
www.allitebooks.com

http://www.allitebooks.org

Windows PowerShell 4.0 for
.NET Developers

A fast-paced PowerShell guide, enabling you
to efficiently administer and maintain your
development environment

Sherif Talaat

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Windows PowerShell 4.0 for .NET Developers

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1080114

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-876-5

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sherif Talaat

Reviewers
Mark Andrews

Mahmoud El-bagoury

Hosam Kamel

Shay Levy

Acquisition Editor
Vinay Argekar

Lead Technical Editor
Deepika Singh

Technical Editors
Iram Malik

Veena Pagare

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Ankita Goenka

Proofreader
Lawrence A. Herman

Indexer
Tejal Soni

Production Coordinator
Sushma Redkar

Cover Work
Sushma Redkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sherif Talaat is a young Computer Science addict. He holds many technology
certificates. Sherif is working in the ICT industry since 2005; he used to work on
Microsoft's core infrastructure platforms and solutions, with more focus on IT
process automation and scripting techniques.

Sherif is one of the early adopters of Windows PowerShell in the Middle East
and Africa. He speaks about Windows PowerShell at technical events and user
groups' gatherings. He is the founder of Egypt PowerShell User Group (http://
egpsug.org) and the author of the first and only Arabic PowerShell blog (http://
arabianpowershell.wordpress.com). He has been awarded the Microsoft Most
Valuable Professional (MVP) for PowerShell five times in a row since 2009.

You may also catch him at sheriftalaat.com and follow him on Twitter
@SherifTalaat.

He is also the author of PowerShell 3.0: Advanced Administration Handbook,
Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to take this chance to dedicate this book to the soul of my dad and to
thank my mom for her love, encouragement, and prayers.

To Israa, the best wife and friend in the world, thanks for your love, support, and
patience during the long days and nights I have spent writing this book. I could not
have done this without you.

To my dear son Yahia, your little smile gives me the strength and power to do
something that will make you proud of your dad. Keep it up, my son, this smile
brightens up my life.

To my old friend Refaat Issa and my friends in Redmond from the PowerShell team,
Dan Harman, Hemant Mahawar, and Indhu Sivaramakrishnan, thanks for your
feedback, comments, and advice during the preparation phase. It helped me a lot in
building strong content for this book.

To my mentor, Prof. Ahmed Bahaa, a special thanks for the time and effort you
invested in helping me write the tremendous chapter for ALM and TFS.

To Shay Levy, having you as a reviewer was enough to make me feel comfortable
while writing this book. Your comments and feedback have a great impact on the
quality of the content.

Last but not least, thank you, Packt Publishing, for giving me the opportunity to
work with you again. I'd also like to thank every team member who contributed to
this project. To the external reviewers and the other guys whom I didn't meet—your
contribution is invaluable, and this book wouldn't be what it is without you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mark Andrews' career in technology has been a varied one. Over the last 18 years,
he has held several different positions ranging from customer service to quality
assurance. In all of these positions, the responsibility for configuration management
and build management has always fallen on Mark either personally or through one
of the groups that he managed. Because of his "keeping a hand in" management
style, he has been involved closely with the scripting and automation framework
for this area. Creating scripted frameworks that intercommunicate across machines,
operating systems, or domain boundaries is a passion for him.

Mahmoud El-bagoury is a Senior Web/Cloud Computing Developer. He is
an MCSD and MCTS. He has been working in the ICT industry since 2005. He used
to work with Ford Motors, US and Compuware, US as an Azure Cloud Solution
Developer and Architect with the main focus on Azure deployment and automation
process, Azure Cloud security, and developing SmartCloud-based web apps (SaaS).

He is one of the early adopters of Windows Azure in the Middle East and Africa. Also,
he is among the rare developers in the world who use open source Apache SolrCloud
solutions for Big Data search engine with Azure PaaS and Microsoft PowerSell.

www.allitebooks.com

http://www.allitebooks.org

Hosam Kamel is currently a Regional Technology Solution Professional working
for MEA Center Of Expertise, specializing in Visual Studio Application Lifecycle
Management (ALM) and Team Foundation Server. His main focus is helping
software professionals and organizations build better applications and solutions
using Microsoft Application Lifecycle Management technologies, practices, and
tools. He works with development teams and helps them eliminate traditional
silos between development, testing, and project management to establish cohesive
processes with the Visual Studio ALM tools. His experience with Team Foundation
Server and Visual Studio started with the beginning of the VSTS and its product
family, nearly seven years ago.

He is also an active Visual Studio ALM Ranger with contributions to many projects.
He has also authored several articles and spoken at various user groups, events,
and conferences. You can find him sharing his experience on his technical blog at
http://blogs.msdn.com/hkamel and on Twitter with his handler @HosamKamel.

Shay Levy works as a Systems Engineer for a government institute in Israel.
He has over 20 years' experience, focusing on Microsoft server platforms,
especially on Exchange and Active Directory.

He is a worldwide-known, knowledgeable figure in the PowerShell scripting arena,
and is very active on forums and user-group sessions. He is a Microsoft Certified
Trainer (MCT) at the John Bryce training center, and for his contribution to the
community he has been awarded the Microsoft Most Valuable Professional (MVP)
award for six years in a row.

He is the co-founder and the editor of the PowerShellMagazine.com website, and as
a long time PowerShell community supporter he also moderates multiple PowerShell
forums, including the official Microsoft PowerShell forum and The Official Scripting
Guys Forum on Microsoft TechNet.

He often covers PowerShell related topics on his blog at http://PowerShay.com,
and you can follow him on Twitter at http://twitter.com/ShayLevy.

Shay was also the technical reviewer of the best-selling PowerShell book, Microsoft
Exchange 2010 PowerShell Cookbook by Mike Pfeiffer, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser.

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Windows PowerShell 7

Introducing Windows PowerShell 8
Windows PowerShell consoles 9

The Windows PowerShell console 10
The Integrated Scripting Environment (ISE) 10

The key features of Windows PowerShell 13
PowerShell fundamentals – back to basics 14

Working with objects 15
Understanding the piping and pipelines 16
Understanding and using aliases 17
Using variables and data types 18
Comparison and logical operators 19
Working with arrays and hash tables 20
Script flow and execution control 21

Conditional execution 21
Iterations statements 22

Using functions 23
Understanding providers and drives 24
Working with script files 25
Comments in PowerShell 26
Using help in Windows PowerShell 26
PowerShell's common parameters 29

Summary 30
Chapter 2: Unleashing Your Development Skills with PowerShell 31

Understanding CIM and WMI 32
CIM and WMI in Windows PowerShell 32
More reasons to adopt CIM 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Working with XML 36
Loading XML files 36

Using the Get-Content cmdlet 36
Using the Select-Xml cmdlet 38

Importing and exporting XML files 39
Working with COM 39

Creating an instance of a COM object 40
Automating Internet Explorer with COM and PowerShell 40
Automating Microsoft Excel with COM and PowerShell 42

Working with .NET objects 44
Creating .NET objects 44
Extending .NET objects 45
Extending .NET framework types 46

Defining the object type using an inline C# class 46
Defining an object type using an assembly name or file 46

Understanding Windows PowerShell Modules 47
Creating Windows PowerShell Modules 48

The script modules 48
The binary modules 50

Creating your first binary module 50
The manifest modules 54
The dynamic modules 55

Script debugging and error handling 56
Working with breakpoints 57
Debugging your script 58
Error-handling techniques 59

The $Error and $LastExistCode variables 59
Building GUI with PowerShell 60
Summary 61

Chapter 3: PowerShell for Your Daily Administration Tasks 63
Windows PowerShell remoting 64

Four different ways of using remoting 64
Interactive remoting 64
Ad hoc remoting 65
Persistent session 65
Implicit remoting 66

Windows PowerShell Workflow (PSW) 67
Creating a workflow using PowerShell 68
Executing a PowerShell Workflow 68

Sequential execution 68
Parallel execution 69
InlineScript activity 70

Table of Contents

[iii]

Controlling the PowerShell workflow execution 71
Persistent workflows 73

Windows PowerShell in action 73
Working with Windows roles and features 73

Installing Windows roles and features 74
Uninstalling Windows roles and features 76

Managing local users and groups 76
Creating a new local user account 77
Modifying an existing local user account 78
Adding and removing a user account to and from a group 78
Listing all the existing users and groups 79

Managing web servers – IIS 80
Working with web application pools 80
Creating a new website 81
Creating a new virtual directory 82
Creating a new web application 82
Creating an FTP site 82
Creating and modifying an existing website binding 83
Backing up and restoring the web configuration 83

SQL Server and Windows PowerShell 84
Loading SQL Server PowerShell 85
Working with the SQL Server scripting 86

Summary 89
Chapter 4: PowerShell and Web Technologies 91

Web cmdlets in PowerShell 92
Working with web services 92

Example 1 – using the GeoIPService web service 92
Example 2 – using the Stock Quote web service 93

Working with web requests 94
Example 1 – downloading files from the Internet 96

Using REST APIs 97
Example 1 – finding YouTube videos using PowerShell 97
Example 2 – reading web feeds 99

Working with JSON 99
Example 1 – converting objects into the JSON format 100
Example 2 – converting objects from JSON to the PowerShell format 100

Summary 102
Chapter 5: PowerShell and Team Foundation Server 103

TFS Power Tools 103
Getting started with TFS PowerShell cmdlets 105
Working with TFS PowerShell cmdlets 107

Retrieving TFS information 107
Working with TFS items' information 108

Table of Contents

[iv]

Managing TFS workspace 111
Managing changesets, shelvesets, and pending changes 112

Summary 115
Index 117

Preface
Windows PowerShell has been proven to be a strong automation tool that has
various usages for IT professionals as well as developers. This object-based scripting
language became part of many Microsoft servers and development tools. The
enhanced .NET integration along with the new web cmdlets in Windows PowerShell
4.0 made it a developer-friendly tool.

Windows PowerShell 4.0 for .NET Developers comes with a set of easy-to-follow
practical examples and real-world scenarios that will help you in getting started
with PowerShell, understanding the syntax and grammar, building your scripts and
modules, and integrating them with different technologies and tools.

This guide starts with the essential topics of PowerShell along with new features in
PowerShell 4.0, then goes through building scripts and modules, and then goes deep
into integration topics. Next, it covers PowerShell integration with .NET, WMI,
and COM.

Moreover, we will use PowerShell to manage Windows Server, Internet Information
Services, SQL Server, and Team Foundation Server. Finally, we will be working with
XML and RESTful web services.

What this book covers
Chapter 1, Getting Started with Windows PowerShell, introduces us to Windows
PowerShell and the new features in Version 4.0. It also introduces us to the
difference between PowerShell, other command-line tools, and programming
languages. Also, it covers the syntax fundamentals and grammar of the language.

Chapter 2, Unleashing Your Development Skills with PowerShell, demonstrates both
simple and advanced examples of how to make use of PowerShell integration with
technologies such as .NET, WMI, CIM, and COM. It also covers extending Windows
PowerShell's capabilities for writing scripts and building modules.

Preface

[2]

Chapter 3, PowerShell for Your Daily Administration Tasks, focuses on using Windows
PowerShell with different technologies and tools that you might use on a daily basis,
such as Windows Server, SQL Server, and Internet Information Services.

Chapter 4, PowerShell and Web Technologies, focuses on unveiling the hidden power of
PowerShell cmdlets to work with web technologies, including but not limited to web
services, RESTful applications, and social networking.

Chapter 5, PowerShell and Team Foundation Server, provides instructions on how to use
PowerShell to work with Visual Studio Team Foundation Server for more productive
and effortless automated application lifecycle management.

What you need for this book
This book requires you to have Windows PowerShell 4.0, which is available out of
the box in Windows Server 2012 R2 and Windows 8.1. It is also available for earlier
versions of Windows as a part of Microsoft Windows Management Framework
(WMF) Version 4.0.

This book is mainly about using Windows PowerShell with different technologies
and tools, so you must have the following software in order to proceed:

• Windows Server 2012 R2
• SQL Server 2012
• Visual Studio 2012/2013
• Visual Studio Team Foundation Server 2012/2013

Who this book is for
This book is intended for the .NET developers who are willing to learn Windows
PowerShell and want to quickly come up on discovering Windows PowerShell and
its capabilities with different tools and technologies.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can get this path within your PowerShell by using a predefined variable
called $PSHome."

Preface

[3]

A block of code is set as follows:

Function Reload-Module($ModuleName)
{
if((get-module -list | where{$_.name -eq "$ModuleName"} | measure-
object).count -gt 0)
{
 if((get-module -all | where{$_.Name -eq "$ModuleName"} | measure-
object).count -gt 0)
 {
 Remove-Module $ModuleName
 Write-Host "Module $ModuleName Unloading"
 }
 Import-Module $ModuleName
 Write-Host "Module $ModuleName Loaded"
}
Else
{
 Write-Host "Module $ModuleName Doesn't Exist"
}
}

Any command-line input or output is written as follows:

PS C:\> Get-CimInstance -Query $Query | Select DeviceID, Name
DeviceID Name
-------- ----
0 Intel(R) 82579LM Gigabit Network Connection
2 Intel(R) Centrino(R) Ultimate-N 6300 AGN

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Windows
PowerShell

When Microsoft introduced the .NET framework many years ago, a new powerful
environment for development was introduced, giving no limits for developers'
innovation to build applications and create solutions that fit nearly all needs. One
major key for the success of .NET is its powerful library that keeps growing over
different versions. Also, it provides an ease of use for such a library, taking away
all the freaky processes of managing database connections, controlling a socket,
formatting UI controls, and many more routines that developers encounter in
everyday life in their work.

Moreover, another great tool was introduced as well that can have a major impact on
speeding up and smooth management of the created solutions; yes, it is the Windows
PowerShell. Built itself on the .NET Framework, PowerShell provides the super
flexibility of a scripting language that gives a middle ground between developers
and IT professionals, getting them near each other and providing a simple,
easy-to-learn language for automating and managing common tasks.

In this chapter, we will cover the following topics:

• Windows PowerShell—the story behind it
• Windows PowerShell features under the spot
• Windows PowerShell fundamentals
• Windows PowerShell syntax and grammar

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows PowerShell

[8]

Introducing Windows PowerShell
Windows PowerShell has been proven to be a strong automation tool that has
various usages for IT professionals as well as developers; that is why you might
hear different answers for this question: What is Windows PowerShell? One of
the answers is "it is a scripting language"; other answers are, "it is a command-line
interface", "it is an automation tool", and others. The good news is that there is no
wrong definition for Windows PowerShell; each person defines it according to his
own use of it. So the optimum and widest definition for Windows PowerShell is
that it is an automation engine that provides a task-based command-line interface,
a dynamic scripting environment, an interactive shell engine, and much more. All
of these are bundled together in one component and shipped with the Windows
operating system in order to provide a common automation platform for Microsoft
technologies, alongside interoperability and integration with various technologies
from different vendors.

Windows PowerShell is also available as part of Windows Management Framework
(WMF). The WMF is a package that includes updates and enhancements to different
management technologies such as PowerShell, Windows Remote Management
(WinRM), and Windows Management Instrumentation (WMI). The WMF allows
to use the latest management technologies on older operating systems. For example,
WMF 4.0 allows you to use Windows PowerShell 4.0 on Windows Server 2008 R2
with SP1 or Windows 7 with SP1.

Windows PowerShell has been built on top of .NET framework, Common Language
Runtime (CLR), and Dynamic Language Runtime (DLR). This architecture made
it a powerful, dynamic, consistent, and extensible shell. Also it made PowerShell an
object-based (object-oriented) shell where everything is produced as an object (.NET
object) unlike other shells that deal with everything as raw text. Using the .NET
framework makes the Windows PowerShell syntax almost like C# except for some
differences in specific areas. Also, it made it easy to deal with other technologies
such as Component Object Model (COM), Windows Management Instrumentation
(WMI), and Extensible Markup Language (XML).

Moreover, it is possible to compile C# code inside PowerShell and execute
PowerShell code as part of the code managed by .NET. Last but not least, PowerShell
is shipped with its own Application Programming Interface (API) to give you the
capability to build customized PowerShell commands and extensions for your own
developed applications.

Chapter 1

[9]

Windows PowerShell became part of Microsoft's Common Engineering Criteria
(CEC) program in 2009. In case you don't know what the Microsoft CEC is, it is
a program started in 2005 to define, unify, and standardize a set of engineering
requirements across all Microsoft server products; some of these requirements are
related to security, automation, and manageability. In other words, starting with
2005, each Microsoft server product must follow and pass these requirements before
being released to the end users. In our case, starting with 2009, each and every server
products must provide a management interface via Windows PowerShell. Today,
almost all Microsoft server products support Windows PowerShell.

Read more about Microsoft CEC at
http://www.microsoft.com/cec/en/us/default.aspx.

In Windows PowerShell, we refer to commands as cmdlets (pronounced "command-
lets") where each cmdlet represent a function or task-based script. The cmdlets can
be used individually for simple tasks or together in combination to perform more
complex tasks. A cmdlet has a consistent naming style known as verb-noun, where
each cmdlet has a verb and a noun separated by a dash (-) symbol, for example,
Get-Service, Restart-Computer, and Add-User. This naming style makes the
cmdlets' names easier to remember and even to guess and expect the new cmdlets.
Windows Server 2012 is shipped with more than 2,400 cmdlets covering most of
Windows Server roles and features.

Windows PowerShell consoles
Windows PowerShell has multiple consoles: Windows PowerShell console and
Windows PowerShell Integrated Scripting Environment (ISE), which had been
introduced with Version 2.0. On 64-bit operating systems, you will find two instances
of each: a 32-bit instance and a 64-bit one.

The PowerShell.exe and PowerShell_ISE.exe files
are located at the following path: %WINDIR% | System32 |
WindowsPowerShell | v1.0. You can get this path within your
PowerShell by using a predefined variable called $PSHome.

Getting Started with Windows PowerShell

[10]

The two consoles provide (almost) the same capabilities in terms of core usage of
Windows PowerShell, same cmdlets, same modules, and even the same way of
execution; however, the Windows PowerShell ISE provides more features in terms
of usability and user experience. The following couple of paragraphs will describe
the differences between both the consoles.

The Windows PowerShell console
The Windows PowerShell console is the basic console for Windows PowerShell and
it is very similar to the command prompt console (cmd.exe). From the end user
perspective, both almost look the same for the first time except that the Windows
PowerShell console host has a blue background and the command prompt has a
black background. However, the core functionality is totally different. The console
host is a good choice for on-the-fly (interactive) usage of PowerShell such as
executing inline cmdlets, scripts, or native win32 commands.

The following screenshot illustrates the look of the Windows PowerShell console host:

The Integrated Scripting Environment (ISE)
Windows PowerShell ISE is the Graphical User Interface (GUI) editor for Windows
PowerShell, and it is similar to the PowerShell console host but with more advanced
features. The ISE is similar to the Integrated Development Environment (IDE), such
as Microsoft Visual Studio.

Chapter 1

[11]

The following screenshot illustrates the Windows PowerShell ISE:

You can think of the Windows PowerShell ISE as a mini scripting IDE. You can also
see that Windows PowerShell ISE shares a lot of features with Visual Studio, such as:

• Syntax highlighting and coloring for PowerShell and XML
• Script snippets (also known as code snippets)
• Script debugging, code parsing, and error indicators
• Brace matching and code regions
• Support for remote script debugging
• Support for Windows PowerShell Workflow debugging
• Console customization such as font sizes, zoom, and colors
• Multiple tabs (local and remote) to work simultaneously on several

independent tasks
• Full unicode support, execute, edit, and display complex scripts and

right-to-left languages
• IntelliSense support for Windows PowerShell syntax, Desired State

Configuration providers, and configurations

Getting Started with Windows PowerShell

[12]

In addition to the features adapted from Visual Studio, Windows PowerShell has its
brand new unique features, such as:

• Modules Auto-Loading and cmdlets discovery: PowerShell automatically
loads and discovers all PowerShell modules available in your system. Thus,
you do not have to know which module is needed for which cmdlet. Simply,
Windows PowerShell will take care of discovering all modules and finding
which modules are required for your script to be executed and then loading
them if they were not loaded before.

• Add-on tools: Add-on tools are Windows Presentation Foundation (WPF)
controls that can be added to the PowerShell ISE to add extra features and
functionalities, such as spelling checker and script printing features.

• Autosave: PowerShell ISE automatically saves any open script file and
runspaces; so in case of a crash or failure in your ISE or an unplanned system
restart, ISE will restore all your runspaces once you re-open it (it is similar to
Restore last session in Internet Explorer).

• The Show-Command cmdlet: The Show-Command cmdlet allows you to
display the command in a GUI as if you are browsing a web form or a normal
Windows program. You can use Show-Command to compose a command in a
GUI form; select the required variables and parameters and write the values,
and then click on Run to execute the command with the parameters supplied
in the information field. You can also click on the Copy button to copy the
command with the parameters and values to the clipboard, so that you can
paste it to another PowerShell console and/or save it to a script.

Chapter 1

[13]

The key features of Windows PowerShell
At the time of writing these lines, Windows PowerShell is available in its fourth
release, which comes with a lot of features and enhancements. In this section, we
will focus the spotlight on the key features that have a great impact on Windows
PowerShell's users in order to understand the essence of PowerShell; then we will
make sure to cover these features deeply alongside other features as we go through
this book.

• PowerShell remoting: The remoting feature allows the execution of
PowerShell cmdlets on remote systems that help to manage a set of remote
computers from one single machine. The remote execution feature rely on
WinRM technology. PowerShell remoting is acting like a Remote Desktop
session; you can disconnect your session without interrupting any running
process, application, or script and you connect to this session again from the
same or a different computer to continue working from where you left off.

• Background job: PowerShell introduced the concept of background jobs,
which run cmdlets and scripts asynchronously on local and remote machines
in the background without affecting the interface or interacting with the
console.

• Scheduled job: A scheduled job is similar to a background job; both jobs
are running asynchronously in the background without interrupting the
user interface, but the difference is that a background job must be started
manually. However, scheduled jobs can create the background job and
schedule it for a later execution using a set of cmdlets instead of doing it
manually using the Task Scheduler wizard. You can also get the results of
running scheduled jobs and resume the interrupted jobs.

• Steppable pipeline: This allows the splitting of script blocks into a separate
steppable pipeline. It gives you the option to call the begin, process, and end
methods of a script block in order to ease the control of execution sequence.

• Script debugging: As in Visual Studio, you can set breakpoints on lines,
columns, functions, variables, and commands. You can also specify actions to
run when the breakpoint is hit. Stepping into, over, or out of functions is also
supported; you can even get the call stack.

• Error-handling: PowerShell provides error-handling mechanism through the
Try{ }, Catch{ }, and Finally { } statements as in .NET languages.

• Constrained runspaces: Constrained runspaces allow creation of PowerShell
runspaces with a set of constraints that include the ability to restrict access
and execution of cmdlets, scripts, and language elements.

Getting Started with Windows PowerShell

[14]

• Tab-expansion: This feature is an implementation of autocompletion that
completes the cmdlets, properties, and parameter names once the Tab button
has been pressed.

• Windows PowerShell Web Access: A web-based version of the PowerShell
console has been introduced in Windows Server 2012, where you can run and
execute PowerShell cmdlets from any web browser that is not only available
on desktops but also on any mobile or tablet devices.

• Windows PowerShell Web Service (PSWS): This is also known as
Management OData IIS Extension, is the infrastructure for creating RESTful
ASP.NET web service endpoints that expose management data accessed
through PowerShell cmdlets and scripts. These endpoints can be accessed via
OData protocol, which allows IT professionals and developers to access the
management data remotely from both Windows and non-Windows devices.
It simply processes the OData requests and converts them to PowerShell
cmdlets invocations.

• Online and Updateable help: PowerShell help is no longer shipped in the
box. Help now can be retrieved and updated from time to time to make sure
that you always have the latest help documentation instead of static content
that might have some mistakes and errors.

• Windows PowerShell Workflow: Workflow capabilities have been
introduced in Windows PowerShell 3.0, and it is designed specifically to help
you perform long-time and effort-consuming complex tasks across multiple
and different devices at different locations.

• Desired State Configuration (DSC): The DSC feature enables the deployment
and management of configuration for software and services to ensure the
consistency of configuration data across all computers and devices.

PowerShell fundamentals – back to basics
Now, after understating what is Windows PowerShell and what makes it a unique
and different shell, it is time to go back to important basic aspects such as syntax and
grammar. Since you are already a .NET developer, and Windows PowerShell syntax
is adapted from C#, this part should not take much time.

Chapter 1

[15]

Working with objects
As mentioned earlier, one of the biggest advantages of PowerShell is being an object-
based shell. Everything in PowerShell is an object (.NET object) that is an instance
of a .NET framework class. Each object holds a piece of data alongside information
about the object itself, in addition to the group of properties and methods. This
makes the object manipulation much faster and easier unlike the other traditional
text-based shells. Text-based shells produce everything as raw text that requires a lot
of parsing and manual manipulation to find the required value at the right location.
This is more than enough to turn your tasks into nightmares.

Windows PowerShell is taking advantage of the underlying .NET framework to deal
with and manipulate different types of objects such as WMI, COM, XML, and ADSI.

The following examples demonstrate how Windows PowerShell cmdlets are tightly
close to the .NET framework. In the following example, we will use the Get-Date
cmdlet to retrieve the current system time. Yes, you are right. It is what you are
thinking of.

PS C:\> Get-Date
Wednesday, October 9, 2013 7:57:18 PM

Now, we have the result of execution and this is supposed to be a DateTime type of
object. So, to get the data type of our results, we will use the GetType() method.

PS C:\> (Get-Date).GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True DateTime System.ValueType

Since we have a .NET object of type DateTime, we can use a method such as
ToShortDateString() to manipulate the result's format.

PS C:\> (Get-Date).ToShortDateString()
10/9/2013

PS C:\> (Get-Date).ToShortDateString().GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

Getting Started with Windows PowerShell

[16]

Understanding the piping and pipelines
Pipelines are the mechanism used to connect a group of simple cmdlets together in
order to build a complex task-based script. A pipeline is not something invented
newly for PowerShell, it is an old trick used in different shells before. However,
what makes it different here is using objects to make the output of each cmdlet to be
used as an input for the next cmdlet in the pipeline. Thus, there is no need of manual
result manipulations. For piping, we use the pipeline operator | between cmdlets.

PS> cmdlet1 | cmdlet2 –parameter1 argument1 | cmdlet3 –parameter1
 argument1 argument2

The following examples demonstrate how to pipe the Get-Process cmdlet in
different scenarios with other cmdlets using pipelines.

In the first example, the Get-Process cmdlet is to be used with the Get-Member
cmdlet to discover the .NET object class and members type.

PS C:\> Get-Process | Get-Member

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
VM AliasProperty VM = VirtualMemorySize
Close Method void Close()
Kill Method void Kill()
Start Method bool Start()
ProcessName Property string ProcessName {get;}
(...)

Another piping example: the Get-Process cmdlet is to be used with the Sort-Object
cmdlet to retrieve the list of running processes and sort them according to the CPU
usage, and then pipe the results to the Select-Object cmdlet to select the top three
processes. Finally, the results are formatted using the Format-Table cmdlet.

PS C:\> Get-Process | Sort-Object -Property CPU -Descending |
 Select-Object -First 4 -Property
 ProcessName,CPU,VirtualMemorySize | Format-Table

ProcessName CPU VirtualMemorySize
----------- --- -----------------
WINWORD 2155.515625 632963072
OUTLOOK 1431.640625 792113152
explorer 591.4375 1018482688

Chapter 1

[17]

Understanding and using aliases
Aliases are mainly used as pointers for cmdlets in order to make it easy to remember
long commands or to make your commands look familiar. At the end, aliases are
used to make your scripting environment more comfortable, friendly, and familiar.

For example, the Get-ChildItem cmdlet is the directory listing cmdlet in PowerShell
and you will find this cmdlet has two aliases: one called dir for people with cmd
background and another alias called ls for people with UNIX background.

Other examples are Select-Object, Where-Object, and Sort-Object cmdlets that
have aliases without the –Object part.

So, consider the following command:

Get-Process | Sort-Object -Property CPU -Descending | Select-Object
-First 5 -Property ProcessName,CPU,VirtualMemorySize | Format-Table

The previous command should be like this after using aliases:

gps | Sort -Property CPU -Des | Select -First 5 -Property ProcessName,
CPU,VirtualMemorySize | FT

In order to list all available aliases on your system, you have to use the Get-Alias
cmdlet.

PS C:\> Get-Alias

CommandType Name
----------- ----
Alias % -> ForEach-Object
Alias ? -> Where-Object
Alias cat -> Get-Content
Alias cd -> Set-Location
Alias clc -> Clear-Content
Alias clear -> Clear-Host
Alias clhy -> Clear-History
Alias clv -> Clear-Variable
(...)

Also, you can create your own alias using the New-Alias and Set-Alias cmdlets.

PS C:\> New-Alias -Name Restart -Value Restart-Computer

PS C:\> Get-Alias restart

CommandType Name
----------- ----
Alias Restart -> Restart-Computer

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows PowerShell

[18]

Aliases in PowerShell are not persistent, which means that you will
lose them once you close your PowerShell session. To avoid this trap,
use the Export-Alias cmdlet to export all your aliases before closing
your session, and then use the Import-Alias cmdlet to import them
again. To avoid importing your aliases each and every time you open
PowerShell console, it is highly preferred to use PowerShell Profiles.

Using variables and data types
In Windows PowerShell, variables are defined as in PHP using the dollar sign ($) as
a prefix for the variable's name that can contain characters, numeric values, or both,
such as $var, $arr4, and so on.

"We wanted to close the semantic gap between what admins thought and what they
had to type."

Jeffrey Snover – PowerShell inventor

Windows PowerShell is a dynamic language. Thus, using data types is optional
not because it is a typeless language but because it is a type-promiscuous language.
This means that Windows PowerShell interpreter is capable of and smart enough to
determine the type of each object and convert them to match each other without any
loss of data or object characteristics in order to provide you with the results you expect.

To show you by example, let's define a couple of variables and assign a value with
a different data type to each one of them, and then perform a simple mathematical
operation on those variables.

PS C:\> $a = 1 ; $a.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

PS C:\> $b = "2" ; $b.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PS C:\> $c = 3.5 ; $c.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Double System.ValueType

PS C:\> $a + $b + $c
6.5

Chapter 1

[19]

Semicolon in PowerShell is optional; however, you might use
them to execute multiple commands separately in a single line.

So, we had different variables of the Int32, String, and Double data types, and
we were able to calculate them together in just a single step without any data type
conversion or casting.

If you feel that using variables this way is confusing, then I have to tell you that you
are still able to use strong type variables. All you have to do is just use the data type
you need within square brackets like this [data type].

Windows PowerShell is shipped with a set of predefined built-in variables. Those
variables can be categorized into the following two categories:

• Session configuration: These variables are used to store the current
Windows PowerShell session configuration, such as errors generated during
a session and user-defined variables

• Preferences settings: These variables are used to store the PowerShell
preferences and settings such as User Home Folder location, PowerShell Host
configuration, and PowerShell version information

You can access those built-in variables either by using the variable name directly,
such as $PSVersionTable, or using the $Variable: prefix with a variable name
such as $Variable:Host or $Variable:Error. You can also list all the variables
using the Get-Variable cmdlet.

Comparison and logical operators
Windows PowerShell provides different types of operator. You will find part of it
very familiar and has been used in different programming languages, and the other
part very unique to PowerShell.

The following are examples of the available operators in PowerShell:

• Arithmetic operators: The arithmetic operators are add (+), subtract (-),
multiply (*), divide (/), and mod (%)

• Comparison operators: The comparison operators are equal (-eq), not equal
(-ne), less than (-lt), greater than (-gt), less than or equal (-le), greater than
or equal (-ge), contain (-contains), and not contain (-notcontains)

Getting Started with Windows PowerShell

[20]

• Wildcard and RegEx match operators: These operators are -like, -notlike,
-match, -notmatch, and -replace

• Logical and bitwise operators: These operators are -and, -or, -xor, -not,
-band, -bor, -bxor, and -bnot

Working with arrays and hash tables
Arrays in PowerShell are simply a zero-based list of objects. Also, they are variables
of [Array] data type as in .NET but as usual PowerShell is developed to code less
and get more output; thus there is no need to define the data type even for arrays.
The array can be defined using the @() syntax or you simply create a variable and
assign the list to it, and PowerShell will understand and determine the data type
automatically as discussed before.

PS C:\> $arr = @()

PS C:\> $arr = 1,2,3,4,5

PS C:\> $arr.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

Also, arrays can store either single or mixed types of data, as shown in the following
example:

PS C:\> $arr = 1,'a', ,(Get-Service)

PS C:\> $arr
1
a

Status Name DisplayName
------ ---- -----------
Running AppIDSvc Application Identity
Running Appinfo Application Information

Hash tables are similar to arrays in the way they behave and also how we create
them. Hash tables are defined using @{}, or like arrays just create a variable and fill it
with data.

PS C:\> $ht = @{}

PS C:\> $ht.GetType()

Chapter 1

[21]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Hashtable System.Object

PS C:\> $ht = @{1='red';2='blue';3='green'} ; $ht

Name Value
---- -----
3 green
2 blue
1 red

PS C:\> $ht.2
blue

Script flow and execution control
Flow control and conditional execution in Windows PowerShell is very similar to the
C-languages family.

Conditional execution
For conditional execution, PowerShell is using the if-else statements and switch
cases.

• The If-else statement:
If (condition)
{
 Statement block
}
ElseIf (condition)
{
 Statement block
}
Else
{
 Statement block
}

• The Switch case:

Switch (pattern)
{
 Pattern {statement block}

Getting Started with Windows PowerShell

[22]

 Pattern {statement block}
 Default {statement block}
}

The preceding code block shows the traditional syntax for the switch case as is used
in different programming languages as well as PowerShell. The unique feature in
PowerShell is that you can add an extra matching option (condition) to your pattern.
The available options are –regex, -wildcard, –exact, and –casesensitive.

Switch –option (pattern)
{
 Pattern {statement block}
 Pattern {statement block}
 Default {statement block}
}

Iterations statements
Iterations (looping) statements in PowerShell work similar to C#.

• The For loop:
For (initialization; condition; increment)
{
 Statement block
}

• The ForEach loop:
ForEach (variable in expression)
{
 Statement block
}

• The While loop:
While (condition)
{
 Statement block
}

• The Do/While loop:

Do
{
 Statement block
}
While (condition)

Chapter 1

[23]

Using functions
Functions remain the same across different programming and scripting languages.
They do the same job, which is producing a piece of code with a name that is
independent from the main program and can be called any time on demand. This
helps in avoiding the routine of repeating the same piece of code more than once in
the same program. The keyword function is used to define functions in PowerShell.

So, the function syntax should look like the following code:

Function <function_name> (function_parameters)
{
 <function_body>
}

Let's turn this dummy function syntax into something more practical. No, not a
Hello World..! function. I meant something that sounds interesting and takes
inputs and returns a value. Let's build a quick function called Avg that calculates the
average of three integer numbers, n1, n2, and n3.

Function Avg ([int] $n1, [int] $n2, [int] $n3)
{
 return ($n1 + $n2 + $n3) / 3
}

Using return in the previous example is optional; you can remove it
and you will get the same result. For more information, return to see the
conceptual help about_Return topic.

Now, in order to call your function, just use the function name and pass the required
values to the respective parameters. The parameters must be passed within the
command delimited by a space, unlike other languages in which parameters are
delimited by semicolons.

PS C:\> Avg -n1 5 -n2 6 -n3 7
6

You can also call your function directly by specifying the parameters'
names by position, as shown in the following line of code:

PS C:\> Avg 5 6 7

PowerShell will understand that you are passing values to the parameters
and thus will take care to pass each value to each parameter in sequence.

Getting Started with Windows PowerShell

[24]

Understanding providers and drives
Providers in Windows PowerShell are .NET libraries that you can use to navigate to
data that a particular provider represents. Simply, it is an interface between the user
and the data. For instance, FileSystem is the provider of all files and folders on your
hard disk drive. While Registry is also a provider, but for all the registry keys.

Let's have a closer look at the providers by listing all the available providers using
the Get-PSProvider cmdlet.

PS C:\> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, Credentials {C, D, E}
Function ShouldProcess {Function}
Registry ShouldProcess, Transactions {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {Cert}
WSMan Credentials {WSMan}

In the previous example, you will notice that each provider has at least one drive.
PowerShell providers allow access to their data in the form of drives, so you use the
same cmdlets to navigate different objects according to the provider. For example,
the Get-ChildItem cmdlet will list all the files and folders in the FileSystem
provider, all registry keys in the Registry provider, and so on.

Let's see how we can access those drivers. By default, you are being redirected to
the FileSystem provider drive once you open your PowerShell console. To move
between different drives, use the Set-Location cmdlet.

For example, to navigate to the certificates drive, use the Set-Location cmdlet with
a drive name Cert:\ and then use the Get-ChildItem cmdlet to list the available
certificate stores, or you can simply use it directly as Get-ChildItem Cert:\.

PS C:\> Set-Location cert:\
PS Cert:\> Get-ChildItem

Location : CurrentUser
StoreNames : {TrustedPublisher, ClientAuthIssuer, Root, UserDS...}

Location : LocalMachine
StoreNames : {TrustedPublisher, ClientAuthIssuer, Remote Desktop,
 Root...}

Use the Get-PSDrive cmdlet to list all the available providers' drives.

Chapter 1

[25]

Working with script files
The typical PowerShell script file is just a text file with the .ps1 extension that
contains pieces of Windows PowerShell code and instructions. This file could be
created using any text editor, even Notepad. However, to make our life easier, we
use one of the PowerShell consoles or at least a PowerShell-oriented text editor such
as Notepad++.

You can consider the .ps1 script file in the scripting world as equivalent to your
.exe file for your .NET application. The PowerShell script files are similar to
functions; both can allow users to pass parameters for initialization. Script files
have the built-in $args variable set up with the parameters passed at the time of
the execution.

The following is an example code for using $args to get the arguments' values:

$firstName = $args[0]
$lastName = $args[1]
Write-Host "Hello, $firstName $lastName"

Copy and paste the previous code into your PowerShell editor and save it in a script
file called Greeting.ps1.

Now, very soon we will have a simple script file that can be executed. The first thing
to do right before executing your first script is defining your PowerShell execution
policy. Execution policy is a security policy that defines how PowerShell scripts
should be executed on your system. The execution policy configuration could be one
of the following:

• Restricted: In this, no script execution is allowed. This is the default
execution policy for Windows Server 2012, Windows 8, and earlier
Windows versions.

• RemoteSigned: In this, script execution is allowed only for the scripts you
wrote on the local computer but not for any scripts from the external sources
such as the Internet. The external scripts will not be executed unless they are
signed by a trusted publisher. This is the default policy on Windows Server
2012 R2 and Windows 8.1.

• AllSigned: In this, all the scripts must be signed by a trusted publisher, even
the scripts you wrote on the local computer.

• Unrestriced: In this, all scripts can be executed without any restriction.

Getting Started with Windows PowerShell

[26]

To set the execution policy settings, we use the Set-ExecutionPolicy cmdlet in a
Windows PowerShell session running with administrative privileges.

PS C:\ > Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Now, your PowerShell console is ready to execute your script file. If you tried to
run the script by clicking on it, your script will be opened in Notepad. Don't worry,
you did not do anything wrong, but this behavior is one of the security features
of Windows PowerShell that prevents you from accidentally running PowerShell
scripts. This way it prevents the accidental execution of a script that might harm your
computer. Instead, we call the script file from the PowerShell console itself.

In order to call your script, either type the full path of your script or use the .\ prefix
before the script name to refer to the full path if your script is located in the directory
you are currently browsing. I know this looks weird but, again, this is for your
security to make sure that you are executing the right script and not another script
with the same name created by someone or even a malicious code.

PS C:\> D:\myScripts\Greetings.ps1 Sherif Talaat
Hello, Sherif Talaat

PS D:\myScripts> .\Greetings.ps1 Sherif Talaat
Hello, Sherif Talaat

Comments in PowerShell
Like any programming or scripting language, you can add comments in your code.
There are two types of comments in PowerShell:

• Single-line: This is used for single (one) line comments. It is represented by
the # symbol in the beginning of the line.

• Multi-line block: This is used for multiple line comments. The comment
block starts with the <# tag and ends with the #> tag.

Using help in Windows PowerShell
PowerShell comes with a super powerful and unique help mechanism. It provides
information beyond the traditional help system that shows only the command and
its parameters. Help in PowerShell is enough to know everything about what you
are looking for; it gives you a synopsis, detailed description, syntax, parameters,
input and output objects, notes, examples, and more.

Chapter 1

[27]

In order to use this help system, we use the Get-Help cmdlet along with the
respective cmdlet you want to get help for. For example, if you want to show help
information for the Get-Process cmdlet, the code should looks like the following:

PS C:\> Get-Help Get-Process

The previous line of code will show basic help information about the Get-Process
cmdlet. You can add extra parameters to get more information. For instance, you can
add –detailed or –Full to get a detailed help information.

PS C:\> Get-Help Get-Process –Detailed

If you know the cmdlet but want just a few examples to help you to get started with
the syntax, then you can add –Examples to show the examples only.

PS C:\> Get-Help Get-Process –Examples

Last but not least, reading long pieces of information on the console window is hard.
The more information you get, the harder you read. For this purpose, PowerShell has
the –ShowWindow parameter that displays the help information on a GUI instead of
the console, as shown in the following screenshot:

Another interesting feature in PowerShell help is the conceptual About help topics.
These topics are extra help information about PowerShell modules and other
PowerShell subjects such as syntax. They are called About topics because it always
starts with about_ as a prefix.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows PowerShell

[28]

The following code demonstrates how to get the list of all the available help files in
your system:

PS C:\> Get-Help -Category HelpFile

Name Category
---- --------
about_ActivityCommonParameters HelpFile
about_Aliases HelpFile
about_Arithmetic_Operators HelpFile
about_Arrays HelpFile
(...)

The information in the help topics can be retrieved by using the Get-Help cmdlet
along with the topic name.

PS C:\> Get-Help about_Functions

Earlier in this chapter, we mentioned that starting with Version 3, PowerShell help
is no longer a shipped inbox. However, it is downloaded and updated from the
Internet. For the purposes of achieving this task, we use a couple of cmdlets such
as Update-Help and Save-Help. The Update-Help cmdlet is used to download the
latest help files directly from the Internet and embed them in PowerShell. However,
the Save-Help cmdlet downloads the help files and stores them on a local disk or
shared folder. So, you can use them later to update the help files locally instead of
downloading them from the Internet each time for every computer.

PS C:\> Save-Help –DestinationPath \\FS01.contoso.local\ PSHelp
PS C:\> Update-Help –SourcePath \\FS01.contoso.local\PSHelp

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 1

[29]

PowerShell's common parameters
Common parameters are the set of cmdlet parameters that are available for any
cmdlet. These parameters are implemented and handled by Windows PowerShell
and not by a cmdlet developer. The developer has to populate and pass the data to
the parameters within the cmdlet code.

The common parameters in PowerShell are:

• Verbose: This displays detailed information about the operation performed
by the cmdlet. You can think of it as a tracing or logging parameter.

• Debug: This is similar to verbose but it displays a programmer-level
information about the operation performed by the cmdlet.

• ErrorAction: This determines how the cmdlets respond to the non-
terminating error from the cmdlet during execution. This parameter has
pre-defined values, which are Continue, ignore, inquire, stop, suspend,
and SilentlyContinue.

• ErrorVariable: This determines a variable to store the error messages
generated by the cmdlet during the execution of an operation.

• WarningAction: This determines how the cmdlets respond to the warning
from the cmdlet during execution. This parameter has fewer pre-defined
values such as ErrorAction. The values are Continue, stop, inquire, and
SilentlyContinue.

• WarningVariable: This determines a variable to store the warning messages
generated by a cmdlet during the operation execution.

• WhatIf: This displays a message that describes the instructions, effects,
and change in effects that are supposed to happen by the cmdlet without
executing it.

• Confirm: This prompts for a confirmation before executing cmdlets.
• OutBuffer: This determines the number of objects to be accumulated in the

buffer before moving to the next cmdlet in the pipeline.
• OutVariable: This determines the variable to store the output objects from

the cmdlet.

You can also get more information and examples about the common
parameters using PS :\> Get-Help about_CommonParameters.

Getting Started with Windows PowerShell

[30]

Summary
In this chapter, we learned what Windows PowerShell is, what makes it a different
shell, and how it is impacting IT professionals and developers. Also, we got
introduced to the Windows PowerShell console and to the ISE. Then we shed the
light on the objects structure and on how PowerShell is using the underlying .NET
framework to deal with and manipulate objects. Moreover, we had a quick tour of
PowerShell syntax and grammar and how it is very close to the C# syntax.

In the next chapter, we will jump into more advanced PowerShell topics,
for example, working with different objects such as WMI, CIM, and COM+,
understanding scripting debugging, error-handling techniques in PowerShell,
and developing PowerShell modules and workflows.

Unleashing Your
Development Skills with

PowerShell
Windows PowerShell is a game changer in the shell scripting and automation world.
This is not only because it is an object-based scripting language that is built on top
of the .NET framework but also because it unifies a lot of different scripting and
automation tools in one single, consistent, and dynamic engine. By leveraging the
same engine and language you can deal with various amazing technologies such
as Windows Management Instrumentation (WMI), Common Information Model
(CIM), and Component Object Model (COM). Moreover, you can use it to build an
automation interface for the applications you develop.

In this chapter, we will go deeper into Windows PowerShell to understand what
are the different technologies that can be managed by Windows PowerShell, learn
how to do it, and discover more advanced scripting techniques obtained from your
current development skills.

In this chapter, we will cover the following topics:

• The basics of WMI, CIM, COM, and XML
• Extending Windows PowerShell capabilities with .NET, COM, XML,

and WMI
• Understanding Windows PowerShell Modules
• Developing Windows PowerShell Modules
• Script debugging and error handling

Unleash Your Development Skills with PowerShell

[32]

Understanding CIM and WMI
CIM is an open standard defined by the Distributed Management Task Force
(DMTF) as part of the Web-Based Enterprise Management (WBEM) initiative.
CIM is used to define an extensible data model that describes, processes, and
obtains the characteristic information of managed resources such as hardware
components and software. CIM is a programming model that is object oriented and
manufacture independent, which means that you can manage different resources
from different vendors by just using the CIM standard. On the other side, WMI is a
Microsoft implementation of CIM that is introduced in Windows 2000 to allow the
management of all Windows software and hardware components.

CIM and WMI in Windows PowerShell
Windows PowerShell v2.0 has been shipped with a few cmdlets to support and
work with WMI as a middle layer between the end user (system administrators and
developers) and CIM. Later on, in Windows PowerShell v3.0, a new direct support
to CIM was introduced via more cmdlets with Windows Server 2012 and Windows
8, which allows PowerShell users to directly expose the CIM schema and data model.

To retrieve the list of cmdlets for WMI and CIM, we will use the Get-Command
cmdlet with the -Name parameter filtered by a wildcard and the -Type parameter,
filtered by a cmdlet argument to get only the cmdlets and not functions or aliases,
as shown in the following snippet:

#List all WMI available Cmdlets
PS C:\> Get-Command *WMI* -Type Cmdlet

CommandType Name ModuleName
----------- ---- ----------
Cmdlet Get-WmiObject Microsoft.PowerShell.Management
Cmdlet Invoke-WmiMethod Microsoft.PowerShell.Management
Cmdlet Register-WmiEvent Microsoft.PowerShell.Management
Cmdlet Remove-WmiObject Microsoft.PowerShell.Management
Cmdlet Set-WmiInstance Microsoft.PowerShell.Management
#List all CIM available Cmdlets
PS C:\> Get-Command *CIM* -Type Cmdlet

CommandType Name ModuleName
----------- ---- ----------
Cmdlet Get-CimAssociatedInstance CimCmdlets
Cmdlet Get-CimClass CimCmdlets
Cmdlet Get-CimInstance CimCmdlets

Chapter 2

[33]

Cmdlet Get-CimSession CimCmdlets
Cmdlet Invoke-CimMethod CimCmdlets
Cmdlet New-CimInstance CimCmdlets
Cmdlet New-CimSession CimCmdlets
Cmdlet New-CimSessionOption CimCmdlets
Cmdlet Register-CimIndicationEvent CimCmdlets
Cmdlet Remove-CimInstance CimCmdlets
Cmdlet Remove-CimSession CimCmdlets
Cmdlet Set-CimInstance CimCmdlets

Now, after getting the list of both cmdlets for CIM and WMI, take a few seconds for
looking at each cmdlet. Did you notice it? Yes, there are CIM cmdlets similar to WMI
cmdlets, which makes sense because, as we said earlier, WMI is an implementation
of CIM.

Although both the cmdlet sets look the same and show almost the same results, you
will find that the CIM-related cmdlets have more parameters and there are even
more cmdlets than in WMI in order to provide you with more information.

CIM and WMI represent the provided information in the form of namespaces and
classes. For example, there is a class for BIOS called Win32_BIOS, and another one for
the operating system called Win32_OperatingSystem. There are other classes that start
with _, such as _CLASSNAME for internal operating system usage and CIM_CLASSNAME
for some basic classes, but the classes that are mostly used are the ones that start with
the prefix Win32_CLASSNAME.

In case you do not know the name of a class or want to discover the list of available
classes in your system, you can use either the Get-WmiObject –List cmdlet or the
Get-CimClass cmdlet to retrieve the same results.

#List available classes using WMI
PS C:\> Get-WmiObject –Class * -List

#List available classes using CIM
PS C:\> Get-CimClass –ClassName *
Win32_CurrentTime
Win32_LocalTime
Win32_OperatingSystem
Win32_Process
Win32_ComputerSystem
Win32_BIOS
Win32_SoftwareElement
 (...)

#Comparing the number of classes retrieved by each cmdlet

Unleash Your Development Skills with PowerShell

[34]

PS C:\> (Get-WmiObject -List).count -eq (Get-CimClass).count
True

After knowing which class you want to use, you have to create an instance of this
class to get whatever information is provided by it. For this purpose, you can use
either the Get-WmiObject cmdlet or the Get-CimInstance cmdlet and define the
class name as a parameter.

#Get class instance using WMI
PS C:\> Get-WmiObject -Class Win32_BIOS

#Create class instance using CIM
PS C:\> Get-CimInstance -ClassName Win32_BIOS

SMBIOSBIOSVersion : 8BET59WW (1.39)
Manufacturer : LENOVO
Name : Default System BIOS
SerialNumber : R9T081V
Version : LENOVO – 1390

You can also use –Query as a parameter instead of a class name to execute a
predefined WMI query written in WMI Query Language (WQL).

#Building WQL query to read from Win32_NetworkAdapter class
PS C:\> $Query = "Select * From Win32_NetworkAdapter Where Name like
'%Intel%'"

#Execute the WQL query using WMI
PS C:\> Get-WmiObject -Query $Query | Select DeviceID, Name

#Execute the WQL query using CIM
PS C:\> Get-CimInstance -Query $Query | Select DeviceID, Name

DeviceID Name
-------- ----
0 Intel(R) 82579LM Gigabit Network Connection
2 Intel(R) Centrino(R) Ultimate-N 6300 AGN

You can follow the same steps as in the previous example when you want to remove
an instance. Use the Remove-WmiObject and Remove-CimInstance cmdlets as
well as Set-WmiInstance and Set-CimInstance when you want to update an
existing instance. The following simple example will show how we can use the
Get-WmiObject and Remove-WmiObject cmdlets together to get a specific directory
information in a WMI instance, and then delete it:

#Get a directory called "myOldBackup'
$folder = Get-WmiObject -Class Win32_Directory -Filter "Name='D:\\
myOldBackup'"

Chapter 2

[35]

#Remove (delete) the folder
$folder | Remove-WmiObject

Other interesting cmdlets are Register-CimIndicationEvent and
Register-WmiEvent; both these cmdlets allow you to trigger an action within a
PowerShell scriptblock according to a predefined WMI or CIM event criteria. For
example, you can trigger a notification message when the CPU utilization exceeds
85 percent or when a specific service stopped.

More reasons to adopt CIM
Well, after understanding what is WMI and CIM and exploring a few cmdlets with
many similarities from both sides, you have to admit that you are getting confused
and wondering why new CIM cmdlets have been introduced and why use them
if WMI cmdlets were fine in the previous versions of Windows PowerShell.

To answer this question and avoid any philosophical debates, let's discover what
makes CIM an added value and feature to PowerShell using the following points:

• It is an open standard, which means that it is not locked into the Windows
operating system only, so that you can use CIM to manage other vendors
and manufacturers.

• It uses WS-Management (WS-MAN) protocol for remote management
so that you can use it with any remote server or device implementing this
protocol. However, WMI is used to manage only Windows over the DCOM
protocol.

• It can be used with Open Management Infrastructure (OMI) compliant
devices.

Read more about OMI from the following article:
http://blogs.technet.com/b/windowsserver/
archive/2012/06/28/open-management-infrastructure.aspx

• It can be used to manage any computer or device with an operating system
that has the CIM Object Manager (CIMOM) compliance implemented
irrespective of the vendor. So, you can use CIM to manage Windows as
well as non-Windows operating systems.

Unleash Your Development Skills with PowerShell

[36]

Working with XML
XML parsing and formatting is one of the most commonly used functionalities in
application development. PowerShell provides built-in support for XML in a smart
way that allows you to work with XML files easily with minimal lines of code. This is
enough to make PowerShell your perfect choice for daily XML tasks and operations.

Loading XML files
There are two ways to load an XML file in PowerShell—either using the Get-Content
cmdlet or using the Select-Xml cmdlet with the XPath queries.

Using the Get-Content cmdlet
In order to load and read the content of a file in PowerShell, we use the Get-Content
cmdlet; this cmdlet is used to load content from text as well as XML files, which are
text files written in a structured, descriptive format so that the Get-Content cmdlet
can be used to load the XML files too.

#Load file content using Get-Content
PS C:\> Get-Content C:\Employees.xml

The previous lines will load the content of the XML file as normal text. So, in order
to make PowerShell understand that this is an XML file, we have to either cast the
results of the Get-Content cmdlet or store the output in a strongly typed variable
of XML data type, as shown in the following examples:

#results casting
$employee = [xml](Get-Content D:\Employees.xml)

#Store results in XML variable
[xml] $employees = Get-Content D:\Employees.xml

The strongly typed variables, such as [xml] $employees, can be assigned only with a
System.Xml.XmlDocument type of object. Otherwise, they will trigger an error.

The following code shows a sample of the employee.xml file's structure:

<staff>
<branch location="cairo">
 <employee>
 <Name>Sherif Talaat</Name>
 <Role>IT</Role>
 </employee>
</branch>
</staff>

Chapter 2

[37]

The XML file that is loaded has information about the staff members in different
branches with different specialties. Now, we have the content of the file stored in a
variable called $employees that can be accessed normally like any other object along
with XML capabilities, as shown in the following examples:

#Access child nodes of XML documents
PS C:\> $employees.staff.ChildNodes

location employee
-------- --------
cairo {Sherif Talaat, Raymond Elias}
redmond {Bill Gates, Steve Jobs}

#Get attributes information of a node
PS C:\> $employees.staff.branch.Get_Attributes()

#text

cairo
Redmond

#Get attributes value by Attribute name
PS C:\> $employees.staff.branch. location
cairo
Redmond

#Change the value of attribute
PS C:\> $employees.staff.branch[0]. location
= 'Seattle'

#Change and Modify Single node
PS C:\> $employees.staff.branch.employee

Name Role
---- ----
Sherif Talaat IT
Raymond Elias Technology Specialist

PS C:\> $emp = $employees.staff.branch.employee[0]

PS C:\> $emp.Role = "PowerShell Guru"

PS C:\> $employees.SelectNodes("//employee[Name='Sherif Talaat']")

www.allitebooks.com

http://www.allitebooks.org

Unleash Your Development Skills with PowerShell

[38]

Name Role
---- ----
Sherif Talaat PowerShell Guru

#add new node
PS C:\> $newemployee = $employees.CreateElement("employee")
PS C:\> $newemployee.set_InnerXML("<Name>Ahmad Mofeed</
Name><Role>Security Consultant</Role>")
PS C:\> $employees.staff.branch[0].AppendChild($newemployee)

PS C:\> $employees.staff.branch[0].employee

Name Role
---- ----
Sherif Talaat PowerShell Guru
Raymond Elias Technology Specialist
Ahmad Mofeed Security Consultant

Using the Select-Xml cmdlet
Another way to load and work with XML files is using the Select-Xml cmdlet that
allows you to directly specify the XML file path along with an XPath search query to
retrieve the respective node and data, as shown in the following snippet:

#Get data from XML file using XPath query
PS C:\> Select-Xml -Path D:\Employees.xml -XPath "staff/branch/
employee"

Node Path Pattern
---- ---- -------
employee D:\Employees.xml staff/branch/employee
employee D:\Employees.xml staff/branch/employee
employee D:\Employees.xml staff/branch/employee

In the previous example, the Select-Xml cmdlet was used to retrieve XML nodes
using the XPath search query; the result is an object of nodes with no values. To
expand these nodes and enumerate their values, we have to use the Select-Object
cmdlet with the -ExpandProperty parameter.

PS C:\> Select-Xml -Path D:\Employees.xml -XPath "staff/branch/
employee" | Select-Object -ExpandProperty Node

Name Role
---- ----

Chapter 2

[39]

Sherif Talaat IT
Raymond Elias Technology Specialist
Bill Gates Developer

Importing and exporting XML files
PowerShell also provides a couple of XML-related cmdlets—the Export-CliXml
cmdlet to export the object(s) to an XML file and Import-CliXml to import and
load the file that was previously exported by PowerShell, as shown in the
following snippet:

#Export object to XML file
PS C:\> Get-Service | Export-Clixml D:\Services.xml

#Import object from XML file
PS C:\> Import-Clixml D:\Services.xml -First 5

Status Name DisplayName
------ ---- -----------
Running AdobeARMservice Adobe Acrobat Update Service
Stopped AeLookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Running AppIDSvc Application Identity
Running Appinfo Application Information

Moreover, you also have the ConvertTo-Xml cmdlet that is similar to the Export-
CliXml cmdlet, where both the cmdlets create an XML representation of one or more
objects. The only difference is that the Export-CliXml cmdlet stores the XML code in
a file while the ConvertTo-Xml cmdlet returns an XML object that can be used as an
input to another cmdlet.

Working with COM
As is the case with WMI and XML, PowerShell also supports working with the
COM type of objects. In this section, we will understand how COM works in
PowerShell using two interesting examples that cover COM with Internet Explorer
and Microsoft Excel.

Unleash Your Development Skills with PowerShell

[40]

Creating an instance of a COM object
In order to create an instance of a COM object, we use the New-Object cmdlet
with the -ComObject parameter and ProgID as an argument, where the ProgID is
the friendly name of the COM class used during class registration. Thus, the final
command should look like this:

#create new COM object
PS C:\> $com = New-Object –ComObject <ProgID>

Automating Internet Explorer with COM and
PowerShell
As mentioned earlier, the ProgID parameter is required to create a COM object
instance of an application. For Internet Explorer, the ProgID parameter is
InternetExplorer.Application; so, let's create a COM object of Internet Explorer
and start playing with it.

The first step is to create an object using the New-Object cmdlet and store it in a
variable called $ie to make it easy to work with that object.

#Creating new object of IE COM class
PS C:\> $ie = New-Object -ComObject InternetExplorer.Application

Then, let's define the properties of this instance. In the case of Internet Explorer, we
need to define the IE window's height and width, visibility, URL, and so on.

$ie.navigate("about:blank")
$ie.height = 800
$ie.width = 1200
$ie.visible = $true

For more information about Internet Explorer Object Model, please
refer to http://msdn.microsoft.com/en-us/library/
ms970456.aspx.

The previous code will launch an IE window with a blank web page. Is that
everything we can do with IE? Of course not; we can do more interesting things.
Let's modify this code to browse the outlook.com website, find the e-mail address
and password textboxes, fill them with data, and click on the Sign in button.

Chapter 2

[41]

First, prompt the user to enter the e-mail address and password using the Read-Host
cmdlet.

$EmailAddress = Read-Host -Prompt "Enter your Microsoft Account.."

For the password, make sure to use the -AsSecureString parameter in order to
enter the password in the form of asterisks instead of clear text and also save the
password encrypted in the variable so that no one can read it.

$Password = Read-Host -AsSecureString -Prompt "Enter your Password..."

The window should look as follows:

Then, create the COM object and define the properties, but this time make sure to
navigate to outlook.com instead of a blank web page:

$ie = New-Object -ComObject InternetExplorer.Application
$ie.height = 800
$ie.width = 1200
$ie.navigate("http://outlook.com")
$ie.visible = $true

To ensure that your script will progress successfully, make sure that your page is
successfully loaded before proceeding with the next command.

while($ie.Busy){Start-Sleep -Milliseconds 500}

Now inspect the web page elements such as textboxes and buttons and fill them with
the values received from the user in the beginning. The web page's elements
can be inspect using F12 developer tools in Internet Explorer.

$doc = $ie.document
$tbUsername = $doc.getElementByID("i0116")
$tbUsername.value = $EmailAddress
$tbPassword = $doc.getElementByID("i0118")
$tbPassword.value = $Password
$btnSubmit = $doc.getElementByID("idSIButton9")

Unleash Your Development Skills with PowerShell

[42]

Finally, trigger the Click event on the Sign in button.

$btnSubmit.Click();

Now, you should be looking at your inbox. Isn't it interesting?

Automating Microsoft Excel with COM and
PowerShell
Another popular usage of COM is automation of the Microsoft Office suite
applications. In this section, we will work with the Microsoft Excel COM class. The
same that applies to Excel can also be applied to Word, Access, Outlook, and so on.

In this example, we will build an Excel spreadsheet-based report (as you can see
in the following screenshot) that shows the current status of all Windows services
that are either running or stopped. The code in the following section describes how
can we achieve our target and build our report using the Excel COM interface,
Excel.Application.

Chapter 2

[43]

The first step is to create an instance of Excel.Application:

$Excel = New-Object -ComObject Excel.Application

By now, if you have checked the running processes on your Windows, you should
have a process for Microsoft Excel, but the Excel window will not launch until you
change the visibility of the instance.

$Excel.visible = $True

Then, we will create a new Excel workbook, and add one worksheet to it.

$ExcelWB = $Excel.Workbooks.Add()
$ExcelWS = $ExcelWB.Worksheets.Item(1)

Now, we have everything ready, so let's fill the worksheet with data. First, we will
create a title for the report in the first two cells in the first row.

$ExcelWS.Cells.Item(1,1) = "Services Status Report"
$ExcelWS.Range("A1","B1").Cells.Merge()

Then, we will create a header for the table with two columns: Service Name and
Service Status in the second row of the worksheet.

$ExcelWS.Cells.Item(2,1) = "Services Name"
$ExcelWS.Cells.Item(2,2) = "Service Status"

Then, list all Windows services using the Get-Service cmdlet and iterate over this
list using the ForEach loop to create a new row for each service in the list.

$row = 3
ForEach($Service in Get-Service)
{
 $ExcelWS.Cells.Item($row,1) = $Service.DisplayName
 $ExcelWS.Cells.Item($row,2) = $Service.Status.ToString()
 if($Service.Status -eq "Running")
 {
 $ExcelWS.Cells.Item($row,1).Font.ColorIndex = 10
 $ExcelWS.Cells.Item($row,2).Font.ColorIndex = 10
 }
 Elseif($Service.Status -eq "Stopped")
 {
 $ExcelWS.Cells.Item($row,1).Font.ColorIndex = 3
 $ExcelWS.Cells.Item($row,2).Font.ColorIndex = 3
 }
 $row++
}

Unleash Your Development Skills with PowerShell

[44]

Finally, save the report and quit the Excel instance.

$ExcelWS.SaveAs("D:\ServicesStatusReport.xlsx")
$Excel.Quit()

For more information about Excel COM interface, refer to http://
msdn.microsoft.com/en-us/library/microsoft.office.
interop.excel.application.aspx.

Working with .NET objects
In Chapter 1, Getting Started with Windows PowerShell, we discussed the relation
between Windows PowerShell and the .NET framework, and we saw how .NET is
adapted in PowerShell in different examples. In this section of this chapter, we will
be working intensely with .NET objects in PowerShell.

Creating .NET objects
In order to create a new .NET object, we usually use the New-Object cmdlet that it is
similar to the new operator in languages such as C#. Yes, I said usually because you
might use casting to convert a PowerShell object to a .NET object as seen in Chapter 1,
Getting Started with Windows PowerShell. The New-Object cmdlet is used to create .NET
objects and COM objects, but the parameters are different in the case of COM objects.

PS C:\> $date = New-Object -TypeName System.DateTime -ArgumentList
2013,10,24
PS C:\> $date
Thursday, October 24, 2013 12:00:00 AM

You can define the object type directly without using -TypeName because it is a
positional parameter, thus you can omit it.

PS C:\> $string = New-Object System.String -ArgumentList "PowerShell
Rocks!"
PS C:\> $string
PowerShell Rocks!

In the previous example, we used the New-Object cmdlet to create two new .NET
objects of the DateTime and String datatypes along with the -ArgumentList
parameter used to pass constructor values.

The code in the previous example is equivalent to the following code:

PS C:\> [datetime] $date = "2013/10/24"

PS C:\> [string] $string = " PowerShell Rocks!"

Chapter 2

[45]

Extending .NET objects
You can extend an instance of a .NET object by adding custom properties and
members to it using the Add-Member cmdlet.

The following example will show how you can use Add-Member to add a
NoteProperty member to an existing object. In this example, we will load an XML
file in the xml object, and then add a custom member of the type NoteProperty
called Description to store a description about the XML file content.

#Load XML file
PS C:\> [xml] $xml = Get-Content D:\Employees.xml

#Add new NoteProperty Member using Add-Member
PS C:\>Add-Member -InputObject $xml -MemberType NoteProperty -Name
Description -Value "Employees information database"

#Show the new added member
PS C:\> $xml | Get-Member -MemberType NoteProperty | fl
TypeName : System.Xml.XmlDocument
Name : Description
MemberType : NoteProperty
Definition : System.String Description=Employees information database

Another example will show how to add a custom method of the type ScriptMethod
that will execute a scriptblock against an array object. In this example, we will
add a custom member called Censored() that will check the text and replace any
inappropriate word with asterisks:

#Creating an array of websites URLs
PS C:\> $websites = @("facebook.com","twitter.com","google.com","xxx.
com")

#Add new ScriptMethod member to the array object
PS C:\> Add-Member -InputObject $websites -MemberType ScriptMethod
-Name Censored -Value {$this -replace "xxx","***"}

#Execute the new added method
PS C:\> $websites.Censored()
facebook.com
twitter.com
google.com
***.com

For more information about the other member types read
the articles at http://msdn.microsoft.com/en-us/
library/windows/desktop/system.management.
automation.psmembertypes(v=vs.85).aspx.

Unleash Your Development Skills with PowerShell

[46]

Extending .NET framework types
Windows PowerShell allows you to define .NET framework types (classes) so that
you can create objects of those classes later on using the New-Object cmdlet. These
types can be defined by source code file, assembly file, or even an inline code of C#,
VB, and JScript.

Defining the object type using an inline C# class
The following example will show how to create a new object type from an inline
C# class. First off, we will create a class definition for a basic calculator with four
methods representing four arithmetic operations. Then, we will use the Add-Type
cmdlet to add the new class to the current PowerShell session. Finally, we will create
a new object of this class using the New-Object cmdlet.

PS C:\> $myCalc = @”
public class PSCalc
{
 public int Add(int x, int y) {return x + y;}
 public int Subtract(int x, int y) {return x – y;}
 public int Multiply(int x, int y) {return x * y;}
 public int Divid(int x, int y) {return x / y;}
}
”@

PS C:\> Add-Type –TypeDefinition $myCalc

PS C:\> $op = New-Object PSCalc

Now, you can use this $op object to execute one of the methods of the defined class.

PS C:\> $op.Multiply(4,8)
32

Another exciting thing is that you can execute a static method of a class directly in
PowerShell. For instance, the System.Math class has many static methods; one of
them called Pow()calculates the power value. To call this method from PowerShell,
you should write the following:

PS C:\> [System.Math]::Pow(2,4)

Defining an object type using an assembly name
or file
Another way to define a new object type is using the assembly name (namespace) or
the assembly file (DLL), and then using the New-Object cmdlet to create the object.

Chapter 2

[47]

The following example will show how we can add a new type using the assembly
namespace:

PS C:\> $form = New-Object System.Windows.Forms

New-Object : Cannot find type [System.Windows.Forms]: verify that the
assembly containing this type is loaded.
At line:1 char:8
+ $form = New-Object System.Windows.Forms
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidType: (:) [New-Object],
PSArgumentException
 + FullyQualifiedErrorId : TypeNotFound,Microsoft.PowerShell.
Commands.NewObjectCommand

In the previous example, we tried to create a strongly typed generic collection using
the New-Object cmdlet, but we got an error because PowerShell cannot find the
assembly that contains this type. So, in order to get over this problem, we have to
load the required assembly.

PS C:\> Add-Type -AssemblyName System.Windows.Forms

Moreover, you can also use the -Path parameter instead of -AssemblyName to load
the classes from the DLL itself.

PS C:\> Add-Type -Path D:\myApp\program.dll

Understanding Windows PowerShell
Modules
Windows PowerShell Modules are the way of organizing and packaging PowerShell
scripts and code files into distributable and reusable units. Windows PowerShell
comes with a pretty good number of built-in modules that provide cmdlets for
almost all Windows Server roles and features. For example, there is a module for
Server Manager, Hyper-V, Active Directory, and IIS.

In order to list all the available modules installed on the operating system, we use
the Get-Module cmdlet with the -ListAvailable parameters:

PS C:\> Get-Module -ListAvailable | Select Name,Version,ModuleType

Name Version ModuleType
---- ------- ----------
AppLocker 2.0.0.0 Manifest
AssignedAccess 1.0.0.0 Script
BitLocker 1.0.0.0 Manifest

www.allitebooks.com

http://www.allitebooks.org

Unleash Your Development Skills with PowerShell

[48]

Dism 2.0 Script
DnsClient 1.0.0.0 Manifest
Hyper-V 1.1 Binary
(. . .)

The previous example shows that there are different types of PowerShell modules;
we will cover these types in the next section when we start building new modules.

To start using any module—either a built-in or third-party module—you have to
use the Import-Module <Module_Name> cmdlet to import this module first to your
current PowerShell session.

#Import Hyper-V and AppLocker modules
PS C:\> Import-Module –Name Hyper-V,AppLocker

If you are importing a module stored under the default PowerShell modules
directory, you can use the module name only as an argument; however, if you are
importing a module in a different directory, you have to define the full path of the
module. Also, if you are using PowerShell ISE 3.0 or later, and you type a cmdlet
name that resides inside a module, this will automatically load that module for you.

To get the default module's paths, use the environment variable
$env:PSModulePath.
You can add additional module path $env:PSModulePath +=
"; C:\MyModules"

Read more about PSModulePath at http://msdn.microsoft.
com/en-us/library/dd878326(v=vs.85).aspx

Creating Windows PowerShell Modules
In this section, we will learn by examples the different types of PowerShell modules
and how we can create each type.

The script modules
A script module is simply a PowerShell file with (.psm1), a file extension that
contains a PowerShell code such as functions, variables, and aliases.

To create a script module, we will create a couple of simple functions along with an
alias for each one; those functions will do addition and subtraction operations for
two numbers, and then will save this script in a file with the extension .psm1.
The filename will be the module name when you import it.

Function Add-Numbers($x,$y)
{

Chapter 2

[49]

 $x + $y
}

Function Subtract-Numbers($x,$y)
{
 $x - $y
}

New-Alias -Name an -Value Add-Numbers
New-Alias -Name sn -Value Subtract-Numbers

#Export modules member
Export-ModuleMember -Function * -Alias *

In the previous example you will notice that we have used the Export-ModuleMember
cmdlet at the end of the file. This cmdlet is used to identify PowerShell types such
as functions, aliases, and variables to be exported as members of this module while
importing this module using the Import-Module cmdlet.

PS C:\> Import-Module D:\myModules\ScriptModule.psm1 –Force

When you import this module, you will receive the following warning:

WARNING: The names of some imported commands from the module
'ScriptModule' include unapproved verbs that might make them less discoverable.
To find the commands with unapproved verbs, run the Import-Module command
again with the Verbose parameter. For a list of approved verbs, type Get-Verb.

The reason for this warning is that we are using a non-standard (unapproved)
verb for our function names. This will not affect the function execution but it is
recommended to follow the approved verbs for standardization.

You can get the list of approved verbs and their categories using the Get-Verb cmdlet.
Also, you can suppress this warning by adding the -DisableNameChecking switch.

Now, after loading our module, we will discover it using the Get-Module cmdlet.

PS C:\> Get-Module ScriptModule | fl

Name : scriptmodule
Path : D:\scriptmodule.psm1
ModuleType : Script
Version : 0.0
NestedModules : {}
ExportedFunctions : {Add-Numbers, Subtract-Numbers}
ExportedCmdlets :

Unleash Your Development Skills with PowerShell

[50]

ExportedVariables :
ExportedAliases : {an, sn}

The binary modules
A binary module is an assembly file (.DLL) that contains a compiled code such as
cmdlet classes and providers. A very good example of binary modules is the built-in
modules in PowerShell.

PS C:\> Get-Module –Name Microsoft.PowerShell.* | Select
Name,NestedModules

Creating your first binary module
In this section, we will walk you through building a binary module. Unlike other
modules, we create and develop the binary modules using Microsoft Visual Studio.
In this tutorial, we will create a binary module MyBinaryModule that has two
cmdlets—the Get-EvenOrOdd cmdlet that takes an array of integer values and checks
the even and odd numbers, and the Validate-EmailAddress cmdlet that takes a
string and checks whether it is in a valid e-mail address format or not.

The first step in building our first binary module is creating a class library project in
Visual Studio. The current class library name will be the module name later, so let's
name our class library MyBinaryModule (as shown in the following screenshot), or
whatever you like.

Chapter 2

[51]

Then, add a reference to the root namespace for Windows PowerShell, the System.
Management.Automation namespace.

The System.Management.Automation DLL file can be found by
navigating to C:\ | Windows | Assembly | GAC_MSIL | System.
Management.Automation | 1.0.0.0__31bf3856ad364e35.

By now, everything should be ready to write your cmdlets using a normal C# code.
In order to identify your class as a PowerShell cmdlet class, use the [Cmdlet()]
attribute in your class. The cmdlet attribute is the cmdlet's name that is composed
of two parts: verb and noun. Also, the cmdlet class should be derived from the
base class called Cmdlet. This class provides three virtual methods that are called
by the runtime. These methods are BeginProcessing(), ProcessRecord(), and
EndProcessing() Cmdlets must override at least one of these methods
to process records.

[Cmdlet(VerbsCommon.Get,"EvenOrOdd")]
 public class EvenorOdd: Cmdlet
 {
protected override void ProcessRecord()
 {
 base.ProcessRecord();
 }
 }

Unleash Your Development Skills with PowerShell

[52]

You can also define a parameter to the cmdlet using the [Parameter()] attribute
within the class.

[Parameter(Position = 0,
 ValueFromPipeline = true,
 ValueFromPipelineByPropertyName = true,
 HelpMessage = @"The range of numbers to be checked")]
 public int[] Numbers
 {
 get { return num; }
 set { num = value; }
 }
 private int[] num;

You can use one of the [Validate*()] attributes above the [Parameter()] attribute
to validate the arguments for this parameter. For example, you can specify a set of
three possible values for the PersonName parameter:

[ValidateSet("Gates", "Jobs", "Ballmer")]
[Parameter(Position = 0, Mandatory = true)]
public string PersonName
{
get { return personName; }
set { personName = value; }
}
private string personName;

Moreover, you can use the WriteVerbose() and WriteDebug() methods to display
debugging information during the cmdlet execution using the -Verbose and -Debug
switches. Also, we use the WriteObject() method to return the execution output of
the cmdlet.

Read more about the root namespace for Windows PowerShell at
http://msdn.microsoft.com/en-us/library/System.
Management.Automation(v=vs.85).aspx.

Chapter 2

[53]

After finishing your code, the final cmdlet class should look like the following
screenshot:

Now, it is the time to compile the project to build it into a binary module. In Visual
Studio, go to Build | Build Solution. There is a MyBinaryModule.dll file in the
bin/debug subdirectory of the project directory.

Congratulations, you have just created your first binary module. Now open the
PowerShell console and use the Import-Module cmdlet to import it.

PS C:\> Import-Module Import-Module "D:\MyBinaryModule\MyBinaryModule.
dll"

PS C:\> Get-Command -Module MyBinaryModule | Select CommandType, Name

CommandType Name
----------- ----
 Cmdlet Get-EvenOrOdd
 Cmdlet Validate-EmailAddress

#Using Validate-EmailAddress cmdlet

Unleash Your Development Skills with PowerShell

[54]

PS C:\ > Validate-EmailAddress -EmailAddress sherif@xyz -Verbose
VERBOSE: Validating Email Address: sherif@xyz
False

PS C:\ > Validate-EmailAddress -EmailAddress sherif@xyz.com
True

#Using Get-EvenOrOdd cmdlet
PS C:\Users\v-shta> Get-EvenOrOdd -Numbers @(2,5,13,17,24,33)
2 is even
5 is odd
13 is odd
(...)

The manifest modules
A manifest module is the module that has a PowerShell data file, -manifest-
(.psd1), which describes its components and contents, and how this module will be
processed. The manifest module file can include one or more nested script modules
or binary modules.

The manifest is a text file that has information about the module itself such as author,
company, description, files to include, assemblies to load, minimum PowerShell
version, and minimum .NET framework version. Usually, the manifest file is not
required by modules unless you want to export an assembly installed in the global
assembly cache, use the updatable help feature, or set certain restrictions.

To create a module manifest, we use the New-ModuleManifest cmdlet to build an
empty manifest module template that can be modified later using any text editor.
Also, you can define the manifest information during template creation using the
different parameters available with the New-ModuleManifest cmdlet.

New-ModuleManifest -Author "Sherif Talaat" -CompanyName "Packt
Publishing" -ModuleVersion "1.0" -ProcessorArchitecture Amd64
-PowerShellVersion "3.0" -PowerShellHostName "ConsoleHost, Windows
PowerShell ISE Host" -Description "my first module manifest" -FileList
"myScriptModule.psm1" -ModuletoProcess "Bitlocker" -Path "D:\Modules\
myScriptModule\myScriptModule.psd1"

Chapter 2

[55]

The following screenshot shows a sample of a module manifest file:

The dynamic modules
A dynamic module is a module that does not persist on the disk but in the memory
and will be lost once you close your PowerShell session. These types of modules
can be created from functions and scriptblocks within the same session, which is
useful to developers for better object-oriented scripting, and also to administrators
when you want to execute certain modules on remote computers using PowerShell
remoting where these modules physically exist.

The dynamic modules are being created using the New-Module cmdlet with
parameters such as -Function and –ScriptBlock that specify which function
and scriptblocks are to be included in this module.

#Create a dynamic module with single function
PS C:\> New-Module -ScriptBlock {Function Send-Greetings($name){"Good
Morning, $name"}}

#Trigger a function
PS C:\> Send-Greetings –name Sherif
Good Morning, Sherif

Unleash Your Development Skills with PowerShell

[56]

Script debugging and error handling
In the previous chapter, we mentioned that PowerShell supports script debugging
for both local and remote scripts. The debugging feature in PowerShell is like that
in other programming languages. It allows you to toggle breakpoints, step into,
step out, step over, and even call the stack. The script debugging is available in the
PowerShell console host via cmdlets and in PowerShell ISE via GUI and cmdlets.

The debugging feature in PowerShell ISE is available under the Debug tab, as shown
in the following screenshot:

Windows PowerShell also provides a set of cmdlets that allow you to perform a
debugging operation via commands without using any GUI. These cmdlets are
very helpful when you are using Windows Server Core where PowerShell ISE is not
available. The cmdlets are all about managing the breakpoints in your scripts.

PS C:\ > Get-Command -Name *Breakpoint | Select Name
Name

Disable-PSBreakpoint
Enable-PSBreakpoint
Get-PSBreakpoint
Remove-PSBreakpoint
Set-PSBreakpoint

In addition to the PSBreakpoint cmdlets, you also have a few other commands
available during the debugging mode only for the other debugging operations.

Chapter 2

[57]

Working with breakpoints
A breakpoint is the designated spot in your code where the execution operation
pauses to start the debugging mode. Windows PowerShell has three different types
of breakpoints that can be used within your scripts and can be toggled using the
Set-PSBreakpoint cmdlet.

• Line breakpoint: The script pauses when the designated line is reached. It is
toggled by defining the line number using the -Line switch.
PS C:\> Set-PSBreakpoint –script c:\myscript.ps1 –Line 7

• Variable breakpoint: The script pauses whenever the designated variable's
value is changed. It is toggled by defining the variable name without the $
prefix using the -Variable switch.
PS C:\> Set-PSBreakpoint –script c:\myscript.ps1 –Variable
Services

• Command breakpoint: The script pauses whenever the designated
command is about to run. The command can be a cmdlet or the name of a
function you created. It is toggled by defining the command name using the
-Command switch.

PS C:\> Set-PSBreakpoint –script c:\myscript.ps1 –Command Get-
Process

Now, we have defined three different breakpoints on a script. Use the Get-
PSBreakpoint cmdlet to list all the breakpoints you have in a script.

PS C:\> Get-PSBreakpoint –Script myscript.ps1
ID Script Line Command Variable
 -- ------ ---- ------- --------
 11 myscript.ps1 7
 12 myscript.ps1 Services
 13 myscript.ps1 Get-Process

You can also use the Remove-PSBreakpoint cmdlet to permanently remove a
breakpoint or use the Disable-PSBreakpoint cmdlet to temporarily disable a
breakpoint, and you can enable it back again using the Enable-PSBreakpoint cmdlet.

#Disable Variable breakpoint services
Get-PSBreakpoint -Variable Services | Disable-PSBreakpoint

#Enable Variable breakpoint services
Get-PSBreakpoint -Variable Services | Enable-PSBreakpoint

#Remove Variable breakpoint services
Get-PSBreakpoint -Variable Services | Remove-PSBreakpoint

www.allitebooks.com

http://www.allitebooks.org

Unleash Your Development Skills with PowerShell

[58]

Debugging your script
Once you define the breakpoints, you can execute your script normally. Whenever
the first designated breakpoint is reached, a message will appear to inform you that
execution operation has hit a breakpoint. Then, you will find that [DBG]: continually
appears as a prefix for every command before PS C:\>> to indicate that you are
working in debugging mode until you stop the debugger using Shift + F5.

While in debugging mode, you can use the commands in the following table to
perform normal debugging operations:

Debugging task Command Shortcut
Step into StepInto S
Step out StepOut O
Step over StepOver V
Continue Continue C
List List L
Stop Quit Q
Call stack Get-PSCallStack K

Previously, script debugging in Windows PowerShell was limited to scripts running
on the local machine. If you tried to set script breakpoints in a remote session, it
would trigger an error. In Windows PowerShell 4.0, you can set breakpoints in
remote sessions and debug remote running scripts from the console in the same
way as you debug local running scripts. In order to use the remote script debugging
feature, you must have Windows PowerShell 4.0 on local and remote machines.

Chapter 2

[59]

Error-handling techniques
Windows PowerShell uses the Try{}, Catch{}, Finally{} statements as in C# to
handle terminating errors (exceptions). The terminating error will not be handled by
the Catch{} statement until you change the value of the $ErrorActionPreference
variable to stop.

$ErrorActionPreference = "stop"

Try
{
 Get-ChildItem C:\movies
}
Catch [System.Exception]
{
 "Item not found"
}
Finally
{
 New-item -ItemType Directory -Path C:\Movies
 "Item has been created"
}

You can read more about the Try/Catch/Finally statements and
the other error-handling techniques in the following About topics:

• About_Trap
• About_Throw
• About_Try_Catch_Finally

The $Error and $LastExistCode variables
Whenever an error occurs in PowerShell during execution, it will be logged in a global
variable $Error. This variable is an ArrayList instance of PowerShell error objects
where the most recent error is stored at index zero. You can get more details about the
error record by manipulating the $Error variable as shown in the following snippet:

PS D:\> $Error[0].Exception
Cannot find path 'C:\movies' because it does not exist.

PS D:\> $Error[0].FullyQualifiedErrorId
PathNotFound,Microsoft.PowerShell.Commands.GetChildItemCommand

PS D:\> $Error[0].ScriptStackTrace
at <ScriptBlock>, <No file>: line 5

Unleash Your Development Skills with PowerShell

[60]

You can read more about the error record information at http://
msdn.microsoft.com/en-us/library/system.management.
automation.errorrecord_members(v=vs.85).aspx.

The exit code is used to determine the execution status for native applications such as
ping.exe or robocopy.exe whether they are completed successfully or not. Usually,
it uses 0 to identify successes and 1 for failures, but sometimes some applications
use a wide range of exit codes to determine different types of errors. Anyway,
PowerShell is using the $LastExitCode variable to log the exit code information for
the native applications and external processes.

Building GUI with PowerShell
We have spoken enough about Windows PowerShell with .NET framework and how
it leverages .NET framework capabilities to do many useful tasks. The last thing to
mention in this chapter is how PowerShell can use the underlying .NET framework
to build a GUI.

The following PowerShell code demonstrates how to use the regular .NET
framework namespace to build a simple WPF form with a single button:

$form = new-object Windows.Forms.Form
$form.Text = "Main Form"

$button = new-object Windows.Forms.Button
$button.text="Close Me!"
$button.Dock="fill"
$button.add_click({$form.close()})

$form.controls.add($button)
$form.Add_Shown({$form.Activate()})
$form.ShowDialog()

The previous code will create the form illustrated in the following screenshot. Very
nice, huh?

Chapter 2

[61]

Although you can build whatever forms and controls you want, you still have to
write hundreds of lines of code. For this reason, you can use one of PowerShell's
third-party tools that provides a GUI designer for PowerShell such as SAPIEN
PowerShell Studio.

Summary
In this chapter, we learned how to use Windows PowerShell to work closely
with WMI, COM, and XML. We also learned what CIM is and how to use it via
PowerShell. In addition, we shined a light on working with .NET objects and
how to use .NET to extend Windows PowerShell capabilities.

Also, we learned what modules are, the different types of modules, and how
to create a module that can be used to automate our own custom-developed
applications. Finally, we jumped into script-debugging and error-handling
techniques in PowerShell.

In the next chapter, we will learn how to use PowerShell to perform different
administration tasks that we might face on a daily basis, such as preparing
application requirements, handling user and group permissions, managing
and configuring IIS, and maintaining SQL Server databases.

PowerShell for Your Daily
Administration Tasks

In the Information Technology field, there is no black or white, but many shades
of gray, starting with white and ending with black. This means that irrespective of
whether you're an IT professional or a developer, you must have a good knowledge of
the other side of the coin. If you are an IT professional or a system administrator, you
should have good programming and scripting skills that allow you to do your tasks in
a more efficient and productive way. If you are a developer, you should have a good
knowledge about networking, security, different platforms, and so on, in order to
understand the system you are developing on and for the system you are developing.

For developers, you sometimes have to wear the IT professional's hat when it
comes to preparing a server for your application, installing the required software
components, upgrading your software, and so on. It's very common to find
yourself as a developer preparing a web server, maintaining a database server,
troubleshooting the operating system's error, and many other administration tasks
to perform on a daily basis, which is another good reason to use Windows
PowerShell to make your life easier.

This chapter will focus on using Windows PowerShell with different products and
technologies that you might/already use on a daily basis in the form of a set of real
scenarios and examples.

In this chapter, we will cover:

• Understanding and working PowerShell remoting
• Building and using PowerShell workflows
• Working with Windows roles and features
• Managing Windows users and groups
• Working with Internet Information Services (IIS)
• Working with SQL Server

PowerShell for Your Daily Administration Tasks

[64]

Windows PowerShell remoting
PowerShell remoting is one of the most powerful and impressive capabilities of
Windows PowerShell. The remoting feature has been introduced in PowerShell
Version 2. This feature uses Windows Remote Management (WinRM) to connect
to any remote computer that is not physically accessible within your location, or
even in a different geographic location. To make it simple, it is all about using the
PowerShell console on your local machine to manage and control remote computers
in different locations.

On Windows Server 2012 and 2012 R2, PowerShell remoting is enabled by
default. However, you can use the Enable-PSRemoting cmdlet to enable it on
an older server version and on Windows clients as well. You might also use the
-SkipNetworkProfileCheck switch to allow remoting on public network profiles.

PS C:\> Enable-PSRemoting –Force -SkipNetworkProfileCheck

The Enable-PSRemoting cmdlet configures the computer to receive and accept
PowerShell remote commands. What this command does is configure the WinRM
service, creates listeners to accept the request, opens firewall ports and allows
exceptions, registers PowerShell sessions, and changes the security descriptor to
allow remote access. Of course, at any point, you can use the Disable-PSRemoting
cmdlet to disable it.

Four different ways of using remoting
There are four different modes, usages, ways, or whatever you name it, to use the
PowerShell remoting.

Interactive remoting
The first method is the interactive mode. In this mode, we use the Enter-PSSession
cmdlet along with the –ComputerName switch to connect to the remote computer.

PS C:\> Enter-PSSession –ComputerName Sherif-PC

Once you connect successfully to your target machine, the prompt will be changed,
and you can have the target computer's name at the beginning of the line, as shown
in the following screenshot:

Chapter 3

[65]

In this mode, you can execute whatever commands you want, as if you are using
the local PowerShell console on the remote computer. For example, try to run the
Get-Process cmdlet or even a native command such as ipconfig.exe and see what
results you will get. You can close the remote session and return back to your local
machine by using the Exit-PSSession cmdlet.

Ad hoc remoting
Some PowerShell cmdlets support remoting by design. For example, a cmdlet such
as Get-Service or Get-Process has the –ComputerName parameter. What happens
here is that you specify one or more computers using this parameter, and during
the execution of the command Windows PowerShell will connect to each computer,
open a session, execute the commands, get the output, and finally close the session.

This method looks fine when you want to run a quick command on-the-fly, but it is
definitely not the best candidate when it comes to performance and efficiency.

Persistent session
This mode is a little bit similar to ad hoc remoting style, but more efficient. The trick
here is creating a persistent remoting session that remains connected and active by
using the New-PSSession cmdlet as shown in the following code. Thus, if you want
to run a group of commands on a computer, you do not have to open a session for
each command as in the case of ad hoc remoting.

#create new PowerShell session
PS C:\> $s = New-PSSession -ComputerName 192.168.1.2

#Use the session by Invoke-Command
PS C:\> Invoke-Command -Session $s –FilePath D:\myScript.ps1

The persistent sessions are robust and resilient. This means that you can disconnect
your session using the Disconnect-PSSession cmdlet without affecting the running
operation. You can also connect to the same session again from the same computer or
even from a different computer to continue your previous work as if you are using an
RDP session. To connect again to a disconnected session, use the Connect-PSSession
cmdlet. Last but not least, whenever you finish your work, make sure to remove the
unwanted sessions using the Remove-PSSession cmdlet.

PowerShell for Your Daily Administration Tasks

[66]

Implicit remoting
Implicit remoting is simply importing the cmdlets from the remote computer, which
you do not have on your local machine. Thus, you do not have to install an extra
module or register more snap-ins. Let's elaborate more with an example: you have a
server running SQL Server 2012 and you want to manage this server using PowerShell.
So, instead of installing the SQL Server PowerShell module on the local machine, you
open a remote PowerShell session on the SQL Server machine, load the SQL module in
the remote session, and then import the SQL cmdlets to your local session.

PS C:\> $s = New-PSSession –ComputerName SQL-01
PS C:\> Invoke-Command –Session $s –ScriptBlock {Import-Module SQLPS}

Now, we have a session, $s, which has all the cmdlets loaded by default in addition
to the SQL module cmdlets. You use the Import-PSSession cmdlet to import all
these commands on a temporary module on your local machine, or you can export a
specific command in a persistent module using the Export-PSSession cmdlet, and
then import it.

#Import session to temp module
PS C:\> Import-PSSession –Session $s –Prefix Remote –AllowClobber

#Export session to persistent module
PS C:\> Export-PSSession -Session $s -CommandName *SQL* -Module SQLPS
-OutputModule SQL01Cmdlets
PS C:\> Import-Module SQL01Cmdlets

The Import-PSSession cmdlet has two important switches:

• AllowClobber: This allows the cmdlets with the same name as local cmdlets
to be imported

• Prefix: This adds a prefix to the noun of each imported cmdlet to easily
identify it and to avoid a conflict in case there are two commands with the
same name

The implicit remoting technique is already being used by a few Microsoft products,
of which the most popular is Microsoft Exchange Server. In this, you open a session
to exchange a virtual directory that has all the configuration and cmdlets, and then
import it to your local session.

#Create new implicit remoting session
$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri "http://Exch.Contoso.local/PowerShell" -Credential
(Get-Credential) -Authentication Kerberos

#Import the PowerShell remoting Session
Import-PSSession –Session $Session

Chapter 3

[67]

Windows PowerShell Workflow (PSW)
A workflow represents a set of objects, tasks, and activities that are connected
together and running concurrently or sequentially, or even both. In an IT world, the
word "workflow" is always associated with another word called automation. For
example, in Microsoft SharePoint Server, we use workflows to automate approval
processes such as a vacation request approval, and in Microsoft Forefront Identity
Management (FIM), we use workflows to reset users' passwords, and a lot of other
examples in many other applications and technologies.

Workflow capabilities have been introduced in Windows PowerShell 3.0, and it is
designed specifically to help you perform long-time and effort-consuming complex
tasks across multiple and different devices in different locations.

You might wonder about the real value of Windows PowerShell Workflows. You
already use PowerShell to write different scripts and modules that allow you to
perform long-running tasks, and this is the aim of scripting in general. Well, before
I tell you the answer, let's think about these questions together: can you write a
script that can restart a device and wait for this device to boot up to resume the rest
of the commands again? Can you write a single script that runs on multiple devices
concurrently? PowerShell Workflows have been designed to be fit in scenarios such as:

• Executing long-running and repeatable activities
• Running activities in parallel across one or more computers
• Interruptible, stoppable, restartable, and even parallelizable activities

In Windows PowerShell, a script consists of a set of commands; however, a workflow
consists of a set of activities. The commands normally represent actions you want to
execute, but the activities represent tasks you want to perform. Moreover, commands
are being executed sequentially; however, activities can be executed sequentially and
concurrently.

There are two methods to define a workflow: either by using PowerShell syntax,
or since it is built on top of Windows Workflow Foundation (WF) you can use
an XAML file designed by Visual Studio Workflow Designer.

Read about creating Windows PowerShell Workflows using Microsoft
Visual Studio at http://msdn.microsoft.com/en-us/library/
windows/desktop/hh852738(v=vs.85).aspx.

PowerShell for Your Daily Administration Tasks

[68]

Creating a workflow using PowerShell
Writing a PowerShell workflow is similar to writing a PowerShell function with a little
difference. The first difference is using the keyword Workflow instead of Function.

Workflow Send-Greetings
{
 "Hello World..!!"
}
PS C:\> Send-Greetings
Hello World..!!

The parameters' definition is similar to functions using the param() attribute, and
you can also use [CmdletBinding()] to add some advanced workflow features. The
CmdletBinding attribute allows you to add advanced capabilities to your function
and workflows, such as adding the –Verbose, –Debug, –whatif, and –confirm
parameters to your workflow without implementing them manually. It also defines
the HelpUri that will be used by the Get-Help cmdlets to get online help for the
workflow or function. You can refer to the conceptual help topic about_Functions_
Advanced_Parameters for more information about the cmdlet's binding parameters.

Workflow Send-Greetings
{
 [CmdletBinding()]
 Param([string] $Name)
 "Hello, $Name"
}
C:\> Send-Greetings –Name Sherif
Hello, Sherif

Executing a PowerShell Workflow
PowerShell workflows can be executed concurrently and/or sequentially by using
the keywords: Parallel and Sequence.

Sequential execution
By design, the activities in PowerShell are executed sequentially unless you change
this behavior. They are executed similar to functions where each command should
finish its execution before jumping to the next, and so on, till the end of the code. The
following code is a very simple workflow that gets the list of services and processes
running on a computer:

Workflow Get-Information
{

Chapter 3

[69]

 Get-Service
 Get-Process
 Get-CimClass -ClassName Win32_BIOS
}

Run the previous code on your machine and watch the output. You will notice that
the services' information will be displayed first, then the processes', and finally the
BIOS's information.

In some cases, you might want to run a set of activities sequentially within a parallel
execution block. To do that, use the keyword Sequence as shown in the following
code block:

Workflow Test-Workflow
{
 Sequence
 {
 <Activity_1>
 <Activity_2>
 <Activity_3>
 }
}

Sequence execution is useful for defining a set of activities to run sequentially inside
a Parallel or ForEach -Parallel execution.

Parallel execution
One of the advantages of PowerShell workflows is the ability to execute a set of
activities concurrently. This way of execution is called parallel execution. To define
activities to be executed concurrently, use the keyword Parallel. Let's use the same
example we used in the previous section, but execute commands in parallel this time.

Workflow Get-Information
{
 Parallel
 {
 Get-Service
 Get-Process
 Get-CimClass -ClassName Win32_BIOS
 }
}

PowerShell for Your Daily Administration Tasks

[70]

Again, run the previous code on your machine and watch the output. This time you
will notice that the outputs of these commands are being displayed randomly without
any order. Each time you run this workflow, you will receive a totally different order.

Parallel execution is also available with the ForEach loop. The ForEach –Parallel
loop is a combination of Sequence and Parallel executions. The ForEach –Parallel
loop will execute activities sequentially on the items in the collection in parallel.
For example, if there is a collection of computers where a set of activities such as
joining this computer to a domain is being executed, this activity will be executed in
sequence on all the computers at the same time.

Workflow Test-Workflow
{
 $Computers = Get-Content C:\list.txt

ForEach -Parallel ($comp in $Computers)
{
Add-Computer -ComputerName $comp -LocalCredential Server01\Admin01
 -DomainName contoso.local -Credential contoso\Admin02
}

Parallel execution is useful for running independent activities concurrently, such as
starting a process and restarting a service at the same time, where each activity is
running independent of the other one.

InlineScript activity
As mentioned earlier, PowerShell workflows use activities, which means that the
normal PowerShell cmdlets cannot be used in a workflow. To make life easier,
the PowerShell team has already implemented activities equivalent to most of
PowerShell's core cmdlets, so you can use them with the same name without getting
confused. For example, the Get-Service cmdlet is different from the Get-Service
activity; the former is used in PowerShell scripts, and the latter is used in PowerShell
workflows.

The list of cmdlets that have no equivalent activities is available at:
http://technet.microsoft.com/en-us/library/
jj574194.aspx

In order to use the PowerShell cmdlets inside a workflow, use the inlineScript
activity. It's a special activity that allows the execution of any PowerShell command
that is valid in PowerShell but not supported by workflows, for example, executing
the *.ps1 file or calling a dynamic parameter inside a workflow.

Chapter 3

[71]

Let's elaborate more; if you tried to use the GetType() method within a workflow,
you will get the following error:

Method invocation is not supported in a Windows PowerShell
 Workflow. To use .NET scripting, place your commands in an
 inline script: InlineScript { <commands> }.

To get over this error, use the GetType() method within your workflow. Then, use
the inlineScript activity as shown in the following code:

Workflow UseInlineScript
{
 InlineScript{ (Get-Date).GetType() }
}
PS C:\> UseInlineScript
Public IsSerial Name BaseType PSComputerName
------ -------- ---- -------- --------------
True True DateTime System.ValueType localhost

Controlling the PowerShell workflow
execution
One of the most interesting features in PowerShell workflow and what makes it
unique over a normal script is the flexibility of controlling the execution; at any
point, you can interrupt, suspend, and resume the workflow execution; you can
even restart the computer while running the workflow and complete the execution
upon startup.

You can suspend the workflow execution using the Suspend-Workflow activity,
which will save the execution state, variables, and values in a checkpoint and return
the job ID for the suspended workflow. So, you can use the job ID as a parameter for
the Resume-Job cmdlet to resume the workflow execution again.

In the following example, we will learn how to suspend and resume the workflow
execution:

Workflow Test-Workflow
{
 Get-Service
 Suspend-Workflow
 Get-Process
}

PowerShell for Your Daily Administration Tasks

[72]

Once you run the workflow, the first two activities will be executed and the
workflow will be suspended, and the result of Suspend-Workflow will give
information about the workflow's executed job.

HasMoreData : True
StatusMessage :
Location : localhost
Command : Test-Workflow
JobStateInfo : Suspended
Finished : System.Threading.ManualResetEvent
InstanceId : 3bbd1e36-2683-42b2-a2ca-74e08512abca
Id : 34
Name : Job34
ChildJobs : {Job35}
PSBeginTime : 12/20/2013 1:12:56 PM
PSEndTime : 12/20/2013 1:12:57 PM
PSJobTypeName : PSWorkflowJob
State : Suspended
(...)

In order to resume the workflow again, use the Resume-Job cmdlet with the job
name mentioned in the previous output.

PS C:\>Resume-Job –Name Job34

In order to get the results of the activities executed after resuming, in our case
Get-Process, we will use the Get-Job and Receive-Job cmdlets.

PS C:\>Get-Job –Name Job34 | Receive-Job

As PowerShell workflow is recoverable, you can restart the target computer and
smoothly resume the workflow again using the Restart-Computer activity. Simply
use the switch –wait with Restart-Computer. So, the workflow will wait for the
computer to restart and reconnect again before proceeding with the workflow's
execution.

In this example, the workflow will restart the targeted computer after executing
Activity 1 and Activity 2, and then wait for the computer to boot up again to
resume and execute Activity 3. You can also use the -PSConnectionRetryCount
and -PSConnectionRetryInterval parameters to specify the connection retries and
the interval between each connection's retry.

Workflow Test-Workflow
{
 <Activity_1>
 <Activity_2>

Chapter 3

[73]

 Restart-Computer –Wait –PSConnectionRetryInterval 4 -
 PSConnectionRetryCount 8
 <Activity_3>
}

Persistent workflows
In order to maintain the previous features of the PowerShell workflow, it is a must
to implement another feature in workflows, which is checkpoints. The checkpoints
in a PowerShell Workflow take a snapshot of the current state and data, and then
save it in the profile of a user who is executing this workflow on the hard disk. Thus,
when resumed, the workflow will start from the last checkpoint instead of starting
from the beginning. PowerShell, by default, adds checkpoints in the beginning and
ending of the workflow. In addition, you can use the -PSPersist switch with any
activity to take a checkpoint after completing the execution of it. Also, you can use
the Checkpoint-Workflow activity at any point in your flow to take a checkpoint.

The following command will show you how to use the –PSPersist switch:

PS C:\>Test-Workflow -PSPersist $True

Workflows are used to execute tasks faster, so using checkpoints without need or
optimization will slow the execution and make it useless.

In case of using pipelines and parallel executions, checkpoints will not be taken until
the completion of pipeline or parallel activities; however, you can use the checkpoint
in sequence activities to take a checkpoint after completion of every single activity.

Windows PowerShell in action
In this section, we will go on a tour to discover how PowerShell is being used in many
different products and technologies, such as Windows Server, SQL Server, and IIS.

Working with Windows roles and features
Managing Windows roles and features is one of the most important basic and
repetitive tasks while dealing with a server operating system, such as Windows Server.

In Windows Server, you can manage roles and features using the PowerShell
Server Manager module. This module allows listing, adding, and removing roles or
features via three cmdlets: Get-WindowsFeature, Install-WindowsFeature, and
Uninstall-WindowsFeature.

PowerShell for Your Daily Administration Tasks

[74]

The following example shows how to use the Get-WindowsFeature cmdlet to list all
the installed roles and features on a local server:

#Get list of all installed Roles and Features
PS C:\> Get-WindowsFeature | where Installed –eq $true

Refer to the following screenshot for roles and features:

Working with Windows features using PowerShell is very useful even if you have
the luxury of a GUI, especially when you want to install a set of prerequisites for
something such as SharePoint Server or SQL Server on one or more servers.

Installing Windows roles and features
For the purpose of installing a Windows role or feature, you will use the
Install-WindowsFeature cmdlet that comes with a couple of very interesting
parameters, which are as follows:

• IncludeAllSubFeature: This is used to install a role or feature that has
multiple subfeatures where you want to install all of them in one step. It's
a good candidate for roles such as Web Server, File Server, and RSAT.

• IncludeManagementTools: This is used when you install a role or feature
using PowerShell. It will install the role itself without the management
console. So, this switch will ensure that you will get the management
interface installed automatically alongside your component.

The following example demonstrates how to use the Install-WindowsFeature
cmdlet to install IIS (Web Server role) with all subfeatures along with the
management console:

#Installing IIS Role using Install-WindowsFeature cmdlet
PS C:\> Install-WindowsFeature Web-Server -IncludeAllSubFeature -
 IncludeManagementTools

Chapter 3

[75]

You can also use this cmdlet to install a role or feature on multiple remote computers
at the same time using the –ComputerName parameter.

#Installing IIS Role on multiple servers
PS C:\> 'WebSrv01','WebSrv02','WebSrv03' | Foreach-Object {
 Install-WindowsFeature Web-Server -IncludeAllSubFeature –
IncludeManagementTools –ComputerName $_ }

If you want to install a role or feature on a remote computer that uses a different
credential than your credentials, then you have the option to provide the remote
computers' credential using the –Credential parameter.

#Installing IIS on multiple servers using different credentials
PS C:\> $cred = Get-Credential mylab.local\Administrator
PS C:\> 'WebSrv01','WebSrv02','WebSrv03' | Foreach-Object {
 Install-WindowsFeature Web-Server -IncludeAllSubFeature –
IncludeManagementTools –ComputerName $_ -Credential $cred}

You can also use the –ConfigurationFilePath parameter to install the roles
and features specified in the xml configuration file generated by the Add Roles
and Features Wizard in the Server Manager consoles as shown in the following
screenshot and the code:

#Install features from a previously generated Config file
PS C:\> Install-WindowsFeature –ConfigurationFilePath d:\
WebServerConfigFile.xml

PowerShell for Your Daily Administration Tasks

[76]

Last but not least, if you have an offline virtual hard disk (VHD) for a HyperV file,
you can use the –vhd parameter to install Windows roles and features on it after
it has been mounted using the Deployment Image Servicing and Management
(DISM) tools.

Uninstalling Windows roles and features
The process of removing roles and features is very similar to that of installing
them. For the purpose of uninstalling a Windows role or feature, you use the
Uninstall-WindowsFeature cmdlet. Actually, it is the opposite operation, but we
are using almost the exact parameters, such as in the Install-WindowsFeature
cmdlet; however, there is no -IncludeAllSubFeature parameter because once you
uninstall a parent role or feature, it will automatically uninstall all of its subfeatures.

Also, here is a new parameter, –Remove, that can be used to delete the role's and the
feature's physical files stored under the Windows\WinSxS directory.

You can use the Get-WindowsOptionalFeature,
Enable-WindowsOptionalFeature, and Disable-
WindowsOptioanlFeature cmdlets that come as part
of the DISM module to manage the optional features of
Windows' client operating systems such as Windows 8 or 8.1.

Managing local users and groups
Usually, working with users and groups used to be a task purely related to system
administration. Although this is totally true when it comes to managing domain
users and groups as part of managing the domain environment, when it comes to
local users and groups, sometimes you, as a developer, find yourself dealing with
local users and groups. In some cases, you need to do something like granting
administrative rights to a development account, managing access to your web
application, configuring SQL Server Reporting Services (SSRS), and a lot of other
similar tasks, so that PowerShell can help you in automating such tasks without even
repeating them each and every time. Simply build a script with your own settings
and configuration, then use it whenever you want to save your time and effort.

Chapter 3

[77]

If you had the chance to develop an application using C# that works with users and
groups, then you definitely know that the DirectoryServices class is your hero
for managing users and groups. This means that you are still able to follow the same
way in PowerShell by creating a .NET object of this class, and then manipulating this
object as if you are working with a normal .NET-managed code. Although this might
make you feel that you are in your comfort zone, this will cost you a lot of time
and effort. On the other hand, PowerShell provides you with an Active Directory
Services Interface (ADSI) type adapter for a .NET object of the DirectoryEntry
type. In developers' language, ADSI is a wrapper for the DirectoryEntry object that
allows you to work with users and groups in a much more simple, convenient, and
consistent way rather than dealing with exposing the raw object to the surface.

#Get [ADSI] full type name
PS C:\> [ADSI].FullName
System.DirectoryServices.DirectoryEntry

The following code example demonstrates how you can create an object once by
using the ADSI type adapter, and once by using the New-Object cmdlet:

#using ADSI
PS C:\> $User = [ADSI]"WinNT://$env:ComputerName/Administrator"

#using New-Object cmdlet
PS C:\> $User = New-Object System.DirectoryServices.DirectoryEntry
"WinNT://$env:ComputerName/Administrator"

An ADSI adapter can be used for both the domain and workgroup
environments; however, it is better and recommended to use the
ActiveDirectory module for managing the domain users and groups.

Creating a new local user account
For creating a new local user account, follow the given steps:

1. The first step before you create a local user account is to connect to the
computer where you want to create this account. This computer could be a
local or remote computer.
#Connect to computer
$Server = [ADSI]"WinNT://SHERIFT-Win8"

2. Then, invoke the Create() method to create a new account by specifying the
type of object (for example, a user or group) and its name.
#Create user object
$User = $Server.Create("User","Test")

PowerShell for Your Daily Administration Tasks

[78]

3. Next, set a password for this new account by invoking the SetPassword()
method.
#Set User Password
$User.SetPassword("P@ssw0rd")

4. Finally, commit the changes and create the user by invoking the
CommitChanges() method.

#Commit Changes
$User.CommitChanges()

Modifying an existing local user account
This task demonstrates how to use an ADSI type adapter to read and modify
attributes for an existing user account:

1. First off, you have to get the user to modify attributes in the same way as you
want to connect to a computer.
#retrieving an existing user "Test"
$User = [ADSI]"WinNT://SHERIFT-CoEx/Test,User"

2. Then, you can manipulate this $User object to either get or set an existing
user attribute.
#Set user attributes
$User.FullName = "Test Account01"
$User.Description = "A Test User for application testers"

3. Finally, commit the changes and create an update of the user by invoking the
CommitChanges() method.

#Commit Changes
$User.CommitChanges()

Adding and removing a user account to and from a
group
In order to add or remove a user to or from a group, you have to first get the user
you want to change, and also the group you want to add or remove the user from.

#retrieving an existing user "Test"
$TestUser = [ADSI]"WinNT://SHERIFT-CoEx/Test,User"
#retrieving an existing group "Administrators"
$AdminsGroups = [ADSI]"WinNT://SHERIFT-CoEx/Administrators,Group"

Chapter 3

[79]

Now, add the Test user to the Administrators group using the Add() method, or
remove it using the Remove() method.

#Add user "Test" to group "Administrators"
$AdminsGroups.Add($TestUser.Path)
#Remove user "Test" from group "Administrators"
$AdminsGroups.Remove($TestUser.Path)

Removing an existing local user account
Removing an existing user account or group is similar to the creation process;
however, you need to invoke the Delete() method instead of the Create() method.

#Connect to computer
$Server = [ADSI]"WinNT://SHERIFT-Win8"
#retrieving an existing user "Test"
$TestUser = [ADSI]"WinNT://SHERIFT-Win8/Test,User"
#Remove user object
$Server.Delete('User',$TestUser.Name.Value)

The same method applies when you want to remove
an existing group.

Listing all the existing users and groups
Local users and groups can be retrieved by calling the computer's children.
The computer's children contain the list of all users, groups, and services on this
computer, so you can filter the list by the type of classes and select only the classes
of users and groups.

#Connect to computer
$Server = [ADSI]"WinNT://SHERIFT-Win8"
#Get computer's children
$Server.Children | Group Class | Select Count,Name
Count Name
----- ----
 3 User
 19 Group
 205 Service
#Filter children by class type
$Server.Children | Where {$_.Class -eq "User" -or $_.Class -eq
"Group"} | Select Name,SchemaClassName
Name SchemaClassName
---- ---------------
{Administrator} User

PowerShell for Your Daily Administration Tasks

[80]

{Guest} User
{Test} User
{UpdatusUser} User
{Access Control Assistance Operators} Group
{Administrators} Group
{Backup Operators} Group
{Cryptographic Operators} Group
{Distributed COM Users} Group
(...)

Managing web servers – IIS
IIS provides a set of cmdlets that allows you to easily manage, configure, and operate
your Windows web servers. These cmdlets are shipped in a PowerShell module called
WebAdministration. This module can be used to deal with different components such
as websites, web apps, virtual directories, application pools, and the like.

You can manually import the WebAdministration module into the running instance
of the Windows PowerShell console session by using the Import-Module cmdlet as
shown in the following code line:

PS C:\>Import-Module WebAdministration

Working with web application pools
Web application pools are used to group one or more websites or web applications
routed to the same IIS worker process, which makes them easy to control, manage,
and administer. The worker process serves as the process boundary that separates
each web application pool, so whenever one worker process or application is having
an issue or recycles, the other applications or worker processes are not affected.

To create a new web application pool, you have to use the New-WebAppPool cmdlet:

#Create new Web Application Pool
PS C:\>New-WebAppPool –Name myWebAppPool

Name State Applications
---- ----- ------------
myWebAppPool Started

Chapter 3

[81]

Unfortunately, the New-WebAppPool cmdlet creates the application pool with the
default settings with no ability to modify or define new settings. However, you
can still modify the application pool's settings by using the IIS:\ provider. The
following example demonstrates how you can access the pool's properties and
change them via the Get-Item and Set-Item cmdlets:

#Get "myWebAppPool" Application Pool
$myWebAppPool = Get-Item IIS:\AppPools\myWebAppPool

#Change Managed Runtime Version from v4.0 to v2.0
$myWebAppPool.managedRuntimeVersion = "v2.0"

#Change Managed Pipeline Version from Integrated to Classic
$myWebAppPool.managedPipelineMode = "Classic"

#Enable 32-bit Applications
$myWebAppPool.enable32BitAppOnWin64 = $true

#Change the Start Mode from OnDemand to AlwaysOn
$myWebAppPool.startMode = "AlwaysOn"

#Change AppPool Identity
#Set Identity Username
$myWebAppPool.processModel.userName = "WebAppPoolUser"

#Set Identity Password
$myWebAppPool.processModel.password = "P@ssword"

#Set Identity Type custom Account "3"
$myWebAppPool.processModel.identityType = 3

#Commit the Changes
$myWebAppPool | Set-Item

Creating a new website
To create a new basic IIS website, you have to use the New-Website cmdlet combined
with parameters such as –Name, -Port, -HostHeader, and –ApplicationPool. The
following code demonstrates how to create a new website myWebSite on port 80 and
as a part of the myWebAppPool application pool:

#Create new IIS website
PS C:\> New-Website -Name myWebSite -Port 80 -HostHeader myWebSite
-PhysicalPath c:\inetpub\myWebSite -ApplicationPool myWebAppPool

PowerShell for Your Daily Administration Tasks

[82]

Name ID State Physical Path Bindings
---- -- ----- ------------- --------
myWebSite 2 Started c:\myWebSite http *:80:myWebSite

Creating a new virtual directory
IIS virtual directories can be created using the New-WebVirtualDirectory cmdlet.
The following code demonstrates how to create a new virtual directory mySites
under the default IIS website called Default Web Site:

#Create new Virtual Directory
PS C:\> New-WebVirtualDirectory -Site "Default Web Site" -Name
 mySites -PhysicalPath c:\inetpub\mySites

Creating a new web application
An IIS web application is being created exactly like a virtual directory even with the
same parameters; the only difference is we use the New-WebApplication cmdlet
instead of the New-WebVirtualDirectory cmdlet.

#Create new Web Application
PS C:\> New-WebApplication -Site "Default Web Site" -Name myWebApp
 -PhysicalPath c:\inetpub\myWebApp

As both the virtual directory and the web application are almost the same, you can
convert any existing virtual directory to a web application using the ConvertTo-
WebApplication cmdlet.

#Convert Virtual Directory to Web Application
PS C:\> ConvertTo-WebApplication 'IIS:\Sites\Default Web
 Site\mySites'

Name Application pool Protocols Physical Path
---- ---------------- --------- -------------
mySites DefaultAppPool http

Creating an FTP site
You can also work with FTP sites by using PowerShell cmdlets. You can create a new
FTP site using the New-WebFtpSite cmdlet.

#Create new FTP site
PS C:\>New-WebFtpSite -Name myFTPSite -Port 21 -PhysicalPath
 c:\inetpub\FTP

Name ID State Physical Path Bindings
---- -- ----- ------------- --------
myFTPSite 3 Started c:\inetpub\FTP ftp *:21:

Chapter 3

[83]

Make sure that you have FTP 7 or a later version installed
in order to have this cmdlet work successfully.

Creating and modifying an existing website binding
Another task that you might need to do is add a new web binding to your website.
The following example demonstrates how to use the New-WebBinding and
Set-WebBinding cmdlets to create a new HTTPs web binding for the default
IIS website, and then modify the existing HTTP binding to use another port:

#Create HTTPs web binding
PS C:\> New-WebBinding -Name 'Default Web Site' -Protocol Https -
 Port 443
#Change HTTP web binding port from 80 to 7288
PS C:\> Set-WebBinding -Name 'Default Web Site' -
 BindingInformation "*:80:" -PropertyName Port -Value 7288

Backing up and restoring the web configuration
As a developer, you make changes to your development environment all the time,
either to adopt a new technology or to apply a change in your application. This
means that you might do a change that corrupts the whole environment, and this is
why they invented the backup, so that you can safely revert your changes and get
everything up and running again in no time.

The following code sample shows how to back up and restore your IIS webserver's
configuration:

#Backup IIS webserver configuration
PS C:\> Backup-WebConfiguration -Name myWebServerBackup

Name Creation Date
---- -------------
myWebServerBackup 11/4/2013 12:00:00 AM

#Restore IIS webserver configuration
PS C:\> Restore-WebConfiguration -Name myWebServerBackup

You can also use the Get-WebConfigurationBackup cmdlet to get a list of available
IIS configuration back ups.

PS C:\> Get-WebConfigurationBackup

Name Creation Date
---- -------------
myWebServerBackup 11/4/2013 12:00:00 AM

PowerShell for Your Daily Administration Tasks

[84]

Whenever the web configuration backup file is no longer needed, you can simply use
the Remove-WebConfigurationBackup cmdlet with the -Name parameter to remove it.

SQL Server and Windows PowerShell
SQL Server provides a Windows PowerShell module called SQLPS that helps SQL
Server DBAs, IT professionals, and developers benefit from the capabilities of
Windows PowerShell to work with T-SQL and XQuery in order to perform complex
SQL Server administration and automation tasks.

The SQL Server PowerShell module includes a SQL Server Provider, SQLSERVER:\,
similar to the other PowerShell providers. This SQL Provider allows you to navigate
through the component as if you are working with a filesystem, so you can use the
native commands to navigate, rename, and delete objects. For instance, in case of
SQL Server, you can work with server instances, databases, tables, and so on.

For more information about the PowerShell Provider, refer to
http://msdn.microsoft.com/en-us/library/windows/
desktop/ee126186(v=vs.85).aspx and http://
technet.microsoft.com/en-us/library/hh847791.aspx.

The following screenshot shows how easy it is to use a native command such as the
dir command with the SQL Server provider to list the available databases as if they
are files and folders:

Chapter 3

[85]

Loading SQL Server PowerShell
Loading the SQL Server PowerShell module can be done either by importing the
module directly into the running instance of a PowerShell session like what we did
previously with the WebAdministration module, or by launching it directly from
the SQL Server Management Studio (SSMS) interface.

Importing SQL Server PowerShell module
The following line of code demonstrates how to load the SQLPS module into
a running PowerShell session:

#Import SQL Server PowerShell Module
PS C:\> Import-Module SQLPS –DisableNameChecking

Launching the SQL Server PowerShell from SSMS
You can also perform the following steps to launch a SQL-aware PowerShell session
directly from the SSMS:

1. Open the Microsoft SQL Server Management Studio.
2. Right-click on any item under the Object Explorer pane.

3. Select Start PowerShell to launch the SQL PowerShell.

PowerShell for Your Daily Administration Tasks

[86]

Working with the SQL Server scripting
In this section, we will help you to get started with SQL Server scripting and
automation by using a set of Windows PowerShell scenarios and examples.

Example 1 – executing the T-SQL statement
In this example, you want to automate a set of SQL Server tasks that require the
execution of T-SQL statements via PowerShell. For this purpose, you have to use
the Invoke-Sqlcmd cmdlet with the following group of parameters:

• -ServerInstance: This defines the SQL Server instance
• -Database: This gives the name of the database
• -Hostname: This gives the name of the server running the SQL Server
• -Query: This defines the T-SQL statement

The following code shows how to use the Invoke-Sqlcmd cmdlet to run a T-SQL
query against the Master database hosted on the default SQL server instance on the
server SQL01:

#Invoke SQL Query using PowerShell
PS :\> Invoke-Sqlcmd -ServerInstance SQL01\MSSQLSERVER -Database
 Master -Query "SELECT db_name(dbid) as DB,name,filename FROM
 sysaltfiles" -HostName SQL01

Example 2 – backing up the SQL Server database
In this example, you want to use PowerShell to back up all the SQL Server
databases hosted under a specific instance. For this purpose, you have to use the
Backup-SqlDatabase cmdlet.

The following code shows how to use the Backup-SqlDatabase cmdlet to back up
both database files and logfiles, and then store the backup files in the C:\Backup
directory:

ForEach($Database in (Get-ChildItem
 SQLSERVER:\SQL\MSSQLSERVER\Databases))
{
 $FilePath = "C:\Backup\" + $Database.Name + ".bak"
 $LogFilePath = "C:\Backup\" + $Database.Name + ".log"

 #Backup Database File
Backup-SqlDatabase -ServerInstance SQL01\MSSQLSERVER -Database
 $Database.Name -BackupAction Database -BackupFile $FilePath

#backup Database Log File

Chapter 3

[87]

Backup-SqlDatabase -ServerInstance SQL01\MSSQLSERVER -Database
 $Database.Name -BackupAction Log -BackupFile $LogFilePath
}

Example 3 – restoring the SQL Server database
In this example, you want to use PowerShell to restore a SQL Server database.
For this purpose, you have to use the Restore-SqlDatabase cmdlet.

The following code shows how to use the Rstore-Sqlcmd cmdlet to restore all the
databases' backups stored in specific files. These backup files could be previously
exported either by the Backup-Sqlcmd cmdlet or by directly using the backup
wizard in SSMS.

$BackupFolder = "C:\Backup\"
$ServerInstance = "SQL01\MSSQLSERVER"

ForEach($File in (Get-ChildItem $BackupFolder))
{
 $DatabaseName = $File.Name.Replace(".bak","")
 #Restore Database File
Restore-SqlDatabase -ServerInstance $ServerInstance -Database
$DatabaseName -RestoreAction Database -BackupFile $File.FullName
}

Example 4 – generating the SQL script for a database,
tables, and stored procedures
In this example, you want to generate a SQL script for a specific database and its tables
and stored procedures. For this purpose, you can use the SQL Server Management
object (SMO) in combination with PowerShell to generate the SQL scripts.

The following code shows how to use the .NET integration in PowerShell to load
SQL SMO assemblies in order to extend the PowerShell capabilities while working
with SQL Server. This code demonstrates the loading of the SMO assembly, creating
an SMO object, and then manipulating that object to generate the SQL script as
an example.

$ServerInstance = "SQL01\MSSQLSERVER"
$ExportFolder = "C:\SqlScripts"

#Load SQL SMO assembly
[void][System.Reflection.Assembly]::LoadWithPartialName('Microsoft
 .SqlServer.SMO')
#Create SMO object of SQL Server Instance
$Server = new-object ('Microsoft.SqlServer.Management.Smo.Server')

PowerShell for Your Daily Administration Tasks

[88]

 $ServerInstance

#Iterate over the list of the databases under the Server Instance
ForEach($Database in $Server.Databases)
{
 #Create Folder for each Database
 New-Item -ItemType Directory -Path ("$ExportFolder\" +
 $Database.Name + "\") | Out-Null
 #Create folder for tables under each database folder
 New-Item -ItemType Directory -Path ("$ExportFolder\" +
 $Database.Name + "\Tables\") | Out-Null
 #Create folder for stored procedures under each database folder
 New-Item -ItemType Directory -Path ("$ExportFolder\" +
 $Database.Name + "\StoredProcedures\") | Out-Null

 #Generate and Export Database Script
 $Database.Script() | Out-File ("$ExportFolder\" +
 $Database.Name + "\" + $Database.Name + ".sql")

 #Iterate over the list of the tables under each database
 ForEach($table in $Database.Tables)
 {
 #Generate and Export Tables Scripts
 $table.Script() | Out-File ("$ExportFolder\" + $Database.Name
 + "\Tables\" + $table.Name + ".sql")
 }

 #Iterate over the list of the stored procedures under each
 database
 ForEach($SP in $Database.StoredProcedures)
 {
 #Generate and Export Stored Procedures Scripts
 $SP.Script() | Out-File ("$ExportFolder\" + $Database.Name +
 "\StoredProcedures\" + $SP.Name + ".sql")
 }
}

Chapter 3

[89]

Summary
In this chapter, we have seen a part of Windows PowerShell's capabilities with
Windows Server, Internet Information Services, and SQL Server, and the real value
of using it to manage and administer such a complex technology. We also learned
how to use PowerShell to perform different administration tasks that we might face
on a daily basis, such as preparing application requirements, handling permissions
of users and groups, managing and configuring IIS, maintaining SQL Server
databases, and many more interesting topics.

This chapter was not intended to give you everything about the mentioned
technologies; however, it intended to give you an overview and ensure that you
deeply understand, as much as possible, how these technologies can work smoothly
with PowerShell via a set of real scenarios and examples.

In the next chapter, we will continue the Windows PowerShell learning journey.
The light will shine on unveiling the hidden power of PowerShell cmdlets to work
with web technologies including, but not limited to, working with JSON, web
services, RESTful applications, and social networking.

PowerShell and Web
Technologies

Nowadays, everything is all about the Internet. In the past, we used to have the
Internet just for e-mails, news, e-shopping, and few more. Although we were happy
with those services, they extended very fast to have the web-based Line of Business
(LOB) applications instead of the traditional desktop applications. Then, the Cloud
concept was introduced, and now we can have archive and storage backup,
servers and virtual machines, and even development tools on the Internet.

What really makes Internet a black horse is its mobility. You have your toolbox
available anywhere anytime. In addition, you do not have to worry about
compatibility issues as in the past. You will be able to use your application on
any platform or device, all you need is just a web browser.

For all of these, starting with Version 3.0, Windows PowerShell became a web-aware
technology with built-in support for different web technologies. You can see this in
Windows PowerShell Web Access, PowerShell Web Services, and the different web
cmdlets that will be covered through this chapter.

In this chapter, we will cover:

• Working with XML web services and REST APIs
• Downloading files from the Internet
• Fetching web feeds such as Atom and RSS
• Working with JSON

PowerShell and Web Technologies

[92]

Web cmdlets in PowerShell
Windows PowerShell comes with a nice set of cmdlets that make interaction with the
Internet easier than any other scripting language. In this section, we will learn about
these cmdlets with examples.

Working with web services
Web services are XML-based application components that follow open standards
such as Simple Object Access Protocol (SOAP) and Web Services Description
Language (WSDL). Web services are mainly used for open communication and
interoperability among different platforms over the Internet.

In PowerShell, the New-WebServiceProxy cmdlet creates a web service proxy object
that allows you to access, utilize, and invoke XML web services directly from your
PowerShell code.

Example 1 – using the GeoIPService web service
The GeoIPService web service allows you to look up the geographic location of an
IP address. The following example demonstrates how to invoke the GeoIPService
method called GetGeoIP("<IP_ADDRESS>"), which retrieves the geographic location
for the IP address:

#GeoIPService URI
$Uri = 'http://www.webservicex.net/geoipservice.asmx?WSDL'

#Create new WebServiceProxy Object
$GeoIPWebService = New-WebServiceProxy -Uri $Uri -Namespace
myWebServiceProxy

#Invoke GetGeoIP("IPaddress") method
$GeoIPWebService.GetGeoIP('213.131.66.246')

ReturnCode : 1
IP : 213.131.66.246
ReturnCodeDetails : Success
CountryName : Egypt
CountryCode : EGY

You can use the GetGeoIPContext() method to get the geographic information
of the IP address you are using when you are calling the web service:

#Invoke GetGeoIPContext() method
$GeoIPWebService.GetGeoIPContext()

Chapter 4

[93]

Example 2 – using the Stock Quote web service
The Stock Quote web service allows you to look up the latest stock information for
a specific company by its stock symbol. A stock symbol is a series of unique
characters that represents a company in the stock market. For example, the stock
symbol for Microsoft is MSFT, and Google is GOOG. The following example
demonstrates how to look up Microsoft stock using the Stock Quote method called
GetQuote("STOCK_SYMBOL"):

#Stock Quote URI
$Uri = 'http://www.webservicex.net/stockquote.asmx?WSDL'

#Create new WebServiceProxy Object
$StockQuote = New-WebServiceProxy -Uri $Uri -Namespace
myWebServiceProxy

#Invoke GetQuote("STOCK_SYMBOL") method
$StockQuote.GetQuote('MSFT')

<StockQuotes><Stock><Symbol>MSFT</Symbol><Last>37.841</
Last><Date>11/15/2013</Date><Time>4:00pm</Time><Change>-0.18</
Change><Open>37.95</Open><High>38.02</High><Low>37.72</
Low><Voume>50602032</Volume><MktCap>315.9B</
MktCap><PreviousClose>38.021</PreviousClose><PercentageChange>-0.47%</
PercentageChange><AnnRange>26.26-38.22</AnnRange><Earns>2.671</
Earns><P-E>14.23</P-E><Name>Microsoft Corpora</Name></Stock></
StockQuotes>

Unlike the GeoIPService example, the Stock Quote web service returns unstructured
XML data that makes it hard to read. To get over such a problem in similar cases,
we can use a trick from Chapter 2, Unleashing Your Development Skills with PowerShell.
This trick is simply storing the unstructured XML string in a strongly typed variable
of XML data type. Thus, PowerShell will automatically convert it to an XML object
by casting the unstructured string to XML standard format:

#XML casting of $StockQuote
[XML] $Stock = $StockQuote.GetQuote('MSFT')

#Read Stock information
$Stock.StockQuotes.Stock

Symbol : MSFT
Last : 37.841
Date : 11/15/2013
Time : 4:00pm
Change : -0.18
Open : 37.95
Name : Microsoft Corporation

PowerShell and Web Technologies

[94]

Working with web requests
The Invoke-WebRequest cmdlet allows you to get and capture contents from a
website. This cmdlet returns an HttpWebResponseObject object that contains all
information about the web request, such as response code, response description,
links, forms, and buttons. You can also think of Invoke-WebRequest as the
PowerShell implementation of the System.Net.HttpWebRequest .NET class,
so that you have many parameters that reflect the properties of this class, such as
ContentType, Method, Body, Headers, Certificates, and UserAgent.

Let's discover this cmdlet with a few lines of code. First off, we will invoke a request
to fetch the content of a website:

PS C:\> $web = Invoke-WebRequest http://blogs.msdn.com/b/powershell

Now, we have the response stored in the $web variable, so we are ready to get its
content and then go deeper into its other members:

#getting the BaseResponse of the web request
PS C:\> $web.BaseResponse
IsMutuallyAuthenticated : False
Cookies : {AuthorizationCookie=d114cf6b-a8d3-4af4-
869b-742773394143}
Headers : {Pragma, X-FRAME-OPTIONS, Telligent-
Evolution, X-Server...}
SupportsHeaders : True
ContentLength : 165002
ContentType : text/html; charset=utf-8
CharacterSet : utf-8
Server : Microsoft-IIS/7.5
LastModified : 11/28/2013 5:18:09 AM
StatusCode : OK
StatusDescription : OK
ProtocolVersion : 1.1
ResponseUri : http://blogs.msdn.com/b/powershell/
Method : GET
IsFromCache : False

You can also get the information about cookies generated by this web request,
by using the following code:

PS C:\> $web.BaseResponse.Cookies

HttpOnly : False
Discard : False
Domain : blogs.msdn.com

Chapter 4

[95]

Expired : False
Expires : 1/1/0001 12:00:00 AM
Name : AuthorizationCookie
Path : /
Secure : False
TimeStamp : 11/28/2013 5:06:37 AM
Value : d114cf6b-a8d3-4af4-869b-742773394143

In addition, you can also discover the forms, links, and images available on the
request URI, by using the following code:

#Get Forms
PS C:\> $web.Forms | Format-List
Id : aspnetForm
Method : post
Action : /b/powershell/
Fields : {[SearchTextBox_Header, Search MSDN with Bing],
[SearchTextBox_AllBlogs, Search MSDN with Bing], [SearchButton_
AllBlogs,]...}

#Get images
PS C:\> $web.Images | Select -Property src

src

/themes/MSDN2/images/MSDN/logo_msdn.png
http://www.microsofttranslator.com/static/193864/img/wgshare.gif
/Utility/images/small-stars/star-left-on.png
/Utility/images/small-stars/star-right-on.png (...)

#Get links
PS C:\> $web.Links | Select -Property innerText,href

innerText href
--------- ----
Server & Tools Blogs http://blogs.technet.com/b/serverandtools/
Windows Server http://blogs.technet.com/b/windowsserver/
Server & Cloud http://blogs.technet.com/b/server-cloud/
(...)

This is not everything; you can still get more and more out of this response. To check
out the rest of the available properties, do not forget to use the Get-Member cmdlet:

PS C:\> $web | Get-Member

PowerShell and Web Technologies

[96]

Example 1 – downloading files from the Internet
In this example, we will compare how PowerShell was dealing with the Web before
and after Version 3.0. The following code sample demonstrates the old way to
download files in PowerShell. In the versions of PowerShell before the Invoke-
WebRequest cmdlet, the files were downloaded in PowerShell using the System.
Net.WebClient .NET framework class:

#The Uri for the file
$FileUri = "http://bit.ly/1aQmc4A"

#The local path to save the downloaded file
$destination = "c:\Downloads\WMF4.msu"

#Creating a System.Net.WebClient object of System.Net.WebClient
#class
$wc = New-Object System.Net.WebClient

#Calling DownloodFile() method
$wc.DownloadFile($FileUri, $destination)

Although this method was not the best way, it was enough at that time. One of the
drawbacks of using the preceding code is that you will not notice the progress of the
download. You will find the console in busy mode executing script and will never
know what is happening until it finishes executing.

Luckily, we now have the Invoke-WebRequest cmdlet that's made our life much
easier. The following code demonstrates the same procedure followed in the
preceding sample:

#Invoke Http request to download file
Invoke-WebRequest -Uri $FileUri -OutFile $destination

The nice thing about using Invoke-WebRequest to download files is that you will get
a progress bar showing the request—download in this case—status, as shown in the
following screenshot:

Chapter 4

[97]

Using REST APIs
PowerShell also supports working with web services based on REpresentational
State Transfer (REST) via the Invoke-RestMethod cmdlet. This cmdlet is similar to
the Invoke-WebRequest cmdlet. However, it is used mainly to call any REST-based
APIs and it can return either XML or JSON.

Example 1 – finding YouTube videos using
PowerShell
This example will demonstrate how to perform a search in YouTube using the
Invoke-RestMethod cmdlet along with YouTube APIs.

In order to perform a simple search using the YouTube API, you have to define at least
two parameters. These parameters are the q= value that defines the search terms and
the v= value that specifies the REST API version, as shown in the following snippet:

#Define the Youtube Search Uri
$Uri = "https://gdata.youtube.com/feeds/api/videos?v=2"

#define the search parameter and value
$Query = "&q=" + "Packt+Publishing"

#Invoke the search query
Invoke-RestMethod "UriQuery"
etag : W/"D0MMRn47eCp7I2A9WhBaFUs."
id : tag:youtube.com,2008:video:NrOzIRHLvCU
published : 2012-09-03T14:45:46.000Z
updated : 2013-05-26T10:51:27.000Z
category : {category, category}
title : Packt Publishing introduction
content : content
link : {link, link, link, link...}
author : author
comments : comments
group : group
rating : {gd:rating, yt:rating}
statistics : statistics
(. . .)

For more information on YouTube API Query Parameters,
visit https://developers.google.com/youtube/2.0/
developers_guide_protocol_api_query_parameters.

PowerShell and Web Technologies

[98]

Now, we have a lot of unwanted items per result. Let's filter the results by selecting
a few properties such as title, link, author, and category:

#Invoke the search query
Invoke-RestMethod "UriQuery" | Select Title,Link,Author,Category
title link author category
----- ---- ------ --------
Packt Publishing {link, link} author {category, category}
The Packt Web... {link, link} author {category, category}
Packt celebrates... {link, link} author {category, category}
(...)

So far, the code is doing well, but unfortunately the result is not as expected. The
result returned by the script is very difficult to read. So, let's add some PowerShell
spices to change what results should look like. For this purpose, we will use the
PSCustomObject type adapter. The PSCustomObject type adapter allows the creation
of a PowerShell custom object from hash tables, so you can mix and match the results
from different objects in one custom object.

Invoke-RestMethod "UriQuery"| ForEach-Object{
 [PSCustomObject]@{
 Title = $_.Title
 Author = $_.Author.name
 URL = $_.content.src
 Term = $_.category.term[1]
 }
} | format-list

Title : Packt Publishing introduction
Author : PacktPublishing
Link : https://www.youtube.com/v/NrOzIRHLvCU?version=3&f=videos&ap
p=youtube_gdata
Category : Education

Title : Applied Architecture Patterns on the Microsoft Platform
Author : Stephen Thomas
Link : https://www.youtube.com/v/AmZx_Gcc8DA?version=3&f=videos&ap
p=youtube_gdata
Category : Tech
(...)

Finally, we have the result filtered and readable, so it can be displayed in a grid using
the Out-GridView cmdlet, or even be exported using one of the Export-* cmdlets.

Chapter 4

[99]

Example 2 – reading web feeds
One of the interesting things about the Invoke-RestMethod cmdlet is the ability
to understand the ATOM and RSS feed structure without any conversion because
they are XML based. The following example demonstrates how to use Invoke-
RestMethod to get the latest blog posts from the PowerShell team blog:

#Reading feeds from PowerShell team blog
$feeds = Invoke-RestMethod http://blogs.msdn.com/b/powershell/atom.
aspx

#Filtering and Formatting results
$feeds | ForEach {
 [PSCustomObject]@{
 Title=$_.title;
 Author=$_.author.name;
 Link=$_.link.href;
 Date=[DateTime]$_.published
 }
} | Format-List

Title : Push and Pull Configuration Modes
Author : PowerShell Team
Link : http://blogs.msdn.com/b/powershell/archive/2013/11/26/push-
and-pull-configuration-modes.aspx
Date : 11/26/2013 9:31:25 PM

Title : PowerShell DSC Resource for configuring Pull Server
environment
Author : PowerShell Team
Link : {http://blogs.msdn.com/b/powershell/archive/2013/11/21/
powershell-dsc-resource-for-configuring-pull-server-environment.aspx}
Date : 11/21/2013 8:38:00 PM
(...)

The same will work fine with RSS feeds. You only have to change the ATOM feed
address to the RSS feed address, which is http://blogs.msdn.com/b/powershell/
rss.aspx in our case.

Working with JSON
Java Script Object Notation (JSON) is a text-based open standard language used as
an alternative to XML in order to transmit the structured data between servers and
web applications in a human-readable format. Windows PowerShell introduced
a couple of cmdlets that allow objects' conversion from JSON and vice versa.

PowerShell and Web Technologies

[100]

Example 1 – converting objects into the JSON
format
The following example demonstrates how to use the ConvertTo-Json cmdlet to
convert a PowerShell object data to JSON. In this example, we will convert the
ATOM feeds from the previous example to JSON format:

#Reading feeds from PowerShell team blog
$feeds = Invoke-RestMethod http://blogs.msdn.com/b/powershell/atom.
aspx

#Filtering and Formatting results
$feeds | ForEach {
 [PSCustomObject]@{
 Title=$_.title;
 Author=$_.author.name;
 Link=$_.link.href;
 Date=[DateTime]$_.published
 }
} | ConvertTo-Json
[
 {
 "Title": "Push and Pull Configuration Modes",
 "Author": "PowerShell Team",
 "Link": "http://blogs.msdn.com/b/powershell/
archive/2013/11/26/push-and-pull-configuration-modes.aspx",
 "Date": "2013-11-26T19:31:25Z"
 },
 {
 "Title": "Resource Designer Tool – A walkthrough writing a
DSC resource",
 "Author": "PowerShell Team",
 "Link": "http://blogs.msdn.com/b/powershell/
archive/2013/11/19/resource-designer-tool-a-walkthrough-writing-a-dsc-
resource.aspx",
 "Date": "2013-11-19T22:56:56Z"
 }
]

Example 2 – converting objects from JSON to the
PowerShell format
Today, most of the web services and REST APIs return their results in JSON format.
The most popular examples are social networks such as Facebook and Twitter.

Chapter 4

[101]

Windows PowerShell also has the ConvertFrom-Json cmdlet that allows the
conversion of an object from JSON to an object that can be manipulated as any
other PowerShell object so that it can be displayed or exported to a file.

The following example demonstrates how to convert JSON to a PowerShell object
using the ConvertFrom-Json cmdlet:

#JSON formatted string
$JSON = @"
[
 {
 "Title": "Push and Pull Configuration Modes",
 "Author": "PowerShell Team",
 "Link": "http://blogs.msdn.com/b/powershell/
archive/2013/11/26/push-and-pull-configuration-modes.aspx",
 "Date": "2013-11-26T19:31:25Z"
 },
 {
 "Title": "Resource Designer Tool – A walkthrough writing a
DSC resource",
 "Author": "PowerShell Team",
 "Link": "http://blogs.msdn.com/b/powershell/
archive/2013/11/19/resource-designer-tool-a-walkthrough-writing-a-dsc-
resource.aspx",
 "Date": "2013-11-19T22:56:56Z"
 }
]
"@
#Convert JSON string to PowerShell Object
$JSON | ConvertFrom-Json
Title : Push and Pull Configuration Modes
Author : PowerShell Team
Link : http://blogs.msdn.com/b/powershell/archive/2013/11/26/push-
and-pull-configuration-modes.aspx
Date : 2013-11-26T19:31:25Z

Title : Resource Designer Tool – A walkthrough writing a DSC resource
Author : PowerShell Team
Link : http://blogs.msdn.com/b/powershell/archive/2013/11/19/
resource-designer-tool-a-walkthrough-writing-a-dsc-resource.aspx
Date : 2013-11-19T22:56:56Z

PowerShell and Web Technologies

[102]

In this code, you will notice that we used the @ symbol to define the JSON-formatted
string. This type of string is called Here-String. The Here-String is the PowerShell
mechanism to specify a block of string literals. It preserves whitespaces, line
breaks, and single and double quotes. The PowerShell Here-String is similar to C#
verbatim strings.

The Here-String is defined by the @" symbol in the first line, the "@ symbol in the
last line, and string content between both lines.

Summary
In this chapter, we have covered examples of the integration between Windows
PowerShell and the Internet represented in web-related technologies such as web
services and REST APIs. We also learned how to download files from the Internet and
read web feeds such Atom and RSS. Moreover, we touched on working with JSON
and how to covert a JSON-formatted string to PowerShell objects and vice versa.

In the next chapter, we will reach the destination of our PowerShell journey.
The focus will be on the automation of the Microsoft Application Lifecycle
Management (ALM) tool known as Visual Studio Team Foundation Server (TFS).
We will understand how PowerShell is powerful even with pure development tools.

PowerShell and Team
Foundation Server

Visual Studio Team Foundation Server (TFS) is a Microsoft solution that provides
an end-to-end software development process, which is also known as Application
Lifecycle Management (ALM). TFS provides many features, including but not
limited to project management, build processes, lab deployment capabilities,
reporting, automated testing, and release management and control.

Like other server products, TFS had adopted PowerShell, and now it provides
PowerShell cmdlets for automating different version-control tasks. However,
the provided cmdlets are not many compared to the other products, but it is still
a good start and also an indication of the shiny future of PowerShell with such
a development tool.

In this chapter, we will cover:

• What is TFS Power Tools
• Installing and configuring TFS PowerShell snap-in
• Working with TFS PowerShell cmdlets

TFS Power Tools
TFS Power Tools is a set of tools and command-line utilities that enhance and
fine-tune the TFS. Also, it adds some extra features that increase the productivity
of TFS and its users. One of these tools is Windows PowerShell cmdlets. For TFS,
PowerShell cmdlets provide commands to support automation and enable scripting
for basic version-control operations. In addition to PowerShell cmdlets, Power Tools
includes but is not limited to Best Practice Analyzer, Windows shell extensions,
and TF command lines.

PowerShell and Team Foundation Server

[104]

TFS Power Tools is available as a separate component apart from TFS. It can be freely
downloaded from the Visual Studio Gallery on Microsoft Developers Network
(MSDN).

Visual Studio Team Foundation Server 2013 Power Tools can be
found at http://visualstudiogallery.msdn.microsoft.
com/f017b10c-02b4-4d6d-9845-58a06545627f.
Visual Studio Team Foundation Server 2012 Power Tools can be
found at http://visualstudiogallery.msdn.microsoft.
com/b1ef7eb2-e084-4cb8-9bc7-06c3bad9148f.

The installation process of TFS Power Tools is very simple, and it is a straightforward
wizard. Unfortunately, PowerShell cmdlets are not selected by default during the
installation using the default setup settings of Power Tools. So, make sure that you
are selecting the Custom setup option as shown in the following screenshot:

Chapter 5

[105]

As usual, a Custom setup allows you to select the features that need to be installed,
instead of following the default or typical setup. So, make sure that you mark the
PowerShell Cmdlets feature for installation, as shown in the following screenshot:

Getting started with TFS PowerShell
cmdlets
Once the TFS Power Tools' installation is complete, you will find that a new
PowerShell snap-in Microsoft.TeamFoundation.PowerShell has been registered
successfully on your system. This snap-in contains the PowerShell cmdlets for TFS.

If you do not know about PowerShell snap-ins, a Windows PowerShell snap-in
is a mechanism for registering sets of cmdlets and providers with the shell, thus
extending the functionality of the shell. A PowerShell snap-in can register all the
cmdlets and providers in a single assembly, or it can register a specific list of
cmdlets and providers.

A PowerShell snap-in is pretty much similar to modules; to be specific, it is similar
to binary modules. However, the snap-in mechanism is being deprecated and may
be come out of support in future releases of PowerShell. The reason for this is that
modules provide a superset of functionalities in terms of loading, distributing,
and packaging cmdlets and providers.

PowerShell and Team Foundation Server

[106]

PowerShell has cmdlets that allow you to get, add, and remove snap-ins exactly like
the cmdlets for modules. Thus, you can load the TFS PowerShell snap-in using some
of these cmdlets, as shown in the following example:

#getting snap-in information
PS C:\ > Get-PSSnapin -Registered *TeamFoundation*
Name : Microsoft.TeamFoundation.PowerShell
PSVersion : 3.0
Description : This is a PowerShell snap-in that includes the Team
Foundation Server cmdlets.

#loading TFS snap-in
PS C:\ > Add-PSSnapin Microsoft.TeamFoundation.PowerShell

Now, we have the TFS snap-in loaded to the PowerShell session and ready to use.
This snap-in contains set of cmdlets to work with different features of TFS such as
changesets, shelvesets, workspaces, and more. The following code retrieves the list
of available cmdlets, and also the number of cmdlets for each TFS features:

PS C:\> Get-Command –Module Microsoft.TeamFoundation.PowerShell |
Group Noun -NoElement | Sort Count –Desc

Count Name
----- ----
 4 TfsShelveset
 3 TfsChangeset
 3 TfsPendingChange
 2 TfsWorkspace
 1 TfsServer
 1 TfsItem
 1 TfsItemProperty
 1 FixedPath
 1 FixedByte
 1 TfsItemHistory
 1 TfsChildItem

Moreover, Power Tools provides a PowerShell script TFSSnapin.ps1 that creates
PowerShell aliases for the TFS cmdlets. These aliases map the PowerShell cmdlets to
the legacy commands in tf.exe, which is also known as TF Command-Line Utility.
For example, there is an alias tfserver for the Get-TfsServer cmdlet, and an alias
tfworkspace for the Get-TfsWorkspace cmdlet. This mapping is intending to make it
easier for the developers who already have experience with this command-line utility.

The TFSSnapin.ps1 script is located under Program Files (x86) |
Microsoft Team Foundation Server 2013 Power Tools.

Chapter 5

[107]

Working with TFS PowerShell cmdlets
Unfortunately, the help resources and documentation for the TFS PowerShell
cmdlets are very limited. The only available document is the Power Tools help,
which covers the basic help information with almost no examples. Even using the
Get-Help cmdlet will return nothing valuable. So, in this section, we will learn about
the TFS cmdlets, understand their functionality, and also see some examples that
show how to use these cmdlets.

• The PowerShell scripts in this section are created based on the
TFS sample projects, which are a part of the Visual Studio ALM
virtual machine created by Brian Keller, the Principal Technical
Evangelist at Microsoft. The VSALM virtual machine is
available for public download from http://aka.ms/ALMVMs.

• All the examples in this chapter have been tested only on TFS
2013 and Power Tools 2013. However, they should work with
TFS 2012 and Power Tools 2012 as well because there are no
major changes between PowerShell cmdlets in both versions
except for fixing some bugs.

Retrieving TFS information
The first cmdlet to start with is Get-TfsServer. This cmdlet is important because
TFS is a required parameter in almost every TFS PowerShell cmdlet. The function
of this cmdlet is very obvious from its name. This cmdlet is being used to retrieve
and display the TFS information.

The following code sample demonstrates how to use the Get-TfsServer cmdlet
to retrieve the information of the TFS named VSALM:

#retrieve TFS
PS C:\> $tfs = Get-TfsServer http://VSALM:8080/tfs

Name : http://vsalm:8080/tfs
DisplayName : http://vsalm:8080/tfs
CatalogNode : CatalogNode instance 48499370
ConfigurationServer : vsalm
TeamFoundationServer : http://vsalm:8080/tfs
InstanceId : 8e9a1d47-220d-4faf-8457-3e30555f35c7
Uri : http://vsalm:8080/tfs
TimeZone : System.CurrentSystemTimeZone
ServerCapabilities : Email
IsHostedServer : False
UICulture : en-US
SessionId : aa551612-ed21-4b09-a0f0-54e0955b991d
(...)

PowerShell and Team Foundation Server

[108]

This cmdlet actually returns an instance of the TfsTeamProjectCollection class:

#get type of TFS object
PS C:\> $tfs.GetType().FullName
Microsoft.TeamFoundation.Client.TfsTeamProjectCollection

Thus, you can also use a project URL as a parameter for Get-TfsServer instead
of the server URL:

#using Project URL as parameter
PS C:\> $tfsFFC = Get-TfsServer http://VSALM:8080/tfs/
FabrikamFiberCollection

Working with TFS items' information
Items in TFS mainly refer to the project structure as files and folders. Thus, the
PowerShell cmdlets provide a way to discover and deal with these structures.
PowerShell has three main cmdlets that work with TFS items. These cmdlets are
Get-TfsChildItem, Get-TfsItemHistory, and Get-TfsItemProperty.

The following screenshot shows a sample item structure for a TFS project:

Chapter 5

[109]

The cmdlets related to TFS items are the same as the normal items' cmdlets available
in PowerShell. For example, Get-TfsChildItem is the same as Get-ChildItem, and
Get-TfsItemProperty is the same as Get-ItemProperty. The benefit of using TFS
cmdlets is the ability to work with the TFS project directly, but with normal item
cmdlets you have to define the physical path of the project and work with it as a
normal filesystem.

The Get-TfsChildItem cmdlet retrieves and displays the child (nested) items for
a specific item. The following code sample demonstrates how to get the child items
for the FabrikamFiber project hosted on the FabrikamFiberCollection project
collection $tfsFFC:

#get child items for FabrikamFiber
PS C:\> Get-TfsChildItem $/FabrikamFiber -Server $tfsFFC

ChangesetId CheckinDate ServerItem
------- ---------- ----------
 2 4/1/2012 $/FabrikamFiber
 3 4/1/2012 $/FabrikamFiber/BuildProcessTemplates
 7 4/1/2012 $/FabrikamFiber/Dev
 5 4/1/2012 $/FabrikamFiber/Main
 8 4/1/2012 $/FabrikamFiber/Releases

You pipe the previous command lines to the Format-List cmdlet to get more
information about each item. Also, you can use the following parameters with the
Get-TfsChildItem cmdlet:

• -Deleted: It is used to get the child items, including the items that have been
deleted already

• -Folders: It is used to get the child items of only the type folder
• -Recurse: It is used to get the child items of each folder item until it reaches

the last folder's node
• -Version: It is used to get the child items according to a specific criteria, such

as a changeset ID or date and time

The Get-TfsItemHistory cmdlet retrieves and displays the history of modifications
that have been made on one specific item. The following code sample demonstrates
how to get the item history of the FabrikamFiber.CallCenter.sln item:

#get item history for FabrikamFiber CallCenter solution file
PS C:\>$tfsItem= "$/FabrikamFiber/Main/FabrikamFiber.CallCenter/
FabrikamFiber.CallCenter.sln"

PS C:\> Get-TfsItemHistory $tfsItem -Server $tfsFFC

PowerShell and Team Foundation Server

[110]

Change Owner CreationDate Comment
setId
------- ----- ---------- -------
 63 VSALM\Brian 7/10/2013
 60 VSALM\Brian 7/9/2013
 55 VSALM\Brian 7/9/2013 merge Dev to Main
 29 VSALM\Administrator 4/29/2013 merge Dev to Main
 19 VSALM\Adam:1 5/16/2012
 6 VSALM\Julia:1 4/1/2012

In addition to the -Version parameter, you can also use -User to get the change
made by a specific user, and -Stopafter to show a specific number of history
records:

#get item history by user
PS C:\> Get-TfsItemHistory $tfsItem -Server $tfsFFC -User Brian

Change Owner CreationDate Comment
setId
------- ----- ---------- -------
 63 VSALM\Brian 7/10/2013
 60 VSALM\Brian 7/9/2013
 55 VSALM\Brian 7/9/2013 merge Dev to Main

#get specific number of history records
PS C:\> Get-TfsItemHistory $tfsItem -Server $tfsFFC -Stopafter 2

Change Owner CreationDate Comment
setId
------- ----- ---------- -------
 63 VSALM\Brian 7/10/2013
 60 VSALM\Brian 7/9/2013

The last cmdlet in this group is Get-TfsItemProperty. This cmdlet retrieves and
displays the item information such as type, item ID, path, lock status, and lock owner.

The following code sample demonstrates how to get the item properties and
information using the Get-TfsItemProperty cmdlet:

#get item properties and information
PS C:\> Get-TfsItemProperty $tfsItem -Server $tfsFFC
IsInWorkspace : False
IsLatest : False
ChangeType : None
PropertyValues : {}

Chapter 5

[111]

CheckinDate : 7/10/2013 12:03:48 PM
DeletionId : 0
Encoding : 65001
HasOtherPendingChange : False
IsBranch : False
ItemId : 1812
ItemType : File
LockOwner : VSALM\Annie
LockOwnerDisplayName : Annie Herriman
LockStatus : Checkin
SourceServerItem : $/FabrikamFiber/Main/FabrikamFiber.CallCenter/
HTMLPage2.html
TargetServerItem : $/FabrikamFiber/Main/FabrikamFiber.CallCenter/
HTMLPage2.html
VersionLatest : 64
VersionLocal : 0

Managing TFS workspace
A workspace for Visual Studio TFS comprises of a set of working folder mappings.
These mappings represent the location of client-side folders on a local disk and the
corresponding repository folders on the version-control server. In addition, the name
of the workspace owner and the name of the computer on which the workspace is
used are also stored in TFS.

TFS PowerShell provides two cmdlets related to a TFS workspace. These cmdlets are
Get-TfsWorkspace and Update-TfsWorkspace.

The Get-TfsWorkspace cmdlet retrieves and displays information about the
currently available workspaces. The following code sample demonstrates how to get
a list of workspaces for a specific project collection:

#get workspace information
PS C:\> Get-TfsWorkspace -Server $tfsFFC

Name Computer OwnerName
---- -------- ---------
VSALM VSALM1 VSALM\Brian
VSALM VSALM2 VSALM\Annie

You can also define different parameters such as –Name, -Computer, or -Owner to
filter the results:

#get workspace information by owner name
PS C:\> Get-TfsWorkspace -Server $tfsFFC –Owner Brian

PowerShell and Team Foundation Server

[112]

Name Computer OwnerName
---- -------- ---------
VSALM VSALM VSALM\Brian

The second cmdlet is Update-TfsWorkspace. This cmdlet retrieves a copy of files
from the TFS version-control server and saves it on the local workspace folder.
In other words, it is used to update the workspace by either getting new files or
replacing existing files. You can specify single or multiple items, overwrite existing
files, and retrieve files based on the versioning criteria.

The following code sample demonstrates a very simple TFS workspace update:

#update TFS workspace
PS C:\ > Update-TfsWorkspace
Status Version TargetLocalItem
------ ------- ---------------
Getting 52 C:\Users\Administrator\Source\Workspaces\
FabrikamF....
Replacing 53 C:\Users\Administrator\Source\Workspaces\
FabrikamF....
Deleting 53 $/FabrikamFiber/Dev/build/xunit.runner.visu...

Managing changesets, shelvesets, and
pending changes
The last group of cmdlets is that of the TFS cmdlets for working and managing the
TFS version-control features, such as pending changes, changesets, and shelvesets.

You can read more about the TFS version-control features on MSDN.
More information about pending changes can be found
at http://msdn.microsoft.com/en-us/library/
ms181409(v=vs.100).aspx.
More information about changesets can be found at http://msdn.
microsoft.com/en-us/library/ms181408(v=vs.120).aspx.
More information about shelvesets can be found at http://msdn.
microsoft.com/en-us/library/ms245465(v=vs.100).aspx.

The following code demonstrates how to use the Add-TfsPendingChange cmdlet to
upload (add) a file from a local disk (workspace) to the version-control server. The
parameter -Add is for check-in and -Edit is for check-out.

PS C:\ > $tfsItem = "C:\Users\Brian\Source\Workspaces\FabrikamFiber\
Main\FabrikamFiber.CallCenter\contactUs.html"

Chapter 5

[113]

#add new TFS Pending change
PS C:\> Add-TfsPendingChange -Item $tfsItem –Add
Version CreationDate ChangeType ServerItem
------- ---------- ---------- ----------
 0 7/10/2013 Add $/Fabr..../contactUs.html

Another code sample demonstrates how to work with changeset cmdlets to create
a new TFS changeset for the file uploaded in the previous example. It also retrieves
the information of the changeset and finally updates the information of a changeset.
There is no cmdlet to remove changesets because a changeset cannot be removed
even from the GUI.

#create new TFS changeset
PS C:\> New-TfsChangeset -Item $tfsItem -Comment "my first checkin"

#Get changeset information but changeset number
PS C:\> Get-TfsChangeset -ChangesetNumber 65 -Server $tfsFFC

ChangesetId Owner CreationDate Comment
------- ----- ---------- -------
 65 VSALM\Brian 7/10/2013 my first checkin
#settings TFS changeset information
PS C:\> Set-TfsChangeset -Comment "checkin with comment"
-ChangesetNumber 65 -Server $tfsFFC

ChangesetId Owner CreationDate Comment
------- ----- ---------- -------
 65 VSALM\Brian 7/10/2013 checkin with comment

The following screenshot shows the changeset that has been created:

PowerShell and Team Foundation Server

[114]

Now, we have the file that is checked in and a changeset created for it. The next
demonstration is checking out this file again using the Add-TfsPendingChange
cmdlet and then adding it on the shelve by creating a shelveset for it using the
New-TfsShelveset cmdlet:

#checking out a file
PS C:\> Add-TfsPendingChange -Item $tfsItem -Edit

Version CreationDate ChangeType ServerItem
------- ---------- ---------- ----------
 65 1/1/0001 Edit $/Fabri.../contactUs.html
#creating a new shelveset
PS C:\> New-TfsShelveset -Item $tfsItem -Shelveset "shelveset 1"
-Comment "my first shelveset"

Name OwnerName CreationDate Comment
---- --------- ---------- -------
shelveset 1 VSALM\Brian 7/10/2013 my first shelveset
#getting shelveset information by shelveset name
PS C:\> Get-TfsShelveset -Shelveset "shelveset 1" -Server $tfsFFC

Name OwnerName CreationDate Comment
---- --------- ---------- -------
shelveset 1 VSALM\Brian 7/10/2013 my first shelveset

The following screenshot shows the shelveset that has been created:

Chapter 5

[115]

Now, you should be on a solid ground when it comes to TFS PowerShell cmdlets.
We have covered almost all the TFS cmdlets. However, you might feel that you
want to automate and script more features and tasks. In that case, you can use the
Team Foundation Server 2013 Object Model along with the skills gained from
Chapter 2, Unleashing Your Development Skills with PowerShell, of this book on how to
use PowerShell with .NET objects. Thus, the sky is the limit.

You can download the TFS 2013 Object Model using http://
visualstudiogallery.msdn.microsoft.com/3278bfa7-
64a7-4a75-b0da-ec4ccb8d21b6.
Also, you can download TFS 2012 Update 4 Object Model using
http://visualstudiogallery.msdn.microsoft.com/
f30e5cc7-036e-449c-a541-d522299445aa.

Summary
In this chapter, we have learned about Team Foundation Server 2013 Power Tools,
its components, and how to download and install it. We also learned about Windows
PowerShell snap-in and how to load the TFS Power Tools snap-in.
Finally, we discovered with examples the TFS PowerShell cmdlets and understood
their functionalities and ways to use them.

Index
Symbols
$Error variable 59
$LastExistCode variable 60
.NET framework types

extending 46
.NET objects

creating 44
extending 45
working with 44

A
Active Directory Services Interface (ADSI)

77
Add-Member cmdlet 45
Add-TfsPendingChange cmdlet 114
Add-User cmdlet 9
ad hoc remoting, PowerShell 65
aliases

using 17
Application Lifecycle Management

(ALM) 103
Application Programming Interface (API) 8
arithmetic operators 19
arrays 20
assembly file

used, for defining object type 46
assembly name

used, for defining object type 46

B
background job concept 13
Backup-Sqlcmd cmdlet 87
Backup SqlDatabase cmdlet 86
Best Practice Analyzer 103

binary module
about 50
creating 50-53

bitwise operators 20
breakpoints

about 57
command breakpoint 57
line breakpoint 57
variable breakpoint 57

C
changesets

managing 112, 113
CIM

about 32
features 35
in Windows PowerShell 32-35

CIM Object Manager (CIMOM) 35
Cloud 91
cmdlet 9
COM

used, for automating Internet Explorer 40,
41

used, for automating Microsoft Excel 42, 43
working with 39

command breakpoint 57
comments, PowerShell

multi-line block 26
single-line 26

Common Engineering Criteria (CEC)
program 9

Common Information Model (CIM) 31
Common Language Runtime (CLR) 8
common parameters, PowerShell

Confirm 29

[118]

Debug 29
ErrorAction 29
ErrorVariable 29
OutBuffer 29
OutVariable 29
Verbose 29
WarningAction 29
WarningVariable 29
WhatIf 29

COM object
instance, creating of 40

comparison operators 19
Component Object Model (COM) 8, 31
conditional execution 21
Connect-PSSession cmdlet 65
constrained runspaces 13
ConvertFrom-Json cmdlet 101
ConvertTo-Json cmdlet 100
ConvertTo-WebApplication cmdlet 82
ConvertTo-Xml cmdlet 39

D
data types

using 18, 19
Deployment Image Servicing and Manage-

ment (DISM) tools 76
Desired State Configuration (DSC) 14
Disable-PSBreakpoint cmdlet 57
Disable-PSRemoting cmdlet 64
Disable-WindowsOptioanlFeature cmdlet

76
Disconnect-PSSession cmdlet 65
Distributed Management Task Force

(DMTF) 32
Dynamic Language Runtime (DLR) 8
dynamic module 55

E
Enable-PSBreakpoint cmdlet 57
Enable-PSRemoting cmdlet 64
Enable-WindowsOptionalFeature cmdlet 76
Enter-PSSession cmdlet 64
error-handling 13
error handling techniques 59
execution, PowerShell Workflow

controlling 71, 72

inlineScript activity 70
parallel execution 69
sequential execution 68

Exit-PSSession cmdlet 65
Export-Alias cmdlet 18
Export-CliXml cmdlet 39
Export-ModuleMember cmdlet 49
Export-PSSession cmdlet 66
Extensible Markup Language (XML) 8

F
F12 developer tools 41
Facebook 100
features, Windows PowerShell

add-on tools 12
autosave 12
background job 13
cmdlets discovery 12
constrained runspaces 13
Desired State Configuration (DSC)

feature 14
error handling 13
modules auto-loading 12
Online and Updateable help 14
remoting feature 13
scheduled job 13
script debugging 13
Show-Command cmdlet 12
steppable pipeline 13
tab-expansion feature 14
Windows PowerShell Web Access 14
Windows PowerShell Web Service 14
Windows PowerShell Workflow 14

files
downloading, from Internet 96

Format-Table cmdlet 16
FTP site

creating 82
functions

about 23
syntax 23

fundamentals, Windows PowerShell
aliases 17
arrays 20
comments 26
common parameters 29

[119]

comparison operators 19
conditional execution 21
data types 18, 19
drives 24
functions 23
hash tables 20
help 26
logical operators 19
objects 15
pipelines 16
piping 16
providers 24
scripts files 25
scripts flow 21
variables 18, 19

G
GeoIP web service

about 92
using 92

Get-ChildItem cmdlet 17, 24
Get CimClass cmdlet 33, 109
Get-CimInstance cmdlet 34
Get-Command cmdlet 32
Get-Content cmdlet

about 36
using 36, 37

Get-EvenOrOdd cmdlet 50
GetGeoIPContext() method 92
Get-Help cmdlet 27, 107
Get-Item cmdlet 81
Get-ItemProperty cmdlet 109
Get-Job cmdlet 72
Get-Module cmdlet 47
Get-Process cmdlet 16, 27, 65
Get-Service cmdlet 9, 65, 70
Get-TfsChildItem cmdlet

about 108, 109
parameters 109

Get-TfsItemHistory cmdlet 108, 109
Get-TfsItemProperty cmdlet 108-110
Get-TfsServer cmdlet 106, 107
Get-TfsWorkspace cmdlet 106, 111
Get-WebConfigurationBackup cmdlet 83
Get-WindowsFeature cmdlet 73
Get-WindowsOptionalFeature cmdlet 76

Get-WmiObject cmdlet 34
Get-WmiObject -List cmdlet 33
GOOG 93
groups

listing 79
managing 76
user account, adding to 78
user account, removing from 78

GUI
building, with PowerShell 60

H
hash tables 20
Here-String 102

I
IIS web application

creating 82
IIS website

creating 81
implicit remoting, PowerShell 66
Import-Alias cmdlet 18
Import-CliXml cmdlet 39
Import-Module cmdlet 80
Import-PSSession cmdlet

parameters 66
inline C# class

used, for defining object type 46
inlineScript activity, PowerShell Workflow

70
Install WindowsFeature cmdlet

about 76
parameters 74

Install-WindowsFeature cmdlet 73
instance

creating, of COM object 40
Integrated Development Environment (IDE)

10
Integrated Scripting Environment

(ISE) 9, 10
interactive remoting, PowerShell 64, 65
Internet

files, downloading from 96
Internet Explorer

automating, with COM 40, 41
automating, with PowerShell 40, 41

[120]

Internet Explorer Object Model
URL 40

Invoke-RestMethod cmdlet 97
Invoke Sqlcmd cmdlet 86
Invoke-WebRequest cmdlet 94, 96
iterations statements 22

J
Java Script Object Notation. See JSON
JSON

about 99
working with 99

JSON format
objects, converting to 100

JSON, to PowerShell format
objects, converting from 101, 102

L
line breakpoint 57
Line of Business (LOB) applications 91
local user account

creating 77
modifying 78
removing 79

local users
managing 76

logical operators 19

M
manifest module 54
Microsoft CEC

URL 9
Microsoft Developers Network

(MSDN) 104
Microsoft Excel

automating, with COM 42, 43
automating, with PowerShell 42, 43

Microsoft Forefront Identity Management
(FIM) 67

Microsoft Visual 10
MSFT 93
multi-line block comment 26

N
New-Module cmdlet 55
New-ModuleManifest cmdlet 54
New-Object cmdlet 40, 46, 77
New-PSSession cmdlet 65
New-TfsShelveset cmdlet 114
New-WebApplication cmdlet 82
New-WebAppPool cmdlet 81
New-WebBinding cmdlet 83
New-WebFtpSite cmdlet 82
New-WebServiceProxy cmdlet 92
New-WebVirtualDirectory cmdlet 82

O
objects

converting, from JSON to PowerShell for-
mat 101, 102

converting, to JSON format 100
working with 15

object type
defining, assembly file used 46
defining, assembly name used 46
extending, inline C# class used 46

Online and Updateable help 14
Open Management Infrastructure (OMI) 35
operators, PowerShell

arithmetic 19
bitwise 20
comparison 19
logical 20
RegEx match 20
wildcard 20

Out-GridView cmdlet 98

P
parallel execution, PowerShell Workflow 69
pending changes

managing 112
persistent session, PowerShell 65
persistent workflows 73
pipeline 16
piping 16
PowerShell

GUI, building with 60

[121]

used, for automating Internet
Explorer 40, 41

used, for automating Microsoft Excel 42, 43
used, for creating workflow 68
used, for finding YouTube videos 97, 98
web cmdlets 92

PowerShell Provider
URL 84

PowerShell remoting 13
PowerShell Web Service (PSWS) 14
PowerShell workflow

executing 68
PowerShell Workflow

execution, controlling 71, 72
providers 24
PSBreakpoint cmdlets 56

R
Receive-Job cmdlet 72
RegEx match operator 20
Register CimIndicationEvent cmdlet 35
Register WmiEvent cmdlet 35
registry 24
Remove-CimInstance cmdlet 34
Remove-PSBreakpoint cmdlet 57
Remove-PSSession cmdlet 65
Remove-WebConfigurationBackup

cmdlet 84
Remove-WmiObject cmdlet 34
REST APIs (REpresentational State

Transfer)
using 97

Restart-Computer cmdlet 9
Restore SqlDatabase cmdlet 87
Resume-Job cmdlet 72
Rstore-Sqlcmd cmdlet 87

S
SAPIEN PowerShell Studio 61
scheduled job 13
script

debugging 58
script debugging 13, 56
script module

about 48
creating 48, 49

scripts files
working with 25, 26

Select-Object cmdlet 17, 38
Select-Xml cmdlet

about 36, 38
using 38

semicolon 19
sequential execution, PowerShell

Workflow 68
Server Management object (SMO) 87
Set-CimInstance cmdlet 34
Set-ExecutionPolicy cmdlet 26
Set-Item cmdlet 81
Set-Location cmdlet 24
Set-WebBinding cmdlet 83
Set WmiInstance cmdlet 34
shelvesets

managing 112, 114
Show-Command cmdlet 12
Simple Object Access Protocol (SOAP) 92
single-line comment 26
Sort-Object cmdlet 16, 17
SQL Server

about 84
and Windows PowerShell 84

SQL Server Management Studio (SSMS) 85
SQL Server PowerShell

launching, from SSMS 85
loading 85

SQL Server PowerShell module
importing 85

SQL Server Reporting Services (SSRS) 76
SQL Server scripting

SQL script, generating for database 87
SQL script, generating for stored

procedures 87
SQL script, generating for tables 87
SQL Server database, backing up 86
SQL Server database, restoring 87
T-SQL statement, executing 86
working with 86

SSMS
SQL Server PowerShell, launching from 85

steppable pipeline 13
Stock Quote web service

about 93
using 93

[122]

stock symbol 93

T
tab-expansion feature 14
Team Foundation Server. See TFS
Team Foundation Server 2013 Object Model

115
TF Command-Line Utility 106
TFS 103
TFS 2012 Update 4 Object Model

URL, for downloading 115
TFS 2013 Object Model

URL, for downloading 115
TFS information

retrieving 107, 108
TFS items' information

working with 108-110
TFS PowerShell cmdlets

about 105, 106
working with 107

TFS Power Tools 103, 104
TFS workspace

managing 111
T-SQL statement

executing 86
Twitter 100

U
Uninstall WindowsFeature cmdlet 76
Uninstall-WindowsFeature cmdlet 73
Update-TfsWorkspace cmdlet 112
user account

adding, to group 78
removing, from group 78

users
listing 79

V
Validate-EmailAddress cmdlet 50
variable breakpoint 57
variables

preferences settings 19
session configuration 19
using 18, 19

virtual directory
creating 82

virtual hard disk (VHD) 76
Visual Studio Gallery 104
Visual Studio Team Foundation Server 2012

Power Tools
URL 104

Visual Studio Team Foundation Server 2013
Power Tools

URL 104

W
web application pools

about 80
working with 81

Web-Based Enterprise Management
(WBEM) 32

web cmdlets, PowerShell 92
web configuration

backing up 83
restoring 83

web feeds
reading 99

web requests
working with 94, 95

web servers
managing 80

web services
GeoIPService 92
Stock Quote web service 93
working with 92

Web Services Description Language
(WSDL) 92

website binding
creating 83
modifying 83

Where-Object cmdlet 17
wildcard operators 20
Windows Management Framework

(WMF) 8
Windows Management Instrumentation

(WMI) 8, 31
Windows PowerShell

about 8
and SQL Server 84
existing groups, listing 79

[123]

existing local user account, modifying 78
existing local user account, removing 79
existing users, listing 79
features 12, 13
groups, managing 76
help, using 26, 28
local user account, creating 77
local users, managing 76
parameters 29
user account, adding to group 78
user account, removing from group 78
web servers, managing 80
working 73

Windows PowerShell console 10
Windows PowerShell consoles

about 9
Integrated Scripting Environment (ISE) 10

Windows PowerShell ISE 11
Windows PowerShell Modules

about 47
binary module 50
creating 48
dynamic module 55
manifest module 54
script module 48, 49

Windows PowerShell remoting
about 64
ad hoc remoting 65
implicit remoting 66
interactive remoting 64, 65
persistent session 65

Windows PowerShell snap-in 105
Windows PowerShell Web Access 14
Windows PowerShell Workflow

(PSW) 14, 67

Windows Presentation Foundation
(WPF) 12

Windows Remote Management
(WinRM) 8, 64

Windows Server
feature, installing 74
features, managing 73
features, uninstalling 76
roles, installing 74
roles, managing 73
roles, uninstalling 76

Windows Workflow Foundation (WF) 67
WMI

in Windows PowerShell 32-35
WMI Query Language. See WQL
workflow

creating, PowerShell used 68
WQL 34
WS-Management (WS-MAN) protocol 35

X
XML

working with 36
XML files

exporting 39
importing 39
loading 36

Y
YouTube videos

finding, PowerShell used 97, 98

Thank you for buying
Windows PowerShell 4.0 for .NET Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Windows Powershell
3.0 Windows Management
Instrumentation Starter
ISBN: 978-1-84968-962-5 Paperback: 66 pages

Explore new abilities of powershell 3.0 to interact
with Windows Management Instrumentation (WMI)
through the use of the new CIM cmdlets and realistic
management scenarios

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Create CIM sessions to local and remote
systems.

3. Execute WMI queries using Windows Remote
Management.

Instant Windows PowerShell
ISBN: 978-1-84968-874-1 Paperback: 54 pages

Manage and automate your Windows Server
Environment efficiently using PowerShell

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn to use PowerShell web access to secure
Windows management anywhere, any time, on
any device.

3. Understand to secure and sign the scripts
you write using the script signing feature in
PowerShell.

Please check www.PacktPub.com for information on our titles

Instant Windows PowerShell
Guide
ISBN: 978-1-84968-678-5 Paperback: 86 pages

Enhance your knowledge of Windows PowerShell
and get to grips with its latest features

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Understand new CMDLETs and parameters
with relevant examples.

 3. Discover new module functionality such as CIM,
Workflow, and DSC.

 4. Acquaint yourself with enhancements to
PowerShell remoting, PowerShell sessions, and
desire state configuration.

Microsoft Windows PowerShell
3.0 First Look
ISBN: 978-1-84968-644-0 Paperback: 200 pages

A quick, succinct guide to the new and exciting
features in PowerShell 3.0

1. Explore and experience the new features found
in PowerShell 3.0.

2. Understand the changes to the language and
the reasons why they were implemented.

3. Discover new cmdlets and modules available in
Windows 8 and Server 8.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Windows PowerShell
	Introducing Windows PowerShell
	Windows PowerShell consoles
	The Windows PowerShell console
	The Integrated Scripting Environment (ISE)

	The key features of Windows PowerShell
	PowerShell fundamentals – back to basics
	Working with objects
	Understanding the piping and pipelines
	Understanding and using aliases
	Using variables and data types
	Comparison and logical operators
	Working with arrays and hash tables
	Script flow and execution control
	Conditional execution
	Iterations statements

	Using functions
	Understanding providers and drives
	Working with script files
	Comments in PowerShell
	Using help in Windows PowerShell
	PowerShell's common parameters

	Summary

	Chapter 2: Unleashing Your Development Skills with PowerShell
	Understanding CIM and WMI
	CIM and WMI in Windows PowerShell
	More reasons to adopt CIM

	Working with XML
	Loading XML files
	Using the Get-Content cmdlet
	Using the Select-Xml cmdlet

	Importing and exporting XML files

	Working with COM
	Creating an instance of a COM object
	Automating Internet Explorer with COM and PowerShell
	Automating Microsoft Excel with COM and PowerShell

	Working with .NET objects
	Creating .NET objects
	Extending .NET objects
	Extending .NET framework types
	Defining the object type using an inline C# class
	Defining an object type using an assembly name
or file

	Understanding Windows PowerShell Modules
	Creating Windows PowerShell Modules
	The script modules
	The binary modules
	Creating your first binary module

	The manifest modules
	The dynamic modules

	Script debugging and error handling
	Working with breakpoints
	Debugging your script
	Error-handling techniques
	The $Error and $LastExistCode variables

	Building GUI with PowerShell
	Summary

	Chapter 3: PowerShell for Your Daily Administration Tasks
	Windows PowerShell remoting
	Four different ways of using remoting
	Interactive remoting
	Ad hoc remoting
	Persistent session
	Implicit remoting

	Windows PowerShell Workflow (PSW)
	Creating a workflow using PowerShell
	Executing a PowerShell Workflow
	Sequential execution
	Parallel execution
	InlineScript activity

	Controlling the PowerShell workflow execution
	Persistent workflows

	Windows PowerShell in action
	Working with Windows roles and features
	Installing Windows roles and features
	Uninstalling Windows roles and features

	Managing local users and groups
	Creating a new local user account
	Modifying an existing local user account
	Adding and removing a user account to and from a group
	Listing all the existing users and groups

	Managing web servers – IIS
	Working with web application pools
	Creating a new website
	Creating a new virtual directory
	Creating a new web application
	Creating an FTP site
	Creating and modifying an existing website binding
	Backing up and restoring the web configuration

	SQL Server and Windows PowerShell
	Loading SQL Server PowerShell
	Working with the SQL Server scripting

	Summary

	Chapter 4: PowerShell and Web Technologies
	Web cmdlets in PowerShell
	Working with web services
	Example 1 – using the GeoIPService web service
	Example 2 – using the Stock Quote web service

	Working with web requests
	Example 1 – downloading files from the Internet

	Using REST APIs
	Example 1 – finding YouTube videos using PowerShell
	Example 2 – reading web feeds

	Working with JSON
	Example 1 – converting objects into the JSON format
	Example 2 – converting objects from JSON to the PowerShell format

	Summary

	Chapter 5: PowerShell and Team Foundation Server
	TFS Power Tools
	Getting started with TFS PowerShell cmdlets
	Working with TFS PowerShell cmdlets
	Retrieving TFS information
	Working with TFS items' information
	Managing TFS workspace
	Managing changesets, shelvesets, and pending changes

	Summary

	Index

