
this print for reference only—size & color not accurate spine = 0.687" 296 page count

Dan CeDerholm
Foreword by Jeffrey Zeldman,

Author, Designing With Web Standards

In this book you’ll learn how to:

 Lay out pages easily and effectively

 Use XHTML elements correctly so that your markup is compact and more easily understood

 Use CSS to style different elements of a web page

Welcome to the updated and expanded Special
Edition of Dan Cederholm’s best-selling Web

Standards Solutions. Web standards are the standard
technology specifications enforced by the World Wide
Web Consortium (W3C) to make sure that web designers
and browser manufacturers are using the same technology
syntax. Utilizing web standards helps deliver content to
the widest audience possible, while also ensuring future
compatibility. These standards also allow content to be more
compatible with different viewing devices, such as screen
readers, mobile phones and handheld devices. HTML,
XHTML, and CSS are all examples of Web Standards
technologies.

This book is your essential guide to understanding the
advantages you can bring to your web pages by imple-
menting web standards and knowing precisely how to
apply them.

Web standards such as XHTML and CSS are now fairly
well-known technologies, and they will likely be familiar
to you, the web designer—indeed, they are all around
you on the Web. However, within web standards still lies
a challenge—while the browser’s support for web stan-
dards is steadily increasing, many web developers and
designers have yet to discover the real benefits of web
standards or to respect the need to adhere to them. The
real art is in truly understanding the benefits and imple-
menting the standards efficiently.

Web Standards Solutions is broken down into 16 short
chapters, each covering the theory and practice of dif-
ferent web standards concepts and showing multiple
solutions to given problems for easy learning. You’ll
learn about creating multicolumn layouts, using image
replacement techniques to your best advantage, making
the best use of tables and lists, and much more. This
highly modular approach allows you to rapidly digest,
understand, and utilize the essentials of web standards.

C
ed

erh
o
lm

 CYAN YELLOW
 MAGENTA BLACK

W
eb

 Sta
n

D
a

r
D

S So
lu

t
Io

n
S

also available

uS $34.99
mac/PC/linux compatible

Download source files and bonus chapters from:

www.friendsofed.com

ShelVInG CateGorY
Web DeSIGn/DeVeloPment

ISBN 978-1-4302-1920-0

9 781430 219200

53499

“ Dan Cederholm is no standards zealot.
He’s a guy on the front line who knows
that web standards save both time and
money. This is a real solutions-oriented
guide to using standards-based techniques
in your daily work, written by someone
who does exactly that. You can’t lose!

—Drew McLellan, The Web Standards Project”SP
eC

Ia
l

eD
It

Io
n

SPeCIal eDItIon:
with up-to-date information,
and bonus chapters online

SPeCIal eDItIon:
with up-to-date information,
and bonus chapters online

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Web Standards Solutions
The Markup and Style Handbook

Special Edition

Dan Cederholm

www.allitebooks.com

http://www.allitebooks.org

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Matt Heerema

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Jonathan Hassell,

Michelle Lowman, Matthew Moodie, Duncan Parkes,
 Jeffrey Pepper, Frank Pohlmann, Douglas Pundick,

Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Richard Dal Porto

Copy Editor
Liz Welch

Associate Production Director
Kari Brooks-Copony

Production Editor
Laura Cheu

Compositor
Lynn L’Heureux

Proofreader
Lisa Hamilton

Indexer
Broccoli Information Management

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

Web Standards Solutions: The Markup and
Style Handbook, Special Edition

Copyright © 2009 by Dan Cederholm

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1920-0

ISBN-13 (electronic): 978-1-4302-1921-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. Phone
1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.friendsofed.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

iv

Foreword . xvii

About the Author . xviii

About the Technical Reviewer . xix

Acknowledgments . xx

Introduction . xxi

PART ONE GET DOWN WITH MARKUP . 1

Chapter 1 Lists . 3

Chapter 2 Headings . 17

Chapter 3 Tables are Evil? . 29

Chapter 4 Quotations . 49

Chapter 5 Forms . 61

Chapter 6 , , and Other Phrase Elements 83

Chapter 7 Anchors . 103

Chapter 8 More Lists . 119

Chapter 9 Minimizing Markup . 133

CONTENTS AT A GLANCE

www.allitebooks.com

http://www.allitebooks.org

v

PART TWO SIMPLEBITS OF STYLE . 147

Chapter 10 Applying CSS . 149

Chapter 11 Print Styles . 167

Chapter 12 CSS Layouts . 179

Chapter 13 Styling Text . 207

Chapter 14 Image Replacement . 223

Chapter 15 Styling <body> . 243

Chapter 16 Next Steps . 255

Index . 263

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Foreword . xvii

About the Author . xviii

About the Technical Reviewer . xix

Acknowledgments . xx

Introduction . xxi

PART ONE GET DOWN WITH MARKUP . 1

Chapter 1 Lists . 3

Let’s go shopping . 4
Quiz time . 4

Method A: The
 breakdown . 4
It’s a wrap . 5
Method B: The bullet that bites . 6

Validation, please . 6
Method C: Getting closer . 6
Method D: Wrapper’s delight . 8

Summary . 8
Extra credit . 9

Bite the bullet . 9
Getting fancier with custom bullets . 10
Lists that navigate . 11
Mini-tab shapes . 14

Chapter 2 Headings . 17

What is the best way to mark up the title of a document? . 18
Method A: Meaningful? . 18
Method B: The p and b combo . 19

Difficult to style . 19

CONTENTS

www.allitebooks.com

http://www.allitebooks.org

viii

CONTENTS

Method C: Style and substance . 19
Easily styled . 19
Default distaste . 20
Search engine friendly. 20
An aside on heading order . 21

Summary . 21
Extra credit . 22
Simple styling . 22

Adding backgrounds . 23
Backgrounds and borders . 24
Tiled backgrounds . 24

Swappable icons . 25
Easy updates . 25
The chameleon effect . 26

Aligning the element . 26
Wrapping up . 27

Chapter 3 Tables are Evil? . 29

Totally tabular . 30
A table that everyone can sit at . 30
Adding a summary . 33
The head(s) of the table . 33
Header and data relationships . 35
Using the abbr attribute . 36
<thead>, <tfoot>, and <tbody> . 37
Are tables evil? . 39
Extra credit . 39

Creating a grid . 39
Collapsing the gaps . 40

An IE/Mac note . 41
Spaced out . 41

Customizing the headers . 42
Headers with background images . 43

Tiny tile . 43
The CSS . 43

Assigning icons to IDs . 44
The icons . 45
The CSS . 45
Combining rules for simpler bits . 46

More table style examples . 47
Wrapping up . 47

Chapter 4 Quotations . 49

Method A: Lacks meaning . 50
Method B: A class act? . 50
Method C: <blockquote> is best . 51
Using a screwdriver to hammer a nail . 51
Summary . 52

www.allitebooks.com

http://www.allitebooks.org

ix

CONTENTS

Extra credit . 52
A cite for curious eyes . 52
Inline quotations . 53

No need for marks . 53
Nesting inline quotations . 54

Styling <blockquote> . 54
Background quote marks . 54
Three images . 55
Tagging the elements . 55
Three elements, three backgrounds . 55
The results . 57
Calling out special words . 58
How does it degrade? . 59

Wrapping up . 59

Chapter 5 Forms . 61

What are our options when marking up a form? . 62
Method A: Using a table . 62
Method B: Tableless, but cramped . 63
Method C: Simple and more accessible . 64

The <label> element . 65
Why <label>? . 65

Method D: Defining a form . 66
Defining style . 67

Summary . 68
Extra credit . 69

The fabulous tabindex . 69
Why tabindex? . 70

accesskey for frequented forms . 70
Easily accessed search . 71

Styling forms . 71
Setting the width of text inputs . 71
Using <label> to customize fonts . 72
No need to be redundant . 74
Use <fieldset> to group form sections . 74
Adding style to <fieldset> and <legend> . 75
Three-dimensional <legend> . 76
Borders and backgrounds on form elements . 78

Wrapping up . 80

Chapter 6 , , and Other Phrase Elements 83

Presentational vs. structural . 84
Why are and better than and <i>? . 84

Check in with the experts . 84
Method A . 85
Method B . 85
Bold and beautiful . 85

x

CONTENTS

What about ? . 85
Method A . 85
Method B . 86
Emphasis mine . 86

Just bold or italic, please . 86
Worth its (font-)weight in bold . 87
That’s italic! . 87

Both bold and italic . 87
Generic . 88
Emphasis with class . 88

Summary . 89
Extra credit . 89

The phrase elements . 89
<cite> design . 90

The specification . 90
A change in <cite> style . 91
Leveraging the structure . 91

<abbr> and <acronym> . 92
Define once . 93
The presentation . 93
Compatibility issues . 94

<code> . 94
<samp> . 95
<var> . 95
<kbd> . 95

Microformats . 96
New growth . 96
A simple explanation . 96
An hCard example . 97

Code Creator . 97
The markup . 98
The power of microformats . 99

Final phrase . 101

Chapter 7 Anchors . 103

When pointing to a specific portion of a page, what is the best way to mark up an anchor? 104
Method A: An empty name . 104
Method B: It’s all in a name . 105

Beware of global <a> styling . 105
Richer name attribute . 106

Method C: Lose the name . 106
Two birds with one stone . 107
Older browsers and the id attribute . 107

Method D: The all-in- one . 108
Sharing names . 108

Summary . 108

xi

CONTENTS

Extra credit . 109
The title attribute . 110

Title in action . 110
Tooltip titles . 110
Titles are spoken . 111

Styling links . 111
Backgrounds . 112
Dotted borders . 112
Where you been? . 113
Hovering . 113
Active state . 114
LoVe/HAte your links . 114
Fitts’ Law . 115
A hack for IE6 . 116

Anchors aweigh . 117

Chapter 8 More Lists . 119

What is the best way to mark up a numbered list of items? . 120
Method A: Unordered order . 120

The numbers game . 121
Rendered bullets . 121

Method B: An ordered list . 121
Automatic numbering . 121
Wrapper’s delight II . 122
List types . 122

What is the best way to mark up a set of terms and descriptions? . 123
Method A . 124
Method B . 124

Structure leads to style . 125
Adding icons . 125
Other applications . 126

Summary . 127
Extra credit . 127

Identify the parts . 127
Custom numbers . 128
Adding the numbers to the CSS . 128
The results . 130

Wrapping up . 130

Chapter 9 Minimizing Markup . 133

How can we minimize markup when building sites with web standards? 134
Descendant selectors . 134
Method A: Class happy . 134

Classified CSS . 135

xii

CONTENTS

Method B: Natural selection . 135
Contextual CSS . 136
Not just for sidebars . 136
Fewer classes mean easier maintenance . 137

The unnecessary <div> . 138
Method A: <div> happy . 138
Method B: Lose the <div> . 139
Other examples . 139

Summary . 140
Extra credit . 140

The raw markup . 140
Adding style . 141
Custom bullets . 142
Adding a border . 143

Conclusion . 145

PART TWO SIMPLEBITS OF STYLE . 147

Chapter 10 Applying CSS . 149

How do I apply CSS to a document? . 150
Method A: The <style> element . 150

Partial understanding . 150
Uncached . 151
Multiple changes . 151
Good for development . 151

Method B: External style sheets . 151
Separate file = easy maintenance . 151
Download once . 152
Still not completely hidden . 152

Method C: @import . 152
Hide and seek . 152
Styles on, styles off . 153

Combining B and C for multiple style sheets . 154
The chameleon effect . 154
How it’s done . 155

Lo-fi and hi- fi styles . 155
Order is important . 156

Embrace the cascade . 156
Method D: Inline styles . 157

Style tied to markup . 158
Use with caution . 158

Summary . 158

mailto:@import.�152

xiii

CONTENTS

Extra credit . 159
Alternate styles . 159

Three font sizes . 160
Still cascading . 161
Getting alternate styles to work . 161
More than just font sizing . 162
Courtesy of DOM . 163

Reset styles . 163
An example reset.css . 164

Conclusion . 165

Chapter 11 Print Styles . 167

How can we specify styles for print? . 168
Media types . 168
Two ways to target . 169
Method A: The media attribute . 169

Partial support . 169
Method B: @media or @import . 169

In the head or externally . 170
Multiple values allowed . 170
Separating screen and print styles . 171
Building a print style sheet . 171

Make a point . 172
Save ink by hiding unnecessary elements . 172
Expose links . 173
Link text . 174
Save ink with print preview . 174
How it looks . 175

Summary . 177

Chapter 12 CSS Layouts . 179

How can I use CSS to build a two- column layout? . 180
Method A: Floating the sidebar . 181

Styling the header and footer . 182
Floating the sidebar . 183
True columns . 183

Method B: The double float . 186
Clear both . 187

Method C: Floating the content . 187
The CSS . 187
Background woes . 188
Plain and simple . 189

mailto:@import.�169

xiv

CONTENTS

Method D: Positioning . 190
Predictable height . 191
Space for the column . 191
Drop in the sidebar . 192
The footer issue . 193
Three’s company . 196

Summary . 197
Extra credit . 198

The box model problem . 199
Seeing is believing . 199
Wavering widths . 200
The Box Model Hack . 200
Code by example . 200
Be nice to Opera . 201
Not just for widths . 201

Faux columns . 202
Vertical stretch . 202
The cheat . 203
The CSS . 203
Positioned columns . 203
Whatever floats your boat . 204

Wrapping up . 204

Chapter 13 Styling Text . 207

How can I make hypertext look cool? . 208
Times they are a- changin’ . 208
Adjusting leading (a.k.a. line- height) . 209
All in the family . 210

Font names with spaces . 211
Kerning (a.k.a. letter- spacing) . 211
Drop caps . 213
Text alignment . 214
Transforming text . 216
Small caps. 217
Paragraph indentation . 218
Contrast . 219

Summary . 220

Chapter 14 Image Replacement . 223

How can I use CSS to replace text with images? . 224
No perfect solution . 224
Use, but with caution. 224

Method A: Fahrner Image Replacement (FIR) . 224
The markup . 225
The extra element . 225
The CSS . 225

Hide the text . 225

xv

CONTENTS

Assign a background . 226
Advantages . 227
Drawbacks . 227
Weigh the pros and cons . 227

Method B: Leahy/Langridge Image Replacement (LIR) . 228
The markup and CSS . 228
Box model woes . 229
Drawbacks . 229

Method C: The Phark Method . 229
The markup and CSS . 230
Still not perfect . 230

Method D: sIFR . 230
Summary . 232
Extra credit . 233

Logo swapping . 233
Hi-fi and lo- fi . 233

The example . 233
A pair of logos . 234
The CSS . 235
Regain the hyperlink . 235
The results . 236

Accessible image- tab rollovers . 236
The problem . 237
The solution . 237
The markup: One list to rule them all . 237
One image, three states . 238
The CSS: This is where the magic happens . 239
The results . 240
Why use it? . 240
But wait, the text doesn’t scale! . 240
Compatibility . 241
Wrapping up . 241

Chapter 15 Styling <body> . 243

Two and sometimes three columns . 244
Markup and style structure . 246

Article page . 246
Index page . 247

This <body> has class . 248
Not just for columns . 248

“You are here” . 249
The navigation list . 249
Identify the parts . 250
The magic CSS . 251

Summary . 252

xvi

CONTENTS

Chapter 16 Next Steps . 255

Where do you go from here? . 256
Organizations and publications . 256

W3C . 256
Web Standards Project . 256
A List Apart . 256
CSS Zen Garden . 257
Dive Into Accessibility . 257
css-discuss . 257
Digital Web Magazine . 257
Vitamin . 257

Influential and inspirational weblogs . 258
Jeffrey Zeldman Presents: The Daily Report . 258
Stopdesign . 258
mezzoblue . 258
meyerweb.com . 258
Tantek Çelik . 259
456 Berea Street . 259
Jason Santa Maria . 259
Jina Bolton . 259
Adactio . 259
Cameron Moll . 259
Mark Boulton . 259
Molly.com . 260
Shaun Inman . 260
Stuff and Nonsense . 260
Unstoppable Robot Ninja . 260
Subtraction . 260
Veerle’s Blog . 260
D. Keith Robinson . 260
Simon Willison’s Weblog . 260

Books . 261
Parting words . 261

Index . 263

xvii

FOREWORD

You hold in your hands a recipe book. With clear examples and no wasted words, designer Dan
Cederholm shows how to put web standards to work creating beautiful, lightweight interfaces
that are accessible to all.

Dan isn’t here to make the creative or business case for standards-based web design. Others
(cough) have already done that. And frankly, if you’ve bothered to pick up this book and thumb
through its pages, you probably already know the accessibility, longevity, and business benefits
standards-based design provides. You don’t need another overview or elevator pitch; you need
a practical, roll-up-your-sleeves, component view, and that’s what this book delivers.

In down-to-earth, natural language—the same kind of language that’s found on good websites—
Dan examines universal site elements such as page divisions and navigation. Using a teaching
method he pioneered at SimpleBits.com, Dan shows how web standards make these universal
page components easier to create, easier to modify when your boss or client requests last-
minute changes, and most important of all, easier for people to use.

Here’s one simple example of how this book works and why it is worth your time and your
dime:

The site you’re designing requires a three-column layout on its primary landing pages, and a
two-column layout on inner content pages. The old-school approach is to build two unrelated
HTML formatting tables as master templates. The new-school approach, recommended by the
World Wide Web Consortium (W3C) and practiced by standards-based designers, is to structure
the content with minimal, semantic XHTML markup and use Cascading Style Sheets (CSS) for
layout.

As an experienced web designer, you might naturally assume that you’ll have to craft two dif-
ferent XHTML templates and two different style sheets to generate your two- and three-column
master layouts. But as this book shows, a single XHTML structure and just one style sheet can
create both layouts. Switching from one master layout to the other is as simple as applying a
class attribute to the <body> tag.

This book is filled with insights and methods like that one—methods that can boost your output
and simplify your job while stimulating your creativity. Some of these Dan has invented; others
come from an emerging body of modern best practices developed by a vanguard of standards-
based web designers. You need to know this stuff. And the best way to start mastering it is right
in your hands. Enjoy.

—Jeffrey Zeldman,
author of Designing With Web Standards

xviii

ABOUT THE AUTHOR

Dan Cederholm is a web designer, author, and founder
of SimpleBits, a tiny design studio.

A recognized expert in the field of standards-based web
design, Dan has worked with Google, MTV, ESPN, Fast
Company, Blogger, Yahoo! (and others), also collaborat-
ing with Happy Cog on selected projects. He embraces
flexible, adaptable design using web standards through
his client work, writing, and speaking.

Dan is the author of two best-selling books: Bulletproof
Web Design, Second Edition (New Riders, 2007) and
Web Standards Solutions (Apress/friends of ED, 2004).

Dan also runs a popular blog where he writes articles and commentary on the Web, technology,
and life. And he plays a mean ukulele.

He lives in Salem, Massachusetts, with his wife Kerry and two kids, Jack and Tenley.

www.allitebooks.com

http://www.allitebooks.org

xix

Drew McLellan (first-edition technical reviewer) is a web appli-
cation developer and author from just west of London. He
spends his days heading up web development for a successful
creative agency and his nights writing and editing technical
books. He maintains a personal website on topics relating to his
work at www.allinthehead.com.

Drew is the author of Dreamweaver MX Web Development (New
Riders, 2002) and has published technical articles on sites such
as A List Apart (www.alistapart.com) and Macromedia (www.
macromedia.com). He is a member of the Web Standards Project
(www.webstandards.org) and helps out with public relations
and various other duties.

When he grows up, he’d like to be a spaceman.

Matt Heerema (special edition technical reviewer) is a designer and developer who has been
making web pages since 1999. He currently works as principal designer for Weblogs, Inc. at AOL
MediaGlow and on occasion consults on web standards, usability, accessibility, and optimization
issues. Matt works out of his home in Iowa, where he lives with his wife, two daughters, and a
cat. In his spare time he enjoys music, reading, outdoor sports, and the fellowship of his church.
You can find out way more than you want to know about him at www.mattheerema.com.

ABOUT THE TECHNICAL REVIEWER

http://www.allinthehead.com
http://www.alistapart.com
http://www.macromedia.com
http://www.macromedia.com
http://www.webstandards.org
http://www.mattheerema.com

xx

ACKNOWLEDGMENTS

I’m entirely grateful to the following people who helped make this book possible:

To Chris Mills, for being in on this from the very beginning, guiding me through and making sure
the whole thing came together.

To Drew McLellan, for his jolly good advice, guidance, and hard work, and Matt Heerema, for
his hard work on this edition.

To Jeffrey Zeldman, without whom I wouldn’t be writing this book and who has done more for
web standards than anyone else.

To Douglas Bowman, for providing impeccable design inspiration and proving that CSS layouts
can work beautifully on large-scale commercial sites.

To Dave Shea, for planting the garden and proving that CSS-based design can do just about
anything we want it to.

To Jason Kottke, for posing the question (the spark).

To the readers of SimpleBits, for providing valuable discussions that fueled the idea for this
book.

To Eric Meyer, Christopher Schmitt, Tantek Çelik, Molly Holzschlag, Todd Dominey, Mike
Davidson, Ryan Carver, Dan Rubin, D. Keith Robinson, Mark Pilgrim, Joe Clark, Craig Saila, Nick
Finck, Owen Briggs, Simon Willison, Ian Lloyd, Dan Benjamin, and many others, whose online
and offline efforts within the web standards community have helped thousands like myself.

To the members of the Web Standards Project, whose education continues to benefit web
designers and developers from all over.

To my former web team colleagues at Fast Company and Inc.—especially Rob Roesler, who
gave me a great opportunity and support; David Searson, whom I’ve learned more from than
he’ll ever know; ditto Bob Joyal; Paul Maiorana for putting up with my Journey obsession; Daigo
Fujiwara; Paul Cabana; Nick Colletta; Heath Row; Irina Lodkin; Carole Matthews; Becca Rees; Alex
Ashton; Peter Wilkinson—and Linda Tischler for bringing me to FC.

To my family and friends and, most importantly, my wife Kerry—for her relentless support no
matter what we’re up to.

And to you, for reading.

xxi

INTRODUCTION

Welcome to the second edition of Web Standards Solutions. Why do we need an updated book?
Well, while the rules have remained the same, the game has changed. We’ve had a full suite of
new browsers since the first edition of this book (Internet Explorer 7 and 8, Chrome, Firefox 3,
Safari 4, Opera 9), and their adoption of present (and evolving) standards is moving ahead at a
rapid pace. The good news is that all of the main browser vendors have focused on standards
compliance, so things are getting easier. The bad news is that there are still a lot of legacy brows-
ers in the wild to account for, and many of the hoops we’ve had to jump through remain.

This book is designed to give you ammunition—ammunition to bring web standards solutions
to your own projects and the ability to make better choices with markup and style. Throughout
each chapter, we’ll be comparing common web design methods, trying to answer why one way
may be better than the other. By examining that comparison, we’ll be able to apply the best tool
for the job in our own projects.

But first, let’s make sure we’re all on the same page—this book is filled with acronyms, blocks of
code, and concepts that might be foreign. First, let’s talk about web standards.

What are web standards?
Quoting the World Wide Web Consortium (www.w3.org/Consortium/):

“The World Wide Web Consortium was created in October 1994 to lead the World Wide
Web to its full potential by developing common protocols that promote its evolution
and ensure its interoperability. W3C has around 400 member organizations from all
over the world and has earned international recognition for its contributions to the
growth of the Web.”

Founded by Tim Berners-Lee, the W3C is responsible for the web standards specifications that
make up the Web today. We’ll be concerning ourselves primarily with two of the standards:
eXtensible HyperText Markup Language (XHTML), which features the semantics of HTML 4.01
with the syntax of XML; and Cascading Style Sheets (CSS), used for styling web pages.

http://www.w3.org/Consortium/):

INTRODUCTION

xxii

Why web standards?
I bought a window shade yesterday. I measured the window. I went to the store. I pulled a
23-inch shade off the shelf and brought it home. It fits perfectly.

Last year, my wife and I bought a new dishwasher. We pulled the old one out and ordered a new
one. When the new model arrived, it fit—perfectly.

I’m merely making a point here: that home improvement is made easier by standards. Someone
like me can walk into a store, buy a garbage disposal hose, and more than likely it’ll fit just right.
I can also purchase a new doorknob, and nine times out of ten it’ll fit the door without any
major adjustments.

Predetermined, standard measurements make life easy for people who build and maintain
houses. When new owners need to update or maintain their home, standards make it easier to
fix or improve it.

This wasn’t always the case, of course. Not all houses built prior to the twentieth century utilized
standards. This didn’t mean that houses built without standards were bad houses—it just meant
that updating, fixing, or maintaining these houses required extra work.

Often, people buy old houses and renovate them. Once the hard work in renovating a house is
complete, the owner can take advantage of standard sizes and measurements to make main-
taining the house easier.

This book isn’t about houses. Yet the preceding analogy can be applied to the Web—that by
using standards in our web pages, maintaining them becomes far easier. Fellow web designers
and developers can more easily jump in and understand how pages are structured and styled.

Historically, designers and developers have relied on bloated markup to achieve the designs that
still flood the Web today. Nesting tables three levels deep while using transparent GIF images
for pixel-precise layouts has been the norm for years. But as the support for standards has
increased in the popular browsers, the ability to combine lean, structured markup and CSS has
reached a threshold where being standards-compliant doesn’t have to mean boring design.

The trend is shifting, and those who become aware of the benefits of web standards now will
gain a jump on the rest of the web design and development community. This is the way things
will be going.

By understanding and using web standards, the following benefits are there for the taking:

 Reduced markup: Less code means faster pages. Less code also means more server capac-
ity, which in turn means less money needed for server space and bandwidth.

 Increased separation of content and presentation: By using CSS to control a site’s design,
updates and redesigns become easier. Site-wide changes can be made instantly through
the update of a single style sheet.

 Improved accessibility: Web standards enable us to reach the highest possible number of
browsers and devices. Content can be easily read in any browser, phone, PDA, or by
those using assistive software.

 Forward compatibility: By authoring pages using web standards, you are ensuring that
they will still be readable in the future.

INTRODUCTION

xxiii

Any one of the preceding benefits would be reason enough to use web standards, and this book
will show you how to shake those bad habits as well as tips and tricks for creating attractive
standards-based designs.

Why XHTML?
This book’s markup examples are written in XHTML, or eXtensible HyperText Markup Language.
Technically speaking, XHTML is the reformulation of HTML 4 in XML. What does that mean?
Well, you’re familiar with HTML, right? XHTML is just like that—with a few extra rules.

To once again quote the W3C (www.w3.org/TR/xhtml1/#xhtml):

“The XHTML family is the next step in the evolution of the Internet. By migrating to
XHTML today, content developers can enter the XML world with all of its attendant
benefits, while still remaining confident in their content’s backward and future
compatibility.”

That’s a good place to start—future compatibility. By authoring web pages now using XHTML,
we’re taking steps to ensure these pages will work with future browsers and devices.

XHTML is also designed to be readable by the highest number of browsers, devices, and soft-
ware. Markup that is written in XHTML stands a better chance of being properly understood no
matter what is reading it.

But there are rules.

In the world of XHTML, stricter rules exist for what is considered valid markup. All tags and
attributes must be in lowercase, attributes must be enclosed with double quotes, and all tags
must eventually close. These are a few of the rules inherited from XML. But these rules are good
for you.

In addition to future compatibility, by adhering to the stricter rules that govern proper and valid
XHTML, designers and developers can more easily debug code (especially helpful when multiple
authors are working on the same markup), and their pages have a better chance of rendering
properly on browsers that understand standards as well. Throughout this book, we’ll be using
XHTML for all of our examples.

Structured markup
You may hear me use the word “semantic” quite a bit throughout this book. I may also use the
term “structured markup” at times as well. They are interchangeable. What I mean when I talk
about semantics is that we’re striving to use tags that imply meaning, rather than a presenta-
tional instruction. Are you dealing with a list of items? Then mark it up as such. Is this a table of
data? Then structure it that way.

http://www.w3.org/TR/xhtml1/#xhtml):

INTRODUCTION

xxiv

By structuring web pages with semantic markup, we’ll move closer to separating content from
presentation and, in turn, our pages will have a better chance of being understood properly—
the way you intend them to be—by a wider variety of browsers and devices.

As I had mentioned earlier, historically web designers have relied on nesting tables with spacer
graphics to achieve pixel-precise layouts. The <table> element was used to map out every
component of a web page, adding an enormous amount of unnecessary code—not to mention
resulting pages that are practically unreadable for those browsing with text browsers, small-
screened devices, or assistive software. The bloat was (and is) choking the Web.

Throughout the chapters of this book, I’ll explain how semantic markup helps pages become
leaner, more accessible, and easily styled with CSS.

Origins of this book
It started innocently enough. I thought I’d pose a simple quiz on my personal website. A multiple-
choice question, where each of the answers achieved the same or similar results. Why is one
method better than the other? That was to be the real answer to the quiz question.

The goal of the quiz was to show the pros and cons over each method, noting that even mul-
tiple methods that are valid markup aren’t always necessarily the best solutions. Readers could
comment and leave their opinions, and through the discussion came that ammunition I was
talking about earlier. If we can understand why it’s important to use page headings and proper
lists, then we can take that information and apply it to our everyday projects.

It’s also important to mention that I’m not trying to dictate singular ways of marking up certain
components of a page—like everything in web design, there are multiple ways to achieve the
same or similar results. Use what’s best for the task at hand—but by understanding the pros and
cons of the multiple methods, you can make better choices when the right time comes.

About the format
This book is separated into two parts, the first covering markup topics, the second covering
CSS. Each chapter answers a specific question, often presenting multiple methods to achieve
the same results. We’ll look closely at each method, noting the good and bad of each. At the
end of many of the chapters are additional “Extra credit” sections that delve further into more
advanced markup and CSS topics relating to the chapter.

I hope you enjoy it—now let’s get started.

Part One

GET DOWN WITH MARKUP

ChaPter 1

LISTS

Web StandardS SOlutiOnS

4

lists. they’re found in just about any page on the Web. lists of hyperlinks, lists of items in a
shopping cart, lists of your favorite movies—even lists for the navigation of an entire website.
While it might seem arbitrary to some, how we mark up these lists is what we’ll explore, discov-
ering the advantages (and disadvantages) of a few common methods. later, we’ll put those
advantages to the test with several examples on how to style an ordinary list.

Let’s go shopping
initially, i thought about using a laundry list as the example for the chapter, but then
quickly realized that i have no idea what items would be included in such a list. So for this
example’s sake, groceries it is….

let’s imagine that you needed to mark up a simple grocery list for inclusion on your per-
sonal website. You may be wondering what place a grocery list has on any website, but
that’s beside the point. We just need a reason to start thinking about lists.

On the page, say we’d like the grocery list to look like… well, a list—a vertical series of
items, each on its own line:

apples

Spaghetti

Green beans

Milk

a seemingly simple task, right? now, like all facets of web design and development, there
are a variety of ways we could attack this to achieve the same (or similar) results. as in all
examples found throughout this book, i’ll be presenting things from an eXtensible
HyperText Markup Language (XHTML) point of view—making sure that the methods cho-
sen are valid markup and adhere to the standards outlined by the World Wide Web
Consortium (W3C, www.w3.org/).

We could simply add a
 element after each item and be done with it, or we could
tap into various list elements to get the job done. let’s look at three different possibilities,
and the consequences of using each of them.

Quiz time
Which of the following would be best for marking up a grocery list?

Method A: The
 breakdown

Apples

Spaghetti

Green Beans

Milk

www.allitebooks.com

http://www.w3.org/
http://www.allitebooks.org

liStS

5

1

Method a is certainly one that’s been used for years, heavily, on perhaps millions of web
pages. in fact, i’m sure we’re all guilty of using this approach at one time or another, right?
We’d like each item in the list to be on its own line, and by inserting a break element
(using the valid XhtMl, self- closing version here,
) a line break will be added after
each item. that’s about all it does, and it seems to work.

however, what if we wanted to style the grocery list differently from other elements on
the page? For instance, what if we would like this list to have red links instead of the
default blue, or a different font size from the rest of the text on the page? We really can’t.
We’re stuck with whatever default font styles we’ve set for the entire document (if there
are any at all), and since there’s no surrounding element for the list, we can’t assign it any
unique CSS rules.

It’s a wrap

let’s also say that we added a particularly long grocery item to the list: “Five Foot loaf of
anthony’s italian bread.” depending on where this list is placed in the layout of the page,
long items may run the risk of wrapping to the next line if there isn’t enough horizontal
space, or if the user’s browser window width is narrow.

it would also be nice to take into account the possibility of low- vision users increasing
their default text size to gain readability. line items that we thought fit just great in a nar-
row column, as in Figure 1-1, now break in unpredictable places, as in Figure 1-2, throwing
off the design when the text size is increased by the user.

 Figure 1‑1. an example with default text size Figure 1‑2. the same example with increased
text size

hmm. now, i know i’m supposed to buy bread, but the two lines that precede it in
 Figure 1-2 are a bit confusing.

a similar wrapping dilemma rears its ugly head when long lines are viewed on the small
screen of a device such as a phone or blackberry. the ultimate technophile may stroll into
the supermarket with small- screened device in hand, rather than the traditional sheet of
paper for their shopping list, yet they eventually wander aimlessly, looking up and down
the aisles for “anthony’s italian.”

Web StandardS SOlutiOnS

6

i’m essentially proving a point here—that using Method a doesn’t take into account the
fluidity that web pages can have depending on variables that are outside the designer’s
control.

Method B: The bullet that bites

Apples

Spaghetti

Green Beans

Milk

Most competent browsers will insert a bullet to the left of a list item when the ele-
ment is used. One might use Method b to achieve those results, adding the by itself
when a bullet is desired. however, some of those same competent browsers won’t display
the bullet when an element isn’t contained within one of its proper parents, the
mighty . the ’s other parent is the element, for “ordered lists,” which i’ll
discuss later in this book.

the bullet does help the wrapping issue to a certain extent. a new grocery item would be
signified by a bullet, to its left. if an item wraps to the next line, the absence of a bullet
should be enough to distinguish itself from being a whole new item. but there is some-
thing else wrong with Method b, aside from its resulting display: it’s not valid.

Validation, please
according to the W3C’s XhtMl 1.0 specification, all elements must eventually close—and
if we were to go ahead and open an for each grocery item, without closing it at the
other end as in the example, shame on us!

We’ve mimicked the automatic line- breaking that occurs when a proper unordered list is
used by adding the
 element at the end. but there’s a better way.

it’s valuable to get used to the idea of writing valid markup, consistently. by ensuring our
markup is valid, we’ll worry less about problems that may occur because of unclosed or
improperly nested elements in the future. not to mention that if anyone else is looking at
our code, it’s easier for everyone involved to dive in and understand exactly what’s going
on.

be sure to use the W3C’s online validation tool (http://validator.w3.org/) to validate
your files by uri or file upload. You’ll be happy you did in the long run.

Method C: Getting closer

Apples
Spaghetti
Green Beans
Milk

http://validator.w3.org/

liStS

7

1

Method C brings us closer to a preferable solution, but fails miserably in one potentially
obvious way: it’s still not valid markup.

We’ve closed each element properly, and since they are block‑ level elements, using
them eliminates the need for a
 element, putting each list item on its own line. but
we’re missing an outer layer of structure, lacking a containing element that denotes “this
group of items is a list!”

it’s important to view this from a semantic angle as well—that the list is a group of items
that belong together, and therefore they should be denoted as such. Furthermore, using
proper list elements says very clearly to the browser, software, or device, “this group of
items is a list!” this is a good example of how semantic markup is about structuring items
for what they are.

Block level vs. inline: HTML elements can inherently be either block level or inline.
 Block- level elements begin on their own line, followed by a line break, while inline ele-
ments are rendered on the same line as other inline elements. Block- level elements can
contain other block- level or inline elements, while inline elements can’t contain
 block- level elements.

Some examples of block- level elements include <div>, <h1>–<h6>, and <form>. Some
examples of inline elements include , , , and <q>.

if we were to look at our grocery list in purely an XMl sort of way, we might choose to
mark it up as shown in this example:

<grocerylist>
 <item>Apples</item>
 <item>Spaghetti</item>
 <item>Green Beans</item>
 <item>Milk</item>
</grocerylist>

the entire list has a containing element, <grocerylist>, that all of the grocery items
belong to. Grouping the items in this manner will make life easier for XMl- based applica-
tions that may want to extract the items from the list.

For instance, a developer could author an XSlt style sheet that would transform this list of
items into XhtMl, plain text, or even a PdF document. because of the predictable nature
of a group of list items, software will have an easy time taking the information and doing
something useful with it.

While i’m not dealing with XMl in this book directly, the principles are carried over to the
world of XhtMl. Providing a meaningful structure to our markup gains flexibility later on.
Whether it be the increased ease of adding CSS to properly structured documents or the
improved manageability of making changes to markup that is easy to understand—providing
that structure will make for less work later on down the road.

Web StandardS SOlutiOnS

8

let’s take a close look at Method d and see how this all fits together—providing a struc-
ture that most browsers and devices can read, while also allowing us to style our list in
several different ways.

Method D: Wrapper’s delight

 Apples
 Spaghetti
 Green Beans
 Milk

So what makes Method d so special? First and foremost, it’s completely valid. a proper
unordered list has a containing element, with each item within wrapped in opening
and closing elements. now just when you think all we’re going for here is demon-
strating how to be valid for validity’s sake, we’ll take a look at it in action.

because we’ve properly marked up our grocery list, each item will be on a separate line
(due to the block- level nature of the) and most visual browsers will render a bullet
next to each item, as well as indent any wrapping lines that may occur (see Figure 1-3).

 Figure 1‑3. default rendering
of an unordered list

users of blackberrys, phones, or other small- screened devices will also be able to view the
list in a similar, clearly organized fashion. because we’ve told the device what the data is (a
list in this case), it can best decide how to display it according to its capabilities.

if a long line wraps due to increased text size or a narrow browsing window, the wrapped
line will appear indented to line up with the text above it. it’ll be darn clear to distinguish
between items no matter what the browsing circumstances.

Summary
now that i’ve picked each possible method apart, let’s quickly review what i’ve covered
about each:

Method a:

 leaves out the possibility for styling the list uniquely.

 Could create confusion when longer lines wrap in a narrow column or small- screened
device.

 lacks semantic meaning.

liStS

9

1

Method b:

 adding a bullet helps for signifying a new item, but some browsers may choose not
to show it without its parent element.

 no containing element or closing elements means difficult to style.

 invalid.

Method C:

 Closing the element eliminates the need for
 elements.

 Omitting the element makes it difficult to style this particular list differently.

 invalid.

Method d:

 Valid!

 Provides semantic meaning and structure.

 bullets will render to the left of each item on most browsers.

 Wrapping lines will indent on most browsers.

 it can be easily styled uniquely with CSS.

as you can see, you can learn a lot from a seemingly innocent little question. even if you’re
already using Method d exclusively on all of your pages, it’s nice to know why you do
things the way you do. We’ll continue to explore such “why” questions throughout the
book, giving you more ammunition to make the best choice at the right time.

Extra credit
For extra credit, let’s look at a few different ways we can take advantage of our marked- up
grocery list, using CSS to style it several different ways. We’ll throw away defaults, add
custom bullets, and then turn it horizontal for a few navigation bar ideas.

Bite the bullet

“but i hate the way the bullets look on my grocery list, so i should just keep using those

 elements.”

no need to revert to old habits—we can continue to use our structured unordered list and
let CSS turn off the bullets and indenting (if that sort of thing floats your boat). the key
here is to keep our list structured, and then let CSS handle presentation details.

First add a CSS rule that will turn off the bullets:

ul {
 list- style: none;
 }

Web StandardS SOlutiOnS

10

the results of which can be seen in Figure 1-4.

 Figure 1‑4. a list with
bullets turned off

now, we’ll turn off indenting. by default, there is a certain amount of padding added to
the left side of any unordered list. but don’t worry—we can just chop it off if we’d like:

ul {
 list- style: none;
 padding- left: 0;
 }

the results are seen in Figure 1-5.

 Figure 1‑5. a list with
bullets and indenting
turned off

While the example in Figure 1-5 looks like we’ve just marked it up with a few
 ele-
ments, it’s still the same structured, valid, unordered list—ready to be viewed in any
browser or device and styled differently with the update of a few CSS rules, if so desired.

Getting fancier with custom bullets

Perhaps you would like bullets for your list but want to use your own bullet image rather
than letting the browser use its boring defaults. there are two ways to do this—i prefer
the second due to its more consistent results across various browsers.

the first option is to use the list-style- image property to assign an image to use in place
of the default bullet:

ul {
 list-style- image: url(fancybullet.gif);
 }

this is the simplest method; however, it renders somewhat inconsistent results in some brows-
ers in respect to the vertical positioning of the image. Some browsers will line it up directly in
the middle of list item text; others may position it slightly higher. it’s a bit inconsistent.

liStS

11

1

to get around the vertical placement issue that list-style- image reveals on a few popu-
lar browsers, i like to use an alternative method, which is to set the image as a background
for each element.

First we’ll turn off the default bulleting, and then add our own background image:

ul {
 list- style: none;
 }

li {
 background: url(fancybullet.gif) no- repeat 0 50%;
 padding- left: 17px;
 }

no-repeat tells the browser not to tile the image (which it does by default), while the 0 50%
tells the browser to place the background 0 pixels from the left and 50 percent down from
the top, essentially vertically centering the fancybullet.gif. We could have also used
exact pixel locations from left and top the same way. 0 6px would have placed the bullet 0
pixels from the left and 6 pixels from the top.

We also add 17 pixels of padding to the left of the list item so that
our 15-pixel- wide by 5-pixel- high image will show through com-
pletely, and with a little whitespace, without any overlapping of the
text. this value would be adjusted depending on the width of the
bullet image you were using (see Figure 1-6).

Lists that navigate

i’ve shared a few methods of turning unordered lists into horizontal navigation on my
personal site (www.simplebits.com), creating tab- like effects using ordinary, structured
XhtMl—just like the example grocery list.

For instance, here we’ll take the grocery list and turn it into a navigation bar for an online
supermarket (that happens to only sell a handful of items).

We’d like the navigation in this case to be horizontal and also have some way of highlight-
ing an item when it’s hovered over or selected, creating a tab- like effect.

First, we’ll add an id to our list so that we can apply specific CSS styles to it. We’ll also
make each grocery item a link.

<ul id="minitabs">
 Apples
 Spaghetti
 Green Beans
 Milk

 Figure 1‑6. a list
with custom
bullets

http://www.simplebits.com

Web StandardS SOlutiOnS

12

now, start to add the accompanying CSS:

#minitabs {
 margin: 0;
 padding: 0 0 20px 10px;
 border- bottom: 1px solid #696;
 }

#minitabs li {
 margin: 0;
 padding: 0;
 display: inline;
 list- style: none;
 }

What we’ve done here is essentially turn off bullets and default indenting. We’ve also taken
the first step in making the list horizontal, rather than vertical, by setting the display to
inline. a bottom border has been added as well to help define the group of links.

the second step in making the navigation bar horizontal is to float our links to the left.
We’ll also style the hyperlinks a little and adjust some padding and margins:

#minitabs {
 margin: 0;
 padding: 0 0 20px 10px;
 border- bottom: 1px solid #696;
 }

#minitabs li {
 margin: 0;
 padding: 0;
 display: inline;
 list-style- type: none;
 }

#minitabs a {
 float: left;
 line- height: 14px;
 font- weight: bold;
 margin: 0 10px 4px 10px;
 text- decoration: none;
 color: #9c9;
 }

here we’ve told all a elements within our list to float: left, essentially forcing them all
to line up horizontally in a row. We’ve also added some color, made the links bold, and
turned off underlines.

liStS

13

1

next, create a tab- like border below the links that is activated when hovered or selected:

#minitabs {
 margin: 0;
 padding: 0 0 20px 10px;
 border- bottom: 1px solid #696;
 }

#minitabs li {
 margin: 0;
 padding: 0;
 display: inline;
 list-style- type: none;
 }

#minitabs a {
 float: left;
 line- height: 14px;
 font- weight: bold;
 margin: 0 10px 4px 10px;
 text- decoration: none;
 color: #9c9;
 }

#minitabs a.active, #minitabs a:hover {
 border- bottom: 4px solid #696;
 padding- bottom: 2px;
 color: #363;
 }

#minitabs a:hover {
 color: #696;
 }

For highlighting and hovering, we’ve added a 4-pixel- tall bottom border to the selected or
hovered elements to create a tab- like effect. highlighted tabs can also be “kept lit”
by adding class="active" to the href of our choice:

spaghetti

this active class shares identical CSS rules with a:hover.

 Figure 1-7 shows the resulting navigation bar.

 Figure 1‑7. the resulting mini- tab navigation bar

14

Web StandardS SOlutiOnS

i’ve used this method of navigation for a previous incarnation of my own personal site
(www.simplebits.com), but you can also see them in action (along with the code)
at Listamatic, a resource for lists styled with CSS (http://css.maxdesign.com.au/
listamatic/horizontal06.htm).

With some padding and border width adjustments, a variety of tab- like effects can be
achieved, and we’ve done all of this so far using zero images or JavaScript and our basic
 XhtMl- structured grocery list. hooray for us!

Mini‑tab shapes

For something a little different than your average, boxy CSS border, with a few slight
modifications we can add fun shapes to the mix to create some interesting navigational
effects.

We can use the same unordered list, building on similar CSS from the previous mini- tab
example:

#minitabs {
 margin: 0;
 padding: 0 0 20px 10px;
 border- bottom: 1px solid #9FB1BC;
 }

#minitabs li {
 margin: 0;
 padding: 0;
 display: inline;
 list-style- type: none;
 }

#minitabs a {
 float: left;
 line- height: 14px;
 font- weight: bold;
 padding: 0 12px 6px 12px;
 text- decoration: none;
 color: #708491;
 }

#minitabs a.active, #minitabs a:hover {
 color: #000;
 background: url(tab_pyra.gif) no- repeat bottom center;
 }

www.allitebooks.com

http://www.simplebits.com
http://css.maxdesign.com.au/listamatic/horizontal06.htm
http://css.maxdesign.com.au/listamatic/horizontal06.htm
http://www.allitebooks.org

liStS

15

1

this CSS will probably look similar to the previous example. the main difference here is
the absence of a border- bottom that created the 4-pixel- tall tab and the addition of a
single background- image set to sit bottom center for all hover and selected states (see
 Figure 1-8).

 Figure 1‑8. a mini- tab navigation bar with shaped
background images

the trick here is to choose an image that is narrow enough to fit under your smallest
navigation item. this ensures you’ll only need one single image to use for highlighting all
of your navigational links, regardless of varying character widths. there are, of course,
unlimited possibilities in regard to the shapes you could use on your own projects (see
 Figure 1-9).

 Figure 1‑9. a few other shape possibilities

For source code and working examples of these mini- tabs, see www.simplebits.com/
publications/tips/. and for more creative ways to style lists, check out Mark newhouse’s
“taming lists” article at A List Apart magazine (www.alistapart.com/stories/
taminglists/).

http://www.simplebits.com/
http://www.alistapart.com/stories/taminglists/
http://www.alistapart.com/stories/taminglists/

Chapter 2

HEADINGS

Web StandardS SolutionS

18

not only are page headings necessary for just about any web page, but when marked up
properly, they can be powerful both to the design and accessibility of a site.

Visually, a page heading is commonly treated with a larger font size and maybe a different
color or typeface than the normal flow of body text. a page heading “briefly describes the
topic of the section it introduces,” so says the W3C, delineating the various sections that
may appear on a page.

So how should we mark up a page heading to get the most out of the information we’re
presenting? in this chapter, we’ll get a chance to investigate a few familiar ways of dealing
with headings, trying to find the one that will give us the most bang for our buck. later,
we’ll take the best method and style it up a bit with a few CSS tricks and techniques.

What is the best way to mark up the title
of a document?

to answer the preceding question, let’s imagine that we were placing the title of the docu-
ment at the top of the page. We’ll then look at three ways of achieving similar results.

Method A: Meaningful?

Super Cool Page Title

although can be a handy element in some circumstances, it doesn’t make a whole lot
of sense for page headings. one benefit to using this method is that we could add a CSS rule
for the heading class that’s been assigned to make the text appear like a heading.

.heading {
 font- size: 24px;
 font- weight: bold;
 color: blue;
 }

now all headings marked up with the heading class will be big, bold, and blue. Great, right? but
what if someone views the page using a browser or device that doesn’t support CSS?

For instance, what if we were putting this particular CSS rule in an external style sheet that
was being hidden from older browsers—or if a screen reader was reading the page to a
visually impaired person? a user visiting our page by these means would see (or hear)
nothing different from normal text on the page.

While class="heading" adds a bit of meaning to the element, is just a generic
wrapper, free from default styling in most browsers.

Search engines that crawl this page would gloss over the element as if it wasn’t
even there, unwilling to give extra weight to any keywords that might be contained within.
We’ll talk more about the search engine/header relationship further on in the chapter.

headinGS

19

2

Finally, since the element is an inline element, we would most likely need to wrap
Method a in an extra element that is block- level, like a <p> or <div> element, in order to
make it live on its own line, further mucking up the markup with unnecessary code. So even
by adding the extra, necessary markup, browsers that lack CSS support would still display
the text no differently from any other on the page.

Method B: The p and b combo

<p>Super Cool Page Title</p>

using a paragraph element, as Method b does, will get us the block- level display that we’d
like and the element will render the text in bold (on most browsers)—but we’re faced
with the same meaningless results when marking up an important heading this way.

unlike Method a, the presence of the element will most likely render the text in bold in
visual browsers—even with the absence of CSS. but as with the element, search
engines won’t place a higher priority on something that is simply bold in its own paragraph.

Difficult to style
using the plain Jane combination of <p> and elements also leaves out the possibility of
later styling this heading differently from any other paragraph on the page. We’d probably
want to call out headings in a unique way, adding definition and structure to the page
content—but we’re stuck with just having it appear bold using this method.

Method C: Style and substance

<h1>Super Cool Page Title</h1>

ah, good ol’ heading elements. they’ve been around this whole time, but plenty of web
designers have yet to fully embrace them in a consistent manner. When used properly, page
headings can anchor a page’s content, providing flexible, indexable, and stylable structure.

Markup-wise, you have to love their simplicity. there is no need for adding extra elements,
and you could even argue that you’re saving a few bytes by using them as opposed to the
other two options. negligible maybe, but every little bit counts.

<h1> through <h6> denote the six levels of headings, from most important (<h1>) to least
important (<h6>). they are block- level in nature and don’t need an additional element to
put them on their own line. Simple, and effective—the right tool for the job.

Easily styled
because the <h1> element we’re using is unique, rather than or <p> elements that are
likely to be used throughout the page, we can then style it in a variety of ways using CSS
(which we’ll get a chance to explore later in the “extra credit” section of this chapter).

More importantly, though, is that without any styling at all, a heading element is obviously
a heading! Visual browsers will render an <h1> in a larger, bold font. an unstyled view of

Web StandardS SolutionS

20

the page will show the document structure as it was intended, with the proper heading
element conveying meaning rather than just presentational instructions (see Figure 2-1).

 Figure 2‑1. an example of an unstyled view of a page that uses heading elements

Screen readers, handheld devices, phones, and other visual and nonvisual browsers will
also know what to do with a heading element, handling it correctly and treating it with
importance over normal text on the page. use a element, and browsers that don’t
(or can’t) handle CSS will present it as if it were nothing particularly special.

Default distaste
historically, designers may have avoided using heading elements altogether due to their
beastly appearance when viewed unstyled with default settings. alternatively, some may
have avoided <h1> or <h2> because of their larger size by default, instead opting to use a
higher heading number to achieve a smaller text size.

it’s important to stress, however, that by using CSS we can easily alter the appearance of
these headings in any manner we wish—an <h1>, for instance, doesn’t have to be a gigan-
tic billboard, engulfing half of the user’s screen. later in this chapter, i’ll demonstrate how
easy it is to style headings with CSS, hopefully helping to alleviate the fear of the mighty
<h1>.

Search engine friendly
this is a huge one. Search engines love heading elements. a element or plain para-
graph that is bold, on the other hand, means less to them. properly marking up your head-

headinGS

21

2

ings with <h1> through <h6> elements takes little effort, yet can make it easier for search
engines to index your pages, and ultimately for people to find them as well.

Search engine robots place special importance on heading elements—a place where you’re
likely to have some keywords sprinkled about. Just as they index <title> and <meta>,
they’ll set their sights next on any heading elements you may have down the page. if you
don’t use them, those keywords contained within them won’t be as valuable and could get
overlooked.

So with very little effort, you’ll be increasing the likelihood of someone finding your site
based on its content. Sounds good, doesn’t it?

An aside on heading order
in the example, this particular heading is the most important on the page because it’s the
title of the document. therefore, we’ll use the most important heading element, <h1>.
according to the W3C, some believe it to be bad practice to skip heading levels. For
instance, imagine we have the following on the page:

<h1>Super Cool Page Title</h1>

As mentioned previously, designers might have used an <h4> for the most important
heading on the page, simply because the default font size wasn’t as honking large as it
would be if they used an <h1>. But remember, structure now, style later. We can always
style the heading to whatever text size we’d like using CSS.

Summary
let’s recap why, in general, it’s best to use heading elements (<h1> through <h6>) to
introduce different sections on a page.

Method a:

 Visual browsers (e.g., Firefox, Safari, and internet explorer) will render the heading
the same as normal text on the page when CSS is disabled or unavailable. nonvisual
browsers won’t know the difference between the heading and normal text.

 Search engines won’t place greater importance over headings that are marked up
with .

 We can style it uniquely, but we’re locked into the heading class when adding simi-
lar headings in the future.

Method b:

 Visual browsers will render the text only in bold and the same size as the default.

 We can’t style this heading uniquely from other text on the page.

 Search engines won’t place greater importance over headings that are marked up
with <p> and elements.

Web StandardS SolutionS

22

Method C:

 Conveys meaning to the text contained within.

 Visual and nonvisual browsers will treat the heading correctly regardless of any
style that is associated with it.

 easily styled uniquely with CSS.

 Search engines will place importance on keywords contained within heading
elements.

Extra credit
So here we’ll take Method C and put it to the test with some simple CSS styling. We’ll take
full advantage of the heading element’s uniqueness, sleeping well at night because we
know the underlying structure is solid for whatever browser or device that may read it.
then we’ll dress it up and take it out on the town (if you could actually take an htMl ele-
ment out anywhere . . . and i’ve tried).

Simple styling
using CSS, the simplest and easiest thing we can do is give our heading different font
styles. We can create a CSS rule that will apply those styles to all <h1> elements that
appear on the page (or an entire site, when using an external style sheet). if later we
wanted to change the color, size, or font face of all <h1> elements that appear on an entire
site, then all we need to do is change a few CSS rules, and they’ll be instantly changed.
Sounds pretty enticing, doesn’t it?

let’s reacquaint ourselves with our super cool heading:

<h1>Super Cool Page Title</h1>

let’s change the color, font face, and size of it with CSS:

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #369;
 }

We’ve just said, rather simply, that any <h1> found throughout the page should be treated
in arial (or default sans- serif) typeface at 24 pixels and blue, as demonstrated in
 Figure 2-2.

 Figure 2‑2. an example of a styled heading

headinGS

23

2

next, let’s add a 1- pixel gray border underneath the text for added definition (see also
 Figure 2-3):

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #369;
 padding- bottom: 4px;
 border- bottom: 1px solid #999;
 }

 Figure 2‑3. a styled heading with a gray bottom border

We’ve added a bit of padding under the text to let the line underneath breathe a little. the
border will extend not only under the text, but because a heading is a block- level element,
it will stretch across as wide as it can horizontally on the page.

it’s also worth pointing out that we’re using the shorthand method for creating a border
by specifying the three parts in one statement: width, style, and color. play around with
these values to see different results.

Adding backgrounds

backgrounds can add neat effects to page headings. add a little padding and a background
color, and we’ll have image- free but stylish titles, as shown in this example:

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #fff;
 padding: 4px;
 background- color: #696;
 }

We’ve turned the text white, adding 4 pixels of padding all the way around, and changed
the background to green. as Figure 2-4 shows, this will create a nice, fat, pool- table green
bar that’ll extend across the page, dividing the section.

 Figure 2‑4. a heading example with background color and padding

Web StandardS SolutionS

24

Backgrounds and borders
by adding a thin border to the bottom of the heading, coupled with a light background
color, you can create a three- dimensional effect without the need for a single image.

the CSS is similar to the previous example, with a few color changes and the addition of a
 2- pixel border to the bottom.

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #666;
 padding: 4px;
 background- color: #ddd;
 border- bottom: 2px solid #ccc;
 }

by playing around with different shades of the same color, the dimensional effect comes
to life, as shown in Figure 2-5.

 Figure 2‑5. a heading with background and border bottom

Tiled backgrounds
the possibilities become far more creative when background images are added to the mix.
let’s create a small, 10✕10- pixel image in photoshop or your favorite image editor that has
a black border on top, with a gray gradient flowing down to the bottom, as shown in
 Figure 2-6.

 Figure 2‑6. a 10✕10- pixel
image created in
photoshop (magnified)

We can take this tiny image and tile it along the bottom of our <h1> using CSS:

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #369;
 padding- bottom: 14px;
 background: url(10x10.gif) repeat- x bottom;
 }

by telling the browser to repeat- x the background image, we ensure that it will tile only
horizontally (repeat- y will tile vertically). We’re also setting the image to the bottom of

www.allitebooks.com

http://www.allitebooks.org

headinGS

25

2

the element, and by adding a little extra padding- bottom, we can adjust the space
between the tiled image and the text above (see Figure 2-7).

 Figure 2‑7. a heading with tiled background image

Swappable icons

instead of hard- coding decorative bullets and icons on the page as inline images, we can
continue to use the background property to set icons to the left of the text using CSS. this
method makes changing the look and feel of a site a snap—with the update of that one
CSS file instantly changing all the pages of an entire site.

the code is much like the preceding tiled example:

 h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #369;
 padding- left: 30px;
 background: url(icon.gif) no- repeat 0 50%;
 }

here we’re giving extra space to the left (where we’d like the icon to show through), and
we’re saying no- repeat so that the background image displays only once (see Figure 2-8).
We’d like it to line up 0 pixels from the left and halfway (50%) from the top.

 Figure 2‑8. a heading with a background image icon

Easy updates

think about a scenario where, instead of using the preceding example, we’ve coded these
icons with elements right in the page on a site that contains 100 documents. perhaps
the icon matches a theme that’s found throughout the site. Fast- forward a few weeks
when the site’s owner decides to change the site’s look and feel. the new icon is a differ-
ent dimension than the old one. uh- oh. We’ll need to go back into all 100 documents to
change each element and update it with the new image path. Yuck. and just imagine
what the extra time can do to a project’s budget, pushing a deadline further out than
would be needed otherwise. time is money.

additionally, by keeping those nonessential, decorative images in one CSS file, it’s possible
to change the background image in a matter of minutes rather than days, while the site
will instantly be updated. You can start to see the power of separating your structured
markup from the presentation.

Web StandardS SolutionS

26

The chameleon effect

i’m going to go ahead and contradict myself here for a minute, but i think this next trick
can be useful in some circumstances. it’s a method i used heavily in the standards- compliant
redesign of Fast Company magazine’s website (www.fastcompany.com) in april 2003.

We were using small, 13✕13- pixel icons within most of the <h3> headings that were used
throughout the site like this:

<h3><img src="http://images.fastcompany.com/icon/first_imp.gif"➥

width="13" height="13" alt="*" /> FIRST IMPRESSION</h3>

We had decided on coding them right in the page for two reasons. there were a variety of
icons, depending on the topic of the heading (a book for the book Club, quote marks for
the daily quote, etc.). the second reason we coded them in the page was because, at the
time, we swapped the color scheme of the entire site each month to coincide with the
current issue’s magazine cover. this swapping was made possible by using CSS.

to allow the icons to swap color along with other elements on the
page without having to continually create new images for each
new color, we created one set using only two colors: white and
transparent (where the swapped color would show through).
 Figure 2-9 shows an example of one of the icons that was used to
call out the home page’s daily quote.

to fill in the transparent portion of the icon, we used the handy
CSS background property yet again to specify the color we’d like
to shine through. We wanted this color to appear only behind the
image and not the associated text in the heading. We achieved

this by using a contextual selector to apply rules to the images that are contained only
within <h3> elements.

h3 img {
 background: #696;
 }

the preceding code states that all img elements that are contained within <h3> elements
should have a background of green. that color shows through in the transparent spots of
the image, while the white portions stay white. each month, we could update this one CSS
rule with a different color value to magically change the color of every heading and icon
combination that we had throughout the site. like magic.

Aligning the element
to help the icon line up with the text correctly (we want it to be centered vertically), we
add the following CSS rule:

h3 img {
 background: #696;
 vertical- align: middle;
 }

 Figure 2‑9. a 13✕13-
pixel transparent icon
(zoomed)

http://www.fastcompany.com
http://images.fastcompany.com/icon/first_imp.gif

headinGS

27

2

that ensures the image will align to the middle of the text contained within the <h3>.
 Figure 2-10 shows the resulting heading.

 Figure 2‑10. the resulting
transparent image with
CSS background applied

i bring up this particular solution for another notable reason—background colors that are
specified in CSS show up behind any images that are either coded inline on the page or
also specified in CSS.

For instance, let’s go back to the previous “Swappable icons” example and add some back-
ground color:

h1 {
 font- family: Arial, sans- serif;
 font- size: 24px;
 color: #fff;
 padding- left: 30px;
 background: #696 url(transparent_icon.gif) no- repeat 0 50%;
 }

the transparent_icon.gif will sit above the color we specified before it in the same rule
(see Figure 2-11)—in this case #696, a lovely shade of pool- table green.

 Figure 2‑11. a heading with background image and color applied

this trick becomes especially handy when placing little rounded corners or decorative
images on a page where color is concerned. these nonessential images are then com-
pletely contained in the CSS file and are easily swappable if an update happens in the
future. easy work now, less work later.

i liked the idea so much, i ended up creating a customizable icon set based on this con-
cept, where the purchaser can enter an htMl hex color code, creating a set of stock icons
that will fit their own site's palette. Check them out at http://www.iconshoppe.com/fami-
lies/chameleon.

Wrapping up
i hope that by comparing a few common methods of markup, it’s easy to see the value in
using proper heading elements. Visual and nonvisual browsers and devices will understand
and display them accordingly, search engines will index them properly, and styles can be
easily applied and maintained using CSS.

http://www.iconshoppe.com/fami-lies/chameleon
http://www.iconshoppe.com/fami-lies/chameleon
http://www.iconshoppe.com/fami-lies/chameleon

Chapter 3

TABLES ARE EVIL?

Web StandardS SolutionS

30

Say what? When did using tables become an act of pure evil? Certainly one of the biggest
myths of building a site with web standards is that you should never use a table. ever. that
you should avoid them like the plague, seal them up, and place them on a dusty shelf like
an artifact of the web development days of old.

Where did the distaste come from? it probably began innocently enough, with at least
good intentions from the start. Many have been rightfully preaching the benefits of tossing
out conventional nested table and spacer GiF layouts and replacing them with lean, struc-
tured markup and CSS for presentation. We may have tossed out the peeler with the peel-
ings, though, with some touting the banishment of tables in general—for any situation.

We’ll tackle CSS layouts and all the benefits they produce later on in the book, but let’s
focus right now on using tables for situations where they are appropriate—namely for
marking up tabular data. We’ll figure out a few simple things we can do to make our data
tables more accessible and stylish.

Totally tabular
there is absolutely no reason not to use a table for marking up tabular data. but wait, what
is tabular data? here are just a few examples:

 Calendars

 Spreadsheets

 Charts

 Schedules

For these examples and many others, it would take some severe CSS acrobatics to mark the
data up to appear visually like a table. You could imagine trying to float and position all of
the items with crafty CSS rules, only to end up with frustratingly inconsistent results. not to
mention that accurately reading the data without CSS would be nightmarish. the fact is, we
shouldn’t be afraid of tables—and we should use them for what they were designed for.

A table that everyone can sit at
one of the reasons that tables get a bad rap is due to the accessibility problems they can
cause if not carefully used. For instance, screen readers can have difficulty reading them
properly, and small- screened devices are often hindered by tables when they are used for
layout. but there are a few simple things we can do to increase the accessibility of a data
table, while at the same time creating a lean structure that will be easy to style later on
with CSS.

let’s take a look at the simple table example found in Figure 3-1, illustrating one of
american baseball’s longest droughts. (a drought no more, with the red Sox victories of
2004 and 2007. i'm convinced this chapter had everything to do with it.)

tableS are eVil?

31

3
 Figure 3‑1. example of a typical data table

although at one time an extremely depressing set of statistics for a red Sox fan to look at,
 Figure 3-1 is a perfect example of tabular data. there are three table headers (Year,
opponent, and Season record (W- l)) followed by the data for each of the four years pre-
sented. above the table is a caption, defining what is contained below.

Marking up this data table is relatively straightforward, and we might do something like
the following:

<p align="center">Boston Red Sox World Series Championships</p>
<table>
 <tr>
 <td align="center">Year</td>
 <td align="center">Opponent</td>
 <td align="center">Season Record (W- L)</td>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

that should render close to what we see in Figure 3-1; however, there are a few improve-
ments we can make here.

Web StandardS SolutionS

32

First off, we can treat the title of the table, “boston red Sox World Series Championships,”
a little more semantically correct by using the <caption> element. the <caption> is
required to immediately follow the opening <table> element and usually holds the title
and/or nature of what’s contained within the table.

Visually, it will be easy for sighted people to understand the table’s purpose, while assisting
those browsing by nonvisual means as well.

let’s replace the opening paragraph and add in a proper <caption>:

<table>
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <td align="center">Year</td>
 <td align="center">Opponent</td>
 <td align="center">Season Record (W- L)</td>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

it’s important for captions to quickly convey what the data is that follows. by default, most
visual browsers will place text that’s contained within <caption> elements centered and
just above the very top of the table. We could, of course, alter the default styling of the
caption after the fact using CSS if we wished—and we’ll do just that later in the “extra
credit” section of this chapter. the fact that it’s now in its own unique element makes this
nice and easy.

tableS are eVil?

33

3

Adding a summary
additionally, we could add the summary attribute to the <table> element, further explain-
ing the purpose and contents of what is contained in our table. the summary is especially
helpful for those using nonvisual means to read the information.

the following shows the summary attribute and value added to our table example:

<table summary="This table is a chart of all Boston Red Sox World
Series wins.">
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <td align="center">Year</td>
 <td align="center">Opponent</td>
 <td align="center">Season Record (W- L)</td>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

The head(s) of the table
table headers are important to make use of when building data tables. instead of using a
presentational element like to visually cue the user that the cell is of importance in
grouping the data that follows, we can take advantage of the <th> element, much like we
used proper heading elements for section page content in Chapter 2.

Web StandardS SolutionS

34

Visual browsers might render information contained in <th> elements as bold and cen-
tered by default, but again we can use the uniqueness of the <th> element to style these
important cells differently from the rest of the table data that’s contained in a <td>.

in addition to their presentational advantages, using <th> elements can be beneficial to
nonvisual browsers as well—as we’ll dive into further on.

the headers in our example table are found in the top row: Year, Opponent, and Season
Record (W‑ L). let’s replace our previous, presentational markup with proper headers:

<table summary="This table is a chart of all Boston Red Sox World
Series wins.">
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <th>Year</th>
 <th>Opponent</th>
 <th>Season Record (W- L)</th>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

using <th> elements to mark up the header cells will give us the same visual results shown
in Figure 3-1. let’s review why this is a preferred way:

 We eliminate the need for extra presentational markup to differentiate the header
cells from normal ones.

 by default, most visual browsers will render text within <th> elements bold and
centered—making it easier to see the difference between headers and data.

 because of their uniqueness from normal <td> elements, we can later style table
headers differently from other cells in the table.

www.allitebooks.com

http://www.allitebooks.org

tableS are eVil?

35

3

there is also an additional reason for using table headers that we’ll discuss next.

Header and data relationships
to make things a bit more organized for people using a screen reader to read the informa-
tion from our table, we can utilize the headers attribute to associate header cells with the
corresponding data found in <td> elements. doing this will allow the screen reader to read
the header and data information in a more logical order, rather than strictly reading each
row left to right as it normally might.

let’s again use our red Sox table as an example on how to achieve this. First, we’ll need to
add a unique id to each <th> in our table. We can then add the headers attribute to each
data cell to match the two up accordingly.

adding the id to each header is as simple as this:

<table summary="This table is a chart of all Boston Red Sox World
Series wins.">
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <th id="year">Year</th>
 <th id="opponent">Opponent</th>
 <th id="record">Season Record (W- L)</th>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

Web StandardS SolutionS

36

We’ve used short, descriptive names for each header id. now we can add the appropriate
headers attribute to each data cell—with its value corresponding to the id that it’s associ-
ated with.

<table summary="This table is a chart of all Boston Red Sox World
Series wins.">
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <th id="year">Year</th>
 <th id="opponent">Opponent</th>
 <th id="record">Season Record (W- L)</th>
 </tr>
 <tr>
 <td headers="year">1918</td>
 <td headers="opponent">Chicago Cubs</td>
 <td headers="record">75- 51</td>
 </tr>
 <tr>
 <td headers="year">1916</td>
 <td headers="opponent">Brooklyn Robins</td>
 <td headers="record">91- 63</td>
 </tr>
 <tr>
 <td headers="year">1915</td>
 <td headers="opponent">Philadelphia Phillies</td>
 <td headers="record">101- 50</td>
 </tr>
 <tr>
 <td headers="year">1912</td>
 <td headers="opponent">New York Giants</td>
 <td headers="record">105- 47</td>
 </tr>
</table>

When we create relationships between our header and data information, a screen reader
might read this table as follows: “Year: 1918, opponent: Chicago Cubs, Season record
 (W- l): 75- 51,” and so on for each table row. this makes a little more sense than hearing
each row read left to right.

it also doesn’t hurt for us to have those unique ids for each <th> in our table. We could
later take advantage of that identification with exclusive CSS rules. and we’ll do just that in
the “extra credit” section later in this chapter.

Using the abbr attribute
in the preceding example, let’s say that you thought the header “Season record (W- l)”
was a bit too long for a speech synthesizer to read out. by adding the abbr attribute, we
can shorten what is read to whatever we’d like, while keeping the original text in the <th>
cell for visual browsers.

tableS are eVil?

37

3

<table summary="This table is a chart of all Boston Red Sox World
Series wins.">
 <caption>Boston Red Sox World Series Championships</caption>
 <tr>
 <th id="year">Year</th>
 <th id="opponent">Opponent</th>
 <th id="record" abbr="Record">Season Record (W- L)</th>
 </tr>
 <tr>
 <td>1918</td>
 <td>Chicago Cubs</td>
 <td>75- 51</td>
 </tr>
 <tr>
 <td>1916</td>
 <td>Brooklyn Robins</td>
 <td>91- 63</td>
 </tr>
 <tr>
 <td>1915</td>
 <td>Philadelphia Phillies</td>
 <td>101- 50</td>
 </tr>
 <tr>
 <td>1912</td>
 <td>New York Giants</td>
 <td>105- 47</td>
 </tr>
</table>

We’ve added abbr="Record" so that screen readers will use that shortened version
(“record”) of the table header when reading out the data of that particular cell.

<thead>, <tfoot>, and <tbody>
there are three additional elements related to tables that i’d like to mention. not only do
they provide extra semantic meaning to the structure of a table, but they also provide
additional elements for CSS rules to take advantage of, avoiding the need to add extra
classes to <tr> elements for styling table rows.

to quote the W3C’s htMl 4.01 specification on these elements (http://www.w3.org/TR/
html4/struct/tables.html#h- 11.2.3):

“table rows may be grouped into a table head, table foot, and one or more table body
sections, using the THEAD, TFOOT, and TBODY elements, respectively. this division enables
user agents to support scrolling of table bodies independently of the table head and foot.
When long tables are printed, the table head and foot information may be repeated on
each page that contains table data.”

http://www.w3.org/TR/html4/struct/tables.html#h-�11.2.3):
http://www.w3.org/TR/html4/struct/tables.html#h-�11.2.3):

Web StandardS SolutionS

38

So you can see that organizing a table this way can also be useful for browsing software
that supports independent scrolling of <tbody> sections—and especially helpful for longer
tables.

<thead> and <tfoot> elements must appear above <tbody> sections to allow for browsers
and devices to load that content first. an example of a table marked up with grouped
table rows may go something like this:

<table>
 <thead>
 <tr>
 ...table header content...
 </tr>
 </thead>
 <tfoot>
 <tr>
 ...table footer content...
 </tr>
 </tfoot>
 <tbody>
 <tr>
 ...table data row...
 </tr>
 <tr>
 ...table data row...
 </tr>
 <tr>
 ...table data row...
 </tr>
 </tbody>
</table>

You can see that both the header and footer information gets placed before the data rows
when using <thead> and <tfoot>.

as i mentioned earlier, not only do these elements provide extra meaning to a table, but
they also give us a few more “style hooks” to apply CSS to, without adding extraneous
classes to any of the <tr> elements.

For instance, if we wished to give only the data sections (marked up with <tbody>) a dif-
ferent background color than the other sections, we could write one CSS rule to handle
this:

tbody {
 background- color: gray;
 }

Without the <tbody> element, we would’ve had to add a class attribute to each <tr> ele-
ment that we wished to have a gray background. a fine example of how meaningful
markup can oftentimes lead to easier styling with CSS later on.

tableS are eVil?

39

3

Are tables evil?
i think the answer to this question is a resounding “no,” as long as tables are used for their
intended purpose. While tables rightfully get a bad rap when abused in creating complex,
nested layouts, they provide the necessary structure for blocks of data and information.

We could’ve filled an entire book with all of the various techniques you can employ to
build great tables, but hopefully we’ve gotten you off on the right foot for creating simple
tables that are accessible to all and easily styled using CSS.

Speaking of style, let’s spruce up our example table with a few CSS tricks.

Extra credit
as with the previous examples, we’re going to take our lean, mean, structured markup and
apply some CSS rules to add bits of style.

First, we’ll go over a simple border trick to create a single- pixel grid on our example, and
then we’ll uniquely style the table’s caption and headers.

Creating a grid

tired of the three- dimensional look that the good ol’ border attribute brings to the table?
Me too. typically, adding border="1" to the <table> element would get you an effect
similar to what’s found in Figure 3-1. but alternatively, here’s a cool trick for getting a nice,
neat grid using CSS instead. We’ll start by adding a 1- pixel border to two sides (right and
bottom) of each <th> and <td> cell:

th, td {
 border- right: 1px solid #999;
 border- bottom: 1px solid #999;
 }

adding the border to only two sides is key for creating a grid that has equally sized bor-
ders all the way around that still looks correct in all modern browsers. if we added the
same border to all four sides, they would double up on the top and left, where the cells
meet. there is an alternate way of achieving the grid using a single border rule that i’ll
explain following this example.

You’ll notice in Figure 3-2 that we’re only missing borders on the extreme top and left of
the entire table. to complete the grid, we’ll add a border- top and border- left to the
table element using the same color and style (see Figure 3-3).

table {
 border- top: 1px solid #999;
 border- left: 1px solid #999;
 }

Web StandardS SolutionS

40

th, td {
 border- right: 1px solid #999;
 border- bottom: 1px solid #999;
 }

 Figure 3‑2. table example with borders added to Figure 3‑3. table example with top and
right and bottom of <th> and <td> left borders added

Collapsing the gaps

now we have a complete grid, but what’s with the little gaps between the borders?
unfortunately, most browsers will reveal these pesky gaps because they add slight margins
by default.

What we can do is use the border- collapse property on the table element to close the
gaps and get the resulting grid we’re looking for:

table {
 border- collapse: collapse;
 }
th, td {
 border: 1px solid #999;
 }

adding the value collapse to the border- collapse property ensures that precise,
 single- pixel look we’re going for here. let’s take a look at the results shown in Figure 3-4.

 Figure 3‑4. a perfect grid using the border- collapse
property

tableS are eVil?

41

3

An IE/Mac note
While internet explorer for the Mac is no longer being developed, it’s worth pointing out
that it handles the border- collapse property poorly, doubling up some of the borders
we’ve added.

the table will still function normally, but in the rare event that you need ie/Mac to render
identically to other modern browsers, here’s the CSS that’s needed to make that happen:

table {
 border- top: 1px solid #999;
 border- left: 1px solid #999;
 border- collapse: collapse;
 }
th, td {
 border- right: 1px solid #999;
 border- bottom: 1px solid #999;
 }

For the remainder of the exercise, we’ll stick to the simpler version that looks slightly off in ie/
Mac only.

Spaced out
We now have a perfect grid on our hands. but it’s looking a little cramped. let’s allow it to
breathe a bit more, as shown in Figure 3-5, by simply adding a little padding to our com-
bined th, td rule:

table {
 border- collapse: collapse;
 }
th, td {
 padding: 10px;
 border: 1px solid #999;
 }

 Figure 3‑5. 10 pixels of padding added

Web StandardS SolutionS

42

Did you know? Setting padding with one value (in this case 10 pixels) will add that
value amount to all four sides of the element. You can also set the value for each side
separately by following the order like a clock (top, right, bottom, left). A handy mne‑
monic device to remember this is to think of the word “trouble.” So, including padding:
10px 5px 2px 10px; will add 10 pixels of padding to the top, 5 on the right, 2 on the
bottom, and 10 to the left (see Figure 3‑6).

Another shortcut: if your top and bottom values are the same and also if your left and
right values match up, you need only set each value once. So, including padding: 10px
5px; will add 10 pixels of padding to the top and bottom, while adding only 5 pixels for
both the right and left sides.

 Figure 3‑6. the face of a clock represents the order
of margin or padding values.

Customizing the headers

to make the table headers stand out even more, we can easily add a background color and
different font to those particular cells. because we’re using <th> elements, rather than
making their text bold inline, we don’t have to add any additional markup to call the head-
ers out uniquely.

let’s also add a little padding to the bottom of the caption as well as a different font and
color (red, of course) to make it stand out from the rest of the table (see Figure 3-7):

table {

 border- collapse: collapse;
 }
caption {

tableS are eVil?

43

3

 font- family: Arial, sans- serif;
 color: #993333;
 padding- bottom: 6px;
 }
th, td {
 padding: 10px;
 border: 1px solid #999;
 }
th {
 font- family: Verdana, sans- serif;
 background: #ccc;
 }

 Figure 3‑7. Caption and <th> styled

Headers with background images

We’ve added a gray background color to the <th> elements in our table, but we could go
a step further and instead create a stylish background image that would tile within those
cells—for instance, a subtle gray striped pattern similar to that found in the first releases
of Mac oS X.

Tiny tile
First, let’s create the one tiny image that’s necessary in photoshop or your favor-
ite image editor. the image need only be 4 pixels tall since for this example we’d
like the stripes to have 2- pixel gray lines alternate with 2 pixels of white. We could
make the width of the image whatever we’d like since it will tile in the <th> cell
to create the stripe effect. For bandwidth’s sake, we’ll only make the width 1 pixel
(see Figure 3-8).

The CSS
all we really needed to do differently from the previous example is replace the back-
ground color we were using with the path to the tiny image we created earlier. unless
otherwise specified, a background image will tile and repeat automatically in every direc-
tion, by default.

 Figure 3‑8. 1✕4
pixel stripe image
created in
photoshop
(zoomed)

Web StandardS SolutionS

44

table {
 border- collapse: collapse;
 }

caption {
 font- family: Arial, sans- serif;
 color: #993333;
 padding- bottom: 6px;
 }

th, td {
 padding: 10px;
 border: 1px solid #999;
 }

th {
 font- family: Verdana, sans- serif;
 background: url(th_stripe.gif);
 }

 Figure 3-9 shows the resulting styled table—this time with a striped background for the
table headers only. You could easily experiment with other tiled shapes to create varied
effects for the headers and/or normal data cells. have fun with it.

Figure 3‑9. an example
of a tiled image
background applied to
table header cells

Assigning icons to IDs

remember earlier in the chapter when we assigned a unique id to each <th> in our table?
We coupled those ids with headers attributes in the data cells to help those browsing by
nonvisual means. We can now take advantage of the ids in another way—by assigning a
specific icon to each <th> as a background image.

the icon images themselves will be kept entirely within the CSS, allowing for easy swap- out
in the event of a site redesign or update. the markup will stay exactly the same.

www.allitebooks.com

http://www.allitebooks.org

tableS are eVil?

45

3

The icons
i’ve created three unique icons in photoshop—one for each table heading in our example:
Year, opponent, and Season record (W- l). Figure 3-10 shows the three icons.

 Figure 3‑10. three table
header icons created in
photoshop

The CSS
adding the CSS is simple. because we’ve assigned an id to each <th>, we can specify the
correct icon using the background property:

table {

 border- collapse: collapse;
 }

caption {
 font- family: Arial, sans- serif;
 color: #993333;
 padding- bottom: 6px;
 }

th, td {
 padding: 10px;
 border: 1px solid #999;
 }

th {
 font- family: Verdana, sans- serif;
 }

#year {
 padding- left: 26px;
 background: #ccc url(icon_year.gif) no- repeat 10px 50%;
 }

#opponent {
 padding- left: 26px;
 background: #ccc url(icon_opp.gif) no- repeat 10px 50%;
 }

#record {
 padding- left: 26px;
 background: #ccc url(icon_rec.gif) no- repeat 10px 50%;
 }

Web StandardS SolutionS

46

You’ll notice that, because we’re using the shorthand method for declaring backgrounds,
we’ve taken the background:#ccc; rule out of the th declaration and have added it instead
for each header along with the appropriate icon image. this will allow the image to “sit”
on top of the gray color that we’ve specified. We’ve given enough padding on the left of
each header to let the icon have enough room to be seen without any text overlap.
 Figure 3-11 shows the results found in the browser.

 Figure 3‑11. an example of unique icons assigned to each <th>

Using the shorthand method has its obvious advantages; however, if we had declared
the image only, without the color, using the background property, we’ll have overridden
any default color we had previously set using background on the <th> element.

Combining rules for simpler bits
an alternate method that achieves the same results would be to write the rules that get
duplicated for each separate header (in this case padding, background color, and position)
once in the th declaration (because they are indeed all <th>s), and save the unique bits
(the image path) for the #year, #opponent, and #record declarations.

table {
 border- collapse: collapse;
 }

caption {
 font- family: Arial, sans- serif;
 color: #993333;
 padding- bottom: 6px;
 }

th, td {
 padding: 10px;
 border: 1px solid #999;
 }

tableS are eVil?

47

3

th {
 font- family: Verdana, sans- serif;
 padding- left: 26px;
 background- color: #ccc;
 background- repeat: no- repeat;
 background- position: 10px 50%;
 }

#year {
 background- image: url(icon_year.gif);
 }

#opponent {
 background- image: url(icon_opp.gif);
 }

#record {
 background: url(icon_rec.gif);
 }

a little more compact, isn’t it? by combining those common rules into one, we save repeat-
ing ourselves over and over. For this particular example, it may seem like six and a half of
one, half a baker’s dozen of the other—but for larger style sheets it can save quite a few
bytes when those repeated rules are combined into one declaration.

More table style examples
For more inspiration in the various ways data tables can be styled with CSS, check out
these resources:

 http://www.smashingmagazine.com/2008/08/13/top-10-css-table-designs/

 a great tutorial on taking a semantically marked- up table and applying 10 unique
designs to it using CSS

 http://veerle.duoh.com/blog/comments/a_css_styled_table/

 Veerle pieters’ tutorial on creating a stylish data table

 http://icant.co.uk/csstablegallery/

 an ongoing showcase of table designs from submitted CSS files

Wrapping up
What we’ve discovered throughout this chapter is that not only are tables not evil, but by
understanding them better, we see that they are appropriate for marking up tabular data—
and can still be accessible all the while.

We also found that with a little bit of style, we can take control of tabular markup and
make it look attractive. Fear not the table.

http://www.smashingmagazine.com/2008/08/13/top-10-css-table-designs/
http://veerle.duoh.com/blog/comments/a_css_styled_table/
http://icant.co.uk/csstablegallery/

Chapter 4

QUOTATIONS

Web StandardS SolutionS

50

“Misquotations are the only quotations that are never misquoted.”

—hesketh pearson

Quotations are used frequently on all types of websites. Whether quoting another web
page, author, or publication, there are advantages to be had by marking quotations up in
defined ways. once structured, quotations can become a stylish design element when
spiced up with some simple CSS.

let’s take a look at three different ways a quotation might be marked up, noting the pros
and cons of each method. once we’ve settled on the best, we’ll talk about a few related
elements and add a few bits of style. When marking up a long quotation, which method is
best?

let’s look closely at each of these methods, striving to find the best tool for job—and
more importantly, why it’s the best tool.

Method A: Lacks meaning
<p>Misquotations are the only quotations that are never misquoted.</p>
<p>— Hesketh Pearson</p>

When calling it out on the page, often it’s desirable to have the quotation appear differ-
ent from the rest of the text on the page. it’s helpful to cue the reader into knowing that
this portion of the page is from a different source, breaking (in a good way) the normal
flow of content.

Method a is marked up no differently from any other paragraph on the page, so unfortu-
nately we have no easy way to style it differently. the double quotation marks themselves
are the only visual cue that this is indeed a quotation.

Method B: A class act?
<div class="quotation">
 <p>Misquotations are the only quotations that are never misquoted.</p>
 <p>— Hesketh Pearson </p>
</div>

because of the class="quotation" that is added to the <div> element that surrounds the
quotation, we could style it uniquely with CSS, after the fact. but it seems a bit unneces-
sary to create this extra class when there’s a perfectly good htMl element that exists for
this purpose. and we’ll reveal that perfectly good htMl element in just a minute.

once we start using a <div> with a class attached, we’re also locked into coding all quota-
tions throughout an entire site this way if we’d like the style to be consistent. We must also
remember this particular syntax for marking up quotations in the future. this is especially

QuotationS

51

4

a bummer if we’re dealing with a large site with multiple <div> and class combinations for
various structural elements throughout the page. it can easily start to get messy, and you’d
need a roadmap to keep track of all the custom class names you’ve created.

there is also the issue of viewing a quotation marked up this way without CSS, whether it
be unavailable or unsupported. Since the <div> is just a generic container, no default styl-
ing is applied to content placed within them. this is important for people using old browser
versions, text browsers, or screen readers. take a look at the quotation sans CSS, and it
would appear just like everything else on the page.

Method C: <blockquote> is best
<blockquote>
 <p>Misquotations are the only quotations that are never misquoted.</p>
 <p>— Hesketh Pearson </p>
</blockquote>

the W3C recommends using the <blockquote> element for long quotations (block- level
content), and it’s the element that was designed to handle the exact situation that we’re
discussing. by using it, we’re giving structural meaning to the content, while at the same
time providing a unique label for adding style for visual browsers. You’ll notice we’re also
wrapping lines inside of the <blockquote> with paragraph elements. this is also good
practice, adding the appropriate semantic value to those pieces of content. in other words,
we wouldn’t use a
 to separate paragraphs within a <blockquote>. the <p> ele-
ments here provide the proper structure, as well as making them easily styled with CSS.

Without any styling added, content within <blockquote> elements will be indented. this is
a minimal, but sufficient, visual cue for separating the quotation from normal text. this
default indenting, however, has given birth to a nasty habit, which we’ll discuss next.

Using a screwdriver to hammer a nail
You may remember using <blockquote> in the past because it was like a paragraph that
was indented. if you needed to indent a block of text, you wrapped it in <blockquote> and
that was that.

unfortunately, it was a bad habit to get into, and one that’s remedied by instead applying
 padding- left or margin- left values to the proper elements using CSS. historically,
<blockquote> has been abused in this way, being exploited more for presentational rea-
sons than for structural circumstances.

because of this bad habit, the W3C has recommended that the rendering of quotation
marks be left to the style sheet and not the default styling of the browser. We’ll look at a
neat way of inserting stylish quotation marks in the “extra credit” section of this chapter.

Web StandardS SolutionS

52

Summary
let’s briefly review why we think using Method C is the better choice over the other two
for marking up a long quotation.

Method a:

 the paragraph can’t be easily styled separately to distinguish itself from the rest of
the page.

 this method doesn’t provide any meaning or structure to the quotation.

Method b:

 adding the unique class makes for easy styling, but is unnecessary when <block-
quote> is available.

 We’re locked into marking up future quotations using this method if we’d like con-
sistent styles throughout the page and/or entire site.

Method C:

 it’s the element that was designed by the W3C for this purpose, providing meaning
and structure to the content.

 it’s easy to style quotations uniquely using CSS rules on the <blockquote>
element.

 in the absence of CSS, the default rendering of <blockquote> will be a sufficient
cue for visual and nonvisual browsers.

it’s now time to kick the tires on our <blockquote> and find some creative ways to add
style.

Extra credit
For extra credit, we’ll be looking at a few creative ways to style quotations marked up with
<blockquote>, but before that, let’s talk a little about the cite attribute as well as inline
quotations.

A cite for curious eyes

Getting tired of the corny headings yet? oh, good. neither am i. it’s important to mention
the cite attribute when discussing quotations. according to the W3C’s specification, cite
gives the designer a place to reference the source from which the quotation was bor-
rowed—meaning if the quotation comes from another web page, we can add the url of
that page as the value of the cite attribute.

let’s take a look at how this works in the code.

QuotationS

53

4

<blockquote cite="http://www.somewebsite.com/path/to/page.html">
 <p>Misquotations are the only quotations that are never misquoted.</p>
 <p>— Hesketh Pearson </p>
</blockquote>

at the time of this writing, most browsers aren’t going to do anything particularly special
with the cite attribute that we’ve just added. but things start to get interesting when
advanced CSS techniques or scripting applications are used to display or index the infor-
mation contained within the cite attribute. the location of the quotation is an additional
nugget of information that helps describe the content it contains—and that can be very
valuable in the future.

think of adding cite information as you would putting pennies in a piggy bank. the pen-
nies aren’t worth much today, but you’ll be happy later on down the road that you saved
them all.

For inline citations, the <cite> element is available to wrap references to other sources
(e.g., <p>The following material is an excerpt from the <cite>New York Times
</cite>.</p>).

Inline quotations

What about quotations that are short and meant to be referenced inline? For instance, if
you’re quoting someone within a sentence, use the <q> element demonstrated here:

I said, <q>Herman, do you like bubblegum?</q> And he said,➥

<q>Yes, the kind that comes with a comic.</q>

which, in a visual browser, would most likely appear like this:

i said, “herman, do you like bubblegum?” and he said, “Yes, the kind that comes with a
comic.”

Just as we did with <blockquote>, we could also add the cite attribute to the <q> element,
referencing the source of the quote:

<q cite="http://bubblegumcomicfans.com/manifesto.html">Yes, the kind
that comes with a comic.</q>

No need for marks
Most visual browsers will insert quotation marks where <q> and </q> elements are used, so
there’s no need to type them in. the W3C also recommends adding the lang attribute with
whatever language the quotation is in, as the value. Certain languages may display the
quotation marks differently, depending on the language.

http://www.somewebsite.com/path/to/page.html
http://bubblegumcomicfans.com/manifesto.html

Web StandardS SolutionS

54

I said, <q lang="en- us">Herman, do you like bubblegum? </q> And he ➥

said, <q lang="en- us">Yes, the kind that comes with a comic.</q>

a full listing of possible language codes is available at the W3C site (www.w3.org/TR/
html4/struct/dirlang.html#langcodes).

Nesting inline quotations
You can also nest inline quotations when you’re quoting someone within a quotation.
Confused? Me too. let’s take a look at an example:

I said, <q lang="en- us">Herman, do you like bubblegum? </q> And he ➥

 said, <q lang="en- us">Yes. Bubblegum is what Harry calls ➥

 <q lang="en- us">delicious</q>.</q>

double and single quotation marks would be used in the appropriate places like this:

i said, “herman, do you like bubblegum?” and he said, “Yes. bubblegum is what harry calls
‘delicious’.”

Styling <blockquote>

For a few years now, Fast Company has been running a daily quotation from the maga-
zine’s archives on its home page. to preserve FC’s typographic style and emphasis, the
quote had, for a long while, been created as a GiF image, with the ability to manipulate the
font any which way the designer wished.

in the early fall of 2003, right about the time i was watching my beloved red Sox come
 oh-so- close to a historic World Series berth, i decided to toss out the GiFs and use a styled
<blockquote> instead.

From an accessibility angle, it sure made sense to have the quotation as text rather than an
image, and while we couldn’t reproduce the flexibility in typography of the GiF, we had the
challenge of making the quote stylish in some fashion. CSS to the rescue, of course.

Background quote marks
the idea is pretty simple, and involves creating opening and closing quote marks as two
separate images, light enough in shade to be sitting behind the text of the quote that will
overlap a bit on top of them. the quote also lives in a 270-pixel- wide, light gray box that
has rounded corners to match the rest of the look and feel of the website. a third image
is used to complete the rounded effect along with the quotation marks. all three images
are contained entirely within CSS using the background property on the various elements
that are available.

let’s first create those quotation mark and rounded- corner images in adobe photoshop or
your favorite image editor. here is the opportunity to use a custom font that would nor-
mally be unavailable to the everyday browser. in the case of Fast Company, i was able to
use a font for the quotation marks that was found throughout the magazine.

http://www.w3.org/TR/html4/struct/dirlang.html#langcodes
http://www.w3.org/TR/html4/struct/dirlang.html#langcodes

QuotationS

55

4

Three images
 Figure 4-1 shows the three images created, one that handles both the opening quotation
mark and top rounded corners, one for the closing quotation mark, and one for the two
bottom rounded corners.

the images are transparent to let the gray background that we’ll specify in CSS show through:
white where we can create the rounded corners and gray for the quotation marks.

 Figure 4‑1. three images created in photoshop to create quotation marks and rounded corners

Tagging the elements
at present, you can only assign one background image to an element using the back-
ground or background- image property. So, we’ll add an id to each of the paragraphs
within our <blockquote>.

one paragraph we’ll tag as #quote and the other as #author so that in the end, we’ll have
three unique elements to assign background images to.

take a look at the modified markup that we’ll be using for the rest of this exercise:

<blockquote cite="http://www.somesite.com/path/to/page.html">
 <p id="quote">Misquotations are the only quotations ➥

that are never misquoted.</p>
 <p id="author">—Hesketh Pearson</p>
</blockquote>

now we’re ready to assign the images.

Three elements, three backgrounds
as mentioned previously, at present, you can specify just one background image for an
element using the background or background- image property. So we’ll take advantage of
the three available elements in our example—the <blockquote>, the #quote paragraph,
and the #author paragraph—in order to assign the three images needed to complete the
effect we’re after.

http://www.somesite.com/path/to/page.html

Web StandardS SolutionS

56

it’s always a good idea to take a look at what elements you have available before adding
new ones. often, it’s possible to get the CSS styling you need with elements that are
already in place from writing good, structured markup.

to begin, we’ll write the CSS rules for the <blockquote> element:

blockquote {
 width: 270px;
 margin: 0;
 padding: 0;
 font- family: georgia, serif;
 font- size: 150%;
 letter- spacing: -1px;
 line- height: 1em;
 text- align: center;
 color: #555;
 background: #eee url(top.gif) no- repeat top left;
 }

We’ve given the entire package a width of 270 pixels, the same width as the top.gif image
that’s creating the rounded borders as well as the opening quotation mark. We’re also giv-
ing the text some love by specifying font, size, and color. lastly, we’re centering all of the
text and have assigned the background color, image, and position in the last rule.

turning off margins and padding for the <blockquote> is important as well. We’ll be add-
ing padding to each of the paragraph elements instead. this will allow us to work around
internet explorer version 5 in Windows’ misinterpretation of the CSS box model. We’ll dis-
cuss in detail the box model further on in part two of the book.

next, let’s set up the rules for the #quote paragraph:

blockquote {
 width: 270px;
 text- align: center;
 margin: 0;
 padding: 0;
 font- family: georgia, serif;
 font- size: 150%;
 letter- spacing: -1px;
 line- height: 1em;
 color: #555;
 background: #eee url(top.gif) no- repeat top left;
 }

#quote {
 margin: 0 10px 0 0;
 padding: 20px 10px 10px 20px;
 background: url(end_quote.gif) no- repeat right bottom;
 }

QuotationS

57

4

by setting margin: 0 10px 0 0;, we’ll collapse the browser’s default spacing for the para-
graph on top and bottom, instead using a bit of precise padding to get the layout just
right. We’re adding a 10- pixel margin to the right side, however, effectively offsetting the
quote mark background image by exactly that amount to match the left side. if we leave
those 10 pixels out, the image would sit flush to the right edge of the entire box. another
option is to add that 10 pixels of padding to the right of the image itself.

also note that background image (the closing quotation mark) is specified to sit at the
bottom and right of the <blockquote>.

lastly, we’ll use the author paragraph (#author) element to add the last background
image—the rounded corners for the bottom of the box.

blockquote {
 width: 270px;
 text- align: center;
 margin: 0;
 padding: 0;
 font- family: georgia, serif;
 font- size: 150%;
 letter- spacing: -1px;
 line- height: 1em;
 color: #555;
 background: #eee url(top.gif) no- repeat top left;
 }

#quote {
 margin: 0 10px 0 0;
 padding: 20px 20px 10px 20px;
 background: url(end_quote.gif) no- repeat right bottom;
 }

#author {
 margin: 0 10px 0 0;
 padding: 0 0 10px 0;
 color: #999;
 font- size: 60%;
 background: url(bottom.gif) no- repeat bottom;
 }

again, we’ve collapsed the default margin of the paragraph, opting instead to use a bit of
padding on the bottom to get things lined up. the third image is in place now, and adds
the bottom left and right rounded corners to the box. by using padding instead of margin
to set spacing for the author, we ensure that the rounded- corner image can sit where it
needs to—precisely at the bottom.

The results
 Figure 4-2 shows the results as seen in a typical, modern graphical browser. the rounded box
is complete and quotation marks are tucked in nicely behind the quotation text. What’s

Web StandardS SolutionS

58

especially nice about this method is that the entire box is scalable—meaning you can drop
in a quote of any length, and the box will expand or contract perfectly, with the quotation
marks and rounded corners lining up in the right spots. this also means the design of the
quote and containing box will be maintained if a user with low vision increases the text size.

 Figure 4‑2. resulting styled block quote using three
background images and text

Calling out special words
one additional design touch that i added to the Fast Company quote was to use the
 element to call out certain important words within the quotation, to further
mimic the typography that was used throughout the magazine.

by using , i could ensure that most unstyled viewers and nonvisual visitors of the
quote would still receive a bold or strongly emphasized word (which makes perfect sense
in this case), while at the same time, i could treat elements within the <block-
quote> with a darker color as well, in the CSS.

the markup would change slightly, with the addition of selected words wrapped in
 elements:

<blockquote cite="http://www.somesite.com/path/to/page.html">
 <p id="quote">Misquotations are the only quotations ➥

that are never misquoted.</p>
 <p id="author">—Hesketh Pearson</p>
</blockquote>

and here’s the one additional CSS declaration that needs to be added:

#quote strong {
 color: #000;
 font- weight: normal;
 }

now, any elements that are within our quotation will be black (none more black)
and since the rest of the quote is of normal font- weight, we’ll override the default bold
that occurs with with a value of normal.

You can see the results of the elements in Figure 4-3, where we’ve called out the
words “Misquotations” and “never.”

http://www.somesite.com/path/to/page.html

QuotationS

59

4

 Figure 4‑3. the styled <blockquote> with
elments added for calling out certain words

How does it degrade?
We’ve seen how stylish our <blockquote> can be with just a few background images and
CSS rules, but what about browsers and devices that don’t handle CSS well? how well does
this method degrade?

Well, fortunately because we’re using the <blockquote> element as it was meant to be
used, unstyled viewers, old browsers, phones, pdas, and screen readers will treat it appro-
priately. For instance, Figure 4-4 demonstrates how our lean markup will look without the
fancy CSS applied. i’ve added a bit of dummy text around the quotation to give the com-
plete effect.

 Figure 4‑4. an unstyled view of our <blockquote> example

Wrapping up
after looking closely at a few different methods for marking up quotations, it was easy to
find the right tool for the job in the <blockquote> element. Gone are the days of using
<blockquote> simply to indent text; now we can now employ its intended use: quoting a
source with a long quotation.

once that structure is in place, stylish design can be easily applied to <blockquote> ele-
ments, making them stand out from the normal flow of text—all the while being still
properly read by non–CSS- enabled browsers or other devices.

Chapter 5

FORMS

Web StandardS SolutionS

62

interactivity has always been an integral part of the Web, letting the user and site com-
municate through the exchange of information. Forms allow us to collect input from users
in an organized, predetermined fashion, and have always been sort of an “anything goes”
area when building websites. For instance, we’ll discover that marking up a form can be
handled in approximately 10,000 different ways. oK, perhaps not that many, but there are
several options to consider as well as steps that we can take to ensure our forms are struc-
tured in a way that’ll benefit both the user and site owner.

What are our options when marking up
a form?

let’s take a look at four different ways to mark up the same, simple form—all of which
achieve similar results. We’ll go over each method and talk about the pros and cons that
are involved.

Method A: Using a table

<form action="/path/to/script" method="post">
 <table>
 <tr>
 <th>Name:</th>
 <td><input type="text" name="name" /></td>
 </tr>
 <tr>
 <th>Email:</th>
 <td><input type="text" name="email" /></td>
 </tr>
 <tr>
 <th> </th>
 <td><input type="submit" value="submit" /></td>
 </tr>
 </table>
</form>

tables have long been used to mark up forms, and because of that frequent use, seeing
forms laid out in this particular way has become familiar to us: right- aligned text labels in
the left column, left- aligned form controls in the right column. using a simple, two- column
table is one of the easiest ways to achieve a usable form layout.

Some could argue that a table isn’t necessary, while others believe that forms could be
considered tabular data. We’re not going to argue either side, but instead state that using
a table is sometimes the best way to achieve certain form layouts—especially complex
forms that involve multiple controls like radio buttons, select boxes, and so forth. relying
solely on CSS to control the layout of complex forms can be frustrating, and often involves
adding extraneous and <div> elements, with more code bloat than that of a
table.

ForMS

63

5

let’s take a look at Figure 5-1 to see how Method a would appear in a typical visual browser.

 Figure 5‑1. Method a as rendered
in a browser

You can see that by using a table, the labels and form elements line up nicely. For such a
simple form, though, i would probably opt to avoid the table altogether in favor of some-
thing that requires less markup. unless this particular layout is crucial to the visual design
of the form, using a table here isn’t necessary. there are also a few accessibility concerns
we could address—and we will, while looking over the next two methods.

Method B: Tableless, but cramped

<form action="/path/to/script" method="post">
 <p>
 Name: <input type="text" name="name" />

 Email: <input type="text" name="email" />

 <input type="submit" value="submit" />
 </p>
</form>

using a single paragraph and a few
 elements to separate the items is a passable
solution—but could visually render a bit on the cramped side. Figure 5-2 shows how this
would typically appear in a browser.

 Figure 5‑2. Method b as rendered
in a browser

You can see that while we got away without using a table, it looks rather cramped and ugly.
We also run into the problem of the form controls not lining up perfectly, as seen in
 Figure 5-2.

We could alleviate some of the crowding by adding some margins to the <input> elements
using CSS like this:

input {
 margin: 6px 0;
 }

Web StandardS SolutionS

64

the preceding would add a 6- pixel margin to both the top and bottom of each <input>
element (the name, e- mail, and submit controls), spacing out the elements as shown in
 Figure 5-3.

 Figure 5‑3. Method b with padding
added to the input elements

While there’s nothing particularly wrong with Method b, there are a few adjustments we
can make to build a better form. and those adjustments are evident in Method C. So let’s
take a look.

Method C: Simple and more accessible

<form action="/path/to/script" id="thisform" method="post">
 <divlabel for="name">Name:</label>

 <input type="text" id="name" name="name" /></div>
 <div><label for="email">Email:</label>

 <input type="text" id="email" name="email" /></div>
 <div><input type="submit" value="submit" /></div>
</form>

i like Method C for several reasons. First, for a simple form like this example, i find it con-
venient to contain each label and control in its own <div>. When viewed unstyled, the
default behavior of a <div> (each on its own line) should be enough to set the items apart
in a readable way. later, we could control precise spacing with CSS on <div> elements that
are contained within our form.

We’ve even gone a step further and have given this form a unique, but boring,
id="thisform". So, that precise spacing i was just referring to could go something like
this:

#thisform div {
 margin: 6px 0;
 }

essentially, we’re saying that all <div> elements in this form should have top and bottom
margins of 6 pixels.

another advantage that Method C has over the previous two is that while each group
(label and field) is wrapped in <div> elements, a
 puts each on its own line. using a

 to separate the items gets around the issue of fields not lining up perfectly due to
text labels of different lengths.

ForMS

65

5

 Figure 5-4 shows how Method C would appear in a visual browser, with the CSS applied to
each <div> element as mentioned earlier.

 Figure 5‑4. Method C as
viewed in a browser, with
CSS applied to <p> elements

aside from the visual aspects of Method C, let’s take a look at the most important advan-
tages it has: in particular, an accessibility improvement.

The <label> element
there are two steps to utilizing the <label> element for making your forms more acces-
sible, and both are in place in Method C. the first step is to use <label> elements to
associate the label text with its corresponding form control, whether it be a text field, text
area, radio button, check box, or another control. Method C uses <label> on the “name:”
and “email:” headers to couple it with text input boxes that will contain that information.

the second step is adding the for attribute to the <label> element as well as a matching
id attribute to the form control it belongs to.

For instance, in Method C we wrap the <label> element around Name: with the value of
the for attribute that matches the value of the id for the text field that follows.

<form action="/path/to/script" id="thisform" method="post">
 <p><label for="name">Name:</label>

 <input type="text" id="name" name="name" /></p>
 <p><label for="email">Email:</label>

 <input type="text" id="email" name="email" /></p>
 <p><input type="submit" value="submit" /></p>
</form>

Why <label>?
perhaps you’ve heard others tell you that you should always add <label> elements to your
forms. the important question to ask (always) is why you should use <label> elements.

Creating label/id relationships allows screen readers to properly read the correct label for
each form control—regardless of where each falls within the layout. that’s a good thing.
also, the <label> element was created to mark up form labels, and by utilizing it we’re
adding structure to the form by adding meaning to these components.

an additional benefit to using <label> elements when dealing with radio button or check
box controls is that most browsers will toggle the control on or off when the user clicks

Web StandardS SolutionS

66

the text contained within the <label>. this in turn creates a larger clickable area for the
control, making it easier for mobility- impaired users to interact with the form (see Mark
pilgrim, “Dive Into Accessibility,” http://diveintoaccessibility.org/day_28_labeling_
form_elements.html).

For example, if we add a check box option to our form that gives the user the option to
“remember this info,” we can use the <label> element like this:

<form action="/path/to/script" id="thisform" method="post">
 <p><label for="name">Name:</label>

 <input type="text" id="name" name="name" /></p>
 <p><label for="email">Email:</label>

 <input type="text" id="email" name="email" /></p>
 <p><input type="checkbox" id="remember" name="remember" />
 <label for="remember">Remember this info?</label></p>
 <p><input type="submit" value="submit" /></p>
</form>

by marking the check box option up this way, we’ve gained two
things: screen readers will read out the form control with the
correct label (even though in this case, the label comes after the
control), and the target for toggling the check box becomes
larger, which now includes the text as well as the check box
itself (in most browsers).

 Figure 5-5 demonstrates how the form would appear in a
browser, with the increased clickable area for the check box
highlighted.

apart from tables and paragraphs, i’d like to show you one last
method for marking forms—using a definition list.

Method D: Defining a form

<form action="/path/to/script" id="thisform" method="post">
 <dl>
 <dt><label for="name">Name:</label></dt>
 <dd><input type="text" id"name" name="name" /></dd>
 <dt><label for="email">Email:</label></dt>
 <dd><input type="text" id="email" name="email" /></dd>
 <dt><label for="remember">Remember this info?</label></dt>
 <dd><input type="checkbox" id="remember" name="remember" /></dd>
 <dt><input type="submit" value="submit" /></dt>
 </dl>
</form>

 Figure 5‑5. example of a check box
option added with clickable text

http://diveintoaccessibility.org/day_28_labeling_

ForMS

67

5

the last method we’ll look at in regard to form layout involves the use of a definition list
to define label and form control pairs. it’s a somewhat controversial move—skirting the
fringe of what a definition list is designed to do. but it’s also a method that’s gaining in
widespread use, and one worthy of mention in this book.

Further ahead, in Chapter 8, we’ll talk in more detail regarding definition lists—and the
fact that they certainly are capable of more uses than most designers are aware of. using
a <dl> to mark up a form is a perfect example.

You’ll notice in the code example that each form label is wrapped in a definition term ele-
ment (<dt>) followed by its associated form control wrapped in a definition description
element (<dd>). doing this creates a pairing of label to form control, which when viewed
in a browser without any style applied looks like Figure 5-6.

 Figure 5‑6. default
form layout using a
definition list

by default, most visual browsers indent the <dd> element on its own line. Fantastic. Without
adding any additional <p> or
 elements, we have a readable form layout for those
browsing without CSS.

Defining style
the simplest style we could add would be to easily remove the default indenting of <dd>
elements within our form:

form dd {
 margin: 0;
 }

the preceding snippet of CSS would render our Method d example as viewed in
 Figure 5-7.

Figure 5‑7. definition
list form example with
<dd> margins removed

Web StandardS SolutionS

68

the table- like format of Method a could also be achieved by floating <dt> elements in our
form:

form dd {
 margin: 0;
 }

form dt {
 float: left;
 padding- right: 10px;
 }

by floating the <dt> elements to the left, the form controls contained in <dd> elements
will align themselves to the right, as seen in Figure 5-8. You’ll notice that the form controls
don’t line up with each other perfectly—but at the very least this illustrates that while it’s
possible to use a <dl> element to lay out a form, the layout doesn’t have to put each ele-
ment on its own line.

in fact, because of the presence of the <dl>, <dt>, and <dd> elements—which are in addi-
tion to the form <label> and <input> elements—you’ll have plenty to work with in the
way of elements that can be styled with CSS.

 Figure 5‑8. Form layout with floated
<dt> elements

Summary
We’ve looked at four different ways to mark up the same simple form, noting the pros and
cons of each. it’s important to point out that the accessibility features that we added to
Methods C and d could, of course, be easily added to the first two methods as well—and
those methods would be better because of those added features.

neither one of the methods that we’ve looked at here are necessarily miles ahead of the
others in terms of a “best solution.” but it’s valuable to know your options—and what you
can combine from all four to create better forms in your own projects.

let’s recap the differences between the methods presented.

Method a:

 Visually, it’s a nice, neat way to organize form controls and labels—especially for
larger complex forms.

 however, using a table for such a simple form seems a bit unnecessary.

ForMS

69

5

Method b:

 Simple markup will degrade nicely in text browsers and small- screened devices.

 Visually, just using
 elements results in a cramped layout.

Method C:

 Simple markup will degrade nicely in text browsers and small- screened devices.

 this method allows for labels and controls of different lengths without any “lining
up” issues.

 this method contains an important accessibility feature (that could also be applied
to the previous methods).

Method d:

 Structured markup will degrade nicely in text browsers and small- screened
devices.

 this method contains an important accessibility feature (that could also be applied
to the previous methods).

 labels and form controls could be placed on the same line or separate lines using
CSS.

While you wouldn’t be guilty of web design crimes if you were to use Method a or b, tak-
ing what we know that is good from Method C and applying it to the previous examples
would be a step in the right direction.

there is also room for improvement on Method C as well, and we’ll take a look at a few
additional features we can add in the “extra credit” section that follows. We’ll also talk
about some simple CSS that we can apply to make our form more visually appealing.

Extra credit
For this extra credit session, we’ll discuss the tabindex and accesskey attributes and how
they can do wonders to make our form more navigable. We’ll also explore the <fieldset>
element, which can help in organizing form sections. Finally, we’ll cover CSS as it relates to
spicing up our form’s appearance.

The fabulous tabindex

a feature that we can easily add to our form is the tabindex attribute. adding tabindex,
and a numerical value, enables users to navigate the focus of form controls with the key-
board (typically using the tab key). repeatedly hitting the tab key will change the focus to
the next form control, in an order that we can specify. by default, every interactive ele-
ment has an implied “tab order,” but using the tabindex attribute takes that ordering
away from the browser, putting you in full control.

Web StandardS SolutionS

70

For instance, let’s add the tabindex attribute to the form controls in our example (Method
C):

<form action="/path/to/script" id="thisform" method="post">
 <p><label for="name">Name:</label>

 <input type="text" id="name" name="name" tabindex="1" /></p>
 <p><label for="email">Email:</label>

 <input type="text" id="email" name="email" tabindex="2" /></p>
 <p><input type="checkbox" id="remember" name="remember" tabindex="3" />
 <label for="remember">Remember this info?</label></p>
 <p><input type="submit" value="submit" tabindex="4" /></p>
</form>

now, when the user tabs through the form, we’ll be ensuring the focus of the cursor follows
the exact order we intended: Name:, Email:, Remember this info?, and the submit button.

using tabindex to set focus order becomes even more useful for complex forms and
those where there might be multiple input boxes or other form controls for a single
label.

Why tabindex?
aside from being simple to implement on our form, we’ll again be helping mobility- impaired
users by letting them navigate the form entirely with the keyboard. rather than grabbing
the mouse to enter each form item, the user will be able to tab through each control, in
the correct order. think about those who, for whatever reason, are unable to use both
hands to navigate the Web. this will help.

accesskey for frequented forms

Similar to tabindex, the accesskey attribute is another easily added feature that can be
useful for mobility- impaired users—and just darn convenient for others.

For instance, if we add the accesskey attribute to the <label> element that surrounds the
Name: text of our form, when the user presses the key we specify the focus of the cursor
will change to the field that’s associated with the label.

let’s take a look at the code that’ll make this happen:

<form action="/path/to/script" id="thisform" method="post">
 <p><label for="name" accesskey="9" >Name:</label>

 <input type="text" id="name" name="name" tabindex="1" /></p>
 <p><label for="email">Email:</label>

 <input type="text" id="email" name="email" tabindex="2" /></p>
 <p><input type="checkbox" id="remember" name="remember" ➥

tabindex="3" />
 <label for="remember">Remember this info?</label></p>
 <p><input type="submit" value="submit" tabindex="4" /></p>
</form>

ForMS

71

5

depending on the system, the user will either use the alt or Ctrl key in conjunction with
the 9 key that we’ve specified in the markup. Focus will immediately shift to the Name:
field in our form.

Easily accessed search
adding the accesskey attribute can be especially helpful when used on frequently used
forms such as a search box or membership login. Without having to reach for the mouse,
users can instantly change focus and start their query or input using only the keyboard.

It’s important to note that, while not all browsers handle accesskey, it’s an added ben-
efit for those that do. For instance, to access the search form field where we’ve added
accesskey="9", Windows users would press Alt+9, while Mac users would press
Command+9 to shift the focus to the search field.

Styling forms

now that we have a nicely structured form, let’s uncover a few CSS techniques we can use
to customize it visually.

Setting the width of text inputs
Form controls can be tricky to deal with in their varying widths and heights that are
dependent on browser type. in our form example, we haven’t specified a size for the text
inputs and have left the width of these up to the browser’s defaults. typically, a designer
might specify a width using the size attribute, adding it to the <input> element like this:

<input type="text" id="name" name="name" tabindex="1" size="20" />

Setting a size of "20" specifies the width of the text input box at 20 characters (and not
pixels). depending on the browser’s default font for form controls, the actual pixel width
of the box could vary. this makes fitting forms into precise layouts a tad difficult.

using CSS, we can control the width of input boxes (and other form controls) by the pixel
if we wish. For instance, let’s assign a width of 200 pixels to all <input> elements in our
form example. We’ll take advantage of the id that is assigned to the form, in this case
thisform.

#thisform input {
 width: 200px;
 }

now, all <input> elements within #thisform will be 200 pixels wide. Figure 5-9 shows the
results in a visual browser.

Web StandardS SolutionS

72

 Figure 5‑9. our example form with 200 pixel width applied
to all <input> elements

oops. the check box and submit button are also an <input> element, and therefore receive
that same value. So instead of applying the width to all <input> elements, let’s use the ids
that we set for the “name” and “email” controls only.

#name, #email {
 width: 200px;
 }

 Figure 5-10 shows the corrected results in a browser, with only the two text input boxes at
200 pixels wide.

 Figure 5‑10. our form example with
only text inputs at 200 pixels wide

Using <label> to customize fonts
We have a few different options for customizing the size, face, and color of text that’s
contained within our form. and in another example of “using the markup you’ve been
given,” we’ll utilize the <label> element to dress up the text.

i like the idea of using the <label> element to specifically style form text, primarily for
one reason. i can see scenarios where we’d like the label to be called out differently from
other text that may be included within the <form> element. For instance, alternatively we
could add styles to all paragraph elements that fall within our form with a unique style.

ForMS

73

5

#thisform p {
 font- family: Verdana, sans- serif;
 font- size: 12px;
 font- weight: bold;
 color: #66000;
 }

this would style all text contained in paragraphs within our form with a bold, burgundy,
Verdana 12- pixel font. but the same results can be achieved by applying those same rules
to just <label> elements within our form like this:

#thisform label {
 font- family: Verdana, sans- serif;
 font- size: 12px;
 font- weight: bold;
 color: #66000;
 }

the results of this styling can be seen in Figure 5-11.

 Figure 5‑11. our example form
with styled <label> elements

Why do i like this better? let’s say that aside from labels, the form has additional instruc-
tions or text contained within <p> elements. this additional text would inherit the same
styles if we applied them to <p> elements within our form.

We could instead apply a generic style to all text within our form, and then use the label
styling specifically for customizing form controls uniquely.

the CSS would go something like this:

#thisform {
 font- family: Georgia, serif;
 font- size: 12px;
 color: #999;
 }

Web StandardS SolutionS

74

#thisform label {
 font- family: Verdana, sans- serif;
 font- weight: bold;
 color: #660000;
 }

No need to be redundant
You’ll notice that we don’t have to repeat the font- size: 12px; rule in the #thisform
label declaration. Since <label> elements are contained within #thisform, they will
inherit that property. it’s always good practice to set shared rules at a high level, then over-
ride only those that are unique and necessary further down the element tree. this will save
bytes of code, which, besides being a good thing, also makes for easier updates later on. if
you wish to change the font- family for the entire form, you need only update one rule,
rather than each place that the rule is repeated.

imagine you’ve built an entire site that uses the Georgia font face exclusively. You’ve added
the identical rule, font- face: Georgia, serif;, to 20 different CSS declarations. Your
boss comes to you a week later and says, “the Ceo hates serif fonts now. Change the site
to Verdana.” now you have to dig through all 20 rules and make your updates.

alternatively, you could set the rule at a high level, say the <body> element—once. the
entire document would inherit the Georgia font face, unless otherwise specified. now,
when your boss asks you to make the change, you can say, “no problem, it’ll be done in 2
minutes.” or, you could keep the simplicity to yourself, tell him it’ll take you 2 hours, and
then spend the extra time bidding on ebay items.

oK, of course, you should tell your boss the truth—your boss should know how valuable
you are, saving their company time and code with your newfound solutions.

Use <fieldset> to group form sections
using the <fieldset> element is a handy way of grouping form controls into sections.
additionally, including a descriptive <legend> will, in most browsers, add a stylish border
around the form controls that you’re grouping. did i say stylish? Well, i happen to like the
border, and with a little CSS, we can make it even more attractive.

First, though, let’s take a look at what the markup looks like when creating field sets. We’ll
add one to our example form:

<form action="/path/to/script" id="thisform" method="post">
 <fieldset>
 <legend>Sign In</legend>
 <p><label for="name" accesskey="9" >Name:</label>

 <input type="text" id="name" name="name" tabindex="1" /></p>
 <p><label for="email">Email:</label>

 <input type="text" id="email" name="email" tabindex="2" /></p>
 <p><input type="checkbox" id="remember" name="remember" ➥

 tabindex="3" />

ForMS

75

5

 <label for="remember">Remember this info?</label></p>
 <p><input type="submit" value="submit" tabindex="4" /></p>
 </fieldset>
</form>

 Figure 5-12 shows us how our form appears in a typical browser with the <fieldset> and
<legend> elements added, along with the CSS that we’re applying to the <label> ele-
ments. You’ll notice the stylish border that surrounds the form controls that fall within the
<fieldset> elements, with the <legend> breaking the border at the top left of the box.

 Figure 5‑12. our form example with <fieldset> and <legend> added

the reason i call it “stylish” is because, for a default rendering, with no CSS added at all, it’s
rather impressive. and it can get even more interesting when we choose to add a bit more
customization, which we’ll do next.

You may also begin to see how useful <fieldset> could be for grouping different sections
of a form together. For instance, if our example form was the first part of a larger form
that had other groups contained in it, using <fieldset> to visually box those sections off
is a semantically rich way to make our forms more organized and readable.

Adding style to <fieldset> and <legend>
We can customize the appearance of the default <fieldset> border and <legend> text
with CSS just as easily as with any other element. First, let’s change the border’s color and
width, and then we’ll modify the text itself.

to stylize <fieldset>’s border, making it a bit more subtle, we’ll use the following CSS:

#thisform {
 font- family: Georgia, serif;
 font- size: 12px;
 color: #999;
 }

Web StandardS SolutionS

76

#thisform label {
 font- family: Verdana, sans- serif;
 font- weight: bold;
 color: #660000;
 }

#thisform fieldset {
 border: 1px solid #ccc;
 padding: 0 20px;
 }

We also specify a 20- pixel margin on both the right and left, with zero margins on both top
and bottom. Why zero margins? because our form labels and controls are wrapped in <p>
elements, there’s already enough padding at both the top and bottom.

 Figure 5-13 shows how our slightly styled form looks in a browser.

 Figure 5‑13. our form example with <fieldset> styled

Three‑dimensional <legend>
Finally, let’s apply some CSS to the <legend> element, creating a three- dimensional box
effect that appears connected to the border created by the <fieldset> element.

#thisform {
 font- family: Georgia, serif;
 font- size: 12px;
 color: #999;
 }

#thisform label {
 font- family: Verdana, sans- serif;
 font- weight: bold;
 color: #660000;
 }

ForMS

77

5

#thisform fieldset {
 border: 1px solid #ccc;
 padding: 0 20px;
 }

#thisform legend {
 font- family: arial, sans- serif;
 font- weight: bold;
 font- size: 90%;
 color: #666;
 background: #eee;
 border: 1px solid #ccc;
 border-bottom- color: #999;
 border-right- color: #999;
 padding: 4px 8px;
 }

as you can see, we’re doing several things here. First, we’re customizing the font, weight,
and size of the <legend>. Second, for the 3- d effect, we’ve set the background to a light
gray, and then we’ve added a single- pixel border around the whole <legend> that matches
the border that we’ve used for the <fieldset> element. For the shading effect, we’ve over-
ridden the border’s color on the bottom and right sides only, with a slightly darker gray.

Since we’ve previously set font- size: 12px; for the entirety of #thisform, to make the
<legend> text smaller, we’ll just use a percentage. Setting a font size at a high level and
then using percentages further down the hierarchy makes for easier maintenance later
on. Need to bump up the whole site’s font size? Just make a single update, and the per-
centages will change accordingly. In fact, ideally we’d set that initial size on the <body>
element, and use percentages everywhere else. For this example, though, we’ve chosen
to set it at the <form> level.

padding was also adjusted to give the text in the box some breathing room. that’s it!
 Figure 5-14 shows the finished results with all of the CSS we’ve been adding throughout
the chapter—all the while using our lean, mean, marked- up form.

 Figure 5‑14. our completed form example, styled with CSS

Web StandardS SolutionS

78

Borders and backgrounds on form elements
it didn’t used to be the case, but browsers are getting better and better about enabling us
to style form elements. You should certainly use caution, of course, as in the end, a form
element should still look like a form element, and it should be obvious to users where
they’re able to interact with the form.

that said, there’s nothing wrong with subtly styling form elements by altering their default
borders and backgrounds, for example.

let’s first add a 1- pixel gray border around each of the Name and Email input fields in our
example form, overriding the usual beveled shadow that most browsers apply.

#name,
#email {
 padding: 5px;
 font- size: 16px;
 border: 1px solid #ccc;
 }

You’ll notice we’ve also added a little padding and increased the font- size to make the
inputs a little easier to read and use, as Figure 5-15 shows.

 Figure 5‑15. Form input boxes with 1- pixel gray borders

next, let’s add a background gradient image that tiles horizontally to give a custom 3- d
look to the inputs. Figure 5-16 shows the image that we’ll use to tile—a gray shadow, fad-
ing downward to white.

ForMS

79

5

 Figure 5‑16. the input- bg.gif image, zoomed at 500 percent in order to
see detail

and here’s the CSS rule that’ll add that tiled gradient to the inputs:

#name,
#email {
 padding: 5px;
 font- size: 16px;
 border: 1px solid #ccc;
 background: #fff url(input- bg.gif) repeat- x top left;
 }

 Figure 5-17 shows the finished styled form, just scratching the surface of what can be
achieved in styling form elements themselves. Just remember it’s often best to be conserva-
tive so as not to throw off the user. Familiarity in form controls is important! but altering a
form control’s font, border, background, padding, and so forth can make an immense dif-
ference in the appearance of a well- designed form.

Web StandardS SolutionS

80

 Figure 5‑17. the completed form, with custom borders and
background gradient

For a comprehensive comparison of form controls styled with CSS, based on browser
and platform, take a look a Roger Johansson’s collection of over 200 screenshots at
http://www.456bereastreet.com/archive/200701/styling_form_controls_with_
css_revisited/. Very helpful in determining which CSS properties will work when styl-
ing form controls and which ones will fail. Roger correctly states that consistent form
styling across all browsers and platforms is impossible—but that shouldn’t stop you
from experimenting, making trade- off decisions based on your site’s browser/platform
statistics.

Wrapping up
there are many ways to mark up forms—whether you use a table, a definition list, or
simple paragraph elements to structure your form labels and controls, keep in mind the
accessibility features that can easily be applied to any of the methods we’ve looked at in
this chapter.

attributes such as tabindex and accesskey can improve your form’s navigation. <label>
elements with corresponding id attributes can ensure those browsing with assistive soft-
ware can still interact with your forms. You can even subtly style your forms to make them
more usable and appealing.

Small, simple additions. improved results.

http://www.456bereastreet.com/archive/200701/styling_form_controls_with_

Chapter 6

, , and other
Phrase elements

Web StandardS SolutionS

84

We’ve talked a little about semantic markup in the introduction as well as in previous
chapters—using elements that apply meaning to the document, rather than using ele-
ments purely for presentational purposes. While constructing purely semantic web pages is
a nice idea, i see it more as an ideal and a target to strive for. not hitting the bull’s- eye
doesn’t mean all is for naught; rather, getting close to the mark is, at the very least, a wor-
thy effort.

often in real- world situations, adding nonsemantic markup in order to fulfill a certain
design requirement becomes necessary. this is primarily due to the lack of 100 percent
standards support from the current crop of popular browsers. Certain CSS rules fall short
of working properly in some modern browsers, and that can lead to the unfortunate pep-
pering of extraneous elements to make certain designs work.

the important thing to keep in mind is that there are real benefits to be had by trying your
best to use semantic structure—whenever possible. and that standards support, while not
100 percent, has reached a threshold where we can start building our sites now, using web
standards methods. Sometimes, a compromise is necessary, but the more structure we can
adhere to, the easier our jobs will become in the future.

Presentational vs. structural
this chapter covers the difference between presentational and structural markup—but
more specifically the difference between using instead of , and likewise,
instead of <i>. later in the chapter, we’ll also talk about a few other phrase elements and
their importance in the world of standards- compliant, structured markup.

You may have heard others telling you to swap out for when bold text is
desired, but with no further explanation as to why you should make the switch. and with-
out the “why,” it’s hard to expect other designers to change their markup habits just
because they are being told to.

Why are and better than and <i>?

What’s all this hoo- ha about tossing out the and <i> elements in favor of
and ? Well, it’s all about conveying meaning and structure, rather than giving a presen-
tational instruction. and it’s that same structure that we’re striving for in the examples
throughout the book.

Check in with the experts
First, let’s hear what the W3C says about and as part of the htMl 4.01
Specification on phrase elements (www.w3.org/TR/html4/struct/text.html#h-9.2.1):

“phrase elements add structural information to text fragments. the usual meanings of
phrase elements are [the] following:

http://www.w3.org/TR/html4/struct/text.html#h-�9.2.1):

, , and other phraSe eleMentS

85

6

indicates emphasis.

indicates stronger emphasis.”

So we’re talking two levels of emphasis here—for instance, a word or phrase that is intended
to be louder, higher in pitch, faster or, well . . . emphasized more than normal text.

the W3C goes on to say the following:

“the presentation of phrase elements depends on the user agent. generally, visual user
agents present text in italics and text in bold font. Speech synthesizer user
agents may change the synthesis parameters, such as volume, pitch, and rate accordingly.”

aha, that last sentence is of particular interest. Speech synthesizer user agents (what we’ve
been calling “screen readers”) will treat emphasized words and phrases the way they were
intended, and that is surely a good thing.

alternatively, using or <i> is simply a visual presentation instruction. if our goal is to
separate structure from presentation as much as possible, then we’ll be right on track
when we use and , saving instances where you simply want bold or italicized
text, visually, for CSS. and we’ll talk more about those instances later in the chapter.

let’s look at two markup examples to help us figure out the difference.

method a
Yourordernumberforfuturereferenceis:6474-82071.

method B
Yourordernumberforfuturereferenceis:6474-82071.

Bold and beautiful
here’s a perfect example of a situation where using over is appropriate—
where we’re looking to give greater importance over the rest of text in the sentence. in
addition to visually rendering the order number in bold text, we’d also like screen readers
to change the way they present that particular bit as well—increasing the volume, or
changing the pitch or rate. using Method b does both of these for us.

What about ?

Similarly, by using over <i>, we can convey emphasis rather than just making the text
italic. let’s look at two examples.

method a
Ittookmenotone,but<i>three</i>hourstoshovelmydrivewaythis➥
morning.

Web StandardS SolutionS

86

method B
Ittookmenotone,butthreehourstoshovelmydrivewaythis➥

morning.

emphasis mine
in the preceding example (a true statement at the time of this writing), my intention is that
the word “three” be spoken with emphasis over the rest of the text, as if i was reading it
aloud. Visually, Method b will be rendered as italicized text in most browsers, and speech
synthesizers will adjust the tone, speed, or pitch accordingly.

Just bold or italic, please

it’s important to note that there may be plenty of scenarios where you’d like bold or italic
text for the visual effect only. in other words, let’s say you had a list of links contained in a
sidebar, and you’re fond of the way all of the links look—in bold text (see Figure 6-1, for
example).

 Figure 6‑1. an example of a list of bold links contained within a sidebar

there is no intention of a strong emphasis on the links, other than a visual characteristic.
this is where it’s best to let CSS handle the visual change in the link’s appearance, so as not
to convey emphasis for screen readers and other nonvisual browsers.

, , and other phraSe eleMentS

87

6

For instance, do you really intend to have the list of bold links read faster, louder, or higher
in pitch? probably not. the bold intention is purely presentational.

Worth its (font‑)weight in bold
to demonstrate in code what Figure 6-1 illustrates, let’s say the column of links is a <div>
with an id of sidebar. We could simply state in CSS that all links within #sidebar be bold
like this:

#sidebara{
font-weight:bold;
}

extremely simple, and i feel sort of silly making a point out of it—yet it’s a perfectly easy
way to continue to help separate content from presentation.

that’s italic!
likewise, the same can be applied when thinking about italic text—for instances where
you’re not intending emphasis, but rather you’re simply intending to render text in italics.
CSS can again be used for such cases through the font-style property.

let’s use the same #sidebar column as an example; for instance, if we’d like all of the links
within #sidebar to be italic, the CSS would go like this:

#sidebara{
font-style:italic;
}

again, an absurdly simply concept, yet i think it’s important to talk about in the realm of
structured markup—instances where instead of using presentational markup, we allow
CSS to handle the styling. Sometimes, the simplest solutions are the easiest to overlook.

Both bold and italic

For scenarios where you’re intending to render text both in bold and italics, then i feel a
decision would first need to be made. What level of emphasis are you trying to convey?
based on your answer, i would choose the correct element: (for emphasis) or
 (for stronger emphasis) and mark up the text with that element.

For instance, for the following example, i’d like the word “fun” to appear both bold and in
italics. i’ve chosen to use the element to emphasize the text as well.

Buildingsiteswithwebstandardscanbefun!

Most browsers will render the preceding only in italics. to achieve both bold and italics, we
have a few different options. oh, and i sincerely hope that you agree with the preceding
statement.

Web StandardS SolutionS

88

generic
one option would be to nest a generic element around “fun” as well and use CSS
to render all elements within elements in bold text. the markup would look
like this:

Buildingsiteswithwebstandardscanbefun!

while the CSS would go like this:

emspan{
font-weight:bold;
}

obviously, not ideal in the semantic department because of the extraneous element we’re
adding—but one that will work nonetheless.

emphasis with class
another option would be to create a class for elements that triggered the bold with
CSS. the markup would look like this:

Buildingsiteswithwebstandardscanbe<emclass="bold">fun!

while the CSS would go like this:

em.bold{
font-weight:bold;
}

the presence of the element would handle our italicizing (and implied emphasis),
while adding the class bold would also make the text within the element, well…
bold.

a similar setup could be used in reverse for elements, where an italic class
could be written to render text in italics in addition to the bold that comes with the
 element when used for stronger emphasis.

the markup would go like this:

Buildingsiteswithwebstandardscanbe➥
<strongclass="italic">fun!

while the CSS would go like this:

strong.italic{
font-style:italic;
}

, , and other phraSe eleMentS

89

6

summary
i thought it was important to talk about this topic, as it’s a nice example of one of the core
themes of the book: that separating content from presentation is important, and benefi-
cial, and swapping out and <i> elements for their structural equivalents (when con-
veying emphasis) can be a simple way of helping to achieve that separation.

So, the next time you hear someone announce, “Yes, you should always use
instead of ,” you’ll now have some reasoning to back that statement up.

in most cases, it’s appropriate to use or when conveying emphasis. and
when a visual bold or italic is all that you’re after, use CSS.

extra credit
So far in this chapter, we’ve focused on and , which are part of a larger
group of elements that the W3C likes to call “phrase elements.” For extra credit, let’s take
a look at a few more of these phrase elements, and how they relate to the web standards
world.

the phrase elements

in addition to and , the entire list of phrase elements as outlined by the
W3C’s htMl 4.01 Specification contains the following:

 <cite>: Contains a citation or a reference to other sources

 <dfn>: indicates that this is the defining instance of the enclosed term

 <code>: designates a fragment of computer code

 <samp>: designates sample output from programs, scripts, etc.

 <kbd>: indicates text to be entered by the user

 <var>: indicates an instance of a variable or program argument

 <abbr>: indicates an abbreviated form (e.g., WWW, http, uri, Mass., etc.)

 <acronym>: indicates an acronym (e.g., WaC, radar, etc.)

let’s take a deeper look at a few of these, beginning with <cite>.

Web StandardS SolutionS

90

<cite> design

<cite> is an interesting element to discuss—especially when talking about substituting the
<i> element due to its purely presentational nature. <cite> is used to reference a citation
of a source: an author or publication. historically, designers may have used the <i> ele-
ment to render a book title in italics, but we’ve learned earlier in the chapter that CSS is
the best tool for styling text this way.

You may suggest marking up a publication’s title with instead—but when referencing
a book or other publication, we’re not intending to add emphasis; we’re merely trying to
set it apart from normal text. We’re also trying to stay in line with conventional typography
practices, where titles are often shown in italics (underlining is also common in the print
world, but would create obvious confusion for a hyperlink).

here enters the <cite> element, specifically created for the job. Most browsers will even
render text contained within <cite> elements in italics by default, and we can support that
by adding a general CSS declaration that will do the same.

the specification
the W3C is somewhat brief regarding the <cite> element, simply saying in the htMl 4.01
Specification (www.w3.org/TR/html4/struct/text.html#h-9.2.1)

“<cite>: Contains a citation or a reference to other sources.”

that’s about all we have to go on, and it’s unclear exactly what types of data we can wrap
<cite> around. but by “sources,” we can take it to mean at least people and publications.

let’s take a look at <cite> in action:

Thenovel,<cite>TheScarletLetter</cite>issetinPuritanBoston➥

andlikethisbook,waswritteninSalem,Massachusetts.

From the use of <cite>, the title The Scarlet Letter will, in most browsers, be rendered in
italics. to be sure, we’ll add the following, utterly simplistic, CSS rule—for cases where the
browser doesn’t:

cite{
font-style:italic;
}

to recap, we’ve replaced the <i> element for instances where we’re marking up book titles
and other publications with <cite>. What we get is italic text in most visual browsers, and
once again, we get more structure and meaning added to our pages. that structure can, as
always, be harnessed fully by the use of CSS. let’s take a look.

http://www.w3.org/TR/html4/struct/text.html#h-�9.2.1

, , and other phraSe eleMentS

91

6

a change in <cite> style
When we talk about building pages with structure and meaning, it goes hand in hand with
a page that becomes easier to style (and restyle) using CSS. take, for instance, the <cite>
element. if we become consistent in marking up titles of publications with this element, we
then have full control over the style presented—to be changed at any time that we wish.

let’s say that we’ve authored an entire site, all the while using the <cite> element to mark
up references to book and publication titles. We’ve added the global CSS rule to render all
<cite> elements in italics, but a few months later decide that we’d like all book and pub-
lication titles to be not only in italics, but also bold and red in color with a light gray back-
ground.

We can, of course, do this quickly and easily with a few CSS rules—instantly changing all
references that we’ve previously marked up with the <cite> element—something we
couldn’t specifically target if we had used <i> or to simply render publication titles
in italics.

cite{
font-style:italic;
 font- weight: bold;
 color: red;
 background- color: #ddd;
}

 Figure 6-2 shows how this would appear in most browsers, and it’s another nice example
of the power of writing structural markup first—allowing you to make easy, site- wide
design changes later.

 Figure 6‑2. a book title marked up with <cite> and styled with CSS

leveraging the structure
in addition to being easily styled, using structured markup can lead to interesting things
when server- side software takes advantage of it.

take for instance, what author and accessibility advocate Mark pilgrim did a few years ago
with the <cite> element on his personal site, “dive into mark” (www.diveintomark.org/).
by marking up citations to people and publications on his weblog with the <cite> ele-
ment, Mark was able to write software that would create a database from a parsing of all
of his posts—organized then by the person or publication that was referenced.

 Figure 6-3 shows the results of searching for “dan Cederholm.” two posts were found on
Mark’s weblog—all thanks to the power of marking up the reference to “dan Cederholm”
with the <cite> element.

http://www.diveintomark.org/

Web StandardS SolutionS

92

 Figure 6‑3. Mark pilgrim’s “posts by citation” results on a previous incarnation of “dive into mark”

<abbr> and <acronym>

two other phrase elements that i’d like to note are <abbr> (for abbreviations) and
<acronym> (for… you guessed it, acronyms). using these elements can improve the acces-
sibility of web pages by giving definitions to abbreviations and acronyms, so that all users
are informed.

let’s reacquaint ourselves with the W3C’s htMl 4.01 Specification on what the <abbr> and
<acronym> elements are used for:

 <abbr>: indicates an abbreviated form (e.g., WWW, http, uri, Mass., etc.)

 <acronym>: indicates an acronym (e.g., WaC, radar, etc.)

using these elements along with a suitable title attribute will help users who would be
otherwise unfamiliar with the term. For instance, if we were marking up the abbreviation
XhtMl, we could use the <abbr> element like this:

<abbrtitle="eXtensibleHyperTextMarkupLanguage">XHTML</abbr>

using <abbr> in this case can provide a cue for screen readers in regard to spelling out the
text (X-h-t-M- l), rather than reading it as a normal word. Conversely, the use of <acronym>
provides a cue to speak the word normally, rather than spell it out.

, , and other phraSe eleMentS

93

6

an example of the <acronym> element could be applied to the following:

<acronymtitle="NorthAtlanticTreatyOrganization">NATO</acronym>

there are also two CSS rules that could be added to an aural style sheet to further rein-
force these directives:

abbr{
speak:spell-out;
}

acronym{
speak:normal;
}

Aural style sheets allow authors to construct CSS rules specifically for screen reader
applications. Harnessing structural markup, changes in pitch, voice type, inflection, and
so forth can be altered to present the page aurally, more in line with what it reads like
visually.

define once
Many suggest defining an abbreviation or acronym that appears multiple times on a page
only once. it’s argued to be a waste of bytes to redefine a term each time it appears, and
better to set the title attribute only on the first occurrence of the page. i tend to think
this makes sense, although in the event that people are directed to a specific section of a
page, and the abbreviation or acronym is only expanded at the top, then the user can’t
take advantage of the definition.

use your best judgment on when (and how often) to define your terms contained within
<abbr> and <acronym> elements.

the presentation
to cue readers on the visual side, some browsers by default will render text marked up
with <abbr> or <acronym> with a 1- pixel dotted bottom border, enticing users to move
their mouse over the underlined abbreviation or acronym. When moused over, the defini-
tion provided in the title attribute will show up in the browser as a tooltip.

For browsers that don’t by default add that dotted line, we can easily create a CSS declara-
tion that does essentially the same:

abbr,acronym{
border-bottom:1pxdotted;
cursor:help;
}

We’ve also added an additional rule that will turn the cursor (in most browsers) into the
“help” symbol, which will help signify that this isn’t a link to be clicked on, but rather a

Web StandardS SolutionS

94

definition to be expanded with the tooltip (see Mark newhouse, “real World Style: CSS
help,” http://realworldstyle.com/css_help.html).

 Figure 6-4 shows the results in a browser, with the abbreviation XhtMl expanded with its
definition—as well as a dotted border and “help” cursor.

 Figure 6‑4. example of <abbr> results in a typical browser

Compatibility issues
it’s important to mention that, at the time of this writing, internet explorer for Windows
version 6 doesn’t support the styling or tooltip for the <abbr> element. ie/Win does sup-
port the <acronym> element, which has encouraged some designers to use only <acronym>
for both abbreviations and acronyms alike.

it might be tempting to do the same, but using the wrong element for the sake of a display
issue seems like the wrong road to take. For this specific problem, i prefer marking the
term up according to the specifications, and letting browsers that properly handle the
<abbr> element style it accordingly.

thankfully, support for styling the <abbr> element was added to ie7, although unlike
Firefox or Safari, ie7 doesn't style <abbr> by default. Something to keep in mind.

let’s take a quick look at the remaining phrase elements that we haven’t yet covered.

<code>

the <code> element is designed for demonstrating code examples within XhtMl pages.
For instance, if you’d like to share a CSS example, you could do something like this:

<code>
#content{
width:80%;
padding:20px;
background:blue;
}
</code>

generally, visual browsers will render text held within <code> elements in a monospaced serif
font, but we could, of course, style code examples any way we wish by adding a CSS rule:

code{
font-family:Courier,serif;
color:red;
}

http://realworldstyle.com/css_help.html

, , and other phraSe eleMentS

95

6

all text contained in <code> would now be rendered with the Courier typeface in red.

<samp>

the <samp> element is used to show sample output from programs and scripts. For exam-
ple, if i were talking about the results of a perl script i was working on, i may use some-
thing like

<p>Whenthescripthasexecuted,atthecommandlineyouwillseethe➥

message<samp>scriptwassuccessful!</samp>.</p>

here, i’m essentially “quoting” the output of a script, and a similar CSS rule could be defined
for styling program samples uniquely—just as we had done with <code> elements.

<var>

related to the <samp> element, the <var> element is used to designate a program param-
eter or variable. For instance, if i were talking about an XSlt style sheet, i could code the
following:

<p>I'mgoingtopasstheparameter<var>lastUpdated</var>➥

tomymain.xslfile.</p>

Many browsers will render text within <var> elements in italics—but feel free to write a
simple rule that would override that. if you don’t like italics, you could use the font-style
property in CSS:

var{
 font- style: normal;
font-family:Courier,serif;
color:purple;
}

lastly, let’s take a look at the <kbd> element to finish off the phrase elements.

<kbd>

the <kbd> element is used to signify text to be entered by the user. For example, if i were
explaining how someone might use the accesskey we had assigned to switch focus to a
search box, i might use this code:

<p>Toquicklychangefocustothesearchinputfield,Macuserstype➥

<kbd>Command+9</kbd>.</p>

You can only guess what i’m going to say next, can’t you? that’s right! through the magic
of a simple CSS rule, you can customize the style of all <kbd> elements, just as we had
previously with the other phrase elements.

Web StandardS SolutionS

96

microformats
We’ve spent the first half of this book talking about the benefits of semantic markup—
adding meaning to the data and content on the page. While we’ve focused on the appro-
priate elements to use according to the specs, it’s a good time to talk about how we can
also add valuable semantic information in the classes we use as well. Microformats offer us
a perfect example of sprinkling your markup with predetermined classes, extending XhtMl
with a powerful, yet human- readable set of open data formats. Microformats can also
enable a designer to leverage the data that already exists in the markup, exposing it to
other applications and software. in short, microformats can help take the guesswork out
of marking up certain sets of data, while offering some additional benefits along the way.

i feel it makes sense to talk about microformats in this chapter, as often the elements that
we’ll be adding semantic classes to are the very phrase elements that we’ve just dis-
cussed.

new growth

i had the pleasure of designing the logo and initial site design for microformats.org back
in 2005, and the logo mark itself, shown in Figure 6-5, attempted to show how microfor-
mats build on existing standards (XMl, XhtMl) as “new growth.” instead of waiting around
for standards bodies to decide on finer- grained formats for often-marked- up data (such as
contact details, relationships, and reviews), the microformats community took matters
into their own hands, using the tools that we already know to help enable cool stuff to
happen (more on that in a bit).

 Figure 6‑5. the microformats logo, designed by dan Cederholm

a simple explanation

“Dan, microformats are confusing and seem like a waste of time.”

i’d hear this quite a bit from other designers and developers. and while microformats may
seem a bit confusing at first, Figure 6-6 is about the simplest way i can think to explain
their core value.

, , and other phraSe eleMentS

97

6

 Figure 6‑6. a simple illustration of why microformats are useful

essentially, by settling on a predetermined class system for certain types of data (in this
case, a person’s contact details), we enable software and other web applications to easily
find the data, right from the markup. it’s also worth pointing out that microformats are
easily read by humans (because of their simple class names) and lend themselves well to
be styled uniquely with CSS due to the presence of those semantic elements and classes.

to illustrate further, let’s walk through a simple scenario where microformats add value.

an hCard example

over at my own site, Simplebits, i have my contact details available at simplebits.com/
contact. this is a pretty typical design pattern, listing name, organization, address, and
phone. and this information could be marked up in a myriad of ways. i mentioned before
that using microformats takes some of the guesswork out of how you might mark up these
data patterns. Many smart people have thought long and hard about the best way to
handle markup for contact details, and we’ll take advantage by using the hCard microfor-
mat here.

Code Creator
a first step is to check out the microformats hCard Creator, which will help us build an
hCard automatically, by simply filling out a form.

Web StandardS SolutionS

98

 Figure 6-7 shows the Code Creator for hCard, which creates the markup with proper
classes dynamically as you type in the contact details. this tool (and there are others for
other microformats) is wonderful for learning how microformats are structured. i highly
recommend that you check out these tools first if you’re new to microformats or you learn
better by seeing something in action (i know i do).

 Figure 6‑7. the hCard Creator tool, found at http://microformats.org/code/hcard/creator

the markup
after filling out the contact details that we want to share on the contact page (you don’t
need to fill out all fields), we’re left with the following markup, a finished hCard:

<divclass="vcard">
<aclass="urlfn"href="http://simplebits.com">DanCederholm
<divclass="org">SimpleBits,LLC</div>
<divclass="adr">
<divclass="street-address">16FrontStreet,Suite208</div>
<spanclass="locality">Salem,
<spanclass="region">Massachusetts
<spanclass="postal-code">01970
<abbrclass="country-name"➥

title="UnitedStatesofAmerica">USA</abbr>
</div>

http://microformats.org/code/hcard/creator
http://simplebits.com

, , and other phraSe eleMentS

99

6

<divclass="tel">
<spanclass="type">Fax:
<spanclass="value">+19787440760
</div>
</div>

You can see it’s a combination of <div>s and s with semantic classes added to note
the various parts of the contact’s details. the <abbr> element previously mentioned in this
chapter is also used to abbreviate the country name.

While the Code Creator suggests these elements to structure the data, that doesn’t mean
we have to use them, as long as we assign the correct class. For example, if instead of a
<div>, we wanted to use a heading element for the organization name, we could swap out
the elements like so:

<h2class="org">SimpleBits,LLC</h2>

in other words, you’re not locked to the elements that the Code Creator suggests. Structure
the data the way you’d like, then apply the classes to the appropriate bits of data.

remember, just as with the other examples in the book, we know that regardless of the
elements chosen, we can style this any way we’d like with CSS—and those extra class
names added by microformats make it easy to do so.

 Figure 6-8 shows how our finished hCard would appear in the browser without any CSS
applied. You can see that even with default browser styling, it’s a very readable address.
and because it’s nothing more than semantic markup and classes, it lends itself well to
unique styling with CSS. all of those extra classes mean easy styling of each portion of the
microformat.

 Figure 6‑8. a sample hCard, showed here unstyled

the power of microformats
Finally let’s talk about the main benefit to using this hCard markup versus a format of our
own choosing. again, by using a predetermined set of classes, software and other web
applications could now parse, or “scrape,” your htMl and extract the contact information
right from the markup.

Web StandardS SolutionS

100

here’s a prime example of that in practice. often, sites offer a downloadable vCard of their
contact information in addition to having it appear in the htMl of the page. this vCard file
format plays nice with most operating systems’ address book applications, and is a cus-
tomary way of offering a “one click to add” someone to their address book. Quick and
easy.

now, because we’ve marked up our address using the hCard microformat, we could offer
the vCard download directly from that same data instead of creating a separate file. there
are various browser plug- ins and extensions that detect and consume microformats, but
let’s help everyone out by adding a simple “download vCard” link to the contact page
(Figure 6-9).

this link will use technorati’s Contacts Feed Service (http://technorati.com/contacts/),
which offers a way of gathering up any hCards from a specified page, then spitting back a
vCard file all in one click.

all we need to do is add the correct url that specifies our contact page:

<ahref="http://feeds.technorati.com/contact/http://simplebits.com/➥

contact">DownloadvCard

 Figure 6‑9. our microformatted hCard with added
download link

Since the vCard and contact details on the website are often identical, this means we need
only update the htMl to continually offer an up-to- date vCard for site visitors—all with-
out having to separately update vCard files.

this simple example only scratches the surface of the power of microformats—providing
the front- end designer with a certain amount of “oblivious development” and the power
to expose data that other websites, applications, and even browsers themselves can read
and reuse, all simply with XhtMl. as a designer, i love that extra benefit. and really, there’s
no reason not to use microformats if one exists for the data set you’re dealing with. it’ll
help you decide which markup to use, while at the same time providing that exposed data
to keep websites communicating with one another using the content that’s already on the
page.

there are countless other (more exciting) examples of how website authors are utilizing
microformats to communicate through a common language of XhtMl. be sure to check
out http://microformats.org for all the info!

http://technorati.com/contacts/
http://feeds.technorati.com/contact/
http://simplebits.com/%E2%9E%A5contact%00t
http://simplebits.com/%E2%9E%A5contact%00t
http://microformats.org

, , and other phraSe eleMentS

101

6

We recommend picking up a copy of John Allsopp’s Microformats: empowering Your
Markup for Web 2.0, also published by friends of ED. It’s a comprehensive reference on
everything microformats.

Final phrase
Wrapping up what we’ve seen from the chapter, we’ve gathered some ammunition for the
argument of using and over their presentational brethren, and <i>.
We’ve also seen how when using bold or italic for strictly presentational reasons, CSS is the
way to go.

We talked about the other phrase elements as well, beginning with how the <cite> ele-
ment can be used for people and publications—proving further the power of structural
markup for both presentation and potential data parsing.

We also demonstrated how we can provide a little simple accessibility by marking up
abbreviations and acronyms with their respective elements—with extra presentational and
aural directives to reinforce the definitions. and we covered all the remaining phrase ele-
ments, and while each may have a default styling that is different from normal text, we can
easily create simple, quick CSS rules that define our own styles for each of these elements
that may appear throughout a page or entire site.

lastly, we introduced microformats, a community- driven way to take advantage of the
semantic markup we’re creating in new and exciting ways.

Chapter 7

Anchors

Web StandardS SolutionS

104

htMl links, or anchors as they are properly called, enable us to point not only to files, but
also to specific sections of a page, and can be a handy way of “linking with precision,” nar‑
rowing the focus of a destination. in this chapter, we’ll take a look at the differences
between four methods of anchoring, noting what benefits either method may gain. We’ll
also look at the title attribute, and how it can improve a link’s accessibility, as well as the
styling of links using CSS.

When pointing to a specific portion of a
page, what is the best way to mark up an
anchor?

it’s a common web design action—you’d like to link to a specific section of a web page,
either within the current page that the user is on or within a separate page. You may
choose to do this one of the four ways discussed in the following sections.

let’s set up the examples by saying that our intention is to link to a particular heading
within the same page.

Method A: An empty name

<p>About Oranges</p>

... some text here ...

<h2>Oranges Are Tasty</h2>

... more text here ...

using an empty anchor element along with the name attribute to mark a specific point will
probably look familiar to you. placing the empty <a> element and closing just above
the heading element and linking to it (using the # character, followed by the value match‑
ing the name attribute) will allow us to link to that specific portion of the page, which is
especially helpful if the page consists of a long, scrolling list of items that we’d like to point
to individually.

 Figure 7‑1 shows the results of clicking the “about oranges” link, anchoring the page to
where we’ve marked the , just above the heading.

it works great, although it’s a bit unsemantic to just waste an empty element as the marker.
We can improve on that by taking a look at Method b.

anChorS

105

7
 Figure 7‑1. demonstration of clicking a link to a named anchor

Method B: It’s all in a name

<p>About Oranges</p>

... some text here ...

<h2>Oranges Are Tasty</h2>

... more text here ...

as with Method a, we’re still using the <a> element with the name attribute, yet this time
we’re wrapping it around the heading that we’re intending to target. it does makes a little
more semantic sense this way; in Method a, we’re giving meaning to… well, nothing,
whereas in Method b, we’re saying that not only is this a heading element, but it’s also an
anchored section of the page.

Beware of global <a> styling
one thing to watch out for if using Method b is that if you’re setting a global CSS style for
all <a> elements (color, size, decoration, etc.), that styling would override any styles you
have for <h2> elements. this would occur because the <a> element, in this example, is a
child element and sits inside the <h2> that surrounds it all.

Web StandardS SolutionS

106

For instance, if in your CSS you had a declaration that went something like this:

a {
 color: green;
 font- weight: bold;
 text- decoration: underline;
 }

using Method b along with the preceding CSS would result in the heading being green,
bold, and underlined along with any other <a> elements on the page—perhaps different
from the way you’d like <h2> elements to be styled.

We can avoid this (and gain some other benefits) by using the :link pseudo‑ class for <a>
elements, which we’ll go over in detail in the “extra credit” section, later in this chapter.

richer name attribute
one upside to using Method b, or Method a for that matter, is that the name attribute has
the ability to handle richer anchor names—more specifically, the ability to use character
entities in the names.

For instance, if using Method b, you could do this (where the entity é represents the
“e”):

<p>My Resumé</p>

... some text here ...

<h2>Dan's Resumé</h2>

... more text here ...

this becomes more important when dealing with foreign languages and the characters
that stray from the english alphabet.

but there are a few more methods to investigate—the first of which eliminates completely
the need for using the <a> element to set the anchor point. let’s take a close look at
Method C.

Method c: Lose the name

<p>About Oranges</p>

... some text here ...

<h2 id="oranges">Oranges Are Tasty</h2>

... more text here ...

anChorS

107

7

aha! the id attribute acts just like the name attribute, in that it also sets an anchor point
on the page. in addition, by using Method C, we can eliminate the need for the extra <a>
element that’s necessary when going with the name attribute in Methods a and b. We’re
cutting down on code, and that of course is always a good thing.

because the id attribute can be added to any element, we can easily anchor anything we’d
like on the page. in this case, we’re choosing to anchor the heading, but we could also just
as easily anchor a <div>, <form>, <p>, —and the list goes on.

Two birds with one stone
another benefit to using Method C lies in the fact that, many times, we can utilize a pre‑
existing id attribute that we’ve added for the purposes of style or scripting. because of
this, we’ll eliminate the need to include additional code in order to set the anchor point.

For instance, let’s say you had a comments form at the bottom of a long page that you’d
like to link to nearer the top. this form had an id="comments" already in place, particularly
for purposes of styling it uniquely. We could link to that id as an anchor—without having
to insert an <a> element with the name attribute.

the code would look something like this:

<p>Add a Comment!</p>

... a lot of text here ...

<form id="comments" action="/path/to/script">
... form elements here ...
</form>

also, if your page requires a long scroll, you could make it easy for users to get “back to
top” by adding a link at the bottom that refers to a top‑ level element’s id (for instance, a
logo or header).

It’s a good idea to point out that, while it’s the most obvious choice, it’s best to avoid
using the name “top” when anchoring. There are some browsers that have that particu-
lar name reserved and using it can cause mixed results. It’s best to choose something
similar, knowing that it won’t cause problems. #genesis perhaps? #utmost? You get the
idea.

older browsers and the id attribute
an important downside to mention when using only the id attribute for anchors is that
some older browsers don’t recognize them. ouch. this is certainly something to consider
when marking up your own anchors, and an unfortunate case for backward compatibility.
let’s take a look at the final example, Method d.

Web StandardS SolutionS

108

Method D: The all‑in‑ one

<p>About Oranges</p>

… some text here …

<h2>Oranges Are Tasty</h2>

… more text here …

if both forward and backward compatibility are the most important points for you when
building anchors, then this method should please everyone. older and newer browsers
alike will recognize the named anchor element—but because the name attribute is depre‑
cated by the W3C in the XhtMl 1.0 recommendation (http://www.w3.org/TR/
xhtml1/#C_8), you’re covered for the future using the id attribute as well.

as with Method b, we’ll have to beware of any global styling that may be done on the <a>
element itself.

sharing names
if choosing to go with Method d, it’s perfectly acceptable (and probably convenient) to
use the same value for both the id and name attributes—but only when they are contained
in a single element. Furthermore, this is allowed only within a few certain elements: <a>,
<applet>, <form>, <frame>, <iframe>, , and <map>, to be exact. For this reason, we’ve
moved the id="oranges" from the <h2> element to the anchor within.

now that we’ve looked at four different methods to create anchors, let’s summarize what
each has to offer.

summary
For this chapter, there may not be a real clear‑ cut winner here, although two methods rise
above the others (C and d), each having its own pros and cons. let’s recap the facts
regarding each:

Method a:

 this method should work across most browsers.

 as an empty element, it provides no structure or meaning to the markup.

 this method requires extra markup.

 With the name attribute deprecated in XhtMl 1.0, forward compatibility should be
a concern.

http://www.w3.org/TR/xhtml1/#C_8
http://www.w3.org/TR/xhtml1/#C_8

anChorS

109

7

Method b:

 this method should work across all browsers.

 You must be conscious of any global <a> element styling that could override outer
element styles.

 this method requires extra markup.

 With the name attribute being depreciated in XhtMl 1.0, forward compatibility can
be a concern.

Method C:

 this method entails less markup.

 You have the option of using an existing id.

 this method ensures forward compatibility.

 this method requires a reasonably modern browser.

Method d:

 this method is both forward and backward compatible.

 You must be conscious of any global <a> element styling that could override outer
element styles.

 this method requires extra markup.

it appears that Methods C and d are the better choices, where forward compatibility and
less markup are pitched against more markup and full compatibility. My suggestion is to
take into account the target audience and make an informed decision based on this.

For instance, if you’re building a web‑ based application or intranet that you know will
require a recent browser version, then going with Method C would most likely be best.
less markup is required—but this is known not to work in some version 4.x browsers.
Check your site statistics to see if there is a substantial audience still using outdated ancient
browsers.

alternatively, if you’re building a site that could be viewed by anyone, anytime, you may
opt to go with Method d, which will ensure backward and forward compatibility—with the
extra baggage of the anchor element added.

it’s your choice, and hopefully by looking at each, you can make the right decision at the
right time out in the real world.

Extra credit
For this extra credit session, we’ll take a look at more things anchor related—specifically
the benefits of using the title attribute as well as styling anchor links with CSS.

Web StandardS SolutionS

110

The title attribute

While earlier we were talking explicitly about anchors for creating page sections, let’s shift
gears slightly and talk about anchor links in general—when pointing to other destinations.

as an added accessibility feature, adding the title attribute to anchor links can provide a
richer and more specific description of the destination that you’re pointing the user to.
With this added information, it becomes clearer to users as to where they are going—and
they need not base their decision for clicking a link solely on just the text or image that is
being anchored.

how does this added information become available to the user? We’ll find that out next.

Title in action
let’s take a look at the title attribute in action. We’ll mark up an ordinary hyperlink like
this:

I just read <a href=http://www.downwithwallpaper.com/tips.html➥

title="How to Take Down Wallpaper">a great article that gave me a➥
few home improvement tips.

although the text is intentionally a bit vague in this example, the title attribute gives us
an additional nugget of information about the link—in this case, the actual title of the
article that’s being pointed to.

another common practice when inserting title attributes is to simply use the page’s
<title> (which is usually displayed in the browser’s title bar). this, of course, should only
be used if the title bar’s text makes sense—ideally that includes both the site’s title as well
as the page‑ specific title.

For instance, let’s say that for the preceding example, the page’s title was
“downWithWallpaper.com | how to take down Wallpaper.” besides potentially being the
only article necessary for the site, it could be used in the title attribute of our example
as follows:

I just read <a href=http://www.downwithwallpaper.com/tips.html➥

title="DownWithWallpaper.com | How to Take Down Wallpaper">a great➥

article that gave me a few home improvement tips.

We now have a richer description of what’s being linked to. but how do users receive the
information contained within the title attribute?

Tooltip titles
Most modern browsers support the title attribute by turning the value into a “tooltip”—
a small colored box that pops up when the mouse is hovered over the link. Visually, it’ll
give users that extra useful bit of information just before they click the link. this has obvi‑
ous benefits in letting users know exactly where they’re going.

http://www.downwithwallpaper.com/tips.html%E2%9E%A5
http://www.downwithwallpaper.com/tips.html%E2%9E%A5

anChorS

111

7

 Figure 7‑2 shows our example in a browser, with the tooltip exposed by the hovering
mouse.

 Figure 7‑2. an example with the title attribute revealed by the mouse hover

Titles are spoken
another benefit to adding title attributes to links is that screen readers will read out the
value along with the linked text. Sighted and nonsighted users alike will gain better under‑
standing of the destinations you’re taking them to, and that is certainly a good thing.

styling links

earlier in the chapter, i’d mentioned “beware of global link styling”—that there was a way
to avoid unintentional styling of named anchor elements and instead narrow our focus to
hyperlinks that use the href attribute only.

Gone are the days of defining link colors in the htMl of a document. We can separate
those design details from the markup by using the pseudo‑ classes :link, :visited,
:active, and :hover to uniquely style hyperlinks in a variety of ways.

let’s take a look at a few different CSS styles that we can apply to normal, everyday links:

a:link {
 color: green;
 text- decoration: none;
 font- weight: bold;
 }

Quite simply, the preceding declaration will make all anchor elements that use the href
attribute green, bold, and not underlined.

instead of text- decoration: none;, we could’ve said underline (the default), overline
(for the rebels out there), or a combination of the two, as shown here:

a:link {
 color: green;
 text- decoration: underline overline;
 font- weight: bold;
 }

 Figure 7‑3 shows how the underline overline combination would appear in a typical
browser. Sort of unconventional—but possible!

Web StandardS SolutionS

112

 Figure 7‑3. a link example with underline‑ overline text decoration

Backgrounds
the possibilities for uniquely styling links are just about endless. Most CSS rules that we’ve
applied to other elements are available for anchors as well. For instance, we can apply
background colors to links and/or even background images as well—perhaps a small icon,
aligned to the left or right of the link text, as shown in Figure 7‑4.

 Figure 7‑4. a link with a right‑ aligned icon as a background image

the CSS needed for achieving Figure 7‑4 goes something like this:

a:link {
 padding- right: 15px;
 background: url(link_icon.gif) no- repeat center right;
 }

We’re setting the icon to align center (vertically) and to the right of the link text. extra
padding is added to the right side as well, to allow the icon to show through without any
overlapping of text.

Dotted borders
tired of the plain, solid underlines of links that we’ve been seeing for years now? by using
the dotted or dashed value of the border property, we can create… you guessed it, dotted
or dashed link borders.

First, we’ll need to turn off default underlining with the text- decoration property to get
it out of the way, and then we’ll add a 1‑ pixel border- bottom that’s both dotted and
green.

a:link {
 color: green;
 text- decoration: none;
 border- bottom: 1px dotted green;
 }

it’s important to note that, if you’d like the dotted border to be the same color as your
link text, you’ll need to declare that color in the border- bottom property as well. the
results can be seen in Figure 7‑5.

anChorS

113

7

 Figure 7‑5. a link with a dotted border

using the preceding method, you could also mix and match border colors, giving your
link text one (with the color property) and your border another (with the border-
 bottom property). Furthermore, you could use the solid or dashed value for the
 border- bottom property.

Internet Explorer for Windows gets the dotted property a bit wrong when using a 1- pixel
width. Using 1px as the value for a dotted border ends up looking exactly like the
“dashed” style border. Fear not; it’s just a small glitch.

Where you been?
don’t forget to add an a:visited declaration to help users see where they’ve been before.
all the usual CSS rules can be applied to this pseudo‑ class as well, giving visited links their
own unique style, with a different color, border, background, and so forth.

the CSS goes like this:

a:visited {
 color: purple;
 }

at the very least, the preceding declaration will alert users that they’ve visited a link by
changing its color to purple. it’s very important to make even just a slight change, as the
preceding one.

hovering
Similarly, we can use the :hover pseudo‑ class to add powerful effects to links when they’re
hovered over by the mouse. this could be a color change or an addition of a border, back‑
ground, or icon. the possibilities are endless.

a:link {
 color: green;
 text- decoration: none;
 border- bottom: 1px dotted green;
 }

a:hover {
 color: blue;
 border- bottom: 1px solid blue;
 }

Web StandardS SolutionS

114

the two preceding declarations give us links that are green with a dotted border, but then
on hovering, the link turns blue, with a solid bottom border (also blue).

this is just one example of a simple hover effect. You can imagine that by trying different
combinations of CSS rules on both links and hovered links, you can start to design sophis‑
ticated mouseover effects without the need for JavaScript or extra markup.

Active state
the :active pseudo‑ class handles the state of a link when the mouse button is clicked.
the same rules can be applied here—changing the color, text decoration, background, and
so on. For instance, if you had the link turn red when the mouse button is clicked, this
could be an extra visual cue to users that they’ve chosen to head to that particular destina‑
tion, and have indeed clicked.

the following declaration does just that:

a:active {
 color: red;
 }

LoVe/hAte your links
ordering the four pseudo‑ classes mentioned becomes important in order for all of them
to behave properly—without one overriding the other.

LoVe/HAte is a handy way to remember the correct order to place your declarations (www.
mezzoblue.com/css/cribsheet/):

 a:link (l)

 a:visited (V)

 a:hover (h)

 a:active (a)

You could make up your own abbreviation for this—whatever it takes to help you remem‑
ber. love Vegetables? have asparagus!

to demonstrate, here are four of the preceding examples, assembled in the right order, as
a complete package:

a:link {
 color: green;
 text- decoration: none;
 border- bottom: 1px dotted green;
 }

http://www.mezzoblue.com/css/cribsheet/):
http://www.mezzoblue.com/css/cribsheet/):

anChorS

115

7

a:visited {
 color: purple;
 }

a:hover {
 color: blue;
 border- bottom: 1px solid blue;
 }

a:active {
 color: red;
 }

Fitts’ Law
We can keep Fitts’ law in mind as it relates to hyperlinks and increased usability. Fitts, an
american psychologist whose work is often cited by interaction design experts, says

The time to acquire a target is a function of the distance to and size of the target.

—paul Fitts (http://www.asktog.com/basics/firstPrinciples.html#fitts's%20law)

in other words, the larger the link’s target is, the quicker and easier it is to use. one easy
way we can apply Fitts’ law is applying display: block; to links where appropriate. this
way, not only is the link text clickable, but the space around the link is as well.

take a simple unordered list of links, for example, as Figure 7‑6 illustrates. by applying
display: block; and a smidgen of padding to the <a> elements, we can increase the
target area of the link, making it easier to scan and click the list by selecting the surround‑
ing area (the entire row) as well as the text (see Figure 7‑7). adding a background- color
to the hover state is helpful in providing feedback to the user as to the increased hotspot
available.

 Figure 7‑6. an unordered list of links

http://www.asktog.com/basics/firstPrinciples.html#fitts's%20law

Web StandardS SolutionS

116

 Figure 7‑7. a block‑ level link; we’ve added a background- color
to the hover state.

here’s the CSS that would enable that to happen:

ul li a {
 display: block;
 padding: 4px;
 }
ul li a:hover {
 background- color: #eee;
 }

A hack for IE6
often, internet explorer version 6 adds extra vertical space to hyperlinks that are set as
 block‑ level elements. boo. but there is a little fix for that, should you run into any render‑
ing issues. We’ll target ie6 specifically by prefacing the declaration with the * html hack.
only ie6 will read this declaration, and it’ll be ignored by other browsers:

* html ul li a {
 height: 1%;
 }

that magic hack will make block‑ level links look correct in ie6. dubbed the “holly hack”
after its author, holly bergevin, height: 1% also fixes a plethora of related ie bugs. For
more info on why it works, check out “On having layout” (http://www.satzansatz.de/
cssd/onhavinglayout.html). Warning: it’s not exactly light reading!

http://www.satzansatz.de/cssd/onhavinglayout.html
http://www.satzansatz.de/cssd/onhavinglayout.html

anChorS

117

7

See also Dunstan Orchard’s “Link Presentation and Fitts’ Law” (http://www.1976design.
com/blog/archive/2004/09/07/link-presentation-fitts- law/) or Dave Shea’s arti-
cle (http://www.mezzoblue.com/archives/2004/08/19/fitts_law/) for more infor-
mation on block- level link styling.

Anchors aweigh
before we set sail to the next chapter, let’s review what we’ve discussed. We looked at four
different ways to create anchors on a page—the last two of which we thought were more
optimal. depending on your audience, you now have the knowledge you need to make a
decision on your next project.

We then talked about the title attribute and how it can improve usability by giving the
user extra information about a link’s destination. Visual readers and nonsighted listeners
will both be able to take advantage of the title attribute’s additional info.

lastly, we looked at the styling of links using CSS’s pseudo‑ classes. With an imagination,
and a few declarations, rich, interactive effects can be achieved using zero JavaScript and
no extra markup by targeting different CSS to the four different link states.

now it’s time to furl our sails and raise the anchor to the gunwale! For it’s… sorry, got car‑
ried away there.

http://www.1976design.com/blog/archive/2004/09/07/link-presentation-fitts-�law/
http://www.1976design.com/blog/archive/2004/09/07/link-presentation-fitts-�law/
http://www.mezzoblue.com/archives/2004/08/19/fitts_law/

Chapter 8

More Lists

Web StandardS SolutionS

120

back in Chapter 1, we talked about several ways to mark up a list of items, exploring the
benefits of marking them up as an unordered list using the and elements. this
method provided structure to the list, ensuring that all browsers and devices would pres‑
ent it correctly, and also enabled us to style the list in a variety of ways using CSS.

in addition to unordered lists, there are two other types—and it wouldn’t be difficult to fill
an entire book with various methods for marking up all types of lists for various scenarios.
While i’m not going to fill the entire book, i will devote another chapter to a few other list
types, discovering a few instances where list markup makes for the best solution.

lists can be a powerful way to structure your pages semantically, giving meaning to the
separate items that can later be utilized for unique CSS styling.

let’s first take a look at a numbered list of items, with two different ways to mark them up.
it may be painfully obvious as to which method is more beneficial—but i’ll be illustrating
this to make the case, once again, for structured markup and using the right tool for the
job.

What is the best way to mark up a numbered
list of items?

let’s say you have a list of instructions to mark up, with each item preceded by a number.
We’ll take a look at two different ways we might approach that, and why one may be more
appropriate than the other.

Method A: Unordered order

 1. Chop the onions.
 2. Saute the onions for 3 minutes.
 3. Add 3 cloves of garlic.
 4. Cook for another 3 minutes.
 5. Eat.

the preceding list could possibly be the worst recipe in culinary history, but it’s there sim‑
ply for the example’s sake. it could use some salt or protein or… anyway, back to the
important stuff.

For Method a we’ve chosen to mark the instructions up with an unordered list to take
advantage of all the benefits that were outlined in Chapter 1. We’ve added structure and
we know that most browsers, screen readers, and other devices can handle it properly.
later, we could style this list easily with CSS. Great! but…

More liStS

121

8

the numbers game
Since this is a numbered list, we’ve added to the markup each number followed by a
period to denote each separate step of the instructions. but what if we later needed to
add a step in between steps 2 and 3? We’d need to renumber each step (by hand) that
follows the one we’ve added. For this particular list, it’s not such a big ordeal—but if
you’re dealing with a list of 100 items, you can start to see how tedious that could be.

rendered bullets
because we’re using an unordered list to structure the example, we’re going to see bullets
in front of each numbered item (as in Figure 8‑1). You may like the bullets, and if not you
could, of course, turn these off with CSS, but an unstyled view of this list would always
reveal them.

 Figure 8‑1. Method a as viewed
unstyled in a browser

there’s an easier way—one that makes more semantic sense and is easier to maintain.
let’s take a look at Method b.

Method B: An ordered list

 Chop the onions.
 Saute the onions for 3 minutes.
 Add 3 cloves of garlic.
 Cook for another 3 minutes.
 Eat.

i’m sure this is the obvious choice for many—but that doesn’t mean we all haven’t used
Method a at some point for one reason or another. the stands for “ordered list,” so
semantically we’re using the right element for the task at hand here. What else makes
Method b so special?

Automatic numbering
You’ll notice that we don’t need to manually add a number to each list item. numbers are
generated automatically, in order, when using an . if our list of instructions was more
like 100 steps, and we needed to later insert a new step right in the middle, we’d simply
add another item in the right position, and the renumbering would happen in the
browser. like magic.

Web StandardS SolutionS

122

With Method a, we’d need to manually change all those numbers we added to each item
in the markup. i can certainly think of more enjoyable tasks to take care of.

 Figure 8‑2 shows how Method b would render in a typical browser, with the numbering
preceding each instruction.

 Figure 8‑2. Method b as viewed
in a browser

Wrapper’s delight ii
another advantage to using Method b is that when longer list items wrap to the next line,
they are indented from the generated number, whereas with Method a, the lines would
wrap underneath the marked‑ up number (see Figure 8‑3 for a comparison).

 Figure 8‑3. Comparison of the wrapping of lines in
Methods a and b

List types
While the default list style for ordered lists is most commonly arabic numerals (1, 2, 3, 4,
5, etc.), using CSS, we can change this to a variety of styles using the list-style- type
property. here are some possible values:

 decimal: 1, 2, 3, 4, etc. (commonly the default)

 upper-alpha: a, b, C, d, etc.

 lower-alpha: a, b, c, d, etc.

More liStS

123

8

 upper-roman: i, ii, iii, iV, etc.

 lower-roman: i, ii, iii, iv, etc.

 none: no numeral

So, for instance, if we wanted to have Method b generate uppercase roman numerals
instead of the default, we could write a CSS declaration like this:

ol li {
 list-style- type: upper- roman;
 }

 Figure 8‑4 displays how this Method b, with the preceding CSS, would be viewed in a
browser. instead of the default arabic numerals, our instruction list is numbered with
roman numerals. the markup, of course, stays exactly the same. Change your mind? one
quick little CSS update using one of the values listed previously will change your list num‑
bering to whatever you’d like.

 Figure 8‑4. an ordered list with
roman numerals

Previously, you might have used the type attribute directly on the element to change
the list type to Roman numerals, letters, and so forth. However, the type attribute has been
deprecated in HTML 4.01 in favor of using the CSS rules outlined earlier. Therefore, you
shouldn’t use the type attribute but use CSS instead.

later, in the “extra credit” section, we’ll take our ordered instruction list and style it with
CSS. but first, let’s take a look at another list type example.

What is the best way to mark up a set of
terms and descriptions?

oK, the question is certainly leading, in that it almost answers itself. You’ll see what i mean
when we take a look at the following two methods. More important than the question,
though, is that Method a is a common solution when marking up term and description
pairs, and that Method b is a far underused type of list—but one that can be used in a
variety of applications and provides a far more flexible structure.

First, let’s quickly take a look at a potentially familiar way of dealing with term/definition
pairs—specifically the definitions of a few standards defined by the W3C.

Web StandardS SolutionS

124

Method A

 CSS

 A simple mechanism for adding style (e.g. fonts, colors, spacing) to ➥

Web documents.
 XHTML

 A family of current and future document types and modules that ➥

reproduce, subset, and extend HTML, reformulated in XML.
 XML

 A simple, very flexible text format derived from SGML.

this method seems to make sense, using an unordered list for structure and a
 element
to separate the terms from their definitions.

however, what if we want to style each term (CSS, XhtMl, or XMl) differently from its
definition? our only option with Method a is to add some sort of style “hook” to the
markup, such as an extra or element. Maintenance‑ wise, though, that’s
not an ideal solution.

 Figure 8‑5 shows how Method a would appear in a typical browser, with each term and
definition on its own line.

 Figure 8‑5. Method a as viewed in a typical browser

aside from the inability to style each line uniquely, there isn’t a whole lot wrong with
Method a. but i bring this question up as an excuse to talk about the type of list found in
Method b—the definition list.

Method B

<dl>
 <dt>CSS</dt>
 <dd>A simple mechanism for adding style (e.g. fonts, colors, spacing) ➥

to Web documents.</dd>
 <dt>XHTML</dt>
 <dd>A family of current and future document types and modules that ➥

reproduce, subset, and extend HTML, reformulated in XML.</dd>
 <dt>XML</dt>
 <dd>A simple, very flexible text format derived from SGML.</dd>
</dl>

More liStS

125

8

a definition list (<dl>) consists of two additional elements, <dt> (term) and <dd> (descrip‑
tion). For the purposes of our example, using a definition list makes perfectly good sense,
as we’re defining a series of term/description pairs.

by default, most visual browsers will render a definition list with the description (<dd>) on
its own line and indented slightly (see Figure 8‑6). We can, of course, change that indenta‑
tion if we wish using CSS.

 Figure 8‑6. Method b as viewed in a typical browser

structure leads to style
Semantically, Method b is solid, giving us a separate element for each part of our list. this
will enable us to style terms separately from their descriptions and vice versa.

For instance, something certifiably simple that we can do is to make bold the <dt>s with CSS.
one declaration will do this for us, without adding anything additional to the markup:

dt {
 font- weight: bold;
 }

that’s all there is to it, with no need to add , , or even elements to the
list markup. now, all <dt> elements will be bold, as you can see in Figure 8‑7.

 Figure 8‑7. Method b with font- weight: bold; applied to <dt> elements

Adding icons
You may have noticed that i like to add small images and icons to elements using CSS. the
reason i like this is because by using the CSS background property, i can enrich pages, keeping
decorative, nonessential graphics separated from the page content and structure.

Swapping out, adding, or removing these images becomes quick and easy when we don’t
have to touch the markup to make those updates.

Web StandardS SolutionS

126

For definition lists, it can be fun to add a small arrow icon pointing from the term down to
the description. We can add this in easily with the following CSS rules:

dt {
 font- weight: bold;
 }

dd {
 margin- left: 15px;
 padding- left: 15px;
 color: #999;
 background: url(dd_arrow.gif) no- repeat 0 2px;
 }

What we’ve done here is close in the default indentation for <dd> elements a bit by saying
 margin- left: 15px;. next, we’ve changed the color of the description to gray to further
set it off from the <dt> element. a small orange arrow icon was added to sit to the left and
2 pixels down from the top of the description, as well as 15 pixels of padding on the left
to let the icon show through. the results can be seen in Figure 8‑8.

 Figure 8‑8. a definition list with a background image denoting the relationships

as you can see, using the definition list structure, we can easily style each piece uniquely,
creating a richer design—without touching the markup at all. We can also rest assured that
viewed unstyled, the same list will display in a readable, organized fashion as well.

other applications
it’s important to point out that the uses for definition lists go further beyond just term/
description pairs. definition lists can be used for dialog, navigation, and even form lay‑
outs.

We can even quote the W3C on how they define definition lists in the htMl 4.01
Specification (www.w3.org/TR/html4/struct/lists.html):

“definition lists, created using the <dl> element, generally consist of a series of term/defi‑
nition pairs (although definition lists may have other applications).”

don’t be afraid to use definition lists for purposes other than common term/description
pairings.

http://www.w3.org/TR/html4/struct/lists.html):

More liStS

127

8

summary
So far throughout this chapter, we’ve looked at two additional types of lists—ordered and
definition. We’ve discovered that by using these structured lists, rather than an unordered
list with additional markup, we gain more control over the style and we’re also creating
lists that are easier to maintain.

next, let’s take our ordered list of instructions from the beginning of the chapter, and
customize it a bit using CSS.

extra credit
let’s reacquaint ourselves with our ordered instruction list from earlier in the chapter:

 Chop the onions.
 Saute the onions for 3 minutes.
 Add 3 cloves of garlic.
 Cook for another 3 minutes.
 Eat.

unstyled and in the absence of any CSS, this would appear in a browser as shown back in
 Figure 8‑2. Just like any other structured markup example found in this book, an ordered
list makes for an easily styled set of elements when CSS is added to the mix.

We know that, because we’re using the proper structure here for this list, browsers that
don’t support CSS, or have it disabled, will display the list properly as well.

let’s get a little fancy and customize the numbers that appear before each instruction
item.

identify the parts

So that we can access each list item and replace its number with something a little more
stylish, we’ll need to add an id to each element. We’ll also add an id to the whole
ordered list so that we can make specific style rules for this list and not all s:

<ol id="recipe">
 <li id="one">Chop the onions.
 <li id="two">Saute the onions for 3 minutes.
 <li id="three">Add 3 cloves of garlic.
 <li id="four"> Cook for another 3 minutes.
 <li id="five">Eat.

Web StandardS SolutionS

128

now that we’ve identified everything, we’ll have complete control, stylistically, over each
element in the list. it’s also worth mentioning that by adding a unique id to each list item
here, we’ve lost the ability to rely on an ordered list’s “automatic numbering” advantage.
if we needed to add a new step in the middle of the others, we’d need to change the id
values of the steps that follow. Just a disclaimer.

Custom numbers

our first step for creating custom numbers for our list is to turn off the default generated
numbers that will appear by using the list-style- type property on the #recipe ele‑
ment:

#recipe {
 list-style- type: none;
 }

 Figure 8‑9 shows our list with the numbers turned off by the preceding rule.

 Figure 8‑9. our ordered list with
numbers turned off with CSS

now that we’ve prevented the numbers from being generated, we can add our own graphic
numbers instead. in photoshop (or your favorite image editor), we can create five GiF
images, one for each number. Figure 8‑10 shows the five numbers i’ve created, using the
prensa typeface and red for the color.

 Figure 8‑10. Five GiF images to be
used for our ordered list

Adding the numbers to the Css

because of their larger size, we’ll need to add some margins and padding around each list
item in order to give enough room for the number image to show through as a back‑
ground. We’ll also add a light gray border to the bottom of each instruction.

We can use the descendent selector #recipe li to apply these rules to all items
within #recipe. this saves us from having to repeat these shared values on each number
id.

More liStS

129

8

#recipe {
 list-style- type: none;
 }

#recipe li {
 padding: 10px 50px;
 margin- bottom: 6px;
 border- bottom: 1px solid #ccc;
 }

With all the preceding values being applied to all items within our list, we can now
add each unique number image to its corresponding id:

#recipe {
 list-style- type: none;
 }

#recipe li {
 padding: 10px 50px;
 margin- bottom: 6px;
 border- bottom: 1px solid #ccc;
 }

#one {
 background: url(ol_1.gif) no- repeat 6px 50%;
 }

#two {
 background: url(ol_2.gif) no- repeat 2px 50%;
 }

#three {
 background: url(ol_3.gif) no- repeat 3px 50%;
 }

#four {
 background: url(ol_4.gif) no- repeat 0px 50%;
 }

#five {
 background: url(ol_5.gif) no- repeat 6px 50%;
 }

You’ll notice that the position values differ slightly for each image, reflecting their horizon‑
tal placement. this is due to the fact that each of these images is variable in width because
of the particular font i’m using. to compensate, we nudge each image to the right as nec‑
essary to get the dots of each number to line up just right.

including "6px 50%" will place the image 6 pixels from the left and 50 percent from the
top, essentially centering it vertically.

Web StandardS SolutionS

130

the results

 Figure 8‑11 shows the final results as viewed in a typical browser, with each image showing
through on the left of each item. Gray lines are drawn at the bottom of each instruction to
further provide separation.

 Figure 8‑11. our unordered list styled with custom
number images

With a few images and CSS rules, we took a structured, ordered list and gave it some cus‑
tomized style—proving once again that we can keep nonessential images out of the
markup for easy updates later on.

Wrapping up
aside from the unordered variety, ordered and definition lists provide semantic structure
as well as flexible styling options for those specific types. let your imagination wander and
experiment with different types of lists—using CSS to customize and spiff up the basic
structure. to get you started, be sure to visit listamatic, a site showcasing various CSS
treatments on a single marked‑ up list: http://css.maxdesign.com.au/listamatic/.

in the end, you’ll have a solid foundation that will display anywhere, but can then easily be
modified with CSS for capable browsers.

http://css.maxdesign.com.au/listamatic/

Chapter 9

MiniMizing Markup

Web StandardS SolutionS

134

We’ve been talking about how building pages with structure can help minimize your
markup by separating that structure from the design details. instead of using tables and
images to create borders and customized layouts, we can turn to valid XhtMl and CSS for
the finishing touch.

one potentially bad habit that is easy to fall into when constructing sites with web stan-
dards (and especially those that rely heavily on CSS) is adding extraneous elements and
class attributes—when they’re not necessary at all.

by taking advantage of descendant selectors in our CSS, we can eliminate the need for
unnecessary <div>s, s, and classes. Minimizing your markup means faster, more eas-
ily maintained pages—and in this chapter, we’ll discover a few simple ways to do it.

How can we minimize markup when building
sites with web standards?

Minimizing markup is an important topic to talk about. a huge benefit to creating sites
with valid XhtMl markup and CSS for presentation is the markup reduction. less code
means faster downloads—absolutely key for users on slow, 56K modem connections as
well as mobile users on edge or other cellular- based networks. less code also means less
server space and bandwidth consumption—this makes the bosses and system administra-
tors smile.

the problem is that just simply making sure your pages conform to the W3C’s specifica-
tions does not mean there will automatically be less code used. it’s possible to pepper
your valid markup with all sorts of unnecessary elements. Sure, it’s valid, yet it could be
littered with extraneous code in order to make the application of CSS a little easier.

Fear not, there are some tips to writing compact markup that will be valid, but will also
provide just the right amount of style control on the CSS end. let’s take a look at a few
simple things we can do to minimize our markup.

Descendant selectors

here we’ll take a look at two methods for marking up a sidebar of a personal website that
contains information, links, and other bits. We’re stuffing all this good stuff inside of a
<div> that we’ve given an id of sidebar in order to place it in a certain location of the
browser window (more on CSS layouts in part two).

Method a: Class happy

<div id="sidebar">
 <h3 class="sideheading">About This Site</h3>
 <p>This is my site.</p>
 <h3 class="sideheading">My Links</h3>
 <ul class="sidelinks">

MiniMizing MarKup

135

9

 <li class="link">Archives
 <li class="link">About Me

</div>

i’ve seen markup similar to Method a on many sites. When designers first discover the
power of CSS, it’s easy to get carried away by assigning a class to any element that you’d
like to style uniquely (often referred to as “classitis”).

For the preceding example, we might have assigned the sideheading class to the two <h3>
elements so that these headings will have a unique style from other headings on the page.
We’ve also done the same for the and elements.

Classified CSS
For style, let’s say that we’d like the headings to be a serif font, orange, with a light gray
bottom border. the sidelinks unordered list will have bullets turned off and the list items
will be bold.

the CSS needed for the styling of Method a may look something like this:

.sideheading {
 font- family: Georgia, serif;
 color: #c63;
 border- bottom: 1px solid #ccc;
 }

.sidelinks {
 list-style- type: none;
 }

.link {
 font- weight: bold;
 }

by referencing each class that was specified in the markup, we can apply unique styles to
those components. You could even imagine other portions of the page that are organized
in this fashion—the navigation, footer, and content areas, each of them littered with doz-
ens of classes in order to have full control over any element.

Sure, it works just fine—but there’s an easy way to reduce the markup that’s needed for all
of those classes, while at the same time making your CSS more readable and organized.
let’s move on to Method b.

Method B: natural selection

<div id="sidebar">
 <h3>About This Site</h3>
 <p>This is my site.</p>
 <h3>My Links</h3>

Web StandardS SolutionS

136

 Archives
 About Me

</div>

nice and compact! but wait, where did all the classes go? Well, you’ll find that we don’t
really need them—primarily due to the fact that we’ve contained all of these elements
within a <div> that has a unique id, in this case sidebar.

here’s where the use of descendant selectors comes into play—by referencing elements
that are contained within sidebar simply by their element names, we can eliminate all of
those redundant classes.

Contextual CSS
let’s look at the same styles that were applied to Method a, but this time we’ll use descen-
dant selectors to access the elements within our sidebar:

#sidebar h3 {
 font- family: Georgia, serif;
 color: #c63;
 border- bottom: 1px solid #ccc;
 }

#sidebar ul {
 list-style- type: none;
 }

#sidebar li {
 font- weight: bold;
 }

by using the #sidebar id as the reference, we can give unique styles to any of the ele-
ments contained within. For instance, only <h3> elements that are within the sidebar
<div> will receive those specific rules.

this contextual way of assigning styles to elements becomes key for reducing markup.
oftentimes, we need not pepper our elements with class names when we’ve set up a
semantic structure around them.

not just for sidebars
While we’ve only illustrated one section of a page, the sidebar, the same can be applied to
an entire page structure—by slicing your markup into logical sections (perhaps #nav,
#content, #sidebar, #footer), and then applying unique styles to those sections with
descendant selection.

For instance, let’s say that you’ve used <h3> heading elements in both the #content and #sidebar
areas of your page and would like each rendered in a serif font. however, you’d like the text con-
tained in the <h3> element to appear purple in one section and orange in the other.

MiniMizing MarKup

137

9

there’s no need to alter the markup by adding a class to either heading. We can set a
global style that contains shared rules for all <h3> elements, and then use descendant
selectors to color the heading depending on where it lives.

h3 {
 font- family: Georgia, serif; /* All h3s to be serif */
 }

#content h3 {
 color: purple;
 }

#sidebar h3 {
 color: orange;
 }

We’ve generically said that all <h3> elements should be in a serif font, while the color will
be either purple or orange depending on its context. there is no need to repeat the
shared rules (font- family in this case), which in turn minimizes the CSS and prevents
repeating rules in multiple declarations.

not only are we eliminating the need for extra markup in the form of class labels, but the
CSS structure starts to make a lot more sense, making it more readable and easier to orga-
nize your declarations by page section. going back to alter specific rules becomes all the
easier—especially for large and complex layouts, where you may potentially have hun-
dreds of CSS rules in one place.

For instance, in our example, if we had added the shared styles to each declaration and
later wanted to change all <h3> elements to appear in sans serif, then we’d have to make
that change three times instead of once.

Fewer classes mean easier maintenance
in addition to lessening the amount of code needed, using descendant selectors instead of
assigning extraneous classes means future- friendly markup.

For instance, let’s say that you would like the links in the sidebar to be red as opposed to
the default blue that the rest of the page uses, so you went ahead and created a red class
that you added to the anchor elements like this:

<div id="sidebar">
 <h3>About This Site</h3>
 <p>This is my site.</p>
 <h3>My Links</h3>

 Archives
 About Me

</div>

Web StandardS SolutionS

138

and the CSS needed to turn those links red (provided that the default link color was some-
thing different) went something like the following:

a:link.red {
 color: red;
 }

this is all well and good and works perfectly fine. but, what if in the future you changed
your mind and would like the same links to appear in green? or more practically, your boss
casually says, “red is out this year. Make those sidebar links green.” Sure, you could just
make an alteration to the red class in the CSS and be done. but the markup is still saying
red in the class attribute, which is of course semantically insignificant—as would be any
color for the class name.

although this makes a good case for using nonpresentational names for classes, it would
take less effort (and code) and stay more semantically sound if we were to not assign a
class at all; rather, we could just use descendant selectors to tap into those sidebar links to
style them any way we wished.

the markup would be identical to Method b, and the CSS needed to turn the sidebar links
would be as follows:

#sidebar li a:link {
 color: red;
 }

in essence, we’re saying, “only anchors using the href attribute that are found in ele-
ments within the sidebar <div> should be colored red.”

now, our markup stays lean and mean, and our CSS is the only tool needed for future
updating—whether we’d like the links to appear red, green, bold, italic, or whatever.

next, let’s look at an additional way we can minimize our markup—eliminating unneces-
sary <div> elements in favor of a preexisting block- level element.

The unnecessary <div>

in addition to reducing the number of class attributes needed for styling, there is another
simple way we can reduce markup—by eliminating a <div> when a block- level element
already exists as its child element. to demonstrate, let’s look at two different methods.

Method a: <div> happy

<div id="nav">

 Archives
 About

</div>

MiniMizing MarKup

139

9

What we have here is an (extremely) small navigation menu that consists of nothing more
than an unordered list. We’ve assigned the id of nav to the <div> that wraps around the
whole list.

but why not assign the id directly to the element, which like the <div> is also
 block- level by nature? let’s look at Method b.

Method B: Lose the <div>

<ul id="nav">
 Archives
 About

Method b shows us that we can toss out the extra <div> in favor of identifying the directly.
any styling for positioning, margins, padding, and so forth can be applied to the just as easily
as the <div>, so we in turn reduce our markup a bit by getting rid of the wrapper.

it’s important to point out that this would only be appropriate if there are no other ele-
ments in addition to the contained within nav—for instance, a paragraph or <block-
quote> or <form>. Since it’s generally impractical for these elements to sit inside a , a
<div> wrapper would make more sense. however, for instances such as i’ve outlined in
Methods a and b, where the unordered list was the only element contained—then it
makes sense to toss the <div> out. in fact, it’s important to evaluate the existence of any
containing element. does it really need to be there? is there already a block- level element
that can be used? Compact markup awaits.

Other examples

another example of where a <div> could be eliminated is when wrapping a <form>. For
instance, instead of this:

<div id="myform">
 <form>
 ... form elements here ...
 </form>
</div>

we could more easily do this:

<form id="myform">
 ... form elements here ...
</form>

likewise, for a footer of a website that contained a single paragraph, instead of

<div id="footer">
 <p>Copyright 1999- 2004 Dan Cederholm</p>
</div>

Web StandardS SolutionS

140

we could also do this:

<p id="footer">Copyright 1999- 2004 Dan Cederholm</p>

provided of course that the footer contained no more than one paragraph.

Summary
We’ve looked over two simple ways we can minimize our markup—by refraining from
peppering elements with class attributes and instead using descendant selectors for styl-
ing, as well as assigning ids directly to preexisting block- level elements instead of wrap-
ping them up in a <div>.

While using one of these methods may seem like an insignificant savings, when you start
to add these up over an entire website, the compact, structured code becomes evident
and the savings become real. You’ll be further on your way to authoring code that is
leaner, more semantically sound, and easier to maintain in the future.

For extra credit, let’s take a look at how descendant selectors can be taken to the next
level in styling nested lists that will make up a site map.

Extra credit
For this extra credit session, let’s take a look at how we can use descendant selectors to
uniquely style different levels of a set of nested lists. the example we’ll work with is a por-
tion of a small site map. We’ll discover that we can keep the markup very basic, without
needing to add extra class attributes in order to style the levels separately.

First, let’s introduce ourselves to the markup.

The raw markup

at a very basic level, nested, unstyled lists deliver the perfect hierarchy for something like
an outline or, for our example, a simple site map. by nesting the lists, we can guarantee the
proper structure that all browsers and devices will read, while easily styling it with CSS
later on.

the markup for a small site map might look something like this, with three top- level items
and a few nested ones:

 Weblog
 Articles

 How to Beat the Red Sox
 Pitching Past the 7th Inning

MiniMizing MarKup

141

9

 Part I
 Part II

 Eighty- Five Years Isn't All That Long, Really

 About

 Figure 9-1 shows us how the preceding markup will render in most browsers. You can see
that, by default, the structure that we’re striving for is roughly in place. the hierarchy is
evident, even in the absence of style. it’s a little boring, though, so next let’s start adding
some CSS.

 Figure 9‑1. unstyled rendering of the nested
list markup

adding style

let’s say that we’d like to add some definition for certain levels of the site map. all we
really need to add to the markup is a single id so that we may style this particular list dif-
ferently from any other lists that may be on the same page, without any additional
markup:

<ul id="sitemap">
 Weblog
 Articles

 How to Beat the Red Sox
 Pitching Past the 7th Inning

 Part I
 Part II

 Eighty- Five Years Isn't All That Long, Really

 About

Web StandardS SolutionS

142

again using descendant selectors, we can give a unique style to each separate level of the
list. For instance, if we’d like the higher levels to be large, bold, and orange, with the inner
levels progressively smaller, we’d first set the size, weight, and color for the entire list:

#sitemap {
 font- size: 140%;
 font- weight: bold;
 color: #f63;
 }

that will make the entire list big, bold, and orange. next, we’ll reduce the size and change
the color for elements that are nested at any level below:

#sitemap {
 font- size: 140%;
 font- weight: bold;
 color: #f63;
 }

#sitemap li ul {
 font- size: 90%;
 color: #000;
 }

the preceding CSS will ensure that all top- level items will be big, bold, and orange, while
all lists that are nested within will be black in color with a font size of 90 percent (which in
this case is 90 percent of 140 percent). See Figure 9-2 for the results.

 Figure 9‑2. adding style to the top- level list items

We need not assign a smaller size for the third level, as it will automatically apply 90 per-
cent of 90 percent (a little confusing, but it works!).

now we have a descending font- size for each level of the list. next, we’ll add some
bullets.

Custom bullets

let’s turn off default styling, and add a decorative bullet for only third- level items by using
the background property. We’ll first turn off list styling, in general, for all elements,
and then we’ll specifically assign a background image for third- level items. For further

MiniMizing MarKup

143

9

separation, we’ll also make third- level items font- weight: normal;—overriding the list’s
default of bold.

#sitemap {
 font- size: 140%;
 font- weight: bold;
 color: #f63;
 }

#sitemap li {
 list- style: none; /* turns off bullets */
 }

#sitemap li ul {
 font- size: 90%;
 color: #000;
 }

/* for third- level */

#sitemap li ul li ul li {
 font- weight: normal;
 padding- left: 16px;
 background: url(bullet.gif) no- repeat 0 50%;
 }

 Figure 9-3 shows the resulting site map with a custom bullet and normal font weight
applied only to third- level elements. We’ve added 16 pixels of padding on the left to
account for the width of the decorative bullet image (plus a bit of whitespace). We’re also
telling the browser to align the image 0 pixels from the left and 50 percent from the top,
which essentially aligns the bullet to the left and center of the text. While we could’ve
used a pixel value here, using a percentage allows for similar bullet placement if text is
resized.

 Figure 9‑3. Custom bullets added to third- level items

adding a border

to complete our site map, let’s add a dotted border to the left side of the second- level list.
this will further cue the user that the top- level item has suboptions that belong to it.

Web StandardS SolutionS

144

to achieve the border only on the second- level list, we’ll add the following rules:

#sitemap {
 font- size: 140%;
 font- weight: bold;
 color: #f63;
 }

#sitemap li {
 list- style: none; /* turns off bullets */
 }

#sitemap li ul {
 margin: 6px 15px;
 padding: 0 15px;
 font- size: 90%;
 color: #000;
 border- left: 1px dotted #999;
 }

/* for third- level */

#sitemap li ul li ul {
 border: none;
 }

#sitemap li ul li ul li {
 font- weight: normal;
 padding- left: 16px;
 background: url(bullet.gif) no- repeat 0 50%;
 }

We’ve adjusted margins and padding a bit for the second level, as well as the addition of
the dotted border. Following that rule, we’ll turn off the border for third- level lists with the
border: none; rule.

 Figure 9-4 shows the resulting list with varying fonts, borders, and list images in place.

 Figure 9‑4. Final styled site map, with dotted border
applied to second- level lists

MiniMizing MarKup

145

9

For building outline- like lists, nesting uls makes for a structurally sound and easily styled
solution. by assigning a single id to the top- level ul, we can let CSS do all the hard work
of styling each level separately—without the need for extraneous presentational markup.
and possibilities for creative styling go way beyond this simple example.

 Figure 9-5 shows the same CSS applied to a slightly larger site map. because the CSS
assigns style depending on the level, the markup would be set up exactly the same.
depending on nesting level, the items would take on the appropriate style.

 Figure 9‑5. expanded site map with nested lists and CSS

Conclusion
in this chapter, we explored two simple ways to minimize our markup using descendant
selectors and tossing out unnecessary <div> elements.

using descendant selectors eliminates the need for adding extraneous class attributes that
will further muck up our markup. and eliminating <div> elements where a preexisting
 block- level element exists just below it can save us added bytes as well as reduce the code
it takes to build complex layouts.

While it may seem trivial to save just a few characters by using these methods once over
an entire website, these savings start to add up. Call it yet another tool for creating lean,
structured markup.

With that lean markup, we also looked at how descendant selectors can be used to style a
site map that is structured with nested unordered lists. each level of the outline can be
styled uniquely without the need for extra class attributes—again saving bytes and making
it easier to update and restyle in the future. Yay for compact code!

Part two

SimpleBitS of Style

ChaPter 10

Applying CSS

web StandardS SolutionS

150

while the focus throughout Part one had been primarily markup examples, we also
explored how CSS can be applied to that markup for design and style details. to begin Part
two, in this chapter we’ll talk about the different methods used to apply CSS to a particu-
lar document, site, or even single element. in addition, we’ll discuss how we can hide CSS
from older browsers, enabling us to use advanced techniques without harming the markup
structure that all browsers and devices can read.

later, in the “extra credit” section at the end of the chapter, we’ll introduce alternate style
sheets that can produce multiple themes, font sizes, and colors without the need for
 server- side scripting.

How do i apply CSS to a document?
we’re going to look at four ways to apply CSS to a document, each with its own advan-
tages and disadvantages. depending on the situation, any one of these methods would be
appropriate. each method presented uses a valid and typical XhtMl 1.0 transitional frame-
work for its document type, <html> element, and <head> setup.

let’s begin with Method a.

method A: the <style> element

<!DOCTYPE html PUBLIC -//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <style type="text/css">
 <![CDATA[
 ... CSS declarations here ...
]]>
 </style>
</head>

this method, also known as an embedded style sheet, allows you to write all of your CSS
declarations right in the actual XhtMl document. the <style> element sits inside the
<head> section of a page and can contain any number of CSS rules you desire.

the type attribute with the text/css value ensures that the browser understands what
type of style language we’re presenting and is required. we’re also using CDATA comment
syntax that is recommended by the w3C to hide the style rules from older browsers that
can’t understand them (www.w3.org/TR/xhtml1/#h- 4.8).

partial understanding
one important downside to using Method a is that some older browsers will do their best
to render CSS that is contained in <style> elements. this can be a bit of a problem if you

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/#h-�4.8

aPPlying CSS

151

10

have any advanced CSS rules that only modern browsers will understand for layout and
positioning. if complicated CSS is kept within <style> elements, it’s possible that users of
older browsers may receive a jumbled, unusable mess.

Uncached
another downside to embedded style sheets is that since they are on the page, they are
required to be downloaded each time that page is loaded. Conversely, the method that
follows requires the styles to be downloaded once, and then cached by the browser.

multiple changes
along with the fact that embedded style sheets appear on the XhtMl page, including an
embedded style sheet also means duplicating these styles if you want them to be applied
to multiple pages within a site. if you need to change these styles, you must make the
changes on each page that includes the style sheet. lots of changes. lots of work.

good for development
on the upside, i find that when i’m initially building and testing CSS, it’s very convenient to
write all of the rules on the page i’m testing using Method a. it allows me to work on a
single document for both markup and style when making frequent changes. after testing
is complete, i’ll apply CSS to the public version using a different method. let’s take a look
at a few more.

method B: external style sheets

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <link rel="stylesheet" type="text/css" href="styles.css" />
</head>

Method b demonstrates how we can link to external style sheets—where all of the CSS
declarations are kept in a separate file, and then referenced in the head section of the
XhtMl of the document with the <link> element.

the href attribute points to the location of the file. the value can be a relative path (as in
the case of Method b), or an absolute path, using the full http:// location of the docu-
ment. also note that <link> is a single element, or empty element, and is required to have
the self- closing / at the end.

Separate file = easy maintenance
having all your CSS rules in a file separate from your markup has an obvious advantage—
any style changes for an entire site can be made on that one file, rather than repeating CSS
declarations on every page, as you would need to do if using Method a.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://location

web StandardS SolutionS

152

this, of course, is especially critical for large- scale sites where hundreds or thousands of
pages can all share the same style instructions from a single document.

Download once
an additional advantage to linking styles in an external style sheet is that the file is often
only downloaded once and cached by the browser, saving download time for repeat vis-
its—or for other pages that reference the same style sheet.

Still not completely hidden
like Method a, Method b also has the possibility of being interpreted by older browsers
that have limited support for CSS. any styles that are targeted for modern browsers may
wreak havoc in an unsupported browser.

hmm, that’s the second time i’ve mentioned that problem. the next method has to solve
it, right?

method C: @import

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <style type="text/css">
 <![CDATA[
 @import "styles.css";
]]>
 </style>
</head>

Similar to Method b, using the @import rule allows us to import CSS from an external
document, either by a relative path (as in Method C) or an absolute path.

Method C shares the same benefits when using the <link> element. because the styles are
held in an external document, making changes and updates to a single file can affect an
entire site—and can be done so quickly and easily. external style sheets are cached by the
browser, saving download times for pages that import the same file.

Hide and seek
the major historical advantage for using Method C is that netscape versions 4.x and below
don’t support the @import rule, essentially “hiding” the CSS that is being referenced. this
is certainly a handy “hack,” in that we can target advanced CSS for tasks such as layout and
other design details to modern browsers that can handle them, while older browsers will
ignore them.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

aPPlying CSS

153

10

the problem with netscape 4.x is that it thinks it supports CSS as well as browsers that
actually do. therefore, with the exception of netscape 4.x, we can send along any CSS that
we wish, letting the browser decide if it can display it or not.

this is an important point for building sites with web standards—that we can separate our
structured markup from the presentation as much as possible, and then hold design details
and styles for browsers that support them. older browsers will receive the structure that
they can easily read, but the advanced CSS will be hidden from them.

what this does do is allow designers and developers to move forward now, rather than
continue to use methods that cater to prehistoric browser versions that may choke on
advanced CSS rules.

Styles on, styles off
as a comparison, take a look at Figures 10- 1 and 10- 2, which show my personal site with
full CSS, and then without, as an older browser may render it. the structure without CSS is
still evident and is readable and usable to all. if i hadn’t hidden the CSS that’s required to
present the design, users of older browsers may have received quite an unreadable mess.

 figure 10‑1. My personal site with CSS

web StandardS SolutionS

154

 figure 10‑2. the same page, without CSS, as an older browser may render it

Combining B and C for multiple style sheets

Sometimes, it can be beneficial to import more than one style sheet to a document. For
instance, you could keep your entire layout in one style sheet and typography rules in
another. For large, complex designs, this can make maintaining the high number of rules
much easier.

the chameleon effect
in the case of Fast Company magazine’s website, i wished to make the colors of the website
change each month to correspond to the magazine’s monthly cover image. to make the rou-
tine change easier, i kept all CSS rules related to color in one file, while the rest of CSS that
didn’t change each month was held in another.

each month i could make quick, easy updates to the colors file without hunting through
the hundreds of rules that were needed to make up the rest of the design. instantly the
entire site’s colors would change with the modification of that single file.

aPPlying CSS

155

10

How it’s done
to combine Methods b and C for importing multiple style sheets, we would use the <link>
element in the <head> of the document to reference a master CSS file—just like Method
b illustrates, by linking to a styles.css file.

the contents of styles.css would simply contain @import rules to import any number of
CSS files that we wish.

For instance, if we’d like to import three style sheets, one for layout, one for fonts, and
one for colors, styles.css would contain the following:

/* hidden from old- school browsers */

@import url("layout.css");
@import url("fonts.css");
@import url("colors.css");

now, our <link> element can stay the same throughout an entire site, referencing only
the styles.css file. that one file can import multiple style sheets with the @import rule.
new style sheets could be added to this one file that would in turn affect the entire site.

this makes updates and CSS file shuffling very easy. For instance, if down the road you
would like to further separate your CSS into four files, you can easily change the import
urls in this single file, rather than being bothered with modifying the XhtMl markup.

lo‑fi and hi‑ fi styles

another trick when using Method C’s @import rule to hide CSS from old browsers is to use
the cascade effect in CSS to serve lo- fi styles that old and modern browsers should be able
to recognize, using either Method a or Method b, and then use @import to serve advanced
styles to browsers that support them.

older browsers get only what they can support, while more modern browsers receive all
the styles intended.

let’s take a look at how this would appear in code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <link rel="stylesheet" type="text/css" href="lofi.css" />
 <style type="text/css">
 @import "hifi.css";
 </style>
</head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

web StandardS SolutionS

156

where lofi.css would contain basic CSS rules like link colors and font sizes, and hifi.css
may contain advanced rules like layout, positioning, and backgrounds.

we can achieve sending lo- fi and hi- fi versions of the design—without the need for script-
ing or server- side browser identification of any kind.

order is important
the order in which we’ve placed the <link> and <style> elements in the markup is impor-
tant. the “cascade” of CSS refers to the priority that is placed on rules—depending on
what order they appear.

For instance, since modern browsers support both methods, they will receive both style
sheets and apply all the styles from each. Style rules in hifi.css will override styles that
refer to the same elements in lofi.css. the reason? because hifi.css comes after lofi.
css in the markup.

older browsers will ignore hifi.css because of the @import rule used; therefore, they will
only apply rules found in lofi.css.

embrace the cascade

you can use the cascade property of CSS to your advantage in a variety of ways. one
example is a scenario where you have an entire site sharing one external CSS file for all of
its layout, positioning, fonts, colors, and so forth. you can use Method C on each page of
the site to import the file, hiding it from older browsers.

let’s say there is one page on the site that shares the layout and positioning, but needs
custom colors or fonts. For this one page (which is different from the rest of the site), we
can still import the main CSS file, but also just after that in the <style> element, import a
second CSS file containing customized styles for that particular page. any styles in the
second CSS file will take priority and override styles that reference the same elements
found in the first CSS file.

let’s look at an example to illustrate this. master.css contains CSS that the entire site uses
for structure, fonts, and so forth, while custom.css is imported only on a particular page
with the overriding of a few elements.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd ">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <style type="text/css">
 @import "master.css";
 @import "custom.css";
 </style>
</head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

aPPlying CSS

157

10

because custom.css comes second in the markup order, its declarations of the same ele-
ments will override those found in master.css.

For instance, let’s say that in main.css we had all <h1> elements appear serif and red,
while all <h2> appear serif and blue:

h1 {
 font- family: Georgia, serif;
 color: red;
 }

h2 {
 font- family: Georgia, serif;
 color: blue;
 }

on our customized page, we’d like to change only the styles for <h1> elements, while <h2>
should stay the same. in custom.css, we need only declare the new styles for <h1>:

h1 {
 font- family: Verdana, sans- serif;
 color: orange;
 }

this declaration will override the one found in master.css (because custom.css is
imported last). Pages that import custom.css after master.css will have <h1> elements
that appear in Verdana and orange, while <h2> elements will still show in a serif font and
blue—the declaration found in master.css wasn’t overridden in custom.css.

using the cascade property in CSS can be a handy way to share common styles while over-
riding only those that need to be customized whenever desired.

method D: inline styles

<h1 style="font- family: Georgia, serif; color: orange;">This is a ➥

Title</h1>

there is a fourth method of applying CSS that we need to talk about as well: inline styles.
the style attribute can be added to almost any element, allowing CSS rules to be applied
directly at the element level, as shown in Method d.

Since inline styles are at the lowest level possible in the cascade, they will override any
styles that are declared in external style sheets, or rules held in the <style> element in the
<head> of the document.

this can be a simple way of adding style here and there to documents, but it comes at a
price.

web StandardS SolutionS

158

Style tied to markup
if we rely on Method d too much for adding style to documents, we’re not really separat-
ing our content from our presentation. going back to make changes means going directly
to the markup, when keeping CSS in a separate file makes for easier maintenance.

abusing Method d is almost like littering your markup with elements and other
presentational gobbledygook. these design details always belong in a separate place.

Use with caution
there are certainly real- world uses for inline styles—and they can be a savior in a pinch,
where adding style to a document is necessary, but accessing an external file or the <head>
of the document is impossible; or additionally, if they are merely temporary styles, not
meant to be shared with other elements on the page.

For instance, if there is one page that will be announcing a bake sale on your website that
will eventually be taken down afterward, and you’d like this particular page to have unique
styles, you may opt to embed these unique rules rather than adding them to a permanent
style sheet.

Just proceed with caution. Know that these styles can’t be modified easily, across an entire
page or site.

Summary
we’ve looked over four different methods for applying CSS to markup, showing that each
has its merits depending on the situation. let’s recap the methods and the advantages and
disadvantages that they each may have.

Method a:

 this method requires styles to be in the <head> section of each document. Styles
can’t be shared with multiple documents and are required to be downloaded each
time the page loads.

 Styles contained in the <style> element won’t be completely hidden from all older
browsers.

 this method is good for testing and development stages. Markup and style can
each be modified in the same file.

Method b:

 this method enables one set of styles to be shared among multiple documents or
an entire site.

 external style sheets are downloaded once and often cached by the browser, saving
download time for repeat visits.

 Keeping shared styles in one file means easy maintenance for design updates.

 Styles referenced with the <link> element won’t be hidden from older browsers.

aPPlying CSS

159

10

Method C:

 this method enables one set of styles to be shared among multiple documents or
an entire site.

 external style sheets are downloaded once and often cached by the browser, saving
download time for repeat visits.

 Keeping shared styles in one file means easy maintenance for design updates.

 using @import hides styles from netscape 4.x browsers.

Method d:

 Styles are coded inline, keeping the design too closely tied to the markup.

 Styles can’t be shared among other elements, entire documents, or sites.

 Maintenance can be tedious and inefficient.

 this method is good for temporary solutions or when accessing an external file
within the <head> of the document is impossible.

now that we’ve recapped the various ways that we can link up our styles to our markup,
let’s go a step further in the “extra credit” section to take a look at alternate style sheets.

extra credit
For extra credit, let’s dive a little deeper into the style sheet world to look closely at alter-
nate style sheets (multiple styles for the same markup) and how we can give users more
control over what styles they select.

Alternate styles

Previously in this chapter, we talked about four ways to apply CSS to a document, while
showing the advantages of linking or importing our styles in an external style sheet. we
can take this a step further and reference alternate style sheets where the user can poten-
tially choose larger text sizes, various color themes, or even alternate layouts.

we can do this by referencing multiple style sheets with the <link> element (much like Method
b from earlier), but adding the value "alternate stylesheet" for the rel attribute.

For instance, if we want to give users the choice between two additional text sizes, we link
the main style sheet normally, and then the alternate style sheets follow:

<head>
 <meta http-equiv="content- type" content="text/html; charset=utf- 8" />
 <title>Applying CSS</title>
 <link rel="stylesheet" type="text/css" href="default.css" ➥

title="default"/>
 <link rel="alternate stylesheet" type="text/css" ➥

href="largetext.css" title="large" />

web StandardS SolutionS

160

 <link rel="alternate stylesheet" type="text/css" ➥

 href="largertext.css" title="larger"/>
</head>

you’ll notice that, along with the "alternate stylesheet" value for the rel attribute on
the last two <link> elements, we’ve added a title attribute to each, naming each style
sheet so that they may be selected later.

the “default” style sheet will always be on and activated by the browser. large.css and
larger.css will be downloaded, but not used unless activated by other means (which we’ll
talk about later). the presence of the "alternate stylesheet" value in the rel attribute
is what prevents that style sheet from being “on” by default when the page loads.

If we wish to hide the alternate styles from older browsers, such as Netscape 4.x, we
need not use the @import method. Netscape 4.x doesn’t support the "alternate
stylesheet" value for the rel attribute, and therefore those styles will never be
applied.

three font sizes
let’s talk a little more about what would be contained in those alternate style sheets. if, for
instance, we’d like to give the user the option of enlarging the font size on the page, we
could specify a larger size in each of the alternate style sheets that, when activated, would
override the rules found in default.css.

this would be especially handy if we chose to specify our font sizes in pixels—where some
browsers don’t allow the user to increase the font size. if we chose to set the base font size
at a pixel amount that was hard to read for low- vision users, we can use alternate style
sheets to give them larger options.

So, in default.css, we may have set a base font size for the site:

body {
 font- size: 12px;
 }

and in large.css, we’d override that rule with a slightly larger font size:

body {
 font- size: 16px;
 }

and similarly in larger.css, we’ll boost it up another notch:

body {
 font- size: 20px;
 }

aPPlying CSS

161

10

when activated (and i promise we’ll get to that in a minute), the large.css and larger.
css style sheets will override the default rule, increasing the font size for the page.

Still cascading
it’s important to note that the cascade effect of CSS still applies, and alternate style sheets
work just like any other style sheet, in that only common rules are overridden when the
alternate styles are active. So if we had layout, positioning, and other site- wide rules in
default.css that weren’t repeated in the alternate style sheets, those default rules would
still work.

getting alternate styles to work
great. So we have these alternate style sheets sitting there, waiting to be used. how does
the user activate them? unfortunately, only a few browsers have a built- in mechanism for
choosing alternate style sheets: Firefox, Safari, and opera, for example.

if alternate style sheets are present in Firefox, for example, users can choose to activate an
alternate style from the View ~TMA Page Style menu (see Figure 10-3).

 figure 10‑3. Firefox’s alternate style sheet selection menu

hopefully more browser makers will implement similar mechanisms as time goes on, but
until then, there is another way to toggle alternate style sheets on or off—even saving the
user’s choice, through the magic of cookies.

web StandardS SolutionS

162

Paul Sowden has written an indispensable tutorial at A List Apart, titled “alternative Style:
working with alternate Style Sheets” (www.alistapart.com/articles/alternate/). in it,
he explains a set of JavaScript functions that can be used to activate and deactivate alter-
nate style sheets in modern browsers.

the toggling is handled by a hyperlink on the page, effectively switching between any one
of the style sheets by its title attribute. the JavaScript remembers the user’s last selection
by storing a cookie so that the next time the user visits the page, the correct alternate
styles will be activated in addition to any default style sheets.

as an example, a few years ago i offered three color schemes on my personal website.
each scheme was activated by clicking the appropriate icon, which in turn referred to Paul
Sowden’s script. the first icon was the default, while the second and third activated two
additional alternate style sheets for different color schemes. See Figure 10-4 for an illustra-
tion.

 figure 10‑4. alternate style sheet being activated
by the clicking of an icon

because the JavaScript used was client- side based, the switching happened instantly, with-
out the need for refreshing the entire page. it was very fast.

The complete JavaScript code is available for download in Paul Sowden’s article at a
list apart (www.alistapart.com/articles/alternate/).

more than just font sizing
in addition to the popular “text sizer,” as it’s sometimes referred to, there are endless style
switching possibilities. Some sites allow the user to choose from a rainbow variety of color
themes, while others offer the choice between fonts, font sizes, or even different layouts
of the page.

by experimenting with the cascade—overriding certain default rules and placing them in
alternate style sheets—some really interesting and interactive things can start happening
on your websites. all with a simple script and a few CSS rules. low bandwidth, high
impact.

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com/articles/alternate/

aPPlying CSS

163

10

Courtesy of Dom
we can thank another w3C standard for the ability to use scripting to access alternate
style sheets. the doM, or Document Object Model is, well… let’s hear what the w3C has
to say about it:

“the document object Model is a platform- and language- neutral interface that will allow
programs and scripts to dynamically access and update the content, structure, and style of
documents. the document can be further processed and the results of that processing can
be incorporated back into the presented page. this is an overview of doM- related materi-
als here at w3C and around the web.”

Sounds familiar, doesn’t it? that is exactly what we’re doing with the style sheet switcher
script—dynamically accessing and updating the style of documents. we can do this if we
follow w3C standards, allowing developers to author scripts that can access predictable
elements in our markup. if we strive toward standards- based markup, we can ensure that
more doM- based scripts can be written in the future, enhancing the user’s experience of
the pages we build.

the style switcher only scratches the surface of the possibilities for doM- based scripting.
but it’s yet another example of the benefits gained when building a site with standards.

Reset styles
while we’ve talked about the various ways in which we can apply CSS to documents, it’s a
good time to also mention the concept of using a reset style sheet. eric Meyer has led the
way with a fair amount of research and writing on the subject, and explains on his blog:

“the goal of a reset stylesheet is to reduce browser inconsistencies in things like default
line heights, margins and font sizes of headings, and so on” (http://meyerweb.com/eric/
tools/css/reset/).

in other words, all browsers have default styles—CSS that is applied at the browser level to
render htMl elements a certain way. For example, an <h1> is usually large and bold with
margins and/or padding above and below it before you apply any of your own CSS.
ordered and unordered list items are often indented. the problem, as Meyer points out,
is that these default styles can vary, depending on the browser and/or operating system. to
get everyone down to a common baseline, a reset.css file is applied first in order to
“zero out” any values the browser might apply.

in addition to achieving consistency, a reset style sheet can save a considerable amount of
code as well. in a large style sheet, we often find ourselves setting margin: 0; padding:
0; on elements that have default margins and padding. this is repeated throughout the
style sheet for every declaration where it’s needed. a reset style sheet will do this once,
clearing up your main style sheet of duplicated rules.

http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/

web StandardS SolutionS

164

An example reset.css

here is eric Meyer’s version of a reset.css, which as you can see, applies various global
rules to remove the default styling the browsers might apply to each element:

/* v1.0 | 20080212 */

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 outline: 0;
 font- size: 100%;
 vertical- align: baseline;
 background: transparent;
 }
body {
 line- height: 1;
 }
ol, ul {
 list- style: none;
 }
blockquote, q {
 quotes: none;
 }
blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
 }

/* remember to define focus styles! */
:focus {
 outline: 0;
 }

/* remember to highlight inserts somehow! */
ins {
 text- decoration: none;
 }

aPPlying CSS

165

10

del {
 text- decoration: line- through;
 }

/* tables still need 'cellspacing="0"' in the markup */
table {
 border- collapse: collapse;
 border- spacing: 0;
 }

It’s important to mention that your reset.css doesn’t have to include everything shown here.
Feel free to customize your own version, zeroing out what you think is helpful in your own proj-
ects.

the idea here is to include this style sheet first, before applying your own styles, to have
that baseline in place. using the method described earlier in the chapter, we would import
the reset style sheet before all others in the styles.css file that was linked in the markup,
like so:

/* hidden from old- school browsers */

@import url("reset.css");
@import url("layout.css");
@import url("fonts.css");
@import url("colors.css");

with the browser defaults for various common elements zeroed out, the baseline is then
set for your own styles to build upon.

i highly recommend exploring the use of reset style sheets in your own work, as it can save
time and code. i now start every new project with a reset.css file included from the
 get- go, and it consistently saves me from duplicating countless CSS rules in order to start
from a fresh base.

Conclusion
in this chapter, we’ve discovered the various ways in which we can apply CSS to elements,
documents, and entire sites. we’ve also learned how to hide CSS from older browsers and how
to import multiple style sheets. we then talked about serving lo- fi and hi- fi CSS to browsers
that support either—without the need for scripts or server- side browser sniffing.

lastly, we learned about alternate style sheets—how through a bit of doM- based JavaScript
they can offer the user a dynamically switchable experience, whether allowing font size,
color, or layout choices. we also discussed using a reset style sheet to help override those
default styles that most browsers apply, giving us a clean slate to work from.

i hope these techniques get you off on the right foot in applying style to structure.

Chapter 11

Print StyleS

Web StandardS SolutionS

168

previously, in Chapter 10, we learned of the various methods available to apply CSS to your
documents. in this chapter, we’ll explore print styles—assigning CSS that is used specifi-
cally when printing a web page. With a few CSS rules, we can ensure that our structured
markup looks as good on paper as it does onscreen.

to begin, we’ll talk about media types and how they relate to serving device- specific CSS.

How can we specify styles for print?
before we answer that question, we need to familiarize ourselves with the idea that we can
assign media types to our CSS. declaring a media type enables us to target our styles to a
specific medium.

For instance, if we’d like a certain linked style sheet to be intended only for computer
screens, we could add the media attribute to the <link> element as follows:

<link rel=stylesheet" type="text/css" media="screen" ➥

href="screenstyles.css" />

the preceding code ensures that the styles linked in this statement are intended only for
computer screens. You may be asking, “What else would we be targeting?” the answer is…
quite a few possibilities.

Media types

in addition to the screen value used in the preceding code, there are a handful of other
possible values. here’s a full list of the recognized media types, defined by the W3C in their
CSS 2.1 specification (found at www.w3.org/TR/CSS21/media.html):

 all: Suitable for all devices.

 braille: intended for braille tactile feedback devices.

 embossed: intended for paged braille printers.

 handheld: intended for handheld devices (typically small screen, limited bandwidth).

 print: intended for paged material and for documents viewed onscreen in print
preview mode.

 projection: intended for projected presentations—for example, overhead projec-
tors. please consult the section on paged media (www.w3.org/TR/CSS21/page.
html) for information about formatting issues that are specific to paged media.

 screen: intended primarily for color computer screens.

 speech: intended for speech synthesizers. note: CSS2 had a similar media type
called aural for this purpose. See the appendix on aural style sheets (www.w3.org/
TR/CSS21/aural.html) for details.

http://www.w3.org/TR/CSS21/media.html):
http://www.w3.org/TR/CSS21/page.html
http://www.w3.org/TR/CSS21/page.html
http://www.w3.org/TR/CSS21/aural.html
http://www.w3.org/TR/CSS21/aural.html

print StYleS

169

11

 tty: intended for media using a fixed- pitch character grid (such as teletypes, termi-
nals, or portable devices with limited display capabilities). authors shouldn’t use
pixel units with the tty media type.

 tv: intended for television- type devices (low resolution, color, limited scrollability
screens, sound available).

We’ll be most concerned with the all, print, and screen media types for this chapter.

two ways to target

the W3C tells us that there are two ways that we can assign media types to CSS. We illus-
trated one of the methods at the beginning of the chapter using the <link> element and
media attribute. let’s take a look at both side by side.

Method A: the media attribute

<link rel="stylesheet" type="text/css" media="screen" ➥

href="screenstyles.css" />

Just as we demonstrated earlier, in Method a we’re specifying the screenstyles.css file
to apply only to computer screens. that should exclude the rules that are contained in
screenstyles.css from being applied when printing the page or when the page is being
viewed on a projector, handheld device, or screen reader.

Partial support
it’s important to note that concrete support for all media types is somewhat wishy- washy.
in an ideal world, all devices and browsers would adhere to whatever media type is speci-
fied. For instance, if we had said

<link rel="stylesheet" type="text/css" media="handheld" ➥

href="handheldcss." />

one would hope that only handheld devices such as pdas, phones, etc., would recognize
those styles. unfortunately, standards haven’t exactly reached that far beyond the browser
at the time of this writing, and not every device will support their respective media type.

For this reason, we’re focusing on types that have real- world uses—such as print styles.

Method B: @media or @import

<style type="text/css">
 @import url("screenstyles.css") screen;
 @media print {
 /* style sheet rules for print go here */
 }
</style>

Web StandardS SolutionS

170

the second method for assigning media types happens in conjunction with an @import or
@media directive. For instance, when we’re using the @import method for referencing
external style sheets, a media type can be added along with it.

also, the @media rule allows us to section off rules that are specific to a certain media type.
as in Method a, we’re using the @media rule to assign styles specifically for print.

in the head or externally
We’ve put Method a in <style> elements as an example, where it would live in the <head>
section of a document. but we could also put the @import and @media rules in an external
style sheet that we’re referencing with the <link> element (see the section “Combining b
and C for Multiple Style Sheets” in Chapter 10).

While the default value when specifying a media type is screen, typically all is recog-
nized when no media type is assigned. This means that, by default, CSS is meant for all
devices—screen, handhelds, projectors, screen readers, and so forth.

Multiple values allowed

When using either method, it’s allowable to assign multiple media types at one time. For
instance, if we’d like to assign a style sheet to both print and screen using Method a, it
would look something like this:

<link rel="stylesheet" type="text/css" media="screen, print" ➥

 href="screenstyles.css" />

Multiple values are separated by commas within the media attribute. Similarly, if we’d like
to use Method b to assign multiple media types, we’d use code like this:

<style type="text/css">
 @import url("screenandprint.css") screen, print;
 @media print {
 /* style sheet rules for print go here */
 }
</style>

in the preceding example, screenandprint.css is assigned to both screen and print by
specifying multiple media type values; after that we’re using the @media rule to section off
styles for print only.

now that we’ve outlined the two methods for specifying media types, let’s look at how
we’d use them to serve screen and print styles.

print StYleS

171

11

Separating screen and print styles

let’s imagine that we’d like to serve two CSS files for the same document—one for screens
and one used when printing the page. We’ll use my personal site as an example.

i use the <link> element to reference master styles (styles.css) for the entire site. the
contents of the styles.css file is simply an @import rule that applies an external style
sheet, while at the same time hiding it from older browsers like netscape 4.x.

So, in the <head> of the page, i link the master styles.css file:

<link rel="stylesheet" type="text/css" href="/css/style.css" />

i also have created a separate style sheet specifically for printing (print.css). inside the
print.css file, i write rules that pertain only to the page when it’s printed:

<link rel="stylesheet" type="text/css" href="/css/style.css" />
<link rel="stylesheet" type="text/css" href="/css/print.css" />

So, how can we ensure that each of these CSS files is used only for the intended medium?
We just add the media attribute to the <link> element (as illustrated in Method a, from
earlier in this chapter):

<link rel="stylesheet" type="text/css" media="screen" href="/css/ ➥

styles.css" />
<link rel="stylesheet" type="text/css" media="print" href="/css/ ➥

print.css" />

by specifying screen for the styles.css file, we can ensure that the styles contained in
styles.css are only applied for computer screens. Similarly, by specifying the print value
for the media attribute, we ensure that the styles contained within print.css will only be
applied when the user prints the page.

now that we’ve separated screen and print styles, let’s talk a little about what styles would
be appropriate in our print style sheet.

Building a print style sheet

While our styles.css file may contain CSS for the layout, fonts, position, backgrounds, etc.,
we have a blank slate with the print.css file to customize styles for the printed page.

the key thing to remember when building a print style sheet is the targeted medium. Since
we’re dealing with a page, rather than a browser window, pixel dimensions and sizing
aren’t the best choice.

Web StandardS SolutionS

172

Make a point
it makes perfectly good sense to use point values for font sizes in a print style sheet. So the
first rule of our print style sheet might define a base font size for the body element—in
points.

body {
 font- family: "Times New Roman", serif;
 font- size: 12pt;
 }

Simple enough, and we have a better idea of how 12- point text would look on a printed
page, rather than a pixel value. We also made the text serif, which tends to print out nicely
and is more easily readable on a printed page.

Save ink by hiding unnecessary elements
there may be plenty of page elements on the screen version of a site that aren’t necessary
on the printed page. elements like navigation links, sidebars, forms, and advertising can
often be wasted ink when printed—and we can choose not to display them by using the
display property in the print style sheet. often, it’s the content that the user desires to
print.

For instance, if a typical site had #nav, #sidebar, #advertising, and #search elements
that contained the site navigation, sidebar items, and search form, respectively, we could
turn these off in our print style sheet with the following declaration:

body {
 font- family: "Times New Roman", serif;
 font- size: 12pt;
 }

#nav, #sidebar, #advertising, #search {
 display: none;
 }

by setting the display: none in our print style sheet, we’ll be hiding those elements on
the printed page.

by experimenting with turning off desired portions of your pages, you can quickly and eas-
ily create a customized “printer- friendly” version of your site from the same markup. no
need to use server- side solutions to pump out an entirely parallel version of a site with a
 stripped- down template—just an extra CSS file, assigned with the print media type, does
the trick.

print StYleS

173

11

this also reinforces the fact that organizing your structure into logical page “sections” can
make styling easier after the fact. if your page has an advertising banner, assign an id to it
that makes sense, so that you can have complete control over the banner with CSS—in
this case, you can turn it off for printing.

turning off backgrounds and colors would be another way to save ink and produce a more
easily readable print version.

For instance, if we had previously assigned a background image or color to the <body>
element, we could turn it off like this:

body {
 background: none;
 }

We could, of course, do the same for any element that we’ve assigned a background for in
the screen version using the preceding method.

expose links
another neat trick that unfortunately only modern browsers that fully support the CSS2
specification can take advantage of is exposing hyperlink urls so they appear in print after
the hyperlinked text.

using the :after pseudo- class, we can write a CSS rule that will print the url of a hyper-
link after its text in the browsers that support it (try Mozilla, Firefox, or Safari to see it in
action). at the same time, it’s painless for users of browsers that don’t support the :after
 pseudo- class—only the hyperlinked text will show (see eric Meyer, “CSS: design: Going to
print,” www.alistapart.com/articles/goingtoprint/).

let’s add a rule that will expose hyperlink urls (in our content area only) to our print style
sheet:

body {
 font- family: "Times New Roman", serif;
 font- size: 12pt;
 }

#nav, #sidebar, #search {
 display: none;
 }

#content a:link:after, #content a:visited:after {
 content: " (" attr(href) ") ";
 }

http://www.alistapart.com/articles/goingtoprint/

Web StandardS SolutionS

174

We’ve essentially told the print version of the page to reveal the hyperlink urls after the
hyperlinked text, putting the url in between a set of parentheses with a single space
before and after. this will only be done to hyperlinks within the #content section of the
site. While we could’ve written a generic rule to expand all hyperlinks, we’ve chosen to
only expand in the content area of the page—excluding links in headers, footers, and
other areas.

again, although this only works in a few browsers at the time of this writing, it’s harmless
to browsers that don’t support the :after pseudo- class—they will simply ignore it.

link text
While we’ve gone ahead and done something fancy for link urls, let’s not forget to call
out linked text in a unique way so that it’s easy to differentiate linked words from the
normal flow of text:

body {
 font- family: "Times New Roman", serif;
 font- size: 12pt;
 }

#nav, #sidebar, #search {
 display: none;
 }

a:link, a:visited {
 color: blue;
 text- decoration: underline;
 }

#content a:link:after, #content a:visited:after {
 content: " (" attr(href) ") ";
 }

We could, of course, choose any color we wished here. i opted for default blue and under-
lined, as it’s easily recognizable as a link. For black-and- white printing, experiment to get a
shade that shows enough of a contrast between a link and normal text.

Save ink with print preview
another tip for saving ink is to use the browser’s print preview function to test print versions
of our pages without actually printing an entire page on paper.

in most browsers, the File ➤ Print dialog box contains a Preview option to view how the
printed page will appear. You can get a good look at how your print style sheet is operating
here.

print StYleS

175

11

How it looks
the print style sheet that i’ve used on my personal site looks much like the preceding
example that we’ve been building. by comparing Figures 11- 1 and 11- 2, you can see how
i’ve customized the print styles to turn off things like navigation and sidebars and have
expanded links and changed fonts and sizes for optimal readability.

You can easily see that with just a tiny CSS file, we can serve an entirely customized version
of any number of pages specifically for printing. it’s an easy feature to add to any project,
yet it will enhance users’ experience when they go ahead and print your pages.

the next time your boss says, “We need to build a new template for a printer-friendly version
of the site and have a completely parallel directory structure,” you can pull this little trick out
your back pocket (or wherever you can fit this book).

For more on print styles, be sure to read CSS guru Eric Meyer’s helpful articles, “CSS
design: Going to print” (www.alistapart.com/articles/goingtoprint) and “print
different” (www.meyerweb.com/eric/articles/webrev/200001.html).

 Figure 11‑1. Simplebits as viewed in a browser with screen styles enabled

http://www.alistapart.com/articles/goingtoprint
http://www.meyerweb.com/eric/articles/webrev/200001.html

Web StandardS SolutionS

176

 Figure 11‑2. Simplebits, print version

print StYleS

177

11

Summary
We’ve just scratched the surface of what can be included in print style sheets. because we
can separate print and screen styles by assigning media types, customizing each medium
becomes simple and easily maintained and organized. building an entire site of
 printer- friendly pages becomes unnecessary when we can utilize the same structured
markup with a different CSS file associated with it.

in the future, i hope that more media types are widely supported in other devices. When
designers can start to rely on styling device- specific CSS for devices such as pdas, phones,
and all screen readers while using the same structured XhtMl, it will make our lives all the
easier.

Chapter 12

CSS LayoutS

Web StandardS SolutionS

180

throughout the book, we’ve been talking primarily about the insides of web page ele-
ments—the guts. but what about the framework? For years, designers have relied on tables
for structuring columnar layouts, often nesting multiple tables inside each other to achieve
just the right amount of spacing or visual effect. these bloated layouts can be slow to
download and slow to work with in terms of code maintenance—not to mention often
unreadable in text browsers, screen readers, and small- screened devices.

in this chapter, we’ll combine CSS and structured markup to create a two- column layout
using four popular methods. in turn, we’ll show that it’s possible to create columnar
designs without nested tables and spacer GiFs.

later, in the “extra credit” section, we’ll discuss the box model problems found in internet
explorer 5 for Windows and how to get around it. We’ll also share a simple secret for get-
ting equal- length columns with CSS.

How can I use CSS to build a two- column
layout?

the answer is several ways. to get you started, and to help you understand the fundamen-
tal difference between two of the most popular methods (floating and positioning), i’ve
decided to focus on four options—all of which result in a two- column layout with a header
on top and a footer at the bottom.

My hope is that by using this chapter as a guide, you can begin to build the framework for
sites that contain many of the rest of this book’s examples.

each of the four methods that we’ll focus on take place between the <body> and </body>
elements of the document, and i’ve introduced the markup structure that we’ll be using at
the beginning of each method.

to give you an idea of the entire page structure that surrounds the methods, let’s outline
what else would be included:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>CSS Layouts</title>
<meta http-equiv="Content- Type" content="text/html; charset=utf- 8" />
</head>

<body>

...method examples...

</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml

CSS layoutS

181

12

and to give you a general idea of the layout we’re aiming for throughout each method, take a
look at Figure 12-1 for a visual overview of the columnar layout we’d like to achieve.

 Figure 12-1. Wireframe of the intended
two- column layout

let’s get started by introducing the first method that utilizes the float property.

Method a: Floating the sidebar

<div id="header">
 ...header content here...
</div>

<div id="sidebar">
 ...sidebar content here...
</div>

<div id="content">
 ...main content here...
</div>

<div id="footer">
 ...footer content here...
</div>

the preceding example is the markup we’ll be using to create a columnar layout with CSS
using the float property. We’ve divided our page elements into logical segments using
<div> elements—each of which have a unique id attached to them:

 #header: Contains a logo, navigation, or other top- level items

 #sidebar: Contains extra contextual links and information

Web StandardS SolutionS

182

 #content: Contains the main body of text and focus of the page

 #footer: Contains copyright information, credits, ancillary links, etc.

Sectioning off these elements of the page enables us to take full control of the layout. by
applying a few CSS rules, we’ll have a two- column layout working in no time.

Styling the header and footer
the first step we’ll take in making our structure a columned layout is to add some background
color and padding to the header and footer. this will make it a bit easier to visualize.

#header {
 padding: 20px;
 background: #ccc;
 }

#footer {
 padding: 20px;
 background: #eee;
 }

adding the preceding CSS to Method a’s structure will give us what’s shown in Figure 12-2.
i’ve added a bit of faux content to fill out the sections.

 Figure 12-2. adding style to the header and footer

CSS layoutS

183

12

Within these declarations for #header and #footer you could, of course, continue to add
styles that are unique to those sections, such as font- family, color, and link colors. now
let’s create two columns.

Floating the sidebar
the essence of Method a is that it uses the float property to place the #sidebar to either
side of the content <div>. For this example, we’ll be placing it to the right of the content,
but the reverse would work as well.

the key to floating the #sidebar is that it must appear before the content <div> in the
markup. this way, the sidebar’s top will line up with the content area’s top.

We’ll add the float property to the #sidebar as well as give it a width of 30 percent and
a background color:

#header {
 padding: 20px;
 background: #ccc;
 }

#sidebar {
 float: right;
 width: 30%;
 background: #999;
 }

#footer {
 padding: 20px;
 background: #eee;
 }

 Figure 12-3 shows us the results of adding the preceding CSS. you can see that the sidebar
sits on the right, with the content area flowing around it.

true columns
We could stop right there, but as Figure 12-3 shows, we don’t exactly have a two- column
layout just yet. to finish the effect, we’ll give the #content <div> a right margin of the
same width as the right column, effectively creating a right column space for the #sidebar
to fit in.

Web StandardS SolutionS

184

 Figure 12-3. Floating the #sidebar to the right of the content

the CSS added would be as simple as

#header {
 padding: 20px;
 background: #ccc;
 }

#sidebar {
 float: right;
 width: 30%;
 background: #999;
 }

#content {
 margin- right: 34%;
 }

#footer {
 clear: right;
 padding: 20px;
 background: #eee;
 }

CSS layoutS

185

12

notice that we’ve given the right margin 4 percent more than the width of the #sidebar.
this will give us some extra space between the two columns. Figure 12-4 shows us the
results as viewed in a browser, where you can see that by adding a right margin to the
content <div>, it creates the illusion of a second column.

also note that we’ve added a clear: right; rule to the #footer declaration. this is important,
and will ensure the footer will always appear below the sidebar and content areas—regardless
of the height of either column. the footer will clear any floats that come before it.

 Figure 12-4. a two- column layout

We now have a working two- column layout, and can easily add more padding, backgrounds,
borders, and other elements to the existing CSS declarations to make it look more appealing.

We’ve been using percentage widths for the columns thus far, essentially creating a
 flexible- width layout (the columns will expand and contract depending on the user’s
window width). We could easily use pixel amounts for the columns for a fixed- width
layout as well, but you need to be aware of IE5/Windows’ misinterpretation of the CSS
box model when adding margins and padding to either column (if support for that
ancient browser is required). More on the box model and successful workarounds can
be found in “The box model problem” in the “Extra credit” section for this chapter.

Web StandardS SolutionS

186

Method B: the double float

<div id="header">
 ...header content here...
</div>

<div id="content">
 ...main content here...
</div>

<div id="sidebar">
 ...sidebar content here...
</div>

<div id="footer">
 ...footer content here...
</div>

one downside to using Method a is that in order to float the sidebar, we’re having to place
it in before the content <div> in the markup. text browsers, screen readers, and other
devices that don’t support CSS will show (or read) the sidebar’s content before the main
page content. not exactly ideal.

We can still use the float method and get around this problem by swapping the positions
of the content and sidebar <div>s in the markup (as can be seen earlier), and then floating
each to opposite sides with CSS:

#header {
 padding: 20px;
 background: #ccc;
 }

#content {
 float: left;
 width: 66%;
 }

#sidebar {
 float: right;
 width: 30%;
 background: #999;
 }

#footer {
 clear: both;
 padding: 20px;
 background: #eee;
 }

CSS layoutS

187

12

by floating the two <div>s apart from each other, we can order the source in the optimal
fashion—content before sidebar content in the markup—yet still achieve the same results
shown in Figure 12-4.

Clear both
it’s also important to set your clear property in the #footer declaration to both, so that
regardless of the length of either column, the footer will always appear below the columns.

the results should appear identical to Figure 12-4, yet the order of the markup has been
improved.

Method C: Floating the content

<div id="header">
 ...header content here...
</div>

<div id="content">
 ...main content here...
</div>

<div id="sidebar">
 ...sidebar content here...
</div>

<div id="footer">
 ...footer content here...
</div>

there is one more method worth mentioning that uses a single float property and still
places the content <div> before the sidebar in the markup.

this time, we’ll be floating the content <div> to the left and giving it a width that’s less than
100 percent. this will open up enough space for the sidebar to fit nicely on the right.

the CSS
the CSS that’s needed for Method C is as basic as it gets—with a single float property, a
desired width for the content area, and a small margin between the two columns.

#header {
 padding: 20px;
 background: #ccc;
 }

#content {
 float: left;
 width: 66%;
 }

Web StandardS SolutionS

188

#sidebar {
 background: #999;
 }

#footer {
 clear: left;
 padding: 20px;
 background: #eee;
 }

notice that we need not define a width for the sidebar, as it will just fill in the remaining
width that the content <div> doesn’t use (in this case 34 percent).

Background woes
 Figure 12-5 shows us the results. oops. in some popular browsers, the background color of
the sidebar will show through underneath the content area. because the sidebar isn’t
assigned a specific width, it wants to expand as wide as the browser window.

 Figure 12-5. Floating the content, with the sidebar’s background color showing through

We can avoid this by adding a left margin to the sidebar that equals the width of the con-
tent area. We’ll actually make the margin a bit larger than the content’s width so as to add
some white space between columns.

#header {
 padding: 20px;
 background: #ccc;
 }

CSS layoutS

189

12

#content {
 float: left;
 width: 66%;
 }

#sidebar {
 margin- left: 70%;
 background: #999;
 }

#footer {
 clear: left;
 padding: 20px;
 background: #eee;
 }

Plain and simple
alternatively, if no background color is required by the design, then the left margin isn’t
necessary. Figure 12-6 shows the layout results with the entire #sidebar declaration
removed and a small right margin added to the content <div>. both columns share what-
ever default background color is specified for the page.

 Figure 12-6. Floated content with background color omitted

Web StandardS SolutionS

190

the CSS would be reduced to

#header {
 padding: 20px;
 background: #ccc;
 }

#content {
 float: left;
 width: 66%;
 margin- right: 6%;
 }

#footer {
 clear: left;
 padding: 20px;
 background: #eee;
 }

Along with adding a left margin (or omitting a background color), there exists an alter-
native way of achieving colored columns using a background image instead—and I’ll
reveal this little secret in the “Extra credit” section at the end of this chapter

in addition to using the float property, we can create a columnar layout using positioning.
let’s take a look at the final option, Method d.

Method D: Positioning

<div id="header">
 ...header content here...
</div>

<div id="content">
 ...main content here...
</div>

<div id="sidebar">
 ...sidebar content here...
</div>

<div id="footer">
 ...footer content here...
</div>

CSS layoutS

191

12

For Method d, we’ll use the same markup structure, and right off the bat we’ll order the
<div>s the most efficient way—with the content coming before the sidebar. nonstyled
viewers or readers will receive the content first, the sidebar second. When we use posi-
tioning, the order of the markup becomes independent from the location where the ele-
ments appear on the page.

Predictable height
the CSS will look somewhat similar to that used in the first three methods. the first differ-
ence will be assigning a pixel value height to the header. We’ll need a predictable height in
order to position the sidebar later.

i’m using an arbitrary value here—and this would change depending on the contents that
you needed to contain in the header, such as a logo and/or navigation, search form, and
so forth.

#header {
 height: 40px;
 background: #ccc;
 }

#footer {
 padding: 20px;
 background: #eee;
 }

Space for the column
next, let’s give the #content <div> a right margin, much as we did in the previous meth-
ods. this will leave the space for the right column, which we’ll drop in by using absolute
positioning, rather than floating.

#header {
 height: 40px;
 background: #ccc;
 }

#content {
 margin- right: 34%;
 }

#footer {
 padding: 20px;
 background: #eee;
 }

Web StandardS SolutionS

192

Drop in the sidebar
Finally, we’ll place the #sidebar <div> in the margin of the #content area using absolute
positioning. We’ll also zero out any default margins and/or padding that the browser may
place on the entire page perimeter. this will give our positioning coordinates equal value
across all browsers.

body {
 margin: 0;
 padding: 0;
 }

#header {
 height: 40px;
 background: #ccc;
 }

#content {
 margin- right: 34%;
 }

#sidebar {
 position: absolute;
 top: 40px;
 right: 0;
 width: 30%;
 background: #999;
 }

#footer {
 padding: 20px;
 background: #eee;
 }

by specifying position: absolute, we can use the top and right coordinates to drop the
#sidebar right where we want it (see Figure 12-7).

CSS layoutS

193

12

 Figure 12-7. two- column layout using positioning

We’re saying, “put the #sidebar <div> 40 pixels from the top of the browser window and
0 pixels from the right side of the browser window.” alternative properties we could have
used for coordinates are bottom and left.

the footer issue
When floating columns as in the previous methods, we could use the clear property to
ensure that the footer extends the entire width of the browser window, regardless of how
tall the content or sidebar columns are.

With positioning, the sidebar is taken out of the normal flow of the document, so that in
the event that the sidebar was ever longer in length than the content area, it would over-
lap the footer (see Figure 12-8).

Web StandardS SolutionS

194

 Figure 12-8. overlapping sidebar and footer

one solution to this problem that i’ve often used is to give the footer the same right margin
that the content area has, effectively extending the right column past the footer as well as
the content.

the CSS would be adjusted like so:

body {
 margin: 0;
 padding: 0;
 }

#header {
 height: 40px;
 background: #ccc;
 }

#content {
 margin- right: 34%;
 }

CSS layoutS

195

12

#sidebar {
 position: absolute;
 top: 40px;
 right: 0;
 width: 30%;
 background: #999;
 }

#footer {
 margin- right: 34%;
 padding: 20px;
 background: #eee;
 }

this solution can look odd on pages with short content and long sidebars—but hey, it
works. the results can be seen in Figure 12-9, where the overlapping of the sidebar and
footer is avoided.

 Figure 12-9. Footer with margin- right matching the content area

Web StandardS SolutionS

196

three’s company
but what if we’d like a three- column layout? no problem, and it’s very easy to add when
using positioning. What we’ll need to do is add a left margin for the content and footer
areas for whatever width that we’d like the third column to be.

the additional sidebar can sit anywhere we’d like in the markup, since we’ll use positioning
once again to place it.

let’s say that we’ve added a second sidebar, called #sidecolumn. We’ll add the following
CSS rules to make room for it, and then position it on the left.

body {
 margin: 0;
 padding: 0;
 }

#header {
 height: 40px;
 background: #ccc;
 }

#content {
 margin- right: 24%;
 margin- left: 24%;
 }

#sidecolumn {
 position: absolute;
 top: 40px;
 left: 0;
 width: 20%;
 background: #999;
 }

#sidebar {
 position: absolute;
 top: 40px;
 right: 0;
 width: 20%;
 background: #999;
 }

#footer {
 margin- right: 24%;
 margin- left: 24%;
 padding: 20px;
 background: #eee;
 }

CSS layoutS

197

12

What we’ve done here is opened up a left margin on the content and footer areas (to
avoid overlap), just as we’ve done previously for the right sidebar. then we’ve dropped in
a new #sidecolumn using absolute positioning—placing it 40 pixels from the top and 0
pixels from the left.

you’ll notice that we’ve changed the widths a bit to allow for that third column. because
we’re using percentages, these layouts will expand and contract proportionately depend-
ing on the browser’s width. alternatively, you could assign pixel widths to any or all of
these columns to achieve a fixed- width layout.

 Figure 12-10 shows the results as viewed in a browser—a flexible, three- column layout
created with CSS and absolute positioning.

 Figure 12-10. a flexible three- column layout using positioning

Summary
What we’ve accomplished in this chapter is essentially scratching the surface of what is
possible when creating CSS- based layouts. the intention here is to give you a foundation
on which to grow, by showing the two main methods: floating and positioning.

i hope that you’ll dig deeper into what is possible with CSS layout techniques, ridding your
pages of nested tables in favor of lean, structured markup that is accessible to more
browsers and devices.

Web StandardS SolutionS

198

For more information on CSS- based layouts, be sure to check out the following resources:

 “the layout reservoir” (www.bluerobot.com/web/layouts/): Great examples of
multicolumn layouts created with absolute positioning.

 “From table hacks to CSS layout: a Web designer’s Journey” (www.alistapart.
com/articles/journey/): a great tutorial by Jeffrey Zeldman that chronicles the
steps needed to create a two- column layout.

 “CSS layout techniques: For Fun and profit” (www.glish.com/css/): eric Costello’s
large resource of various CSS layouts.

 “little boxes” (www.thenoodleincident.com/tutorials/box_lesson/boxes.html):
a beautiful and simple interface to many CSS layout demonstrations by owen
briggs.

 “layouts.ironMyers.com” (http://layouts.ironmyers.com/): Jacob C. Myers’ col-
lection of 224 grid and CSS layouts. Various configurations are available for preview
and download.

 “CSS Zen Garden” (www.csszengarden.com/): “a demonstration of what can be
accomplished visually through CSS- based design.” Cultivated by dave Shea, the
“garden” showcases cutting- edge CSS designs (including layouts, of course) submit-
ted by readers, using a single XhtMl file. a fantastic resource to view CSS layouts
at their best.

 “elastic design” (http://www.alistapart.com/articles/elastic/): We didn’t talk
about em- based (or “elastic”) layouts, but i encourage you to take a look at this
alternative way of creating CSS layouts with relative units, based on the current
base font size. author patrick Griffiths discusses how adjusting the text also adjusts
the calculated widths of the layout columns, therefore providing a flexible, scalable
design.

 “the incredible em & elastic layouts with CSS” (http://jontangerine.com/
log/2007/09/the-incredible-em-and-elastic-layouts-with- css): designer Jon
tan walks you through the construction of an em- based layout, with detailed expla-
nation. a great tutorial for those interested in experimenting with em- based lay-
outs.

Extra credit
now that we’ve gone over the basics of creating basic CSS layouts, it’s important we talk
about internet explorer 5 and 5.5 for Windows and their unfortunate misinterpretation of
the CSS box model. these browsers are certainly long in the tooth, and support for them
may not be required for you, but it’s good to understand the problem nonetheless. later,
we’ll also share a secret for achieving equal- height columns by the use of a tiled back-
ground image.

http://www.bluerobot.com/web/layouts/):
http://www.alistapart.com/articles/journey/):
http://www.alistapart.com/articles/journey/):
http://www.glish.com/css/):
http://www.thenoodleincident.com/tutorials/box_lesson/boxes.html):
http://layouts.ironmyers.com/):
http://www.csszengarden.com/):
http://www.alistapart.com/articles/elastic/):
http://jontangerine.com/log/2007/09/the-incredible-em-and-elastic-layouts-with-�css):
http://jontangerine.com/log/2007/09/the-incredible-em-and-elastic-layouts-with-�css):

CSS layoutS

199

12

the box model problem

earlier in this chapter we talked about building multicolumn CSS layouts, using only the
width property to define each column’s space. things get a little more complicated when
you start to add padding and/or borders directly to those columns. Why?

unfortunately, version 5 of internet explorer for Windows incorrectly calculates the width
of a container when padding and/or borders are added to the mix.

For instance, in any CSS1- compliant browser but ie5/Windows, a container’s total width is
a culmination of its specified width, padding, and border. this is the way the W3C intends
all browsers to handle the CSS box model.

but ie5/Windows calculates the border and padding as part of the specified width.
Confused? not to worry; taking a visual look at the problem will help.

Seeing is believing
let’s compare Figures 12- 11 and 12- 12. Figure 12-11 shows a 200-pixel- wide box with 10
pixels of padding on either side, as well as a 5- pixel border. add up all of these values
horizontally, and you’ll come up with a grand total of 230 actual pixels.

this is the box model as it was intended—the width property always defines the content
area of a box and padding and borders are added to that value.

 Figure 12-11. Correct calculation of the
box model

So, if we gave a sidebar a width of 200 pixels and added padding and borders, the CSS
declaration would go something like this:

#sidebar {
 width: 200px;
 padding: 10px;
 border: 5px solid black;
 }

We’ve specified a width of 200 pixels, but the physical space that the sidebar will require is
230 pixels—except in ie5/Windows, where the column will be a total of 200 pixels wide,
including the padding and borders being placed inside.

Web StandardS SolutionS

200

 Figure 12-12 shows that when we specify 200 pixels with the width property, our padding
and border widths take away from the content area rather than add to it.

 Figure 12-12. ie5/Windows’ incorrect
calculation of width, padding, and borders

Wavering widths
What we’re up against when using padding and borders for boxes is varying widths,
depending on which browser the user is using. yuck. this can throw off designs only for
the scant handful of folks who still might be using the ancient ie/5.x on Windows. While it’s
not crucial nowadays to worry about box model problems because of dwindling statistics
for ie5, it’s good to know why this was a problem, historically, and why you might see these
fixes in legacy code.

So what did we do? Well, fortunately, there’s a hack to fix these width discrepancies in ie5/
Windows. the hack enables us to serve two different widths—one for ie5/Windows and
one for everyone else that gets the box model correct.

the Box Model Hack
lovingly crafted by tantek Çelik, the box Model hack (www.tantek.com/CSS/Examples/
boxmodelhack.html) allows us to serve two widths—one that is adjusted and will only be
recognized by internet explorer 5 for Windows, and another for every other browser.

by taking advantage of a CSS parsing bug that manifests itself only in ie5 and ie5.5/Windows,
we can specify a width that is wider (to accommodate for the padding and borders), and
then override that value with the actual width that other browsers will understand cor-
rectly.

Code by example
For instance, if we wished our sidebar’s content area to be 200 pixels wide with 10 pixels
of padding and a 5- pixel border, again our CSS declaration would look like this:

#sidebar {
 width: 200px;
 padding: 10px;
 border: 5px solid black;
 }

http://www.tantek.com/CSS/Examples/boxmodelhack.html
http://www.tantek.com/CSS/Examples/boxmodelhack.html

CSS layoutS

201

12

For ie5/Windows, we’ll want to specify a width of 230 pixels (the grand total with padding
and border on both sides), and then override with the 200 pixels that are originally
intended for compliant browsers:

#sidebar {
 padding: 10px;
 border: 5px solid black;
 width: 230px; /* for IE5/Win */
 voice- family: "\"}\"";
 voice- family: inherit;
 width: 200px; /* actual value */
 }

notice that ie5/Windows’ value comes first, followed by a few rules that make ie5/Windows
believe that the declaration has ended. here, we use the voice- family property, which
was chosen simply because it won’t affect the visual display for browsers that understand
it. lastly, the actual width value is specified, thereby overriding the first width rule. the
second width rule is ignored by ie5/Windows.

the results would be identical for both ie5/Windows and all other CSS2- compliant brows-
ers. Without the hack, ie5/Windows users would get a skinnier column than desired.

Be nice to opera
For CSS2- compliant browsers that also fall prey to the parsing bug that ie5/Windows does,
we’ll want to add an additional declaration following any instances of the box Model hack.
dubbed the “be nice to opera” rule, it will make sure all capable browsers don’t get “hung
up” on the parsing bug and thus deliver the intended width.

#sidebar {
 padding: 10px;
 border: 5px solid black;
 width: 230px; /* for IE5/Win */
 voice- family: "\"}\"";
 voice- family: inherit;
 width: 200px; /* actual value */
 }

html>body #sidebar {
 width: 200px;
 }

With that, we’ve completed the workaround for ie5/Windows’ misinterpretation of the
CSS box model, and everyone should be happy.

Not just for widths
While we’ve used the box Model hack for getting equal widths in this example, the hack
can also be used anytime we need to deliver different CSS to ie5/Windows. any hack
should be used with caution and with the understanding that it should be used only when

Web StandardS SolutionS

202

necessary. it’s a good idea to keep track of where you’ve used the box Model hack so that
in the future you may easily remove it.

this particular hack is indispensable while millions of web users are still using ie5/Windows
at the time of this writing.

The following section, “Faux columns,” originally appeared at a list apart magazine in
January 2004 (www.alistapart.com/articles/fauxcolumns/).

Faux columns

one of the questions i get asked the most often regarding my personal site’s design is the
following:

“how do you get the right column’s background color to extend all the way down the
page?”

it’s a simple concept, really—and one that can be applied to any of the layout methods
that i described earlier in the chapter.

Vertical stretch
one of the somewhat frustrating properties of CSS is the fact that elements only stretch
vertically as far as they need to. that means if a 200- pixel tall image is contained within a
<div> element, the <div> element will only expand down the page 200 pixels.

this becomes an interesting dilemma when you use <div>s to section your markup, and
then apply CSS to create a columnar layout like we did earlier in this chapter. one column
may be longer than the other (see Figure 12-13). depending on the amount of content
contained, it becomes difficult to create a layout with two equally tall columns when a
unique background color is desired for each column.

 Figure 12-13. Columns of unequal length

there are a few ways to make the columns appear equal in length, regardless of the con-
tent that they contain. i’m sharing my particular solution (for use with an absolutely posi-
tioned layout), which happens to be pretty darned simple.

http://www.alistapart.com/articles/fauxcolumns/

CSS layoutS

203

12

the cheat
the embarrassingly simple secret is to use a vertically tiled background image to create
the illusion of colored columns. For a previous incarnation of Simplebits (www.simplebits.
com), my background image looked something like Figure 12-14 (proportions changed for
demonstration), with a decorative stripy thing on the left, a wide white section for the
content column, a 1- pixel border, and a light brown section for the right column’s back-
ground followed by the reverse of the left side’s decorative border.

 Figure 12-14. tile.gif: a 2-pixel- tall background image, with widths allotted
for columns

the whole image was no more than a few pixels tall, but when vertically tiled, it created
the colored columns that will flow all the way down to the bottom of the page—regardless
of the length of content in the columns.

the CSS
this elementary CSS rule was added to the <body> element:

background: #ccc url(tile.gif) repeat- y 50% 0;

essentially, we’re making the entire page’s background color gray and tiling it vertically
only (repeat- y). the 50% 0 bit refers to the positioning of the background image—in this
case, 50 percent from the left side of the browser window (resulting in a centered image)
and 0 pixels from the top.

Positioned columns
With the background image in place, my positioned layout sat on top, with padding and
margins set for the left and right columns, ensuring that they lined up in the right place—
within the faux columns created by the background image (see Figure 12-15).

 Figure 12-15. the tiled background image creates the colored columns.

http://www.simplebits.com
http://www.simplebits.com

Web StandardS SolutionS

204

it’s important to note that if borders, padding, and margins are desired on either column,
then we must still make up for ie/Windows’ botching of the box model with tantek Çelik’s
box Model hack (see “the box model problem” earlier in this chapter).

alternatively, if borders or padding can be avoided altogether by just using margins instead
(or if supporting the ancient ie5/Win browser isn't a requirement, and i'd be surprised if it
was in this day and age), then the box Model hack won’t be necessary. and if the column’s
content is simply sitting (transparently) on top of the tiled background, then it should be
easy to avoid the hack.

Whatever floats your boat
While i used absolute positioning to create a two- column layout on my own site, equally fine
results could be achieved via any of the layout methods described earlier in the chapter.

the same idea applies: tile the background image, and then float a column in position to
overlay the faux- column backdrop behind.

it’s a simple concept, but one that may alleviate one of the frustrations that designers
frequently encounter when building CSS- based layouts.

Wrapping up
i hope this chapter gets you off on the right foot when delving into the exciting world of
CSS layouts. to begin the chapter, we looked at four different methods for building lay-
outs—three of them using the float property and one using absolute positioning. be sure
to visit the additional resources i listed for more layout techniques and demonstrations.

We also talked about the importance of the box Model hack when creating column widths
with padding and borders, making sure these look consistent in ie5/Windows as well as
other browsers. you might not need to get things looking consistent in ie5/Windows, with
statistics for the browser becoming next to nothing at the time of this revision. if ignoring
the ancient browser is oK with your client or boss, then consider yourself lucky, and
you’ve at least learned something about CSS’s storied past.

lastly, i shared a handy trick for getting equal- height columns when building CSS layouts—
something that you would think should be elementary but in reality can be frustrating. a
little tiling background image to the rescue, and columns that reach the bottom of the
page (regardless of content length) can be yours.

Chapter 13

Styling text

Web StandardS SolutionS

208

i think it’d be a good idea to bring it back down to basics for a chapter to talk about using
CSS to style text. Manipulating type is probably the area where CSS gets most of its use—
even for sites that aren’t fully embracing web standards throughout. Stripping repeated
 elements from site markup was (and is) attractive for designers, and it’s not hard
to see a major advantage of controlling typography via CSS—further separating the pre‑
sentation from the content.

We now know, from many of the examples throughout this book, that CSS is capable of so
much more—yet styling text can be one of the simplest ways to add design to even the
most elementary of web pages. and by relying on CSS to style text, we can avoid adding
unnecessary images to our pages.

throughout this chapter, we’ll go over some examples of how CSS can be used creatively
to take a block of boring, normal hypertext to new heights (as well as new colors, sizes,
and typefaces).

How can i make hypertext look cool?
Styling text is something that CSS can do well—often even in older browsers where more
advanced CSS was never supported fully. in the past, designers and developers alike may
have leaned on images for any instances where styling text beyond sizing or making it bold
was required. Some sites began to take this too far, resulting in an accessibility nightmare
that is simply not tolerable by today’s standards. (ever try to read a site whose text is
mostly handled by images—in a text browser?)

in order to give you some alternatives to creating images and to answer the question
posed previously, we’ll take a nonstyled block of hypertext and progressively add various
CSS rules to transform it into something attractive.

times they are a- changin’

to begin, let’s look at the block of text we’ll be manipulating when viewed with the default
font of the browser—in my case, times at 16 pixels. i’m using the Safari browser on Mac
oS X, and because of it, we’re seeing text being rendered as antialiased. Similar results will
occur with Cleartype enabled on Windows.

times (or the variant times new roman) is the default font of many browsers—however,
this could easily be changed by users to whatever they fancy, and of course shouldn’t be
relied upon.

Styling teXt

209

13

 Figure 13‑1 shows us the nonstyled text that we’ll be using throughout the chapter: a
simple title marked up with an <h1> element, followed by three paragraphs of riveting
home improvement advice.

 Figure 13-1. heading and text as viewed by default
in the browser

Adjusting leading (a.k.a. line- height)

one of the simplest and most effective ways we can style text is by applying the line-height
property. providing some extra space between lines can make paragraphs more readable
and attractive. it’ll do wonders for your pages.

adding the following CSS rule to the <body> element does the trick nicely. We could also
add the following rule to any element we’d like—for instance, if we’d like only <p> ele‑
ments to receive the increased line height:

body{
line-height:1.5em;
}

We’re essentially saying that above that text on the page should be a line height of one
and a half times the height of the character. i like using em units for line-height, as they
will increase or decrease relative to the font size.

Web StandardS SolutionS

210

 Figure 13‑2 shows the results of the line-height property being applied to our example.

it’s looking better already. it’s amazing what a little line-height will do.

 Figure 13-2. default text with increased line height

All in the family

We can, of course, change the typeface as well, keeping in mind that we’re limited to
whatever fonts may be installed on the user’s system.

let’s assign a set of preferred fonts for our example using the font-family property. the
idea here is to specify a list of fonts separated by commas—in the order of preference. if
the user doesn’t have the first font on the list installed, the browser will choose the next in
the list, and so on.

body{
 font- family: Georgia, Times, serif;
line-height:1.5em;
}

in the preceding example, we’re saying, “render all text using the georgia typeface. if the
user doesn’t have georgia installed, use times. if the user doesn’t have times installed, use
the default serif font.”

Styling teXt

211

13

 Figure 13‑3 shows the example text with the font-family property added.

 Figure 13-3. our example rendered with the
georgia typeface

Font names with spaces
For specifying font names that include spaces (e.g., lucida grande), we’ll need to enclose
those names with quotation marks.

in the example that follows, we’re specifying lucida grande (a popular Macintosh font) as
the preferred font, with trebuchet MS (a popular Windows font) as the second alternative.
lastly, we’ll add a catch‑ all sans‑ serif choice for the users’ default sans‑ serif font, in case
they don’t have the previous two fonts installed.

body{
 font- family: "Lucida Grande", "Trebuchet MS", sans- serif;
line-height:1.5em;
}

Kerning (a.k.a. letter- spacing)

Kerning is a word used to describe the spacing between characters in the typography
world. the equivalent CSS property is letter-spacing. next, let’s use the letter-spacing
property on the <h1> element to spice up the title in our example.

Web StandardS SolutionS

212

by applying letter-spacing to <h1> elements, we can start to achieve stylish titles—
without having to open an image‑ editing application to create graphic text.

First, let’s apply negative letter-spacing to tighten the letters in the title:

h1{
letter-spacing:-2px;
}

this results in the example shown in Figure 13‑4.

 Figure 13-4. negative letter‑ spacing applied to our <h1>

alternatively, let’s try adding a positive letter-spacing amount and also use the
font-style property to make the title appear in italics.

h1{
letter-spacing:4px;
 font- style: italic;
}

 Figure 13‑5 shows the results. pretty stylish for just hypertext, isn’t it? it’s wise not to apply
too much letter spacing in either direction, as it can easily begin to make the text more
difficult to read. and who cares if text is stylish when it’s unreadable, right?

Styling teXt

213

13

 Figure 13-5. positive letter‑ spacing and italics applied

Drop caps

Commonplace in print, drop caps add a certain panache and elegance to paragraphs of
type—and yes, it’s possible to achieve them without images, using only CSS.

First, we’ll need to add a “style hook” to the markup so that we’ll be able to call out the
first letter of the first paragraph uniquely. We’ll wrap the “i” with a element and
give it a drop class so that we may reuse it throughout a page or site.

<p>Ifyou'repaintingwithlatexpaints,➥

andthejob...

It’s possible in some modern browsers that get the CSS2 specification completely right
to use the :first-letter pseudo- class to access the first letter of the paragraph—
without adding the extraneous element. While it’s semantically superior, the
effect would unfortunately not appear in Internet Explorer versions 5, 6, and 7, and sup-
port in Firefox 2 and Opera would be inconsistent. Safari however, has had good sup-
port of :first-letter since version 1.

Web StandardS SolutionS

214

now that we have complete control over the “i” in the first paragraph, let’s add the CSS
declaration that will enable us to enlarge the letter and float it to the left (so that other
text will flow around it). We’ll also add a decorative background and border:

.drop{
float:left;
font-size:400%;
line-height:1em;
margin:4px10px10px0;
padding:4px10px;
border:2pxsolid#ccc;
background:#eee;
}

Coupled with the styles we’ve been adding to the example so far, Figure 13‑6 demonstrates
how the resulting drop caps would appear in the browser—all without the need for images,
and using simply CSS and markup.

 Figure 13-6. drop caps example created with CSS

text alignment

again looking to the print world for inspiration, we could apply justification to our text
using the text-align property. Justified text spaces words out so that each line is of equal
length, making a tight, defined column.

Styling teXt

215

13

the CSS for turning justification on for all text in our example would be as simple as

body{
font-family:Georgia,Times,serif;
line-height:1.5em;
 text- align: justify;
}

 Figure 13‑7 shows the example block of text, now justified!

 Figure 13-7. an example of justified text, using the
text-align property

notice that the text lines up evenly on both the left and right sides of the paragraphs.
other possible values for the text-align property are left, right, and center.

For instance, we could also apply the text-align property to the <h1> element to center
the title of our example by adding the following rule:

h1{
letter-spacing:4px;
font-style:italic;
 text- align: center;
}

 Figure 13‑8 shows the results of the centered title.

Web StandardS SolutionS

216

 Figure 13-8. Centered <h1> using the text-align property

transforming text

the text-transform property can modify the capitalization of text—regardless of how
capitalization appears in the markup. For instance, in our example, our title is marked up
with the following:

<h1>APaintingTip</h1>

using the text-transform property in our CSS, we could capitalize (or place in lowercase
if we wished) the entire title—without changing the markup. in addition to the previous
styles we’ve added to <h1> elements, the CSS to capitalize our title would be simply the
following:

h1{
letter-spacing:4px;
 font- style: italic;
text-align:center;
 text- transform: uppercase;
}

resulting in what we see in Figure 13‑9. Without having to mess about with the markup, we
can change capitalization of certain elements on the page or even entire sites at will,
modifying only the CSS.

Styling teXt

217

13

 Figure 13-9. Capitalization of the heading using CSS

Small caps

Most browsers will recognize the font-variant property, allowing us to render type in
small caps (where the text is capitalized with varying character sizes).

let’s apply the font-variant property to the heading of our example:

h1{
letter-spacing:4px;
text-align:center;
 font- variant: small- caps;
}

 Figure 13‑10 shows us the results of our heading in small caps—yet another way to mimic
the print world using only markup and CSS.

Web StandardS SolutionS

218

 Figure 13-10. our heading rendered in small caps

Paragraph indentation

looking again to the print world (gee, are you seeing a trend here?), we can indent the
first line of paragraphs by using the text-indent property. adding a positive value will
indent the text by that amount.

therefore, let’s indent each paragraph in our example 3em—or about the maximum width
of three characters. i’m going to go ahead and remove the drop caps from the results, so
as not to interfere with the indentation of the first line of the first paragraph.

the CSS for indenting the first line of all <p> elements would look like this:

p{
text-indent:3em;
}

 Figure 13‑11 shows the results, where you can see that only the first line of each paragraph
is indented the amount we’ve specified. i chose to use em units, as the indentation’s width
will remain relative to the font size—especially helpful if users decide to increase (or
reduce) the size of fonts themselves.

Styling teXt

219

13

 Figure 13-11. indented paragraphs as a result of the
text-indent property

Contrast

another important thing to keep in mind when it comes to typography on the Web is
contrast. by default, most browsers render pure black text (#000) on a white (#fff) back‑
ground. Much pleasantness can be gained from knocking that black down a notch or two.
For example, if your design called for black text on a white background, you could set the
default on the body element to a black that is slightly less, well… black:

body{
color:#333;
background:#fff;
}

it’s subtle, but the text will appear less harsh and easier on the eyes.

Conversely, if your design called for white text on a black background, you could improve
readability by knocking down that pure white a tad, to say a very light gray:

body{
color:#ddd;
background:#000;
}

again, it’s extremely subtle, but tiny details like these can make all the difference in a
 hypertext‑ heavy design.

Web StandardS SolutionS

220

Summary
by sharing a few CSS properties that relate to the styling of text, my hope is that you’ve
come to realize that there are times when you don’t have to rely on an image creation tool
to handle styled text. often a bit of style applied to markup does the job just fine—and in
some cases, very well.

there are certainly instances where we may have to create text as a graphic—be it a com‑
pany’s logo, or where a particular font is necessary to the design of certain page elements.
the key with anything is balance. try using CSS styling first, and your markup will be
cleaner and more accessible.

CSS gives us the control to shape and style text with surprisingly good results, adding a
tool to your design arsenal that will allow your markup to remain lean and mean.

Chapter 14

Image Replacement

Web StandardS SolutionS

224

in years past, as more designers and developers were turned on to the advantages of using
web standards in the early days of their adoption, and specifically CSS, new techniques
were discovered every day and the envelope was continually pushed. new, better ways of
accomplishing goals evolved regularly.

a prime example of this evolution can be found in the art of “image replacement”—a
technique for using CSS to replace plain hypertext with stylized images.

How can I use cSS to replace text with
images?

it would be ideal to hold all presentational (nonessential or decorative) graphics within
CSS, allowing you to easily swap out updated images, while keeping the markup exactly
the same. also, we can ensure all browsers and devices get the meaning of the markup
first, whether or not they fully support the advanced CSS required to swap text for images.
i’ve been preaching advantages like this throughout the entire book.

no perfect solution

however, finding the “perfect” method to swap text for images that are referenced only by
CSS is much like the search for the holy Grail. it doesn’t yet exist. there are methods that
work in all browsers, but fail in assistive software, such as a screen reader. there are other
methods that work fine, unless users have specified that their browser show no images yet
still enable CSS.

While no one method at the time of this writing satisfies everyone, or every user, the tech-
niques are used today on a variety of sites. You should use caution when applying any
image replacement method and understand the drawbacks that come attached.

Use, but with caution

this is the purpose of this chapter—to explain the flexibility that comes with image
replacement, but to also show where it falls short. as time passes, more CSS aficionados
may discover better ways to accomplish the same results. and until then, we’ll have to
work with what we have, weighing the pros and cons.

to get you familiar with the idea of image replacement, let’s take a look at several popular
methods out there, beginning with the Fahrner image replacement (Fir) technique that
started it all.

method a: Fahrner Image Replacement (FIR)
named for todd Fahrner, who developed the technique, Fir is the original method used to
replace text with an image using the background (or background-image) property in CSS.

imaGe replaCement

225

14

douglas bowman popularized the method with his fantastic tutorial, “using
 background- image to replace text” (http://stopdesign.com/archive/2003/03/07/
replace-text.html). to demonstrate, let’s run through a simple example using Fir to
swap a heading element of text with a stylized graphic.

the markup

the markup we’ll use for the replacement will be the following:

<h1id="fir">FahrnerImageReplacement</h1>

Just a simple heading element, with the text we wish to replace later with a graphic. You’ll
notice we’ve assigned a unique id to the <h1> element, so that we’ll have full control over
this particular heading with CSS.

 Figure 14-1 shows the results of the markup in a typical
browser—the heading is rendered in the browser’s default
font (in this case the Verdana typeface). predictable and
boring so far.

the extra element

Fir requires an extra element (in addition to the heading element) to surround the text in
the markup. While we could use any element we wished, the generic quality of the
element makes it the perfect tool for the job. looking at the nonstyled markup, the
will have no effect on the appearance.

our modified markup now looks like this:

<h1id="fir">FahrnerImageReplacement</h1>

now that we have the extra element in place, we’re ready for the CSS.

the cSS

the essence of method a is to use the two elements that we have to accomplish two
separate tasks. We’ll use the element to “hide” the text, and then we’ll assign a
background image of styled type to the <h1> element. it’s because of these two steps that
we need two elements to work with.

Hide the text
First, let’s hide the text by using the display property on the element:

#firspan{
display:none;
}

 Figure 14‑1. default rendering of our heading

http://stopdesign.com/archive/2003/03/07/replace-�text.html
http://stopdesign.com/archive/2003/03/07/replace-�text.html

Web StandardS SolutionS

226

this will completely hide the text that is within elements in this particular heading.
browsers will show nothing. that’s the first step—get rid of the text completely. no need
to show you a screen shot of the results—as you can imagine, it would be blank.

assign a background

i’ve created what i think is a stylish graphic
version of the text in photoshop (see
 Figure 14-2). You could do the same in your
favorite image editor as well. take note of the
pixel dimensions, as we’ll need those in just a
moment.

the pixel dimensions of the graphic shown in
 Figure 14-2 are 287 pixels wide by 29 pixels

high. We’ll take both the image and dimensions and plug them in as a background image
assigned to the <h1> element:

#fir {
 width: 287px;
 height: 29px;
 background: url(fir.gif) no- repeat;
 }

#firspan{
display:none;
}

While previously we hid the text using the display property on the element, here
we specify the height and width of the image we’re using for replacement, as well as the
image itself, using the background property.

We’ve opened a “window” on the <h1> element that shares the exact dimensions as the
image (287 ✕ 29 pixels), while the image will shine through behind the text that we’re hid-
ing with the display property.

 Figure 14-3 shows us the results of the heading as seen in the browser. all we see is the
stylized image. perfecto!

 Figure 14‑3. the results of using the Fahrner image
replacement method

 Figure 14‑2. fir.gif, the image we’ll be
using to replace the text

imaGe replaCement

227

14

advantages

by using CSS to serve the image, rather than the markup, we can ensure browsers and
devices that don’t support CSS will simply display the raw text. Swapping out graphics is as
easy as updating a single CSS file—rather than updating the markup.

but with these benefits come a few drawbacks that are very important to mention.

Drawbacks

accessibility expert Joe Clark has done extensive research on how the Fahrner image
replacement method breaks down for those using screen readers or other assistive soft-
ware to read web pages.

the results of his testing can be read in full in his article “Facts and opinion about Fahrner
image replacement” (www.alistapart.com/articles/fir/). in it, he finds (among other
things) that most screen readers (perhaps wrongly) obey this CSS declaration:

#firspan{
display:none;
}

the text is not only hidden visually, but also completely omitted by those browsing with
screen readers because of the rule. Some will argue that the display property by its very
nature should be recognized only by screened devices, and that perhaps a new CSS media
type should be created specifically for screen readers to give designers better control over
how systems may present future image replacement techniques—or that screen- reading
software should adhere to one of the existing media types such as aural.

in addition to text display issues for screen readers, there are two other drawbacks to the
Fir method:

 the semantically insignificant element that is necessary for this particular
method to work.

 in the rare event that users have disabled images in their browser (often for
 bandwidth- saving reasons), but have kept CSS enabled, neither the text nor the
background image will appear.

Weigh the pros and cons

the fact remains that by using Fir, designers run the risk of serving incomplete content to
those with disabilities, and run the (remote) risk of doing the same for those with the
“images off/CSS on” combination. the trick here is to weigh the pros and cons—under-
stand the drawbacks and use caution.

there are a few instances when Fir would still make sense—and i’ll share two of them in
the “extra credit” section, later in this chapter.

http://www.alistapart.com/articles/fir/

Web StandardS SolutionS

228

because of these accessibility findings that have come to surface, other designers and
developers have been continually tweaking the concept of image replacement—finding
new ways to “hide” normal text, while assigning an image as a background. let’s look at a
few more methods.

method B: leahy/langridge Image
Replacement (lIR)

Simultaneously developed by Seamus leahy (www.moronicbajebus.com/playground/css-
play/image-replacement/) and Stuart langridge (www.kryogenix.org/code/browser/
lir/), the lir method set out to handle image replacement—without the meaningless but
necessary element that Fir required.

instead of using the display property to hide the text, lir moves it out of the way by set-
ting the height of the containing element (in our example, the <h1>) to 0 and setting
padding-top to equal the height of the replacement image.

the markup and cSS

Since we don’t need the extra element for this method, our markup would be
reduced simply to

<h1id="lir">Leahy/LangridgeImageReplacement</h1>

and the CSS that’s necessary to replace the text with the image shown in Figure 14-4 is the
following single declaration:

#lir{
padding:90px000;
overflow:hidden;
background:url(lir.gif)no-repeat;
height:0px!important;/*formostbrowsers*/
height/**/:90px;/*forIE5/Win*/
}

 Figure 14‑4. lir.gif, created in an image editor

http://www.moronicbajebus.com/playground/css-play/image-�replacement/
http://www.moronicbajebus.com/playground/css-play/image-�replacement/
http://www.moronicbajebus.com/playground/css-play/image-�replacement/
http://www.kryogenix.org/code/browser/lir/
http://www.kryogenix.org/code/browser/lir/

imaGe replaCement

229

14

the image chosen to replace the text with is 90 pixels in height, hence the padding on top
of the same value. For most browsers, we’re setting the height to 0, which effectively gets
rid of the text (or anything else that’s contained within the <h1> element). We’ve used the
!important rule to make certain that the preceding value is recognized over the one that
follows (for ie5/Windows only). Competent browsers (including ie6+) will ignore the sec-
ond height rule, while ie5/Windows will recognize it.

Box model woes

the final rule is put in place to make up for ie5/Windows’ misinterpretation of the CSS box
model (see “the box model problem” in Chapter 12). Since padding is added in addition
to height and width values in ie5/Windows, we’ll need to serve an adjusted value specifi-
cally for those browsers.

in this case, the height will always equal that of the height of the image we’re using for
replacement.

again, you may not need to support such an ancient browser (ie5/Windows), whose numbers
are dwindling down to next to nothing these days. if that's the case, disregard this hack.

Drawbacks

While method b makes it possible to lose the extraneous element (trimming code
is always a good thing), it shares a drawback with method a in that users with images dis-
abled but CSS enabled will see nothing at all.

We could also argue that another drawback of the lir method is the fact that it requires a
box model hack in order for ie5/Windows to behave properly.

Since method b doesn’t use the display property to hide the text, one could assume that
this method is a better choice to allow users of screen- reading software. but like method
a, the leahy/langridge method should also be used with caution—taking into consider-
ation the accessibility concern of an “images off/CSS on” scenario.

let’s take a look at one more variation on image replacement, developed by mike rundle.

method c: the phark method
one of the great things about the Web is that people are constantly improving techniques,
looking for alternative ways to accomplish the same goals. in august 2003, developer mike
rundle came up with his own variation on image replacement (http://phark.typepad.
com/phark/2003/08/accessible_imag.html), using the unique idea of assigning a large,
negative text-indent value to the text he intended to hide. the text is still there on
screen—but just so far out of range that it’ll never be seen even on the largest of moni-
tors. rather ingenious.

http://phark.typepad.com/phark/2003/08/accessible_imag.html
http://phark.typepad.com/phark/2003/08/accessible_imag.html

Web StandardS SolutionS

230

the markup and cSS

like method b, the phark method (named for the moniker of mike’s site) also sidesteps
the need for extra markup in order to work properly. our heading markup would be the
following:

<h1id="phark">ThePharkMethod</h1>

the extra element that was necessary for Fir isn’t needed for this method. let’s
take a look at the simplistic CSS that’s used to hide the text and replace it with the image
shown in Figure 14-5.

 Figure 14‑5. phark.gif, the 26-pixel-
tall image we’ll use for replacement

#phark{
height:26px;
text-indent:-5000px;
background:url(phark.gif)no-repeat;
}

as you can see, method C is by far the simplest and doesn’t need the box model hack or
extraneous markup. by indenting the text an absurd amount of negative pixels, the text is
pushed out of the way and unseen by the user.

like with method b, users of screen- reading software should be able to still read the text
just fine using this method, which is certainly an improvement.

Still not perfect

While the phark method is the easiest to implement, it still fails in the “images off/CSS on”
scenario. as rare an occurrence as that sounds, it still means that at the time of this writ-
ing, there is no perfect solution just yet.

method D: sIFR
siFr, short for Scalable Inman Flash Replacement, is an ingenious set of scripts that allows
html text to be replaced by a Flash movie, thereby giving the designer the ability to use
any typeface they wish. Since the fonts are embedded in Flash, and hidden to the user, it
enables rich typography to be inserted into any web page that supports JavaScript and
Flash.

imaGe replaCement

231

14

 Figure 14-6 shows a test page created by early siFr pioneer, mike davidson, where the text
shown is hypertext replaced with fancy fonts that not every user would likely have. siFr
makes it possible with JavaScript and Flash.

 Figure 14‑6. a test page for siFr created by mike davidson

siFr is arguably the most accessible technique of those mentioned previously, since it uses
no additional markup and plays nice with screen readers. if JavaScript and/or Flash is
turned off or unsupported, the text will still be readable (and backup CSS styles could be
applied).

While siFr offers unlimited font choice and controls, it can be tricky to implement.
Fortunately, there are many examples and good documentation to help you along the way.
Getting the necessary CSS, JavaScript, and Flash files set up and in the right place can be
confusing for the beginner. however, once set up, siFr delivers what no other method can:
any font you’d like, without using images.

For more info on siFr, be sure to visit http://wiki.novemberborn.net/sifr3 and http://
www.mikeindustries.com/blog/sifr/.

let’s now recap each of the four methods presented, noting their differences.

http://wiki.novemberborn.net/sifr3
http://www.mikeindustries.com/blog/sifr/
http://www.mikeindustries.com/blog/sifr/

Web StandardS SolutionS

232

Summary
We’ve looked closely at four popular image replacement methods, starting with the origi-
nal Fahrner image replacement and three of its successors. While none of the four are
perfect solutions, techniques such as mike rundle’s are pretty darn close, and may have
applications in the real world, as long as the pitfalls and drawbacks aren’t taken lightly.

let’s break down the main differences between the four methods presented:

method a:

 this method requires a meaningless extra element.

 Screen-reader software in common use at the time of this writing will speak noth-
ing due to acknowledging the display property (based on Joe Clark’s findings).

 nothing will appear in an “images off/CSS on” scenario.

method b:

 this method doesn’t require additional markup.

 Screen-reader software should read the text normally.

 the box model hack is necessary for ie5/Windows.

 nothing will appear in an “images off/CSS on” scenario.

method C:

 this method doesn’t require additional markup.

 Screen-reader software should read the text normally.

 nothing will appear in an “images off/CSS on” scenario.

method d:

 this method doesn’t require additional markup.

 this method plays nice with screen- reader software.

 this method allows any typeface to be embedded by the designer.

 this method requires JavaScript and Flash in order to render custom fonts.

 this method can be confusing and tricky to implement.

except for method d (siFr), all of the current popular methods share that last drawback.
it’s been several years since a new image replacement technique has been discovered, so
there’s a good chance we’re stuck with the options presented in this chapter.

there is hope in the way of the Web Fonts module in CSS3 (http://www.w3.org/TR/css3-
webfonts/), which introduces the @font-face property, enabling the CSS author to link to
an actual font file via a url, much like they would an image, video, or other downloadable
file. the promise is wonderful: being able to embed any typeface you wish, while styling it
with CSS. but it also opens up a host of legal issues and concerns for type designers and
foundries. here’s hoping this gets sorted out before the next millennium. until then, there

http://www.w3.org/TR/css3-�webfonts/
http://www.w3.org/TR/css3-�webfonts/

imaGe replaCement

233

14

are a couple of practical applications for the general idea of image replacement, and we’ll
take a look at two of them in the “extra credit” section of this chapter.

It’s important to mention that standards- compliant designer Dave Shea has been
extensively monitoring the state of image replacement, and has been keeping a nicely
organized page that covers all of the methods presented in this chapter and more. Be
sure to keep an eye on Dave’s “Revised Image Replacement” (www.mezzoblue.com/
tests/revised-image-replacement/).

extra credit
For extra credit, let’s look at two instances in which image replacement just might have a
legitimate place in the real world. First up, we’ll take on the useful act of logo swapping,
first explained to me by douglas bowman, who popularized the original Fahrner image
replacement technique of method a. Second, i’ll share how the navigation system tabs on
Fast Company’s site was designed using JavaScript- free image replacement.

logo swapping

earlier in this chapter, we looked at how CSS can be used to replace text with an image.
Certain drawbacks are attached to each of those methods—but these drawbacks will fall
by the wayside when using one of the methods to replace an image… with another
image.

but why would you want to do that?

Hi‑fi and lo‑ fi
one reason for swapping an image with another image would be to serve varying site
logos—one for browsers that handle CSS properly (referenced with the background prop-
erty) and one that’s served to old browsers, handheld devices, screen readers, and so
forth.

this is especially handy when your fancy, CSS- friendly logo has transparency or colors that
are specific to the CSS design of the site. You may want to have the nonstyled version
display a lo- fi version of the logo that still looks good when CSS isn’t supported or
enabled.

the example

to skirt around copyright lawyers, i’ll use my own personal site yet again as an example,
which not only swaps logos, but also takes into account that on any page other than the
home page the CSS- enabled version of the logo is still clickable as a hyperlink back to the
index page.

http://www.mezzoblue.com/tests/revised-image-�replacement/
http://www.mezzoblue.com/tests/revised-image-�replacement/

Web StandardS SolutionS

234

let’s look at the markup that i used for the logo on a previous design of my home page,
as well as the markup used on subsequent pages.

For the home page:

<divid="logo">
<imgsrc="/images/logo_lofi.gif"width="173"height="31"➥

alt="SimpleBits"/>
</div>

all other pages had a clickable logo to direct users back to the home page.

<divid="logo">
<ahref="/"><imgsrc="/images/logo_lofi.gif"width="173"➥

height="31"alt="SimpleBits"/>
</div>

a pair of logos

Figures 14- 7 and 14- 8 show the two logos i used—the former one that’s marked up inline
on the page for the nonstyled version (lo- fi), and the latter one that was referenced by the
CSS for the modern browser version (hi- fi).

 Figure 14‑7. logo_lofi.gif that nonstyled viewers will see (lo- fi)

 Figure 14‑8. logo_corn.gif that
 CSS- enabled viewers will see (hi- fi)

the text of the hi- fi logo was white with a transparent background that was meant to sit
on a corn backdrop, and therefore would look odd for viewers of the nonstyled version of
the site. this is the reason i’d chosen to use CSS to swap logos—to allow me to serve one
or the other, depending on the browser’s capabilities.

imaGe replaCement

235

14

the cSS

So let’s pull this all together with the CSS that makes everything possible.

First, we’ll hide the inline image by setting its width to 0—remember that by not using the
display property to hide the lo- fi logo, we have a better chance of screen- reading soft-
ware reading the image that’s being hidden (by way of the alt text provided):

#logoimg{
display:block;
width:0;
}

next, let’s assign the hi- fi logo by way of the background property on the element
that i snuck in there. Yes, it’s meaningless and semantically meaningless—let’s make an
exception in this case.

#logospan{
width:173px;
height:31px;
background:url(../images/logo_corn.gif)no-repeat;
}

You’ll notice that all we must do is assign height and width that is equal to the logo that
we’re using for replacement and set the background image to the hi- fi version.

Regain the hyperlink

Finally, for pages other than the home page, we still want people to be able to click the
logo to get back to the index. but how can we do this, if we’ve set the image’s width to 0?
there would be literally no clickable area.

We can add a declaration for the logo’s <a> element that will “stretch” its clickable area
over the background image. the width will equal that of the replaced image.

#logoa{
border-style:none;
display:block;
width:173px;
}

by setting the width of the <a> in CSS, we could conceivably serve two logos that were of
different dimensions as well. in this example, they are the same size.

We’ve also added the top rule to get rid of the default border that most browsers place
around hyperlinked images (see Figure 14-9).

Web StandardS SolutionS

236

 Figure 14‑9. hyperlinked logo, with clickable area shown

the results

by taking a look at Figures 14- 10 and 14- 11, you can see that with the markup and style
just demonstrated, two logos could be served for both nonstyled and CSS- enabled users.
For times when the logo is hyperlinked, we could still specify the clickable area using a
simple CSS rule.

i believe this example shows how image replacement can be used without guilt in the real
world—specifically for replacing an existing inline image with another image that’s refer-
enced in CSS.

 Figure 14‑10. hi- fi logo for CSS- enabled browsers

 Figure 14‑11. lo- fi logo for nonstyled viewers

next, let’s take a look at another real- world case study, a navigation system i designed for
the Fast Company website back in 2003 that combines an unordered list with image
replacement… and a twist.

accessible image‑ tab rollovers
to call this particular solution “accessible” could be a bit false. the image- tab navigation
i devised for Fast Company’s website shares a drawback with the image replacement

imaGe replaCement

237

14

techniques described earlier in this chapter—that users with “images off/CSS on” will
most likely see nothing.

however, for scenarios in which you must use images for navigation, whether it be space
constraints or typography requirements, this method is valuable to understand.

the accessible part comes from the fact that, while in the end we’re using images for
navigational tabs, the markup is still a lean, mean unordered list—accessible by all brows-
ers, phones, handheld devices, and so forth.

let’s take a look at how everything comes together.

the problem

While i was a member of the Fast Company web team, we needed to fit more items into
FC’s top navigation. but we ran out of room. previously, navigation markup was handled by
a simple, styled, unordered list. but at a window resolution of 800 ✕ 600, there wasn’t
enough additional horizontal space to add even one more item using the current design.

the solution

i chose to combine and modify the approach in Czech author petr Stanicek’s (a.k.a. pixy)
“Fast rollovers, no preload needed” (http://wellstyled.com/css-nopreload-
rollovers.html) and the leahy/langridge image replacement method described earlier
in this chapter to create accessible, JavaScript- free, image- tab rollovers (see Figure 14-12).

 Figure 14‑12. FastCompany.com’s tabbed navigation, circa February 2004

how does it work?

the markup: One list to rule them all

i wanted to continue to use a simple unordered list for the navigation in the markup.
much has already been said in this book about using lists for navigation: they’re compact,
lightweight, and accessible to text browsers, screen readers, handheld devices, and
phones.

here’s what the list looked like originally (i’ve deleted some of the items to make it more
convenient to demonstrate):

http://wellstyled.com/css-nopreload-�rollovers.html
http://wellstyled.com/css-nopreload-�rollovers.html
http://wellstyled.com/css-nopreload-�rollovers.html

Web StandardS SolutionS

238

<ulid="nav">
<ahref="/"class="selected">Home
<ahref="/guides/">Guides
<ahref="/magazine/">Magazine
<ahref="/articles/">Archives

nice and simple. now let’s add a unique id to each element so that we can do some
fancy stuff with it (namely, replace the boring text with stylized graphics for each tab):

<ulid="nav">
<liid="thome"><ahref="/"class="selected">Home
<liid="tguides"><ahref="/guides/">Guides
<liid="tmag"><ahref="/magazine/">Magazine
<liid="tarchives"><ahref="/articles/">Archives

now we’re ready to create some tab images using photoshop, or your favorite image editor.

One image, three states

the essence of pixy’s brilliant fast rollovers approach involves creating one image for each
navigation item that includes normal, hover, and active states stacked on top of each
other. later, we’ll use CSS to change the background-position that reveals each state at
the appropriate time.

this method eliminates the need to use what was historically JavaScript to swap images
and preload multiple sets of images. What a production time- saver—not to mention a
means of providing faster downloading.

 Figure 14-13 shows an example image that i’ve created and used for the Fast Company
site’s navigation. each state is 20 pixels tall with a total image height of 60 pixels. the top
20 pixels are the normal state, the next 20 pixels show the hover state, and the final 20
pixels show the active state (which is also used for the “you are here” effect). there are
similar images for each tab we’d like to use.

 Figure 14‑13.
a single image
containing the
three states

using one image for each state allows us to toss out ugly JavaScript that is traditionally
used for such effects and instead make use of simple CSS rules for hover effects. this is
good. it also eliminates the “flicker” effect that other CSS methods suffer from, where
separate on/off images are necessary. this is good. We also don’t have to preload any
additional images. again… this is good.

imaGe replaCement

239

14

the cSS: this is where the magic happens

First we’ll set up the rules that all navigation items will need. this will save us from writing
duplicate rules for each tab. then we’ll add a separate rule for each list item id, giving the
 its own background-image and width—the only two variables that will be different
for each tab.

the CSS goes something like this:

#nav{
margin:0;
padding:0;
height:20px;
list-style:none;
display:inline;
overflow:hidden;
}

#navli{
margin:0;
padding:0;
list-style:none;
display:inline;
}

#nava{
float:left;
padding:20px000;
overflow:hidden;
height:0px!important;
height/**/:20px;/*forIE5/Winonly*/
}

#nava:hover{
background-position:0-20px;
}

#nava:active,#nava.selected{
background-position:0-40px;
}

the preceding code essentially turns off padding and list styles, makes the list horizontal,
and hides the text that’s between each hyperlink in the list. notice the :hover and :active
rules. these are generic for every <a> element within #nav so that we don’t have to repeat
those particular rules for each item.

i’ve also assigned a “selected” class to a tab that i wish to highlight permanently, signifying
which section of the site you’re currently on. this is shared with the :active state.

Web StandardS SolutionS

240

You may also notice that list-style:none; and display:inline; are repeated in both
the #nav and #navli selectors. this was to keep ie5/Windows happy. in a perfect world,
declaring this once for #nav would be perfectly sufficient, and with ie5 usage across the
Web now at next to nil, it’d likely be fine.

next, we’ll add the rule for each id and assign its background-image and width. here’s one
example:

#thomea{
width:40px;
background:url(home.gif)topleftno-repeat;
}

there is, of course, a similar declaration for each tab needed.

the results

 Figure 14-14 shows the resulting tabs in normal, hover, and selected states. to see it all
working in action, check out the working example with source code on Simplebits (www.
simplebits.com/bits/tab_rollovers.html).

 Figure 14‑14. resulting tabbed navigation with each of the three states
demonstrated

Why use it?

 It’s lightweight: Just an unordered list in the markup.

 It’s accessible: using Stuart’s method, we can ensure screen readers will read the
text links.

 no JavaScript: We don’t need to preload or create multiple images for each state.
We also don’t need extra JavaScript to control hover effects. thanks, pixy.

 It’s stylized: Fitting hypertext into defined areas can be tricky; this allows for using
stylized images.

But wait, the text doesn’t scale!

Following a great suggestion from douglas bowman, and in response to legibility issues
and the inability to resize image text, i went a step further and created a second set of tab
images with larger text labels. i could then override rules on the existing “medium” and
“large” alternative style sheets. the alternative styles are activated using paul Sowden’s
style sheet switcher, which i talked about back in the “extra credit” section of Chapter 10.

http://www.simplebits.com/bits/tab_rollovers.html
http://www.simplebits.com/bits/tab_rollovers.html

imaGe replaCement

241

14

an example of the overridden rule looks almost identical to the original, with a new width
and image path:

#thomea{
width:46px;
background:url(guides_lg.gif)topleftno-repeat;
}

 Figure 14-15 shows the larger tabs as they appeared on the Fast Company site, where
you’ll notice that the horizontal spacing is tighter, while the vertical size remains the same
as the original. but, by adding the ability to increase the size of hypertext as well as the tab
images, we’ve helped out low- vision users, while still working with our particular design
constraints.

 Figure 14‑15. tab navigation with larger image set activated
from an alternative style sheet

compatibility

this method has been tested and should work in all modern browsers past version 5.0.

Wrapping up

now that you’re up to speed on the wonders of image replacement, i hope that you’re
armed with the knowledge that, while no perfect solution exists yet, the concept is an
important one to understand and experiment with.

additionally, by showing you two real- world examples of how image replacement can be
utilized, my hope is that the wheels will start turning, and you… yes, you… could be the one
who discovers the next best method. Fame and fortune await.

Chapter 15

Styling <body>

Web StandardS SolutionS

244

one of the benefits of separating content from presentation is flexibility. by using CSS to
control a site’s layout (as we saw in Chapter 12), we can control an entire site’s design.
Change a few rules, and instantly and dramatically update thousands of pages.

Just one example of the flexibility gained from choosing to use CSS to control a site’s lay-
out comes from styling the <body> element. by adding a class or id to the <body> ele-
ment, you can take advantage of customized control over any element on the page,
eliminating the need for duplicating shared rules.

in this chapter, you’ll discover how adding class to the <body> element enables you to
toggle between two separate layouts while sticking with the same markup structure.

two and sometimes three columns
When we redesigned the website for Fast Company using a CSS-based layout, one of the
challenges was that while sections like navigation and footer information were shared on
every page, we needed to create two different page layouts.

one layout would be used for “index pages” (see Figure 15-1)—pages that have naviga-
tional purposes, allowing the user to drill further down into the directory structure of the
site. We decided these pages should have a three-column layout.

the second type of page layout was an “article page” (see Figure 15-2). any page that was
considered a destination had this type of layout. For increased readability, we chose to omit
the left column, leaving two—one large column for content, and one for advertising.

Styling <body>

245

15

Figure 15-1. example of a Fast Company “index page” with three columns

Web StandardS SolutionS

246

Figure 15-2. example of a Fast Company “article page” with two columns

the reason i explained all of that wasn’t to prove that we had cracked some brilliant layout
puzzle—but rather to show how applying a class to the <body> element allowed us to
adjust the column widths and drop or omit a third column depending on the page type. all
of this was done without duplicating any rules or without importing additional style sheets.

Markup and style structure

this will start to make more sense when i describe a distilled version of the markup struc-
ture that was used for both types of pages. to achieve the columnar layout, i used the
absolute positioning method, as described in Chapter 12.

Article page
For article pages, a simplified look at the markup structure went something like this:

Styling <body>

247

15

<div id="header">
 ...header info here...
</div>

<div id="content">
 ...content here...
</div>

<div id="right">
 ...right column info...
</div>

<div id="footer">
 ...footer info...
</div>

CSS rules were put in place to give the #content and #footer a right margin wide enough
for the #right column to be placed using absolute positioning; in this case, 190 pixels was
just enough.

#content, #footer {
 margin: 10px 190px 10px 10px;
 }

index page
For index pages, the markup structure was kept exactly the same, saving the need for
duplicating shared CSS rules—yet an additional <div> is added for a third column (#left)
to the left of the #content.

<div id="header">
 ...header info here...
</div>

<div id="content">
 ...content here...
</div>

<div id="left">
 ...left column info...
</div>

<div id="right">
 ...right column info...
</div>

<div id="footer">
 ...footer info...
</div>

Web StandardS SolutionS

248

For this three-column structure, we’ll need not only a right margin on #content and
#footer to accommodate the right column, but also a left margin to accommodate the
new left column.

but we’ve previously specified the left margin to be only 10 pixels for the default article-
style layout that only contains two columns. We’re stuck.

this <body> has class

here is where the <body> element comes into play. by assigning a class to the <body>,
signifying that this is an index-style page, we can write rules that are specific only to that
class.

For example, to override the default left margin of 10 pixels, we add the following class to
the <body> element on index-style pages only:

<body class="index">

Following the original rule that sets the margin for the #content and #footer, we can add
the following to the CSS:

#content, #footer {
 margin: 10px 190px 10px 10px;
 }
body.index #content, body.index #footer {
 margin-left: 190px;
 }

For pages with the index class attached to the <body> element exclusively, an increased
left margin of 190 pixels (matching the right column) is applied to accommodate a left
column. if the index class isn’t present, the left margin will be 10 pixels as designated in
the default declaration.

now we can toggle between two- and three-column layouts, simply by assigning the class
to the <body> element and dropping in the additional <div> to the markup when desired.
additional classes could be set up as well, with no limit to how many page types can be
included.

Markup sections and names can remain the same, while being slightly customized depend-
ing on page type.

not just for columns

While i’ve used the toggling of columns for the Fast Company website as an example, this
same idea can be applied to customize any element on the page.

For instance, if on index-style pages you would also like all page titles marked up with an
<h1> element to be orange instead of their default color, you could add an additional CSS
declaration following the default.

Styling <body>

249

15

For all pages, you’d use the following:

h1 {
 font-family: Arial, Verdana, sans-serif;
 font-size: 140%;
 color: purple;
 }

and this would apply to index-style pages only:

body.index h1 {
 color: orange;
 }

you’ll notice that in the index-specific declaration we need only put rules that we want to
differ from the default values. in this case, on pages where <body class="index"> is
specified, <h1> elements will be styled in arial at 140 percent and orange—without the
need to add a class to the <h1> elements or any other additional markup.

i’m using pretty simple examples here—but you can start to imagine the possibility of
creating multiple page types by assigning an appropriate class to the <body> element. in
turn, the classes could trigger entirely different layouts, color schemes, and designs—all
using similar markup structure and a single CSS file.

“you are here”
in addition to adding a class to the <body> element, you can achieve interesting results by
adding an id as well.

For example, a crafty designer may use an id attached to the <body> element to trigger
navigational elements that signify what page the user is on. let’s take a look at how this
would work.

the navigation list

For this example, we’re going to borrow the “tabs with shape” that were explained back in
the “extra credit” section of Chapter 1. the navigation uses a simple unordered list con-
taining several links like this:

<ul id="minitabs">
 Apples
 Spaghetti
 Green Beans
 Milk

Web StandardS SolutionS

250

using CSS, you may remember we styled this list, making the items display horizontally and
with a shaped tab that would appear when hovered over. Figure 15-3 shows how this
would appear in a browser.

Figure 15-3. horizontal navigation with shaped tabs

you may also remember that to achieve the “you are here” effect (with the tab sticking in
the “on” position for a particular link), we added a class to the link that we’d like to stick:

spaghetti

a CSS rule was added to apply the background-image to the link with the class="active"
attached:

#minitabs a.active {
 color: #000;
 background: url(tab_pyra.gif) no-repeat bottom center;
 }

there is an alternative way to handle this, however, that leaves the navigation markup
untouched, while still having the ability to mark which page the user is on: assigning an id
to the <body> element.

identify the parts

First, we’ll need to add id attributes to each element in our navigation. this is done
once, and then the unordered list will remain unchanged on every page—even to achieve
the “you are here” effect.

<ul id="minitabs">
 <li id="apples_tab">Apples
 <li id="spag_tab">Spaghetti
 <li id="beans_tab">Green Beans
 <li id="milk_tab">Milk

in the preceding code snippet, we’ve added a short and sweet id to each , suffixing
each with a _tab so as not to repeat ourselves. this will make sense in a moment.

now we’re done with the list markup for good. We can forget about it—which can be
rather convenient, depending on the templating or content management system you may
be working with.

the variable in all of this is an id that will be attached to the <body> element only, signify-
ing which page the user is on. For instance, if we wanted to tell the browser that we were
on the apples page, we may add an id to the <body> element like this:

Styling <body>

251

15

<body id="apples">

alternatively, we could add an id signifying we were on the green beans page:

<body id="beans">

and so on.

the magic CSS

to “light up” the tab, depending on which id is place in the <body>, we need only write a
single CSS declaration that tells it to do so for each possible combination:

body#apples #apples_tab a,
body#spag #spag_tab a,
body#beans #beans_tab a,
body#milk #milk_tab a {
 color: #000;
 background: url(tab_pyra.gif) no-repeat bottom center;
 }

essentially, we’re saying, “When the <body> element has an id of apples, add the tab back-
ground and turn the link color black for the link within the #apples_tab list item.” and
then we’re repeating that for each tab option.

all that’s required now to “light up” the correct tab in the navigation is to change the id
contained in the <body> element. the CSS declaration handles the rest, and could be
modified to handle more combinations as future pages are added to a site.

For example, if we wanted to light up the Green Beans tab to signify to users that this is
indeed the page they are on, we’d simply add the id to the <body> element like so:

<body id="beans_tab">

and the appropriate tab would be selected, as shown in Figure 15-4 (where we’ve applied
the “mini-tab” styles that were explained back in Chapter 1).

Figure 15-4. tab selected by assigning an id to the <body> element

alternatively, we could light up any tab we wish by choosing to add any one of the ids to
the <body> that we’ve declared both in the list markup and the CSS.

additionally, you could use this same concept to trigger other contextual events on the
page—like subnavigation or alternating colors that rotate depending on the page’s id.
because the <body> element is at the top level, the id contained within can be used to
control any element below it on the page.

Web StandardS SolutionS

252

Summary
by migrating toward CSS-based layouts, you’ll be amazed at the increased flexibility they
bring. in this chapter, we’ve taken a look at one way to take advantage of that flexibility, by
using a class or id on the <body> element to control a page’s column structure, or to
visually mark what page the user is currently on.

this is just a single example of how modular building sites with web standards can be—
easily changing the layout, design, and style of an entire page or site with just one directive
from the <body> element.

Chapter 16

Next StepS

Web StandardS SolutionS

256

now that you’re armed with how web standards can improve your websites, remember
that the learning never stops. Methods and techniques are constantly being tweaked,
improved, and updated, even as i tap out the last few words of this chapter. What better
way to stay on top of the game than on the Web itself? You’ll find thousands of helpful
sites out there exploring the wonders of standards-compliant design and development.

Where do you go from here?
to close this book, i’ve collected a few of my favorite resources, which i highly recommend
visiting regularly to stay sharp on the latest developments of the web standards world.

Organizations and publications

W3C
www.w3.org

the World Wide Web Consortium is where it all happens. this is the organization that
leads the Web and develops the standards that we all use every day. the site serves as a
reference that is chock-full of technical details on anything and everything. although it can
be difficult to navigate and digest, this site is the definitive source for standards.

especially helpful are the W3C’s validation tools (validator.w3.org). use them often to
make sure your markup is in tip-top shape. You can validate by url or by uploading a file
you’re working on locally.

Web Standards project
www.webstandards.org

Formed in 1998, the Web Standards project (WaSp) promotes web standards to the public
and provides educational resources for web designers and developers to carry out stan-
dards-compliant methods. WaSp also works with and encourages browser and software
makers to adhere to the standards that it promotes.

the Web Standards project site is filled with resources on everything standards related.

A List Apart
www.alistapart.com

Founded by Jeffrey Zeldman and brian platz in 1998, A List Apart magazine explores the
design, development, and meaning of web content, with a special focus on techniques and
benefits of designing with web standards.

this indispensable online magazine has published many great tips and techniques on a
wide variety of standards-compliant design, development, and business topics. a must-
read “for people who make websites.”

http://www.w3.org
http://www.webstandards.org
http://www.alistapart.com

next StepS

257

16

CSS Zen Garden
www.csszengarden.com

planted and curated by standards guru and WaSp member dave Shea, the CSS Zen Garden
is “a demonstration of what can be accomplished visually through CSS-based design.”
designers submit their own CSS designs that each reference the same markup structure.
What results is a continually updated showcase of cutting-edge CSS design.

a fantastic inspiration—and also a great destination to point CSS naysayers to. (i’m refer-
ring to those who believe CSS is incapable of great design. ha! and to think that would
even cross someone’s mind.)

Dive Into Accessibility
www.diveintoaccessibility.org

Mark pilgrim published this online book to help people better understand how easy acces-
sibility features can be to implement and also who benefits from these features.

taking the perspective from five people, each with a different disability, the information is
incredibly easy to understand. read through Mark’s explanations, and your sites will be
better because of them.

css-discuss
www.css-discuss.org

css-discuss “is a mailing list devoted to talking about CSS and ways to use it in the real
world.” this is a great place to ask questions and get answers as you’re exploring the ben-
efits of CSS. plenty of helpful folks are out there with the knowledge to get you through
just about anything.

Digital Web Magazine
www.digital-web.com

published by nick Finck, Digital Web Magazine was an online magazine full of columns,
news, and tutorials for web designers. the site “closed its doors” in March 2009, but its
archive is well worth browsing.

Vitamin
www.thinkvitamin.com

Web design and development online publication with “in-depth features, audio interviews,
training sessions and reviews,” brought to you by the folks at Carsonified, a company that
puts together popular conferences, workshops, and other web-related products.

http://www.csszengarden.com
http://www.diveintoaccessibility.org
http://www.css-discuss.org
http://www.digital-web.com
http://www.thinkvitamin.com

Web StandardS SolutionS

258

Influential and inspirational weblogs

Many of the standards community’s most talented designers and developers publish daily
content on their own personal sites. by reading these weblogs regularly, you can learn
from the masters as they pass on their knowledge.

Jeffrey Zeldman presents: the Daily Report
www.zeldman.com

Jeffrey Zeldman, essentially the godfather of web standards, has been publishing web
design news and information since 1995. Zeldman is cofounder of the aforementioned
Web Standards Group, publisher of A List Apart magazine, and author of Designing With
Web Standards, and this book wouldn’t have been written if not for the work of this guy.

this site is a fountain of information regarding standards-compliant design, and a regular
must-stop on your favorites list.

Stopdesign
www.stopdesign.com

douglas bowman, best known for his standards-based redesigns of Wired news (www.
wired.com) and adaptive path (www.adaptivepath.com), publishes useful tutorials, com-
mentary, and insights into the mind of a designer within the world of web standards. his
work on Wired news was a huge influence on my redesigns of the sites for Fast Company
and Inc., and his attention to detail is second to none.

mezzoblue
www.mezzoblue.com

no one monitors the pulse of the standards community better than dave Shea, curator of
the aforementioned CSS Zen Garden. at mezzoblue, dave tackles the cutting-edge issues
of standards-compliant design head on, often getting the community involved to work out
existing issues. a fantastic resource.

meyerweb.com
www.meyerweb.com

recognized as the expert regarding anything CSS, eric Meyer has written several great
books on the subject and has long been an advocate of web standards through his con-
sulting, speaking, and work with netscape. his site contains great commentary on CSS as
well as some great showcases and experiments.

http://www.zeldman.com
http://www.stopdesign.com
http://www.wired.com
http://www.wired.com
http://www.adaptivepath.com
http://www.mezzoblue.com
http://www.meyerweb.com

next StepS

259

16

tantek Çelik
http://tantek.com/log

Weblog of tantek Çelik, the author of the famed box Model hack described earlier in this
book, as well as co-founder of microformats.org and W3C representative to the CSS and
htMl working groups.

456 Berea Street
www.456bereastreet.com

the site of Swedish web developer roger Johansson, focusing on accessible web design
with web standards.

Jason Santa Maria
www.jasonsantamaria.com

designer extraordinaire Jason Santa Maria’s inspiring personal site.

Jina Bolton
www.sushiandrobots.com/journal

“…a visual interaction designer and artist working in Silicon Valley,” Jina bolton writes and
speaks on web design.

Adactio
www.adactio.com/journal

home to Jeremy Keith, a leading mind on all things markup, CSS, doM scripting, and
microformats.

Cameron Moll
www.cameronmoll.com

the site of Cameron Moll, author, speaker, and Super-designer.

Mark Boulton
www.markboulton.co.uk

home to Mark boulton, designer and web typography whiz.

http://tantek.com/log
http://www.456bereastreet.com
http://www.jasonsantamaria.com
http://www.sushiandrobots.com/journal
http://www.adactio.com/journal
http://www.cameronmoll.com
http://www.markboulton.co.uk

Web StandardS SolutionS

260

Molly.com
www.molly.com

Molly e. holzschlag has done an enormous amount of work as a web standards advocate,
instructor, and author over the years.

Shaun Inman
www.shauninman.com

home to Shaun inman, pioneer of CSS and JavaScript explorations, siFr (Scalable inman
Flash replacement) contributor, and designer.

Stuff and Nonsense
www.stuffandnonsense.co.uk

the site of author, speaker, and designer andy Clarke.

Unstoppable Robot Ninja
www.unstoppablerobotninja.com/

home to markup and style ninja ethan Marcotte.

Subtraction
www.subtraction.com/

the site of the master of the grid-based web, Khoi Vinh.

Veerle’s Blog
veerle.duoh.com/

the site of talented visual and web designer Veerle pieters.

D. Keith Robinson
http://dkeithrobinson.com/

the site of web designer and developer d. Keith robinson, who offers thoughts and ques-
tions on standards-related design and development topics.

Simon Willison’s Weblog
http://simon.incutio.com

developer and Web Standards project member Simon Willison writes about “php, python,
CSS, xMl, and general web development.” he’s always on top of web standards and how
they relate to other aspects of web development.

http://www.molly.com
http://www.shauninman.com
http://www.stuffandnonsense.co.uk
http://www.unstoppablerobotninja.com/
http://www.subtraction.com/
http://dkeithrobinson.com/
http://simon.incutio.com

next StepS

261

16

Books

i need to mention a few books as well. all of these are fantastic books that will be nothing
but indispensable resources for any practicing web designer.

 Designing With Web Standards, Second Edition, by Jeffrey Zeldman (new riders,
2006)

 Cascading Style Sheets: The Definitive Guide, by eric Meyer (o’reilly, 2000)

 Bulletproof Web Design, Second Edition, by dan Cederholm (new riders, 2007)

 CSS Mastery, Second Edition, by andy budd, Simon Collison, Cameron Moll (friends
of ed, 2009)

 Professional CSS, by Christopher Schmitt, todd dominey, Cindy li, ethan Marcotte,
dunstan orchard, and Mark trammell (Wrox, 2008)

 Zen of CSS Design, by dave Shea and Molly e. holzschlag (new riders, 2005)

 Transcending CSS, by andy Clarke and Molly e. holzschlag (new riders, 2006)

 CSS Cookbook, by Christopher Schmitt (o’reilly, 2006)

 Microformats: Empowering Your Markup for Web 2.0, by John allsopp (friends of
ed, 2007)

 Speed Up Your Site: Web Site Optimization, by andrew b. King (new riders, 2003)

 Don’t Make Me Think: A Common Sense Approach to Web Usability, Second Edition,
by Steve Krug (new riders, 2005)

parting words
and we come to the end. My hope is that by working your way through this book, you’ve
gained a new perspective on how building sites with web standards can be beneficial. by
looking at multiple solutions that achieve the same results, you can start to make better
choices on your own projects, and i believe you’ll be better prepared to trade in bloated,
old markup for lean, structured xhtMl and CSS designs. thanks for reading—it’s been
fun.

Index

Index

264

images, headers with, 43–44
links, 112

block-level elements, 6–8
<blockquote> element, 51–59, 139
blogs, 258–260
<body class="index"> element, 249
<body> element, 74, 173, 180, 203, 244–252
bold class, 88
bold font, 86–88
books, 261
border attribute, 39
border-bottom property, 112
border-collapse property, 40–42
border-left element, 39
border:none; rule, 144
borders

backgrounds, 24
forms, 78–79

border-top element, 39
Bowman, douglas, 258
box model problem, 199–202

 (break) element, 4–7, 63–67, 124
braille media type, 168
bullets

custom, 10–11
numbered lists, 121
turning off, 9–10
validation, 6

C
Cameron Moll blog, 259
capitalization

drop caps, 213–214
small caps, 217

<caption> element, 32
captions, 31
cascade property, 156–157
Cascading Style Sheets. See CSS
CdATA comment syntax, 150
cite attribute, 52–53
<cite> element, 53, 89–91, 101
Clarke, Andy, 260
class attribute, 38, 138, 244
class labels, 137
class="quotation" declaration, 50
classified CSS, 135
clear property, 187, 193
clear: right; rule, 185
clickable area, 66
Code Creator, 97–99
<code> element, 89–95
collapse element, 40

456 Berea Street blog, 259

A
<a> element, 104–106, 235
abbr attribute, 36–37
<abbr> element, 89–99
accessibility, 30–32
accesskey attribute, 69–71, 80, 95
<acronym> element, 89–94
:active pseudo-class, 111, 114, 239
Adactio blog, 259
#advertising element, 172
aligning text, 214–215
alternate style sheets

dOM, 163
font sizing, 160–161
overview, 159–160

"alternate stylesheet" value, 160
anchors

options
<a> element with name attribute, 104–106
id and name attributes, 108
id attribute, 107
overview, 104

overview, 104
styling links

:active pseudo-class, 114
a:visited declaration, 113
backgrounds, 112
dotted borders, 112–113
Fitts' Law, 115–116
:hover pseudo-class, 113–114
Ie6, 116
LoVe/HAte mnemonic, 114
overview, 111

title attribute, 110–111
#apples_tab element, 251
article page, 246–247
aural style sheet, 93
#author element, 55, 57
a:visited declaration, 113

B
 element, 19, 33
background property, 45–46, 54, 55, 125, 142, 224, 235
background:#ccc declaration, 46
background-color property, 115
background-image property, 55, 224–225, 239, 250
background-position property, 238
backgrounds

forms, 78–79
of headings, 23–25

Index

265

<dl> (definition list) element, 67, 125–126
document Object Model (dOM) 163, 163
dotted borders, 112–113
drop caps, 213–214
drop class, 213
<dt> (term) element, 68, 125–126

e
em units, 209, 218
 element, 84–87, 101
embossed media type, 168
empty elements, 104
extensible HyperText Markup Language (xHTML), 28
external style sheets, 151–155

F
Fahrner Image Replacement (FIR)

advantages of, 227–228
assigning background, 226
disadvantages of, 227–228
extra element, 225
markup, 225
overview, 224–225

faux columns, 202–204
<fieldset> element, 69–76
Finck, nick, 257
FIR. See Fahrner Image Replacement
Fitts' Law, 115–116
Flash, 230–232
float method, 186
float property, 181, 183, 187
floating content, 187–190
floating sidebar

overview, 181–182
styling headers and footers, 182–183
true columns, 183–185

 element, 158, 208
font-family attribute, 74, 210
fonts

bold and italic, 86–88
changing, 210–211
customizing with <label> element, 72–74

font-style property, 87, 95, 212
font-variant property, 217
#footer element, 182, 185–187, 247–248
for attribute, 65
<form> element, 72, 77, 139
forms

accesskey attribute, 70–71
options, 62–68
overview, 62
styling, 71–80
tabindex attribute, 69–70

columns
box model problem, 199–202
faux, 202–204
three-column layout, 196–197, 244–248
two-column layout, 180–195, 244–249

#content <div> element, 183–191
#content element, 136, 182, 192, 247–248
contrast, text, 219
CSS (Cascading Style Sheets)

adding numbers to, 128–129
alternate style sheets, 159–163
applying to documents, 150–158
assigning icons to Ids, 45–46
classified, 135
contextual, 136
headers with background images, 43–44
layouts

box model problem, 199–202
faux columns, 202–204
overview, 180
three-column layout, 196–197
two-column layout, 180–195

overview, 150
reset style sheets, 163–165

CSS Zen Garden website, 257
css-discuss mailing list, 257
custom numbers, 128
custom.css style sheet, 156

d
d. Keith Robinson blog, 260
<dd> (description) element, 67, 125–126
decimal value, 122
default.css style sheet, 160
definition list (<dl>) element, 67, 125–126
definition lists, 67–68
descendant selectors

applying to entire page, 136–137
contextual CSS, 136
easier maintenance, 137–138
overview, 134–136

description (<dd>) element, 67, 125–126
<dfn> element, 89
digital Web Magazine, 257
display: block property, 115
display property, 172, 225–229, 235
<div class="quotation"> element, 50–51
<div> element

with classes attached, 50–51
combined with element, 98–99
eliminating, 138–139
floating sidebars, 181–182
forms, 64–66

dive Into Accessibility online book, 257

Index

266

image replacement
Fahrner Image Replacement, 224–228
image-tab rollovers, 236–241
Langridge Image Replacement, 228–229
logo swapping, 233–235
overview, 224
Phark Method, 229–230
replacing text with images, 224
Scalable Inman Flash Replacement, 230–231

 element, 26–27
@import rule, 152–155, 170
!important rule, 229
indenting, paragraphs, 218
index class, 248
index page, 247–248
inline quotations, 52–54
inline styles, 157–158
<input> element, 63, 71–72
input-bg.gif image, 79
Internet explorer 6 (Ie6), 116
italic font, 86–88

J
Jason Santa Maria blog, 259
Jeffrey Zeldman Presents: The daily Report blog, 258
Jina Bolton blog, 259
Johansson, Roger, 259

K
<kbd> element, 89, 95
Keith, Jeremy, 259
kerning, 211–212
keywords, 21

L
<label> element

accesskey attribute, 70
customizing fonts, 72–74
forms, 65–66

lang attribute, 53
Langridge Image Replacement (LIR), 228–229
large.css style sheet, 160
larger.css style sheet 160, 160
layouts. See CSS
leading, 209–210
<legend> element

adding style to, 75
overview, 74
three-dimensional, 76–77

letter-spacing, 211–212
 element, 30, 138, 142, 238, 250

G
GIF layouts, 30
grids, creating, 39
<grocerylist> element, 31

H
<h1> through <h6> (heading) elements

CSS, 156–157
handling, 19–21
images, 225–226
negative letter-spacing, 212

handheld media type, 168
hCard example

Code Creator, 97–98
markup, 98–99
overview, 97
power of microformats, 99–100

<head> element, 150–157, 171
#header element, 181
headers

with background images, 43–44
customizing, 42
table, 33–36

headers attribute, 35, 44
heading class, 18
heading elements. See <h1> through <h6> elements
headings

methods, 18–21
overview, 18
styling, 22–27

height rule, 229
hi-fi styles, 155–156
hifi.css style sheet, 156
Holly Hack (* html hack), 116
horizontal navigation, 11–14
:hover pseudo-class, 111–114, 239
href attribute, 111, 138, 151
* html hack (Holly Hack), 116
<html> element, 150
hyperlinks. See links

I
icons

adding to lists, 125–126
assigning to ids, 44–47

id attribute
anchors, 107–108
assigning icons to, 44–47
borders, 145
headers, 35
ordered lists, 127–129

Ie6 (Internet explorer 6), 116

Index

267

descendant selectors, 134–138
eliminating <div> element, 138–139
overview, 134
site maps, 140–145

mini-tab shapes, 14–15
Molly.com blog, 260

n
name attribute, 104–108
#nav element, 172
navigational elements

identify parts, 250–251
navigation list, 249–250
overview, 249

nesting inline quotations, 54
none value, 123
nonsemantic markup, 84
numbered lists

ordered, 120–121
unordered, 121–123

O
 element, 121–123, 127
#opponent declaration, 46
ordered numbered lists, 120–121
organizations, 256–257

P
<p> (paragraph) element, 19, 73, 76, 209, 218
padding property, 115
padding value, 42
padding-left value, 51
paragraph (<p>) element, 19, 73, 76, 209, 218
paragraphs, indenting, 218
Perl script, 95
Phark Method, 229–230
phrase elements

<abbr> element, 92–94
<acronym> element, 92–94
<cite> element, 90–91
<code> element, 94–95
<kbd> element, 95
microformats, 96–100
overview, 84
presentational versus structural markups, 84–88
<samp> element, 95
<var> element, 95

Pilgrim, Mark, 257
point values, 172
presentational markup

bold font, 86–88

line-height, 209–210
:link pseudo-class, 106–111
<link> element, 151–152, 156, 159, 168, 171
links

:active pseudo-class, 114
a:visited declaration, 113
backgrounds, 112
dotted borders, 112–113
Fitts' Law, 115–116
:hover pseudo-class, 113–114
Ie6, 116
LoVe/HAte mnemonic, 114
overview, 111
print styles, 173–174

LIR (Langridge Image Replacement), 228–229
List Apart, A magazine, 256
lists

block-level elements, 6–8

 element, 4–5
bullets, 9–11
horizontal navigation, 11–14
mini-tab shapes, 14–15
numbered, 120–123
overview, 4, 120
term/definition pairs, 123–126
 element, 8
wrapping, 5–6

list-style-type property, 122–123
lo-fi styles, 155–156
lofi.css style sheet, 156
logo swapping, 233–235
LoVe/HAte mnemonic, 114
lower-alpha value, 122
lower-roman value, 123

M
main.css style sheet, 157
Marcotte, ethan, 260
margin-left values, 51
margin-right matching, 195
Mark Boulton blog, 259
master.css style sheet, 156–157
media attribute, 168–169, 171
@media rule, 170
<meta> element, 21
Meyer, eric, 258
meyerweb.com blog, 258
mezzoblue blog, 258
microformats, 96–100
microformats.org, 96
Microsoft Internet explorer 6 (Ie6), 116
minimizing markup

assigning classes, 135

Index

268

screen media type, 168
screen readers, 85
screen styles, 171
screenstyles.css file, 169
#search element, 172
search engine robots, 21
semantic markup, 84, 96
Shaun Inman blog, 260
Shea, dave, 258
shorthand method, 46
sidebar attribute, 87
sidebar class, 136
#sidebar declaration, 87, 136, 172, 183, 189
sidebar <div> element, 136, 138, 192–193
#sidecolumn element, 196–197
sideheading class, 135
sidelinks class, 135
sIFR (Scalable Inman Flash Replacement), 230–231
Simon Willison's Weblog, 260
SimpleBits, 97, 203, 240
site maps

borders, 143–145
bullets, 142–143
raw markup, 140–141
style, 141–142

size attribute, 71
small caps, 217
spacing, letter, 211–212
 element

bold and italic fonts, 88
drop caps, 213
Fahrner Image Replacement, 225–228
headings, 18–20
logo swapping, 235
Phark Method, 230

speech media type, 168
speech synthesizer user agents, 85
Stopdesign blog, 258
 element, 58, 84–85, 101, 124
structural markup

bold, 86–88
 element, 84–86
italic, 86–88
overview, 84
 element, 84–85

Stuff and nonsense blog, 260
style attribute, 157
<style> element, 150–151, 156–157, 170
styles.css file, 155, 165, 171
Subtraction blog, 260
summary attribute, 33
swappable icons, 25
swapping logos, 233–235
synthesis parameters, 85

 element, 84–86
italic font, 86–88
overview, 84
, 84–85

Preview option, 174
Print dialog box, 174
print media type, 168, 172
print styles

@import rule, 170
@media rule, 170
building sheet, 171–175
media attribute, 169
overview, 168
recognized media types, 168–169
separating screen styles from, 171

print value, 171
print.css file, 171
projection media type, 168
publications, 256–257

Q
<q> (quotation) element, 53–54
quotations

<blockquote> element, 51–59
cite attribute, 52–53
<div class="quotation"> element, 50–51
no markup, 50
overview, 50
<q> element, 53–54

#quote paragraph, 55–56

R
#record declaration, 46
red class, 137
rel attribute, 159
replacing images, 241
reset style sheets, 163–165
reset.css file, 163
resources

blogs, 258–260
books, 261
organizations, 256–257
publications, 256–257

#right element, 247
rollovers, image-tab, 236–241
Roman numerals, 123

S
<samp> element, 89, 95
Scalable Inman Flash Replacement (sIFR), 230–231
screen attribute, 171

Index

269

<tr> element, 38
transparency, heading, 26–27
tty media type, 169
tv media type 169, 169
two-column format

assigning class to <body> element, 248
floating content, 187–190
floating sidebar, 181–187
overview, 180–181, 244–246
positioning, 191–195
style structure, 246–248

type attribute, 123, 150

U
ul attribute, 145
 element, 6, 8, 32, 135, 139
underline overline property, 111
unordered numbered lists, 121–123
Unstoppable Robot ninja blog, 260
upper-alpha value, 122
upper-roman value, 123

V
validation tools, 256
<var> element, 89, 95
vCard markup, 100
Veerle's Blog, 260
Vinh, Khoi, 260
:visited pseudo-class, 111
visual browsers, 94
Vitamin online publication, 257
voice-family property, 201

W
W3C (World Wide Web Consortium), 28, 256
Web Standards Project (WaSP) 256, 256
weblogs, 258–260
width property, 199, 239
width rule, 201
World Wide Web Consortium (W3C), 28, 256
wrapping, 29–30, 122

x
xHTML (extensible HyperText Markup Language), 28

Y
#year declaration, 46

T
tabindex attribute, 69–70, 80
table headers, 31
<table> element, 32, 39–40
tables

abbr attribute, 36–37
accessibility, 30–32
assigning icons to ids, 44–47
border-collapse property, 40–42
forms, 62–63
grids, creating, 39
headers, 33–44
overview, 30
summary attribute, 33
tabular data, 30
<tbody> element, 37–38
<tfoot> element, 37–38
<thead> element, 37–38

tabular data, 30
Tantek Çelik blog, 259
<tbody> element, 37–38
<td> element, 35
term (<dt>) element, 68, 125–126
text

alignment, 214–215
captilization, 213–217
contrast, 219
fonts, 210–211
kerning, 211–212
leading, 209–210
overview, 208
paragraph indentation, 218
replacing with images, 224
transforming, 216

text-align property, 214
text/css value, 150
text-decoration property, 112
text-indent property, 218–219
text-transform property, 216
<tfoot> element, 37–38
th, td rule, 41
<th> element, 33, 43, 46
<thead> element, 37–38
#thisform label declaration, 74
three-column format

assigning class to <body> element, 248
layout, 196–197
overview, 244–246
style structure, 246–248

tiled backgrounds, 24–25
title attribute, 92–93, 104, 109–111, 117, 162
<title> element, 21, 110
tooltip titles, 110–111
top.gif image, 56

1-59059-543-2 $39.99 [US]

1-59059-593-9 $49.99 [US]

1-59059-304-9 $49.99 [US]

1-59059-581-5 $39.99 [US]

1-59059-518-1 $39.99 [US]

1-59059-355-3 $24.99 [US]

1-59059-614-5 $34.99 [US]

1-59059-651-X $44.99 [US]

1-59059-409-6 $39.99 [US]

1-59059-558-0 $49.99 [US]

1-59059-555-6 $44.99 [US]

1-59059-517-3 $39.99 [US]

1-59059-554-8 $24.99 [US]

1-59059-748-6 $49.99 [US]

1-59059-314-6 $59.99 [US]

1-59059-381-2 $34.99 [US]

1-59059-542-4 $36.99 [US]

1-59059-619-6 $44.99 [US]

1-59059-315-4 $59.99 [US]

1-59059-533-5 $34.99 [US]

EXPERIENCE THE
DESIGNER TO DESIGNER™

DIFFERENCE

1-59059-638-2 $49.99 [US] 1-59059-765-6 $34.99 [US]

1-59059-594-7 $39.99 [US]

foEDGalleryBOB_CMYK-75x9.qxd 4/23/07 4:46 PM Page 1

	Prelims
	CONTENTS AT A GLANCE
	Unknown
	GET DOWN WITH MARKUP
	SIMPLEBITS OF STYLE
	147

	CONTENTS
	Unknown
	GET DOWN WITH MARKUP
	1
	SIMPLEBITS OF STYLE
	147

	FOREWORD
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL REVIEWER
	ACKNOWLEDGMENTS
	INTRODUCTION
	What are web standards?
	Why web standards?
	Why XHTML?
	Structured markup
	Origins of this book
	About the format

	GET DOWN WITH MARKUP
	LISTS
	Let’s go shopping
	Quiz time
	Method A: The
 breakdown
	1
	It’s a wrap
	Method B: The bullet that bites
	Method C: Getting closer
	1
	Method D: Wrapper’s delight

	Summary
	1

	Extra credit
	Bite the bullet
	Getting fancier with custom bullets
	1
	Lists that navigate
	1
	Mini-tab shapes
	1

	HEADINGS
	What is the best way to mark up the title of a document?
	Method A: Meaningful?
	Method B: The p and b combo 2
	Method C: Style and substance
	2

	Summary
	Extra credit
	Simple styling
	2
	Adding backgrounds
	2 Swappable icons
	Easy updates
	The chameleon effect
	2

	Wrapping up

	TABLES ARE EVIL?
	Totally tabular
	A table that everyone can sit at
	3

	Adding a summary
	3

	The head(s) of the table
	Header and data relationships
	3

	Using the abbr attribute
	3

	<thead>, <tfoot>, and <tbody>
	Are tables evil?
	3

	Extra credit
	Creating a grid
	Collapsing the gaps
	3
	Customizing the headers
	3
	Headers with background images
	Assigning icons to IDs
	3

	More table style examples
	Wrapping up

	QUOTATIONS
	Method A: Lacks meaning
	Method B: A class act?
	Method C: <blockquote> is best
	4

	Using a screwdriver to hammer a nail
	Summary
	Extra credit
	A cite for curious eyes
	4
	Inline quotations
	Styling <blockquote>
	4

	Wrapping up

	FORMS
	What are our options when marking up a form?
	Method A: Using a table
	5 Method B: Tableless, but cramped
	Method C: Simple and more accessible
	5
	Method D: Defining a form
	5

	Summary
	5

	Extra credit
	The fabulous tabindex
	accesskey for frequented forms
	5 Styling forms
	5

	Wrapping up

	, , and other Phrase elements
	Presentational vs. structural
	Why are and better than and <i>?
	6
	What about ?
	Just bold or italic, please
	6
	Both bold and italic

	summary
	extra credit
	6
	the phrase elements
	<cite> design
	6
	<abbr> and <acronym>
	6
	<code>
	<samp>
	<var>
	6
	<kbd>

	microformats
	new growth
	a simple explanation
	6
	an hCard example
	6

	Final phrase
	6

	Anchors
	When pointing to a specific portion of a page, what is the best way to mark up an anchor?
	Method A: An empty name
	7 Method B: It’s all in a name
	Method c: Lose the name
	7
	Method D: The all-inone

	summary
	7

	Extra credit
	The title attribute
	styling links
	7

	Anchors aweigh
	7

	More Lists
	What is the best way to mark up a numbered list of items?
	Method A: Unordered order
	8 Method B: An ordered list
	8

	What is the best way to mark up a set of terms and descriptions?
	Method A
	Method B
	8

	summary
	extra credit
	8
	identify the parts
	Custom numbers
	Adding the numbers to the Css
	8
	the results

	Wrapping up

	MiniMizing Markup
	How can we minimize markup when building sites with web standards?
	Descendant selectors
	Method a: Class happy
	9
	Method B: natural selection
	9
	The unnecessary <div>
	Method a: <div> happy
	Method B: Lose the <div>
	Other examples 9

	Summary
	Extra credit
	The raw markup
	adding style
	9
	Custom bullets
	9
	adding a border
	9

	Conclusion

	SimpleBitS of Style
	Applying CSS
	How do i apply CSS to a document?
	method A: the <style> element
	method B: external style sheets
	10
	method C: @import
	10
	Combining B and C for multiple style sheets
	lo-fi and hifi styles
	10
	embrace the cascade
	10 method D: inline styles

	Summary
	extra credit
	Alternate styles 10
	10

	Reset styles
	10
	An example reset.css
	10

	Conclusion

	Print StyleS
	How can we specify styles for print?
	Media types
	two ways to target
	Method A: the media attribute
	11
	Method B: @media or @import
	Multiple values allowed
	Separating screen and print styles
	11 Building a print style sheet
	11

	Summary
	11

	CSS LayoutS
	How can I use CSS to build a twocolumn layout?
	Method a: Floating the sidebar
	12
	Method B: the double float
	Method C: Floating the content
	12
	Method D: Positioning
	12

	Summary
	Extra credit
	the box model problem
	12
	Faux columns
	12

	Wrapping up

	Styling text
	How can i make hypertext look cool?
	times they are a-changin’
	Adjusting leading (a.k.a. lineheight)
	13
	All in the family
	13 Kerning (a.k.a. letterspacing)
	Drop caps
	13
	text alignment
	13
	transforming text
	Small caps
	13
	Paragraph indentation
	Contrast
	13

	Summary

	Image Replacement
	How can I use cSS to replace text with images?
	no perfect solution
	Use, but with caution

	method a: Fahrner Image Replacement (FIR)
	the markup
	the extra element
	the cSS
	14
	assign a background
	advantages
	Drawbacks
	Weigh the pros and cons
	14

	method B: leahy/langridge Image Replacement (lIR)
	the markup and cSS
	Box model woes
	Drawbacks

	method c: the phark method
	14
	the markup and cSS
	Still not perfect

	method D: sIFR
	14

	Summary
	extra credit
	logo swapping
	14 the example
	a pair of logos
	the cSS
	Regain the hyperlink
	14
	the results

	accessible imagetab rollovers
	the problem
	the solution
	the markup: One list to rule them all
	14
	One image, three states
	the cSS: this is where the magic happens
	14
	the results
	Why use it?
	But wait, the text doesn’t scale!
	compatibility
	Wrapping up
	14

	Styling <body>
	two and sometimes three columns
	15
	Markup and style structure
	15
	this <body> has class
	not just for columns

	fyou are heref
	the navigation list
	15
	identify the parts
	the magic CSS
	15

	Summary

	Next StepS
	Where do you go from here?
	Organizations and publications
	16
	Influential and inspirational weblogs
	16
	Books

	parting words
	16

	Index

