64Binary">KE001tP/538A8Pco3w/Sew==</wsse:Nonce>
<wsu:Created>2012-05-01T12:58:55.362%</wsu:Createds>
</wsse:UsernameToken>

</wsse:Security>

</Header>

The header block of the request will be similar to the preceding XML document.

Make a note of the <wsu: Timestamp> element which includes two child elements,
<wsu:Createds and <wsu:Expires>. These elements are added because we have
specified the WSS TimetoLive value as a TestRequest property. The difference
between the <wsu:Createds> value and the <wsu:Expires> value is exactly 60 seconds
which matches with the WSS TimetoLive value we have specified in the request.

[157]

Advanced Functional Testing with soapUI

Also look at the <wsse: Password Type="http://docs.oasis-open.
org/wss/2004/01/0asis-200401-wss-username-token-profile-
1.0#PasswordText"> element which defines that the password is a plain text value.

In addition to the WS-Security properties which we have been specified in the
soapUI test request, we can identify the <wsse :Nonce> element in the preceding
request which has been added by soapUI (Apache WSS4] rather) itself. A nonce is a
random value that the sender creates to include in each UsernameToken that it sends.
According to the UsernameToken profile, this specifies a cryptographically random
nonce. Each message including a <wsse :Nonce> element must use a new nonce
value in order for the web service producers to detect replay attacks.

It should be well understood that the load testing with soapUl is not
M another form of message replay attacks. When you add the preceding
Q getGuestDetails TestStep to a load test, soapUI generates a unique
message with each run. Hence, each instance of the message will have
its own TimeStamp value as well as nonce.

The response header, which is related to the preceding request message, will be
similar to the following XML document:

<soapenv:Header>

<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-
1.0.xsd">

<wsu:Timestamp wsu:Id="Timestamp-748" xmlns:wsu="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-
1.0.xsd">

<wsu:Created>2012-05-01T12:58:55%</wsu:Created>
<wsu:Expires>2012-05-01T13:03:55Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</soapenv:Header>

According to the <wsu:Timestamp> element's value, the life time of the response
is 5 minutes by default. We can configure this in the WS-Security policy of

GuestManagementService.

[158]

Chapter 7

Project level WS-Security configurations in
soapUl

So far, we have discussed configuring WS-Security at the individual TestRequest
levels. However, it is usually required to apply security configurations at the project
level so that the WS-Security settings can be used in multiple levels in a soapUI
project. For example, the project level WS-Security configurations can be shared

by all TestSuites, thereby all outgoing requests and responses can make use of the
security configurations.

Let's look at how we can repeat the preceding UsernameToken authentication test

by configuring WS-Security at the soapUI project level. Before that, make sure to
clear the TestRequest level WS-Security properties which we updated previously. To
configure the WS-Security at the soapUI project level,perform the following steps:

1. Right-click on the HotelReservationProject and select Show Project View.
Select the WS-Security Configurations tab. By default, the outgoing
WS-Security Configurations tab is selected. Outgoing WS-Security
configurations are used to apply security configurations for the messages,
that go out of soapUI. When soapUI acts as the SOAP sender, the outgoing
security configurations are used.

2. Click on the Add new outgoing WSS configuration icon. As we can have
multiple outgoing WSS configurations, we should specify a unique name for
the configuration. Specify UTConfig as the name.

3. Each WSS configuration can include many WSS entries which are used
to provide encryption properties, Timestamp configurations, Signature
properties, SAML configurations, or UsernameToken properties.

4. Enter the username and password, which we have specified in
GuestManagementService in the previous example as the default username
and password. These default values will be used in all the child WS entries
associated with the WSS configuration.

5. Now, select the UTConfig WSS configuration and click on the add a new
WSS entry icon which is at the bottom pane of the window.

[159]

Advanced Functional Testing with soapUI

6. Select the Username option from the combo box in the Add WSS Entry
dialog box, that is prompted as shown in the following screenshot:

Add WSS Entry

Selact type of entryto add
SAML

[Encr\mtinn

A

SAML
Sianature

7. The WSS Username entry will be opened in a new tab where you can
specify UsernameToken specific properties such as Username, Password,
Nonce, and WSS Password Type. These are the same settings which we have
entered when configuring UsernameToken authentication at the individual
TestRequest level.

8. As we added a default username and password, it is not necessary to repeat
the credentials again inside the WSS Username entry. However, we can
override the default username/password values which have been specified
in the WSS configuration.

9. Select the Adds a nonce option which will include the nonce value for each
request, and select the Adds a created option which will add <wsu:created>
value. Also, select the Password Type as PasswordText.

10. According to the WS-Security policy that we have added for

GuestManagementService, it is not sufficient to have the preceding values
when interacting with the service. We should include a Timestamp value in
each request. Therefore, click on the Adds a new WSS entry icon and select
Timestamp. This will add a Timestamp WSS entry. Specify a valid Time to
Live value (for example, 60 seconds).

r Outgoing W5s-Security Configurations rlncoming WS-Security Configurations rKe\,ﬂstores [Certificates |
t: ><:: '\i'_J\.'
| Name Actor |
UT Config

Default Username;’AIias|
charitha

Default Fassword |
ssssssee

Must Understand

[]

Username | Timestamp

Usarname: ‘ |

Fassword:

Add Nonce:
Add Creatac:

Adds a created

Password Type: |PasswordText -

[160]

Chapter 7

11. We have completed the WSS configuration of UsernameToken authentication.
Now, we need to apply these configurations into the SOAP requests that
need to be authenticated. Open the getGuestDetails TestRequest, which is
under GuestManagementServiceTestSuite, and click on the Aut tab which
is at the bottom corner. Locate the Outgoing WSS drop-down list and select
the UTConfig WSS configuration where we have configured the necessary
UsernameToken properties.

12. Submit the request and observe the request and response headers.

Testing asymmetric binding policy with
soapUl

In the previous section, we looked into two approaches of testing a service secured
with transport binding assertion. In this section, we will secure a different service in
our sample project using an asymmetric binding policy.

Asymmetric binding

In web services communication, when both the service requestor and provider
possess their own key pairs, it can be considered as an asymmetric binding use case.

According to WS-Security policy specification (http://docs.
_ oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
& securitypolicy-1.2-spec-os.html# Tocl61826560), the
L asymmetric binding assertion is used in scenarios in which message
protection is provided by means in WSS:SOAP Message security
using the asymmetric key (public key) technology.

In asymmetric binding, the sender derives a shared key and encrypts the message
using the shared key. Then the sender encrypts the shared key using the public

key of the recipient and signs the message using his/her private key. The recipient
decrypts the shared key using his/her private key and decrypts the message using
the decrypted shared key. Then, the recipient can verify the signature of the message
using the public key of the sender.

[161]

Advanced Functional Testing with soapUI

We are not going to discuss all topics such as XML encryption, XML
signature, and public key infrastructure, which are related to the
scenario we are going to demonstrate. These topics cannot be covered
as part of a chapter in this book. So I would assume you possess basic
. knowledge about the cryptographical concepts which we will use in
this section. You can find more information about these topics from
>~ the Internet. For example:

* http://en.wikipedia.org/wiki/Public-key
cryptograpy

* http://msdn.microsoft.com/en-us/library/
ms229749.aspx

Signing SOAP messages

We will demonstrate the use of asymmetric binding with soapUI by sending a
signed message to RoomManagementService. Signing a SOAP message ensures
the integrity of the message, where the message is not tampered with during transit
between the sender and reciever. This also ensures non-repudiation of messages
which guarantees that the sender of a message cannot later deny having sent the
message and the recipient cannot deny having received the message. Signing a
message involves the following preliminary steps:

1. Create a digest value of the message - a Digest is a hash value which is
computed through a cryptographic hashing algorithm. Generally, altering
the message will change the corresponding hash value, so it is used in digital
signatures to ensure the integrity of messages.

2. Encrypt the digest value using the private key of sender (in our case, the
sender is soapUI).

3. Sender submits the message along with the encrypted digest value.

Decrypt the encrypted digest value using the public key of sender. This
returns the pure hash value of the message.

5. The receiver creates a digest value of the received message using the same
hashing algorithm (as it is the first task of receiver to validate the signature) and
ensures that the generated hash value equals the decrypted digest value.

In order to digitally sign the SOAP messages through soapUI, we need to have a

set of resources in hand. The key stores are the first prerequisite to have for signing

a message. A key store is a file which contains the key and certificate entries in an
encrypted form. A key store is protected by a password. Also, the private keys stored
in key stores are separately protected using passwords.

[162]

Chapter 7

First, we need to create key stores for both web service and client to store
their respective public/private keys. Generating keys can be done using the
Java key tool which is a key and certificate management utility. keytool is a
part of the standard java development kit (JDK).

Let's first create a key store for the client (soapUI). Open a command window
or shell and enter the following command to create the client key store:

keytool -genkey -alias clientks -keyalg RSA -keystore clientks.jks
-storepass clientks

This will prompt the following questions. Make sure to provide answers as

per your environment:

What is your first and last name?
[Unknown] : Charitha Kankanamge

What is the name of your organizational unit?
[Unknown] : QA

What is the name of your organization?
[Unknown] : Test

What is the name of your City or Locality?
[Unknown] : Colombo

What is the name of your State or Province?
[Unknown] : Western

What is the two-letter country code for this unit?
[Unknown] : LK

Is CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo, ST=Western,
C=LK correct?

[no] : vyes
Enter key password for <clientks>

(RETURN if same as keystore password) :

You will find the client key store, clientks. jks at the location where you
launched the preceding command. Make a note of the key store password
and private key password (both are clientks in our example).

Similarly, create a server key store for RoomManagementService as follows :
keytool -genkey -alias serviceks -keyalg RSA -keystore serviceks.

jks -storepass serviceks

Note that, the key store password of the service key store, serviceks.jks is
serviceks and the private key password is also the same.

[163]

Advanced Functional Testing with soapUI

5. Next, we need to export the public certificate of the client to the service key
store. In order to do that, the public certificate of the client must be taken out
from the client key store, which is explained as follows:

keytool -export -alias clientks -keystore clientks.jks -file
client.cert

This will prompt for the keystore password and enter 'clientks'. Then, the
certificate will be stored in a file called client.cert.
6. Now, this certificate can be imported into the service key store as follows:

keytool -import -file client.cert -keystore serviceks.jks
-storepass serviceks -alias clientks

7. Entering the preceding command will result in the following;:

Owner: CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo,
ST=Western, C=LK

Issuer: CN=Charitha Kankanamge, OU=QA, O=Test, L=Colombo,
ST=Western, C=LK

Serial number: 4fal477c

Valid from: Wed May 02 20:11:00 IST 2012 until: Tue Jul 31
20:11:00 IST 2012

Certificate fingerprints:
MD5 : 1D:4B:FF:8A:24:D5:F9:58:D8:C3:FD:71:7F:7C:70:71
SHAl: D6:88:1A:06:7A:5B:4B:34:56:7B:48:A1:9B:C5:AA:B1:B8:91:7

2:1C
Signature algorithm name: SHAlwithRSA
Version: 3

Trust this certificate? [no]: vyes

Certificate was added to keystore

8. Similarly, we can import the public certificate of the service into the client
key store as follows:

keytool -export -alias serviceks -keystore serviceks.jks -file
service.cert

keytool -import -file service.cert -keystore clientks.jks
-storepass clientks -alias serviceks

9. Now, we possess both client and service key stores. We can proceed with
securing the web service.

[164]

Chapter 7

Both serviceks.jks and clientks.jks keystore files can be found in the
s

keystores folder within the chapter 7 folder of the code bundle.

Securing RoomManagementService

I hope you remember how we secured the GuestManagementService in the previous
section using the UsernameToken WS-Security policy. Similarly, now we are going

to secure RoomManagementService using an asymmetric binding security policy by
performing the following steps:

1.

Open the services.xml file, which can be found inside the conf folder of
the sample hotel reservation project and add the following policy as a child
of the <service name="RoomManagementService"s element:

<wsp:Policy wsu:Id="SigOnly"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
0oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/
policy">
<wsp:ExactlyOne>
<wsp:All>
<sp:AsymmetricBinding xmlns:sp="http://schemas.
xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policys>
<sp:InitiatorToken>
<wsp:Policys>
<sp:X509Token
sp:IncludeToken="http://
schemas .xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/
AlwaysToRecipient">
<wsp:Policys>
<sp:RequireThumbprintRefer
ence/>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policys>
<sp:X509Token

sp:IncludeToken="http://
schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never" >

[165]

Advanced Functional Testing with soapUI

<wsp:Policys>
<sp:RequireThumbprintRefer
ence/>
<sp:WssX509V3Tokenl0/>
</wsp:Policy>
</8p:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuites>
<wsp:Policys>
<sp:TripleDesRsal5/>
</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policys>
<sp:Strict/>
</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:0nlySignEntireHeadersAndBody/>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:Wssl0 xmlns:sp="http://schemas.xmlsoap.org/
ws/2005/07/securitypolicy" >
<wsp:Policys>
<sp:MustSupportRefKeyIdentifier/>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>
</sp:Wssl0>
<sp:SignedParts xmlns:sp="http://schemas.xmlsoap.
org/ws/2005/07/securitypolicy">
<sp:Body/>
</sp:SignedParts>
<ramp:RampartConfig xmlns:ramp="http://ws.apache.
org/rampart/policy">
<ramp:user>serviceks</ramp:users>
<ramp:passwordCallbackClass>com.
sample.reservation.security.PWCBSignatureHandler</
ramp :passwordCallbackClass>
<ramp:signatureCrypto>
<ramp:crypto provider="org.apache.
ws.security.components.crypto.Merlin"s

[166]

Chapter 7

<ramp:property name="org.apache.
ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
<ramp:property name="org.apache.ws.security.crypto.merlin.
file">serviceks.jks</ramp:property>
<ramp:property name="org.apache.
ws.security.crypto.merlin.keystore.password">serviceks</
ramp:property>
</ramp:crypto>
</ramp:signatureCrypto>
</ramp:RampartConfig>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

You will be interested to see the asymmetric binding policy assertion in the
preceding policy which specifies the keys used for signing and verification
of signatures. The <sp:InitiatorToken> and <sp:RecipientToken>

are the two main elements inside the asymmetric binding assertion. The
InitiatorToken element specifies the token used by the client (sender) for
signing whereas the RecipientToken defines the tokens used by the service
for signing.

We already saw the usage of the RampartConfig assertion in the
UsernameToken policy. In this policy, the RampartConfig assertion is used
to refer to the key stores and certificates used for signing and verifying the
signatures of the messages. Here, the value of <ramp:user> element is the
username used to retrieve the password of the corresponding private key
from the CallbackHandler.

The <ramp:passwordCallbackClass> element is used to retrieve the
password of the private key that is used for signing. We will write a new
password callback handler class, com.sample.reservation.security.
PWCBSignatureHandler.java,anOHOVVS

package com.sample.reservation.security;

import org.apache.ws.security.WSPasswordCallback;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;
import java.io.IOException;

public class PWCBSignatureHandler implements CallbackHandler {

[167]

Advanced Functional Testing with soapUI

public void handle (Callback[] callbacks) throws IOException,

UnsupportedCallbackException

WSPasswordCallback pwcb = (WSPasswordCallback)
callbacks|[0] ;

String id = pwcb.getIdentifer () ;

int usage = pwcb.getUsage() ;
//Usage value is SIGNATURE when rampart wants to get the pass
// phrase of the private key of the keypair when it wants to
// create a signature in an outgoing message

if (usage == WSPasswordCallback.SIGNATURE) {
// Logic to get the private key password for given

// alias
if ("serviceks".equals(id))
pwcb.setPassword ("serviceks") ;
} else if ("clientks".equals(id)) {
pwcb.setPassword ("clientks") ;
}
}
}
}

. The complete source code of the PWHCBSignatureHandler.java
% class can be found at src\com\sample\reservation\security\
s PWCBSignatureHandler.java in the the chapter 7 folder of the
code bundle..

3. Engage the Rampart module by adding the following element
in the services.xml file in order to enable WS-Security for
RoomManagementService:

<module ref="rampart" />

The complete services.xml file with the security policy can be
&= found at conf folder within the chapter 7 folder of the code bundle.

Now, we can rebuild our sample service by including the libraries in AX152_
HOME/1ib in the class path. We must also make sure to copy the service key
store (serviceks.jks) into the root of the service archive.

You can use the ant build script given in the code bundle associated
%‘\ with this chapter to build the service with all of the preceding
’ configurations.

[168]

Chapter 7

5. Deploy the HotelReservation.aar file again. When you access the WSDL
URL of RoomManagementService (http://localhost:8080/axis2/
services/RoomManagementService?wsdl), you will see that the auto-
generated WSDL is updated with the signature policy.

Testing secured RoomManagementService
with soapUl

We completed the configurations at the web service side which are required for
securing the service with an asymmetric binding policy. Our next objective is to
invoke this secured service using soapUL In order to do that we need to construct the
corresponding asymmetric binding security policy in soapUI project configuration.
We have already witnessed that enabling asymmetric binding policy for a web
service requires a lot more configurations than the UsernameToken scenario. This is
true for the client side as well. In soapUI, we need to complete the following tasks in
order to submit a digitally signed message to the preceding web service:

1. Specify the key pairs used to create the signature and passwords to access the
key store and private key.

2. Specify the set of algorithms used for digest generation, signature, and
signature canonicalization.

3. Specify the parts of the message which need to be signed.

In this section, we will go through the detailed configurations of the soapUI project
to fulfill the preceding work items

1. Open Project view of the HotelReservationProject.

2. First, we will specify the key stores which are required for our scenario. In
asymmetric binding, the client (soapUI) signs the request using its private
key. The private key is stored in the clientks. jks file. Also, the client
decrypts the encrypted digest value of the response using the service's
public key which is also stored inside clientks.jks.

3. Click on the Keystores/Certificates tab and select the + icon to add a new
key store. Browse for the clientks. jks file in your filesystem and specify
its password as clientks.

4. Enter clientks as the Default Alias and Alias Password. We will point to
the private key which is used to sign the request using the default alias and
use the alias password as the private key password.

[169]

Advanced Functional Testing with soapUI

5.

The new key store will be listed in the Keystores/Certificates windows as
shown in the following screenshot:

| E] HotelReservationProject

r Cwverview rTestSuites r W5-Security Configurations rSecur|tv Scan Defaults |

[Outgeing Ws-Sacurity Canfigurations | Incoming WS-Security Configurations | Keystoras / Centificates |

t %o @
Source | Status | Password | Default Alias | Alias Password

fhome/charitha/soap... QK sesssnne clientks sassssse

6.

The Status column shows the loading status of the given key store. This will
report an error if the key store location is invalid.

Outgoing WS-Security configurations

Now, we will add an Outgoing WS-Security configuration for our project as follows:

1.

Click on the Outgoing WS-Security Configurations tab and click

on the + icon to add a new outgoing WSS configuration. Specify
SignOutgoingConfig as the unique name of outgoing WSS configuration.
We will keep the Default Username/Alias, Default Password, Actor, and
Must Understand fields blank as we do not want to use the default values
for child WSS entries.

As we did in uTConfig WSS configuration previously, we can add

multiple WSS entries for a WSS configuration. Select the newly added
SignOutgoingConfig and click on the + icon at the bottom of the pane to add
a new WSS entry. Select Signature as the entry and click on OK.

You will notice the following properties of the Signature WSS entry:

° Keystore: It is the key store which holds the private key used to sign
the message. For example, clientks.jks

° Alias: It is the alias of the private key, for example, clientks
Password : It is the private key password, for example, clientks

° Key Identifier Type: It defines which key identifier type to use for
signature. For example, Binary Security Token or X509 certificate

° Signature Algorithm: This is the algorithm used for generating a
signature using an asymmetric key. WS-SecurityPolicy specification
recommends to use RsaShal algorithm which is identified by the URL
http://www.w3.0rg/2000/09/xmldsig#rsa-shal. In our example,
we can select that or use the default as the signature algorithm.

[170]

Chapter 7

Signature Canonicalization: The XML canonicalization (www.
w3.org/TR/xml-exc-cl4n/) is part of the XML digital signature.
There are various canonicalization algorithms and each represents
using their identifier in soapUI WSS entry properties. In our example,
we will leave the default signature canonicalization as it is.

Digest Algorithm: This specifies the algorithm used for generating

a message digest value. Once selected, this will include in
<ds:DigestMethod> element in SOAP header of the request. You
can use the default or whatever algorithm is preferred. We will select
http://www.w3.0rg/2000/09/xmldsig#shal.

error, XMLSignatureException, in soapUI v4.0.1.

[Selecting default as the digest algorithm returns an]

4. Check the Use Single Certificate checkbox, this instructs soapUI to use a
single certificate for signing.

5. Parts defines what parts of the SOAP message should be signed. We can
specify multiple parts by clicking on Add new part + icon. The Parts table
consists of four columns:

o

ID: This column is used to specify a unique ID of the XML element
to be signed

Name: This column is for specifying the name of the XML element
(for example, Body)

Namespace: This column has the associated namespace of the

XML element

Encode: This column states how the signing should be done related
to an XML element

There are two possible values, content and element. Element
encoding can be used if we want to sign the whole XML element.
Content encoding can be used to sign inner parts of XML elements.

6. In our example, we will use the following values in the Parts table:

e}

o

e}

o

[

ID: empty

Name: Body

Namespace: http://schemas.xmlsoap.org/soap/envelope/
Encode : Content

If we leave the Parts table empty, soapUI signs the SOAP body of
the request by default

[171]

Advanced Functional Testing with soapUI

7. Once completed, the Signature properties of the SignOutgoingConfig
outgoing WSS configuration will be similar to the following screenshot:

Kaystore: W
Alias: [crientiks +
Password: |uuuu |
Key ldentifier Type: lBinaN Security Token -
Signature Algorithm: l<defau|t> v|
Signature Canaonicalization: l<defau|t> v|
Digest Algorithm: lhttp:;fwww.wB.orng Q0009 /xmldsig#shal -
Usa Single Centificate: Usa single cartificate for signing
Parts: i

D Mame | MNamespace | Encode

Bodly http://sche... [Contant =

8. Now, if you just associate this configuration with a SOAP request and
submit, you will get a SOAP Fault with the Missing Timestamp fault string.
You should be able to explain the reason for that by looking at the security
policy of RoomManagementService.

In the WS-Security policy of the service, <sp: IncludeTimestamp/> tells the
requestor to always send a timestamp with a request.

9. Inorder to send the Timestamp with the request, we need to add Timestamp
WSS entry as we did in UsernameToken scenario. Click on the + icon in the
bottom pane of the SignOutgoingConfig outgoing WSS configuration and
select Timestamp from the Add WSS Entry drop-down menu. Specify the
sufficient TimeToLive value in seconds (for example 60 seconds).

Incoming WS-Security configurations

Now, we are done with the outgoing security configurations of the soapUI project.
However, the responses we get from the service are also secured by the service in
the same manner. Therefore, we should configure soapUI to interpret and process
the responses. Incoming WS-Security configurations provide us with the necessary
settings required to process the responses as follows:

1. Click on the Incoming WS-Security Configurations tab. Click on
the + icon at the top-left corner of the configuration tab to add a new
incoming WSS configuration.

[172]

Chapter 7

2. Enter signIncomingConfig as the name of the configuration. Once we get
the secured response, soapUI needs to verify the signature of the message
using the public key of the service which can be found at the client key store.
Therefore, select clientks. jks as the Signature key store.

3. Finally, make sure to specify the password (clientks) of the Signature key
store. This is shown in the following screenshot:

¥ B

& HotelReservationProject

r Overview rTestSuites rWS-Securit}r Configurations |/ Security 5can Defaults |
®

r Qutgoing W5-5ecurity Configurations |/Inc0ming WS5-Security Configurations |/ Keystores / Certificates |
L @

Mame | Decrypt Keystore | Signature Keystore | Password

SignIncomingConfig clientks.jks sssaneee

Applying WS-Security configurations to the SOAP request

We are ready to apply the Outgoing and Incoming WSS configurations into a SOAP
request which invokes RoomManagementService as follows:

1. Select the getRoomDetails TestStep of RoomManagementServiceTestSuite.
Select the Aut (authentication and security related settings) tab which is at
the bottom corner of the request window.

2. Select Outgoing WSS and Incoming WSS which we have been just configured.
This will associate the out-flow and in-flow security to the SOAP request.

Username: | |

Passward: | |

Domain: | |

Qutgoing Ws5: |SignOutgoingConfig -
Incoming WSss: [SignincomingConfig

[173]

Advanced Functional Testing with soapUI

3. Run the test. You will see the following security headers of the request in the
Raw view of the message. Analyze these header values with the Outgoing
WSS configuration properties which we have specified in the soapUI project:

<soapenv:Header><wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0casis-200401-wss-wssecurity-secext-
1.0.xsd"><wsu:Timestamp wsu:Id="Timestamp-37" xmlns:wsu="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd"><wsu:Created>2012-05-03T03:19:08.667Z</
wsu:Created><wsu:Expires>2012-05-03T03:20:08.667Z</wsu:Expires></
wsu:Timestamp><wsse:BinarySecurityToken EncodingType="http://
docs.oasis-open.org/wss/2004/01/0asis-200401-wss-soap-message-
security-1.0#Base64Binary" ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-
1.0#X509v3" wsu:Id="CertId-602C22F25E72EF3491133601514866237"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-
wss-wssecurity-utility-1.0.xsd">MIICTTCCAbagAwIBAgIET6FHEDANBgk
ghkiG9w0BAQUFADBrMQswCQYDVQQGEwWJIMSzEQMA4GA1UECBMHV2VZzdGVybjEQMA
4GA1UEBXMnHwsnYPKT006UgCLAGr5XkeII/7qH4yr4MHmvMu6qURLSFm8afrgvy
aic=</wsse:BinarySecurityToken><ds:Signature Id="Signature-35"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/
xml-exc-cl4n#"/>

<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#rsa-shal"/>

<ds:Reference URI="#id-36">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-
cl4an#"/>

</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#shal"/>
<ds:DigestValue>eICjYxx0xAb/1FPCuO50NLJLGRo=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

a6RMP79Bpjunwwlnéb9vupalUU91izad 2QTAnxRhgIMZEXO3Nnc
M4xdbxxkpjVzpé6ukDIheGFn95gq

0sUzeRfYXYM4 OWqWpOrCIJErmWopbLeuOogRIMyP0Q411SARTLYyD/
rBvPFnivut78eb8rBm2b4M

Kq722BVCYyRYcpS1TGhA=

</ds:SignatureValue>

[174]

Chapter 7

<ds:KeyInfo Id="KeyId-602C22F25E72EF3491133601514866238">
<wsse:SecurityTokenReference wsu:Id="STRIdA-602C22F25E72
EF3491133601514866239" xmlns:wsu="http://docs.oasis-open.
org/wss/2004/01/0asis-200401-wss-wssecurity-utility-
1.0.xsd"><wsse:Reference URI="#CertId-602C22F25E72
EF3491133601514866237" ValueType="http://docs.oasis-open.org/
wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"/></
wsse:SecurityTokenReferences>

</ds:KeyInfo>
</ds:Signature></wsse:Security></soapenv:Header>

Validating WS-Security responses

Similar to the WS-Addressing specific assertion, soapUI provides us with an
assertion to automatically validate secured responses. WS-Security Status assertion
can be used to validate that the last received message contained valid WS-Security
headers as follows:

Click on Adds an assertion to this item icon at the bottom of the getRoomDetails
SOAP request editor and select the WS-Security Status assertion as shown in the
following screenshot:

]
ememwz _ Select Assertion I.&J
Password:
& Select assertion to add
|« —— WS-Securty Status -

E] Head.. Attach [Invalid HTTP Status Codes “

JMS Timeout

+ X1}

% X~ ¥ W5-Security Status

& Script Assertion - VA Mot SOAP Fault

@ Not SOAP Fault - VALID Response SLA
Valid HTTP 5tatus Codes
SOAP Response
Script Assertion |

This assertion validates the WS-Security headers in the last response message and
reports as VALID when the WS-Security headers are present.

[175]

Advanced Functional Testing with soapUI

Summary

Web service extensions play a key role in service-oriented architecture.
WS-Addressing and WS-Security are two such standards which are commonly
used in service oriented solutions. Although most of the web service testing
tools are capable of directly invoking the services, if the services are configured
with various Quality of Service features such as the WS-Security, it is complex
or impossible to use tools in testing. This is not the case with soapUI. soapUI
provides users with simple and Ul based utilities to quickly configure web
services extensions and submit the requests including various WS-* headers.

In this chapter, we looked into the details of using secure SOAP message
transmissions in soapUI. We discussed two security-binding mechanisms,
TransportBinding through UsernameToken and asymmetric binding using
an XML signature. WS-Security is a relatively complex subject, so the reader
should refer to the relevant specifications when trying out the samples given
in this chapter.

[176]

Getting Started with
REST Testing

There are various technologies that can be used to implement interoperability
between heterogeneous applications. As we discussed in previous chapters, web
services technology can be considered as the de facto standard for enterprise
integration. We can identify two distinguished mechanisms in implementing web
services, namely, SOAP based web services and RESTful web services. So far,

we looked into the various aspects of SOAP-based web services and how soapUI
facilitates the testing of SOAP web services. Our sample hotel reservation application
has also been completely based on SOAP based web services where we used the
SOAP messaging model. The WSDL is used to describe web services as well as SOAP
web service extensions such as WS-Addressing, WS-Security, and so on. (Chapter 7,
Advanced Functional Testing with soapUl)

SOAP versus REST has been a debatable topic over the last few years. Due to the
simplicity and extensive use of popular web-based technologies such as HTTP,
REST has become popular among developers. However, some people argue that the
true advantages of web services such as extensibility, message-level security, and
addressing cannot be achieved through RESTful services, thus SOAP can still be
considered as the standard way of implementing web services. In this chapter, we
will explore the world of testing RESTful web services using soapUI with the help
of the following topics:

* Introduction to REST

* Testing RESTful APIs using soapUI

* REST services in soapUI

* REST parameters

* Functional testing of REST services using soapUI
* WADL

Getting Started with REST Testing

Introduction to REST

In his doctoral dissertation (http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm), Roy Fielding introduced the term

"REST". Representational State Transfer (REST) can be defined as an architectural
style for designing software systems. REST is not a specification or W3C standard
such as SOAP or WS-* stack. Because of that, working with RESTful services

is relatively easier and you do not usually need to use specific middleware
frameworks. Most often, the standard libraries included in programming
languages can be used directly.

The key principles of REST are as follows:

* Represent everything with a unique ID; a URI

e Make use of standard HTTP methods such as GET, POST, DELETE, and PUT
* Link resources together

* Resources can have multiple representations

* Stateless communication

Let's discuss each of these concepts briefly to get a preliminary understanding about
RESTful services.

Represent everything with URIs

In REST, any named information is considered as a resource. Therefore, an image,
person, or a document can be considered as examples of resources. Each resource can
distinguishably be identified using a unique ID; a URI. The following represent two
distinct resources:

* http://test.com/products/0020: Represents the product with ID 0020
* http://test.com/orders/2012/01: Represents all orders placed in
2012 January

With this approach, any resource can be identified by its URL. When designing
RESTful services, it is best practice to map all the resources which are exposed
to the outside world through proper directory-structure like URIs.

[178]

Chapter 8

Using standard HTTP methods

REST is built based on the proper use of HTTP methods. Because of the sole HTTP
based interactions, in a way, the World Wide Web (WWW) can be viewed as a
complete representation of a REST-based architecture. As HTTP is the standard
and widely adopted transport protocol in web, it can be used to access any resource
including HTML pages, images, and videos. For clients to interact with resources
exposed by our services, we should implement the HTTP methods correctly.

We can access resources through HTTP by specifying two elements:

* HTTP verb: This is the action to be performed on the resource

¢ Resource Identifier: This is the URI of the resource which needs to be accessed

For example, we can retrieve details about the product with product ID 0020 using
the following pattern:

GET http://test.com/products/0020

The HTTP specification defines a set of verbs and their purpose. We can summarize
the commonly used HTTP methods as shown in the following table:

HTTP Verb Description

GET Retrieves a resource identified by the URI. Can be compared to
READ operation.

POST Creates a new resource. Can be compared to the CREATE operation.

PUT Updates resource with the provided data or creates the resource if it
does not exist. Can be compared to the UPDATE operation.

DELETE Deletes the resource identified by the URI. Can be compared to the
DELETE operation.

The HTTP verbs provide a uniform interface to interact with resources. In order
to build truly RESTful applications, we should make sure we use the appropriate
HTTP verbs for the correct purposes. For instance, we should not use HTTP GET
to trigger something transactional on the server which violates the intended use
of the GET method.

Linking resources together

Resources can be related to each other. For example, one document can be linked
to another document. It is always a good RESTful design practice to not include too
much information in a single resource. Rather, a resource should contain links to
additional information similar to how HTML pages are linked. As links are URISs,
they can point to resources which are managed outside your application.

[179]

Getting Started with REST Testing

Multiple representations of resources

With REST, multiple representations of resources can be provided for different
needs. As REST is purely HTTP oriented, the content negotiation (http://
en.wikipedia.org/wiki/Content_negotiation) principle can be used to achieve
different representations of the same resource. With this, a client can request the
preferred response format using the Accept HTTP header and the server responds
with a representation of the resource in the requested format. Having multiple
representations of the same resource will help in many ways. Information about
your application can be accessed by various types of clients who consume different
representations such as HTML and XML.

Stateless communication

REST mandates that a server should not retain communication state of the clients
beyond a single request. This is very important to achieve loose coupling among
RESTful services and client applications. When a client communicates with a server,
the request should contain all the necessary information that must be present

in order to access and use the server. It should not assume that the server holds
information about the state of the client. With stateless communication, the server
does not require to maintain information about the client's state, thus it does not get
overwhelmed by multiple clients accessing the server simultaneously.

We looked into the key principles of REST. It is time for us to use soapUI to invoke a
RESTful service as we started discussion on SOAP services testing in Chapter 3, First
Steps with soapUI and Projects.

Testing RESTful APIs using soapUl

You may be wondering why I introduced a new term "API" instead of "services" to
start off the topic. Be it REST or SOAP, web services can be considered as another
form of APIs. With the widespread adoption of mobile devices and service-
oriented computing, business organizations have begun to expose applications and
services to external parties. These third party developers have built applications to
integrate with the systems of API providers allowing the providers to extend the
capabilities of their businesses as well as helping the third party developers to earn
their own livelihood.

Today, there are enormous applications built by the third party developers based
on the APIs exposed by many vendors. For example, big names such as Twitter,
Facebook, Google, and Amazon expose their key features as APIs to the outside
world allowing developers to build various applications.

[180]

Chapter 8

Due to the easy-usage and lightweight nature of REST, most of those popular APIs
are offered as purely RESTful interfaces. The testing of REST APIs can be done
either using the utilities provided by the API provider or by an external tool such
as soapUI. Usually, when APIs are provided through an API management solution
such as Apigee, Mashery, or WSO2, the API management solution provides you
with facilities to test the APIs. However, merely sending messages to APIs is not
sufficient if you are an API provider or a consumer who wants to build third party
applications. soapUI brings with it RESTful services/ API testing facilities which
allows us to use various functional and performance testing capabilities.

Without further discussion, let's start using soapUI for RESTful service testing. We
can find a large number of APIs such as Google+ and Google Maps at the Google
Developers portal (https://developers.google.com/) which can freely be

tried out. As these Google APIs are truly RESTful in nature and readily available
for use, we are not going to spend time on writing our own RESTful service for
demonstration purposes. To use any Google API, you must first create a Google
account (if you do not have one) and then request an API key. We can do so by
performing the following steps:

1. Create a Google account if you do not already have one.

2. Access the Google Developers portal at https://developers.google. com/.
3. Click on the API Console which can be found under the Developer Tools.
4

Log into the API console (https://code.google.com/apis/console/)
using your Google account.

o

Click on Create project to start using Google APIs.

6. You will find the list of Google API offerings such as Analytics AP]I,
Blogger API, Places API, and so on. For our demonstration, we will use
Google Places API. Locate the Places API in the services list and click on
the on/ off icon to make it active.

7. You will be prompted to register your organization and website URL.
Enter something valid and click on Submit. This will direct you to the
terms of services page. Accept the terms and conditions.

8. Now, go to the API Access page by clicking on API Access in left menu.
You will find your API key at the bottom of the page under the Simple
API Access section.

[181]

Getting Started with REST Testing

9. Now, we possess an API key to try out the Google Places APL

The Google Places API gives information about various places.
According to the API documentation (https://developers.
google.com/maps/documentation/places/), place requests
specify locations such as latitude/longitude coordinates and the
following basic searches are exposed through the API:

* Place Searches: This returns a list of nearby places based on a

user's location
% * Place Details requests: This returns a detailed information
about a specific place
* Place check-ins: This allows to report that a user has checked
into a place

* Place reports: This allows to add new places and delete places

Make sure to carefully read the API documentation before you try out
the sample, which we will try out in the next section.

REST Services in soapUl

All REST testing capabilities of soapUI are based on a logical representation known
as REST service. We should not confuse this with the term "service" here since it

is not a service implementation but a mapping of the RESTful service that is being
invoked. We can add as many REST Services as we can in a soapUI project; each
represents a particular RESTful service. The REST service model in soapUI can be
represented as shown in the following diagram:

soapUl Project

REST Senvice

Resource

Method

Child Resource

[182]

Chapter 8

Each REST service consists of a number of resources. As we discussed at the
beginning of the chapter, resources represent any named information that is
identified as URISs. So, each resource can be addressed through a specific URIL For
example, the guests' resource can be accessed through URI path /guests whereas
guest resource is found at the/guest/{guestName} URL

A resource may have child resources. The complete URI of the child resource is a
concatenation of the parent resource URI with its own.

Resources can have multiple methods. As we just discussed, a fundamental principle
of RESTful services is the existence of multiple representations of resources.
Therefore, the same resource can be manipulated through multiple HTTP methods.
Thus, the same resource URI can be made accessible via HTTP GET and POST,
depending on the requirements.

Requests are the leaf nodes of the soapUI REST service hierarchy, which represents
the actual request message based on the HTTP method.

We will look into each of the above entities with a sample REST service by
performing the following steps:

1. Create a new soapUI project and name it GooglePlaces. We can select the
Add REST Service option in the New soapUI project dialog box and click on
OK to create the service on-the-fly. Note that we do not want to mix things
by including the REST service inside the same hotel reservation project which
we used to demonstrate the SOAP web services.

2. The New REST Service dialog box will be opened as shown in the
following screenshot:

P o e [I

New REST Service {Qﬁ’
Adds a new REST Service to this project
Service Mame: |GoogIePIacesAPI |

Service Endpoint: || |

Extract Rescurce/Method:

Create Resource: [] Opens dialog to create a REST Resource I

(o [coce]

[183]

Getting Started with REST Testing

Enter GooglePlacesAPI as the service name. The endpoint is the base
URL of the API which we are going to invoke. In our case, the base URL
is https://maps.googleapis.com.

soapUI provides us with a very useful option to extract the resource and
the associated method automatically from the endpoint URL. Otherwise,
we can manually create the REST resource in the next dialog box. For
soapUI to extract the resources and methods, the endpoint URL should
contain the query strings and URL parameters. Usually, the request URL
format of an APl is given in the corresponding API documentation. In
the Google Places API document, we can find the general format of the
request URL for the place search request as:

https://maps.googleapis.com/maps/api/place/search/

% output?parameters

e—"You will find the details about the parameters which must be included
in a place search request in the same section of the API documentation.
According to it, a complete URL for a place search request will be similar
to the following:

https://maps.googleapis.com/maps/api/place/search/
json?location=-33.8670522,151.1957362&radius=500&types
=food&name=harbour&sensor=false&key=AddYourOwnKeyHere

This is the exact same request given as an example in the API
documentation. This URL shows the search request for places of type
food within 500 m radius of a point in Sydney Australia.

3. As we have an example of the complete URL of a particular place search,
enter it as the endpoint URL and select the Extract Resource and Method
from specified endpoint option as shown in the following screenshot:

New REST Service

New REST Service _ﬁ.
Adds a new REST Service 1o this project

Service Mame: |GoogIePIacesAPl |
Service Endpoint: |5 OO&I\mes=f00d&name=harb0ur&sensor=fa|se&kev=AddY0urOwnKevHere|

Extract Resource/Method: [¥][Extract Resource and Method from specified Endpoint|

Create Rasource:

[184]

Chapter 8

4. Once you click on OK in the preceding dialog, the New Rest Resource dialog
will be displayed. Enter a valid resource name (for example, "places") and
click on OK as shown in the following screenshot:

New REST Resource

New REST Resource T
Adds a new REST Resource ﬁ

Resource MName: |p|aces |

Resource Path/Endpoint: |jmaps,fapijplacefsearch,’json |

Extract Params: Extract Params

Parameters: O v s E (7]
Mame | Default value | Style | Location
location -33.86870522... QUERY RESOURCE
radius 500 QUERY RESQURCE
types food QUERY RESOURCE
name harbour QUERY RESOURCE
sensor false QUERY RESOURCE
key AddyourOwnk... QUERY RESOURCE

Here, you can see that the all query parameters have been extracted from
the endpoint URL which we specified in the previous step. If there are any
additional parameters that need to be captured, we can use the Extract
Params button. Also, we can add new parameters or remove existing
parameters using the Parameters tool bar which is on top of the
parameters table.

M Note that the parameters which are defined at the resource level
Q are visible to all child entities in a REST service. This means these
parameters can be accessed from REST methods as well as requests.

[185]

Getting Started with REST Testing

5. Now, we can add a REST method to access our places resource. Apparently,
the request should be an HTTP GET because we just do a search on places
and do not want to add, update, or delete a resource. Therefore, specify GET
as the HTTP method. Enter searchPlaces as the method name as shown in
the following screenshot:

New REST Method

New REST Method _ﬁ.
Adds a new REST Meathod for this Resource

Method Name: |searchPlaces| |

HTTF Method: |CET -

Parameters: t i O v & * (3]

Mame Default value Style

Create Request: Creates and opens requeast

We can add HTTP method specific parameters in the Parameters table.
Parameters defined at the method level are available for all requests defined
under the method. In our example, we do not have any method specific
parameters since we have defined everything at the resource level. By
selecting the Creates and opens request option, we can proceed to

creating a request for this HITTP method in the next window.

6. Finally, the REST request editor will be displayed as shown in the
following screenshot:

[186]

Chapter 8

'25 Request 1 of ¥ [#
P =m [https:Hmaps.googleapis.com W+ ®
accept| [=] Full Path: [/maps/api/place/search/json?sensor=false&location=-33.8570522%2C151. 19573

_ |e

E @ O * ':‘?:' ¥ E sl
= =
& Nama | Value =
o =
sensor false 2
iu location -33.8670522,151.1957362 /:—
ypes food E
name harbour /I_
kay AddYourOwnkeyHare z
radius 500 L

[

4] [v]all

Head... Attachm... Represent. . Hea... Atach... 55 Represen... 5c..
=1

You can observe that the parameters which were extracted and defined at
the resource level are shown in request editor. Regardless of the level of the
REST service in which the parameters are defined, all parameters should be
part of the request and are accessible from the request level. Therefore, the
Parameters table in the request editor can be considered as an aggregation
of all parameters.

At the top of the request editor, the endpoint is shown as
https://maps.googleapis.com.

Under that, you can find the full path of the request. Actually, the complete
path of the request will be a concatenation of the endpoint and the full path
[endpoint+full path]. If we want to update the existing parameter list with
a new URL, we can click on the Updates this Requests params from

a specified URL icon, which can be found at the top of the request editor.

[187]

Getting Started with REST Testing

Now, we can send the request. Before that, make sure to replace the key
parameter value with your API key, which you created at the time of
registration at the Google developers website.

7. Click on the green arrow icon at the top-left corner to submit the HTTP GET
request. You will get a response and it will be shown in XML format by
default. Click on the JSON tab to view the response in JSON format.

You will find some elements which we have not seen with the SOAP request editor
but are specific to the REST requests and responses. Two of such are the request and
response representation tabs.

Request and response representation

As we discussed earlier, the fundamental feature of RESTful services is the ability of
resources to provide multiple representations. This is achieved basically using the
HTTP content-negotiation mechanism. Each method in a resource can have multiple
request and response representations.

Right-click on the searchPlaces method and select Show Method viewer. Open

the Representations tab. Once you send the first request of a particular method,

a default response representation is added automatically based on the received
response (the automatic creation of representations from the response messages can
be turned off by deselecting the Auto-Create option at the bottom of the response
editor). Therefore, we can see a response representation is already added in the table
as shown in the following screenshot:

rMethod Farametars rRepresemations |

Type | Media-Type Status Codes QMame
RESPOMNSE application/xml 200 defact
FALULT text/xml 404 html
REQUEST nj/a

Depending on the REST service which you consume, you can add as many response
representations as you wish. You can specify different media types or status codes
for the responses in Representations table. When sending the request, you can
specify the required media type in the Accept drop-down box which can be found
at the top-left corner of the request editor. The Accept drop-down box of the request
editor is auto-populated with the response representations which were specified in
the Representations table as shown in the following screenshot:

[188]

Chapter 8

| £F Requestl @

> =0 |http5__maps.qooqleapis.com

Accept | |:| Full Path: [fmaps/api/place/search/jso
* @ app:ication_{jsor ® ; 3
3 '

g !_ap"'“ﬁfr:?m | Value e

Using this response representation approach, you can achieve content negotiation of
REST resources.

Representations are not limited to the responses. You can specify representations for
requests as well as fault messages. By clicking on the + icon in the Representations
tab, you can select the representation type for a method. As with responses, a
representation of the fault type will also be populated automatically once you

get a fault response.

The representations which you added at the method level will be available at the
request level hence the request and response editors also show the corresponding
representations.

I'm not planning to take you through all methods exposed by the Google Places API.
You can try them on your own and become more familiar with the REST service
model in soapUI. However, we will discuss the Place Check-Ins API in detail as it
makes use of the HTTP POST requests.

Using POST or PUT requests in soapUl REST
services

We will use the Place Check-Ins API (https://developers.google.com/places/
documentation/actions#PlaceCheckinRequests) of the Google Places API to
demonstrate the POST method handling in soapUI REST services. As per the API
documentation, once we have a reference parameter from the response of Place
Search (you can find the response message in the soapUI response editor in the
preceding Google Place Search API method invocation), we can use it to indicate that
a user has checked into that place. A place check-in request is of the following form:

POST https://maps.googleapis.com/maps/api/place/check-in/
xml?sensor=true_or false&key=AddYourOwnKeyHere

[189]

Getting Started with REST Testing

As this URL represents another resource based on the endpoint, https://maps.
googleapis.com, we can include place check-in resources under the same REST
service which we created previously.

Let's add an HTTP POST method to the REST service by performing the
following steps:

1.

Right-click on the Google PlacesAPI REST service and select New Resource.
Enter placecheckins as the resource name. Enter the preceding place
checkin request URL (https://maps.googleapis.com/maps/api/
place/check-in/xml?sensor=trueskey=AddYourOwnKeyHere) as

the resource path.

Click on the Extract Params to extract the parameters from the preceding
URL and click on OK.

Add a new REST Method for this resource. Give placeCheckin as the
method name. Make sure to select POST as the HTTP method. Click on
OK to add the new HTTP method.

The request editor will be displayed for the POST request. You will notice a
specific text area in the request pane to add the POST request body. Enter the
following XML element in the POST request body and submit the request.
Make sure to replace AddYourOwnKeyHere string with your API key
which you used in the previous example.

<CheckInRequest>

<reference>CnRsAAAAgiDEO99XwaV8DrfbOuYzN1oCFVSOg-
eB6nfHVNgic56Tbf1-RMvwiOr4Y7clzwJzHGI6BNXG 1lzztACgHs5 LNOREaOtuMh
5dsjU8VsaLc9vkbpwc9j£S-V32FddVCLXMNEo6doD60f-17R1nhaC_xIQOUQ9GOsW-
uKGpc7F4dYdNxoUJya-FxUMgpgtWEp tCk3QP6uXzg</references
</CheckInRequest>

Note that the reference value has been captured from the response of the previous
place search request. This is shown in the following screenshot:

[190]

Chapter 8

5% Request 1 o f Ig
P =m [https:Nmaps.googleapis.com T+ @
Accepl|:[3 Full Path: [fmaps/api/place/check-in/xml?sensor=trueékey=
_ |«
ol o * @ |5|[2 [#CheckInResponse- [
u o - = =status=0K=/status=
1 Name | valua =/CheckInResponses
o =
sensor [true =l
= ,
& |key / =
=
E
I
&
o
L
Media Type |application/xml |+ [[] Post Quenystring
<=CheckInReguests
=referencesCnREYALAACT qasTRXINEREYWLSHZE rwinl- jCINELal iwPE4MCWDN
=/CheckInReguest=
E
e] [» <] D5
Header... Attachmen... Representatio... Hea... Artach... 55LInf.. Represe.. Schema...

You will notice the Media Type drop down box in the POST message content editor
which can be used to select a media type for the request from a pre-populated list
of standard media types or add any other value. In our case, we can either use
application/xml or application/json media types. When you select different media
types and submit the request, the corresponding request representation is added to
the representations tab in the request editor.

Reading POST message content from a file

Let's see how we can read the content of a POST request from a file without
specifying it in the POST message content editor:

1. First, we need to clear the message content in the POST message editor and
leave it blank.

2. Copy the request message content into a file in your file system. Name the
file request . xml.

3. Click on the Attachments tab which can be found at the bottom of the
request editor.

4. Click on the + icon to add an attachment. Browse for the request .xml in
your filesystem and click on Open. You will be asked if you wish to cache
the attachment in request. Click on Yes.

[191]

Getting Started with REST Testing

5. The file will be listed as an attachment with the content type as text/xml.
Now, if you just submit the request with these details, you will receive the
response as HTTP 400 bad request. The reason being that the media type
of the request has been set to application/xml but the content type of the
attachment is text/xml. Therefore, make sure to change the content type of
the attachment into the media type value of the POST request, in our case,
application/xml.

6. Now, submit the request again. You will get a successful response. Look at
the Raw view of the request. You will notice that the content of the file has
been inserted into the message body.

In the POST request message content editor, you will see an option to select the
Post QueryString. This can be used to put a query string of the request into the
POST body. Once you select this option, you will notice that the query strings (the
parameters preceded by ? in the request URL) are appended to the POST body and
the content type is changed to application/x-www-form-urlencoded as shown in
the following message:

POST https://maps.googleapis.com/maps/api/place/check-in/xml HTTP/1.1
Accept-Encoding: gzip,deflate

Content-Type: application/x-www-form-urlencoded

User-Agent: Jakarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Content-Length: 55

sensor=true&key=dummykeyvalue

We looked into how soapUI REST services handle HTTP POST requests. The same
options can be applied to HTTP PUT requests as well. If the HTTP method is PUT,
the associated request includes a request content editor similar to POST requests.

[192]

Chapter 8

Inserting the HTTP Basic Authentication
header to requests

The Aut tab at the bottom of the request editor allows us to configure security
settings for the requests. As WS-Security is not applicable in the context of RESTful
services, a possible alternative is to use HTTP(S) basic authentication. Let's look

at how we can insert basic authentication into the requests by performing the
following steps:

1.

Click on the Aut tab at the bottom of the request pane. Enter a valid
username and password according to your RESTful service (in our example,
we are accessing Google Places API which does not expect Basic Auth
headers. So we can just use any credential).

Usually the servers secured with basic authentication challenge the
authentication headers, so you can just submit the request. If we want soapUI
to send credentials, if there is no challenge from the server side, continue
with the following steps.

Click on the Global soapUI Preferences icon in the main tool bar. Then click
on the HTTP settings tab.

Locate the Authenticate Preemptively parameter and select Adds
authentication information to outgoing request.

With these settings, resubmit the previous POST request. You will see the
basic authentication headers in the Raw view of the message as follows:

POST https://maps.googleapis.com/maps/api/place/check-in/
xml?sensor=true&key=dummykey HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: application/x-www-form-urlencoded

Authorization: Basic c¢3NhZGFzOnNhYXNhc2E=

User-Agent: Jarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Content-Length: 250

<CheckInRequest>
<reference>CmRYAAAACi1igGsTRX1ImXRvVUXSH2ErwiW-jCINE1

aLiwP64MCWDN5vkXvXoQGPK1dMEmdGygWSpm7BEYCgDm-1v7Kc

2PF7QA7brMAwBbAcgMr5i11£4PwTpaovIZjysCEZTry8Ez30wpE-

hCNCXpynextCld2EBsDkRKsGhSLayuRyFsex6JA6NPh9dyupoTH3g</reference>
</CheckInRequest>

[193]

Getting Started with REST Testing

REST parameters

We have already worked with some REST parameters in the previous examples.
However, we have not yet looked into all the possible parameter types included
in a soapUI REST service.

Parameters are used to include additional information in a request. For example,
our initial place search request URL (https://maps.googleapis.com/maps/api/
place/search/json?location=-33.8670522,151.1957362&radius=500&types=
food&name=harbour&sensor=falseskey=dummykey) includes multiple parameters.
Let's go through the common REST parameters included in soapUL

Query parameters

Query parameters are the most commonly used parameter type in request URLs.
A query string is appended to the request URL with a leading "?" followed by
name/value pairs.

If you look at the resource viewer of the places resource, you can identify
the extracted parameters; each of them is in the QUERY style as shown in
the following screenshot:

places

O Resource Path|.-'ma;:ls.-'a;:li.-'place.-'search.-‘ison (2]

fResource Parametars |

=i 0 . = ':":‘.\-'
MName Default value | shyle
location -33.8670522,151.1957352 QUERY
radius 500 QUERY
types food QUERY
name harkour QUERY
sensor false QUERY
key l&ddYourOwnKE\ﬁ—!ere |QUERY

Template parameters

Template parameters can be used to parameterize request URL paths. This can be
better explained using an example, which we will explore in the following scenario.

Suppose we are invoking a RESTful service which implements a defect (bug)
management solution. This application allows you to submit new defects, retrieve
all defects, or get information about a specific defect.

[194]

Chapter 8

. We will use a sample SimpleDefects application which is part of the
% Apache Wink distribution. You can download the Apache Wink binary
s from http://incubator.apache.org/wink/downloads.html
and find the sample in the/examples/apps/SimpleDefects folder.

Assume the URL to get details of a particular defect (say the defect with ID 2) is
http://localhost:8080/SimpleDefects/rest/defects/2.

Now, we may have a corresponding resource in a soapUI REST service as shown
in the following screenshot:

O defects : [

O Resource Path|/SimplaDafacts/rast/defacts/2 | ®

[Resource Parameters |

L[] v st ®
Mame Default value Styla

We can add an HTTP GET method and the associated request for this particular
resource. However, for each invocation, we will get the details of the defect ID 2.
How can we request different defects without changing the URL?

Template parameters help us in these types of situations. Click on the + icon of the
resource viewer and add a new parameter (name it defectid). Specify a default
value and select TEMPLATE as the style of the parameter.

Now, in the resource path, parameterize the defect ID as {defectid}.

For example: /simpleDefects/rest/defects/{defectid} as shown in the
following screenshot:

o @

O Resource Path|SimpleDefects/rest/defects/{defactid}| @

| defects

rRESUUI’EE Parameters |

5O v &t @

Mame | Default value Style
cefactid |4 TEMFLATE

Submit the request associated with the GET method of this particular resource. You
will notice that the defectid is replaced with the default value of the parameter.

[195]

Getting Started with REST Testing

Matrix parameters

Matrix parameters are another type of request parameter used in a URL. However,
this is not widely used today. In a way, matrix parameters closely resemble query
parameters. However, the most notable difference is that the matrix parameters can
appear anywhere in the path.

For example: http://server/products;order=random;color=red/2012/location.

You can learn more about matrix parameters at http://www.w3.org/
DesignIssues/MatrixURIs.html.

If we add a matrix parameter called matrixparam to the places resource of the
GooglePlacesAPI REST service, the request message will be similar to the
following HTTP headers:

GET https://maps.googleapis.com/maps/api/place/search/json;matrixparam
=matrixparamvalue?sensor=true&location=-33.8670522%2C151.1957362&types
=food&name=harbour&key=dummykey&radius=500 HTTP/1.1

Header parameters

Header parameters are different from the preceding set of parameters because they
are added to the HTTP header of the request instead of the request URL. Suppose
we need to add a header parameter in the searchPlaces HTTP GET method of the
GooglePlacesAPI REST service. Then, we can add a new method parameter and
select HEADER as the style as shown in the following screenshot:

et searchPlaces o E.
HTTP method [GET ~ O (7]

rMethod Parametars rRepresemations |
T (3]

Mame | Default value | Style
customHeader |custom\r’alue HEADER.

When you submit the corresponding request of the searchPlaces HTTP GET method,
you will notice the preceding header parameter is added as a custom HTTP header.
This can be observed in the raw view of the HTTP GET message, shown as follows:

GET https://maps.googleapis.com/maps/api/place/search/
json?sensor=true&location=-33.8670522%2C151.1957362&types=food&name=ha
rbour&key=dummykey&radius=500 HTTP/1.1

[196]

Chapter 8

Accept-Encoding: gzip,deflate
customHeader: customValue

Accept: application/xml

User-Agent: Jakarta Commons-HttpClient/3.1

Host: maps.googleapis.com

Functional testing of REST services

We came across several features provided by soapUI to invoke RESTful services.
The true advantage of using soapUI to test RESTful services is that we can get the
comprehensive functional testing support provided by soapUI out-of-the-box with
REST services as well. In this section, we will look into the integration of REST
requests into TestCases so that they can be managed through TestSuites and
validate the responses using various assertions.

Let's insert a REST test request (Request 1) of the searchPlaces HTTP GET method of
the GooglePlaces project into a soapUI TestSuite by performing the following steps:

1. Right-click on the GooglePlaces project and select New TestSuite. Name it
GooglePlacesTestSuite.

2. Once GooglePlacesTestSuite is added to the project, right-click on it and
select New TestCase. Name it searchPlaceTestCase.

3. Now, right-click on searchPlaceTestCase and select Add Step | REST Test
Request. Enter a name for the test step.

4. A pop-up menu appears with a drop-down list to select the REST methods
and the corresponding REST requests which are included in the soapUI
project. The list contains all the REST methods and REST requests in your
soapUI project as shown in the following screenshot:

J| New RestRequest
g ﬁ Select REST method to invoke for request
|GoogIePIacesAPI -= /maps/api/place/search/json - = searchPlaces -

GooglePlacesAPl -= /maps/api/place/search/json -= searchPlaces

CooglePlacesAPl -= /maps/api/place/search/json -= searchPlaces - = Request 1
CooglePlacesAPl -= /maps/api/place/check-in/xml -= placeCheckin -
CooglaPlacesAPl -= /maps/api/place/check-in/xml -= placaCheckin -= Request 1 [

[197]

Getting Started with REST Testing

5. Select the searchPlaces method from the drop-down list and click on OK.
The new REST request will be added to the TestCase. Now, this can be used
for the usual functional tests which we have already looked at in the previous
chapters. As the REST test request is just another TestStep, we can include it
in a load test and carry out the performance tests of RESTful services too.

6. Click on the Assertions tab at the bottom of the REST test request editor.
If you click on the Add an assertion to this item icon, you will see a list of
allowed assertions which support REST requests. There is no REST-specific
assertion but we can use the assertions such as XPath Match or script to
validate the response as required.

In the preceding procedure, we started with the TestSuite and added
. the REST test request into the TestCase. This can be considered as a
a Top-down approach. Instead of that, we can also follow a Bottom-up
L approach where we can directly add a given REST request to a
TestCase by clicking on Add this REST request to a TestCase icon
which is at the top left corner of the request editor.

We covered a considerable level of detail about RESTful services testing in the
previous sections. We will conclude this chapter by discussing a bit about the
Web Application Description Language (WADL).

WADL

WADL is designed to provide a machine process-able description of
HTTP-based web applications. We can find more information about
WADL in the latest version of the W3C submission of the WADL
specification at http: //www.w3.org/Submission/wadl/.

We discussed WSDL when we first looked into the SOAP based web services.
Though WSDL can be used to describe SOAP-based web services in a comprehensive
manner, it has limitations with HTTP operations such as PUT and DELETE, among
others. As REST services often deal with HTTP methods, WSDL is not a good option
for documenting RESTful services. More precisely, WSDL 1.1 is not a good choice

for RESTful services. Later on, WSDL 2.0 specification was launched to address the
concerns encountered with WSDL 1.1, and it provides better support for RESTful
services over WSDL 1.1.

WADL can be considered as an alternative to WSDL 2.0. WADL is lightweight and
easier to understand than the WSDL specification. Hence, it is much appropriate for
documenting RESTful services.

[198]

Chapter 8

However, in the REST world, the services are usually documented by textual
description (for example, Google API documentation) and WADL is still not a

widely adopted concept.

When we create a REST service from an endpoint,, the WADL of the service is
automatically generated for us by soapUI. We can access the generated WADL by

performing the following steps:

1. Right-click on the GooglePlacesAPI service of the GooglePlaces project and

select Show Service Viewer.

2. In the service viewer, click on the WADL Content tab to open the WADL of
the service as shown in the following screenshot:

@ =

I GooglePlacesAPl ¥ E
rOver\new rService Endpuoints rWADL Content |
B B
[Z GooglePlacesAPl L;rcooglePlacesAP\.wadl rhttpsmapsgoog\eapisc0mmapsapiplacesearchjson.xsd rhttpsmaps.. r
3 Resources GooglePlacesAPl.wadl
(3 Methods 1 =application zmnlns="http:Awadl.dev.java. net 200902 =
3 Representations & =doc xml:lang="en" title="GooglePlacessPl" =
3 Complex Types 3 <granmarss
£3 Global Elements ; <jnc1uze :ret::l}:zzpsmapsgnng]eapjscnmmap:?;'i placesearchison.xsd" A
=include href= psmapsgoogleapi scom, xsd" A
-3 Schemas] = Sgrannar =
¥ <resources hase="hTTps://Mmaps.googleapis.comn's
8 =resource path="maps/ api place/search/json" id="places"=
9 =doc zml:lang="en" title="places"/ =
10 =paran name="location" default="-33.8670522,151.1957362" type="xs:s5tr
11 =paran name="radius" default="500" type="xs:istring" reguired="false"
12 =paran name="types" default="food" type="xs:istring" reguired="false"
13 =<paramn name="name" default="harbour" Type="xsistring” required="Talse
14 =paramn name="sensor" default="Tfalse" type="xs:istring" reguired="Talse
15 =paran name="key" default=" - R R 1
16 <method nane="GET" jd="searchPlaces"s
17 =doc zml:lang="en" title="searchPlaces" =
18 =reguests=
19 <=param nane="customHeader” defaul t="Customvalue" TCype="xsiscrin
20 = reguests
21 =response status="z200"s
R =representation mnediaType="application/json" element="json:Resp
23 =/response=
24 =response status="500"= -
|+ 25 =representation nediaType=s"applicationsxnl” s i
[» e DY

As with SOAP based services, we can create a REST service from an initial WADL
and generate a TestSuite for the imported WADL automatically. Let's see how we
can create a TestSuite from an imported WADL.

1.

In the preceding WADL content window of the GooglePlacesAPI service
viewer, click on the Exports the entire WADL and included/imported files
to a local directory icon. This will export the WADL into your filesystem.

Now, we have a complete WADL to start with. Click on File | New soapUI
Project and use GooglePlaces-WADLFirst as the name of the project.
Browse for the WADL which has been saved in your filesystem in the
previous step and specify it as the initial WADL.

[199]

Getting Started with REST Testing

3. Select the Create TestSuite option and click on OK. This will open the
Generate TestSuite dialog box as shown in the following screenshot:

Generate TestSuite

)

Generate TestSuite L
Cenerates TestSuite with TestCasea(s) for all Resources in this Service ﬁ

Style: (#) One TestCase for each Resource
(C) Single TestCase with one Request for each Method

Resources: places: /maps/api/place/search/json
placecheckins: /maps/api/place/check-in/xmi

Select all Unselact all

Generate LoadTest: [] Generates a default LoadTest for each created TestCase

Here, you can see the resources were extracted and listed from the given
WADL definition. Click on OK and leave the default options intact.

4. Enter a name for the TestSuite and continue. You will see a new project is
created with a REST service and two resources. Also, a TestSuite is created
with two TestCases for each resource in the REST service.

Now, submit the REST requests which are included in each HTTP method and
observe the results.

Summary

RESTful web services are a lightweight alternative to SOAP-based services. Due to
popularity and high demand of public API offerings such as Twitter and Google,
the RESTful services have become a key ingredient in web application development.
In this chapter, we looked into the testing aspects of RESTful web services using
soapUL Deviating from our sample hotel reservation application, which is purely
SOAP based web service implementation, we used a public API offering hosted at
the Google developers portal as the sample RESTful service. We went through some
fundamentals of REST theory and proceeded with discussing various REST testing
features provided by soapUI.

[200]

Testing Databases
with soapUl

Data handling is a key requirement expected from any software regardless of the
architectural style used to build them. In SOA, there can be various heterogeneous
application integrations. An application that runs on the Oracle database can be
communicated with a data processing web service which connects to an MS SQL
database. The brokering middleware solutions such as Enterprise Service Buses
(ESB) facilitate the necessary data format transformations, which need to be
happening when communicating incompatible systems. Before the web services
take part in such integrations, it is always recommended to verify the data-related
operations in isolation. In other words, when your database schemas are ready,
testers can start testing the integrity of the databases used in your solution. By
testing the database schema in advance without waiting to access data through
web service interfaces, testers can utilize time effectively and explore potential
test failure scenarios.

soapUI provides users with a data interface which can be used to interact with any
DBMS. We will discuss the following topics in this chapter, which are related to
database testing aspects of soapUI:

* Testing data in isolation

* JDBC Request TestStep in soapUI

* JDBC test assertions

Testing Databases with soapUl

Testing data in isolation

There can be several reasons for testing data separately from other applications. In
web services testing, you may need to read data from multiple tables and analyze
them before actually consuming data through services. Sometimes, it is important
to isolate the bugs in a system by calling databases directly. Let's look at the
following example:

) Data .
Service A Service B

A 4

]

Service A needs to go through a brokering middleware (data transformer) in order
to be compatible with the data formats accepted by Service B. The data transformer
is used to transform the data into the format that conforms to the schema of Service
B. Suppose a bug that is related to the data handling is uncovered when performing
integration testing of services. Such a defect can occur due to an issue at individual
services, issue of the logic in data transformer, or data in the database itself. In this
type of situation, the testers usually try to isolate the bugs by calling databases
through separate SQL client applications. Without moving into separate SQL
applications, if the tool that we use for service testing is able to directly call
database and assert data, we can effectively carry out testing.

soapUI brings JDBC testing capabilities to the web services testing to help testers
to incorporate JDBC-level verifications as part of services testing.

This chapter is not for general data testing. We are exploring the
. capabilities of soapUI in the context of databases. You can use JDBC
% API within unit tests to test most of the data-related operations in an
L application. The advantage of bringing JDBC tests to soapUI is to have
database verifications inside the same soapUI project to manage all
service testing from a central location.

[202]

Chapter 9

Setting up soapUl to connect to the
database

We will use our sample HOTEL_RESERVATION_DB MySQL database in the examples
of this chapter. To make soapUI aware of our MySQL database, we need to include
the MySQL JDBC driver inside soapUI binary distribution. We have already
configured soapUI to connect to the MySQL database in Chapter 6, Web Service
Simulation with soapUl. There, we have performed the following two steps to
configure soapUI with MySQL:

1. Downloading MySQL JDBC driver from http://dev.mysgl.com/

downloads/connector/j/.

2. Copying the driver JAR file to soapUI_HOME/bin/ext and restart soapUI.

JDBC Request TestStep

soapUI allows you to manage database operations using a TestStep called JDBC
Request. You can add JDBC Request TestStep to an existing TestCase by right-clicking
on TestCase level and selecting Add Step | JDBC Request. This will ask you to specify
a name for the TestStep. Once a name is given for the TestStep, the JDBC Request
TestStep editor will be opened as shown in the following screenshot:

soapUl 4.0.1 e
Fil= Tools Deskiop Help
ap 88 0 X B0 B Search Forum g ®
5 = e rieaen _ Isleic (uacgst S R A [
+ (7]
g H getCuastDatails] L) ¥+ @
=z JDEC Request E i oavw O B g ~[Sl =]
- Load Tests (0) =
MName Value
] — |
Test Properties
JdbcRequestTastStep Propearties
Property Value ==
Name JDBC Request Configuration
Description
Max Rows Driver: ‘
Query Timeout
Fatch Size Connection String: ‘
Discard Response falsa
TestConnaction E]
5QL Query |
Stored Procedure: []Selact if this is a stored procadura
[+
<] [»
i b
@ Assertions (0) Raquest Log (D)
Properties soapll log hitp log jettylog errorlog wsrm log memory log

[203]

Testing Databases with soapUl

JDBC Request TestStep can be used to send JDBC calls to a database table. The
request editor consists of a request pane where you can define database specific
configurations and soapUI project-related properties. The response pane shows the
data retrieved from a database table in XML format. Also in the lower-right pane,
you can find some JDBC Request-specific properties such as Query Timeout and
Fetch Size.

Now, we are going to make use of JDBC Request TestStep inside our sample Hotel
Reservation soapUI project. As we did in the previous chapters, let's go through the
simplest scenario first.

1. Let's add a JDBC Request to the addGuest TestCase which is under
GuestManagemetnServiceTestSuite:

Feservationserviceioap 1 1Einding -
RoomM anagementiendceioapl 1Binding
RoomManagementServiceT estSuite

‘& addRoom TestCase

= getRoomDetails TestCase

& deleteRoom TestCase
CuestManagementiendcaT estsuite

‘& addGuest TestCase

=4 Test Steps (2)

JOBC Request

; acddGuast

@ Load Tests (0)

LB Security Tests (Q)

- & deleteGuest TestCase

] getGuestDetails TestCase

- B ReservationSernicaTestSuita -

Mawvigatar

T T E

[ral
=s)

2. Rename JDBC Request to something meaningful (for example,
selectGuests JDBC Request) by right-clicking on TestStep and
selecting Rename.

3. Now, we must configure the JDBC Request. As we are connecting to a
MySQL database, specify com.mysql.jdbc.Driver as the driver.

4. Enter the following as the Connection String;:

jdbc:mysqgl://localhost:3306/HOTEL RESERVATION
DB?user=root&password=root

[204]

Chapter 9

The connection string value depends on the JDBC driver used to connect
- to the database. As we have used MySQL Connector/] driver, the
connection string should be in the following format:

[=va

lue]

jdbc:mysqgl:// [host] : [port]/ [database] ? [property]

5. Click on the TestConnection button to check whether you can connect to the
database using the given driver and connection string. If successful, you will
get a confirmation.

6. Now, we can specify a SQL expression to do one of the CRUD (create, read,
update, or delete) operations on a table in HOTEL, RESERVATION DB. Let's
select all rows from the GUEST T table first:

select * from GUEST T

7. Submit the JDBC Request by clicking on the green arrow icon at the upper-
left corner of the request editor. You will get the response in XML format as

shown in the

following screenshot:

soapUl 4.0.1

Eile Tools Desktop Help

Bapg 08 O X BROE Search Forum | | @

g = 22 JDBC Request ¢ ofrf B

]

g HotelReservationMockServi L85 =4 Bl
-8 HotelReservationProjact £N0) ’E Ras:;:z:usa fetchSize="0"= =

I GuestManagementSenvi
I ReservationServiceSoap|
- X RoomManagementservi
- E] RoomManagementServi
o addRoom TestCase
#- & getRoomDetails Tes|
@& deleteRoom TesiCa
- E] GuestManagementServi
& & addCuest TestCase
i B3 Test Steps (2)
DBC Reques
arl addGuest

Test Properties
JdbcRequestTeststep Properties

Froperty | Value
ame JDBC Request
Description
Max Rows
Query Timeout

Configuration

Driver: |cum mysql. jdbe. Driver

Connection 5tring’ |thc mysql://localhost: 3306 /HOTEL_RESERVATION_O

TestConnection:

D

SQL Query: select ¥ from GQUEST_T

Stored Procedure; [] Select if this is a stored procedura

<Row rowhunber="1"=
=GUEST_T. HAHE=Chanmi ra=/G
=GUEST_T.ADDRESS=Galle, 3
=GUEST_T. AGE=34=/GUEST_T.

= RO

<Rowt rovhunber="2"=
=GUEST_T. HAWE=r151 th=/GUE
=GUEST_T.ADDRESS=Colambo,
=GUEST_T. AGE=34=/CUEST_T.

= /ROt

=Row rowtlunber="3">
=GUEST_T. HAME=chari tha=s(
=GUEST_T.ADDRESS=Colombo,
=GUEST_T.AGE=34=/CUEST_T.

=Rt

= /Resultsets
SRESUTE=

@ Assertions (0) Request Log (33)
response time: 1ms (5567 bytes)

Fetch Size

Discard Resp... false

4]

Properties

soapUl lag jemylog errorlog wsrm log memory log

[205]

Testing Databases with soapUl

The JDBC Request TestStep is dependent on the underlying JDBC driver on SQL
query execution. Therefore, it supports all SQL statements supported by the JDBC
driver. If you send an in-only query such as insert, update, or delete, you will get
an XML response as follows to indicate the status of the query execution:

<Results>
<UpdateCount>1</UpdateCount >
</Results>

JDBC Request properties

You will observe a default set of properties at the lower-right pane of JDBC
Request TestStep:

JdbcRequestTestitep Properties rTest Froperties |
Froperty | Valug

Mamea JOBC Request

Dascription

Max Rows

Query Timeout 2

Fatch Size

Discard Response falsa

Let's look at each of these default JdbcRequestTestStep properties. Similar to

the other TestSteps in soapUl, Name and Description can be used to specify a
meaningful name and description as needed for your test. The other properties are
explained as follows:

* Max Rows: This property defines the maximum number of rows that
should be included in the JDBC response. For example, if we set the
Max Rows value to 2, the ResultSet element of the response will
include only 2-row elements.

* Query Timeout: This property can be used to set the maximum time for
executing a given SQL query specified in a JDBC Request. The timeout value
should be specified in milliseconds. The defaultis 0 ms, which means there
is no limit for the timeout. If Query Timeout is set to 1, the JDBC call will
get timed out if it takes more than 1 millisecond for SQL query execution.

[206]

Chapter 9

Fetch Size: This is the number of rows retrieved by the JDBC driver from
the database at a time as scrolling through Resultset. In other words, if the
Fetch Size property is set to 100 and if you want to retrieve 1000 rows from
the database, there will be 10 round trips between the database and soapUI.
As it implies, the Max Rows value should be greater than or equal fetch size.
The default fetch size is specific to the database and JDBC driver. In MySQL,
ResultSets are completely retrieved and stored in memory by default.

JDBC test assertions

As we used various assertions with SOAP request TestStep, JDBC Request can

also make use of most of those assertions. In soapUI, most of the assertions are
independent from the TestSteps. Hence, the assertions such as contains and Xpath
match can be used with JDBC Request TestStep as they are. By clicking on the Adds
an assertion to this item icon at the top menu of JDBC Request TestStep, you can
find out what assertions are supported by the TestStep. In addition to the generic
assertions, you will find two JDBC Request TestStep-specific assertions there:

JDBC Timeout: This assertion can be used to verify whether the current SQL
query is executed within the specified Query Timeout property value

JDBC Status: In order to check whether the SQL statement is executed
successfully, we can use the JDBC Status assertion

Let's add a JDBC assertion to our sample selectGuests JDBC Request in
GuestManagementServiceTestSuite:

1.

Select selectGuests JDBC Request and click on add assertion icon
which is at the top menu of the JDBC request editor.

Select the JDBC Timeout assertion from the Select Assertion
drop-down menu.

Now, submit the JDBC request. The assertion status will be shown as VALID.
Specify 1 ms as Query Timeout property so that the request will get timed out.

[207]

Testing Databases with soapUl

5. Run the test again. This time, you will see an assertion failure as shown in the

following screenshot:

soapUl 4.0.1

Eile Tools Desktop Help

Discard Response false

TestConnaction:

(»]

select * from GUEST_T]

SQL Queny:

<Raw rawlumber="
=GUEST_T. NAME>E
=GUEST_T.ADDRES

aE @8 O X80 Search Forum & @
s {® JDBC Request 7 cogérd [
o GuestManagementSenviceT estSuite
o + f
3 - & addGuest TestCase LA - = ute
= Z Test Steps 2) = E <RE5:1R;Z:1tSet fetchsi ze
= =
=Row romtunber="
7 =GQUEST_T. NAME>C
(thcRequestTestStep Froperties rTEil Froperties GUEST_T.ADDRES
Froperty | Value = q/RD::UEST T. AGE-34
ggfsﬂ;‘p”m JDBC Request Configuration —Row romiunbEr="
- . " =GUEST_T. NAME:P‘
Ma Res Driver: [com.mysal.jabe Driver <GUEST_T. ADDRES
Query Timeout 1 " =GUEST_T. AGE=34
Fetch Size 100 Connection String: |Jdbc.mvsq\./jlucalhus|.3306/HOTEL,F!5E RO

=GUEST_T. AGE=34{ |

=R

ID

e ol X oA v

®

@ |DEC Timeout - FAILED
-» |DBC Request timeout error! Query not executed in 1 ms

& Assertions (1)| Reguest Log (143)

response time: 2ms (669 bytas)

[

[

3

Properties

soapUllog hup log (jemylog| errorlog wsrm log memorylog script log

Stored procedures with JDBC Request

TestStep

soapUI allows us to call existing stored procedures included in databases. If you
want to invoke a stored procedure through JDBC Request TestStep, there is an
option in SQL Query to denote it as a stored procedure. As shown in the following
screenshot, you can check the Select if this is a stored procedure checkbox:

[208]

Chapter 9

[JDBC Request : -l Ei
[Y
A: - |=Results~ =
LSd E =Fesultiet fetchiizes"100"=
Configuration <=Row rowbumber="1"=
=GUEST_T.NAME=chanmi ra=,GUEST_T. NAME
Driver: |[um mysqgl_jdbc. Driver =GUEST_T.ADDRESS=Galle, Sri Lankas,
<GUEST_T.AGE=34</GUEST_T. AGE=
Connection String: |jdbc.mvsq| Jflocalhost:3306 /HOTEL_RESERVATION_DB?user= =,/Rilnf=
=/Fesultsets
= Results=
TestConnection: @
5QL Query: FindGuestByNamel]' chanmira')

Storad Procedura; [¥]Selact if this is a stored procadure

4]

Accessing soapUl properties from SQL query

I hope you remember how we used properties to transfer values in between
TestSuites, TestCases, and TestSteps in Chapter 4, Working with Your First TestSuite.
Similarly, we can set properties at various levels in a soapUI project and read their
values inside SQL queries in JDBC Request TestStep. Let's look at our sample
TestSuite again. Suppose we need to set a property common to all TestSteps inside
addGuest TestCase. For the sake of simplicity, let's set the name of a guest as a
TestCase-level property. In the SQL query of selectGuests JDBC Request, we can
read this property value (name of the guest) without hard-coding the guest name in
the SQL statement. Let's look at how we can read properties inside SQL statements:

1. Suppose we modify the SQL query of selectGuests JDBC Request to read
details of a specific guest record:

select * from GUEST T where name = 'charitha'

[209]

Testing Databases with soapUl

2. We are going to read the name of the guest from a TestCase-level property.
Therefore, add a GuestName property at addGuest TestCase level, as shown
in the following screenshot:

[E=T FTOTELT

@ HotelReservationMockServices

E}@I HotelReservationProject
-"I GuestManagementServiceSoapl 1|58
EIE GuestManagementServiceTestSui| 2

& & addGuest TestCase
E\‘ ._E Test Steps (2)
Lo addGuest

. selectGuests IDBC Req
oy | ol Tacte (M1

r TestCase Properties r Test Properties |

i oA v 4 O = LE
Mame | Value

GuestMame charitha

3. Set the GuestName property. Here, it is set to charitha.

4. Now, select the SQL query text area and move the mouse pointer to
the = part of the select statement. Then right-click and select Get Data.
You can select properties from multiple levels. In this example, we will
select the GuestName property from addGuest TestCase, as shown in
the following screenshot:

[210]

Chapter 9

ol

. @ selectGuests IDBC Request

r® +. A T
i a0 B gy ‘; g <Resultss>
= “Resultfet fetchfize="0"»
Mame Value <Row rowHumber="1"
<GUEST_T.HAME=charit!
<GUEST_T.ADDRESS=col
<GUEST_T.AGE=Z23</GUE
=/ Rowrs

o] </Resultfet>

Configuration </Results>

Driver: |c0m.mysqI.Jdbc.Driver

Connection String: |jdbc:mysql:.f.-"localhost:BBUﬁfH OTEL_RESERVATION_DB?user=root&ipassword=ro

TestConnection: E

SQL Query: select * from GUEST T where name =
Undo Ctil-Z
Paste Cu-V
2012-08-11 16:47:10 - response time: 23ms (258 bytes) i @0
trl-
2012-08-11 16:47:53 - response time: 1ms (258 bytes) = i
2012-08-11 16:48:11 - response time: 2ms (258 bytes) & Project: [HotelReservationProject] 4
B TestSuite: [GuestManagementServiceTestSuite] #
a ‘ | Create new.. - TestCase: [addGuest TestCase]] IE
Property [GuestName a¢ Step1: [addGuest] »
@ Assertions (1) Request Log (3) ey [rsitmy B R

Step 2: [selectGuests JDBC Request]

tirnge Jeac (P68 badac)

5. Once you select the property, the SQL statement will be similar to
the following:
select * from GUEST T where name='S{#TestCase#GuestName}

6. Submit the request. The row that corresponds to the given GuestName
property will be retrieved and shown in the results pane.

soapUI provides you with another very useful property that is specific to the JDBC
Request TestStep. It is the ResponseAsXml property that can be used to manipulate

the result of a SQL query.

[211]

Testing Databases with soapUl

Let's look at how we can use the ResponseAsXml property using an example. We
are going to submit the selectGuests request first and get the response. Then we will
extract the name of a guest from the first row of the result set and submit another
JDBC Request to delete the particular guest.

1.

Add a JDBC Request TestStep as a child in addGuest TestCase. Name the
TestStep as deleteGuest.

Modify the SQL query of selectGuests JDBC Request to retrieve all rows
from GUEST T table and submit the request:

select * from GUEST_ T

Now, select the deleteGuest request and locate the SQL query. We want
to delete an existing guest from the table. We are going to extract the
guest name from the result of the selectGuests JDBC Request using
ResponseAsXML property.

Enter SQL query as delete from GUEST_T where name='"' and right-click
at the end of the statement. Then select Get Data | [Step 1: selectGuests] |
Property[ResponseAsXML].

This will open up a dialog box, as shown in the following screenshot, where
you can specify an XPath expression to extract the required element(s) from
the response of the selectGuests request:

"[E8 deleteGues

a
%

+ |k

+_

i

aw [0 B g ¥

—— alt

[» ':_—'{' E

XML

Mame Value

L%

Configuration

Driver:

Connaction 5tring: | jdbcmys

oM. mysgl-ialine P |

Select XPath

TestConnaction:

SQL Query. delete T [o][cancer |

(; Specify XPath exprassion
|//Resultset/Row] 1]/GUEST_T.NAME |

(=]

4]

1 4

[212]

Chapter 9

We need to extract the guest name from the first row of the result set.
Therefore, the XPath expression will be:

//ResultSet/Row[1] /GUEST T.NAME

6. Once you add the XPath expression, the SQL query will be similar to the
following;:

delete from GUEST T where name='${selectGuests#ResponseAsXml#//
ResultSet/Row[1] /GUEST T.NAME}'

7. Submit the deleteGuest JDBC Request. If you run the selectGuests request
again, you will find that a guest record will be deleted from the table.

Summary

Data is a vital resource of any software. In SOA projects, data is subjected to go
through various transformations and conversions when transmitting from a source
to destination. Due to the complex integrations of service-oriented solutions, isolating
data-related issues is usually a tedious activity. Therefore, it is important to include

a sufficient amount of tests which directly communicate with the databases of your
SOA instead of testing through web service interfaces. soapUI allows us to directly
call database tables using JDBC Request TestStep. In this chapter, we looked at how
soapUI can be used to test databases. We discussed about the properties associated
with JDBC requests and how assertions can be used to validate database transactions.

[213]

10

JMS Testing with soapUI

It is a common practice to use different transport protocols in SOA. Usually, when
integrating heterogeneous systems, we need to make use of various transports as
well as messaging systems. So far, all our discussions on soapUI have been based
on HTTP and HTTPS transports, which are the most common transport mediums
used in SOA. In this chapter, we are going to explore the world of JMS with soapUI.

soapUI allows us to send SOAP messages to web services which are exposed
over JMS transport. soapUl is integrated with an open source JMS management
application, Hermes]JMS, which can be used to communicate with various JMS
providers such as JbossMQ, IBM WebSphere MQ, ActiveMQ), and so on. We will
be using Apache ActiveMQ as the JMS broker (provider) in this chapter.

We are planning to cover the following topics in this chapter:

* Introduction to JMS

* Configuring the Apache ActiveMQ JMS provider

* Integrating JMS in soapUI

* Working with J]MS messaging in soapUI

* Validating JMS responses

* Verifying end-to-end JMS message delivery using the sample project

Introduction to JMS

The Java Message Service (JMS) is used to develop business applications that
asynchronously send and receive messages. It has been defined under the JSR 914
specification (http://jcp.org/aboutJava/communityprocess/final/jsr914/
index.html). In simpler terms, JMS is a set of interfaces and associated semantics
that define how a JMS client accesses the facilities of an enterprise messaging
product. JMS guarantees the reliable delivery of messages between heterogeneous
systems and maximizes the loose-coupling nature of components.

JMS Testing with soapUl

There are two message delivery models used by JMS.

Point-to-point or queuing model:

In this model, the messages are delivered to a destination known as a queue
and then one of the consumers registered for the queue reads the message.
In other words, there can be multiple senders of messages but only a single
receiver can exist.

Publish and subscribe model:

This is analogous to a news bulletin board. In this model, zero or more
subscribers may register their interest in receiving messages on a particular
message topic. Multiple publishers send messages to the topic. Then, all the
subscribers of the topic receive the message sent to that particular topic.

JMS consists of the following key elements:

JMS provider: This is an implementation of JMS specification. For example,
Jboss MQ, Apache ActiveMQ

JMS consumer: This is a JMS client that receives the message
JMS producer: This is a JMS client that creates and sends the message

JMS message: This is an object that is used to communicate information
between JMS clients

In order to use JMS, we should have a JMS provider, which can manage the sessions,
queues, and topics. We will use Apache ActiveMQ as the provider (JMS broker) in
the context of this book.

Setting up Apache ActiveMQ

Though soapUI can be used with any JMS provider which is supported by
Hermes]MS, we will use Apache ActiveMQ, one of the most powerful, enterprise
grade open source JMS brokers. Let's set it up first before using it with soapUL

1.

Download the latest stable version of Apache ActiveMQ from
http://activemq.apache.org/download.html.

[At the time of writing, Apache ActiveMQ-5.3.0 was the latest stable]

version. Hence it has been used in all the samples and demonstrations.

[216]

Chapter 10

2. Extract the binary distribution to a directory in your file system. Let it be
ACTIVE MQ HOME. Now, go to ACTIVE_MQ_ HOME/bin and start the broker.

o

In Windows:

Type activemg and hit Enter
In Linux:
Type sh activemgor ./activemg

If the startup is successful, you will see a log message similar to the
following;:

INFO | ActiveMQ JMS Message Broker (localhost, ID:HO
ST1-59724-1334377142200-0:0) started

3. Once the server is started, you can access the ActiveM(Q management console
through http://localhost:8161/admin/. Also make a note of the listener
port used by the broker. It will be 61616 by default.

Now, we have the Apache ActiveMQ JMS provider configured and running. Our
objective is to use soapUI to communicate with this particular JMS provider. In order
to do that, we cannot directly use soapUI to submit a message to a queue or topic
defined in ActiveMQ. soapUI uses an intermediary tool to facilitate the delivery of
messages in between soapUI and JMS provider. Hermes]MS acts as the intermediary
between soapUI and JMS providers.

JMS integration in soapUl

Hermes]MS is included as part of the soapUI installer. If you followed the steps of
soapUI installation through the installer in Chapter1, Web Services Testing and soapUl,
you may have already set up soapUI with Hermes]MS.

SoapUl } t HermesJMS } H JMS Provider (ActiveMQ)

[217]

JMS Testing with soapUl

If you installed soapUI using a binary installer or excluded HermesJMS at the time of
the installation, make sure to set it up with soapUI as explained in the following steps:

1. Download the latest version of HermesJMS from http://sourceforge.net/
projects/hermesjms/files/hermesjms/1.14/.

2. Run the installer as follows:
-java -jar hermes-installer-X.XX.jar

3. Follow the instructions given in the installation wizard and complete the

installation. Once installed, Hermes]JMS management console will be shown
as follows:

File Messages Actions Options Help
HeS BTN | %o AR o9 | H |4 ER 2 SFFWVFeaeTTF X EHP (2 EE X

Sessions (LA
Elﬂ‘
+- () sessions
- (@) contexts
() stores
() files

2 [3 Tods

Getting message stores.... done. 11:34:52 AM 180M of 229M | |

Regardless of having soapUI, now you can manage JMS sessions, queues, and topics
of your preferred JMS provider using the HermesJMS management console shown
in the previous screenshot. However, we are not planning to spend much time on
the standalone HermesJMS application since our goal is to embed it with in soapUI.
Therefore, let's integrate Hermes]MS with soapUI.

1. Start soapUI and open the soapUI preferences window by selecting
File | Preferences.

2. Locate the Tools tab and set the path of Hermes]JMS installation.

[218]

Chapter 10

3.

4.

5.

6.

7.

Now, we can open Hermes]MS through soapUL. If you have already started
the standalone Hermes]MS application, make sure to close it first. Select
Tools | HermesJMS from the soapUIl main menu to open the HermesJMS
management console.

When Hermes]MS is integrated with soapUI, we can simply add any JMS
provider (broker) supported by Hermes]MS and let soapUI submit the SOAP
requests to that particular broker. Let's add the Apache ActiveMQ instance
which we have configured previously as the JMS provider.

In order to access a JMS provider, HermesJMS wants us to create a new
session with adequate information. Access the HermesJMS console and
click on the Create new JMS session icon in the configuration tool bar. The
Preferences dialog box will be opened.

In order for HermesJMS to access the JMS providers, we must make the
relevant provider libraries available in the HermesJMS classpath. Hermes]MS
uses classpath groups to manage the libraries required for providers.

Select the Providers tab at the bottom of the Preferences dialog box to
manage classpath groups. We can add as many classpath groups as needed
depending on the JMS providers which will be used. In our samples, we will
use Apache ActiveMQ as the provider. Hence, we will add one classpath
group which contains the ActiveMQ libraries which are essential for
HermesJMS to communicate with the ActiveMQ broker.

Right-click on the Classpath Groups tab, select Add Group, and enter a
name for the group (For example ActiveMQGroup).

Right-click on the Library tab associated with ActiveMQGroup and select
Add JAR(s). Browse for the following two jars inside the 1ib subdirectory of
your ActiveMQ installation (ACTIVE_MQ_ HOME/1ib):

° activemg-core-5.3.0.jar

° geronimo-j2ee-management 1.0 spec-1.0.jar

. When adding the libraries, HermesJMS will prompt an option to
% scan the JAR(s) for JMS connection factories. Make sure to scan in
L order to avoid Connection Factory class loading problems in next
configuration steps.

Make sure to apply the changes in the classpath groups by clicking on the
Apply button at the bottom of the Preferences dialog box.

[219]

JMS Testing with soapUl

8. Once completed, the ClasspathGroups dialog box will appear similar to
the following screenshot:

Preferences

ClasspathGroups

ClasspathGroups containing JMS providers and dependent libraries.

Classpath Groups

@ ActiveMQGroup

Library
/home/charitha/soapui-book/apache-activemag-5.3.0/lib factivemag-core. ..
/home/charitha/soapui-book/apache-activemg-5.3.0/lib /geronimo-j2e...

Sessions | Providers | General| Renderers

| 0K || Canc.. || Apply |

9. Now, we can configure the new session with the ActiveMQ provider. Select
the Sessions tab in the Preferences dialog box. Specify a name for the session
in the Session combo box. (For example, ActiveMQsession). Click on the
Apply button to save the changes.

10. Next, we need to configure the connection factory so that HermesJMS
can connect to ActiveMQ. Select ActiveMQGroup which we have created
previously from the Loader combo box in the Preferences window. If you
cannot see ActiveMQGroup there, close the Preferences dialog box and
open it again. Once you select ActiveMQGroup as the loader, the associated
Connection Factory classes will get loaded in the Class drop-down menu.

[220]

Chapter 10

11.

12.

13.
14.

Select org.apache.activemq.ActiveMQConnectionFactory as the Connection
Factory class. Add the following property by right-clicking on the
Connection Factory table and selecting the Add property:

BrokerURL = tcp://localhost:61616

We also need to configure the JMS provider plugin so that HermesJMS can
effectively perform tasks such as queue watching. The plugin configuration
specifies more details than what we provide under the Connection Factory
settings. Select ActiveMQ from the Plug In drop-down and add the
following two properties:

BrokerName = localhost

serviceURL = service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

Click on Apply to save the changes.

Next, we can configure queues and/ or topics. Right-click on the
Destinations pane in the Preferences dialog box and click on Add to add
a new destination. The Destination properties dialog box will be opened.
Specify the following values in it:

o

Name: Q1 (this name will be used to locate the destination)
° Short Name: Q1

o

Domain: Queue

[221]

JMS Testing with soapUl

15. Click on Apply to save everything. Finally, our Hermes]MS session will look

like the following:
Preferences
Session
Session: Use Consumer []
Audit: [] Transacted:
Plug In
ActiveMQ [~
Propert | Value
brokeriame llocalhost |
servicelRL service: jmxcrmi:///jndi/rmi: / flocalho...

Connection Factory

Class: [org.apache.activemq.ActiveMQConnectionFactory |v| Loader: |A

Propert | Value
brokerURL tcp:/flocalhost 61616

Destinations

Mame shortMame | Domain
a1 QUEUE
Connection
ClientlD: []user Passwor... [¥] Shar...

Sessions | Providers | General| Renderers

Working with JMS messaging in soapUl

We have integrated Hermes]MS into soapUI and configured with a destination
(queue) in the Apache ActiveMQ provider. Let's look at how a usual SOAP request
can be forwarded to a JMS queue using soapUI Obviously, if we want to use a
different transport other than HTTP or HTTPs, we need to add the corresponding
endpoint into the soapUI request editor. We could find the JNDI name of the

JMS queue and edit an existing HTTP(s) endpoint to change it to a J]MS endpoint.
However, we cannot do this straightaway without configuring the relevant JNDI
look-up mechanisms. Because of that reason, we used Hermes]MS to configure the
provider connections, the Connection Factory settings, and so on. Now, with all
these in hand, we can use soapUI to submit messages to JMS destinations.

[222]

Chapter 10

Let's start with our sample Hotel Reservation soapUI project. In this example, we
will just place one of the SOAP requests into a queue in ActiveMQ and browse the
message through HermesJMS.

1.

Select GuestManagementServiceSoapllBinding in
HotelReservationProject from the soapUl project navigator.

Right-click and select Add JMS endpoint.

Add JMS endpoint

Add JMS endpoint
create |MS endpoint by selecting proper values

Hermes Config: |,fh0me,fcharitha}s0apui—book,-’HermesJMS,"cfg | [Browse...

Sessian: ActiveMQ5ession -
Send/Publish destination:

Receive/Subscribe destination: E]

Browse for the HermesJMS configuration directory. By default, this can be
found in the root directory of the HermesJMS installation. (HermesJMs_HOME/
cfg). Next, we can select one of the available HermesJMS sessions. In our
example, we have created only one session called ActiveMQSession.

Once you select the session, the destinations defined under the session
configuration will be populated in the Send/publish destination and
Receive/Subscribe destination drop-down lists. For this example, let's select
Q1 queue as the Send/Publish destination and leave Receive/Subscribe
destination blank. This implies that we are going to submit the request to a
queue and do not expect to receive/read the response message.

After adding the JMS endpoint, look at the endpoints list by selecting one of
the SOAP requests in the request editor. You will find an endpoint similar to
the following:

jms://ActiveMQSession: :queue_ Q1

Select the SOAP request of the getGuestDetails operation in
GuestManagementServiceSoapllBinding, change the endpoint to the
previously mentioned jms endpoint and submit the request.

[223]

JMS Testing with soapUl

7. Now, open the HermesJMS console and browse for the queue, Q1, in
ActiveMQSession. You will find the <getGuestDetails> SOAP request is
placed in the queue.

HermesJMS - /home/charitha/soapui-book/Hermes)MS/cfg/hermes-config.xml - o
File Messages Actions Options Help
=3 Bl EAGSe £ CheR R | EE THEEIRETNT t SERCE
sessions O @ AdiveMQSession T1 | @ ActiveMQSession 01 % 4 b B
= jms # | JMSMessagelD I JMSDestination [IMsTimestamgms.. .M. 1 M)
7 & sessions 0 ID:superQA-33869-1334474849183-0:2:1.1:1 Q1 Sun Apr 15 ... 0 4
¢ 2 ActiveMQsassion
@1
@mn
o, Files v:Envel ns: v="http: //ech f Vel B
s <soapenv:Envelope xmlns:soapenvs= ttp.//s_ emas.xmlsoap.org/soap/envelope/
8 come ®¥MINS:Typ="hTTp//sanple. com/reservation/guest,/types"s
= & stores <soapenv:Header/>
Q files <soapenv:Bodys
<typ:getGuesthetails»
<l--Optional:--»
<Typ:guestNane>charitha< Typ: guestNames>
</Typ:gettuesthetailss
</s0apenv:Bodys
</soapenviEnvelope>
Payload | Header| toString | Hex| XML EBCDIC
J= Filter [~]|7 »
Finished. 1 message read.
A 3% Tools
Browsing Q1 on ActiveMQSession: Done. 1:03:09 PM IOQM of 229M i

8. You can also look at the content of the message by browsing the queue, Q1,
in the ActiveMQ management console. Just access http://localhost:8161/
admin/browse.jsp?JMSDestination=Q1 and check the messages.

9. Let's add another JMS endpoint to the same binding. This time, we will
specify the same queue, Q1, as both Send/Publish destination and Receive/
Subscribe destinations. So, when a message is placed in Q1, it will instantly
be picked up by consumers from the same queue. Once the JMS endpoint is
added, you will find a new endpoint which looks like the following:

jms://ActiveMQSession: :queue_Q1::queue Q1

10. Change the endpoint as previously mentioned and submit the same
getGuestDetails SOAP request. Since we sent and received a message
from the same queue, the response pane of soapUI will show the message
which has been delivered to the consumers.

[224]

Chapter 10

50 Request 1 ¥ B
P =R OO0 = [jms:;’,"Acti\.reMQSession::queue_Ql::queue_Ql
— ksoapen\t:En\te'Iope xmlns:soapenv="http: //schemas. « ; = ksoapen\t:En\te'Iope xmlns:soapenv="http: //schemas.xmlsoap |«
E <=soapenv:Header = 1 E =soapenyv:Header, = 1
=soapeny: Bodys= =soapeny:Body=
% =typrgetiuestbetailss % =typirgetiuesthetails=
o <!--Dprighal:--» o <!--Dprighal:--=
=typiguestMames=charitha=/ typ: guestNames =typ:guestlamne=charitha=/ typ: guestNanes
=/typrgetiuesthbetails= =/typrgetiuestbetails=
=/soapeny: Body= = /s0apeny: Bodys=
=/soapenv:Envelopes =/soapenv:Envelopes
[+al] [+l
IMECorrelationlD: | Key | Value
_ M5MessagelD ID:superQA-42061-133447554. .
DA | JMSExpiration 0
IMSType: | M5Redeliverad false
- IM5DeliveryMaode 2
JMSPriority: | IM5Priarity 4
) JMSRephy/To queue: //Q1
IM5DeliveryMode: PERSISTEMNT - MSTimastamp 1334475552419
TR | JM5Destination queue: //Q1
send As Byles Message: (=]
Add SoapAction as property. =]
Durable Subscription Mame: |
ClientID: |
Massage Selector: |
o D
Amachm... .. W.. [JMSH..| IMSPro.. Attachments () |Jms @)

But, you will not find the corresponding message if you browse Q1 in the
Hermes]MS console. It is because the message is enqueued and dequeued instantly
as we specified the Receive/Subscribe destination field when sending the message.
However, you can find out that the Messages Dequeued column associated with Q1
is updated in the ActiveMQ management console as you send messages.

You can see in the previous image that soapUI shows the headers of the JMS
message as key-value pairs in the bottom pane of the SOAP response editor. We can
also set various JMS headers such as JMSPriority, TimeToLive when submitting the
message. These JMS request headers can be set in the JMS Headers tab of the soapUI
request editor. We can also create and set properties for messages if we need values
in addition to those provided by the header fields. These additional properties can be
set in the JMS Property section in the soapUI SOAP request editor.

[225]

JMS Testing with soapUl

The JMS API defines a set of message types (also known as body formats) to send
and receive data in many different forms. With soapUI, we can use three major
message types:

1.

Text Message:

This message type carries a java.lang.String object. This can be used to
transport plain-text and XML messages.

Bytes Message:

The payload is stored as an array of bytes. This can be used to transmit data
when the data format is native to the application and the JMS client does not
know the message payload type.

Map Message:

Message payload is stored as a set of name-value pairs. This message
type is useful for transmitting keyed data that can change from one
message to the next.

By default, the message body format is set to text and this can be changed by
selecting the Send As Bytes Message option.

Validating JMS responses

Regardless of the transport protocol used in communication, we can use most of the
general SOAP assertions to validate the response messages used in web services.
However, in addition to the generic assertions, soapUI provides us with two
assertions which are specific to JMS transport:

JMS Status
JMS Timeout

JMS Status:

The JMS Status assertion can be used to validate the status of the
communication. For example, it can be used to check whether there
are any JMS specific errors in the response.

JMS Timeout:

The JMS Timeout assertion can be used to verify whether the message
is received within the configured timeout period.

[226]

Chapter 10

Let's use these assertions in our sample project and discuss further.

1. Select GuestManagementServiceTestSuite in our sample

HotelReservationProject and locate the getGuestDetails TestCase.

Select the getGuestDetails SOAP request and select jms: //
ActiveMQSession: :queue_Q1::queue_Q1 as the endpoint (assuming
this JMS endpoint has already been configured in a previous step).

Click on Adds an assertion to this item icon and select the JMS
Status assertion.

Select Assertion

ﬁ Select assertion to add
JMS Status
Script Assertion

W5-Addressing Respaonse
Caontain

[»

Shut down the ActiveMQ broker and submit the request. You will get an
assertion failure with the message as follows:

JMS Status - FAILED.

In this case, the JMS status has been given as failed because soapUI could not
connect to the broker. Therefore, if we want to validate the communication
errors between soapUI and the JMS provider, the JMS Status assertion can
be used quite easily.

Now, let's look at the usage of the J]MS Timeout assertion. To do that, we should
specify a non-zero time-out value as a SOAP test request property.

1.

Select the getGuestDetails TestStep. In the TestRequest properties tab at
the right-hand side pane, specify 1 in the Timeout (the timeout value should
be specified in milliseconds) field.

In the getGuestDetails SOAP request editor, click on the Add an
assertion to this item icon and select the JMS Timeout assertion.

Submit the request. You will get an assertion failure with the
following message:
JMS Timeout - FAILED

JMS Message timeout error! Message is not received within 1ms.

Due to the various application level changes as well as configuration settings
of the JMS provider, messages can be timed out. In order to validate those
cases, we can define an optimum time-out value for the requests and use

the JMS Timeout assertion to validate them.

[227]

JMS Testing with soapUl

So far, we have discussed about JMS transport, the Apache ActiveMQ JMS provider,
and the use of JMS inside soapUI. However, we did not go beyond just placing

a message to a JMS destination (queue or topic) through soapUI. We cannot
conclude our discussion without exposing one of the web services of our sample
hotel reservation system over JMS and verifying an end-to-end message flow using
soapUL In the next section, we will look into configuring our sample project on JMS
transport and using soapUI to test end-to-end message delivery.

Verifying end-to-end JMS message delivery
using the sample project

In previous examples, we use the sample HotelReservation soapUI project just to
submit requests to a queue in ActiveMQ. Though we have placed those messages in
a queue, those were not consumed by our sample hotel reservation web services. In
order to test the end-to-end functionality, we need to configure the web services so
that they are aware of the messaging queues and consume the messages. For that, we
will go through the following steps:

1. Enable JMS transport in Apache Axis2, so that all web services hosted in
Axis2 will be exposed over JMS.

Configure a new session in Hermes]MS to use a new ActiveMQ destination.

Add a new JMS endpoint in the soapUI project and test the message flow.

Configuring JMS in Apache Axis2

By default, all web services hosted in Apache Axis2 are exposed over HTTP
transport. Therefore, all our web services, namely GuestManagementService,
RoomManagementService, and ReservationService, include HTTP endpoints only.
We can find this out by looking at the auto-generated WSDLs of these web services.

Axis2 uses two constructs, TransportReceiver and TransportSender to handle
messages which comes in and goes out from the Axis2 engine. Any message which
comes into Axis2 goes through the transport receiver and the messages which are
sent out, go through the transport sender. Based on the transports used, we can have
multiple transport receivers and senders in the Axis2 engine. Therefore, in order to
enable JMS transport, we should configure the JMS specific transport receiver and
sender. We can configure these in axis2.xml configuration file which can be found
at the AX152_HOME/conf directory. Add the following element into axis2.xml in
order to specify the transport receiver for JMS.

[228]

Chapter 10

You can configure new transport receivers under the following section in axis2.xml:

<!-- This is where you'd put custom transports. See the transports
project -->
<!-- for more. http://ws.apache.org/commons/transport

-->

<transportReceiver name="jms" class="org.apache.axis2.transport.jms.
JMSListener"s>

<parameter name="myTopicConnectionFactory">

<parameter name="java.naming.factory.initial"sorg.apache.
activemg.jndi.ActiveMQInitialContextFactory</parameters

<parameter name="java.naming.provider.url">tcp://
localhost:61616</parameters>

<parameter name="transport.jms.ConnectionFactoryJNDIName">To
picConnectionFactory</parameter>

</parameter>

<parameter name="myQueueConnectionFactory"s>

<parameter name="java.naming.factory.initial"sorg.apache.
activemqg.jndi.ActiveMQInitialContextFactory</parameters

<parameter name="java.naming.provider.url">tcp://
localhost:61616</parameters>

<parameter name="transport.jms.ConnectionFactoryJNDIName">Qu
eueConnectionFactory</parameter>

</parameter>

<parameter name="default">

<parameter name="java.naming.factory.initial"sorg.apache.
activemg.jndi.ActiveMQInitialContextFactory</parameters

<parameter name="java.naming.provider.url">tcp://
localhost:61616</parameters>

[229]

JMS Testing with soapUl

<parameter name="transport.jms.ConnectionFactoryJNDIName">Qu
eueConnectionFactory</parameter>

</parameter>

</transportReceivers>

In this configuration, three connection factories are defined. One for a queue, one for
a topic, and a default Connection Factory. As we have discussed before, connection
factories are essential to make connections with a JMS provider, such as Apache
ActiveMQ.

Note that the default Connection Factory will be used by our sample web services. If
we do not explicitly specify the Connection Factory and the associated destination to
be used in services.xml of each of the web services, a JMS queue will automatically
be created with the service name. So, we will have queues for all our web services
with the names, GuestManagementService, RoomManagementService, and
ReservationService

Similar to the transport receiver configuration, add the following element under the
Transport Outs section of axis2.xml to specify the JMS transport sender:

<transportSender name="jms"

class="org.apache.axis2.transport.jms.
JMSSender" />

Now, we have configured both transport receiver and sender in axis2.xml. We
need to make the relevant JMS provider libraries available in Axis2 classpath as

we did with Hermes]MS. Copy activemg-core-5.3.0.jar, geronimo-j2ee-
management 1.0 spec-1.0.jar and geronimo-jms 1.1 spec-1.1.1.jar from
ACTIVE MQ HOME/lib to the AXIS2 HOME/1lib directory. In addition to that, due to
a change in Axis2-kernal in Axis2-1.6.1 distribution, you need to copy the following
two libraries to AXIS2 HOME/1lib:

® axis2-transport-jms-1.0.0.jar

® axis2-transport-base-1.0.0.jar

You can download these two jar files from http://axis.apache.org/axis2/java/
transports/download.cgi.

After copying all these libraries, restart the Axis2 server. You will notice log
messages similar to the following at the server startup:

[INFO] JMS Transport Receiver (Listener) initialized...

[230]

Chapter 10

Since we have enabled JMS transport globally at axis2.xml configuration file,
all web services hosted in Axis2 will include a new JMS endpoint. Open the
auto-generated WSDL of GuestManagementService by accessing http://
localhost:8080/axis2/services/GuestManagementService?wsdl. You will
notice the J]MS endpoints there shown as follows:

<wsdl :port name="GuestManagementServicedmsSoapllEndpoint" bind
ing="axis2:GuestManagementServiceSoapllBinding"><soap:address
location="jms:/GuestManagementService?transport.jms.ConnectionFact
oryJNDIName=QueueConnectionFactory&java.naming.provider.url=tcp://
localhost:61616&java.naming.factory.initial=org.apache.activemqg.jndi.
ActiveMQInitialContextFactory"/></wsdl:ports>

According to this, if we want to send a request to GuestManagementService through
JMS, we must use the previous endpoint location URL. With this endpoint URL,

the message will be placed in a queue, named as GuestManagementService, inside
ActiveMQ. Since we have configured axis2.xml with the default Connection
Factory settings, Axis2 will pick up the message from the queue and dispatch to the
relevant service operation.

Configuring a session in HermesJMS

We are going to use soapUI to submit the SOAP request to the JMS queue, which is
used by GuestManagementService. Therefore, we should create a new session and
destination in HermesJMS as we did in previous examples.

1. Start by creating a new Hermes]MS session. We can use the same provider,
which we used previously. Therefore, use ActiveMQGroup as the classpath
group. Give Axis2Session as the name of the session.

2. In Connection Factory configuration in HermesJMS preferences dialog
box, select ActiveMQGroup as the loader. Select org. apache.activemq.
ActiveMQConnectionFactory as the connection factory class and add the
following property:

BrokerURL = tcp://localhost:61616

3. In the Plug In configuration, select ActiveMQ and add the following two

properties:
BrokerName = localhost
serviceURL = service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

[231]

JMS Testing with soapUl

4. Click on Apply and add a new destination by right-clicking on the
Destinations pane. Specify the following properties:

° Name:GuestManagementService

° ShortName: GuestManagementService

Domain: Queue

As we discussed previously, Apache ActiveMQ creates queues for each of the three
web services with their names. Therefore, name of the queue corresponding to the
GuestManagementService is GuestManagementService. After all that, our new
Hermes]MS session will look like the following:

Preferences

Session

Session: = Use Consumer: []

Audit: [] Transacted:

Plug In

AdiveMQ -
Propert | Value

brokertame localhost

serviceURL service: jmx:rmi: // /jndi/rmi: / flocalho...

Connection Factory

Class: |org.apache.activemq.ActiveMQ5sIConnectionFactory |v| Loader: [A

Propert | Value
brokerlJRL tcp:/flocalhost 61616
Destinations
Mame | Shorthame | Domain

GuestManagementsand... GuestManagementSendce QUELUE

Connection

ClientlD: [Juser PasSSWOT... Shar...

Providers | General| Renderers

| OK H Canc.. H Apply ‘

[232]

Chapter 10

Adding a JMS endpoint in soapUI

Since we have configured the JMS destination through HermesJMS, we can add a
new JMS endpoint in soapUI.

1.

Select GuestManagementServiceSoapllBinding in
HotelReservationProject from the soapUl project navigator.

Right-click and select Add JMS endpoint. Select Axis2Session as the session.
Select GuestManagementService as the Send/Publish destination field.
Leave Receive/Subscribe destination empty.

We are going to invoke a deleteGuest one-way operation through
% JMS. Because of that, we do not expect a response message and leave
’ Receive/Subscribe destination empty.

Finally, you will find the JMS endpoint similar to the following in the
endpoint list of our soapUI project:

jms://Axis2Session: :queue GuestManagementService

Next, select GuestManagementServiceTestSuite and locate the
deleteGuest TestStep. We will invoke the deleteGuest operation by
submitting a SOAP request through JMS transport.

Select the above JMS endpoint in deleteGuest SOAP request editor. Add
an existing Guestname for <typ:guestName> in the payload of the SOAP
message.

Submit the request. Since the deleteGuest is a one-way operation, you

will not get a response. Check the GUEST_T table in HOTEL_RESERVATION DB.
You will notice that the corresponding guest record has been removed from
the table.

Summary

The integration of heterogeneous systems is one of the objectives of adopting SOA
in enterprise software development. In such systems, we usually have to deal with
multiple transport protocols. soapUI as the complete SOA testing platform, allows
users to extend test cases to deliver messages through JMS transport. By integrating
Hermes]MS, an open source JMS management application, soapUI facilitates
submitting and receiving SOAP messages to JMS destinations. In this chapter, we
looked at JMS integration in soapUI using multiple examples. We demonstrated the
use of JMS in soapUI with our sample Hotel Reservation project and tested an end-
to-end work flow.

[233]

11

Extending soapUl
with Scripting

The default features and utilities provided by soapUI are more than enough for us
to explore the world of web services testing and build flexible test suites. When we
become more and more familiar with the standard features of soapUI, we naturally
tend to think about the extension possibilities. We need to extend the default
functionalities provided by soapUI due to various reasons. For example:

* To minimize overhead maintenance of soapUI tests.

* Automated or manual execution of tests becomes a pain if we are
supposed to do dramatic changes of tests when moving between
various environments such as development, staging, and production,
or when upgrading the services.

* To reduce complexities of building tests.

* To look for possibilities of avoiding repetitive manual tasks when writing
tests. If we want to add the same assertion for hundreds of test suites again
and again, we need to think about ways of extending the existing soapUI
assertion features to facilitate that.

soapUI provides us with options to extend the default behavior of tests using
various scripting mechanisms. soapUI allows us to use either Groovy or JavaScript
as the possible scripting choices. In this chapter, we will look into the scripting
capabilities given by soapUI using Groovy scripting language. Though JavaScript
can also be used in scripting, Groovy is the natural choice for extending soapUI as
there are optimizations added to Groovy libraries by soapUI developers in order
to facilitate seamless integration with soapUI as well as it is widely used by the
soapUI community.

Extending soapUl with Scripting

We will look into the following topics in this chapter:

* Introduction to Groovy scripting

* Groovy scripting in soapUI

* soapUI Modelltems

* Request and response handling using scripts
* soapUIl script assertion

Introduction to Groovy scripting
language

As we are going to use Groovy scripts throughout this chapter, we should prepare
in advance by familiarizing ourselves with the basics of Groovy. If you possess
some knowledge about Groovy or have experience of working with it, you can skip
reading this section.

What is Groovy?

Groovy is a dynamic programming language in which most of the program
execution processes are done at runtime instead of compile time. Groovy can be
categorized into the same family of scripting languages such as Ruby, Perl, or
JavaScript. As we already know, learning a new language is a tedious activity
because we need to learn the syntax, control structures, declarations, and so on for
the new language. However, this is not true for Groovy if you already know the
fundamentals of Java. Groovy uses Java-like bracket syntax and most Java code is
syntactically valid in Groovy. Groovy scripts run on JVM similar to Java programs,
hence we do not need to install and configure additional libraries. Groovy is a
loosely-typed language, which means there is no need to define the data types for
the variables and for the return types of the methods.

Let's go through some basic principles of Groovy with examples. In order to try out
the simple Groovy examples that we are going to try out, you can use the following
two approaches:

* Download the latest version of Groovy binary distribution from
http://groovy.codehaus.org/Download (at the time of writing, the
latest stable version was Groovy 1.8). Install Groovy on your machine
as per the instructions given in the official Groovy installation guide
(http://groovy.codehaus.org/Installing+Groovy). Then, you
can use the interactive Groovy shell to write and run the example
Groovy scripts.

[236]

Chapter 11

* Use soapUI Groovy Script TestStep to test the sample scripts.

We will use the second approach as it minimizes the setup time and we can quickly
try out some basic principles of the Groovy scripting language.

We will use a new workspace and a project in soapUI for Groovy examples as these
are not a part of our sample hotel reservation project. Go to File | New workspace
and add a new workspace in soapUI. Name it GroovyExamplesWorkspace. Once
the new workspace is created, right-click on it and add a new soapUI project. Name
the project GroovyExamplesProject. We do not add an initial WSDL for the project
as we are not going to test any web services using this project. Now, add a new
TestSuite and a TestCase in the project. Add a new Groovy Script Test Step by
right-clicking on the TestCase and selecting Add Step, then selecting Groovy Script
out of the steps available in the list. Finally, we will get a Groovy Script editor, as
shown in the following screenshot, where we can try out the example scripts.

As we use Groovy Script Test Step in soapUI as an editor to write Groovy scripts,
we will synonymously call it Groovy editor within this section of the book.

GroowExamplesWorkspace
=B GroowyExamplasProjact
E- B Testsuite 1 =
= TestCase 1
&8 Test Steps (1)
- e Groowy Script
&) Load Tests (0)
B Security Tests ()

Test Froperties
Groowscript Properties

Proparty | Value 1] [»
MNama Groowy Script
Dascription

]| @]

al4]

4] IC

Log Output ()

HelloWorld with Groovy

Let's begin with the usual HelloWorld script. Write the following script in the soapUI
Groovy Script editor:

//Print "Hello soapUI" string in console
print "Hello soapUI\n"

Run the script by clicking on the green arrow icon which is at the upper-left corner
of the script editor. You will observe the output in the soapUI startup console.

[237]

Extending soapUl with Scripting

Variable and object declaration in Groovy

As with any programming language, variables or objects must be declared before
they are referenced by somewhere else. The variables can be declared with the
keyword def, as shown in the following script:

def name = "soapui" //declare variable name and assign value soapui

We can even declare variables without the def keyword. You can assign
any object to variables defined with def, and return any kind of object if a
method is declared returning def. Remember, if you declare the variable
L—> with def, there is no need to specify a type. Therefore, the following
declaration is unnecessary:

def String name ="soapui"

To read the value of a variable, you can just prefix the variable name with $ as in
Case 1 or append it as in Java (Case 2).

e (Casel:

def name = "soapui"
print "Hello S$Sname \n"

e (Case?2:

def name ="soapui"
print "Hello " +name

By default the standard Java packages such as java.lang.*, java.util.*, java.
io.*, and so on, are included by Groovy interpreter. Thus, the objects in Groovy can
be declared in the same way as we do with Java. The following code will instantiate
String object.

def strObject = new String("soapui")
Groovy has support for two collection data types:

e Lists: These are used to store ordered collections of data. A list can be
declared as follows:

myList = [0, 32, -90, 45, 89923]

The above statement declares a list object, which holds integer values. We
can access a value stored in list with myList [n], where 7 is the index of list.

[238]

Chapter 11

* Maps: These store different types of data in key-value pairs. For example,
consider the following script:
myMap = ["keyl":"soapui", "key2":100, "key3":30.05] //different
// types of data are stored in a map
println myMap["key2"] //access the value assigned to "key2"

println myMap.key2 //another way of accessing value assigned to
// key2

Control structures in Groovy

The syntax of control structures such as "if-else", "for", and "while" are very similar to
what we have in Java. Look at the following code snippet:

status = true
strObject = new String("Hello")
myList = [llllllllzlll n3n]

if (status && strObject && myList) { //All will evaluate to true
println "Condition is true"

}else{
println "Condition is false"

}

Run the code snippet and you will get Condition is true as the output. Here,
strobject (String object) and myList (Collection object) will return false only if
either of the two or both are null or empty. The syntax of the for loop is similar to
the following:

for (Object in IterableObject) {
// Set of Statements.

}

IterableObject is a composite object which has multiple child entries so that it
can be iterated. In order to understand the behavior of loops in Groovy, run the
following code and check the output:

def names = ["Saman", "Nethul", "Risith", "Charitha"] // A List
// object holdingnames

for (name in names){//Iterate over the elements in names list
println name

[239]

Extending soapUl with Scripting

Class and method declarations in Groovy

Declaration of classes in Groovy is almost the same as it is in Java. Let's figure it out
with an example:

class Employee({

private def id
private def name
def address

public Employee () {

}

Employee (id, name, address) {
this.id = id
this.name = name
this.address = address

}

public String getId() {
return id

}

def setId(id) {
this.id = id

}

public String getName () {
return name

}

def setName (name) {
this.name = name

}

static main(arguments) {

def empl = new Employee("100", "Charitha", "Colombo")
println ("Employee name is "+empl.getName ())

}
The output of the above code will be as follows:

Employee name is Charitha

[240]

Chapter 11

You may notice that in the variable declarations section, we did not explicitly
mention the data types of id, name, and address variables. We also did not specify
what the access modifiers were. As Groovy is a loosely-typed language, we do not
want to specify the data types and access modifiers. The default access modifier of
Groovy is public.

We discussed the fundamentals which are required to proceed with the rest of

the sections in this chapter. It is out of the scope of this book to cover large amount
of concepts about Groovy programming. Therefore, it is recommended for you

to read the resources available on the official Groovy website (http://groovy.
codehaus.org).

Groovy scripting in soapUl

There are many reasons for using Groovy scripts in a soapUI project:

* To dynamically generate Mock Responses when simulating web services
* To add arbitrary functionality to TestCases using Groovy Script TestStep

* To use as Setup/TearDown scripts to initialize, and cleanup TestSuites
and TestCases

* To use as Start/Stop scripts in initializing/cleaning up mock services

* To dynamically generate TestRequests and assertions based on
database contents

* The OnRequest and AfterRequest scripts in Mock Services

* To perform arbitrary functionality during property expansion
We have discussed some of the scripting possibilities during Chapter 6, Web Service
Simulation with soapUl, where we looked into the usage of scripts in Mock Services.

We will see the other widely used patterns associated with Groovy scripting and
soapUI during this chapter.

The Groovy scripts inside soapUI have access to the following context-related
variables:

® context

¢ testRunner
In addition to the previous context-related properties, soapUI also provides us with

a standard log4j Logger object —log —that can be used in scripts at any level in a
soapUI project.

[241]

Extending soapUl with Scripting

The context object

The context object holds information about a particular test run session. It can be
used to read and write/update context-specific variables. There are different contexts
available in a soapUI project, for example:

LoadTestRunContext: This holds context information about the loadtest
run session

MockRunContext: This context is available for the duration of a Mock
Services' execution

SubmitContext: This is available during one submit of a request

TestRunContext: This is available during a TestCase execution and all
scripts in a TestCase run have access to the TestRunContext

Without digging into details, let's look at the usage of the context object using
a simple example:

1.

Open the HotelReservation project in soapUl and add a Groovy
Script TestStep into getRoomDetails TestCase. Name the test step
GroovyTestScriptl.

Add the following script in script editor and run the test step by clicking
on the green arrow icon which is in the upper-left corner of the Groovy
Script editor:

//Get the name of current TestStep

log.info (context.getCurrentStep () .getLabel ())
//Get the name of parent TestCase

log.info (context.getTestCase () .getLabel ())
//Get the name of TestSuite

log.info (context.getTestCase () .getTestSuite () .getLabel ())
log.info (context.getTestCase () .getTestSuite () .getProject () .
getName ()) //Get the name of the soapUI project

You will find the output of test run at the Log Output window which
appears right below the script editor. It will look similar to the following.

Fri May 04 22:13:43 IST 2012:INFO:GroovyTestScript
Fri May 04 22:13:43 IST 2012:INFO:getRoomDetails TestCase
Fri May 04 22:13:43 IST 2012:INFO:RoomManagementServiceTestSuite

Fri May 04 22:13:43 IST 2012:INFO:HotelReservationProject

The statements of the script and the output are self explanatory. We just witnessed
the usage of the context object at an individual TestStep run of a project. In other
words, we made use of in implementation of the SubmitContext interface.

[242]

Chapter 11

Script Logs are used to show the log messages dumped by scripts
invoked from various levels of the project. There are two instances of
script logs provided by soapUI. Groovy Script TestStep includes a Log
Output pane at the bottom of the editor which shows the log output if
you run the Groovy Script individually. There is also a script log tab at
the bottom of the log toolbar, which displays the log messages dumped
by execution of Groovy Scripts from the TestCase and TestSuite levels of
the soapUI project. These two logs are shown in the following image.

¢ GroovyTestScript | e =

[] Script is invokad with Tog, context and testRunner variables @

-

SeAccessing vartous Tevels of spapll preject relative to the current TestStep =
log. infolcontext. getiurrentStep (. getlabel ()
Tog.info{context.getTestCase (). getlabel il
Tog.infolcontext.getTestCase). getTestsuite(d. getlabel ()]

fog. infoCcontest. netTestCase). getTestSuite (). aetP roject (1. gethane)l

4] D

Bl (]

.
[»

a4]

4] [»

Log Output (0)

IC

Fri May 04 22.26:20 15T 2012:INFO: GroowT estacript

Fri May 04 22 Q15T 2012:INFO:getRoomDetails TestCase

Fri May 04 22 0 15T 2012:INFO:RoomManagememseniceT estsuite
Fri May 04 22:26:20 15T 2012:INFO:HotelReservationProject

« g

soaplllog httplog jettylog errorlog wsrm log memory log | script log

The context object is useful in situations where you want to read the property
values of TestStep. For example, we have a property, Endpoint, defined at
getRoomDetails SOAP Request TestStep. We can simply read the value of this
property using a context object, as shown in the following script:

EndPointProp = context.getProperty ("getRoomDetails", "Endpoint")

Note that you cannot read the property value from a TestStep of a different TestCase
using this method. The following will return null as deleteRoom TestStep is in a
different TestCase:

EndPointProp2 = context.getProperty ("deleteRoom", "Endpoint")
log.info (EndPointProp2)

[243]

Extending soapUl with Scripting

Now, let's do another test to find out what properties are available during a single
run of a TestStep. Add the following script in the editor of Groovy Script TestStep
and run the test step:

String[] props= context.getPropertyNames ()
for (prop in props) {
log.info (prop)

}

Here, we read all property names of the current context into a string array and
iterate over the values. You will see the following output. There are three built-in
properties associated with the context of request submission —RunCount, log, and
ThreadIndex:

Sat May 05 09:59:10 IST 2012:INFO:RunCount
Sat May 05 09:59:10 IST 2012:INFO:log

Sat May 05 09:59:10 IST 2012:INFO:ThreadIndex

Double-click on the getRoomDetails TestCase to open the getRoomDetails
TestCase editor. Now, you will have the getRoomDetails SOAP Test request
and GroovyTestScriptl TestSteps under the TestCase. Run the getRoomDetails
TestCase by selecting the green arrow icon at the top of the getRoomDetails
TestCase and look at the output. This time you will see 19 properties such as
httpMethod, requestUri, and postMethod, which are available at the TestCase
context of the run session.

In addition to the built-in properties, we can set the properties and retrieve them
later during a particular test run.

PropertyVal=new String("This is a property value")
//Setting a value to propertyl
context.setProperty ("propertyl", PropertyVal)
//Reading propertyl's value

readPropvall = context.getProperty ("propertyl")

The context .expand (<Strings>) method is a useful method, which is inherited
from the com.eviware.soapui.model . support .AbstractAdminContext base class.
This can be used in multiple situations and the simplest usage is for accessing a
custom property at a different level of a test. If we have a custom property at project
level (for example, Test), then we can use the expand method to read the property
value from a script which runs from the TestStep level:

log.info (context.expand('${#Project#Test}'))

[244]

Chapter 11

The context object is very useful if we want to store some value in one TestStep and
use it in subsequent script test steps:

1. Add another GrovyScript TestStep in the getRoomDetails TestCase.
Let's name it GroovyTestScript2:

2. Add the following into GroovyTestScriptl to define a new property,
holder in context:

context.holder="testing"

3. Now, add the following in GroovyTestScript2 to read the property value:

holderValue = context.getProperty ("holder")
log.info (holderValue)

Once you run the getRoomDetails TestCase, you will see the log output of
GroovyTestScript2 run which prints testing as the result. In this example,
context represented an instance of TestCaseRunContext where the context
is visible inside TestCase.

The testRunner variable

The testRunner variables are used to execute tests in a soapUI project. The sub
interfaces of the com.eviware.soapui.model.testsuite.TestRunner interface
(http ://www.soapuil.org/apidocs/com/eviware/soapui/model/testsuite/
TestRunner.html) are used to execute various elements of a soapUI Project. For
example, the com.eviware.soapui.model.testsuite.TestCaseRunner interface,
that extends com.eviware.soapui.model .testsuite.TestRunner, defines a set of
methods to manipulate soapUI TestCases. In this section, we will look into the usage
of testRunner inside a soapUI project.

The testRunner interfaces provide methods such as start, cancel, and fail to
control the test execution. Follow these steps to see how testRunner can be used to
control test execution flow:

1. Add the following statement in GroovyTestScriptl and run the
getRoomDetails TestCase from the getRoomDetails TestCase editor:

testRunner.cancel ("CANCELLED THE TEST")

2. You will see that the further executions of TestCase immediately stop when
they reach the preceding statement and the CANCELLED THE TEST message
is logged at the TestCase log. This is useful if you want to cancel the test run,
based on evaluation of certain conditions.

[245]

Extending soapUl with Scripting

Let's look at how we can invoke a different TestCase in a different TestSuite using
testRunner.

Suppose in our sample HotelReservation project, the addReservation TestCase
should fail if the corresponding room does not exist in the system (note that, in
the ReservationService implementation, we have not added a validation to check
the availability of rooms). Thus, before invoking the addReservation TestCase, we
may need to check the existence of the room which is going to be reserved. In this
case, of course we can directly use the Run TestCase TestStep. However, let's try
to use a GroovyScript TestStep as a child of addReservation TestCase to invoke
getRoomDetails TestCase so that we can look in to the possibilities of using the
testRunner object:

1. Select ReservationServiceTestSuite and add Groovy Script TestStep as an
immediate child of addReservation TestCase. Name it findRoomScript.

2. Add the following script:

import com.eviware.soapui.model.testsuite.TestRunner.Status

//Get hold of the getRoomDetails TestCase which is at a different
// TestSuite than the current Suite

def getRoomDetailsTestCase = testRunner.testCase.testSuite.
project.testSuites ["RoomManagementServiceTestSuite"].
testCases["getRoomDetails TestCase"]

//Run the getRoomDetails TestCase synchronously
def testcaserunner = getRoomDetailsTestCase.run(null, false)

//Fail if getRoomDetails TestCase fail
assert testcaserunner.status == Status.FINISHED

Here, we first got a reference to getRoomDetails TestCase. Then, we
invoked the run (stringToObjectMap properties, boolean async)
method of the Wsd1TestCase class (com.eviware.soapui.impl.wsdl.
testcase.WsdlTestCase) that implemented the TestCase interface
(http://www.soapui.org/apidocs/com/eviware/soapui/impl/wsdl/
testcase/WsdlTestCase.html). Finally, we used assert statement to
check the status of the TestCase execution.

[246]

Chapter 11

3. Give an existing room number as value in <typ : roomNumber> in
getRoomDetails SOAP request. Also, specify the same room number in the
addReservation SOAP request. Run ReservationTestSuite. Make sure to
disable GroovyTestScript2 TestStep, which has been added previously to
cancel the execution of getRoomDetails TestCase:

& addReservation TestCase o of E
P XAy = bW X OO [2]
TastSteps

RNA=TIOMMENRR SEPe s L
findRoom3cript
addResarvation

Description Properties Setup Script TearDaown Script

O 2 "m X

Test started at 2012-05-26 18:31:33.593

@ Step 1 [findRoomScript] OK: took 41 ms

@ Step 2 [addResarvation] UNKNOWH: took 10 ms
TestCase finished with status [FINISHED], time taken = 51

TestCase Log

The TestCase log will be updated with the results, where you can find the
findRoomScript is marked in green, denoting the success of execution of the
getRoomDetails TestCase.

4. Now, submit the getRoomDetails TestStep of RoomManagementService
TestSuite with a non-existing room number. We should add an assertion to
denote that the getRoomDetails TestStep of the getRoomDetails TestCase
fails if we submit the getRoomDetails SOAP request with a non-existing
room. Thus, add the Not SOAP Fault assertion to getRoomDetails SOAP
Request TestStep.

[247]

Extending soapUl with Scripting

5. Run the addReservation TestCase of ReservationTestSuite again. You will
get a test failure, as shown in the following screenshot:

addReservation TestCase
PX& en GO X OO =
I
TestSteps
RAEIIONNTRRLIEVOS
* findRoombScript
addReservation

Description Properties Setup Script TearDown Script

0K ®™m X

Test started at 2012-08-18 12:39:37.698

¥ Step1 [findRoomScript] FAILED: took 135 ms

-» assert testcaserunner.status == Status.FINISHED | | | FAILED false FINISHED com.eviware.scapui.implwsdltestcase,Ws:
FAILED f

TestCase failed [Cancelling due to failed test step:Assertion failed: assert testcaserunner.status == Status FINISHED | | |

[»

TestCase Log

soapUl Modelltems

Modelltems are the preliminary building blocks of a soapUI project. The elements
such as projects, test suites, test cases, test steps, mock services, mock responses, and
assertions are all implemented as Modelltems. The com.eviware.soapui.model.
ModelItem interface (http://www.soapui.org/apidocs/com/eviware/soapui/
model/ModelItem.html) is the super interface which defines the general behavior

of all soapUI model items.

When you get hold of a Modelltem in your script, you can use the corresponding
getters to retrieve values such as id, name, and description of a Modelltem.

getRoomDetailsTestCase.name
Also, Modelltems provide us with various methods to access parent and child entities.

Let's look at some methods in TestCase Modelltem that are frequently used to
retrieve TestSteps in a TestCase:

* getTestStepByName (String stepName): To retrieve a specific test step
inside a TestCase

[248]

Chapter 11

* getTestStepCount (): To get the TestStep count of a TestCase

* getTestStepList (): To get list of TestSteps included in a TestCase

Add the following script as a Groovy Script TestStep in any of the TestSuites in the
HotelReservation sample project and run the TestStep:

def getGuestDetailsTestCase = testRunner.testCase.testSuite.project.te
stSuites ["GuestManagementServiceTestSuite"] .testCases ["getGuestDetails
TestCase"]

//To get specific test step

getGuestDetailssoapStep = getGuestDetailsTestCase.getTestStepByName ("g
etGuestDetails")

log.info ("Name of the TestStep: "+getGuestDetailssoapStep.getLabel ())

//To get test step count

log.info ("Number of TestSteps in getGuestDetails TestCase:
"+getGuestDetailsTestCase.getTestStepCount ())

//To get all test steps
for (teststep in getGuestDetailsTestCase.getTestStepList ())

log.info ("Name of the TestStep in getGuestDetails TestCase:
"+teststep.getName ())

Assuming that we have two TestSteps, getGuestDetails and Delay, in the
getGuestDetails TestCase, the script log output will show results similar to the
following:

INFO:Name of the TestStep: getGuestDetails

INFO:Number of TestSteps in getGuestDetails TestCase: 2

INFO:Name of the TestStep in getGuestDetails TestCase: getGuestDetails
INFO:Name of the TestStep in getGuestDetails TestCase: Delay

Once we get hold of the TestStep object as described above, we can try out many
interesting things. Suppose we want to add an assertion to a specific step in a
TestCase, we can obtain the required TestCase first, traverse through all the
TestSteps of the TestCase and add the necessary assertion programmatically as
shown in the following script:

import com.eviware.soapui.impl.wsdl.teststeps.*

def getGuestDetailsTestCase = testRunner.testCase.testSuite.project.te
stSuites ["GuestManagementServiceTestSuite"] .testCases ["getGuestDetails
TestCase"]

//Define the type of assertion
def soapAssertion ="SOAP Response"

[249]

Extending soapUl with Scripting

//Retrieve all TestSteps in getGuestDetailsTestCase
for (testStep in getGuestDetailsTestCase.getTestStepList()) ({
//Check whether the TestStep is a SOAP Request TestStep
if (testStep instanceof WsdlTestRequestStep)
testStep.addAssertion (soapAssertion)

}

As we accessed the child TestSteps of the getGuestDetails TestCase, the parent
TestSuite can also be retrieved using getGuestDetailsTestCase.getTestSuite ().

We looked into some preliminary methods of soapUI Modelltems which can be
used to manipulate various elements and operations in a soapUI project. So far,
we have worked with scripts which have been inside Groovy Script TestSteps.
However, Groovy Script step is not the only place where you can write your script.
There are more:

* Setup and TearDown Scripts at TestCase, TestSuite level which can be used
to initialize and clean up various resources used in a soapUI test

* Load Script at project level which is used to run a script after loading
the project

* Script assertion to introduce arbitrary validation on response

* MockService-specific scripts

As we have already discussed the last scripting option, MockService-specific scripts
during Chapter 6, Web Service Simulation with soapUI, we will continue our discussion
based on the rest of the scripting options.

Setup and TearDown scripts in soapUI

Setup and TearDown scripts can be used for many purposes. In particular,

if you want to initialize something which is applicable for the whole TestSuite

or TestCase, the Setup script will be the most appropriate option. Let's look at
how we can initialize database connection in RoomManagementServiceTestSuite
using Setup Script:

1. Right-click on RoomManagementServiceTestSuite and select Show
TestSuiteEditor.

2. Select Setup Script at the bottom pane and add the following script:
import groovy.sql.Sql;
def DBdriver="com.mysqgl.jdbc.Driver"
def DBpath="jdbc:mysql://localhost:3306/HOTEL RESERVATION DB"
def username='root'
def password='root'

[250]

Chapter 11

try {
DBconnection = Sgl.newInstance (DBpath, username, password,
DBdriver) ;

context.setProperty ("dbConProp", DBconnection)
} catch (Exception e) {
log.error "Could not establish connection to the database."

}

Here, we used Groovy SQL library to establish a database connection to our
sample HOTEL_RESERVATION DB. Once the connection is established, in order
to use the connection from anywhere in the TestSuite, we set the connection
as a context property, dbConProp:

| B RoomManagementServiceTestSuite

X 3 0

TestCases

£ = ®
addRoom TestCase -

getRoomDetails TestCase -]
P Edit Setup Script is invoked with 1og, runner, context, testsuite variables
import groowy.sgl.sgl; =

def DBdriver="com.mysgl. jdbc.Driver"

def DBpath="djdhc:mysgl: 1ocalhost: 3306 HOTEL_RESERVATION_DE"

def usernane='root’

def password='root!

try {

DBConnection = 5gl1.newInstance(DBpath, username, password, DBdriver);
context. setProperty("dbConProp", DBCohhection);

+ catch (Exception e) {

log.error "Could not establish connection to The database.”

I
4 3
Description Properties |Setup Script| TearDown Script

1l

3. Now, we can use this connection within the RoomManagementTestSuite. In
order to demonstrate the usage of the connection, let's add a simple Groovy
Script TestStep under the addRoom TestCase:
def statement = "insert into ROOM_T values (500, 'Luxury',

'Double') "
def DBCon = context.getProperty ("dbConProp")
DBCon.execute (statement)

[251]

Extending soapUl with Scripting

Here, we simply used the dbconProp context property to execute a SQL
query. Run RoomManagementServiceTestSuite and query the RooM_T table.
You will find the query has been executed successfully.

Similarly, TearDown Scripts can be used to close database connections at the
end of the TestSuite execution.

4. Click on the TearDown Script tab at the bottom pane of
RoomManagementServiceTestSuite and add the following script to close
the database connection:

def DBCon = context.getProperty ("dbConProp")
DBCon.close ()

Load Script at soapUl project level

If we need to do something common for the whole project, we can invoke a script

at the project level. In the soapUI project view, you will find Load Script and Save
Script tabs at the bottom pane, where you can specify a script at the project level and
run it just after loading the project.

In SOA testing, we usually need to use the same soapUI project in multiple
environments. Before deploying the web services in the QA environment,
developers may execute the whole set of test suites in the development
environment. Similarly, the same tests will be executed in the staging environment
before moving the services into production. Usually, in all these cases, nothing
but the service endpoints are changed. Therefore, it will be necessary to change

all endpoint URLs when moving the TestSuites among different environments.

To address that, we can use a simple Groovy script at the project level and run it
before deploying the test in different test environments.

Assume the following are the URLSs of three of our sample web services when they
are deployed in the QA environment:

* http://QAServer:8080/axis2/services/GuestManagementService

* http://QAServer:8080/axis2/services/RoomManagementService

®* http://QAServer:8080/axis2/services/ReservationService

Let's look at how we can change the existing endpoints of the SOAP request
TestSteps in our sample project when moving the test into the QA environment.

1. Right-click on HotelReservationProject and select Show Project View. Then
click on the Load Script tab on the bottom pane to open the script editor.

[252]

Chapter 11

Add the following script:

//Define three web service endpoints

def GuestQAEndpoint = "http://QAServer:8080/axis2/services/
GuestManagementService"

def RoomQAEndpoint = "http://QAServer:8080/axis2/services/
RoomManagementService"

def ReservationQAEndpoint = "http://QAServer:8080/axis2/services/

ReservationService"

//Get all TestSuites inside HotelReservationProject
testSuitelist = project.getTestSuites|()

//Iterate through each TestSuite

testSuitelList.each

{

//Rerieve a particular TestSuite by its name
testSuite = project.getTestSuiteByName (it.key)
//Get all TestCases inside particular TestSuite
testCaselist = testSuite.getTestCases|()
//Iterate over each TestCase of a particular TestSuite
testCaselist.each

{

//Retrieve specific TestCase by its name

testCase = testSuite.getTestCaseByName (it.key)

//We do not want to set endponts for all TestSteps in a
// TestCase. So, get only the SOAP Request TestSteps

soapTestStepsList = testCase.getTestStepsOfType (com.eviware.
soapui.impl.wsdl.teststeps.WsdlTestRequestStep.class)

//Iterate over each SOAP Request TestStep in a TestCase
soapTestStepsList.each
{
//Assign the relevant endpoint
if (testSuite.name == "GuestManagementServiceTestSuite"){
it.properties['Endpoint'] .value = GuestQAEndpoint
} else if (testSuite.name == "RoomManagementServiceTestSuite"){
it.properties['Endpoint'].value = RoomQAEndpoint
}else {
it.properties['Endpoint'].value = ReservationQAEndpoint

[253]

Extending soapUl with Scripting

We will not go through each line in the previous script as everything is
explained as inline comments. Note that we used Groovy closure style
looping and the keyword it (it.key) to get the specific TestCase and
TestSuite names from the list objects.

Run the script by clicking on the green arrow icon at the upper-left
corner of the Script window. Check the SOAP Request TestSteps of
each TestSuite. You will notice that the default endpoints of all SOAP
requests are changed accordingly.

We will discuss the Script assertion as part of response handling through scripts.

Request and response handling using
Scripts

So far, we have discussed about manipulating individual elements such as projects,
test cases, and test steps of a soapUI project. However, we have not specifically
looked into the different operations which can be carried out on request and
response messages. soapUI provides us with a few important APIs to use with
request and response messages:

com.eviware.soapui.support.GroovyUtils: The API documentation of
the GroovyUtils class (http://www.soapui.org/apidocs/com/eviware/
soapui/support/GroovyUtils.html) provides us with all the necessary
information to use this APIL.

com.eviware.soapui.support.XmlHolder: This is a very useful API to
act upon XML request and response messages. More details about the API
can be found at the official API documentation (http://www.soapui.org/
apidocs/com/eviware/soapui/support/XmlHolder. html)

com.eviware.soapui.model.iface.MessageExchange: This interface
represents an exchange of request and response messages using various API
methods. For more details, visit http://www. soapui.org/apidocs/com/
eviware/soapui/model/iface/MessageExchange.html.

Let's find out the basic usage of each of these classes using our sample project.

1.

Add a new Groovy Script TestStep under the getRoomDetails TestCase of
RoomManagementServiceTestSuite.

Add the following script:

def xmlHolder = new com.eviware.soapui.support.XmlHolder (context,
"getRoomDetails#Response")

log.info xmlHolder.getXml ()

[254]

Chapter 11

Here, we created a new xmlHolder object which makes use of WwsdlTestStep
context variable and response of getRoomDetails request through property
expansion. Submit the getRoomDetails TestStep once so that we will have a
valid response in context. Then, run the Groovy script which will execute the
script against the last received response message. You will find the response
SOAP message in the script log.

We can get hold of the response XML message using the GroovyUtils class
as follows:

def groovyUtils = new com.eviware.soapui.support.

GroovyUtils (context)

def xmlHolder = groovyUtils.getXmlHolder ("getRoomDetails#Respon
se™)

log.info xmlHolder.getXml ()

Similarly, the request message can also be accessed:

def xmlHolder = new com.eviware.soapui.support.XmlHolder (context,
"getRoomDetails#Request")

Once you get hold of request and response messages, you can do various XML
manipulations through the methods included in the xm1Holder class such as
getDomNode (xpath) and getNodeValue (xpath).

Script assertion

Script assertion is another type of assertion that can be used to validate the
responses. The major advantage of using script assertion over the other assertions is
you have much more control over the messages exchanged. Thus, you can validate
the message content or headers using Groovy or JavaScript.

1. Open the getRoomDetails test request editor. Click on the Assertions tab at

the bottom pane and select the Adds an assertion to this item option. Select
Script Assertion and click on OK:

Select Assertion
ﬁ Select assertion to add

Script Assertion
Script Assertion
W5-Addressing Response
Contains
XQuery Match
Sensitive Information Exposure
M5 Status

Schema Compliance
¥Path Match b

[255]

Extending soapUl with Scripting

2. At the upper-right of the script editor, you will notice the message, "Script is
invoked with log, context and messageExchange variables". Thus, you can
use these variables to access request and response messages to do various
content level validations.

3. The com.eviware.soapui.model.iface.MessageExchange interface
represents an exchange of request and response message in a test run.
Therefore, we can use the methods exposed by this interface such as
getResponseContent () and getResponseHeaders () to access the request
and response messages.

4. Add the following script in the script assertion editor and run the
getRoomDetails TestCase:

import com.eviware.soapuil.support.XmlHolder

def responseHolder = new XmlHolder (messageExchange.
getResponseContentAsXml ())

def requestHolder = new XmlHolder (messageExchange.
getRequestContentAsXml ())

assert responseHolder["//ns:roomNumber"] == requestHolder["//
typ: roomNumber"]

We used two Xm1Holder objects to hold request and response. Request and
response messages were retrieved by calling the getReponseContentAsXml
and getRequestContentAsXml methods of the messageExchange object.

This is a trivial example which we used to demonstrate the usage of script
assertion in a soapUI project. By using the context and messageExchange
variables, you can try out much advanced and comprehensive operations on
request and response messages.

Summary

The default behavior of tests can be extended by scripting facilities included in
soapUI. Using Groovy or JavaScript, more control over the tests can be gained
and hence, custom functionalities for your soapUI tests can be introduced. As the
soapUI APIs are accessible through scripting, many useful methods can be used
in your soapUI tests. In this chapter, we looked into the scripting possibilities
of soapUI using the Groovy scripting language. First, we had a glance at the
fundamentals of the Groovy scripting language. We discussed many reasons
for using scripts in a soapUI project. The two important context-related
variables — context and testRunner - have been introduced and explained

using simple examples. We also looked into the Modelltems, the preliminary
categorization of elements in a soapUI project. Finally, we went through
examples of using scripts at various levels of a soapUI project.

[256]

12

Automated Testing
with soapUl

Automated testing is the process of executing the existing manual tests using
software. As we discussed throughout the book, the soapUI tests can simply be
triggered via the intuitive user interface of soapUI. Will that be sufficient when
testing the components including web services in your service-oriented solution?
Isn't it a tedious and time-consuming task for your Quality Assurance (QA) team
to run the soapUI TestSuites manually through user interface against each build?
Can we minimize the human intervention when running soapUI tests?

The automated execution of soapUI tests can be considered as a possible answer

for most of these questions. Even if we have an approach to run the soapUI tests
automatically, we cannot gain the complete advantage of test automation, if we do
not integrate the tests in to the build process and triggering them automatically with
each build cycle. There are various mechanisms that can be adopted to achieve much
ROI (Return-On-Investment) from test automation. This chapter will give you a
quick overview on the test automation possibilities of soapUI projects by taking you
through the following topics:

* Anintroduction to automated testing

* Continuous Integration

* soapUI JUnit integration

* Command-line execution of soapUI tests

* Maven soapUI plugin

Automated Testing with soapUl

Test automation

According to Wikipedia (http://en.wikipedia.org/wiki/Test_automation);

Test automation is the use of software to control the execution of tests, the
comparison of actual outcomes to predicted outcomes, the setting up of test
preconditions, and other test control and test reporting functions.

We do not want to stress the fact that manual execution of tests is an exhausting,
time consuming, and tedious process. In modern agile projects, the separation
between independent Quality Assurance teams and development teams has
become too narrowed. Quality is not the sole responsibility of a separate QA team.
Everyone in a project equally owns the quality of the deliverables and contributes
to the testing process. Therefore, Quality Assurance is no longer an independent
or isolated activity, which used to happen at the final phases of a product release.
Instead, more rigorous and agile testing processes are becoming popular among
software development teams. One of the reasons for adopting more agile processes
is the demand of frequent product/project releases. As we discussed in Chapter 1,
Web Services Testing and soapUl, quickly adapting to business, process, or integration
changes are one of the key promises of SOA. Therefore, it is evident that the SOA
projects should follow an agile software development and testing approach to
facilitate frequent releases and gain faster feedback by sharing products early with
the relevant stakeholders.

How does test automation help in agile SOA projects? The common benefits of test
automation are equally applicable for SOA as well. We are not going to spend time
discussing the benefits of test automation in general because it is a well-known and
popular topic which can easily be found out by browsing the Internet.

Why is test automation essential in SOA?

Regardless of the nature of the architectural style, which you use in your projects,
test automation gives you a lot of benefits. However, test automation is an absolutely
necessary factor in SOA.

1. Service-oriented solutions comprise of geographically distributed
and heterogeneous components. Therefore, manual testing of
individual components as well as the interactions among each other
is not always possible.

2. The frequency of releases is comparatively high in service-oriented
projects. Due to the demand of quickly reacting to the business, process,
or technological changes, the releases occur quite often. Thus, a fast
approach is required to provide the feedback about the system under test.

[258]

Chapter 12

3. Majority of the components of a service oriented solution are headless. In
other words, the components do not include a user interface for human
interaction but the machine-processable interfaces. Therefore, these
components are naturally fit into automated testing.

4. Re-usability is one of the key principles of SOA. Therefore, one service (or
component in general) can be used by many different consumers. Most of
the times, the potential consumers cannot be predicted in advance and the
usage pattern of services can be varied. The automated TestSuites are the
only solution to address large number of integration combinations in such a
dynamically changing system.

5. The low-level components such as web services are totally message-
oriented applications. To test these components need access to the message
level and work with various message types (for example, SOAP, JSON)
as well as transports (HTTP(S), JMS, VFS, FIP, and so on). Though you
can capture the test scenarios and carry out the first round of functional
tests manually using a tool such as soapUI, regression testing of message-
oriented tests is an unnecessarily time consuming and tedious task if the
tests are not triggered automatically.

Test automation frees up the tester's time to do more effective and exploratory
tests which are crucial for the success of quality assurance of service oriented
solutions. Because of the complexity due to the integrations and heterogeneous
nature, deriving test scenarios of a service oriented solution is not a simple and
straightforward task. Hence, the automated tests must be used as a time saver for
testers to think about end-to-end system test cases and more exploratory testing.
Based on these facts, we can conclude that the test automation is just not another
nice-to-have activity when it comes to SOA. As we have discussed so far in this book,
we can use soapUI to build a comprehensive functional or non-functional test suite
to test web services included in Service-oriented solutions. The web services in our
solution will not just be delivered after one test cycle but will go through multiple
iterations which involve bug fixes as well as various enhancements. Therefore,

we must plan to repeat the tests in multiple cycles. In order to do that, just having
a soapUI project with multiple TestSuites is not necessary. We need to find a
mechanism to automatically execute the tests and report results.

[259]

Automated Testing with soapUl

The automatic execution of soapUlI tests can be done in two different approaches.
Once the web services, which are under test, are built and ready for testing, we can
automatically trigger the tests separately from the build environment. Or else, test
automation can be combined with the build automation process and trigger the
soapUI tests as part of the build process. The latter approach is commonly referred
to as continuous testing and which can be considered as the ideal approach for
automating tests in SOA. Continuous testing is a part of a more generic process,
Continuous Integration (CI) where pieces of the software components integrate
early and often to improve the overall quality and effectiveness of the software
development process.

Continuous Integration (Cl)

Continuous Integration, as the term implies, is the process of integrating individual
units of source code in frequent cycles. During these frequent integration cycles,
automated builds and tests are used to detect integration errors as early as possible
and prevent them from introducing into the mainstream software product.

The summarized representation of the functions of a continuous integration system
can be shown as follows:

Version Control Glener (GEr Build Script
Developer » Repository (e.g :- [« J_enkms, > (e.g:-
Commit Changes St poll | CruiseControl, Maven,Ant)
Bamboo) ’

Compile source
code
Run automated tests
Deploy software

The previous image and the introductory discussions on Continuous
Integration are based on the book, Continuous Integration - Improving
M Software Quality and Reducing Risk by Paul Duvall, Steve Matyas,
Andrew Glover (http://www. integratebutton.com/). would
recommend you to read that book to learn more about continuous
integration and the related topics. We will only discuss the basic
components of Continuous Integration systems in this chapter.

[260]

Chapter 12

In general, any continuous integration system performs the following tasks:

1. Developers commit the code changes to the version control repository such
as SVN, CVS, or VisualSourceSafe.

2. The Continuous Integration (CI) server is configured to poll the version
control repository for changes in pre-defined time intervals (hourly, nightly,
or at every commit based on the nature and complexity of the code base of
your project).

3. The CI server detects the changes in version control repository, thus it
retrieves the latest copy of the code base from the repository.

4. The CI server executes the build script (for example, in the case of Apache
maven, the pom.xml file, or build.xml if the build tool is Apache Ant) which
involves compilation of source code, preparing the databases, running
automated tests, deploying the software into the deployment servers.

5. Finally, the CI server notifies the relevant parties about the status of the
build through an email.

As we can understand from these steps, automated tests play a key role in a CI
system. Since SOA is based on agile methodologies, it is extremely important to have
a properly managed CI system in your SOA projects. The continuous testing of a CI
system is not merely the unit tests which automatically validate the functionality

of the logic of individual pieces of code in your service oriented solutions. The
continuous testing must be performed to verify the functionalities of individual web
services, service integrations, as well as business processes which are formed by
multiple service compositions.

In order to test the services as well as service compositions in a service oriented
project, the web service test suites must also be executed as part of the build cycle
without maintaining them separately. soapUI provides us with various integration
facilities with build tools, such as Apache Maven and Apache Ant, as well as the
test frameworks, such as JUnit, which allow us to execute soapUlI tests as part of a
Continuous Integration system.

Let's proceed with discussing each of these integration facilities one by one.

soapUl JUnit integration

JUnit (http://junit.org/) is a framework to write repeatable tests in Java. As
the name implies, the primary purpose of JUnit is to verify the functionality of
individual units of code. However, by integrating with the external libraries, JUnit
tests can be extended to verify integration as well as system tests.

[261]

Automated Testing with soapUl

Since the examples are the best way to describe something, without spending
time on abstract descriptions, let's look into adding a JUnit test into our sample
HotelReservation project.

1. Open the hotel_reservation project in your favorite Integrated
Development Environment (IDE). (Please revisit Chapter 2, The Sample
Project to recap your memory on the project structure and location.)

2. Create a test directory at the root of the project, that is, SAMPLE_PROJECT _
HOME/test(for example, /home/charitha/soapui-projects/sample-
project/hotel reservation-1. O/test).

3. Add anew package, com. test.soapuitest under the test directory and
add a new JUnit TestCase with a single test method as follows:

package com.test.soapuitest;
import junit.framework.TestCase;
public class HotelReservationSoapUITest extends TestCase

public void testSoapUITestRunner () {
//Run soapUI TestSuites

}

_ Make sure to download the latest version of JUnit jar (at the time
& of writing, Junit-4.10.jar) from https://github.com/
L KentBeck/junit/downloads and add it to the classpath of
your sample project.

4. soapUl provides us with a standalone testrunner class called
SoapUITestCaseRunner (http ://www.soapui.org/apidocs/com/eviware/
soapui/tools/SoapUITestCaseRunner.html) which can be used to run
soapUI tests from any class, command line, or from the Apache Maven build
script. We will instantiate an object of this class inside our JUnit test and
invoke the methods to run the soapUI TestSuites or whole project at once.

Before referring to the soapUI libraries from JUnit, make sure to

add the SOAPUI_HOME/1ib directory and SOAPUI_HOME/bin/
T soapui-4.0.1.jar library into the classpath of the sample project.

[262]

Chapter 12

Let's implement the testSoapUITestRunner () method in our JUnit
TestCase. First, we will initialize an object of the SoapUITestCaseRunner
class. By looking at the API documentation of this class, we can find out all
the methods of it. Out of them, we will use the setProjectFile (String
projectFile) method to define the soapUI project file which contains the
tests to be run. We will also use the run () method to execute the whole tests
included in our soapUI project.

public void testSoapUITestRunner () {

SoapUITestCaseRunner soapUlTestCaseRunner = new
SoapUITestCaseRunner () ;

soapUITestCaseRunner.setProjectFile (" /home/charitha/
soapuil-projects/HotelReservationProject-soapui-project.xml") ;

try {
soapUITestCaseRunner.run() ;

} catch (Exception e) {
e.printStackTrace() ;

}

Note that, in the setProjectFile () method, the absolute path of the
location of our sample hotel reservation soapUI project has been given.

Now, run this JUnit test case. You will notice a set of log messages as follows:

[SoapUITestCaseRunner] Finished running soapUI testcase [addGuest
TestCase], time taken: 137ms, status: FINISHED

[SoapUITestCaseRunner] Running soapUI testcase [deleteGuest
TestCase]

[SoapUITestCaseRunner] running step [deleteGuest]

[SoapUITestCaseRunner] Finished running soapUI testcase
[deleteGuest TestCase], time taken: 50ms, status: FINISHED

[SoapUITestCaseRunner] Finished running soapUI testcase
[getGuestDetails TestCase], time taken: 50ms, status: FINISHED

[SoapUITestCaseRunner] Project [HotelReservationProject] finished
with status [FINISHED] in 481lms

Also, if any of the soapUI tests fail or errors occur, the run () method
throws an exception and the details of the failed test step will be logged,
shown as follows:

java.lang.Exception: Not SOAP Fault in [deleteGuest] failed;
[null/empty response]

Status: FAILED

Time Taken: 20

Size: 0

[263]

Automated Testing with soapUl

Obviously, you do not have much control over the test execution if you just
execute the whole soapUI project in the previous approach. We should be
able to run individual TestCases via JUnit.

7. soapUlI provides us with various API classes to deal with individual test
elements of a soapUI project. One of the most useful implementations is com.
eviware.soapui.impl.wsdl.WsdlProject (see the APl documentation,
http://www.soapui.org/apidocs/com/eviware/soapui/impl/wsdl/
WsdlProject.html) which can be used to retrieve individual TestSuites and
TestCases from a given soapUI project so that they can be executed as we
wish through any Java class.

8. Let'sredo our first test in a different manner without just executing all
TestCases. Create another test method shown as follows:

public void testSoapUIHotelReservation /()
throws XmlException, IOException, SoapUIException {
//Create a new WsdlProject instance by specifying the
//absolute path of sample HotelReservation soapUI project
WsdlProject project = new WsdlProject ("/home/charitha/
soapuil-projects/HotelReservationProject-soapui-project.xml") ;
//Retrieve all TestSuites included in the sample
//HotelReservation soapUI project
List<TestSuite> testSuitelist = project.
getTestSuitelList () ;
//Iterate over all TestSuites in the project
for (TestSuite ts : testSuitelist) (
System.out.println ("******Running " + ts.getName() +
"***********");
//Retrieve all TestCases under a particular TestSuite
List<com.eviware.soapui.model.testsuite.TestCase>
testCaselist = ts.getTestCaselList () ;
//Iterate over all TestCases in the particular
//TestSuite
for (com.eviware.soapui.model.testsuite.TestCase
testcase : testCaseList) ({
System.out.println ("******Running " + testcase.
getName() + "***********");
//Run the specific TestCase
TestRunner testCaseRunner = testcase.run(new
PropertiesMap (), false);
//Verify whether the testCase is finished
//successfully or failed due to the assertion failures
assertEquals (TestRunner.Status.FINISHED,
testCaseRunner.getStatus()) ;

}

[264]

Chapter 12

As the inline code comments explained, we first created an instance of the
WsdlProject class by passing the absolute path of our sample hotel reservation
soapUI project as a constructor argument. Then we iterate over the TestSuites
and TestCases to run TestCases individually. Once you run the above method,
you will notice that all twelve TestCases of the HotelReservation soapUI project
will be run sequentially. If there are any assertion failures, you will see an output
similar to the following;:

*xx %k *xRunning addRoom TestCase* * *xx %k xx**

junit.framework.AssertionFailedError: expected:<FINISHED> but
was : <FAILED>

In the previous test method, if we want to run a specific TestCase of a TestSuite, we
can simply call the getTestCaseByName (String TestCaseName) method as follows:

com.eviware.soapuil.model.testsuite.TestCase getRoomDetailsTestCase =
ts.getTestCaseByName ("getRoomDetails TestCase") ;

Now, you may possess some understanding about how soapUI tests can be invoked
from a JUnit TestCase. By integrating your soapUI tests into the mainstream test
framework (JUnit) of your Service-oriented solution in this manner, you could let the
soapUI tests run as part of the build process very easily.

Depending on your build tool, you can invoke JUnit tests automatically as part of the
build process. In Apache Ant, JUnit tests can be launched using the JUnit task. You
can refer to the official documentation of the Apache Ant JUnit task at http://ant.
apache.org/manual/Tasks/junit.html.

Here is an excerpt from a build.xml that can be used to launch the previous
HotelReservationSoapUITestCkms.

We should define the classpath libraries to compile the source code of the JUnit test
and refer from Ant JUnit task.

<path id="test.lib.class.path">
<pathelement location="/home/charitha/soapui-projects/
sample-project/junit-4.10.jar" />
<pathelement location="/home/charitha/soapui-projects/
soapui-4.0.1/bin/socapui-4.0.1.jar" />
<fileset dir="/home/charitha/soapui-projects/soapui-4.0.1/

lib">
<include name="**/* jar"/>
</fileset>
<pathelement location="${build.dir}" />
</path>

[265]

Automated Testing with soapUl

The JUnit task will be similar to the following. Note that the plain formatter is used
to generate a test report in text format.

<target name="junit" depends="compile"s>
<junit printsummary="on" fork="true" haltonfailure="no">
<classpath refid="test.lib.class.path" />
<formatter type="plain" />
<batchtest todir="${test.report.dir}">
<fileset dir="${t est.src.dir}">
<include name="**/*SoapUI*.java" />
</fileset>
</batchtest>
</junit>
</target>

We looked into the possibility of running soapUI tests through the JUnit test
framework and how those tests can be launched using the Apache Ant build
tool. If you are using Apache Ant as the build tool in your continuous integration
system, now you should be able to integrate your soapUI tests into your build
system very easily.

In the previous examples, we launched soapUI testrunners programmatically from
the JUnit TestCases. However, without using any test automation framework, you
can directly run your soapUI tests using the command line scripts which are shipped
with soapUI distribution. We will discuss the command line execution of the soapUI
tests in the following section.

soapUl command line executions

soapUI provides us with a set of easy-to-use batch scripts to launch soapUI tests
from the command line so that the tests can be invoked without opening the soapUI
graphical interface separately. This is very useful in test automation because you can
just call the batch scripts from your automated build scripts (Ant or any other script)
and integrate into your build system right-away.

You will find the following runner scripts inside the SOAPUI_HOME/bin directory:
* testrunner.sh {bat}: This can be used to run any soapUI functional test

from command line

* loadtestrunner.sh {bat}: Any soapUIload test can be launched from
the command line through this script

* mockservicerunner.sh{bat}: soapUIl mock services can be run
straightaway from the command line using this script

[266]

Chapter 12

* toolrunner.sh {bat}: This can be used to launch the tools included in
soapUl such as Axis2, CXF, and so on

* securitytestrunner.sh{bat}: This can be used to run the security tests
such as SQL injection, boundary scan, cross-site scripting, and so on from
the command line

Invoking a soapUl command line functional
test runner

Since all of the command line tools follow a common pattern, by studying one script,
we should be able to use the others in a similar manner. Therefore, let's focus on a
functional testrunner script and its usage.

1. Go to SOAPUI_HOME/bin and just run testrunner.sh or testrunner.bat
depending on your operating system.

° In Windows, open a command window and type testrunner.bat
and press Enter

° InLinux, open a shell, type sh testrunner.sh and press Enter

This will print the usage of the testrunner script shown as follows.
All the available options of the testrunner script can be found when
you run the command.

/soapui-projects/soapui-4.0.1/bin $ sh testrunner.sh

= SOAPUI HOME = /home/charitha/soapui-projects/soapui-4.0.1

soapUI 4.0.1 TestCase Runner
usage: testrunner [options] <soapui-project-file>

-v Sets password for soapui-settings.xml file

[267]

Automated Testing with soapUl

-t Sets the soapui-settings.xml file to use

-A Turns on exporting of all results using folders instead of
long filenames

. You can find a clear and detailed description about all these options
% in the soapUI official documentation (http://www.soapui.org/
L Test-Automation/functional-tests.html). Therefore we
will not spend time to go through each of them.

Let's launch the testrunner script without any options and look at
the output.

sh testrunner.sh /home/charitha/soapui-projects/
HotelReservationProject-soapui-project.xml

3. Here, the testrunner executes all the TestSuites and TestCases included
in the specified soapUI project file. You will see the output of the test in
the testrunner console as follows:

09:28:48,262 INFO [log] GuestManagementServiceTestSuite
09:28:48,322 INFO [log] ReservationServiceTestSuite

09:28:48,322 INFO [log] RoomManagementServiceTestSuite

09:28:48,342 INFO [SoapUITestCaseRunner] Running soapUI tests in
project [HotelReservationProject]

09:28:48,343 INFO [SoapUITestCaseRunner] Running Project
[HotelReservationProject], runType = SEQUENTIAL

09:28:48,434 INFO [SoapUITestCaseRunner] Running soapUI testcase
[addGuest TestCasel

09:28:48,440 INFO [SoapUITestCaseRunner] running step [addGuest]

09:28:48,655 INFO [SoapUITestCaseRunner] Assertion [Not SOAP
Fault] has status VALID

09:28:48,656 INFO [SoapUITestCaseRunner] Finished running soapUI
testcase [addGuest TestCase], time taken: 211lms, status: FINISHED

[268]

Chapter 12

09:28:48,656 INFO [SoapUITestCaseRunner] Running soapUI testcase
[deleteGuest TestCasel

09:28:48,657 INFO [SoapUITestCaseRunner] Finished running soapUI
testcase [deleteGuest TestCase], time taken: Oms, status: FINISHED

09:28:48,657 INFO [SoapUITestCaseRunner] Running soapUI testcase
[getGuestDetails TestCase]

09:28:48,657 INFO [SoapUITestCaseRunner] running step
[getGuestDetails]

09:28:48,697 INFO [SoapUITestCaseRunner] Assertion [SOAP
Response] has status VALID

09:28:48,697 INFO [SoapUITestCaseRunner] Assertion [SOAP
Response] has status VALID

09:28:48,697 INFO [SoapUITestCaseRunner] Assertion [SOAP Response
1] has status VALID

09:28:48,697 INFO [SoapUITestCaseRunner] Assertion [SOAP Response
2] has status VALID

09:28:48,697 INFO [SoapUITestCaseRunner] Finished running soapUI
testcase [getGuestDetails TestCase], time taken: 39ms, status:
FINISHED

09:28:48,698 INFO [SoapUITestCaseRunner] Project
[HotelReservationProject] finished with status [FINISHED] in 352ms

_ Note that, we have disabled some TestSuites in
% HotelReservationProject for the demonstration
= purposes, hence you may observe a different output
than the one mentioned previously.

With the command line testrunner, we can selectively run TestSuites as
well as TestCases. For example, we can run the getGuestDetails TestCase
directly from the testrunner script.

sh testrunner.sh -c "getGuestDetails TestCase" -r /home/charitha/
soapuil-projects/HotelReservationProject-soapuil-project.xml

[269]

Automated Testing with soapUl

5. Since we inserted the-r option, soapUI prints a simple summary report at
the end of the test execution shown as follows:

SoapUI 4.0.1 TestCaseRunner Summary

Time Taken: 169ms

Total TestSuites: 0

Total TestCases: 1 (0 failed)
Total TestSteps: 1

Total Request Assertions: 4
Total Failed Assertions: 0

Total Exported Results: 0

By specifying the-3j option in the previous command, we can generate

a JUnit compatible XML report (in our example, a report called TEST-
GuestManagementServiceTestSuite.xml will be created at SOAPUI_HOME/
bin directory where you launched the previous command) which can then
be directly integrated with the rest of your JUnit based test reports.

Invoking test runners from the soapUl
graphical user interface

SoapUI TestRunners are just not for the purpose of running through the command
line. They can even be launched within the soapUI graphical interface. Let's see how
the functional TestRunner can be invoked from the soapUI interface.

1. Right-click on HotelReservationProject in the soapUl navigator pane and
select Launch TestRunner.

[270]

Chapter 12

2. The Launch TestRunner window will be opened as shown in the
following screenshot:

Launch TestRunner

Launch TestRunner .
Specify arguments for launching soapll TestRunnar ﬁ

Basic | Owerrides rRepor‘ts rProper‘ties rCustom Args |

Testauite: l<al|> vl

TestCase: [<a||> v]

Enakle Ul [] Enables Ul components in scripts

TestRunner Path: | | [Browse...
Save Project: []5aves project before running

Add Settings: [] Adds global settings to command-line

Froject Password: | |

soapui-setings. xml Password: | |

Ignore Errors: [] Do not stop if error occurs, ignore them

Save After: []sets to save the project file after tests have been run

3. The same command line arguments which we used in the testrunner scripts
can be specified in the previous window. Use the following argument values

to run the getGuestDetails TestCase from the TestRunner:
¢ TestSuite: GuestManagementServiceTestSuite
TestCase: getGuestDetails TestCase

TestRunner path: /home/charitha/soapui-projects/

soapui-4.0.1/bin (Browse or type the location of SOAPUI_HOME/

bin)

4. Apart from the aforementioned set of arguments, we can specify the

additional options from the other tabs of the Launch TestRunner window
(Overrides, Reports, Properties, and Custom Args tabs). For our example,

let's select the Reports tab and select the Print Report option.

[271]

Automated Testing with soapUl

5. Finally, click on the Launch button to run the testrunner file. You will see
the output similar to the following:

soapUl TestRunner

10U 2L 5 17 THFU
10:51:22,523 INFO
10:51:22,691 INFO
10:51:22,691 INFO
10:51:22,692 INFO
10:51:22,692 INFO
10:51:22,692 INFO
10:51:22,692 INFO

[E0E[UNT EsTCasERINEr] RUMMING S0ap07 B5ICa5e [JRTLURSTOR
[5oapUlTestCaseRunnar] running step [getGueastDetails]

[SoapUiTestCaseRunner] Assartion [SOAP Rasponse] has statu
[SoapUlTestCaseRunner] Assertion [SOAP Response] has statu
[5oapUlTestCaseRunner] Assertion [S0AP Response 1] has st
[SoapUiTestCaseRunnear] Assartion [SOAP Rasponse 2] has st
[3oapUITestCaseRunner] Finished running soaplll testcase [get
[SoapUlTestCaseRunner] TestCase [getCuestDetails TestCase]

SoapUl 4.0.1 TestCaseRunner Summary

Time Taken: 178ms

Taotal TestSuites: O

Total TestCases: 1 (0 failed)
Total Teststeps: 1

Taotal Request Assertions: 4
Total Failed Assertions: O
Total Exported Results: 0

Close

We looked at launching the functional testrunner from the command line as

well as a soapUI graphical interface. Similarly, we can use the other runners
(loadtestrunner.sh{bat} and so on) as well. You can find more information about
the other runners from the soapUI official documentation.

Depending on your requirements, you can either use the command line testrunner
scripts or launch your soapUI tests from JUnit when you need to integrate soapUI
into your continuous integration systems. Launching soapUI tests from testrunner
scripts can be comparatively easier for novice users because they do not want to
learn soapUI API methods to invoke soapUI tests. Also, the testrunner invocation
is pretty straightforward. If you decide to launch soapUI tests from the command
line testrunner then your build tool can be configured to run the script with
arguments. In the case of Apache Ant, the exec task which is used to execute system
commands can be used as shown in the following example:

<project name="Ant-soapUITestRunner" default="soapui-tests-cmdline"
basedir=".">
<target name="soapui-tests-cmdline"s

<exec executable="/home/charitha/soapui-projects/soapui-4.0.1/
bin/testrunner.sh" failonerror="yes">

<arg value="-r"/>

[272]

Chapter 12

<arg path="/home/charitha/soapui-book/
HotelReservationProject-soapui-project.xml"/>

</exec>
</target>
</project>

Maven soapUl plugin

Apache Maven (http://maven.apache.org/) is a Java-based project management
and build tool which is used by a plethora of commercial and open source Java
applications. Maven does almost all of its build and project management tasks using
various plugins. There are some core plugins maintained by the Apache Maven
project, such as complier plugin which compiles the Java source, surefire plugin which
executes JUnit tests, site plugin which generates website for a project, and so on.

Apart from the plugins supported by the Maven project, there are plugins developed
by other parties. The Maven selenium plugin (http://mojo.codehaus.org/
selenium-maven-plugin/) for launching and running selenium tests from the
Maven build process, Maven clover plugin (http://maven.apache.org/plugins/
maven-clover-plugin/2.4/index.html) to find the code coverage are some of the
popular Maven plugins which are supported by respective tooling projects. Because
of the popularity of Maven in Java projects, when a testing tool is released, the
associated Maven plugin will also be made available. This is true for soapUI too.

The Maven soapUI plugin is used to execute soapUI tests as part of a Maven build
cycle. If you are already familiar with Maven, integrating the soapUI plugin will

be surprisingly easy. For the benefit of everyone, let's proceed with our sample
HotelReservation soapUI project and see how the Maven soapUI plugin can be used.

Maven projects have their own structure. Note that we did not use Maven for
building our sample HotelReservation project in Chapter 2, The Sample Project.
Without going back and modifying the sample project to build using Maven, just
for the purpose of demonstrating soapUI maven plugin, we will create a separate
Maven project. By using the Maven Archetype plugin (http://maven.apache.org/
archetype/maven-archetype-plugin/), we can create a working Maven project
structure in a matter of seconds. Let's go through each step in detail:

1. If you do not have Maven running in your system, download and install
Apache Maven2 or Maven3 latest build from http://maven.apache.org/
download.html.

2. Once Maven is installed, verify whether it is running by issuing an mvn
version command.

[273]

Automated Testing with soapUl

3.

Create a new root directory for the sample Maven project in your file system.
(for example, /home/charitha/soapui-projects/maven-project).

Go to the newly created directory and enter the following command to create
a standard Maven project structure:

mvn archetype:create -Dgroupld=com.soapui.test -DartifactId=HotelR
eservationSoapUITests

This will generate a Maven project structure similar to the following:

The Maven archetype plugin creates the required project structure as well as
a root poM file.

Since we are not going to use the auto-generated test class (AppTest.
java) and the sample application (App.java), remove the main
directory as well as the HotelReservationSoapUITests/src/test/
java sub directory. Create a new sub directory, resources under
HotelReservationSoapUITests/src/test and copy our sample
HotelReservation soapUI project file (HotelReservationProject-
soapui-project.xml) to the resources directory.

Now, open the generated pom.xml file and remove the JUnit dependency.
(We do not run any JUnit tests hence the JUnit dependency is not required.)

Then, we need to do the configurations specific to the Maven soapUI plugin.
First, add the eviware Maven2 repository to the pom.xml.
<pluginRepositoriess
<pluginRepository>
<idseviwarePluginRepository</id>

<urls>http://www.eviware.com/repository/maven2/
</urls

</pluginRepository>
</pluginRepositories>

[274]

Chapter 12

8. Next, add the soapUI plugin configuration to pom.xml.
<build>

<plugins>
<plugin>
<groupld>eviware</grouplds>
<artifactIds>maven-soapui-plugin</artifactIds>
<versions>4.0.1l</versions>
<configurations>

<projectFiles>src/test/resources/HotelReservationProject-
soapui-project.xml</projectFile>

</configuration>
<executions>
<execution>
<id>soap-webservice-test</id>
<phase>integration-test</phase>
<goals>
<goal>test</goals>
</goals>
</executions>
</executions>

</plugin>

</pluginss>

</builds>

[275]

Automated Testing with soapUl

9.

10.

Here, we used the 4.0.1 version of the Maven soapUI plugin, which was the
latest at the time of writing. The <configurations> element is used to define
the soapUI specific settings associated with the plugin such as projectFile,
testSuite, testCase, and so on. In this example, we run all TestSuites in

the soapUI project without selection. Therefore, we just specified the
<projectFiles element.

soapUI tests can be executed as part of the integration test phase. Thus, we
have given <phase>integration-test</phase> as the phase where the
plugin is executed.

Save the pom.xml and run the following Maven goal:

mvn eviware:maven-soapuil-plugin:test

This will run all soapUI tests included in HotelReservationProject-
soapui-project.xml and return the output similar to the following (note
that, I have enabled only the GuestManagementServiceTestSuite in the
project to simplify the demonstration):

~/soapui-projects/maven-project/HotelReservationSoapUITests $ mvn
eviware:maven-soapui-plugin:test

[INFO] Scanning for projects...

soapUI 4.0.1 Maven2 TestCase Runner

18:44:10,165 INFO [WsdlProject] Loaded project from [file:/home/
charitha/soapui-book/maven-project/HotelReservationSoapUITests/
src/test/resources/HotelReservationProject-soapui-project.xml]

18:44:11,037 INFO [log] GuestManagementServiceTestSuite

18:44:11,097 INFO [SoapUITestCaseRunner] Running soapUI tests in
project [HotelReservationProject]

18:44:11,098 INFO [SoapUITestCaseRunner] Running Project
[HotelReservationProject], runType = SEQUENTIAL

[276]

Chapter 12

11.

18:44:11,166 INFO [SoapUITestCaseRunner] Running soapUI testcase
[addGuest TestCase]

18:44:11,172 INFO [SoapUITestCaseRunner] running step [addGuest]

18:44:11,337 INFO [SoapUITestCaseRunner] Assertion [Not SOAP
Fault] has status VALID

18:44:11,339 INFO [SoapUITestCaseRunner] running step
[getGuestDetails]

18:44:11,378 INFO [SoapUITestCaseRunner] Assertion [SOAP
Response] has status VALID

18:44:11,378 INFO [SoapUITestCaseRunner] Assertion [SOAP
Response] has status VALID

18:44:11,379 INFO [SoapUITestCaseRunner] Assertion [SOAP Response
1] has status VALID

18:44:11,379 INFO [SoapUITestCaseRunner] Assertion [SOAP Response
2] has status VALID

18:44:11,379 INFO [SoapUITestCaseRunner] Finished running soapUI
testcase [getGuestDetails TestCase], time taken: 39ms, status:
FINISHED

18:44:11,379 INFO [SoapUITestCaseRunner] Project
[HotelReservationProject] finished with status [FINISHED] in 278ms

If we want to gain more control over test execution, we can configure the
Maven soapUI plugin with various settings. Simply specify the following
property under the <configurations> element of the soapUI plugin to
invoke the getGuestDetails TestCase.

<configurations>

<projectFile>src/test/resources/HotelReservationProject-
soapuil-project.xml</projectFile>

<testCase>getGuestDetails TestCase</testCase>

</configurations>

Similarly, you can run a specific TestSuite.

<testSuite>RoomManagementServiceTestSuite</testSuites>

[277]

Automated Testing with soapUl

You can find all the settings of the Maven soapUI plugin at
%j%“ http://www.soapui.org/Test-Automation/maven-
’ 2x.html which explains the usage of each setting.

We looked at one of the goals out of the four different goals provided by the
Maven soapUI plugin. The maven-soapui-plugin:test goal can be used to
execute soapUI functional tests as part of the Maven build process as explained in
the previous example. Apart from that, the maven-soapui-plugin:loadtest goal
is used to run soapUI load tests. Maven-soapui-plugin:tool and maven-soapui-
plugin:mock goals can be used to execute soapUI tools such as Axis2 Wsdl2Java
and mock services respectively.

You can also execute multiple soapUI projects within a particular Maven build
process. In order to do that, multiple executions of the plugin can be defined and
include in a common life cycle phase.

* Suppose we have two soapUI project files, HotelReservationProject-
soapui-projectl.xml and HotelReservationProject-soapui-project2.
xml. Then, we can include them in two different executions with a unique ID
as shown in the following code:

<plugins>
<groupIds>eviware</groupIlds>
<artifactId>maven-soapui-plugin</artifactIds>
<version>4.0.1l</versions>
<executions>
<execution>
<id>soap-webservice-testl</id>
<phase>integration-test</phase>
<goals>
<goal>test</goals>

</goals>

[278]

Chapter 12

<configurations>

<projectFile>${basedir}/src/test/resources/
HotelReservationProject-soapui-projectl.xml</projectFile>

</configurations>
</execution>
<executions
<id>soap-webservice-test2</id>
<phase>integration-test</phase>
<goals>
<goal>test</goals>
</goals>
<configurations>

<projectFile>${basedir}/src/test/resources/
HotelReservationProject-soapui-project2.xml</projectFile>

</configurations>

</executions>

</executions>

</plugins>

Now, if you run amvn integration-test goal, both soapUI projects will be
executed sequentially in the order they were defined inside the plugin.

[279]

Automated Testing with soapUl

Summary

Test automation is not another Nice-to-Have task when it comes to service-oriented
solutions. In order to achieve the real advantages of SOA adoption, automated
testing should play a key role and it must be part of the mainstream build process. In
this chapter, we discussed the necessities of having automated tests in SOA projects.
Then, we summarized the steps involved in Continuous Integration (CI) systems and
why Cl is important in SOA. soapUl facilitates the automatic execution of tests using
multiple approaches. First, we looked into the integration of soapUI with the JUnit
test framework and invoked soapUI tests as part of JUnit tests. Then, we discussed
how those JUnit tests can be run continuously from Apache Ant. We also looked into
the command line testrunner scripts provided by soapUI. Finally, we went through
a sample Maven project to demonstrate how the Maven soapUI plugin can be used
to run soapUI tests as part of the Maven build cycle.

[280]

15

Miscellaneous Topics

Starting from a sample hotel reservation application, we explored most of the key
features provided by the world's leading web services testing tool, soapUI. At the
beginning of the book, we discussed the key elements of a soapUI project such as
TestSuites, TestCases, and TestSteps. Our discussions have not just been limited to
functional testing. We looked into the use of soapUI in load and performance testing
as well. Then, we moved forward with the topics such as web service simulation,
RESTful services testing, JMS testing, JDBC testing, and test automation. In between,
we discussed about the scripting capabilities of soapUI and the advanced web
services testing topics, such as WS-Security.

There are some useful topics which we did not include in the previous chapters,

but we believe they must be discussed separately before concluding the book.

For example, most SOA developers and testers prefer to use soapUI directly from
their preferred Integrated Development Environments (IDEs) instead of using a
separate soapUI installation. Also, there are some general features such as external
web service framework integrations, which we cannot categorize into one particular
chapter of the book. Therefore, we dedicate this chapter to discussing some useful
auxiliary features of soapUI. We will focus on the following miscellaneous topics in
this chapter:

* soapUI Eclipse plugin

* soapUl Intellij IDEA plugin

* WS-I validation using soapUI

* soapUl integration with external web services frameworks

* Sending attachments with SOAP messages using soapUI

Miscellaneous Topics

soapUl IDE plugins

IDE plugins are software components that add functional extensions on top of a
particular IDE. In particular, the IDE plugins are used by developers to run various
tools inside the development environment which is more effective than launching
tools separately. soapUI provides us with a few IDE plugins which allow us to
build and run soapUI tests from within popular IDEs such as Eclipse (http://www.
eclipse.org), Intellij IDEA (http://www.jetbrains.com/idea/), or NetBeans
(http://netbeans.org/).

soapUl Eclipse plugin
The soapUl eclipse plugin brings all the features provided by the standard soapUI
desktop application into Eclipse IDE. Adding the soapUI plugin into Eclipse is pretty
straightforward; follow these steps:

1. Open Eclipse IDE (this plugin supports Eclipse version 3.4 or later).

2. Go to Help | Install New Software

3. Enter http://www.soapui.org/eclipse/update as the update site in
the Work with: textbox and click on Add.

4. Enter the name of the installation as soapUI and click on OK.

Available Software
Check the items that you wish to install.)=‘"‘
Work with: [soapUl - http://www.soapui.org/eclipse/update ~ Add... |

Find more software by working with the "Available Software Sites” preferences.

| 4]

Name Version
d 0l seapul
ks
Select All Deselect All 1 item selected

Details

interactivelv in soapui or within an automated build/intearation process usina
More...

Show only the latest versions of available software [] Hide items that are already installed

Group items by category What is already installed?

[J Contact all update sites during install to find required software

/‘5 Next > Cancel

[282]

Chapter 13

5. Select soapUI Feature, as shown in the preceding screenshot, and click on
Next. Review the installation and licenses in the next screen of the wizard
and click on Finish. After a few minutes, depending on the speed of your
Internet connection, the soapUI plugin will be installed.

Restart Eclipse to take effect on the new plugin installation.

In the Eclipse main toolbar, go to Window | Open Perspective | Other and

select soapUI This will open our familiar soapUI project explorer, as shown
in the following screenshot:

soapUl - Eclipse
File Edit Navigate Search Project Run Window Help

i Q- | B &~ v 5 |Fsoapul| 7@
soapUl Navigator =8 =g
Project
Mew soapll Project Ctrl-N
Impart Froject WCreates a new soapll Project in this workspace\ =8
Import Packed Project
Import Remote Project —

S N

“Woriepad] Save All Projects CUri+AlL-S

p

Mame

Eifescrlpt Clear Workspace

Project Onlinz Halp F1

1]

Lsoapui Lhttp lag Ljettylog Lerrorlog strm lag ‘

Now, we can create new soapUI projects and proceed with the usual soapUI
features inside Eclipse. In addition to the general preferences, we can configure

the soapUI settings in the Eclipse preferences editor by navigating to Window |
Preferences | soapUI.

[283]

Miscellaneous Topics

soapUl IntellidJ IDEA plug-in

Intelli] IDEA (http://www.jetbrains.com/idea/) is a commercial IDE which

is widely popular among developers due to its extremely rich set of features and
productivity enhancements. The soapUI Intelli] IDEA plugin is also similar to the
Eclipse plugin, which can be used to integrate soapUI into the IDE and launch any
soapUI project from within the IDE.

There are multiple ways to install plugins in IDEA:

* Downloading the soapUI Intelli] plugin from http://sourceforge.net/
projects/soapui/files/soapui-intellij-plugin/ and installing it
in IDEA

* Installing the plugin using the Intelli] IDEA plugin manager Ul

Note that the direct link for installing the soapUI plugin is
L~ available only in Intelli] IDEA 8.0 or later versions.

In the following demonstration, we will install the soapUI plugin using a third
approach, the direct link of the soapUI plugin install option:

1. Open Intelli] IDEA and select Tools from the top menu and go to
Webservices | Install SoapUI. This will download the latest version of the
soapUI plugin from the plugin repository and install it in your IDE.

2. Restart IDE. You will see a "SoapUI" option under the Tools menu, as shown
in the following screenshot:

Build Run Tools Version Control Window Help
Task 3
Context 3

Save as Live Template...
Save File as Template...
Generate JavaDoc..
Playback Last Macro
Start Macro Recording
Edit Macros
View PSI Structure
XML Actions
[Data Sources...
SoapUl Start SeapUl
WebServices Preferences
JAXE Generate

XmlBeans Launch TcpMon

#i Deployment Online Help
soapui.org

System Properties
About SeapUl

[284]

Chapter 13

3. Select Start SoapUI to start soapUI inside Intelli] IDEA. Once soapUlI is
started, the Start SoapUI menu option will be changed to Close SoapUI.

4. Now, select Window in the top menu and go to Tool Windows | soapUI
Navigator. This will open the soapUI navigator which we are familiar with,
in the soapUI desktop version, inside Intelli] IDEA:

File Edit Search View GoTo Code Analyze Refactor Build Run Tools Version Control Window Help

BERSG|XRE QA sdaSE-JreoE = L2 B |

EIE «

Praject

Mew soapUl Project

Ct

Import Project

Import Remote Project
Save All Projects

0Open All Closed Projects
Close All Open Projects
Rename

Mew Workspace

Switch Workspace
Online Help

Ct

Ct

H-N |
tl-1 |
|Creates a newy soapll Praject in this workspace

tH-AlL-5

5 Z: Structure [[& 10 Project | | soapUl Mavigator | [/

WS-l validation using soapUl

The ability to work with heterogeneous systems in a seamless manner is one of

the key promises of SOA and web services. In order for multiple vendor platforms
to operate with each other, every participant of a heterogeneous system should
follow a common set of standards and rules. The Web Services Interoperability
Organization (WS-I) http://www.ws-1i.org, which recently became part of the
Organization for the Advancement of Structured Information Standards (OASIS),
defines the best practices for web services' interoperability. WS-I provides web
services' developers with various deliverables such as profiles, sample applications,
and testing tools.

According to Wikipedia, WS-I profile is a set of named web services
specifications at specific revision levels, together with a set of
implementation and interoperability guidelines recommending how
the specifications may be used to develop interoperable web services.

[285]

Miscellaneous Topics

Among the multiple profiles defined by WS-I, the basic profile (http://www.ws-1i.
org/deliverables/workinggroup.aspx?wg=basicprofile) defines the best
practices and guidelines for the interoperability of core web services specifications
such as SOAP and WSDL. Therefore, the basic profile can be used to validate WSDLs
and SOAP messages in service-oriented solutions. To validate the conformance with
WS-I profiles, WS-I develops multiple testing tools, which can be downloaded from
http://www.ws-1.org/deliverables/workinggroup.aspx?wg=testingtools.

These WS-I conformance testing tools are embedded into soapUI distribution by
default. You can find the WS-I Testing Tools V1.1, which can be used to validate the
conformance against the Basic Profile V1.0 and 1.1 as well as Simple Soap Binding
Profile V1.0 inside the SOAPUI_HOME/wsi-test-tools directory.

In this section, we will look at how one of the WSDLs of our sample hotel reservation
soapUI project can be validated using WS-I testing tools:

1. Right-click on GuestManagementServiceSoap11Binding in the hotel
reservation soapUI project and select Show Interface Viewer. You will see
the WS-I Compliance tab in the interface viewer which allows us to create a
WS-I conformance report for the selected interface.

2. Before generating the report, let's have a look at various options which can
be used in report generation. Click on the Sets WS-I report creation options
icon, which brings up the soapUI Preferences dialog box as shown in the
following screenshot:

soapUl Preferences

soapUl Preferences

Set global soapUl settings &
BARNESSFIinGS Verbose: [] sets verbose output of WS tools
Proxy Settings —
S5L Settings Rasults Type Jall -
WSDL Settings Message Entry. []if message entries should be included in the report
Ul Settings Failure Massags: []if failure message defined for each test assertion should be includad in the report

Editor Settings
Tools
WS-1 Settings || Tool Location: ‘10mefcharithafsoapui—bookfsoapui—4.0.ljwsi—test—wols‘ ‘ Browse... |

Assartion Dascription: [if description of each test assertion should be included in the report

Global Properties Show Log: [] show consale-log for ws-i analyzer
Global Security Settings
WS-A Sattings Cutput Folder: ‘
loadUl Settings
‘Web Recording Settings
Global Sensitive Information Tokens
Varsion Update Settings

‘ ‘ Browse. .. |

[@ [0 [cancel]

[286]

Chapter 13

3. The default location of the WSI tool kit is shown in the preceding preferences
dialog box. Select an output directory for the report. You can also modify
some of the WS-I analyzer configuration options through this dialog. Keep
those options intact and click on OK. This will generate a WSI compliance
report and save it in the location that we specified. The report will also be
shown under the WS-I compliance tab as shown in the following screenshot:

f Owvarview rSem'ce Endpaoints r W5DL Content r W5-1 Compliance |
» K B

WS»| i

/A

WS-I Profile Conformance Report

Report: WS-| Basic Profile Conformance Report.
Timestamp: 2012-06-30T12:35:34.627

Copyright (¢) 2002-2004 by The Web Services-Interoperability Organization (WS-I1) and Certain of its
Members. All Rights Reserved.

Analyzer Tool Information

Version 1.0.0

Release Date 2005-07-04

Implementer Name W3- Organization

Location http:/ fwww.ws—i.org

Analyzer Runtime Environment Information

l

In the soapUI version that we used in this book (soapUI-4.0.1), the WS-I

compliance report is saved in the /tmp directory if the WS-I validation generates
non-conformance errors of the WSDL. You will experience this with our sample
GuestManagementService. After the validation of WSDL, if you open the generated
XML report, which can be found in the /tmp directory of your filesystem

(for example, /tmp/wsi-report4252591991256058421), you will come

across the assertion failures similar to the following:

<assertionResult 1d="BP2703" result="failed">
<failureDetail xml:lang="en" >Exception:

org.xml.sax.SAXException: Error: cvc-complex-type.2.4.a: Invalid
content was found starting with element 'wsdl:fault'. One of

' {" ;http://schemas.xmlsoap.org/wsdl/" :output } ' 1is
expected.

[287]

Miscellaneous Topics

Now, in order for you to understand the exact meaning of these types of errors,
check the given assertionResult ID in the Basic Profile-1.1 Test Assertion
Document (TAD), which can be found in the SOAPUI_HOME/wsi-test-tools/
common/profiles directory. According to that document, the assertionID value
BP2703 will represent the following WS-I basic profile conformance assertion:

<!-- BP2703 -->

<testAssertion id="BP2703" entryType="definitions" type="required"
enabled="true">

<context>For a candidate description within a WSDL document</
context>

<assertionDescription>If it uses the WSDL namespace, then
it conforms to the schema located at http://schemas.xmlsoap.org/
wsdl/2003-02-11.xsd, and if it uses the WSDL-SOAP binding namespace
then it conforms to the schema located at http://schemas.xmlsoap.org/
wsdl/soap/2003-02-11.xsd.</assertionDescription>

<failureMessage>WSDL definition does not conform to the schema
located at http://schemas.xmlsoap.org/wsdl/soap/2003-02-11.xsd for
some element using the WSDL-SOAP binding namespace, or does not
conform to the schema located at http://schemas.xmlsoap.org/wsdl/2003-
02-11.xsd for some element using the WSDL namespace.</failureMessage>

<failureDetailDescription>Error message from the XML parser.</
failureDetailDescriptions>

Similarly, you can find out the conformity errors of your WSDL and correct them as
suggested in the assertion results.

soapUl integration with external web
services' frameworks

soapUI cannot only be considered as purely a web service testing tool. As we
discussed in previous chapters, soapUI provides us with the features to work with
both client and server side of the general web service equation. SOAP message
transmission over HTTP or JMS, RESTful service invocations are the obvious
examples of using soapUI as a web service client. The mock service generation can
be considered a good example for service hosting capabilities provided by soapUI.

[288]

Chapter 13

In SOA, services are built using various commercial or open source web services
frameworks. For example, one may use Apache CXF (http://cxf.apache.org) to
develop and host the web services whereas another may use Jboss (http://www.
jboss.org/jbossws/) or Apache Axis2 for the same purpose. Many of these web
service frameworks provide web service developers with numerous tools to assist
them in web service development and testing tasks. With soapUl, you can directly
make use of the tools provided by your favorite web services framework. In this
section, we will look into integrating soapUI with some of the external tools.

If you select the Tools option from the top menu of soapUI, you will find a number
of utilities provided by external web service frameworks:

jus
o

Tools Desktop Help

|BossWS Artifacts =)
JBossWS JAK-WS Artifacts

(i)
sith

JAX-FPC Artifacts
J&X-WS Artifacts

Mavigatar

[T - -] L,

Axis 1. Artifacts
Axis 2 Arifacts
Apache CTXF

XFire 1. 5tubs
Qracle Proxy Artifacts

apll

XmlBeans Classes
JAXB 2.0 Artifacts

] nding
MET 2.0 Artifacts ap11

GSo0ap Artifacts

Launch TcpMon

48 Hermes|MS

[289]

Miscellaneous Topics

All these options directly invoke the tools such as WSDL2Java, associated with a
particular web services' framework and return the results. To make use of a tool
included in a particular web services' framework, you must first configure the
location of the web services framework in soapUI Preferences:

1. Aswe have already used the Apache Axis2 web services framework in our
sample project, let's specify its location in the soapUI Preferences dialog box,
as shown in the following screenshot:

soapUl Preferences

soapUl Preferences L
Set global soapUl settings ?\

HTTP Settings
Proxy Settings

JBossWS wstools | [Emwse. J

55 Settings JAX-RPC W5Compile: | [Emwse. 4
WSDL Settings JAX-WS WSImport | [Emwse
Ul Settings
Editor Settings S L | [Emwse
Tools Axis 2 Umefthar\majsuapu\fbuukfsamp\efprujectfaxlsz71.6.1| [Emwse. 4
W51 Seumgs. NET 2.0 wsdl.exe: | [Emwse. 4
GClobal Propertias
Global Security Settings XFire 1.X | [E”QWEE
SN OXF 2% | [Browse
loadUl Settings

Global Sensitive Information Tokens | G5oap:
Version Update Settings

| [Browse. ..

JAXB ¥ Browse
i

XmiBeans 2 X | [Emwse

JDK 1.5 javac: | [Emwse. J

Apache TepMon: | [Emwse. 4

Oracle wsa. jar: | [Emwse

WADL 2 Java: | [Emwse

\
\
\
\
\
\
\
\
Web Recording Settings ANT 1.6+ ‘ | [Emwse. 4
\
\
\
\
\
\
\
\

Hermes |MS: /home/charitha/soapui-book/Hermes|M3 | [Emwse. J

Cancel

2. WSDL2Java is a tool given by most of the web services frameworks
to generate client-side artifacts (stubs) or service skeletons from
WSDLs. We are going to create client-side artifacts from WSDL of
GuestManagementService using the Axis2 WSDL2Java tool. Click
on the Tools option in top menu and select Axis2 Artifacts.

[290]

Chapter 13

3. The Axis2 artifacts window will be opened as shown in the following
screenshot. Enter the URL of the GuestManagementService WSDL and

specify an output directory. Keeping the other options intact, click

on Generate.

Axis2 artifacts

Specify arguments for Axis 2. Wsdl2 Java

Axis2 artifacts

o

&

WsDL:

Qutput Directony
Package:
databinding method:
asyne:

SYNE:

test-case:
server-side:
serverside-interface:

service descriptor:

Basic | Advanced | Custom Args |

|http:;’;’Iocalhost:8080;’axi52;’ser\.rices,"cuestl'ﬂ anagementsendceswsdl |

|,"h0me,."charitha;’Deskt0p | [Browse...]

[(generate code only for async stye)

[] (generate code only for sync style)
[] (Generate a test case)

[] (Generate server side code (i.e. skeletons))

[Generatej [Close] [Tools]

When you click on Generate, soapUI invokes the wsd12Java.sh or wsdl2java.bat
script located in the AXIS2_HOME/bin directory. You will find the generated artifacts
in the specified output directory.

Axis2 WSDL2Java script generates the src directory and an ant build.xml file
when you run the script with the default options. The src directory contains the
stub classes which can be imported when creating a Java client to invoke web
services programmatically.

Make sure to set executable permissions for AXIS2 HOME/bin/
wsdl2java. sh script if you come across a "permission denied"
error when running Axis2 WSDL2Java tool from soapUI.

Depending on the web services framework you use, follow a similar approach with
the other tools such as Apache CXF, Axis2 1.1, or .NET 2.0.

[291]

Miscellaneous Topics

Sending attachments with SOAP
messages using soapUl

Attachments are one of the important aspects of any message transmission facility.
Attachments are commonly used in transport mechanisms such as MAIL (for
example, SMTP) where the attachments are included as part of the mail message.
In all our examples which we have discussed so far, the payload of SOAP messages
represented simple XML elements with primitive data types. However, in the real
world, we do not just transmit raw XML through SOAP messages. SOAP messages
are transmitted along with images, PDF documents, or some other binary data.
There are multiple approaches used to send attachments with SOAP messages:

Base64 encoding: Data is embedded as an element or attribute value
inside the payload of the SOAP message using Base64 encoding.
(http://en.wikipedia.org/wiki/Base64).

For example:

<x:data xmlns:x="http://test.data.com" >

</x:data>

Because of its inefficiency and performance concerns of decoding the
messages, this mechanism is not considered as a good solution for
attachment transmission in SOAP messaging.

SOAP with Attachments (SwA): SOAP with Attachments
(http://www.w3.org/TR/SOAP-attachments) is an approach that is
analogous to attaching binary files to e-mails. Binary data is put completely
outside of the SOAP envelope by including a reference to the binary file:

Content-Type: multipart/related

type="text/xml"

--MIME_ boundary
Content-Type:text/xml; charset=UTF-8
Content-Transfer-Encoding: binary

Content-id=<main>

<?xml version="1.0" encoding="UTF-8"?>

[292]

Chapter 13

<soapenv:Envelope>

<data href="cid:attachment"/>

</soapenv:Envelope>

--MIME boundary
Content-Type:application/octet-stream
Content-Transfer-Encoding: binary
Content-id=<attachment>

--MIME boundary

The attachment is referred using the content ID (CID) or content location
as shown in the preceding code. Though many web service frameworks
support SOAP with Attachments, it has now been superseded by the much
enhanced attachment processing mechanisms such as the SOAP Message
Transmission Optimization Mechanism (MTOM).

MTOM (SOAP Message Transmission Optimization Mechanism): MTOM
(http://www.w3.org/TR/soapl2-mtom/) is a more efficient method of
sending binary data to and from web services with combining Base64
encoding and SOAP With Attachments. In MTOM, binary data does not
reside outside SOAP envelope as in SOAP With Attachments. This is
achieved through a technology known as XML-binary Optimized
Packaging (XOP).

soapUI supports all of the above attachment-handling mechanisms. You can
find more details about how soapUI supports these approaches in the soapUI
official documentation (http://www.soapui.org/SOAP-and-WSDL/adding-
headers-and-attachments.html). In this section, we will look into using
soapUI to attach a binary file to a SOAP message using MTOM as it is the
commonly used attachment transmission mechanism.

[293]

Miscellaneous Topics

Deploying an MTOM-enabled web service

Apache Axis2 includes an MTOM sample service that we can use out of the box to
demonstrate our scenario:

1.

Go to the AXIS2_HOME/samples/mtom directory and follow the README . txt
to deploy sample-mtom.aar in axis2server.

Once the service is deployed, access http://localhost:8080/axis2/
services/MTOMSample?wsdl and check whether you can retrieve the
auto-generated WSDL of the service.

This web service consists of a single operation, attachment, that accepts a
string value as file name/file path, and a binary attachment. This service
will save the content of the attachment into a new file at the given file path.

Using soapUl to send an attachment to the web
service

As we have the service ready, let's see how we can use soapUI to send a SOAP
request to the above web service with an attachment:

1.

Create a new soapUI project, MTOM Test Project. Enter http://
localhost:8080/axis2/services/MTOMSample?wsdl as the initial WSDL.

Once the project is created, look at the generated SOAP request under
MTOMServiceSOAP11Binding;

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:mtom="http://ws.apache.org/axis2/mtomsample/"
xmlns:xm="http://www.w3.0rg/2005/05/xmlmime" >

<soapenv:Header/ >
<soapenv:Body>
<mtom:AttachmentRequest>
<mtom: fileName>?</mtom: fileName>

<mtom:binaryData xm:contentType="application/?">c
id:228548525934</mtom:binaryData>

</mtom:AttachmentRequest>
</soapenv:Body>
</soapenv:Envelope>

The SOAP payload of the request consists of two elements — £ileName
and binaryData.

As the fileName value is just a string, we can give any string value as
the filename. But how should we specify the second parameter of the
payload — the binary attachment?

[294]

Chapter 13

3. SoapUl allows us to add attachments to SOAP requests through a separate
Attachments tab that can be found at the bottom of the request editor. Select
the Attachments tab and click on the Adds an attachment icon that is at the
upper-left corner of the Attachments tab.

4. A file browser will be launched where we can select a file to be attached.
Browse to a file in your filesystem (for example, a PNG or GIF image).

5. A message box will appear, requesting to cache the attachment in the request.
If we click on Yes, the attachment is cached by creating a local copy of the
attachment inside soapU], so that the subsequent requests do not read the
attachment from the absolute file path. Otherwise, the absolute path of the
attachment is stored by soapUI in the Name column of the Attachment table.
In our example, click on Yes to cache the attachments in the requests.

22 Request 1
P =@ OO0 ’http:,f,l'localhost:8080,"axi52,fsem:es,fI'dTOMSample.MTOMSampIeSOAPllpm_httpj
— [=so0apenv:iEnvelope xnlns:soapenv="http: /S schenas.xnlsoap.org so0apfenvelopes" =nlns:mton="http: :;
E =soapenv:Header =
=soapeny: Body=
% =mtom:AttachmentRequest=
o <l--Oprional:--=
=mtom: TileName=T=//mtom: Tilelane=
<l--Dptignal:--»
<mtaom:binarybata xm:contentType="application/T">cid:564733=/mtom: binaryDbata-
= /mtom: AttachmentRequests
=/s0apeny: Body=
=/s0apenv:Envel ope= =
L IC
R]) (7]
Narma | comenmtuype | siza | Part | Type ContentiD | Carhed
asf-logo.gif imaage /gif 5866 LIMKMOWN asf-logo.gif

The name of the file which is to be attached to the request is given in the
first column in the attachments table. The content type of the attachment
is captured according to the selected binary file.

In this example, we are using a GIF image, hence image/gif is the content
type of the attachment. The size of the attachment is given in bytes under
the Size column. The Part column shows the MIME part as defined by the
binding of the WSDL of the web service. MIME part value should explicitly
be chosen if the operation is defined to use MIME attachments in the
corresponding WSDL. As we are using MTOM, this can be kept blank.

[295]

Miscellaneous Topics

The type column shows the attachment type, which can be CONTENT,
MIME, SWAREF, XOP, or UNKNOWN. The type is a read-only value,
hence it cannot be changed for a particular request. For MTOM, the
attachment type will be XOP. ContentID represents the content ID as given
in the MIME part definition of the associated WSDL of the service. In our
example, as we use MTOM attachment transmission, the ContentID of the
attachment can be the same as the attachment name.

6. Replace ? of the <mtom: fileName> element with a target file path (for
example, /home/user/logo.gif) (if you just specify file name without
specifying the file path, it will be saved in the AX1S2_HOME/bin directory).

7. We must change the CID value of the <mtom:binaryData> element with the
ContentID of the attachment, shown as follows:

<mtom:binaryData xm:contentType="application/?">cid:asf-logo.gif</
mtom:binaryDatas>

8. Now, we have included an attachment to the SOAP request. However,
we have not instructed soapUI to use the MTOM attachment transmission
mechanism. If you look at the Request Properties at the left pane, you will
find multiple attachment-specific properties:

Enable MTOM trua
Force MTOM false
Inlina Response Attachmeants false
Expand MTOM Attachments false
Disable multiparts false
Encode Attachments false
Enable Inline Files false

Some of these properties are applicable only for the response attachments.

° Enable MTOM: This property instructs soapUI to use MTOM in
transferring binary data.

° Force MTOM: This property is used to enforce soapUI to use MTOM
for any SOAP request regardless of having any attachment. If the
SOAP response message includes an attachment, it is separately
shown in the Attachments tab of response editor. Instead of that, the
complete response can be shown with attachments inline in the XML
view of response editor by setting the Inline Response Attachments
property to true.

° Expand MTOM Attachments: This property can be used to extract
the binary data of the response and include it as a child of the payload
of the response. The attachment will be separately shown under the
response's Attachments tab as shown in the following screenshot:

[296]

Chapter 13

Foaw | b L

=soapenviEnvelope =mlns:soapenv="http:Sschemas.xnlsoap.ory soapenvelope "= -~
=soapenv:Body=
=ns:getFileResponse =mlns:ns="http:/Sservice.wsas.wsod.org"=
=n3: returns=iYBORWI KOGy 0ALA8N S Uh EL gl h0 Ak ALK CATALAR 03 NS YALLALKNS RO TA r s 4 cA0ALART § SODELP
=/nsigetFileResponses
=/Ssoapeny: Body=
=/soapenyiEnvel opes -

I nE|
B ®
Marme | content nype | size | Part [Twe | contemip
1.409ba52ac3de9640fI65fc52.. application/o... 52727 1.400ba52ac3d... XOP <1.409bas..

10.

11.

12.

° Disable multiparts: This property can be used when sending or
receiving multiple attachments to pack attachments with the same
type into a multipart attachment.

To encode the MTOM attachment in accordance with the corresponding
binary type defined in WSDL (base64Binary or hexBinary), we can set the
Encode Attachments property to true.

By setting the Enable Inline Files property to true, a file can be attached
to a request just by specifying file:<file names.

Note that the description just given is a very brief description of the
attachment related properties. You can find more information about these
properties in http://www. soapui .org/SOAP-and-WSDL/adding-headers-
and-attachments.html.

In our example, we just set the Enable MTOM property to true and keep the
other options as they are. Now, submit the request by clicking on the arrow
icon at the top of the request editor.

You will get the following response:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">

<soapenv:Body>

<ns2:AttachmentResponse xmlns:ns2="http://

ws.apache.org/axis2/mtomsample/">File saved succesfully.</
ns2:AttachmentResponses

</soapenv:Body>
</soapenv:Envelope>

[297]

Miscellaneous Topics

Check that a file with the name given in the request will be saved in the specified
location. Have a detailed look at the request message by selecting the Raw view.
You can see the <inc:include> element inside the payload which is used to mark
where the binary data is, as follows:

POST http://localhost:8080/axis2/services/MTOMSample.
MTOMSampleSOAPllport http/ HTTP/1.1

Accept-Encoding: gzip,deflate
SOAPAction: "attachment"

Content-Type: multipart/related; type="application/xop+xml";
start="<rootpart@soapui.org>"; start-info="text/xml";
boundary="----= Part 60 92678960.1341151455014"

MIME-Version: 1.0
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:8080

Content-Length: 6910

—————— = Part 60 _92678960.1341151455014
Content-Type: application/xop+xml; charset=UTF-8; type="text/xml"
Content-Transfer-Encoding: 8bit

Content-ID: <rootpart@soapui.org>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:mtom="http://ws.apache.org/axis2/mtomsample/"
xmlns:xm="http://www.w3.0rg/2005/05/xmlmime" >
<soapenv:Header/ >
<soapenv:Body>
<mtom:AttachmentRequests>
<!--Optional:-->
<mtom: fileName>/home/charitha/my.gif</mtom: fileName>
<!--Optional:-->
<mtom:binaryData xm:contentType="application/?"><inc:Inclu
de href="cid:asf-logo.gif" xmlns:inc="http://www.w3.0rg/2004/08/xop/
include"/></mtom:binaryData>

[298]

Chapter 13

</mtom:AttachmentRequest>
</soapenv:Body>
</soapenv:Envelope>

Content-Type: image/gif; name=asf-logo.gif
Content-Transfer-Encoding: binary
Content-ID: <asf-logo.gifs>

Content-Disposition: attachment; name="asf-logo.gif";
filename="asf-logo.gif™"

Summary

In this chapter, we discussed some important topics which in a way did not fit

in neatly in the previous chapters. We started off by looking into two important
plug-ins, which allow us to integrate soapUI into Eclipse and Intelli] IDEA
Integrated Development Environments (IDEs). Then, we discussed validating
WSDLs against WS-I Basic Profile using the embedded WS-I validation tool. We
also looked at the options provided by soapUI to consume some useful tools such
as WSDL2Java, which are included in popular web services frameworks such as
Apache Axis2, CXF, and .NET 2.0. Finally, we had a brief look at the attachment
processing capabilities of soapUI by focusing on the MTOM attachment
transmission mechanism.

[299]

Symbols

<binding> element, WSDL 15
<message> element, WSDL 15
<portType> element, WSDL 15
<serviceGroup> element 50
<types> element, WSDL 15
<wsa:Address> element 142
<wsdl:operation> element 123

A

Accept drop-down box 188
addGuest element 57,59
addGuest operation 59, 64, 68, 77
addGuest request 63
addressing module 144
Add REST Service option 183
addRoom TestCase 79, 80
AddYourOwnKeyHere string 190
Apache ActiveMQ

about 215

setting up 216, 217
Apache Ant

URL, for downloading 34
Apache Axis2

about 294

binary distribution downloading,

URL for 35

configuring, for WS-Addressing 144

configuring, for WS-Security 144
JMS, configuring 228-231

setting up 35

URL 34

WS-Addressing 145
WS-Security 145

Index

Apache CXF
URL 34, 289
Apache JMeter
URL 20
Apache Rampart module
about 144
with Apache Axis2 145
assertions. See JDBC test assertions
Assertions tab 198
assymetric binding
about 161
RoomManagementService,
securing 165-168
secured RoomManagementService,
testing with soapUI 169, 170
SOAP messages, signing 162-164
attachments
sending to web services soapUI
used 294-298
sending with SOAP messages, soapUI
used 292, 293
Authenticate Preemptively parameter 193
Auto-Create option 188
Aut tab 193
Axis2 Archive (aar) 49
Axis2 artifacts window 291

B

Base64 encoding 292
Basic Profile
URL 286
Basic Profile-1.1 Test Assertion Document
(TAD) 288
body, SOAP
message payload 12

broker 10
burst load strategy 107, 108
bytes message 226

C

CI
about 260
functions, representing 260
tasks 261
class declaration, Groovy 240
ClasspathGroups dialog box 220
Classpath Groups tab 219
Close connections between each request,
LoadTest option 117
com.eviware.soapui.model.iface.
MessageExchange API 254
com.eviware.soapui.support.GroovyUtils
API 254
com.eviware.soapui.support.XmlHolder
API 254
command line executions, soapUI
about 266
soapUI command-line functional test
runner, invoking 267-270
test runners from soapUI graphical user
interface, invoking 270-272
composition 10, 11
Contains assertion 88
context.expand (<String>) method 244
context object 242-245
Continuous integration. See CI
continuous testing 260
contract-first methodology 121
contract-first web service development 120
control structures, Groovy 239
Create Requests check box 76
Create Requests option 62
Creates and opens request option 186
Create TestSuite option 76
CRUD (Create Read Update Delete) 45

D

data
testing, in isolation 202
data handling 201
Default outgoing WSS property 125

def keyword 238
DELETE 179
deleteGuest operation 67, 70, 77
deleteRoom TestCase 81
Destination properties dialog box 221
detail element 17
digest 162
Disable multiparts property 297
domain property 156
dynamic responses

using 131-137

E

Eclipse
URL 282
Enable Inline Files property 297
Enable MTOM property 296
endpoint references 142
end-to-end JMS message delivery
verifying, sample project used 228
Enterprise Service Buses. See ESB
Enterprise Service Bus. See ESB
envelope, SOAP 12
ESB 10,121, 130, 201
Expand MTOM Attachments property 296
external web services frameworks
soapUl, integrating with 288-291
Extract Params button 185

F

faultcode element 17
faultstring element 17
Fetch Size property 207
fire and forget pattern, MEP 16
Force MTOM property 296
functional testing

about 19, 23

of REST services 197, 198

G

Generate TestSuite dialog box 200
GET 179

getGuestDetails operation 67,136, 223
getGuestDetails TestStep 227
getRoomDetails TestCase 81

[302]

getTestStepByName(String stepName)
method 248
getTestStepCount() method 249
getTestStepList() method 249
Google Developers
URL 181
Groovy
about 236
binary distribution, URL for
downloading 236
class declaration 240
control structures 239
editor 237
HelloWorld script 237
lists, data types 238
loosely-typed language 236
maps, data types 239
object declaration 238
scripting, in soapUI 241
variable declaration 238, 241
Groovy scripting, soapUI
about 241
context object 242-245
testRunner variable 245-247
Guest.java 38, 39
GuestManagementService
about 103
securing 151-155
testing, with soapUI 156-158
GuestManagementService class 41
GuestManagementServicePortType
element 57
GuestManagementService web service 36
guest management web service
invoking 64-67
GuestName property 210

H

header element, SOAP 12
header paramaters 196
HermesJMS

about 215

session, configuring 231
HotelReservationSoapUITest class 265
HTTP 202 Accepted status 70

HTTP Basic Authentication header
to requests, inserting 193

HTTP binding 58

HTTP POST method
adding 190

HTTP verb 179

IDE. See IDEs
IDEA
plugins, installing 284
IDEs 262, 281
Incoming WS-Security configurations 172
installation
soapU]I, on Linux 25, 27
soapUI, on MacOS 28
soapUl, on Windows 27, 28
soapUl, requisites 24
Integrated Development Environments.
See IDEs
Intelli] IDEA
URL 284
IterableObject object 239

J

Java

URL, for downloading 34
Java Message Service. See JMS
Java Script Object Notation. See JSON
Jboss

URL 289
JDBC Request

Fetch Size property 207

Max Rows property 206

Query Timeout property 206

TestStep 203, 204, 206

TestStep, properties 206

TestStep, stored procedures 208
JDBC Status assertion 207
JDBC test assertions

about 207

adding, to sample 207
JDBC Timeout assertion 207
JMS

about 215

configuring, in Apache Axis2 228-231

[303]

endpoint, adding in soapUI 233

integrating, in soapUI 217-220
JMS consumer 216
JMS producer 216
JMS provider 216
JMS Status 226
JMS Timeout 226
key elements 216
message delivery models 216
messaging, in soapUI 222-226
responses, validating 226, 227
JMS consumer 216
JMS message 216
JMS producer 216
JMS provider 216
JMS Status 226
JMS Timeout 226
JSON
about 14
format 14
JSR 914 specification
URL 215
JUnit
URL 261

K

key store 162

L

Lesser General Public License. See LGPL

LGPL 22

limit type 104

limit value 104

Linux
soapU], installing 25, 27

lists, data types 238

Load Properties dialog box 91

Load Script tab 252, 254

load strategy
burst load strategy 107, 108
simple load strategy 106, 107
thread load strategy 108
variance strategy 109

load test assertions

configuring, approaches for 112

Max Errors assertion 113

Step Average assertion 114
Step Maximum assertion 115
Step Status assertion 116
Step TPS assertion 115
using, in soapUI 112
LoadTestRunContext 242
load tests
about 101
in soapUI 103, 104
limits 104, 105
options 117
strategies, of soapUI 106
threads 105
log 241
loosely-typed language 236

map message 226
maps, data types 239
matrix paramaters 196
Maven Archetype plugin
URL 273
Maven clover plugin
URL 273
Maven selenium plugin
URL 273
Maven soapUl plugin 273-279
Max Errors assertion 113
Max Rows property 206
mediation 10
MEP
about 16
fire and forget pattern 16
request-response pattern 16

message addressing properties 142

message delivery models
point-to-point model 216

publish and subscribe model 216
message exchanging pattern. See MEP

message mediation 10

message transformation 130, 131

message types
bytes message 226
map message 226
text message 226
Missing Timestamp fault 172

[304]

mocking

about 119

in software testing 119

in web services testing 120
mock objects

about 120

URL 120
MockOperation

about 126

styles, dispatching 127
MockOperation, dispatching styles

QUERY_MATCH 127

RANDOM 127

SCRIPT 127

SEQUENCE 127

XPATH 128
MockResponse 129
MockRunContext 242
MockService details 126
mock services

and contract-first web service

development 120

with soapUI 122
Modelltems 248
MTOM 293
MTOM-enabled web service

deploying 294
mustUnderstand property 148
MySQL

URL, for downloading 34
mysql.host 50
MySQL jdbc driver

URL 47
mysql.password 50
mysql.port 50
mysql.username 50

N

NetBeans
URL 282
New soapUI Project dialog box 61
nonce 158
non-functional testing
of web services 100, 101

Not SOAP Fault assertion 84, 85, 247

(0

OASIS 285
OASIS standards
URL 140
object declaration, Groovy 238
Organization for the Advancement of

Structured Information Standards.
See OASIS

Outgoing WS-Security

P

configurations 170-172

Parameters tool bar 185
password property 156
performance testing

about 23

for web services 102

of web services 101

soapU]l, using 103
Place Check-Ins API

URL 189
places resource 194
Plug In drop-down 221
point-to-point model 216
policy assertion 152
POST 179
POST message content

reading, from file 191, 192
pre-requisites

for sample project 34
project

issues 33

pre-requisites 34

sample project, pre-requisites 34
project, prerequisites

Apache Ant 34

Apache Axis2, setting up 35

Java 34

MySQL 34

project source directories, setting up 35
project source directories

setting up 35

[305]

properties
adding, to soapUlI tests 89, 90
reading, from file 90, 91
values, transferring between
TestSteps 91-96
publish and subscribe model 216
PUT 179

Q

QoS 100,139

Quality of Service. See QoS
QUERY_MATCH, dispatching style 127
query paramaters 194

Query Timeout property 206

queuing model. See point-to-point model

R

Rahas module 144
RampartConfig assertion 167
RANDOM, dispatching style 127
Raw view 68
registerdbDriver() method 136
Representational State Transfer. See REST
Representations tab 188
request handling

scripts used 254, 255
Request Properties pane 68, 69
request-response pattern, MEP 16
Require SOAP Action property 125
Reservation.java 40, 41
Reservation Property Transfer window 93
ReservationService web service 36, 42
Resource Identifier 179
ResponseAsXml property 211, 212
response handling

scripts used 254, 255
REST

about 13,178

principles 178

resources, linking 179

resources, multi-representation 180

Standard HTTP Methods 179

stateless communication 180

URIs 178

versus SOAP 177

RESTeasy

URL 34
RESTful APIs

testing, SOAP used 180-182
REST Parameters

about 194

header paramaters 196

matrix paramaters 196

query paramaters 194

template paramaters 194, 195
REST service 182,183
Room.java 39
RoomManagementService

securing 165-168
RoomManagementService class 42
RoomManagementService web service 36
run() method 263
Runs per thread limit type 105

S

Sample interval, LoadTest option 117
Sandesha2 module 144
Save Script tab 252, 254
script assertion 255, 256
SCRIPT, dispatching style 127
script log tab 243
searchPlaces method 198
Select Assertion dialog box 84
Select from current button 87
Send As Bytes Message option 226
SEQUENCE, dispatching style 127
service 59, 60
service chaining 130
Service-level Agreement (SLA) 100
service-oriented architecture. See SOA
service-oriented solutions

about 8

case study 8,9
services.xml descriptor

URL 50
session

configuring, in HermesJMS 231
setProjectFile() method 263
Setup script 250, 251, 252
SignedSupportingToken assertion 153

[306]

SimpleDefects
URL 195
simple load strategy 106, 107
Simple Object Access Protocol. See SOAP
SmartBear Software

URL 22
SOA
about 8

building blocks 9
composition 10
mediation 10
service-oriented solutions 8
test automation, advantages 258-260
web services 9, 10
SOAP
about 11
alternatives 13
body 12
envelope 12
faults 17
header element 12
message, structure 11
used, for testing soapUI 180-182
versus REST 177
SOAP 1.1 binding 58
SOAP 1.2 binding 58
SOAP Envelope
structure 141
SOAP, faults
detail element 17
faultactor element 17
faultcode element 17
faultstring element 17
generating 70, 71
URL 18
SOAP messages
attachments sending, soapUI used 292, 293
signing 162-164
SOAP Message Transmission Optimization
Mechanism. See MTOM
SOAP request
about 80
configurations, applying to WS-Security
configurations 173, 174
soapUl
about 22, 235
advantages, for web service testing 139

configuring, with MySQL 203
features 23
Groovy scripting 241
GuestManagementService, testing 156-158
installing, on Linux 25-27
installing, on MacOS 28
installing, on Windows 27, 28
installing, requisites 24, 25
integrating, with external web services
frameworks 288-291
JMS endpoint, adding 233
JMS, integrating 217-221
JMS messaging 222-226
Load Script tab 252-254
load test assertions, using 112
load test report 110, 112
load tests 103, 104
load test strategies 106
project level WS-Security
configurations 159-161
properties, accessing from
SQL query 209-213
Save Script tab 252, 254
secured RoomManagementService,
testing 169, 170
setting up, for database connect 203
Setup script 250-252
statistics report 110, 112
TearDown script 250-252
used, for sending messages with SOAP
messages 292, 293
used, for WS-I validation 285-288
user interface 28, 30
using, to send attachment to web service
294-298
web services, using with 32
WS-Addressing, testing 146-148
WS-Security, testing 150
soapUI command line executions 266
soapUI command-line functional
test runner
invoking 267-270
soapUI Eclipse plugin 282, 283
soapUI functional test
TestCase 74
TestStep 74
TestSuite 74

[307]

soapUI graphical user interface
test runners, invoking from 270-272
soapUI IDE plugins
about 282
soapUI Eclipse plugin 282, 283
soapUI Intelli] IDEA plug-in 284, 285
soapUI Intelli] IDEA plug-in 284, 285
soapUlI JUnit integration 261-266
soapUI load test
threads 105
soapUI MockService
about 123,124
dynamic responses, using 131-138
in action 129
MockOperation 126
MockOperation. styles dispatching 127, 128
MockResponse 129
MockService details 126
static MockResponses 130
soapUI Preferences window 147
soapUI project
creating 60-63
soapUI REST services
about 182-188
functional testing 197, 198
HTTP Basic Authentication header to
requests, inserting 193
POST message content,
reading from file 191, 192
POST requests, using 189-191
PUT requests, using 189-191
request representation 188
response representation 188
SoapUITestCaseRunner class 263
soapUlI tests
properties, adding 89, 90
soapUI TestSuites. See TestSuite
SOAP with Attachments. See SWA
SSL Keystore property 156
standard HTTP methods 179
Start SoapUI menu option 285
static responses
about 130
content-based routing 130
message transformation 130, 131
service chaining 130

Step Average assertion 114
Step Maximum assertion 115
Step Status assertion 116

Step TPS assertion 115
StorageException.java class 47
Storage.java class 45
SubmitContext 242

SwA 292

T

TearDown script 250-252
template paramaters 195
test automation
about 257, 258
advantages, in SOA 258-260
wikipedia, URL 258
TestCase
about 74
adding 78,79
addRoom TestCase 79, 80
deleteRoom TestCase 81
getRoomDetails TestCase 81
TestConnection button 205
Test-driven Development (TDD)
about 120
URL 120
TestRequest property 157
TestRunContext 242
test runners
invoking, from soapUI graphical user
interface 270-272
testRunner variable 245, 247
testSoapUITestRunner() method 263
TestStep
about 74
property values, transferring
between 91-96
TestStep assertions
about 84
addRoom TestStep, assertion adding to 84
Contains assertion 88
Not SOAP Fault assertion 84, 85
XPath Match assertion 86, 87
TestSuite
about 73,74
addGuest operation 77

[308]

addRoom TestCase 79, 80
Contains assertion 88
Create Requests check box 76
Create TestSuite option 76
deleteGuest operation 77
deleteRoom TestCase 81
getRoomDetails TestCase 81
hotel reservation system, sample 76
Not SOAP Fault assertion 84, 85
running 81-83
soapUI functional test, key elements 74
test assertions, running 84
TestCase 74
TestCases, adding 78, 79
test scenario 73, 74
TestStep 74
TestSuite 74
XPath Match assertion 86, 87

text message 226

thread load strategy 108

Thread Startup Delay, LoadTest option 117

tool assisted testing 19

Tools option 289

Total Runs limit type 105
TransportBinding assertion 152

U

unit testing 19
User-Agent header 68
username property 156
UsernameToken
authentication 150, 151, 159

Vv

variable declaration, Groovy 238
variance strategy 109

w

W3C
about 11
URL 140
W3C Web Services Addressing Working
Group
URL 141

WADL 198-200
Web Application Description Language.
See WADL
Web Service Addressing. See
WS-Addressing
web service performance testing
planning for 102
web services
about 7,9, 55, 56
attachment sending to,
soapUI used 294-298
authentication 150
binding element 58, 59
database, creating 36
database operations, managing 45-47
deploying 45-51
designing 36
developing, ways for 31
exception classes 43-45
external web services, using 21
fault handling 43
frameworks, URL 10
functional testing 19
GuestManagementService 36, 55
implementation class, completing 47, 48
implementing 37-41
integration testing 20
non-functional testing 100, 101
performance testing 20, 101
portType 57,58
ReservationService 36, 55
RoomManagementService 36, 55
sample, downloading URL for 32
schema section 56
testing 99
testing, approaches 18
tool assisted testing 19
unit testing 19
using, with soapUI 32
WSDLs, URL for 52
Web Services Description Language. See
WSDL
web services extensions 140
web services, implementation
Guest.java 38, 39
Reservation.java 40, 41
Room.java 39

[309]

Web Services Interoperability Organization.

See WS-1
web services testing, mocking in
about 120

mock services and contract-first web service

development 120, 121
test environmental restrictions, dealing
with 121
unaccessible services, simulating 121
Wikipedia
URL 101
Windows
soapU], installing 27, 28
Windows Communication Foundation
(WCF) 10
World Wide Web Consortium. See W3C
World Wide Web (WWW) 179
wsa:Action header 149
wsa:Action property 142
wsa:FaultTo property 142
wsa:From property 142
wsa:MessagelD property 142
wsa:RelatesTo header 148
wsa:RelatesTo property 142
wsa:ReplyTo header 148
wsa:Reply to property 142
wsa:To property 142
WS-Addressing
about 141
Apache Axis2, configuring for 144
endpoint references 142
in Apache Axis2 145
message addressing properties 142
responses, validating 149
testing, with soapUI 146-148
WS-Addressing recommendation
URL 141
WSDL
<binding> element 15
<message> element 15
<portType> element 15
<types> element 15
about 14
wsdlLtypes element 56

WSDL2Java tool 290
WS-I 285
WS-I multiple testing tools
URL 286
WS-I profile 285
WS-I validation
soapUI used 285-288
WS-Policy 143
WS-SecureConversation 144
WS-Security
about 143
Apache Axis2, configuring for 144
configurations, applying to SOAP
request 173,174
in Apache Axis2 145
project level configurations,
in soapUI 159-161
testing, with soapUI 150
validity responses 175
WS-Policy 143
WS-SecureConversation 144
WS-SecurityPolicy 143
WS-Trust 144
WS-SecurityPolicy 143
WS-Security, properties
domain property 156
password property 156
SSL Keystore property 156
username property 156
WSS-Password Type property 156
WSS-TimeToLive property 156
WS-Security Status assertion 175
WSS-Password Type property 156
WSS-TimeToLive property 156
WS-Trust 144

X

XML-binary Optimized Packaging.
See XOP

XmlHolder object 134

XOP 293

XPATH, dispatching style 128

XPath Match assertion 86, 87

[310]

open source

community experience distilled

PUBLISHING

Thank you for buying
Web Services Testing with soapUl

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

/74N

Selenium 1.0

Testing Tools

Selenium 1.0 Testing Tools:
Beginner's Guide

ISBN: 978-1-84951-026-4 Paperback: 232 pages
Test your web applications with multiple browsers

using the selenium Framework to ensure the quality
of web applications

1. Save your valuable time by using Selenium to
record, tweak and replay your test scripts

2. Getrid of any bugs deteriorating the quality of
your web applications

3. Take your web applications one step closer to
perfection using Selenium tests

4. Packed with detailed working examples
that illustrate the techniques and tools
for debugging

Python Testing
Cookbook

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using a
variety of Python testing tools

2. The first book to include detailed screenshots
and recipes for using Jenkins continuous
integration server (formerly known as Hudson)

3. Explore innovative ways to introduce
automated testing to legacy systems

4. Written by Greg L. Turnquist - senior software
engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Software Testing with
Visual Studio Team System 2008

PACKT

Software Testing with Visual

Studio Team System 2008
ISBN: 978-1-84719-558-6 Paperback: 356 pages

A comprehensive and concise guide to testing your
software applications with Visual Studio Team
System 2008

1. Test your software applications with Visual
Studio Team System 2008 and rest assured of
its quality

2. Create a structured testing environment for
your applications to produce reliable products

3. Comprehensive yet concise guide with a lot of
examples and clear explanations

4. No knowledge of software testing is required,
only basic knowledge of Visual Studio 2008
operation is expected

Software Testing using
Visual Studio 2010

SubashniS Satheesh KumarN [PACKT] enferprise™

Software Testing using Visual

Studio 2010
ISBN: 978-1-84968-140-7 Paperback: 400 pages

A step by step guide understand the features and
concepts of testing applications using Visual Studio

1. Master all the new tools and techniques in
Visual Studio 2010 and the Team Foundation
Server for testing applications

2. Customize reports with Team foundation
server.

3. Get to grips with the new Test Manager tool for
maintaining Test cases

4. Take full advantage of new Visual Studio
features for testing an application's User Interface

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Web Services
Testing and soapUI
	SOA and web services
	Service-oriented solutions
	Case study
	Building blocks of SOA

	Simple Object Access Protocol
	Alternatives to SOAP
	REST
	Java Script Object Notation

	Web Services Description Language
	Message exchanging patterns
	SOAP Faults
	Approaches of testing web services
	Unit testing of web services
	Functional testing
	Tool assisted testing
	Using client APIs provided by service container middleware

	Integration testing of web services
	Performance testing of web services
	The common challenges of Web services testing
	Use of external web services
	Implications of using complex standards and protocols
	Headless nature of web services

	What is soapUI?
	Capabilities of soapUI
	Installing soapUI
	System requirements
	Installing soapUI on Linux
	soapUI installation on Windows
	Installing soapUI on MacOS

	A glance at soapUI user interface
	Summary

	Chapter 2: The Sample Project
	The problem domain
	Project pre-requisites
	Java
	Apache Ant
	MySQL
	Setting up Apache Axis2
	Setting up project source directories

	Designing the web services
	Creating the database

	Implementing the web services
	Web services fault handling
	Managing database operations
	Completing the web service implementation classes

	Deploying web services
	Summary

	Chapter 3: First Steps with soapUI
and Projects
	Understanding the web services definition
	Schema
	portType
	binding
	Service

	Creating a soapUI project
	Invoking the guest management
web service
	A detailed look at SOAP requests and responses
	Generating SOAP Faults
	Summary

	Chapter 4: Working with Your
First TestSuite
	A sample test scenario
	Creating a TestSuite
	Adding TestCases
	addRoom TestCase
	getRoomDetails TestCase
	deleteRoom TestCase

	Running the first TestSuite
	Adding test assertions
	Not SOAP Fault assertion
	XPath Match assertion
	The Contains assertion

	Adding properties to soapUI tests
	Reading property values from a file
	Transferring property values between TestSteps

	Summary

	Chapter 5: Load and Performance
Testing with soapUI
	Non-functional testing of web services
	Performance testing

	Planning for web service performance testing
	Using soapUI for performance testing
	Working with load tests in soapUI
	Limit of a load test
	Threads in a soapUI load test
	Load test strategies of soapUI
	Simple load strategy
	Burst load strategy
	Thread load strategy
	Variance strategy

	A closer look at the load test report and statistics of soapUI
	Using load test assertions in soapUI
	The Max Errors assertion
	The Step Average assertion
	Step TPS assertion
	The Step Maximum assertion
	The Step Status assertion
	LoadTest options

	Summary

	Chapter 6: Web Service Simulation
with soapUI
	Mocking in software testing
	Mocking in web services testing
	Mock services and contract-first web service development
	Simulating services that are not accessible
	Dealing with test environmental restrictions

	Mock services with soapUI
	The structure of soapUI MockService
	MockService details
	MockOperation details
	Dispatching styles of MockOperation
	MockResponse details

	soapUI mock services in action
	Static responses – the basic scenario
	Using dynamic responses

	Summary

	Chapter 7: Advanced Functional
Testing with soapUI
	Introduction to web services extensions
	What is WS-Addressing
	What is WS-Security
	WS-Policy
	WS-SecurityPolicy
	WS-Trust
	WS-SecureConversation

	Configuring Apache Axis2 for WS-Addressing and WS-Security
	WS-Addressing in Apache Axis2
	WS-Security in Apache Axis2

	Testing the WS-Addressing with soapUI
	Validating the WS-Addressing responses

	Testing WS-Security with soapUI
	Web service authentication
	Securing GuestManagementService
	Testing the secured GuestManagementService
with soapUI

	Project level WS-Security configurations in soapUI

	Testing asymmetric binding policy with soapUI
	Asymmetric binding
	Signing SOAP messages
	Securing RoomManagementService
	Testing secured RoomManagementService
with soapUI

	Validating WS-Security responses
	Summary

	Chapter 8: Getting Started with
REST Testing
	Introduction to REST
	Represent everything with URIs
	Using standard HTTP methods
	Linking resources together
	Multiple representations of resources
	Stateless communication

	Testing RESTful APIs using soapUI
	REST Services in soapUI
	Request and response representation
	Using POST or PUT requests in soapUI REST services
	Reading POST message content from a file
	Inserting the HTTP Basic Authentication header to requests

	REST parameters
	Query parameters
	Template parameters
	Matrix parameters
	Header parameters

	Functional testing of REST services
	WADL
	Summary

	Chapter 9: Testing Databases
with soapUI
	Testing data in isolation
	Setting up soapUI to connect to the database
	JDBC Request TestStep
	JDBC Request properties

	JDBC test assertions
	Stored procedures with JDBC Request TestStep
	Accessing soapUI properties from SQL query

	Summary

	Chapter 10: JMS Testing with soapUI
	Introduction to JMS
	Setting up Apache ActiveMQ

	JMS integration in soapUI
	Working with JMS messaging in soapUI
	Validating JMS responses
	Verifying end-to-end JMS message delivery using the sample project
	Configuring JMS in Apache Axis2

	Configuring a session in HermesJMS
	Adding a JMS endpoint in soapUI

	Summary

	Chapter 11: Extending soapUI
with Scripting
	Introduction to Groovy scripting language
	What is Groovy?
	HelloWorld with Groovy
	Variable and object declaration in Groovy
	Control structures in Groovy
	Class and method declarations in Groovy

	Groovy scripting in soapUI
	The context object
	The testRunner variable

	soapUI ModelItems
	Setup and TearDown scripts in soapUI
	Load Script at soapUI project level

	Request and response handling using Scripts
	Script assertion

	Summary

	Chapter 12: Automated Testing
with soapUI
	Test automation
	Why is test automation essential in SOA?
	Continuous Integration (CI)

	soapUI JUnit integration
	soapUI command line executions
	Invoking a soapUI command line functional
test runner
	Invoking test runners from the soapUI graphical user interface

	Maven soapUI plugin
	Summary

	Chapter 13: Miscellaneous Topics
	soapUI IDE plugins
	soapUI Eclipse plugin
	soapUI IntelliJ IDEA plug-in

	WS-I validation using soapUI
	soapUI integration with external web services' frameworks
	Sending attachments with SOAP messages using soapUI
	Deploying an MTOM-enabled web service
	Using soapUI to send an attachment to the web service

	Summary

	Index

