
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Windows PowerShell Cookbook

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SECOND EDITION

Windows PowerShell Cookbook

Lee Holmes

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Windows PowerShell Cookbook, Second Edition
by Lee Holmes

Copyright © 2010 Lee Holmes. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Hendrickson
Production Editor: Teresa Elsey
Copyeditor: Genevieve d’Entremont
Proofreader: Teresa Elsey

Indexer: Newgen North America, Inc.
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2007: First Edition.
August 2010: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Windows PowerShell Cookbook, the image of a box turtle, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80150-2

[M]

1281554603

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Foreword . xvii

Foreword to the First Edition . xxi

Preface . xxv

Part I. Tour

A Guided Tour of Windows PowerShell . 3

Part II. Fundamentals

1. The Windows PowerShell Interactive Shell . 19
1.1 Run Programs, Scripts, and Existing Tools 19
1.2 Resolve Errors Calling Native Executables 21
1.3 Run a PowerShell Command 23
1.4 Invoke a Long-Running or Background Command 24
1.5 Notify Yourself of Job Completion 27
1.6 Customize Your Shell, Profile, and Prompt 28
1.7 Find a Command to Accomplish a Task 31
1.8 Get Help on a Command 32
1.9 Program: Search Help for Text 34

1.10 Program: View PowerShell’s HTML Help 36
1.11 Launch PowerShell at a Specific Location 37
1.12 Invoke a PowerShell Command or Script from Outside PowerShell 38
1.13 Customize the Shell to Improve Your Productivity 40
1.14 Program: Learn Aliases for Common Commands 42
1.15 Program: Learn Aliases for Common Parameters 44
1.16 Access and Manage Your Console History 46
1.17 Program: Create Scripts from Session History 48

v

www.allitebooks.com

http://www.allitebooks.org

1.18 Invoke a Command from Your Session History 49
1.19 Program: Search Formatted Output for a Pattern 51
1.20 Interactively View and Process Command Output 52
1.21 Store the Output of a Command into a File 54
1.22 Add Information to the End of a File 55
1.23 Record a Transcript of Your Shell Session 55
1.24 Extend Your Shell with Additional Commands 56
1.25 Use Commands from Customized Shells 57
1.26 Save State Between Sessions 59

2. Pipelines . 63
2.1 Filter Items in a List or Command Output 64
2.2 Group and Pivot Data by Name 65
2.3 Program: Simplify Most Where-Object Filters 68
2.4 Program: Interactively Filter Lists of Objects 70
2.5 Work with Each Item in a List or Command Output 72
2.6 Automate Data-Intensive Tasks 74
2.7 Program: Simplify Most Foreach-Object Pipelines 78
2.8 Intercept Stages of the Pipeline 80
2.9 Automatically Capture Pipeline Output 81

2.10 Capture and Redirect Binary Process Output 83

3. Variables and Objects . 89
3.1 Display the Properties of an Item as a List 90
3.2 Display the Properties of an Item as a Table 92
3.3 Store Information in Variables 94
3.4 Access Environment Variables 95
3.5 Program: Retain Changes to Environment Variables Set by a Batch

File 98
3.6 Control Access and Scope of Variables and Other Items 100
3.7 Program: Create a Dynamic Variable 102
3.8 Work with .NET Objects 104
3.9 Create an Instance of a .NET Object 108

3.10 Program: Create Instances of Generic Objects 110
3.11 Reduce Typing for Long Class Names 113
3.12 Use a COM Object 115
3.13 Learn About Types and Objects 115
3.14 Get Detailed Documentation About Types and Objects 117
3.15 Add Custom Methods and Properties to Objects 119
3.16 Create and Initialize Custom Objects 121
3.17 Add Custom Methods and Properties to Types 125

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

4. Looping and Flow Control . 131
4.1 Make Decisions with Comparison and Logical Operators 131
4.2 Adjust Script Flow Using Conditional Statements 133
4.3 Manage Large Conditional Statements with Switches 135
4.4 Repeat Operations with Loops 136
4.5 Add a Pause or Delay 139

5. Strings and Unstructured Text . 141
5.1 Create a String 141
5.2 Create a Multiline or Formatted String 143
5.3 Place Special Characters in a String 144
5.4 Insert Dynamic Information in a String 144
5.5 Prevent a String from Including Dynamic Information 146
5.6 Place Formatted Information in a String 147
5.7 Search a String for Text or a Pattern 148
5.8 Replace Text in a String 151
5.9 Split a String on Text or a Pattern 152

5.10 Combine Strings into a Larger String 154
5.11 Convert a String to Upper/Lowercase 156
5.12 Trim a String 157
5.13 Format a Date for Output 158
5.14 Program: Convert Text Streams to Objects 160
5.15 Generate Large Reports and Text Streams 164
5.16 Generate Source Code and Other Repetitive Text 166

6. Calculations and Math . 171
6.1 Perform Simple Arithmetic 171
6.2 Perform Complex Arithmetic 173
6.3 Measure Statistical Properties of a List 175
6.4 Work with Numbers as Binary 177
6.5 Simplify Math with Administrative Constants 180
6.6 Convert Numbers Between Bases 181

7. Lists, Arrays, and Hashtables . 183
7.1 Create an Array or List of Items 183
7.2 Create a Jagged or Multidimensional Array 185
7.3 Access Elements of an Array 186
7.4 Visit Each Element of an Array 188
7.5 Sort an Array or List of Items 189
7.6 Determine Whether an Array Contains an Item 190
7.7 Combine Two Arrays 191
7.8 Find Items in an Array That Match a Value 192
7.9 Compare Two Lists 193

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

7.10 Remove Elements from an Array 193
7.11 Find Items in an Array Greater or Less Than a Value 194
7.12 Use the ArrayList Class for Advanced Array Tasks 195
7.13 Create a Hashtable or Associative Array 197
7.14 Sort a Hashtable by Key or Value 198

8. Utility Tasks . 201
8.1 Get the System Date and Time 201
8.2 Measure the Duration of a Command 202
8.3 Read and Write from the Windows Clipboard 203
8.4 Generate a Random Number or Object 206
8.5 Program: Search the Windows Start Menu 208
8.6 Program: Show Colorized Script Content 209

Part III. Common Tasks

9. Simple Files . 217
9.1 Get the Content of a File 217
9.2 Search a File for Text or a Pattern 219
9.3 Parse and Manage Text-Based Logfiles 222
9.4 Parse and Manage Binary Files 224
9.5 Create a Temporary File 227
9.6 Search and Replace Text in a File 228
9.7 Program: Get the Encoding of a File 231
9.8 Program: View the Hexadecimal Representation of Content 233

10. Structured Files . 237
10.1 Access Information in an XML File 237
10.2 Perform an XPath Query Against XML 240
10.3 Convert Objects to XML 242
10.4 Modify Data in an XML File 243
10.5 Easily Import and Export Your Structured Data 245
10.6 Store the Output of a Command in a CSV or Delimited File 247
10.7 Import CSV and Delimited Data from a File 248
10.8 Use Excel to Manage Command Output 249
10.9 Parse and Interpret PowerShell Scripts 251

11. Code Reuse . 255
11.1 Write a Script 255
11.2 Write a Function 258
11.3 Find a Verb Appropriate for a Command Name 260
11.4 Write a Script Block 261

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

11.5 Return Data from a Script, Function, or Script Block 263
11.6 Package Common Commands in a Module 265
11.7 Write Commands That Maintain State 268
11.8 Selectively Export Commands from a Module 270
11.9 Diagnose and Interact with Internal Module State 272

11.10 Handle Cleanup Tasks When a Module Is Removed 274
11.11 Access Arguments of a Script, Function, or Script Block 276
11.12 Add Validation to Parameters 280
11.13 Accept Script Block Parameters with Local Variables 284
11.14 Dynamically Compose Command Parameters 286
11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features 287
11.16 Add Help to Scripts or Functions 290
11.17 Add Custom Tags to a Function or Script Block 292
11.18 Access Pipeline Input 295
11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords 296
11.20 Write a Pipeline-Oriented Function 300
11.21 Organize Scripts for Improved Readability 301
11.22 Invoke Dynamically Named Commands 303
11.23 Program: Enhance or Extend an Existing Cmdlet 304

12. Internet-Enabled Scripts . 313
12.1 Download a File from the Internet 313
12.2 Download a Web Page from the Internet 314
12.3 Program: Get-PageUrls 318
12.4 Connect to a Web Service 321
12.5 Program: Connect-WebService 323
12.6 Export Command Output as a Web Page 326
12.7 Send an Email 327
12.8 Program: Send-MailMessage 328
12.9 Program: Interact with Internet Protocols 329

13. User Interaction . 335
13.1 Read a Line of User Input 335
13.2 Read a Key of User Input 336
13.3 Program: Display a Menu to the User 337
13.4 Display Messages and Output to the User 339
13.5 Provide Progress Updates on Long-Running Tasks 342
13.6 Write Culture-Aware Scripts 344
13.7 Support Other Languages in Script Output 347
13.8 Program: Invoke a Script Block with Alternate Culture Settings 349
13.9 Access Features of the Host’s User Interface 350

13.10 Program: Add a Graphical User Interface to Your Script 352
13.11 Interact with UI Frameworks and STA Objects 355

Table of Contents | ix

14. Debugging . 359
14.1 Prevent Common Scripting Errors 360
14.2 Trace Script Execution 362
14.3 Set a Script Breakpoint 365
14.4 Debug a Script When It Encounters an Error 368
14.5 Create a Conditional Breakpoint 370
14.6 Investigate System State While Debugging 372
14.7 Program: Watch an Expression for Changes 375
14.8 Program: Get Script Code Coverage 377

15. Tracing and Error Management . 381
15.1 Determine the Status of the Last Command 381
15.2 View the Errors Generated by a Command 383
15.3 Manage the Error Output of Commands 385
15.4 Program: Resolve an Error 386
15.5 Configure Debug, Verbose, and Progress Output 387
15.6 Handle Warnings, Errors, and Terminating Errors 389
15.7 Output Warnings, Errors, and Terminating Errors 392
15.8 Program: Analyze a Script’s Performance Profile 393

16. Environmental Awareness . 399
16.1 View and Modify Environment Variables 399
16.2 Access Information About Your Command’s Invocation 401
16.3 Program: Investigate the InvocationInfo Variable 403
16.4 Find Your Script’s Name 405
16.5 Find Your Script’s Location 406
16.6 Find the Location of Common System Paths 407
16.7 Get the Current Location 409
16.8 Safely Build File Paths Out of Their Components 411
16.9 Interact with PowerShell’s Global Environment 411

16.10 Determine PowerShell Version Information 412

17. Extend the Reach of Windows PowerShell . 415
17.1 Automate Programs Using COM Scripting Interfaces 415
17.2 Program: Query a SQL Data Source 416
17.3 Access Windows Performance Counters 419
17.4 Access Windows API Functions 422
17.5 Program: Invoke Simple Windows API Calls 428
17.6 Define or Extend a .NET Class 431
17.7 Add Inline C# to Your PowerShell Script 434
17.8 Access a .NET SDK Library 436
17.9 Create Your Own PowerShell Cmdlet 438

17.10 Add PowerShell Scripting to Your Own Program 440

x | Table of Contents

18. Security and Script Signing . 445
18.1 Enable Scripting Through an Execution Policy 446
18.2 Disable Warnings for UNC Paths 449
18.3 Sign a PowerShell Script, Module, or Formatting File 450
18.4 Program: Create a Self-Signed Certificate 452
18.5 Manage PowerShell Security in an Enterprise 453
18.6 Block Scripts by Publisher, Path, or Hash 455
18.7 Verify the Digital Signature of a PowerShell Script 457
18.8 Securely Handle Sensitive Information 458
18.9 Securely Request Usernames and Passwords 460

18.10 Program: Start a Process as Another User 461
18.11 Program: Run a Temporarily Elevated Command 463
18.12 Securely Store Credentials on Disk 465
18.13 Access User and Machine Certificates 467
18.14 Program: Search the Certificate Store 468
18.15 Add and Remove Certificates 470
18.16 Manage Security Descriptors in SDDL Form 471

19. Integrated Scripting Environment . 473
19.1 Debug a Script 475
19.2 Customize Text and User Interface Colors 477
19.3 Connect to a Remote Computer 479
19.4 Extend ISE Functionality Through Its Object Model 479
19.5 Add an Item to the Tools Menu 481

Part IV. Administrator Tasks

20. Files and Directories . 485
20.1 Determine the Current Location 486
20.2 Get the Files in a Directory 487
20.3 Find All Files Modified Before a Certain Date 488
20.4 Clear the Content of a File 489
20.5 Manage and Change the Attributes of a File 490
20.6 Find Files That Match a Pattern 491
20.7 Manage Files That Include Special Characters 494
20.8 Program: Get Disk Usage Information 495
20.9 Monitor a File for Changes 497

20.10 Get the Version of a DLL or Executable 497
20.11 Program: Get the MD5 or SHA1 Hash of a File 498
20.12 Create a Directory 501
20.13 Remove a File or Directory 502
20.14 Rename a File or Directory 502

Table of Contents | xi

20.15 Move a File or Directory 504
20.16 Program: Move or Remove a Locked File 504
20.17 Get the ACL of a File or Directory 506
20.18 Set the ACL of a File or Directory 508
20.19 Program: Add Extended File Properties to Files 509
20.20 Program: Create a Filesystem Hard Link 511
20.21 Program: Create a ZIP Archive 513

21. The Windows Registry . 517
21.1 Navigate the Registry 517
21.2 View a Registry Key 518
21.3 Modify or Remove a Registry Key Value 519
21.4 Create a Registry Key Value 520
21.5 Remove a Registry Key 521
21.6 Safely Combine Related Registry Modifications 522
21.7 Add a Site to an Internet Explorer Security Zone 524
21.8 Modify Internet Explorer Settings 526
21.9 Program: Search the Windows Registry 527

21.10 Get the ACL of a Registry Key 529
21.11 Set the ACL of a Registry Key 530
21.12 Work with the Registry of a Remote Computer 531
21.13 Program: Get Registry Items from Remote Machines 533
21.14 Program: Get Properties of Remote Registry Keys 535
21.15 Program: Set Properties of Remote Registry Keys 537
21.16 Discover Registry Settings for Programs 539

22. Comparing Data . 543
22.1 Compare the Output of Two Commands 543
22.2 Determine the Differences Between Two Files 545
22.3 Verify Integrity of File Sets 545

23. Event Logs . 549
23.1 List All Event Logs 549
23.2 Get the Newest Entries from an Event Log 551
23.3 Find Event Log Entries with Specific Text 552
23.4 Retrieve and Filter Event Log Entries 553
23.5 Find Event Log Entries by Their Frequency 556
23.6 Back Up an Event Log 558
23.7 Create or Remove an Event Log 560
23.8 Write to an Event Log 561
23.9 Run a PowerShell Script for Windows Event Log Entries 562

23.10 Clear or Maintain an Event Log 563
23.11 Access Event Logs of a Remote Machine 565

xii | Table of Contents

24. Processes . 569
24.1 List Currently Running Processes 570
24.2 Launch the Application Associated with a Document 571
24.3 Launch a Process 572
24.4 Stop a Process 573
24.5 Debug a Process 575

25. System Services . 577
25.1 List All Running Services 577
25.2 Manage a Running Service 579
25.3 Configure a Service 580

26. Active Directory . 581
26.1 Test Active Directory Scripts on a Local Installation 582
26.2 Create an Organizational Unit 585
26.3 Get the Properties of an Organizational Unit 586
26.4 Modify Properties of an Organizational Unit 587
26.5 Delete an Organizational Unit 587
26.6 Get the Children of an Active Directory Container 588
26.7 Create a User Account 589
26.8 Program: Import Users in Bulk to Active Directory 590
26.9 Search for a User Account 592

26.10 Get and List the Properties of a User Account 593
26.11 Modify Properties of a User Account 594
26.12 Change a User Password 594
26.13 Create a Security or Distribution Group 595
26.14 Search for a Security or Distribution Group 596
26.15 Get the Properties of a Group 597
26.16 Find the Owner of a Group 598
26.17 Modify Properties of a Security or Distribution Group 599
26.18 Add a User to a Security or Distribution Group 600
26.19 Remove a User from a Security or Distribution Group 600
26.20 List a User’s Group Membership 601
26.21 List the Members of a Group 602
26.22 List the Users in an Organizational Unit 602
26.23 Search for a Computer Account 603
26.24 Get and List the Properties of a Computer Account 604

27. Enterprise Computer Management . 607
27.1 Join a Computer to a Domain or Workgroup 607
27.2 Remove a Computer from a Domain 608
27.3 Program: List Logon or Logoff Scripts for a User 609
27.4 Program: List Startup or Shutdown Scripts for a Machine 610

Table of Contents | xiii

27.5 Deploy PowerShell-Based Logon Scripts 612
27.6 Enable or Disable the Windows Firewall 612
27.7 Open or Close Ports in the Windows Firewall 613
27.8 Program: List All Installed Software 614
27.9 Uninstall an Application 616

27.10 Manage Computer Restore Points 617
27.11 Reboot or Shut Down a Computer 619
27.12 Determine Whether a Hotfix Is Installed 620
27.13 Manage Scheduled Tasks on a Computer 621
27.14 Retrieve Printer Information 622
27.15 Retrieve Printer Queue Statistics 623
27.16 Manage Printers and Print Queues 624
27.17 Program: Summarize System Information 626
27.18 Renew a DHCP Lease 627
27.19 Assign a Static IP Address 629
27.20 List All IP Addresses for a Computer 630
27.21 List Network Adapter Properties 631

28. Windows Management Instrumentation . 633
28.1 Access Windows Management Instrumentation Data 635
28.2 Modify the Properties of a WMI Instance 637
28.3 Invoke a Method on a WMI Class 639
28.4 Program: Determine Properties Available to WMI Filters 640
28.5 Program: Search for WMI Classes 642
28.6 Use .NET to Perform Advanced WMI Tasks 645
28.7 Improve the Performance of Large-Scale WMI Operations 646
28.8 Convert a VBScript WMI Script to PowerShell 647

29. Remoting . 651
29.1 Find Commands That Support Their Own Remoting 652
29.2 Program: Invoke a PowerShell Expression on a Remote Machine 653
29.3 Test Connectivity Between Two Computers 656
29.4 Limit Networking Scripts to Hosts That Respond 658
29.5 Enable PowerShell Remoting on a Computer 659
29.6 Enable Remote Desktop on a Computer 661
29.7 Program: Remotely Enable PowerShell Remoting 662
29.8 Configure User Permissions for Remoting 664
29.9 Enable Remoting to Workgroup Computers 665

29.10 Interactively Manage a Remote Computer 667
29.11 Invoke a Command on a Remote Computer 669
29.12 Implicitly Invoke Commands from a Remote Computer 673
29.13 Create Sessions with Full Network Access 676
29.14 Pass Variables to Remote Sessions 680

xiv | Table of Contents

29.15 Configure Advanced Remoting Options 681
29.16 Invoke a Command on Many Computers 683
29.17 Run a Local Script on a Remote Computer 684
29.18 Program: Transfer a File to a Remote Computer 685
29.19 Determine Whether a Script Is Running on a Remote Computer 688
29.20 Program: Create a Task-Specific Remoting Endpoint 688

30. Transactions . 693
30.1 Safely Experiment with Transactions 695
30.2 Change Error Recovery Behavior in Transactions 697

31. Event Handling . 699
31.1 Respond to Automatically Generated Events 700
31.2 Create and Respond to Custom Events 703
31.3 Create a Temporary Event Subscription 706
31.4 Forward Events from a Remote Computer 707
31.5 Investigate Internal Event Action State 708
31.6 Use a Script Block as a .NET Delegate or Event Handler 710

Part V. References

A. PowerShell Language and Environment . 715

B. Regular Expression Reference . 765

C. XPath Quick Reference . 773

D. .NET String Formatting . 777

E. .NET DateTime Formatting . 781

F. Selected .NET Classes and Their Uses . 787

G. WMI Reference . 795

H. Selected COM Objects and Their Uses . 803

I. Selected Events and Their Uses . 807

J. Standard PowerShell Verbs . 815

Table of Contents | xv

Index . 821

xvi | Table of Contents

Foreword

As someone who has written, or contributed to, more than a dozen books, I am well
aware of the incredible amount of work and monumental commitment of time and
resources involved with writing a book. That someone would choose to do this at
essentially the same time one is burning the midnight oil while developing one of the
most exciting products in Microsoft’s history bespeaks a most committed person.
However, more than simple commitment is involved. From my conversations with Lee,
I can tell that he is passionate about Windows PowerShell. He sees the revolutionary
changes introduced with the 2.0 release of the product. If Windows PowerShell 1.0 was
the concept, Windows PowerShell 2.0 is the answer. If Windows PowerShell 1.0 was
the vision, Windows PowerShell 2.0 is the reality. If Windows PowerShell 1.0 was for
early adopters, Windows PowerShell 2.0 is moving into the mainstream.

With the inclusion of Windows PowerShell 2.0 in Windows 7 and Windows Server
2008 R2, we are beginning to see the commitment Microsoft is making to the product.
That the SharePoint, SQL, Exchange, Active Directory Domain Services (AD DS), In-
ternet Information Server (IIS) teams, and others have all made cmdlets should tell you
that Windows PowerShell is not a passing fad. Windows PowerShell questions are
already cropping up on Microsoft Certification Examinations, and as a network ad-
ministrator or a consultant, you will need to learn Windows PowerShell.

Learning Windows PowerShell need not be tedious, boring, or exhausting. In fact, you
will be joining a community that is at least as passionate about Windows PowerShell
as Lee (or the rest of the Windows PowerShell team) or me (I write the Hey, Scripting
Guy! blog seven days a week—the only Microsoft blog updated daily, by the way).
What other product from Microsoft has inspired a half dozen songs to be written about
it? Not by the marketing department, but by people who fell in love with Windows
PowerShell, or, better yet, to use the community term: became addicted.

I attended a recent SQL Saturday in Charlotte, North Carolina, because I wanted to
meet and interact with members of the Windows PowerShell community. That is right:
there is a huge group of hardcore SQL administrators who are adopting Windows
PowerShell because of its cool server management capabilities. In addition, a project
known as the SQL Server PowerShell Extensions (SQLPSX) module (available from
CodePlex) has wrapped much of the SQL Management Objects (SMO) into more than

xvii

130 useful functions. This provides ease of use for people who are not experts with
SQL SMO and Windows PowerShell. By leveraging modules, the community is taking
advantage of one of the great new features of Windows PowerShell 2.0. In fact, there
are more than 200 Windows PowerShell projects on CodePlex. One person presenting
at SQL Saturday declared that the active Windows PowerShell community was one of
the great strengths of Windows PowerShell. You are not alone when it comes to learning
and implementing Windows PowerShell.

I do not own every Windows PowerShell book ever written. I have probably looked at
most Windows PowerShell books, but I found some of them redundant and some
others confusing. However, a few of the Windows PowerShell books are essential. Lee’s
1.0 version of this book fell into that category. I keep it within arm’s length of my desk
and grab it often. I have highlighted certain sections, dog-eared others, and placed
sticky tabs on the more essential pages. Over the last couple years, Lee’s Windows
PowerShell Cookbook has grown to look more like a skinny porcupine on a bad hair
day than a typical scripting book—and that is a good thing, because his book is not a
typical scripting book; it is a cookbook. Just like a “real cookbook” that contains recipes
for meals, this fascinating volume is what I find myself thumbing through when I am
hungry to try something new with Windows PowerShell.

In reviewing Lee’s upgraded Windows PowerShell Cookbook, I see that I will not be
placed on a diet of “foo” and “bar”; instead, there are tasty morsels such as Get-
PageUrls, a way-cool script that illustrates using regular expressions to extract URLs
from a downloaded web page. It even fixes relative URLs so that they include the server
from which they originated. All this happens faster than you can say “super useful”
three times.

I found Chapter 14 on debugging to be well worth a careful read. Lee has a number of
really good points, the premier one being: do not make the mistake in the first place.
This echoes my own best practice. Of course, mistakes are made, errors are introduced,
and that is when the debugger commands are called upon. Windows PowerShell 2.0
ships with some great debugging cmdlets, and Lee has some extremely cool scripts to
simplify the process, or at least to reduce some of the tedium. I really like the Watch-
Expression script because it automatically displays the values of expressions you wish
to track.

If Chapter 14 is worth a careful read, Chapter 18 is worth a sticky tab because you will
find yourself coming back to it often. Security and script signing is a subject of much
debate in the Windows PowerShell community. You will want to hear about security
from the horse’s mouth. A common question I hear when giving presentations on
Windows PowerShell is “How can I invoke a command as another user without switch-
ing contexts?” The genesis of this question is, of course, the Unix sudo command. Lee
has a useful script named Invoke-ElevatedCommand that allows you to accomplish this
task. Most excellent.

xviii | Foreword

www.allitebooks.com

http://www.allitebooks.org

One other thing you need to read about is the Windows PowerShell Integrated Scripting
Environment (ISE), in Chapter 19. A common request for years was for Microsoft to
write a script editor. For years, I have been telling people we did write a script editor—
Notepad. The Windows PowerShell ISE is much better than Notepad. Not only is the
Windows PowerShell ISE a great script editor in its own right, but the Windows
PowerShell team also exposed an object model that allows you to modify its behavior
and to configure it to work in the way you wish to work. Lee has a whole section in
Chapter 19 that talks about the ISE and how to modify it.

Working with files, directories, the registry, services, processes, WMI, remoting, trans-
actions, and event handling—it is all in this book. I am not going to go over all that,
because I do not want to spoil the plot. Suffice it to say that once this book sees print,
it will rapidly join its dog-eared younger brother in that small collection of Windows
PowerShell books that I consider essential.

—Ed Wilson
Microsoft Scripting Guy and author of Windows PowerShell 2.0 Best Practices

Foreword | xix

Foreword to the First Edition

When Lee asked me to write the foreword to his new book I was pleasantly surprised.
I was under the impression that forewords were written by people who were respected
and accomplished in their chosen field. Apparently, that isn’t the case at all. My closest
brush with accomplishment and respect came at a New Year’s celebration long ago and
involved hairspray and a butane lighter. I guess it doesn’t matter too much—I mean,
who reads the foreword to a scripting book anyway, right?

Lee wanted one of the Microsoft Scripting Guys to write the foreword. He wrote this
book for the same hard-working admin scripters who frequent the TechNet Script
Center. Lee thought it would make sense to have an original member of that team
provide some perspective on where Windows admin scripting has been and where,
with Windows PowerShell, it is going.

A lot has happened since Lee and I first spoke about this. I’ve left the Microsoft Scripting
Guys team to work on the WMI SDK, and the Scripting Guys name has become a bit
of a joke, given that the current driving force behind the team is a slight, half-sandwich-
eating lady named Jean Ross. For now, Jean is keeping Greg around to do menial labor
like packing up and shipping Dr. Scripto bobblehead dolls, but we’ll just see what
happens when he finally runs out of topics for his Hey, Scripting Guy column. The
future of scripting could very well be The Scripting Girl.

Glue, Enablers, and a WSH
Whenever I think “perspective” and “scripting”—which is far too often—I think Bob
Wells. Bob takes his scripting very seriously and has been promoting it inside and
outside of Microsoft for years. When I joined the Scripting Guys team, Bob would
preach to me about “glue” and “enablers.” It took some time before I understood why
he was talking about it so often and why finding just the right term for enablers was so
important to him. I now know that it’s because crisply defining these two concepts
establishes a simple, useful framework in which to think about admin scripting. The
glue part is the scripting language itself—the foreachs, ifs, and vars.

xxi

It’s what you use to orchestrate, or glue together, the set of subtasks you need to do to
complete a larger task. The enablers (and, no, we never came up with a better term for
them) are the instruments that actually accomplish each of the subtasks.

This table lists the glue and enablers that we, as Windows scripters, have had available
to us over the years.

Glue Enabler

Cmd.exe batch language Command-line tools (OS, ResKit, Support Tools)

WSH Command-line tools (OS, ResKit, Support Tools)

Automation-enabled COM objects (WMI, ADSI)

Windows PowerShell Command-line tools (OS, ResKit, Support Tools)

Automation-enabled COM objects (WMI, ADSI)

.NET Framework Class Library

Notice how each new environment lets you work with the enablers of the previous
environment. This is important because it lets you carry forward your hard-earned
knowledge. Objectively, we can say that WSH scripting is more powerful than batch
scripting because it provides access to more enablers. You can automate more tasks
because you have access to the additional functionality exposed by automatable COM
objects. Less objectively, you could argue that even if you’re only going to use
command-line tools as enablers, WSH is a better choice than batch because it provides
some really useful glue functionality; advances in available enablers make more things
possible while advances in glue (sometimes) make things more convenient.

WSH scripting is a pretty capable environment. The WMI and ADSI COM libraries
alone provide admins around the world with countless cycles of pain and elation. But
there’s always that pesky task that you just can’t do with WSH, or that requires you to
download a tool from some strangely named website at 2 a.m., when you really
shouldn’t be making decisions about what to install on your production servers. If only
VBScript included the infamous Win32 API among its enablers, then, like those strange
creatures known as developers, you could do anything.

Well, in developer land these days, the .NET Framework Class Library (FCL) is the
new Win32 API. So, what we really need is a scripting environment that includes the
FCL as an enabler. That’s exactly what Windows PowerShell does. In fact, Windows
PowerShell runs in the same environment as that library and, as a result, works seam-
lessly with it. I read a lot of press about the object-pipelining capabilities of Windows
PowerShell. Those capabilities are very cool and represent an excellent advance in the
glue department—an advance that certainly makes working with the FCL more natural.
But the addition of the FCL as an enabler is the thing that makes Jeffrey et al.’s creation
objectively more powerful than WSH. And even if you don’t run into anything in the
FCL that you need right away, it’s comforting to know that when you make an

xxii | Foreword to the First Edition

investment and develop expertise in this latest environment, you gain access to all the
enablers that your developer counterparts currently have or will have in the foreseeable
future. It should also be comforting to know that if you spend the time to learn Win-
dows PowerShell, that knowledge should last you as long as the .NET Framework lasts
Microsoft.

Windows PowerShell follows in the tradition of WSH by improving on the glue aspect
of its predecessor. One of the real pain points of working with COM objects in WSH
was finding out what properties and methods were available. Unless you shelled out
the bucks for a smart editor, you lost a lot of productivity context switching from writing
a script and consulting documentation. Not so when working with objects in Windows
PowerShell. Type this at a Windows PowerShell prompt:

$objShell = New-Object -com Shell.Application
$objShell | Get-Member

It does a scripter good, does it not?

That Lee Guy
Hopefully my rambling has convinced you that Windows PowerShell is a good thing
and that it’s worth your time to learn it. Now, why do I think you should learn it by
buying and reading this book?

First off, I should tell you that the Windows PowerShell team is a bunch of odd
ducks.* These folks are obsessed. From Jeffrey Snover on down, they are incredible
teachers who love and believe in their technology so much that it’s difficult to stop them
from teaching you! Even among that bunch of quackers, Lee stands out. Have you ever
heard the sound an Exchange server makes when it cringes? Well, ours cringe when
Lee comes to work and starts answering questions on our internal Windows PowerShell
mailing list. Lee has amassed unique knowledge about how to leverage Windows
PowerShell to address problems that arise in the real world. And he and O’Reilly have
done us a great service by capturing and sharing some of that knowledge in this book.

Windows system admin scripters are the coolest people on the planet. It continues to
be a pleasure to work for you, and I sincerely hope you enjoy the book.

—Dean Tsaltas
Microsoft Scripting Guy Emeritus

* Canadian ducks (Canuck ducks) in many cases.

Foreword to the First Edition | xxiii

Preface

In late 2002, Slashdot posted a story about a “next-generation shell” rumored to be in
development at Microsoft. As a longtime fan of the power unlocked by shells and their
scripting languages, the post immediately captured my interest. Could this shell provide
the command-line power and productivity I’d long loved on Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced Microsoft Mystery. The post talked about
strong integration with the .NET Framework, so I posted a query to an internal C#
mailing list. I got a response that the project was called “Monad,” which I then used
to track down an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until your
previous commands and output scroll out of view! But even at these early stages, it was
immediately clear that Monad marked a revolution in command-line shells. As with
many things of this magnitude, its beauty was self-evident. Monad passed full-
fidelity .NET objects between its commands. For even the most complex commands,
Monad abolished the (until now, standard) need for fragile text-based parsing. Simple
and powerful data manipulation tools supported this new model, creating a shell both
powerful and easy to use.

I joined the Monad development team shortly after that to help do my part to bring
this masterpiece of technology to the rest of the world. Since then, Monad has grown
to become a real, tangible product—now called Windows PowerShell.

So why write a book about it? And why this book?

Many users have picked up PowerShell for the sake of learning PowerShell. Any tangible
benefits come by way of side effect. Others, though, might prefer to opportunistically
learn a new technology as it solves their needs. How do you use PowerShell to navigate
the filesystem? How can you manage files and folders? Retrieve a web page?

This book focuses squarely on helping you learn PowerShell through task-based solu-
tions to your most pressing problems. Read a recipe, read a chapter, or read the entire
book—regardless, you’re bound to learn something.

xxv

Who This Book Is For
This book helps you use PowerShell to get things done. It contains hundreds of solutions
to specific, real-world problems. For systems management, you’ll find plenty of exam-
ples that show how to manage the filesystem, the Windows Registry, event logs, pro-
cesses, and more. For enterprise administration, you’ll find two entire chapters devoted
to WMI, Active Directory, and other enterprise-focused tasks.

Along the way, you’ll also learn an enormous amount about PowerShell: its features,
its commands, and its scripting language—but you’ll most importantly solve problems.

How This Book Is Organized
This book consists of five main sections: a guided tour of PowerShell, PowerShell fun-
damentals, common tasks, administrator tasks, and a detailed reference.

Part I: Tour
A Guided Tour of Windows PowerShell breezes through PowerShell at a high level. It
introduces PowerShell’s core features:

• An interactive shell

• A new command model

• An object-based pipeline

• A razor-sharp focus on administrators

• A consistent model for learning and discovery

• Ubiquitous scripting

• Integration with critical management technologies

• A consistent model for interacting with data stores

The tour lets you become familiar with PowerShell as a whole. This familiarity will
create a mental framework for you to understand the solutions from the rest of the book.

Part II: Fundamentals
Chapters 1 through 8 cover the fundamentals that underpin the solutions in this book.
This section introduces you to the PowerShell interactive shell, fundamental pipeline
and object concepts, and many features of the PowerShell scripting language.

Part III: Common Tasks
Chapters 9 through 19 cover the tasks you will run into most commonly when starting
to tackle more complex problems in PowerShell. This includes working with simple
and structured files, Internet-connected scripts, code reuse, user interaction, and more.

xxvi | Preface

Part IV: Administrator Tasks
Chapters 20 through 31 focus on the most common tasks in systems and enterprise
management. Chapters 20 through 25 focus on individual systems: the filesystem, the
registry, event logs, processes, services, and more. Chapters 26 and 27 focus on Active
Directory, as well as the typical tasks most common in managing networked or domain-
joined systems.

Part V: References
Many books belch useless information into their appendixes simply to increase page
count. In this book, however, the detailed references underpin an integral and essential
resource for learning and using PowerShell. The appendixes cover:

• The PowerShell language and environment

• Regular expression syntax and PowerShell-focused examples

• XPath quick reference

• .NET string formatting syntax and PowerShell-focused examples

• .NET DateTime formatting syntax and PowerShell-focused examples

• Administrator-friendly .NET classes and their uses

• Administrator-friendly WMI classes and their uses

• Administrator-friendly COM objects and their uses

• Selected events and their uses

• PowerShell’s standard verbs

What You Need to Use This Book
The majority of this book requires only a working installation of Windows PowerShell.
Windows 7 and Windows Server 2008 R2 include Windows PowerShell by default. If
you do not yet have PowerShell installed, you may obtain it by following the download
link at http://www.microsoft.com/PowerShell. This link provides download instructions
for PowerShell on Windows XP, Windows Server 2003, and Windows Vista. For Win-
dows Server 2008, PowerShell comes installed as an optional component that you can
enable through the Control Panel like other optional components.

The Active Directory scripts given in Chapter 26 are most useful when applied to an
enterprise environment, but Recipe 26.1 shows how to install additional software
(Active Directory Lightweight Directory Services, or Active Directory Application
Mode) that lets you run these scripts against a local installation.

Preface | xxvii

http://www.microsoft.com/PowerShell

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, tags, macros, or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic

Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Code Examples

Obtaining Code Examples
To obtain electronic versions of the programs and examples given in this book, visit
the Examples link at:

http://www.oreilly.com/catalog/9780596801519

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

xxviii | Preface

www.allitebooks.com

http://www.oreilly.com/catalog/9780596801519
http://www.allitebooks.org

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Windows PowerShell Cookbook by Lee
Holmes. Copyright 2010 Lee Holmes, 978-0-596-80150-2.”

If you feel your use of code examples falls outside fair use or the permission given, feel
free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596801502

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, download chapters, bookmark
key sections, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xxix

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596801502
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
Writing is the task of crafting icebergs. The heft of the book you hold in your hands is
just a hint of the multiyear, multirelease effort it took to get it there. And by a cast much
larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with “viruses”
that told them to buy a new computer for Christmas, and even listened to me blather
about batch files or how PowerShell compares to Excel. Without their support, who
knows where I’d be.

My family and friends have helped keep me sane for two editions of the book now.
Ariel: you are the light of my life. Robin: thinking of you reminds me each day that
serendipity is still alive and well in this busy world. Thank you to all of my friends and
family for being there for me. You can have me back now. :)

I would not have written either edition of this book without the tremendous influence
of Guy Allen, visionary of the University of Toronto’s Professional Writing program.
Guy: your mentoring forever changed me, just as it molds thousands of others from
English hackers into writers.

Of course, members of the PowerShell team (both new and old) are the ones that made
this a book about PowerShell. Building this product with you has been a unique chal-
lenge and experience—but most of all, a distinct pleasure. In addition to the PowerShell
team, the entire PowerShell community defined this book’s focus. From MVPs, to early
adopters, to newsgroup lurkers: your support, questions, and feedback have been the
inspiration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries his best to convince the world how important these heroes are.

Thank you to the many technical reviewers who participated in O’Reilly’s Open Feed-
back Publishing System, especially Johannes Rössel, Aleksandar Nikolic, Jerome L.
Cruz, David Moravec, Richard Siddaway, and Andrew Tearle. I truly appreciate you
donating your nights and weekends to help craft something of which we can all be
proud.

To the awesome staff at O’Reilly—Mike Hendrickson, Genevieve d’Entremont, Teresa
Elsey, Laurel Ruma, the O’Reilly Tools Monks, and the production team—your pa-
tience and persistence helped craft a book that holds true to its original vision. You also
ensured that the book didn’t just knock around in my head but actually got out the door.

This book would not have been possible without the support from each and every one
of you.

xxx | Preface

PART I

Tour

TOUR

A Guided Tour of Windows
PowerShell

Introduction
Windows PowerShell promises to revolutionize the world of system management and
command-line shells. From its object-based pipelines, to its administrator focus, to its
enormous reach into other Microsoft management technologies, PowerShell drastically
improves the productivity of administrators and power users alike.

When learning a new technology, it is natural to feel bewildered at first by all the
unfamiliar features and functionality. This perhaps rings especially true for users new
to Windows PowerShell because it may be their first experience with a fully featured
command-line shell. Or worse, they’ve heard stories of PowerShell’s fantastic
integrated scripting capabilities and fear being forced into a world of programming that
they’ve actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a shell that both grows
with you and grows on you. Let’s take a tour to see what it is capable of:

• PowerShell works with standard Windows commands and applications. You don’t
have to throw away what you already know and use.

• PowerShell introduces a powerful new type of command. PowerShell commands
(called cmdlets) share a common Verb-Noun syntax and offer many usability im-
provements over standard commands.

• PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

• PowerShell caters to administrators. Even with all its advances, PowerShell focuses
strongly on its use as an interactive shell: the experience of entering commands in
a running PowerShell application.

3

• PowerShell supports discovery. Using three simple commands, you can learn and
discover almost anything PowerShell has to offer.

• PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks
with ease.

• PowerShell bridges many technologies. By letting you work with .NET, COM,
WMI, XML, and Active Directory, PowerShell makes working with these previ-
ously isolated technologies easier than ever before.

• PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already use
to manage files and folders.

We’ll explore each of these pillars in this introductory tour of PowerShell. If you are
running Windows 7 or Windows 2008 R2, version two of PowerShell is already
installed. If not, visit the download link at http://www.microsoft.com/PowerShell to in-
stall it. PowerShell and its supporting technologies are together referred to as the Win-
dows Management Framework.

An Interactive Shell
At its core, PowerShell is first and foremost an interactive shell. While it supports
scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather than
cmd.exe—the shells begin to diverge as you explore the intermediate and advanced
functionality, but you can be productive in PowerShell immediately.

To launch Windows PowerShell, do one of the following:

• Click Start→All Programs→Accessories→Windows PowerShell

• Click Start→Run, and then type “PowerShell”

A PowerShell prompt window opens that’s nearly identical to the traditional command
prompt window of Windows XP, Windows Server 2003, and their many ancestors.
The PS C:\Documents and Settings\Lee> prompt indicates that PowerShell is ready for
input, as shown in Figure T-1.

Once you’ve launched your PowerShell prompt, you can enter DOS-style and Unix-
style commands to navigate around the filesystem just as you would with any Windows
or Unix command prompt—as in the interactive session shown in Example T-1. In this
example, we use the pushd, cd, dir, pwd, and popd commands to store the current loca-
tion, navigate around the filesystem, list items in the current directory, and then return
to the original location. Try it!

4 | A Guided Tour of Windows PowerShell

http://www.microsoft.com/PowerShell

Example T-1. Entering many standard DOS- and Unix-style file manipulation commands produces
the same results you get when you use them with any other Windows shell

PS C:\Documents and Settings\Lee> function Prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 7:26 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat

Figure T-1. Windows PowerShell, ready for input

A Guided Tour of Windows PowerShell | 5

-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

PS > popd
PS > pwd

Path

C:\Documents and Settings\Lee

In this example, our first command customizes the prompt. In cmd.exe, customizing
the prompt looks like prompt PG. In bash, it looks like PS1="[\h] \w> ". In PowerShell,
you define a function that returns whatever you want displayed. Recipe 11.2 introduces
functions and how to write them.

The pushd command is an alternative name (alias) to the much more descriptively
named PowerShell command Push-Location. Likewise, the cd, dir, popd, and pwd com-
mands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you know
and love, such as ipconfig and notepad. Type the command name and you’ll see results
like those shown in Example T-2.

Example T-2. Windows tools and applications such as ipconfig run in PowerShell just as they do in
cmd.exe

PS > ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections. En-
tering notepad runs—as you’d expect—the Notepad editor that ships with Windows.
Try them both on your own machine.

6 | A Guided Tour of Windows PowerShell

Structured Commands (Cmdlets)
In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced command-let). All cmdlets
are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and Stop-Process.

PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

Once you know the handful of common verbs in PowerShell, learning
how to work with new nouns becomes much easier. While you may
never have worked with a certain object before (such as a Service), the
standard Get, Set, Start, and Stop actions still apply. For a list of these
common verbs, see Table J-1 in Appendix J.

You don’t always have to type these full cmdlet names, however. PowerShell lets you
use the Tab key to auto-complete cmdlet names and parameter names:

PS > Get-Pr<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell only requires that you type enough
of the parameter name to disambiguate it from the rest of the parameters in that cmdlet.
PowerShell is also case-insensitive. Using the built-in gps alias (which represents the
Get-Process cmdlet) along with parameter shortening, you can instead type:

PS > gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional
parameters let you provide parameter values in a certain position on the command line,
rather than having to specify them by name. The Get-Process cmdlet takes a process
name as its first positional parameter. This parameter even supports wildcards:

PS > gps l*s

A Guided Tour of Windows PowerShell | 7

Deep Integration of Objects
PowerShell begins to flex more of its muscle as you explore the way it handles structured
data and richly functional objects. For example, the following command generates a
simple text string. Since nothing captures that output, PowerShell displays it to you:

PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object from the .NET Frame-
work. For example, you can access its Length property, which tells you how many
characters are in the string. To access a property, you place a dot between the object
and its property name:

PS > "Hello World".Length
11

All PowerShell commands that produce output generate that output as objects as well.
For example, the Get-Process cmdlet generates a System.Diagnostics.Process object,
which you can store in a variable. In PowerShell, variable names start with a $ character.
If you have an instance of Notepad running, the following command stores a reference
to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call
methods on that object to perform actions on it. This command calls the Kill() meth-
od, which stops a process. To access a method, you place a dot between the object and
its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process cmdlet,
but this example demonstrates an important point about your ability to interact with
these rich objects.

Administrators as First-Class Users
While PowerShell’s support for objects from the .NET Framework quickens the pulse
of most users, PowerShell continues to focus strongly on administrative tasks. For ex-
ample, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of its
standard administrative constants. For example, how many disks will it take to back
up a 40 GB hard drive to CD-ROM?

PS > 40GB / 650MB
63.0153846153846

8 | A Guided Tour of Windows PowerShell

www.allitebooks.com

http://www.allitebooks.org

Although the .NET Framework is traditionally a development platform, it contains a
wealth of functionality useful for administrators too! In fact, it makes PowerShell a
great calendar. For example, is 2008 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2008)
True

Going further, how might you determine how much time remains until summer? The
following command converts "06/21/2011" (the start of summer) to a date, and then
subtracts the current date from that. It stores the result in the $result variable, and
then accesses the TotalDays property.

PS > $result = [DateTime] "06/21/2011" - [DateTime]::Now
PS > $result.TotalDays
283.0549285662616

Composable Commands
Whenever a command generates output, you can use a pipeline character (|) to pass
that output directly to another command as input. If the second command understands
the objects produced by the first command, it can operate on the results. You can chain
together many commands this way, creating powerful compositions out of a few simple
operations. For example, the following command gets all items in the Path1 directory
and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example T-3, the first command gets all processes running on the system.
It passes those to the Where-Object cmdlet, which runs a comparison against each in-
coming item. In this case, the comparison is $_.Handles -ge 500, which checks whether
the Handles property of the current object (represented by the $_ variable) is greater
than or equal to 500. For each object in which this comparison holds true, you pass the
results to the Sort-Object cmdlet, asking it to sort items by their Handles property.
Finally, you pass the objects to the Format-Table cmdlet to generate a table that contains
the Handles, Name, and Description of the process.

Example T-3. You can build more complex PowerShell commands by using pipelines to link cmdlets,
as shown in this example with Get-Process, Where-Object, Sort-Object, and Format-Table

PS > Get-Process |
 Where-Object { $_.Handles -ge 500 } |
 Sort-Object Handles |
 Format-Table Handles,Name,Description -Auto

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost

A Guided Tour of Windows PowerShell | 9

 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

Techniques to Protect You from Yourself
While aliases, wildcards, and composable pipelines are powerful, their use in com-
mands that modify system information can easily be nerve-wracking. After all, what
does this command do? Think about it, but don’t try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

It appears to stop all processes that begin with the letters b through t and end with the
letters c through r. How can you be sure? Let PowerShell tell you. For commands that
modify data, PowerShell supports -WhatIf and -Confirm parameters that let you see
what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on Target "ctfmon (812)".
What if: Performing operation "Stop-Process" on Target "Ditto (1916)".
What if: Performing operation "Stop-Process" on Target "dsamain (316)".
What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on Target "ehSched (1852)".
What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".
What if: Performing operation "Stop-Process" on Target "explorer (1900)".
(...)

In this interaction, using the -WhatIf parameter with the Stop-Process pipelined com-
mand lets you preview which processes on your system will be stopped before you
actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one minute
warning!

It was very funny though … At least I had enough time to save everything first!

Common Discovery Commands
While reading through a guided tour is helpful, I find that most learning happens in an
ad hoc fashion. To find all commands that match a given wildcard, use the
Get-Command cmdlet. For example, by entering the following, you can find out which
PowerShell commands (and Windows applications) contain the word process.

10 | A Guided Tour of Windows PowerShell

PS > Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like this:

PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides the
Get-Member cmdlet to retrieve information about the properties and methods that an
object, such as a .NET System.String, supports. Piping a string to the Get-Member com-
mand displays its type name and its members:

PS > "Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars ParameterizedProperty System.Char Chars(Int32 index) {...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting
PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com-
mand line. For example, to add up the handle count for all running processes:

PS > $handleCount = 0
PS > foreach($process in Get-Process) { $handleCount += $process.Handles }
PS > $handleCount
19403

A Guided Tour of Windows PowerShell | 11

While PowerShell provides a command (Measure-Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work di-
rectly with objects from the .NET Framework that you may be familiar with. PowerShell
becomes almost like the C# immediate mode in Visual Studio. Example T-4 shows
how PowerShell lets you easily interact with the .NET Framework.

Example T-4. Using objects from the .NET Framework to retrieve a web page and process its content

PS > $webClient = New-Object System.Net.WebClient
PS > $content = $webClient.DownloadString("http://blogs.msdn.com/PowerShell/rss.aspx")
PS > $content.Substring(0,1000)
<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/utility/FeedS
tylesheets/rss.xsl" media="screen"?><rss version="2.0" xmlns:dc="http://pu
rl.org/dc/elements/1.1/" xmlns:slash="http://purl.org/rss/1.0/modules/slas
h/" xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel><title>Windo
(...)

Ad Hoc Development
By blurring the lines between interactive administration and writing scripts, the history
buffers of PowerShell sessions quickly become the basis for ad hoc script development.
In this example, you call the Get-History cmdlet to retrieve the history of your session.
For each item, you get its CommandLine property (the thing you typed) and send the
output to a new script file.

PS > Get-History | Foreach-Object { $_.CommandLine } > c:\temp\script.ps1
PS > notepad c:\temp\script.ps1
(save the content you want to keep)
PS > c:\temp\script.ps1

If this is the first time you’ve run a script in PowerShell, you will need
to configure your Execution Policy. For more information about select-
ing an execution policy, see Recipe 18.1.

For more detail about saving your session history into a script, see Recipe 1.17.

Bridging Technologies
We’ve seen how PowerShell lets you fully leverage the .NET Framework in your tasks,
but its support for common technologies stretches even further. As Example T-5 (con-
tinued from Example T-4) shows, PowerShell supports XML.

12 | A Guided Tour of Windows PowerShell

Example T-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
--- -------------- ---
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/
channel : channel

PS > $xmlContent.rss.channel.item | select Title

title

CMD.exe compatibility
Time Stamping Log Files
Microsoft Compute Cluster now has a PowerShell Provider and Cmdlets
The Virtuous Cycle: .NET Developers using PowerShell
(...)

PowerShell also lets you work with Windows Management Instrumentation (WMI):

PS > Get-WmiObject Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Or, as Example T-6 shows, Active Directory Service Interfaces (ADSI).

Example T-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255}
FullName : {}
Description : {Built-in account for administering the compu
 ter/domain}

A Guided Tour of Windows PowerShell | 13

BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}
LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}
PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227 252 83 122
 130 50 34 67 23 10 50 244 1 0 0}

Or, as Example T-7 shows, even scripting traditional COM objects.

Example T-7. Working with COM objects in PowerShell

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center Extender Serv
 ice, Remote Media Center Ex
 perience, Adam Test Instanc
 e, QWAVE...}
Services : {File and Printer Sharing,
 UPnP Framework, Remote Desk
 top}
AuthorizedApplications : {Remote Assistance, Windows
 Messenger, Media Center, T
 rillian...}

Namespace Navigation Through Providers
Another avenue PowerShell offers for working with the system is providers. PowerShell
providers let you navigate and manage data stores using the same techniques you al-
ready use to work with the filesystem, as illustrated in Example T-8.

14 | A Guided Tour of Windows PowerShell

Example T-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

 Directory: C:\
Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 11:47 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

This also works on the registry, as shown in Example T-9.

Example T-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

SKC VC Name Property
--- -- ---- --------
 30 1 CurrentVersion {ISC}
 3 1 Shell {BagMRU Size}
 4 2 ShellNoRoam {(default), BagMRU Size}

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /
 background
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

A Guided Tour of Windows PowerShell | 15

Or even the machine’s certificate store, as Example T-10 illustrates.

Example T-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c) 1997 Microso...
(...)

Much, Much More
As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1.

16 | A Guided Tour of Windows PowerShell

PART II

Fundamentals

Chapter 1, The Windows PowerShell Interactive Shell
Chapter 2, Pipelines
Chapter 3, Variables and Objects
Chapter 4, Looping and Flow Control
Chapter 5, Strings and Unstructured Text
Chapter 6, Calculations and Math
Chapter 7, Lists, Arrays, and Hashtables
Chapter 8, Utility Tasks

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

The Windows PowerShell
Interactive Shell

1.0 Introduction
Above all else, the design of Windows PowerShell places priority on its use as an effi-
cient and powerful interactive shell. Even its scripting language plays a critical role in
this effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue
to run. Familiar commands continue to run. Even familiar hotkeys are the same. Sup-
porting this familiar user interface, though, is a powerful engine that lets you accom-
plish once cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1 Run Programs, Scripts, and Existing Tools

Problem
You rely on a lot of effort invested in your current tools. You have traditional execut-
ables, Perl scripts, VBScript, and of course, a legacy build system that has organically
grown into a tangled mess of batch files. You want to use PowerShell, but you don’t
want to give up everything you already have.

Solution
To run a program, script, batch file, or other executable command in the system’s path,
enter its filename. For these executable types, the extension is optional:

Program.exe arguments
ScriptName.ps1 arguments
BatchFile.cmd arguments

19

To run a command that contains a space in its name, enclose its filename in single-
quotes (') and precede the command with an ampersand (&), known in PowerShell as
the invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments

To run a command in the current directory, place .\ in front of its filename:

.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it with
both an ampersand and .\:

& '.\Program With Spaces.exe' arguments

Discussion
In this case, the solution is mainly to use your current tools as you always have. The
only difference is that you run them in the PowerShell interactive shell, rather than
cmd.exe.

The final three tips in the solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs. The
first is running commands that contain spaces. In cmd.exe, the way to run a command
that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you eval-
uate complex expressions at the prompt, as shown in Example 1-1.

Example 1-1. Evaluating expressions at the PowerShell prompt

PS > 1 + 1
2
PS > 26 * 1.15
29.9
PS > "Hello" + " World"
Hello World
PS > "Hello World"
Hello World
PS > "C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

So, a program name in quotes is no different from any other string in quotes. It’s just
an expression. As shown previously, the way to run a command in a string is to precede
that string with the invoke operator (&). If the command you want to run is a batch file
that modifies its environment, see Recipe 3.5.

20 | Chapter 1: The Windows PowerShell Interactive Shell

By default, PowerShell’s security policies prevent scripts from running.
Once you begin writing or using scripts, though, you should configure
this policy to something less restrictive. For information on how to con-
figure your execution policy, see Recipe 18.1.

The second command that new users (and seasoned veterans before coffee!) sometimes
stumble on is running commands from the current directory. In cmd.exe, the current
directory is considered part of the path: the list of directories that Windows searches
to find the program name you typed. If you are in the C:\Programs directory, cmd.exe
looks in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run
a program from the current directory. To do that, you use the .\Program.exe syntax,
as shown previously. This prevents malicious users on your system from littering your
hard drive with evil programs that have names similar to (or the same as) commands
you might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put these utilities along with their PowerShell scripts in a “tools”
directory, which they add to their system’s path. If PowerShell can find a script or utility
in your system’s path, you do not need to explicitly specify its location.

Scripts and examples from this book are available at http://www.oreilly
.com/catalog/9780596801519.

To learn how to write a PowerShell script, see Recipe 11.1.

See Also
Recipe 3.5, “Program: Retain Changes to Environment Variables Set by a Batch File”

Recipe 11.1, “Write a Script”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

1.2 Resolve Errors Calling Native Executables

Problem
You have a command line that works from cmd.exe, and want to resolve errors that
occur from running that command in PowerShell.

1.2 Resolve Errors Calling Native Executables | 21

http://www.oreilly.com/catalog/9780596801519
http://www.oreilly.com/catalog/9780596801519

Solution
Enclose any affected command arguments in single quotes to prevent them from being
interpreted by PowerShell, and replace any single quotes in the command with two
single quotes.

PS > cmd /c echo '!"#$%&''()*+,-./09:;<=>?@AZ[\]^_`az{|}~'
!"#$%&'()*+,-./09:;<=>?@AZ[\]^_`az{|}~

Discussion
One of PowerShell’s primary goals has always been command consistency. Because of
this, cmdlets are very regular in the way that they accept parameters. Native executables
write their own parameter parsing, so you never know what to expect when working
with them. In addition, PowerShell offers many features that make you more efficient
at the command line: command substitution, variable expansion, and more. Since
many native executables were written before PowerShell was developed, they may use
special characters that conflict with these features.

Unlike it does with cmdlets, PowerShell doesn’t apply special parameter
processing to native executables. However, version one of PowerShell
did incorrectly process some arguments that contained the colon char-
acter if the argument looked like parameters for a cmdlet. If you’ve ex-
perienced this (or perhaps formed a superstition that “calling native
executables doesn’t work properly”), try again.

As an example, the command given in the Solution uses all the special characters avail-
able on a typical keyboard. Without the quotes, PowerShell treats some of them as
language features, as shown in Table 1-1.

Table 1-1. Sample of special characters

Special character Meaning

" The beginning (or end) of quoted text

The beginning of a comment

$ The beginning of a variable

& Reserved for future use

() Parentheses used for subexpressions

; Statement separator

{ } Script block

| Pipeline separator

` Escape character

22 | Chapter 1: The Windows PowerShell Interactive Shell

When surrounded by single quotes, PowerShell accepts these characters as written,
without the special meaning.

Despite these precautions, you may still sometimes run into a command that doesn’t
seem to work when called from PowerShell. To see exactly what PowerShell passes to
that command, you can view the output of the trace source called NativeCommandPara
meterBinder:

PS > Trace-Command NativeCommandParameterBinder {
 cmd /c echo '!"#$%&''()*+,-./09:;<=>?@AZ[\]^_`az{|}~'
} -PsHost

DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine
Argument 0: /c
DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine
Argument 1: echo
DEBUG: NativeCommandParameterBinder Information: 0 : WriteLine
Argument 2: !#$%&'()*+,-./09:;<=>?@AZ[\]^_`az{|}~
!"#$%&'()*+,-./09:;<=>?@AZ[\]^_`az{|}~

If the command arguments shown in this output don’t match the arguments you expect,
they have special meaning to PowerShell and should be escaped.

See Also
Get-Help Trace-Command

Appendix A, PowerShell Language and Environment

1.3 Run a PowerShell Command

Problem
You want to run a PowerShell command.

Solution
To run a PowerShell command, type its name at the command prompt. For example:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 133 5 11760 7668 46 1112 audiodg
 184 5 33248 508 93 1692 avgamsvr
 143 7 31852 984 97 1788 avgemc

1.3 Run a PowerShell Command | 23

Discussion
The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits to
both administrators and developers:

• They share a common and regular command-line syntax.

• They support rich pipeline scenarios (using the output of one command as the
input of another).

• They produce easily manageable object-based output, rather than error-prone
plain text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

The Get-Process cmdlet is just one of the many that PowerShell supports. See
Recipe 1.7 to learn techniques for finding additional commands that PowerShell
supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 1.7, “Find a Command to Accomplish a Task”

Recipe 3.8, “Work with .NET Objects”

1.4 Invoke a Long-Running or Background Command

Problem
You want to invoke a long-running command on a local or remote computer.

Solution
Invoke the command as a Job to have PowerShell run it in the background:

PS > Start-Job { while($true) { Get-Random; Start-Sleep 5 } } -Name Sleeper

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Sleeper Running True localhost

PS > Receive-Job Sleeper
671032665
1862308704
PS > Stop-Job Sleeper

24 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion
PowerShell’s job cmdlets provide a consistent way to create and interact with back-
ground tasks. In the Solution, we use the Start-Job cmdlet to launch a background job
on the local computer. We give it the name of Sleeper, but otherwise we don’t cus-
tomize much of its execution environment.

In addition to allowing you to customize the job name, the Start-Job cmdlet also lets
you launch the job under alternate user credentials or as a 32-bit process (if run origi-
nally from a 64-bit process).

Once you have launched a job, you can use the other Job cmdlets to interact with it:

Get-Job

Gets all jobs associated with the current session.

Wait-Job

Waits for a job until it has output ready to be retrieved.

Receive-Job

Retrieves any output the job has generated since the last call to Receive-Job.

Stop-Job

Stops a job.

Remove-Job

Removes a job from the list of active jobs.

In addition to the Start-Job cmdlet, you can also use the -AsJob
parameter in many cmdlets to have them perform their tasks in the
background. Two of the most useful examples are the Invoke-Command
cmdlet (when operating against remote computers) and the set of WMI-
related cmdlets.

If your job generates an error, the Receive-Job cmdlet will display it to you when you
receive the results, as shown in Example 1-2. If you want to investigate these errors
further, the object returned by Get-Job exposes them through the Error property.

Example 1-2. Retrieving errors from a Job

PS > Start-Job -Name ErrorJob { Write-Error Error! }

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 ErrorJob Running True localhost

PS > Receive-Job ErrorJob
Error!

1.4 Invoke a Long-Running or Background Command | 25

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorExc
 eption,Microsoft.PowerShell.Commands.WriteErrorCommand

PS > $job = Get-Job ErrorJob
PS > $job | Format-List *

State : Completed
HasMoreData : False
StatusMessage :
Location : localhost
Command : Write-Error Error!
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : 801e932c-5580-4c8b-af06-ddd1024840b7
Id : 1
Name : ErrorJob
ChildJobs : {Job2}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}

PS > $job.ChildJobs[0] | Format-List *

State : Completed
StatusMessage :
HasMoreData : False
Location : localhost
Runspace : System.Management.Automation.RemoteRunspace
Command : Write-Error Error!
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : 60fa85da-448b-49ff-8116-6eae6c3f5006
Id : 2
Name : Job2
ChildJobs : {}
Output : {}
Error : {Microsoft.PowerShell.Commands.WriteErrorException,Microso
 ft.PowerShell.Commands.WriteErrorCommand}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}

PS > $job.ChildJobs[0].Error

26 | Chapter 1: The Windows PowerShell Interactive Shell

Error!
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteErrorExc
 eption,Microsoft.PowerShell.Commands.WriteErrorCommand

PS >

As this example shows, jobs are sometimes containers for other jobs, called child
jobs. Jobs created through the Start-Job cmdlet will always be child jobs attached to a
generic container. To access the errors returned by these jobs, you instead access the
errors in its first child job (called child job number zero).

See Also
Recipe 28.7, “Improve the Performance of Large-Scale WMI Operations”

Recipe 29.11, “Invoke a Command on a Remote Computer”

1.5 Notify Yourself of Job Completion

Problem
You want to notify yourself when a long-running job completes.

Solution
Use the Register-TemporaryEvent command given in Recipe 31.3 to register for the
event’s StateChanged event:

PS > $job = Start-Job -Name TenSecondSleep { Start-Sleep 10 }
PS > Register-TemporaryEvent $job StateChanged -Action {
 [Console]::Beep(100,100)
 Write-Host "Job #$($sender.Id) ($($sender.Name)) complete."
}

PS > Job #6 (TenSecondSleep) complete.
PS >

Discussion
When a job completes, it raises a StateChanged event to notify subscribers that its state
has changed. We can use PowerShell’s event handling cmdlets to register for notifica-
tions about this event, but they are not geared toward this type of one-time event
handling. To solve that, we use the Register-TemporaryEvent command given
in Recipe 31.3.

In our example action block in that solution, we simply emit a beep and write a message
saying that the job is complete.

1.5 Notify Yourself of Job Completion | 27

As another option, you can also update your prompt function to highlight jobs that are
complete but still have output you haven’t processed:

$psJobs = @(Get-Job -State Completed | ? { $_.HasMoreData })
if($psJobs.Count -gt 0) { ($psJobs | Out-String).Trim() | Write-Host -Fore Yellow }

For more information about events and this type of automatic event handling, see
Chapter 31.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Chapter 31, Event Handling

1.6 Customize Your Shell, Profile, and Prompt

Problem
You want to customize PowerShell’s interactive experience with a personalized prompt,
aliases, and more.

Solution
When you want to customize aspects of PowerShell, place those customizations in your
personal profile script. PowerShell provides easy access to this profile script by storing
its location in the $profile variable.

By default, PowerShell’s security policies prevent scripts (including your
profile) from running. Once you begin writing scripts, though, you
should configure this policy to something less restrictive. For informa-
tion on how to configure your execution policy, see Recipe 18.1.

To create a new profile (and overwrite one if it already exists):

New-Item -type file -force $profile

To edit your profile:

notepad $profile

To see your profile file:

Get-ChildItem $profile

Once you create a profile script, you can add a function called Prompt that returns a
string. PowerShell displays the output of this function as your command-line prompt.

function Prompt
{

28 | Chapter 1: The Windows PowerShell Interactive Shell

www.allitebooks.com

http://www.allitebooks.org

 "PS [$env:COMPUTERNAME] >"
}

This example prompt displays your computer name, and looks like PS [LEE-DESK]>.

You may also find it helpful to add aliases to your profile. Aliases let you refer to com-
mon commands by a name that you choose. Personal profile scripts let you automati-
cally define aliases, functions, variables, or any other customizations that you might
set interactively from the PowerShell prompt. Aliases are among the most common
customizations, as they let you refer to PowerShell commands (and your own scripts)
by a name that is easier to type.

If you want to define an alias for a command but also need to modify
the parameters to that command, then define a function instead.

For example:

Set-Alias new New-Object
Set-Alias iexplore 'C:\Program Files\Internet Explorer\iexplore.exe'

Your changes will become effective once you save your profile and restart PowerShell.
To reload your profile immediately, run this command:

. $profile

Functions are also very common customizations, with the most popular being the
Prompt function.

Discussion
The Solution discusses three techniques to make useful customizations to your
PowerShell environment: aliases, functions, and a hand-tailored prompt. You can (and
will often) apply these techniques at any time during your PowerShell session, but your
profile script is the standard place to put customizations that you want to apply to every
session.

To remove an alias or function, use the Remove-Item cmdlet:

Remove-Item function:\MyCustomFunction
Remove-Item alias:\new

Although the Prompt function returns a simple string, you can also use the function for
more complex tasks. For example, many users update their console window title (by
changing the $host.UI.RawUI.WindowTitle variable) or use the Write-Host cmdlet to
output the prompt in color. If your prompt function handles the screen output itself,
it still needs to return a string (for example, a single space) to prevent PowerShell from

1.6 Customize Your Shell, Profile, and Prompt | 29

using its default. If you don’t want this extra space to appear in your prompt, add an
extra space at the end of your Write-Host command and return the backspace ("`b")
character, as shown in Example 1-3.

Example 1-3. An example PowerShell prompt

##
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Set-StrictMode -Version Latest

function Prompt
{
 $id = 1
 $historyItem = Get-History -Count 1
 if($historyItem)
 {
 $id = $historyItem.Id + 1
 }

 Write-Host -ForegroundColor DarkGray "`n[$(Get-Location)]"
 Write-Host -NoNewLine "PS:$id > "
 $host.UI.RawUI.WindowTitle = "$(Get-Location)"

 "`b"
}

In addition to showing the current location, this prompt also shows the ID for that
command in your history. This lets you locate and invoke past commands with relative
ease:

[C:\]
PS:73 >5 * 5
25

[C:\]
PS:74 >1 + 1
2

[C:\]
PS:75 >Invoke-History 73
5 * 5
25

[C:\]
PS:76 >

Although the profile referenced by $profile is the one you will almost always want to
use, PowerShell actually supports four separate profile scripts. For further details on

30 | Chapter 1: The Windows PowerShell Interactive Shell

these scripts (along with other shell customization options), see “Common Customi-
zation Points” on page 761.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

“Common Customization Points” on page 761

1.7 Find a Command to Accomplish a Task

Problem
You want to accomplish a task in PowerShell but don’t know the command or cmdlet
to accomplish that task.

Solution
Use the Get-Command cmdlet to search for and investigate commands.

To get the summary information about a specific command, specify the command name
as an argument:

Get-Command CommandName

To get the detailed information about a specific command, pipe the output of Get-
Command to the Format-List cmdlet:

Get-Command CommandName | Format-List

To search for all commands with a name that contains text, surround the text with
asterisk characters:

Get-Command *text*

To search for all commands that use the Get verb, supply Get to the -Verb parameter:

Get-Command -Verb Get

To search for all commands that act on a service, use Service as the value of the
-Noun parameter:

Get-Command -Noun Service

Discussion
One of the benefits that PowerShell provides administrators is the consistency of its
command names. All PowerShell commands (called cmdlets) follow a regular Verb-
Noun pattern, for example: Get-Process, Get-EventLog, and Set-Location. The verbs
come from a relatively small set of standard verbs (as listed in Appendix J) and describe
what action the cmdlet takes. The nouns are specific to the cmdlet and describe what
the cmdlet acts on.

1.7 Find a Command to Accomplish a Task | 31

Knowing this philosophy, you can easily learn to work with groups of cmdlets. If you
want to start a service on the local machine, the standard verb for that is Start. A good
guess would be to first try Start-Service (which in this case would be correct), but
typing Get-Command -Verb Start would also be an effective way to see what things you
can start. Going the other way, you can see what actions are supported on services by
typing Get-Command -Noun Service.

See Recipe 1.8 for a way to list all commands along with a brief description of what
they do.

The Get-Command cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Help and Get-
Member.

There is one important point when it comes to looking for a PowerShell command to
accomplish a particular task. Many times, that PowerShell command does not exist,
because the task is best accomplished the same way it always was: ipconfig.exe to get
IP configuration information, netstat.exe to list protocol statistics and current TCP/
IP network connections, and many more.

For more information about the Get-Command cmdlet, type Get-Help Get-Command.

See Also
Recipe 1.8, “Get Help on a Command”

1.8 Get Help on a Command

Problem
You want to learn how a specific command works and how to use it.

Solution
The command that provides help and usage information about a command is called
Get-Help. It supports several different views of the help information, depending on your
needs.

To get the summary of help information for a specific command, provide the com-
mand’s name as an argument to the Get-Help cmdlet. This primarily includes its syn-
opsis, syntax, and detailed description:

Get-Help CommandName

or

CommandName -?

32 | Chapter 1: The Windows PowerShell Interactive Shell

To get the detailed help information for a specific command, supply the -Detailed flag
to the Get-Help cmdlet. In addition to the summary view, this also includes its parameter
descriptions and examples:

Get-Help CommandName -Detailed

To get the full help information for a specific command, supply the -Full flag to the
Get-Help cmdlet. In addition to the detailed view, this also includes its full parameter
descriptions and additional notes:

Get-Help CommandName -Full

To get only the examples for a specific command, supply the -Examples flag to the Get-
Help cmdlet:

Get-Help CommandName -Examples

To retrieve the most up-to-date online version of a command’s help topic, supply the
-Online flag to the Get-Help cmdlet:

Get-Help CommandName -Online

To find all help topics that contain a given keyword, provide that keyword as an argu-
ment to the Get-Help cmdlet. If the keyword isn’t also the name of a specific help topic,
this returns all help topics that contain the keyword, including its name, category, and
synopsis:

Get-Help Keyword

Discussion
The Get-Help cmdlet is the primary way to interact with the help system in PowerShell.
Like the Get-Command cmdlet, the Get-Help cmdlet supports wildcards. If you want to
list all commands that match a certain pattern (for example, *process*), you can simply
type Get-Help *process*.

To generate a list of all cmdlets and aliases (along with their brief syn-
opsis), run the following command:

Get-Help * -Category Cmdlet | Select-Object Name,Synopsis | Format-Table -Auto

If the pattern matches only a single command, PowerShell displays the help for that
command. Although command wildcarding and keyword searching is a helpful way to
search PowerShell help, see Recipe 1.9 for a script that lets you search the help content
for a specified pattern.

In addition to console-based help, PowerShell also offers online and Compiled Help
(CHM) versions of its help content. The Solution demonstrates how to quickly access
online help content, but accessing the CHM version of help is slightly more difficult.

1.8 Get Help on a Command | 33

• If you are working within PowerShell’s Integrated Scripting Environment (ISE),
accessing the CHM help is as easy as pressing F1.

• If you are working on Windows 7, you can access the CHM help through the
Windows PowerShell Help option in PowerShell’s jump list (Figure 1-1). To open
PowerShell’s jump list, either right-click on the taskbar icon or click the arrow
beside PowerShell’s icon in the start menu.

Figure 1-1. Launching PowerShell’s Help Viewer

• If you are working within the PowerShell console, you can access the CHM help
by launching the .CHM file directly. Recipe 1.10 demonstrates how to do this.

The Get-Help cmdlet is one of the three commands you will use most commonly as you
explore Windows PowerShell. The other two commands are Get-Command and Get-
Member.

For more information about the Get-Help cmdlet, type Get-Help Get-Help.

See Also
Recipe 1.9, “Program: Search Help for Text”

Recipe 1.10, “Program: View PowerShell’s HTML Help”

1.9 Program: Search Help for Text
Both the Get-Command and Get-Help cmdlets let you search for command names that
match a given pattern. However, when you don’t know exactly what portions of a
command name you are looking for, you will more often have success searching
through the help content for an answer. On Unix systems, this command is called
Apropos.

The Get-Help cmdlet automatically searches the help database for keyword references
when it can’t find a help topic for the argument you supply. In addition to that, you
might want to extend this even further to search for text patterns or even help topics
that talk about existing help topics. PowerShell’s help facilities don’t support this type
of search.

34 | Chapter 1: The Windows PowerShell Interactive Shell

That doesn’t need to stop us, though, as we can write the functionality ourselves.

To run this program, supply a search string to the Search-Help script (given in Exam-
ple 1-4). The search string can be either simple text or a regular expression. The script
then displays the name and synopsis of all help topics that match. To see the help
content for that topic, use the Get-Help cmdlet.

Example 1-4. Search-Help.ps1

##
##
Search-Help
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the PowerShell help documentation for a given keyword or regular
expression.

.EXAMPLE

Search-Help hashtable
Searches help for the term 'hashtable'

.EXAMPLE

Search-Help "(datetime|ticks)"
Searches help for the term datetime or ticks, using the regular expression
syntax.

#>

param(
 ## The pattern to search for
 [Parameter(Mandatory = $true)]
 $Pattern
)

Set-StrictMode -Version Latest

$helpNames = $(Get-Help * | Where-Object { $_.Category -ne "Alias" })

Go through all of the help topics
foreach($helpTopic in $helpNames)
{
 ## Get their text content, search for the specified pattern
 $content = Get-Help -Full $helpTopic.Name | Out-String
 if($content -match "(.{0,30}$pattern.{0,30})")
 {

1.9 Program: Search Help for Text | 35

 $helpTopic | Add-Member NoteProperty Match $matches[0].Trim()
 $helpTopic | Select-Object Name,Match
 }
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.10 Program: View PowerShell’s HTML Help
PowerShell’s compiled help (CHM) offers many useful features: a table of contents, an
index, full-text search, and more. While easy to launch from the Integrated Scripting
Environment (ISE) and the Windows 7 jump list, discoverability is still a problem from
console windows.

To easily launch PowerShell’s CHM help, use the Show-HtmlHelp script shown in
Example 1-5.

Example 1-5. Show-HtmlHelp.ps1

##
##
Show-HtmlHelp
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Launches the CHM version of PowerShell help.

.EXAMPLE

Show-HtmlHelp

#>

Set-StrictMode -Version Latest

$path = (Resolve-Path c:\windows\help\mui*\WindowsPowerShellHelp.chm).Path
hh "$path::/html/defed09e-2acd-4042-bd22-ce4bf92c2f24.htm"

For more information about running scripts, see Recipe 1.1.

36 | Chapter 1: The Windows PowerShell Interactive Shell

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.11 Launch PowerShell at a Specific Location

Problem
You want to launch a PowerShell session in a specific location.

Solution
Both Windows and PowerShell offer several ways to launch PowerShell in a specific
location:

• Explorer’s address bar

• PowerShell’s command-line arguments

• Community extensions

Discussion
If you are browsing the filesystem with Windows Explorer, typing PowerShell into the
address bar launches PowerShell in that location (as shown in Figure 1-2).

Figure 1-2. Launching PowerShell from Windows Explorer

1.11 Launch PowerShell at a Specific Location | 37

The resulting session lacks the console window customizations defined by PowerShell’s
Start menu link (as does launching PowerShell from the Start→Run dialog), but
Recipe 1.13 shows how to make even these PowerShell windows display in PowerShell’s
signature blue.

For another way to launch PowerShell from Windows Explorer, several members of
the PowerShell community have written power toys and Windows Explorer extensions
that provide a “Launch PowerShell Here” option when you right-click on a folder from
Windows Explorer. An Internet search for “PowerShell Here” turns up several.

If you aren’t browsing the desired folder with Windows Explorer, use PowerShell’s
-NoExit parameter, along with the implied -Command parameter. In the -Command pa-
rameter, call the Set-Location cmdlet to initially move to your desired location. From
Start→Run (or any other means of launching an application), type:

PowerShell -NoExit Set-Location 'C:\Program Files'

1.12 Invoke a PowerShell Command or Script from Outside
PowerShell

Problem
You want to invoke a PowerShell command or script from a batch file, a logon script,
a scheduled task, or any other non-PowerShell application.

Solution
To invoke a PowerShell command, use the -Command parameter:

PowerShell -Command Get-Process; Read-Host

To launch a PowerShell script, use the -File parameter:

PowerShell -File 'full path to script' arguments

For example:

PowerShell -File 'c:\shared scripts\Get-Report.ps1' Hello World

Discussion
By default, any arguments to PowerShell.exe get interpreted as commands to run.
PowerShell runs the command as though you had typed it in the interactive shell, and
then exits. You can customize this behavior by supplying other parameters to
PowerShell.exe, such as -NoExit, -NoProfile, and more.

Since launching a script is so common, PowerShell provides the -File parameter to
eliminate the complexities that arise from having to invoke a script from the -Command

38 | Chapter 1: The Windows PowerShell Interactive Shell

www.allitebooks.com

http://www.allitebooks.org

parameter. This technique lets you invoke a PowerShell script as the target of a logon
script, advanced file association, scheduled task, and more.

When PowerShell detects that its input or output streams have been
redirected, it suppresses any prompts that it might normally display. If
you want to host an interactive PowerShell prompt inside another ap-
plication (such as Emacs), use - as the argument for the -File parameter.
In PowerShell (as with traditional Unix shells), this implies “taken from
standard input.”

powershell -File -

If the script is for background automation or a scheduled task, these scripts can some-
times interfere with (or become influenced by) the user’s environment. For these sit-
uations, three parameters come in handy:

-NoProfile
Runs the command or script without loading user profile scripts. This makes the
script launch faster, but it primarily prevents user preferences (e.g., aliases and
preference variables) from interfering with the script’s working environment.

-WindowStyle
Runs the command or script with the specified window style—most commonly
Hidden. When run with a window style of Hidden, PowerShell hides its main window
immediately. For more ways to control the window style from within PowerShell,
see Recipe 24.3.

-ExecutionPolicy
Runs the command or script with a specified execution policy applied only to this
instance of PowerShell. This lets you write PowerShell scripts to manage a system
without having to change the system-wide execution policy. For more information
about scoped execution policies, see Recipe 18.1.

If you are the author of the program that needs to run PowerShell scripts
or commands, PowerShell lets you call these scripts and commands
much more easily than calling its command-line interface. For more
information about this approach, see Recipe 17.10.

If the arguments to the -Command parameter become complex, special character handling
in the application calling PowerShell (such as cmd.exe) might interfere with the com-
mand you want to send to PowerShell. For this situation, PowerShell supports an
EncodedCommand parameter: a Base64-encoded representation of the Unicode string you
want to run. Example 1-6 demonstrates how to convert a string containing PowerShell
commands to a Base64-encoded form.

1.12 Invoke a PowerShell Command or Script from Outside PowerShell | 39

Example 1-6. Converting PowerShell commands into a Base64-encoded form

$commands = '1..10 | % { "PowerShell Rocks" }'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($commands)
$encodedString = [Convert]::ToBase64String($bytes)

Once you have the encoded string, you can use it as the value of the EncodedCommand
parameter, as shown in Example 1-7.

Example 1-7. Launching PowerShell with an encoded command from cmd.exe

Microsoft Windows [Version 6.0.6000]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Users\Lee>PowerShell -EncodedCommand MQAuAC4AMQAwACAAfAAgACUAIAB7ACAAIgBQAG8AdwBlAHIAUwBoA
 GUAbABsACAAUgBvAGMAawBzACIAIAB9AA==
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.10, “Add PowerShell Scripting to Your Own Program”

1.13 Customize the Shell to Improve Your Productivity

Problem
You want to use the PowerShell console more efficiently for copying, pasting, history
management, and scrolling.

Solution
Run the commands shown in Example 1-8 to permanently customize your PowerShell
console windows and make many tasks easier.

Example 1-8. Set-ConsoleProperties.ps1

Push-Location
Set-Location HKCU:\Console
New-Item '.\%SystemRoot%_system32_WindowsPowerShell_v1.0_powershell.exe'

40 | Chapter 1: The Windows PowerShell Interactive Shell

Set-Location '.\%SystemRoot%_system32_WindowsPowerShell_v1.0_powershell.exe'

New-ItemProperty . ColorTable00 -type DWORD -value 0x00562401
New-ItemProperty . ColorTable07 -type DWORD -value 0x00f0edee
New-ItemProperty . FaceName -type STRING -value "Lucida Console"
New-ItemProperty . FontFamily -type DWORD -value 0x00000036
New-ItemProperty . FontSize -type DWORD -value 0x000c0000
New-ItemProperty . FontWeight -type DWORD -value 0x00000190
New-ItemProperty . HistoryNoDup -type DWORD -value 0x00000000
New-ItemProperty . QuickEdit -type DWORD -value 0x00000001
New-ItemProperty . ScreenBufferSize -type DWORD -value 0x0bb80078
New-ItemProperty . WindowSize -type DWORD -value 0x00320078
Pop-Location

These commands customize the console color, font, history storage properties, Quick-
Edit mode, buffer size, and window size.

With these changes in place, you can also improve your productivity by learning some
of the hotkeys for common tasks, listed in Table 1-2. PowerShell uses the same input
facilities as cmd.exe, and so it brings with it all the input features that you are already
familiar with—and some that you aren’t!

Table 1-2. Partial list of Windows PowerShell hotkeys

Hotkey Meaning

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

PgUp Display the first command in your command history.

PgDown Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Ctrl + Left arrow Move the cursor one word to the left on your command line.

Ctrl + Right arrow Move the cursor one word to the right on your command line.

Discussion
When you launch PowerShell from the link on your Windows Start menu, it customizes
several aspects of the console window:

• Foreground and background color, to make the console more visually appealing

• QuickEdit mode, to make copying and pasting with the mouse easier

• Buffer size, to make PowerShell retain the output of more commands in your con-
sole history

1.13 Customize the Shell to Improve Your Productivity | 41

By default, these customizations do not apply when you run PowerShell from the
Start→Run dialog. The commands given in the solution section improve the experience
by applying these changes to all PowerShell windows that you open.

The hotkeys do, however, apply to all PowerShell windows (and any other application
that uses Windows’ cooked input mode). The most common are given in the solution
section, but “Common Customization Points” on page 761 provides the full list.

See Also
“Common Customization Points” on page 761

1.14 Program: Learn Aliases for Common Commands
In interactive use, full cmdlet names (such as Get-ChildItem) are cumbersome and slow
to type. Although aliases are much more efficient, it takes a while to discover them. To
learn aliases more easily, you can modify your prompt to remind you of the shorter
version of any aliased commands that you use.

This involves two steps:

1. Add the program Get-AliasSuggestion.ps1, shown in Example 1-9, to your tools
directory or another directory.

Example 1-9. Get-AliasSuggestion.ps1

##
##
Get-AliasSuggestion
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get an alias suggestion from the full text of the last command. Intended to
be added to your prompt function to help learn aliases for commands.

.EXAMPLE

Get-AliasSuggestion Remove-ItemProperty
Suggestion: An alias for Remove-ItemProperty is rp

#>

param(
 ## The full text of the last command
 $LastCommand

42 | Chapter 1: The Windows PowerShell Interactive Shell

)

Set-StrictMode -Version Latest

$helpMatches = @()

Find all of the commands in their last input
$tokens = [Management.Automation.PSParser]::Tokenize(
 $lastCommand, [ref] $null)
$commands = $tokens | Where-Object { $_.Type -eq "Command" }

Go through each command
foreach($command in $commands)
{
 ## Get the alias suggestions
 foreach($alias in Get-Alias -Definition $command.Content)
 {
 $helpMatches += "Suggestion: An alias for " +
 "$($alias.Definition) is $($alias.Name)"
 }
}

$helpMatches

2. Add the text from Example 1-10 to the Prompt function in your profile. If you do
not yet have a Prompt function, see Recipe 1.6 to learn how to add one.

Example 1-10. A useful prompt to teach you aliases for common commands

function Prompt
{
 ## Get the last item from the history
 $historyItem = Get-History -Count 1

 ## If there were any history items
 if($historyItem)
 {
 ## Get the training suggestion for that item
 $suggestions = @(Get-AliasSuggestion $historyItem.CommandLine)
 ## If there were any suggestions
 if($suggestions)
 {
 ## For each suggestion, write it to the screen
 foreach($aliasSuggestion in $suggestions)
 {
 Write-Host "$aliasSuggestion"
 }
 Write-Host ""

 }
 }

 ## Rest of prompt goes here
 "PS [$env:COMPUTERNAME] >"
}

1.14 Program: Learn Aliases for Common Commands | 43

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 1.6, “Customize Your Shell, Profile, and Prompt”

1.15 Program: Learn Aliases for Common Parameters

Problem
You want to learn aliases defined for command parameters.

Solution
Use the Get-ParameterAlias script to return all aliases for parameters used by the pre-
vious command in your session history.

Example 1-11. Get-ParameterAlias.ps1

##
##
Get-ParameterAlias
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Looks in the session history, and returns any aliases that apply to
parameters of commands that were used.

.EXAMPLE

PS >dir -ErrorAction SilentlyContinue
PS >Get-ParameterAlias
An alias for the 'ErrorAction' parameter of 'dir' is ea

#>

Set-StrictMode -Version Latest

Get the last item from their session history
$history = Get-History -Count 1
if(-not $history)
{
 return

44 | Chapter 1: The Windows PowerShell Interactive Shell

}

And extract the actual command line they typed
$lastCommand = $history.CommandLine

Use the Tokenizer API to determine which portions represent
commands and parameters to those commands
$tokens = [System.Management.Automation.PsParser]::Tokenize(
 $lastCommand, [ref] $null)
$currentCommand = $null

Now go through each resulting token
foreach($token in $tokens)
{
 ## If we've found a new command, store that.
 if($token.Type -eq "Command")
 {
 $currentCommand = $token.Content
 }

 ## If we've found a command parameter, start looking for aliases
 if(($token.Type -eq "CommandParameter") -and ($currentCommand))
 {
 ## Remove the leading "-" from the parameter
 $currentParameter = $token.Content.TrimStart("-")

 ## Determine all of the parameters for the current command.
 (Get-Command $currentCommand).Parameters.GetEnumerator() |

 ## For parameters that start with the current parameter name,
 Where-Object { $_.Key -like "$currentParameter*" } |

 ## return all of the aliases that apply. We use "starts with"
 ## because the user might have typed a shortened form of
 ## the parameter name.
 Foreach-Object {
 $_.Value.Aliases | Foreach-Object {
 "Suggestion: An alias for the '$currentParameter' " +
 "parameter of '$currentCommand' is '$_'"
 }
 }
 }
}

Discussion
To make it easy to type command parameters, PowerShell lets you type only as much
of the command parameter as is required to disambiguate it from other parameters of
that command. In addition to shortening implicitly supported by the shell, cmdlet
authors can also define explicit aliases for their parameters—for example, CN as a short
form for ComputerName.

While helpful, these aliases are difficult to discover.

1.15 Program: Learn Aliases for Common Parameters | 45

If you want to see the aliases for a specific command, you can access its Parameters
collection:

PS > (Get-Command New-TimeSpan).Parameters.Values | Select Name,Aliases

Name Aliases
---- -------
Start {LastWriteTime}
End {}
Days {}
Hours {}
Minutes {}
Seconds {}
Verbose {vb}
Debug {db}
ErrorAction {ea}
WarningAction {wa}
ErrorVariable {ev}
WarningVariable {wv}
OutVariable {ov}
OutBuffer {ob}

If you want to learn any aliases for parameters in your previous command, simply run
Get-ParameterAlias.ps1. To make PowerShell do this automatically, add a call to Get-
ParameterAlias.ps1 in your prompt.

This script builds on two main features: PowerShell’s Tokenizer API, and the rich in-
formation returned by the Get-Command cmdlet. PowerShell’s Tokenizer API examines
its input and returns PowerShell’s interpretation of the input: commands, parameters,
parameter values, operators, and more. Like the rich output produced by most of
PowerShell’s commands, Get-Command returns information about a command’s param-
eters, parameter sets, output type (if specified), and more.

For more information about the Tokenizer API, see Recipe 10.9.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

“Structured Commands (Cmdlets)” on page 7

1.16 Access and Manage Your Console History

Problem
After working in the shell for a while, you want to invoke commands from your history,
view your command history, and save your command history.

46 | Chapter 1: The Windows PowerShell Interactive Shell

Solution
The shortcuts given in Recipe 1.13 let you manage your history, but PowerShell offers
several features to help you work with your console in even more detail.

To get the most recent commands from your session, use the Get-History cmdlet:

Get-History

To rerun a specific command from your session history, provide its Id to the Invoke-
History cmdlet:

Invoke-History Id

To increase (or limit) the number of commands stored in your session history, assign
a new value to the $MaximumHistoryCount variable:

$MaximumHistoryCount = Count

To save your command history to a file, pipe the output of Get-History to the Export-
CliXml cmdlet:

Get-History | Export-CliXml Filename

To add a previously saved command history to your current session history, call the
Import-CliXml cmdlet and then pipe that output to the Add-History cmdlet:

Import-CliXml Filename | Add-History

To clear all commands from your session history, use the Clear-History cmdlet:

Clear-History

Discussion
Unlike the console history hotkeys discussed in Recipe 1.13, the Get-History cmdlet
produces rich objects that represent information about items in your history. Each
object contains that item’s ID, command line, start of execution time, and end of exe-
cution time.

Once you know the ID of a history item (as shown in the output of Get-History), you
can pass it to Invoke-History to execute that command again. The example prompt
function shown in Recipe 1.6 makes working with prior history items easy—as the
prompt for each command includes the history ID that will represent it.

The IDs provided by the Get-History cmdlet differ from the IDs given by the Windows
console common history hotkeys (such as F7), because their history management tech-
niques differ.

By default, PowerShell stores only the last 64 entries of your command history. If you
want to raise or lower this amount, set the $MaximumHistoryCount variable to the size
you desire. To make this change permanent, set the variable in your PowerShell profile
script.

1.16 Access and Manage Your Console History | 47

See Also
Recipe 1.6, “Customize Your Shell, Profile, and Prompt”

Recipe 1.13, “Customize the Shell to Improve Your Productivity”

Recipe 1.18, “Invoke a Command from Your Session History”

1.17 Program: Create Scripts from Session History
After interactively experimenting at the command line for a while to solve a multistep
task, you’ll often want to keep or share the exact steps you used to eventually solve the
problem. The script smiles at you from your history buffer, but it is unfortunately
surrounded by many more commands that you don’t want to keep.

To solve this problem, use the Get-History cmdlet to view the recent commands that
you’ve typed. Then, call Copy-History with the IDs of the commands you want to keep,
as shown in Example 1-12.

Example 1-12. Copy-History.ps1

##
##
Copy-History
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Copy selected commands from the history buffer into the clipboard as a script.

.EXAMPLE

Copy-History
Copies the entire contents of the history buffer into the clipboard.

.EXAMPLE

Copy-History -5
Copies the last five commands into the clipboard.

.EXAMPLE

Copy-History 2,5,8,4
Copies commands 2,5,8, and 4.

.EXAMPLE

Copy-History (1..10+5+6)

48 | Chapter 1: The Windows PowerShell Interactive Shell

Copies commands 1 through 10, then 5, then 6, using PowerShell's array
slicing syntax.

#>

param(
 ## The range of history IDs to copy
 [int[]] $Range
)

Set-StrictMode -Version Latest

$history = @()

If they haven't specified a range, assume it's everything
if((-not $range) -or ($range.Count -eq 0))
{
 $history = @(Get-History -Count ([Int16]::MaxValue))
}
If it's a negative number, copy only that many
elseif(($range.Count -eq 1) -and ($range[0] -lt 0))
{
 $count = [Math]::Abs($range[0])
 $history = (Get-History -Count $count)
}
Otherwise, go through each history ID in the given range
and add it to our history list.
else
{
 foreach($commandId in $range)
 {
 if($commandId -eq -1) { $history += Get-History -Count 1 }
 else { $history += Get-History -Id $commandId }
 }
}

Finally, export the history to the clipboard.
$history | Foreach-Object { $_.CommandLine } | clip.exe

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.18 Invoke a Command from Your Session History

Problem
You want to run a command from the history of your current session.

1.18 Invoke a Command from Your Session History | 49

Solution
To invoke a specific command by its ID:

Invoke-History ID

To search through your history for a command containing text:

PS > #text<TAB>

To repopulate your command with the text of a previous command by its ID:

PS > #ID<TAB>

Discussion
Once you’ve had your shell open for a while, your history buffer quickly fills with useful
commands. The history management hotkeys described in Recipe 1.13 show one way
to navigate your history, but this type of history navigation works only for command
lines you’ve typed in that specific session. If you keep a persistent command history (as
shown in Recipe 1.26), these shortcuts do not apply.

The Invoke-History cmdlet illustrates the simplest example of working with your com-
mand history. Given a specific history ID (perhaps shown in your prompt function),
calling Invoke-History with that ID will run that command again. For more information
about this technique, see Recipe 1.6.

As part of its tab-completion support, PowerShell gives you easy access to previous
commands as well. If you prefix your command with the # character, tab completion
takes one of two approaches:

ID completion
If you type a number, tab completion finds the entry in your command history with
that ID, and then replaces your command line with the text of that history entry.
This is especially useful when you want to slightly modify a previous history entry,
since Invoke-History by itself doesn’t support that.

Pattern completion
If you type anything else, tab completion searches for entries in your command
history that contain that text. Under the hood, PowerShell uses the -like operator
to match your command entries, so you can use all of the wildcard characters
supported by that operator. For more information on searching text for patterns,
see Recipe 5.7.

PowerShell’s tab completion is largely driven by the fully customizable TabExpansion
function. You can easily change this function to include more advanced functionality,
or even just customize specific behaviors to suit your personal preferences. For more
information, see “Tab Completion” on page 764.

50 | Chapter 1: The Windows PowerShell Interactive Shell

See Also
Recipe 1.6

Recipe 5.7

“Tab Completion” on page 764

1.19 Program: Search Formatted Output for a Pattern
While PowerShell’s built-in filtering facilities are incredibly flexible (for example, the
Where-Object cmdlet), they generally operate against specific properties of the incoming
object. If you are searching for text in the object’s formatted output, or don’t know
which property contains the text you are looking for, simple text-based filtering is
sometimes helpful.

To solve this problem, you can pipe the output into the Out-String cmdlet before pass-
ing it to the Select-String cmdlet. Select-TextOutput (shown in Example 1-13) does
exactly this, and it lets you search for a pattern in the visual representation of command
output.

Example 1-13. Select-TextOutput.ps1

##
##
Select-TextOutput
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Searches the textual output of a command for a pattern.

.EXAMPLE

Get-Service | Select-TextOutput audio
Finds all references to "Audio" in the output of Get-Service

#>

param(
 ## The pattern to search for
 $Pattern
)

Set-StrictMode -Version Latest
$input | Out-String -Stream | Select-String $pattern

1.19 Program: Search Formatted Output for a Pattern | 51

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.20 Interactively View and Process Command Output

Problem
You want to graphically explore and analyze the output of a command.

Solution
Use the Out-GridView cmdlet to interactively explore the output of a command.

Discussion
The Out-GridView cmdlet is one of the rare PowerShell cmdlets that displays a graphical
user interface. While the Where-Object and Sort-Object cmdlets are the most common
way to sort and filter lists of items, the Out-GridView cmdlet is very effective at the style
of repeated refinement that sometimes helps you develop complex queries.
Figure 1-3 shows the Out-GridView cmdlet in action.

Figure 1-3. Out-GridView, ready to filter

52 | Chapter 1: The Windows PowerShell Interactive Shell

Out-GridView lets you primarily filter your command output in two ways: a quick fil-
ter expression and a criteria filter.

Quick filters are fairly simple. As you type text in the topmost “Filter” window, Out-
GridView filters the list to contain only items that match that text. If you want to restrict
this text filtering to specific columns, simply provide a column name before your search
string and separate the two with a colon. You can provide multiple search strings, in
which case Out-GridView returns only rows that match all of the required strings.

Unlike most filtering cmdlets in PowerShell, the quick filters in the Out-
GridView cmdlet do not support wildcards or regular expressions. For
this type of advanced query, criteria-based filtering can help.

Criteria filters give fine-grained control over the filtering used by the Out-GridView
cmdlet. To apply a criteria filter, click the “Add criteria” button and select a property
to filter on. Out-GridView adds a row below the quick filter field and lets you pick one
of several operations to apply to this property:

• Less than or equal to

• Greater than or equal to

• Between

• Equals

• Does not equal

• Contains

• Does not contain

In addition to these filtering options, Out-GridView also lets you click and rearrange the
header columns to sort by them.

Processing output

Once you’ve sliced and diced your command output, you can select any rows you want
to keep and press Ctrl-C to copy them to the clipboard. Out-GridView copies the items
to the clipboard as tab-separated data, so you can easily paste the information into a
spreadsheet or other file for further processing.

Despite its clipboard output, exporting items to the Out-GridView cmdlet is primarily
a one-way operation. While you can process items somewhat further by exporting them
to a spreadsheet or text file, there is no way to access the results of sorting and filtering
as full-fidelity objects. For an approach that supports this type of full-fidelity filtering,
see Recipe 2.4. Additionally, a graphical version is shown in Recipe 13.10.

1.20 Interactively View and Process Command Output | 53

See Also
Recipe 2.4, “Program: Interactively Filter Lists of Objects”

Recipe 13.10, “Program: Add a Graphical User Interface to Your Script”

1.21 Store the Output of a Command into a File

Problem
You want to redirect the output of a pipeline into a file.

Solution
To redirect the output of a command into a file, use either the Out-File cmdlet or one
of the redirection operators.

Out-File:

Get-ChildItem | Out-File unicodeFile.txt
Get-Content filename.cs | Out-File -Encoding ASCII file.txt
Get-ChildItem | Out-File -Width 120 unicodeFile.cs

Redirection operators:

Get-ChildItem > files.txt
Get-ChildItem 2> errors.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. The redirection operators are unique because they give the
greatest amount of control over redirecting individual streams. The Out-File cmdlet is
unique primarily because it lets you easily configure the formatting width and encoding.

The default formatting width and the default output encoding are two aspects of output
redirection that can sometimes cause difficulty.

The default formatting width sometimes causes problems because redirecting
PowerShell-formatted output into a file is designed to mimic what you see on the screen.
If your screen is 80 characters wide, the file will be 80 characters wide as well. Examples
of PowerShell-formatted output include directory listings (that are implicitly formatted
as a table) as well as any commands that you explicitly format using one of the
Format-* set of cmdlets. If this causes problems, you can customize the width of the file
with the -Width parameter on the Out-File cmdlet.

The default output encoding sometimes causes unexpected results because PowerShell
creates all files using the UTF-16 Unicode encoding by default. This allows PowerShell
to fully support the entire range of international characters, cmdlets, and output. Al-
though this is a great improvement on traditional shells, it may cause an unwanted

54 | Chapter 1: The Windows PowerShell Interactive Shell

surprise when running large search and replace operations on ASCII source code files,
for example. To force PowerShell to send its output to a file in the ASCII encoding, use
the -Encoding parameter on the Out-File cmdlet.

For more information about the Out-File cmdlet, type Get-Help Out-File. For a full
list of supported redirection operators, see “Capturing Output” on page 760.

See Also
“Capturing Output” on page 760

1.22 Add Information to the End of a File

Problem
You want to redirect the output of a pipeline into a file but add the information to the
end of that file.

Solution
To redirect the output of a command into a file, use either the -Append parameter of the
Out-File cmdlet or one of the appending redirection operators described in “Capturing
Output” on page 760. Both support options to append text to the end of a file.

Out-File:

Get-ChildItem | Out-File -Append files.txt

Redirection operators:

Get-ChildItem >> files.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. See the discussion in Recipe 1.21 for a more detailed compar-
ison of the two approaches, including reasons that you would pick one over the other.

See Also
Recipe 1.21, “Store the Output of a Command into a File”

“Capturing Output” on page 760

1.23 Record a Transcript of Your Shell Session

Problem
You want to record a log or transcript of your shell session.

1.23 Record a Transcript of Your Shell Session | 55

Solution
To record a transcript of your shell session, run the command Start-Transcript. It has
an optional -Path parameter that defaults to a filename based on the current system
time. By default, PowerShell places this file in the My Documents directory. To stop
recording the transcript of your shell system, run the command Stop-Transcript.

Discussion
Although the Get-History cmdlet is helpful, it does not record the output produced
during your PowerShell session. To accomplish that, use the Start-Transcript cmdlet.
In addition to the Path parameter described previously, the Start-Transcript cmdlet
also supports parameters that let you control how PowerShell interacts with the output
file.

1.24 Extend Your Shell with Additional Commands

Problem
You want to use PowerShell cmdlets, providers, or script-based extensions written by
a third party.

Solution
Use the Import-Module command to import third-party commands into your PowerShell
session.

To import a registered module by name:

Import-Module Name

To import a module from a specific directory:

Import-Module c:\path\to\module

To import a module from a specific file (module, script, or assembly):

Import-Module c:\path\to\module\file.ext

Discussion
PowerShell supports two sets of commands that enable additional cmdlets and pro-
viders: *-Module and *-PsSnapin. Snapins were the packages for extensions in version
one of PowerShell. They supported only compiled extensions and had onerous instal-
lation requirements.

Version two of PowerShell introduces modules that support everything that snapins
support (and more) without the associated installation pain.

56 | Chapter 1: The Windows PowerShell Interactive Shell

The most common way to import a module is by name. PowerShell searches through
every directory listed in the PSModulePath environment variable, looking for subdirec-
tories that match the name you specify. Inside those directories, it looks for the module
(*.psd1, *.psm1, and *.dll) with the same name and loads it.

When you install a module on your own system, the most common place
to put it is in the WindowsPowerShell\Modules directory in your
My Documents directory.

To have PowerShell look in another directory for modules, add it to your personal
PSModulePath environment variable, just as you would add a Tools directory to your
personal Path.

If you want to load a module from a directory not in PSModulePath, you can provide the
entire directory name and module name to the Import-Module command. For example,
for a module named Test, use Import-Module c:\path\to\Test. As with loading mod-
ules by name, PowerShell looks in c:\temp\path\to for a module (*.psd1, *.psm1, or
*.dll) named Test and loads it.

If you know the specific module file you want to load, you can also specify the full path
to that module.

One popular source of additional commands is the PowerShell Community Extensions
project, located at http://www.codeplex.com/PowerShellCX.

If you want to import these commands for every PowerShell session, add a call to
Import-Module to your PowerShell Profile.

See Also
Recipe 1.6, “Customize Your Shell, Profile, and Prompt”

Recipe 11.6, “Package Common Commands in a Module”

1.25 Use Commands from Customized Shells

Problem
You want to use the commands from a PowerShell-based product that launches a cus-
tomized version of the PowerShell console, but in a regular PowerShell session.

Solution
Launch the customized version of the PowerShell console, and then use the Get-
Module and Get-PsSnapin commands to see what additional modules and/or snapins it
loaded.

1.25 Use Commands from Customized Shells | 57

http://www.codeplex.com/PowerShellCX

Discussion
As described in Recipe 1.24, PowerShell modules and snapins are the two ways that
third parties can distribute and add additional PowerShell commands. Products that
provide customized versions of the PowerShell console do this by calling Power
Shell.exe with one of three parameters:

• -PSConsoleFile, to load a console file that provides a list of snapins to load.

• -Command, to specify an initial startup command (that then loads a snapin or
module)

• -File, to specify an initial startup script (that then loads a snapin or module)

Regardless of which one it used, you can examine the resulting set of loaded extensions
to see which ones you can import into your other PowerShell sessions.

Detecting loaded snapins

The Get-PsSnapin command returns all snapins loaded in the current session. It always
returns the set of core PowerShell snapins, but it will also return any additional snapins
loaded by the customized environment. For example, if the name of a snapin you rec-
ognize is Product.Feature.Commands, you can load that into future PowerShell sessions
by typing Add-PsSnapin Product.Feature.Commands. To automate this, add the com-
mand into your PowerShell profile.

If you are uncertain of which snapin to load, you can also use the Get-Command command
to discover which snapin defines a specific command:

PS > Get-Command Get-Counter | Select PsSnapin

PSSnapIn

Microsoft.PowerShell.Diagnostics

Detecting loaded modules

Like the Get-PsSnapin command, the Get-Module command returns all modules loaded
in the current session. It returns any modules you’ve added so far into that session, but
it will also return any additional modules loaded by the customized environment. For
example, if the name of a module you recognize is ProductModule, you can load that
into future PowerShell sessions by typing Import-Module ProductModule. To automate
this, add the command into your PowerShell profile.

If you are uncertain of which module to load, you can also use the Get-Command com-
mand to discover which module defines a specific command:

PS > Get-Command Start-BitsTransfer | Select Module

Module

BitsTransfer

58 | Chapter 1: The Windows PowerShell Interactive Shell

See Also
Recipe 1.24, “Extend Your Shell with Additional Commands”

1.26 Save State Between Sessions

Problem
You want to save state or history between PowerShell sessions.

Solution
Subscribe to the PowerShell.Exiting engine event to have PowerShell invoke a script
or script block that saves any state you need.

To have PowerShell save your command history, place a call to Enable-

HistoryPersistence in your profile, as in Example 1-14.

Example 1-14. Enable-HistoryPersistence.ps1

##
##
Enable-HistoryPersistence
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Reloads any previously saved command history and registers for the
PowerShell.Exiting engine event to save new history when the shell
exits.

#>

Set-StrictMode -Version Latest

Load our previous history
$GLOBAL:maximumHistoryCount = 32767
$historyFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
if(Test-Path $historyFile)
{
 Import-CliXml $historyFile | Add-History
}

Register for the engine shutdown event
$null = Register-EngineEvent -SourceIdentifier `
 ([System.Management.Automation.PsEngineEvent]::Exiting) -Action {

1.26 Save State Between Sessions | 59

 ## Save our history
 $historyFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
 $maximumHistoryCount = 1kb

 ## Get the previous history items
 $oldEntries = @()
 if(Test-Path $historyFile)
 {
 $oldEntries = Import-CliXml $historyFile -ErrorAction SilentlyContinue
 }

 ## And merge them with our changes
 $currentEntries = Get-History -Count $maximumHistoryCount
 $additions = Compare-Object $oldEntries $currentEntries `
 -Property CommandLine | Where-Object { $_.SideIndicator -eq "=>" } |
 Foreach-Object { $_.CommandLine }

 $newEntries = $currentEntries | ? { $additions -contains $_.CommandLine }

 ## Keep only unique command lines. First sort by CommandLine in
 ## descending order (so that we keep the newest entries,) and then
 ## re-sort by StartExecutionTime.
 $history = @($oldEntries + $newEntries) |
 Sort -Unique -Descending CommandLine | Sort StartExecutionTime

 ## Finally, keep the last 100
 Remove-Item $historyFile
 $history | Select -Last 100 | Export-CliXml $historyFile
}

Discussion
PowerShell provides easy script-based access to a broad variety of system, engine, and
other events. You can register for notification of these events and even automatically
process any of those events. In this example, we subscribe to the only one currently
available, which is called PowerShell.Exiting. PowerShell generates this event when
you close a session.

For PowerShell to handle this event, you must use the exit keyword to close your
session, rather than the X button at the top right of the console window. In the Inte-
grated Scripting Environment, the close button generates this event as well.

This script could do anything, but in this example we have it save our command history
and restore it when we launch PowerShell. Why would we want to do this? Well, with
a rich history buffer, we can more easily find and reuse commands we’ve previously
run. For two examples of doing this, see Recipes 1.16 and 1.18.

Example 1-14 takes two main actions. First, we load our stored command history (if
any exists). Then, we register an automatic action to be processed whenever the engine
generates its PowerShell.Exiting event. The action itself is relatively straightforward,
although exporting our new history does take a little finesse. If you have several sessions

60 | Chapter 1: The Windows PowerShell Interactive Shell

open at the same time, each will update the saved history file when it exits. Since we
don’t want to overwrite the history saved by the other shells, we first reload the history
from disk and combine it with the history from the current shell.

Once we have the combined list of command lines, we sort them and pick out the
unique ones before storing them back in the file.

For more information about working with PowerShell engine events, see Recipe 31.2.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 1.16, “Access and Manage Your Console History”

Recipe 31.2, “Create and Respond to Custom Events”

1.26 Save State Between Sessions | 61

CHAPTER 2

Pipelines

2.0 Introduction
One of the fundamental concepts in a shell is called the pipeline. It also forms the basis
of one of PowerShell’s most significant advances. A pipeline is a big name for a simple
concept—a series of commands where the output of one becomes the input of the next.
A pipeline in a shell is much like an assembly line in a factory: it successively refines
something as it passes between the stages, as shown in Example 2-1.

Example 2-1. A PowerShell pipeline

Get-Process | Where-Object { $_.WorkingSet -gt 500kb } | Sort-Object -Descending Name

In PowerShell, you separate each stage in the pipeline with the pipe (|) character.

In Example 2-1, the Get-Process cmdlet generates objects that represent actual pro-
cesses on the system. These process objects contain information about the process’s
name, memory usage, process ID, and more. As the Get-Process cmdlet generates out-
put, it passes it along. Simultaneously, the Where-Object cmdlet gets to work directly
with those processes, testing easily for those that use more than 500 kb of memory. It
passes those along immediately as it processes them, allowing the Sort-Object cmdlet
to also work directly with those processes and sort them by name in descending order.

This brief example illustrates a significant advancement in the power of pipelines:
PowerShell passes full-fidelity objects along the pipeline, not their text representations.

In contrast, all other shells pass data as plain text between the stages. Extracting mean-
ingful information from plain-text output turns the authoring of pipelines into a black
art. Expressing the previous example in a traditional Unix-based shell is exceedingly
difficult and it is nearly impossible in cmd.exe.

Traditional text-based shells make writing pipelines so difficult because they require
you to deeply understand the peculiarities of output formatting for each command in
the pipeline, as shown in Example 2-2.

63

Example 2-2. A traditional text-based pipeline

lee@trinity:~$ ps -F | awk '{ if($5 > 500) print }' | sort -r -k 64,70
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
lee 8175 7967 0 965 1036 0 21:51 pts/0 00:00:00 ps -F
lee 7967 7966 0 1173 2104 0 21:38 pts/0 00:00:00 -bash

In this example, you have to know that, for every line, group number five represents
the memory usage. You have to know another language (that of the awk tool) to filter
by that column. Finally, you have to know the column range that contains the process
name (columns 64 to 70 on this system) and then provide that to the sort command.
And that’s just a simple example.

An object-based pipeline opens up enormous possibilities, making system administra-
tion both immensely more simple and more powerful.

2.1 Filter Items in a List or Command Output

Problem
You want to filter the items in a list or command output.

Solution
Use the Where-Object cmdlet to select items in a list (or command output) that match
a condition you provide. The Where-Object cmdlet has the standard aliases where and ?.

To list all running processes that have “search” in their name, use the -like operator
to compare against the process’s Name property:

Get-Process | Where-Object { $_.Name -like "*Search*" }

To list all directories in the current location, test the PsIsContainer property:

Get-ChildItem | Where-Object { $_.PsIsContainer }

To list all stopped services, use the -eq operator to compare against the service’s
Status property:

Get-Service | Where-Object { $_.Status -eq "Stopped" }

Discussion
For each item in its input (which is the output of the previous command), the Where-
Object cmdlet evaluates that input against the script block that you specify. If the script
block returns True, then the Where-Object cmdlet passes the object along. Otherwise,
it does not. A script block is a series of PowerShell commands enclosed by the
{ and } characters. You can write any PowerShell commands inside the script block. In
the script block, the $_ variable represents the current input object. For each item in
the incoming set of objects, PowerShell assigns that item to the $_ variable and then

64 | Chapter 2: Pipelines

runs your script block. In the preceding examples, this incoming object represents the
process, file, or service that the previous cmdlet generated.

This script block can contain a great deal of functionality, if desired. It can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons available
to you, see “Comparison Operators” on page 731.

For simple filtering, the syntax of the Where-Object cmdlet may sometimes seem over-
bearing. Recipe 2.3 shows a script that can make simple filtering (such as the previous
examples) easier to work with.

For complex filtering (for example, the type you would normally rely on a mouse to do
with files in an Explorer window), writing the script block to express your intent may
be difficult or even infeasible. If this is the case, Recipe 2.4 shows a script that can make
manual filtering easier to accomplish.

For more information about the Where-Object cmdlet, type Get-Help Where-Object.

See Also
Recipe 2.3, “Program: Simplify Most Where-Object Filters”

Recipe 2.4, “Program: Interactively Filter Lists of Objects”

Recipe 11.4, “Write a Script Block”

“Comparison Operators” on page 731

2.2 Group and Pivot Data by Name

Problem
You want to easily access items in a list by a property name.

Solution
Use the Group-Object cmdlet (which has the standard alias group) with the -AsHash and
-AsString parameters. This creates a hashtable with the selected property (or expres-
sion) used as keys in that hashtable.

PS > $h = dir | group -AsHash -AsString Length
PS > $h

Name Value
---- -----
746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.dll}

2.2 Group and Pivot Data by Name | 65

PS > $h["499"]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:57 PM 499 Format-String.ps1

PS > $h["746"]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

Discussion
In some situations, you might find yourself repeatedly calling the Where-Object cmdlet
to interact with the same list or output:

PS > $processes = Get-Process
PS > $processes | Where-Object { $_.Id -eq 1216 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 3 1012 3132 50 0.20 1216 dwm

PS > $processes | Where-Object { $_.Id -eq 212 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 614 10 28444 5484 117 1.27 212 SearchIndexer

In these situations, you can instead use the -AsHash parameter of the Group-Object
cmdlet. When you use this parameter, PowerShell creates a hashtable to hold your
results, which creates a map between the property you are interested in and the object
it represents:

PS > $processes = Get-Process | Group-Object -AsHash Id
PS > $processes[1216]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 3 1012 3132 50 0.20 1216 dwm

PS > $processes[212]

66 | Chapter 2: Pipelines

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 610 10 28444 5488 117 1.27 212 SearchIndexer

For simple types of data, this approach works well. Depending on your data, though,
the -AsHash parameter alone can run into difficulties.

The first issue you might run into comes from when the value of a property is $null.
Hashtables in PowerShell (and the .NET Framework that provides the underlying sup-
port) do not support $null as a value, so you get a misleading error message:

PS > "Hello",(Get-Process -id $pid) | Group-Object -AsHash Id
Group-Object : The objects grouped by this property cannot be expanded
since there is a duplication of the key. Please give a valid property and try
again.

A second issue comes when more complex data gets stored within the hashtable. This
can unfortunately be true even of data that appears to be simple.

PS > $result = dir | Group-Object -AsHash Length
PS > $result

Name Value
---- -----
746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.dll}

PS > $result[746]
(Nothing appears)

This missing result is caused by an incompatibility between the information in the
hashtable and the information you typed. This is normally not an issue in hashtables
that you create yourself, because you provided all of the information to populate them.
In this case, though, the Length values stored in the hashtable come from the directory
listing and are of the type Int64. An explicit cast resolves the issue but takes a great deal
of trial and error to discover:

PS > $result[[int64] 746]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

2.2 Group and Pivot Data by Name | 67

It is difficult to avoid both of these issues, so the Group-Object cmdlet also offers an
-AsString parameter to convert all of the values to their string equivalents. With that
parameter, you can always assume that the values will be treated as (and accessible by)
strings:

PS > $result = dir | Group-Object -AsHash -AsString Length
PS > $result["746"]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

For more information about the Group-Object cmdlet, type Get-Help Group-Object. For
more information about PowerShell hashtables, see Recipe 7.13.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Hashtables (Associative Arrays)” on page 723

2.3 Program: Simplify Most Where-Object Filters
The Where-Object cmdlet is incredibly powerful, in that it allows you to filter your
output based on arbitrary criteria. For extremely simple filters (such as filtering based
only on a comparison to a single property), though, the syntax can get a little ungainly:

Get-Process | Where-Object { $_.Handles -gt 1000 }

For this type of situation, it is easy to write a script (as shown in Example 2-3) to offload
all the syntax to the script itself:

Get-Process | Compare-Property Handles gt 1000
Get-ChildItem | Compare-Property PsIsContainer

With a shorter alias, this becomes even easier to type:

PS > Set-Alias wheres Compare-Property
PS > Get-ChildItem | wheres Length gt 100

Example 2-3 implements this “simple where” functionality. Note that supplying a non-
existing operator as the $operator parameter will generate an error message.

68 | Chapter 2: Pipelines

Example 2-3. Compare-Property.ps1

##
##
Compare-Property
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Compare the property you provide against the input supplied to the script.
This provides the functionality of simple Where-Object comparisons without
the syntax required for that cmdlet.

.EXAMPLE

Get-Process | Compare-Property Handles gt 1000

.EXAMPLE

PS >Set-Alias ?? Compare-Property
PS >dir | ?? PsIsContainer

#>

param(
 ## The property to compare
 $Property,

 ## The operator to use in the comparison
 $Operator = "eq",

 ## The value to compare with
 $MatchText = "$true"
)

Begin { $expression = "`$_.$property -$operator `"$matchText`"" }
Process { if(Invoke-Expression $expression) { $_ } }

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

2.3 Program: Simplify Most Where-Object Filters | 69

2.4 Program: Interactively Filter Lists of Objects
There are times when the Where-Object cmdlet is too powerful. In those situations, the
Compare-Property script shown in Recipe 2.3 provides a much simpler alternative. There
are also times when the Where-Object cmdlet is too simple—when expressing your
selection logic as code is more cumbersome than selecting it manually. In those situa-
tions, an interactive filter can be much more effective.

Example 2-4 implements this interactive filter. It uses several concepts not covered yet
in this book, so feel free to just consider it a neat script for now. To learn more about
a part that you don’t yet understand, look it up in the Table of Contents or the Index.

Example 2-4. Select-FilteredObject.ps1

##
##
Select-FilteredObject
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Provides an interactive window to help you select complex sets of objects.
To do this, it takes all the input from the pipeline, and presents it in a
notepad window. Keep any lines that represent objects you want to retain,
delete the rest, then save the file and exit notepad.

The script then passes the original objects that you kept along the
pipeline.

.EXAMPLE

Get-Process | Select-FilteredObject | Stop-Process -WhatIf
Gets all of the processes running on the system, and displays them to you.
After you've selected the ones you want to stop, it pipes those into the
Stop-Process cmdlet.

#>

PowerShell runs your "begin" script block before it passes you any of the
items in the pipeline.
begin
{
 Set-StrictMode -Version Latest

 ## Create a temporary file
 $filename = [System.IO.Path]::GetTempFileName()

 ## Define a header in a "here string" that explains how to interact with

70 | Chapter 2: Pipelines

 ## the file
 $header = @"
##
Keep any lines that represent obects you want to retain,
and delete the rest.
##
Once you finish selecting objects, save this file and
exit.
##

"@

 ## Place the instructions into the file
 $header > $filename

 ## Initialize the variables that will hold our list of objects, and
 ## a counter to help us keep track of the objects coming down the
 ## pipeline
 $objectList = @()
 $counter = 0
}

PowerShell runs your "process" script block for each item it passes down
the pipeline. In this block, the "$_" variable represents the current
pipeline object
process
{
 ## Add a line to the file, using PowerShell's format (-f) operator.
 ## When provided the ouput of Get-Process, for example, these lines look
 ## like:
 ## 30: System.Diagnostics.Process (powershell)
 "{0}: {1}" -f $counter,$_.ToString() >> $filename

 ## Add the object to the list of objects, and increment our counter.
 $objectList += $_
 $counter++
}

PowerShell runs your "end" script block once it completes passing all
objects down the pipeline.
end
{
 ## Start notepad, then call the process's WaitForExit() method to
 ## pause the script until the user exits notepad.
 $process = Start-Process Notepad -Args $filename -PassThru
 $process.WaitForExit()

 ## Go over each line of the file
 foreach($line in (Get-Content $filename))
 {
 ## Check if the line is of the special format: numbers, followed by
 ## a colon, followed by extra text.
 if($line -match "^(\d+?):.*")
 {
 ## If it did match the format, then $matches[1] represents the

2.4 Program: Interactively Filter Lists of Objects | 71

 ## number -- a counter into the list of objects we saved during
 ## the "process" section.
 ## So, we output that object from our list of saved objects.
 $objectList[$matches[1]]
 }
 }

 ## Finally, clean up the temporary file.
 Remove-Item $filename
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.3, “Program: Simplify Most Where-Object Filters”

2.5 Work with Each Item in a List or Command Output

Problem
You have a list of items and want to work with each item in that list.

Solution
Use the Foreach-Object cmdlet (which has the standard aliases foreach and %) to work
with each item in a list.

To apply a calculation to each item in a list, use the $_ variable as part of a calculation
in the script block parameter:

PS > 1..10 | Foreach-Object { $_ * 2 }
2
4
6
8
10
12
14
16
18
20

To run a program on each file in a directory, use the $_ variable as a parameter to the
program in the script block parameter:

Get-ChildItem *.txt | Foreach-Object { attrib -r $_ }

72 | Chapter 2: Pipelines

To access a method or property for each object in a list, access that method or property
on the $_ variable in the script block parameter. In this example, you get the list of
running processes called notepad, and then wait for each of them to exit:

$notepadProcesses = Get-Process notepad
$notepadProcesses | Foreach-Object { $_.WaitForExit() }

Discussion
Like the Where-Object cmdlet, the Foreach-Object cmdlet runs the script block that you
specify for each item in the input. A script block is a series of PowerShell commands
enclosed by the { and } characters. For each item in the set of incoming objects,
PowerShell assigns that item to the $_ variable, one element at a time. In the examples
given by the solution, the $_ variable represents each file or process that the previous
cmdlet generated.

This script block can contain a great deal of functionality, if desired. You can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons available
to you, see “Comparison Operators” on page 731.

The first example in the solution demonstrates a neat way to generate
ranges of numbers: 1..10

This is PowerShell’s array range syntax, which you can learn more about
in Recipe 7.3.

The Foreach-Object cmdlet isn’t the only way to perform actions on items in a list. The
PowerShell scripting language supports several other keywords, such as for, (a differ-
ent) foreach, do, and while. For information on how to use those keywords, see
Recipe 4.4.

For more information about the Foreach-Object cmdlet, type Get-Help
Foreach-Object.

For more information about dealing with pipeline input in your own scripts, functions,
and script blocks, see Recipe 11.18.

See Also
Recipe 4.4, “Repeat Operations with Loops”

Recipe 7.3, “Access Elements of an Array”

Recipe 11.4, “Write a Script Block”

Recipe 11.18, “Access Pipeline Input”

“Comparison Operators” on page 731

2.5 Work with Each Item in a List or Command Output | 73

2.6 Automate Data-Intensive Tasks

Problem
You want to invoke a simple task on large amounts of data.

Solution
If only one piece of data changes (such as a server name or username), store the data
in a text file. Use the Get-Content cmdlet to retrieve the items, and then use the Foreach-
Object cmdlet (which has the standard aliases foreach and %) to work with each item
in that list. Example 2-5 illustrates this technique.

Example 2-5. Using information from a text file to automate data-intensive tasks

PS > Get-Content servers.txt
SERVER1
SERVER2
PS > $computers = Get-Content servers.txt
PS > $computers | Foreach-Object { Get-WmiObject Win32_OperatingSystem -Computer $_ }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 2600
Version : 5.1.2600

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 2600
Version : 5.1.2600

If it becomes cumbersome (or unclear) to include the actions in the Foreach-Object
cmdlet, you can also use the foreach scripting keyword, as illustrated in Example 2-6.

Example 2-6. Using the foreach scripting keyword to make a looping statement easier to read

$computers = Get-Content servers.txt

foreach($computer in $computers)
{
 ## Get the information about the operating system from WMI
 $system = Get-WmiObject Win32_OperatingSystem -Computer $computer

 ## Determine if it is running Windows XP
 if($system.Version -eq "5.1.2600")
 {
 "$computer is running Windows XP"
 }
}

If several aspects of the data change per task (for example, both the WMI class and the
computer name for computers in a large report), create a CSV file with a row for each

74 | Chapter 2: Pipelines

task. Use the Import-Csv cmdlet to import that data into PowerShell, and then use
properties of the resulting objects as multiple sources of related data. Example 2-7
illustrates this technique.

Example 2-7. Using information from a CSV to automate data-intensive tasks

PS > Get-Content WmiReport.csv
ComputerName,Class
LEE-DESK,Win32_OperatingSystem
LEE-DESK,Win32_Bios
PS > $data = Import-Csv WmiReport.csv
PS > $data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data |
 Foreach-Object { Get-WmiObject $_.Class -Computer $_.ComputerName }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 2600
Version : 5.1.2600

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Discussion
One of the major benefits of PowerShell is its capability to automate repetitive tasks.
Sometimes these repetitive tasks are action-intensive (such as system maintenance
through registry and file cleanup) and consist of complex sequences of commands that
will always be invoked together. In those situations, you can write a script to combine
these operations to save time and reduce errors.

Other times, you need only to accomplish a single task (for example, retrieving the
results of a WMI query) but need to invoke that task repeatedly for a large amount of
data. In those situations, PowerShell’s scripting statements, pipeline support, and data
management cmdlets help automate those tasks.

One of the options given by the solution is the Import-Csv cmdlet. The Import-Csv
cmdlet reads a CSV file and, for each row, automatically creates an object with prop-
erties that correspond to the names of the columns. Example 2-8 shows the results of
a CSV that contains a ComputerName and Class header.

2.6 Automate Data-Intensive Tasks | 75

Example 2-8. The Import-Csv cmdlet creating objects with Computer Name and Class properties

PS > $data = Import-Csv WmiReport.csv
PS > $data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data[0].ComputerName
LEE-DESK

As the solution illustrates, you can use the Foreach-Object cmdlet to provide data from
these objects to repetitive cmdlet calls. It does this by specifying each parameter name,
followed by the data (taken from a property of the current CSV object) that applies
to it.

While this is the most general solution, many cmdlet parameters can automatically
retrieve their value from incoming objects if any property of that object has the same
name. This can let you omit the Foreach-Object and property mapping steps altogether.
Parameters that support this feature are said to support value from pipeline by property
name. The Move-Item cmdlet is one example of a cmdlet with parameters that support
this, as shown by the Accept pipeline input rows in Example 2-9.

Example 2-9. Help content of the Move-Item showing a parameter that accepts value from pipeline
by property name

PS > Get-Help Move-Item -Full
(...)
PARAMETERS

 -path <string[]>
 Specifies the path to the current location of the items. The default
 is the current directory. Wildcards are permitted.

 Required? true
 Position? 1
 Default value <current location>
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? true

 -destination <string>
 Specifies the path to the location where the items are being moved.
 The default is the current directory. Wildcards are permitted, but
 the result must specify a single location.

 To rename the item being moved, specify a new name in the value of
 Destination.

 Required? false
 Position? 2
 Default value <current location>

76 | Chapter 2: Pipelines

 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? True
 (...)

If you purposefully name the columns in the CSV to correspond to parameters that take
their value from pipeline by property name, PowerShell can do some (or all) of the
parameter mapping for you. Example 2-10 demonstrates a CSV file that moves items
in bulk.

Example 2-10. Using the Import-Csv cmdlet to automate a cmdlet that accepts value from pipeline
by property name

PS > Get-Content ItemMoves.csv
Path,Destination
test.txt,Test1Directory
test2.txt,Test2Directory
PS > dir test.txt,test2.txt | Select Name

Name

test.txt
test2.txt

PS > Import-Csv ItemMoves.csv | Move-Item
PS > dir Test1Directory | Select Name

Name

test.txt

PS > dir Test2Directory | Select Name
Name

test2.txt

For more information about the Foreach-Object cmdlet and foreach scripting keyword,
see Recipe 2.5. For more information about working with CSV files, see Recipe 10.7.
For more information about working with Windows Management Instrumentation
(WMI), see Chapter 28.

See Also
Recipe 2.5, “Work with Each Item in a List or Command Output”

Recipe 10.7, “Import CSV and Delimited Data from a File”

Chapter 28, Windows Management Instrumentation

2.6 Automate Data-Intensive Tasks | 77

2.7 Program: Simplify Most Foreach-Object Pipelines

Problem
You want to access methods and retrieve properties of each pipeline object without the
overhead required by the Foreach-Object cmdlet.

Solution
Use the Invoke-Member script (Example 2-11) to avoid the need for script blocks and
pipeline variables ($_) for simple property and method access.

Example 2-11. Invoke-Member.ps1

##
##
Invoke-Member
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Enables easy access to methods and properties of pipeline objects.

.EXAMPLE

PS >"Hello","World" | .\Invoke-Member Length
5
5

.EXAMPLE

PS >"Hello","World" | .\Invoke-Member -m ToUpper
HELLO
WORLD

.EXAMPLE

PS >"Hello","World" | .\Invoke-Member Replace l w
Hewwo
Worwd

#>

[CmdletBinding(DefaultParameterSetName= "Member")]
param(

 ## A switch parameter to identify the requested member as a method.

78 | Chapter 2: Pipelines

 ## Only required for methods that take no arguments.
 [Parameter(ParameterSetName = "Method")]
 [Alias("M","Me")]
 [switch] $Method,

 ## The name of the member to retrieve
 [Parameter(ParameterSetName = "Method", Position = 0)]
 [Parameter(ParameterSetName = "Member", Position = 0)]
 [string] $Member,

 ## Arguments for the method, if any
 [Parameter(
 ParameterSetName = "Method", Position = 1,
 Mandatory = $false, ValueFromRemainingArguments = $true)]
 [object[]] $ArgumentList = @(),

 ## The object from which to retrieve the member
 [Parameter(ValueFromPipeline = $true)]
 $InputObject
)

begin
{
 Set-StrictMode -Version Latest
}

process
{
 ## If the user specified a method, invoke it
 ## with any required arguments.
 if($psCmdlet.ParameterSetName -eq "Method")
 {
 $inputObject.$member.Invoke(@($argumentList))
 }
 ## Otherwise, retrieve the property
 else
 {
 $inputObject.$member
 }
}

Discussion
As shown in Recipe 2.6, the Foreach-Object cmdlet literally supports the entire
PowerShell scripting language when working with objects in a pipeline. However, the
syntax and nonalphabetic characters required for simple expressions can sometimes
feel overbearing.

2.7 Program: Simplify Most Foreach-Object Pipelines | 79

In addition to the Foreach-Object cmdlet, you can use the
-ExpandProperty parameter of the Select-Object cmdlet to retrieve the
value of properties:

PS > "Hello","World" | Select-Object -Expand Length
5
5

While its main intent is to include the properties of nested objects as
through they were properties of the parent object, it is a useful shortcut
for this situation as well.

To remove this syntax overhead, the Invoke-Member script supports simple method and
property access as its main (and only) function. To make this even easier to type, give
it a short alias, such as:

PS > Set-Alias :: Invoke-Member
PS > dir | :: Length
907
1425
1641
2057
2286
1854
11220
1562
248
985
560
524

For an example of applying this type of simplification to the Where-Object cmdlet, see
Recipe 2.3.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.3, “Program: Simplify Most Where-Object Filters”

2.8 Intercept Stages of the Pipeline

Problem
You want to intercept or take some action at different stages of the PowerShell pipeline.

Solution
Use the New-CommandWrapper script given in Recipe 11.23 to wrap the Out-Default com-
mand, and place your custom functionality in that.

80 | Chapter 2: Pipelines

Discussion
For any pipeline, PowerShell adds an implicit call to the Out-Default cmdlet at the end.
By adding a command wrapper over this function we can heavily customize the pipeline
processing behavior.

When PowerShell creates a pipeline, it first calls the BeginProcessing() method of each
command in the pipeline. For advanced functions (the type created by the New-Command
Wrapper script), PowerShell invokes the Begin block. If you want to do anything at the
beginning of the pipeline, then put your customizations in that block.

For each object emitted by the pipeline, PowerShell sends that object to the
ProcessRecord() method of the next command in the pipeline. For advanced functions
(the type created by the New-CommandWrapper script), PowerShell invokes the Process
block. If you want to do anything for each element in the pipeline, put your customi-
zations in that block.

Finally, when PowerShell has processed all items in the pipeline, it calls the
EndProcessing() method of each command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the End block. If
you want to do anything at the end of the pipeline, then put your customizations in
that block.

For two examples of this approach, see Recipe 2.9 and Recipe 11.22.

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.9, “Automatically Capture Pipeline Output”

Recipe 11.22, “Invoke Dynamically Named Commands”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.9 Automatically Capture Pipeline Output

Problem
You want to automatically capture the output of the last command without explicitly
storing its output in a variable.

Solution
Invoke the Add-ObjectCollector script, which in turn builds upon the New-

CommandWrapper script.

2.9 Automatically Capture Pipeline Output | 81

Example 2-12. Add-ObjectCollector.ps1

##
##
Add-ObjectCollector
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds a new Out-Default command wrapper to store up to 500 elements from
the previous command. This wrapper stores output in the $ll variable.

.EXAMPLE

PS >Get-Command $pshome\powershell.exe

CommandType Name Definition
----------- ---- ----------
Application powershell.exe C:\Windows\System32\Windo...

PS >$ll.Definition
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

.NOTES

This command builds on New-CommandWrapper, also included in the Windows
PowerShell Cookbook.

#>

Set-StrictMode -Version Latest

New-CommandWrapper Out-Default `
 -Begin {
 $cachedOutput = New-Object System.Collections.ArrayList
 } `
 -Process {
 ## If we get an input object, add it to our list of objects
 if($_ -ne $null) { $null = $cachedOutput.Add($_) }
 while($cachedOutput.Count -gt 500) { $cachedOutput.RemoveAt(0) }
 } `
 -End {
 ## Be sure we got objects that were not just errors (
 ## so that we don't wipe out the saved output when we get errors
 ## trying to work with it.)
 ## Also don't capture formatting information, as those objects
 ## can't be worked with.
 $uniqueOutput = $cachedOutput | Foreach-Object {
 $_.GetType().FullName } | Select -Unique
 $containsInterestingTypes = ($uniqueOutput -notcontains `

82 | Chapter 2: Pipelines

 "System.Management.Automation.ErrorRecord") -and
 ($uniqueOutput -notlike `
 "Microsoft.PowerShell.Commands.Internal.Format.*")

 ## If we actually had output, and it was interesting information,
 ## save the output into the $ll variable
 if(($cachedOutput.Count -gt 0) -and $containsInterestingTypes)
 {
 $GLOBAL:ll = $cachedOutput | % { $_ }
 }
 }

Discussion
The example in the Solution builds a command wrapper over the Out-Default com-
mand by first creating an ArrayList during the Begin stage of the pipeline.

As each object passes down the pipeline (and is processed by the Process block of Out-
Default), the wrapper created by Add-ObjectCollector adds the object to the ArrayList.

Once the pipeline completes, the Add-ObjectCollector wrapper stores the saved items
in the $ll variable, making them always available at the next prompt.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 2.8, “Intercept Stages of the Pipeline”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.10 Capture and Redirect Binary Process Output

Problem
You want to run programs that transfer complex binary data between themselves.

Solution
Use the Invoke-BinaryProcess script to invoke the program. If it is the source of binary
data, use the -RedirectOutput parameter. If it consumes binary data, use the
-RedirectInput parameter.

2.10 Capture and Redirect Binary Process Output | 83

Example 2-13. Invoke-BinaryProcess.ps1

##
##
Invoke-BinaryProcess
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invokes a process that emits or consumes binary data.

.EXAMPLE

Invoke-BinaryProcess binaryProcess.exe -RedirectOutput |
 Invoke-BinaryProcess binaryProcess.exe -RedirectInput

#>

param(
 ## The name of the process to invoke
 [string] $ProcessName,

 ## Specifies that input to the process should be treated as
 ## binary
 [Alias("Input")]
 [switch] $RedirectInput,

 ## Specifies that the output of the process should be treated
 ## as binary
 [Alias("Output")]
 [switch] $RedirectOutput,

 ## Specifies the arguments for the process
 [string] $ArgumentList
)

Set-StrictMode -Version Latest

Prepare to invoke the process
$processStartInfo = New-Object System.Diagnostics.ProcessStartInfo
$processStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if($argumentList) { $processStartInfo.Arguments = $argumentList }
$processStartInfo.UseShellExecute = $false

Always redirect the input and output of the process.
Sometimes we will capture it as binary, other times we will
just treat it as strings.
$processStartInfo.RedirectStandardOutput = $true
$processStartInfo.RedirectStandardInput = $true

84 | Chapter 2: Pipelines

$process = [System.Diagnostics.Process]::Start($processStartInfo)

If we've been asked to redirect the input, treat it as bytes.
Otherwise, write any input to the process as strings.
if($redirectInput)
{
 $inputBytes = @($input)
 $process.StandardInput.BaseStream.Write($inputBytes, 0, $inputBytes.Count)
 $process.StandardInput.Close()
}
else
{
 $input | % { $process.StandardInput.WriteLine($_) }
 $process.StandardInput.Close()
}

If we've been asked to redirect the output, treat it as bytes.
Otherwise, read any input from the process as strings.
if($redirectOutput)
{
 $byteRead = -1
 do
 {
 $byteRead = $process.StandardOutput.BaseStream.ReadByte()
 if($byteRead -ge 0) { $byteRead }
 } while($byteRead -ge 0)
}
else
{
 $process.StandardOutput.ReadToEnd()
}

Discussion
When PowerShell launches a native application, one of the benefits it provides is al-
lowing you to use PowerShell commands to work with the output. For example:

PS > (ipconfig)[7]
 Link-local IPv6 Address : fe80::20f9:871:8365:f368%8
PS > (ipconfig)[8]
 IPv4 Address. : 10.211.55.3

PowerShell enables this by splitting the output of the program on its newline characters,
and then passing each line independently down the pipeline. This includes programs
that use the Unix newline (\n) as well as the Windows newline (\r\n).

If the program outputs binary data, however, that reinterpretation can corrupt data as
it gets redirected to another process or file. For example, some programs communicate
between themselves through complicated binary data structures that cannot be modi-
fied along the way. This is common in some image editing utilities and other non-
PowerShell tools designed for pipelined data manipulation.

2.10 Capture and Redirect Binary Process Output | 85

We can see this through an example BinaryProcess.exe that either emits binary data
or consumes it. Here is the C# source code to the BinaryProcess.exe application:

using System;
using System.IO;

public class BinaryProcess
{
 public static void Main(string[] args)
 {
 if(args[0] == "-consume")
 {
 using(Stream inputStream = Console.OpenStandardInput())
 {
 for(byte counter = 0; counter < 255; counter++)
 {
 byte received = (byte) inputStream.ReadByte();
 if(received != counter)
 {
 Console.WriteLine(
 "Got an invalid byte: {0}, expected {1}.",
 received, counter);
 return;
 }
 else
 {
 Console.WriteLine(
 "Properly received byte: {0}.", received, counter);
 }
 }
 }
 }

 if(args[0] == "-emit")
 {
 using(Stream outputStream = Console.OpenStandardOutput())
 {
 for(byte counter = 0; counter < 255; counter++)
 {
 outputStream.WriteByte(counter);
 }
 }
 }
 }
}

When we run it with the -emit parameter, PowerShell breaks the output into three
objects:

PS > $output = .\binaryprocess.exe -emit
PS > $output.Count
3

We would expect this output to contain the numbers 0 through 254, but we see that
it does not:

86 | Chapter 2: Pipelines

PS > $output | Foreach-Object { "------------";
 $_.ToCharArray() | Foreach-Object { [int] $_ } }

0
1
2
3
4
5
6
7
8
9

11
12

14
15
16
17
18
19
20
21
22
(...)
255
214
220
162
163
165
8359
402
225

At number 10, PowerShell interprets that byte as the end of the line, and uses that to
split the output into a new element. It does the same for number 13. Things appear to
get even stranger when we get to the higher numbers and PowerShell starts to interpret
combinations of bytes as Unicode characters from another language.

The solution resolves this behavior by managing the output of the binary process di-
rectly. If you supply the -RedirectInput parameter, the script assumes an incoming
stream of binary data and passes it to the program directly. If you supply the
-RedirectOutput parameter, the script assumes that the output is binary data, and like-
wise reads it from the process directly.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

2.10 Capture and Redirect Binary Process Output | 87

CHAPTER 3

Variables and Objects

3.0 Introduction
As touched on in Chapter 2, PowerShell makes life immensely easier by keeping infor-
mation in its native form: objects. Users expend most of their effort in traditional shells
just trying to resuscitate information that the shell converted from its native form to
plain text. Tools have evolved that ease the burden of working with plain text, but that
job is still significantly more difficult than it needs to be.

Since PowerShell builds on Microsoft’s .NET Framework, native information comes in
the form of .NET objects—packages of information and functionality closely related to
that information.

Let’s say that you want to get a list of running processes on your system. In other shells,
your command (such as tlist.exe or /bin/ps) generates a plain-text report of the run-
ning processes on your system. To work with that output, you send it through a bevy
of text processing tools—if you are lucky enough to have them available.

PowerShell’s Get-Process cmdlet generates a list of the running processes on your
system.
In contrast to other shells, though, these are full-fidelity System.Diagnostics.Process
objects straight out of the .NET Framework. The .NET Framework documentation
describes them as objects that “[provide] access to local and remote processes, and
[enable] you to start and stop local system processes.” With those objects in hand,
PowerShell makes it trivial for you to access properties of objects (such as their process
name or memory usage) and to access functionality on these objects (such as stopping
them, starting them, or waiting for them to exit).

89

3.1 Display the Properties of an Item as a List

Problem
You have an item (for example, an error record, directory item, or .NET object), and
you want to display detailed information about that object in a list format.

Solution
To display detailed information about an item, pass that item to the Format-List cmdlet.
For example, to display an error in list format, type the following commands:

$currentError = $error[0]
$currentError | Format-List -Force

Discussion
Many commands by default display a summarized view of their output in a table format,
for example, the Get-Process cmdlet:

PS > Get-Process PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 920 10 43808 48424 183 4.69 1928 powershell
 149 6 18228 8660 146 0.48 1940 powershell
 431 11 33308 19072 172 2816 powershell

In most cases, the output actually contains a great deal more information. You can use
the Format-List cmdlet to view it:

PS > Get-Process PowerShell | Format-List *

__NounName : Process
Name : powershell
Handles : 443
VM : 192176128
WS : 52363264
PM : 47308800
NPM : 9996
Path : C:\WINDOWS\system32\WindowsPowerShell\v1.0\power
 shell.exe
Company : Microsoft Corporation
CPU : 4.921875
FileVersion : 6.0.6002.18139 (vistasp2_gdr_win7ip_winman(wmbla
).090902-1426)
ProductVersion : 6.0.6002.18139
Description : Windows PowerShell
(...)

90 | Chapter 3: Variables and Objects

The Format-List cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The Format-
List cmdlet takes input and displays information about that input as a list.

By default, PowerShell takes the list of properties to display from the *.format.ps1xml
files in PowerShell’s installation directory. In many situations, you’ll only get a small
set of the properties:

PS > Get-Process PowerShell | Format-List

Id : 2816
Handles : 431
CPU :
Name : powershell

Id : 5244
Handles : 665
CPU : 10.296875
Name : powershell

To display all properties of the item, type Format-List *. If you type Format-List * but
still do not get a list of the item’s properties, then the item is defined in the
*.format.ps1xml files, but does not define anything to be displayed for the list command.
In that case, type Format-List -Force.

One common stumbling block in PowerShell’s formatting cmdlets comes from putting
them in the middle of a script or pipeline:

PS > Get-Process PowerShell | Format-List | Sort Name
out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This is
likely caused by a user-specified "format-*" command which is conflicting with
the default formatting.

Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it to the
end of the pipeline, PowerShell automatically sends them to an output cmdlet: by de-
fault, Out-Default. These Out-* cmdlets assume that the objects arrive in a certain order,
so doing anything with the output of the formatting commands causes an error the
output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself to
the object-based manipulation so synonymous with PowerShell. If you want to display
formatted output anyway, send the output through the Out-String cmdlet:

Get-Process PowerShell | Format-List | Out-String -Stream

Object-manipulation commands still will not work (since the objects have been con-
verted to strings), but at least the script will not generate errors.

For more information about the Format-List cmdlet, type Get-Help Format-List.

3.1 Display the Properties of an Item as a List | 91

3.2 Display the Properties of an Item as a Table

Problem
You have a set of items (for example, error records, directory items, or .NET objects),
and you want to display summary information about them in a table format.

Solution
To display summary information about a set of items, pass those items to the Format-
Table cmdlet. This is the default type of formatting for sets of items in PowerShell and
provides several useful features.

To use PowerShell’s default formatting, pipe the output of a cmdlet (such as the Get-
Process cmdlet) to the Format-Table cmdlet:

Get-Process | Format-Table

To display specific properties (such as Name and WorkingSet) in the table formatting,
supply those property names as parameters to the Format-Table cmdlet:

Get-Process | Format-Table Name,WS

To instruct PowerShell to format the table in the most readable manner, supply the
-Auto flag to the Format-Table cmdlet. PowerShell defines WS as an alias of the Working
Set property for processes:

Get-Process | Format-Table Name,WS -Auto

To define a custom column definition (such as a process’s WorkingSet in megabytes),
supply a custom formatting expression to the Format-Table cmdlet:

$fields = "Name",@{Label = "WS (MB)"; Expression = {$_.WS / 1mb}; Align = "Right"}
Get-Process | Format-Table $fields -Auto

Discussion
The Format-Table cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-Table cmdlet takes input and displays information about that input as a table.
By default, PowerShell takes the list of properties to display from the *.format.ps1xml
files in PowerShell’s installation directory. You can display all properties of the items
if you type Format-Table *, although this is rarely a useful view.

The -Auto parameter to Format-Table is a helpful way to automatically format the table
in the most readable way possible. It does come at a cost, however. To figure out the
best table layout, PowerShell needs to examine each item in the incoming set of items.
For small sets of items, this doesn’t make much difference, but for large sets (such as
a recursive directory listing) it does. Without the -Auto parameter, the Format-Table

92 | Chapter 3: Variables and Objects

cmdlet can display items as soon as it receives them. With the -Auto flag, the cmdlet
displays results only after it receives all the input.

Perhaps the most interesting feature of the Format-Table cmdlet is illustrated by the last
example: the ability to define completely custom table columns. You define a custom
table column similarly to the way that you define a custom column list. Rather than
specify an existing property of the items, you provide a hashtable. That hashtable in-
cludes up to three keys: the column’s label, a formatting expression, and alignment.
The Format-Table cmdlet shows the label as the column header and uses your
expression to generate data for that column. The label must be a string, the expression
must be a script block, and the alignment must be either "Left", "Center", or
"Right". In the expression script block, the $_ variable represents the current item being
formatted.

The Select-Object cmdlet supports a similar hashtable to add calcula-
ted properties, but uses Name (rather than Label) as the key to identify
the property. After realizing how confusing this was, version two of
PowerShell updated both cmdlets to accept both Name and Label.

The expression shown in the last example takes the working set of the current item and
divides it by 1 megabyte (1 MB).

One common stumbling block in PowerShell’s formatting cmdlets comes from putting
them in the middle of a script or pipeline:

PS > Get-Process PowerShell | Format-Table | Sort Name
out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This is
likely caused by a user-specified "format-*" command which is conflicting with
the default formatting.

Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it to the
end of the pipeline, PowerShell then automatically sends them to an output cmdlet: by
default, Out-Default. These Out-* cmdlets assume that the objects arrive in a certain
order, so doing anything with the output of the formatting commands causes an error
in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself to
the object-based manipulation so synonymous with PowerShell. If you want to display
formatted output anyway, send the output through the Out-String cmdlet:

Get-Process PowerShell | Format-Table | Out-String -Stream

Object-manipulation commands still will not work (since the objects have been con-
verted to strings), but at least the script will not generate errors.

3.2 Display the Properties of an Item as a Table | 93

For more information about the Format-Table cmdlet, type Get-Help Format-Table. For
more information about hashtables, see Recipe 7.13. For more information about script
blocks, see Recipe 11.4.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.4, “Write a Script Block”

3.3 Store Information in Variables

Problem
You want to store the output of a pipeline or command for later use or to work with it
in more detail.

Solution
To store output for later use, store the output of the command in a variable. You can
access this information later, or even pass it down the pipeline as though it were the
output of the original command:

PS > $result = 2 + 2
PS > $result
4
PS > $processes = Get-Process
PS > $processes.Count
85
PS > $processes | Where-Object { $_.ID -eq 0 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ----- -- -----------
 0 0 0 16 0 0 Idle

Discussion
Variables in PowerShell (and all other scripting and programming languages) let you
store the output of something so that you can use it later. A variable name starts with
a dollar sign ($) and can be followed by nearly any character. A small set of characters
have special meaning to PowerShell, so PowerShell provides a way to make variable
names that include even these.

For more information about the syntax and types of PowerShell variables, see “Varia-
bles” on page 716.

You can store the result of any pipeline or command in a variable to use it later. If that
command generates simple data (such as a number or string), then the variable contains
simple data. If the command generates rich data (such as the objects that represent

94 | Chapter 3: Variables and Objects

system processes from the Get-Process cmdlet), then the variable contains that list of
rich data. If the command (such as a traditional executable) generates plain text (such
as the output of traditional executable), then the variable contains plain text.

If you’ve stored a large amount of data into a variable but no longer need
that data, assign a new value (such as $null) to that variable. That will
allow PowerShell to release the memory it was using to store that data.

In addition to variables that you create, PowerShell automatically defines several vari-
ables that represent things such as the location of your profile file, the process ID of
PowerShell, and more. For a full list of these automatic variables, type
Get-Help about_automatic_variables.

See Also
“Variables” on page 716

Get-Help about_automatic_variables

3.4 Access Environment Variables

Problem
You want to use an environment variable (such as the system path or the current user’s
name) in your script or interactive session.

Solution
PowerShell offers several ways to access environment variables.

To list all environment variables, list the children of the env drive:

Get-ChildItem env:

To get an environment variable using a more concise syntax, precede its name with
$env:

$env:variablename

(for example, $env:username).

To get an environment variable using its provider path, supply env: or Environment::
to the Get-ChildItem cmdlet:

Get-ChildItem env:variablename
Get-ChildItem Environment::variablename

3.4 Access Environment Variables | 95

Discussion
PowerShell provides access to environment variables through its environment
provider. Providers let you work with data stores (such as the registry, environment
variables, and aliases) much as you would access the filesystem.

By default, PowerShell creates a drive (called env) that works with the environment
provider to let you access environment variables. The environment provider lets you
access items in the env: drive as you would any other drive: dir env:\variablename or
dir env:variablename. If you want to access the provider directly (rather than go
through its drive), you can also type dir Environment::variablename.

However, the most common (and easiest) way to work with environment variables is
by typing $env:variablename. This works with any provider but is most typically used
with environment variables.

This is because the environment provider shares something in common with several
other providers—namely support for the *-Content set of core cmdlets (see
Example 3-1).

Example 3-1. Working with content on different providers

PS > "hello world" > test
PS > Get-Content test
hello world
PS > Get-Content c:test
hello world
PS > Get-Content variable:ErrorActionPreference
Continue
PS > Get-Content function:more
param([string[]]$paths)
$OutputEncoding = [System.Console]::OutputEncoding

if($paths)
{
 foreach ($file in $paths)
 {
 Get-Content $file | more.com
 }
}
else
{
 $input | more.com
}
PS > Get-Content env:systemroot
C:\WINDOWS

For providers that support the content cmdlets, PowerShell lets you interact with this
content through a special variable syntax (see Example 3-2).

96 | Chapter 3: Variables and Objects

Example 3-2. Using PowerShell’s special variable syntax to access content

PS > $function:more
param([string[]]$paths); if(($paths -ne $null) -and ($paths.length -ne 0)) { ...
 Get-Content $local:file | Out-Host -p } } else { $input | Out-Host ...
PS > $variable:ErrorActionPreference
Continue
PS > $c:test
hello world
PS > $env:systemroot
C:\WINDOWS

This variable syntax for content management lets you both get and set content:

PS > $function:more = { $input | less.exe }
PS > $function:more
$input | less.exe

Now, when it comes to accessing complex provider paths using this method, you’ll
quickly run into naming issues (even if the underlying file exists):

PS > $c:\temp\test.txt
Unexpected token '\temp\test.txt' in expression or statement.
At line:1 char:17
+ $c:\temp\test.txt <<<<

The solution to that lies in PowerShell’s escaping support for complex variable names.
To define a complex variable name, enclose it in braces:

PS > ${1234123!@#$!@#12!@#$@!} = "Crazy Variable!"
PS > ${1234123!@#$!@#12!@#$@!}
Crazy Variable!
PS > dir variable:\1*

Name Value
---- -----
1234123!@#$!@#$12$!@#$@! Crazy Variable!

The following is the content equivalent (assuming that the file exists):

PS > ${c:\temp\test.txt}
hello world

Since environment variable names do not contain special characters, this Get-Content
variable syntax is the best (and easiest) way to access environment variables.

For more information about working with PowerShell variables, see “Varia-
bles” on page 716. For more information about working with environment variables,
type Get-Help About_Environment_Variable.

See Also
“Variables” on page 716

Get-Help About_Environment_Variable

3.4 Access Environment Variables | 97

3.5 Program: Retain Changes to Environment Variables Set by
a Batch File
When a batch file modifies an environment variable, cmd.exe retains this change even
after the script exits. This often causes problems, as one batch file can accidentally
pollute the environment of another. That said, batch file authors sometimes intention-
ally change the global environment to customize the path and other aspects of the
environment to suit a specific task.

However, environment variables are private details of a process and disappear when
that process exits. This makes the environment customization scripts mentioned earlier
stop working when you run them from PowerShell—just as they fail to work when you
run them from another cmd.exe (for example, cmd.exe /c MyScript.cmd).

The script in Example 3-3 lets you run batch files that modify the environment and
retain their changes even after cmd.exe exits. It accomplishes this by storing the envi-
ronment variables in a text file once the batch file completes, and then setting all those
environment variables again in your PowerShell session.

To run this script, type Invoke-CmdScript Scriptname.cmd or Invoke-CmdScript
Scriptname.bat—whichever extension the batch files uses.

If this is the first time you’ve run a script in PowerShell, you will need
to configure your Execution Policy. For more information about select-
ing an execution policy, see Recipe 18.1.

Notice that this script uses the full names for cmdlets: Get-Content, Foreach-Object,
Set-Content, and Remove-Item. This makes the script readable and is ideal for scripts
that somebody else will read. It is by no means required, though. For quick scripts and
interactive use, shorter aliases (such as gc, %, sc, and ri) can make you more productive.

Example 3-3. Invoke-CmdScript.ps1

##
##
Invoke-CmdScript
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invoke the specified batch file (and parameters), but also propagate any

98 | Chapter 3: Variables and Objects

environment variable changes back to the PowerShell environment that called it.

.EXAMPLE

PS >type foo-that-sets-the-FOO-env-variable.cmd
@set FOO=%*
echo FOO set to %FOO%.

PS >$env:FOO
PS >Invoke-CmdScript "foo-that-sets-the-FOO-env-variable.cmd" Test

C:\Temp>echo FOO set to Test.
FOO set to Test.

PS > $env:FOO
Test

#>

param(
 ## The path to the script to run
 [Parameter(Mandatory = $true)]
 [string] $Path,

 ## The arguments to the script
 [string] $ArgumentList
)

Set-StrictMode -Version Latest

$tempFile = [IO.Path]::GetTempFileName()

Store the output of cmd.exe. We also ask cmd.exe to output
the environment table after the batch file completes
cmd /c " `"$Path`" $argumentList && set > `"$tempFile`" "

Go through the environment variables in the temp file.
For each of them, set the variable in our local environment.
Get-Content $tempFile | Foreach-Object {
 if($_ -match "^(.*?)=(.*)$")
 {
 Set-Content "env:\$($matches[1])" $matches[2]
 }
}

Remove-Item $tempFile

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

3.5 Program: Retain Changes to Environment Variables Set by a Batch File | 99

3.6 Control Access and Scope of Variables and Other Items

Problem
You want to control how you define (or interact with) the visibility of variables, aliases,
functions, and drives.

Solution
PowerShell offers several ways to access variables.

To create a variable with a specific scope, supply that scope before the variable name:

$SCOPE:variable = value

To access a variable at a specific scope, supply that scope before the variable name:

$SCOPE:variable

To create a variable that remains even after the script exits, create it in the GLOBAL scope:

$GLOBAL:variable = value

To change a scriptwide variable from within a function, supply SCRIPT as its scope name:

$SCRIPT:variable = value

Discussion
PowerShell controls access to variables, functions, aliases, and drives through a mech-
anism known as scoping. The scope of an item is another term for its visibility. You are
always in a scope (called the current or local scope), but some actions change what that
means.

When your code enters a nested prompt, script, function, or script block, PowerShell
creates a new scope. That scope then becomes the local scope. When it does this,
PowerShell remembers the relationship between your old scope and your new scope.
From the view of the new scope, the old scope is called the parent scope. From the view
of the old scope, the new scope is called a child scope. Child scopes get access to all the
variables in the parent scope, but changing those variables in the child scope doesn’t
change the version in the parent scope.

Trying to change a scriptwide variable from a function is often a
“gotcha” because a function is a new scope. As mentioned previously,
changing something in a child scope (the function) doesn’t affect the
parent scope (the script). The rest of this discussion describes ways to
change the value for the entire script.

100 | Chapter 3: Variables and Objects

When your code exits a nested prompt, script, function, or script block, the opposite
happens. PowerShell removes the old scope, then changes the local scope to be the
scope that originally created it—the parent of that old scope.

Some scopes are so common that PowerShell gives them special names:

Global
The outermost scope. Items in the global scope are visible from all other scopes.

Script
The scope that represents the current script. Items in the script scope are visible
from all other scopes in the script.

Local
The current scope.

When you define the scope of an item, PowerShell supports two additional scope names
that act more like options: Private and AllScope. When you define an item to have a
Private scope, PowerShell does not make that item directly available to child scopes.
PowerShell does not hide it from child scopes, though, as child scopes can still use the
-Scope parameter of the Get-Variable cmdlet to get variables from parent scopes. When
you specify the AllScope option for an item (through one of the *-Variable, *-Alias,
or *-Drive cmdlets), child scopes that change the item also affect the value in parent
scopes.

With this background, PowerShell provides several ways for you to control access and
scope of variables and other items.

Variables

To define a variable at a specific scope (or access a variable at a specific scope), use its
scope name in the variable reference. For example:

$SCRIPT:myVariable = value

As illustrated in “Variables” on page 716, the *-Variable set of cmdlets also let you
specify scope names through their -Scope parameter.

Functions

To define a function at a specific scope (or access a function at a specific scope), use its
scope name when creating the function. For example:

function GLOBAL:MyFunction { ... }
GLOBAL:MyFunction args

Aliases and drives

To define an alias or drive at a specific scope, use the Option parameter of the *-Alias
and *-Drive cmdlets. To access an alias or drive at a specific scope, use the Scope
parameter of the *-Alias and *-Drive cmdlets.

3.6 Control Access and Scope of Variables and Other Items | 101

For more information about scopes, type Get-Help About-Scope.

See Also
“Variables” on page 716

3.7 Program: Create a Dynamic Variable
When working with variables and commands, some concepts feel too minor to deserve
an entire new command or function, but the readability of your script suffers without
them.

A few examples where this becomes evident are date math (yesterday becomes
(Get-Date).AddDays(-1)) and deeply nested variables (window title becomes
$host.UI.RawUI.WindowTitle).

Although we could write our own extensions to make these easier to access, Get-
Yesterday, Get-WindowTitle, and Set-WindowTitle feel too insignificant to deserve their
own commands.

PowerShell lets you define your own types of variables by extending its PSVariable class,
but that functionality is largely designed for developer scenarios, and not for scripting
scenarios. Example 3-4 resolves this quandary by creating a new variable type
(DynamicVariable) that supports dynamic script actions when you get or set the varia-
ble’s value.

Example 3-4. New-DynamicVariable.ps1

##
##
New-DynamicVariable
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Creates a variable that supports scripted actions for its getter and setter

.EXAMPLE

PS >.\New-DynamicVariable GLOBAL:WindowTitle `
 -Getter { $host.UI.RawUI.WindowTitle } `
 -Setter { $host.UI.RawUI.WindowTitle = $args[0] }

PS >$windowTitle
Administrator: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

102 | Chapter 3: Variables and Objects

PS >$windowTitle = "Test"
PS >$windowTitle
Test

#>

param(
 ## The name for the dynamic variable
 [Parameter(Mandatory = $true)]
 $Name,

 ## The scriptblock to invoke when getting the value of the variable
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Getter,

 ## The scriptblock to invoke when setting the value of the variable
 [ScriptBlock] $Setter
)

Set-StrictMode -Version Latest

Add-Type @"
using System;
using System.Collections.ObjectModel;
using System.Management.Automation;

namespace Lee.Holmes
{
 public class DynamicVariable : PSVariable
 {
 public DynamicVariable(
 string name,
 ScriptBlock scriptGetter,
 ScriptBlock scriptSetter)
 : base(name, null, ScopedItemOptions.AllScope)
 {
 getter = scriptGetter;
 setter = scriptSetter;
 }
 private ScriptBlock getter;
 private ScriptBlock setter;

 public override object Value
 {
 get
 {
 if(getter != null)
 {
 Collection<PSObject> results = getter.Invoke();
 if(results.Count == 1)
 {
 return results[0];
 }
 else
 {

3.7 Program: Create a Dynamic Variable | 103

 PSObject[] returnResults =
 new PSObject[results.Count];
 results.CopyTo(returnResults, 0);
 return returnResults;
 }
 }
 else { return null; }
 }
 set
 {
 if(setter != null) { setter.Invoke(value); }
 }
 }
 }
}
"@

If we've already defined the variable, remove it.
if(Test-Path variable:\$name)
{
 Remove-Item variable:\$name -Force
}

Set the new variable, along with its getter and setter.
$executioncontext.SessionState.PSVariable.Set(
 (New-Object Lee.Holmes.DynamicVariable $name,$getter,$setter))

3.8 Work with .NET Objects

Problem
You want to use and interact with one of the features that makes PowerShell so pow-
erful—its intrinsic support for .NET objects.

Solution
PowerShell offers ways to access methods (both static and instance) and properties.

To call a static method on a class, place the type name in square brackets, and then
separate the class name from the method name with two colons:

[ClassName]::MethodName(parameter list)

To call a method on an object, place a dot between the variable that represents that
object and the method name:

$objectReference.MethodName(parameter list)

To access a static property on a class, place the type name in square brackets, and then
separate the class name from the property name with two colons:

[ClassName]::PropertyName

104 | Chapter 3: Variables and Objects

To access a property on an object, place a dot between the variable that represents that
object and the property name:

$objectReference.PropertyName

Discussion
One feature that gives PowerShell its incredible reach into both system administration
and application development is its capability to leverage Microsoft’s enormous and
broad .NET Framework. The .NET Framework is a large collection of classes. Each
class embodies a specific concept and groups closely related functionality and infor-
mation. Working with the .NET Framework is one aspect of PowerShell that introduces
a revolution to the world of management shells.

An example of a class from the .NET Framework is System.Diagnostics.Process—the
grouping of functionality that “provides access to local and remote processes, and en-
ables you to start and stop local system processes.”

The terms type and class are often used interchangeably.

Classes contain methods (which let you perform operations) and properties (which let
you access information).

For example, the Get-Process cmdlet generates System.Diagnostics.Process objects,
not a plain-text report like traditional shells. Managing these processes becomes in-
credibly easy, as they contain a rich mix of information (properties) and operations
(methods). You no longer have to parse a stream of text for the ID of a process; you
can just ask the object directly!

PS > $process = Get-Process Notepad
PS > $process.Id
3872

Static methods

[ClassName]::MethodName(parameter list)

Some methods apply only to the concept the class represents. For example, retrieving
all running processes on a system relates to the general concept of processes instead of
a specific process. Methods that apply to the class/type as a whole are called static
methods.

For example:

PS > [System.Diagnostics.Process]::GetProcessById(0)

3.8 Work with .NET Objects | 105

This specific task is better handled by the Get-Process cmdlet, but it demonstrates
PowerShell’s capability to call methods on .NET classes. It calls the static GetProcess
ById method on the System.Diagnostics.Process class to get the process with the ID of
0. This generates the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance methods

$objectReference.MethodName(parameter list)

Some methods relate only to specific, tangible realizations (called instances) of a class.
An example of this would be stopping a process actually running on the system, as
opposed to the general concept of processes. If $objectReference refers to a specific
System.Diagnostics.Process (as output by the Get-Process cmdlet, for example), you
may call methods to start it, stop it, or wait for it to exit. Methods that act on instances
of a class are called instance methods.

The term object is often used interchangeably with the term instance.

For example:

PS > $process = Get-Process Notepad
PS > $process.WaitForExit()

stores the Notepad process into the $process variable. It then calls the WaitForExit()
instance method on that specific process to pause PowerShell until the process exits.

To learn about the different sets of parameters (overloads) that a given
method supports, type that method name without any parameters. For
an even cleaner view, access the OverloadDefinitions property of the
method:

PS > $now = Get-Date
PS > $now.AddDays

MemberType : Method
OverloadDefinitions : {System.DateTime AddDays(Double value)}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.DateTime AddDays(Double value)
Name : AddDays
IsInstance : True

PS > $now.AddDays.OverloadDefinitions
System.DateTime AddDays(double value)

106 | Chapter 3: Variables and Objects

For both static methods and instance methods, you may sometimes run into situations
where PowerShell either generates an error or fails to invoke the method you expected.
In this case, review the output of the Trace-Command cmdlet, with MemberResolution as
the trace type (see Example 3-5).

Example 3-5. Investigating PowerShell’s method resolution

PS > Trace-Command MemberResolution -PsHost {
 [System.Diagnostics.Process]::GetProcessById(0) }

DEBUG: MemberResolution Information: 0 : cache hit, Calling Method: static
 System.Diagnostics.Process GetProcessById(int processId)
DEBUG: MemberResolution Information: 0 : Method argument conversion.
DEBUG: MemberResolution Information: 0 : Converting parameter "0" to
"System.Int32".
DEBUG: MemberResolution Information: 0 : Checking for possible references.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 12 0 0 Idle

Static properties

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

Like static methods, some properties relate only to information about the concept that
the class represents. For example, the System.DateTime class “represents an instant in
time, typically expressed as a date and time of day.” It provides a Now static property
that returns the current time:

PS > [System.DateTime]::Now
Saturday, June 2, 2010 4:57:20 PM

This specific task is better handled by the Get-Date cmdlet, but it demonstrates
PowerShell’s capability to access properties on .NET objects.

Although they are relatively rare, some types let you set the value of some static prop-
erties as well: for example, the [System.Environment]::CurrentDirectory property. This
property represents the process’s current directory—which represents PowerShell’s
startup directory, as opposed to the path you see in your prompt.

Instance properties

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

3.8 Work with .NET Objects | 107

Like instance methods, some properties relate only to specific, tangible realizations
(called instances) of a class. An example of this would be the day of an actual instant
in time, as opposed to the general concept of dates and times. If $objectReference refers
to a specific System.DateTime (as output by the Get-Date cmdlet or [System.Date
Time]::Now, for example), you may want to retrieve its day of week, day, or month.
Properties that return information about instances of a class are called instance
properties.

For example:

PS > $today = Get-Date
PS > $today.DayOfWeek
Saturday

This example stores the current date in the $today variable. It then calls the DayOf
Week instance property to retrieve the day of the week for that specific date.

With this knowledge, the next questions are: “How do I learn about the functionality
available in the .NET Framework?” and “How do I learn what an object does?”

For an answer to the first question, see Appendix F for a hand-picked list of the classes
in the .NET Framework most useful to system administrators. For an answer to the
second, see Recipes 3.13 and 3.14.

See Also
Recipe 3.13, “Learn About Types and Objects”

Recipe 3.14, “Get Detailed Documentation About Types and Objects”

Appendix F, Selected .NET Classes and Their Uses

3.9 Create an Instance of a .NET Object

Problem
You want to create an instance of a .NET object to interact with its methods and
properties.

Solution
Use the New-Object cmdlet to create an instance of an object.

To create an instance of an object using its default constructor, use the New-Object
cmdlet with the class name as its only parameter:

PS > $generator = New-Object System.Random
PS > $generator.NextDouble()
0.853699042859347

108 | Chapter 3: Variables and Objects

To create an instance of an object that takes parameters for its constructor, supply those
parameters to the New-Object cmdlet. In some instances, the class may exist in a separate
library not loaded in PowerShell by default, such as the System.Windows.Forms assembly.
In that case, you must first load the assembly that contains the class:

Add-Type -Assembly System.Windows.Forms
$image = New-Object System.Drawing.Bitmap source.gif
$image.Save("source_converted.jpg","JPEG")

To create an object and use it at the same time (without saving it for later), wrap the
call to New-Object in parentheses:

PS > (New-Object Net.WebClient).DownloadString("http://live.com")

Discussion
Many cmdlets (such as Get-Process and Get-ChildItem) generate live .NET objects that
represent tangible processes, files, and directories. However, PowerShell supports
much more of the .NET Framework than just the objects that its cmdlets produce.
These additional areas of the .NET Framework supply a huge amount of functionality
that you can use in your scripts and general system administration tasks.

When it comes to using most of these classes, the first step is often to create an instance
of the class, store that instance in a variable, and then work with the methods and
properties on that instance. To create an instance of a class, you use the New-Object
cmdlet. The first parameter to the New-Object cmdlet is the type name, and the second
parameter is the list of arguments to the constructor, if it takes any. The New-Object
cmdlet supports PowerShell’s type shortcuts, so you never have to use the fully qualified
type name. For more information about type shortcuts, see “Type Short-
cuts” on page 743.

A common pattern when working with .NET objects is to create them,
set a few properties, and then use them. The -Property parameter of the
New-Object cmdlet lets you combine steps:

$startInfo = New-Object Diagnostics.ProcessStartInfo -Property @{
 'Filename' = "powershell.exe";
 'WorkingDirectory' = $pshome;
 'Verb' = "RunAs"
}
[Diagnostics.Process]::Start($startInfo)

Since the second parameter to the New-Object cmdlet is an array of parameters to the
type’s constructor, you might encounter difficulty when trying to specify a parameter
that itself is a list. Assuming $byte is an array of bytes:

PS > $memoryStream = New-Object System.IO.MemoryStream $bytes
New-Object : Cannot find an overload for ".ctor" and the argument count: "11".
At line:1 char:27
+ $memoryStream = New-Object <<<< System.IO.MemoryStream $bytes

3.9 Create an Instance of a .NET Object | 109

To solve this, provide an array that contains an array:

PS > $parameters = ,$bytes
PS > $memoryStream = New-Object System.IO.MemoryStream $parameters

or:

PS > $memoryStream = New-Object System.IO.MemoryStream @(,$bytes)

Load types from another assembly

PowerShell makes most common types available by default. However, many are avail-
able only after you load the library (called the assembly) that defines them. The MSDN
documentation for a class includes the assembly that defines it. For more information
about loading types from another assembly, see Recipe 17.8.

For a hand-picked list of the classes in the .NET Framework most useful to system
administrators, see Appendix F. To learn more about the functionality that a class
supports, see Recipe 3.13.

For more information about the New-Object cmdlet, type Get-Help New-Object. For
more information about the Add-Type cmdlet, type Get-Help Add-Type.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 3.13, “Learn About Types and Objects”

Recipe 17.8, “Access a .NET SDK Library”

Appendix F, Selected .NET Classes and Their Uses

3.10 Program: Create Instances of Generic Objects
When you work with the .NET Framework, you’ll often run across classes that have
the primary responsibility of managing other objects. For example, the
System.Collections.ArrayList class lets you manage a dynamic list of objects. You can
add objects to an ArrayList, remove objects from it, sort the objects inside, and more.
These objects can be any type of object: String objects, integers, DateTime objects, and
many others. However, working with classes that support arbitrary objects can some-
times be a little awkward. One example is type safety. If you accidentally add a
String to a list of integers, you might not find out until your program fails.

Although the issue becomes largely moot when working only inside PowerShell, a more
common complaint in strongly typed languages (such as C#) is that you have to remind
the environment (through explicit casts) about the type of your object when you work
with it again:

// This is C# code
System.Collections.ArrayList list =

110 | Chapter 3: Variables and Objects

 new System.Collections.ArrayList();
list.Add("Hello World");

string result = (String) list[0];

To address these problems, the .NET Framework introduced a feature called generic
types: classes that support arbitrary types of objects but let you specify which type of
object. In this case, a collection of strings:

// This is C# code
System.Collections.ObjectModel.Collection<String> list =
 new System.Collections.ObjectModel.Collection<String>();
list.Add("Hello World");

string result = list[0];

PowerShell version one did not handle this directly, but version two lets you define
generic parameters by placing them between square brackets, as demonstrated in
Example 3-6.

Example 3-6. Creating a generic object

PS > $coll = New-Object System.Collections.ObjectModel.Collection[Int]
PS > $coll.Add(15)
PS > $coll.Add("Test")
Cannot convert argument "0", with value: "Test", for "Add" to type "System
.Int32": "Cannot convert value "Test" to type "System.Int32". Error: "Input
string was not in a correct format.""
At line:1 char:10
+ $coll.Add <<<< ("Test")
 + CategoryInfo : NotSpecified: (:) [], MethodException
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

For a generic type that takes two or more parameters, provide a comma-separated list
of types, enclosed in quotes (see Example 3-7).

Example 3-7. Creating a multi-parameter generic object

PS > $map = New-Object System.Collections.Generic.Dictionary["String,Int"]
PS > $map.Add("Test", 15)
PS > $map.Add("Test2", "Hello")
Cannot convert argument "1", with value: "Hello", for "Add" to type "System
.Int32": "Cannot convert value "Hello" to type "System.Int32". Error:
"Input string was not in a correct format.""
At line:1 char:9
+ $map.Add <<<< ("Test2", "Hello")
 + CategoryInfo : NotSpecified: (:) [], MethodException
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

PowerShell version one does not support generic types very elegantly. For a simple
generic type, you can use the syntax that the .NET Framework uses under the hood:

$coll = New-Object 'System.Collections.ObjectModel.Collection`1[System.String]'

3.10 Program: Create Instances of Generic Objects | 111

However, that begins to fall apart if you want to use types defined outside the main
mscorlib assembly or want to create complex generic types (for example, ones that refer
to other generic types).

Example 3-8 lets you easily create instances of generic types.

Example 3-8. New-GenericObject.ps1

##
##
New-GenericObject
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Creates an object of a generic type:

.EXAMPLE

PS >New-GenericObject System.Collections.ObjectModel.Collection System.Int32
Creates a simple generic collection

.EXAMPLE

PS >New-GenericObject System.Collections.Generic.Dictionary `
 System.String,System.Int32
Creates a generic dictionary with two types

.EXAMPLE

PS >$secondType = New-GenericObject System.Collections.Generic.List Int32
PS >New-GenericObject System.Collections.Generic.Dictionary `
 System.String,$secondType.GetType()
Creates a generic list as the second type to a generic dictionary

.EXAMPLE

PS >New-GenericObject System.Collections.Generic.LinkedListNode `
 System.String "Hi"
Creates a generic type with a non-default constructor

#>

param(
 ## The generic type to create
 [Parameter(Mandatory = $true)]
 [string] $TypeName,

112 | Chapter 3: Variables and Objects

 ## The types that should be applied to the generic object
 [Parameter(Mandatory = $true)]
 [string[]] $TypeParameters,

 ## Arguments to be passed to the constructor
 [object[]] $ConstructorParameters
)

Set-StrictMode -Version Latest

Create the generic type name
$genericTypeName = $typeName + '`' + $typeParameters.Count
$genericType = [Type] $genericTypeName

if(-not $genericType)
{
 throw "Could not find generic type $genericTypeName"
}

Bind the type arguments to it
[type[]] $typedParameters = $typeParameters
$closedType = $genericType.MakeGenericType($typedParameters)
if(-not $closedType)
{
 throw "Could not make closed type $genericType"
}

Create the closed version of the generic type
,[Activator]::CreateInstance($closedType, $constructorParameters)

3.11 Reduce Typing for Long Class Names

Problem
You want to reduce the amount of redundant information in your script when you
interact with classes that have long type names.

Solution
To reduce typing for static methods, store the type name in a variable:

$math = [System.Math]
$math::Min(1,10)
$math::Max(1,10)

To reduce typing for multiple objects in a namespace, use the -f operator:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
$queue = New-Object ($namespace -f "Queue")

3.11 Reduce Typing for Long Class Names | 113

To reduce typing for static methods of multiple types in a namespace, use the -f
operator along with a cast:

$namespace = "System.Diagnostics.{0}"
([Type] ($namespace -f "EventLog"))::GetEventLogs()
([Type] ($namespace -f "Process"))::GetCurrentProcess()

Discussion
One thing you will notice when working with some .NET classes (or classes from a
third-party SDK) is that it quickly becomes tiresome to specify their fully qualified type
names. For example, many useful collection classes in the .NET Framework start with
"System.Collections". This is called the namespace of that class. Most programming
languages solve this problem with a using directive that lets you specify a list of name-
spaces for that language to search when you type a plain class name such as "Array
List". PowerShell lacks a using directive, but there are several options to get the benefits
of one.

If you are repeatedly working with static methods on a specific type, you can store that
type in a variable to reduce typing, as shown in the Solution:

$math = [System.Math]
$math::Min(1,10)
$math::Max(1,10)

If you are creating instances of different classes from a namespace, you can store the
namespace in a variable and then use the PowerShell -f (format) operator to specify
the unique class name:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
$queue = New-Object ($namespace -f "Queue")

If you are working with static methods from several types in a namespace, you can store
the namespace in a variable, use the -f operator to specify the unique class name, and
then finally cast that into a type:

$namespace = "System.Diagnostics.{0}"
([Type] ($namespace -f "EventLog"))::GetEventLogs()
([Type] ($namespace -f "Process"))::GetCurrentProcess()

For more information about PowerShell’s format operator, see Recipe 5.6.

See Also
Recipe 5.6, “Place Formatted Information in a String”

114 | Chapter 3: Variables and Objects

3.12 Use a COM Object

Problem
You want to create a COM object to interact with its methods and properties.

Solution
Use the New-Object cmdlet (with the -ComObject parameter) to create a COM object
from its ProgID. You can then interact with the methods and properties of the COM
object as you would any other object in PowerShell.

$object = New-Object -ComObject ProgId

For example:

PS > $sapi = New-Object -Com Sapi.SpVoice
PS > $sapi.Speak("Hello World")

Discussion
Historically, many applications have exposed their scripting and administration inter-
faces as COM objects. While .NET APIs (and PowerShell cmdlets) are becoming more
common, interacting with COM objects is still a routine administrative task.

As with classes in the .NET Framework, it is difficult to know what COM objects you
can use to help you accomplish your system administration tasks. For a hand-picked
list of the COM objects most useful to system administrators, see Appendix H.

For more information about the New-Object cmdlet, type Get-Help New-Object.

See Also
Appendix H, Selected COM Objects and Their Uses

3.13 Learn About Types and Objects

Problem
You have an instance of an object and want to know what methods and properties it
supports.

Solution
The most common way to explore the methods and properties supported by an object
is through the Get-Member cmdlet.

3.13 Learn About Types and Objects | 115

To get the instance members of an object you’ve stored in the $object variable, pipe it
to the Get-Member cmdlet:

$object | Get-Member
Get-Member -InputObject $object

To get the static members of an object you’ve stored in the $object variable, supply the
-Static flag to the Get-Member cmdlet:

$object | Get-Member -Static
Get-Member -Static -InputObject $object

To get the static members of a specific type, pipe that type to the Get-Member cmdlet,
and also specify the -Static flag:

[Type] | Get-Member -Static
Get-Member -InputObject [Type]

To get members of the specified member type (for example, Method or Property) from
an object you have stored in the $object variable, supply that member type to the
-MemberType parameter:

$object | Get-Member -MemberType MemberType
Get-Member -MemberType MemberType -InputObject $object

Discussion
The Get-Member cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Command and Get-
Help.

If you pass the Get-Member cmdlet a collection of objects (such as an Array or Array
List) through the pipeline, PowerShell extracts each item from the collection and then
passes them to the Get-Member cmdlet one by one. The Get-Member cmdlet then returns
the members of each unique type that it receives. Although helpful the vast majority of
the time, this sometimes causes difficulty when you want to learn about the members
or properties of the collection class itself.

If you want to see the properties of a collection (as opposed to the elements it contains),
provide the collection to the -InputObject parameter instead. Alternatively, you can
wrap the collection in an array (using PowerShell’s unary comma operator) so that the
collection class remains when the Get-Member cmdlet unravels the outer array:

PS > $files = Get-ChildItem
PS > ,$files | Get-Member

 TypeName: System.Object[]

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length
Address Method System.Object& Address(Int32)
(...)

116 | Chapter 3: Variables and Objects

For another way to learn detailed information about types and objects, see Recipe 3.14.

For more information about the Get-Member cmdlet, type Get-Help Get-Member.

See Also
Recipe 3.14, “Get Detailed Documentation About Types and Objects”

3.14 Get Detailed Documentation About Types and Objects

Problem
You have a type of object and want to know detailed information about the methods
and properties it supports.

Solution
The documentation for the .NET Framework (available at http://msdn.microsoft.com)
is the best way to get detailed documentation about the methods and properties sup-
ported by an object. That exploration generally comes in two stages:

1. Find the type of the object.

To determine the type of an object, you can either use the type name shown by the
Get-Member cmdlet (as described in Recipe 3.13) or call the GetType() method of an
object (if you have an instance of it):

PS > $date = Get-Date
PS > $date.GetType().ToString()
System.DateTime

2. Enter that type name into the search box at http://msdn.microsoft.com.

Discussion
When the Get-Member cmdlet does not provide the information you need, the MSDN
documentation for a type is a great alternative. It provides much more detailed infor-
mation than the help offered by the Get-Member cmdlet—usually including detailed
descriptions, related information, and even code samples. MSDN documentation fo-
cuses on developers using these types through a language such as C#, though, so you
may find interpreting the information for use in PowerShell to be a little difficult at first.

Typically, the documentation for a class first starts with a general overview, and then
provides a hyperlink to the members of the class—the list of methods and properties
it supports.

3.14 Get Detailed Documentation About Types and Objects | 117

http://msdn.microsoft.com
http://msdn.microsoft.com

To get to the documentation for the members quickly, search for them
more explicitly by adding the term “members” to your MSDN search
term:

typename members

Documentation for the members of a class lists the class’s methods and properties, as
does the output of the Get-Member cmdlet. The S icon represents static methods and
properties. Click the member name for more information about that method or
property.

Public constructors

This section lists the constructors of the type. You use a constructor when you create
the type through the New-Object cmdlet. When you click on a constructor, the docu-
mentation provides all the different ways that you can create that object, including the
parameter list that you will use with the New-Object cmdlet.

Public fields/public properties

This section lists the names of the fields and properties of an object. The S icon repre-
sents a static field or property. When you click on a field or property, the documentation
also provides the type returned by this field or property.

For example, you might see the following in the definition for System.DateTime.Now:

C#
public static DateTime Now { get; }

Public means that the Now property is public—that everybody can access it. Static
means that the property is static (as described in Recipe 3.8). DateTime means that the
property returns a DateTime object when you call it. get; means that you can get infor-
mation from this property but cannot set the information. Many properties support a
set; as well (such as the IsReadOnly property on System.IO.FileInfo), which means
that you can change its value.

Public methods

This section lists the names of the methods of an object. The S icon represents a static
method. When you click on a method, the documentation provides all the different
ways that you can call that method, including the parameter list that you will use to
call that method in PowerShell.

For example, you might see the following in the definition for System.DateTime.Add
Days():

C#
public DateTime AddDays (

118 | Chapter 3: Variables and Objects

 double value
)

Public means that the AddDays method is public—that everybody can access it. Date
Time means that the method returns a DateTime object when you call it. The text double
value means that this method requires a parameter (of type double). In this case, that
parameter determines the number of days to add to the DateTime object on which you
call the method.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 3.13, “Learn About Types and Objects”

3.15 Add Custom Methods and Properties to Objects

Problem
You have an object and want to add your own custom properties or methods (mem-
bers) to that object.

Solution
Use the Add-Member cmdlet to add custom members to an object.

Discussion
The Add-Member cmdlet is extremely useful in helping you add custom members to
individual objects. For example, imagine that you want to create a report from the files
in the current directory, and that report should include each file’s owner. The Owner
property is not standard on the objects that Get-ChildItem produces, but you could
write a small script to add them, as shown in Example 3-9.

Example 3-9. A script that adds custom properties to its output of file objects

##
##
Get-OwnerReport
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Gets a list of files in the current directory, but with their owner added
to the resulting objects.

3.15 Add Custom Methods and Properties to Objects | 119

.EXAMPLE

Get-OwnerReport | Format-Table Name,LastWriteTime,Owner
Retrieves all files in the current directory, and displays the
Name, LastWriteTime, and Owner

#>

Set-StrictMode -Version Latest

$files = Get-ChildItem
foreach($file in $files)
{
 $owner = (Get-Acl $file).Owner
 $file | Add-Member NoteProperty Owner $owner
 $file
}

For more information about running scripts, see Recipe 1.1.

Although it is most common to add static information (such as a NoteProperty), the
Add-Member cmdlet supports several other property and method types, including Alias
Property, ScriptProperty, CodeProperty, CodeMethod, and ScriptMethod. For a more de-
tailed description of these other property types, see “Working with the .NET Frame-
work” on page 741, as well as the help documentation for the Add-Member cmdlet.

To create entirely new objects (instead of adding information to existing
ones), see Recipe 3.16.

Although the Add-Member cmdlet lets you customize specific objects, it does not let you
customize all objects of that type. For information on how to do that, see
Recipe 3.17.

Calculated properties

Calculated properties are another useful way to add information to output objects. If
your script or command uses a Format-Table or Select-Object command to generate
its output, you can create additional properties by providing an expression that gen-
erates their value. For example:

Get-ChildItem |
 Select-Object Name,
 @{Name="Size (MB)"; Expression={ "{0,8:0.00}" -f ($_.Length / 1MB) } }

In this command, we get the list of files in the directory. We use the Select-Object
command to retrieve its name and a calculated property called Size (MB). This calcu-
lated property returns the size of the file in megabytes, rather than the default (bytes).

120 | Chapter 3: Variables and Objects

The Format-Table cmdlet supports a similar hashtable to add calculated
properties, but uses Label (rather than Name) as the key to identify the
property. After it was realized how confusing this was, version two of
PowerShell updated both cmdlets to accept both Name and Label.

For more information about the Add-Member cmdlet, type Get-Help Add-Member.

For more information about adding calculated properties, type Get-Help Select-
Object or Get-Help Format-Table.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.17, “Add Custom Methods and Properties to Types”

“Working with the .NET Framework” on page 741

3.16 Create and Initialize Custom Objects

Problem
You want to return structured results from a command so that users can easily sort,
group, and filter them.

Solution
Use the New-Object cmdlet to create a new PsObject, and then supply a hashtable with
the custom information to the -Property parameter, as in Example 3-10.

Example 3-10. Creating a custom object

$output = @{
 'User' = 'DOMAIN\User';
 'Quota' = 100MB;
 'ReportDate' = Get-Date;
}

New-Object PsObject -Property $output

If you want to create a custom object with associated functionality, place the function-
ality in a module, and load that module with the -AsCustomObject parameter:

$obj = Import-Module PlottingObject -AsCustomObject
$obj.Move(10,10)

$obj.Points = SineWave
while($true) { $obj.Rotate(10); $obj.Draw(); Sleep -m 20 }

3.16 Create and Initialize Custom Objects | 121

Discussion
When your script outputs information to the user, always prefer richly structured data
over hand-formatted reports. By emitting custom objects, you give the end user as much
control over your script’s output as PowerShell gives you over the output of its own
commands.

Despite the power afforded by the output of custom objects, user-written scripts have
frequently continued to generate plain-text output. This can be partly blamed on
PowerShell’s previously cumbersome support for the creation and initialization of cus-
tom objects, as shown in Example 3-11.

Example 3-11. Creating a custom object in PowerShell version one

$output = New-Object PsObject
Add-Member -InputObject $output NoteProperty User 'DOMAIN\user'
Add-Member -InputObject $output NoteProperty Quota 100MB
Add-Member -InputObject $output NoteProperty ReportDate (Get-Date)

$output

In PowerShell version one, creating a custom object required creating a new object (of
the type PsObject), and then calling the Add-Member cmdlet multiple times to add the
desired properties. As shown in Example 3-10, PowerShell version two makes this im-
mensely easier by adding the -Property parameter to the New-Object cmdlet.

As described in Recipe 7.14, a unique aspect of hashtables is that they don’t retain the
order of the items you put in them. As a result, custom objects that you define also will
have their properties in no specific order:

PS > $customObject = New-Object PsObject -Property @{
 FirstProperty = "One";
 SecondProperty = "Two";
 ThirdProperty = "Three"
}
PS > $customObject | Format-Table

SecondProperty FirstProperty ThirdProperty
-------------- ------------- -------------
Two One Three

For many objects, this makes no difference. If you do want your custom object to have
properties in a specific order, use the Select-Object cmdlet:

PS > $customObject = $customObject |
 Select-Object FirstProperty,SecondProperty,ThirdProperty
PS > $customObject | Format-Table

FirstProperty SecondProperty ThirdProperty
------------- -------------- -------------
One Two Three

122 | Chapter 3: Variables and Objects

While creating a new PsObject makes it easy to create data-centric objects (often called
property bags), it does not let you add functionality to those objects. When you need
functionality as well, the next step is to create a module and import that module with
the -AsCustomObject parameter (see Example 3-12). Any variables exported by that
module become properties on the resulting object, and any functions exported by that
module become methods on the resulting object.

An important point about importing a module as a custom object is that
variables defined in that custom object are shared by all versions of that
object. If you import the module again as a custom object (but store the
result in another variable), the two objects will share their internal state.

Example 3-12. Creating a module designed to be used as a custom object

##
##
PlottingObject.psm1
Demonstrates a module designed to be imported as a custom object
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.EXAMPLE

Remove-Module PlottingObject
function SineWave { -15..15 | % { ,($_,(10 * [Math]::Sin($_ / 3))) } }
function Box { -5..5 | % { ($_,-5),($_,5),(-5,$_),(5,$_) } }

$obj = Import-Module PlottingObject -AsCustomObject
$obj.Move(10,10)

$obj.Points = SineWave
while($true) { $obj.Rotate(10); $obj.Draw(); Sleep -m 20 }

$obj.Points = Box
while($true) { $obj.Rotate(10); $obj.Draw(); Sleep -m 20 }

#>

Declare some internal variables
$SCRIPT:x = 0
$SCRIPT:y = 0
$SCRIPT:angle = 0
$SCRIPT:xScale = -50,50
$SCRIPT:yScale = -50,50

And a variable that we will later export
$SCRIPT:Points = @()

3.16 Create and Initialize Custom Objects | 123

Export-ModuleMember -Variable Points

A function to rotate the points by a certain amount
function Rotate($angle)
{
 $SCRIPT:angle += $angle
}
Export-ModuleMember -Function Rotate

A function to move the points by a certain amount
function Move($xDelta, $yDelta)
{
 $SCRIPT:x += $xDelta
 $SCRIPT:y += $yDelta
}
Export-ModuleMember -Function Move

A function to draw the given points
function Draw
{
 $degToRad = 180 * [Math]::Pi
 Clear-Host

 ## Draw the origin
 PutPixel 0 0 +

 ## Go through each of the supplied points,
 ## move them the amount specified, and then rotate them
 ## by the angle specified
 foreach($point in $points)
 {
 $pointX,$pointY = $point
 $pointX = $pointX + $SCRIPT:x
 $pointY = $pointY + $SCRIPT:y

 $newX = $pointX * [Math]::Cos($SCRIPT:angle / $degToRad) -
 $pointY * [Math]::Sin($SCRIPT:angle / $degToRad)
 $newY = $pointY * [Math]::Cos($SCRIPT:angle / $degToRad) +
 $pointX * [Math]::Sin($SCRIPT:angle / $degToRad)

 PutPixel $newX $newY O
 }

 [Console]::WriteLine()
}
Export-ModuleMember -Function Draw

A helper function to draw a pixel on the screen
function PutPixel($x, $y, $character)
{
 $scaledX = ($x - $xScale[0]) / ($xScale[1] - $xScale[0])
 $scaledX *= [Console]::WindowWidth

 $scaledY = (($y * 4 / 3) - $yScale[0]) / ($yScale[1] - $yScale[0])
 $scaledY *= [Console]::WindowHeight

124 | Chapter 3: Variables and Objects

 try
 {
 [Console]::SetCursorPosition($scaledX,
 [Console]::WindowHeight - $scaledY)
 [Console]::Write($character)
 }
 catch
 {
 ## Take no action on error. We probably just rotated a point
 ## out of the screen boundary.
 }
}

For more information about creating modules, see Recipe 11.6.

If neither of these options suit your requirements (or if you need to create an object
that can be consumed by other .NET libraries), use the Add-Type cmdlet. For more
information about this approach, see Recipe 17.6.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.6, “Package Common Commands in a Module”

Recipe 17.6, “Define or Extend a .NET Class”

3.17 Add Custom Methods and Properties to Types

Problem
You want to add your own custom properties or methods to all objects of a certain type.

Solution
Use custom type extension files to add custom members to all objects of a type.

Discussion
Although the Add-Member cmdlet is extremely useful in helping you add custom mem-
bers to individual objects, it requires that you add the members to each object that you
want to interact with. It does not let you automatically add them to all objects of that
type. For that purpose, PowerShell supports another mechanism—custom type exten-
sion files.

Type extensions are simple XML files that PowerShell interprets. They let you (as the
administrator of the system) easily add your own features to any type exposed by the
system. If you write code (for example, a script or function) that primarily interacts

3.17 Add Custom Methods and Properties to Types | 125

with a single type of object, then that code might be better suited as an extension to
the type instead.

Since type extension files are XML files, make sure that your customi-
zations properly encode the characters that have special meaning in
XML files, such as <, >, and &.

For example, imagine a script that returns the free disk space on a given drive. That
might be helpful as a script, but instead you might find it easier to make PowerShell’s
PSDrive objects themselves tell you how much free space they have left.

Getting started

If you haven’t already, the first step in creating a type extension file is to create an empty
one. The best location for this is probably in the same directory as your custom profile,
with the filename Types.Custom.ps1xml, as shown in Example 3-13.

Example 3-13. Sample Types.Custom.ps1xml file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

Next, add a few lines to your PowerShell profile so that PowerShell loads your type
extensions during startup:

$typeFile = (Join-Path (Split-Path $profile) "Types.Custom.ps1xml")
Update-TypeData -PrependPath $typeFile

By default, PowerShell loads several type extensions from the Types.ps1xml file in
PowerShell’s installation directory. The Update-TypeData cmdlet tells PowerShell to also
look in your Types.Custom.ps1xml file for extensions. The -PrependPath parameter
makes PowerShell favor your extensions over the built-in ones in case of conflict.

Once you have a custom types file to work with, adding functionality becomes relatively
straightforward. As a theme, these examples do exactly what we alluded to earlier: add
functionality to PowerShell’s PSDrive type.

PowerShell version two does this automatically. Type Get-PSDrive to
see the result.

To support this, you need to extend your custom types file so that it defines additions
to the System.Management.Automation.PSDriveInfo type, as shown in Example 3-14.
The System.Management.Automation.PSDriveInfo type is the type that the Get-PSDrive
cmdlet generates.

126 | Chapter 3: Variables and Objects

Example 3-14. A template for changes to a custom types file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
 <Type>
 <Name>System.Management.Automation.PSDriveInfo</Name>
 <Members>
 add members such as <ScriptProperty> here
 <Members>
 </Type>
</Types>

Add a ScriptProperty

A ScriptProperty lets you add properties (that get and set information) to types, using
PowerShell script as the extension language. It consists of three child elements: the
Name of the property, the Getter of the property (via the GetScriptBlock child), and the
Setter of the property (via the SetScriptBlock child).

In both the GetScriptBlock and SetScriptBlock sections, the $this variable refers to the
current object being extended. In the SetScriptBlock section, the $args[0] variable
represents the value that the user supplied as the righthand side of the assignment.

Example 3-15 adds an AvailableFreeSpace ScriptProperty to PSDriveInfo, and should
be placed within the members section of the template given in Example 3-14. When
you access the property, it returns the amount of free space remaining on the drive.
When you set the property, it outputs what changes you must make to obtain that
amount of free space.

Example 3-15. A ScriptProperty for the PSDriveInfo type

<ScriptProperty>
 <Name>AvailableFreeSpace</Name>
 <GetScriptBlock>
 ## Ensure that this is a FileSystem drive
 if($this.Provider.ImplementingType -eq
 [Microsoft.PowerShell.Commands.FileSystemProvider])
 {
 ## Also ensure that it is a local drive
 $driveRoot = $this.Root
 $fileZone = [System.Security.Policy.Zone]::CreateFromUrl(`
 $driveRoot).SecurityZone
 if($fileZone -eq "MyComputer")
 {
 $drive = New-Object System.IO.DriveInfo $driveRoot
 $drive.AvailableFreeSpace
 }
 }
 </GetScriptBlock>
 <SetScriptBlock>
 ## Get the available free space
 $availableFreeSpace = $this.AvailableFreeSpace

3.17 Add Custom Methods and Properties to Types | 127

 ## Find out the difference between what is available, and what they
 ## asked for.
 $spaceDifference = (([long] $args[0]) - $availableFreeSpace) / 1MB

 ## If they want more free space than they have, give that message
 if($spaceDifference -gt 0)
 {
 $message = "To obtain $args bytes of free space, " +
 " free $spaceDifference megabytes."
 Write-Host $message
 }
 ## If they want less free space than they have, give that message
 else
 {
 $spaceDifference = $spaceDifference * -1
 $message = "To obtain $args bytes of free space, " +
 " use up $spaceDifference more megabytes."
 Write-Host $message
 }
 </SetScriptBlock>
</ScriptProperty>

Add an AliasProperty

An AliasProperty gives an alternative name (alias) for a property. The referenced prop-
erty does not need to exist when PowerShell processes your type extension file, since
you (or another script) might later add the property through mechanisms such as the
Add-Member cmdlet.

Example 3-16 adds a Free AliasProperty to PSDriveInfo, and it should also be placed
within the members section of the template given in Example 3-14. When you access
the property, it returns the value of the AvailableFreeSpace property. When you set the
property, it sets the value of the AvailableFreeSpace property.

Example 3-16. An AliasProperty for the PSDriveInfo type

<AliasProperty>
 <Name>Free</Name>
 <ReferencedMemberName>AvailableFreeSpace</ReferencedMemberName>
</AliasProperty>

Add a ScriptMethod

A ScriptMethod lets you define an action on an object, using PowerShell script as the
extension language. It consists of two child elements: the Name of the property and the
Script.

In the script element, the $this variable refers to the current object you are extending.
Like a standalone script, the $args variable represents the arguments to the method.
Unlike standalone scripts, ScriptMethods do not support the param statement for
parameters.

128 | Chapter 3: Variables and Objects

Example 3-17 adds a Remove ScriptMethod to PSDriveInfo. Like the other additions,
place these customizations within the members section of the template given in
Example 3-14. When you call this method with no arguments, the method simulates
removing the drive (through the -WhatIf option to Remove-PSDrive). If you call this
method with $true as the first argument, it actually removes the drive from the
PowerShell session.

Example 3-17. A ScriptMethod for the PSDriveInfo type

<ScriptMethod>
 <Name>Remove</Name>
 <Script>
 $force = [bool] $args[0]
 ## Remove the drive if they use $true as the first parameter
 if($force)
 {
 $this | Remove-PSDrive
 }
 ## Otherwise, simulate the drive removal
 else
 {
 $this | Remove-PSDrive -WhatIf
 }
 </Script>
</ScriptMethod>

Add other extension points

PowerShell supports several additional features in the types extension file, including
CodeProperty, NoteProperty, CodeMethod, and MemberSet. Although not generally useful
to end users, developers of PowerShell providers and cmdlets will find these features
helpful. For more information about these additional features, see the Windows
PowerShell SDK or the MSDN documentation.

3.17 Add Custom Methods and Properties to Types | 129

CHAPTER 4

Looping and Flow Control

4.0 Introduction
As you begin to write scripts or commands that interact with unknown data, the con-
cepts of looping and flow control become increasingly important.

PowerShell’s looping statements and commands let you perform an operation (or set
of operations) without having to repeat the commands themselves. This includes, for
example, doing something a specified number of times, processing each item in a col-
lection, or working until a certain condition comes to pass.

PowerShell’s flow control and comparison statements let you adapt your script or
command to unknown data. They let you execute commands based on the value of
that data, skip commands based on the value of that data, and more.

Together, looping and flow control statements add significant versatility to your
PowerShell toolbox.

4.1 Make Decisions with Comparison and Logical Operators

Problem
You want to compare some data with other data and make a decision based on that
comparison.

Solution
Use PowerShell’s logical operators to compare pieces of data and make decisions based
on them.

Comparison operators
-eq, -ne, -ge, -gt, -lt, -le, -like, -notlike, -match, -notmatch, -contains,
-notcontains, -is, -isnot

131

Logical operators
-and, -or, -xor, -not

For a detailed description (and examples) of these operators, see “Comparison Oper-
ators” on page 731.

Discussion
PowerShell’s logical and comparison operators let you compare pieces of data or test
data for some condition. An operator either compares two pieces of data (a binary
operator) or tests one piece of data (a unary operator). All comparison operators are
binary operators (they compare two pieces of data), as are most of the logical operators.
The only unary logical operator is the -not operator, which returns the true/false
opposite of the data that it tests.

Comparison operators compare two pieces of data and return a result that depends on
the specific comparison operator. For example, you might want to check whether a
collection has at least a certain number of elements:

PS > (dir).Count -ge 4
True

or check whether a string matches a given regular expression:

PS > "Hello World" -match "H.*World"
True

Most comparison operators also adapt to the type of their input. For example, when
you apply them to simple data such as a string, the -like and -match comparison op-
erators determine whether the string matches the specified pattern. When you apply
them to a collection of simple data, those same comparison operators return all ele-
ments in that collection that match the pattern you provide.

The -match operator takes a regular expression as its argument. One of
the more common regular expression symbols is the $ character, which
represents the end of line. The $ character also represents the start of a
PowerShell variable, though! To prevent PowerShell from interpreting
characters as language terms or escape sequences, place the string in
single quotes rather than double quotes:

PS > "Hello World" -match "Hello"
True
PS > "Hello World" -match 'Hello$'
False

By default, PowerShell’s comparison operators are case-insensitive. To use the case-
sensitive versions, prefix them with the character c:

-ceq, -cne, -cge, -cgt, -clt, -cle, -clike, -cnotlike,
-cmatch, -cnotmatch, -ccontains, -cnotcontains

132 | Chapter 4: Looping and Flow Control

For a detailed description of the comparison operators, their case-sensitive counter-
parts, and how they adapt to their input, see “Comparison Operators” on page 731.

Logical operators combine true or false statements and return a result that depends
on the specific logical operator. For example, you might want to check whether a string
matches the wildcard pattern you supply and that it is longer than a certain number of
characters:

PS > $data = "Hello World"
PS > ($data -like "*llo W*") -and ($data.Length -gt 10)
True
PS > ($data -like "*llo W*") -and ($data.Length -gt 20)
False

Some of the comparison operators actually incorporate aspects of the logical operators.
Since using the opposite of a comparison (such as -like) is so common, PowerShell
provides comparison operators (such as -notlike) that save you from having to use the
-not operator explicitly.

For a detailed description of the individual logical operators, see “Comparison Oper-
ators” on page 731.

Comparison operators and logical operators (when combined with flow control state-
ments) form the core of how we write a script or command that adapts to its data and
input.

See also “Conditional Statements” on page 733 for detailed information about these
statements.

For more information about PowerShell’s operators, type Get-Help About_Operators.

See Also
“Comparison Operators” on page 731

“Conditional Statements” on page 733

4.2 Adjust Script Flow Using Conditional Statements

Problem
You want to control the conditions under which PowerShell executes commands or
portions of your script.

Solution
Use PowerShell’s if, elseif, and else conditional statements to control the flow of
execution in your script.

4.2 Adjust Script Flow Using Conditional Statements | 133

For example:

$temperature = 90

if($temperature -le 0)
{
 "Balmy Canadian Summer"
}
elseif($temperature -le 32)
{
 "Freezing"
}
elseif($temperature -le 50)
{
 "Cold"
}
elseif($temperature -le 70)
{
 "Warm"
}
else
{
 "Hot"
}

Discussion
Conditional statements include the following:

if statement
Executes the script block that follows it if its condition evaluates to true

elseif statement
Executes the script block that follows it if its condition evaluates to true and none
of the conditions in the if or elseif statements before it evaluate to true

else statement
Executes the script block that follows it if none of the conditions in the if or
elseif statements before it evaluate to true

In addition to being useful for script control flow, conditional statements are often a
useful way to assign data to a variable. PowerShell version two makes this significantly
easier by letting you assign the results of a conditional statement directly to a variable:

$result = if(Get-Process -Name notepad) { "Running" } else { "Not running" }

For more information about these flow control statements, type Get-Help
About_Flow_Control.

134 | Chapter 4: Looping and Flow Control

4.3 Manage Large Conditional Statements with Switches

Problem
You want to find an easier or more compact way to represent a large if … elseif …
else conditional statement.

Solution
Use PowerShell’s switch statement to more easily represent a large if … elseif …
else conditional statement.

For example:

$temperature = 20

switch($temperature)
{
 { $_ -lt 32 } { "Below Freezing"; break }
 32 { "Exactly Freezing"; break }
 { $_ -le 50 } { "Cold"; break }
 { $_ -le 70 } { "Warm"; break }
 default { "Hot" }
}

Discussion
PowerShell’s switch statement lets you easily test its input against a large number of
comparisons. The switch statement supports several options that let you configure how
PowerShell compares the input against the conditions—such as with a wildcard, reg-
ular expression, or even arbitrary script block. Since scanning through the text in a file
is such a common task, PowerShell’s switch statement supports that directly. These
additions make PowerShell switch statements a great deal more powerful than those
in C and C++.

As another example of the switch statement in action, consider how to determine the
SKU of the current operating system. For example, is the script running on
Windows 7 Ultimate? Windows Server Cluster Edition? The Get-WmiObject cmdlet lets
you determine the operating system SKU, but unfortunately returns its result as a simple
number. A switch statement lets you map these to their English equivalents:

$sku = Get-WmiObject Win32_OperatingSystem
switch ($sku.OperatingSystemSKU)
{
 0 {"Undefined"; break}
 1 {"Ultimate Edition"; break}
 2 {"Home Basic Edition"; break}
 3 {"Home Basic Premium Edition"; break}
 4 {"Enterprise Edition"; break}
 5 {"Home Basic N Edition"; break}
 6 {"Business Edition"; break}

4.3 Manage Large Conditional Statements with Switches | 135

 7 {"Standard Server Edition"; break}
 8 {"Datacenter Server Edition"; break}
 9 {"Small Business Server Edition"; break}
 10 {"Enterprise Server Edition"; break}
 11 {"Starter Edition"; break}
 12 {"Datacenter Server Core Edition"; break}
 13 {"Standard Server Core Edition"; break}
 14 {"Enterprise Server Core Edition"; break}
 15 {"Enterprise Server Edition for Itanium-Based Systems"; break}
 16 {"Business N Edition"; break}
 17 {"Web Server Edition"; break}
 18 {"Cluster Server Edition"; break}
 19 {"Home Server Edition"; break}
 20 {"Storage Express Server Edition"; break}
 21 {"Storage Standard Server Edition"; break}
 22 {"Storage Workgroup Server Edition"; break}
 23 {"Storage Enterprise Server Edition"; break}
 24 {"Server For Small Business Edition"; break}
 25 {"Small Business Server Premium Edition"; break}
 default {"UNKNOWN: " + $SKU.OperatingSystemSKU}
}

Although used as a way to express large conditional statements more cleanly, a
switch statement operates much like a large sequence of if statements, as opposed to
a large sequence of if … elseif … elseif … else statements. Given the input that you
provide, PowerShell evaluates that input against each of the comparisons in the
switch statement. If the comparison evaluates to true, PowerShell then executes the
script block that follows it. Unless that script block contains a break statement,
PowerShell continues to evaluate the following comparisons.

For more information about PowerShell’s switch statement, see “Conditional State-
ments” on page 733 or type Get-Help About_Switch.

See Also
“Conditional Statements” on page 733

4.4 Repeat Operations with Loops

Problem
You want to execute the same block of code more than once.

Solution
Use one of PowerShell’s looping statements (for, foreach, while, and do) or Power-
Shell’s Foreach-Object cmdlet to run a command or script block more than once.
For a detailed description of these looping statements, see “Looping State-
ments” on page 736. For example:

136 | Chapter 4: Looping and Flow Control

for loop

for($counter = 1; $counter -le 10; $counter++)
{
 "Loop number $counter"
}

foreach loop

foreach($file in dir)
{
 "File length: " + $file.Length
}

Foreach-Object cmdlet

Get-ChildItem | Foreach-Object { "File length: " + $_.Length }

while loop

$response = ""
while($response -ne "QUIT")
{
 $response = Read-Host "Type something"
}

do..while loop

$response = ""
do
{
 $response = Read-Host "Type something"
} while($response -ne "QUIT")

do..until loop

$response = ""
do
{
 $response = Read-Host "Type something"
} until($response -eq "QUIT")

Discussion
Although any of the looping statements can be written to be functionally equivalent to
any of the others, each lends itself to certain problems.

You usually use a for loop when you need to perform an operation an exact number
of times. Because using it this way is so common, it is often called a counted for loop.

You usually use a foreach loop when you have a collection of objects and want to visit
each item in that collection. If you do not yet have that entire collection in memory (as
in the dir collection from the foreach example shown earlier), the Foreach-Object
cmdlet is usually a more efficient alternative.

4.4 Repeat Operations with Loops | 137

Unlike the foreach loop, the Foreach-Object cmdlet lets you process each element in
the collection as PowerShell generates it. This is an important distinction; asking
PowerShell to collect the entire output of a large command (such as Get-Content
hugefile.txt) in a foreach loop can easily drag down your system.

A handy shortcut to repeat an operation on the command line is:

PS > 1..10 | foreach { "Working" }
Working
Working
Working
Working
Working
Working
Working
Working
Working
Working

Like pipeline-oriented functions, the Foreach-Object cmdlet lets you define commands
to execute before the looping begins, during the looping, and after the looping
completes:

PS > "a","b","c" | Foreach-Object `
 -Begin { "Starting"; $counter = 0 } `
 -Process { "Processing $_"; $counter++ } `
 -End { "Finishing: $counter" }

Starting
Processing a
Processing b
Processing c
Finishing: 3

The while and do..while loops are similar, in that they continue to execute the loop as
long as its condition evaluates to true. A while loop checks for this before running your
script block, whereas a do..while loop checks the condition after running your script
block. A do..until loop is exactly like a do..while loop, except that it exits when its
condition returns $true, rather than when its condition returns $false.

For a detailed description of these looping statements, see “Looping State-
ments” on page 736 or type Get-Help About_For, Get-Help About_Foreach,
Get-Help about_While, or Get-Help about_Do.

See Also
“Looping Statements” on page 736

138 | Chapter 4: Looping and Flow Control

4.5 Add a Pause or Delay

Problem
You want to pause or delay your script or command.

Solution
To pause until the user presses the Enter key, use the Read-Host cmdlet:

PS > Read-Host "Press ENTER"
Press ENTER:

To pause until the user presses a key, use the ReadKey() method on the $host object:

PS > $host.UI.RawUI.ReadKey()

To pause a script for a given amount of time, use the Start-Sleep cmdlet:

PS > Start-Sleep 5
PS > Start-Sleep -Milliseconds 300

Discussion
When you want to pause your script until the user presses a key or for a set amount of
time, Read-Host and Start-Sleep are the two cmdlets you are most likely to use. For
more information about using the Read-Host cmdlet to read input from the user, see
Recipe 13.1.

In other situations, you may sometimes want to write a loop in your script that runs at
a constant speed—such as once per minute or 30 times per second. That is typically a
difficult task, as the commands in the loop might take up a significant amount of time,
or even an inconsistent amount of time.

In the past, many computer games suffered from solving this problem incorrectly. To
control their game speed, game developers added commands to slow down their game.
For example, after much tweaking and fiddling, the developers might realize that the
game plays correctly on a typical machine if they make the computer count to 1 million
every time it updates the screen. Unfortunately, the speed of these commands (such as
counting) depend heavily on the speed of the computer. Since a fast computer can count
to 1 million much more quickly than a slow computer, the game ends up running much
quicker (often to the point of incomprehensibility) on faster computers!

To make your loop run at a regular speed, you can measure how long the commands
in a loop take to complete, and then delay for whatever time is left, as shown in
Example 4-1.

4.5 Add a Pause or Delay | 139

Example 4-1. Running a loop at a constant speed

$loopDelayMilliseconds = 650
while($true)
{
 $startTime = Get-Date

 ## Do commands here
 "Executing"

 $endTime = Get-Date
 $loopLength = ($endTime - $startTime).TotalMilliseconds
 $timeRemaining = $loopDelayMilliseconds - $loopLength

 if($timeRemaining -gt 0)
 {
 Start-Sleep -Milliseconds $timeRemaining
 }
}

For more information about the Start-Sleep cmdlet, type Get-Help Start-Sleep.

See Also
Recipe 13.1, “Read a Line of User Input”

140 | Chapter 4: Looping and Flow Control

CHAPTER 5

Strings and Unstructured Text

5.0 Introduction
Creating and manipulating text has long been one of the primary tasks of scripting
languages and traditional shells. In fact, Perl (the language) started as a simple (but
useful) tool designed for text processing. It has grown well beyond those humble roots,
but its popularity provides strong evidence of the need it fills.

In text-based shells, this strong focus continues. When most of your interaction with
the system happens by manipulating the text-based output of programs, powerful text
processing utilities become crucial. These text parsing tools, such as awk, sed, and
grep, form the keystones of text-based systems management.

In PowerShell’s object-based environment, this traditional tool chain plays a less critical
role. You can accomplish most of the tasks that previously required these tools much
more effectively through other PowerShell commands. However, being an object-
oriented shell does not mean that PowerShell drops all support for text processing.
Dealing with strings and unstructured text continues to play an important part in a
system administrator’s life. Since PowerShell lets you manage the majority of your sys-
tem in its full fidelity (using cmdlets and objects), the text processing tools can once
again focus primarily on actual text processing tasks.

5.1 Create a String

Problem
You want to create a variable that holds text.

Solution
Use PowerShell string variables as a way to store and work with text.

141

To define a string that supports variable expansion and escape characters in its defini-
tion, surround it with double quotes:

$myString = "Hello World"

To define a literal string (one that does not interpret variable expansion or escape char-
acters), surround it with single quotes:

$myString = 'Hello World'

Discussion
String literals come in two varieties: literal (nonexpanding) and expanding strings. To
create a literal string, place single quotes ($myString = 'Hello World') around the text.
To create an expanding string, place double quotes ($myString = "Hello World")
around the text.

In a literal string, all the text between the single quotes becomes part of your string. In
an expanding string, PowerShell expands variable names (such as $replacement
String) and escape sequences (such as `n) with their values (such as the content of
$replacementString and the newline character, respectively).

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 718.

One exception to the “all text in a literal string is literal” rule comes from the quote
characters themselves. In either type of string, PowerShell lets you place two of that
string’s quote characters together to add the quote character itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

This helps prevent escaping atrocities that would arise when you try to include a single
quote in a single-quoted string. For example:

$myString = 'This string includes ' + "'" + 'single quotes' + "'"

This example shows how easy PowerShell makes it to create new strings
by adding other strings together. This is an attractive way to build a
formatted report in a script but should be used with caution. Because
of the way that the .NET Framework (and therefore PowerShell) man-
ages strings, adding information to the end of a large string this way
causes noticeable performance problems. If you intend to create large
reports, see Recipe 5.15.

142 | Chapter 5: Strings and Unstructured Text

See Also
Recipe 5.15, “Generate Large Reports and Text Streams”

“Strings” on page 718

5.2 Create a Multiline or Formatted String

Problem
You want to create a variable that holds text with newlines or other explicit formatting.

Solution
Use a PowerShell here string to store and work with text that includes newlines and
other formatting information.

$myString = @"
This is the first line
of a very long string. A "here string"
lets you create blocks of text
that span several lines.
"@

Discussion
PowerShell begins a here string when it sees the characters @" followed by a newline. It
ends the string when it sees the characters "@ on their own line. These seemingly odd
restrictions let you create strings that include quote characters, newlines, and other
symbols that you commonly use when you create large blocks of preformatted text.

These restrictions, while useful, can sometimes cause problems when
you copy and paste PowerShell examples from the Internet. Web pages
often add spaces at the end of lines, which can interfere with the strict
requirements of the beginning of a here string. If PowerShell produces
an error when your script defines a here string, check that the here string
does not include an errant space after its first quote character.

Like string literals, here strings may be literal (and use single quotes) or expanding (and
use double quotes).

In PowerShell version one, here strings were frequently used as the equivalent of block
comments to disable lines in a script. PowerShell version two now supports this fully
through multiline comments. For more information, see “Comments” on page 716.

See Also
“Comments” on page 716

5.2 Create a Multiline or Formatted String | 143

5.3 Place Special Characters in a String

Problem
You want to place special characters (such as tab and newline) in a string variable.

Solution
In an expanding string, use PowerShell’s escape sequences to include special characters
such as tab and newline.

PS > $myString = "Report for Today`n----------------"
PS > $myString
Report for Today

Discussion
As discussed in Recipe 5.1, PowerShell strings come in two varieties: literal (or nonex-
panding) and expanding strings. A literal string uses single quotes around its text,
whereas an expanding string uses double quotes around its text.

In a literal string, all the text between the single quotes becomes part of your string. In
an expanding string, PowerShell expands variable names (such as $ENV:SystemRoot) and
escape sequences (such as `n) with their values (such as the SystemRoot environment
variable and the newline character).

Unlike many languages that use a backslash character (\) for escape
sequences, PowerShell uses a backtick (`) character. This stems from its
focus on system administration, where backslashes are ubiquitous in
pathnames.

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 718.

See Also
Recipe 5.1, “Create a String”

“Strings” on page 718

5.4 Insert Dynamic Information in a String

Problem
You want to place dynamic information (such as the value of another variable) in a
string.

144 | Chapter 5: Strings and Unstructured Text

Solution
In an expanding string, include the name of a variable in the string to insert the value
of that variable:

PS > $header = "Report for Today"
PS > $myString = "$header`n----------------"
PS > $myString
Report for Today

To include information more complex than just the value of a variable, enclose it in a
subexpression:

PS > $header = "Report for Today"
PS > $myString = "$header`n$('-' * $header.Length)"
PS > $myString
Report for Today

Discussion
Variable substitution in an expanding string is a simple enough concept, but
subexpressions deserve a little clarification.

A subexpression is the dollar sign character, followed by a PowerShell command (or set
of commands) contained in parentheses:

$(subexpression)

When PowerShell sees a subexpression in an expanding string, it evaluates the
subexpression and places the result in the expanding string. In the solution, the ex-
pression '-' * $header.Length tells PowerShell to make a line of dashes
$header.Length long.

Another way to place dynamic information inside a string is to use PowerShell’s string
formatting operator, which is based on the rules of the .NET string formatting:

PS > $header = "Report for Today"
PS > $myString = "{0}`n{1}" -f $header,('-' * $header.Length)
PS > $myString
Report for Today

For an explanation of PowerShell’s formatting operator, see Recipe 5.6. For more
information about PowerShell’s escape characters, type Get-Help About_
Escape_Characters or type Get-Help About_Special_Characters.

See Also
Recipe 5.6, “Place Formatted Information in a String”

5.4 Insert Dynamic Information in a String | 145

5.5 Prevent a String from Including Dynamic Information

Problem
You want to prevent PowerShell from interpreting special characters or variable names
inside a string.

Solution
Use a nonexpanding string to have PowerShell interpret your string exactly as entered.
A nonexpanding string uses the single quote character around its text.

PS > $myString = 'Useful PowerShell characters include: $, `, " and { }'
PS > $myString
Useful PowerShell characters include: $, `, " and { }

If you want to include newline characters as well, use a nonexpanding here string, as
in Example 5-1.

Example 5-1. A nonexpanding here string that includes newline characters

PS > $myString = @'
Tip of the Day

Useful PowerShell characters include: $, `, ', " and { }
'@

PS > $myString
Tip of the Day
Useful PowerShell characters include: $, `, ', " and { }

Discussion
In a literal string, all the text between the single quotes becomes part of your string.
This is in contrast to an expanding string, where PowerShell expands variable names
(such as $myString) and escape sequences (such as `n) with their values (such as the
content of $myString and the newline character).

Nonexpanding strings are a useful way to manage files and folders con-
taining special characters that might otherwise be interpreted as escape
sequences. For more information about managing files with special
characters in their name, see Recipe 20.7.

As discussed in Recipe 5.1, one exception to the “all text in a literal string is literal”
rule comes from the quote characters themselves. In either type of string, PowerShell
lets you place two of that string’s quote characters together to include the quote char-
acter itself:

146 | Chapter 5: Strings and Unstructured Text

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

See Also
Recipe 5.1, “Create a String”

Recipe 20.7, “Manage Files That Include Special Characters”

5.6 Place Formatted Information in a String

Problem
You want to place formatted information (such as right-aligned text or numbers
rounded to a specific number of decimal places) in a string.

Solution
Use PowerShell’s formatting operator to place formatted information inside a string:

PS > $formatString = "{0,8:D4} {1:C}`n"
PS > $report = "Quantity Price`n"
PS > $report += "---------------`n"
PS > $report += $formatString -f 50,2.5677
PS > $report += $formatString -f 3,9
PS > $report
Quantity Price

 0050 $2.57
 0003 $9.00

Discussion
PowerShell’s string formatting operator (-f) uses the same string formatting rules as
the String.Format() method in the .NET Framework. It takes a format string on its left
side and the items you want to format on its right side.

In the solution, you format two numbers: a quantity and a price. The first number
({0}) represents the quantity and is right-aligned in a box of eight characters (,8). It is
formatted as a decimal number with four digits (:D4). The second number ({1}) repre-
sents the price, which you format as currency (:C).

If you find yourself hand-crafting text-based reports, STOP! Let
PowerShell’s built-in commands do all the work for you. Instead, emit
custom objects so that your users can work with your script as easily as
they work with regular PowerShell commands. For more information,
see Recipe 3.16.

5.6 Place Formatted Information in a String | 147

For a detailed explanation of PowerShell’s formatting operator, see “Simple Opera-
tors” on page 725. For a detailed list of the formatting rules, see Appendix D.

Although primarily used to control the layout of information, the string-formatting
operator is also a readable replacement for what is normally accomplished with string
concatenation:

PS > $number1 = 10
PS > $number2 = 32
PS > "$number2 divided by $number1 is " + $number2 / $number1
32 divided by 10 is 3.2

The string formatting operator makes this much easier to read:

PS > "{0} divided by {1} is {2}" -f $number2, $number1, ($number2 / $number1)
32 divided by 10 is 3.2

In addition to the string formatting operator, PowerShell provides three formatting
commands (Format-Table, Format-Wide, and Format-List) that let you easily generate
formatted reports. For detailed information about those cmdlets, see “Custom For-
matting Files” on page 760.

See Also
Recipe 3.16, “Create and Initialize Custom Objects”

“Simple Operators” on page 725

“Custom Formatting Files” on page 760

Appendix D, .NET String Formatting

5.7 Search a String for Text or a Pattern

Problem
You want to determine whether a string contains another string, or you want to find
the position of a string within another string.

Solution
PowerShell provides several options to help you search a string for text.

Use the -like operator to determine whether a string matches a given DOS-like
wildcard:

PS > "Hello World" -like "*llo W*"
True

Use the -match operator to determine whether a string matches a given regular
expression:

148 | Chapter 5: Strings and Unstructured Text

PS > "Hello World" -match '.*l[l-z]o W.*$'
True

Use the Contains() method to determine whether a string contains a specific string:

PS > "Hello World".Contains("World")
True

Use the IndexOf() method to determine the location of one string within another:

PS > "Hello World".IndexOf("World")
6

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The Contains() and IndexOf() methods are two examples
of the many features that the String class supports. To learn what other functionality
the String class supports, see Recipe 3.13.

To search entire files for text or a pattern, see Recipe 9.2.

Although they use similar characters, simple wildcards and regular expressions serve
significantly different purposes. Wildcards are much more simple than regular expres-
sions, and because of that, more constrained. While you can summarize the rules for
wildcards in just four bullet points, entire books have been written to help teach and
illuminate the use of regular expressions.

A common use of regular expressions is to search for a string that spans
multiple lines. By default, regular expressions do not search across lines,
but you can use the singleline (?s) option to instruct them to do so:

PS > "Hello `n World" -match "Hello.*World"
False
PS > "Hello `n World" -match "(?s)Hello.*World"
True

Wildcards lend themselves to simple matches, whereas regular expressions lend them-
selves to more complex matches.

For a detailed description of the -like operator, see “Comparison Opera-
tors” on page 731. For a detailed description of the -match operator, see “Simple Op-
erators” on page 725. For a detailed list of the regular expression rules and syntax, see
Appendix B.

One difficulty sometimes arises when you try to store the result of a PowerShell com-
mand in a string, as shown in Example 5-2.

5.7 Search a String for Text or a Pattern | 149

Example 5-2. Attempting to store output of a PowerShell command in a string

PS > Get-Help Get-ChildItem

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

(...)

PS > $helpContent = Get-Help Get-ChildItem
PS > $helpContent -match "location"
False

The -match operator searches a string for the pattern you specify but seems to fail in
this case. This is because all PowerShell commands generate objects. If you don’t store
that output in another variable or pass it to another command, PowerShell converts
the output to a text representation before it displays it to you. In Example 5-2, $help
Content is a fully featured object, not just its string representation:

PS > $helpContent.Name
Get-ChildItem

To work with the text-based representation of a PowerShell command, you can ex-
plicitly send it through the Out-String cmdlet. The Out-String cmdlet converts its input
into the text-based form you are used to seeing on the screen:

PS > $helpContent = Get-Help Get-ChildItem | Out-String
PS > $helpContent -match "location"
True

For a script that makes searching textual command output easier, see Recipe 1.19.

See Also
Recipe 1.19, “Program: Search Formatted Output for a Pattern”

Recipe 3.13, “Learn About Types and Objects”

“Simple Operators” on page 725

“Comparison Operators” on page 731

Appendix B, Regular Expression Reference

150 | Chapter 5: Strings and Unstructured Text

5.8 Replace Text in a String

Problem
You want to replace a portion of a string with another string.

Solution
PowerShell provides several options to help you replace text in a string with other text.

Use the Replace() method on the string itself to perform simple replacements:

PS > "Hello World".Replace("World", "PowerShell")
Hello PowerShell

Use PowerShell’s regular expression -replace operator to perform more advanced reg-
ular expression replacements:

PS > "Hello World" -replace '(.*) (.*)','$2 $1'
World Hello

Discussion
The Replace() method and the -replace operator both provide useful ways to replace
text in a string. The Replace() method is the quickest but also the most constrained. It
replaces every occurrence of the exact string you specify with the exact replacement
string that you provide. The -replace operator provides much more flexibility, since
its arguments are regular expressions that can match and replace complex patterns.

Given the power of the regular expressions it uses, the -replace operator carries with
it some pitfalls of regular expressions as well.

First, the regular expressions that you use with the -replace operator often contain
characters (such as the dollar sign, which represents a group number) that PowerShell
normally interprets as variable names or escape characters. To prevent PowerShell from
interpreting these characters, use a nonexpanding string (single quotes) as shown in
the solution.

Another, less common pitfall is wanting to use characters that have special meaning to
regular expressions as part of your replacement text. For example:

PS > "Power[Shell]" -replace "[Shell]","ful"
Powfulr[fulfulfulfulful]

That’s clearly not what we intended. In regular expressions, square brackets around a
set of characters means “match any of the characters inside of the square brackets.” In
our example, this translates to “Replace the characters S, h, e, and l with ‘ful’.”

5.8 Replace Text in a String | 151

To avoid this, we can use the regular expression escape character to escape the square
brackets:

PS > "Power[Shell]" -replace "\[Shell\]","ful"
Powerful

However, this means knowing all of the regular expression special characters and mod-
ifying the input string. Sometimes we don’t control that, so the [Regex]::Escape()
method comes in handy:

PS > "Power[Shell]" -replace ([Regex]::Escape("[Shell]")),"ful"
Powerful

For more information about the -replace operator, see “Simple Opera-
tors” on page 725 and Appendix B.

See Also
“Simple Operators” on page 725

Appendix B, Regular Expression Reference

5.9 Split a String on Text or a Pattern

Problem
You want to split a string based on some literal text or a regular expression pattern.

Solution
Use PowerShell’s -split operator to split on a sequence of characters or specific string:

PS > "a-b-c-d-e-f" -split "-c-"
a-b
d-e-f

To split on a pattern, supply a regular expression as the first argument:

PS > "a-b-c-d-e-f" -split "b|[d-e]"
a-
-c-
-
-f

Discussion
In PowerShell version one, the String.Split() and [Regex]::Split() methods were the
two options available for splitting strings. While still available in PowerShell version
two, PowerShell’s -split operator provides a more natural way to split a string into
smaller strings. When used with no arguments (the unary split operator), it splits a
string on whitespace characters, as in Example 5-3.

152 | Chapter 5: Strings and Unstructured Text

Example 5-3. PowerShell’s unary split operator

PS > -split "Hello World `t How `n are you?"
Hello
World
How
are
you?

When used with an argument, it treats the argument as a regular expression and then
splits based on that pattern.

PS > "a-b-c-d-e-f" -split 'b|[d-e]'
a-
-c-
-
-f

If the replacement pattern avoids characters that have special meaning in a regular
expression, you can use it to split a string based on another string.

PS > "a-b-c-d-e-f" -split '-c-'
a-b
d-e-f

If the replacement pattern has characters that have special meaning in a regular ex-
pression (such as the . character, which represents “any character”), use the -split
operator’s SimpleMatch option, as in Example 5-4.

Example 5-4. PowerShell’s SimpleMatch split option

PS > "a.b.c" -split '.'
(A bunch of newlines. Something went wrong!)

PS > "a.b.c" -split '.',0,"SimpleMatch"
a
b
c

For more information about the -split operator’s options, see Get-Help about_split.

While regular expressions offer an enormous amount of flexibility, the -split operator
gives you ultimate flexibility by letting you supply a script block for split operation. For
each character, it invokes the script block and splits the string based on the result. In
the script block, $_ represents the current character. For example, Example 5-5 splits
a string on even numbers.

5.9 Split a String on Text or a Pattern | 153

Example 5-5. Using a script block to split a string

PS > "1234567890" -split { ($_ % 2) -eq 0 }
1
3
5
7
9

To split an entire file by a pattern, use the -Delimiter parameter of the Get-Content
cmdlet:

PS > Get-Content test.txt
Hello
World
PS > (Get-Content test.txt)[0]
Hello
PS > Get-Content test.txt -Delimiter l
Hel
l
o
Worl
d
PS > (Get-Content test.txt -Delimiter l)[0]
Hel
PS > (Get-Content test.txt -Delimiter l)[1]
l
PS > (Get-Content test.txt -Delimiter l)[2]
o
Worl
PS > (Get-Content test.txt -Delimiter l)[3]
d

For more information about the -split operator, see “Simple Opera-
tors” on page 725 and Get-Help about_split.

See Also
“Simple Operators” on page 725

Appendix B, Regular Expression Reference

5.10 Combine Strings into a Larger String

Problem
You want to combine several separate strings into a single string.

Solution
Use PowerShell’s unary -join operator to combine separate strings into a larger string
using the default empty separator:

154 | Chapter 5: Strings and Unstructured Text

PS > -join ("A","B","C")
ABC

If you want to define the string that PowerShell uses to combine the strings, use
PowerShell’s binary -join operator.

PS > ("A","B","C") -join "`n"
A
B
C

Discussion
In PowerShell version one, the [String]::Join() method was the primary option avail-
able for joining strings. While still available in PowerShell version two, PowerShell’s
-join operator provides a more natural way to combine strings. When used with no
arguments (the unary join operator), it joins the list using the default empty separator.
When used between a list and a separator (the binary join operator), it joins the strings
using the provided separator.

Aside from its performance benefit, the -join operator solves an extremely common
difficulty that arises from trying to combine strings by hand.

When first writing the code to join a list with a separator (for example, a comma and
a space), you usually end up leaving a lonely separator at the beginning or ending of
the output:

PS > $list = "Hello","World"
PS > $output = ""
PS >
PS > foreach($item in $list)
{
 $output += $item + ", "
}

PS > $output
Hello, World,

You can resolve this by adding some extra logic to the foreach loop:

PS > $list = "Hello","World"
PS > $output = ""
PS >
PS > foreach($item in $list)
{
 if($output -ne "") { $output += ", " }
 $output += $item
}

PS > $output
Hello, World

5.10 Combine Strings into a Larger String | 155

Or, save yourself the trouble and use the -join operator directly:

PS > $list = "Hello","World"
PS > $list -join ", "
Hello, World

For more a more structured way to join strings into larger strings or reports, see
Recipe 5.6.

See Also
Recipe 5.6, “Place Formatted Information in a String”

5.11 Convert a String to Upper/Lowercase

Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the ToUpper() or ToLower() methods of the string to convert it to uppercase or
lowercase, respectively.

To convert a string to uppercase, use the ToUpper() method:

PS > "Hello World".ToUpper()
HELLO WORLD

To convert a string to lowercase, use the ToLower() method:

PS > "Hello World".ToLower()
hello world

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The ToUpper() and ToLower() methods are two examples
of the many features that the String class supports. To learn what other functionality
the String class supports, see Recipe 3.13.

Neither PowerShell nor the methods of the .NET String class directly
support capitalizing only the first letter of a word. If you want to capi-
talize only the first character of a word or sentence, try the following
commands:

PS > $text = "hello"
PS > $newText = $text.Substring(0,1).ToUpper() +
 $text.Substring(1)
$newText

Hello

156 | Chapter 5: Strings and Unstructured Text

One thing to keep in mind as you convert a string to uppercase or lowercase is your
motivation for doing it. One of the most common reasons is for comparing strings, as
shown in Example 5-6.

Example 5-6. Using the ToUpper() method to normalize strings

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways when
your script runs in different cultures. Many cultures follow different capitalization and
comparison rules than you may be used to. For example, the Turkish language includes
two types of the letter “I”: one with a dot and one without. The uppercase version of
the lowercase letter “i” corresponds to the version of the capital I with a dot, not the
capital I used in QUIT. Those capitalization rules cause the string comparison code in
Example 5-6 to fail in the Turkish culture.

To compare some input against a hardcoded string in a case-insensitive manner, the
better solution is to use PowerShell’s -eq operator without changing any of the casing
yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > $text1 = "Hello"
PS > $text2 = "HELLO"
PS > $text1 -eq $text2
True

For more information about writing culture-aware scripts, see Recipe 13.6.

See Also
Recipe 3.13, “Learn About Types and Objects”

Recipe 13.6, “Write Culture-Aware Scripts”

5.12 Trim a String

Problem
You want to remove leading or trailing spaces from a string or user input.

Solution
Use the Trim() method of the string to remove all leading and trailing whitespace char-
acters from that string.

PS > $text = " `t Test String`t `t"
PS > "|" + $text.Trim() + "|"
|Test String|

5.12 Trim a String | 157

Discussion
The Trim() method cleans all whitespace from the beginning and end of a string. If you
want just one or the other, you can call the TrimStart() or TrimEnd() method to remove
whitespace from the beginning or the end of the string, respectively. If you want to
remove specific characters from the beginning or end of a string, the Trim(), Trim
Start(), and TrimEnd() methods provide options to support that. To trim a list of spe-
cific characters from the end of a string, provide that list to the method, as shown in
Example 5-7.

Example 5-7. Trimming a list of characters from the end of a string

PS > "Hello World".TrimEnd('d','l','r','o','W',' ')
He

At first blush, the following command that attempts to trim the text
"World" from the end of a string appears to work incorrectly:

PS > "Hello World".TrimEnd(" World")
He

This happens because the TrimEnd() method takes a list of characters to
remove from the end of a string. PowerShell automatically converts a
string to a list of characters if required, and in this case converts your
string to the characters W, o, r, l, d, and a space. These are in fact the
same characters as were used in Example 5-7, so it has the same effect.

If you want to replace text anywhere in a string (and not just from the beginning or
end), see Recipe 5.8.

See Also
Recipe 5.8, “Replace Text in a String”

5.13 Format a Date for Output

Problem
You want to control the way that PowerShell displays or formats a date.

Solution
To control the format of a date, use one of the following options:

• The Get-Date cmdlet’s -Format parameter:

PS > Get-Date -Date "05/09/1998 1:23 PM" -Format "dd-MM-yyyy @ hh:mm:ss"
09-05-1998 @ 01:23:00

158 | Chapter 5: Strings and Unstructured Text

• PowerShell’s string formatting (-f) operator:

PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > "{0:dd-MM-yyyy @ hh:mm:ss}" -f $date
09-05-1998 @ 01:23:00

• The object’s ToString() method:

PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > $date.ToString("dd-MM-yyyy @ hh:mm:ss")
09-05-1998 @ 01:23:00

• The Get-Date cmdlet’s -UFormat parameter, which supports Unix date format
strings:

PS > Get-Date -Date "05/09/1998 1:23 PM" -UFormat "%d-%m-%Y @ %I:%M:%S"
09-05-1998 @ 01:23:00

Discussion
Except for the -UFormat parameter of the Get-Date cmdlet, all date formatting in
PowerShell uses the standard .NET DateTime format strings. These format strings let
you display dates in one of many standard formats (such as your system’s short or long
date patterns), or in a completely custom manner. For more information on how to
specify standard .NET DateTime format strings, see Appendix E.

If you are already used to the Unix-style date formatting strings (or are converting an
existing script that uses a complex one), the -UFormat parameter of the Get-Date cmdlet
may be helpful. It accepts the format strings accepted by the Unix date command, but
does not provide any functionality that standard .NET date formatting strings cannot.

When working with the string version of dates and times, be aware that they are the
most common source of internationalization issues—problems that arise from running
a script on a machine with a different culture than the one it was written on. In North
America, “05/09/1998” means “May 9, 1998.” In many other cultures, though, it means
“September 5, 1998.” Whenever possible, use and compare DateTime objects (rather
than strings) to other DateTime objects, as that avoids these cultural differences.
Example 5-8 demonstrates this approach.

Example 5-8. Comparing DateTime objects with the -gt operator

PS > $dueDate = [DateTime] "01/01/2006"
PS > if([DateTime]::Now -gt $dueDate)
{
 "Account is now due"
}

Account is now due

5.13 Format a Date for Output | 159

PowerShell always assumes the North American date format when it
interprets a DateTime constant such as [DateTime] "05/09/1998". This is
for the same reason that all languages interpret numeric constants (such
as 12.34) in the North American format. If it did otherwise, nearly every
script that dealt with dates and times would fail on international
systems.

For more information about the Get-Date cmdlet, type Get-Help Get-Date. For more
information about dealing with dates and times in a culturally aware manner, see
Recipe 13.6.

See Also
Recipe 13.6, “Write Culture-Aware Scripts”

Appendix E, .NET DateTime Formatting

5.14 Program: Convert Text Streams to Objects
One of the strongest features of PowerShell is its object-based pipeline. You don’t waste
your energy creating, destroying, and recreating the object representation of your data.
In other shells, you lose the full-fidelity representation of data when the pipeline con-
verts it to pure text. You can regain some of it through excessive text parsing, but not
all of it.

However, you still often have to interact with low-fidelity input that originates from
outside PowerShell. Text-based data files and legacy programs are two examples.

PowerShell offers great support for two of the three text-parsing staples:

Sed
Replaces text. For that functionality, PowerShell offers the -replace operator.

Grep
Searches text. For that functionality, PowerShell offers the Select-String cmdlet,
among others.

The third traditional text-parsing tool, Awk, lets you chop a line of text into more
intuitive groupings. PowerShell offers the -split operator for strings, but that lacks
some of the power you usually need to break a string into groups.

The Convert-TextObject script presented in Example 5-9 lets you convert text streams
into a set of objects that represent those text elements according to the rules you specify.
From there, you can use all of PowerShell’s object-based tools, which gives you even
more power than you would get with the text-based equivalents.

160 | Chapter 5: Strings and Unstructured Text

Example 5-9. Convert-TextObject.ps1

##
##
Convert-TextObject
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Convert a simple string into a custom PowerShell object.

.EXAMPLE

"Hello World" | Convert-TextObject
Generates an Object with "P1=Hello" and "P2=World"

.EXAMPLE

"Hello World" | Convert-TextObject -Delimiter "ll"
Generates an Object with "P1=He" and "P2=o World"

.EXAMPLE

"Hello World" | Convert-TextObject -Pattern "He(ll.*o)r(ld)"
Generates an Object with "P1=llo Wo" and "P2=ld"

.EXAMPLE

"Hello World" | Convert-TextObject -PropertyName FirstWord,SecondWord
Generates an Object with "FirstWord=Hello" and "SecondWord=World

.EXAMPLE

"123 456" | Convert-TextObject -PropertyType $([string],[int])
Generates an Object with "Property1=123" and "Property2=456"
The second property is an integer, as opposed to a string

.EXAMPLE

PS >$ipAddress = (ipconfig | Convert-TextObject -Delim ": ")[2].P2
PS >$ipAddress
192.168.1.104

#>

[CmdletBinding(DefaultParameterSetName = "ByDelimiter")]
param(
 ## If specified, gives the .NET Regular Expression with which to
 ## split the string. The script generates properties for the
 ## resulting object out of the elements resulting from this split.

5.14 Program: Convert Text Streams to Objects | 161

 ## If not specified, defaults to splitting on the maximum amount
 ## of whitespace: "\s+", as long as Pattern is not
 ## specified either.
 [Parameter(ParameterSetName = "ByDelimiter", Position = 0)]
 [string] $Delimiter = "\s+",

 ## If specified, gives the .NET Regular Expression with which to
 ## parse the string. The script generates properties for the
 ## resulting object out of the groups captured by this regular
 ## expression.
 [Parameter(Mandatory = $true,
 ParameterSetName = "ByPattern",
 Position = 0)]
 [string] $Pattern,

 ## If specified, the script will pair the names from this object
 ## definition with the elements from the parsed string. If not
 ## specified (or the generated object contains more properties
 ## than you specify), the script uses property names in the
 ## pattern of P1,P2,...,PN
 [Parameter(Position = 1)]
 [Alias("PN")]
 [string[]] $PropertyName = @(),

 ## If specified, the script will pair the types from this list with
 ## the properties from the parsed string. If not specified (or the
 ## generated object contains more properties than you specify), the
 ## script sets the properties to be of type [string]
 [Parameter(Position = 2)]
 [Alias("PT")]
 [type[]] $PropertyType = @(),

 ## The input object to process
 [Parameter(ValueFromPipeline = $true)]
 [string] $InputObject
)

begin {
 Set-StrictMode -Version Latest
}

process {
 $returnObject = New-Object PSObject

 $matches = $null
 $matchCount = 0

 if($PSBoundParameters["Pattern"])
 {
 ## Verify that the input contains the pattern
 ## Populates the matches variable by default
 if(-not ($InputObject -match $pattern))
 {
 return
 }

162 | Chapter 5: Strings and Unstructured Text

 $matchCount = $matches.Count
 $startIndex = 1
 }
 else
 {
 ## Verify that the input contains the delimiter
 if(-not ($InputObject -match $delimiter))
 {
 return
 }

 ## If so, split the input on that delimiter
 $matches = $InputObject -split $delimiter
 $matchCount = $matches.Length
 $startIndex = 0
 }

 ## Go through all of the matches, and add them as notes to the output
 ## object.
 for($counter = $startIndex; $counter -lt $matchCount; $counter++)
 {
 $currentPropertyName = "P$($counter - $startIndex + 1)"
 $currentPropertyType = [string]

 ## Get the property name
 if($counter -lt $propertyName.Length)
 {
 if($propertyName[$counter])
 {
 $currentPropertyName = $propertyName[$counter]
 }
 }

 ## Get the property value
 if($counter -lt $propertyType.Length)
 {
 if($propertyType[$counter])
 {
 $currentPropertyType = $propertyType[$counter]
 }
 }

 Add-Member -InputObject $returnObject NoteProperty `
 -Name $currentPropertyName `
 -Value ($matches[$counter].Trim() -as $currentPropertyType)
 }

 $returnObject
}

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

5.14 Program: Convert Text Streams to Objects | 163

5.15 Generate Large Reports and Text Streams

Problem
You want to write a script that generates a large report or large amount of data.

Solution
The best approach to generating a large amount of data is to take advantage of
PowerShell’s streaming behavior whenever possible. Opt for solutions that pipeline
data between commands:

Get-ChildItem C:\ *.txt -Recurse | Out-File c:\temp\AllTextFiles.txt

rather than collect the output at each stage:

$files = Get-ChildItem C:\ *.txt -Recurse
$files | Out-File c:\temp\AllTextFiles.txt

If your script generates a large text report (and streaming is not an option), use the
StringBuilder class:

$output = New-Object System.Text.StringBuilder
Get-ChildItem C:\ *.txt -Recurse |
 Foreach-Object { [void] $output.AppendLine($_.FullName) }
$output.ToString()

rather than simple text concatenation:

$output = ""
Get-ChildItem C:\ *.txt -Recurse | Foreach-Object { $output += $_.FullName }
$output

Discussion
In PowerShell, combining commands in a pipeline is a fundamental concept. As scripts
and cmdlets generate output, PowerShell passes that output to the next command in
the pipeline as soon as it can. In the solution, the Get-ChildItem commands that retrieve
all text files on the C: drive take a very long time to complete. However, since they
begin to generate data almost immediately, PowerShell can pass that data on to the next
command as soon as the Get-ChildItem cmdlet produces it. This is true of any com-
mands that generate or consume data and is called streaming. The pipeline completes
almost as soon as the Get-ChildItem cmdlet finishes producing its data and uses memory
very efficiently as it does so.

The second Get-ChildItem example (which collects its data) prevents PowerShell from
taking advantage of this streaming opportunity. It first stores all the files in an array,
which, because of the amount of data, takes a long time and an enormous amount of
memory. Then, it sends all those objects into the output file, which takes a long time
as well.

164 | Chapter 5: Strings and Unstructured Text

However, most commands can consume data produced by the pipeline directly, as
illustrated by the Out-File cmdlet. For those commands, PowerShell provides stream-
ing behavior as long as you combine the commands into a pipeline. For commands that
do not support data coming from the pipeline directly, the Foreach-Object cmdlet (with
the aliases of foreach and %) lets you work with each piece of data as the previous
command produces it, as shown in the StringBuilder example.

Creating large text reports

When you generate large reports, it is common to store the entire report into a string,
and then write that string out to a file once the script completes. You can usually ac-
complish this most effectively by streaming the text directly to its destination (a file or
the screen), but sometimes this is not possible.

Since PowerShell makes it so easy to add more text to the end of a string (as in $out
put += $_.FullName), many initially opt for that approach. This works great for small-
to-medium strings, but it causes significant performance problems for large strings.

As an example of this performance difference, compare the following:

PS > Measure-Command {
 $output = New-Object Text.StringBuilder
 1..10000 |
 Foreach-Object { $output.Append("Hello World") }
}

(...)
TotalSeconds : 2.3471592

PS > Measure-Command {
 $output = ""
 1..10000 | Foreach-Object { $output += "Hello World" }
}

(...)
TotalSeconds : 4.9884882

In the .NET Framework (and therefore PowerShell), strings never change after you
create them. When you add more text to the end of a string, PowerShell has to build a
new string by combining the two smaller strings. This operation takes a long time for
large strings, which is why the .NET Framework includes the System.Text.String
Builder class. Unlike normal strings, the StringBuilder class assumes that you will
modify its data—an assumption that allows it to adapt to change much more efficiently.

5.15 Generate Large Reports and Text Streams | 165

5.16 Generate Source Code and Other Repetitive Text

Problem
You want to simplify the creation of large amounts of repetitive source code or other
text.

Solution
Use PowerShell’s string formatting operator (-f) to place dynamic information inside
of a preformatted string, and then repeat that replacement for each piece of dynamic
information.

Discussion
Code generation is a useful technique in nearly any technology that produces output
from some text-based input. For example, imagine having to create an HTML report
to show all of the processes running on your system at that time. In this case, “code”
is the HTML code understood by a web browser.

HTML pages start with some standard text (<html>, <head>, <body>), and then you
would likely include the processes in an HTML <table>. Each row would include col-
umns for each of the properties in the process you’re working with.

Generating this by hand would be mind-numbing and error-prone. Instead, you can
write a function to generate the code for the row:

function Get-HtmlRow($process)
{
 $template = "<TR> <TD>{0}</TD> <TD>{1}</TD> </TR>"
 $template -f $process.Name,$process.ID
}

and then generate the report in milliseconds, rather than hours:

"<HTML><BODY><TABLE>" > report.html
Get-Process | Foreach-Object { Get-HtmlRow $_ } >> report.html
"</TABLE></BODY></HTML>" >> report.html
Invoke-Item .\report.html

In addition to the formatting operator, you can sometimes use the String.Replace
method:

$string = @'
Name is __NAME__
Id is __ID__
'@

$string = $string.Replace("__NAME__", $process.Name)
$string = $string.Replace("__ID__", $process.Id)

166 | Chapter 5: Strings and Unstructured Text

This works well (and is very readable) if you have tight control over the data you’ll be
using as replacement text. If it is at all possible for the replacement text to contain one
of the special tags ("__NAME__" or "__ID__", for example), then they will also get replaced
by further replacements and corrupt your final output.

To avoid this issue, you can use the Format-String script shown in Example 5-10.

Example 5-10. Format-String.ps1

##
##
Format-String
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Replaces text in a string based on named replacement tags

.EXAMPLE

Format-String "Hello {NAME}" @{ NAME = 'PowerShell' }
Hello PowerShell

.EXAMPLE

Format-String "Your score is {SCORE:P}" @{ SCORE = 0.85 }
Your score is 85.00 %

#>

param(
 ## The string to format. Any portions in the form of {NAME}
 ## will be automatically replaced by the corresponding value
 ## from the supplied hashtable.
 $String,

 ## The named replacements to use in the string
 [hashtable] $Replacements
)

Set-StrictMode -Version Latest

$currentIndex = 0
$replacementList = @()

Go through each key in the hashtable
foreach($key in $replacements.Keys)
{
 ## Convert the key into a number, so that it can be used by

5.16 Generate Source Code and Other Repetitive Text | 167

 ## String.Format
 $inputPattern = '{(.*)' + $key + '(.*)}'
 $replacementPattern = '{${1}' + $currentIndex + '${2}}'
 $string = $string -replace $inputPattern,$replacementPattern
 $replacementList += $replacements[$key]

 $currentIndex++
}

Now use String.Format to replace the numbers in the
format string.
$string -f $replacementList

PowerShell includes several commands for code generation that you’ve probably used
without recognizing their “code generation” aspect. The ConvertTo-Html cmdlet applies
code generation of incoming objects to HTML reports. The ConvertTo-Csv cmdlet ap-
plies code generation to CSV files. The ConvertTo-Xml cmdlet applies code generation
to XML files.

Code generation techniques seem to come up naturally when you realize you are writing
a report, but they are often missed when writing source code of another programming
or scripting language. For example, imagine you need to write a C# function that out-
puts all of the details of a process. The System.Diagnostics.Process class has a lot of
properties, so that’s going to be a long function. Writing it by hand is going to be
difficult, so you can have PowerShell do most of it for you.

For any object (for example, a process that you’ve retrieved from the Get-Process com-
mand), you can access its PsObject.Properties property to get a list of all of its prop-
erties. Each of those has a Name property, so you can use that to generate the C# code:

$process.PsObject.Properties |
 Foreach-Object {
 'Console.WriteLine("{0}: " + process.{0});' -f $_.Name }

This generates more than 60 lines of C# source code, rather than having you do it by
hand:

Console.WriteLine("Name: " + process.Name);
Console.WriteLine("Handles: " + process.Handles);
Console.WriteLine("VM: " + process.VM);
Console.WriteLine("WS: " + process.WS);
Console.WriteLine("PM: " + process.PM);
Console.WriteLine("NPM: " + process.NPM);
Console.WriteLine("Path: " + process.Path);
Console.WriteLine("Company: " + process.Company);
Console.WriteLine("CPU: " + process.CPU);
Console.WriteLine("FileVersion: " + process.FileVersion);
Console.WriteLine("ProductVersion: " + process.ProductVersion);
(...)

Similar benefits come from generating bulk SQL statements, repetitive data structures,
and more.

168 | Chapter 5: Strings and Unstructured Text

PowerShell code generation can still help you with large-scale administration tasks,
even when PowerShell is not available. Given a large list of input (for example, a com-
plex list of files to copy), you can easily generate a cmd.exe batch file or Unix shell script
to automate the task. Generate the script in PowerShell, and then invoke it on the system
of your choice!

5.16 Generate Source Code and Other Repetitive Text | 169

CHAPTER 6

Calculations and Math

6.0 Introduction
Math is an important feature in any scripting language. Math support in a language
includes addition, subtraction, multiplication, and division, of course, but extends into
more advanced mathematical operations. So it should not surprise you that PowerShell
provides a strong suite of mathematical and calculation-oriented features.

Since PowerShell provides full access to its scripting language from the command line,
this keeps a powerful and useful command-line calculator always at your fingertips! In
addition to its support for traditional mathematical operations, PowerShell also caters
to system administrators by working natively with concepts such as megabytes and
gigabytes, simple statistics (such as sum and average), and conversions between bases.

6.1 Perform Simple Arithmetic

Problem
You want to use PowerShell to calculate simple mathematical results.

Solution
Use PowerShell’s arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

+=, -=, *=, /=, and %= Assignment variations of the previously listed operators

() Precedence/order of operations

171

For a detailed description of these mathematical operators, see “Simple Opera-
tors” on page 725.

Discussion
One difficulty in many programming languages comes from the way that they handle
data in variables. For example, this C# snippet stores the value of “1” in the result
variable, when the user probably wanted the result to hold the floating-point value
of 1.5:

double result = 0;
result = 3/2;

This is because C# (along with many other languages) determines the result of the
division from the type of data being used in the division. In the previous example, it
decides that you want the answer to be an integer because you used two integers in the
division.

PowerShell, on the other hand, avoids this problem. Even if you use two integers in a
division, PowerShell returns the result as a floating-point number if required. This is
called widening.

PS > $result = 0
PS > $result = 3/2
PS > $result
1.5

One exception to this automatic widening is when you explicitly tell PowerShell the
type of result you want. For example, you might use an integer cast ([int]) to say that
you want the result to be an integer after all:

PS > $result = [int] (3/2)
PS > $result
2

Many programming languages drop the portion after the decimal point when they
convert them from floating-point numbers to integers. This is called truncation.
PowerShell, on the other hand, uses banker’s rounding for this conversion. It converts
floating-point numbers to their nearest integer, rounding to the nearest even number
in case of a tie.

Several programming techniques use truncation, though, so it is still important that a
scripting language somehow support it. PowerShell does not have a built-in operator
that performs truncation-style division, but it does support it through the
[Math]::Truncate() method in the .NET Framework:

PS > $result = 3/2
PS > [Math]::Truncate($result)
1

If that syntax seems burdensome, the following example defines a trunc function that
truncates its input:

172 | Chapter 6: Calculations and Math

PS > function trunc($number) { [Math]::Truncate($number) }
PS > $result = 3/2
PS > trunc $result
1

See Also
“Simple Operators” on page 725

6.2 Perform Complex Arithmetic

Problem
You want to use PowerShell to calculate more complex or advanced mathematical
results.

Solution
PowerShell supports more advanced mathematical tasks primarily through its support
for the System.Math class in the .NET Framework.

To find the absolute value of a number, use the [Math]::Abs() method:

PS > [Math]::Abs(-10.6)
10.6

To find the power (such as the square or the cube) of a number, use the
[Math]::Pow() method. In this case, the method is finding 123 squared:

PS > [Math]::Pow(123, 2)
15129

To find the square root of a number, use the [Math]::Sqrt() method:

PS > [Math]::Sqrt(100)
10

To find the sine, cosine, or tangent of an angle (given in radians), use the [Math]::Sin(),
[Math]::Cos(), or [Math]::Tan() method:

PS > [Math]::Sin([Math]::PI / 2)
1

To find the angle (given in radians) of a sine, cosine, or tangent value, use the
[Math]::ASin(), [Math]::ACos(), or [Math]::ATan() method:

PS > [Math]::ASin(1)
1.5707963267949

See Recipe 3.13 to learn how to find out what other features the System.Math class
provides.

6.2 Perform Complex Arithmetic | 173

Discussion
Once you start working with the System.Math class, it may seem as though its designers
left out significant pieces of functionality. The class supports the square root of a num-
ber, but doesn’t support other roots (such as the cube root). It supports sine, cosine,
and tangent (and their inverses) in radians, but not in the more commonly used measure
of degrees.

Working with any root

To determine any root (such as the cube root) of a number, you can use the function
given in Example 6-1.

Example 6-1. A root function and some example calculations

PS > function root($number, $root) { [Math]::Pow($number, 1 / $root) }
PS > root 64 3
4
PS > root 25 5
1.90365393871588
PS > [Math]::Pow(1.90365393871588, 5)
25.0000000000001
PS > [Math]::Pow($(root 25 5), 5)
25

This function applies the mathematical fact that the square root of a number is the same
as raising that number to the power of 1/2, the cube of a number is the same as raising
it to the power of 1/3, etc.

The example also illustrates a very important point about math on computers. When
you use this function (or anything else that manipulates floating-point numbers), al-
ways be aware that the results of floating-point answers are only ever approximations
of the actual result. If you combine multiple calculations in the same statement (or store
intermediate results into variables), programming and scripting languages can some-
times keep an accurate answer (such as in the second [Math]::Pow() attempt), but that
exception is rare.

Some mathematical systems avoid this problem by working with equations and calcu-
lations as symbols (and not numbers). Like humans, these systems know that taking
the square of a number that you just took the square root of gives you the original
number right back—so they don’t actually have to do either of those operations. These
systems, however, are extremely specialized and usually very expensive.

Working with degrees instead of radians

Converting radians (the way that mathematicians commonly measure angles) to de-
grees (the way that most people commonly measure angles) is much more straight-
forward than the root function. A circle has 2 * Pi radians if you measure in radians,
and 360 degrees if you measure in degrees. That gives the following two functions:

174 | Chapter 6: Calculations and Math

PS > function Convert-RadiansToDegrees($angle) { $angle / (2 * [Math]::Pi) * 360 }
PS > function Convert-DegreesToRadians($angle) { $angle / 360 * (2 * [Math]::Pi) }

and their usage:

PS > Convert-RadiansToDegrees ([Math]::Pi)
180
PS > Convert-RadiansToDegrees ([Math]::Pi / 2)
90
PS > Convert-DegreesToRadians 360
6.28318530717959
PS > Convert-DegreesToRadians 45
0.785398163397448
PS > [Math]::Tan((Convert-DegreesToRadians 45))
1

See Also
Recipe 3.13, “Learn About Types and Objects”

6.3 Measure Statistical Properties of a List

Problem
You want to measure the numeric (minimum, maximum, sum, average) or textual
(characters, words, lines) features of a list of objects.

Solution
Use the Measure-Object cmdlet to measure these statistical properties of a list.

To measure the numeric features of a stream of objects, pipe those objects to the
Measure-Object cmdlet:

PS > 1..10 | Measure-Object -Average -Sum

Count : 10
Average : 5.5
Sum : 55
Maximum :
Minimum :
Property :

To measure the numeric features of a specific property in a stream of objects, supply
that property name to the -Property parameter of the Measure-Object cmdlet. For ex-
ample, in a directory with files:

PS > Get-ChildItem | Measure-Object -Property Length -Max -Min -Average -Sum

Count : 427
Average : 10617025.4918033

6.3 Measure Statistical Properties of a List | 175

Sum : 4533469885
Maximum : 647129088
Minimum : 0
Property : Length

To measure the textual features of a stream of objects, use the -Character, -Word, and
-Line parameters of the Measure-Object cmdlet:

PS > Get-ChildItem > output.txt
PS > Get-Content output.txt | Measure-Object -Character -Word -Line

 Lines Words Characters Property
 ----- ----- ---------- --------
 964 6083 33484

Discussion
By default, the Measure-Object cmdlet counts only the number of objects it receives. If
you want to measure additional properties (such as the maximum, minimum, average,
sum, characters, words, or lines) of those objects, then you need to specify them as
options to the cmdlet.

For the numeric properties, though, you usually don’t want to measure the objects
themselves. Instead, you probably want to measure a specific property from the list—
such as the Length property of a file. For that purpose, the Measure-Object cmdlet sup-
ports the -Property parameter to which you provide the property you want to measure.

Sometimes you might want to measure a property that isn’t a simple number—such as
the LastWriteTime property of a file. Since the LastWriteTime property is a DateTime,
you can’t determine its average immediately. However, if any property allows you to
convert it to a number and back in a meaningful way (such as the Ticks property of a
DateTime), then you can still compute its statistical properties. Example 6-2 shows how
to get the average LastWriteTime from a list of files.

Example 6-2. Using the Ticks property of the DateTime class to determine the average LastWriteTime
of a list of files

PS > ## Get the LastWriteTime from each file
PS > $times = dir | Foreach-Object { $_.LastWriteTime }

PS > ## Measure the average Ticks property of those LastWriteTime
PS > $results = $times | Measure-Object Ticks -Average

PS > ## Create a new DateTime out of the average Ticks
PS > New-Object DateTime $results.Average

Sunday, June 11, 2006 6:45:01 AM

For more information about the Measure-Object cmdlet, type Get-Help Measure-
Object.

176 | Chapter 6: Calculations and Math

6.4 Work with Numbers as Binary

Problem
You want to work with the individual bits of a number or work with a number built
by combining a series of flags.

Solution
To directly enter a hexadecimal number, use the 0x prefix:

PS > $hexNumber = 0x1234
PS > $hexNumber
4660

To convert a number to its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

To convert a binary number into its decimal representation, supply a base of 2 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To manage the individual bits of a number, use PowerShell’s binary operators. In this
case, the Archive flag is just one of the many possible attributes that may be true of a
given file:

PS > $archive = [System.IO.FileAttributes] "Archive"
PS > attrib +a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name

Name

test.txt
PS > attrib -a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name
PS >

Discussion
In some system administration tasks, it is common to come across numbers that seem
to mean nothing by themselves. The attributes of a file are a perfect example:

PS > (Get-Item test.txt).Encrypt()
PS > (Get-Item test.txt).IsReadOnly = $true
PS > [int] (Get-Item test.txt -force).Attributes
16417
PS > (Get-Item test.txt -force).IsReadOnly = $false
PS > (Get-Item test.txt).Decrypt()

6.4 Work with Numbers as Binary | 177

PS > [int] (Get-Item test.txt).Attributes
32

What can the numbers 16417 and 32 possibly tell us about the file?

The answer to this comes from looking at the attributes in another light—as a set of
features that can be either true or false. Take, for example, the possible attributes for
an item in a directory shown by Example 6-3.

Example 6-3. Possible attributes of a file

PS > [Enum]::GetNames([System.IO.FileAttributes])
ReadOnly
Hidden
System
Directory
Archive
Device
Normal
Temporary
SparseFile
ReparsePoint
Compressed
Offline
NotContentIndexedEncrypted

If a file is ReadOnly, Archive, and Encrypted, then you might consider the following as
a succinct description of the attributes on that file:

ReadOnly = True
Archive = True
Encrypted = True

It just so happens that computers have an extremely concise way of representing sets
of true and false values—a representation known as binary. To represent the attributes
of a directory item as binary, you simply put them in a table. We give the item a “1” if
the attribute applies to the item and a “0” otherwise (see Table 6-1).

Table 6-1. Attributes of a directory item

Attribute True (1) or false (0)

Encrypted 1

NotContentIndexed 0

Offline 0

Compressed 0

ReparsePoint 0

SparseFile 0

Temporary 0

Normal 0

Device 0

178 | Chapter 6: Calculations and Math

Attribute True (1) or false (0)

Archive 1

Directory 0

<Unused> 0

System 0

Hidden 0

ReadOnly 1

If we treat those features as the individual binary digits in a number, that gives us the
number 100000000100001. If we convert that number to its decimal form, it becomes
clear where the number 16417 came from:

PS > [Convert]::ToInt32("100000000100001", 2)
16417

This technique sits at the core of many properties that you can express as a combination
of features or flags. Rather than list the features in a table, though, documentation
usually describes the number that would result from that feature being the only one
active—such as FILE_ATTRIBUTE_REPARSEPOINT = 0x400. Example 6-4 shows the various
representations of these file attributes.

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes

PS > $attributes = [Enum]::GetValues([System.IO.FileAttributes])
PS > $attributes | Select-Object `
 @{"Name"="Property";
 "Expression"= { $_ } },
 @{"Name"="Integer";
 "Expression"= { [int] $_ } },
 @{"Name"="Hexadecimal";
 "Expression"= { [Convert]::ToString([int] $_, 16) } },
 @{"Name"="Binary";
 "Expression"= { [Convert]::ToString([int] $_, 2) } } |
 Format-Table -auto

 Property Integer Hexadecimal Binary
 -------- ------- ----------- ------
 ReadOnly 1 1 1
 Hidden 2 2 10
 System 4 4 100
 Directory 16 10 10000
 Archive 32 20 100000
 Device 64 40 1000000
 Normal 128 80 10000000
 Temporary 256 100 100000000
 SparseFile 512 200 1000000000
 ReparsePoint 1024 400 10000000000
 Compressed 2048 800 100000000000
 Offline 4096 1000 1000000000000

6.4 Work with Numbers as Binary | 179

 NotContentIndexed 8192 2000 10000000000000
 Encrypted 16384 4000 100000000000000

Knowing how that 16417 number was formed, you can now use the properties in
meaningful ways. For example, PowerShell’s -band operator allows you to check
whether a certain bit has been set:

PS > $encrypted = 16384
PS > $attributes = (Get-Item test.txt -force).Attributes
PS > ($attributes -band $encrypted) -eq $encrypted
True
PS > $compressed = 2048
PS > ($attributes -band $compressed) -eq $compressed
False
PS >

Although that example uses the numeric values explicitly, it would be more common
to enter the number by its name:

PS > $archive = [System.IO.FileAttributes] "Archive"
PS > ($attributes -band $archive) -eq $archive
True

For more information about PowerShell’s binary operators, see “Simple Opera-
tors” on page 725.

See Also
“Simple Operators” on page 725

6.5 Simplify Math with Administrative Constants

Problem
You want to work with common administrative numbers (that is, kilobytes, megabytes,
gigabytes, terabytes, and petabytes) without having to remember or calculate those
numbers.

Solution
Use PowerShell’s administrative constants (KB, MB, GB, TB, and PB) to help work with
these common numbers.

For example, we can calculate the download time (in seconds) of a 10.18 megabyte file
over a connection that gets 215 kilobytes per second:

PS > 10.18mb / 215kb
48.4852093023256

180 | Chapter 6: Calculations and Math

Discussion
PowerShell’s administrative constants are based on powers of two, since they are the
type most commonly used when working with computers. Each is 1,024 times bigger
than the one before it:

1kb = 1024
1mb = 1024 * 1 kb
1gb = 1024 * 1 mb
1tb = 1024 * 1 gb
1pb = 1024 * 1 tb

Some people (such as hard drive manufacturers) prefer to call numbers based on powers
of two “kibibytes,” “mebibytes,” and “gibibytes.” They use the terms “kilobytes,”
“megabytes,” and “gigabytes” to mean numbers that are 1,000 times bigger than the
ones before them—numbers based on powers of 10.

Although not represented by administrative constants, PowerShell still makes it easy
to work with these numbers in powers of 10—for example, to figure out how big a
“300 GB” hard drive is when reported by Windows. To do this, use scientific (expo-
nential) notation:

PS > $kilobyte = 1e3
PS > $kilobyte
1000
PS > $megabyte = 1e6
PS > $megabyte
1000000
PS > $gigabyte = 1e9
PS > $gigabyte
1000000000
PS > (300 * $gigabyte) / 1GB
279.396772384644

See Also
“Simple Assignment” on page 720

6.6 Convert Numbers Between Bases

Problem
You want to convert a number to a different base.

Solution
The PowerShell scripting language allows you to enter both decimal and hexadecimal
numbers directly. It does not natively support other number bases, but its support for
interaction with the .NET Framework enables conversion both to and from binary,
octal, decimal, and hexadecimal.

6.6 Convert Numbers Between Bases | 181

To convert a hexadecimal number into its decimal representation, prefix the number
with 0x to enter the number as hexadecimal:

PS > $myErrorCode = 0xFE4A
PS > $myErrorCode
65098

To convert a binary number into its decimal representation, supply a base of 2 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To convert an octal number into its decimal representation, supply a base of 8 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("1234", 8)
668

To convert a number into its hexadecimal representation, use either the [Convert] class
or PowerShell’s format operator:

PS > ## Use the [Convert] class
PS > [Convert]::ToString(1234, 16)
4d2

PS > ## Use the formatting operator
PS > "{0:X4}" -f 1234
04D2

To convert a number into its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

To convert a number into its octal representation, supply a base of 8 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 8)
2322

Discussion
It is most common to want to convert numbers between bases when you are dealing
with numbers that represent binary combinations of data, such as the attributes of a
file. For more information on how to work with binary data like this, see Recipe 6.4.

See Also
Recipe 6.4, “Work with Numbers as Binary”

182 | Chapter 6: Calculations and Math

CHAPTER 7

Lists, Arrays, and Hashtables

7.0 Introduction
Most scripts deal with more than one thing—lists of servers, lists of files, lookup codes,
and more. To enable this, PowerShell supports many features to help you through both
its language features and utility cmdlets.

PowerShell makes working with arrays and lists much like working with other data
types: you can easily create an array or list and then add or remove elements from it.
You can just as easily sort it, search it, or combine it with another array. When you
want to store a mapping between one piece of data and another, a hashtable fulfills that
need perfectly.

7.1 Create an Array or List of Items

Problem
You want to create an array or list of items.

Solution
To create an array that holds a given set of items, separate those items with commas:

PS > $myArray = 1,2,"Hello World"
PS > $myArray
1
2
Hello World

To create an array of a specific size, use the New-Object cmdlet:

PS > $myArray = New-Object string[] 10
PS > $myArray[5] = "Hello"
PS > $myArray[5]
Hello

183

To create an array of a specific type, use a strongly typed collection:

PS > $list = New-Object Collections.Generic.List[Int]
PS > $list.Add(10)
PS > $list.Add("Hello")
Cannot convert argument "0", with value: "Hello", for "Add" to type "System
.Int32": "Cannot convert value "Hello" to type "System.Int32". Error:
"Input string was not in a correct format.""

To store the output of a command that generates a list, use variable assignment:

PS > $myArray = Get-Process
PS > $myArray

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1316 3908 33 3164 alg
 983 7 3636 7472 30 688 csrss
 69 4 924 3332 30 0.69 2232 ctfmon
 180 5 2220 6116 37 2816 dllhost
(...)

To create an array that you plan to modify frequently, use an ArrayList, as shown by
Example 7-1.

Example 7-1. Using an ArrayList to manage a dynamic collection of items

PS > $myArray = New-Object System.Collections.ArrayList
PS > [void] $myArray.Add("Hello")
PS > [void] $myArray.AddRange(("World","How","Are","You"))
PS > $myArray
Hello
World
How
Are
You
PS > $myArray.RemoveAt(1)
PS > $myArray
Hello
How
Are
You

Discussion
Aside from the primitive data types (such as strings, integers, and decimals), lists of
items are a common concept in the scripts and commands that you write. Most com-
mands generate lists of data: the Get-Content cmdlet generates a list of strings in a file,
the Get-Process cmdlet generates a list of processes running on the system, and the
Get-Command cmdlet generates a list of commands, just to name a few.

184 | Chapter 7: Lists, Arrays, and Hashtables

The solution shows how to store the output of a command that gener-
ates a list. If a command outputs only one item (such as a single line
from a file, a single process, or a single command), then that output is
no longer a list. If you want to treat that output as a list even when it is
not, use the list evaluation syntax (@()) to force PowerShell to interpret
it as an array:

$myArray = @(Get-Process Explorer)

When you want to create a list of a specific type, the solution demonstrates how to use
the System.Collections.Generic.List collection to do that. After the type name, you
define the type of the list in square brackets, such as [Int], [String], or whichever type
you want to restrict your collection to. These types of specialized objects are called
generic objects. For more information about creating generic objects, see “Creating
Instances of Types” on page 744.

For more information on lists and arrays in PowerShell, see “Arrays and
Lists” on page 721.

See Also
“Arrays and Lists” on page 721

“Creating Instances of Types” on page 744

7.2 Create a Jagged or Multidimensional Array

Problem
You want to create an array of arrays or an array of multiple dimensions.

Solution
To create an array of arrays (a jagged array), use the @() array syntax:

PS > $jagged = @(
 (1,2,3,4),
 (5,6,7,8)
)

PS > $jagged[0][1]
2
PS > $jagged[1][3]
8

To create a (nonjagged) multidimensional array, use the New-Object cmdlet:

PS > $multidimensional = New-Object "int32[,]" 2,4
PS > $multidimensional[0,1] = 2
PS > $multidimensional[1,3] = 8

7.2 Create a Jagged or Multidimensional Array | 185

PS >
PS > $multidimensional[0,1]
2
PS > $multidimensional[1,3]
8

Discussion
Jagged and multidimensional arrays are useful for holding lists of lists and arrays of
arrays. Jagged arrays are arrays of arrays, where each array has only as many elements
as it needs. A nonjagged array is more like a grid or matrix, where every array needs to
be the same size. Jagged arrays are much easier to work with (and use less memory),
but nonjagged multidimensional arrays are sometimes useful for dealing with large
grids of data.

Since a jagged array is an array of arrays, creating an item in a jagged array follows the
same rules as creating an item in a regular array. If any of the arrays are single-element
arrays, use the unary comma operator. For example, to create a jagged array with one
nested array of one element:

PS > $oneByOneJagged = @(
 ,(,1)

PS > $oneByOneJagged[0][0]

For more information on lists and arrays in PowerShell, see “Arrays and
Lists” on page 721.

See Also
“Arrays and Lists” on page 721

7.3 Access Elements of an Array

Problem
You want to access the elements of an array.

Solution
To access a specific element of an array, use PowerShell’s array access mechanism:

PS > $myArray = 1,2,"Hello World"
PS > $myArray[1]
2

To access a range of array elements, use array ranges and array slicing:

PS > $myArray = 1,2,"Hello World"
PS > $myArray[1..2 + 0]
2

186 | Chapter 7: Lists, Arrays, and Hashtables

Hello World
1

Discussion
PowerShell’s array access mechanisms provide a convenient way to access either spe-
cific elements of an array or more complex combinations of elements in that array. In
PowerShell (as with most other scripting and programming languages), the item at
index 0 represents the first item in the array.

For long lists of items, knowing the index of an element can sometimes pose a problem.
For a solution to this, see the Add-FormatTableIndexParameter script included with this
book’s code examples. This script adds a new -IncludeIndex parameter to the Format-
Table cmdlet:

PS > $items = Get-Process outlook,powershell,emacs,notepad
PS > $items

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 163 6 17660 24136 576 7.63 7136 emacs
 74 4 1252 6184 56 0.19 11820 notepad
 3262 48 46664 88280 376 20.98 8572 OUTLOOK
 285 11 31328 21952 171 613.71 4716 powershell
 767 14 56568 66032 227 104.10 11368 powershell

PS > $items | Format-Table -IncludeIndex

PSIndex Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------- ------ ----- ----- ----- ------ -- -----------
0 163 6 17660 24136 576 7.63 7136 emacs
1 74 4 1252 6184 56 0.19 11820 notepad
2 3262 48 46664 88280 376 20.98 8572 OUTLOOK
3 285 11 31328 21952 171 613.71 4716 powershell
4 767 14 56568 66032 227 104.15 11368 powershell

PS > $items[2]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 3262 48 46664 88280 376 20.98 8572 OUTLOOK

Although working with the elements of an array by their numerical index is helpful,
you may find it useful to refer to them by something else—such as their name, or even
a custom label. This type of array is known as an associative array (or hashtable). For
more information about working with hashtables and associative arrays, see
Recipe 7.13.

For more information on lists and arrays in PowerShell (including the array ranges and
slicing syntax), see “Arrays and Lists” on page 721. For more information about ob-
taining the code examples for this book, see “Code Examples” on page xxviii.

7.3 Access Elements of an Array | 187

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Arrays and Lists” on page 721

7.4 Visit Each Element of an Array

Problem
You want to work with each element of an array.

Solution
To access each item in an array one by one, use the Foreach-Object cmdlet:

PS > $myArray = 1,2,3
PS > $sum = 0
PS > $myArray | Foreach-Object { $sum += $_ }
PS > $sum
6

To access each item in an array in a more script-like fashion, use the foreach scripting
keyword:

PS > $myArray = 1,2,3
PS > $sum = 0
PS > foreach($element in $myArray) { $sum += $element }
PS > $sum
6

To access items in an array by position, use a for loop:

PS > $myArray = 1,2,3
PS > $sum = 0
PS > for($counter = 0; $counter -lt $myArray.Count; $counter++) {
 $sum += $myArray[$counter]
}

PS > $sum
6

Discussion
PowerShell provides three main alternatives to working with elements in an array. The
Foreach-Object cmdlet and foreach scripting keyword techniques visit the items in an
array one element at a time, whereas the for loop (and related looping constructs) lets
you work with the items in an array in a less structured way.

For more information about the Foreach-Object cmdlet, see Recipe 2.5.

For more information about the foreach scripting keyword, the for keyword, and other
looping constructs, see Recipe 4.4.

188 | Chapter 7: Lists, Arrays, and Hashtables

See Also
Recipe 2.5, “Work with Each Item in a List or Command Output”

Recipe 4.4, “Repeat Operations with Loops”

7.5 Sort an Array or List of Items

Problem
You want to sort the elements of an array or list.

Solution
To sort a list of items, use the Sort-Object cmdlet:

PS > Get-ChildItem | Sort-Object -Descending Length | Select Name,Length

Name Length
---- ------
Convert-TextObject.ps1 6868
Connect-WebService.ps1 4178
Select-FilteredObject.ps1 3252
Get-PageUrls.ps1 2878
Get-Characteristics.ps1 2515
Get-Answer.ps1 1890
New-GenericObject.ps1 1490
Invoke-CmdScript.ps1 1313

Discussion
The Sort-Object cmdlet provides a convenient way for you to sort items by a property
that you specify. If you don’t specify a property, the Sort-Object cmdlet follows the
sorting rules of those items if they define any.

The Sort-Object cmdlet also supports custom sort expressions, rather than just sorting
on existing properties. To sort by your own logic, use a script block as the sort expres-
sion. This example sorts by the second character:

PS > "Hello","World","And","PowerShell" | Sort-Object { $_.Substring(1,1) }
Hello
And
PowerShell
World

If you want to sort a list that you’ve saved in a variable, you can either store the results
back in that variable or use the [Array]::Sort() method from the .NET Framework:

PS > $list = "Hello","World","And","PowerShell"
PS > $list = $list | Sort-Object
PS > $list
And

7.5 Sort an Array or List of Items | 189

Hello
PowerShell
World
PS > $list = "Hello","World","And","PowerShell"
PS > [Array]::Sort($list)
PS > $list
And
Hello
PowerShell
World

In addition to sorting by a property or expression in ascending or descending order,
the Sort-Object cmdlet’s -Unique switch also allows you to remove duplicates from the
sorted collection.

For more information about the Sort-Object cmdlet, type Get-Help Sort-Object.

7.6 Determine Whether an Array Contains an Item

Problem
You want to determine whether an array or list contains a specific item.

Solution
To determine whether a list contains a specific item, use the -contains operator:

PS > "Hello","World" -contains "Hello"
True
PS > "Hello","World" -contains "There"
False

Discussion
The -contains operator is a useful way to quickly determine whether a list contains a
specific element. To search a list for items that instead match a pattern, use the -match or
-like operators.

For more information about the -contains, -match, and -like operators, see “Com-
parison Operators” on page 731.

See Also
“Comparison Operators” on page 731

190 | Chapter 7: Lists, Arrays, and Hashtables

7.7 Combine Two Arrays

Problem
You have two arrays and want to combine them into one.

Solution
To combine PowerShell arrays, use the addition operator (+):

PS > $firstArray = "Element 1","Element 2","Element 3","Element 4"
PS > $secondArray = 1,2,3,4
PS >
PS > $result = $firstArray + $secondArray
PS > $result
Element 1
Element 2
Element 3
Element 4
1
2
3
4

Discussion
One common reason to combine two arrays is when you want to add data to the end
of one of the arrays. For example:

PS > $array = 1,2
PS > $array = $array + 3,4
PS > $array
1
2
3
4

You can write this more clearly as:

PS > $array = 1,2
PS > $array += 3,4
PS > $array
1
2
3
4

When this is written in the second form, however, you might think that PowerShell
simply adds the items to the end of the array while keeping the array itself intact. This
is not true, since arrays in PowerShell (like most other languages) stay the same length
once you create them. To combine two arrays, PowerShell creates a new array large
enough to hold the contents of both arrays and then copies both arrays into the desti-
nation array.

7.7 Combine Two Arrays | 191

If you plan to add and remove data from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative. For more
information about using the ArrayList class, see Recipe 7.12.

See Also
Recipe 7.12, “Use the ArrayList Class for Advanced Array Tasks”

7.8 Find Items in an Array That Match a Value

Problem
You have an array and want to find all elements that match a given item or term—either
exactly, by pattern, or by regular expression.

Solution
To find all elements that match an item, use the -eq, -like, and -match comparison
operators:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -eq "Item 1"
Item 1
Item 1
PS > $array -like "*1*"
Item 1
Item 1
Item 12
PS > $array -match "Item .."
Item 12

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. The -eq operator returns all elements that are equal to your
term, the -like operator returns all elements that match the wildcard given in your
pattern, and the -match operator returns all elements that match the regular expression
given in your pattern.

For more complex comparison conditions, the Where-Object cmdlet lets you find ele-
ments in a list that satisfy much more complex conditions:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array | Where-Object { $_.Length -gt 6 }
Item 12

For more information, see Recipe 2.1.

For more information about the -eq, -like, and -match operators, see “Comparison
Operators” on page 731.

192 | Chapter 7: Lists, Arrays, and Hashtables

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

“Comparison Operators” on page 731

7.9 Compare Two Lists

Problem
You have two lists and want to find items that exist in only one or the other list.

Solution
To compare two lists, use the Compare-Object cmdlet:

PS > $array1 = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array2 = "Item 1","Item 8","Item 3","Item 9","Item 12"
PS > Compare-Object $array1 $array2

InputObject SideIndicator
----------- -------------
Item 8 =>
Item 9 =>
Item 2 <=
Item 1 <=

Discussion
The Compare-Object cmdlet lets you compare two lists. By default, it shows only the
items that exist exclusively in one of the lists, although its -IncludeEqual parameter lets
you include items that exist in both. If it returns no results, the two lists are equal.

For more information, see Chapter 22.

See Also
Chapter 22, Comparing Data

7.10 Remove Elements from an Array

Problem
You want to remove all elements from an array that match a given item or term—either
exactly, by pattern, or by regular expression.

7.10 Remove Elements from an Array | 193

Solution
To remove all elements from an array that match a pattern, use the -ne, -notlike, and
-notmatch comparison operators, as shown in Example 7-2.

Example 7-2. Removing elements from an array using the -ne, -notlike, and -notmatch operators

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -ne "Item 1"
Item 2
Item 3
Item 12
PS > $array -notlike "*1*"
Item 2
Item 3
PS > $array -notmatch "Item .."
Item 1
Item 2
Item 3
Item 1

To actually remove the items from the array, store the results back in the array:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array = $array -ne "Item 1"
PS > $array
Item 2
Item 3
Item 12

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. Their opposites, the -ne, -notlike, and -notmatch opera-
tors, return all elements that do not match that given term.

To remove all elements from an array that match a given pattern, you can then save all
elements that do not match that pattern.

For more information about the -ne, -notlike, and -notmatch operators, see “Com-
parison Operators” on page 731.

See Also
“Comparison Operators” on page 731

7.11 Find Items in an Array Greater or Less Than a Value

Problem
You have an array and want to find all elements greater or less than a given item or value.

194 | Chapter 7: Lists, Arrays, and Hashtables

Solution
To find all elements greater or less than a given value, use the -gt, -ge, -lt, and -le
comparison operators:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -ge "Item 3"
Item 3
PS > $array -lt "Item 3"
Item 1
Item 2
Item 1
Item 12

Discussion
The -gt, -ge, -lt, and -le operators are useful ways to find elements in a collection that
are greater or less than a given value. Like all other PowerShell comparison operators,
these use the comparison rules of the items in the collection. Since the array in the
solution is an array of strings, this result can easily surprise you:

PS > $array -lt "Item 2"
Item 1
Item 1
Item 12

The reason for this becomes clear when you look at the sorted array—"Item 12" comes
before "Item 2" alphabetically, which is the way that PowerShell compares arrays of
strings.

PS > $array | Sort-Object
Item 1
Item 1
Item 12
Item 2
Item 3

For more information about the -gt, -ge, -lt, and -le operators, see “Comparison
Operators” on page 731.

See Also
“Comparison Operators” on page 731

7.12 Use the ArrayList Class for Advanced Array Tasks

Problem
You have an array that you want to frequently add elements to, remove elements from,
search, and modify.

7.12 Use the ArrayList Class for Advanced Array Tasks | 195

Solution
To work with an array frequently after you define it, use the System.Collections.Array
List class:

PS > $myArray = New-Object System.Collections.ArrayList
PS > [void] $myArray.Add("Hello")
PS > [void] $myArray.AddRange(("World","How","Are","You"))
PS > $myArray
Hello
World
How
Are
You
PS > $myArray.RemoveAt(1)
PS > $myArray
Hello
How
Are
You

Discussion
Like in most other languages, arrays in PowerShell stay the same length once you create
them. PowerShell allows you to add items, remove items, and search for items in an
array, but these operations may be time-consuming when you are dealing with large
amounts of data. For example, to combine two arrays, PowerShell creates a new array
large enough to hold the contents of both arrays and then copies both arrays into the
destination array.

In comparison, the ArrayList class is designed to let you easily add, remove, and search
for items in a collection.

PowerShell passes along any data that your script generates, unless you
capture it or cast it to [void]. Since it is designed primarily to be used
from programming languages, the System.Collections.ArrayList class
produces output, even though you may not expect it to. To prevent it
from sending data to the output pipeline, either capture the data or cast
it to [void]:

PS > $collection = New-Object System.Collections.ArrayList
PS > $collection.Add("Hello")
0
PS > [void] $collection.Add("World")

If you plan to add and remove data to and from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

196 | Chapter 7: Lists, Arrays, and Hashtables

See Also
Recipe 3.8, “Work with .NET Objects”

7.13 Create a Hashtable or Associative Array

Problem
You have a collection of items that you want to access through a label that you provide.

Solution
To define a mapping between labels and items, use a hashtable (associative array):

PS > $myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3 }
PS > $myHashtable["New Item"] = 5
PS >
PS > $myHashTable

Name Value
---- -----
Key 2 {1, 2, 3}
New Item 5
Key1 Value1

Discussion
Hashtables are much like arrays that let you access items by whatever label you want—
not just through their index in the array. Because of that freedom, they form the key-
stone of a huge number of scripting techniques. Since they let you map names to values,
they form the natural basis for lookup tables such as those for zip codes and area codes.
Since they let you map names to fully featured objects and script blocks, they can often
take the place of custom objects. And since you can map rich objects to other rich
objects, they can even form the basis of more advanced data structures such as caches
and object graphs.

The solution demonstrates how to create and initialize a hashtable at the same time,
but you can also create one and work with it incrementally:

PS > $myHashtable = @{}
PS > $myHashtable["Hello"] = "World"
PS > $myHashtable.AnotherHello = "AnotherWorld"
PS > $myHashtable

Name Value
---- -----
AnotherHello AnotherWorld
Hello World

This ability to map labels to structured values also proves helpful in interacting with
cmdlets that support advanced configuration parameters, such as the calculated

7.13 Create a Hashtable or Associative Array | 197

property parameters available on the Format-Table and Select-Object cmdlets. For an
example of this use, see Recipe 3.2.

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 723.

See Also
Recipe 3.2, “Display the Properties of an Item as a Table”

“Hashtables (Associative Arrays)” on page 723

7.14 Sort a Hashtable by Key or Value

Problem
You have a hashtable of keys and values, and you want to get the list of values that
result from sorting the keys in order.

Solution
To sort a hashtable, use the GetEnumerator() method on the hashtable to gain access
to its individual elements. Then, use the Sort-Object cmdlet to sort by Name or Value.

foreach($item in $myHashtable.GetEnumerator() | Sort Name)
{
 $item.Value
}

Discussion
Since the primary focus of a hashtable is to simply map keys to values, you should not
depend on it to retain any ordering whatsoever—such as the order you added the items,
the sorted order of the keys, or the sorted order of the values.

This becomes clear in Example 7-3.

Example 7-3. A demonstration of hashtable items not retaining their order

PS > $myHashtable = @{}
PS > $myHashtable["Hello"] = 3
PS > $myHashtable["Ali"] = 2
PS > $myHashtable["Alien"] = 4
PS > $myHashtable["Duck"] = 1
PS > $myHashtable["Hectic"] = 11
PS > $myHashtable

Name Value
---- -----
Hectic 11
Duck 1

198 | Chapter 7: Lists, Arrays, and Hashtables

Alien 4
Hello 3
Ali 2

However, the hashtable object supports a GetEnumerator() method that lets you deal
with the individual hashtable entries—all of which have a Name and Value property.
Once you have those, we can sort by them as easily as we can sort any other PowerShell
data. Example 7-4 demonstrates this technique.

Example 7-4. Sorting a hashtable by name and value

PS > $myHashtable.GetEnumerator() | Sort Name

Name Value
---- -----
Ali 2
Alien 4
Duck 1
Hectic 11
Hello 3

PS > $myHashtable.GetEnumerator() | Sort Value

Name Value
---- -----
Duck 1
Ali 2
Hello 3
Alien 4
Hectic 11

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 723.

See Also
“Hashtables (Associative Arrays)” on page 723

7.14 Sort a Hashtable by Key or Value | 199

CHAPTER 8

Utility Tasks

8.0 Introduction
When scripting or just using the interactive shell, a handful of needs arise that are simple
but useful: measuring commands, getting random numbers, and more.

8.1 Get the System Date and Time

Problem
You want to get the system date.

Solution
To get the system date, run the command Get-Date.

Discussion
The Get-Date command generates rich object-based output, so you can use its result
for many date-related tasks. For example, to determine the current day of the week:

PS > $date = Get-Date
PS > $date.DayOfWeek
Sunday

For more information about the Get-Date cmdlet, type Get-Help Get-Date.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

201

8.2 Measure the Duration of a Command

Problem
You want to know how long a command takes to execute.

Solution
To measure the duration of a command, use the Measure-Command cmdlet:

PS > Measure-Command { Start-Sleep -Milliseconds 337 }

Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 339
Ticks : 3392297
TotalDays : 3.92626967592593E-06
TotalHours : 9.42304722222222E-05
TotalMinutes : 0.00565382833333333
TotalSeconds : 0.3392297
TotalMilliseconds : 339.2297

Discussion
In interactive use, it is common to want to measure the duration of a command. An
example of this might be running a performance benchmark on an application you’ve
developed. The Measure-Command cmdlet makes this easy to do. Because the command
generates rich object-based output, you can use its output for many date-related tasks.
See Recipe 3.8 for more information.

If the accuracy of a command measurement is important, general system activity can
easily influence the timing of the result. To improve accuracy, a common technique is
to repeat the measurement many times, ignore the outliers (the top and bottom 10
percent), and then average the remaining results. Example 8-1 implements this
technique.

Example 8-1. Measure-CommandPerformance.ps1

##
##
Measure-CommandPerformance
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

202 | Chapter 8: Utility Tasks

Measures the average time of a command, accounting for natural variability by
automatically ignoring the top and bottom ten percent.

.EXAMPLE

PS >Measure-CommandPerformance.ps1 { Start-Sleep -m 300 }

Count : 30
Average : 312.10155
(...)

#>

param(
 ## The command to measure
 [Scriptblock] $Scriptblock,

 ## The number of times to measure the command's performance
 [int] $Iterations = 30
)

Set-StrictMode -Version Latest

Figure out how many extra iterations we need to account for the outliers
$buffer = [int] ($iterations * 0.1)
$totalIterations = $iterations + (2 * $buffer)

Get the results
$results = 1..$totalIterations |
 Foreach-Object { Measure-Command $scriptblock }

Sort the results, and skip the outliers
$middleResults = $results | Sort TotalMilliseconds |
 Select -Skip $buffer -First $iterations

Show the average
$middleResults | Measure-Object -Average TotalMilliseconds

For more information about the Measure-Command cmdlet, type Get-Help
Measure-Command.

See Also
Recipe 3.8, “Work with .NET Objects”

8.3 Read and Write from the Windows Clipboard

Problem
You want to interact with the Windows clipboard.

8.3 Read and Write from the Windows Clipboard | 203

Solution
Use the Get-Clipboard and Set-Clipboard scripts, as shown in Examples 8-2 and 8-3.

Example 8-2. Get-Clipboard.ps1

###
##
Get-Clipboard
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Retrieve the text contents of the Windows Clipboard.

.EXAMPLE

PS >Get-Clipboard
Hello World

#>

Set-StrictMode -Version Latest

PowerShell -NoProfile -STA -Command {
 Add-Type -Assembly PresentationCore
 [Windows.Clipboard]::GetText()
}

Example 8-3. Set-Clipboard.ps1

###
##
Set-Clipboard
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Sends the given input to the Windows clipboard.

.EXAMPLE

dir | Set-Clipboard
This example sends the view of a directory listing to the clipboard

204 | Chapter 8: Utility Tasks

.EXAMPLE

Set-Clipboard "Hello World"
This example sets the clipboard to the string, "Hello World".

#>

param(
 ## The input to send to the clipboard
 [Parameter(ValueFromPipeline = $true)]
 [object[]] $InputObject
)

begin
{
 Set-StrictMode -Version Latest
 $objectsToProcess = @()
}

process
{
 ## Collect everything sent to the script either through
 ## pipeline input, or direct input.
 $objectsToProcess += $inputObject
}

end
{
 ## Launch a new instance of PowerShell in STA mode.
 ## This lets us interact with the Windows clipboard.
 $objectsToProcess | PowerShell -NoProfile -STA -Command {
 Add-Type -Assembly PresentationCore

 ## Convert the input objects to a string representation
 $clipText = ($input | Out-String -Stream) -join "`r`n"

 ## And finally set the clipboard text
 [Windows.Clipboard]::SetText($clipText)
 }
}

Discussion
While Windows includes a command-line utility (clip.exe) to place text in the Win-
dows clipboard, it doesn’t support direct input (e.g., clip.exe "Hello World"), and it
doesn’t have a corresponding utility to retrieve the contents from the Windows
clipboard.

The Set-Clipboard and Get-Clipboard scripts given in the solution resolve both of these
issues.

Both rely on the System.Windows.Clipboard class, which has a special requirement that
it must be run from an application in single-threaded apartment (STA) mode. To

8.3 Read and Write from the Windows Clipboard | 205

support that, the scripts launch a new instance of PowerShell in this mode. For more
information about interacting with this type of class, see Recipe 13.11.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 13.11, “Interact with UI Frameworks and STA Objects”

8.4 Generate a Random Number or Object

Problem
You want to generate a random number or pick a random element from a set of objects.

Solution
Call the Get-Random cmdlet to generate a random positive integer:

Get-Random

Use the -Minimum and -Maximum parameters to generate a number between Minimum and
up to (but not including) Maximum:

Get-Random -Minimum 1 -Maximum 21

Use simple pipeline input to pick a random element from a list:

PS > $suits = "Hearts","Clubs","Spades","Diamonds"
PS > $faces = (2..10)+"A","J","Q","K"
PS > $cards = foreach($suit in $suits) { foreach($face in $faces) { "$face of $suit" } }
PS > $cards | Get-Random
A of Spades
PS > $cards | Get-Random
2 of Clubs

Discussion
The Get-Random cmdlet solves the problems usually associated with picking random
numbers or random elements from a collection: scaling and seeding.

Most random number generators only generate numbers between 0 and 1. If you need
a number from a different range, you have to go through a separate scaling step to map
those numbers to the appropriate range. Although not terribly difficult, it’s a usability
hurdle that requires more than trivial knowledge to do properly.

Ensuring that the random number generator picks good random numbers is a different
problem entirely. All general-purpose random number generators use mathematical

206 | Chapter 8: Utility Tasks

equations to generate their values. They make new values by incorporating the number
they generated just before that—a feedback process that guarantees evenly distributed
sequences of numbers. Maintaining this internal state is critical, as restarting from a
specific point will always generate the same number, which is not very random at all!
You lose this internal state every time you create a new random number generator.

To create their first value, generators need a random number seed. You can supply a
seed directly (for example, through the -SetSeed parameter of the Get-Random cmdlet)
for testing purposes, but it is usually derived from the system time.

Unless you reuse the same random number generator, this last point usually leads to
the downfall of realistically random numbers. When you generate them quickly, you
create new random number generators that are likely to have the same seed:

PS > 1..10 | Foreach-Object { (New-Object System.Random).Next(1, 21) }
20
7
7
15
15
11
11
18
18
18

The Get-Random cmdlet saves you from this issue by internally maintaining a random
number generator and its state:

PS > 1..10 | Foreach-Object { Get-Random -Min 1 -Max 21 }
20
18
7
12
16
10
9
13
16
14

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

8.4 Generate a Random Number or Object | 207

8.5 Program: Search the Windows Start Menu
When working at the command line, you might want to launch a program that is nor-
mally found only on your Start menu. While you could certainly click through the Start
menu to find it, you could also search the Start menu with a script, as shown in
Example 8-4.

Example 8-4. Search-StartMenu.ps1

##
##
Search-StartMenu
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/blog)
##
##

<#

.SYNOPSIS

Search the Start Menu for items that match the provided text. This script
searches both the name (as displayed on the Start Menu itself), and the
destination of the link.

.Example

Search-StartMenu "Character Map" | Invoke-Item
Searches for the "Character Map" application, and then runs it

Search-StartMenu PowerShell | Select-FilteredObject | Invoke-Item
Searches for anything with "PowerShell" in the application name, lets you
pick which one to launch, and then launches it.

#>

param(
 ## The pattern to match
 [Parameter(Mandatory = $true)]
 $Pattern
)

Set-StrictMode -Version Latest

Get the locations of the start menu paths
$myStartMenu = [Environment]::GetFolderPath("StartMenu")
$shell = New-Object -Com WScript.Shell
$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Escape their search term, so that any regular expression
characters don't affect the search
$escapedMatch = [Regex]::Escape($pattern)

208 | Chapter 8: Utility Tasks

Search for text in the link name
dir $myStartMenu *.lnk -rec | ? { $_.Name -match "$escapedMatch" }
dir $allStartMenu *.lnk -rec | ? { $_.Name -match "$escapedMatch" }

Search for text in the link destination
dir $myStartMenu *.lnk -rec |
 Where-Object { $_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet }
dir $allStartMenu *.lnk -rec |
 Where-Object { $_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet }

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

8.6 Program: Show Colorized Script Content

Discussion
When viewing or demonstrating scripts, syntax highlighting makes the information
immensely easier to read. Viewing the scripts in the PowerShell Integrated Scripting
Environment (ISE) is the most natural (and powerful) option, but you might want to
view them in the console as well.

In addition to basic syntax highlighting, other useful features during script review are
line numbers and highlighting ranges of lines. Range highlighting is especially useful
when discussing portions of a script in a larger context.

Example 8-5 enables all of these scenarios by providing syntax highlighting of scripts
in a console session. Figure 8-1 shows a sample of the colorized content.

Figure 8-1. Sample colorized content

8.6 Program: Show Colorized Script Content | 209

In addition to having utility all on its own, Show-ColorizedContent.ps1 demonstrates
how to use PowerShell’s Tokenizer API, introduced in Recipe 10.9. While many of the
techniques in this example are specific to syntax highlighting in a PowerShell console,
many more apply to all forms of script manipulation.

Example 8-5. Show-ColorizedContent.ps1

##
##
Show-ColorizedContent
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Displays syntax highlighting, line numbering, and range highlighting for
PowerShell scripts.

.EXAMPLE

PS >Show-ColorizedContent Invoke-MyScript.ps1

001 | function Write-Greeting
002 | {
003 | param($greeting)
004 | Write-Host "$greeting World"
005 | }
006 |
007 | Write-Greeting "Hello"

.EXAMPLE

PS >Show-ColorizedContent Invoke-MyScript.ps1 -highlightRange (1..3+7)

001 > function Write-Greeting
002 > {
003 > param($greeting)
004 | Write-Host "$greeting World"
005 | }
006 |
007 > Write-Greeting "Hello"

#>

param(
 ## The path to colorize
 [Parameter(Mandatory = $true)]
 $Path,

 ## The range of lines to highlight

210 | Chapter 8: Utility Tasks

 $HighlightRange = @(),

 ## Switch to exclude line numbers
 [Switch] $ExcludeLineNumbers
)

Set-StrictMode -Version Latest

Colors to use for the different script tokens.
To pick your own colors:
[Enum]::GetValues($host.UI.RawUI.ForegroundColor.GetType()) |
Foreach-Object { Write-Host -Fore $_ "$_" }
$replacementColors = @{
 'Attribute' = 'DarkCyan'
 'Command' = 'Blue'
 'CommandArgument' = 'Magenta'
 'CommandParameter' = 'DarkBlue'
 'Comment' = 'DarkGreen'
 'GroupEnd' = 'Black'
 'GroupStart' = 'Black'
 'Keyword' = 'DarkBlue'
 'LineContinuation' = 'Black'
 'LoopLabel' = 'DarkBlue'
 'Member' = 'Black'
 'NewLine' = 'Black'
 'Number' = 'Magenta'
 'Operator' = 'DarkGray'
 'Position' = 'Black'
 'StatementSeparator' = 'Black'
 'String' = 'DarkRed'
 'Type' = 'DarkCyan'
 'Unknown' = 'Black'
 'Variable' = 'Red'
}

$highlightColor = "Red"
$highlightCharacter = ">"
$highlightWidth = 6
if($excludeLineNumbers) { $highlightWidth = 0 }

Read the text of the file, and tokenize it
$file = (Resolve-Path $Path).Path
$content = [IO.File]::ReadAllText($file)
$parsed = [System.Management.Automation.PsParser]::Tokenize(
 $content, [ref] $null) | Sort StartLine,StartColumn

Write a formatted line -- in the format of:
<Line Number> <Separator Character> <Text>
function WriteFormattedLine($formatString, [int] $line)
{
 if($excludeLineNumbers) { return }

 ## By default, write the line number in gray, and use
 ## a simple pipe as the separator
 $hColor = "DarkGray"

8.6 Program: Show Colorized Script Content | 211

 $separator = "|"

 ## If we need to highlight the line, use the highlight
 ## color and highlight separator as the separator
 if($highlightRange -contains $line)
 {
 $hColor = $highlightColor
 $separator = $highlightCharacter
 }

 ## Write the formatted line
 $text = $formatString -f $line,$separator
 Write-Host -NoNewLine -Fore $hColor -Back White $text
}

Complete the current line with filler cells
function CompleteLine($column)
{
 ## Figure how much space is remaining
 $lineRemaining = $host.UI.RawUI.WindowSize.Width -
 $column - $highlightWidth + 1

 ## If we have less than 0 remaining, we've wrapped onto the
 ## next line. Add another buffer width worth of filler
 if($lineRemaining -lt 0)
 {
 $lineRemaining += $host.UI.RawUI.WindowSize.Width
 }

 Write-Host -NoNewLine -Back White (" " * $lineRemaining)
}

Write the first line of context information (line number,
highlight character.)
Write-Host
WriteFormattedLine "{0:D3} {1} " 1

Now, go through each of the tokens in the input
script
$column = 1
foreach($token in $parsed)
{
 $color = "Gray"

 ## Determine the highlighting color for that token by looking
 ## in the hashtable that maps token types to their color
 $color = $replacementColors[[string]$token.Type]
 if(-not $color) { $color = "Gray" }

 ## If it's a newline token, write the next line of context
 ## information
 if(($token.Type -eq "NewLine") -or ($token.Type -eq "LineContinuation"))
 {
 CompleteLine $column

212 | Chapter 8: Utility Tasks

 WriteFormattedLine "{0:D3} {1} " ($token.StartLine + 1)
 $column = 1
 }
 else
 {
 ## Do any indenting
 if($column -lt $token.StartColumn)
 {
 $text = " " * ($token.StartColumn - $column)
 Write-Host -Back White -NoNewLine $text
 $column = $token.StartColumn
 }

 ## See where the token ends
 $tokenEnd = $token.Start + $token.Length - 1

 ## Handle the line numbering for multi-line strings and comments
 if(
 (($token.Type -eq "String") -or
 ($token.Type -eq "Comment")) -and
 ($token.EndLine -gt $token.StartLine))
 {
 ## Store which line we've started at
 $lineCounter = $token.StartLine

 ## Split the content of this token into its lines
 ## We use the start and end of the tokens to determine
 ## the position of the content, but use the content
 ## itself (rather than the token values) for manipulation.
 $stringLines = $(
 -join $content[$token.Start..$tokenEnd] -split "`n")

 ## Go through each of the lines in the content
 foreach($stringLine in $stringLines)
 {
 $stringLine = $stringLine.Trim()

 ## If we're on a new line, fill the righthand
 ## side of the line with spaces, and write the header
 ## for the new line.
 if($lineCounter -gt $token.StartLine)
 {
 CompleteLine $column
 WriteFormattedLine "{0:D3} {1} " $lineCounter
 $column = 1
 }

 ## Now write the text of the current line
 Write-Host -NoNewLine -Fore $color -Back White $stringLine
 $column += $stringLine.Length
 $lineCounter++
 }
 }
 ## Write out a regular token
 else

8.6 Program: Show Colorized Script Content | 213

 {
 ## We use the start and end of the tokens to determine
 ## the position of the content, but use the content
 ## itself (rather than the token values) for manipulation.
 $text = (-join $content[$token.Start..$tokenEnd])
 Write-Host -NoNewLine -Fore $color -Back White $text
 }

 ## Update our position in the column
 $column = $token.EndColumn
 }
}

CompleteLine $column
Write-Host

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.9, “Parse and Interpret PowerShell Scripts”

214 | Chapter 8: Utility Tasks

PART III

Common Tasks

Chapter 9, Simple Files
Chapter 10, Structured Files
Chapter 11, Code Reuse
Chapter 12, Internet-Enabled Scripts
Chapter 13, User Interaction
Chapter 14, Debugging
Chapter 15, Tracing and Error Management
Chapter 16, Environmental Awareness
Chapter 17, Extend the Reach of Windows PowerShell
Chapter 18, Security and Script Signing
Chapter 19, Integrated Scripting Environment

CHAPTER 9

Simple Files

9.0 Introduction
When administering a system, you naturally spend a significant amount of time work-
ing with the files on that system. Many of the things you want to do with these files are
simple: get their content, search them for a pattern, or replace text inside them.

For even these simple operations, PowerShell’s object-oriented flavor adds several
unique and powerful twists.

9.1 Get the Content of a File

Problem
You want to get the content of a file.

Solution
Provide the filename as an argument to the Get-Content cmdlet:

PS > $content = Get-Content c:\temp\file.txt

Place the filename in a ${} section to use the cmdlet Get-Content variable syntax:

PS > $content = ${c:\temp\file.txt}

Provide the filename as an argument to the ReadAllText() method to use the
System.IO.File class from the .NET Framework:

PS > $content = [System.IO.File]::ReadAllText("c:\temp\file.txt")

Discussion
PowerShell offers three primary ways to get the content of a file. The first is the Get-
Content cmdlet—the cmdlet designed for this purpose. In fact, the Get-Content cmdlet
works on any PowerShell drive that supports the concept of items with content. This

217

includes Alias:, Function:, and more. The second and third ways are the Get-
Content variable syntax and the ReadAllText() method.

When working against files, the Get-Content cmdlet returns the content of the file line
by line. When it does this, PowerShell supplies additional information about that out-
put line. This information, which PowerShell attaches as properties to each output line,
includes the drive and path from where that line originated, among other things.

If you want PowerShell to split the file content based on a string that
you choose (rather than the default of newlines), the Get-Content
cmdlet’s -Delimiter parameter lets you provide one.

While useful, having PowerShell attach this extra information when you are not using
it can sometimes slow down scripts that operate on large files. If you need to process
a large file more quickly, the Get-Content cmdlet’s ReadCount parameter lets you control
how many lines PowerShell reads from the file at once. With a ReadCount of 1 (which
is the default), PowerShell returns each line one by one. With a ReadCount of 2,
PowerShell returns two lines at a time. With a ReadCount of less than 1, PowerShell
returns all lines from the file at once.

Beware of using a ReadCount of less than 1 for extremely large files. One
of the benefits of the Get-Content cmdlet is its streaming behavior. No
matter how large the file, you will still be able to process each line of the
file without using up all your system’s memory. Since a ReadCount of less
than 1 reads the entire file before returning any results, large files have
the potential to use up your system’s memory. For more information
about how to effectively take advantage of PowerShell’s streaming
capabilities, see Recipe 5.15.

If performance is a primary concern, the [File]::ReadAllText() method from the .NET
Framework reads a file most quickly from the disk. Unlike the Get-Content cmdlet, it
does not split the file into newlines, attach any additional information, or work against
any other PowerShell drives. Like the Get-Content cmdlet with a ReadCount of less than
1, it reads all the content from the file before it returns it to you—so be cautious when
using it on extremely large files.

For more information about the Get-Content cmdlet, type Get-Help Get-Content. For
information on how to work with more structured files (such as XML and CSV), see
Chapter 10. For more information on how to work with binary files, see Recipe 9.4.

See Also
Recipe 5.15, “Generate Large Reports and Text Streams”

Recipe 9.4, “Parse and Manage Binary Files”

218 | Chapter 9: Simple Files

Chapter 10, Structured Files

9.2 Search a File for Text or a Pattern

Problem
You want to find a string or regular expression in a file.

Solution
To search a file for an exact (but case-insensitive) match, use the -Simple parameter of
the Select-String cmdlet:

PS > Select-String -Simple SearchText file.txt

To search a file for a regular expression, provide that pattern to the Select-String
cmdlet:

PS > Select-String "\(...\) ...-...." phone.txt

To recursively search all *.txt files for a regular expression, pipe the results of Get-
ChildItem to the Select-String cmdlet:

PS > Get-ChildItem -Filter *.txt -Recurse | Select-String pattern

Discussion
The Select-String cmdlet is the easiest way to search files for a pattern or specific string.
In contrast to the traditional text-matching utilities (such as grep) that support the same
type of functionality, the matches returned by the Select-String cmdlet include de-
tailed information about the match itself.

PS > $matches = Select-String "output file" transcript.txt
PS > $matches | Select LineNumber,Line

 LineNumber Line
 ---------- ----
 7 Transcript started, output file...

With a regular expression match, you’ll often want to find out exactly what text was
matched by the regular expression. PowerShell captures this in the Matches property of
the result. For each match, the Value property represents the text matched by your
pattern.

PS > Select-String "\(...\) ...-...." phone.txt | Select -Expand Matches

...
Value : (425) 555-1212

...
Value : (416) 556-1213

9.2 Search a File for Text or a Pattern | 219

If your regular expression defines groups (portions of the pattern enclosed in paren-
theses), you can access the text matched by those groups through the Groups property.
The first group (Group[0]) represents all of the text matched by your pattern. Additional
groups (1 and on) represent the groups you defined. In this case, we add additional
parentheses around the area code to capture it.

PS > Select-String "\((...)\) ...-...." phone.txt |
 Select -Expand Matches | Foreach { $_.Groups[1] }

Success : True
Captures : {425}
Index : 1
Length : 3
Value : 425

Success : True
Captures : {416}
Index : 1
Length : 3
Value : 416

If your regular expression defines a named capture (with the text ?<Name> at the begin-
ning of a group), the Groups collection lets you access those by name. In this example,
we capture the area code using AreaCode as the capture name.

PS > Select-String "\((?<AreaCode>...)\) ...-...." phone.txt |
 Select -Expand Matches | Foreach { $_.Groups["AreaCode"] }

Success : True
Captures : {425}
Index : 1
Length : 3
Value : 425

Success : True
Captures : {416}
Index : 1
Length : 3
Value : 416

By default, the Select-String cmdlet captures only the first match per line of input. If
the input can have multiple matches per line, use the -AllMatches parameter.

PS > Get-Content phone.txt
(425) 555-1212
(416) 556-1213 (416) 557-1214

PS > Select-String "\((...)\) ...-...." phone.txt |
 Select -Expand Matches | Select -Expand Value

220 | Chapter 9: Simple Files

(425) 555-1212
(416) 556-1213

PS > Select-String "\((...)\) ...-...." phone.txt -AllMatches |
 Select -Expand Matches | Select -Expand Value

(425) 555-1212
(416) 556-1213
(416) 557-1214

For more information about captures, named captures, and other aspects of regular
expressions, see Appendix B.

If the information you need is on a different line than the line that has
the match, use the -Context parameter to have that line included in
Select-String’s output. PowerShell places the result in the
Context.PreContext and Context.PostContext properties of Select-
String’s output.

If you want to search multiple files of a specific extension, the Select-String cmdlet
lets you use wildcards (such as *.txt) on the filename. For more complicated lists of
files (which includes searching all files in the directory), it is usually better to use the
Get-ChildItem cmdlet to generate the list of files as shown previously in the solution.

Since the Select-String cmdlet outputs the filename, line number, and matching line
for every match it finds, this output may sometimes include too much detail. A perfect
example is when you are searching for a binary file that contains a specific string. A
binary file (such as a DLL or EXE) rarely makes sense when displayed as text, so your
screen quickly fills with apparent garbage.

The solution to this problem comes from Select-String’s -Quiet switch. It simply re-
turns true or false, depending on whether the file contains the string. So, to find the
DLL or EXE in the current directory that contains the text “Debug”:

Get-ChildItem | Where { $_ | Select-String "Debug" -Quiet }

Two other common tools used to search files for text are the -match operator and the
switch statement with the -file option. For more information about those, see Recipes
5.7 and 4.3. For more information about the Select-String cmdlet, type
Get-Help Select-String.

See Also
Recipe 4.3, “Manage Large Conditional Statements with Switches”

Recipe 5.7, “Search a String for Text or a Pattern”

Appendix B, Regular Expression Reference

9.2 Search a File for Text or a Pattern | 221

9.3 Parse and Manage Text-Based Logfiles

Problem
You want to parse and analyze a text-based logfile using PowerShell’s standard object
management commands.

Solution
Use the Convert-TextObject script given in Recipe 5.14 to work with text-based logfiles.
With your assistance, it converts streams of text into streams of objects, which you can
then easily work with using PowerShell’s standard commands.

The Convert-TextObject script primarily takes two arguments:

• A regular expression that describes how to break the incoming text into groups

• A list of property names that the script then assigns to those text groups

As an example, you can use patch logs from the Windows directory. These logs track
the patch installation details from updates applied to the machine (except for Windows
Vista). One detail included in these logfiles is the names and versions of the files modi-
fied by that specific patch, as shown in Example 9-1.

Example 9-1. Getting a list of files modified by hotfixes

PS > cd $env:WINDIR
PS > $parseExpression = "(.*): Destination:(.*) \((.*)\)"
PS > $files = dir kb*.log -Exclude *uninst.log
PS > $logContent = $files | Get-Content | Select-String $parseExpression
PS > $logContent

(...)
0.734: Destination:C:\WINNT\system32\shell32.dll (6.0.3790.205)
0.734: Destination:C:\WINNT\system32\wininet.dll (6.0.3790.218)
0.734: Destination:C:\WINNT\system32\urlmon.dll (6.0.3790.218)
0.734: Destination:C:\WINNT\system32\shlwapi.dll (6.0.3790.212)
0.734: Destination:C:\WINNT\system32\shdocvw.dll (6.0.3790.214)
0.734: Destination:C:\WINNT\system32\digest.dll (6.0.3790.0)
0.734: Destination:C:\WINNT\system32\browseui.dll (6.0.3790.218)
(...)

Like most logfiles, the format of the text is very regular but hard to manage. In this
example, you have:

• A number (the number of seconds since the patch started)

• The text “: Destination:”

• The file being patched

222 | Chapter 9: Simple Files

• An open parenthesis

• The version of the file being patched

• A close parenthesis

You don’t care about any of the text, but the time, file, and file version are useful
properties to track:

$properties = "Time","File","FileVersion"

So now, you use the Convert-TextObject script to convert the text output into a stream
of objects:

PS > $logObjects = $logContent |
 Convert-TextObject -ParseExpression $parseExpression -PropertyName $properties

We can now easily query those objects using PowerShell’s built-in commands. For
example, you can find the files most commonly affected by patches and service packs,
as shown by Example 9-2.

Example 9-2. Finding files most commonly affected by hotfixes

PS > $logObjects | Group-Object file | Sort-Object -Descending Count |
 Select-Object Count,Name | Format-Table -Auto

Count Name
----- ----
 152 C:\WINNT\system32\shdocvw.dll
 147 C:\WINNT\system32\shlwapi.dll

 128 C:\WINNT\system32\wininet.dll
 116 C:\WINNT\system32\shell32.dll
 92 C:\WINNT\system32\rpcss.dll
 92 C:\WINNT\system32\olecli32.dll
 92 C:\WINNT\system32\ole32.dll
 84 C:\WINNT\system32\urlmon.dll
(...)

Using this technique, you can work with most text-based logfiles.

Discussion
In Example 9-2, you got all the information you needed by splitting the input text into
groups of simple strings. The time offset, file, and version information served their
purposes as is. In addition to the features used by Example 9-2, however, the Convert-
TextObject script also supports a parameter that lets you control the data types of those
properties. If one of the properties should be treated as a number or a DateTime, you
may get incorrect results if you work with that property as a string. For more informa-
tion about this functionality, see the description of the -PropertyType parameter in the
Convert-TextObject script.

9.3 Parse and Manage Text-Based Logfiles | 223

Although most logfiles have entries designed to fit within a single line, some span mul-
tiple lines. When a logfile contains entries that span multiple lines, it includes some
sort of special marker to separate log entries from each other. Look at this example:

PS > Get-Content AddressBook.txt
Name: Chrissy
Phone: 555-1212

Name: John
Phone: 555-1213

The key to working with this type of logfile comes from two places. The first is the
-Delimiter parameter of the Get-Content cmdlet, which makes it split the file based on
that delimiter instead of newlines. The second is to write a ParseExpression regular
expression that ignores the newline characters that remain in each record:

PS > $records = gc AddressBook.txt -Delimiter "----"
PS > $parseExpression = "(?s)Name: (\S*).*Phone: (\S*).*"
PS > $records | Convert-TextObject -ParseExpression $parseExpression

Property1 Property2
--------- ---------
Chrissy 555-1212
John 555-1213

The parse expression in this example uses the single line option (?s) so that the (.*)
portion of the regular expression accepts newline characters as well. For more infor-
mation about these (and other) regular expression options, see Appendix B.

For extremely large logfiles, handwritten parsing tools may not meet your needs. In
those situations, specialized log management tools can prove helpful. One example is
Microsoft’s free Log Parser (http://www.logparser.com). Another common alternative
is to import the log entries to a SQL database, and then perform ad hoc queries on
database tables instead.

See Also
Recipe 5.14, “Program: Convert Text Streams to Objects”

Appendix B, Regular Expression Reference

9.4 Parse and Manage Binary Files

Problem
You want to work with binary data in a file.

224 | Chapter 9: Simple Files

http://www.logparser.com

Solution
There are two main techniques when working with binary data in a file. The first is to
read the file using the Byte encoding, so that PowerShell does not treat the content as
text. The second is to use the BitConverter class to translate these bytes back and forth
into numbers that you more commonly care about.

Example 9-3 displays the “characteristics” of a Windows executable. The beginning
section of any executable (a .DLL, .EXE, or any of several others) starts with a binary
section known as the portable executable (PE) header. Part of this header includes char-
acteristics about that file, such as whether the file is a DLL.

For more information about the PE header format, see http://www.microsoft.com/whdc/
system/platform/firmware/PECOFF.mspx.

Example 9-3. Get-Characteristics.ps1

##
##
Get-Characteristics
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the file characteristics of a file in the PE Executable File Format.

.EXAMPLE

Get-Characteristics $env:WINDIR\notepad.exe
IMAGE_FILE_LOCAL_SYMS_STRIPPED
IMAGE_FILE_RELOCS_STRIPPED
IMAGE_FILE_EXECUTABLE_IMAGE
IMAGE_FILE_32BIT_MACHINE
IMAGE_FILE_LINE_NUMS_STRIPPED

#>

param(
 ## The path to the file to check
 [Parameter(Mandatory = $true)]
 [string] $Path
)

Set-StrictMode -Version Latest

Define the characteristics used in the PE file file header.
Taken from:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

9.4 Parse and Manage Binary Files | 225

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

$characteristics = @{}
$characteristics["IMAGE_FILE_RELOCS_STRIPPED"] = 0x0001
$characteristics["IMAGE_FILE_EXECUTABLE_IMAGE"] = 0x0002
$characteristics["IMAGE_FILE_LINE_NUMS_STRIPPED"] = 0x0004
$characteristics["IMAGE_FILE_LOCAL_SYMS_STRIPPED"] = 0x0008
$characteristics["IMAGE_FILE_AGGRESSIVE_WS_TRIM"] = 0x0010
$characteristics["IMAGE_FILE_LARGE_ADDRESS_AWARE"] = 0x0020
$characteristics["RESERVED"] = 0x0040
$characteristics["IMAGE_FILE_BYTES_REVERSED_LO"] = 0x0080
$characteristics["IMAGE_FILE_32BIT_MACHINE"] = 0x0100
$characteristics["IMAGE_FILE_DEBUG_STRIPPED"] = 0x0200
$characteristics["IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP"] = 0x0400
$characteristics["IMAGE_FILE_NET_RUN_FROM_SWAP"] = 0x0800
$characteristics["IMAGE_FILE_SYSTEM"] = 0x1000
$characteristics["IMAGE_FILE_DLL"] = 0x2000
$characteristics["IMAGE_FILE_UP_SYSTEM_ONLY"] = 0x4000
$characteristics["IMAGE_FILE_BYTES_REVERSED_HI"] = 0x8000

Get the content of the file, as an array of bytes
$fileBytes = Get-Content $path -ReadCount 0 -Encoding byte

The offset of the signature in the file is stored at location 0x3c.
$signatureOffset = $fileBytes[0x3c]

Ensure it is a PE file
$signature = [char[]] $fileBytes[$signatureOffset..($signatureOffset + 3)]
if([String]::Join('', $signature) -ne "PE`0`0")
{
 throw "This file does not conform to the PE specification."
}

The location of the COFF header is 4 bytes into the signature
$coffHeader = $signatureOffset + 4

The characteristics data are 18 bytes into the COFF header. The
BitConverter class manages the conversion of the 4 bytes into an integer.
$characteristicsData = [BitConverter]::ToInt32($fileBytes, $coffHeader + 18)

Go through each of the characteristics. If the data from the file has that
flag set, then output that characteristic.
foreach($key in $characteristics.Keys)
{
 $flag = $characteristics[$key]
 if(($characteristicsData -band $flag) -eq $flag)
 {
 $key
 }
}

Discussion
For most files, this technique is the easiest way to work with binary data. If you actually
modify the binary data, then you will also want to use the Byte encoding when you
send it back to disk:

226 | Chapter 9: Simple Files

$fileBytes | Set-Content modified.exe -Encoding Byte

For extremely large files, though, it may be unacceptably slow to load the entire file
into memory when you work with it. If you begin to run against this limit, the solution
is to use file management classes from the .NET Framework. These classes include
BinaryReader, StreamReader, and others. For more information about working with
classes from the .NET Framework, see Recipe 3.8. For more information about running
scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

9.5 Create a Temporary File

Problem
You want to create a file for temporary purposes and want to be sure that the file does
not already exist.

Solution
Use the [System.IO.Path]::GetTempFilename() method from the .NET Framework to
create a temporary file:

$filename = [System.IO.Path]::GetTempFileName()
 (... use the file ...)
Remove-Item -Force $filename

Discussion
It is common to want to create a file for temporary purposes. For example, you might
want to search and replace text inside a file. Doing this to a large file requires a tem-
porary file (see Recipe 9.6). Another example is the temporary file used by Recipe 2.4.

Often, people create this temporary file wherever they can think of: in C:\, the script’s
current location, or any number of other places. Although this may work on the au-
thor’s system, it rarely works well elsewhere. For example, if the user does not use their
Administrator account for day-to-day tasks, your script will not have access to C:\ and
will fail.

Another difficulty comes from trying to create a unique name for the temporary file. If
your script just hardcodes a name (no matter how many random characters it has), it
will fail if you run two copies at the same time. You might even craft a script smart
enough to search for a filename that does not exist, create it, and then use it.

9.5 Create a Temporary File | 227

Unfortunately, this could still break if another copy of your script creates that file after
you see that it is missing but before you actually create the file.

Finally, there are several security vulnerabilities that your script might introduce should
it write its temporary files to a location that other users can read or write.

Luckily, the authors of the .NET Framework provided the [System.IO.Path]::GetTemp
Filename() method to resolve these problems for you. It creates a unique filename in a
reliable location and in a secure manner. The method returns a filename, which you
can then use as you want.

Remember to delete this file when your script no longer needs it; oth-
erwise, your script will waste disk space and cause needless clutter on
your users’ systems. Remember: your scripts should solve the adminis-
trator’s problems, not cause them!

By default, the GetTempFilename() method returns a file with a .tmp extension. For most
purposes, the file extension does not matter, and this works well. In the rare instances
when you need to create a file with a specific extension, the [System.IO.Path]::Change
Extension() method lets you change the extension of that temporary file. The following
example creates a new temporary file that uses the .cs file extension:

$filename = [System.IO.Path]::GetTempFileName()
$newname = [System.IO.Path]::ChangeExtension($filename, ".cs")
Move-Item $filename $newname
(... use the file ...)
Remove-Item $newname

See Also
Recipe 2.4, “Program: Interactively Filter Lists of Objects”

Recipe 9.6, “Search and Replace Text in a File”

9.6 Search and Replace Text in a File

Problem
You want to search for text in a file and replace that text with something new.

Solution
To search and replace text in a file, first store the content of the file in a variable, and
then store the replaced text back in that file, as shown in Example 9-4.

228 | Chapter 9: Simple Files

Example 9-4. Replacing text in a file

PS > $filename = "file.txt"
PS > $match = "source text"
PS > $replacement = "replacement text"
PS >
PS > $content = Get-Content $filename
PS > $content
This is some source text that we want
to replace. One of the things you may need
to be careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS >
PS > $content = $content -creplace $match,$replacement
PS > $content
This is some replacement text that we want
to replace. One of the things you may need
to be careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS > $content | Set-Content $filename

Discussion
Using PowerShell to search and replace text in a file (or many files!) is one of the best
examples of using a tool to automate a repetitive task. What could literally take months
by hand can be shortened to a few minutes (or hours, at most).

Notice that the solution uses the -creplace operator to replace text in a
case-sensitive manner. This is almost always what you will want to do,
as the replacement text uses the exact capitalization that you provide.
If the text you want to replace is capitalized in several different ways (as
in the term "Source Text" from the solution), then search and replace
several times with the different possible capitalizations.

Example 9-4 illustrates what is perhaps the simplest (but actually most common)
scenario:

• You work with an ASCII text file.

• You replace some literal text with a literal text replacement.

• You don’t worry that the text match might span multiple lines.

• Your text file is relatively small.

If some of those assumptions don’t hold true, then this discussion shows you how to
tailor the way you search and replace within this file.

9.6 Search and Replace Text in a File | 229

Work with files encoded in Unicode or another (OEM) code page

By default, the Set-Content cmdlet assumes that you want the output file to contain
plain ASCII text. If you work with a file in another encoding (for example, Unicode or
an OEM code page such as Cyrillic), use the -Encoding parameter of the Out-File cmdlet
to specify that:

$content | Out-File -Encoding Unicode $filename
$content | Out-File -Encoding OEM $filename

Replace text using a pattern instead of plain text

Although it is most common to replace one literal string with another literal string, you
might want to replace text according to a pattern in some advanced scenarios. One
example might be swapping first name and last name. PowerShell supports this type
of replacement through its support of regular expressions in its replacement operator:

PS > $content = Get-Content names.txt
PS > $content
John Doe
Mary Smith
PS > $content -replace '(.*) (.*)','$2, $1'
Doe, John
Smith, Mary

Replace text that spans multiple lines

The Get-Content cmdlet used in the solution retrieves a list of lines from the file. When
you use the -replace operator against this array, it replaces your text in each of those
lines individually. If your match spans multiple lines, as shown between lines 3 and 4
in Example 9-4, the -replace operator will be unaware of the match and will not per-
form the replacement.

If you want to replace text that spans multiple lines, then it becomes necessary to stop
treating the input text as a collection of lines. Once you stop treating the input as a
collection of lines, it is also important to use a replacement expression that can ignore
line breaks, as shown in Example 9-5.

Example 9-5. Replacing text across multiple lines in a file

$filename = Get-Item file.txt
$singleLine = [System.IO.File]::ReadAllText($filename.FullName)
$content = $singleLine -creplace "(?s)Source(\s*)Text",'Replacement$1Text'

The first and second lines of Example 9-5 read the entire content of the file as a single
string. They do this by calling the [System.IO.File]::ReadAllText() method from
the .NET Framework, since the Get-Content cmdlet splits the content of the file into
individual lines.

The third line of this solution replaces the text by using a regular expression pattern.
The section Source(\s*)Text scans for the word Source, followed optionally by some

230 | Chapter 9: Simple Files

whitespace, followed by the word Text. Since the whitespace portion of the regular
expression has parentheses around it, we want to remember exactly what that white-
space was. By default, regular expressions do not let newline characters count as white-
space, so the first portion of the regular expression uses the single-line option (?s) to
allow newline characters to count as whitespace. The replacement portion of the
-replace operator replaces that match with Replacement, followed by the exact white-
space from the match that we captured ($1), followed by Text. For more information,
see “Simple Operators” on page 725.

Replace text in large files

The approaches used so far store the entire contents of the file in memory as they replace
the text in them. Once we’ve made the replacements in memory, we write the updated
content back to disk. This works well when replacing text in small, medium, and even
moderately large files. For extremely large files (for example, more than several hundred
megabytes), using this much memory may burden your system and slow down your
script. To solve that problem, you can work on the files line by line, rather than with
the entire file at once.

Since you’re working with the file line by line, it will still be in use when you try to write
replacement text back into it. You can avoid this problem if you write the replacement
text into a temporary file until you’ve finished working with the main file. Once you’ve
finished scanning through your file, you can delete it and replace it with the temporary
file.

$filename = "file.txt"
$temporaryFile = [System.IO.Path]::GetTempFileName()

$match = "source text"
$replacement = "replacement text"

Get-Content $filename |
 Foreach-Object { $_ -creplace $match,$replacement | Add-Content $temporaryFile }

Remove-Item $filename
Move-Item $temporaryFile $filename

See Also
“Simple Operators” on page 725

9.7 Program: Get the Encoding of a File
Both PowerShell and the .NET Framework do a lot of work to hide from you the com-
plexities of file encodings. The Get-Content cmdlet automatically detects the encoding
of a file, and then handles all encoding issues before returning the content to you. When
you do need to know the encoding of a file, though, the solution requires a bit of work.

9.7 Program: Get the Encoding of a File | 231

Example 9-6 resolves this by doing the hard work for you. Files with unusual encodings
are supposed to (and almost always do) have a byte order mark to identify the encoding.
After the byte order mark, they have the actual content. If a file lacks the byte order
mark (no matter how the content is encoded), Get-FileEncoding assumes the .NET
Framework’s default encoding of UTF-7. If the content is not actually encoded as de-
fined by the byte order mark, Get-FileEncoding still outputs the declared encoding.

Example 9-6. Get-FileEncoding.ps1

##
##
Get-FileEncoding
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Gets the encoding of a file

.EXAMPLE

Get-FileEncoding.ps1 .\UnicodeScript.ps1

BodyName : unicodeFFFE
EncodingName : Unicode (Big-Endian)
HeaderName : unicodeFFFE
WebName : unicodeFFFE
WindowsCodePage : 1200
IsBrowserDisplay : False
IsBrowserSave : False
IsMailNewsDisplay : False
IsMailNewsSave : False
IsSingleByte : False
EncoderFallback : System.Text.EncoderReplacementFallback
DecoderFallback : System.Text.DecoderReplacementFallback
IsReadOnly : True
CodePage : 1201

#>

param(
 ## The path of the file to get the encoding of.
 $Path
)

Set-StrictMode -Version Latest

The hashtable used to store our mapping of encoding bytes to their
name. For example, "255-254 = Unicode"

232 | Chapter 9: Simple Files

$encodings = @{}

Find all of the encodings understood by the .NET Framework. For each,
determine the bytes at the start of the file (the preamble) that the .NET
Framework uses to identify that encoding.
$encodingMembers = [System.Text.Encoding] |
 Get-Member -Static -MemberType Property

$encodingMembers | Foreach-Object {
 $encodingBytes = [System.Text.Encoding]::($_.Name).GetPreamble() -join '-'
 $encodings[$encodingBytes] = $_.Name
}

Find out the lengths of all of the preambles.
$encodingLengths = $encodings.Keys | Where-Object { $_ } |
 Foreach-Object { ($_ -split "-").Count }

Assume the encoding is UTF7 by default
$result = "UTF7"

Go through each of the possible preamble lengths, read that many
bytes from the file, and then see if it matches one of the encodings
we know about.
foreach($encodingLength in $encodingLengths | Sort -Descending)
{
 $bytes = (Get-Content -encoding byte -readcount $encodingLength $path)[0]
 $encoding = $encodings[$bytes -join '-']

 ## If we found an encoding that had the same preamble bytes,
 ## save that output and break.
 if($encoding)
 {
 $result = $encoding
 break
 }
}

Finally, output the encoding.
[System.Text.Encoding]::$result

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

9.8 Program: View the Hexadecimal Representation of Content
When dealing with binary data, it is often useful to see the value of the actual bytes
being used in that binary data. In addition to the value of the data, finding its offset in
the file or content is usually important as well.

9.8 Program: View the Hexadecimal Representation of Content | 233

Example 9-7 enables both scenarios by displaying content in a report that shows all of
this information. The leftmost column displays the offset into the content, increasing
by 16 bytes at a time. The middle 16 columns display the hexadecimal representation
of the byte at that position in the content. The header of each column shows how far
into the 16-byte chunk that character is. The far-right column displays the ASCII rep-
resentation of the characters in that row.

To determine the position of a byte within the input, add the number at the far-left of
the row to the number at the top of the column for that character. For example,
0000230 (shown at the far left) + C (shown at the top of the column) = 000023C. Therefore,
the byte in this example is at offset 23C in the content.

Example 9-7. Format-Hex.ps1

##
##
Format-Hex
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Outputs a file or pipelined input as a hexadecimal display. To determine the
offset of a character in the input, add the number at the far-left of the row
with the the number at the top of the column for that character.

.EXAMPLE

"Hello World" | Format-Hex

 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 48 00 65 00 6C 00 6C 00 6F 00 20 00 57 00 6F 00 H.e.l.l.o. .W.o.
00000010 72 00 6C 00 64 00 r.l.d.

.EXAMPLE

Format-Hex c:\temp\example.bmp

#>

[CmdletBinding(DefaultParameterSetName = "ByPath")]
param(
 ## The file to read the content from
 [Parameter(ParameterSetName = "ByPath", Position = 0)]
 [string] $Path,

 ## The input (bytes or strings) to format as hexadecimal

234 | Chapter 9: Simple Files

 [Parameter(
 ParameterSetName = "ByInput", Position = 0,
 ValueFromPipeline = $true)]
 [Object] $InputObject
)

begin
{
 Set-StrictMode -Version Latest

 ## Create the array to hold the content. If the user specified the
 ## -Path parameter, read the bytes from the path.
 [byte[]] $inputBytes = $null
 if($Path) { $inputBytes = [IO.File]::ReadAllBytes((Resolve-Path $Path)) }

 ## Store our header, and formatting information
 $counter = 0
 $header = " 0 1 2 3 4 5 6 7 8 9 A B C D E F"
 $nextLine = "{0} " -f [Convert]::ToString(
 $counter, 16).ToUpper().PadLeft(8, '0')
 $asciiEnd = ""

 ## Output the header
 "`r`n$header`r`n"
}

process
{
 ## If they specified the -InputObject parameter, retrieve the bytes
 ## from that input
 if(Test-Path variable:\InputObject)
 {
 ## If it's an actual byte, add it to the inputBytes array.
 if($InputObject -is [Byte])
 {
 $inputBytes = $InputObject
 }
 else
 {
 ## Otherwise, convert it to a string and extract the bytes
 ## from that.
 $inputString = [string] $InputObject
 $inputBytes = [Text.Encoding]::Unicode.GetBytes($inputString)
 }
 }

 ## Now go through the input bytes
 foreach($byte in $inputBytes)
 {
 ## Display each byte, in 2-digit hexidecimal, and add that to the
 ## left-hand side.
 $nextLine += "{0:X2} " -f $byte

 ## If the character is printable, add its ascii representation to
 ## the righthand side. Otherwise, add a dot to the righthand side.

9.8 Program: View the Hexadecimal Representation of Content | 235

 if(($byte -ge 0x20) -and ($byte -le 0xFE))
 {
 $asciiEnd += [char] $byte
 }
 else
 {
 $asciiEnd += "."
 }

 $counter++;

 ## If we've hit the end of a line, combine the right half with the
 ## left half, and start a new line.
 if(($counter % 16) -eq 0)
 {

 "$nextLine $asciiEnd"
 $nextLine = "{0} " -f [Convert]::ToString(
 $counter, 16).ToUpper().PadLeft(8, '0')
 $asciiEnd = "";
 }
 }
}

end
{
 ## At the end of the file, we might not have had the chance to output
 ## the end of the line yet. Only do this if we didn't exit on the 16-byte
 ## boundary, though.
 if(($counter % 16) -ne 0)
 {
 while(($counter % 16) -ne 0)
 {
 $nextLine += " "
 $asciiEnd += " "
 $counter++;
 }
 "$nextLine $asciiEnd"
 }

 ""
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

236 | Chapter 9: Simple Files

CHAPTER 10

Structured Files

10.0 Introduction
In the world of text-only system administration, managing structured files is often a
pain. For example, working with (or editing) an XML file means either loading it into
an editor to modify by hand or writing a custom tool that can do that for you. Even
worse, it may mean modifying the file as though it were plain text while hoping to not
break the structure of the XML itself.

In that same world, working with a file in comma-separated values (CSV) format means
going through the file yourself, splitting each line by the commas in it. It’s a seemingly
great approach, until you find yourself faced with anything but the simplest of data.

Structure and structured files don’t come only from other programs, either. When
writing scripts, one common goal is to save structured data so that you can use it later.
In most scripting (and programming) languages, this requires that you design a data
structure to hold that data, design a way to store and retrieve it from disk, and bring it
back to a usable form when you want to work with it again.

Fortunately, working with XML, CSV, and even your own structured files becomes
much easier with PowerShell at your side.

10.1 Access Information in an XML File

Problem
You want to work with and access information in an XML file.

237

Solution
Use PowerShell’s XML cast to convert the plain-text XML into a form that you can
more easily work with. In this case, we use the RSS feed downloaded from the Windows
PowerShell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)

See Recipe 12.1 for an example of how to use PowerShell to download
this file!

Like other rich objects, PowerShell displays the properties of the XML as you explore.
These properties are child nodes and attributes in the XML, as shown by Example 10-1.

Example 10-1. Accessing properties of an XML document

PS > $xml
xml xml-stylesheet rss
--- -------------- ---
 rss

PS > $xml.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/
channel : channel

If more than one node shares the same name (as in the item nodes of an RSS feed), then
the property name represents a collection of nodes:

PS > ($xml.rss.channel.item).Count
15

You can access those items individually, like you would normally work with an array,
as shown in Example 10-2.

Example 10-2. Accessing individual items in an XML document

PS > ($xml.rss.channel.item)[0]

title : Windows Management Framework is here!
link : http://blogs.msdn.com/powershell/archive/2009/10/27/windows-
 management-framework-is-here.aspx
pubDate : Tue, 27 Oct 2009 18:25:13 GMT
guid : guid
creator : PowerShellTeam
comments : {15, http://blogs.msdn.com/powershell/comments/9913618.aspx}
commentRss : http://blogs.msdn.com/powershell/commentrss.aspx?PostID=9913
 618

238 | Chapter 10: Structured Files

comment : http://blogs.msdn.com/powershell/rsscomments.aspx?PostID=991
 3618
description : <p>Windows Management Framework, which includes Windows Power
 Shell 2.0, WinRM 2.0, and BITS 4.0, was officially released
 to the world this morning.
(...)

You can access properties of those elements the same way you would normally work
with an object:

PS > ($xml.rss.channel.item)[0].title
Windows Management Framework is here!

Since these are rich PowerShell objects, Example 10-3 demonstrates how you can use
PowerShell’s advanced object-based cmdlets for further work, such as sorting and
filtering.

Example 10-3. Sorting and filtering items in an XML document

PS > $xml.rss.channel.item | Sort-Object title | Select-Object title

title

Analyzing Weblog Data Using the Admin Development Model
Announcing: Open Source PowerShell Cmdlet and Help Designer
Help Us Improve Microsoft Windows Management Framework
Introducing the Windows 7 Resource Kit PowerShell Pack
New and Improved PowerShell Connect Site
PowerShell V2 Virtual Launch Party
Remoting for non-Admins
Select -ExpandProperty <PropertyName>
The Glory of Quick and Dirty Scripting
Tonight is the Virtual Launch Party @ PowerScripting Podcast
Understanding the Feedback Process
What's New in PowerShell V2 - By Joel "Jaykul" Bennett
What's Up With Command Prefixes?
Windows Management Framework is here!
XP and W2K3 Release Candidate Versions of PowerShell Are Now Available ...

Discussion
PowerShell’s native XML support provides an excellent way to easily navigate and ac-
cess XML files. By exposing the XML hierarchy as properties, you can perform most
tasks without having to resort to text-only processing or custom tools.

In fact, PowerShell’s support for interaction with XML goes beyond just presenting
your data in an object-friendly way. The objects created by the [xml] cast in fact rep-
resent fully featured System.Xml.XmlDocument objects from the .NET Framework. Each
property of the resulting objects represents a System.Xml.XmlElement object from
the .NET Framework as well. The underlying objects provide a great deal of additional
functionality that you can use to perform both common and complex tasks on XML
files.

10.1 Access Information in an XML File | 239

The underlying System.Xml.XmlDocument and System.Xml.XmlElement objects that sup-
port your XML also provide useful properties in their own right: Attributes, Name,
OuterXml, and more.

PS > $xml.rss.Attributes

#text

2.0
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/slash/
http://wellformedweb.org/CommentAPI/

In PowerShell version one, PowerShell hid these underlying properties
by default. To access them in PowerShell version one, use the PsBase
property on any node. The PsBase property works on any object in
PowerShell and represents the object underneath the PowerShell
abstraction.

For more information about using the underlying .NET objects for more advanced
tasks, see Recipe 10.2 and Recipe 10.4.

For more information about working with XML in PowerShell, see Table F-11 in
Appendix F.

See Also
Recipe 10.2, “Perform an XPath Query Against XML”

Recipe 10.4, “Modify Data in an XML File”

Recipe 12.1, “Download a File from the Internet”

Table F-11

10.2 Perform an XPath Query Against XML

Problem
You want to perform an advanced query against an XML file, using XML’s standard
XPath syntax.

Solution
Use PowerShell’s Select-Xml cmdlet to perform an XPath query against a file.

For example, to find all post titles shorter than 30 characters in an RSS feed:

PS > $query = "/rss/channel/item[string-length(title) < 30]/title"
PS > Select-Xml -XPath $query -Path .\powershell_blog.xml | Select -Expand Node

240 | Chapter 10: Structured Files

#text

Remoting for non-Admins

Discussion
Although a language all its own, the XPath query syntax provides a powerful, XML-
centric way to write advanced queries for XML files. The Select-Xml cmdlet lets you
apply these concepts to files, XML nodes, or simply plain text.

The XPath queries supported by the Select-Xml cmdlet are a popular
industry standard. Beware, though. Unlike those in the rest of Power-
Shell, these queries are case-sensitive!

The Select-Xml cmdlet generates a SelectXmlInfo object. This lets you chain separate
XPath queries together. To retrieve the actual result of the selection, access the Node
property.

PS > Get-Content page.html
<HTML>
 <HEAD>
 <TITLE>Welcome to my Website</TITLE>
 </HEAD>
 <BODY>
 <P>...</P>
 </BODY>
</HTML>
PS > $content = [xml] (Get-Content page.html)
PS > $result = $content | Select-Xml "/HTML/HEAD" | Select-Xml "TITLE"
PS > $result

Node Path Pattern
---- ---- -------
TITLE InputStream TITLE

PS > $result.Node

#text

Welcome to my Website

This works even for content accessed through PowerShell’s XML support, as in this
case, which uses the RSS feed downloaded from the Windows PowerShell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)
PS > $xml | Select-Xml $query | Select -Expand Node

#text

Remoting for non-Admins

10.2 Perform an XPath Query Against XML | 241

If you are limited to PowerShell version one, you can use the SelectNodes() method on
an XML result to perform the query. For example, to find all post titles shorter than 30
characters:

PS > $xml.SelectNodes($query)

#text

Remoting for non-Admins

For simpler queries, you may find PowerShell’s object-based XML navigation concepts
easier to work with. For more information about working with XML through Power-
Shell’s XML type, see Table F-11 in Appendix F. For more information about XPath
syntax, see Appendix C.

See Also
Appendix C, XPath Quick Reference

Table F-11

10.3 Convert Objects to XML

Problem
You want to convert command output to XML for further processing or viewing.

Solution
Use PowerShell’s ConvertTo-Xml cmdlet to save the output of a command as XML:

$xml = Get-Process | ConvertTo-Xml

You can then use PowerShell’s XML support (XML navigation, Select-Xml, and more)
to work with the content.

Discussion
Although it is usually easiest to work with objects in their full fidelity, you may some-
times want to convert them to XML for further processing by other programs. The
solution is the ConvertTo-Xml cmdlet.

PowerShell includes another similar-sounding cmdlet called Export-
CliXml. Unlike the ConvertTo-Xml cmdlet, which is intended to produce
useful output for humans and programs alike, the Export-CliXml cmdlet
is designed for PowerShell-centric data interchange. For more informa-
tion, see Recipe 10.5.

242 | Chapter 10: Structured Files

The ConvertTo-Xml cmdlet gives you two main targets for this conversion. The default
is an XML document, which is the same type of object created by the [xml] cast in
PowerShell. This is also the format supported by the Select-Xml cmdlet, so you can
pipe the output of ConvertTo-Xml directly into it.

PS > $xml = Get-Process | ConvertTo-Xml
PS > $xml | Select-Xml '//Property[@Name = "Name"]' | Select -Expand Node

Name Type #text
---- ---- -----
Name System.String audiodg
Name System.String csrss
Name System.String dwm
(...)

The second format is a simple string, and it is suitable for redirection into a file. To save
the XML into a file, use the -As parameter with String as the argument, and then use
the file redirection operator:

Get-Process | ConvertTo-Xml -As String > c:\temp\processes.xml

If you already have an XML document that you obtained from ConvertTo-Xml or
PowerShell’s [xml] cast, you can still save it into a file by calling its Save() method:

$xml = Get-Process | ConvertTo-Xml
$xml.Save("c:\temp\output.xml")

For more information on how to work with XML data in PowerShell, see Recipe 10.1.

See Also
Recipe 10.1, “Access Information in an XML File”

Recipe 10.5, “Easily Import and Export Your Structured Data”

10.4 Modify Data in an XML File

Problem
You want to use PowerShell to modify the data in an XML file.

Solution
To modify data in an XML file, load the file into PowerShell’s XML data type, change
the content you want, and then save the file back to disk. Example 10-4 demonstrates
this approach.

Example 10-4. Modifying an XML file from PowerShell

PS > ## Store the filename
PS > $filename = (Get-Item phone.xml).FullName
PS >

10.4 Modify Data in an XML File | 243

PS > ## Get the content of the file, and load it
PS > ## as XML
PS > Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
PS > $phoneBook = [xml] (Get-Content $filename)
PS >
PS > ## Get the part with data we want to change
PS > $person = $phoneBook.AddressBook.Person[0]
PS >
PS > ## Change the text part of the information,
PS > ## and the type (which was an attribute)
PS > $person.Phone[0]."#text" = "555-1214"
PS > $person.Phone[0].type = "mobile"
PS >
PS > ## Add a new phone entry
PS > $newNumber = [xml] '<Phone type="home">555-1215</Phone>'
PS > $newNode = $phoneBook.ImportNode($newNumber.Phone, $true)
PS > [void] $person.AppendChild($newNode)
PS >
PS > ## Save the file to disk
PS > $phoneBook.Save($filename)
PS > Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="mobile">555-1214</Phone>
 <Phone type="work">555-1213</Phone>
 <Phone type="home">555-1215</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Discussion
In the preceding solution, you change Lee’s phone number (which was the “text” por-
tion of the XML’s original first Phone node) from 555-1212 to 555-1214. You also change
the type of the phone number (which was an attribute of the Phone node) from "home" to
"mobile".

Adding new information to the XML is nearly as easy. To add information to an XML
file, you need to add it as a child node to another node in the file. The easiest way to get

244 | Chapter 10: Structured Files

that child node is to write the string that represents the XML and then create a tem-
porary PowerShell XML document from that. From that temporary document, you use
the main XML document’s ImportNode() function to import the node you care about—
specifically, the Phone node in this example.

Once we have the child node, you need to decide where to put it. Since we want this
Phone node to be a child of the Person node for Lee, we will place it there. To add a child
node ($newNode in Example 10-4) to a destination node ($person in the example), use
the AppendChild() method from the destination node.

The Save() method on the XML document allows you to save to more
than just files. For a quick way to convert XML into a “beautified” form,
save it to the console:

$phoneBook.Save([Console]::Out)

Finally, we save the XML back to the file from which it came.

10.5 Easily Import and Export Your Structured Data

Problem
You have a set of data (such as a hashtable or array) and want to save it to disk so that
you can use it later. Conversely, you have saved structured data to a file and want to
import it so that you can use it.

Solution
Use PowerShell’s Export-CliXml cmdlet to save structured data to disk, and the Import-
CliXml cmdlet to import it again from disk.

For example, imagine storing a list of your favorite directories in a hashtable, so that
you can easily navigate your system with a “Favorite CD” function. Example 10-5
shows this function.

Example 10-5. A function that requires persistent structured data

PS > $favorites = @{}
PS > $favorites["temp"] = "c:\temp"
PS > $favorites["music"] = "h:\lee\my music"
PS > function fcd {
 param([string] $location) Set-Location $favorites[$location]
}

PS > Get-Location

10.5 Easily Import and Export Your Structured Data | 245

Path

HKLM:\software

PS > fcd temp
PS > Get-Location

Path

C:\temp

Unfortunately, the $favorites variable vanishes whenever you close PowerShell.

To get around this, you could recreate the $favorites variable in your profile, but
another approach is to export it directly to a file. This command assumes that you have
already created a profile, and it places the file in the same location as that profile:

PS > $filename = Join-Path (Split-Path $profile) favorites.clixml
PS > $favorites | Export-CliXml $filename
PS > $favorites = $null
PS > $favorites
PS >

Once the file is on disk, you can reload it using the Import-CliXml cmdlet, as shown in
Example 10-6.

Example 10-6. Restoring structured data from disk

PS > $favorites = Import-CliXml $filename
PS > $favorites

Name Value
---- -----
music h:\lee\my music
temp c:\temp

PS > fcd music
PS > Get-Location

Path

H:\lee\My Music

Discussion
PowerShell provides the Export-CliXml and Import-CliXml cmdlets to let you easily
move structured data into and out of files. These cmdlets accomplish this in a very data-
centric and future-proof way—by storing only the names, values, and basic data types
for the properties of that data.

246 | Chapter 10: Structured Files

By default, PowerShell stores one level of data: all directly accessible
simple properties (such as the WorkingSet of a process) but a plain-text
representation for anything deeper (such as a process’s Threads collec-
tion). For information on how to control the depth of this export, type
Get-Help Export-CliXml and see the explanation of the -Depth

parameter.

After you import data saved by Export-CliXml, you again have access to the properties
and values from the original data. PowerShell converts some objects back to their fully
featured objects (such as System.DateTime objects), but for the most part does not retain
functionality (for example, methods) from the original objects.

10.6 Store the Output of a Command in a CSV or Delimited File

Problem
You want to store the output of a command in a CSV file for later processing. This is
helpful when you want to export the data for later processing outside PowerShell.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command into a CSV file.
For example, to create an inventory of the processes running on a system:

Get-Process | Export-Csv c:\temp\processes.csv

You can then review this output in a tool such as Excel, mail it to others, or do whatever
else you might want to do with a CSV file.

Discussion
The CSV file format is one of the most common formats for exchanging semistructured
data between programs and systems.

PowerShell’s Export-Csv cmdlet provides an easy way to export data from the Power-
Shell environment while still allowing you to keep a fair amount of your data’s structure.
When PowerShell exports your data to the CSV, it creates a row for each object that
you provide. For each row, PowerShell creates columns in the CSV that represent the
values of your object’s properties.

If you want to use the CSV-structured data as input to another tool that
supports direct CSV pipeline input, you can use the ConvertTo-Csv
cmdlet to bypass the step of storing it in a file.

10.6 Store the Output of a Command in a CSV or Delimited File | 247

If you want to separate the data with a character other than a comma, use the
-Delimiter parameter.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. If a property on your object isn’t actually a string, PowerShell converts
it to a string for you. Having PowerShell convert rich property values (such as integers)
to strings, however, does mean that a certain amount of information is not preserved.
If your ultimate goal is to load this unmodified data again in PowerShell, the Export-
CliXml cmdlet provides a much better alternative. For more information about the
Export-CliXml cmdlet, see Recipe 10.5.

For more information on how to import data from a CSV file into PowerShell, see
Recipe 10.7.

See Also
Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 10.7, “Import CSV and Delimited Data from a File”

10.7 Import CSV and Delimited Data from a File

Problem
You want to import structured data that has been stored in a CSV file or a file that uses
some other character as its delimiter.

Solution
Use PowerShell’s Import-Csv cmdlet to import structured data from a CSV file. Use the
-Delimiter parameter if fields are separated by a character other than a comma.

For example, to load the (tab-separated) Windows Update log:

$header = "Date","Time","PID","TID","Component","Text"
$log = Import-Csv $env:WINDIR\WindowsUpdate.log -Delimiter "`t" -Header $header

Then, manage the log as you manage other rich PowerShell output:

$log | Group-Object Component

Discussion
As mentioned in Recipe 10.6, the CSV file format is one of the most common formats
for exchanging semistructured data between programs and systems.

PowerShell’s Import-Csv cmdlet provides an easy way to import this data into the
PowerShell environment from other programs. When PowerShell imports your data
from the CSV, it creates a new object for each row in the CSV. For each object,
PowerShell creates properties on the object from the values of the columns in the CSV.

248 | Chapter 10: Structured Files

If the names of the CSV columns match parameter names, many com-
mands let you pipe this output to automatically set the values of
parameters.

For more information about this feature, see Recipe 2.6.

If you are dealing with data in a CSV format that is the output of another tool or
command, the Import-Csv cmdlet’s file-based behavior won’t be of much help. In this
case, use the ConvertFrom-Csv cmdlet.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. When you import data from a CSV, properties that look like dates will
still only be strings. Properties that look like numbers will only be strings. Properties
that look like any sort of rich data type will only be strings. This means that sorting on
any property will always be an alphabetical sort, which is usually not the same as the
sorting rules for the rich data types that the property might look like.

If your ultimate goal is to load rich unmodified data from something that you’ve pre-
viously exported from PowerShell, the Import-CliXml cmdlet provides a much better
alternative. For more information about the Import-CliXml cmdlet, see Recipe 10.5.

For more information on how to export data from PowerShell to a CSV file, see
Recipe 10.6.

See Also
Recipe 2.6, “Automate Data-Intensive Tasks”

Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 10.6, “Store the Output of a Command in a CSV or Delimited File”

10.8 Use Excel to Manage Command Output

Problem
You want to use Excel to manipulate or visualize the output of a command.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command in a CSV file,
and then load that CSV in Excel. If you have Excel associated with .CSV files, the
Invoke-Item cmdlet launches Excel when you provide it with a .CSV file as an argument.

Example 10-7 demonstrates how to generate a CSV containing the disk usage for sub-
directories of the current directory.

10.8 Use Excel to Manage Command Output | 249

Example 10-7. Using Excel to visualize disk usage on the system

PS > $filename = "c:\temp\diskusage.csv"
PS >
PS > $output = Get-ChildItem | Where-Object { $_.PsIsContainer } |
 Select-Object Name,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem -Recurse |
 Measure-Object -Sum Length).Sum + 0 } }

PS > $output | Export-Csv $filename
PS >
PS > Invoke-Item $filename

In Excel, you can manipulate or format the data as you wish. As Figure 10-1 shows, we
can manually create a pie chart.

Figure 10-1. Visualizing data in Excel

250 | Chapter 10: Structured Files

Discussion
Although used only as a demonstration, Example 10-7 packs quite a bit into just a few
lines.

The first Get-ChildItem line gets a list of all the files in the current directory and uses
the Where-Object cmdlet to restrict those to directories. For each of those directories,
you use the Select-Object cmdlet to pick out the Name and Size of that directory.

Directories don’t have a Size property, though. To get that, we use Select-Object’s
hashtable syntax to generate a calculated property. This calculated property (as defined
by the Expression script block) uses the Get-ChildItem and Measure-Object cmdlets to
add up the Length of all files in the given directory.

For more information about creating and working with calculated properties, see
Recipe 3.15.

See Also
Recipe 3.15, “Add Custom Methods and Properties to Objects”

10.9 Parse and Interpret PowerShell Scripts

Problem
You want to access detailed structural and language-specific information about the
content of a PowerShell script.

Solution
Use PowerShell’s Tokenizer API to convert the script into the same internal represen-
tation that PowerShell uses to understand the script’s structure.

PS > $script = '$myVariable = 10'
PS > $errors = [System.Management.Automation.PSParseError[]] @()
PS > [Management.Automation.PsParser]::Tokenize($script, [ref] $errors)

Content : myVariable
Type : Variable
Start : 0
Length : 11
StartLine : 1
StartColumn : 1
EndLine : 1
EndColumn : 12

Content : =
Type : Operator
Start : 12

10.9 Parse and Interpret PowerShell Scripts | 251

Length : 1
StartLine : 1
StartColumn : 13
EndLine : 1
EndColumn : 14

Content : 10
Type : Number
Start : 14
Length : 2
StartLine : 1
StartColumn : 15
EndLine : 1
EndColumn : 17

Discussion
When PowerShell loads a script, one of its first steps is to tokenize that script. Tokeni-
zation determines which portions of the script represent variables, numbers, operators,
commands, parameters, aliases, and more.

While this is a fairly advanced concept, the Tokenizer API exposes the results of this
step. This lets you work with the rich structure of PowerShell scripts the same way that
the PowerShell engine does.

Without the support of a Tokenizer API, tool authors are usually required to build
complicated regular expressions that attempt to emulate the PowerShell engine. This
was true of PowerShell version one. Although these regular expressions are helpful for
many situations, they tend to fall apart on more complex scripts.

In the first line of Figure 10-2, "Write-Host" is an argument to the Write-Host cmdlet,
but gets parsed as a string. The second line, while still providing an argument to the
Write-Host cmdlet, does not treat the argument the same way. In fact, since it matches
a cmdlet name, the argument gets interpreted as another call to the Write-Host cmdlet.
In the here string that follows, the Write-Host cmdlet name gets highlighted again, even
though it is really just part of a string.

Figure 10-2. Tokenization errors in a complex script

252 | Chapter 10: Structured Files

Since the Tokenizer API follows the same rules as the PowerShell engine, it avoids the
pitfalls of the regular-expression-based approach while producing output that is much
easier to consume. When run on the same input, it produces the output shown in
Example 10-8.

Example 10-8. Successfully tokenizing a complex script

PS > [Management.Automation.PsParser]::Tokenize($content, [ref] $errors) | ft -auto

Content Type Start Length StartLine StartColumn EndLine EndColumn
------- ---- ----- ------ --------- ----------- ------- ---------
Write-Host Command 0 10 1 1 1 11
Write-Host String 11 12 1 12 1 24
... NewLine 23 2 1 24 2 1
Write-Host Command 25 10 2 1 2 11
Write-Host CommandArgument 36 10 2 12 2 22
... NewLine 46 2 2 22 3 1
... NewLine 48 2 3 1 4 1
Write-Host Write-Host String 50 23 4 1 4 24
... NewLine 73 2 4 24 5 1
... NewLine 75 2 5 1 6 1
testContent Variable 77 12 6 1 6 13
= Operator 90 1 6 14 6 15
Write-Host Hello World String 92 30 6 16 8 3
... NewLine 122 2 8 3 9 1

This adds a whole new dimension to the way you can interact with PowerShell scripts.
Some natural outcomes are:

• Syntax highlighting

• Automated script editing (for example, replacing aliased commands with their
expanded equivalents)

• Script style and form verification

If the script contains any errors, PowerShell captures those in the $errors collection
you are required to supply. If you don’t want to keep track of errors, you can supply
[ref] $null as the value for that parameter.

For an example of the Tokenizer API in action, see Recipe 8.6.

See Also
Recipe 8.6, “Program: Show Colorized Script Content”

10.9 Parse and Interpret PowerShell Scripts | 253

CHAPTER 11

Code Reuse

11.0 Introduction
One thing that surprises many people is how much you can accomplish in PowerShell
from the interactive prompt alone. Since PowerShell makes it so easy to join its powerful
commands together into even more powerful combinations, enthusiasts grow to relish
this brevity. In fact, there is a special place in the heart of most scripting enthusiasts set
aside entirely for the most compact expressions of power: the one-liner.

Despite its interactive efficiency, you obviously don’t want to retype all your brilliant
ideas anew each time you need them. When you want to save or reuse the commands
that you’ve written, PowerShell provides many avenues to support you: scripts, mod-
ules, functions, script blocks, and more.

11.1 Write a Script

Problem
You want to store your commands in a script so that you can share them or reuse them
later.

Solution
To write a PowerShell script, create a plain-text file with your editor of choice. Add
your PowerShell commands to that script (the same PowerShell commands you use
from the interactive shell), and then save it with a .ps1 extension.

Discussion
One of the most important things to remember about PowerShell is that running scripts
and working at the command line are essentially equivalent operations. If you see it in
a script, you can type it or paste it at the command line. If you typed it on the command
line, you can paste it into a text file and call it a script.

255

Once you write your script, PowerShell lets you call it in the same way that you call
other programs and existing tools. Running a script does the same thing as running all
the commands in that script.

PowerShell introduces a few features related to running scripts and tools
that may at first confuse you if you aren’t aware of them. For more
information about how to call scripts and existing tools, see Recipe 1.1.

The first time you try to run a script in PowerShell, you’ll likely see the following error
message:

File c:\tools\myFirstScript.ps1 cannot be loaded because the execution of
scripts is disabled on this system. Please see "get-help about_signing" for
more details.
At line:1 char:12
+ myFirstScript <<<<

Since relatively few computer users write scripts, PowerShell’s default security policies
prevent scripts from running. Once you begin writing scripts, though, you should con-
figure this policy to something less restrictive. For information on how to configure
your execution policy, see Recipe 18.1.

When it comes to the filename of your script, picking a descriptive name is the best
way to guarantee that you will always remember what that script does—or at least have
a good idea. This is an issue that PowerShell tackles elegantly, by naming every cmdlet
in the Verb-Noun pattern: a command that performs an action (verb) on an item
(noun). As an example of the usefulness of this philosophy, consider the names of
typical Windows commands given in Example 11-1.

Example 11-1. The names of some standard Windows commands

PS > dir $env:WINDIR\System32*.exe | Select-Object Name

Name

accwiz.exe
actmovie.exe
ahui.exe
alg.exe
append.exe
arp.exe
asr_fmt.exe
asr_ldm.exe
asr_pfu.exe
at.exe
atmadm.exe
attrib.exe
(...)

256 | Chapter 11: Code Reuse

Compare this to the names of some standard Windows PowerShell cmdlets, given in
Example 11-2.

Example 11-2. The names of some standard Windows PowerShell cmdlets

PS > Get-Command | Select-Object Name

Name

Add-Content
Add-History
Add-Member
Add-PSSnapin
Clear-Content
Clear-Item
Clear-ItemProperty
Clear-Variable
Compare-Object
ConvertFrom-SecureString
Convert-Path
ConvertTo-Html
(...)

As an additional way to improve discovery, PowerShell takes this even further with the
philosophy (and explicit goal) that “you can manage 80 percent of your system with
less than 50 verbs.” As you learn the standard verbs for a concept, such as Get (which
represents the standard concepts of Read, Open, and so on), you can often guess the
verb of a command as the first step in discovering it.

When you name your script (especially if you intend to share it), make every effort to
pick a name that follows these conventions. Recipe 11.3 shows a useful cmdlet to help
you find a verb to name your scripts properly. As evidence of its utility for scripts,
consider some of the scripts included in this book:

PS > dir | select Name

Name

Compare-Property.ps1
Connect-WebService.ps1
Convert-TextObject.ps1
Get-AliasSuggestion.ps1
Get-Answer.ps1
Get-Characteristics.ps1
Get-OwnerReport.ps1
Get-PageUrls.ps1
Invoke-CmdScript.ps1
New-GenericObject.ps1
Select-FilteredObject.ps1
(...)

Like the PowerShell cmdlets, the names of these scripts are clear, are easy to understand,
and use verbs from PowerShell’s standard verb list.

11.1 Write a Script | 257

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 11.3, “Find a Verb Appropriate for a Command Name”

Appendix J, Standard PowerShell Verbs

11.2 Write a Function

Problem
You have commands in your script that you want to call multiple times or a section of
your script that you consider to be a “helper” for the main purpose of your script.

Solution
Place this common code in a function, and then call that function instead. For example,
this Celsius conversion code in a script:

param([double] $fahrenheit)

Convert it to Celsius
$celsius= $fahrenheit - 32
$celsius = $celsius / 1.8

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

could be placed in a function (itself placed in a script):

param([double] $fahrenheit)

Convert Fahrenheit to Celsius
function ConvertFahrenheitToCelsius([double] $fahrenheit)
{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8
 $celsius
}

$celsius = ConvertFahrenheitToCelsius $fahrenheit

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

Although using a function arguably makes this specific script longer and more difficult
to understand, the technique is extremely valuable (and used) in almost all nontrivial
scripts.

258 | Chapter 11: Code Reuse

Discussion
Once you define a function, any command after that definition can use it. This means
that you must define your function before any part of your script that uses it. You might
find this unwieldy if your script defines many functions, as the function definitions
obscure the main logic portion of your script. If this is the case, you can put your main
logic in a “Main” function, as described in Recipe 11.21.

A common question that comes from those accustomed to batch script-
ing in cmd.exe is, “What is the PowerShell equivalent of a GOTO?” In sit-
uations where the GOTO is used to call subroutines or other isolated helper
parts of the batch file, use a PowerShell function to accomplish that task.
If the GOTO is used as a way to loop over something, PowerShell’s looping
mechanisms are more appropriate.

In PowerShell, calling a function is designed to feel just like calling a cmdlet or a script.
As a user, you should not have to know whether a little helper routine was written as
a cmdlet, script, or function. When you call a function, simply add the parameters after
the function name, with spaces separating each one (as shown in the solution). This is
in contrast to the way that you call functions in many programming languages (such
as C#), where you use parentheses after the function name and commas between each
parameter.

Correct
ConvertFahrenheitToCelsius $fahrenheit

Incorrect
ConvertFahrenheitToCelsius($fahrenheit)

Also, notice that the return value from a function is anything that the function writes
to the output pipeline (such as $celsius in the solution). You can write return
$celsius if you want, but it is unnecessary.

For more information about writing functions, see “Writing Scripts, Reusing Func-
tionality” on page 746. For more information about PowerShell’s looping statements,
see Recipe 4.4.

See Also
Recipe 4.4, “Repeat Operations with Loops”

“Writing Scripts, Reusing Functionality” on page 746

11.2 Write a Function | 259

11.3 Find a Verb Appropriate for a Command Name

Problem
You are writing a new script or function and want to select an appropriate verb for that
command.

Solution
Review the output of the Get-Verb command to find a verb appropriate for your
command:

PS > Get-Verb In* | Format-Table -Auto

Verb Group
---- -----
Initialize Data
Install Lifecycle
Invoke Lifecycle

Discussion
Consistency of command names is one of PowerShell’s most beneficial features, largely
due to its standard set of verbs. While descriptive command names (such as Stop-
Process) make it clear what a command does, standard verbs make commands easier
to discover.

For example, many technologies have their own words for creating something: New,
Create, Instantiate, Build, and more. When a user looks for a command (without the
benefit of standard verbs), the user has to know the domain-specific terminology for
that action. If the user doesn’t know the domain-specific verb, the user is forced to page
through long lists of commands in the hope that something rings a bell.

When commands use PowerShell’s standard verbs, however, discovery becomes much
easier. Once users learn the standard verb for an action, they don’t need to search for
its domain-specific alternatives. Most importantly, the time they invest (actively or
otherwise) learning the standard PowerShell verbs improves their efficiency with all
commands, not just commands from a specific domain.

This discoverability issue is so important that PowerShell generates a
warning message when a module defines a command with a nonstan-
dard verb. To support domain-specific names for your commands in
addition to the standard names, simply define an alias. For more infor-
mation, see Recipe 11.8.

To make it easier to select a standard verb while writing a script or function, PowerShell
provides a Get-Verb function. You can review the output of that function to find a verb

260 | Chapter 11: Code Reuse

suitable for your command. For an even more detailed description of the standard
verbs, see Appendix J.

See Also
Recipe 11.8, “Selectively Export Commands from a Module”

Appendix J, Standard PowerShell Verbs

11.4 Write a Script Block

Problem
You have a section of your script that works nearly the same for all input, aside from a
minor change in logic.

Solution
As shown in Example 11-3, place the minor logic differences in a script block, and then
pass that script block as a parameter to the code that requires it. Use the invoke operator
(&) to execute the script block.

Example 11-3. A script that applies a script block to each element in the pipeline

##
##
Invoke-ScriptBlock
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Apply the given mapping command to each element of the input. (Note that
PowerShell includes this command natively, and calls it Foreach-Object)

.EXAMPLE

1,2,3 | Invoke-ScriptBlock { $_ * 2 }

#>

param(
 ## The scriptblock to apply to each incoming element
 [ScriptBlock] $MapCommand
)

begin

11.4 Write a Script Block | 261

{
 Set-StrictMode -Version Latest
}
process
{
 & $mapCommand
}

Discussion
Imagine a script that needs to multiply all the elements in a list by two:

function MultiplyInputByTwo
{
 process
 {
 $_ * 2
 }
}

but it also needs to perform a more complex calculation:

function MultiplyInputComplex
{
 process
 {
 ($_ + 2) * 3
 }
}

These two functions are strikingly similar, except for the single line that actually per-
forms the calculation. As we add more calculations, this quickly becomes more evident.
Adding each new seven-line function gives us only one unique line of value!

PS > 1,2,3 | MultiplyInputByTwo
2
4
6
PS > 1,2,3 | MultiplyInputComplex
9
12
15

If we instead use a script block to hold this “unknown” calculation, we don’t need to
keep on adding new functions:

PS > 1,2,3 | Invoke-ScriptBlock { $_ * 2 }
2
4
6
PS > 1,2,3 | Invoke-ScriptBlock { ($_ + 2) * 3 }
9
12
15

262 | Chapter 11: Code Reuse

PS > 1,2,3 | Invoke-ScriptBlock { ($_ + 3) * $_ }
4
10
18

In fact, the functionality provided by Invoke-ScriptBlock is so helpful that it is a stand-
ard PowerShell cmdlet—called Foreach-Object. For more information about script
blocks, see “Writing Scripts, Reusing Functionality” on page 746. For more informa-
tion about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

“Writing Scripts, Reusing Functionality” on page 746

11.5 Return Data from a Script, Function, or Script Block

Problem
You want your script or function to return data to whatever called it.

Solution
To return data from a script or function, write that data to the output pipeline:

##
##
Get-Tomorrow
##
Get the date that represents tomorrow
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Set-StrictMode -Version Latest

function GetDate
{
 Get-Date
}

$tomorrow = (GetDate).AddDays(1)
$tomorrow

Discussion
In PowerShell, any data that your function or script generates gets sent to the output
pipeline, unless something captures that output. The GetDate function generates data

11.5 Return Data from a Script, Function, or Script Block | 263

(a date) and does not capture it, so that becomes the output of the function. The portion
of the script that calls the GetDate function captures that output and then manipulates
it.

Finally, the script writes the $tomorrow variable to the pipeline without capturing it, so
that becomes the return value of the script itself.

Some .NET methods—such as the System.Collections.ArrayList class
—produce output, even though you may not expect them to. To prevent
these methods from sending data to the output pipeline, either capture
the data or cast it to [void]:

PS > $collection = New-Object System.Collections.ArrayList
PS > $collection.Add("Hello")
0
PS > [void] $collection.Add("Hello")

Even with this “pipeline output becomes the return value” philosophy, PowerShell
continues to support the traditional return keyword as a way to return from a function
or script. If you specify anything after the keyword (such as return "Hello"), PowerShell
treats that as a "Hello" statement followed by a return statement.

If you want to make your intention clear to other readers of your script,
you can use the Write-Output cmdlet to explicitly send data down the
pipeline. Both produce the same result, so this is only a matter of
preference.

If you write a collection (such as an array or ArrayList) to the output pipeline, Power-
Shell in fact writes each element of that collection to the pipeline. To keep the collection
intact as it travels down the pipeline, prefix it with a comma when you return it. This
returns a collection (that will be unraveled) with one element: the collection you wanted
to keep intact.

function WritesObjects
{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")
 [void] $arrayList.Add("World")

 $arrayList
}

function WritesArrayList
{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")
 [void] $arrayList.Add("World")

 ,$arrayList

264 | Chapter 11: Code Reuse

}

$objectOutput = WritesObjects

The following command would generate an error
$objectOutput.Add("Extra")

$arrayListOutput = WritesArrayList
$arrayListOutput.Add("Extra")

Although relatively uncommon in PowerShell’s world of fully structured data, you may
sometimes want to use an exit code to indicate the success or failure of your script. For
this, PowerShell offers the exit keyword.

For more information about the return and exit statements, see “Writing Scripts, Re-
using Functionality” on page 746 and Recipe 15.1.

See Also
Recipe 15.1, “Determine the Status of the Last Command”

“Writing Scripts, Reusing Functionality” on page 746

11.6 Package Common Commands in a Module

Problem
You’ve developed a useful set of commands or functions. You want to offer them to
the user or share them between multiple scripts.

Solution
First, place these common function definitions by themselves in a file with the exten-
sion .psm1, as shown in Example 11-4.

Example 11-4. A module of temperature commands

##
##
Temperature.psm1
Commands that manipulate and convert temperatures
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Convert Fahrenheit to Celsius
function Convert-FahrenheitToCelsius([double] $fahrenheit)
{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8

11.6 Package Common Commands in a Module | 265

 $celsius
}

Convert Celsius to Fahrenheit
function Convert-CelsiusToFahrenheit([double] $celsius)
{
 $fahrenheit = $celsius * 1.8
 $fahrenheit = $fahrenheit + 32
 $fahrenheit
}

Next, place that file in your Modules directory (as defined in the PSModulePath envi-
ronment variable), in a subdirectory with the same name. For example, place Temper-
ature.psm1 in <My Documents>\WindowsPowerShell\Modules\Temperature. Call the
Import-Module command to import the module (and its commands) into your session,
as shown by Example 11-5.

Example 11-5. Importing a module

PS > Import-Module Temperature
PS > Convert-FahrenheitToCelsius 81
27.2222222222222

Discussion
PowerShell modules give you an easy way to package related commands and function-
ality. As the solution demonstrates, writing a module is as simple as adding functions
to a file.

As with the naming of core commands, the naming of commands packaged in a module
plays a critical role in giving users a consistent and discoverable PowerShell experience.
When you name the commands in your module, ensure that they follow a Verb-Noun
syntax and that you select verbs from PowerShell’s standard set of verbs. If your module
does not follow these standards, your users will receive a warning message when they
load your module. For information about how make your module commands discov-
erable (and as domain-specific as required), see Recipe 11.8.

In addition to creating the .psm1 file that contains your module’s commands, you
should also create a module manifest to describe its contents and system requirements.
Module manifests let you define the module’s author, company, copyright information,
and more. For more information, see the New-ModuleManifest cmdlet.

After writing a module, the last step is making it available to the system. When you call
Import-Module <module name> to load a module, PowerShell looks through each direc-
tory listed in the PSModulePath environment variable.

266 | Chapter 11: Code Reuse

The PSModulePath variable is an environment variable, just like the sys-
tem’s PATH environment variable. For more information on how to view
and modify environment variables, see Recipe 16.1.

If PowerShell finds a directory named <module name>, it looks in that directory for a
psm1 file with that name as well. Once it finds the psm1 file, it loads that module into
your session. In addition to psm1 files, PowerShell also supports module manifest
(psd1) files that let you define a great deal of information about the module: its author,
description, nested modules, version requirements, and much more. For more infor-
mation, type Get-Help New-ModuleManifest.

If you want to make your module available to just yourself (or the “current user” if
installing your module as part of a setup process), place it in the per-user modules
folder: <My Documents>\WindowsPowerShell\Modules\<module name>. If you want to
make the module available to all users of the system, place your module in its own
directory under the Program Files directory, and then add that directory to the system-
wide PSModulePath environment variable.

If you don’t want to permanently install your module, you can instead specify the
complete path to the psm1 file when you load the module. For example:

Import-Module c:\tools\Temperature.psm1

If you want to load a module from the same directory that your script is in, see
Recipe 16.5.

When you load a module from a script, PowerShell makes the commands from that
module available to the entire session. If your script loads the Temperature module, for
example, the functions in that module will still be available after your script exits. To
ensure that your script doesn’t accidentally influence the user’s session after it exits,
you should remove any modules that you load:

$moduleToRemove = $null
if(-not (Get-Module <Module Name>))
{
 $moduleToRemove = Import-Module <Module Name> -Passthru
}

######################
##
script goes here
##
######################

if($moduleToRemove)
{
 $moduleToRemove | Remove-Module
}

11.6 Package Common Commands in a Module | 267

If you have a module that loads a helper module (as opposed to a script that loads a
helper module), this step is not required. Modules loaded by a module impact only the
module that loads them.

If you want to let users configure your module when they load it, you can define a
parameter block at the beginning of your module. These parameters then get filled
through the -ArgumentList parameter of the Import-Module command. For example, a
module that takes a “retry count” and website as parameters:

param(
 [int] $RetryCount,
 [URI] $Website
)

function Get-Page
{

The user would load the module with the following command line:

Import-Module <module name> -ArgumentList 10,"http://www.example.com"
Get-Page "/index.html"

One important point when it comes to the -ArgumentList parameter is that its support
for user input is much more limited than support offered for most scripts, functions,
and script blocks. PowerShell lets you access the parameters in most param() statements
by name, by alias, and in or out of order. Arguments supplied to the Import-Module
command, on the other hand, must be supplied as values only, and in the exact order
the module defines them.

For more information about accessing arguments of a command, see Recipe 11.11. For
more information about importing a module (and the different types of modules avail-
able), see Recipe 1.24. For more information about modules, type Get-Help
about_Modules.

See Also
Recipe 1.24, “Extend Your Shell with Additional Commands”

Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Get-Help about_Modules

11.7 Write Commands That Maintain State

Problem
You have a function or script that needs to maintain state between invocations.

268 | Chapter 11: Code Reuse

Solution
Place those commands in a module. Store any information you want to retain in a
variable, and give that variable a SCRIPT scope. See Example 11-6.

Example 11-6. A module that maintains state

##
##
PersistentState.psm1
Demonstrates persistent state through module-scoped variables
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

$SCRIPT:memory = $null

function Set-Memory
{
 param(
 [Parameter(ValueFromPipeline = $true)]
 $item
)

 begin { $SCRIPT:memory = New-Object System.Collections.ArrayList }
 process { $null = $memory.Add($item) }
}

function Get-Memory
{
 $memory.ToArray()
}

Set-Alias remember Set-Memory
Set-Alias recall Get-Memory

Export-ModuleMember -Function Set-Memory,Get-Memory
Export-ModuleMember -Alias remember,recall

Discussion
When writing scripts or commands, you’ll frequently need to maintain state between
the invocation of those commands. For example, your commands might remember
user preferences, cache configuration data, or store other types of module state. See
Example 11-7.

Example 11-7. Working with commands that maintain state

PS > Import-Module PersistentState
PS > Get-Process -Name PowerShell | remember
PS > recall

11.7 Write Commands That Maintain State | 269

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 527 6 32704 44140 172 2.13 2644 powershell
 517 7 23080 33328 154 1.81 2812 powershell
 357 6 31848 33760 165 1.42 3576 powershell

In PowerShell version one, the only way to accomplish these goals was to store the
information in a global variable. This introduces two problems, though.

The first problem is that global variables impact much more than just the script that
defines them. Once your script stores information in a global variable, it pollutes the
user’s session. If the user has a variable with the same name, your script overwrites its
contents. The second problem is the natural counterpart to this pollution. When your
script stores information in a global variable, both the user and other scripts have access
to it. Due to accident or curiosity, it is quite easy for these “internal” global variables
to be damaged or corrupted.

PowerShell version two resolves this issue through the introduction of modules. By
placing your commands in a module, PowerShell makes variables with a script scope
available to all commands in that module. In addition to making script-scoped variables
available to all of your commands, PowerShell maintains their value between invoca-
tions of those commands.

Like variables, PowerShell drives obey the concept of scope. When you
use the New-PSDrive cmdlet from within a module, that drive stays pri-
vate to that module. To create a new drive that is visible from outside
your module as well, create it with a global scope:

New-PSDrive -Name Temp FileSystem -Root C:\Temp -Scope Global

For more information about variables and their scopes, see Recipe 3.6. For more in-
formation about defining a module, see Recipe 11.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.6, “Package Common Commands in a Module”

11.8 Selectively Export Commands from a Module

Problem
You have a module and want to export only certain commands from that module.

270 | Chapter 11: Code Reuse

Solution
Use the Export-ModuleMember cmdlet to declare the specific commands you want ex-
ported. All other commands then remain internal to your module. See Example 11-8.

Example 11-8. Exporting specific commands from a module

##
##
SelectiveCommands.psm1
Demonstrates the selective export of module commands
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

An internal helper function
function MyInternalHelperFunction
{
 "Result from my internal helper function"
}

A command exported from the module
function Get-SelectiveCommandInfo
{
 "Getting information from the SelectiveCommands module"
 MyInternalHelperFunction
}

Alternate names for our standard command
Set-Alias gsci Get-SelectiveCommandInfo
Set-Alias DomainSpecificVerb-Info Get-SelectiveCommandInfo

Export specific commands
Export-ModuleMember -Function Get-SelectiveCommandInfo
Export-ModuleMember -Alias gsci,DomainSpecificVerb-Info

Discussion
When PowerShell imports a module, it imports all functions defined in that module by
default. This makes it incredibly simple (as module authors) to create a library of related
commands.

Once your module commands get more complex, you’ll often write helper functions
and support routines. Since these commands aren’t intended to be exposed directly to
users, you’ll instead need to selectively export commands from your module. The
Export-ModuleMember command allows exactly that.

Once your module includes a call to Export-ModuleMember, PowerShell no longer ex-
ports all functions in your module. Instead, it exports only the commands that you

11.8 Selectively Export Commands from a Module | 271

define. The first call to Export-ModuleMember in Example 11-8 demonstrates how to
selectively export a function from a module.

Since consistency of command names is one of PowerShell’s most beneficial features,
PowerShell generates a warning message if your module exports functions (either ex-
plicitly or by default) that use nonstandard verbs. For example, imagine that you have
a technology that uses regenerate configuration as a highly specific phrase for a task. In
addition, it already has a regen command to accomplish this task.

You might naturally consider Regenerate-Configuration and regen as function names
to export from your module, but doing that would alienate users who don’t have a
strong background in your technology. Without your same technical expertise, they
wouldn’t know the name of the command, and instead would instinctively look for
Reset-Configuration, Restore-Configuration, or Initialize-Configuration based on
their existing PowerShell knowledge. In this situation, the solution is to name your
functions with a standard verb and also use command aliases to support your domain-
specific experts.

The Export-ModuleMember cmdlet supports this situation as well. In addition to letting
you selectively export commands from your module, it also lets you export alternative
names (aliases) for your module commands. The second call to Export-ModuleMember
in Example 11-8 (along with the alias definitions that precede it) demonstrates how to
export aliases from a module.

For more information about command naming, see Recipe 11.3. For more information
about writing a module, see Recipe 11.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.3, “Find a Verb Appropriate for a Command Name”

Recipe 11.6, “Package Common Commands in a Module”

11.9 Diagnose and Interact with Internal Module State

Problem
You have a module and want to examine its internal variables and functions.

Solution
Use the Enter-Module script (Example 11-9) to temporarily enter the module and invoke
commands within its scope.

272 | Chapter 11: Code Reuse

Example 11-9. Invoking commands from within the scope of a module

##
##
Enter-Module
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Lets you examine internal module state and functions by executing user
input in the scope of the supplied module.

.EXAMPLE

PS >Import-Module PersistentState
PS >Get-Module PersistentState

ModuleType Name ExportedCommands
---------- ---- ----------------
Script PersistentState {Set-Memory, Get-Memory}

PS >"Hello World" | Set-Memory
PS >$m = Get-Module PersistentState
PS >Enter-Module $m
PersistentState: dir variable:\mem*

Name Value
---- -----
memory {Hello World}

PersistentState: exit
PS >

#>

param(
 ## The module to examine
 [System.Management.Automation.PSModuleInfo] $Module
)

Set-StrictMode -Version Latest

$userInput = Read-Host $($module.Name)
while($userInput -ne "exit")
{
 $scriptblock = [ScriptBlock]::Create($userInput)
 & $module $scriptblock

11.9 Diagnose and Interact with Internal Module State | 273

 $userInput = Read-Host $($module.Name)
}

Discussion
PowerShell modules are an effective way to create sets of related commands that share
private state. While commands in a module can share private state between themselves,
PowerShell prevents that state from accidentally impacting the rest of your PowerShell
session.

When you are developing a module, though, you might sometimes need to interact
with this internal state for diagnostic purposes. To support this, PowerShell lets you
target a specific module with the invocation (&) operator:

PS > $m = Get-Module PersistentState
PS > & $m { dir variable:\mem* }

Name Value
---- -----
memory {Hello World}

This syntax gets cumbersome for more detailed investigation tasks, so Enter-Module
automates the prompting and invocation for you.

For more information about writing a module, see Recipe 11.6.

See Also
Recipe 11.6, “Package Common Commands in a Module”

11.10 Handle Cleanup Tasks When a Module Is Removed

Problem
You have a module and want to perform some action (such as cleanup tasks) when that
module is removed.

Solution
Assign a script block to the $MyInvocation.MyCommand.ScriptBlock.Module.OnRemove
event. Place any cleanup commands in that script block. See Example 11-10.

274 | Chapter 11: Code Reuse

Example 11-10. Handling cleanup tasks from within a module

##
##
TidyModule.psm1
Demonstrates how to handle cleanup tasks when a module is removed
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.EXAMPLE

PS >Import-Module TidyModule
PS >$TidyModuleStatus
Initialized
PS >Remove-Module TidyModule
PS >$TidyModuleStatus
Cleaned Up

#>

Perform some initialization tasks
$GLOBAL:TidyModuleStatus = "Initialized"

Register for cleanup
$MyInvocation.MyCommand.ScriptBlock.Module.OnRemove = {
 $GLOBAL:TidyModuleStatus = "Cleaned Up"
}

Discussion
PowerShell modules have a natural way to define initialization requirements (any script
written in the body of the module), but cleanup requirements are not as simple.

During module creation, you can access your module through the $My

Invocation.MyCommand.ScriptBlock.Module property. Each module has an OnRemove
event, which you can then subscribe to by assigning it a script block. When PowerShell
unloads your module, it invokes that script block.

Beware of using this technique for extremely sensitive cleanup requirements. If the user
simply exits the PowerShell window, the OnRemove event is not processed. If this is a
concern, register for the PowerShell.Exiting engine event and remove your module
from there:

Register-EngineEvent PowerShell.Exiting { Remove-Module TidyModule }

For PowerShell to handle this event, the user must use the exit keyword to close the
session, rather than the X button at the top right of the console window. In the

11.10 Handle Cleanup Tasks When a Module Is Removed | 275

Integrated Scripting Environment, the close button generates this event as well. This
saves the user from having to remember to call Remove-Module.

For more information about writing a module, see Recipe 11.6. For more information
about PowerShell events, see Recipe 31.2.

See Also
Recipe 11.6, “Package Common Commands in a Module”

Recipe 31.2, “Create and Respond to Custom Events”

11.11 Access Arguments of a Script, Function, or Script Block

Problem
You want to access the arguments provided to a script, function, or script block.

Solution
To access arguments by name, use a param statement:

param($firstNamedArgument, [int] $secondNamedArgument = 0)

"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

To access unnamed arguments by position, use the $args array:

"First positional argument is: " + $args[0]
"Second positional argument is: " + $args[1]

You can use these techniques in exactly the same way with scripts, functions, and script
blocks, as illustrated by Example 11-11.

Example 11-11. Working with arguments in scripts, functions, and script blocks

##
##
Get-Arguments
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Uses command-line arguments

#>

276 | Chapter 11: Code Reuse

param(
 ## The first named argument
 $FirstNamedArgument,

 ## The second named argument
 [int] $SecondNamedArgument = 0
)

Set-StrictMode -Version Latest

Display the arguments by name
"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

function GetArgumentsFunction
{
 ## We could use a param statement here, as well
 ## param($firstNamedArgument, [int] $secondNamedArgument = 0)

 ## Display the arguments by position
 "First positional function argument is: " + $args[0]
 "Second positional function argument is: " + $args[1]
}

GetArgumentsFunction One Two

$scriptBlock =
{
 param($firstNamedArgument, [int] $secondNamedArgument = 0)

 ## We could use $args here, as well
 "First named scriptblock argument is: $firstNamedArgument"
 "Second named scriptblock argument is: $secondNamedArgument"
}

& $scriptBlock -First One -Second 4.5

Example 11-11 produces the following output:

PS > Get-Arguments First 2
First named argument is: First
Second named argument is: 2
First positional function argument is: One
Second positional function argument is: Two
First named scriptblock argument is: One
Second named scriptblock argument is: 4

Discussion
Although PowerShell supports both the param keyword and the $args array, you will
most commonly want to use the param keyword to define and access script, function,
and script block parameters.

11.11 Access Arguments of a Script, Function, or Script Block | 277

In most languages, the most common reason to access parameters
through an $args array is to determine the name of the currently running
script. For information about how to do this in PowerShell, see
Recipe 16.2.

When you use the param keyword to define your parameters, PowerShell provides your
script or function with many useful features that allow users to work with your script
much as they work with cmdlets:

• Users need to specify only enough of the parameter name to disambiguate it from
other parameters.

• Users can understand the meaning of your parameters much more clearly.

• You can specify the type of your parameters, which PowerShell uses to convert
input if required.

• You can specify default values for your parameters.

Supporting PowerShell’s common parameters

In addition to the parameters you define, you might also want to support PowerShell’s
standard parameters: -Verbose, -Debug, -ErrorAction, -WarningAction, -ErrorVariable,
-WarningVariable, -OutVariable, and -OutBuffer.

To get these additional parameters, add the [CmdletBinding()] attribute inside your
function, or declare it at the top of your script. The param() statement is required, even
if your function or script declares no parameters. These (and other associated) addi-
tional features now make your function an advanced function. See Example 11-12.

Example 11-12. Declaring an advanced function

function Invoke-MyAdvancedFunction
{
 [CmdletBinding()]
 param()

 Write-Verbose "Verbose Message"
}

If your function defines a parameter with advanced validation, you don’t need to ex-
plicitly add the [CmdletBinding()] attribute. In that case, PowerShell already knows to
treat your command as an advanced function.

During PowerShell’s beta phases, advanced functions were known as
script cmdlets. We decided to change the name because the term script
cmdlets caused a sense of fear of the great unknown. Users would be
comfortable writing functions, but “didn’t have the time to learn those
new script cmdlet things.” Because script cmdlets were just regular
functions with additional power, the new name made a lot more sense.

278 | Chapter 11: Code Reuse

Although PowerShell adds all of its common parameters to your function, you don’t
actually need to implement the code to support them. For example, calls to Write-
Verbose usually generate no output. When the user specifies the -Verbose parameter to
your function, PowerShell then automatically displays the output of the Write-
Verbose cmdlet.

PS > Invoke-MyAdvancedFunction
PS > Invoke-MyAdvancedFunction -Verbose
VERBOSE: Verbose Message

If your cmdlet modifies system state, it is extremely helpful to support the standard
-WhatIf and -Confirm parameters. For information on how to accomplish this, see
Recipe 11.15.

Using the $args array

Despite all of the power exposed by named parameters, common parameters, and ad-
vanced functions, the $args array is still sometimes helpful. For example, it provides a
clean way to deal with all arguments at once:

function Reverse
{
 $argsEnd = $args.Length - 1
 $args[$argsEnd..0]
}

This produces:

PS > Reverse 1 2 3 4
4
3
2
1

For more information about the param statement, see “Writing Scripts, Reusing Func-
tionality” on page 746. For more information about running scripts, see Recipe 1.1.
For more information about functionality (such as -Whatif and -Confirm) exposed by
the PowerShell engine, see Recipe 11.15.

For information about how to declare parameters with rich validation and behavior,
see Recipe 11.12.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 11.12, “Add Validation to Parameters”

Recipe 11.15, “Provide -WhatIf, -Confirm, and Other Cmdlet Features”

Recipe 16.2, “Access Information About Your Command’s Invocation”

“Writing Scripts, Reusing Functionality” on page 746

11.11 Access Arguments of a Script, Function, or Script Block | 279

11.12 Add Validation to Parameters

Problem
You want to ensure that user input to a parameter satisfies certain restrictions or
constraints.

Solution
Use the [Parameter()] attribute to declare the parameter as mandatory, positional, part
of a mutually exclusive set of parameters, or able to receive its input from the pipeline.

param(
 [Parameter(
 Mandatory = $true,
 Position = 0,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true)]
 [string[]] $Name
)

Use additional validation attributes to define aliases, support for null or empty values,
count restrictions (for collections), length restrictions (for strings), regular expression
requirements, range requirements (for numbers), permissible value requirements, or
even arbitrary script requirements.

param(
 [ValidateLength(5,10)]
 [string] $Name
)

"Hello $Name"

Discussion
Traditional shells require extensions (scripts and commands) to write their parameter
support by hand, resulting in a wide range of behavior. Some implement a bare, con-
fusing minimum of support. Others implement more complex features, but differently
than any other command. The bare, confusing minimum is by far the most common,
as writing fully featured parameter support is a complex endeavor.

Luckily, the PowerShell engine already wrote all of the complex parameter handling
support and manages all of this detail for you. Rather than write the code to enforce it,
you can simply mark parameters as mandatory or positional or state their validation
requirements. This built-in support for parameter behavior and validation forms a cen-
terpiece of PowerShell’s unique consistency.

Parameter validation is one of the main distinctions between scripts that are well be-
haved and those that are not. When running a new script (or one you wrote distantly

280 | Chapter 11: Code Reuse

in the past), reviewing the parameter definitions and validation requirements is one of
the quickest ways to familiarize yourself with how that script behaves.

From the script author’s perspective, validation requirements save you from writing
verification code that you’ll need to write anyway.

Defining parameter behavior

The elements of the [Parameter()] attribute mainly define how your parameter behaves
in relation to other parameters. All elements are optional.

Mandatory = $true
Defines the parameter as mandatory. If the user doesn’t supply a value to this
parameter, PowerShell automatically prompts the user for it. When not specified,
the parameter is optional.

Position = position
Defines the position of this parameter. This applies when the user provides pa-
rameter values without specifying the parameter they apply to (for example,
Argument2 in Invoke-MyFunction -Param1 Argument1 Argument2). PowerShell sup-
plies these values to parameters that have defined a Position, from lowest to highest.
When not specified, the name of this parameter must be supplied by the user.

ParameterSetName = name
Defines this parameter as a member of a set of other related parameters. Parameter
behavior for this parameter is then specific to this related set of parameters, and
the parameter exists only in parameter sets in which it is defined. This feature is
used, for example, when the user may supply only a Name or ID. To include a
parameter in two or more specific parameter sets, use two or more
[Parameter()] attributes. When not specified, this parameter is a member of all
parameter sets. To define the default parameter set name of your cmdlet, supply
it in the CmdletBinding attribute: [CmdletBinding(DefaultParameterSetName

= "Name")].

ValueFromPipeline = $true
Declares this parameter as one that directly accepts pipeline input. If the user pipes
data into your script or function, PowerShell assigns this input to your parameter
in your command’s process {} block. For more information about accepting pipe-
line input, see Recipe 11.18. Beware of applying this parameter to String param-
eters, as almost all input can be converted to strings—often producing a result that
doesn’t make much sense. When not specified, this parameter does not accept
pipeline input directly.

ValueFromPipelineByPropertyName = $true
Declares this parameter as one that accepts pipeline input if a property of an in-
coming object matches its name. If this is true, PowerShell assigns the value of that
property to your parameter in your command’s process {} block. For more

11.12 Add Validation to Parameters | 281

information about accepting pipeline input, see Recipe 11.18. When not specified,
this parameter does not accept pipeline input by property name.

ValueFromRemainingArguments = $true
Declares this parameter as one that accepts all remaining input that has not oth-
erwise been assigned to positional or named parameters. Only one parameter can
have this element. If no parameter declares support for this capability, PowerShell
generates an error for arguments that cannot be assigned.

Defining parameter validation

In addition to the [Parameter()] attribute, PowerShell lets you apply other attributes
that add additional behavior or validation constraints to your parameters. All validation
attributes are optional.

[Alias("name")]

Defines an alternate name for this parameter. This is especially helpful for long
parameter names that are descriptive but have a more common colloquial term.
When not specified, the parameter can be referred to only by the name you origi-
nally declared. You can supply many aliases to a parameter. To learn about aliases
for command parameters, see Recipe 1.15.

[AllowNull()]

Allows this parameter to receive $null as its value. This is required only for man-
datory parameters. When not specified, mandatory parameters cannot receive
$null as their value, although optional parameters can.

[AllowEmptyString()]

Allows this string parameter to receive an empty string as its value. This is required
only for mandatory parameters. When not specified, mandatory string parameters
cannot receive an empty string as their value, although optional string parameters
can. You can apply this to parameters that are not strings, but it has no impact.

[AllowEmptyCollection()]

Allows this collection parameter to receive an empty collection as its value. This is
required only for mandatory parameters. When not specified, mandatory collec-
tion parameters cannot receive an empty collection as their value, although op-
tional collection parameters can. You can apply this to parameters that are not
collections, but it has no impact.

[ValidateCount(lower limit, upper limit)]

Restricts the number of elements that can be in a collection supplied to this pa-
rameter. When not specified, mandatory parameters have a lower limit of one el-
ement. Optional parameters have no restrictions. You can apply this to parameters
that are not collections, but it has no impact.

[ValidateLength(lower limit, upper limit)]

Restricts the length of strings that this parameter can accept. When not specified,
mandatory parameters have a lower limit of one character. Optional parameters

282 | Chapter 11: Code Reuse

have no restrictions. You can apply this to parameters that are not strings, but it
has no impact.

[ValidatePattern("regular expression")]

Enforces a pattern that input to this string parameter must match. When not
specified, string inputs have no pattern requirements. You can apply this to pa-
rameters that are not strings, but it has no impact.

If your parameter has a pattern requirement, though, it may be more effective to
validate the parameter in the body of your script or function instead. The error
message that PowerShell generates when a parameter fails [ValidatePattern()]
validation is not very user-friendly (“The argument ... does not match the
<pattern> pattern”). Instead, it might be more helpful to generate a message ex-
plaining the intent of the pattern:

if($EmailAddress -notmatch Pattern)
{
 throw "Please specify a valid email address."
}

[ValidateRange(lower limit, upper limit)]

Restricts the upper and lower limit of numerical arguments that this parameter can
accept. When not specified, parameters have no range limit. You can apply this to
parameters that are not numbers, but it has no impact.

[ValidateScript({ script block })]

Ensures that input supplied to this parameter satisfies the condition that you supply
in the script block. PowerShell assigns the proposed input to the $_ variable, and
then invokes your script block. If the script block returns $true (or anything that
can be converted to $true, such as nonempty strings), PowerShell considers the
validation to have been successful.

[ValidateSet("First Option", "Second Option", ..., "Last Option")]

Ensures that input supplied to this parameter is equal to one of the options in the
set. PowerShell uses its standard meaning of equality during this comparison (the
same rules used by the -eq operator). If your validation requires nonstandard rules
(such as case-sensitive comparison of strings), you can instead write the validation
in the body of the script or function.

[ValidateNotNull()]

Ensures that input supplied to this parameter is not null. This is the default be-
havior of mandatory parameters, and this attribute is useful only for optional pa-
rameters. When applied to string parameters, a $null parameter value instead gets
converted to an empty string.

[ValidateNotNullOrEmpty()]

Ensures that input supplied to this parameter is neither null nor empty. This is the
default behavior of mandatory parameters, and this attribute is useful only for
optional parameters. When applied to string parameters, the input must be a string
with a length greater than one. When applied to collection parameters, the

11.12 Add Validation to Parameters | 283

collection must have at least one element. When applied to other types of param-
eters, this attribute is equivalent to the [ValidateNotNull()] attribute.

See Also
Recipe 1.15, “Program: Learn Aliases for Common Parameters”

Recipe 11.18, “Access Pipeline Input”

“Providing Input to Commands” on page 750

Get-Help about_functions_advanced_parameters

11.13 Accept Script Block Parameters with Local Variables

Problem
Your command takes a script block as a parameter. When you invoke that script block,
you want variables to refer to variables from the user’s session, not your script.

Solution
Call the GetNewClosure() method on the supplied script block before either defining
any of your own variables or invoking the script block. See Example 11-13.

Example 11-13. A command that supports variables from the user’s session

##
##
Invoke-ScriptBlockClosure
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the GetNewClosure() method on a script block that pulls variables
in from the user's session (if they are defined).

.EXAMPLE

PS >$name = "Hello There"
PS >Invoke-ScriptBlockClosure { $name }
Hello There
Hello World
Hello There

#>

284 | Chapter 11: Code Reuse

param(
 ## The script block to invoke
 [ScriptBlock] $ScriptBlock
)

Set-StrictMode -Version Latest

Create a new script block that pulls variables
from the user's scope (if defined).
$closedScriptBlock = $scriptBlock.GetNewClosure()

Invoke the script block normally. The contents of
the $name variable will be from the user's session.
& $scriptBlock

Define a new variable
$name = "Hello World"

Invoke the script block normally. The contents of
the $name variable will be "Hello World", now from
our scope.
& $scriptBlock

Invoke the "closed" script block. The contents of
the $name variable will still be whatever was in the user's session
(if it was defined).
& $closedScriptBlock

Discussion
Whenever you invoke a script block (for example, one passed by the user as a parameter
value), PowerShell treats variables in that script block as though you had typed them
yourself. For example, if a variable referenced by the script block is defined in your
script or module, PowerShell will use that value when it evaluates the variable.

This is often desirable behavior, although its use ultimately depends on your script. For
example, Recipe 11.4 accepts a script block parameter that is intended to refer to var-
iables defined within the script: $_, specifically.

Alternatively, this might not always be what you want. Sometimes, you might prefer
that variable names refer to variables from the user’s session, rather than potentially
from your script.

The solution, in this case, is to call the GetNewClosure() method. This method makes
the script block self-contained, or closed. Variables maintain the value they had when
the GetNewClosure() method was called, even if a new variable with that name is created.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.4, “Write a Script Block”

11.13 Accept Script Block Parameters with Local Variables | 285

11.14 Dynamically Compose Command Parameters

Problem
You want to specify the parameters of a command you are about to invoke but don’t
know beforehand what those parameters will be.

Solution
Define the parameters and their values as elements of a hashtable, and then use the @
character to pass that hashtable to a command:

PS > $parameters = @{
 Name = "PowerShell";
 WhatIf = $true
}

PS > Stop-Process @parameters
What if: Performing operation "Stop-Process" on Target "powershell (2380)".
What if: Performing operation "Stop-Process" on Target "powershell (2792)".

Discussion
When writing commands that call other commands, a common problem is not knowing
the exact parameter values that you’ll pass to a target command. The solution to this
is simple, and comes by storing the parameter values in variables:

PS > function Stop-ProcessWhatIf($name)
{
 Stop-Process -Name $name -Whatif
}

PS > Stop-ProcessWhatIf PowerShell
What if: Performing operation "Stop-Process" on Target "powershell (2380)".
What if: Performing operation "Stop-Process" on Target "powershell (2792)".

In version one of PowerShell, things were unreasonably more difficult if you didn’t
know beforehand which parameter names you wanted to pass along. Version two of
PowerShell significantly improves the situation through a technique called splatting
that lets you pass along parameter values and names.

The first step is to define a variable, for example, parameters. In that variable, store a
hashtable of parameter names and their values. When you call a command, you can
pass the hashtable of parameter names and values with the @ character and the variable
name that stores them. Note that you use the @ character to represent the variable,
instead of the usual $ character:

Stop-Process @parameters

This is a common need when writing commands that are designed to enhance or extend
existing commands. In that situation, you simply want to pass all of the user’s input

286 | Chapter 11: Code Reuse

(parameter values and names) on to the existing command, even though you don’t
know exactly what they supplied.

To simplify this situation even further, advanced functions have access to an automatic
variable called PSBoundParameters. This automatic variable is a hashtable that stores all
parameters passed to the current command, and it is suitable for both tweaking and
splatting. For an example of this approach, see Recipe 11.23. For more information
about advanced functions, see Recipe 11.11.

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features

Problem
You want to support the standard -WhatIf and -Confirm parameters, and access cmdlet-
centric support in the PowerShell engine.

Solution
Ensure your script or function declares the [CmdletBinding()] attribute, and then access
engine features through the $psCmdlet automatic variable.

function Invoke-MyAdvancedFunction
{
 [CmdletBinding(SupportsShouldProcess = $true)]
 param()

 if($psCmdlet.ShouldProcess("test.txt", "Remove Item"))
 {
 "Removing test.txt"
 }

 Write-Verbose "Verbose Message"
}

Discussion
When a script or function progresses to an advanced function, PowerShell defines an
additional $psCmdlet automatic variable. This automatic variable exposes support for
the -ShouldProcess and -Confirm automatic parameters. If your command defined pa-
rameter sets, it also exposes the parameter set name that PowerShell selected based on
the user’s choice of parameters. For more information about advanced functions, see
Recipe 11.11.

11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features | 287

To support the -WhatIf and -Confirm parameters, add the [CmdletBinding(Supports
ShouldProcess = $true)] attribute inside of your script or function. You should support
this on any scripts or functions that modify system state, as they let your users inves-
tigate what your script will do before actually doing it. Then, you simply surround the
portion of your script that changes the system with an
if($psCmdlet.ShouldProcess(...)) { } block. Example 11-14 demonstrates this
approach.

Example 11-14. Adding support for -WhatIf and -Confirm

function Invoke-MyAdvancedFunction
{
 [CmdletBinding(SupportsShouldProcess = $true)]
 param()

 if($psCmdlet.ShouldProcess("test.txt", "Remove Item"))
 {
 "Removing test.txt"
 }

 Write-Verbose "Verbose Message"
}

Now your advanced function is as well-behaved as built-in PowerShell cmdlets!

PS > Invoke-MyAdvancedFunction -WhatIf
What if: Performing operation "Remove Item" on Target "test.txt".

If your command causes a high-impact result that should be evaluated with caution,
call the $psCmdlet.ShouldContinue() method. This generates a warning for users—but
be sure to support a -Force parameter that lets them bypass this message.

function Invoke-MyDangerousFunction
{
 [CmdletBinding()]
 param(
 [Switch] $Force
)

 if($Force -or $psCmdlet.ShouldContinue(
 "Do you wish to invoke this dangerous operation? Changes can not be undone.",
 "Invoke dangerous action?"))
 {
 "Invoking dangerous action"
 }
}

This generates a standard PowerShell confirmation message:

PS > Invoke-MyDangerousFunction

Invoke dangerous action?
Do you wish to invoke this dangerous operation? Changes can not be undone.
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

288 | Chapter 11: Code Reuse

Invoking dangerous action

PS > Invoke-MyDangerousFunction -Force
Invoking dangerous action

To explore the $psCmdlet automatic variable further, you can use Example 11-15. This
command creates the bare minimum of advanced function, and then invokes whatever
script block you supply within it.

Example 11-15. Invoke-AdvancedFunction.ps1

param(
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Scriptblock
)

Invoke the script block supplied by the user.
& $scriptblock

For open-ended exploration, use $host.EnterNestedPrompt() as the script block:

PS > Invoke-AdvancedFunction { $host.EnterNestedPrompt() }
PS > $psCmdlet | Get-Member

 TypeName: System.Management.Automation.PSScriptCmdlet

Name MemberType Definition
---- ---------- ----------
(...)
WriteDebug Method System.Void WriteDebug(s...
WriteError Method System.Void WriteError(S...
WriteObject Method System.Void WriteObject(...
WriteProgress Method System.Void WriteProgres...
WriteVerbose Method System.Void WriteVerbose...
WriteWarning Method System.Void WriteWarning...
(...)
ParameterSetName Property System.String ParameterS...

PS > >exit
PS >

For more about cmdlet support in the PowerShell engine, see the developer’s reference
at http://msdn.microsoft.com/en-us/library/dd878294%28VS.85%29.aspx.

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features | 289

http://msdn.microsoft.com/en-us/library/dd878294%28VS.85%29.aspx

11.16 Add Help to Scripts or Functions

Problem
You want to make your command and usage information available to the Get-Help
command.

Solution
Add descriptive help comments at the beginning of your script for its synopsis, de-
scription, examples, notes, and more. Add descriptive help comments before parame-
ters to describe their meaning and behavior.

##
##
Measure-CommandPerformance
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS
Measures the average time of a command, accounting for natural variability by
automatically ignoring the top and bottom ten percent.

.EXAMPLE
PS > .\Measure-CommandPerformance.ps1 { Start-Sleep -m 300 }

Count : 30
Average : 312.10155
(...)

#>

param(
 ## The command to measure
 [Scriptblock] $command,

 ## The number of times to measure the command's performance
 [int] $iterations = 30)

(...)

Discussion
Like parameter validation, discussed in Recipe 11.12, rich help is something tradition-
ally supported in only the most high-end commands. For most commands, you’re lucky
if you can figure out how to get some form of usage message.

290 | Chapter 11: Code Reuse

As with PowerShell’s easy-to-define support for advanced parameter validation, adding
help to commands and functions is extremely simple. Despite its simplicity, comment-
based help provides all the power you’ve come to expect of fully featured PowerShell
commands: overview, description, examples, parameter-specific details, and more.

PowerShell creates help for your script or function by looking at its comments. If the
comments include any supported help tags, PowerShell adds those to the help for your
command.

To speed up processing of these help comments, PowerShell places
restrictions on where they may appear. In addition, if it encounters a
comment that is not a help-based comment, it stops searching that block
of comments for help tags. This may come as a surprise if you are used
to placing headers or copyright information at the beginning of your
script. The solution demonstrates how to avoid this problem by putting
the header and comment-based help in separate comment blocks. For
more information about these guidelines, type Get-Help

about_Comment_Based_Help.

You can place your help tags in either single-line comments or multiline (block) com-
ments. You may find multiline comments easier to work with, as you can write them
in editors that support spelling and grammar checks and then simply paste them into
your script. Also, adjusting the word-wrapping of your comment is easier when you
don’t have to repair comment markers at the beginning of the line. From the user’s
perspective, multiline comments offer a significant benefit for the .EXAMPLES section
because they require much less modification before being tried.

Comment-based help supports the following tags, which are all case-insensitive.

.SYNOPSIS

A short summary of the command, ideally a single sentence.

.DESCRIPTION

A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each parameter you want to describe.
While you can write a .PARAMETER comment for each parameter, PowerShell also
supports comments written directly above the parameter (as shown in the solu-
tion). Putting parameter help alongside the actual parameter makes it easier to read
and maintain.

.EXAMPLE

An example of this command in use, with one for each example you want to pro-
vide. PowerShell treats the line immediately beneath the .EXAMPLE tag as the ex-
ample command. If this line doesn’t contain any text that looks like a prompt,

11.16 Add Help to Scripts or Functions | 291

PowerShell adds a prompt before it. It treats lines that follow the initial line as
additional output and example commentary.

.INPUTS

A short summary of pipeline input(s) supported by this command. For each input
type, PowerShell’s built-in help follows this convention:

System.String
 You can pipe a string that contains a path to Get-ChildItem.

.OUTPUTS

A short summary of items generated by this command. For each output type,
PowerShell’s built-in help follows this convention:

System.ServiceProcess.ServiceController
 Get-Service returns objects that represent the services on the computer.

.NOTES

Any additional notes or remarks about this command.

.LINK

A link to a related help topic or command, with one .LINK tag per link. If the related
help topic is a URL, PowerShell launches that URL when the user supplies the
-Online parameter to Get-Help for your command.

Although these are all of the supported help tags you are likely to use, comment-based
help also supports tags for some of Get-Help’s more obscure fea-
tures: .COMPONENT, .ROLE, .FUNCTIONALITY, .FORWARDHELPTARGETNAME, .FORWARDHELPCATE
GORY, .REMOTEHELPRUNSPACE, and .EXTERNALHELP. For more information about these, type
Get-Help about_Comment_Based_Help.

See Also
Recipe 11.12, “Add Validation to Parameters”

Get-Help about_Comment_Based_Help

11.17 Add Custom Tags to a Function or Script Block

Problem
You want to tag or add your own custom information to a function or script block.

Solution
If you want the custom information to always be associated with the function or script
block, declare a System.ComponentModel.Description attribute inside that function:

function TestFunction
{
 [System.ComponentModel.Description("Information I care about")]

292 | Chapter 11: Code Reuse

 param()

 "Some function with metadata"
}

If you don’t control the source code of the function, create a new
System.ComponentModel.Description attribute, and add it to the script block’s Attrib
utes collection manually:

$testFunction = Get-Command TestFunction
$newAttribute =
 New-Object ComponentModel.DescriptionAttribute "More information I care about"
$testFunction.ScriptBlock.Attributes.Add($newAttribute)

To retrieve any attributes associated with a function or script block, access the Script
Block.Attributes property:

PS > $testFunction = Get-Command TestFunction
PS > $testFunction.ScriptBlock.Attributes

Description TypeId
----------- ------
Information I care about System.ComponentModel.Description...

Discussion
Although a specialized need for sure, it is sometimes helpful to add your own custom
information to functions or script blocks. For example, once you’ve built up a large set
of functions, many are really useful only in a specific context. Some functions might
apply to only one of your clients, whereas others are written for a custom website you’re
developing. If you forget the name of a function, you might have difficulty going
through all of your functions to find the ones that apply to your current context.

You might find it helpful to write a new function, Get-CommandForContext, that takes a
context (for example, website) and returns only commands that apply to that context.

function Get-CommandForContext($context)
{
 Get-Command -CommandType Function |
 Where-Object { $_.ScriptBlock.Attributes |
 Where-Object { $_.Description -eq "Context=$context" } }
}

Then write some functions that apply to specific contexts:

function WebsiteFunction
{
 [System.ComponentModel.Description("Context=Website")]
 param()

 "Some function I use with my website"
}

function ExchangeFunction
{

11.17 Add Custom Tags to a Function or Script Block | 293

 [System.ComponentModel.Description("Context=Exchange")]
 param()

 "Some function I use with Exchange"
}

Then, by building on these two, we have a context-sensitive equivalent to Get-Command:

PS > Get-CommandForContext Website

CommandType Name Definition
----------- ---- ----------
Function WebsiteFunction ...

PS > Get-CommandForContext Exchange

CommandType Name Definition
----------- ---- ----------
Function ExchangeFunction ...

While the System.ComponentModel.Description attribute is the most generically useful,
PowerShell lets you place any attribute in a function. You can define your own (by
deriving from the System.Attribute class in the .NET Framework) or use any of the
other attributes included in the .NET Framework. Example 11-16 shows the Power-
Shell commands to find all attributes that have a constructor that takes a single string
as its argument. These attributes are likely to be generally useful.

Example 11-16. Finding all useful attributes

$types = [Appdomain]::CurrentDomain.GetAssemblies() |
 Foreach-Object { $_.GetTypes() }

foreach($type in $types)
{
 if($type.BaseType -eq [System.Attribute])
 {
 foreach($constructor in $type.GetConstructors())
 {
 if($constructor.ToString() -match "\(System.String\)")
 {
 $type
 }
 }
 }
}

For more information about working with .NET objects, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

294 | Chapter 11: Code Reuse

11.18 Access Pipeline Input

Problem
You want to interact with input that a user sends to your function, script, or script
block via the pipeline.

Solution
To access pipeline input, use the $input variable, as shown in Example 11-17.

Example 11-17. Accessing pipeline input

function InputCounter
{
 $count = 0

 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 foreach($element in $input)
 {
 $count++
 }

 $count
}

This function produces the following (or similar) output when run against your Win-
dows system directory:

PS > dir $env:WINDIR | InputCounter
295

Discussion
In your scripts, functions, and script blocks, the $input variable represents an enumer-
ator (as opposed to a simple array) for the pipeline input the user provides. An enu-
merator lets you use a foreach statement to efficiently scan over the elements of the
input (as shown in Example 11-17) but does not let you directly access specific items
(such as the fifth element in the input, for example).

An enumerator only lets you scan forward through its contents. Once
you access an element, PowerShell automatically moves on to the next
one. If you need to access an item that you’ve already accessed, you must
either call $input.Reset() to scan through the list again from the be-
ginning or store the input in an array.

If you need to access specific elements in the input (or access items multiple times), the
best approach is to store the input in an array. This prevents your script from taking

11.18 Access Pipeline Input | 295

advantage of the $input enumerator’s streaming behavior, but is sometimes the only
alternative. To store the input in an array, use PowerShell’s list evaluation syntax
(@()) to force PowerShell to interpret it as an array.

function ReverseInput
{
 $inputArray = @($input)
 $inputEnd = $inputArray.Count - 1

 $inputArray[$inputEnd..0]
}

This produces:

PS > 1,2,3,4 | ReverseInput
4
3
2
1

If dealing with pipeline input plays a major role in your script, function, or script block,
PowerShell provides an alternative means of dealing with pipeline input that may make
your script easier to write and understand. For more information, see Recipe 11.19.

See Also
Recipe 11.19, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords

Problem
Your script, function, or script block primarily takes input from the pipeline, and you
want to write it in a way that makes this intention both easy to implement and easy to
read.

Solution
To cleanly separate your script into regions that deal with the initialization, per-record
processing, and cleanup portions, use the begin, process, and end keywords, respec-
tively. For example, a pipeline-oriented conversion of the solution in Recipe 11.18 looks
like Example 11-18.

Example 11-18. A pipeline-oriented script that uses cmdlet keywords

function InputCounter
{
 begin
 {
 $count = 0
 {

296 | Chapter 11: Code Reuse

 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 process
 {
 Write-Debug "Processing element $_"
 $count++
 }

 end
 {
 $count
 }
}

This produces the following output:

PS > $debugPreference = "Continue"
PS > dir | InputCounter
DEBUG: Processing element Compare-Property.ps1
DEBUG: Processing element Connect-WebService.ps1
DEBUG: Processing element Convert-TextObject.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithFunction.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithoutFunction.ps1
DEBUG: Processing element Get-AliasSuggestion.ps1
(...)
DEBUG: Processing element Select-FilteredObject.ps1
DEBUG: Processing element Set-ConsoleProperties.ps1
20

Discussion
If your script, function, or script block deals primarily with input from the pipeline, the
begin, process, and end keywords let you express your solution most clearly. Readers
of your script (including you!) can easily see which portions of your script deal with
initialization, per-record processing, and cleanup. In addition, separating your code
into these blocks lets your script consume elements from the pipeline as soon as the
previous script produces them.

Take, for example, the Get-InputWithForeach and Get-InputWithKeyword functions
shown in Example 11-19. The first function visits each element in the pipeline with a
foreach statement over its input, whereas the second uses the begin, process, and end
keywords.

Example 11-19. Two functions that take different approaches to processing pipeline input

From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)

Set-StrictMode -Version Latest

Process each element in the pipeline, using a
foreach statement to visit each element in $input
function Get-InputWithForeach($identifier)

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 297

{
 Write-Host "Beginning InputWithForeach (ID: $identifier)"

 foreach($element in $input)
 {
 Write-Host "Processing element $element (ID: $identifier)"
 $element
 }

 Write-Host "Ending InputWithForeach (ID: $identifier)"
}

Process each element in the pipeline, using the
cmdlet-style keywords to visit each element in $input
function Get-InputWithKeyword($identifier)
{
 begin
 {
 Write-Host "Beginning InputWithKeyword (ID: $identifier)"
 }

 process
 {
 Write-Host "Processing element $_ (ID: $identifier)"
 $_
 }

 end
 {
 Write-Host "Ending InputWithKeyword (ID: $identifier)"
 }
}

Both of these functions act the same when run individually, but the difference becomes
clear when we combine them with other scripts or functions that take pipeline input.
When a script uses the $input variable, it must wait until the previous script finishes
producing output before it can start. If the previous script takes a long time to produce
all its records (for example, a large directory listing), then your user must wait until the
entire directory listing completes to see any results, rather than seeing results for each
item as the script generates it.

If a script, function, or script block uses the cmdlet-style keywords, it
must place all its code (aside from comments or its param statement if it
uses one) inside one of the three blocks. If your code needs to define
and initialize variables or define functions, place them in the begin
block. Unlike most blocks of code contained within curly braces, the
code in the begin, process, and end blocks has access to variables and
functions defined within the blocks before it.

298 | Chapter 11: Code Reuse

When we chain together two scripts that process their input with the begin, process,
and end keywords, the second script gets to process input as soon as the first script
produces it.

PS > 1,2,3 | Get-InputWithKeyword 1 | Get-InputWithKeyword 2
Starting InputWithKeyword (ID: 1)
Starting InputWithKeyword (ID: 2)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Stopping InputWithKeyword (ID: 1)
Stopping InputWithKeyword (ID: 2)

When we chain together two scripts that process their input with the $input variable,
the second script can’t start until the first completes.

PS > 1,2,3 | Get-InputWithForeach 1 | Get-InputWithForeach 2
Starting InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)
Processing element 3 (ID: 1)
Stopping InputWithForeach (ID: 1)
Starting InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 2)

When the first script uses the cmdlet-style keywords, and the second script uses the
$input variable, the second script can’t start until the first completes.

PS > 1,2,3 | Get-InputWithKeyword 1 | Get-InputWithForeach 2
Starting InputWithKeyword (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)
Processing element 3 (ID: 1)
Stopping InputWithKeyword (ID: 1)
Starting InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 2)

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 299

When the first script uses the $input variable and the second script uses the cmdlet-
style keywords, the second script gets to process input as soon as the first script pro-
duces it. Notice, however, that InputWithKeyword starts before InputWithForeach. This
is because functions with no explicit begin, process, or end blocks have all of their code
placed in an end block by default.

PS > 1,2,3 | Get-InputWithForeach 1 | Get-InputWithKeyword 2
Starting InputWithKeyword (ID: 2)
Starting InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 1)
Stopping InputWithKeyword (ID: 2)

For more information about dealing with pipeline input, see “Writing Scripts, Reusing
Functionality” on page 746.

See Also
Recipe 11.18, “Access Pipeline Input”

“Writing Scripts, Reusing Functionality” on page 746

11.20 Write a Pipeline-Oriented Function

Problem
Your function primarily takes its input from the pipeline, and you want it to perform
the same steps for each element of that input.

Solution
To write a pipeline-oriented function, define your function using the filter keyword,
rather than the function keyword. PowerShell makes the current pipeline object avail-
able as the $_ variable.

filter Get-PropertyValue($property)
{
 $_.$property
}

300 | Chapter 11: Code Reuse

Discussion
A filter is the equivalent of a function that uses the cmdlet-style keywords and has all
its code inside the process section.

The solution demonstrates an extremely useful filter: one that returns the value of a
property for each item in a pipeline.

PS > Get-Process | Get-PropertyValue Name
audiodg
avgamsvr
avgemc
avgrssvc
avgrssvc
avgupsvc
(...)

For a more complete example of this approach, see Recipe 2.7. For more information
about the cmdlet-style keywords, see Recipe 11.19.

See Also
Recipe 2.7, “Program: Simplify Most Foreach-Object Pipelines”

Recipe 11.19, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

11.21 Organize Scripts for Improved Readability

Problem
You have a long script that includes helper functions, but those helper functions ob-
scure the main intent of the script.

Solution
Place the main logic of your script in a function called Main, and place that function at
the top of your script. At the bottom of your script (after all the helper functions have
also been defined), dot source the Main function.

LongScript.ps1

function Main
{
 "Invoking the main logic of the script"
 CallHelperFunction1
 CallHelperFunction2
}

function CallHelperFunction1
{
 "Calling the first helper function"
}

11.21 Organize Scripts for Improved Readability | 301

function CallHelperFunction2
{
 "Calling the second helper function"
}

. Main

Discussion
When PowerShell invokes a script, it executes it in order from the beginning to the end.
Just as when you type commands in the console, PowerShell generates an error if you
try to call a function that you haven’t yet defined.

When writing a long script with lots of helper functions, this usually results in those
helper functions migrating to the top of the script so that they are all defined by the
time your main logic finally executes them. When reading the script, then, you are
forced to wade through pages of seemingly unrelated helper functions just to reach the
main logic of the script.

You might wonder why PowerShell requires this strict ordering of func-
tion definitions and when they are called. After all, a script is self-
contained, and it would be possible for PowerShell to process all of the
function definitions before invoking the script.

The reason is parity with the interactive environment. Pasting a script
into the console window is a common diagnostic or experimental tech-
nique, as is highlighting portions of a script in the Integrated Scripting
Environment and selecting “Run Selection.” If PowerShell did some-
thing special in an imaginary script mode, these techniques would not
be possible.

To resolve this problem, you can place the main script logic in a function of its own.
The name doesn’t matter, but Main is a traditional name. If you place this function at
the top of the script, your main logic is visible immediately.

Functions aren’t automatically executed, so the final step is to invoke the Main function.
Place this call at the end of your script, and you can be sure that all the required helper
functions have been defined. Dot sourcing this function ensures that it is processed in
the script scope, rather than the isolated function scope that would normally be created
for it.

For more information about dot sourcing and script scopes, see Recipe 3.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

302 | Chapter 11: Code Reuse

11.22 Invoke Dynamically Named Commands

Problem
You want to take an action based on the pattern of a command name, as opposed to
the name of the command itself.

Solution
Add a command wrapper for the Out-Default cmdlet that intercepts CommandNotFound
errors and takes action based on the TargetObject of that error.

Example 11-20 illustrates this technique by supporting relative path navigation without
an explicit call to Set-Location.

Example 11-20. Add-RelativePathCapture.ps1

##
##
Add-RelativePathCapture
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds a new Out-Default command wrapper that captures relative path
navigation without having to explicitly call 'Set-Location'

.EXAMPLE

PS C:\Users\Lee\Documents>..
PS C:\Users\Lee>...
PS C:\>

.NOTES

This commands builds on New-CommandWrapper, also included in the Windows
PowerShell Cookbook.

#>

Set-StrictMode -Version Latest

New-CommandWrapper Out-Default `
 -Process {
 if(($_ -is [System.Management.Automation.ErrorRecord]) -and
 ($_.FullyQualifiedErrorId -eq "CommandNotFoundException"))
 {

11.22 Invoke Dynamically Named Commands | 303

 ## Intercept all CommandNotFound exceptions, where the actual
 ## command consisted solely of dots.
 $command = $_.TargetObject
 if($command -match '^(\.)+$')
 {
 ## Count the number of dots, and go that many levels (minus
 ## one) up the directory hierarchy.
 $newLocation = "..\" * ($command.Length - 1)
 if($newLocation) { Set-Location $newLocation }

 ## Handle the error
 $error.RemoveAt(0)
 $_ = $null
 }
 }
 }

Discussion
PowerShell supports several useful forms of named commands (cmdlets, functions, and
aliases), but you may find yourself wanting to write extensions that alter their behavior
based on the form of the name, rather than the arguments passed to it. For example,
you might want to automatically launch URLs just by typing them or navigate around
providers just by typing relative path locations.

While this is not a built-in feature of PowerShell, it is possible to get a very reasonable
alternative by intercepting the errors that PowerShell generates when it can’t find a
command. The example in the Solution does just this, by building a command wrapper
over the Out-Default command to intercept and act on commands that consist solely
of dots.

See Also
Recipe 2.8, “Intercept Stages of the Pipeline”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

11.23 Program: Enhance or Extend an Existing Cmdlet
While PowerShell’s built-in commands are useful, you may sometimes wish they had
included an additional parameter or supported a minor change to their functionality.
This was difficult in version one of PowerShell, since “wrapping” another command
was technical and error-prone. In addition to the complexity of parsing parameters and
passing only the correct ones along, previous solutions also prevented wrapped com-
mands from benefiting from the streaming nature of PowerShell’s pipeline.

Version two of PowerShell significantly improves the situation by combining three new
features:

304 | Chapter 11: Code Reuse

Steppable pipelines
Given a script block that contains a single pipeline, the GetSteppablePipeline()
method returns a SteppablePipeline object that gives you control over the Begin,
Process, and End stages of the pipeline.

Argument splatting
Given a hashtable of names and values, PowerShell lets you pass the entire
hashtable to a command. If you use the @ symbol to identify the hashtable variable
name (rather than the $ symbol), PowerShell then treats each element of the
hashtable as though it were a parameter to the command.

Proxy command APIs
With enough knowledge of steppable pipelines, splatting, and parameter valida-
tion, you can write your own function that can effectively wrap another command.
The proxy command APIs make this significantly easier by auto-generating large
chunks of the required boilerplate script.

These three features finally enable the possibility of powerful command extensions,
but putting them together still requires a fair bit of technical expertise. To make things
easier, use the New-CommandWrapper script (Example 11-21) to easily create commands
that wrap (and extend) existing commands.

Example 11-21. New-CommandWrapper.ps1

##
##
New-CommandWrapper
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds parameters and functionality to existing cmdlets and functions.

.EXAMPLE

New-CommandWrapper Get-Process `
 -AddParameter @{
 SortBy = {
 $newPipeline = {
 __ORIGINAL_COMMAND__ | Sort-Object -Property $SortBy
 }
 }
 }

This example adds a 'SortBy' parameter to Get-Process. It accomplishes
this by adding a Sort-Object command to the pipeline.

11.23 Program: Enhance or Extend an Existing Cmdlet | 305

.EXAMPLE

$parameterAttributes = @'
 [Parameter(Mandatory = $true)]
 [ValidateRange(50,75)]
 [Int]
'@

New-CommandWrapper Clear-Host `
 -AddParameter @{
 @{
 Name = 'MyMandatoryInt';
 Attributes = $parameterAttributes
 } = {
 Write-Host $MyMandatoryInt
 Read-Host "Press ENTER"
 }
 }

This example adds a new mandatory 'MyMandatoryInt' parameter to
Clear-Host. This parameter is also validated to fall within the range
of 50 to 75. It doesn't alter the pipeline, but does display some
information on the screen before processing the original pipeline.

#>

param(
 ## The name of the command to extend
 [Parameter(Mandatory = $true)]
 $Name,

 ## Script to invoke before the command begins
 [ScriptBlock] $Begin,

 ## Script to invoke for each input element
 [ScriptBlock] $Process,

 ## Script to invoke at the end of the command
 [ScriptBlock] $End,

 ## Parameters to add, and their functionality.
 ##
 ## The Key of the hashtable can be either a simple parameter name,
 ## or a more advanced parameter description.
 ##
 ## If you want to add additional parameter validation (such as a
 ## parameter type,) then the key can itself be a hashtable with the keys
 ## 'Name' and 'Attributes'. 'Attributes' is the text you would use when
 ## defining this parameter as part of a function.
 ##
 ## The Value of each hashtable entry is a script block to invoke
 ## when this parameter is selected. To customize the pipeline,
 ## assign a new script block to the $newPipeline variable. Use the
 ## special text, __ORIGINAL_COMMAND__, to represent the original

306 | Chapter 11: Code Reuse

 ## command. The $targetParameters variable represents a hashtable
 ## containing the parameters that will be passed to the original
 ## command.
 [HashTable] $AddParameter
)

Set-StrictMode -Version Latest

Store the target command we are wrapping and its command type
$target = $Name
$commandType = "Cmdlet"

If a function already exists with this name (perhaps it's already been
wrapped), rename the other function and chain to its new name.
if(Test-Path function:\$Name)
{
 $target = "$Name" + "-" + [Guid]::NewGuid().ToString().Replace("-","")
 Rename-Item function:\GLOBAL:$Name GLOBAL:$target
 $commandType = "Function"
}

The template we use for generating a command proxy
$proxy = @'

__CMDLET_BINDING_ATTRIBUTE__
param(
__PARAMETERS__
)
begin
{
 try {
 __CUSTOM_BEGIN__

 ## Access the REAL Foreach-Object command, so that command
 ## wrappers do not interfere with this script
 $foreachObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Foreach-Object")

 $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand(
 '__COMMAND_NAME__',
 [System.Management.Automation.CommandTypes]::__COMMAND_TYPE__)

 ## TargetParameters represents the hashtable of parameters that
 ## we will pass along to the wrapped command
 $targetParameters = @{}
 $PSBoundParameters.GetEnumerator() |
 & $foreachObject {
 if($command.Parameters.ContainsKey($_.Key))
 {
 $targetParameters.Add($_.Key, $_.Value)
 }
 }

 ## finalPipeline represents the pipeline we wil ultimately run
 $newPipeline = { & $wrappedCmd @targetParameters }

11.23 Program: Enhance or Extend an Existing Cmdlet | 307

 $finalPipeline = $newPipeline.ToString()

 __CUSTOM_PARAMETER_PROCESSING__

 $steppablePipeline = [ScriptBlock]::Create(
 $finalPipeline).GetSteppablePipeline()
 $steppablePipeline.Begin($PSCmdlet)
 } catch {
 throw
 }
}

process
{
 try {
 __CUSTOM_PROCESS__
 $steppablePipeline.Process($_)
 } catch {
 throw
 }
}

end
{
 try {
 __CUSTOM_END__
 $steppablePipeline.End()
 } catch {
 throw
 }
}

dynamicparam
{
 ## Access the REAL Get-Command, Foreach-Object, and Where-Object
 ## commands, so that command wrappers do not interfere with this script
 $getCommand = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Get-Command")
 $foreachObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Foreach-Object")
 $whereObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Where-Object")

 ## Find the parameters of the original command, and remove everything
 ## else from the bound parameter list so we hide parameters the wrapped
 ## command does not recognize.
 $command = & $getCommand __COMMAND_NAME__ -Type __COMMAND_TYPE__
 $targetParameters = @{}
 $PSBoundParameters.GetEnumerator() |
 & $foreachObject {
 if($command.Parameters.ContainsKey($_.Key))
 {
 $targetParameters.Add($_.Key, $_.Value)
 }
 }

308 | Chapter 11: Code Reuse

 ## Get the argumment list as it would be passed to the target command
 $argList = @($targetParameters.GetEnumerator() |
 Foreach-Object { "-$($_.Key)"; $_.Value })

 ## Get the dynamic parameters of the wrapped command, based on the
 ## arguments to this command
 $command = $null
 try
 {
 $command = & $getCommand __COMMAND_NAME__ -Type __COMMAND_TYPE__ `
 -ArgumentList $argList
 }
 catch
 {

 }

 $dynamicParams = @($command.Parameters.GetEnumerator() |
 & $whereObject { $_.Value.IsDynamic })

 ## For each of the dynamic parameters, add them to the dynamic
 ## parameters that we return.
 if ($dynamicParams.Length -gt 0)
 {
 $paramDictionary = `
 New-Object Management.Automation.RuntimeDefinedParameterDictionary
 foreach ($param in $dynamicParams)
 {
 $param = $param.Value
 $arguments = $param.Name, $param.ParameterType, $param.Attributes
 $newParameter = `
 New-Object Management.Automation.RuntimeDefinedParameter `
 $arguments
 $paramDictionary.Add($param.Name, $newParameter)
 }
 return $paramDictionary
 }
}

<#

.ForwardHelpTargetName __COMMAND_NAME__

.ForwardHelpCategory __COMMAND_TYPE__

#>

'@

Get the information about the original command
$originalCommand = Get-Command $target
$metaData = New-Object System.Management.Automation.CommandMetaData `
 $originalCommand
$proxyCommandType = [System.Management.Automation.ProxyCommand]

11.23 Program: Enhance or Extend an Existing Cmdlet | 309

Generate the cmdlet binding attribute, and replace information
about the target
$proxy = $proxy.Replace("__CMDLET_BINDING_ATTRIBUTE__",
 $proxyCommandType::GetCmdletBindingAttribute($metaData))
$proxy = $proxy.Replace("__COMMAND_NAME__", $target)
$proxy = $proxy.Replace("__COMMAND_TYPE__", $commandType)

Stores new text we'll be putting in the param() block
$newParamBlockCode = ""

Stores new text we'll be putting in the begin block
(mostly due to parameter processing)
$beginAdditions = ""

If the user wants to add a parameter
$currentParameter = $originalCommand.Parameters.Count
if($AddParameter)
{
 foreach($parameter in $AddParameter.Keys)
 {
 ## Get the code associated with this parameter
 $parameterCode = $AddParameter[$parameter]

 ## If it's an advanced parameter declaration, the hashtable
 ## holds the validation and / or type restrictions
 if($parameter -is [Hashtable])
 {
 ## Add their attributes and other information to
 ## the variable holding the parameter block additions
 if($currentParameter -gt 0)
 {
 $newParamBlockCode += ","
 }

 $newParamBlockCode += "`n`n " +
 $parameter.Attributes + "`n" +
 ' $' + $parameter.Name

 $parameter = $parameter.Name
 }
 else
 {
 ## If this is a simple parameter name, add it to the list of
 ## parameters. The proxy generation APIs will take care of
 ## adding it to the param() block.
 $newParameter =
 New-Object System.Management.Automation.ParameterMetadata `
 $parameter
 $metaData.Parameters.Add($parameter, $newParameter)
 }

 $parameterCode = $parameterCode.ToString()

 ## Create the template code that invokes their parameter code if
 ## the parameter is selected.

310 | Chapter 11: Code Reuse

 $templateCode = @"

 if(`$PSBoundParameters['$parameter'])
 {
 $parameterCode

 ## Replace the __ORIGINAL_COMMAND__ tag with the code
 ## that represents the original command
 `$alteredPipeline = `$newPipeline.ToString()
 `$finalPipeline = `$alteredPipeline.Replace(
 '__ORIGINAL_COMMAND__', `$finalPipeline)
 }
"@

 ## Add the template code to the list of changes we're making
 ## to the begin() section.
 $beginAdditions += $templateCode
 $currentParameter++
 }
}

Generate the param() block
$parameters = $proxyCommandType::GetParamBlock($metaData)
if($newParamBlockCode) { $parameters += $newParamBlockCode }
$proxy = $proxy.Replace('__PARAMETERS__', $parameters)

Update the begin, process, and end sections
$proxy = $proxy.Replace('__CUSTOM_BEGIN__', $Begin)
$proxy = $proxy.Replace('__CUSTOM_PARAMETER_PROCESSING__', $beginAdditions)
$proxy = $proxy.Replace('__CUSTOM_PROCESS__', $Process)
$proxy = $proxy.Replace('__CUSTOM_END__', $End)

Save the function wrapper
Write-Verbose $proxy
Set-Content function:\GLOBAL:$NAME $proxy

If we were wrapping a cmdlet, hide it so that it doesn't conflict with
Get-Help and Get-Command
if($commandType -eq "Cmdlet")
{
 $originalCommand.Visibility = "Private"
}

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

11.23 Program: Enhance or Extend an Existing Cmdlet | 311

CHAPTER 12

Internet-Enabled Scripts

12.0 Introduction
Although PowerShell provides an enormous benefit even when your scripts interact
only with the local system, working with data sources from the Internet opens exciting
and unique opportunities. For example, you might download files or information from
the Internet, interact with a web service, store your output as HTML, or even send an
email that reports the results of a long-running script.

Through its cmdlets and access to the networking support in the .NET Framework,
PowerShell provides ample opportunities for Internet-enabled administration.

12.1 Download a File from the Internet

Problem
You want to download a file from a website on the Internet.

Solution
Use the DownloadFile() method from the .NET Framework’s System.Net.WebClient
class to download a file:

PS > $source = "http://www.leeholmes.com/favicon.ico"
PS > $destination = "c:\temp\favicon.ico"
PS >
PS > $wc = New-Object System.Net.WebClient
PS > $wc.DownloadFile($source, $destination)

Discussion
The System.Net.WebClient class from the .NET Framework lets you easily upload and
download data from remote web servers.

313

The WebClient class acts much like a web browser, in that you can specify a user agent,
a proxy (if your outgoing connection requires one), and even credentials.

All web browsers send a user agent identifier along with their web request. This iden-
tifier tells the website what application is making the request—such as Internet Ex-
plorer, Firefox, or an automated crawler from a search engine. Many websites check
this user agent identifier to determine how to display the page. Unfortunately, many
fail entirely if they can’t determine the user agent for the incoming request. To make
the System.Net.WebClient identify itself as Internet Explorer, use the following com-
mands instead:

$userAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2;)"
$wc = New-Object System.Net.WebClient
$wc.Headers.Add("user-agent", $userAgent)

Notice that the solution uses a fully qualified path for the destination file. This is an
important step, as otherwise the DownloadFile() method saves its files to the directory
in which PowerShell.exe started (the root of your user profile directory by default).

You can use the DownloadFile() method to download web pages just as easily as you
download files. Just supply a URL as a source (such as http://blogs.msdn.com/power
shell/rss.xml) instead of a filename. If you ultimately intend to parse or read through
the downloaded page, the DownloadString() method may be more appropriate.

For more information on how to download and parse web pages, see Recipe 12.2.

See Also
Recipe 12.2, “Download a Web Page from the Internet”

12.2 Download a Web Page from the Internet

Problem
You want to download a web page from the Internet and work with the content as a
plain string.

Solution
Use the DownloadString() method from the .NET Framework’s System.Net.WebClient
class to download a web page or plain text file into a string.

PS > $source = "http://blogs.msdn.com/powershell/rss.xml"
PS >
PS > $wc = New-Object System.Net.WebClient
PS > $content = $wc.DownloadString($source)

314 | Chapter 12: Internet-Enabled Scripts

http://blogs.msdn.com/powershell/rss.xml
http://blogs.msdn.com/powershell/rss.xml

Discussion
The most common reason to download a web page from the Internet is to extract
unstructured information from it. Although web services are becoming increasingly
popular, they are still far less common than web pages that display useful data. Because
of this, retrieving data from services on the Internet often comes by means of screen
scraping: downloading the HTML of the web page and then carefully separating out
the content you want from the vast majority of the content that you do not.

The technique of screen scraping has been around much longer than the Internet! As
long as computer systems have generated output designed primarily for humans, screen
scraping tools have risen to make this output available to other computer programs.

Unfortunately, screen scraping is an error-prone way to extract content.

That’s not an exaggeration! As proof, Example 12-2 (shown later in this
recipe) broke four or five times while the first edition of this book was
being written, and then again after it was published. Such are the perils
of screen scraping.

If the web page authors change the underlying HTML, your code will usually stop
working correctly. If the site’s HTML is written as valid XHTML, you may be able to
use PowerShell’s built-in XML support to more easily parse the content.

For more information about PowerShell’s built-in XML support, see Recipe 10.1.

Despite its fragility, pure screen scraping is often the only alternative. Since screen
scraping is just text manipulation, you have the same options you do with other text
reports. For some fairly structured web pages, you can get away with a single regular
expression replacement (plus cleanup), as shown in Example 12-1.

Example 12-1. Search-Twitter.ps1

##
##
Search-Twitter
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search Twitter for recent mentions of a search term

12.2 Download a Web Page from the Internet | 315

.EXAMPLE

Search-Twitter PowerShell
Searches Twitter for the term "PowerShell"

#>

param(
 ## The term to search for
 $Pattern = "PowerShell"
)

Set-StrictMode -Version Latest

Create the URL that contains the Twitter search results
Add-Type -Assembly System.Web
$queryUrl = 'http://integratedsearch.twitter.com/search.html?q={0}'
$queryUrl = $queryUrl -f ([System.Web.HttpUtility]::UrlEncode($pattern))

Download the web page
$wc = New-Object System.Net.WebClient
$wc.Encoding = [System.Text.Encoding]::UTF8
$results = $wc.DownloadString($queryUrl)

Extract the text of the messages, which are contained in
segments that look like "<div class='msg'>...</div>"
$matches = $results |
 Select-String -Pattern '(?s)<div[^>]*msg[^>]*>.*?</div>' -AllMatches

foreach($match in $matches.Matches)
{
 ## Replace anything in angle brackets with an empty string,
 ## leaving just plain text remaining.
 $tweet = $match.Value -replace '<[^>]*>', ''

 ## Output the text
 [System.Web.HttpUtility]::HtmlDecode($tweet.Trim()) + "`n"
}

Text parsing on less structured web pages, while possible to accomplish with compli-
cated regular expressions, can often be made much simpler through more straightfor-
ward text manipulation. Example 12-2 uses this second approach to fetch “Instant
Answers” from Bing.

Example 12-2. Get-Answer.ps1

##
##
Get-Answer
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

316 | Chapter 12: Internet-Enabled Scripts

<#

.SYNOPSIS

Uses Bing Answers to answer your question

.EXAMPLE

Get-Answer "(5 + e) * sqrt(x) = Pi"
Calculation
(5+e)*sqrt (x)=pi : x=0.165676

.EXAMPLE

Get-Answer msft stock
Microsoft Corp (US:MSFT) NASDAQ
29.66 -0.35 (-1.17%)
After Hours: 30.02 +0.36 (1.21%)
Open: 30.09 Day's Range: 29.59 - 30.20
Volume: 55.60 M 52 Week Range: 17.27 - 31.50
P/E Ratio: 16.30 Market Cap: 260.13 B

#>

Set-StrictMode -Version Latest

$question = $args -join " "

function Main
{
 ## Load the System.Web.HttpUtility DLL, to let us URLEncode
 Add-Type -Assembly System.Web

 ## Get the web page into a single string with newlines between
 ## the lines.
 $encoded = [System.Web.HttpUtility]::UrlEncode($question)
 $url = "http://www.bing.com/search?q=$encoded"
 $text = (new-object System.Net.WebClient).DownloadString($url)

 ## Find the start of the answers section
 $startIndex = $text.IndexOf('<div class="ans">')

 ## The end is either defined by an "attribution" div
 ## or the start of a "results" div
 $endIndex = $text.IndexOf('<div class="sn_att2">')
 if($endIndex -lt 0) { $endIndex = $text.IndexOf('<div id="results">') }

 ## If we found a result, then filter the result
 if(($startIndex -ge 0) -and ($endIndex -ge 0))
 {
 ## Pull out the text between the start and end portions
 $partialText = $text.Substring($startIndex, $endIndex - $startIndex)

 ## Very fragile screen scraping here. Replace a bunch of
 ## tags that get placed on new lines with the newline

12.2 Download a Web Page from the Internet | 317

 ## character, and a few others with spaces.
 $partialText = $partialText -replace '<div[^>]*>',"`n"
 $partialText = $partialText -replace '<tr[^>]*>',"`n"
 $partialText = $partialText -replace '<li[^>]*>',"`n"
 $partialText = $partialText -replace '<br[^>]*>',"`n"
 $partialText = $partialText -replace '<span[^>]*>'," "
 $partialText = $partialText -replace '<td[^>]*>'," "

 $partialText = CleanHtml $partialText

 ## Now split the results on newlines, trim each line, and then
 ## join them back.
 $partialText = $partialText -split "`n" |
 Foreach-Object { $_.Trim() } | Where-Object { $_ }
 $partialText = $partialText -join "`n"

 [System.Web.HttpUtility]::HtmlDecode($partialText.Trim())
 }
 else
 {
 "`nNo answer found."
 }
}

Clean HTML from a text chunk
function CleanHtml ($htmlInput)
{
 $tempString = [Regex]::Replace($htmlInput, "(?s)<[^>]*>", "")
 $tempString.Replace(" ", "")
}

. Main

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.1, “Access Information in an XML File”

12.3 Program: Get-PageUrls
When working with HTML, it is common to require advanced regular expressions that
separate the content you care about from the content you don’t. A perfect example of
this is extracting all the HTML links from a web page.

Links come in many forms, depending on how lenient you want to be. They may be
well-formed according to the various HTML standards. They may use relative paths or
they may use absolute paths. They may place double quotes around the URL or they
may place single quotes around the URL. If you’re really unlucky, they may accidentally
include quotes on only one side of the URL.

318 | Chapter 12: Internet-Enabled Scripts

Example 12-3 demonstrates some approaches for dealing with this type of advanced
parsing task. Given a web page that you’ve downloaded from the Internet, it extracts
all links from the page and returns a list of the URLs on that page. It also fixes URLs
that were originally written as relative URLs (for example, /file.zip) to include the
server from which they originated.

Example 12-3. Get-PageUrls.ps1

##
##
Get-PageUrls
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Parse all of the URLs out of a given file.

.EXAMPLE

Get-PageUrls microsoft.html http://www.microsoft.com
Gets all of the URLs from HTML stored in microsoft.html, and converts relative
URLs to the domain of http://www.microsoft.com

.EXAMPLE

Get-PageUrls microsoft.html http://www.microsoft.com 'aspx$'
Gets all of the URLs from HTML stored in microsoft.html, converts relative
URLs to the domain of http://www.microsoft.com, and returns only URLs that end
in 'aspx'.

#>

param(
 ## The filename to parse
 [Parameter(Mandatory = $true)]
 [string] $Path,

 ## The URL from which you downloaded the page.
 ## For example, http://www.microsoft.com
 [Parameter(Mandatory = $true)]
 [string] $BaseUrl,

 ## The Regular Expression pattern with which to filter
 ## the returned URLs
 [string] $Pattern = ".*"
)

Set-StrictMode -Version Latest

12.3 Program: Get-PageUrls | 319

Load the System.Web DLL so that we can decode URLs
Add-Type -Assembly System.Web

Defines the regular expression that will parse an URL
out of an anchor tag.
$regex = "<\s*a\s*[^>]*?href\s*=\s*[`"']*([^`"'>]+)[^>]*?>"

Parse the file for links
function Main
{
 ## Do some minimal source URL fixups, by switching backslashes to
 ## forward slashes
 $baseUrl = $baseUrl.Replace("\", "/")

 if($baseUrl.IndexOf("://") -lt 0)
 {
 throw "Please specify a base URL in the form of " +
 "http://server/path_to_file/file.html"
 }

 ## Determine the server from which the file originated. This will
 ## help us resolve links such as "/somefile.zip"
 $baseUrl = $baseUrl.Substring(0, $baseUrl.LastIndexOf("/") + 1)
 $baseSlash = $baseUrl.IndexOf("/", $baseUrl.IndexOf("://") + 3)

 if($baseSlash -ge 0)
 {
 $domain = $baseUrl.Substring(0, $baseSlash)
 }
 else
 {
 $domain = $baseUrl
 }

 ## Put all of the file content into a big string, and
 ## get the regular expression matches
 $content = [String]::Join(' ', (Get-Content $path))
 $contentMatches = @(GetMatches $content $regex)

 foreach($contentMatch in $contentMatches)
 {
 if(-not ($contentMatch -match $pattern)) { continue }
 if($contentMatch -match "javascript:") { continue }

 $contentMatch = $contentMatch.Replace("\", "/")

 ## Hrefs may look like:
 ## ./file
 ## file
 ## ../../../file
 ## /file
 ## url
 ## We'll keep all of the relative paths, as they will resolve.
 ## We only need to resolve the ones pointing to the root.

320 | Chapter 12: Internet-Enabled Scripts

 if($contentMatch.IndexOf("://") -gt 0)
 {
 $url = $contentMatch
 }
 elseif($contentMatch[0] -eq "/")
 {
 $url = "$domain$contentMatch"
 }
 else
 {
 $url = "$baseUrl$contentMatch"
 $url = $url.Replace("/./", "/")
 }

 ## Return the URL, after first removing any HTML entities
 [System.Web.HttpUtility]::HtmlDecode($url)
 }
}

function GetMatches([string] $content, [string] $regex)
{
 $returnMatches = new-object System.Collections.ArrayList

 ## Match the regular expression against the content, and
 ## add all trimmed matches to our return list
 $resultingMatches = [Regex]::Matches($content, $regex, "IgnoreCase")
 foreach($match in $resultingMatches)
 {
 $cleanedMatch = $match.Groups[1].Value.Trim()
 [void] $returnMatches.Add($cleanedMatch)
 }

 $returnMatches
}

. Main

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

12.4 Connect to a Web Service

Problem
You want to connect to and interact with an Internet web service.

Solution
Use the New-WebserviceProxy cmdlet to work with a web service.

12.4 Connect to a Web Service | 321

PS > $url = "http://terraservice.net/TerraService.asmx"
PS > $terraServer = New-WebserviceProxy $url -Namespace Cookbook
PS > $place = New-Object Cookbook.Place
PS > $place.City = "Redmond"
PS > $place.State = "WA"
PS > $place.Country = "USA"
PS > $facts = $terraserver.GetPlaceFacts($place)
PS > $facts.Center

 Lon Lat
 --- ---
 -122.110000610352 47.6699981689453

Discussion
Although screen scraping (parsing the HTML of a web page) is the most common way
to obtain data from the Internet, web services are becoming increasingly common. Web
services provide a significant advantage over HTML parsing, as they are much less likely
to break when the web designer changes minor features in a design.

The benefit to web services isn’t just their more stable interface, however. When work-
ing with web services, the .NET Framework lets you generate proxies that let you in-
teract with the web service as easily as you would work with a regular .NET object.
That is because to you, the web service user, these proxies act almost exactly the same
as any other .NET object. To call a method on the web service, simply call a method
on the proxy.

The New-WebserviceProxy cmdlet simplifies all of the work required to connect to a web
service, making it just as easy as a call to the New-Object cmdlet.

The primary differences you will notice when working with a web service proxy (as
opposed to a regular .NET object) are the speed and Internet connectivity requirements.
Depending on conditions, a method call on a web service proxy could easily take several
seconds to complete. If your computer (or the remote computer) experiences network
difficulties, the call might even return a network error message (such as a timeout)
instead of the information you had hoped for.

If the web service requires authentication in a domain, specify the
-UseDefaultCredential parameter. If it requires explicit credentials, use the
-Credential parameter.

When you create a new web service proxy, PowerShell creates a new .NET object on
your behalf that connects to that web service. All .NET types live within a namespace
to prevent them from conflicting with other types that have the same name, so
PowerShell automatically generates the namespace name for you. You normally won’t
need to pay attention to this namespace. However, some web services require input
objects that the web service also defines, such as the Place object in the solution. For
these web services, use the -Namespace parameter to place the web service (and its sup-
port objects) in a namespace of your choice.

322 | Chapter 12: Internet-Enabled Scripts

Support objects from one web service proxy cannot be consumed by a
different web service proxy, even if they are two proxies to a web service
at the same URL. If you need to work with two connections to a web
service at the same URL, and your task requires creating support objects
for that service, be sure to use two different namespaces for those
proxies.

The New-WebserviceProxy cmdlet was introduced in version two of PowerShell. If you
need to connect to a web service from version one of PowerShell, see Recipe 12.5.

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 12.5, “Program: Connect-WebService”

12.5 Program: Connect-WebService
Recipe 12.4 discusses how to connect to a web service on the Internet. However, the
New-WebserviceProxy cmdlet in that recipe was introduced in version two of PowerShell.
If you need to connect to a web service from version one of PowerShell,
Example 12-4 is your solution. It lets you connect to a remote web service if you know
the location of its service description file (WSDL). It generates the web service proxy
for you, letting you interact with it as you would any other .NET object.

Example 12-4. Connect-WebService.ps1

##
Connect-WebService
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
Connect to a given web service, and create a type that allows you to
interact with that web service. In PowerShell version two, use the
New-WebserviceProxy cmdlet.
##
Example:
##
$wsdl = "http://terraservice.net/TerraService.asmx?WSDL"
$terraServer = Connect-WebService $wsdl
$place = New-Object Place
$place.City = "Redmond"
$place.State = "WA"
$place.Country = "USA"
$facts = $terraserver.GetPlaceFacts($place)
$facts.Center
##

12.5 Program: Connect-WebService | 323

param(
 ## The URL that contains the WSDL
 [string] $WsdlLocation = $(throw "Please specify a WSDL location"),

 ## The namespace to use to contain the web service proxy
 [string] $Namespace,

 ## Switch to identify web services that require authentication
 [Switch] $RequiresAuthentication
)

Create the web service cache, if it doesn't already exist
if(-not (Test-Path Variable:\Lee.Holmes.WebServiceCache))
{
 ${GLOBAL:Lee.Holmes.WebServiceCache} = @{}
}

Check if there was an instance from a previous connection to
this web service. If so, return that instead.
$oldInstance = ${GLOBAL:Lee.Holmes.WebServiceCache}[$wsdlLocation]
if($oldInstance)
{
 $oldInstance
 return
}

Load the required Web Services DLL
Add-Type -Assembly System.Web.Services

Download the WSDL for the service, and create a service description from
it.
$wc = New-Object System.Net.WebClient

if($requiresAuthentication)
{
 $wc.UseDefaultCredentials = $true
}

$wsdlStream = $wc.OpenRead($wsdlLocation)

Ensure that we were able to fetch the WSDL
if(-not (Test-Path Variable:\wsdlStream))
{
 return
}

$serviceDescription =
 [Web.Services.Description.ServiceDescription]::Read($wsdlStream)
$wsdlStream.Close()

Ensure that we were able to read the WSDL into a service description
if(-not (Test-Path Variable:\serviceDescription))
{
 return

324 | Chapter 12: Internet-Enabled Scripts

}

Import the web service into a CodeDom
$serviceNamespace = New-Object System.CodeDom.CodeNamespace
if($namespace)
{
 $serviceNamespace.Name = $namespace
}

$codeCompileUnit = New-Object System.CodeDom.CodeCompileUnit
$serviceDescriptionImporter =
 New-Object Web.Services.Description.ServiceDescriptionImporter
$serviceDescriptionImporter.AddServiceDescription(
 $serviceDescription, $null, $null)
[void] $codeCompileUnit.Namespaces.Add($serviceNamespace)
[void] $serviceDescriptionImporter.Import(
 $serviceNamespace, $codeCompileUnit)

Generate the code from that CodeDom into a string
$generatedCode = New-Object Text.StringBuilder
$stringWriter = New-Object IO.StringWriter $generatedCode
$provider = New-Object Microsoft.CSharp.CSharpCodeProvider
$provider.GenerateCodeFromCompileUnit($codeCompileUnit, $stringWriter, $null)

Compile the source code.
$references = @("System.dll", "System.Web.Services.dll", "System.Xml.dll")
$compilerParameters = New-Object System.CodeDom.Compiler.CompilerParameters
$compilerParameters.ReferencedAssemblies.AddRange($references)
$compilerParameters.GenerateInMemory = $true

$compilerResults =
 $provider.CompileAssemblyFromSource($compilerParameters, $generatedCode)

Write any errors if generated.
if($compilerResults.Errors.Count -gt 0)
{
 $errorLines = ""
 foreach($error in $compilerResults.Errors)
 {
 $errorLines += "`n`t" + $error.Line + ":`t" + $error.ErrorText
 }

 Write-Error $errorLines
 return
}
There were no errors. Create the webservice object and return it.
else
{
 ## Get the assembly that we just compiled
 $assembly = $compilerResults.CompiledAssembly

 ## Find the type that had the WebServiceBindingAttribute.
 ## There may be other "helper types" in this file, but they will
 ## not have this attribute
 $type = $assembly.GetTypes() |

12.5 Program: Connect-WebService | 325

 Where-Object { $_.GetCustomAttributes(
 [System.Web.Services.WebServiceBindingAttribute], $false) }

 if(-not $type)
 {
 Write-Error "Could not generate web service proxy."
 return
 }

 ## Create an instance of the type, store it in the cache,
 ## and return it to the user.
 $instance = $assembly.CreateInstance($type)

 ## Many services that support authentication also require it on the
 ## resulting objects
 if($requiresAuthentication)
 {
 if(@($instance.PsObject.Properties |
 where { $_.Name -eq "UseDefaultCredentials" }).Count -eq 1)
 {
 $instance.UseDefaultCredentials = $true
 }
 }

 ${GLOBAL:Lee.Holmes.WebServiceCache}[$wsdlLocation] = $instance

 $instance
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

12.6 Export Command Output as a Web Page

Problem
You want to export the results of a command as a web page so that you can post it to
a web server.

Solution
Use PowerShell’s ConvertTo-Html cmdlet to convert command output into a web page.
For example, to create a quick HTML summary of PowerShell’s commands:

PS > $filename = "c:\temp\help.html"
PS >
PS > $commands = Get-Command | Where { $_.CommandType -ne "Alias" }
PS > $summary = $commands | Get-Help | Select Name,Synopsis
PS > $summary | ConvertTo-Html | Set-Content $filename

326 | Chapter 12: Internet-Enabled Scripts

Discussion
When you use the ConvertTo-Html cmdlet to export command output to a file, Power-
Shell generates an HTML table that represents the command output. In the table, it
creates a row for each object that you provide. For each row, PowerShell creates col-
umns to represent the values of your object’s properties.

If the table format makes the output difficult to read, ConvertTo-Html offers the -As
parameter that lets you set the output style to either Table or List.

While the default output is useful, you can customize the structure and style of the
resulting HTML as much as you see fit. For example, the -PreContent and
-PostContent parameters let you include additional text before and after the resulting
table or list. The -Head parameter lets you define the content of the HEAD section of
the HTML. Even if you want to generate most of the HTML from scratch, you can still
use the -Fragment parameter to generate just the inner table or list.

For more information about the ConvertTo-Html cmdlet, type Get-Help
ConvertTo-Html.

12.7 Send an Email

Problem
You want to send an email.

Solution
Use the Send-MailMessage cmdlet to send an email.

PS > Send-MailMessage -To guide@leeholmes.com `
 -From user@example.com `
 -Subject "Hello!" `
 -Body "Hello, from another satisfied Cookbook reader!" `
 -SmtpServer mail.example.com

Discussion
The Send-MailMessage cmdlet supports everything you would expect an email-centric
cmdlet to support: attachments, plain text messages, HTML messages, priority, receipt
requests, and more. The most difficult aspect usually is remembering the correct SMTP
server to use.

The Send-MailMessage cmdlet helps solve this problem as well. If you don’t specify the
-SmtpServer parameter, it uses the server specified in the $PSEmailServer variable, if any.

The Send-MailMessage cmdlet was introduced in version two of PowerShell. If you need
to send an email from version one of PowerShell, see Recipe 12.8.

12.7 Send an Email | 327

See Also
Recipe 12.8, “Program: Send-MailMessage”

12.8 Program: Send-MailMessage
The Send-MailMessage cmdlet is the easiest way to send an email from PowerShell, but
was introduced in version two of PowerShell. If you need to send an email from version
one of PowerShell, you can use Example 12-5.

In addition to the fields shown in the script, the System.Net.Mail.MailMessage class
supports properties that let you add attachments, set message priority, and much more.
For more information about working with classes from the .NET Framework, see
Recipe 3.8.

Example 12-5. Send-MailMessage.ps1

##
##
Send-MailMessage
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
Illustrate the techniques used to send an email in PowerShell.
In version two, use the Send-MailMessage cmdlet.
##
Example:
##
PS >$body = @"
>> Hi from another satisfied customer of The PowerShell Cookbook!
>> "@
>>
PS >$to = "guide_feedback@leeholmes.com"
PS >$subject = "Thanks for all of the scripts."
PS >$mailHost = "mail.leeholmes.com"
PS >Send-MailMessage $to $subject $body $mailHost
##
##

param(
 ## The recipient of the mail message
 [string[]] $To = $(throw "Please specify the destination mail address"),

 ## The subject of the message
 [string] $Subject = "<No Subject>",

 ## The body of the message
 [string] $Body = $(throw "Please specify the message content"),

 ## The SMTP host that will transmit the message
 [string] $SmtpHost = $(throw "Please specify a mail server."),

328 | Chapter 12: Internet-Enabled Scripts

 ## The sender of the message
 [string] $From = "$($env:UserName)@example.com"
)

Create the mail message
$email = New-Object System.Net.Mail.MailMessage

Populate its fields
foreach($mailTo in $to)
{
 $email.To.Add($mailTo)
}

$email.From = $from
$email.Subject = $subject
$email.Body = $body

Send the mail
$client = New-Object System.Net.Mail.SmtpClient $smtpHost
$client.UseDefaultCredentials = $true
$client.Send($email)

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

12.9 Program: Interact with Internet Protocols
Although it is common to work at an abstract level with websites and web services, an
entirely separate style of Internet-enabled scripting comes from interacting with the
remote computer at a much lower level. This lower level (called the TCP level, for
Transmission Control Protocol) forms the communication foundation of most Internet
protocols—such as Telnet, SMTP (sending mail), POP3 (receiving mail), and HTTP
(retrieving web content).

The .NET Framework provides classes that let you interact with many of the Internet
protocols directly: the System.Web.Mail.SmtpMail class for SMTP, the System.Net.Web
Client class for HTTP, and a few others. When the .NET Framework does not support
an Internet protocol that you need, though, you can often script the application pro-
tocol directly if you know the details of how it works.

Example 12-6 shows how to receive information about mail waiting in a remote POP3
mailbox, using the Send-TcpRequest script given in Example 12-7.

12.9 Program: Interact with Internet Protocols | 329

Example 12-6. Interacting with a remote POP3 mailbox

Get the user credential
if(-not (Test-Path Variable:\mailCredential))
{
 $mailCredential = Get-Credential
}
$address = $mailCredential.UserName
$password = $mailCredential.GetNetworkCredential().Password

Connect to the remote computer, send the commands, and receive the
output
$pop3Commands = "USER $address","PASS $password","STAT","QUIT"
$output = $pop3Commands | Send-TcpRequest mail.myserver.com 110
$inbox = $output.Split("`n")[3]

Parse the output for the number of messages waiting and total bytes
$status = $inbox |
 Convert-TextObject -PropertyName "Response","Waiting","BytesTotal","Extra"
"{0} messages waiting, totaling {1} bytes." -f $status.Waiting, $status.BytesTotal

In Example 12-6, you connect to port 110 of the remote mail server. You then issue
commands to request the status of the mailbox in a form that the mail server under-
stands. The format of this network conversation is specified and required by the stand-
ard POP3 protocol. Example 12-6 uses the Convert-TextObject command, which is
provided in Recipe 5.14.

Example 12-7 supports the core functionality of Example 12-6. It lets you easily work
with plain-text TCP protocols.

Example 12-7. Send-TcpRequest.ps1

##
##
Send-TcpRequest
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Send a TCP request to a remote computer, and return the response.
If you do not supply input to this script (via either the pipeline or the
-InputObject parameter), the script operates in interactive mode.

.EXAMPLE

PS >$http = @"
 GET / HTTP/1.1
 Host:bing.com
 `n`n

330 | Chapter 12: Internet-Enabled Scripts

"@

$http | Send-TcpRequest bing.com 80

#>

param(
 ## The computer to connect to
 [string] $ComputerName = "localhost",

 ## A switch to determine if you just want to test the connection
 [switch] $Test,

 ## The port to use
 [int] $Port = 80,

 ## A switch to determine if the connection should be made using SSL
 [switch] $UseSSL,

 ## The input string to send to the remote host
 [string] $InputObject,

 ## The delay, in milliseconds, to wait between commands
 [int] $Delay = 100
)

Set-StrictMode -Version Latest

[string] $SCRIPT:output = ""

Store the input into an array that we can scan over. If there was no input,
then we will be in interactive mode.
$currentInput = $inputObject
if(-not $currentInput)
{
 $currentInput = @($input)
}
$scriptedMode = ([bool] $currentInput) -or $test

function Main
{
 ## Open the socket, and connect to the computer on the specified port
 if(-not $scriptedMode)
 {
 write-host "Connecting to $computerName on port $port"
 }

 try
 {
 $socket = New-Object Net.Sockets.TcpClient($computerName, $port)
 }
 catch
 {
 if($test) { $false }
 else { Write-Error "Could not connect to remote computer: $_" }

12.9 Program: Interact with Internet Protocols | 331

 return
 }

 ## If we're just testing the connection, we've made the connection
 ## successfully, so just return $true
 if($test) { $true; return }

 ## If this is interactive mode, supply the prompt
 if(-not $scriptedMode)
 {
 write-host "Connected. Press ^D followed by [ENTER] to exit.`n"
 }

 $stream = $socket.GetStream()

 ## If we wanted to use SSL, set up that portion of the connection
 if($UseSSL)
 {
 $sslStream = New-Object System.Net.Security.SslStream $stream,$false
 $sslStream.AuthenticateAsClient($computerName)
 $stream = $sslStream
 }

 $writer = new-object System.IO.StreamWriter $stream

 while($true)
 {
 ## Receive the output that has buffered so far
 $SCRIPT:output += GetOutput

 ## If we're in scripted mode, send the commands,
 ## receive the output, and exit.
 if($scriptedMode)
 {
 foreach($line in $currentInput)
 {
 $writer.WriteLine($line)
 $writer.Flush()
 Start-Sleep -m $Delay
 $SCRIPT:output += GetOutput
 }

 break
 }
 ## If we're in interactive mode, write the buffered
 ## output, and respond to input.
 else
 {
 if($output)
 {
 foreach($line in $output.Split("`n"))
 {
 write-host $line
 }

332 | Chapter 12: Internet-Enabled Scripts

 $SCRIPT:output = ""
 }

 ## Read the user's command, quitting if they hit ^D
 $command = read-host
 if($command -eq ([char] 4)) { break; }

 ## Otherwise, write their command to the remote host
 $writer.WriteLine($command)
 $writer.Flush()
 }
 }

 ## Close the streams
 $writer.Close()
 $stream.Close()

 ## If we're in scripted mode, return the output
 if($scriptedMode)
 {
 $output
 }
}

Read output from a remote host
function GetOutput
{
 ## Create a buffer to receive the response
 $buffer = new-object System.Byte[] 1024
 $encoding = new-object System.Text.AsciiEncoding

 $outputBuffer = ""
 $foundMore = $false

 ## Read all the data available from the stream, writing it to the
 ## output buffer when done.
 do
 {
 ## Allow data to buffer for a bit
 start-sleep -m 1000

 ## Read what data is available
 $foundmore = $false
 $stream.ReadTimeout = 1000

 do
 {
 try
 {
 $read = $stream.Read($buffer, 0, 1024)

 if($read -gt 0)
 {
 $foundmore = $true
 $outputBuffer += ($encoding.GetString($buffer, 0, $read))

12.9 Program: Interact with Internet Protocols | 333

 }
 } catch { $foundMore = $false; $read = 0 }
 } while($read -gt 0)
 } while($foundmore)

 $outputBuffer
}

. Main

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 5.14, “Program: Convert Text Streams to Objects”

334 | Chapter 12: Internet-Enabled Scripts

CHAPTER 13

User Interaction

13.0 Introduction
Although most scripts are designed to run automatically, you will frequently find it
useful to have your scripts interact with the user.

The best way to get input from your user is through the arguments and
parameters to your script or function. This lets your users run your script
without having to be there as it runs!

If your script greatly benefits from (or requires) an interactive experience, PowerShell
offers a range of possibilities. This might be simply waiting for a keypress, prompting
for input, or displaying a richer choice-based prompt.

User input isn’t the only aspect of interaction, though. In addition to its input facilities,
PowerShell supports output as well—from displaying simple text strings to much more
detailed progress reporting and interaction with UI frameworks.

13.1 Read a Line of User Input

Problem
You want to use input from the user in your script.

Solution
To obtain user input, use the Read-Host cmdlet:

PS > $directory = Read-Host "Enter a directory name"
Enter a directory name: C:\MyDirectory
PS > $directory
C:\MyDirectory

335

Discussion
The Read-Host cmdlet reads a single line of input from the user. If the input contains
sensitive data, the cmdlet supports an -AsSecureString parameter to read this input as
a SecureString.

If the user input represents a date, time, or number, be aware that most cultures rep-
resent these data types differently. For more information about writing culturally aware
scripts, see Recipe 13.6.

For more information about the Read-Host cmdlet, type Get-Help Read-Host. For an
example of reading user input through a graphical prompt, see the Read-InputBox script
included in this book’s code examples. For more information about obtaining these
examples, see “Code Examples” on page xxviii.

See Also
Recipe 13.6, “Write Culture-Aware Scripts”

13.2 Read a Key of User Input

Problem
You want your script to get a single keypress from the user.

Solution
For most purposes, use the [Console]::ReadKey() method to read a key:

PS > $key = [Console]::ReadKey($true)
PS > $key

 KeyChar Key Modifiers
 ------- --- ---------
 h H Alt

For highly interactive use (for example, when you care about key down and key up), use:

PS > $key = $host.UI.RawUI.ReadKey("NoEcho,IncludeKeyDown")
PS > $key

 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 16 ...ssed, NumLockOn True

PS > $key.ControlKeyState
ShiftPressed, NumLockOn

336 | Chapter 13: User Interaction

Discussion
For most purposes, the [Console]::ReadKey() is the best way to get a keystroke from a
user, as it accepts simple keypresses and more complex keypresses that might include
the Ctrl, Alt, and Shift keys. We pass the $true parameter to tell the method to not
display the character on the screen, and only to return it to us.

The following function emulates the DOS pause command:

function Pause
{
 Write-Host -NoNewLine "Press any key to continue . . . "
 [Console]::ReadKey($true) | Out-Null
 Write-Host
}

If you need to capture individual key down and key up events (including those of the
Ctrl, Alt, and Shift keys), use the $host.UI.RawUI.ReadKey() method.

13.3 Program: Display a Menu to the User
It is often useful to read input from the user but restrict input to a list of choices that
you specify. The following script lets you access PowerShell’s prompting functionality
in a manner that is friendlier than what PowerShell exposes by default. It returns a
number that represents the position of the user’s choice from the list of options you
provide.

PowerShell’s prompting requires that you include an accelerator key (the & before a
letter in the option description) to define the keypress that represents that option. Since
you don’t always control the list of options (for example, a list of possible directories),
Example 13-1 automatically generates sensible accelerator characters for any descrip-
tions that lack them.

Example 13-1. Read-HostWithPrompt.ps1

###
##
Read-HostWithPrompt
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Read user input, with choices restricted to the list of options you
provide.

13.3 Program: Display a Menu to the User | 337

.EXAMPLE

PS >$caption = "Please specify a task"
PS >$message = "Specify a task to run"
PS >$option = "&Clean Temporary Files","&Defragment Hard Drive"
PS >$helptext = "Clean the temporary files from the computer",
>> "Run the defragment task"
>>
PS >$default = 1
PS >Read-HostWithPrompt $caption $message $option $helptext $default

Please specify a task
Specify a task to run
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):?
C - Clean the temporary files from the computer
D - Run the defragment task
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):C
0

#>

param(
 ## The caption for the prompt
 $Caption = $null,

 ## The message to display in the prompt
 $Message = $null,

 ## Options to provide in the prompt
 [Parameter(Mandatory = $true)]
 $Pption,

 ## Any help text to provide
 $HelpText = $null,

 ## The default choice
 $Default = 0
)

Set-StrictMode -Version Latest

Create the list of choices
$choices = New-GenericObject `
 Collections.ObjectModel.Collection `
 Management.Automation.Host.ChoiceDescription

Go through each of the options, and add them to the choice collection
for($counter = 0; $counter -lt $option.Length; $counter++)
{
 $choice = New-Object Management.Automation.Host.ChoiceDescription `
 $option[$counter]

 if($helpText -and $helpText[$counter])

338 | Chapter 13: User Interaction

 {
 $choice.HelpMessage = $helpText[$counter]
 }

 $choices.Add($choice)
}

Prompt for the choice, returning the item the user selected
$host.UI.PromptForChoice($caption, $message, $choices, $default)

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

13.4 Display Messages and Output to the User

Problem
You want to display messages and other information to the user.

Solution
Simply have your script output the string information. If you like to be more explicit
in your scripting, call the Write-Output cmdlet:

PS > function Get-Information
{
 "Hello World"
 Write-Output (1 + 1)
}

PS > Get-Information
Hello World
2
PS > $result = Get-Information
PS > $result[1]
2

Discussion
Most scripts that you write should output richly structured data, such as the actual
count of bytes in a directory (if you are writing a directory information script). That
way, other scripts can use the output of that script as a building block for their
functionality.

13.4 Display Messages and Output to the User | 339

When you do want to provide output specifically to the user, use the Write-Host, Write-
Debug, and Write-Verbose cmdlets:

PS > function Get-DirectorySize
{
 $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
 Write-Host ("Directory size: {0:N0} bytes" -f $size)
}

PS > Get-DirectorySize
Directory size: 46,581 bytes
PS > $size = Get-DirectorySize
Directory size: 46,581 bytes

If you want a message to help you (or the user) diagnose and debug your script, use the
Write-Debug cmdlet. If you want a message to provide detailed trace-type output, use
the Write-Verbose cmdlet, as shown in Example 13-2.

Example 13-2. A function that provides debug and verbose output

PS > function Get-DirectorySize
{
 Write-Debug "Current Directory: $(Get-Location)"

 Write-Verbose "Getting size"
 $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
 Write-Verbose "Got size: $size"

 Write-Host ("Directory size: {0:N0} bytes" -f $size)
}

PS > $DebugPreference = "Continue"
PS > Get-DirectorySize
DEBUG: Current Directory: D:\lee\OReilly\Scripts\Programs
Directory size: 46,581 bytes
PS > $DebugPreference = "SilentlyContinue"
PS > $VerbosePreference = "Continue"
PS > Get-DirectorySize
VERBOSE: Getting size
VERBOSE: Got size: 46581
Directory size: 46,581 bytes
PS > $VerbosePreference = "SilentlyContinue"

However, be aware that this type of output bypasses normal file redirection and is
therefore difficult for the user to capture. In the case of the Write-Host cmdlet, use it
only when your script already generates other structured data that the user would want
to capture in a file or variable.

Most script authors eventually run into the problem illustrated by Example 13-3 when
their script tries to output formatted data to the user.

340 | Chapter 13: User Interaction

Example 13-3. An error message caused by formatting statements

PS > ## Get the list of items in a directory, sorted by length
PS > function Get-ChildItemSortedByLength($path = (Get-Location))
{
 Get-ChildItem $path | Format-Table | Sort Length
}

PS > Get-ChildItemSortedByLength
out-lineoutput : Object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not legal or not in the correct sequence. This is
likely caused by a user-specified "format-*" command which is conflicting
with the default formatting.

This happens because the Format-* cmdlets actually generate formatting information
for the Out-Host cmdlet to consume. The Out-Host cmdlet (which PowerShell adds
automatically to the end of your pipelines) then uses this information to generate for-
matted output. To resolve this problem, always ensure that formatting commands are
the last commands in your pipeline, as shown in Example 13-4.

Example 13-4. A function that does not generate formatting errors

PS > ## Get the list of items in a directory, sorted by length
PS > function Get-ChildItemSortedByLength($path = (Get-Location))
{
 ## Problematic version
 ## Get-ChildItem $path | Format-Table | Sort Length

 ## Fixed version
 Get-ChildItem $path | Sort Length | Format-Table
}

PS > Get-ChildItemSortedByLength

(...)

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/11/2007 3:21 PM 59 LibraryProperties.ps1
-a--- 3/6/2007 10:27 AM 150 Get-Tomorrow.ps1
-a--- 3/4/2007 3:10 PM 194 ConvertFrom-FahrenheitWithout
 Function.ps1
-a--- 3/4/2007 4:40 PM 257 LibraryTemperature.ps1
-a--- 3/4/2007 4:57 PM 281 ConvertFrom-FahrenheitWithLib
 rary.ps1
-a--- 3/4/2007 3:14 PM 337 ConvertFrom-FahrenheitWithFunc
 tion.ps1
(...)

These examples are included as LibraryDirectory.ps1 in this book’s code examples. For
more information about obtaining these examples, see “Code Exam-
ples” on page xxviii.

13.4 Display Messages and Output to the User | 341

When it comes to producing output for the user, a common reason is to provide pro-
gress messages. PowerShell actually supports this in a much richer way, through its
Write-Progress cmdlet. For more information about the Write-Progress cmdlet, see
Recipe 13.5.

See Also
Recipe 13.5, “Provide Progress Updates on Long-Running Tasks”

13.5 Provide Progress Updates on Long-Running Tasks

Problem
You want to display status information to the user for long-running tasks.

Solution
To provide status updates, use the Write-Progress cmdlet shown in Example 13-5.

Example 13-5. Using the Write-Progress cmdlet to display status updates

##
##
Invoke-LongRunningOperation
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of the Write-Progress cmdlet

#>

Set-StrictMode -Version Latest

$activity = "A long running operation"
$status = "Initializing"

Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Initializing item $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

342 | Chapter 13: User Interaction

$status = "Running"

Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Running task $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

Discussion
The Write-Progress cmdlet provides a way for you to provide structured status infor-
mation to the users of your script for long-running operations (see Figure 13-1).

Like the other detailed information channels (Write-Debug, Write-Verbose, and the
other Write-* cmdlets), PowerShell lets users control how much of this information
they see.

For more information about the Write-Progress cmdlet, type Get-Help
Write-Progress.

Figure 13-1. Example output from a long-running operation

13.5 Provide Progress Updates on Long-Running Tasks | 343

13.6 Write Culture-Aware Scripts

Problem
You want to ensure that your script works well on computers around the world.

Solution
To write culture-aware scripts, keep the following guidelines in mind as you develop
your scripts:

• Create dates, times, and numbers using PowerShell’s language primitives.

• Compare strings using PowerShell’s built-in operators.

• Avoid treating user input as a collection of characters.

• Use Parse() methods to convert user input to dates, times, and numbers.

Discussion
Writing culture-aware programs has long been isolated to the world of professional
software developers. It’s not that users of simple programs and scripts can’t benefit
from culture awareness, though. It has just frequently been too difficult for nonpro-
fessional programmers to follow the best practices. However, PowerShell makes this
much easier than traditional programming languages.

As your script travels between different cultures, several things change.

Date, time, and number formats

Most cultures have unique date, time, and number formats. To ensure that your script
works in all cultures, PowerShell first ensures that its language primitives remain con-
sistent no matter where your script runs. Even if your script runs on a machine in France
(which uses a comma for its decimal separator), you can always rely on the statement
$myDouble = 3.5 to create a number halfway between three and four. Likewise, you can
always count on the statement $christmas = [DateTime]"12/25/2007" to create a date
that represents Christmas in 2007—even in cultures that write dates in the order of
day, month, year.

Culturally aware programs always display dates, times, and numbers using the prefer-
ences of that culture. This doesn’t break scripts as they travel between cultures and is
an important aspect of writing culture-aware scripts. PowerShell handles this for you,
as it uses the current culture’s preferences whenever it displays data.

344 | Chapter 13: User Interaction

If your script asks the user for a date, time, or number, make sure that
you respect the format of the user’s culture’s when you do so. To convert
user input to a specific type of data, use the [DateTime]::Parse()
method:

$userInput = Read-Host "Please enter a date"
$enteredDate = [DateTime]::Parse($userInput)

So, to ensure that your script remains culture-aware with respect to dates, times, and
number formats, simply use PowerShell’s language primitives when you define them
in your script. When you read them from the user, use Parse() methods when you
convert them from strings.

Complexity of user input and file content

English is a rare language in that its alphabet is so simple. This leads to all kinds of
programming tricks that treat user input and file content as arrays of bytes or simple
plain-text (ASCII) characters. In most international languages, these tricks fail. In fact,
many international symbols take up two characters’ worth of data in the string that
contains them.

PowerShell uses the standard Unicode character set for all string-based operations:
reading input from the user, displaying output to the user, sending data through the
pipeline, and working with files.

Although PowerShell fully supports Unicode, the powershell.exe
command-line host does not output some characters correctly, because
of limitations in the Windows console system. Graphical PowerShell
hosts (such as the Integrated Scripting Environment and the many third-
party PowerShell IDEs) are not affected by these limitations, however.

If you use PowerShell’s standard features when working with user input, you do not
have to worry about its complexity. If you want to work with individual characters or
words in the input, though, you will need to take special precautions. The
System.Globalization.StringInfo class lets you do this in a culturally aware way. For
more information about working with the StringInfo class, see http://msdn.microsoft
.com/en-us/library/7h9tk6x8.aspx.

So, to ensure that your script remains culturally aware with respect to user input, simply
use PowerShell’s support for string operations whenever possible.

Capitalization rules

A common requirement in scripts is to compare user input against some predefined
text (such as a menu selection). You normally want this comparison to be case insen-
sitive, so that "QUIT" and "qUiT" mean the same thing.

13.6 Write Culture-Aware Scripts | 345

http://msdn.microsoft.com/en-us/library/7h9tk6x8.aspx
http://msdn.microsoft.com/en-us/library/7h9tk6x8.aspx

A traditional way to accomplish this is to convert the user input to uppercase or
lowercase:

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways when
run in different cultures, as many cultures have different capitalization and comparison
rules. For example, the Turkish language includes two types of the letter “I”: one with
a dot and one without. The uppercase version of the lowercase letter “i” corresponds
to the version of the capital “I” with a dot, not the capital “I” used in QUIT. That example
causes the preceding string comparison to fail on a Turkish system.

To compare some input against a hard-coded string in a case-insensitive manner, the
better solution is to use PowerShell’s -eq operator without changing any of the casing
yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > $text1 = "Hello"
PS > $text2 = "HELLO"
PS > $text1 -eq $text2
True

So, to ensure that your script remains culturally aware with respect to capitalization
rules, simply use PowerShell’s case-insensitive comparison operators whenever
possible.

Sorting rules

Sorting rules frequently change between cultures. For example, compare English and
Danish with the script given in Recipe 13.8.

PS > Use-Culture en-US { "Apple","Æble" | Sort-Object }
Æble
Apple
PS > Use-Culture da-DK { "Apple","Æble" | Sort-Object }
Apple
Æble

To ensure that your script remains culturally aware with respect to sorting rules, assume
that output is sorted correctly after you sort it—but don’t depend on the actual order
of sorted output.

Other guidelines

For other resources on writing culturally aware programs, see http://msdn.microsoft
.com/en-us/library/h6270d0z.aspx and http://msdn.microsoft.com/en-us/goglobal/
bb688110.aspx.

See Also
Recipe 13.8, “Program: Invoke a Script Block with Alternate Culture Settings”

346 | Chapter 13: User Interaction

http://msdn.microsoft.com/en-us/library/h6270d0z.aspx
http://msdn.microsoft.com/en-us/library/h6270d0z.aspx
http://msdn.microsoft.com/en-us/goglobal/bb688110.aspx
http://msdn.microsoft.com/en-us/goglobal/bb688110.aspx

13.7 Support Other Languages in Script Output

Problem
You are displaying text messages to the user and want to support international
languages.

Solution
Use the Import-LocalizedData cmdlet, shown in Example 13-6.

Example 13-6. Importing culture-specific strings for a script or module

Set-StrictMode -Version Latest

Create some default messages for English cultures, and
when culture-specific messages are not available.
$messages = DATA {
 @{
 Greeting = "Hello, {0}"
 Goodbye = "So long."
 }
}

Import localized messages for the current culture.
Import-LocalizedData messages -ErrorAction SilentlyContinue

Output the localized messages
$messages.Greeting -f "World"
$messages.Goodbye

Discussion
The Import-LocalizedData cmdlet lets you easily write scripts that display different
messages for different languages.

The core of this localization support comes from the concept of a message table: a simple
mapping of message IDs (such as a "Greeting" or "Goodbye" message) to the actual
message it represents. Instead of directly outputting a string to the user, you instead
retrieve the string from the message table and output that. Localization of your script
comes from replacing the message table with one that contains messages appropriate
for the current language.

PowerShell uses standard hashtables to define message tables. Keys and values in the
hashtable represent message IDs and their corresponding strings, respectively.

The solution defines the default message table within a DATA section. As
with loading messages from .psd1 files, this places PowerShell in a data-
centric subset of the full PowerShell language. While not required, it is
a useful practice for both error detection and consistency.

13.7 Support Other Languages in Script Output | 347

After defining a default message table in your script, the next step is to create localized
versions and place them in language-specific directories alongside your script. The real
magic of the Import-LocalizedData cmdlet comes from the intelligence it applies when
loading the appropriate message file.

As a background, the standard way to refer to a culture (for localization purposes) is
an identifier that combines the culture and region. For example, German as spoken in
Germany is defined by the identifier de-DE. English as spoken in the United States is
defined by the identifier en-US, whereas English as spoken in Canada is defined by the
identifier en-CA. Most languages are spoken in many regions.

When you call the Import-LocalizedData cmdlet, PowerShell goes to the same directory
as your script, and first tries to load your messages from a directory with a name that
matches the full name of the current culture (for example, en-CA or en-GB). If that fails,
it falls back to the region-neutral directory (such as en or de) and on to the other fallback
languages defined by the operating system.

To make your efforts available to the broadest set of languages, place your localized
messages in the most general directory that applies. For example, place French mes-
sages (first) in the "fr" directory so that all French-speaking regions can benefit. If you
want to customize your messages to a specific region after that, place them in a region-
specific directory.

Rather than define these message tables in script files (like your main script), place them
in .psd1 files that have the same name as your script. For example, Example 13-6 places
its localized messages in Import-LocalizedData.psd1. PowerShell’s psd1 files represent
a data-centric subset of the full PowerShell language and are ideally suited for locali-
zation. In the .psd1 file, define a hashtable (Example 13-7)—but do not store it in a
variable like you do for the default message table.

Example 13-7. A localized .psd1 file that defines a message table

@{
 Greeting = "Guten Tag, {0}"
 Goodbye = "Auf Wiedersehen."
}

If you already use a set of tools to help you manage the software localization process,
they may not understand the PowerShell .psd1 file format. Another standard message
format is simple name-value mapping, so PowerShell supports that through the
ConvertFrom-StringData cmdlet:

ConvertFrom-StringData @'
Greeting = Guten Tag, {0}
Goodbye = Auf Wiedersehen
'@

Notice that the Greeting message in Example 13-6 uses {0}-style placeholders (and
PowerShell’s string formatting operator) to output strings with replaceable text.
Using this technique is vastly preferable to using string concatenation (e.g.,

348 | Chapter 13: User Interaction

$messages.GreetingBeforeName + " World " + $messages.GreetingAftername) because
it gives additional flexibility during localization of languages with different sentence
structures.

To test your script under different languages, you can use Recipe 13.8, as in this
example:

PS > Use-Culture de-DE { Invoke-LocalizedScript }
Guten Tag, World
Auf Wiedersehen.

For more information about script internationalization, type Get-Help
about_Script_Internationalization.

See Also
Recipe 13.8, “Program: Invoke a Script Block with Alternate Culture Settings”

Get-Help about_Script_Internationalization

13.8 Program: Invoke a Script Block with Alternate Culture
Settings
Given PowerShell’s diverse user community, scripts that you share will often be run on
a system set to a language other than English. To ensure that your script runs properly
in other languages, it is helpful to give it a test run in that culture. Example 13-8 lets
you run the script block you provide in a culture of your choosing.

Example 13-8. Use-Culture.ps1

###
##
Use-Culture
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Invoke a script block under the given culture

.EXAMPLE

Use-Culture fr-FR { [DateTime]::Parse("25/12/2007") }
mardi 25 decembre 2007 00:00:00

#>

13.8 Program: Invoke a Script Block with Alternate Culture Settings | 349

param(
 ## The culture in which to evaluate the given script block
 [Parameter(Mandatory = $true)]
 [System.Globalization.CultureInfo] $Culture,

 ## The code to invoke in the context of the given culture
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $ScriptBlock
)

Set-StrictMode -Version Latest

A helper function to set the current culture
function Set-Culture([System.Globalization.CultureInfo] $culture)
{
 [System.Threading.Thread]::CurrentThread.CurrentUICulture = $culture
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $culture
}

Remember the original culture information
$oldCulture = [System.Threading.Thread]::CurrentThread.CurrentUICulture

Restore the original culture information if
the user's script encounters errors.
trap { Set-Culture $oldCulture }

Set the current culture to the user's provided
culture.
Set-Culture $culture

Invoke the user's script block
& $ScriptBlock

Restore the original culture information.
Set-Culture $oldCulture

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

13.9 Access Features of the Host’s User Interface

Problem
You want to interact with features in the user interface of the hosting application, but
PowerShell doesn’t directly provide cmdlets for them.

350 | Chapter 13: User Interaction

Solution
To access features of the host’s user interface, use the $host.UI.RawUI variable:

$host.UI.RawUI.WindowTitle = (Get-Location)

Discussion
PowerShell itself consists of two main components. The first is an engine that interprets
commands, executes pipelines, and performs other similar actions. The second is the
hosting application—the way that users interact with the PowerShell engine.

The default shell, PowerShell.exe, is a user interface based on the traditional Windows
console. The graphical Integrated Scripting Environment hosts PowerShell in a graph-
ical user interface. In fact, PowerShell makes it relatively simple for developers to build
their own hosting applications, or even to embed the PowerShell engine features into
their own applications.

You (and your scripts) can always depend on the functionality available through the
$host.UI variable, as that functionality remains the same for all hosts. Example 13-9
shows the features available to you in all hosts.

Example 13-9. Functionality available through the $host.UI property

PS > $host.UI | Get-Member | Select Name,MemberType | Format-Table -Auto

Name MemberType
---- ----------
(...)
Prompt Method
PromptForChoice Method
PromptForCredential Method
ReadLine Method
ReadLineAsSecureString Method
Write Method
WriteDebugLine Method
WriteErrorLine Method
WriteLine Method
WriteProgress Method
WriteVerboseLine Method
WriteWarningLine Method
RawUI Property

If you (or your scripts) want to interact with portions of the user interface specific to
the current host, PowerShell provides that access through the $host.UI.RawUI variable.
Example 13-10 shows the features available to you in the PowerShell console host.

Example 13-10. Functionality available through the default console host

PS > $host.UI.RawUI | Get-Member |
 Select Name,MemberType | Format-Table -Auto

13.9 Access Features of the Host’s User Interface | 351

Name MemberType
---- ----------
(...)
FlushInputBuffer Method
GetBufferContents Method
GetHashCode Method
GetType Method
LengthInBufferCells Method
NewBufferCellArray Method
ReadKey Method
ScrollBufferContents Method
SetBufferContents Method
BackgroundColor Property
BufferSize Property
CursorPosition Property
CursorSize Property
ForegroundColor Property
KeyAvailable Property
MaxPhysicalWindowSize Property
MaxWindowSize Property
WindowPosition Property
WindowSize Property
WindowTitle Property

If you rely on the host-specific features from $host.UI.RawUI, be aware that your script
will require modifications (perhaps major modifications) before it will run properly on
other hosts.

13.10 Program: Add a Graphical User Interface to Your Script
Although the techniques provided in the rest of this chapter usually are all you need,
it is sometimes helpful to provide a graphical user interface to interact with the user.

Since PowerShell fully supports traditional executables, simple programs usually can
fill this need. If creating a simple program in an environment such as Visual Studio is
inconvenient, you can often use PowerShell to create these applications directly.

In addition to creating Windows Forms applications through PowerShell scripts, two
community projects (PowerBoots and WPK) let you easily create rich WPF (Windows
Presentation Foundation) interfaces for your PowerShell scripts. For more information,
search the Internet for “PowerShell PowerBoots” and “PowerShell WPK.”

Example 13-11 demonstrates the techniques you can use to develop a Windows Forms
application using PowerShell scripting alone.

352 | Chapter 13: User Interaction

Example 13-11. Select-GraphicalFilteredObject.ps1

##
##
Select-GraphicalFilteredObject
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Display a Windows Form to help the user select a list of items piped in.
Any selected items get passed along the pipeline.

.EXAMPLE

dir | Select-GraphicalFilteredObject

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 3/18/2007 7:56 PM Windows

#>

Set-StrictMode -Version Latest

$objectArray = @($input)

Ensure that they've piped information into the script
if($objectArray.Count -eq 0)
{
 Write-Error "This script requires pipeline input."
 return
}

Load the Windows Forms assembly
Add-Type -Assembly System.Windows.Forms

Create the main form
$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size @(600,600)

Create the listbox to hold the items from the pipeline
$listbox = New-Object Windows.Forms.CheckedListBox
$listbox.CheckOnClick = $true
$listbox.Dock = "Fill"
$form.Text = "Select the list of objects you wish to pass down the pipeline"
$listBox.Items.AddRange($objectArray)

13.10 Program: Add a Graphical User Interface to Your Script | 353

Create the button panel to hold the OK and Cancel buttons
$buttonPanel = New-Object Windows.Forms.Panel
$buttonPanel.Size = New-Object Drawing.Size @(600,30)
$buttonPanel.Dock = "Bottom"

Create the Cancel button, which will anchor to the bottom right
$cancelButton = New-Object Windows.Forms.Button
$cancelButton.Text = "Cancel"
$cancelButton.DialogResult = "Cancel"
$cancelButton.Top = $buttonPanel.Height - $cancelButton.Height - 5
$cancelButton.Left = $buttonPanel.Width - $cancelButton.Width - 10
$cancelButton.Anchor = "Right"

Create the OK button, which will anchor to the left of Cancel
$okButton = New-Object Windows.Forms.Button
$okButton.Text = "Ok"
$okButton.DialogResult = "Ok"
$okButton.Top = $cancelButton.Top
$okButton.Left = $cancelButton.Left - $okButton.Width - 5
$okButton.Anchor = "Right"

Add the buttons to the button panel
$buttonPanel.Controls.Add($okButton)
$buttonPanel.Controls.Add($cancelButton)

Add the button panel and list box to the form, and also set
the actions for the buttons
$form.Controls.Add($listBox)
$form.Controls.Add($buttonPanel)
$form.AcceptButton = $okButton
$form.CancelButton = $cancelButton
$form.Add_Shown({ $form.Activate() })

Show the form, and wait for the response
$result = $form.ShowDialog()

If they pressed OK (or Enter), go through all the
checked items and send the corresponding object down the pipeline
if($result -eq "OK")
{
 foreach($index in $listBox.CheckedIndices)
 {
 $objectArray[$index]
 }
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

354 | Chapter 13: User Interaction

13.11 Interact with UI Frameworks and STA Objects

Problem
You want to interact with a user interface framework or other object that requires that
the current thread be in single-threaded apartment (STA) mode.

PS > Add-Type -Assembly PresentationCore
PS > [Windows.Clipboard]::SetText("Hello World")
Exception calling "SetText" with "1" argument(s): "Current thread must be
set to single thread apartment (STA) mode before OLE calls can be made."
At line:1 char:29
+ [Windows.Clipboard]::SetText <<<< ("Hello World")
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationExcep
 tion
 + FullyQualifiedErrorId : DotNetMethodException

Solution
Launch PowerShell with the -STA switch. If you do this as part of a script or helper
command, also use the -NoProfile switch to avoid the performance impact and side
effects of loading the user’s profile:

PS > PowerShell -NoProfile -STA -Command {
 Add-Type -Assembly PresentationCore
 [Windows.Clipboard]::SetText("Hello World")
}

PS > PowerShell -NoProfile -STA -Command {
 Add-Type -Assembly PresentationCore
 [Windows.Clipboard]::GetText()
}

Hello World

Discussion
Threading modes define an agreement between an application and how it interacts with
some of its objects. Most objects in the .NET Framework (and thus, PowerShell and
nearly everything it interacts with) ignore the threading mode and are not impacted
by it.

Many user interface frameworks (such as WPF and WinForms) do require a specific
threading mode, though, called single-threaded apartment. PowerShell uses a threading
mode called multi-threaded apartment (MTA) by default, so you’ll sometimes run into
an error similar to the code example shown in the problem.

If you frequently find that you need to use STA mode, you can simply modify the
PowerShell link on your start menu to always load PowerShell with the -STA parameter.
It is incredibly rare for a component to require MTA mode rather than STA mode, and
always loading PowerShell with the -STA parameter has no performance impact.

13.11 Interact with UI Frameworks and STA Objects | 355

You might wonder why we didn’t just change PowerShell’s default if it
is so safe. Although it is very rare for a component to run into additional
issues in STA mode, some advanced threading situations cease to work.
Since components with these advanced requirements worked in version
one of PowerShell, changing the default would have introduced com-
patibility issues.

If your entire script requires STA mode, you have two primary options: detect the
current threading mode or relaunch yourself under STA mode.

To detect the current threading mode, you can access the $host.Runspace.Apartment
State variable. If its value is "STA", the current threading mode is STA.

If your script has simple parameter requirements, you may be able to relaunch yourself
automatically, as in Example 13-12.

Example 13-12. A script that relaunches itself in STA mode

###
##
Invoke-ScriptThatRequiresSta
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Demonstrates a technique to relaunch a script that requires STA mode.
This is useful only for simple parameter definitions that can be
specified positionally.

#>

param(
 $Parameter1,
 $Parameter2
)

Set-StrictMode -Version Latest

"Current threading mode: " + $host.Runspace.ApartmentState
"Parameter1 is: $parameter1"
"Parameter2 is: $parameter2"

if($host.Runspace.ApartmentState -ne "STA")
{
 "Relaunching"
 $file = $myInvocation.MyCommand.Path
 powershell -NoProfile -Sta -File $file $parameter1 $parameter2

356 | Chapter 13: User Interaction

 return
}

"After relaunch - current threading mode: " + $host.Runspace.ApartmentState

When you run this script, you get the following output:

PS > .\Invoke-ScriptThatRequiresSta.ps1 Test1 Test2
Current threading mode: Unknown
Parameter1 is: Test1
Parameter2 is: Test2
Relaunching
Current threading mode: STA
Parameter1 is: Test1
Parameter2 is: Test2
After relaunch - current threading mode: STA

For more information about PowerShell’s command-line parameters, see
Recipe 1.12. For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 1.12, “Invoke a PowerShell Command or Script from Outside PowerShell”

13.11 Interact with UI Frameworks and STA Objects | 357

CHAPTER 14

Debugging

14.0 Introduction
While developing scripts and functions, you’ll often find yourself running into behavior
that you didn’t intend. This is a natural part of software development, and the path to
diagnosing these issues is the fine art known as debugging.

For the simplest of problems, a well-placed call to Write-Host can answer many of your
questions. Did your script get to the places you thought it should? Were the variables
set to the values you thought they should be?

Once problems get more complex, print-style debugging quickly becomes cumbersome
and unwieldy. Rather than continually modifying your script to diagnose its behavior,
you can leverage PowerShell’s much more extensive debugging facilities to help you
get to the root of the problem.

PS > Set-PsBreakPoint .\Invoke-ComplexDebuggerScript.ps1 -Line 14

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 Invoke-Comple... 14

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
1225
89
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on
'Z:\Documents\CookbookV2\chapters\current\PowerShellCookbook\Invoke-Complex
DebuggerScript.ps1:14'

Invoke-ComplexDebuggerScript.ps1:14 $dirCount = 0

359

PS > ?

 s, stepInto Single step (step into functions, scripts, etc.)
 v, stepOver Step to next statement (step over functions, scripts,
 etc.)
 o, stepOut Step out of the current function, script, etc.

 c, continue Continue execution
 q, quit Stop execution and exit the debugger

 k, Get-PSCallStack Display call stack

 l, list List source code for the current script.
 Use "list" to start from the current line, "list <m>"
 to start from line <m>, and "list <m> <n>" to list <n>
 lines starting from line <m>

 <enter> Repeat last command if it was stepInto, stepOver or
 list

 ?, h Displays this help message

For instructions about how to customize your debugger prompt, type "help
about_prompt".

PS > k

Command Arguments Location
------- --------- --------
HelperFunction {} Invoke-ComplexDebugge...
Invoke-ComplexDebugge... {} Invoke-ComplexDebugge...
prompt {} prompt

By leveraging strict mode, you can often save yourself from writing bugs in the first
place. Once you discover an issue, script tracing can help you get a quick overview of
the execution flow taken by your script. For interactive diagnosis, PowerShell’s Inte-
grated Scripting Environment (ISE) offers full-featured graphical debugging support.
From the command line, the *-PsBreakPoint cmdlets let you investigate your script
when it hits a specific line, condition, or error.

14.1 Prevent Common Scripting Errors

Problem
You want to have PowerShell warn you when your script contains an error likely to
result in a bug.

360 | Chapter 14: Debugging

Solution
Use the Set-StrictMode cmdlet to place PowerShell in a mode that prevents many of
the scripting errors that tend to introduce bugs.

PS > function BuggyFunction
{
 $testVariable = "Hello"
 if($testVariab1e -eq "Hello")
 {
 "Should get here"
 }
 else
 {
 "Should not get here"
 }
}

PS > BuggyFunction
Should not get here

PS > Set-StrictMode -Version Latest
PS > BuggyFunction
The variable '$testVariab1e' cannot be retrieved because it has not been set.
At line:4 char:21
+ if($testVariab1e <<<< -eq "Hello")
 + CategoryInfo : InvalidOperation: (testVariab1e:Token) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

Discussion
By default, PowerShell allows you to assign data to variables you haven’t yet created
(thereby creating those variables). It also allows you to retrieve data from variables that
don’t exist—which usually happens by accident and almost always causes bugs. The
solution demonstrates this trap, where the L in “variable” was accidentally replaced by
the number 1.

To help save you from getting stung by this problem and others like it, PowerShell
provides a strict mode that generates an error if you attempt to access a nonexisting
variable. Example 14-1 demonstrates this mode.

Example 14-1. PowerShell operating in strict mode

PS > $testVariable = "Hello"
PS > $tsetVariable += " World"
PS > $testVariable
Hello
PS > Remove-Item Variable:\tsetvariable
PS > Set-StrictMode -Version Latest
PS > $testVariable = "Hello"
PS > $tsetVariable += " World"
The variable '$tsetVariable' cannot be retrieved because it has not been set.
At line:1 char:14
+ $tsetVariable <<<< += "World"

14.1 Prevent Common Scripting Errors | 361

 + CategoryInfo : InvalidOperation: (tsetVariable:Token) [], RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

In addition to saving you from accessing nonexistent variables, strict mode also detects
the following:

• Accessing nonexistent properties on an object

• Calling functions as though they were methods

One unique feature of the Set-StrictMode cmdlet is the -Version parameter. As
PowerShell releases new versions of the Set-StrictMode cmdlet, the cmdlet will become
more powerful and detect additional scripting errors. Because of this, a script that works
with one version of strict mode might not work under a later version. If you won’t have
the flexibility to modify your script to account for new strict mode rules, use
"-Version 2" as the value of the -Version parameter.

The Set-StrictMode cmdlet is scoped, meaning that the strict mode set
in one script or function doesn’t impact the scripts or functions that call
it. To temporarily disable strict mode for a region of a script, do so in a
new script block:

& { Set-StrictMode -Off; $tsetVariable }

For the sake of your script debugging health and sanity, strict mode should be one of
the first additions you make to your PowerShell profile.

See Also
Recipe 1.6, “Customize Your Shell, Profile, and Prompt”

Get-Help Set-StrictMode

14.2 Trace Script Execution

Problem
You want to review the flow of execution taken by your script as PowerShell runs it.

Solution
Use the -Trace parameter of the Set-PsDebug cmdlet to have PowerShell trace your script
as it executes it:

PS > function BuggyFunction
{
 $testVariable = "Hello"
 if($testVariab1e -eq "Hello")
 {

362 | Chapter 14: Debugging

 "Should get here"
 }
 else
 {
 "Should not get here"
 }
}

PS > Set-PsDebug -Trace 1
PS > BuggyFunction
DEBUG: 1+ <<<< BuggyFunction
DEBUG: 3+ $testVariable = <<<< "Hello"
DEBUG: 4+ if <<<< ($testVariab1e -eq "Hello")
DEBUG: 10+ "Should not get here" <<<<
Should not get here

Discussion
When it comes to simple interactive debugging (as opposed to bug prevention),
PowerShell supports several of the most useful debugging features that you might be
accustomed to. For the full experience, the Integrated Scripting Environment (ISE)
offers a full-fledged graphical debugger. For more information about debugging in the
ISE, see Recipe 19.1.

From the command line, though, you still have access to tracing (through the Set-
PsDebug -Trace statement), stepping (through the Set-PsDebug -Step statement), and
environment inspection (through the $host.EnterNestedPrompt() call). The *-PsBreak
point cmdlets support much more functionality in addition to these primitives, but the
Set-PsDebug cmdlet is useful for some simple problems.

As a demonstration of these techniques, consider Example 14-2.

Example 14-2. A complex script that interacts with PowerShell’s debugging features

###
##
Invoke-ComplexScript
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of PowerShell's debugging support.

#>

Set-StrictMode -Version Latest

14.2 Trace Script Execution | 363

Write-Host "Calculating lots of complex information"

$runningTotal = 0
$runningTotal += [Math]::Pow(5 * 5 + 10, 2)

Write-Debug "Current value: $runningTotal"

Set-PsDebug -Trace 1
$dirCount = @(Get-ChildItem $env:WINDIR).Count

Set-PsDebug -Trace 2
$runningTotal -= 10
$runningTotal /= 2

Set-PsDebug -Step
$runningTotal *= 3
$runningTotal /= 2

$host.EnterNestedPrompt()

Set-PsDebug -off

As you try to determine why this script isn’t working as you expect, a debugging session
might look like Example 14-3.

Example 14-3. Debugging a complex script

PS > $debugPreference = "Continue"
PS > Invoke-ComplexScript.ps1
Calculating lots of complex information
DEBUG: Current value: 1225
DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count
DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count
DEBUG: 19+ Set-PsDebug -Trace 2
DEBUG: 20+ $runningTotal -= 10
DEBUG: ! SET $runningTotal = '1215'.
DEBUG: 21+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '607.5'.
DEBUG: 23+ Set-PsDebug -Step

Continue with this operation?
 24+ $runningTotal *= 3
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 24+ $runningTotal *= 3
DEBUG: ! SET $runningTotal = '1822.5'.

Continue with this operation?
 25+ $runningTotal /= 2
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 25+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '911.25'.

Continue with this operation?

364 | Chapter 14: Debugging

 27+ $host.EnterNestedPrompt()
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 27+ $host.EnterNestedPrompt()
DEBUG: ! CALL method 'System.Void EnterNestedPrompt()'
PS > $dirCount
296
PS > $dirCount + $runningTotal
1207.25
PS > exit

Continue with this operation?
 29+ Set-PsDebug -off
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 29+ Set-PsDebug -off

Together, these interactive debugging features are bound to help you diagnose and
resolve simple problems quickly. For more complex problems, PowerShell’s graphical
debugger (in the ISE) and the *-PsBreakpoint cmdlets are here to help.

For more information about the Set-PsDebug cmdlet, type Get-Help Set-PsDebug. For
more information about setting script breakpoints, see Recipe 14.3.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 14.3, “Set a Script Breakpoint”

Recipe 19.1, “Debug a Script”

14.3 Set a Script Breakpoint

Problem
You want PowerShell to enter debugging mode when it executes a specific command,
executes a particular line in your script, or updates a variable.

Solution
Use the Set-PsBreakpoint cmdlet to set a new breakpoint:

Set-PsBreakPoint .\Invoke-ComplexDebuggerScript.ps1 -Line 21
Set-PSBreakpoint -Command Get-ChildItem
Set-PsBreakPoint -Variable dirCount

Discussion
When running a script, a breakpoint is a location (or condition) that causes PowerShell
to temporarily pause execution of that script. When it does so, it enters debugging

14.3 Set a Script Breakpoint | 365

mode. Debugging mode lets you investigate the state of the script and also gives you
fine-grained control over the script’s execution.

For more information about interacting with PowerShell’s debugging mode, see
Recipe 14.6.

The Set-PsBreakpoint cmdlet supports three primary types of breakpoints:

Positional
Positional breakpoints (lines and optionally columns) cause PowerShell to pause
execution once it reaches the specified location in the script you identify.

PS > Set-PSBreakpoint -Script .\Invoke-ComplexDebuggerScript.ps1 -Line 21

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 Invoke-ComplexDebuggerScript.ps1 21

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on
'(...)\Invoke-ComplexDebuggerScript.ps1:21'

Invoke-ComplexDebuggerScript.ps1:21 $runningTotal

When running the debugger from the command line, you can use Recipe 8.6 to
determine script line numbers.

Command
Command breakpoints cause PowerShell to pause execution before calling the
specified command. This is especially helpful for diagnosing in-memory functions
or for pausing before your script invokes a cmdlet. If you specify the -Script
parameter, PowerShell pauses only when the command is either defined by that
script (as in the case of dot-sourced functions) or called by that script. Although
command breakpoints do not support the -Line parameter, you can get the same
effect by setting a positional breakpoint on the script that defines them.

PS > Show-ColorizedContent $profile.CurrentUserAllHosts

(...)
084 | function grep(
085 | [string] $text = $(throw "Specify a search string"),
086 | [string] $filter = "*",
087 | [switch] $rec,
088 | [switch] $edit
089 |)
090 | {
091 | $results = & {
092 | if($rec) { gci . $filter -rec | select-string $text }
093 | else {gci $filter | select-string $text }
094 | }

366 | Chapter 14: Debugging

095 | $results
096 | }
(...)

PS > Set-PsBreakpoint $profile.CurrentUserAllHosts -Line 92 -Column 18

 ID Script Line Command Variable
 -- ------ ---- ------- --------
 0 profile.ps1 92

PS > grep "function grep" *.ps1 -rec
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'E:\Lee\WindowsPowerShell\profile.ps1:92, 18'

profile.ps1:92 if($rec) { gci . $filter -rec | select-string $text }

(...)

Variable
By default, variable breakpoints cause PowerShell to pause execution before chang-
ing the value of a variable.

PS > Set-PsBreakPoint -Variable dirCount

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 dirCount

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
1225
Entering debug mode. Use h or ? for help.

Hit Variable breakpoint on '$dirCount' (Write access)

Invoke-ComplexDebuggerScript.ps1:23
$dirCount = @(Get-ChildItem $env:WINDIR).Count
PS >

In addition to letting you break before it changes the value of a variable, PowerShell
also lets you break before it accesses the value of a variable.

Once you have a breakpoint defined, you can use the Disable-PsBreakpoint and Enable-
PsBreakpoint cmdlets to control how PowerShell reacts to those breakpoints. If a
breakpoint is disabled, PowerShell does not pause execution when it reaches that
breakpoint. To remove a breakpoint completely, use the Remove-PsBreakpoint cmdlet.

In addition to interactive debugging, PowerShell also lets you define actions to perform
automatically when it reaches a breakpoint. For more information, see Recipe 14.5.

14.3 Set a Script Breakpoint | 367

For more information about PowerShell’s debugging support, type Get-Help
about_Debuggers.

See Also
Recipe 14.5, “Create a Conditional Breakpoint”

Recipe 14.6, “Investigate System State While Debugging”

Get-Help about_Debuggers

14.4 Debug a Script When It Encounters an Error

Problem
You want PowerShell to enter debugging mode as soon as it encounters an error.

Solution
Run the Enable-BreakOnError script (as shown in Example 14-4) to have PowerShell
automatically pause script execution when it encounters an error.

Example 14-4. Enable-BreakOnError.ps1

###
##
Enable-BreakOnError
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Creates a breakpoint that only fires when PowerShell encounters an error

.EXAMPLE

PS >Enable-BreakOnError

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 Out-Default ...

PS >1/0
Entering debug mode. Use h or ? for help.

Hit Command breakpoint on 'Out-Default'

368 | Chapter 14: Debugging

PS >$error
Attempted to divide by zero.

#>

Set-StrictMode -Version Latest

Store the current number of errors seen in the session so far
$GLOBAL:EnableBreakOnErrorLastErrorCount = $error.Count

Set-PSBreakpoint -Command Out-Default -Action {

 ## If we're generating output, and the error count has increased,
 ## break into the debugger.
 if($error.Count -ne $EnableBreakOnErrorLastErrorCount)
 {
 $GLOBAL:EnableBreakOnErrorLastErrorCount = $error.Count
 break
 }
}

Discussion
When PowerShell generates an error, its final action is displaying that error to you. This
goes through the Out-Default cmdlet, as does all other PowerShell output. Knowing
this, Example 14-4 defines a conditional breakpoint. That breakpoint fires only when
the number of errors in the global $error collection changes from the last time it
checked.

If you don’t want PowerShell to break on all errors, you might just want to set a break-
point on the last error you encountered. For that, run Set-PsBreakpointLastError
(Example 14-5) and then run your script again.

Example 14-5. Set-PsBreakpointLastError.ps1

Set-StrictMode -Version Latest

$lastError = $error[0]
Set-PsBreakpoint $lastError.InvocationInfo.ScriptName `
 $lastError.InvocationInfo.ScriptLineNumber

For more information about intercepting stages of the PowerShell pipeline via the Out-
Default cmdlet, see Recipe 2.8. For more information about conditional breakpoints,
see Recipe 14.5.

For more information about PowerShell’s debugging support, type Get-Help
about_Debuggers.

14.4 Debug a Script When It Encounters an Error | 369

See Also
Recipe 2.8, “Intercept Stages of the Pipeline”

Recipe 14.5, “Create a Conditional Breakpoint”

Get-Help about_Debuggers

14.5 Create a Conditional Breakpoint

Problem
You want PowerShell to enter debugging mode when it encounters a breakpoint, but
only when certain other conditions hold true as well.

Solution
Use the -Action parameter to define an action that PowerShell should take when it
encounters the breakpoint. If the action includes a break statement, PowerShell pauses
execution and enters debugging mode.

PS > Get-Content .\looper.ps1
for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}
PS > Set-PsBreakpoint .\looper.ps1 -Line 3 -Action {
 if($count -eq 4) { break }
}

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 3 ...

PS > .\looper.ps1
Count is: 0
Count is: 1
Count is: 2
Count is: 3
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'C:\temp\looper.ps1:3'

looper.ps1:3 "Count is: $count"
PS > $count
4
PS > c
Count is: 4
Count is: 5
Count is: 6

370 | Chapter 14: Debugging

Count is: 7
Count is: 8
Count is: 9

Discussion
Conditional breakpoints are a great way to automate repetitive interactive debugging.
When you are debugging an often-executed portion of your script, the problematic
behavior often doesn’t occur until that portion of your script has been executed hun-
dreds or thousands of times. By narrowing down the conditions under which the
breakpoint should apply (such as the value of an interesting variable), you can drasti-
cally simplify your debugging experience.

The solution demonstrates a conditional breakpoint that triggers only when the value
of the $count variable is 4. When the -Action script block executes a break statement,
PowerShell enters debug mode.

Inside the -Action script block, you have access to all variables that exist at that time.
You can review them, or even change them if desired.

In addition to being useful for conditional breakpoints, the -Action script block also
proves helpful for generalized logging or automatic debugging. For example, consider
the following action that logs the text of a line whenever the script reaches that line:

PS > cd c:\temp
PS > Set-PsBreakpoint .\looper.ps1 -line 3 -Action {
 $debugPreference = "Continue"
 Write-Debug (Get-Content .\looper.ps1)[2]
}

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 3 ...

PS > .\looper.ps1
DEBUG: "Count is: $count"
Count is: 0
DEBUG: "Count is: $count"
Count is: 1
DEBUG: "Count is: $count"
Count is: 2
DEBUG: "Count is: $count"
(...)

When we create the breakpoint, we know which line we’ve set it on. When we hit the
breakpoint, we can simply get the content of the script and return the appropriate line.

For an even more complete example of conditional breakpoints being used to perform
code coverage analysis, see Recipe 14.8.

14.5 Create a Conditional Breakpoint | 371

For more information about PowerShell’s debugging support, type Get-Help
about_Debuggers.

See Also
Recipe 14.8, “Program: Get Script Code Coverage”

Get-Help about_Debuggers

14.6 Investigate System State While Debugging

Problem
PowerShell has paused execution after hitting a breakpoint, and you want to investigate
the state of your script.

Solution
Examine the $PSDebugContext variable to investigate information about the current
breakpoint and script location. Examine other variables to investigate the internal state
of your script. Use the debug mode commands (Get-PsCallstack, List, and others) for
more information about how you got to the current breakpoint and what source code
corresponds to the current location:

PS > Get-Content .\looper.ps1
param($userInput)

for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}

if($userInput -eq "One")
{
 "Got 'One'"
}

if($userInput -eq "Two")
{
 "Got 'Two'"
}

PS > Set-PsBreakpoint c:\temp\looper.ps1 -Line 5

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 5

PS > c:\temp\looper.ps1 -UserInput "Hello World"
Entering debug mode. Use h or ? for help.

372 | Chapter 14: Debugging

Hit Line breakpoint on 'C:\temp\looper.ps1:5'

looper.ps1:5 "Count is: $count"
PS > $PSDebugContext.InvocationInfo.Line
 "Count is: $count"
PS > $PSDebugContext.InvocationInfo.ScriptLineNumber
5
PS > $count
0
PS > s
Count is: 0
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > s
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > s
Hit Line breakpoint on 'C:\temp\looper.ps1:5'

looper.ps1:5 "Count is: $count"
PS > s
Count is: 1
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > $count
1
PS > $userInput
Hello World
PS > Get-PsCallStack

Command Arguments Location
------- --------- --------
looper.ps1 {userInput=Hello World} looper.ps1: Line 3
prompt {} prompt

PS > l 3 3

 3:* for($count = 0; $count -lt 10; $count++)
 4: {
 5: "Count is: $count"

PS >

Discussion
When PowerShell pauses your script as it hits a breakpoint, it enters a debugging mode
very much like the regular console session you are used to. You can execute commands,
get and set variables, and otherwise explore the state of the system.

What makes debugging mode unique, however, is its context. When you enter com-
mands in the PowerShell debugger, you are investigating the live state of the script. If
you pause in the middle of a loop, you can view and modify the counter variable that
controls that loop. Commands that you enter, in essence, become temporary parts of
the script itself.

14.6 Investigate System State While Debugging | 373

In addition to the regular variables available to you, PowerShell creates a new
$PSDebugContext automatic variable whenever it reaches a breakpoint. The
$PSDebugContext.BreakPoints property holds the current breakpoint, whereas the
$PSDebugContext.InvocationInfo property holds information about the current loca-
tion in the script:

PS > $PSDebugContext.InvocationInfo

MyCommand :
BoundParameters : {}
UnboundArguments : {}
ScriptLineNumber : 3
OffsetInLine : 40
HistoryId : -1
ScriptName : C:\temp\looper.ps1
Line : for($count = 0; $count -lt 10; $count++)
PositionMessage :
 At C:\temp\looper.ps1:3 char:40
 + for($count = 0; $count -lt 10; $count++ <<<<)
InvocationName : ++
PipelineLength : 0
PipelinePosition : 0
ExpectingInput : False
CommandOrigin : Internal

For information about the nesting of functions and commands that called each other
to reach this point (the “call stack”), type Get-PsCallStack.

If you find yourself continually monitoring a specific variable (or set of variables) for
changes, Recipe 14.7 shows a script that lets you automatically watch an expression of
your choice.

After investigating the state of the script, you can analyze its flow of execution through
the three stepping commands: step into, step over, and step out. These functions single-
step through your script with three different behaviors: entering functions and scripts
as you go, skipping over functions and scripts as you go, or popping out of the current
function or script (while still executing its remainder.)

For more information about PowerShell’s debugging support, type Get-Help
about_Debuggers.

See Also
Recipe 14.7, “Program: Watch an Expression for Changes”

Get-Help about_Debuggers

374 | Chapter 14: Debugging

14.7 Program: Watch an Expression for Changes
When debugging a script (or even just generally using the shell), you might find yourself
monitoring the same expression very frequently. This gets tedious to type by hand, so
Example 14-6 simplifies the task by automatically displaying the value of expressions
that interest you as part of your prompt.

Example 14-6. Watch-Expression.ps1

###
##
Watch-Expression
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Updates your prompt to display the values of information you want to track.

.EXAMPLE

PS >Watch-Expression { (Get-History).Count }

Expression Value
---------- -----
(Get-History).Count 3

PS >Watch-Expression { $count }

Expression Value
---------- -----
(Get-History).Count 4
$count

PS >$count = 100

Expression Value
---------- -----
(Get-History).Count 5
$count 100

PS >Watch-Expression -Reset
PS >

#>

param(
 ## The expression to track

14.7 Program: Watch an Expression for Changes | 375

 [ScriptBlock] $ScriptBlock,

 ## Switch to no longer watch an expression
 [Switch] $Reset
)

Set-StrictMode -Version Latest

if($Reset)
{
 Set-Item function:\prompt ([ScriptBlock]::Create($oldPrompt))

 Remove-Item variable:\expressionWatch
 Remove-Item variable:\oldPrompt

 return
}

Create the variableWatch variable if it doesn't yet exist
if(-not (Test-Path variable:\expressionWatch))
{
 $GLOBAL:expressionWatch = @()
}

Add the current variable name to the watch list
$GLOBAL:expressionWatch += $scriptBlock

Update the prompt to display the expression values,
if needed.
$GLOBAL:oldPrompt = Get-Content function:\prompt
if($oldPrompt -notlike '*$expressionWatch*')
{
 $newPrompt = @'
 $results = foreach($expression in $expressionWatch)
 {
 New-Object PSObject -Property @{
 Expression = $expression.ToString().Trim();
 Value = & $expression
 } | Select Expression,Value
 }
 Write-Host "`n"
 Write-Host ($results | Format-Table -Auto | Out-String).Trim()
 Write-Host "`n"

'@

 $newPrompt += $oldPrompt

 Set-Item function:\prompt ([ScriptBlock]::Create($newPrompt))
}

For more information about running scripts, see Recipe 1.1.

376 | Chapter 14: Debugging

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

14.8 Program: Get Script Code Coverage
When developing a script, testing it (either automatically or by hand) is a critical step
in knowing how well it does the job you think it does. While you can spend enormous
amounts of time testing new and interesting variations in your script, how do you know
when you are done?

Code coverage is the standard technique to answer this question. You instrument your
script so that the system knows what portions it executed, and then review the report
at the end to see which portions were not executed. If a portion was not executed during
your testing, you have untested code and can improve your confidence in its behavior
by adding more tests.

In PowerShell, we can combine two powerful techniques to create a code coverage
analysis tool: the Tokenizer API and conditional breakpoints.

First, we use the Tokenizer API to discover all of the unique elements of our script: its
statements, variables, loops, and more. Each token tells us the line and column that
holds it, so we then create breakpoints for all of those line and column combinations.

When we hit a breakpoint, we record that we hit it and then continue.

Once the script in Example 14-7 completes, we can compare the entire set of tokens
against the ones we actually hit. Any tokens that were not hit by a breakpoint represent
gaps in our tests.

Example 14-7. Get-ScriptCoverage.ps1

###
##
Get-ScriptCoverage
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Uses conditional breakpoints to obtain information about what regions of
a script are executed when run.

.EXAMPLE

PS >Get-Content c:\temp\looper.ps1

14.8 Program: Get Script Code Coverage | 377

param($userInput)

for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}

if($userInput -eq "One")
{
 "Got 'One'"
}

if($userInput -eq "Two")
{
 "Got 'Two'"
}

PS >$action = { c:\temp\looper.ps1 -UserInput 'One' }
PS >$coverage = Get-ScriptCoverage c:\temp\looper.ps1 -Action $action
PS >$coverage | Select Content,StartLine,StartColumn | Format-Table -Auto

Content StartLine StartColumn
------- --------- -----------
param 1 1
(1 6
userInput 1 7
) 1 17
Got 'Two' 15 5
} 16 1

This example exercises a 'looper.ps1' script, and supplies it with some
user input. The output demonstrates that we didn't exercise the
"Got 'Two'" statement.

#>

param(
 ## The path of the script to monitor
 $Path,

 ## The command to exercise the script
 [ScriptBlock] $Action = { & $path }
)

Set-StrictMode -Version Latest

Determine all of the tokens in the script
$scriptContent = Get-Content $path
$ignoreTokens = "Comment","NewLine"
$tokens = [System.Management.Automation.PsParser]::Tokenize(
 $scriptContent, [ref] $null) |
 Where-Object { $ignoreTokens -notcontains $_.Type }
$tokens = $tokens | Sort-Object StartLine,StartColumn

378 | Chapter 14: Debugging

Create a variable to hold the tokens that PowerShell actually hits
$visited = New-Object System.Collections.ArrayList

Go through all of the tokens
$breakpoints = foreach($token in $tokens)
{
 ## Create a new action. This action logs the token that we
 ## hit. We call GetNewClosure() so that the $token variable
 ## gets the _current_ value of the $token variable, as opposed
 ## to the value it has when the breakpoints gets hit.
 $breakAction = { $null = $visited.Add($token) }.GetNewClosure()

 ## Set a breakpoint on the line and column of the current token.
 ## We use the action from above, which simply logs that we've hit
 ## that token.
 Set-PsBreakpoint $path -Line `
 $token.StartLine -Column $token.StartColumn -Action $breakAction
}

Invoke the action that exercises the script
$null = . $action

Remove the temporary breakpoints we set
$breakpoints | Remove-PsBreakpoint

Sort the tokens that we hit, and compare them with all of the tokens
in the script. Output the result of that comparison.
$visited = $visited | Sort-Object -Unique StartLine,StartColumn
Compare-Object $tokens $visited -Property StartLine,StartColumn -PassThru

Clean up our temporary variable
Remove-Item variable:\visited

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.9, “Parse and Interpret PowerShell Scripts”

Recipe 14.5, “Create a Conditional Breakpoint”

14.8 Program: Get Script Code Coverage | 379

CHAPTER 15

Tracing and Error Management

15.0 Introduction
What if it doesn’t all go according to plan? This is the core question behind error
management in any system and it plays a large part in writing PowerShell scripts as well.

Although this is a core concern in many systems, PowerShell’s support for error man-
agement provides several unique features designed to make your job easier. The primary
benefit is a distinction between terminating and nonterminating errors.

When running a complex script or scenario, the last thing you want is for your world
to come crashing down because a script can’t open one of the 1,000 files it is operating
on. Although the system should make you aware of the failure, the script should still
continue to the next file. That is an example of a nonterminating error. But what if the
script runs out of disk space while running a backup? That should absolutely be an
error that causes the script to exit—also known as a terminating error.

Given this helpful distinction, PowerShell provides several features that let you manage
errors generated by scripts and programs, and also allows you to generate errors
yourself.

15.1 Determine the Status of the Last Command

Problem
You want to get status information about the last command you executed, such as
whether it succeeded.

Solution
Use one of the two variables PowerShell provides to determine the status of the last
command you executed: the $lastExitCode variable and the $? variable.

381

$lastExitCode

A number that represents the exit code/error level of the last script or application
that exited

$? (pronounced “dollar hook”)
A Boolean value that represents the success or failure of the last command

Discussion
The $lastExitCode PowerShell variable is similar to the %errorlevel% variable in DOS.
It holds the exit code of the last application to exit. This lets you continue to interact
with traditional executables (such as ping, findstr, and choice) that use exit codes as
a primary communication mechanism. PowerShell also extends the meaning of this
variable to include the exit codes of scripts, which can set their status using the exit
statement. Example 15-1 demonstrates this interaction.

Example 15-1. Interacting with the $lastExitCode and $? variables

PS > ping localhost

Pinging MyComputer [127.0.0.1] with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milliseconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
PS > $?
True
PS > $lastExitCode

0
PS > ping missing-host
Ping request could not find host missing-host. Please check the name and try again.
PS > $?
False
PS > $lastExitCode
1

The $? variable describes the exit status of the last application in a more general manner.
PowerShell sets this variable to False on error conditions such as the following:

• An application exits with a nonzero exit code.

• A cmdlet or script writes anything to its error stream.

• A cmdlet or script encounters a terminating error or exception.

382 | Chapter 15: Tracing and Error Management

For commands that do not indicate an error condition, PowerShell sets the $? variable
to True.

15.2 View the Errors Generated by a Command

Problem
You want to view the errors generated in the current session.

Solution
To access the list of errors generated so far, use the $error variable, as shown by
Example 15-2.

Example 15-2. Viewing errors contained in the $error variable

PS > 1/0
Attempted to divide by zero.
At line:1 char:3
+ 1/ <<<< 0
 + CategoryInfo : NotSpecified: (:) [], ParentContainsError
 RecordException
 + FullyQualifiedErrorId : RuntimeException

PS > $error[0] | Format-List -Force

ErrorRecord : Attempted to divide by zero.
StackTrace : at System.Management.Automation.Expressio
 (...)
WasThrownFromThrowStatement : False
Message : Attempted to divide by zero.
Data : {}
InnerException : System.DivideByZeroException: Attempted to
 divide by zero.
 at System.Management.Automation.ParserOps
 .PolyDiv(ExecutionContext context, Token op
 Token, Object lval, Object rval)
TargetSite : System.Collections.ObjectModel.Collection`1[
 System.Management.Automation.PSObject] Invoke
 (System.Collections.IEnumerable)
HelpLink :
Source : System.Management.Automation

Discussion
The PowerShell $error variable always holds the list of errors generated so far in the
current shell session. This list includes both terminating and nonterminating errors.

15.2 View the Errors Generated by a Command | 383

PowerShell displays fairly detailed information when it encounters an error:

PS > Stop-Process -name IDoNotExist
Stop-Process : Cannot find a process with the name "IDoNotExist". Verify
the process name and call the cmdlet again.
At line:1 char:13
+ Stop-Process <<<< -name IDoNotExist
 + CategoryInfo : ObjectNotFound: (IDoNotExist:String) [Stop-
 Process], ProcessCommandException
 + FullyQualifiedErrorId : NoProcessFoundForGivenName,Microsoft.Power
 Shell.Commands.StopProcessCommand

One unique feature about these errors is that they benefit from a diverse and interna-
tional community of PowerShell users. Notice the FullyQualifiedErrorId line: an error
identifier that remains the same no matter which language the error occurs in. When
a user pastes this error message on an Internet forum, newsgroup, or blog, this fully
qualified error ID never changes. English-speaking users can then benefit from errors
posted by non-English-speaking PowerShell users, and vice versa.

If you want to view an error in a table or list (through the Format-Table or Format-
List cmdlets), you must also specify the -Force option to override this customized view.

If you want to display errors in a more compact manner, PowerShell supports an ad-
ditional view called CategoryView that you set through the $errorView preference
variable:

PS > Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path 'C:\IDoNotExist' because it does not exist.
At line:1 char:14
+ Get-ChildItem <<<< IDoNotExist
 + CategoryInfo : ObjectNotFound: (C:\IDoNotExist:String)
 [Get-ChildItem], ItemNotFoundException
 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.
 GetChildItemCommand

PS > $errorView = "CategoryView"
PS > Get-ChildItem IDoNotExist
ObjectNotFound: (C:\IDoNotExist:String) [Get-ChildItem], ItemNotFound
Exception

To clear the list of errors, call the Clear() method on the $error list:

PS > $error.Count
2
PS > $error.Clear()
PS > $error.Count
0

For more information about PowerShell’s preference variables, type Get-Help
about_automatic_variables. If you want to determine only the success or failure of the
last command, see Recipe 15.1.

384 | Chapter 15: Tracing and Error Management

See Also
Recipe 15.1, “Determine the Status of the Last Command”

Get-Help about_automatic_variables

15.3 Manage the Error Output of Commands

Problem
You want to display detailed information about errors that come from commands.

Solution
To list all errors (up to $MaximumErrorCount) that have occurred in this session, access
the $error array:

$error

To list the last error that occurred in this session, access the first element in the $error
array:

$error[0]

To list detailed information about an error, pipe the error into the Format-List cmdlet
with the -Force parameter:

$currentError = $error[0]
$currentError | Format-List -Force

To list detailed information about the command that caused an error, access its
InvocationInfo property:

$currentError = $error[0]
$currentError.InvocationInfo

To display errors in a more succinct category-based view, change the $errorView vari-
able to "CategoryView":

$errorView = "CategoryView"

To clear the list of errors collected by PowerShell so far, call the Clear() method on the
$error variable:

$error.Clear()

Discussion
Errors are a simple fact of life in the administrative world. Not all errors mean disaster,
though. Because of this, PowerShell separates errors into two categories: nonterminat-
ing and terminating.

15.3 Manage the Error Output of Commands | 385

Nonterminating errors are the most common type of error. They indicate that the
cmdlet, script, function, or pipeline encountered an error that it was able to recover
from or was able to continue past. An example of a nonterminating error comes from
the Copy-Item cmdlet. If it fails to copy a file from one location to another, it can still
proceed with the rest of the files specified.

A terminating error, on the other hand, indicates a deeper, more fundamental error in
the operation. An example of this can again come from the Copy-Item cmdlet when you
specify invalid command-line parameters.

Digging into an error (and its nested errors) can be cumbersome, so for a script that
automates this task, see Recipe 15.4.

See Also
Recipe 15.4, “Program: Resolve an Error”

15.4 Program: Resolve an Error
Analyzing an error frequently requires several different investigative steps: displaying
the error, exploring its context, and analyzing its inner exceptions.

Example 15-3 automates these mundane tasks for you.

Example 15-3. Resolve-Error.ps1

###
##
Resolve-Error
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Displays detailed information about an error and its context

#>

param(
 ## The error to resolve
 $ErrorRecord = ($error[0])
)

Set-StrictMode -Off

""
"If this is an error in a script you wrote, use the Set-PsBreakpoint cmdlet"

386 | Chapter 15: Tracing and Error Management

"to diagnose it."
""

'Error details ($error[0] | Format-List * -Force)'
"-"*80
$errorRecord | Format-List * -Force

'Information about the command that caused this error ' +
 '($error[0].InvocationInfo | Format-List *)'
"-"*80
$errorRecord.InvocationInfo | Format-List *

'Information about the error''s target ' +
 '($error[0].TargetObject | Format-List *)'
"-"*80
$errorRecord.TargetObject | Format-List *

'Exception details ($error[0].Exception | Format-List * -Force)'
"-"*80

$exception = $errorRecord.Exception

for ($i = 0; $exception; $i++, ($exception = $exception.InnerException))
{
 "$i" * 80
 $exception | Format-List * -Force
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

15.5 Configure Debug, Verbose, and Progress Output

Problem
You want to manage the detailed debug, verbose, and progress output generated by
cmdlets and scripts.

Solution
To enable debug output for scripts and cmdlets that generate it:

$debugPreference = "Continue"
Start-DebugCommand

To enable verbose mode for a cmdlet that checks for the -Verbose parameter:

Copy-Item c:\temp*.txt c:\temp\backup\ -Verbose

15.5 Configure Debug, Verbose, and Progress Output | 387

To disable progress output from a script or cmdlet that generates it:

$progressPreference = "SilentlyContinue"
Get-Progress.ps1

Discussion
In addition to error output (as described in Recipe 15.3), many scripts and cmdlets
generate several other types of output. These include the following types:

Debug output
Helps you diagnose problems that may arise and can provide a view into the inner
workings of a command. You can use the Write-Debug cmdlet to produce this type
of output in a script or the WriteDebug() method to produce this type of output in
a cmdlet. PowerShell displays this output in yellow by default, but you can cus-
tomize it through the $host.PrivateData.Debug* color configuration variables.

Verbose output
Helps you monitor the actions of commands at a finer level than the default. You
can use the Write-Verbose cmdlet to produce this type of output in a script or the
WriteVerbose() method to produce this type of output in a cmdlet. PowerShell
displays this output in yellow by default, but you can customize it through the
$host.PrivateData.Verbose* color configuration variables.

Progress output
Helps you monitor the status of long-running commands. You can use the Write-
Progress cmdlet to produce this type of output in a script or the WriteProgress()
method to produce this type of output in a cmdlet. PowerShell displays this output
in yellow by default, but you can customize the color through the
$host.PrivateData.Progress* color configuration variables.

Some cmdlets generate verbose and debug output only if you specify the -Verbose and
-Debug parameters, respectively.

To configure the debug, verbose, and progress output of a script or cmdlet, modify the
$debugPreference, $verbosePreference, and $progressPreference shell variables. These
variables can accept the following values:

SilentlyContinue

Do not display this output.

Stop

Treat this output as an error.

Continue

Display this output.

Inquire

Display a continuation prompt for this output.

388 | Chapter 15: Tracing and Error Management

See Also
Recipe 15.3, “Manage the Error Output of Commands”

15.6 Handle Warnings, Errors, and Terminating Errors

Problem
You want to handle warnings, errors, and terminating errors generated by scripts or
other tools that you call.

Solution
To control how your script responds to warning messages, set the $warningPrefer
ence variable. In this example, to ignore them:

$warningPreference = "SilentlyContinue"

To control how your script responds to nonterminating errors, set the $errorAction
Preference variable. In this example, to ignore them:

$errorActionPreference = "SilentlyContinue"

To control how your script responds to terminating errors, you can use either the try /
catch / finally statements or the trap statement. In this example, to output a message
and continue with the script:

try
{
 1 / $null
}
catch [DivideByZeroException]
{
 "Don't divide by zero!"
}
finally
{
 "Script that will be executed even if errors occur in the try statement"
}

Use the trap statement if you want its error handling to apply to the entire scope:

trap [DivideByZeroException] { "Don't divide by zero!"; continue }
1 / $null

Discussion
PowerShell defines several preference variables that help you control how your script
reacts to warnings, errors, and terminating errors. As an example of these error man-
agement techniques, consider the following script.

15.6 Handle Warnings, Errors, and Terminating Errors | 389

##
##
Get-WarningsAndErrors
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of the Write-Warning, Write-Error, and throw
statements

#>

Set-StrictMode -Version Latest

Write-Warning "Warning: About to generate an error"
Write-Error "Error: You are running this script"
throw "Could not complete operation."

For more information about running scripts, see Recipe 1.1.

You can now see how a script might manage those separate types of errors:

PS > $warningPreference = "Continue"
PS > Get-WarningsAndErrors
WARNING: Warning: About to generate an error
Get-WarningsAndErrors : Error: You are running this script
At line:1 char:22
+ Get-WarningsAndErrors <<<<
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteError
 Exception,Get-WarningsAndErrors

Could not complete operation.
At line:15 char:6
+ throw <<<< "Could not complete operation."
 + CategoryInfo : OperationStopped: (Could not complete
 operation.:String) [], RuntimeException
 + FullyQualifiedErrorId : Could not complete operation.

Once you modify the warning preference, the original warning message gets sup-
pressed. A value of SilentlyContinue is useful when you are expecting an error of some
sort.

PS > $warningPreference = "SilentlyContinue"
PS > Get-WarningsAndErrors
Get-WarningsAndErrors : Error: You are running this script
At line:1 char:22
+ Get-WarningsAndErrors <<<<

390 | Chapter 15: Tracing and Error Management

 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteError
 Exception,Get-WarningsAndErrors

Could not complete operation.
At line:15 char:6
+ throw <<<< "Could not complete operation."
 + CategoryInfo : OperationStopped: (Could not complete
 operation.:String) [], RuntimeException
 + FullyQualifiedErrorId : Could not complete operation.

When you modify the error preference, you suppress errors and exceptions as well:

PS > $errorActionPreference = "SilentlyContinue"
PS > Get-WarningsAndErrors
PS >

An addition to the $errorActionPreference variable, all cmdlets let you specify your
preference during an individual call:

PS > $errorActionPreference = "Continue"
PS > Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path '...\IDoNotExist' because it does not exist.
At line:1 char:14
+ Get-ChildItem <<<< IDoNotExist
PS > Get-ChildItem IDoNotExist -ErrorAction SilentlyContinue
PS >

If you reset the error preference back to Continue, you can see the impact of a try /
catch / finally statement. The message from the Write-Error call makes it through,
but the exception does not:

PS > $errorActionPreference = "Continue"
PS > try { Get-WarningsAndErrors } catch { "Caught an error" }
Get-WarningsAndErrors : Error: You are running this script
At line:1 char:28
+ try { Get-WarningsAndErrors <<<< } catch { "Caught an error" }
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteError
 Exception,Get-WarningsAndErrors

Caught an error

The try / catch / finally statement acts like the similar statement in other programming
languages. First, it executes the code inside of its script block. If it encounters a termi-
nating error, it executes the code inside of the catch script block. It executes the code
in the finally statement no matter what—an especially useful feature for cleanup or
error-recovery code.

15.6 Handle Warnings, Errors, and Terminating Errors | 391

A similar technique is the trap statement:

PS > $errorActionPreference = "Continue"
PS > trap { "Caught an error"; continue }; Get-WarningsAndErrors
Get-WarningsAndErrors : Error: You are running this script
At line:1 char:60
+ trap { "Caught an error"; continue }; Get-WarningsAndErrors <<<<
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteError
 Exception,Get-WarningsAndErrors

Caught an error

Unlike the try statement, the trap statement handles terminating errors for anything
in the scope that defines it. For more information about scopes, see Recipe 3.6.

After handling an error, you can also remove it from the system’s error
collection by typing $error.RemoveAt(0).

For more information about error management in PowerShell, see “Managing Er-
rors” on page 757. For more detailed information about the valid settings of these
preference variables, see Appendix A.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.6, “Control Access and Scope of Variables and Other Items”

“Managing Errors” on page 757

Get-Help about_automatic_variables

15.7 Output Warnings, Errors, and Terminating Errors

Problem
You want your script to notify its caller of a warning, error, or terminating error.

##
##
Get-WarningsAndErrors
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

392 | Chapter 15: Tracing and Error Management

<#

.SYNOPSIS

Demonstrates the functionality of the Write-Warning, Write-Error, and throw
statements

#>

Set-StrictMode -Version Latest

Write-Warning "Warning: About to generate an error"
Write-Error "Error: You are running this script"
throw "Could not complete operation."

Solution
To write warnings and errors, use the Write-Warning and Write-Error cmdlets, respec-
tively. Use the throw statement to generate a terminating error.

Discussion
When you need to notify the caller of your script about an unusual condition, the Write-
Warning, Write-Error, and throw statements are the way to do it. If your user should
consider the message as more of a warning, use the Write-Warning cmdlet. If your script
encounters an error (but can reasonably continue past that error), use the Write-
Error cmdlet. If the error is fatal and your script simply cannot continue, use a throw
statement.

For information on how to handle these errors when thrown by other scripts, see
Recipe 15.6. For more information about error management in PowerShell, see “Man-
aging Errors” on page 757. For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 15.6, “Handle Warnings, Errors, and Terminating Errors”

“Managing Errors” on page 757

15.8 Program: Analyze a Script’s Performance Profile
When you write scripts that heavily interact with the user, you may sometimes feel that
your script could benefit from better performance.

When tackling performance problems, the first rule is to measure the problem. Unless
you can guide your optimization efforts with hard performance data, you are almost
certainly directing your efforts to the wrong spots. Random cute performance im-
provements will quickly turn your code into an unreadable mess, often with no

15.8 Program: Analyze a Script’s Performance Profile | 393

appreciable performance gain! Low-level optimization has its place, but it should al-
ways be guided by hard data that supports it.

The way to obtain hard performance data is from a profiler. PowerShell doesn’t ship
with a script profiler, but Example 15-4 uses PowerShell features to implement one.

Example 15-4. Get-ScriptPerformanceProfile.ps1

###
##
Get-ScriptPerformanceProfile
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Computes the performance characteristics of a script, based on the transcript
of it running at trace level 1.

.DESCRIPTION

To profile a script:

 1) Turn on script tracing in the window that will run the script:
 Set-PsDebug -trace 1
 2) Turn on the transcript for the window that will run the script:
 Start-Transcript
 (Note the filename that PowerShell provides as the logging destination.)
 3) Type in the script name, but don't actually start it.
 4) Open another PowerShell window, and navigate to the directory holding
 this script. Type in '.\Get-ScriptPerformanceProfile <transcript>',
 replacing <transcript> with the path given in step 2. Don't
 press <Enter> yet.
 5) Switch to the profiled script window, and start the script.
 Switch to the window containing this script, and press <Enter>.
 6) Wait until your profiled script exits, or has run long enough to be
 representative of its work. To be statistically accurate, your script
 should run for at least ten seconds.
 7) Switch to the window running this script, and press a key.
 8) Switch to the window holding your profiled script, and type:
 Stop-Transcript
 9) Delete the transcript.

.NOTES

You can profile regions of code (ie: functions) rather than just lines
by placing the following call at the start of the region:
 Write-Debug "ENTER <region_name>"
and the following call and the end of the region:
 Write-Debug "EXIT"

394 | Chapter 15: Tracing and Error Management

This is implemented to account exclusively for the time spent in that
region, and does not include time spent in regions contained within the
region. For example, if FunctionA calls FunctionB, and you've surrounded
each by region markers, the statistics for FunctionA will not include the
statistics for FunctionB.

#>

param(
 ## The path of the transcript log file
 [Parameter(Mandatory = $true)]
 $Path
)

Set-StrictMode -Version Latest

function Main
{
 ## Run the actual profiling of the script. $uniqueLines gets
 ## the mapping of line number to actual script content.
 ## $samples gets a hashtable mapping line number to the number of times
 ## we observed the script running that line.
 $uniqueLines = @{}
 $samples = GetSamples $uniqueLines

 "Breakdown by line:"
 "----------------------------"

 ## Create a new hashtable that flips the $samples hashtable --
 ## one that maps the number of times sampled to the line sampled.
 ## Also, figure out how many samples we got altogether.
 $counts = @{}
 $totalSamples = 0;
 foreach($item in $samples.Keys)
 {
 $counts[$samples[$item]] = $item
 $totalSamples += $samples[$item]
 }

 ## Go through the flipped hashtable, in descending order of number of
 ## samples. As we do so, output the number of samples as a percentage of
 ## the total samples. This gives us the percentage of the time our
 ## script spent executing that line.
 foreach($count in ($counts.Keys | Sort-Object -Descending))
 {
 $line = $counts[$count]
 $percentage = "{0:#0}" -f ($count * 100 / $totalSamples)
 "{0,3}%: Line {1,4} -{2}" -f $percentage,$line,
 $uniqueLines[$line]
 }

 ## Go through the transcript log to figure out which lines are part of
 ## any marked regions. This returns a hashtable that maps region names
 ## to the lines they contain.
 ""

15.8 Program: Analyze a Script’s Performance Profile | 395

 "Breakdown by marked regions:"
 "----------------------------"
 $functionMembers = GenerateFunctionMembers

 ## For each region name, cycle through the lines in the region. As we
 ## cycle through the lines, sum up the time spent on those lines and
 ## output the total.
 foreach($key in $functionMembers.Keys)
 {
 $totalTime = 0
 foreach($line in $functionMembers[$key])
 {
 $totalTime += ($samples[$line] * 100 / $totalSamples)
 }

 $percentage = "{0:#0}" -f $totalTime
 "{0,3}%: {1}" -f $percentage,$key
 }
}

Run the actual profiling of the script. $uniqueLines gets
the mapping of line number to actual script content.
Return a hashtable mapping line number to the number of times
we observed the script running that line.
function GetSamples($uniqueLines)
{
 ## Open the log file. We use the .Net file I/O, so that we keep
 ## monitoring just the end of the file. Otherwise, we would make our
 ## timing inaccurate as we scan the entire length of the file every time.
 $logStream = [System.IO.File]::Open($Path, "Open", "Read", "ReadWrite")
 $logReader = New-Object System.IO.StreamReader $logStream

 $random = New-Object Random
 $samples = @{}

 $lastCounted = $null

 ## Gather statistics until the user presses a key.
 while(-not $host.UI.RawUI.KeyAvailable)
 {
 ## We sleep a slightly random amount of time. If we sleep a constant
 ## amount of time, we run the very real risk of improperly sampling
 ## scripts that exhibit periodic behaviour.
 $sleepTime = [int] ($random.NextDouble() * 100.0)
 Start-Sleep -Milliseconds $sleepTime

 ## Get any content produced by the transcript since our last poll.
 ## From that poll, extract the last DEBUG statement (which is the last
 ## line executed).
 $rest = $logReader.ReadToEnd()
 $lastEntryIndex = $rest.LastIndexOf("DEBUG: ")

 ## If we didn't get a new line, then the script is still working on
 ## the last line that we captured.
 if($lastEntryIndex -lt 0)

396 | Chapter 15: Tracing and Error Management

 {
 if($lastCounted) { $samples[$lastCounted] ++ }
 continue;
 }

 ## Extract the debug line.
 $lastEntryFinish = $rest.IndexOf("\n", $lastEntryIndex)
 if($lastEntryFinish -eq -1) { $lastEntryFinish = $rest.length }

 $scriptLine = $rest.Substring(
 $lastEntryIndex, ($lastEntryFinish - $lastEntryIndex)).Trim()
 if($scriptLine -match 'DEBUG:[\t]*([0-9]*)\+(.*)')
 {
 ## Pull out the line number from the line
 $last = $matches[1]

 $lastCounted = $last
 $samples[$last] ++

 ## Pull out the actual script line that matches the line number
 $uniqueLines[$last] = $matches[2]
 }

 ## Discard anything that's buffered during this poll, and start
 ## waiting again
 $logReader.DiscardBufferedData()
 }

 ## Clean up
 $logStream.Close()
 $logReader.Close()

 $samples
}

Go through the transcript log to figure out which lines are part of any
marked regions. This returns a hashtable that maps region names to
the lines they contain.
function GenerateFunctionMembers
{
 ## Create a stack that represents the callstack. That way, if a marked
 ## region contains another marked region, we attribute the statistics
 ## appropriately.
 $callstack = New-Object System.Collections.Stack
 $currentFunction = "Unmarked"
 $callstack.Push($currentFunction)

 $functionMembers = @{}

 ## Go through each line in the transcript file, from the beginning
 foreach($line in (Get-Content $Path))
 {
 ## Check if we're entering a monitor block
 ## If so, store that we're in that function, and push it onto
 ## the callstack.

15.8 Program: Analyze a Script’s Performance Profile | 397

 if($line -match 'write-debug "ENTER (.*)"')
 {
 $currentFunction = $matches[1]
 $callstack.Push($currentFunction)
 }
 ## Check if we're exiting a monitor block
 ## If so, clear the "current function" from the callstack,
 ## and store the new "current function" onto the callstack.
 elseif($line -match 'write-debug "EXIT"')
 {
 [void] $callstack.Pop()
 $currentFunction = $callstack.Peek()
 }
 ## Otherwise, this is just a line with some code.
 ## Add the line number as a member of the "current function"
 else
 {
 if($line -match 'DEBUG:[\t]*([0-9]*)\+')
 {
 ## Create the arraylist if it's not initialized
 if(-not $functionMembers[$currentFunction])
 {
 $functionMembers[$currentFunction] =
 New-Object System.Collections.ArrayList
 }

 ## Add the current line to the ArrayList
 $hitLines = $functionMembers[$currentFunction]
 if(-not $hitLines.Contains($matches[1]))
 {
 [void] $hitLines.Add($matches[1])
 }
 }
 }
 }

 $functionMembers
}

. Main

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

398 | Chapter 15: Tracing and Error Management

CHAPTER 16

Environmental Awareness

16.0 Introduction
While many of your scripts will be designed to work in isolation, you will often find it
helpful to give your script information about its execution environment: its name, cur-
rent working directory, environment variables, common system paths, and more.

PowerShell offers several ways to get at this information—from its cmdlets and built-
in variables to features that it offers from the .NET Framework.

16.1 View and Modify Environment Variables

Problem
You want to interact with your system’s environment variables.

Solution
To interact with environment variables, access them in almost the same way that you
access regular PowerShell variables. The only difference is that you place env: between
the dollar sign ($) and the variable name:

PS > $env:Username
Lee

You can modify environment variables this way, too. For example, to temporarily add
the current directory to the path:

PS > Invoke-DemonstrationScript
The term 'Invoke-DemonstrationScript' is not recognized as the name of a
cmdlet, function, script file, or operable program. Check the spelling of
the name, or if a path was included, verify that the path is correct and
try again.
At line:1 char:27
+ Invoke-DemonstrationScript <<<<
 + CategoryInfo : ObjectNotFound: (Invoke-DemonstrationScript

399

 :String) [], CommandNotFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

Suggestion [3,General]: The command Invoke-DemonstrationScript was not
found, but does exist in the current location. Windows PowerShell doesn't load
commands from the current location by default. If you trust this command,
instead type ".\Invoke-DemonstrationScript". See "get-help about_Command_
Precedence" for more details.

PS > $env:PATH = $env:PATH + ".;"
PS > Invoke-DemonstrationScript
The script ran!

Discussion
In batch files, environment variables are the primary way to store temporary informa-
tion or to transfer information between batch files. PowerShell variables and script
parameters are more effective ways to solve those problems, but environment variables
continue to provide a useful way to access common system settings, such as the system’s
path, temporary directory, domain name, username, and more.

PowerShell surfaces environment variables through its environment provider: a con-
tainer that lets you work with environment variables much as you would work with
items in the filesystem or registry providers. By default, PowerShell defines an env: drive
(much like c: or d:) that provides access to this information:

PS > dir env:

Name Value
---- -----
Path c:\progra~1\ruby\bin;C:\WINDOWS\system32;C:\
TEMP C:\DOCUME~1\Lee\LOCALS~1\Temp
SESSIONNAME Console
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;
(...)

Since it is a regular PowerShell drive, the full way to get the value of an environment
variable looks like this:

PS > Get-Content Env:\Username
Lee

When it comes to environment variables, though, that is a syntax you will almost never
need to use, because of PowerShell’s support for the Get-Content and Set-Content var-
iable syntax, which shortens that to:

PS > $env:Username
Lee

400 | Chapter 16: Environmental Awareness

This syntax works for all drives but is used most commonly to access environment
variables. For more information about this syntax, see Recipe 16.2.

Some environment variables actually get their values from a combination of two places:
the machine-wide settings and the current-user settings. If you want to access environ-
ment variable values specifically configured at the machine or user level, use the
[Environment]::GetEnvironmentVariable() method. For example, if you’ve defined a
tools directory in your path, you might see:

PS > [Environment]::GetEnvironmentVariable("Path", "User")
d:\lee\tools

To set these machine- or user-specific environment variables permanently, use the
[Environment]::SetEnvironmentVariable() method:

[Environment]::SetEnvironmentVariable(<name>, <value>, <target>)

The target parameter defines where this variable should be stored: User for the current
user and Machine for all users on the machine. For example, to permanently add your
tools directory to your path:

PS > $oldPersonalPath = [Environment]::GetEnvironmentVariable("Path", "User")
PS > $oldPersonalPath += "d:\tools"
PS > [Environment]::SetEnvironmentVariable("Path", $oldPersonalPath, "User")

For more information about the Get-Content and Set-Content variable syntax, see
“Variables” on page 716. For more information about the environment provider, type
Get-Help About_Environment.

See Also
Recipe 16.2, “Access Information About Your Command’s Invocation”

“Variables” on page 716

16.2 Access Information About Your Command’s Invocation

Problem
You want to learn about how the user invoked your script, function, or script block.

Solution
To access information about how the user invoked your command, use the
$myInvocation variable:

"You invoked this script by typing: " + $myInvocation.Line

16.2 Access Information About Your Command’s Invocation | 401

Discussion
The $myInvocation variable provides a great deal of information about the current
script, function, or script block—and the context in which it was invoked:

MyCommand

Information about the command (script, function, or script block) itself.

ScriptLineNumber

The line number in the script that called this command.

ScriptName

When in a function or script block, the name of the script that called this command.

Line

The verbatim text used in the line of script (or command line) that called this
command.

InvocationName

The name that the user supplied to invoke this command. This will be different
from the information given by MyCommand if the user has defined an alias for the
command.

PipelineLength

The number of commands in the pipeline that invoked this command.

PipelinePosition

The position of this command in the pipeline that invoked this command.

One important point about working with the $myInvocation variable is that it changes
depending on the type of command from which you call it. If you access this information
from a function, it provides information specific to that function—not the script from
which it was called. Since scripts, functions, and script blocks are fairly unique, infor-
mation in the $myInvocation.MyCommand variable changes slightly between the different
command types.

Scripts

Definition and Path
The full path to the currently running script

Name

The name of the currently running script

CommandType

Always ExternalScript

Functions

Definition and ScriptBlock
The source code of the currently running function

402 | Chapter 16: Environmental Awareness

Options

The options (None, ReadOnly, Constant, Private, AllScope) that apply to the cur-
rently running function

Name

The name of the currently running function

CommandType

Always Function

Script blocks

Definition and ScriptBlock
The source code of the currently running script block

Name

Empty

CommandType

Always Script

16.3 Program: Investigate the InvocationInfo Variable
When experimenting with the information available through the $myInvocation varia-
ble, it is helpful to see how this information changes between scripts, functions, and
script blocks. For a useful deep dive into the resources provided by the $myInvocation
variable, review the output of Example 16-1.

Example 16-1. Get-InvocationInfo.ps1

##
##
Get-InvocationInfo
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Display the information provided by the $myInvocation variable

#>

param(
 ## Switch to no longer recursively call ourselves
 [switch] $PreventExpansion
)

16.3 Program: Investigate the InvocationInfo Variable | 403

Set-StrictMode -Version Latest

Define a helper function, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
function HelperFunction
{
 " MyInvocation from function:"
 "-"*50
 $myInvocation

 " Command from function:"
 "-"*50
 $myInvocation.MyCommand
}

Define a script block, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
$myScriptBlock = {
 " MyInvocation from script block:"
 "-"*50
 $myInvocation

 " Command from script block:"
 "-"*50
 $myInvocation.MyCommand
}

Define a helper alias
Set-Alias gii .\Get-InvocationInfo

Illustrate how $myInvocation.Line returns the entire line that the
user typed.
"You invoked this script by typing: " + $myInvocation.Line

Show the information that $myInvocation returns from a script
"MyInvocation from script:"
"-"*50
$myInvocation

"Command from script:"
"-"*50
$myInvocation.MyCommand

If we were called with the -PreventExpansion switch, don't go
any further
if($preventExpansion)
{
 return
}

Show the information that $myInvocation returns from a function
"Calling HelperFunction"
"-"*50
HelperFunction

404 | Chapter 16: Environmental Awareness

Show the information that $myInvocation returns from a dot-sourced
function
"Dot-Sourcing HelperFunction"
"-"*50
. HelperFunction

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii -PreventExpansion

Show the information that $myInvocation returns from a script block
"Calling script block"
"-"*50
& $myScriptBlock

Show the information that $myInvocation returns from a dot-sourced
script block
"Dot-Sourcing script block"
"-"*50
. $myScriptBlock

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii -PreventExpansion

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

16.4 Find Your Script’s Name

Problem
You want to know the name of the currently running script.

Solution
To determine the full path and filename of the currently executing script, use this
function:

function Get-ScriptName
{
 $myInvocation.ScriptName
}

To determine the name that the user actually typed to invoke your script (for example,
in a “Usage” message), use the $myInvocation.InvocationName variable.

16.4 Find Your Script’s Name | 405

Discussion
By placing the $myInvocation.ScriptName statement in a function, we drastically sim-
plify the logic it takes to determine the name of the currently running script. If you
don’t want to use a function, you can invoke a script block directly, which also simplifies
the logic required to determine the current script’s name:

$scriptName = & { $myInvocation.ScriptName }

Although this is a fairly complex way to get access to the current script’s name, the
alternative is a bit more error-prone. If you are in the body of a script, you can directly
get the name of the current script by typing:

$myInvocation.Path

If you are in a function or script block, though, you must use:

$myInvocation.ScriptName

Working with the $myInvocation.InvocationName variable is sometimes tricky, as it re-
turns the script name when called directly in the script, but not when called from a
function in that script. If you need this information from a function, pass it to the
function as a parameter.

For more information about working with the $myInvocation variable, see Recipe 16.2.

See Also
Recipe 16.2, “Access Information About Your Command’s Invocation”

16.5 Find Your Script’s Location

Problem
You want to know the location of the currently running script.

Solution
To determine the location of the currently executing script, use this function:

function Get-ScriptPath
{
 Split-Path $myInvocation.ScriptName
}

Discussion
Once we know the full path to a script, the Split-Path cmdlet makes it easy to determine
its location. Its sibling, the Join-Path cmdlet, makes it easy to form new paths from
their components as well.

406 | Chapter 16: Environmental Awareness

By accessing the $myInvocation.ScriptName variable in a function, we drastically sim-
plify the logic it takes to determine the location of the currently running script. For a
discussion about alternatives to using a function for this purpose, see Recipe 16.4.

For more information about working with the $myInvocation variable, see Recipe 16.2.

For more information about the Join-Path cmdlet, see Recipe 16.8.

See Also
Recipe 16.2, “Access Information About Your Command’s Invocation”

Recipe 16.4, “Find Your Script’s Name”

Recipe 16.8, “Safely Build File Paths Out of Their Components”

16.6 Find the Location of Common System Paths

Problem
You want to know the location of common system paths and special folders, such as
My Documents and Program Files.

Solution
To determine the location of common system paths and special folders, use the
[Environment]::GetFolderPath() method:

PS > [Environment]::GetFolderPath("System")
C:\WINDOWS\system32

For paths not supported by this method (such as All Users Start Menu), use the
WScript.Shell COM object:

$shell = New-Object -Com WScript.Shell
$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Discussion
The [Environment]::GetFolderPath() method lets you access the many common loca-
tions used in Windows. To use it, provide the short name for the location (such as
System or Personal). Since you probably don’t have all these short names memorized,
one way to see all these values is to use the [Enum]::GetValues() method, as shown in
Example 16-2.

Example 16-2. Folders supported by the [Environment]::GetFolderPath() method

PS > [Enum]::GetValues([Environment+SpecialFolder])
Desktop
Programs
Personal

16.6 Find the Location of Common System Paths | 407

Favorites
Startup
Recent
SendTo
StartMenu
MyMusic
DesktopDirectory
MyComputer
Templates
ApplicationData
LocalApplicationData
InternetCache
Cookies
History
CommonApplicationData
System
ProgramFiles
MyPictures
CommonProgramFiles

Since this is such a common task for all enumerated constants, though, PowerShell
actually provides the possible values in the error message if it is unable to convert your
input:

PS > [Environment]::GetFolderPath("aouaoue")
Cannot convert argument "0", with value: "aouaoue", for "GetFolderPath" to
type "System.Environment+SpecialFolder": "Cannot convert value "aouaoue"
to type "System.Environment+SpecialFolder" due to invalid enumeration values.
Specify one of the following enumeration values and try again. The possible
enumeration values are "Desktop, Programs, Personal, MyDocuments, Favorites, Startup,
Recent, SendTo, StartMenu, MyMusic, DesktopDirectory, MyComputer, Templates, ApplicationData,
LocalApplicationData, InternetCache, Cookies, History, CommonApplicationData, System,
ProgramFiles, MyPictures, CommonProgramFiles"."
At line:1 char:29
+ [Environment]::GetFolderPath(<<<< "aouaoue")

Although this method provides access to the most-used common system paths, it does
not provide access to all of them. For the paths that the [Environment]:: GetFolder
Path() method does not support, use the WScript.Shell COM object. The
WScript.Shell COM object supports the following paths: AllUsersDesktop, AllUsers
StartMenu, AllUsersPrograms, AllUsersStartup, Desktop, Favorites, Fonts, MyDocuments,
NetHood, PrintHood, Programs, Recent, SendTo, StartMenu, Startup, and Templates.

It would be nice if you could use either the [Environment]::GetFolderPath() method
or the WScript.Shell COM object, but each of them supports a significant number of
paths that the other does not, as Example 16-3 illustrates.

Example 16-3. Differences between folders supported by [Environment]::GetFolderPath() and the
Wscript.Shell COM object

PS > $shell = New-Object -Com WScript.Shell
PS > $shellPaths = $shell.SpecialFolders | Sort-Object
PS >
PS > $netFolders = [Enum]::GetValues([Environment+SpecialFolder])

408 | Chapter 16: Environmental Awareness

PS > $netPaths = $netFolders |
 Foreach-Object { [Environment]::GetFolderPath($_) } | Sort-Object

PS > ## See the shell-only paths
PS > Compare-Object $shellPaths $netPaths |
 Where-Object { $_.SideIndicator -eq "<=" }

InputObject SideIndicator
----------- -------------
C:\Documents and Settings\All Users\Desktop <=
C:\Documents and Settings\All Users\Start Menu <=
C:\Documents and Settings\All Users\Start Menu\Programs <=
C:\Documents and Settings\All Users\Start Menu\Programs\... <=
C:\Documents and Settings\Lee\NetHood <=
C:\Documents and Settings\Lee\PrintHood <=
C:\Windows\Fonts <=

PS > ## See the .NET-only paths
PS > Compare-Object $shellPaths $netPaths |
 Where-Object { $_.SideIndicator -eq "=>" }

InputObject SideIndicator
----------- -------------
 =>
C:\Documents and Settings\All Users\Application Data =>
C:\Documents and Settings\Lee\Cookies =>
C:\Documents and Settings\Lee\Local Settings\Application... =>
C:\Documents and Settings\Lee\Local Settings\History =>
C:\Documents and Settings\Lee\Local Settings\Temporary I... =>
C:\Program Files =>
C:\Program Files\Common Files =>
C:\WINDOWS\system32 =>
d:\lee =>
D:\Lee\My Music =>
D:\Lee\My Pictures =>

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

16.7 Get the Current Location

Problem
You want to determine the current location.

16.7 Get the Current Location | 409

Solution
To determine the current location, use the Get-Location cmdlet:

PS > Get-Location

Path

C:\temp
PS > $currentLocation = (Get-Location).Path
PS > $currentLocation
C:\temp

Discussion
One problem that sometimes impacts scripts that work with the .NET Framework is
that PowerShell’s concept of “current location” isn’t always the same as the Power-
Shell.exe process’s “current directory.” Take, for example:

PS > Get-Location

Path

C:\temp

PS > Get-Process | Export-CliXml processes.xml
PS > $reader = New-Object Xml.XmlTextReader processes.xml
PS > $reader.BaseURI
file:///C:/Documents and Settings/Lee/processes.xml

PowerShell keeps these concepts separate because it supports multiple pipelines of
execution. The process-wide current directory affects the entire process, so you would
risk corrupting the environment of all background tasks as you navigate around the
shell if that changed the process’s current directory.

When you use filenames in most .NET methods, the best practice is to use fully qualified
pathnames. The Resolve-Path cmdlet makes this easy:

PS > Get-Location

Path

C:\temp

PS > Get-Process | Export-CliXml processes.xml
PS > $reader = New-Object Xml.XmlTextReader (Resolve-Path processes.xml)
PS > $reader.BaseURI
file:///C:/temp/processes.xml

If you want to access a path that doesn’t already exist, use the Join-Path cmdlet in
combination with the Get-Location cmdlet:

PS > Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

410 | Chapter 16: Environmental Awareness

For more information about the Join-Path cmdlet, see Recipe 16.8.

See Also
Recipe 16.8, “Safely Build File Paths Out of Their Components”

16.8 Safely Build File Paths Out of Their Components

Problem
You want to build a new path out of a combination of subpaths.

Solution
To join elements of a path together, use the Join-Path cmdlet:

PS > Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

Discussion
The usual way to create new paths is by combining strings for each component, placing
a path separator between them:

PS > "$(Get-Location)\newfile.txt"
C:\temp\newfile.txt

Unfortunately, this approach suffers from a handful of problems:

• What if the directory returned by Get-Location already has a slash at the end?

• What if the path contains forward slashes instead of backslashes?

• What if we are talking about registry paths instead of filesystem paths?

Fortunately, the Join-Path cmdlet resolves these issues and more.

For more information about the Join-Path cmdlet, type Get-Help Join-Path.

16.9 Interact with PowerShell’s Global Environment

Problem
You want to store information in the PowerShell environment so that other scripts have
access to it.

16.9 Interact with PowerShell’s Global Environment | 411

Solution
To make a variable available to the entire PowerShell session, use a $GLOBAL: prefix
when you store information in that variable:

Create the web service cache, if it doesn't already exist
if(-not (Test-Path Variable:\Lee.Holmes.WebServiceCache))
{
 ${GLOBAL:Lee.Holmes.WebServiceCache} = @{}
}

Discussion
The primary guidance when it comes to storing information in the session’s global
environment is to avoid it when possible. Scripts that store information in the global
scope are prone to breaking other scripts and prone to being broken by other scripts.

This is a common practice in batch file programming, but script parameters and return
values usually provide a much cleaner alternative.

Most scripts that use global variables do that to maintain state between invocations.
PowerShell handles this in a much cleaner way through the use of Modules. For infor-
mation about this technique, see Recipe 11.7.

If you do need to write variables to the global scope, make sure that you create them
with a name unique enough to prevent collisions with other scripts, as illustrated in
the solution. Good options for naming prefixes are the script name, author’s name, or
company name.

For more information about setting variables at the global scope (and others), see
Recipe 3.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.7, “Write Commands That Maintain State”

16.10 Determine PowerShell Version Information

Problem
You want information about the current PowerShell version, CLR version, compatible
PowerShell versions, and more.

Solution
Access the $PSVersionTable automatic variable:

412 | Chapter 16: Environmental Awareness

PS > $psVersionTable

Name Value
---- -----
CLRVersion 2.0.50727.4200
BuildVersion 6.0.6002.18139
PSVersion 2.0
WSManStackVersion 2.0
PSCompatibleVersions {1.0, 2.0}
SerializationVersion 1.1.0.1
PSRemotingProtocolVersion 2.1

Discussion
The $PSVersionTable automatic variable holds version information for all of Power-
Shell’s components: the PowerShell version, its build information, Common Language
Runtime (CLR) version, and more.

This automatic variable was introduced in version two of PowerShell, so if your script
might be launched in PowerShell version one, you should use the Test-Path cmdlet to
test for existence of the $PSVersionTable automatic variable if your script needs to
change its behavior:

if(Test-Path variable:\PSVersionTable)
{
 ...
}

This technique isn’t completely sufficient for writing scripts that work in both versions
of PowerShell, however. If your script uses language features introduced by PowerShell
version two (such as new keywords), the script will fail to load in version one.

If the ability to run your script in both versions of PowerShell is a strong requirement,
the best approach is to simply write a script that works in PowerShell version one. It
will automatically work in PowerShell version two.

16.10 Determine PowerShell Version Information | 413

CHAPTER 17

Extend the Reach of Windows
PowerShell

17.0 Introduction
The PowerShell environment is phenomenally comprehensive. It provides a great sur-
face of cmdlets to help you manage your system, a great scripting language to let you
automate those tasks, and direct access to all the utilities and tools you already know.

The cmdlets, scripting language, and preexisting tools are just part of what makes
PowerShell so comprehensive, however. In addition to these features, PowerShell pro-
vides access to a handful of technologies that drastically increase its capabilities:
the .NET Framework, Windows Management Instrumentation (WMI), COM auto-
mation objects, native Windows API calls, and more.

Not only does PowerShell give you access to these technologies, but it also gives you
access to them in a consistent way. The techniques you use to interact with properties
and methods of PowerShell objects are the same techniques that you use to interact
with properties and methods of .NET objects. In turn, those are the same techniques
that you use to work with WMI and COM objects.

Working with these techniques and technologies provides another huge benefit—
knowledge that easily transfers to working in .NET programming languages such
as C#.

17.1 Automate Programs Using COM Scripting Interfaces

Problem
You want to automate a program or system task through its COM automation interface.

415

Solution
To instantiate and work with COM objects, use the New-Object cmdlet’s -ComObject
parameter.

$shell = New-Object -ComObject "Shell.Application"
$shell.Windows() | Format-Table LocationName,LocationUrl

Discussion
Like WMI, COM automation interfaces have long been a standard tool for scripting
and system administration. When an application exposes management or automation
tasks, COM objects are the second most common interface (right after custom
command-line tools).

PowerShell exposes COM objects like it exposes most other management objects in
the system. Once you have access to a COM object, you work with its properties and
methods in the same way that you work with methods and properties of other objects
in PowerShell.

Some COM objects require a special interaction mode called single-
threaded apartment (STA) to work correctly. For information about how
to interact with components that require STA interaction,
see Recipe 13.11.

In addition to automation tasks, many COM objects exist entirely to improve the
scripting experience in languages such as VBScript. Two examples are working with
files and sorting an array.

Most of these COM objects become obsolete in PowerShell, as PowerShell often pro-
vides better alternatives to them! In many cases, PowerShell’s cmdlets, scripting lan-
guage, or access to the .NET Framework provide the same or similar functionality to
a COM object that you might be used to.

For more information about working with COM objects, see Recipe 3.12. For a list of
the most useful COM objects, see Appendix H.

See Also
Recipe 3.12, “Use a COM Object”

Appendix H, Selected COM Objects and Their Uses

17.2 Program: Query a SQL Data Source
It is often helpful to perform ad hoc queries and commands against a data source such
as a SQL server, Access database, or even an Excel spreadsheet. This is especially true

416 | Chapter 17: Extend the Reach of Windows PowerShell

when you want to take data from one system and put it in another, or when you want
to bring the data into your PowerShell environment for detailed interactive manipula-
tion or processing.

Although you can directly access each of these data sources in PowerShell (through its
support of the .NET Framework), each data source requires a unique and hard to re-
member syntax. Example 17-1 makes working with these SQL-based data sources both
consistent and powerful.

Example 17-1. Invoke-SqlCommand.ps1

##
##
Invoke-SqlCommand
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##
##

<#

.SYNOPSIS

Return the results of a SQL query or operation

.EXAMPLE

Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders"
Invokes a command using Windows authentication

.EXAMPLE

PS >$cred = Get-Credential
PS >Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders" -Cred $cred
Invokes a command using SQL Authentication

.EXAMPLE

PS >$server = "MYSERVER"
PS >$database = "Master"
PS >$sql = "UPDATE Orders SET EmployeeID = 6 WHERE OrderID = 10248"
PS >Invoke-SqlCommand $server $database $sql
Invokes a command that performs an update

.EXAMPLE

PS >$sql = "EXEC SalesByCategory 'Beverages'"
PS >Invoke-SqlCommand -Sql $sql
Invokes a stored procedure

17.2 Program: Query a SQL Data Source | 417

.EXAMPLE

Invoke-SqlCommand (Resolve-Path access_test.mdb) -Sql "SELECT * FROM Users"
Access an Access database

.EXAMPLE

Invoke-SqlCommand (Resolve-Path xls_test.xls) -Sql 'SELECT * FROM [Sheet1$]'
Access an Excel file

#>

param(
 ## The data source to use in the connection
 [string] $DataSource = ".\SQLEXPRESS",

 ## The database within the data source
 [string] $Database = "Northwind",

 ## The SQL statement(s) to invoke against the database
 [Parameter(Mandatory = $true)]
 [string[]] $SqlCommand,

 ## The timeout, in seconds, to wait for the query to complete
 [int] $Timeout = 60,

 ## The credential to use in the connection, if any
 $Credential
)

Set-StrictMode -Version Latest

Prepare the authentication information. By default, we pick
Windows authentication
$authentication = "Integrated Security=SSPI;"

If the user supplies a credential, then they want SQL
authentication
if($credential)
{
 $credential = Get-Credential $credential
 $plainCred = $credential.GetNetworkCredential()
 $authentication =
 ("uid={0};pwd={1};" -f $plainCred.Username,$plainCred.Password)
}

Prepare the connection string out of the information they
provide
$connectionString = "Provider=sqloledb; " +
 "Data Source=$dataSource; " +
 "Initial Catalog=$database; " +
 "$authentication; "

If they specify an Access database or Excel file as the connection

418 | Chapter 17: Extend the Reach of Windows PowerShell

source, modify the connection string to connect to that data source
if($dataSource -match '\.xls$|\.mdb$')
{
 $connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
 "Data Source=$dataSource; "

 if($dataSource -match '\.xls$')
 {
 $connectionString += 'Extended Properties="Excel 8.0;"; '

 ## Generate an error if they didn't specify the sheet name properly
 if($sqlCommand -notmatch '\[.+\$\]')
 {
 $error = 'Sheet names should be surrounded by square brackets, ' +
 'and have a dollar sign at the end: [Sheet1$]'
 Write-Error $error
 return
 }
 }
}

Connect to the data source and open it
$connection = New-Object System.Data.OleDb.OleDbConnection $connectionString
$connection.Open()

foreach($commandString in $sqlCommand)
{
 $command = New-Object Data.OleDb.OleDbCommand $commandString,$connection
 $command.CommandTimeout = $timeout

 ## Fetch the results, and close the connection
 $adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
 $dataset = New-Object System.Data.DataSet
 [void] $adapter.Fill($dataSet)

 ## Return all of the rows from their query
 $dataSet.Tables | Select-Object -Expand Rows
}

$connection.Close()

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

17.3 Access Windows Performance Counters

Problem
You want to access system performance counter information from PowerShell.

17.3 Access Windows Performance Counters | 419

Solution
To retrieve information about a specific performance counter, use the Get-Counter
cmdlet, as shown in Example 17-2.

Example 17-2. Accessing performance counter data through the Get-Counter cmdlet

PS > $counter = Get-Counter "\System\System Up Time"
PS > $uptime = $counter.CounterSamples[0].CookedValue
PS > New-TimeSpan -Seconds $uptime

Days : 8
Hours : 1
Minutes : 38
Seconds : 58
Milliseconds : 0
Ticks : 6971380000000
TotalDays : 8.06872685185185
TotalHours : 193.649444444444
TotalMinutes : 11618.9666666667
TotalSeconds : 697138
TotalMilliseconds : 697138000

Alternatively, WMI’s Win32_Perf* set of classes support many of the most common
performance counters:

Get-WmiObject Win32_PerfFormattedData_Tcpip_NetworkInterface

Discussion
The Get-Counter cmdlet provides handy access to all of Windows’ performance coun-
ters. With no parameters, it gives a helpful summary of system activity:

PS > Get-Counter -Continuous

Timestamp CounterSamples
--------- --------------
1/9/2010 7:26:49 PM \\...\network interface(ethernet
 adapter)\bytes total/sec :
 102739.3921377

 \\...\processor(_total)\% processor
 time :
 35.6164383561644

 \\...\memory\% committed bytes in use
 :
 29.4531607006855

 \\...\memory\cache faults/sec :
 98.1952324093294

 \\...\physicaldisk(_total)\% disk time
 :

420 | Chapter 17: Extend the Reach of Windows PowerShell

 144.227945205479

 \\...\physicaldisk(_total)\current disk
 queue length :
 0
(...)

When you supply a path to a specific counter, the Get-Counter cmdlet retrieves only
the samples for that path. The -Computer parameter lets you target a specific remote
computer, if desired:

PS > $computer = $ENV:Computername
PS > Get-Counter "\\$computer\processor(_total)\% processor time"

Timestamp CounterSamples
--------- --------------
1/9/2010 7:31:58 PM \\...\processor(_total)\% processor time :
 15.8710351576814

If you don’t know the path to the performance counter you want, you can use the
-ListSet parameter to search for a counter or set of counters. To see all counter sets,
use * as the parameter value:

PS > Get-Counter -List * | Format-List CounterSetName,Description

CounterSetName : TBS counters
Description : Performance counters for the TPM Base Services component.

CounterSetName : WSMan Quota Statistics
Description : Displays quota usage and violation information for WS-
 Management processes.

CounterSetName : Netlogon
Description : Counters for measuring the performance of Netlogon.

(...)

If you want to find a specific counter, use the Where-Object cmdlet to compare against
the Description or Paths property:

Get-Counter -ListSet * | Where-Object { $_.Description -match "garbage" }
Get-Counter -ListSet * | Where-Object { $_.Paths -match "Gen 2 heap" }

CounterSetName : .NET CLR Memory
MachineName : .
CounterSetType : MultiInstance
Description : Counters for CLR Garbage Collected heap.
Paths : {\.NET CLR Memory(*)\# Gen 0 Collections, \.NET CLR
 Memory(*)\# Gen 1 Collections, \.NET CLR Memory(*)\#
 Gen 2 Collections, \.NET CLR Memory(*)\Promoted Memory
 from Gen 0...}
PathsWithInstances : {\.NET CLR Memory(_Global_)\# Gen 0 Collections, \.NET
 CLR Memory(powershell)\# Gen 0 Collections, \.NET CLR
 Memory(powershell_ise)\# Gen 0 Collections, \.NET

17.3 Access Windows Performance Counters | 421

 CLR Memory(PresentationFontCache)\# Gen 0 Collections
 ...}
Counter : {\.NET CLR Memory(*)\# Gen 0 Collections, \.NET CLR
 Memory(*)\# Gen 1 Collections, \.NET CLR Memory(*)\#
 Gen 2 Collections, \.NET CLR Memory(*)\Promoted Memory
 from Gen 0...}

Once you’ve retrieved a set of counters, you can use the Export-Counter cmdlet to save
them in a format supported by other tools, such as the .BLG files supported by the
Windows Performance Monitor application.

If you already have a set of performance counters saved in a .BLG file or .TSV file that
were exported from Windows Performance Monitor, you can use the Import-Counter
cmdlet to work with those samples in PowerShell.

17.4 Access Windows API Functions

Problem
You want to access functions from the Windows API, as you would access them
through a Platform Invoke (P/Invoke) in a .NET language such as C#.

Solution
As shown in Example 17-3, obtain (or create) the signature of the Windows API func-
tion, and then pass that to the -MemberDefinition parameter of the Add-Type cmdlet.
Store the output object in a variable, and then use the method on that variable to invoke
the Windows API function.

Example 17-3. Get-PrivateProfileString.ps1

###
##
Get-PrivateProfileString
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Retrieves an element from a standard .INI file

.EXAMPLE

Get-PrivateProfileString c:\windows\system32\tcpmon.ini `
 "<Generic Network Card>" Name
Generic Network Card

422 | Chapter 17: Extend the Reach of Windows PowerShell

#>

param(
 ## The INI file to retrieve
 $Path,

 ## The section to retrieve from
 $Category,

 ## The item to retrieve
 $Key
)

Set-StrictMode -Version Latest

The signature of the Windows API that retrieves INI
settings
$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

Create a new type that lets us access the Windows API function
$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -Using System.Text -PassThru

The GetPrivateProfileString function needs a StringBuilder to hold
its output. Create one, and then invoke the method
$builder = New-Object System.Text.StringBuilder 1024
$null = $type::GetPrivateProfileString($category,
 $key, "", $builder, $builder.Capacity, $path)

Return the output
$builder.ToString()

Discussion
You can access many simple Windows APIs using the script given in Recipe 17.5. This
approach is difficult for more complex APIs, however.

In PowerShell version one, it was possible to access these APIs in one of two ways: by
generating a dynamic assembly on the fly (you wouldn’t really do this for one-off calls,
but Recipe 17.5 uses this technique) or by looking up the P/Invoke definition for that
API call and compiling the C# to access it.

17.4 Access Windows API Functions | 423

These are both good approaches, but PowerShell version two introduces the Add-
Type cmdlet to make this much easier.

Add-Type offers four basic modes of operation:

PS > Get-Command Add-Type | Select -Expand ParameterSets | Select Name

Name

FromSource
FromMember
FromPath
FromAssemblyName

These modes of operation are:

FromSource

Compile some C# (or other language) code that completely defines a type. This is
useful when you want to define an entire class, its methods, namespace, etc. You
supply the actual code as the value to the -TypeDefinition parameter, usually
through a variable. For more information about this technique, see Recipe 17.6.

FromPath

Compile from a file on disk, or load the types from an assembly at that location.
For more information about this technique, see Recipe 17.8.

FromAssemblyName

Load an assembly from the .NET Global Assembly Cache (GAC) by its shorter
name. This is not the same as the [Reflection.Assembly]::LoadWithPartialName
method, since that method introduces your script to many subtle breaking changes.
Instead, PowerShell maintains a large mapping table that converts the shorter name
you type into a strongly named assembly reference. For more information about
this technique, see Recipe 17.8.

FromMember

Generates a type out of a member definition (or a set of them). For example, if you
specify only a method definition, PowerShell automatically generates the wrapper
class for you. This parameter set is explicitly designed to easily support P/Invoke
calls.

Now, how do you use the FromMember parameter set to call a Windows API? The solution
shows the end result of this process, but let’s take it step-by-step. First, imagine that
you want to access sections of an INI file.

PowerShell doesn’t have a native way to manage INI files, and neither does the .NET
Framework. However, the Windows API does, through a call to the function called
GetPrivateProfileString. The .NET framework lets you access Windows functions
through a technique called P/Invoke (Platform Invocation Services). Most calls boil
down to a simple P/Invoke definition, which usually takes a lot of trial and error. How-
ever, a great community has grown around these definitions, resulting in an enormous
resource called P/Invoke .NET (http://www.pinvoke.net/). The .NET Framework team

424 | Chapter 17: Extend the Reach of Windows PowerShell

http://www.pinvoke.net/

also supports a tool called the P/Invoke Interop Assistant that generates these defini-
tions as well, but we won’t consider that for now.

First, we’ll create a script called Get-PrivateProfileString.ps1. It’s a template for now:

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$null

To start fleshing this out, we visit P/Invoke .NET and search for GetPrivateProfile
String, as shown in Figure 17-1.

Figure 17-1. Visiting P/Invoke .NET

Click into the definition, and we see the C# signature, as in Figure 17-2.

Figure 17-2. The Windows API signature for GetPrivateProfileString

17.4 Access Windows API Functions | 425

Next, we copy that signature as a here string into our script. Notice in the following
code example that we’ve added public to the declaration. The signatures on
P/Invoke .NET assume that you’ll call the method from within the C# class that defines
it. We’ll be calling it from scripts (which are outside of the C# class that defines it), so
we need to change its visibility.

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$null

Now we add the call to Add-Type. This signature becomes the building block for a new
class, so we only need to give it a name. To prevent its name from colliding with other
classes with the same name, we also put it in a namespace. The name of our script is a
good choice:

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -PassThru

$null

When we try to run this script, though, we get an error:

426 | Chapter 17: Extend the Reach of Windows PowerShell

The type or namespace name 'StringBuilder' could not be found (are you missing a
using directive or an assembly reference?)
c:\Temp\obozeqo1.0.cs(12) : string lpDefault,
c:\Temp\obozeqo1.0.cs(13) : >>> StringBuilder lpReturnedString,
c:\Temp\obozeqo1.0.cs(14) : uint nSize,

Indeed we are missing something. The StringBuilder class is defined in the
System.Text namespace, which requires a using directive to be placed at the top of the
program by the class definition. Since we’re letting PowerShell define the type for us,
we can either rename StringBuilder to System.Text.StringBuilder or add a
-UsingNamespace parameter to have PowerShell add the using statement for us.

PowerShell adds references to the System and System.Runtime.Interop
Services namespaces by default.

Let’s do the latter:

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -Using System.Text -PassThru

$builder = New-Object System.Text.StringBuilder 1024
$null = $type::GetPrivateProfileString($category,
 $key, "", $builder, $builder.Capacity, $path)

$builder.ToString()

Now we can plug in all of the necessary parameters. The GetPrivateProfileString
function puts its output in a StringBuilder, so we’ll have to feed it one and return its
contents. This gives us the script shown in Example 17-3.

PS > Get-PrivateProfileString c:\windows\system32\tcpmon.ini `
 "<Generic Network Card>" Name
Generic Network Card

17.4 Access Windows API Functions | 427

So now we have it. With just a few lines of code, we’ve defined and invoked a Win32
API call.

For more information about working with classes from the .NET Framework, see
Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.5, “Program: Invoke Simple Windows API Calls”

Recipe 17.6, “Define or Extend a .NET Class”

Recipe 17.8, “Access a .NET SDK Library”

17.5 Program: Invoke Simple Windows API Calls
There are times when neither PowerShell’s cmdlets nor its scripting language directly
support a feature you need. In most of those situations, PowerShell’s direct support for
the .NET Framework provides another avenue to let you accomplish your task. In some
cases, though, even the .NET Framework does not support a feature you need to resolve
a problem, and the only solution is to access the core Windows APIs.

For complex API calls (ones that take highly structured data), the solution is to use the
Add-Type cmdlet (or write a PowerShell cmdlet) that builds on the Platform Invoke
(P/Invoke) support in the .NET Framework. The P/Invoke support in the .NET Frame-
work is designed to let you access core Windows APIs directly.

Although it is possible to determine these P/Invoke definitions yourself, it is usually
easiest to build on the work of others. If you want to know how to call a specific
Windows API from a .NET language, the P/Invoke .NET website (http://www.pinvoke
.net) is the best place to start.

If the API you need to access is straightforward (one that takes and returns only simple
data types), however, Example 17-4 can do most of the work for you.

For an example of this script in action, see Recipe 20.20.

Example 17-4. Invoke-WindowsApi.ps1

##
##
Invoke-WindowsApi
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

428 | Chapter 17: Extend the Reach of Windows PowerShell

http://www.pinvoke.net
http://www.pinvoke.net

<#

.SYNOPSIS

Invoke a native Windows API call that takes and returns simple data types.

.EXAMPLE

Prepare the parameter types and parameters for the CreateHardLink function
PS >$filename = "c:\temp\hardlinked.txt"
PS >$existingFilename = "c:\temp\link_target.txt"
PS >Set-Content $existingFilename "Hard Link target"
PS >$parameterTypes = [string], [string], [IntPtr]
PS >$parameters = [string] $filename, [string] $existingFilename,
 [IntPtr]::Zero

Call the CreateHardLink method in the Kernel32 DLL
PS >$result = Invoke-WindowsApi "kernel32" ([bool]) "CreateHardLink" `
 $parameterTypes $parameters
PS >Get-Content C:\temp\hardlinked.txt
Hard Link target

#>

param(
 ## The name of the DLL that contains the Windows API, such as "kernel32"
 [string] $DllName,

 ## The return type expected from Windows API
 [Type] $ReturnType,

 ## The name of the Windows API
 [string] $MethodName,

 ## The types of parameters expected by the Windows API
 [Type[]] $ParameterTypes,

 ## Parameter values to pass to the Windows API
 [Object[]] $Parameters
)

Set-StrictMode -Version Latest

Begin to build the dynamic assembly
$domain = [AppDomain]::CurrentDomain
$name = New-Object Reflection.AssemblyName 'PInvokeAssembly'
$assembly = $domain.DefineDynamicAssembly($name, 'Run')
$module = $assembly.DefineDynamicModule('PInvokeModule')
$type = $module.DefineType('PInvokeType', "Public,BeforeFieldInit")

Go through all of the parameters passed to us. As we do this,
we clone the user's inputs into another array that we will use for
the P/Invoke call.
$inputParameters = @()

17.5 Program: Invoke Simple Windows API Calls | 429

$refParameters = @()

for($counter = 1; $counter -le $parameterTypes.Length; $counter++)
{
 ## If an item is a PSReference, then the user
 ## wants an [out] parameter.
 if($parameterTypes[$counter - 1] -eq [Ref])
 {
 ## Remember which parameters are used for [Out] parameters
 $refParameters += $counter

 ## On the cloned array, we replace the PSReference type with the
 ## .Net reference type that represents the value of the PSReference,
 ## and the value with the value held by the PSReference.
 $parameterTypes[$counter - 1] =
 $parameters[$counter - 1].Value.GetType().MakeByRefType()
 $inputParameters += $parameters[$counter - 1].Value
 }
 else
 {
 ## Otherwise, just add their actual parameter to the
 ## input array.
 $inputParameters += $parameters[$counter - 1]
 }
}

Define the actual P/Invoke method, adding the [Out]
attribute for any parameters that were originally [Ref]
parameters.
$method = $type.DefineMethod(
 $methodName, 'Public,HideBySig,Static,PinvokeImpl',
 $returnType, $parameterTypes)
foreach($refParameter in $refParameters)
{
 [void] $method.DefineParameter($refParameter, "Out", $null)
}

Apply the P/Invoke constructor
$ctor = [Runtime.InteropServices.DllImportAttribute].GetConstructor([string])
$attr = New-Object Reflection.Emit.CustomAttributeBuilder $ctor, $dllName
$method.SetCustomAttribute($attr)

Create the temporary type, and invoke the method.
$realType = $type.CreateType()

$realType.InvokeMember(
 $methodName, 'Public,Static,InvokeMethod', $null, $null,$inputParameters)

Finally, go through all of the reference parameters, and update the
values of the PSReference objects that the user passed in.
foreach($refParameter in $refParameters)
{
 $parameters[$refParameter - 1].Value = $inputParameters[$refParameter - 1]
}

430 | Chapter 17: Extend the Reach of Windows PowerShell

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 20.20, “Program: Create a Filesystem Hard Link”

17.6 Define or Extend a .NET Class

Problem
You want to define a new .NET class or extend an existing one.

Solution
Use the -TypeDefinition parameter of the Add-Type class, as in Example 17-5.

Example 17-5. Invoke-AddTypeTypeDefinition.ps1

###
##
Invoke-AddTypeTypeDefinition
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the use of the -TypeDefinition parameter of the Add-Type
cmdlet.

#>

Set-StrictMode -Version Latest

Define the new C# class
$newType = @'
using System;

namespace PowerShellCookbook
{
 public class AddTypeTypeDefinitionDemo
 {
 public string SayHello(string name)
 {
 string result = String.Format("Hello {0}", name);
 return result;
 }

17.6 Define or Extend a .NET Class | 431

 }
}

'@

Add it to the Powershell session
Add-Type -TypeDefinition $newType

Show that we can access it like any other .NET type
$greeter = New-Object PowerShellCookbook.AddTypeTypeDefinitionDemo
$greeter.SayHello("World");

Discussion
The Add-Type cmdlet is one of the major new additions to the glue-like nature of
PowerShell version two, and it offers several unique ways to interact deeply with
the .NET Framework. One of its major modes of operation comes from the -TypeDefi
nition parameter, which lets you define entirely new .NET classes. In addition to the
example given in the solution, Recipe 3.7 demonstrates an effective use of this
technique.

Once you call the Add-Type cmdlet, PowerShell compiles the source code you provide
into a real .NET class. This action is equivalent to defining the class in a traditional
development environment, such as Visual Studio, and is just as powerful.

The thought of compiling source code as part of the execution of your
script may concern you because of its performance impact. Fortunately,
PowerShell saves your objects when it compiles them. If you call the
Add-Type cmdlet a second time with the same source code and in the
same session, PowerShell reuses the result of the first call. If you want
to change the behavior of a type you’ve already loaded, exit your session
and create it again.

PowerShell assumes C# as the default language for source code supplied to the -Type
Definition parameter. In addition to C#, the Add-Type cmdlet also supports C# version
3 (LINQ, the var keyword, etc.), Visual Basic, and JScript. It also supports languages
that implement the .NET-standard CodeProvider requirements (such as F#).

If the code you want to compile already exists in a file, you don’t have to specify it in-
line. Instead, you can provide its path to the -Path parameter. This parameter auto-
matically detects the extension of the file and compiles using the appropriate language
as needed.

In addition to supporting input from a file, you might also want to store the output
into a file—such as a cmdlet DLL or console application. The Add-Type cmdlet makes
this possible through the -OutputAssembly parameter. For example, the following adds
a cmdlet on the fly:

432 | Chapter 17: Extend the Reach of Windows PowerShell

PS > $cmdlet = @'
using System.Management.Automation;

namespace PowerShellCookbook
{
 [Cmdlet("Invoke", "NewCmdlet")]
 public class InvokeNewCmdletCommand : Cmdlet
 {
 [Parameter(Mandatory = true)]
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 private string _name;

 protected override void BeginProcessing()
 {
 WriteObject("Hello " + _name);
 }
 }
}

'@

PS > Add-Type -TypeDefinition $cmdlet -OutputAssembly MyNewModule.dll
PS > Import-Module .\MyNewModule.dll
PS > Invoke-NewCmdlet

cmdlet Invoke-NewCmdlet at command pipeline position 1
Supply values for the following parameters:
Name: World
Hello World

For advanced scenarios, you might want to customize how PowerShell compiles your
source code: embedding resources, changing the warning options, and more. For this,
use the -CompilerParameters parameter.

For an example of using the Add-Type cmdlet to generate inline C#, see Recipe 17.7.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.5, “Program: Invoke Simple Windows API Calls”

Recipe 17.7, “Add Inline C# to Your PowerShell Script”

Recipe 17.9, “Create Your Own PowerShell Cmdlet”

17.6 Define or Extend a .NET Class | 433

17.7 Add Inline C# to Your PowerShell Script

Problem
You want to write a portion of your script in C# (or another .NET language).

Solution
Use the -MemberDefinition parameter of the Add-Type class, as in Example 17-6.

Example 17-6. Invoke-Inline.ps1

###
##
Invoke-Inline
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Demonstrates the Add-Type cmdlet to invoke inline C#

#>

Set-StrictMode -Version Latest

$inlineType = Add-Type -Name InvokeInline_Inline -PassThru `
 -MemberDefinition @'
 public static int RightShift(int original, int places)
 {
 return original >> places;
 }
'@

$inlineType::RightShift(1024, 3)

Discussion
One of the natural languages to explore after learning PowerShell is C#. It uses many
of the same programming techniques as PowerShell, and it also uses the same classes
and methods in the .NET Framework. In addition, C# sometimes offers language fea-
tures or performance benefits that are not available through PowerShell.

434 | Chapter 17: Extend the Reach of Windows PowerShell

Rather than having to move to C# completely for these situations, Example 17-6 dem-
onstrates how you can use the Add-Type cmdlet to write and invoke C# directly in your
script.

Once you call the Add-Type cmdlet, PowerShell compiles the source code you provide
into a real .NET class. This action is equivalent to defining the class in a traditional
development environment, such as Visual Studio, and gives you equivalent function-
ality. When you use the -MemberDefinition parameter, PowerShell adds the surround-
ing source code required to create a complete .NET class.

By default, PowerShell will place your resulting type in the
Microsoft.PowerShell.Commands.AddType.AutoGeneratedTypes namespace. If you use
the -PassThru parameter (and define your method as static), you don’t need to pay
much attention to the name or namespace of the generated type. However, if you do
not define your method as static, you will need to use the New-Object cmdlet to create
a new instance of the object before using it. In this case, you will need to use the full
name of the resulting type when creating it. For example:

New-Object Microsoft.PowerShell.Commands.AddType.

AutoGeneratedTypes.InvokeInline_Inline

The thought of compiling source code as part of the execution of your
script may concern you because of its performance impact. Fortunately,
PowerShell saves your objects when it compiles them. If you call the
Add-Type cmdlet a second time with the same source code and in the
same session, PowerShell reuses the result of the first call. If you want
to change the behavior of a type you’ve already loaded, exit your session
and create it again.

PowerShell assumes C# as the default language of code supplied to the
-MemberDefinition parameter. It also supports C# version 3 (LINQ, the var keyword,
etc.), Visual Basic, and JScript. In addition, it supports languages that implement
the .NET-standard CodeProvider requirements (such as F#).

For an example of the -MemberDefinition parameter being used as part of a larger script,
see Recipe 17.4. For an example of using the Add-Type cmdlet to create entire types, see
Recipe 17.6.

See Also
Recipe 17.4, “Access Windows API Functions”

Recipe 17.6, “Define or Extend a .NET Class”

17.7 Add Inline C# to Your PowerShell Script | 435

17.8 Access a .NET SDK Library

Problem
You want to access the functionality exposed by a .NET DLL, but that DLL is packaged
as part of a developer-oriented Software Development Kit (SDK).

Solution
To create objects contained in a DLL, use the -Path parameter of the Add-Type cmdlet
to load the DLL and the New-Object cmdlet to create objects contained in it. Exam-
ple 17-7 illustrates this technique.

Example 17-7. Interacting with classes from the SharpZipLib SDK DLL

Add-Type -Path d:\bin\ICSharpCode.SharpZipLib.dll
$namespace = "ICSharpCode.SharpZipLib.Zip.{0}"

$zipName = Join-Path (Get-Location) "PowerShell_TDG_Scripts.zip"
$zipFile = New-Object ($namespace -f "ZipOutputStream") ([IO.File]::Create($zipName))

foreach($file in dir *.ps1)
{
 ## Add the file to the ZIP archive.
 $zipEntry = New-Object ($namespace -f "ZipEntry") $file.Name
 $zipFile.PutNextEntry($zipEntry)
}

$zipFile.Close()

Discussion
While C# and VB.Net developers are usually the consumers of SDKs created for
the .NET Framework, PowerShell lets you access the SDK features just as easily. To do
this, use the -Path parameter of the Add-Type cmdlet to load the SDK assembly, and
then work with the classes from that assembly as you would work with other classes
in the .NET Framework.

Although PowerShell lets you access developer-oriented SDKs easily, it
can’t change the fact that these SDKs are developer-oriented. SDKs and
programming interfaces are rarely designed with the administrator in
mind, so be prepared to work with programming models that require
multiple steps to accomplish your task.

To load any of the typical assemblies included in the .NET Framework, use the
-Assembly parameter of the Add-Type cmdlet:

PS > Add-Type -Assembly System.Web

436 | Chapter 17: Extend the Reach of Windows PowerShell

Like most PowerShell cmdlets, the Add-Type cmdlet supports wildcards to make long
assembly names easier to type:

PS > Add-Type -Assembly system.win*.forms

If the wildcard matches more than one assembly, Add-Type generates an error.

The .NET Framework offers a similar feature through the LoadWithPartialName method
of the System.Reflection.Assembly class, shown in Example 17-8.

Example 17-8. Loading an assembly by its partial name

PS > [Reflection.Assembly]::LoadWithPartialName("System.Web")

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(...)\System.Web.dll

PS > [Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

The difference between the two is that the LoadWithPartialName method is unsuitable
for scripts that you want to share with others or use in a production environment. It
loads the most current version of the assembly, which may not be the same as the
version you used to develop your script. If that assembly changes between versions,
your script will no longer work. The Add-Type command, on the other hand, internally
maps the short assembly names to the fully qualified assembly names contained in a
typical installation of the .NET Framework versions 2.0 and 3.5.

One thing you will notice when working with classes from an SDK is that it quickly
becomes tiresome to specify their fully qualified type names. For example, zip-related
classes from the SharpZipLib all start with ICSharpCode.SharpZipLib.Zip. This is called
the namespace of that class. Most programming languages solve this problem with a
using statement that lets you specify a list of namespaces for that language to search
when you type a plain class name such as ZipEntry. PowerShell lacks a using statement,
but the solution demonstrates one of several ways to get the benefits of one.

For more information on how to manage these long class names, see Recipe 3.11.

Note that prepackaged SDKs aren’t the only DLLs you can load this way. An SDK
library is simply a DLL that somebody wrote, compiled, packaged, and released. If you
are comfortable with any of the .NET languages, you can also create your own DLL,
compile it, and use it exactly the same way. To see an example of this approach, see
Recipe 17.6.

For more information about working with classes from the .NET Framework, see
Recipe 3.9.

See Also
Recipe 3.9, “Create an Instance of a .NET Object”

17.8 Access a .NET SDK Library | 437

Recipe 3.11, “Reduce Typing for Long Class Names”

Recipe 17.6, “Define or Extend a .NET Class”

17.9 Create Your Own PowerShell Cmdlet

Problem
You want to write your own PowerShell cmdlet.

Solution
To create a compiled cmdlet, use the PowerShell SDK (software development kit) as
described on MSDN (the Microsoft Developer Network). To create a script-based
cmdlet, see Recipe 11.15.

Discussion
As mentioned in “Structured Commands (Cmdlets)” on page 7, PowerShell cmdlets
offer several significant advantages over traditional executable programs. From the
user’s perspective, cmdlets are incredibly consistent. Their support for strongly typed
objects as input makes them incredibly powerful, too. From the cmdlet author’s per-
spective, cmdlets are incredibly easy to write when compared to the amount of power
they provide. Creating and exposing a new command-line parameter is as easy as cre-
ating a new public property on a class. Supporting a rich pipeline model is as easy as
placing your implementation logic into one of three standard method overrides.

Although a full discussion on how to implement a cmdlet is outside the scope of this
book, the following steps illustrate the process behind implementing a simple cmdlet.
While implementation typically happens in a fully featured development environment
(such as Visual Studio), Example 17-9 demonstrates how to compile a cmdlet simply
through the csc.exe command-line compiler.

For more information on how to write a PowerShell cmdlet, see the MSDN topic “How
to Create a Windows PowerShell Cmdlet,” available at http://msdn.microsoft.com/en
-us/library/ms714598.aspx.

Step 1: Download the PowerShell SDK

The PowerShell SDK contains samples, reference assemblies, documentation, and oth-
er information used when developing PowerShell cmdlets. Search for “PowerShell 2.0
SDK” on http://download.microsoft.com and download the latest PowerShell SDK.

Step 2: Create a file to hold the cmdlet source code

Create a file called InvokeTemplateCmdletCommand.cs with the content from Exam-
ple 17-9 and save it on your hard drive.

438 | Chapter 17: Extend the Reach of Windows PowerShell

http://msdn.microsoft.com/en-us/library/ms714598.aspx
http://msdn.microsoft.com/en-us/library/ms714598.aspx
http://download.microsoft.com

Example 17-9. InvokeTemplateCmdletCommand.cs

using System;
using System.ComponentModel;
using System.Management.Automation;

/*
To build and install:

1) Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
2) $ref = [PsObject].Assembly.Location
3) csc /out:TemplateBinaryModule.dll /t:library InvokeTemplateCmdletCommand.cs /r:$ref
4) Import-Module .\TemplateBinaryModule.dll

To run:

PS >Invoke-TemplateCmdlet
*/

namespace Template.Commands
{
 [Cmdlet("Invoke", "TemplateCmdlet")]
 public class InvokeTemplateCmdletCommand : Cmdlet
 {
 [Parameter(Mandatory=true, Position=0, ValueFromPipeline=true)]
 public string Text
 {
 get
 {
 return text;
 }
 set
 {
 text = value;
 }
 }
 private string text;

 protected override void BeginProcessing()
 {
 WriteObject("Processing Started");
 }

 protected override void ProcessRecord()
 {
 WriteObject("Processing " + text);
 }

 protected override void EndProcessing()
 {
 WriteObject("Processing Complete.");
 }
 }
}

17.9 Create Your Own PowerShell Cmdlet | 439

Step 3: Compile the DLL

A PowerShell cmdlet is a simple .NET class. The DLL that contains one or more com-
piled cmdlets is called a binary module.

Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
$ref = [PsObject].Assembly.Location
csc /out:TemplateBinaryModule.dll /t:library InvokeTemplateCmdletCommand.cs /r:$ref

For more information about binary modules, see Recipe 1.24.

If you don’t want to use csc.exe to compile the DLL, you can also use PowerShell’s
built-in Add-Type cmdlet. For more information about this approach, see Recipe 17.6.

Step 4: Load the module

Once you have compiled the module, the final step is to load it:

Import-Module .\TemplateBinaryModule.dll

Step 6: Use the module

Once you’ve added the module to your session, you can call commands from that
module as you would call any other cmdlet.

PS > "Hello World" | Invoke-TemplateCmdlet
Processing Started
Processing Hello World
Processing Complete.

In addition to binary modules, PowerShell supports almost all of the functionality of
cmdlets through advanced functions. If you want to create functions with the power
of cmdlets and the ease of scripting, see Recipe 11.15.

See Also
“Structured Commands (Cmdlets)” on page 7

Recipe 1.24, “Extend Your Shell with Additional Commands”

Recipe 11.15, “Provide -WhatIf, -Confirm, and Other Cmdlet Features”

Recipe 17.6, “Define or Extend a .NET Class”

17.10 Add PowerShell Scripting to Your Own Program

Problem
You want to provide your users with an easy way to automate your program, but don’t
want to write a scripting language on your own.

440 | Chapter 17: Extend the Reach of Windows PowerShell

Solution
To build PowerShell scripting into your own program, use the PowerShell Hosting
features as described on MSDN (the Microsoft Developer Network).

Discussion
One of the fascinating aspects of PowerShell is how easily it lets you add many of its
capabilities to your own program. This is because PowerShell is, at its core, a powerful
engine that any application can use. The PowerShell console application is in fact just
a text-based interface to this engine.

Although a full discussion of the PowerShell hosting model is outside the scope of this
book, the following example illustrates the techniques behind exposing features of your
application for your users to script.

To frame the premise of Example 17-10 (shown later), imagine an email application
that lets you run rules when it receives an email. While you will want to design a stand-
ard interface that allows users to create simple rules, you also will want to provide a
way for users to write incredibly complex rules. Rather than design a scripting language
yourself, you can simply use PowerShell’s scripting language. In the following example,
we provide user-written scripts with a variable called $message that represents the cur-
rent message and then runs the commands.

PS > Get-Content VerifyCategoryRule.ps1
if($message.Body -match "book")
{
 [Console]::WriteLine("This is a message about the book.")
}
else
{
 [Console]::WriteLine("This is an unknown message.")
}
PS > .\RulesWizardExample.exe (Resolve-Path VerifyCategoryRule.ps1)
This is a message about the book.

For more information on how to host PowerShell in your own application, see the
MSDN topic “How to Create a Windows PowerShell Hosting Application,” available
at http://msdn.microsoft.com/en-us/library/ee706563.aspx.

Step 1: Download the PowerShell SDK

The PowerShell SDK contains samples, reference assemblies, documentation, and oth-
er information used when developing PowerShell cmdlets. Search for “PowerShell 2.0
SDK” on http://download.microsoft.com and download the latest PowerShell SDK.

Step 2: Create a file to hold the hosting source code

Create a file called RulesWizardExample.cs with the content from Example 17-10, and
save it on your hard drive.

17.10 Add PowerShell Scripting to Your Own Program | 441

http://msdn.microsoft.com/en-us/library/ee706563.aspx
http://download.microsoft.com

Example 17-10. RulesWizardExample.cs

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace Template
{

 // Define a simple class that represents a mail message
 public class MailMessage
 {
 public MailMessage(string to, string from, string body)
 {
 this.To = to;
 this.From = from;
 this.Body = body;
 }

 public String To;
 public String From;
 public String Body;
 }

 public class RulesWizardExample
 {
 public static void Main(string[] args)
 {
 // Ensure that they've provided some script text
 if(args.Length == 0)
 {
 Console.WriteLine("Usage:");
 Console.WriteLine(" RulesWizardExample <script text>");
 return;
 }

 // Create an example message to pass to our rules wizard
 MailMessage mailMessage =
 new MailMessage(
 "guide_feedback@LeeHolmes.com",
 "guide_reader@example.com",
 "This is a message about your book.");

 // Create a runspace, which is the environment for
 // running commands
 Runspace runspace = RunspaceFactory.CreateRunspace();
 runspace.Open();

 // Create a variable called "$message" in the Runspace, and populate
 // it with a reference to the current message in our application.
 // Pipeline commands can interact with this object like any other
 // .Net object.
 runspace.SessionStateProxy.SetVariable("message", mailMessage);

 // Create a pipeline, and populate it with the script given in the
 // first command-line argument.

442 | Chapter 17: Extend the Reach of Windows PowerShell

 Pipeline pipeline = runspace.CreatePipeline(args[0]);

 // Invoke (execute) the pipeline, and close the runspace.
 pipeline.Invoke();
 runspace.Close();
 }
 }
}

Step 3: Compile and run the example

Although the example itself provides very little functionality, it demonstrates the core
concepts behind adding PowerShell scripting to your own program.

Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
$dll = [PsObject].Assembly.Location
Csc RulesWizardExample.cs /reference:$dll
RulesWizardExample.exe <script commands to run>

Now we can run Example 17-10. Here we give it a simple rule to just output the sender
of the sample mail message:

PS > .\RulesWizardExample.exe '[Console]::WriteLine($message.From)'
guide_reader@example.com

See Also
“Structured Commands (Cmdlets)” on page 7

17.10 Add PowerShell Scripting to Your Own Program | 443

CHAPTER 18

Security and Script Signing

18.0 Introduction
Security plays two important roles in PowerShell. The first role is the security of
PowerShell itself. Scripting languages have long been a vehicle of email-based malware
on Windows, so PowerShell’s security features have been carefully designed to thwart
this danger. The second role is the set of security-related tasks you are likely to en-
counter when working with your computer: script signing, certificates, and credentials,
just to name a few.

When it comes to talking about security in the scripting and command-line world, a
great deal of folklore and superstition clouds the picture. One of the most common
misconceptions is that scripting languages and command-line shells somehow let users
bypass the security protections of the Windows graphical user interface.

The Windows security model protects resources—not the way you get to them. That
is because, in effect, the programs that you run are you. If you can do it, so can a
program. If a program can do it, then you can do it without having to use that program.
For example, consider the act of changing critical data in the Windows Registry. If you
use the Windows Registry Editor graphical user interface, it provides an error message
when you attempt to perform an operation that you do not have permission for, as
shown in Figure 18-1.

The Registry Editor provides this error message because it is unable to delete that key,
not because it wanted to prevent you from doing it. Windows itself protects the registry
keys, not the programs you use to access them.

Likewise, PowerShell provides an error message when you attempt to perform an op-
eration that you do not have permission for. Not because PowerShell contains extra
security checks for that operation, but simply because it is unable to perform the
operation:

PS > New-Item "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"
New-Item : Requested registry access is not allowed.

445

At line:1 char:9
+ New-Item <<<< "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"

While perhaps clear after explanation, this misunderstanding often gets used as a rea-
son to prevent users from running command shells or scripting languages altogether.

Figure 18-1. Error message from the Windows Registry Editor

18.1 Enable Scripting Through an Execution Policy

Problem
PowerShell provides an error message, such as the following, when you try to run a
script:

PS > .\Test.ps1
File C:\temp\test.ps1 cannot be loaded because the execution of scripts is
disabled on this system. Please see "get-help about_signing" for more details.
At line:1 char:10
+ .\Test.ps1 <<<<

Solution
To prevent this error message, use the Set-ExecutionPolicy cmdlet to change the
PowerShell execution policy to one of the policies that allow scripts to run:

Set-ExecutionPolicy RemoteSigned

446 | Chapter 18: Security and Script Signing

Discussion
As normally configured, PowerShell operates strictly as an interactive shell. By disabling
the execution of scripts by default, PowerShell prevents malicious PowerShell scripts
from affecting users who have PowerShell installed but who may never have used (or
even heard of!) PowerShell.

You (as a reader of this book and PowerShell user) are not part of that target audience.
You will want to configure PowerShell to run under one of the following five execution
policies:

Restricted

PowerShell operates as an interactive shell only. Attempting to run a script gener-
ates an error message. This is PowerShell’s default execution policy.

AllSigned

PowerShell runs only those scripts that contain a digital signature. When you at-
tempt to run a script signed by a publisher that PowerShell hasn’t seen before,
PowerShell asks whether you trust that publisher to run scripts on your system.

RemoteSigned (recommended)
PowerShell runs most scripts without prompting, but requires that scripts from the
Internet contain a digital signature. As in AllSigned mode, PowerShell asks whether
you trust that publisher to run scripts on your system when you run a script signed
by a publisher it hasn’t seen before. PowerShell considers a script to have come
from the Internet when it has been downloaded to your computer by a popular
communications program such as Internet Explorer, Outlook, or Messenger.

Unrestricted

PowerShell does not require a digital signature on any script, but (like Windows
Explorer) warns you when a script has been downloaded from the Internet.

Bypass

PowerShell places the responsibility of security validation entirely upon the user.

When it comes to evaluating script signatures, always remember that a signed script
does not mean a safe script! The signature on a script gives you a way to verify who the
script came from, but not that you can trust its author to run commands on your system.
You need to make that decision for yourself, which is why PowerShell asks you.

Run the Set-ExecutionPolicy cmdlet to configure the system’s execution policy. It
supports three scopes:

Process

Impacts the current session and any that it launches. This scope modifies the
PSExecutionPolicy environment variable and is also supported through the
-ExecutionPolicy parameter to PowerShell.exe.

18.1 Enable Scripting Through an Execution Policy | 447

CurrentUser

Modifies the execution policy for the current user, and stores its value in the
HKEY_CURRENT_USER hive of the Windows Registry.

LocalMachine

Modifies the execution policy for the entire machine, and stores its value in the
HKEY_LOCAL_MACHINE hive of the Windows Registry. Modifying the execution policy
at this scope requires that you launch PowerShell with Administrator privileges. If
you want to configure your execution policy on Windows Vista or later, right-click
the Windows PowerShell link for the option to launch PowerShell as the
Administrator.

If you specify the value Undefined for the execution policy at a specific scope,
PowerShell removes any execution policy you previously defined for that scope.

Alternatively, you can directly modify the registry key that PowerShell uses to store its
execution policy. For the Currentuser and LocalMachine scopes, this is the Execution
Policy property under the registry path SOFTWARE\Microsoft\PowerShell\1\ShellIds
\Microsoft.PowerShell.

In an enterprise setting, PowerShell also lets you override this local preference through
Group Policy. For more information about PowerShell’s Group Policy support, see
Recipe 18.5.

Execution policies are not user restrictions

It is easy to understand the power of an execution policy to prevent scripts from run-
ning, but administrators often forget to consider from whom. They might think that
enforcing an AllSigned policy is a way to prevent the user from running unapproved
applications, when really it is designed as a way to prevent the attacker from running
scripts that the user doesn’t approve. This misconception is often wrongly reinforced
by the location of the ExecutionPolicy configuration key in PowerShell version one—
in a registry location that only machine administrators have access to.

System-wide PowerShell execution policies cannot prevent the user from doing some-
thing the user wants to do. That job is left to the Windows Account Model, which is
designed as a security boundary. It controls what users can do: what files can be ac-
cessed, what registry keys can be accessed, and more. PowerShell is a user-mode
application, and is therefore (as defined by the Windows security model) completely
under the user’s control.

Instead, execution policies are a user-focused feature, similar to seatbelts or helmets.
It’s best to keep them on, but you always have the option to take them off. PowerShell’s
installer sets the execution policy to Restricted as a safe default for the vast majority
of Windows users who will never run a PowerShell script in their life. A system ad-
ministrator might set the execution policy to AllSigned to define it as a best practice or
to let nontechnical users run a subset of safe scripts.

448 | Chapter 18: Security and Script Signing

At any time, users can decide otherwise. They can type the commands by hand, paste
the script into their PowerShell prompt, or use any of a countless number of other
workarounds. These are all direct results of a Windows core security principle: you
have complete control over any application you are running. PowerShell version two
makes this reality much more transparent through its fine-grained execution policy
scopes.

At its core, execution policy scopes let administrators and users tailor their safety har-
nesses. Jane might be fluent and technical (and opt for a RemoteSigned execution policy),
whereas Bob (another user of the same machine with different security preferences) can
still get the benefits of an AllSigned default execution policy. In addition, agents or
automation tools can invoke PowerShell commands without having to modify the per-
manent state of the system.

See Also
Recipe 18.5, “Manage PowerShell Security in an Enterprise”

18.2 Disable Warnings for UNC Paths

Problem
PowerShell warns you when it tries to load a script from an Intranet (UNC) path.

Solution
If it makes sense, copy the file locally and run it from your local location. If you want
to keep the script on the UNC path, enable Internet Explorer’s UncAsIntranet setting,
or add the UNC path to the list of trusted sites. Example 18-1 adds server to the list
of trusted sites.

Example 18-1. Adding a server to the list of trusted hosts

$path = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\" +
 "ZoneMap\Domains\server"
New-Item -Path $path | New-ItemProperty -Name File -PropertyType DWORD -Value 2

Discussion
When using an execution policy that detects Internet-based scripts, you may want to
stop PowerShell from treating those scripts as remote.

In an enterprise setting, PowerShell sometimes warns of the dangers of Internet-based
scripts even if they are located only on a network share. This is a security precaution,
as it is possible for network paths (such as UNC shares) to be spoofed, or for the content
of those scripts to be changed without your knowledge. If you have a high trust in your

18.2 Disable Warnings for UNC Paths | 449

network and the security of the remote system, you might want to avoid these
precautions.

To remove this warning, first ensure the scripts have not actually been downloaded
from the Internet. Right-click on the file from Windows Explorer, select Properties,
and then click Unblock.

If unblocking the file does not resolve the issue (or is not an option), your machine has
likely been configured to restrict access to network shares. This is common with In-
ternet Explorer’s Enhanced Security Configuration mode. To prevent this message, add
the path of the network share to Internet Explorer’s Intranet or Trusted Sites zone. For
more information on managing Internet Explorer’s zone mappings, see Recipe 21.7.

If you are using an Unrestricted execution policy and want to get rid of this warning
for remote files without altering the Trusted Sites zone, you can use the Bypass execu-
tion policy to bypass PowerShell’s security features entirely. For more information
about execution policies, see Recipe 18.1.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

Recipe 21.7, “Add a Site to an Internet Explorer Security Zone”

18.3 Sign a PowerShell Script, Module, or Formatting File

Problem
You want to sign a PowerShell script, module, or formatting file so that it can be run
on systems that have their execution policy set to require signed scripts.

Solution
To sign the script with your standard code-signing certificate, use the Set-

AuthenticodeSignature cmdlet:

$cert = @(Get-ChildItem cert:\CurrentUser\My -CodeSigning)[0]
Set-AuthenticodeSignature file.ps1 $cert

Alternatively, you can also use other traditional applications (such as signtool.exe) to
sign PowerShell .ps1, .psm1, .psd1, and .ps1xml files.

Discussion
Signing a script or formatting file provides you and your customers with two primary
benefits: publisher identification and file integrity. When you sign a script, module, or
formatting file, PowerShell appends your digital signature to the end of that file. This
signature verifies that the file came from you and also ensures that nobody can tamper

450 | Chapter 18: Security and Script Signing

with the content in the file without detection. If you try to load a file that has been
tampered with, PowerShell provides the following error message:

File C:\temp\test.ps1 cannot be loaded. The contents of file C:\temp\test.ps1
may have been tampered because the hash of the file does not match the hash
stored in the digital signature. The script will not execute on the system. Please
see "get-help about_signing" for more details.
At line:1 char:10
+ .\test.ps1 <<<<

When it comes to the signing of scripts, modules, and formatting files, PowerShell
participates in the standard Windows Authenticode infrastructure. Because of that,
techniques you may already know for signing files and working with their signatures
continue to work with PowerShell scripts and formatting files. Although the Set-
AuthenticodeSignature cmdlet is primarily designed to support scripts and formatting
files, it also supports DLLs and other standard Windows executable file types.

To sign a file, the Set-AuthenticodeSignature cmdlet requires that you provide it with
a valid code-signing certificate. Most certification authorities provide Authenticode
code-signing certificates for a fee. By using an Authenticode code-signing certificate
from a reputable certification authority (such as VeriSign or Thawte), you can be sure
that all users will be able to verify the signature on your script. Some online services
offer extremely cheap code-signing certificates, but be aware that many machines may
be unable to verify the digital signatures created by those certificates.

You can still gain many of the benefits of code signing on your own
computers by generating your own code-signing certificate. While other
computers will not be able to recognize the signature, it still provides
tamper protection on your own computer. For more information about
this approach, see Recipe 18.4.

The -TimeStampServer parameter lets you sign your script or formatting file in a way
that makes the signature on your script or formatting file valid even after your code-
signing certificate expires.

For more information about the Set-AuthenticodeSignature cmdlet, type
Get-Help Set-AuthenticodeSignature.

See Also
Recipe 18.4, “Program: Create a Self-Signed Certificate”

18.3 Sign a PowerShell Script, Module, or Formatting File | 451

18.4 Program: Create a Self-Signed Certificate

Discussion
It is possible to benefit from the tamper-protection features of signed scripts without
having to pay for an official code-signing certificate. You do this by creating a self-
signed certificate. Scripts signed with a self-signed certificate will not be recognized as
valid on other computers, but you can still sign and use them on your own computer.

When Example 18-2 runs, it prompts you for a password. Windows uses this password
to prevent malicious programs from automatically signing files on your behalf.

Example 18-2. New-SelfSignedCertificate.ps1

##
##
New-SelfSignedCertificate
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Generate a new self-signed certificate. The certificate generated by these
commands allow you to sign scripts on your own computer for protection
from tampering. Files signed with this signature are not valid on other
computers.

.EXAMPLE

New-SelfSignedCertificate.ps1
Creates a new self-signed certificate

#>

Set-StrictMode -Version Latest

Ensure we can find makecert.exe
if(-not (Get-Command makecert.exe -ErrorAction SilentlyContinue))
{
 $errorMessage = "Could not find makecert.exe. " +
 "This tool is available as part of Visual Studio, or the Windows SDK."

 Write-Error $errorMessage
 return
}

$keyPath = Join-Path ([IO.Path]::GetTempPath()) "root.pvk"

452 | Chapter 18: Security and Script Signing

Generate the local certification authority
makecert -n "CN=PowerShell Local Certificate Root" -a sha1 `
 -eku 1.3.6.1.5.5.7.3.3 -r -sv $keyPath root.cer `
 -ss Root -sr localMachine

Use the local certification authority to generate a self-signed
certificate
makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 `
 -eku 1.3.6.1.5.5.7.3.3 -iv $keyPath -ic root.cer

Remove the private key from the filesystem.
Remove-Item $keyPath

Retrieve the certificate
Get-ChildItem cert:\currentuser\my -codesign |
 Where-Object { $_.Subject -match "PowerShell User" }

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.5 Manage PowerShell Security in an Enterprise

Problem
You want to control PowerShell’s security features in an enterprise setting.

Solution
You have two ways to manage PowerShell’s security features enterprise-wide:

• Apply PowerShell’s Group Policy templates to control PowerShell’s execution pol-
icy through Group Policy.

• Deploy Microsoft Certificate Services to automatically generate Authenticode
code-signing certificates for domain accounts.

Discussion
Either separately or together, these features let you customize your PowerShell envi-
ronment across your entire domain.

Apply PowerShell’s Group Policy templates

The administrative templates for Windows PowerShell let you override the machine’s
local execution policy preference at both the machine and per-user level. To obtain the

18.5 Manage PowerShell Security in an Enterprise | 453

PowerShell administrative templates, visit http://www.microsoft.com/downloads and
search for “Administrative templates for Windows PowerShell”.

Although Group Policy settings override local preferences, PowerShell’s
execution policy should not be considered a security measure that pro-
tects the system from the user. It is a security measure that helps prevent
untrusted scripts from running on the system. As mentioned in
Recipe 18.1, PowerShell is only a vehicle that allows users to do what
they already have the Windows permissions to do.

Once you install the administrative templates for Windows PowerShell, launch the
Group Policy Object Editor MMC snap-in. Right-click Administrative Templates, and
then select Add/Remove Administrative Templates. You will find the administrative
template in the installation location you chose when you installed the administrative
templates for Windows PowerShell. Once added, the Group Policy Editor MMC snap-
in provides PowerShell as an option under its Administrative Templates node, as shown
in Figure 18-2.

Figure 18-2. PowerShell Group Policy configuration

The default state is Not Configured. In this state, PowerShell takes its execution policy
from the machine’s local preference (as described in Recipe 18.1). If you change the
state to one of the Enabled options (or Disabled), PowerShell uses this configuration
instead of the machine’s local preference.

PowerShell respects these Group Policy settings no matter what. This
includes settings that the machine’s administrator may consider to
reduce security—such as an Unrestricted group policy overriding an
AllSigned local preference.

Per-user Group Policy settings override the machine’s local preference, whereas per-
machine Group Policy settings override per-user settings.

454 | Chapter 18: Security and Script Signing

http://www.microsoft.com/downloads

Deploy Microsoft Certificate Services

Although outside the scope of this book, Microsoft Certificate Services lets you auto-
matically deploy code-signing certificates to any or all domain users. This provides a
significant benefit, as it helps protect users from accidental or malicious script
tampering.

For an introduction to this topic, visit http://technet.microsoft.com and search for “En-
terprise Design for Certificate Services”. For more information about script signing, see
Recipe 18.3.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

Recipe 18.3, “Sign a PowerShell Script, Module, or Formatting File”

18.6 Block Scripts by Publisher, Path, or Hash

Problem
In addition to PowerShell’s execution policy, you want to block scripts by their pub-
lisher, location, or similarity to a specific script.

Solution
Create new Software Restriction Policy rules to enforce these requirements.

Discussion
While this is not common, you may sometimes want to prevent PowerShell from run-
ning scripts signed by specific publishers, from a certain path, or with specific content.
For all execution policies except Bypass, PowerShell lets you configure this through the
computer’s software restriction policies.

To configure these software restriction policies, launch the Local Security Policy MMC
snap-in listed in the Administrative Tools group of the Start menu. Expand the Software
Restriction Policies node, right-click Additional Rules, and then create the desired rules:
certificate rules, path rule, or hash rules.

In Windows 7, the PowerShell module for the AppLocker feature makes
managing software restriction policies immensely easier. For more in-
formation, search the Internet for “Applocker PowerShell”.

Certificate rules let you configure certain certificates that PowerShell will never trust.
Path rules let you define system paths that allow or disallow execution of PowerShell

18.6 Block Scripts by Publisher, Path, or Hash | 455

http://technet.microsoft.com

scripts from certain paths. Hash rules let you block specific scripts from execution if
they are the same as the script you used to generate the rule.

Figure 18-3 shows how to add a new certificate rule.

Figure 18-3. Adding a new certificate rule

Browse to the certificate that represents the publisher you want to block, and then click
OK to block that publisher.

Rather than block specific certificates, you can also create a certificate policy that allows
only certificates from a centrally administered whitelist. To do this, select either Allow
only all administrators to manage Trusted Publishers or Allow only enterprise adminis-
trators to manage Trusted Publishers from the Trusted Publishers Management dialog.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

456 | Chapter 18: Security and Script Signing

Recipe 18.3, “Sign a PowerShell Script, Module, or Formatting File”

18.7 Verify the Digital Signature of a PowerShell Script

Problem
You want to verify the digital signature of a PowerShell script or formatting file.

Solution
To validate the signature of a script or formatting file, use the Get-Authenticode
Signature cmdlet:

PS > Get-AuthenticodeSignature .\test.ps1

 Directory: C:\temp

SignerCertificate Status Path
----------------- ------ ----
FD48FAA9281A657DBD089B5A008FAFE61D3B32FD Valid test.ps1

Discussion
The Get-AuthenticodeSignature cmdlet gets the Authenticode signature from a file.
This can be a PowerShell script or formatting file, but the cmdlet also supports DLLs
and other Windows standard executable file types.

By default, PowerShell displays the signature in a format that summarizes the certificate
and its status. For more information about the signature, use the Format-List cmdlet,
as shown in Example 18-3.

Example 18-3. PowerShell displaying detailed information about an Authenticode signature

PS > Get-AuthenticodeSignature .\test.ps1 | Format-List

SignerCertificate : [Subject]
 CN=PowerShell User

 [Issuer]
 CN=PowerShell Local Certificate Root

 [Serial Number]
 454D75B8A18FBDB445D8FCEC4942085C

 [Not Before]
 4/22/2007 12:32:37 AM

 [Not After]
 12/31/2039 3:59:59 PM

 [Thumbprint]
 FD48FAA9281A657DBD089B5A008FAFE61D3B32FD

18.7 Verify the Digital Signature of a PowerShell Script | 457

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified.
Path : C:\temp\test.ps1

For more information about the Get-AuthenticodeSignature cmdlet, type Get-Help
Get-AuthenticodeSignature.

18.8 Securely Handle Sensitive Information

Problem
You want to request sensitive information from the user, but want to do this as securely
as possible.

Solution
To securely handle sensitive information, store it in a SecureString whenever possible.
The Read-Host cmdlet (with the -AsSecureString parameter) lets you prompt the user
for (and handle) sensitive information by returning the user’s response as a Secure
String:

PS > $secureInput = Read-Host -AsSecureString "Enter your private key"
Enter your private key:
PS > $secureInput
System.Security.SecureString

Discussion
When you use any string in the .NET Framework (and therefore PowerShell), it retains
that string so that it can efficiently reuse it later. Unlike most .NET data, unused strings
persist even after you finish using them. When this data is in memory, there is always
the chance that it could get captured in a crash dump or swapped to disk in a paging
operation. Because some data (such as passwords and other confidential information)
may be sensitive, the .NET Framework includes the SecureString class: a container for
text data that the framework encrypts when it stores it in memory. Code that needs to
interact with the plain-text data inside a SecureString does so as securely as possible.

When a cmdlet author asks you for sensitive data (for example, an encryption key), the
best practice is to designate that parameter as a SecureString to help keep your infor-
mation confidential. You can provide the parameter with a SecureString variable as
input, or the host prompts you for the SecureString if you do not provide one.
PowerShell also supports two cmdlets (ConvertTo-SecureString and ConvertFrom-
SecureString) that let you securely persist this data to disk. For more information about
securely storing information on disk, see Recipe 18.12.

458 | Chapter 18: Security and Script Signing

Credentials are a common source of sensitive information. See
Recipe 18.9 for information on how to securely manage credentials in
PowerShell.

By default, the SecureString cmdlets use the Windows Data Protection API (DPAPI)
when they convert your SecureString to and from its text representation. The key it
uses to encrypt your data is based on your Windows logon credentials, so only you can
decrypt the data that you’ve encrypted. If you want the exported data to work on
another system or separate user account, you can use the cmdlet options that let you
provide an explicit key. PowerShell treats this sensitive data as an opaque blob—and
so should you.

However, there are many instances when you may want to automatically provide the
SecureString input to a cmdlet rather than have the host prompt you for it. In these
situations, the ideal solution is to use the ConvertTo-SecureString cmdlet to import a
previously exported SecureString from disk. This retains the confidentiality of your
data and still lets you automate the input.

If the data is highly dynamic (for example, coming from a CSV), then the ConvertTo-
SecureString cmdlet supports an -AsPlainText parameter:

$secureString = ConvertTo-SecureString "Kinda Secret" -AsPlainText-Force

Since you’ve already provided plain-text input in this case, placing this data in a Secure
String no longer provides a security benefit. To prevent a false sense of security, the
cmdlet requires the -Force parameter to convert plain-text data into a SecureString.

Once you have data in a SecureString, you may want to access its plain-text represen-
tation. PowerShell doesn’t provide a direct way to do this, as that defeats the purpose
of a SecureString. If you still want to convert a SecureString to plain text, you have
two options:

• Use the GetNetworkCredential() method of the PsCredential class:

$secureString = Read-Host -AsSecureString
$temporaryCredential = New-Object `
 System.Management.Automation.PsCredential "TempUser",$secureString
$unsecureString = $temporaryCredential.GetNetworkCredential().Password

• Use the .NET Framework’s Marshal class:

$secureString = Read-Host -AsSecureString
$unsecureString = [Runtime.InteropServices.Marshal]::PtrToStringAuto(
 [Runtime.InteropServices.Marshal]::SecureStringToBSTR($secureString))

See Also
Recipe 18.9, “Securely Request Usernames and Passwords”

Recipe 18.12, “Securely Store Credentials on Disk”

18.8 Securely Handle Sensitive Information | 459

18.9 Securely Request Usernames and Passwords

Problem
Your script requires that users provide it with a username and password, but you want
to do this as securely as possible.

Solution
To request a credential from the user, use the Get-Credential cmdlet:

$credential = Get-Credential

Discussion
The Get-Credential cmdlet reads credentials from the user as securely as possible and
ensures that the user’s password remains highly protected the entire time. For an ex-
ample of using the Get-Credential cmdlet effectively in a script, see Recipe 18.10.

Once you have the username and password, you can pass that information around to
any other command that accepts a PowerShell credential object without worrying about
disclosing sensitive information. If a command doesn’t accept a PowerShell credential
object (but does support a SecureString for its sensitive information), the resulting
PsCredential object provides a Username property that returns the username in the cre-
dential and a Password property that returns a SecureString containing the user’s
password.

Unfortunately, not everything that requires credentials can accept either a PowerShell
credential or SecureString. If you need to provide a credential to one of these commands
or API calls, the PsCredential object provides a GetNetworkCredential() method to
convert the PowerShell credential to a less secure NetworkCredential object. Once
you’ve converted the credential to a NetworkCredential, the UserName and Password
properties provide unencrypted access to the username and password from the original
credential. Many network-related classes in the .NET Framework support the Network
Credential class directly.

The NetworkCredential class is less secure than the PsCredential class
because it stores the user’s password in plain text. For more information
about the security implications of storing sensitive information in plain
text, see Recipe 18.8.

If a frequently run script requires credentials, you might consider caching those cre-
dentials in memory to improve the usability of that script. For example, in the region
of the script that calls the Get-Credential cmdlet, you can instead use the techniques
shown by Example 18-4.

460 | Chapter 18: Security and Script Signing

Example 18-4. Caching credentials in memory to improve usability

$credential = $null
if(Test-Path Variable:\Lee.Holmes.CommonScript.CachedCredential)
{
 $credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}
}

${GLOBAL:Lee.Holmes.CommonScript.CachedCredential} =
 Get-Credential $credential

$credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}

The script prompts the user for credentials the first time it is called but uses the cached
credentials for subsequent calls. If your command is part of a PowerShell module, you
can avoid storing the information in a global variable. For more information about this
technique, see Recipe 11.7.

To cache these credentials on disk (to support unattended operations), see
Recipe 18.12.

For more information about the Get-Credential cmdlet, type Get-Help
Get-Credential.

See Also
Recipe 11.7, “Write Commands That Maintain State”

Recipe 18.8, “Securely Handle Sensitive Information”

Recipe 18.10, “Program: Start a Process as Another User”

Recipe 18.12, “Securely Store Credentials on Disk”

18.10 Program: Start a Process as Another User
If your script requires user credentials, PowerShell offers the PsCredential object. This
lets you securely store those credentials or pass them to other commands that accept
PowerShell credentials. When you write a script that accepts credentials, consider let-
ting the user supply either a username or a preexisting credential. This is the model
followed by the Get-Credential cmdlet, and it provides an intuitive user experience.
Example 18-5 demonstrates a useful approach to support this model. As the framework
for this demonstration, the script lets you start a process as another user. While the
scenario addressed by this specific script is fully handled by the Start-Process cmdlet,
it provides a useful framework for discussion.

18.10 Program: Start a Process as Another User | 461

Example 18-5. Start-ProcessAsUser.ps1

##
##
Start-ProcessAsUser
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Launch a process under alternate credentials, providing functionality
similar to runas.exe.

.EXAMPLE

PS >$file = Join-Path ([Environment]::GetFolderPath("System")) certmgr.msc
PS >Start-ProcessAsUser Administrator mmc $file

#>

param(
 ## The credential to launch the process under
 $Credential = (Get-Credential),

 ## The process to start
 [Parameter(Mandatory = $true)]
 [string] $Process,

 ## Any arguments to pass to the process
 [string] $ArgumentList = ""
)

Set-StrictMode -Version Latest

Create a real credential if they supplied a username
$credential = Get-Credential $credential

Exit if they canceled out of the credential dialog
if(-not ($credential -is "System.Management.Automation.PsCredential"))
{
 return
}

Prepare the startup information (including username and password)
$startInfo = New-Object Diagnostics.ProcessStartInfo
$startInfo.Filename = $process
$startInfo.Arguments = $argumentList

If we're launching as ourselves, set the "runas" verb
if(($credential.Username -eq "$ENV:Username") -or
 ($credential.Username -eq "\$ENV:Username"))

462 | Chapter 18: Security and Script Signing

{
 $startInfo.Verb = "runas"
}
else
{
 $startInfo.UserName = $credential.Username
 $startInfo.Password = $credential.Password
 $startInfo.UseShellExecute = $false
}

Start the process
[Diagnostics.Process]::Start($startInfo)

For a version of this script that lets you invoke PowerShell commands in an elevated
session and easily interact with the results, see Recipe 18.11.

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 18.11, “Program: Run a Temporarily Elevated Command”

18.11 Program: Run a Temporarily Elevated Command
One popular feature of many Unix-like operating systems is the sudo command: a fea-
ture that lets you invoke commands as another user without switching context.

This is a common desire in Windows Vista and above, where User Access Control
(UAC) means that most interactive sessions do not have their Administrator privileges
enabled. Enabling these privileges is often a clumsy task, requiring that you launch a
new instance of PowerShell with the “Run as Administrator” option enabled.

Example 18-6 resolves many of these issues by launching an administrative shell for
you and letting it participate in a regular (nonelevated) PowerShell pipeline.

To do this, it first streams all of your input into a richly structured CliXml file on disk.
It invokes the elevated command and stores its results into another richly structured
CliXml file on disk. Finally, it imports the structured data from disk and removes the
temporary files.

Example 18-6. Invoke-ElevatedCommand.ps1

##
##
Invoke-ElevatedCommand
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

18.11 Program: Run a Temporarily Elevated Command | 463

<#

.SYNOPSIS

Runs the provided script block under an elevated instance of PowerShell as
though it were a member of a regular pipeline.

.EXAMPLE

PS >Get-Process | Invoke-ElevatedCommand.ps1 {
 $input | Where-Object { $_.Handles -gt 500 } } | Sort Handles

#>

param(
 ## The script block to invoke elevated
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Scriptblock,

 ## Any input to give the elevated process
 [Parameter(ValueFromPipeline = $true)]
 $InputObject,

 ## Switch to enable the user profile
 [switch] $EnableProfile
)

begin
{
 Set-StrictMode -Version Latest
 $inputItems = New-Object System.Collections.ArrayList
}

process
{
 $null = $inputItems.Add($inputObject)
}

end
{
 ## Create some temporary files for streaming input and output
 $outputFile = [IO.Path]::GetTempFileName()
 $inputFile = [IO.Path]::GetTempFileName()

 ## Stream the input into the input file
 $inputItems.ToArray() | Export-CliXml -Depth 1 $inputFile

 ## Start creating the command line for the elevated PowerShell session
 $commandLine = ""
 if(-not $EnableProfile) { $commandLine += "-NoProfile " }

 ## Convert the command into an encoded command for PowerShell
 $commandString = "Set-Location '$($pwd.Path)'; " +
 "`$output = Import-CliXml '$inputFile' | " +

464 | Chapter 18: Security and Script Signing

 "& {" + $scriptblock.ToString() + "} 2>&1; " +
 "Export-CliXml -Depth 1 -In `$output '$outputFile'"

 $commandBytes = [System.Text.Encoding]::Unicode.GetBytes($commandString)
 $encodedCommand = [Convert]::ToBase64String($commandBytes)
 $commandLine += "-EncodedCommand $encodedCommand"

 ## Start the new PowerShell process
 $process = Start-Process -FilePath (Get-Command powershell).Definition `
 -ArgumentList $commandLine -Verb RunAs `
 -WindowStyle Hidden `
 -Passthru
 $process.WaitForExit()

 ## Return the output to the user
 if((Get-Item $outputFile).Length -gt 0)
 {
 Import-CliXml $outputFile
 }

 ## Clean up
 Remove-Item $outputFile
 Remove-Item $inputFile
}

For more information about the CliXml commands, see Recipe 10.5. For more infor-
mation about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.5, “Easily Import and Export Your Structured Data”

18.12 Securely Store Credentials on Disk

Problem
Your script performs an operation that requires credentials, but you don’t want it to
require user interaction when it runs.

Solution
To securely store the credential’s password to disk so that your script can load it au-
tomatically, use the ConvertFrom-SecureString and ConvertTo-SecureString cmdlets.

18.12 Securely Store Credentials on Disk | 465

Save the credential’s password to disk

The first step for storing a password on disk is usually a manual one. There is nothing
mandatory about the file name, but we’ll use a convention to name the file <Current-
Script>.ps1.credential. Given a credential that you’ve stored in the $credential variable,
you can safely export its password to <CurrentScript>.ps1.credential using the follow-
ing command. Replace CurrentScript with the name of the script that will be loading it.

PS > $credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential
PS > $credential.Password | ConvertFrom-SecureString | Set-Content $credPath

Recreate the credential from the password stored on disk

In the script that you want to run automatically, add the following commands:

$credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential
$password = Get-Content $credPath | ConvertTo-SecureString
$credential = New-Object System.Management.Automation.PsCredential `
 "CachedUser",$password

These commands create a new credential object (for the CachedUser user) and store that
object in the $credential variable.

Discussion
When reading the solution, you might at first be wary of storing a password on disk.
While it is natural (and prudent) to be cautious of littering your hard drive with sensitive
information, the ConvertFrom-SecureString cmdlet encrypts this data using the Win-
dows standard Data Protection API. This ensures that only your user account can
properly decrypt its contents.

While keeping a password secure is an important security feature, you may sometimes
want to store a password (or other sensitive information) on disk so that other accounts
have access to it. This is often the case with scripts run by service accounts or scripts
designed to be transferred between computers. The ConvertFrom-SecureString and
ConvertTo-SecureString cmdlets support this by letting you specify an encryption key.

When used with a hardcoded encryption key, this technique no longer
acts as a security measure. If a user can access the content of your au-
tomated script, that user has access to the encryption key. If the user
has access to the encryption key, the user has access to the data you were
trying to protect.

Although the solution stores the password in the directory that contains your profile,
you could also load it from the same location as your script. To learn how to load it
from the same location as your script, see Recipe 16.5.

466 | Chapter 18: Security and Script Signing

For more information about the ConvertTo-SecureString and ConvertFrom-Secure
String cmdlets, type Get-Help ConvertTo-SecureString or Get-Help Convert
From-SecureString.

See Also
Recipe 16.5, “Find Your Script’s Location”

18.13 Access User and Machine Certificates

Problem
You want to retrieve information about certificates for the current user or local machine.

Solution
To browse and retrieve certificates on the local machine, use PowerShell’s certificate
drive. This drive is created by the certificate provider, as shown in Example 18-7.

Example 18-7. Exploring certificates in the certificate provider

PS > Set-Location cert:\CurrentUser\
PS > $cert = Get-ChildItem -Rec -CodeSign
PS > $cert | Format-List

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local Certificate Root
Thumbprint : FD48FAA9281A657DBD089B5A008FAFE61D3B32FD
FriendlyName :
NotBefore : 4/22/2007 12:32:37 AM
NotAfter : 12/31/2039 3:59:59 PM
Extensions : {System.Security.Cryptography.Oid, System.Security.
 Cryptography.Oid}

Discussion
The certificate drive provides a useful way to navigate and view certificates for the
current user or local machine. For example, if your execution policy requires the use
of digital signatures, the following command tells you which publishers are trusted to
run scripts on your system:

Get-ChildItem cert:\CurrentUser\TrustedPublisher

The certificate provider is probably most commonly used to select a code-signing cer-
tificate for the Set-AuthenticodeSignature cmdlet. The following command selects the
“best” code-signing certificate (i.e., the one that expires last):

$certificates = Get-ChildItem Cert:\CurrentUser\My -CodeSign
$signingCert = @($certificates | Sort -Desc NotAfter)[0]

18.13 Access User and Machine Certificates | 467

The -CodeSign parameter lets you search for certificates in the certificate store that
support code signing. To search for certificates used for other purposes, see
Recipe 18.14.

Although the certificate provider is useful for browsing and retrieving information from
the computer’s certificate stores, it does not let you add or remove items from these
locations. If you want to manage certificates in the certificate store, the
System.Security.Cryptography.X509Certificates.X509Store class (and other related
classes from the System.Security.Cryptography.X509Certificates namespace) from
the .NET Framework supports that functionality. For an example of this approach, see
Recipe 18.15.

For more information about the certificate provider, type Get-Help Certificate.

See Also
Recipe 18.14, “Program: Search the Certificate Store”

Recipe 18.15, “Add and Remove Certificates”

18.14 Program: Search the Certificate Store
One useful feature of the certificate provider is its support for a -CodeSign parameter
that lets you search for certificates in the certificate store that support code signing.

This parameter is called a dynamic parameter: one that has been added by a provider
to a core PowerShell cmdlet. You can discover the dynamic parameters for a provider
by navigating to that provider and then reviewing the output of Get-Command -Syntax.
For example:

PS > Set-Location cert:\
PS > Get-Command Get-ChildItem -Syntax
Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>] (...) [-CodeSigningCert]

In addition to the output of Get-Command, the help topic for the provider often describes
the dynamic parameters it supports. For a list of the provider help topics, type
Get-Help -Category Provider.

Code-signing certificates are not the only kind of certificates, however; other frequently
used certificate types are Encrypting File System, Client Authentication, and more.

Example 18-8 lets you search the certificate provider for certificates that support a given
Enhanced Key Usage (EKU).

468 | Chapter 18: Security and Script Signing

Example 18-8. Search-CertificateStore.ps1

##
##
Search-CertificateStore
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the certificate provider for certificates that match the specified
Enhanced Key Usage (EKU).

.EXAMPLE

Search-CertificateStore "Encrypting File System"

#>

param(
 ## The friendly name of an Enhanced Key Usage
 ## (such as 'Code Signing')
 [Parameter(Mandatory = $true)]
 $EkuName
)

Set-StrictMode -Off

Go through every certificate in the current user's "My" store
foreach($cert in Get-ChildItem cert:\CurrentUser\My)
{
 ## For each of those, go through its extensions
 foreach($extension in $cert.Extensions)
 {
 ## For each extension, go through its Enhanced Key Usages
 foreach($certEku in $extension.EnhancedKeyUsages)
 {
 ## If the friendly name matches, output that certificate
 if($certEku.FriendlyName -eq $ekuName)
 {
 $cert
 }
 }
 }
}

For more information about running scripts, see Recipe 1.1.

18.14 Program: Search the Certificate Store | 469

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.15 Add and Remove Certificates

Problem
You want to add and remove certificates from the certificate store.

Solution
Use the certificate store APIs from the .NET Framework, as shown in Example 18-9.

Example 18-9. Adding and removing certificates

Removing a certificate
$cert = Get-ChildItem cert:\currentuser\TrustedPublisher\<thumbprint>
$store = New-Object System.Security.Cryptography.X509Certificates.X509Store `
 "TrustedPublisher","CurrentUser"
$store.Open("ReadWrite")
$store.Remove($cert)
$store.Close()

Adding a certificate from disk
$cert = Get-PfxCertificate <path_to_certificate>
$store = New-Object System.Security.Cryptography.X509Certificates.X509Store `
 "TrustedPublisher","CurrentUser"
$store.Open("ReadWrite")
$store.Add($cert)
$store.Close()

Discussion
The certificate drive provides a useful way to navigate and view certificates for the
current user or local machine. For example, if your execution policy requires the use
of digital signatures, the following command tells you which publishers are trusted to
run scripts on your system:

Get-ChildItem cert:\CurrentUser\TrustedPublisher

The certificate provider is ultimately a read-only view of your certificates, however.
After using the certificate provider to retrieve a certificate, you can then use the .NET
APIs to remove it from the certificate store permanently.

Likewise, the Get-PfxCertificate cmdlet lets you review a certificate from a file that
contains it, but it does not let you install it into the certificate store permanently.
The .NET APIs are also the way to import the certificate for good.

470 | Chapter 18: Security and Script Signing

For more information about retrieving certificates from the certificate provider, see
Recipe 18.13. For more information about working with classes from the .NET Frame-
work, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 18.13, “Access User and Machine Certificates”

18.16 Manage Security Descriptors in SDDL Form

Problem
You want to work with a security identifier in Security Descriptor Definition Language
(SDDL) form.

Solution
Use the System.Security.AccessControl.CommonSecurityDescriptor class from
the .NET Framework, as shown by Example 18-10.

Example 18-10. Automating security configuration of the PowerShell Remoting Users group

Get the SID for the "PowerShell Remoting Users" group
$account = New-Object Security.Principal.NTAccount "PowerShell Remoting Users"
$sid = $account.Translate([Security.Principal.SecurityIdentifier]).Value

Get the security descriptor for the existing configuration
$config = Get-PsSessionConfiguration Microsoft.PowerShell
$existingSddl = $config.SecurityDescriptorSddl

Create a CommonSecurityDescriptor object out of the existing SDDL
so that we don't need to manage the string by hand
$arguments = $false,$false,$existingSddl
$mapper = New-Object Security.AccessControl.CommonSecurityDescriptor $arguments

Create a new access rule that adds the "PowerShell Remoting Users" group
$mapper.DiscretionaryAcl.AddAccess("Allow",$sid,268435456,"None","None")

Get the new SDDL for that configuration
$newSddl = $mapper.GetSddlForm("All")

Update the endpoint configuration
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $newSddl

Discussion
Security descriptors are often shown (or requested) in SDDL form. The SDDL form of
a security descriptor is cryptic, highly specific, and plain text. All of these aspects make
this format difficult to work with reliably, so you can use the System.Security.Access

18.16 Manage Security Descriptors in SDDL Form | 471

Control.CommonSecurityDescriptor class from the .NET Framework to do most of the
gritty work for you.

For more information about the SDDL format, see http://msdn.microsoft.com/en-us/
library/aa379570%28VS.85%29.aspx. For an example of this in action, see Recipe 29.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 29.8, “Configure User Permissions for Remoting”

472 | Chapter 18: Security and Script Signing

http://msdn.microsoft.com/en-us/library/aa379570%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa379570%28VS.85%29.aspx

CHAPTER 19

Integrated Scripting Environment

19.0 Introduction
While text-mode PowerShell is great for its efficiency and automation, there’s not much
to be said for its user interface. Most Windows key combinations don’t work. Text
selection and editing don’t work. Rectangular text selection is strange, as is the lack of
support for freely resizing the console window.

All of these are simple side-effects of PowerShell.exe being a console application. These
problems impact every console application in Windows and likely always will.

Aside from the user interface oddities, the fatal flaw with console applications comes
from their lack of support for the Unicode standard: the way that most international
languages represent their alphabets. While the Windows console supports a few basic
non-English characters (such as accented letters), it provides full support for very little
else.

This proves to be quite a problem for worldwide administrators! Since typing interna-
tional characters directly at the command line was so difficult, administrators in many
countries were forced to write scripts in Notepad in order to get full Unicode support,
and then use PowerShell to run the scripts, even if the command was ultimately only
a single line.

PowerShell version two resolves these issues by introducing the Integrated Scripting
Environment (ISE).

The ISE gives PowerShell the user interface you expect from a modern application,
supports full Unicode input and multiple tabbed sessions, and provides a great expe-
rience for interactive debugging.

Conceptually, the ISE consists of three main components (shown in Figure 19-1).

473

Scripting pane
The scripting pane is the top pane of the ISE, and it is geared toward multiline
script editing and creation. It offers line numbering and syntax highlighting, and
it supports a great debugging experience.

One unique aspect of the scripting pane is that it supports selective execution: the
ability to run just what you’ve highlighted rather than the entire script you’re
working on. This makes script authoring a breeze. As you start to write your script,
you can interactively experiment with commands until you get them right. Once

Figure 19-1. Windows PowerShell Integrated Scripting Environment

474 | Chapter 19: Integrated Scripting Environment

they work as expected, you can keep them, move on, and then continue to build
your script one piece at a time. As you’ve come to expect from PowerShell’s console
shell, script editing in the scripting pane supports tab completion of commands,
parameters, paths, and more.

Output pane
The output pane sits in the middle of the ISE, and it shows output from commands
run in both the scripting pane and the command pane. Unlike PowerShell’s console
shell, text selection in the output pane acts like text selection in a regular Windows
application.

Command pane
The command pane, which sits in the bottom of the application, is where you’ll
spend most of your interactive sessions in the ISE. Like the command prompt in
the PowerShell console, the command pane supports tab completion. Unlike the
command pane in the console window, it supports standard Windows hotkeys,
text selection, syntax highlighting, and more.

If you find your command growing too long, you can press Shift-Enter to enable
multiline editing for the current command.

In addition to these features, the PowerShell ISE offers extensive customization, script-
ing, and remoting support.

19.1 Debug a Script

Problem
You want to use PowerShell’s debugging commands through an interface more friendly
than its *-PsBreakpoint cmdlets.

Solution
Use the Debug menu in the ISE to add and remove breakpoints and manage debugging
behavior when PowerShell reaches a breakpoint.

Discussion
The PowerShell ISE gives you a rich set of interactive graphical debugging commands
to help you diagnose errors in your scripts. It exposes these through the Debug menu,
and it behaves like many other graphical debugging environments you may have ex-
perience with. Figure 19-2 shows the debugging option available in the ISE.

To set a breakpoint, first save your script. Then, select the Toggle Breakpoint menu
item, select the Toggle Breakpoint option that shows when you right-click in the left-
hand margin of the ISE, or press F9. Once PowerShell hits the breakpoint in your script,
it pauses to let you examine variables, script state, and whatever else interests you. To

19.1 Debug a Script | 475

control the flow of execution, you can use the stepping commands: Step Over, Step
Into, and Step Out.

Step Over continues to the next line of the script, executing (but not debugging into)
any function calls that you come across. Step Into continues to the next line of the
script, debugging into any function calls that you come across. If you are in a function,
the Step Out command lets PowerShell complete execution of the function and resumes
debugging once the function completes.

One unique aspect of debugging in the ISE is that it builds its support entirely on the
core debugging cmdlets discussed in Chapter 14. Changes that you make from the
debugging menu (such as adding a breakpoint) are immediately reflected in the cmdlets

Figure 19-2. Debugging options in the Integrated Scripting Environment

476 | Chapter 19: Integrated Scripting Environment

(such as listing breakpoints). Likewise, breakpoints that you add or modify from the
integrated command line show up in the user interface as though you had created them
from the debug menu itself.

In fact, the features exposed by PowerShell’s breakpoint cmdlets in
many cases surpass the functionality exposed by the ISE’s debug menu.
For example, the Set-PsDebug cmdlet supports command breakpoints,
conditional breakpoints, variable breakpoints, and much more. For
more information about the Set-PsDebug cmdlet, see Recipe 14.3.

Unlike most graphical debugging environments, the PowerShell ISE makes it incredibly
easy to investigate the dynamic state of your script while you are debugging it. For more
information about how to investigate the state of your script while debugging, see
Recipe 14.6.

See Also
Chapter 14, Debugging

Recipe 14.6, “Investigate System State While Debugging”

19.2 Customize Text and User Interface Colors

Problem
You want to change the color scheme of the ISE or change the colors used for syntax
highlighting.

Solution
Review the properties of the $psISE.Options automatic variable, and customize the ones
you want. For example, to give the output pane the same appearance as the PowerShell
console:

$psISE.Options.OutputPaneBackgroundColor = "#012456"
$psISE.Options.OutputPaneForegroundColor = "#EEEDF0"
$psISE.Options.OutputPaneTextBackgroundColor = "#012456"

Discussion
While working in the ISE, you might sometimes wonder, “Where is the Options
dialog?”

19.2 Customize Text and User Interface Colors | 477

The answer is that there isn’t one. Instead, the ISE offers a wealth of configuration
option through its $psISE automatic variable:

PS > $psISE.Options | Format-List

SelectedScriptPaneState : Top
ShowToolBar : True
TokenColors : {[Attribute, #FFADD8E6], [Command, #FF0000FF],
 [CommandArgument, #FF8A2BE2], [CommandParameter
 , #FF000080]...}
DefaultOptions : Microsoft.PowerShell.Host.ISE.ISEOptions
FontSize : 12
FontName : Consolas
ErrorForegroundColor : #FFFF0000
ErrorBackgroundColor : #00FFFFFF
WarningForegroundColor : #FFFF8C00
WarningBackgroundColor : #00FFFFFF
VerboseForegroundColor : #FF0000FF
VerboseBackgroundColor : #00FFFFFF
DebugForegroundColor : #FF0000FF
DebugBackgroundColor : #00FFFFFF
OutputPaneBackgroundColor : #FF012456
OutputPaneTextBackgroundColor : #FF012456
OutputPaneForegroundColor : #FFEEEDF0
CommandPaneBackgroundColor : #FFFFFFFF
ScriptPaneBackgroundColor : #FFFFFFFF
ScriptPaneForegroundColor : #FF000000
ShowWarningForDuplicateFiles : True
ShowWarningBeforeSavingOnRun : True
UseLocalHelp : True
CommandPaneUp : False

You can change these options as easily as you change any other automatic variable—
by assigning new values to its properties (as shown in the solution). To make these
changes affect all of your ISE sessions, simply store them in the host-specific profile file
for the ISE. To edit this file, simply type: ise $profile.CurrentUserCurrentHost.

In addition to user interface customization, the ISE also lets you customize the colors
it uses for syntax highlighting.
It exposes these settings through the $psISE.Options.TokenColors automatic variable.
For example, to change the coloring of attributes (such as the [Parameter()] statement)
to be more like regular types, type:

$psIse.Options.TokenColors["Attribute"] = $psIse.Options.TokenColors["Type"]

For more information about modifying your PowerShell profile, see Recipe 1.6.

See Also
Recipe 1.6, “Customize Your Shell, Profile, and Prompt”

478 | Chapter 19: Integrated Scripting Environment

19.3 Connect to a Remote Computer

Problem
You want to create a new tab in the ISE that represents a connection to a remote
computer.

Solution
Click the New Remote PowerShell Tab icon in the toolbar or File menu.

Discussion
One of the features most requested for the PowerShell console application is support
for multiple tabs and multiple sessions. As such, multitab support in the ISE is
prominent—and gets a unique treatment.

To create a new tab that represents a local PowerShell session, simply click the New
PowerShell Tab icon in the toolbar or File menu. If you want to connect to a remote
computer instead, just click the New Remote PowerShell Tab menu or toolbar icon.

Once you’ve connected a remote PowerShell tab, interacting with a remote system is
just like interacting with a local one. Prompts from the remote system show up like
prompts from the local system, as do progress bars, credential requests, and Power-
Shell’s other feedback mechanisms.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Chapter 29, Remoting

19.4 Extend ISE Functionality Through Its Object Model

Problem
You want to customize the PowerShell ISE to add your own functionality and features.

Solution
Explore and modify properties of the $psISE automatic variable to interact with the
ISE’s object model. For example, to clean up trailing spaces from the script you are
currently editing, use the following:

$psISE.CurrentFile.Editor.Text =
 $psise.CurrentFile.Editor.Text -replace '(?m)\s+$',''

19.4 Extend ISE Functionality Through Its Object Model | 479

Discussion
In addition to the features already available, the PowerShell ISE offers many additional
customization opportunities through its object model. The object model exposes the
nuts and bolts you need to create your own functionality—and makes it available
through the $psISE automatic variable. Recipe 19.5 demonstrates one aspect of the
object model by showing how to add items to the Add-ons menu.

As with other .NET object models, the Get-Member and Format-List cmdlets are the
keys to exploring the ISE’s object model. At its first level, the object model gives you
access to the current file, PowerShell tab, and ISE options:

PS > $psISE | Format-List

CurrentPowerShellTab : Microsoft.PowerShell.Host.ISE.PowerShellTab
CurrentFile : Microsoft.PowerShell.Host.ISE.ISEFile
Options : Microsoft.PowerShell.Host.ISE.ISEOptions
PowerShellTabs : {PowerShell 1}

For example, the $psISE.CurrentFile.Editor variable provides programmatic access to
the text and behavior of the current scripting pane:

PS > $psISE.CurrentFile.Editor | Get-Member

 TypeName: Microsoft.Windows.PowerShell.Gui.Internal.ScriptEditor

Name MemberType Definition
---- ---------- ----------
PropertyChanged Event System.ComponentModel.PropertyChangedEventHandler...
Clear Method System.Void Clear()
EnsureVisible Method System.Void EnsureVisible(int lineNumber)
Equals Method bool Equals(System.Object obj)
Focus Method System.Void Focus()
GetHashCode Method int GetHashCode()
GetLineLength Method int GetLineLength(int lineNumber)
GetType Method type GetType()
InsertText Method System.Void InsertText(string text)
Select Method System.Void Select(int startLine, int startColumn,...
SetCaretPosition Method System.Void SetCaretPosition(int lineNumber, int c...
ToString Method string ToString()
CaretColumn Property System.Int32 CaretColumn {get;}
CaretLine Property System.Int32 CaretLine {get;}
LineCount Property System.Int32 LineCount {get;}
SelectedText Property System.String SelectedText {get;}
Text Property System.String Text {get;set;}

By building on the object model, you can write tools to automatically process your
scripts (for example, commenting and uncommenting regions of your script, processing
script output, and more).

For more information about working with .NET objects, see Recipe 3.8.

480 | Chapter 19: Integrated Scripting Environment

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 19.5, “Add an Item to the Tools Menu”

19.5 Add an Item to the Tools Menu

Problem
You want to add your own menu items and shortcuts to the ISE.

Solution
Pick a display name, action, and (optional) shortcut, and then add those to the
$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus collection:

$psISE.CurrentPowerShellTab.AddOnsMenu.Submenus.Add(
 "PowerShell Blog",
 { Start-Process http://blogs.msdn.com/PowerShell },
 "Control+Alt+B")

Discussion
As part of its extensibility features, the PowerShell ISE gives you complete access to a
submenu of your very own: the Add-ons menu.

To work with the Add-ons menu, access the $psISE.CurrentPowerShell

Tab.AddOnsMenu variable.

By default, menu items that get added have no shortcuts, so you must click them to
activate them. To add a typical menu shortcut that becomes active once the Add-ons
menu is active, put an underscore (_) character before the letter that you want to activate
your menu item.

To define a global hotkey (one that is available through the entire application), supply
the keys as the third argument for the Add() method. If you don’t want to assign a global
hotkey, use $null as the third argument.

For more information about extending the ISE, see Recipe 19.4.

See Also
Recipe 19.4, “Extend ISE Functionality Through Its Object Model”

19.5 Add an Item to the Tools Menu | 481

PART IV

Administrator Tasks

Chapter 20, Files and Directories
Chapter 21, The Windows Registry
Chapter 22, Comparing Data
Chapter 23, Event Logs
Chapter 24, Processes
Chapter 25, System Services
Chapter 26, Active Directory
Chapter 27, Enterprise Computer Management
Chapter 28, Windows Management Instrumentation
Chapter 29, Remoting
Chapter 30, Transactions
Chapter 31, Event Handling

CHAPTER 20

Files and Directories

20.0 Introduction
One of the most common tasks when administering a system is working with its files
and directories. This is true when you administer the computer at the command line,
and it is true when you write scripts to administer it automatically.

Fortunately, PowerShell makes scripting files and directories as easy as working at the
command line—a point that many seasoned programmers and scripters often miss. A
perfect example of this comes when you wrestle with limited disk space and need to
find the files taking up the most space.

A typical programmer might approach this task by writing functions to scan a specific
directory of a system. For each file, they check whether the file is big enough to care
about. If so, they add it to a list. For each directory in the original directory, the pro-
grammer repeats this process (until there are no more directories to process).

As the saying goes, though, “You can write C in any programming language.” The
habits and preconceptions you bring to a language often directly influence how open
you are to advances in that language.

Being an administrative shell, PowerShell directly supports tasks such as visiting all the
files in a subdirectory or moving a file from one directory to another. That complicated
programmer-oriented script turns into a one-liner:

Get-ChildItem -Recurse | Sort-Object -Descending Length | Select -First 10

Before diving into your favorite programmer’s toolkit, check to see what PowerShell
supports in that area. In many cases, it can handle the task without requiring your
programmer’s bag of tricks.

485

20.1 Determine the Current Location

Problem
You want to determine the current location from a script or command.

Solution
To retrieve the current location, use the Get-Location cmdlet. The Get-Location cmdlet
provides the drive and path as two common properties:

$currentLocation = (Get-Location).Path

As a short form for (Get-Location).Path, use the $pwd automatic variable.

Discussion
The Get-Location cmdlet returns information about the current location. From the
information it returns, you can access the current drive, provider, and path.

This current location affects PowerShell commands and programs that you launch from
PowerShell. This does not apply when you interact with the .NET Framework, how-
ever. If you need to call a .NET method that interacts with the filesystem, always be
sure to provide fully qualified paths:

[System.IO.File]::ReadAllText("c:\temp\file.txt")

If you are sure that the file exists, the Resolve-Path cmdlet lets you translate a relative
path to an absolute path:

$filePath = (Resolve-Path file.txt).Path

If the file does not exist, use the Join-Path cmdlet in combination with the Get-
Location cmdlet to specify the file:

$filePath = Join-Path (Get-Location) file.txt

Another alternative that combines the functionality of both approaches is a bit more
advanced but also lets you specify relative locations. It comes from methods in the
PowerShell $executionContext variable, which provides functionality normally used by
cmdlet and provider authors:

$executionContext.SessionState.Path.`
 GetUnresolvedProviderPathFromPSPath("..\file.txt")

For more information about the Get-Location cmdlet, type Get-Help Get-Location.

486 | Chapter 20: Files and Directories

20.2 Get the Files in a Directory

Problem
You want to get or list the files in a directory.

Solution
To retrieve the list of files in a directory, use the Get-ChildItem cmdlet. To get a specific
item, use the Get-Item cmdlet.

• To list all items in the current directory, use the Get-ChildItem cmdlet:

Get-ChildItem

• To list all items that match a wildcard, supply a wildcard to the Get-ChildItem
cmdlet:

Get-ChildItem *.txt

• To list all files that match a wildcard in the current directory (and all its children),
use the -Include and -Recurse parameters of the Get-ChildItem cmdlet:

Get-ChildItem -Include *.txt -Recurse

• To list all directories in the current directory, use the Where-Object cmdlet to test
the PsIsContainer property:

Get-ChildItem | Where { $_.PsIsContainer }

• To get information about a specific item, use the Get-Item cmdlet:

Get-Item test.txt

Discussion
Although most commonly used on the filesystem, the Get-ChildItem and Get-Item
cmdlets in fact work against any items on any of the PowerShell drives. In addition to
A: through Z: (the standard filesystem drives), they also work on Alias:, Cert:, Env:,
Function:, HKLM:, HKCU:, and Variable:.

The third example in the Solution lists files that match a wildcard in a
directory and all its children. That example works on any PowerShell
provider. However, PowerShell can retrieve your results more quickly
if you use a provider-specific filter, as described in Recipe 20.6.

The solution demonstrates some simple wildcard scenarios that the Get-ChildItem
cmdlet supports, but PowerShell in fact enables several more advanced scenarios. For
more information about these scenarios, see Recipe 20.6.

In the filesystem, these cmdlets return objects from the .NET Framework that represent
files and directories—instances of System.IO.FileInfo and System.IO.DirectoryInfo

20.2 Get the Files in a Directory | 487

classes, respectively. Each provides a great deal of useful information: attributes, mod-
ification times, full name, and more. Although the default directory listing exposes a
lot of information, PowerShell provides even more. For more information about work-
ing with classes from the .NET Framework, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.6, “Find Files That Match a Pattern”

20.3 Find All Files Modified Before a Certain Date

Problem
You want to find all files last modified before a certain date.

Solution
To find all files modified before a certain date, use the Get-ChildItem cmdlet to list the
files in a directory, and then use the Where-Object cmdlet to compare the LastWrite
Time property to the date you are interested in. For example, to find all files created
before the year 2007:

Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt "01/01/2007" }

Discussion
A common reason to compare files against a certain date is to find recently modified
(or not recently modified) files. The code for this looks almost the same as the example
given by the solution, except your script can’t know the exact date to compare against.

In this case, the AddDays() method in the .NET Framework’s DateTime class gives you
a way to perform some simple calendar arithmetic. If you have a DateTime object, you
can add or subtract time from it to represent a different date altogether. For example,
to find all files modified in the last 30 days:

$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -ge $compareDate }

Similarly, to find all files more than 30 days old:

$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt $compareDate }

In this example, the Get-Date cmdlet returns an object that represents the current date
and time. You call the AddDays() method to subtract 30 days from that time, which
stores the date representing “30 days ago” in the $compareDate variable. Next, you
compare that date against the LastWriteTime property of each file that the Get-
ChildItem cmdlet returns.

488 | Chapter 20: Files and Directories

The DateTime class is the administrator’s favorite calendar!

PS > [DateTime]::IsLeapYear(2008)
True
PS > $daysTillChristmas = [DateTime] "December 25" - (Get-Date)
PS > $daysTillChristmas.Days
327

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.
For more information about the Where-Object cmdlet, see Recipe 2.1.

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

20.4 Clear the Content of a File

Problem
You want to clear the content of a file.

Solution
To clear the content of a file, use the Clear-Content cmdlet, as shown by
Example 20-1.

Example 20-1. Clearing content from a file

PS > Get-Content test.txt
Hello World
PS > Clear-Content test.txt
PS > Get-Content test.txt
PS > Get-Item test.txt

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- -----------
-a--- 4/23/2007 8:05 PM 0 test.txt

Discussion
The (aptly named) Clear-Content cmdlet clears the content from an item. Although the
Solution demonstrates this only for files in the filesystem, it in fact applies to any
PowerShell providers that support the concept of “content.” Examples of other drives
that support these content concepts are Function:, Alias:, and Variable:.

For information on how to remove an item entirely, see Recipe 20.13.

20.4 Clear the Content of a File | 489

For more information about the Remove-Item or Clear-Content cmdlets, type
Get-Help Remove-Item or Get-Help Clear-Content.

See Also
Get-Help Remove-Item

Get-Help Clear-Content

20.5 Manage and Change the Attributes of a File

Problem
You want to update the ReadOnly, Hidden, or System attributes of a file.

Solution
Most of the time, you will want to use the familiar attrib.exe program to change the
attributes of a file:

attrib +r test.txt
attrib -s test.txt

To set only the ReadOnly attribute, you can optionally set the IsReadOnly property on
the file:

$file = Get-Item test.txt
$file.IsReadOnly = $true

To apply a specific set of attributes, use the Attributes property on the file:

$file = Get-Item test.txt
$file.Attributes = "ReadOnly,NotContentIndexed"

Directory listings show the attributes on a file, but you can also access the Mode or
Attributes property directly:

PS > $file.Attributes = "ReadOnly","System","NotContentIndexed"
PS > $file.Mode
--r-s
PS > $file.Attributes
ReadOnly, System, NotContentIndexed

Discussion
When the Get-Item or Get-ChildItem cmdlets retrieve a file, the resulting output has an
Attributes property. This property doesn’t offer much in addition to the regular
attrib.exe program, although it does make it easier to set the attributes to a specific state.

490 | Chapter 20: Files and Directories

Be aware that setting the Hidden attribute on a file removes it from most
default views. If you want to retrieve it after hiding it, most commands
require a -Force parameter. Similarly, setting the ReadOnly attribute on
a file causes most write operations on that file to fail unless you call that
command with the -Force parameter.

If you want to add an attribute to a file using the Attributes property (rather than
attrib.exe for some reason), this is how you would do that:

$file = Get-Item test.txt
$readOnly = [IO.FileAttributes] "ReadOnly"
$file.Attributes = $file.Attributes -bor $readOnly

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

20.6 Find Files That Match a Pattern

Problem
You want to get a list of files that match a specific pattern.

Solution
Use the Get-ChildItem cmdlet for both simple and advanced wildcard support:

• To find all items in the current directory that match a PowerShell wildcard, supply
that wildcard to the Get-ChildItem cmdlet:

Get-ChildItem *.txt

• To find all items in the current directory that match a provider-specific filter, supply
that filter to the -Filter parameter:

Get-ChildItem -Filter *~2*

• To find all items in the current directory that do not match a PowerShell wildcard,
supply that wildcard to the -Exclude parameter:

Get-ChildItem -Exclude *.txt

• To find all items in subdirectories that match a PowerShell wildcard, use the
-Include and -Recurse parameters:

Get-ChildItem -Include *.txt -Recurse

20.6 Find Files That Match a Pattern | 491

• To find all items in subdirectories that match a provider-specific filter, use the
-Filter and -Recurse parameters:

Get-ChildItem -Filter *.txt -Recurse

• To find all items in subdirectories that do not match a PowerShell wildcard, use
the -Exclude and -Recurse parameters:

Get-ChildItem -Exclude *.txt -Recurse

Use the Where-Object cmdlet for advanced regular expression support:

• To find all items with a filename that matches a regular expression, use the Where-
Object cmdlet to compare the Name property to the regular expression:

Get-ChildItem | Where-Object { $_.Name -match '^KB[0-9]+\.log$' }

• To find all items with a directory name that matches a regular expression, use the
Where-Object cmdlet to compare the DirectoryName property to the regular expres-
sion:

Get-ChildItem -Recurse | Where-Object { $_.DirectoryName -match 'Release' }

• To find all items with a directory name or filename that matches a regular expres-
sion, use the Where-Object cmdlet to compare the FullName property to the regular
expression:

Get-ChildItem -Recurse | Where-Object { $_.FullName -match 'temp' }

Discussion
The Get-ChildItem cmdlet supports wildcarding through three parameters:

Path

The -Path parameter is the first (and default) parameter. While you can enter sim-
ple paths such as ., C:\, or D:\Documents, you can also supply paths that include
wildcards—such as *, *.txt, [a-z]???.log, or even C:\win**.N[a-f]?\ F*\v2*
\csc.exe.

Include/Exclude
The -Include and -Exclude parameters act as a filter on wildcarding that happens
on the -Path parameter. If you specify the -Recurse parameter, the -Include and
-Exclude wildcards apply to all items returned.

The most common mistake with the -Include parameter comes
when you use it against a path with no wildcards. For example, this
doesn’t seem to produce the expected results:

Get-ChildItem $env:WINDIR -Include *.log

That command produces no results because you have not supplied
an item wildcard to the path. Instead, the correct command is:

Get-ChildItem $env:WINDIR* -Include *.log

492 | Chapter 20: Files and Directories

Filter

The -Filter parameter lets you filter results based on the provider-specific filtering
language of the provider from which you retrieve items. Since PowerShell’s wild-
carding support closely mimics filesystem wildcards, and most people use the
-Filter parameter only on the filesystem, this seems like a redundant (and equiv-
alent) parameter. A SQL provider, however, would use SQL syntax in its -Filter
parameter. Likewise, an Active Directory provider would use LDAP paths in its
-Filter parameter.

It may not be obvious, but the filesystem provider’s filtering language is not exactly the
same as the PowerShell wildcard syntax. For example, the -Filter parameter matches
against the short filenames, too:

PS > Get-ChildItem | Select-Object Name

Name

A Long File Name With Spaces Also.txt
A Long File Name With Spaces.txt

PS > Get-ChildItem *1* | Select-Object Name
PS > Get-ChildItem -Filter *1* | Select-Object Name

Name

A Long File Name With Spaces.txt

On the other hand, PowerShell’s wildcard syntax supports far more than the filesys-
tem’s native filtering language. For more information about PowerShell’s wildcard
syntax, type Get-Help About_WildCard.

When you want to perform even more advanced filtering than what PowerShell’s wild-
carding syntax offers, the Where-Object cmdlet provides infinite possibilities. For ex-
ample, to exclude certain directories from a search, use the following:

Get-ChildItem -Rec | Where-Object { $_.DirectoryName -notmatch "Debug" }

To list all directories, use:

Get-ChildItem | Where-Object { $_.PsIsContainer }

Since the syntax of the Where-Object cmdlet can sometimes be burdensome for simple
queries, the Compare-Property script in Recipe 2.3 provides an attractive alternative:

Get-ChildItem -Rec | Compare-Property DirectoryName notmatch Debug

For a filter that is difficult (or impossible) to specify programmatically, the Select-
FilteredObject script provided by Recipe 2.4 lets you interactively filter the output.

20.6 Find Files That Match a Pattern | 493

Because of PowerShell’s pipeline model, an advanced file set generated by Get-
ChildItem automatically turns into an advanced file set for other cmdlets to operate on:

PS > Get-ChildItem -Rec | Where-Object { $_.Length -gt 20mb } |
Sort-Object -Descending Length | Select-FilteredObject |
Remove-Item -WhatIf

What if: Performing operation "Remove File" on Target "C:\temp\backup092300
.zip".
What if: Performing operation "Remove File" on Target "C:\temp\sp-tricking_
iT2.zip".
What if: Performing operation "Remove File" on Target "C:\temp\slime.mov".
What if: Performing operation "Remove File" on Target "C:\temp\hello-world.
mov".

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.

For more information about the Where-Object cmdlet, type Get-Help Where-Object.

See Also
Recipe 2.3, “Program: Simplify Most Where-Object Filters”

Recipe 2.4, “Program: Interactively Filter Lists of Objects”

20.7 Manage Files That Include Special Characters

Problem
You want to use a cmdlet that supports wildcarding but provide a filename that includes
wildcard characters.

Solution
To prevent PowerShell from treating those characters as wildcard characters, use the
cmdlet’s -LiteralPath (or similarly named) parameter if it defines one:

Get-ChildItem -LiteralPath '[My File].txt'

Discussion
One consequence of PowerShell’s advanced wildcard support is that the square brack-
ets used to specify character ranges sometimes conflict with actual filenames. Consider
the following example:

PS > Get-ChildItem | Select-Object Name

Name

[My File].txt

494 | Chapter 20: Files and Directories

PS > Get-ChildItem '[My File].txt' | Select-Object Name
PS > Get-ChildItem -LiteralPath '[My File].txt' | Select-Object Name

Name

[My File].txt

The first command clearly demonstrates that we have a file called [My File].txt. When
we try to retrieve it (passing its name to the Get-ChildItem cmdlet), we see no results.
Since square brackets are wildcard characters in PowerShell (as are * and ?), the text
we provided turns into a search expression rather than a filename.

The -LiteralPath parameter (or a similarly named parameter in other cmdlets) tells
PowerShell that the filename is named exactly—not a wildcard search term.

In addition to wildcard matching, filenames may sometimes run afoul of PowerShell
escape sequences. For example, the backtick character (`) in PowerShell means the start
of an escape sequence, such as `t (tab), `n (newline), or `a (alarm). To prevent
PowerShell from interpreting a backtick as an escape sequence, surround that string in
single quotes instead of double quotes.

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.
For more information about PowerShell’s special characters, type Get-Help
About_ Special_Characters.

20.8 Program: Get Disk Usage Information
When disk space starts running low, you’ll naturally want to find out where to focus
your cleanup efforts. Sometimes you may tackle this by looking for large directories
(including the directories in them), but other times, you may solve this by looking for
directories that are large simply from the files they contain.

To review the disk usage statistics for an entire drive, use the Get-
PSDrive cmdlet.

Example 20-2 collects both types of data. It also demonstrates an effective use of cal-
culated properties. Like the Add-Member cmdlet, calculated properties let you add prop-
erties to output objects by specifying the expression that generates their data.

For more information about calculated properties and the Add-Member cmdlet, see
Recipe 3.15.

20.8 Program: Get Disk Usage Information | 495

Example 20-2. Get-DiskUsage.ps1

##
##
Get-DiskUsage
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Retrieve information about disk usage in the current directory and all
subdirectories. If you specify the -IncludeSubdirectories flag, this
script accounts for the size of subdirectories in the size of a directory.

.EXAMPLE

Get-DiskUsage
Gets the disk usage for the current directory.

.EXAMPLE

Get-DiskUsage -IncludeSubdirectories
Gets the disk usage for the current directory and those below it,
adding the size of child directories to the directory that contains them.

#>

param(
 ## Switch to include subdirectories in the size of each directory
 [switch] $IncludeSubdirectories
)

Set-StrictMode -Version Latest

If they specify the -IncludeSubdirectories flag, then we want to account
for all subdirectories in the size of each directory
if($includeSubdirectories)
{
 Get-ChildItem | Where-Object { $_.PsIsContainer } |
 Select-Object Name,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem -Recurse |
 Measure-Object -Sum Length).Sum + 0 } }
}
Otherwise, we just find all directories below the current directory,
and determine their size
else
{
 Get-ChildItem -Recurse | Where-Object { $_.PsIsContainer } |
 Select-Object FullName,
 @{ Name="Size";

496 | Chapter 20: Files and Directories

 Expression={ ($_ | Get-ChildItem |
 Measure-Object -Sum Length).Sum + 0 } }
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.15, “Add Custom Methods and Properties to Objects”

20.9 Monitor a File for Changes

Problem
You want to monitor the end of a file for new content.

Solution
To monitor the end of a file for new content, use the -Wait parameter of the Get-
Content cmdlet:

Get-Content log.txt -Wait

Discussion
The -Wait parameter of the Get-Content cmdlet acts much like the traditional Unix
tail command with the --follow parameter. If you provide the -Wait parameter, the
Get-Content cmdlet reads the content of the file but doesn’t exit. When a program
appends new content to the end of the file, the Get-Content cmdlet returns that content
and continues to wait.

Unlike the Unix tail command, the Get-Content cmdlet does not sup-
port a feature to let you start reading from the end of a file. If you need
to monitor the end of an extremely large file, a specialized file monitor-
ing utility is a valid option.

For more information about the Get-Content cmdlet, type Get-Help Get-Content. For
more information about the -Wait parameter, type Get-Help FileSystem.

20.10 Get the Version of a DLL or Executable

Problem
You want to examine the version information of a file.

20.10 Get the Version of a DLL or Executable | 497

Solution
Use the Get-Item cmdlet to retrieve the file, and then access the VersionInfo property
to retrieve its version information:

PS > $file = Get-Item $pshome\powershell.exe
PS > $file.VersionInfo

ProductVersion FileVersion FileName
-------------- ----------- --------
6.0.6002.18139 6.0.6002.1813 C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Discussion
One common task in system administration is identifying file and version information
of installed software. PowerShell makes this simple through the VersionInfo property
that it automatically attaches to files that you retrieve through the Get-Item cmdlet. To
generate a report for a directory, simply pass the output of Get-ChildItem to the Select-
Object cmdlet, and use the -ExpandProperty parameter to expand the VersionInfo
property.

PS > Get-ChildItem $env:WINDIR |
 Select -Expand VersionInfo -ErrorAction SilentlyContinue

ProductVersion FileVersion FileName
-------------- ----------- --------
 C:\Windows\autologon.log
6.0.6000.16386 6.0.6000.1638... C:\Windows\bfsvc.exe
 C:\Windows\bootstat.dat
 C:\Windows\DtcInstall.log
6.0.6000.16386 6.0.6000.1638... C:\Windows\explorer.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\fveupdate.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\HelpPane.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\hh.exe
(...)

For more information about the Get-ChildItem cmdlet, see Recipe 20.2.

See Also
Recipe 20.2, “Get the Files in a Directory”

20.11 Program: Get the MD5 or SHA1 Hash of a File
File hashes provide a useful way to check for damage or modification to a file. A digital
hash acts like the fingerprint of a file and detects even minor modifications. If the
content of a file changes, then so does its hash. Many online download services provide
the hash of a file on that file’s download page so you can determine whether the transfer
somehow corrupted the file (see Figure 20-1).

498 | Chapter 20: Files and Directories

There are three common ways to generate the hash of a file: MD5, SHA1, and SHA256.
The most common is MD5, and the next most common is SHA1. While popular, these
hash types can be trusted to detect only accidental file modification. They can be fooled
if somebody wants to tamper with the file without changing its hash. The SHA256
algorithm can be used to protect against even intentional file tampering.

Example 20-3 lets you determine the hash of a file (or of multiple files if provided by
the pipeline).

Example 20-3. Get-FileHash.ps1

##
##
Get-FileHash
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the hash of an input file.

.EXAMPLE

Get-FileHash myFile.txt
Gets the hash of a specific file

.EXAMPLE

dir | Get-FileHash
Gets the hash of files from the pipeline

.EXAMPLE

Get-FileHash myFile.txt -Hash SHA1
Gets the hash of myFile.txt, using the SHA1 hashing algorithm

#>

Figure 20-1. File hashes as a verification mechanism

20.11 Program: Get the MD5 or SHA1 Hash of a File | 499

param(
 ## The path of the file to check
 $Path,

 ## The algorithm to use for hash computation
 [ValidateSet("MD5", "SHA1", "SHA256", "SHA384", "SHA512")]
 $HashAlgorithm = "MD5"
)

Set-StrictMode -Version Latest

Create the hash object that calculates the hash of our file.
$hashType = [Type] "System.Security.Cryptography.$HashAlgorithm"
$hasher = $hashType::Create()

Create an array to hold the list of files
$files = @()

If they specified the file name as a parameter, add that to the list
of files to process
if($path)
{
 $files += $path
}
Otherwise, take the files that they piped into the script.
For each input file, put its full name into the file list
else
{
 $files += @($input | Foreach-Object { $_.FullName })
}

Go through each of the items in the list of input files
foreach($file in $files)
{
 ## Skip the item if it is not a file
 if(-not (Test-Path $file -Type Leaf)) { continue }

 ## Convert it to a fully qualified path
 $filename = (Resolve-Path $file).Path

 ## Use the ComputeHash method from the hash object to calculate
 ## the hash
 $inputStream = New-Object IO.StreamReader $filename
 $hashBytes = $hasher.ComputeHash($inputStream.BaseStream)
 $inputStream.Close()

 ## Convert the result to hexadecimal
 $builder = New-Object System.Text.StringBuilder
 $hashBytes | Foreach-Object { [void] $builder.Append($_.ToString("X2")) }

 ## Return a custom object with the important details from the
 ## hashing
 $output = New-Object PsObject -Property @{
 Path = ([IO.Path]::GetFileName($file));
 HashAlgorithm = $hashAlgorithm;

500 | Chapter 20: Files and Directories

 HashValue = $builder.ToString()
 }

 $output
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

20.12 Create a Directory

Problem
You want to create a directory or file folder.

Solution
To create a directory, use the md or mkdir function:

PS > md NewDirectory

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- -----------
d---- 4/29/2007 7:31 PM NewDirectory

Discussion
The md and mkdir functions are simple wrappers around the more sophisticated New-
Item cmdlet. As you might guess, the New-Item cmdlet creates an item at the location
you provide. To create a directory using the New-Item cmdlet directly, supply
Directory to the -Type parameter.

New-Item -Path C:\Temp\NewDirectory -Type Directory

The New-Item cmdlet doesn’t work against only the filesystem, however. Any providers
that support the concept of items automatically support this cmdlet as well.

For more information about the New-Item cmdlet, type Get-Help New-Item.

20.12 Create a Directory | 501

20.13 Remove a File or Directory

Problem
You want to remove a file or directory.

Solution
To remove a file or directory, use the Remove-Item cmdlet:

PS > Test-Path NewDirectory
True
PS > Remove-Item NewDirectory
PS > Test-Path NewDirectory
False

Discussion
The Remove-Item cmdlet removes an item from the location you provide. The
RemoveItem cmdlet doesn’t work against only the filesystem, however. Any providers
that support the concept of items automatically support this cmdlet as well.

The Remove-Item cmdlet lets you specify multiple files through its Path,
Include, Exclude, and Filter parameters. For information on how to
use these parameters effectively, see Recipe 20.6.

If the item is a container (for example, a directory), PowerShell warns you that your
action will also remove anything inside that container. You can provide the -Recurse
flag if you want to prevent this message.

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item.

See Also
Recipe 20.6, “Find Files That Match a Pattern”

20.14 Rename a File or Directory

Problem
You want to rename a file or directory.

Solution
To rename an item in a provider, use the Rename-Item cmdlet:

PS > Rename-Item example.txt example2.txt

502 | Chapter 20: Files and Directories

Discussion
The Rename-Item cmdlet changes the name of an item.

Some shells let you rename multiple files at the same time. In those shells, the command
looks like this:

ren *.gif *.jpg

PowerShell does not support this syntax, but provides even more power through its
-replace operator. As a simple example, we can emulate the preceding command:

Get-ChildItem *.gif | Rename-Item -NewName { $_.Name -replace '.gif$','.jpg' }

This syntax provides an immense amount of power. Consider removing underscores
from filenames and replacing them with spaces:

Get-ChildItem *_* | Rename-Item -NewName { $_.Name -replace '_',' ' }

or restructuring files in a directory with the naming convention of <Report_Project_
Quarter>.txt:

PS > Get-ChildItem | Select Name

Name

Report_Project1_Q3.txt
Report_Project1_Q4.txt
Report_Project2_Q1.txt

You might want to change that to <Quarter_Project>.txt with an advanced replacement
pattern:

PS > Get-ChildItem |
 Rename-Item -NewName { $_.Name -replace '.*_(.*)_(.*)\.txt','$2_$1.txt' }

PS > Get-ChildItem | Select Name

Name

Q1_Project2.txt
Q3_Project1.txt
Q4_Project1.txt

For more information about the -replace operator, see Recipe 5.8.

Like the other *-Item cmdlets, the Rename-Item doesn’t work against only the filesystem.
Any providers that support the concept of items automatically support this cmdlet as
well. For more information about the Rename-Item cmdlet, type Get-Help Rename-Item.

See Also
Recipe 5.8, “Replace Text in a String”

20.14 Rename a File or Directory | 503

20.15 Move a File or Directory

Problem
You want to move a file or directory.

Solution
To move a file or directory, use the Move-Item cmdlet:

PS > Move-Item example.txt c:\temp\example2.txt

Discussion
The Move-Item cmdlet moves an item from one location to another. Like the other
*-Item cmdlets, Move-Item doesn’t work against only the filesystem. Any providers that
support the concept of items automatically support this cmdlet as well.

The Move-Item cmdlet lets you specify multiple files through its Path,
Include, Exclude, and Filter parameters. For information on how to
use these parameters effectively, see Recipe 20.6.

Although the Move-Item cmdlet works in every provider, you cannot move items be-
tween providers. For more information about the Move-Item cmdlet, type
Get-Help Move-Item.

See Also
Recipe 20.6, “Find Files That Match a Pattern”

20.16 Program: Move or Remove a Locked File
Once in a while, you’ll run into a file that’s been locked by the operating system, and
you’ll want to move it or delete it.

This is a common problem encountered by patches, installers, and hotfixes, so Win-
dows has a special mechanism that lets it move files before any process has the chance
to lock it. If a file that an installer needs to change is locked, it uses this special mech-
anism to complete its setup tasks. Windows can do this only during a reboot, which is
why you sometimes receive warnings from installers about locked files requiring a
restart.

The underlying mechanism that enables this is the MoveFileEx Windows API. Calling
this API with the MOVEFILE_DELAY_UNTIL_REBOOT flag tells Windows to move (or delete)
your file at the next boot. If you specify a source and destination path, Windows moves
the file. If you specify $null as a destination path, Windows deletes the file.

504 | Chapter 20: Files and Directories

Example 20-4 uses the Add-Type cmdlet to expose this functionality through Power-
Shell. While it exposes only the functionality to move locked files, you can easily rename
it and modify it to delete locked files.

Example 20-4. Move-LockedFile.ps1

##
##
Move-LockedFile
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Registers a locked file to be moved at the next system restart.

.EXAMPLE

Move-LockedFile c:\temp\locked.txt c:\temp\locked.txt.bak

#>

param(
 ## The current location of the file to move
 $Path,

 ## The target location of the file
 $Destination
)

Set-StrictMode -Version Latest

Convert the the path and destination to fully qualified paths
$path = (Resolve-Path $path).Path
$destination = $executionContext.SessionState.`
 Path.GetUnresolvedProviderPathFromPSPath($destination)

Define a new .NET type that calls into the Windows API to
move a locked file.
$MOVEFILE_DELAY_UNTIL_REBOOT = 0x00000004
$memberDefinition = @'
[DllImport("kernel32.dll", SetLastError=true, CharSet=CharSet.Auto)]
public static extern bool MoveFileEx(
 string lpExistingFileName, string lpNewFileName, int dwFlags);
'@
$type = Add-Type -Name MoveFileUtils `
 -MemberDefinition $memberDefinition -PassThru

Move the file
$type::MoveFileEx($path, $destination, $MOVEFILE_DELAY_UNTIL_REBOOT)

20.16 Program: Move or Remove a Locked File | 505

For more information about interacting with the Windows API, see Recipe 17.4. For
more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.4, “Access Windows API Functions”

20.17 Get the ACL of a File or Directory

Problem
You want to retrieve the ACL of a file or directory.

Solution
To retrieve the ACL of a file, use the Get-Acl cmdlet:

PS > Get-Acl example.txt

 Directory: C:\temp

Path Owner Access
---- ----- ------
example.txt LEE-DESK\Lee BUILTIN\Administrator...

Discussion
The Get-Acl cmdlet retrieves the security descriptor of an item. This cmdlet doesn’t
work against only the filesystem, however. Any provider (for example, the Registry
provider) that supports the concept of security descriptors also supports the Get-Acl
cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the item
and is specific to the provider that contains the item. In the filesystem, this returns
a .NET System.Security.AccessControl.FileSecurity object that you can explore for
further information. For example, Example 20-5 searches a directory for possible ACL
misconfigurations by ensuring that each file contains an Administrator, Full Control
ACL.

506 | Chapter 20: Files and Directories

Example 20-5. Get-AclMisconfiguration.ps1

##
##
Get-AclMisconfiguration
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstration of functionality exposed by the Get-Acl cmdlet. This script
goes through all access rules in all files in the current directory, and
ensures that the Administrator group has full control of that file.

#>

Set-StrictMode -Version Latest

Get all files in the current directory
foreach($file in Get-ChildItem)
{
 ## Retrieve the ACL from the current file
 $acl = Get-Acl $file
 if(-not $acl)
 {
 continue
 }

 $foundAdministratorAcl = $false

 ## Go through each access rule in that ACL
 foreach($accessRule in $acl.Access)
 {
 ## If we find the Administrator, Full Control access rule,
 ## then set the $foundAdministratorAcl variable
 if(($accessRule.IdentityReference -like "*Administrator*") -and
 ($accessRule.FileSystemRights -eq "FullControl"))
 {
 $foundAdministratorAcl = $true
 }
 }

 ## If we didn't find the administrator ACL, output a message
 if(-not $foundAdministratorAcl)
 {
 "Found possible ACL Misconfiguration: $file"
 }
}

20.17 Get the ACL of a File or Directory | 507

For more information about the Get-Acl command, type Get-Help Get-Acl. For more
information about working with classes from the .NET Framework, see Recipe 3.8. For
more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

20.18 Set the ACL of a File or Directory

Problem
You want to change the ACL of a file or directory.

Solution
To change the ACL of a file, use the Set-Acl cmdlet. This example prevents the Guest
account from accessing a file:

$acl = Get-Acl example.txt
$arguments = "LEE-DESK\Guest","FullControl","Deny"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $arguments
$acl.SetAccessRule($accessRule)
$acl | Set-Acl example.txt

Discussion
The Set-Acl cmdlet sets the security descriptor of an item. This cmdlet doesn’t work
against only the filesystem, however. Any provider (for example, the Registry provider)
that supports the concept of security descriptors also supports the Set-Acl cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item. While
it is possible to construct the ACL from scratch, it is usually easiest to retrieve it from
the item beforehand (as demonstrated in the Solution). To retrieve the ACL, use the
Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL, simply pipe
them to the Set-Acl cmdlet to make them permanent.

In the solution, the $arguments list that we provide to the FileSystemAccessRule con-
structor explicitly sets a Deny rule on the Guest account of the LEE-DESK computer for
FullControl permission. For more information about working with classes from
the .NET Framework (such as the FileSystemAccessRule class), see Recipe 3.8.

Although the Set-Acl command is powerful, you may already be familiar with
command-line tools that offer similar functionality (such as cacls.exe). Although these
tools generally do not work on the registry (or other providers that support PowerShell
security descriptors), you can of course continue to use these tools from PowerShell.

508 | Chapter 20: Files and Directories

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more in-
formation about the Get-Acl cmdlet, see Recipe 20.17.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.17, “Get the ACL of a File or Directory”

20.19 Program: Add Extended File Properties to Files
The Explorer shell provides useful information about a file when you click on its Prop-
erties dialog. It includes the authoring information, image information, music infor-
mation, and more (see Figure 20-2).

Figure 20-2. Extended file properties in Windows Explorer

PowerShell doesn’t expose this information by default, but it is possible to obtain these
properties from the Shell.Application COM object. Example 20-6 does just that—and
adds this extended information as properties to the files returned by the Get-
ChildItem cmdlet.

Example 20-6. Add-ExtendedFileProperties.ps1

##
##
Add-ExtendedFileProperties
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

20.19 Program: Add Extended File Properties to Files | 509

<#

.SYNOPSIS

Add the extended file properties normally shown in Explorer's
"File Properties" tab.

.EXAMPLE

Get-ChildItem | Add-ExtendedFileProperties.ps1 | Format-Table Name,"Bit Rate"

#>

begin
{
 Set-StrictMode -Version Latest

 ## Create the Shell.Application COM object that provides this
 ## functionality
 $shellObject = New-Object -Com Shell.Application

 ## Store the property names and identifiers for all of the shell
 ## properties
 $itemProperties = $null
}

process
{
 ## Get the file from the input pipeline. If it is just a filename
 ## (rather than a real file), piping it to the Get-Item cmdlet will
 ## get the file it represents.
 $fileItem = $_ | Get-Item

 ## Don't process directories
 if($fileItem.PsIsContainer)
 {
 $fileItem
 return
 }

 ## Extract the file name and directory name
 $directoryName = $fileItem.DirectoryName
 $filename = $fileItem.Name

 ## Create the folder object and shell item from the COM object
 $folderObject = $shellObject.NameSpace($directoryName)
 $item = $folderObject.ParseName($filename)

 ## Populate the item properties
 if(-not $itemProperties)
 {
 $itemProperties = @{}

 $counter = 0
 $columnName = ""

510 | Chapter 20: Files and Directories

 do
 {
 $columnName = $folderObject.GetDetailsOf(
 $folderObject.Items, $counter)
 if($columnName) { $itemProperties[$counter] = $columnName }

 $counter++
 } while($columnName)
 }

 ## Now, go through each property and add its information as a
 ## property to the file we are about to return
 foreach($itemProperty in $itemProperties.Keys)
 {
 $fileItem | Add-Member NoteProperty $itemProperties[$itemProperty] `
 $folderObject.GetDetailsOf($item, $itemProperty) -ErrorAction `
 SilentlyContinue
 }

 ## Finally, return the file with the extra shell information
 $fileItem
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

20.20 Program: Create a Filesystem Hard Link
It is sometimes useful to refer to the same file by two different names or locations. You
can’t solve this problem by copying the item, because modifications to one file do not
automatically affect the other.

The solution to this is called a hard link, an item of a new name that points to the data
of another file. The Windows operating system supports hard links, but only Windows
Vista includes a utility that lets you create them.

Example 20-7 lets you create hard links without needing to install additional tools. It
uses (and requires) the Invoke-WindowsApi.ps1 script provided in Recipe 17.5.

20.20 Program: Create a Filesystem Hard Link | 511

Example 20-7. New-FilesystemHardLink.ps1

##
##
New-FileSystemHardLink
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Create a new hard link, which allows you to create a new name by which you
can access an existing file. Windows only deletes the actual file once
you delete all hard links that point to it.

.EXAMPLE

PS >"Hello" > test.txt
PS >dir test* | select name

Name

test.txt

PS >.\New-FilesystemHardLink.ps1 test.txt test2.txt
PS >type test2.txt
Hello
PS >dir test* | select name

Name

test.txt
test2.txt

#>

param(
 ## The existing file that you want the new name to point to
 [string] $Path,

 ## The new filename you want to create
 [string] $Destination
)

Set-StrictMode -Version Latest

Ensure that the provided names are absolute paths
$filename = $executionContext.SessionState.`
 Path.GetUnresolvedProviderPathFromPSPath($destination)
$existingFilename = Resolve-Path $path

Prepare the parameter types and parameters for the CreateHardLink function

512 | Chapter 20: Files and Directories

$parameterTypes = [string], [string], [IntPtr]
$parameters = [string] $filename, [string] $existingFilename, [IntPtr]::Zero

Call the CreateHardLink method in the Kernel32 DLL
$currentDirectory = Split-Path $myInvocation.MyCommand.Path
$invokeWindowsApiCommand = Join-Path $currentDirectory Invoke-WindowsApi.ps1
$result = & $invokeWindowsApiCommand "kernel32" `
 ([bool]) "CreateHardLink" $parameterTypes $parameters

Provide an error message if the call fails
if(-not $result)
{
 $message = "Could not create hard link of $filename to " +
 "existing file $existingFilename"
 Write-Error $message
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 17.5, “Program: Invoke Simple Windows API Calls”

20.21 Program: Create a ZIP Archive
When transporting or archiving files, it is useful to store those files in an archive. ZIP
archives are the most common type of archive, so it would be useful to have a script to
help manage them.

For many purposes, traditional command-line ZIP archive utilities may fulfill your
needs. If they do not support the level of detail or interaction that you need for admin-
istrative tasks, a more programmatic alternative is attractive.

Example 20-8 lets you create ZIP archives simply by piping files into them. It requires
that you have the SharpZipLib installed, which you can obtain from http://www.icsharp
code.net/OpenSource/SharpZipLib/.

Example 20-8. New-ZipFile.ps1

##
##
New-ZipFile
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

20.21 Program: Create a ZIP Archive | 513

http://www.icsharpcode.net/OpenSource/SharpZipLib/
http://www.icsharpcode.net/OpenSource/SharpZipLib/

<#

.SYNOPSIS

Create a ZIP file from any files piped in. Requires that
you have the SharpZipLib installed, which is available from
http://www.icsharpcode.net/OpenSource/SharpZipLib/

.EXAMPLE

dir *.ps1 | New-ZipFile scripts.zip d:\bin\ICSharpCode.SharpZipLib.dll
Copies all PS1 files in the current directory to scripts.zip

.EXAMPLE

"readme.txt" | New-ZipFile docs.zip d:\bin\ICSharpCode.SharpZipLib.dll
Copies readme.txt to docs.zip

#>

param(
 ## The name of the zip archive to create
 $ZipName = $(throw "Specify a zip file name"),

 ## The path to ICSharpCode.SharpZipLib.dll
 $LibPath = $(throw "Specify the path to SharpZipLib.dll")
)

Set-StrictMode -Version Latest

Load the ZIP library
[void] [Reflection.Assembly]::LoadFile($libPath)
$namespace = "ICSharpCode.SharpZipLib.Zip.{0}"

Create the ZIP file
$zipName = $executionContext.SessionState.`
 Path.GetUnresolvedProviderPathFromPSPath($zipName)
$zipFile =
 New-Object ($namespace -f "ZipOutputStream") ([IO.File]::Create($zipName))
$zipFullName = (Resolve-Path $zipName).Path

[byte[]] $buffer = New-Object byte[] 4096

Go through each file in the input, adding it to the ZIP file
specified
foreach($file in $input)
{
 ## Skip the current file if it is the ZIP file itself
 if($file.FullName -eq $zipFullName)
 {
 continue
 }

 ## Convert the path to a relative path, if it is under the
 ## current location

514 | Chapter 20: Files and Directories

 $replacePath = [Regex]::Escape((Get-Location).Path + "\")
 $zipName = ([string] $file) -replace $replacePath,""

 ## Create the ZIP entry, and add it to the file
 $zipEntry = New-Object ($namespace -f "ZipEntry") $zipName
 $zipFile.PutNextEntry($zipEntry)

 $fileStream = [IO.File]::OpenRead($file.FullName)
 [ICSharpCode.SharpZipLib.Core.StreamUtils]::Copy(
 $fileStream, $zipFile, $buffer)
 $fileStream.Close()
}

Close the file
$zipFile.Close()

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

20.21 Program: Create a ZIP Archive | 515

CHAPTER 21

The Windows Registry

21.0 Introduction
As the configuration store for the vast majority of applications, the registry plays a
central role in system administration. It is also generally hard to manage.

Although command-line tools (such as reg.exe) exist to help you work with the registry,
their interfaces are usually inconsistent and confusing. The Registry Editor graphical
user interface is easy to use, but it does not support scripted administration.

PowerShell tackles this problem by exposing the Windows Registry as a navigation
provider: a data source that you navigate and manage in exactly the same way that you
work with the filesystem.

21.1 Navigate the Registry

Problem
You want to navigate and explore the Windows Registry.

Solution
Use the Set-Location cmdlet to navigate the registry, just as you would navigate the
filesystem:

PS > Set-Location HKCU:
PS > Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS > Get-Location

Path

HKCU:\Software\Microsoft\Windows\CurrentVersion\Run

517

Discussion
PowerShell lets you navigate the Windows Registry in exactly the same way that you
navigate the filesystem, certificate drives, and other navigation-based providers. Like
these other providers, the registry provider supports the Set-Location cmdlet (with the
standard aliases of sl, cd, and chdir), Push-Location (with the standard alias pushd),
Pop-Location (with the standard alias popd), and more.

For information about how to change registry keys once you get to a registry location,
see Recipe 21.3. For more information about the registry provider, type
Get-Help Registry.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.2 View a Registry Key

Problem
You want to view the value of a specific registry key.

Solution
To retrieve the value(s) of a registry key, use the Get-ItemProperty cmdlet, as shown in
Example 21-1.

Example 21-1. Retrieving properties of a registry key

PS > Set-Location HKCU:
PS > Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /
 background
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe
 " -atboottime
H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.exe"

518 | Chapter 21: The Windows Registry

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as prop-
erties of those items. To get the properties of an item, use the Get-ItemProperty cmdlet.
The Get-ItemProperty cmdlet has the standard alias gp.

Example 21-1 lists all property values associated with that specific key. To retrieve the
value of a specific item, access it as you would access a property on a .NET object, or
anywhere else in PowerShell:

PS > $item = Get-ItemProperty .
PS > $item.TaskSwitchXp
d:\lee\tools\TaskSwitchXP.exe

If you want to do this all at once, the command looks like:

PS > $runKey = "HKCU:\Software\Microsoft\Windows\CurrentVersion\Run"
PS > (Get-ItemProperty $runKey).TaskSwitchXp
d:\lee\tools\TaskSwitchXP.exe

For more information about the Get-ItemProperty cmdlet, type Get-Help
Get-ItemProperty. For more information about the registry provider, type
Get-Help Registry.

21.3 Modify or Remove a Registry Key Value

Problem
You want to modify or remove a property of a specific registry key.

Solution
To set the value of a registry key, use the Set-ItemProperty cmdlet:

PS > (Get-ItemProperty .).MyProgram
c:\temp\MyProgram.exe
PS > Set-ItemProperty . MyProgram d:\Lee\tools\MyProgram.exe
PS > (Get-ItemProperty .).MyProgram
d:\Lee\tools\MyProgram.exe

To remove the value of a registry key, use the Remove-ItemProperty cmdlet:

PS > Remove-ItemProperty . MyProgram
PS > (Get-ItemProperty .).MyProgram

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as prop-
erties of those items. To change the value of a key property, use the Set-ItemProperty
cmdlet. The Set-ItemProperty cmdlet has the standard alias sp. To remove a key prop-
erty altogether, use the Remove-ItemProperty cmdlet.

21.3 Modify or Remove a Registry Key Value | 519

As always, use caution when changing information in the registry. De-
leting or changing the wrong item can easily render your system
unbootable.

For more information about the Get-ItemProperty cmdlet, type Get-Help Get-
ItemProperty. For information about the Set-ItemProperty and Remove-ItemProperty
cmdlets, type Get-Help Set-ItemProperty or Get-Help Remove-ItemProperty, respec-
tively. For more information about the registry provider, type Get-Help Registry.

21.4 Create a Registry Key Value

Problem
You want to add a new key value to an existing registry key.

Solution
To add a value to a registry key, use the New-ItemProperty cmdlet. Example 21-2 adds
MyProgram.exe to the list of programs that start when the current user logs in.

Example 21-2. Creating new properties on a registry key

PS > Set-Location HKCU:\Software\Microsoft\Windows\CurrentVersion\Run
PS > New-ItemProperty . -Name MyProgram -Value c:\temp\MyProgram.exe

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
 \Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
 \Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
MyProgram : c:\temp\MyProgram.exe

PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_
 USER\Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_
 USER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe"
 /background
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe"
 -atboottime

520 | Chapter 21: The Windows Registry

H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.exe"
MyProgram : c:\temp\MyProgram.exe

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as prop-
erties of those items. To create a key property, use the New-ItemProperty cmdlet.

For more information about the New-ItemProperty cmdlet, type Get-Help
New-ItemProperty. For more information about the registry provider, type
Get-Help Registry.

21.5 Remove a Registry Key

Problem
You want to remove a registry key and all its properties.

Solution
To remove a registry key, use the Remove-Item cmdlet:

PS > dir

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

SKC VC Name Property
--- -- ---- --------
 0 0 Spyware {}

PS > Remove-Item Spyware

Discussion
As mentioned in Recipe 21.4, the registry provider lets you remove items and containers
with the Remove-Item cmdlet. The Remove-Item cmdlet has the standard aliases rm, rmdir,
del, erase, and rd.

As always, use caution when changing information in the registry. De-
leting or changing the wrong item can easily render your system
unbootable.

As in the filesystem, the Remove-Item cmdlet lets you specify multiple files through its
Path, Include, Exclude, and Filter parameters. For information on how to use these
parameters effectively, see Recipe 20.6.

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item. For
more information about the registry provider, type Get-Help Registry.

21.5 Remove a Registry Key | 521

See Also
Recipe 20.6, “Find Files That Match a Pattern”

Recipe 21.4, “Create a Registry Key Value”

21.6 Safely Combine Related Registry Modifications

Problem
You have several related registry modifications, and you want to group them so that
either they all apply or none apply.

Solution
Use the Start-Transaction cmdlet to start a transaction, and make your registry mod-
ifications within it. Use the Complete-Transaction cmdlet to make the registry modifi-
cations permanent:

PS > Set-Location HKCU:
PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands
that get called with the -UseTransaction flag become part of that transaction.
PS > mkdir TempKey -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey {}

PS > Set-Location TempKey -UseTransaction
PS > New-Item TempKey2 -UseTransaction

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

PS > Set-Location \
PS > Get-ChildItem TempKey
Get-ChildItem : Cannot find path 'HKEY_CURRENT_USER\TempKey' because it
does not exist.
At line:1 char:14

522 | Chapter 21: The Windows Registry

+ Get-ChildItem <<<< TempKey
 + CategoryInfo : ObjectNotFound: (HKEY_CURRENT_USER\TempKey:
 String) [Get-ChildItem], ItemNotFoundException
 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.
 GetChildItemCommand

PS > Complete-Transaction
PS > Get-ChildItem TempKey

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

Discussion
When working in the registry, you might sometimes want to chain a set of related
changes and be sure that they all get applied as a single unit. These are goals known as
atomicity and consistency: the desire to avoid situations where an error during any step
of the operation could cause an inconsistent system state if the other operations are not
also successful.

To support this type of management task, PowerShell supports a change management
strategy known as transactions. On Windows Vista and later, PowerShell’s registry
provider fully supports transactions.

When you start a transaction, any commands in that transaction are virtual and don’t
actually apply to the system until you complete the transaction. Within the context of
the transaction, through, each participating command sees the system as though the
state really had changed. Once you complete a transaction, changes are applied as a
single unit.

Some systems that support transactions (such as databases) put locks on any resources
that are being changed by a transaction. If another user tries to modify the locked
resources, the user gets an error message. This is not supported in the Windows Reg-
istry. If something alters a resource that your transaction depends on, the changes
contained in your transaction will be abandoned and you will receive an error message
when you try to complete that transaction.

For more information about transactions, see Chapter 30.

See Also
Chapter 30, Transactions

21.6 Safely Combine Related Registry Modifications | 523

21.7 Add a Site to an Internet Explorer Security Zone

Problem
You want to add a site to a specific Internet Explorer security zone.

Solution
To create the registry keys and properties required to add a site to a specific security
zone, use the New-Item and New-ItemProperty cmdlets. Example 21-3 adds
www.example.com to the list of sites trusted by Internet Explorer.

Example 21-3. Adding www.example.com to the list of trusted sites in Internet Explorer

Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-Location ZoneMap\Domains
New-Item example.com
Set-Location example.com
New-Item www
Set-Location www
New-ItemProperty . -Name http -Value 2 -Type DWORD

Discussion
One task that requires modifying data in the registry is working with Internet Explorer
to add and remove sites from its different security zones.

Internet Explorer stores its zone mapping information in the registry at HKCU:\Soft-
ware\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\Domains. Below
that key, Explorer stores the domain name (such as leeholmes.com) with the hostname
(such as www) as a subkey of that one (see Figure 21-1). In the host key, Explorer stores
a property (such as http) with a DWORD value that corresponds to the zone identifier.

The Internet Explorer zone identifiers are:

• My Computer

• Local intranet

• Trusted sites

• Internet

• Restricted sites

When Internet Explorer is configured in its Enhanced Security Configuration mode,
you must also update entries under the EscDomains key.

524 | Chapter 21: The Windows Registry

Once a machine has enabled Internet Explorer’s Enhanced Security
Configuration, those settings persist even after removing Enhanced Se-
curity Configuration. The following commands let your machine trust
UNC paths again:

Set-Location "HKCU:\Software\Microsoft\Windows\"
Set-Location "CurrentVersion"
Set-Location "Internet Settings"
Set-ItemProperty ZoneMap UNCAsIntranet -Type DWORD 1
Set-ItemProperty ZoneMap IntranetName -Type DWORD 1

To remove the zone mapping for a specific domain, use the Remove-Item cmdlet:

PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\…\Internet Settings\ZoneMap\Domains

SKC VC Name Property
--- -- ---- --------
 1 0 example.com {}

PS > Remove-Item -Recurse example.com
PS > Get-ChildItem
PS >

For more information about using the Internet Explorer registry entries to configure
security zones, see the Microsoft KB article “Description of Internet Explorer Security

Figure 21-1. Internet Explorer zone configuration

21.7 Add a Site to an Internet Explorer Security Zone | 525

Zones Registry Entries” at http://support.microsoft.com/kb/182569. For more informa-
tion about managing Internet Explorer’s Enhanced Security Configuration, search for
it on http://technet.microsoft.com.

For more information about modifying data in the registry, see Recipe 21.3.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.8 Modify Internet Explorer Settings

Problem
You want to modify Internet Explorer’s configuration options.

Solution
To modify the Internet Explorer configuration registry keys, use the Set-

ItemProperty cmdlet. For example, to update the proxy:

Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-ItemProperty . -Name ProxyServer -Value http://proxy.example.com
Set-ItemProperty . -Name ProxyEnable -Value 1

Discussion
Internet Explorer stores its main configuration information as properties on the registry
key HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings. To change
these properties, use the Set-ItemProperty cmdlet as demonstrated in the solution.

Another common set of properties to tweak are the configuration parameters that de-
fine a security zone. An example of this is to prevent scripts from running in the
Restricted Sites zone. For each zone, Internet Explorer stores this information as prop-
erties of the registry key HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\<Zone>, where <Zone> represents the zone identifier (0, 1, 2, 3, or 4)
to manage.

The Internet Explorer zone identifiers are:

• My Computer

• Local intranet

• Trusted sites

• Internet

• Restricted sites

526 | Chapter 21: The Windows Registry

http://support.microsoft.com/kb/182569
http://technet.microsoft.com

The names of the properties in this key are not designed for human consumption, as
they carry illuminating titles such as 1A04 and 1809. While they are not well-named,
you can still script them.

For more information about using the Internet Explorer registry settings to configure
security zones, see the Microsoft KB article “Description of Internet Explorer Security
Zones Registry Entries” at http://support.microsoft.com/kb/182569.

For more information about modifying data in the registry, see Recipe 21.3.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.9 Program: Search the Windows Registry
Although the Windows Registry Editor is useful for searching the registry, sometimes
it might not provide the power you need. For example, the registry editor does not
support searches with wildcards or regular expressions.

In the filesystem, we have the Select-String cmdlet to search files for content. Power-
Shell does not offer that ability for other stores, but we can write a script to do it. The
key here is to think of registry key values like you think of content in a file:

• Directories have items; items have content.

• Registry keys have properties; properties have values.

Example 21-4 goes through all registry keys (and their values) for a search term and
returns information about the match.

Example 21-4. Search-Registry.ps1

##
##
Search-Registry
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the registry for keys or properties that match a specific value.

.EXAMPLE

PS >Set-Location HKCU:\Software\Microsoft\
PS >Search-Registry Run

21.9 Program: Search the Windows Registry | 527

http://support.microsoft.com/kb/182569

#>

param(
 ## The text to search for
 [Parameter(Mandatory = $true)]
 [string] $Pattern
)

Set-StrictMode -Off

Helper function to create a new object that represents
a registry match from this script
function New-RegistryMatch
{
 param($matchType, $keyName, $propertyName, $line)

 $registryMatch = New-Object PsObject -Property @{
 MatchType = $matchType;
 KeyName = $keyName;
 PropertyName = $propertyName;
 Line = $line
 }

 $registryMatch
}

Go through each item in the registry
foreach($item in Get-ChildItem -Recurse -ErrorAction SilentlyContinue)
{
 ## Check if the key name matches
 if($item.Name -match $pattern)
 {
 New-RegistryMatch "Key" $item.Name $null $item.Name
 }

 ## Check if a key property matches
 foreach($property in (Get-ItemProperty $item.PsPath).PsObject.Properties)
 {
 ## Skip the property if it was one PowerShell added
 if(($property.Name -eq "PSPath") -or
 ($property.Name -eq "PSChildName"))
 {
 continue
 }

 ## Search the text of the property
 $propertyText = "$($property.Name)=$($property.Value)"
 if($propertyText -match $pattern)
 {
 New-RegistryMatch "Property" $item.Name `
 property.Name $propertyText
 }
 }
}

528 | Chapter 21: The Windows Registry

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

21.10 Get the ACL of a Registry Key

Problem
You want to retrieve the ACL of a registry key.

Solution
To retrieve the ACL of a registry key, use the Get-Acl cmdlet:

PS > Get-Acl HKLM:\Software

Path Owner Access
---- ----- ------
Microsoft.PowerShell.... BUILTIN\Administrators CREATOR OWNER Allow

Discussion
As mentioned in Recipe 20.17, the Get-Acl cmdlet retrieves the security descriptor of
an item. This cmdlet doesn’t work against only the registry, however. Any provider (for
example, the filesystem provider) that supports the concept of security descriptors also
supports the Get-Acl cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the item
and is specific to the provider that contains the item. In the registry provider, this returns
a .NET System.Security.AccessControl.RegistrySecurity object that you can explore
for further information. For an example of changing the ACL of a registry key with this
result, see Recipe 21.11. For an example of a script that works with ACLs, see
Recipe 20.17.

For more information about the Get-Acl command, type Get-Help Get-Acl. For more
information about working with classes from the .NET Framework, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.17, “Get the ACL of a File or Directory”

Recipe 21.11, “Set the ACL of a Registry Key”

21.10 Get the ACL of a Registry Key | 529

21.11 Set the ACL of a Registry Key

Problem
You want to change the ACL of a registry key.

Solution
To set the ACL on a registry key, use the Set-Acl cmdlet. This example grants an ac-
count write access to a registry key under HKLM:\Software. This is especially useful for
programs that write to administrator-only regions of the registry, which prevents them
from running under a nonadministrator account.

##
##
Grant-RegistryAccessFullControl
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Grants full control access to a user for the specified registry key.

.EXAMPLE

PS >$registryPath = "HKLM:\Software\MyProgram"
PS >Grant-RegistryAccessFullControl "LEE-DESK\LEE" $registryPath

#>

param(
 ## The user to grant full control
 [Parameter(Mandatory = $true)]
 $User,

 ## The registry path that should have its permissions modified
 [Parameter(Mandatory = $true)]
 $RegistryPath
)

Set-StrictMode -Version Latest

Push-Location
Set-Location -LiteralPath $registryPath

Retrieve the ACL from the registry key
$acl = Get-Acl .

530 | Chapter 21: The Windows Registry

Prepare the access rule, and set the access rule
$arguments = $user,"FullControl","Allow"
$accessRule = New-Object Security.AccessControl.RegistryAccessRule $arguments
$acl.SetAccessRule($accessRule)

Apply the modified ACL to the registry key
$acl | Set-Acl .

Pop-Location

Discussion
As mentioned in Recipe 20.18, the Set-Acl cmdlet sets the security descriptor of an
item. This cmdlet doesn’t work against only the registry, however. Any provider (for
example, the filesystem provider) that supports the concept of security descriptors also
supports the Set-Acl cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item.
Although it is possible to construct the ACL from scratch, it is usually easiest to retrieve
it from the item beforehand (as demonstrated in the Solution). To retrieve the ACL,
use the Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL,
simply pipe them to the Set-Acl cmdlet to make them permanent.

In the solution, the $arguments list that we provide to the RegistryAccessRule con-
structor explicitly sets an Allow rule on the Lee account of the LEE-DESK computer for
FullControl permission. For more information about working with classes from
the .NET Framework (such as the RegistryAccessRule class), see Recipe 3.8.

Although the Set-Acl command is powerful, you may already be familiar with
command-line tools that offer similar functionality (such as SubInAcl.exe). You can of
course continue to use these tools from PowerShell.

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more in-
formation about the Get-Acl cmdlet, see Recipe 21.10.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.18, “Set the ACL of a File or Directory”

Recipe 21.10, “Get the ACL of a Registry Key”

21.12 Work with the Registry of a Remote Computer

Problem
You want to work with the registry keys and values of a remote computer.

21.12 Work with the Registry of a Remote Computer | 531

Solution
To work with the registry of a remote computer, use the scripts provided in this chapter:
Get-RemoteRegistryChildItem (Recipe 21.13), Get-RemoteRegistryKeyProperty

(Recipe 21.14), and Set-RemoteRegistryKeyProperty (Recipe 21.15). These scripts re-
quire that the remote computer has the remote registry service enabled and running.
Example 21-5 updates the PowerShell execution policy of a remote machine.

Example 21-5. Setting the PowerShell execution policy of a remote machine

PS > $registryPath = "HKLM:\Software\Microsoft\PowerShell\1"
PS > Get-RemoteRegistryChildItem LEE-DESK $registryPath

SKC VC Name Property
--- -- ---- --------
 0 1 1033 {Install}
 0 5 PowerShellEngine {ApplicationBase, ConsoleHostAss...
 2 0 PowerShellSnapIns {}
 1 0 ShellIds {}

PS > Get-RemoteRegistryChildItem LEE-DESK $registryPath\ShellIds

SKC VC Name Property
--- -- ---- --------
 0 2 Microsoft.PowerShell {Path, ExecutionPolicy}

PS > $registryPath = "HKLM:\Software\Microsoft\PowerShell\1\" +
 "ShellIds\Microsoft.PowerShell"

PS > Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

Unrestricted

PS > Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
 "ExecutionPolicy" "RemoteSigned"

PS > Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

RemoteSigned

Discussion
Although this specific task is perhaps better solved through PowerShell’s Group Policy
support, it demonstrates a useful scenario that includes both remote registry explora-
tion and modification.

If the remote computer does not have the Remote Registry service running (but does
have WMI enabled), you can use WMI’s StdRegProv class to work with the registry as

532 | Chapter 21: The Windows Registry

well. The following example demonstrates how to get and set the registry key that
controls Remote Desktop:

$HKEY_CLASSES_ROOT = [Convert]::ToUInt32(80000000, 16)
$HKEY_CURRENT_USER = [Convert]::ToUInt32(80000001, 16)
$HKEY_LOCAL_MACHINE = [Convert]::ToUInt32(80000002, 16)
$HKEY_USERS = [Convert]::ToUInt32(80000003, 16)
$HKEY_CURRENT_CONFIG = [Convert]::ToUInt32(80000005, 16)

Connect to the registry via WMI
$reg = Get-WmiObject -ComputerName LEE-DESK `
 -Namespace root\default StdRegProv -List

Get and set DWORD values on the remote machine
$reg.GetDWORDValue($HKEY_LOCAL_MACHINE,
 "SYSTEM\CurrentControlSet\Control\Terminal Server",
 "fDenyTSConnections")

$reg.SetDWORDValue($HKEY_LOCAL_MACHINE,
 "SYSTEM\CurrentControlSet\Control\Terminal Server",
 "fDenyTSConnections", 0)

For more information about the Get-RemoteRegistryChildItem, Get-RemoteRegistryKey
Property, and Set-RemoteRegistryKeyProperty scripts, see Recipes 21.13, 21.14, and
21.15.

See Also
Recipe 21.13, “Program: Get Registry Items from Remote Machines”

Recipe 21.14, “Program: Get Properties of Remote Registry Keys”

Recipe 21.15, “Program: Set Properties of Remote Registry Keys”

21.13 Program: Get Registry Items from Remote Machines
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 21-6 lets you list child items in a remote registry key, much like you do on the
local computer. In order for this script to succeed, the target computer must have the
remote registry service enabled and running.

21.13 Program: Get Registry Items from Remote Machines | 533

Example 21-6. Get-RemoteRegistryChildItem.ps1
##
##
Get-RemoteRegistryChildItem
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the list of subkeys below a given key on a remote computer.

.EXAMPLE

Get-RemoteRegistryChildItem LEE-DESK HKLM:\Software

#>

param(
 ## The computer that you wish to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The path to the registry items to retrieve
 [Parameter(Mandatory = $true)]
 $Path
)

Set-StrictMode -Version Latest

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])

534 | Chapter 21: The Windows Registry

Retrieve all of its children
foreach($subkeyName in $key.GetSubKeyNames())
{
 ## Open the subkey
 $subkey = $key.OpenSubKey($subkeyName)

 ## Add information so that PowerShell displays this key like regular
 ## registry key
 $returnObject = [PsObject] $subKey
 $returnObject | Add-Member NoteProperty PsChildName $subkeyName
 $returnObject | Add-Member NoteProperty Property $subkey.GetValueNames()

 ## Output the key
 $returnObject

 ## Close the child key
 $subkey.Close()
}

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

21.14 Program: Get Properties of Remote Registry Keys
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 21-7 lets you get the properties (or a specific property) from a given remote
registry key. In order for this script to succeed, the target computer must have the
remote registry service enabled and running.

Example 21-7. Get-RemoteRegistryKeyProperty.ps1

##
##
Get-RemoteRegistryKeyProperty
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

21.14 Program: Get Properties of Remote Registry Keys | 535

<#

.SYNOPSIS

Get the value of a remote registry key property

.EXAMPLE

PS >$registryPath =
 "HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS >Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

#>

param(
 ## The computer that you wish to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The path to the registry item to retrieve
 [Parameter(Mandatory = $true)]
 $Path,

 ## The specific property to retrieve
 $Property = "*"
)

Set-StrictMode -Version Latest

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])
$returnObject = New-Object PsObject

Go through each of the properties in the key
foreach($keyProperty in $key.GetValueNames())
{
 ## If the property matches the search term, add it as a

536 | Chapter 21: The Windows Registry

 ## property to the output
 if($keyProperty -like $property)
 {
 $returnObject |
 Add-Member NoteProperty $keyProperty $key.GetValue($keyProperty)
 }
}

Return the resulting object
$returnObject

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

21.15 Program: Set Properties of Remote Registry Keys
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 21-8 lets you set the value of a property on a given remote registry key. In
order for this script to succeed, the target computer must have the remote registry
service enabled and running.

Example 21-8. Set-RemoteRegistryKeyProperty.ps1

##
##
Set-RemoteRegistryKeyProperty
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Set the value of a remote registry key property

.EXAMPLE

PS >$registryPath =

21.15 Program: Set Properties of Remote Registry Keys | 537

 "HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS >Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
 "ExecutionPolicy" "RemoteSigned"

#>

param(
 ## The computer to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The registry path to modify
 [Parameter(Mandatory = $true)]
 $Path,

 ## The property to modify
 [Parameter(Mandatory = $true)]
 $PropertyName,

 ## The value to set on the property
 [Parameter(Mandatory = $true)]
 $PropertyValue
)

Set-StrictMode -Version Latest

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key and set its value
$key = $baseKey.OpenSubKey($matches[1], $true)
$key.SetValue($propertyName, $propertyValue)

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.1.

538 | Chapter 21: The Windows Registry

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

21.16 Discover Registry Settings for Programs

Problem
You want to automate the configuration of a program, but that program does not
document its registry configuration settings.

Solution
To discover a registry setting for a program, use the Sysinternals Process Monitor to
observe registry access by that program. Process Monitor is available from http://www
.microsoft.com/technet/sysinternals/FileAndDisk/processmonitor.mspx.

Discussion
In an ideal world, all programs would fully support command-line administration and
configuration through PowerShell cmdlets. Many programs do not, however, so the
solution is to look through their documentation in the hope that they list the registry
keys and properties that control their settings. While many programs document their
registry configuration settings, many still do not.

Although these programs may not document their registry settings, you can usually
observe their registry access activity to determine the registry paths they use. To illus-
trate this, we will use the Sysinternals Process Monitor to discover PowerShell’s exe-
cution policy configuration keys. Although PowerShell documents these keys and
makes its automated configuration a breeze, this example illustrates the general
technique.

Launch and configure Process Monitor

Once you’ve downloaded Process Monitor, the first step is to filter its output to include
only the program you are interested in. By default, Process Monitor logs almost all
registry and file activity on the system.

First, launch Process Monitor, and then press Ctrl-E (or click the magnifying glass icon)
to temporarily prevent it from capturing any data (see Figure 21-2). Next, press Ctrl-X
(or click the white sheet with an eraser icon) to clear the extra information that it
captured automatically. Finally, drag the target icon and drop it on top of the applica-
tion in question. You can press Ctrl-L (or click the funnel icon) to see the filter that
Process Monitor now applies to its output.

21.16 Discover Registry Settings for Programs | 539

http://www.microsoft.com/technet/sysinternals/FileAndDisk/processmonitor.mspx
http://www.microsoft.com/technet/sysinternals/FileAndDisk/processmonitor.mspx

Prepare to manually set the configuration option

Next, prepare to manually set the program’s configuration option. Usually, this means
typing and clicking all the property settings, but just not clicking OK or Apply. For this
PowerShell example, type the Set-ExecutionPolicy command line, but do not press
Enter (see Figure 21-3).

Figure 21-3. Preparing to apply the configuration option

Tell Process Monitor to begin capturing information

Switch to the Process Monitor window, and then press Ctrl-E (or click the magnifying
glass icon). Process Monitor now captures all registry access for the program in
question.

Figure 21-2. Process Monitor ready to capture

540 | Chapter 21: The Windows Registry

Manually set the configuration option

Click OK, Apply, or whatever action it takes to actually complete the program’s con-
figuration. For the PowerShell example, this means pressing Enter.

Tell Process Monitor to stop capturing information

Switch again to the Process Monitor window, and then press Ctrl-E (or click the mag-
nifying glass icon). Process Monitor now no longer captures the application’s activity.

Review the capture logs for registry modification

The Process Monitor window now shows all registry keys that the application interac-
ted with when it applied its configuration setting.

Press Ctrl-F (or click the binoculars icon), and then search for RegSetValue. Process
Monitor highlights the first modification to a registry key, as shown in Figure 21-4.

Figure 21-4. Process Monitor’s registry access detail

Press Enter (or double-click the highlighted row) to see the details about this specific
registry modification. In this example, we can see that PowerShell changed the value
of the ExecutionPolicy property (under HKLM:\Software\Microsoft\PowerShell\1\Shell-
Ids\Microsoft.PowerShell) to RemoteSigned. Press F3 to see the next entry that corre-
sponds to a registry modification.

21.16 Discover Registry Settings for Programs | 541

Automate these registry writes

Now that you know all registry writes that the application performed when it updated
its settings, judgment and experimentation will help you determine which modifica-
tions actually represent this setting. Since PowerShell performed only one registry write
(to a key that very obviously represents the execution policy), the choice is pretty clear
in this example.

Once you’ve discovered the registry keys, properties, and values that the application
uses to store its configuration data, you can use the techniques discussed in
Recipe 21.3 to automate these configuration settings, as in the following example:

PS > $key = "HKLM:\Software\Microsoft\PowerShell\1\" +
 "ShellIds\Microsoft.PowerShell"

PS > Set-ItemProperty $key ExecutionPolicy AllSigned
PS > Get-ExecutionPolicy
AllSigned
PS > Set-ItemProperty $key ExecutionPolicy RemoteSigned
PS > Get-ExecutionPolicy
RemoteSigned

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

542 | Chapter 21: The Windows Registry

CHAPTER 22

Comparing Data

22.0 Introduction
When working in PowerShell, it is common to work with collections of objects. Most
PowerShell commands generate objects, as do many of the methods that you work with
in the .NET Framework. To help you work with these object collections, PowerShell
introduces the Compare-Object cmdlet. The Compare-Object cmdlet provides function-
ality similar to the well-known diff commands, but with an object-oriented flavor.

22.1 Compare the Output of Two Commands

Problem
You want to compare the output of two commands.

Solution
To compare the output of two commands, store the output of each command in vari-
ables, and then use the Compare-Object cmdlet to compare those variables:

PS > notepad
PS > $processes = Get-Process
PS > Stop-Process -ProcessName Notepad
PS > $newProcesses = Get-Process
PS > Compare-Object $processes $newProcesses

InputObject SideIndicator
----------- -------------
System.Diagnostics.Process (notepad) <=

Discussion
The Solution shows how to determine which processes have exited between the two
calls to Get-Process. The SideIndicator of <= tells us that the process was present in

543

the left collection ($processes) but not in the right ($newProcesses). To work with the
actual object that was different, access the InputObject property:

PS > $diff = @(Compare-Object $processes $newProcesses)[0]
PS > $process = $diff.InputObject
PS > $process.Handles
55

By default, the Compare-Object cmdlet uses the comparison functionality built into
most .NET objects. This works as expected most of the time, but sometimes you might
want to override that comparison behavior. For example, you might want two processes
to be considered different if their memory usage changes. In that case, use the
-Property parameter.

PS > Compare-Object $processes $newProcesses -Property Name,WS | Sort Name

Name WS SideIndicator
---- -- -------------
dwm 31358976 <=
dwm 29540352 =>
explorer 37969920 <=
explorer 38023168 =>
lsass 1548288 =>
lsass 1372160 <=
notepad 5701632 <=
notepad 2891776 =>
powershell 44281856 =>
powershell 44290048 <=
SearchIndexer 13606912 =>
SearchIndexer 13619200 <=
svchost 56061952 <=
svchost 43982848 <=
svchost 56037376 =>
svchost 44048384 =>
svchost 12193792 <=
svchost 12201984 =>
taskeng 9220096 <=
taskeng 9228288 =>

When you use the -Property parameter, the Compare-Object cmdlet outputs custom
objects that have only the properties you used in the comparison. If you still want access
to the original objects used in the comparison, also use the -PassThru parameter. In
that case, PowerShell instead adds the SideIndicator property to the original objects.

If the objects you are comparing are already in proper order (for exam-
ple, the lines in a file), you can improve the performance of the com-
parison process by using the -SyncWindow parameter. A sync window of
five, for example, looks for differences only within the surrounding five
objects.

544 | Chapter 22: Comparing Data

For more information about the Compare-Object cmdlet, type Get-Help
Compare-Object.

22.2 Determine the Differences Between Two Files

Problem
You want to determine the differences between two files.

Solution
To determine simple differences in the content of each file, store their content in vari-
ables, and then use the Compare-Object cmdlet to compare those variables:

PS > "Hello World" > c:\temp\file1.txt
PS > "Hello World" > c:\temp\file2.txt
PS > "More Information" >> c:\temp\file2.txt
PS > $content1 = Get-Content c:\temp\file1.txt
PS > $content2 = Get-Content c:\temp\file2.txt
PS > Compare-Object $content1 $content2

InputObject SideIndicator
----------- -------------
More Information =>

Discussion
The primary focus of the Compare-Object cmdlet is to compare two unordered sets of
objects. Although those sets of objects can be strings (as in the content of two files),
the output of Compare-Object when run against files is usually counterintuitive because
of the content losing its order.

When comparing large files (or files where the order of comparison matters), you can
still use traditional file comparison tools such as diff.exe or the WinDiff application
that comes with both the Windows Support Tools and Visual Studio.

For more information about the Compare-Object cmdlet, type Get-Help
Compare-Object.

22.3 Verify Integrity of File Sets

Problem
You want to determine whether any files in a set of files have been modified or damaged.

22.3 Verify Integrity of File Sets | 545

Solution
To verify the integrity of file sets, use the Get-FileHash script provided in
Recipe 20.11 to generate the signatures of those files in question. Do the same for the
files on a known good system. Finally, use the Compare-Object cmdlet to compare those
two sets.

Discussion
To generate the information from the files in question, use a command like:

dir C:\Windows\System32\WindowsPowerShell\v1.0 | Get-FileHash |
 Export-CliXml c:\temp\PowerShellHashes.clixml

This command gets the hash values of the files from C:\Windows\System32\
WindowsPowerShell\v1.0, and uses the Export-CliXml cmdlet to store that data in a file.

Transport this file to a system with files in a known good state, and then import the
data from that file.

$otherHashes = Import-CliXml c:\temp\PowerShellHashes.clixml

You can also map a network drive to the files in question and skip the
export, transport, and import steps altogether:

net use x: \\lee-desk\c$\Windows\System32\WindowsPowerShell\v1.0
$otherHashes = dir x: | Get-FileHash

Generate the information from the files you know are in a good state:

$knownHashes = dir C:\Windows\System32\WindowsPowerShell\v1.0 |
 Get-FileHash

Finally, use the Compare-Object cmdlet to detect any differences:

Compare-Object $otherHashes $knownHashes -Property Path,HashValue

If there are any differences, the Compare-Object cmdlet displays them in a list, as shown
in Example 22-1.

Example 22-1. The Compare-Object cmdlet showing differences between two files

PS > Compare-Object $otherHashes $knownHashes -Property Path,HashValue
Path HashValue SideIndicator
---- --------- -----------------------
system.management.aut... 247F291CCDA8E669FF9FA... =>
system.management.aut... 5A68BC5819E29B8E3648F... <=

PS > Compare-Object $otherHashes $knownHashes -Property Path,HashValue |
Select-Object Path

546 | Chapter 22: Comparing Data

Path

system.management.automation.dll-help.xml
system.management.automation.dll-help.xml

For more information about the Compare-Object cmdlet, type Get-Help
Compare-Object. For more information about the Export-CliXml and Import-CliXml
cmdlets, type Get-Help Export-CliXml and Get-Help Import-CliXml, respectively.

See Also
Recipe 20.11, “Program: Get the MD5 or SHA1 Hash of a File”

22.3 Verify Integrity of File Sets | 547

CHAPTER 23

Event Logs

23.0 Introduction
Event logs form the core of most monitoring and diagnosis on Windows. To support
this activity, PowerShell offers both the Get-EventLog and Get-WinEvent cmdlets to let
you query and work with event log data on a system. In addition to simple event log
retrieval, PowerShell also includes many other cmdlets to create, delete, customize, and
interact with event logs.

In addition to the (now “classic”) event logs exposed by the *-EventLog cmdlets, Win-
dows Vista and beyond have a significantly expanded and revamped event logging
system compared to Windows XP. The features of the new system are different enough
that we expose them through an entirely new Get-WinEvent cmdlet. If you need to read
events from Vista-style event logs, you’ll need the Get-WinEvent cmdlet. If you need to
read events from classic event logs, the choice is up to you.

23.1 List All Event Logs

Problem
You want to determine which event logs exist on a system.

Solution
To list all classic event logs on a system, use the -List parameter of the Get-EventLog
cmdlet:

PS > Get-EventLog -List

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 20,480 0 OverwriteAsNeeded 1,933 Application
 15,168 0 OverwriteAsNeeded 0 DFS Replication
 20,480 0 OverwriteAsNeeded 0 HardwareEvents

549

 512 7 OverwriteOlder 0 Internet Explorer
 20,480 0 OverwriteAsNeeded 0 Key Management Service
 8,192 0 OverwriteAsNeeded 0 Media Center
 128 0 OverwriteAsNeeded 2 OAlerts
 1,024 7 OverwriteOlder 424 ScriptEvents
 20,480 0 OverwriteAsNeeded 39,006 Security
 20,480 0 OverwriteAsNeeded 55,958 System
 15,360 0 OverwriteAsNeeded 2,865 Windows PowerShell

On Windows Vista or later, you can also use the Get-WinEvent cmdlet. In addition to
classic event logs, the Get-WinEvent cmdlet supports Application and Services event
logs:

PS > Get-WinEvent -ListLog * | Select LogName,RecordCount

LogName RecordCount
------- -----------
Application 1933
DFS Replication 0
HardwareEvents 0
Internet Explorer 0
Key Management Service 0
Media Center 0
OAlerts 2
ScriptEvents 424
Security 39005
System 55957
Windows PowerShell 2865
ForwardedEvents
Microsoft-Windows-Backup 0
Microsoft-Windows-Bits-Client/Ana ...
Microsoft-Windows-Bits-Client/Oper... 2232
Microsoft-Windows-Bluetooth-MTPEnu... 0
Microsoft-Windows-CAPI2/Operational
(...)

To browse event logs using the Windows Event Viewer graphical user interface, use
the Show-EventLog cmdlet.

Discussion
The -List parameter of the Get-EventLog cmdlet generates a list of the event logs reg-
istered on the system. In addition to supporting event logs on the current system, all
of PowerShell’s event log cmdlets let you supply the -ComputerName parameter to interact
with event logs on a remote system.

Once you’ve determined which event log you are interested in, you can use the Get-
EventLog and Get-WinEvent cmdlets to search, filter, and retrieve specific entries from
those logs. For information on how to retrieve event log entries, see Recipes 23.2,
23.3, and 23.4.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog. For
more information about the Get-WinEvent cmdlet, type Get-Help Get-WinEvent.

550 | Chapter 23: Event Logs

See Also
Recipe 23.2, “Get the Newest Entries from an Event Log”

Recipe 23.3, “Find Event Log Entries with Specific Text”

Recipe 23.4, “Retrieve and Filter Event Log Entries”

23.2 Get the Newest Entries from an Event Log

Problem
You want to retrieve the most recent entries from an event log.

Solution
To retrieve the most recent entries from an event log, use the -Newest parameter of the
Get-EventLog cmdlet, as shown in Example 23-1.

Example 23-1. Retrieving the 10 newest entries from the System event log

PS > Get-EventLog System -Newest 10 | Format-Table Index,Source,Message -Auto

Index Source Message
----- ------ -------
 2922 Service Control Manager The Background Intelligent Transfer Servi...
 2921 Service Control Manager The Background Intelligent Transfer Servi...
 2920 Service Control Manager The Logical Disk Manager Administrative S...
 2919 Service Control Manager The Logical Disk Manager Administrative S...
 2918 Service Control Manager The Logical Disk Manager Administrative S...
 2917 TermServDevices Driver Microsoft XPS Document Writer requ...
 2916 Print Printer Microsoft Office Document Image W...
 2915 Print Printer Microsoft Office Document Image W...
 2914 Print Printer Microsoft Office Document Image W...
 2913 TermServDevices Driver Microsoft Shared Fax Driver requir...

Alternatively, use the -MaxEvents parameter of the Get-WinEvent cmdlet:

PS > Get-WinEvent Application -MaxEvents 10 |
 Format-Table ProviderName,Id,Message -Auto

ProviderName Id Message
------------ -- -------
VSS 8224 The VSS service is shutting down due to ...
System Restore 8194 Successfully created restore point (Proc...
System Restore 8194 Successfully created restore point (Proc...
VSS 8224 The VSS service is shutting down due to ...
System Restore 8211 Successfully created scheduled restore p...
System Restore 8194 Successfully created restore point (Proc...
Microsoft-Windows-MSDTC 2 4202 MSDTC started with the following setting...
VSS 8224 The VSS service is shutting down due to ...

23.2 Get the Newest Entries from an Event Log | 551

System Restore 8211 Successfully created scheduled restore p...
System Restore 8194 Successfully created restore point (Proc...

Discussion
The -Newest parameter of the Get-EventLog cmdlet retrieves the most recent entries
from an event log that you specify. To list the event logs available on the system, see
Recipe 23.1. The Get-WinEvent cmdlet returns the most recent entries by default, so no
specific parameter is required.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.

See Also
Recipe 23.1, “List All Event Logs”

23.3 Find Event Log Entries with Specific Text

Problem
You want to retrieve all event log entries that contain a given term.

Solution
To find specific event log entries, use the Get-EventLog or Get-WinEvent cmdlet to re-
trieve the items, and then pipe them to the Where-Object cmdlet to filter them, as shown
in Example 23-2.

Example 23-2. Searching the event log for entries that mention the term “disk”

PS > Get-EventLog System | Where-Object { $_.Message -match "disk" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2920 May 06 09:18 Info Service Control M... 7036 The Logical Disk...
 2919 May 06 09:17 Info Service Control M... 7036 The Logical Disk...
 2918 May 06 09:17 Info Service Control M... 7035 The Logical Disk...
 2884 May 06 00:28 Erro sr 1 The System Resto...
 2333 Apr 03 00:16 Erro Disk 11 The driver detec...
 2332 Apr 03 00:16 Erro Disk 11 The driver detec...
 2131 Mar 27 13:59 Info Service Control M... 7036 The Logical Disk...
 2127 Mar 27 12:48 Info Service Control M... 7036 The Logical Disk...
 2126 Mar 27 12:48 Info Service Control M... 7035 The Logical Disk...
 2123 Mar 27 12:31 Info Service Control M... 7036 The Logical Disk...
 2122 Mar 27 12:29 Info Service Control M... 7036 The Logical Disk...
 2121 Mar 27 12:29 Info Service Control M... 7035 The Logical Disk...

552 | Chapter 23: Event Logs

Discussion
Since the Get-EventLog cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

By default, PowerShell’s default table formatting displays a summary of event log en-
tries. If you are searching the event log message, however, you are probably interested
in seeing more details about the message itself. In this case, use the Format-List cmdlet
to format these entries in a more detailed list view. Example 23-3 shows this view.

Example 23-3. A detailed list view of an event log entry

PS > Get-EventLog System | Where-Object { $_.Message -match "disk" } |
 Format-List

Index : 2920
EntryType : Information
EventID : 7036
Message : The Logical Disk Manager Administrative Service
 service entered the stopped state.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Logical Disk Manager Administrative Service, stopped
 }
Source : Service Control Manager
TimeGenerated : 5/6/2007 9:18:25 AM
TimeWritten : 5/6/2007 9:18:25 AM
UserName :

Index : 2919
(...)

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog. For
more information about filtering command output, see Recipe 2.1.

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

23.4 Retrieve and Filter Event Log Entries

Problem
You want to retrieve a specific event log entry or filter a log based on advanced search
criteria.

23.4 Retrieve and Filter Event Log Entries | 553

Solution
To retrieve a specific event log entry, use the Get-EventLog cmdlet to retrieve the entries
in the event log, and then pipe them to the Where-Object cmdlet to filter them to the
one you are looking for.

PS > Get-EventLog System | Where-Object { $_.Index -eq 2920 }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2920 May 06 09:18 Info Service Control M... 7036 The Logical Disk...

For more advanced (or performance-sensitive) queries, use the -FilterXml, -Filter
Hashtable, or -FilterXPath parameters of the Get-WinEvent cmdlet:

Get-WinEvent -LogName "System" -FilterXPath "*[System[EventRecordID = 2920]]"

Discussion
If you’ve listed the items in an event log or searched it for entries that have a message
with specific text, you often want to get more details about a specific event log entry.

Since the Get-EventLog cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

By default, PowerShell’s default table formatting displays a summary of event log en-
tries. If you are retrieving a specific entry, however, you are probably interested in seeing
more details about the entry. In this case, use the Format-List cmdlet to format these
entries in a more detailed list view, as shown in Example 23-4.

Example 23-4. A detailed list view of an event log entry

PS > Get-EventLog System | Where-Object { $_.Index -eq 2920 } |
 Format-List

Index : 2920
EntryType : Information
EventID : 7036
Message : The Logical Disk Manager Administrative Service
 service entered the stopped state.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Logical Disk Manager Administrative Service, stopped
 }
Source : Service Control Manager
TimeGenerated : 5/6/2007 9:18:25 AM
TimeWritten : 5/6/2007 9:18:25 AM
UserName :

Index : 2919
(...)

554 | Chapter 23: Event Logs

While the Where-Object cmdlet works well for simple (or one-off) tasks, the
Get-WinEvent cmdlet offers three parameters that can make your event log searches both
more powerful and more efficient.

Efficiently processing simple queries

If you have a simple event log query, you can use the -FilterHashtable parameter of
the Get-WinEvent cmdlet to filter the event log very efficiently.

The -FilterHashtable parameter works only on Windows 7. On Win-
dows Vista, it generates an error: “The parameter is incorrect.”

The hashtable that you supply to this parameter lets you filter on LogName, Provider
Name, Path, Keywords, ID, Level, StartTime, EndTime, and UserID. This can replace many
Where-Object style filtering operations. This example retrieves all critical and error
events in the System event log:

Get-WinEvent -FilterHashtable @{ LogName = "System"; Level = 1,2 }

Automating GUI-generated searches

When you are reviewing an event log, the Windows Event Viewer offers a Filter Current
Log action on the righthand side. This interface lets you select data ranges, event se-
verity, keywords, task categories, and more. After customizing a filter, you can click
the XML tab to see an XML representation of your query. You can copy and paste that
XML directly into a here string in a script, and then pass it to the -FilterXml parameter
of the Get-WinEvent cmdlet:

Gets all Critical and Error events from the last 24 hours
$xml = @'
<QueryList>
 <Query Id="0" Path="System">
 <Select Path="System">
 *[System[(Level=1 or Level=2) and
 TimeCreated[timediff(@SystemTime) <= 86400000]]]
 </Select>
 </Query>
</QueryList>
'@

Get-WinEvent -FilterXml $xml

Performing complex event analysis and correlation

Under the covers, event logs store their event information in an XML format. In addition
to the -FilterHashtable and -FilterXml parameters, the Get-WinEvent cmdlet lets you

23.4 Retrieve and Filter Event Log Entries | 555

filter event logs with a subset of the standard XPath XML querying language. XPath
lets your filters describe complex hierarchical queries, value ranges, and more.

Like regular expressions, the XPath query language is by no means sim-
ple or easy to understand. This parameter can help if you already have
some degree of knowledge or comfort in XPath, but don’t let it intimi-
date or frustrate you. There is always more than one way to do it.

While the XPath querying language is powerful, the type of rules you can express ul-
timately depend on what is contained in the XML of the actual events. To see what can
be contained in the XML of an event, search MSDN for “windows ‘event schema’”.
The online reference is useful, but actual events tend to contain an extremely small
subset of the supported XML nodes. Because of that, you might have more success
reviewing the XML of events that interest you and forming XPath queries based on
those. Here are some example queries that build on the -FilterXPath parameter:

Search by Event ID
Get-WinEvent -LogName "System" -FilterXPath "*[System[(EventID=1)]]"

Search for events associated with a given Process ID
Get-WinEvent -LogName "System" -FilterXPath "*[System/Execution[@ProcessID=428]]"

Search for events that have 'Volume Shadow Copy' as one of the replacement strings
Get-WinEvent -LogName "System" -FilterXPath "*[EventData[Data = 'Volume Shadow Copy']]"

Search for Windows Installer Events associated with Vista SP1
$query = "*[UserData/CbsPackageInitiateChanges[PackageIdentifier = 'KB936330']]"
Get-WinEvent -LogName "System" -FilterXPath $query

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

Appendix C, XPath Quick Reference

23.5 Find Event Log Entries by Their Frequency

Problem
You want to find the event log entries that occur most frequently.

Solution
To find event log entries by frequency, use the Get-EventLog cmdlet to retrieve the
entries in the event log, and then pipe them to the Group-Object cmdlet to group them
by their message.

556 | Chapter 23: Event Logs

PS > Get-EventLog System | Group-Object Message | Sort-Object -Desc Count

Count Name Group
----- ---- -----
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 161 Driver Microsoft XPS D... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

Discussion
The Group-Object cmdlet is a useful way to determine which events occur most fre-
quently on your system. It also provides a useful way to summarize the information in
the event log.

If you want more information about the items in a specific group, use the Where-
Object cmdlet. Since we used the Message property in the Group-Object cmdlet, we need
to filter on Message in the Where-Object cmdlet. For example, to learn more about the
entries relating to the Microsoft XPS Driver (from the scenario in the solution):

PS > Get-EventLog System |
 Where-Object { $_.Message -like "Driver Microsoft XPS*" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2917 May 06 09:13 Erro TermServDevices 1111 Driver Microsoft...
 2883 May 05 10:40 Erro TermServDevices 1111 Driver Microsoft...
 2877 May 05 08:10 Erro TermServDevices 1111 Driver Microsoft...
(...)

If grouping by message doesn’t provide useful information, you can group by any other
property—such as source:

PS > Get-EventLog Application | Group-Object Source

Count Name Group
----- ---- -----
 4 Application {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK}
 191 Media Center Scheduler {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 1082 MSSQL$SQLEXPRESS {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

If you’ve listed the items in an event log or searched it for entries that have a message
with specific text, you often want to get more details about a specific event log entry.

By default, PowerShell’s default table formatting displays a summary of event log en-
tries. If you are retrieving a specific entry, however, you are probably interested in seeing
more details about the entry. In this case, use the Format-List cmdlet to format these
entries in a more detailed list view, as shown in Example 23-5.

23.5 Find Event Log Entries by Their Frequency | 557

Example 23-5. A detailed list view of an event log entry

PS > Get-EventLog System | Where-Object { $_.Index -eq 2917 } |
Format-List

Index : 2917
EntryType : Error
EventID : 1111
Message : Driver Microsoft XPS Document Writer required for printer
 Microsoft XPS Document Writer is unknown. Contact
 the administrator to install the driver before you
 log in again.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Microsoft XPS Document Writer, Microsoft XPS Document
 Writer}
Source : TermServDevices
TimeGenerated : 5/6/2007 9:13:31 AM
TimeWritten : 5/6/2007 9:13:31 AM
UserName :

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog. For
more information about filtering command output, see Recipe 2.1. For more informa-
tion about the Group-Object cmdlet, type Get-Help Group-Object.

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

23.6 Back Up an Event Log

Problem
You want to store the information in an event log in a file for storage or later review.

Solution
To store event log entries in a file, use the wevtutil.exe application:

PS > wevtutil epl System c:\temp\system.bak.evtx

After exporting the event log, use the Get-WinEvent cmdlet to query the exported log
as though it were live:

PS > Get-WinEvent -FilterHashtable @{ LogName="System"; Level=1,2 } -MaxEvents 2 |
 Format-Table -Auto

TimeCreated ProviderName Id Message
----------- ------------ -- -------
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is ...
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is ...

558 | Chapter 23: Event Logs

PS > Get-WinEvent -FilterHashtable @{
 Path="c:\temp\system.bak.evtx"; Level=1,2 } -MaxEvents 2 |
 Format-Table -Auto

TimeCreated ProviderName Id Message
----------- ------------ -- -------
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is ...
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is ...

If you need to process the event logs on a system where the Get-WinEvent cmdlet is not
available, use the Get-EventLog cmdlet to retrieve the entries in the event log, and then
pipe them to the Export-CliXml cmdlet to store them in a file.

Get-EventLog System | Export-CliXml c:\temp\SystemLogBackup.clixml

Discussion
While there is no PowerShell cmdlet to export event logs, the wevtutil.exe application
provides an easy way to save an event log to disk in its full fidelity. After exporting the
event log, you can import it again, or even use the Get-WinEvent cmdlet to query against
it directly.

If you want to analyze the event logs on a machine where the Get-WinEvent cmdlet is
not available, you can use the Export-CliXml cmdlet to save event logs to disk—just as
PowerShell lets you save any other structured data to disk. Once you’ve exported the
events from an event log, you can archive them, or use the Import-CliXml cmdlet to
review them on any machine that has PowerShell installed:

PS > $archivedLogs = Import-CliXml c:\temp\SystemLogBackup.clixml
PS > $archivedLogs | Group Source

Count Name Group
----- ---- -----
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

In addition to the Export-CliXml cmdlet, you can also use WMI’s Win32_NTEventLog
File class to back up classic event logs:

$log = Get-WmiObject Win32_NTEventLogFile -Filter "LogFileName = 'Application'"
$log.BackupEventlog("c:\temp\application_backup.log")

After saving a log, you can use the Open Saved Log feature in the Windows Event
Viewer to review it.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog. For
more information about the Export-CliXml and Import-CliXml cmdlets, type
Get-Help Export-CliXml and Get-Help Import-CliXml, respectively.

23.6 Back Up an Event Log | 559

23.7 Create or Remove an Event Log

Problem
You want to create or remove an event log.

Solution
Use the New-EventLog and Remove-EventLog cmdlets to create and remove event logs:

PS > New-EventLog -Logname ScriptEvents -Source PowerShellCookbook
PS > Get-EventLog -List

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 20,480 0 OverwriteAsNeeded 1,930 Application
(...)
 512 7 OverwriteOlder 0 ScriptEvents
(...)
 15,360 0 OverwriteAsNeeded 2,847 Windows PowerShell

PS > Remove-EventLog ScriptEvents

Both cmdlets support remote administration via the -ComputerName parameter.

Discussion
Although Windows offers the standard Application event log, you might sometimes
want to make separate event logs to hold events of special interest. For this, PowerShell
includes the New-EventLog cmdlet. It takes two parameters: the event log name and the
source identifier for events. If the event log does not already exist, PowerShell creates
it. If both the event log and event log source already exist, the New-EventLog cmdlet
generates an error.

After you create the event log, the Limit-EventLog cmdlet lets you manage its retention
policy. For more information about the Limit-EventLog cmdlet, see Recipe 23.10.

The Remove-EventLog cmdlet lets you remove both event logs and event log sources.

Be careful when deleting event logs, as it is difficult to recreate all the
event sources if you delete the wrong log by accident. If you delete a
standard event log, you have little hope for recovery.

To remove just an event log source, use the -Source parameter:

Remove-EventLog -Source PowerShellCookbook

To remove an event log altogether, specify the log name in the -Logname parameter:

Remove-EventLog -LogName ScriptEvents

560 | Chapter 23: Event Logs

Once you have created an event log, you can use the Write-EventLog cmdlet to work
with it. For more information about writing to event logs, see Recipe 23.8.

See Also
Recipe 23.8, “Write to an Event Log”

23.8 Write to an Event Log

Problem
You want to add an entry to an event log.

Solution
Use the Write-EventLog cmdlet to write events to an event log:

PS > Write-EventLog -LogName ScriptEvents -Source PowerShellCookbook `
 -EventId 1234 -Message "Hello World"

PS > Get-EventLog ScriptEvents | Select EntryType,Source,InstanceId,Message

 EntryType Source InstanceId Message
 --------- ------ ---------- -------
 Information PowerShellCookbook 1234 Hello World

Discussion
The Write-EventLog cmdlet lets you write event log messages to a specified event log.
To write an event log message, you must supply a valid log name and a registered event
log source. If you need to create a new event log or register a new event source, see
Recipe 23.7.

In addition to the log name and source, the Write-EventLog cmdlet also requires an
event ID and message. Within an event log and event source, each event ID should
uniquely identify the situation being logged: for example, logon failure or disk full. This
makes it easy for scripts and other management tasks to automatically respond to sys-
tem events. The event message should elaborate on the situation being logged (for
example, the username or drive letter), but should not be required to identify its reason.

See Also
Recipe 23.7, “Create or Remove an Event Log”

23.8 Write to an Event Log | 561

23.9 Run a PowerShell Script for Windows Event Log Entries

Problem
You want to run a PowerShell script when the system generates a specific event log
entry.

Solution
Use the schtasks.exe tool to define a new task that reacts to event log entries. As its
action, call powershell.exe with the arguments to disable the profile, customize the
execution policy, hide its window, and launch a script:

$cred = Get-Credential
$password = $cred.GetNetworkCredential().Password

Define the command that task scheduler should run when the event
occurs
$command = "PowerShell -NoProfile -ExecutionPolicy RemoteSigned " +
 "-WindowStyle Hidden -File 'C:\Program Files\TaskScripts\ScriptEvents.ps1'"

Create a new scheduled task
SCHTASKS /Create /TN "ScriptEvents Monitor" /TR $command /SC ONEVENT `
 /RL Highest /RU $cred.Username /RP $password `
 /EC ScriptEvents /MO *[System/EventID=1010]

Discussion
In Vista and beyond, the Windows event log lets you define custom actions that launch
when an event is generated. Although you can use the user interface to create these
tasks and filters, the schtasks.exe tool lets you create them all from the automation-
friendly command line.

As an example of this in action, imagine trying to capture the processes running on a
system when a problematic event occurs. That script might look like:

$logTag = "{0:yyyyMMdd_HHmm}" -f (Get-Date)
$logPath = 'C:\Program Files\TaskScripts\ScriptEvents-{0}.txt' -f $logTag

Start-Transcript -Path $logPath

Get-WmiObject Win32_OperatingSystem | Format-List | Out-String
Get-Process | Format-Table | Out-String

Stop-Transcript

After generating an event, we can see the log being created just moments after:

562 | Chapter 23: Event Logs

PS > dir

 Directory: C:\Program Files\TaskScripts

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2010 8:38 PM 278 ScriptEvents.ps1

PS > Write-EventLog -LogName ScriptEvents -Source PowerShellCookbook `
 -EventId 1010 -Message "Hello World"

PS > dir

 Directory: C:\Program Files\TaskScripts

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2010 9:50 PM 12766 ScriptEvents-20100221_2150.txt
-a--- 2/21/2010 8:38 PM 278 ScriptEvents.ps1

When we define the task, we use the /TN parameter to define a name for our task. As
the command (specified by the /TR parameter), we tell Windows to launch Power-
Shell.exe with several parameters to customize its environment. We use the /RL pa-
rameter to ensure that the task is run with elevated permissions (as it writes to the
Program Files directory). To define the actual event log filter, we use the /EC parameter
to define the event channel—in this case, the ScriptEvents log. In the /MO (“modifier”)
parameter, we specify the XPath filter required to match events that we care about. In
this case, we search for EventId 1010. The System/ prefix doesn’t tell Windows to search
the System event log; it tells it to look in the standard system properties: EventID, Level,
Task, Keywords, Computer, and more.

For more information about the event viewer’s XPath syntax, see Recipe 23.4.

See Also
Recipe 1.12, “Invoke a PowerShell Command or Script from Outside PowerShell”

Recipe 23.4, “Retrieve and Filter Event Log Entries”

23.10 Clear or Maintain an Event Log

Problem
You want to clear an event log or manage its retention policy.

23.10 Clear or Maintain an Event Log | 563

Solution
Use the Limit-EventLog cmdlet to manage the retention policy (days, size, and overflow
behavior) of an event log. Use the Clear-EventLog cmdlet to clear it completely:

PS > Get-EventLog -List | Where-Object { $_.Log -eq "ScriptEvents" }

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 2,048 7 OverwriteOlder 872 ScriptEvents

PS > Clear-EventLog ScriptEvents
PS > Get-EventLog -List | Where-Object { $_.Log -eq "ScriptEvents" }

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 2,048 7 OverwriteOlder 0 ScriptEvents

PS > Limit-EventLog -LogName ScriptEvents -MaximumSize 1024kb
PS > 1..10000 | Foreach-Object {
 Write-EventLog -LogName ScriptEvents -Source PowerShellCookbook `
 -EventId 1234 -Message ('A' * 1000)
}

PS > Get-EventLog -List | Where-Object { $_.Log -eq "ScriptEvents" }

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 1,024 7 OverwriteOlder 424 ScriptEvents

Both cmdlets support remote administration via the -ComputerName parameter.

Discussion
While the default policies of most event logs are sensible, PowerShell still provides
commands to help you manage how much information each event log retains.

For permanent policy changes, use the Limit-EventLog cmdlet. This cmdlet lets you
limit the log size, maximum event age, and overwrite behavior for the event log that
you apply it to. While the size and age limits are fairly self-describing parameters, con-
figuring the overflow behavior is more subtle.

The -OverflowAction parameter supports one of three options. Each describes a differ-
ent strategy for Windows to take when writing to a full event log:

DoNotOverwrite

Discards new entries.

OverwriteAsNeeded

Overwrites the oldest entry.

564 | Chapter 23: Event Logs

OverwriteOlder

Overwrites entries older than the age limit specified for the event log (via the
RetentionDays parameter). If there are no old entries to overwrite, Windows dis-
cards the new entry.

To clear an event log entirely, use the Clear-EventLog cmdlet. If you want to save the
contents of the event log before clearing it, see Recipe 23.6. PowerShell does not include
a cmdlet to clear the new event logs supported by Vista and later (as exposed by the
Get-WinEvent cmdlet), but you can use the [System.Diagnostics.Event

ing.Reader.EventLogSession]::GlobalSession.ClearLog() method from the .NET
Framework to clear these event logs. For more information about working with .NET
objects, see Recipe 3.8.

If you want to remove an event log entirely, see Recipe 23.7.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 23.6, “Back Up an Event Log”

Recipe 23.7, “Create or Remove an Event Log”

23.11 Access Event Logs of a Remote Machine

Problem
You want to access event log entries from a remote machine.

Solution
To access event logs on a remote machine, use the -ComputerName parameter of any of
the EventLog cmdlets:

PS > Get-EventLog System -ComputerName LEE-DESK | Group-Object Source

Count Name Group
----- ---- -----
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 148 W32Time {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

To use the graphical event log viewer to browse event logs on a remote machine, use
the Show-EventLog cmdlet:

Show-EventLog Computername

23.11 Access Event Logs of a Remote Machine | 565

Discussion
The -ComputerName parameter of the *-EventLog cmdlets makes it easy to manage event
logs of remote computers. Using these cmdlets, you can create event logs, remove event
logs, write event log entries, and more.

If you want to use a graphical user interface to work with event logs on a remote machine
in a more ad-hoc way, use the Show-EventLog cmdlet. If the Remote Eventlog Manage-
ment firewall rule is enabled on the remote computer (and you have the appropriate
permissions), PowerShell launches the Windows Event Viewer targeted to that machine
(see Figure 23-1).

Figure 23-1. Event Viewer targeting a remote machine

By default, the Windows Event Viewer tries to use the credentials of your current ac-
count to connect to the remote computer. If you need to connect as another account,
click the “Connect to Another Computer” action on the righthand side of the Event
Viewer window that opens. In that window, specify both the remote computer name
and new user information.

For information about how to get event logs, see Recipe 23.1. For more information
about how to create or delete event logs, see Recipe 23.7. For more information about
how to write event log entries, see Recipe 23.8.

566 | Chapter 23: Event Logs

See Also
Recipe 23.1, “List All Event Logs”

Recipe 23.7, “Create or Remove an Event Log”

Recipe 23.8, “Write to an Event Log”

23.11 Access Event Logs of a Remote Machine | 567

CHAPTER 24

Processes

24.0 Introduction
Working with system processes is a natural aspect of system administration. It is also
the source of most of the regular expression magic and kung fu that make system ad-
ministrators proud. After all, who wouldn’t boast about this Unix one-liner to stop all
processes using more than 100 MB of memory:

ps -el | awk '{ if ($6 > (1024*100)) { print $3 } }' | grep -v PID | xargs kill

While helpful, it also demonstrates the inherently fragile nature of pure text processing.
For this command to succeed, it must:

• Depend on the ps command to display memory usage in column 6

• Depend on column 6 of the ps command’s output to represent the memory usage
in kilobytes

• Depend on column 3 of the ps command’s output to represent the process ID

• Remove the header column from the ps command’s output

While the ps command has parameters that simplify some of this work, this form of
“prayer-based parsing” is common when manipulating the output of tools that produce
only text.

Since PowerShell’s Get-Process cmdlet returns information as highly structured .NET
objects, fragile text parsing becomes a thing of the past:

Get-Process | Where-Object { $_.WorkingSet -gt 100mb } | Stop-Process -WhatIf

If brevity is important, PowerShell defines aliases to make most commands easier to
type:

gps | ? { $_.WS -gt 100mb } | kill -WhatIf

In addition to simple process control, PowerShell also offers commands for starting
processes, customizing their execution environment, waiting for processes to exit, and
more.

569

24.1 List Currently Running Processes

Problem
You want to see which processes are running on the system.

Solution
To retrieve the list of currently running processes, use the Get-Process cmdlet:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1328 3940 33 1084 alg
 85 4 3816 6656 57 5.67 3460 AutoHotkey
 50 2 2292 1980 14 384.25 1560 BrmfRsmg
 71 3 2520 4680 35 0.42 2592 cmd
 946 7 3676 6204 32 848 csrss
 84 4 732 2248 22 3144 csrss
 68 4 936 3364 30 0.38 3904 ctfmon
 243 7 3648 9324 48 2.02 2892 Ditto
(...)

Discussion
The Get-Process cmdlet retrieves information about all processes running on the sys-
tem. Because these are rich .NET objects (of the type System.Diagnostics.Process),
advanced filters and operations are easier than ever before.

For example, to find all processes using more than 100 MB of memory:

PS > Get-Process | Where-Object { $_.WorkingSet -gt 100mb }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1458 29 83468 105824 273 323.80 3992 BigBloatedApp

To group processes by company:

PS > Get-Process | Group-Object Company

Count Name Group
----- ---- -----
 39 {alg, csrss, csrss, dllhost...}
 4 {AutoHotkey, Ditto, gnuserv, mafwTray}
 1 Brother Industries, Ltd. {BrmfRsmg}
 19 Microsoft Corporation {cmd, ctfmon, EXCEL, explorer...}
 1 Free Software Foundation {emacs}
 1 Microsoft (R) Corporation {FwcMgmt}
(...)

570 | Chapter 24: Processes

Or perhaps to sort by start time (with the most recent first):

PS > Get-Process | Sort -Descending StartTime | Select-Object -First 10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1810 39 53616 33964 193 318.02 1452 iTunes
 675 6 41472 50180 146 49.36 296 powershell
 1240 35 48220 58860 316 167.58 4012 OUTLOOK
 305 8 5736 2460 105 21.22 3384 WindowsSearch...
 464 7 29704 30920 153 6.00 3680 powershell
 1458 29 83468 105824 273 324.22 3992 iexplore
 478 6 24620 23688 143 17.83 3548 powershell
 222 8 8532 19084 144 20.69 3924 EXCEL
 14 2 396 1600 15 0.06 2900 logon.scr
 544 18 21336 50216 294 180.72 2660 WINWORD

These advanced tasks become incredibly simple due to the rich amount of information
that PowerShell returns for each process. For more information about the Get-
Process cmdlet, type Get-Help Get-Process. For more information about filtering,
grouping, and sorting in PowerShell commands, see Recipe 2.1.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

Recipe 3.8, “Work with .NET Objects”

24.2 Launch the Application Associated with a Document

Problem
You want to launch the application associated with a document or with another shell
association.

Solution
Use the Start-Process cmdlet (or its start alias) to launch the document or location:

PS > Start-Process http://blogs.msdn.com/powershell
PS > start http://www.bing.com
PS > start c:\temp\output.csv

To launch one of the predefined actions for a document (usually exposed through its
right-click menu), use the -Verb parameter:

start c:\documents\MyDoc.docx -Verb Print

24.2 Launch the Application Associated with a Document | 571

Discussion
The Start-Process cmdlet gives you a great deal of flexibility over how you launch an
application. In addition to launching applications, it also gives you access to Windows
shell associations: functionality associated with URLs and documents.

Windows defines many shell associations: for HTTP websites, FTP locations, and even
Explorer-specific behavior. For example, to launch the All Tasks view of the Windows
control panel:

start 'shell:::{ED7BA470-8E54-465E-825C-99712043E01C}'

If the document you are launching defines an action (such as Edit or Print), you can
use the -Verb parameter to invoke that action.

For more information about the Start-Process cmdlet and launching system processes,
see Recipe 24.3.

See Also
Recipe 24.3, “Launch a Process”

24.3 Launch a Process

Problem
You want to launch a new process on the system, but you also want to configure its
startup environment.

Solution
To launch a new process, use the Start-Process cmdlet.

PS > Start-Process mmc -Verb RunAs -WindowStyle Maximized

For advanced tasks not covered by the Start-Process cmdlet, call the
[System.Diagnostics.Process]::Start() method. To control the process’s startup en-
vironment, supply it with a System.Diagnostics.ProcessStartInfo object that you pre-
pare, as shown in Example 24-1.

Example 24-1. Configuring the startup environment of a new process

$processname = "powershell.exe"

Prepare to invoke the process
$processStartInfo = New-Object System.Diagnostics.ProcessStartInfo
$processStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if($argumentList) { $processStartInfo.Arguments = $argumentList }
$processStartInfo.UseShellExecute = $false

572 | Chapter 24: Processes

Always redirect the input and output of the process.
Sometimes we will capture it as binary, other times we will
just treat it as strings.
$processStartInfo.RedirectStandardOutput = $true
$processStartInfo.RedirectStandardInput = $true

$process = [System.Diagnostics.Process]::Start($processStartInfo)

Discussion
Normally, launching a process in PowerShell is as simple as typing the program name:

PS > notepad c:\temp\test.txt

However, you may sometimes need detailed control over the process details, such as
its credentials, working directory, window style, and more. In those situations, use the
Start-Process cmdlet. It exposes most of these common configuration options through
simple parameters.

For an example of how to start a process as another user (or as an ele-
vated PowerShell command), see Recipe 18.10.

If your needs are more complex than the features offered by the Start-Process cmdlet,
you can use the [System.Diagnostics.Process]::Start() method from the .NET
Framework to provide that additional functionality. Example 24-1 is taken from
Recipe 2.10, and gives an example of this type of advanced requirement.

For more information about launching programs from PowerShell, see Recipe 1.1. For
more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

24.4 Stop a Process

Problem
You want to stop (or kill) a process on the system.

Solution
To stop a process, use the Stop-Process cmdlet, as shown in Example 24-2.

24.4 Stop a Process | 573

Example 24-2. Stopping a process using the Stop-Process cmdlet

PS > notepad
PS > Get-Process Notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 42 3 1276 3916 32 0.09 3520 notepad

PS > Stop-Process -ProcessName notepad
PS > Get-Process Notepad
Get-Process : Cannot find a process with the name 'Notepad'. Verify the
process name and call the cmdlet again.
At line:1 char:12
+ Get-Process <<<< Notepad

Discussion
Although the parameters of the Stop-Process cmdlet are useful in their own right,
PowerShell’s pipeline model lets you be even more precise. The Stop-Process cmdlet
stops any processes that you pipeline into it, so an advanced process set generated by
Get-Process automatically turns into an advanced process set for the Stop-Process
cmdlet to operate on:

PS > Get-Process | Where-Object { $_.WorkingSet -lt 10mb } |
 Sort-Object -Descending Name | Stop-Process -WhatIf

What if: Performing operation "Stop-Process" on Target "svchost (1368)".
What if: Performing operation "Stop-Process" on Target "sqlwriter (1772)".
What if: Performing operation "Stop-Process" on Target "qttask (3672)".
What if: Performing operation "Stop-Process" on Target "Ditto (2892)".
What if: Performing operation "Stop-Process" on Target "ctfmon (3904)".
What if: Performing operation "Stop-Process" on Target "csrss (848)".
What if: Performing operation "Stop-Process" on Target "BrmfRsmg (1560)".
What if: Performing operation "Stop-Process" on Target "AutoHotkey (3460)".
What if: Performing operation "Stop-Process" on Target "alg (1084)".

Notice that this example uses the -WhatIf flag on the Stop-Process
cmdlet. This flag lets you see what would happen if you were to run the
command, but doesn’t actually perform the action.

Another common need when it comes to stopping a process is simply waiting for one
to exit. Most scripts handle this by creating a loop that exits only when the Get-
Process cmdlet returns no results for the process in question. PowerShell greatly sim-
plifies this need by offering the Wait-Process cmdlet, which lets you pause your script
until the specified process has exited. If you still want some degree of control while
waiting for the process to stop, the -Timeout parameter lets you control how long
PowerShell should wait for the process to exit. When the timeout elapses, PowerShell

574 | Chapter 24: Processes

returns control to your script—giving you the opportunity to continue waiting, forcibly
terminate the process, or do whatever else you wish.

For more information about the Stop-Process cmdlet, type Get-Help Stop-Process. For
more information about the Wait-Process cmdlet, type Get-Help Wait-Process.

24.5 Debug a Process

Problem
You want to attach a debugger to a running process on the system.

Solution
To debug a process, use the Debug-Process cmdlet.

Discussion
If you have a software debugger installed on your computer (such as Visual Studio or
the Debugging Tools for Windows), the Debug-Process cmdlet lets you start a debug-
ging session from the PowerShell command line. It is not designed to automate the
debugging tools after launching them, but it does provide a useful shortcut.

To debug a PowerShell script, see Chapter 14.

The Debug-Process cmdlet launches the system-wide debugger, as configured in the
HKLM:\Software\Microsoft\Windows NT\CurrentVersion\AeDebug registry key. To
change the debugger launched by this cmdlet (and other tools that launch the default
debugger), change the Debugger property:

PS > Get-Location

Path

HKLM:\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \Software\Microsoft\Windows NT\CurrentVersion\AeDebug
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \Software\Microsoft\Windows NT\CurrentVersion
PSChildName : AeDebug
PSDrive : HKLM

24.5 Debug a Process | 575

PSProvider : Microsoft.PowerShell.Core\Registry
UserDebuggerHotKey : 0
Debugger : "c:\Windows\system32\vsjitdebugger.exe" -p %ld -e %ld

For more information about the Debug-Process cmdlet, type Get-Help Debug-Process.

See Also
Chapter 14, Debugging

576 | Chapter 24: Processes

CHAPTER 25

System Services

25.0 Introduction
As the support mechanism for many administrative tasks on Windows, managing and
working with system services naturally fits into the administrator’s toolbox.

PowerShell offers a handful of cmdlets to help make working with system services
easier: from listing services to lifecycle management and even to service installation.

25.1 List All Running Services

Problem
You want to see which services are running on the system.

Solution
To list all running services, use the Get-Service cmdlet:

PS > Get-Service

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Stopped Alerter Alerter
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
(...)

577

Discussion
The Get-Service cmdlet retrieves information about all services running on the system.
Because these are rich .NET objects (of the type System.ServiceProcess.ServiceCon
troller), you can apply advanced filters and operations to make managing services
straightforward.

For example, to find all running services:

PS > Get-Service | Where-Object { $_.Status -eq "Running" }

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Running ALG Application Layer Gateway Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
Running COMSysApp COM+ System Application
Running CryptSvc Cryptographic Services

Or, to sort services by the number of services that depend on them:

PS > Get-Service | Sort-Object -Descending { $_.DependentServices.Count }

Status Name DisplayName
------ ---- -----------
Running RpcSs Remote Procedure Call (RPC)
Running PlugPlay Plug and Play
Running lanmanworkstation Workstation
Running SSDPSRV SSDP Discovery Service
Running TapiSrv Telephony
(...)

Since PowerShell returns full-fidelity .NET objects that represent system services, these
tasks and more become incredibly simple due to the rich amount of information that
PowerShell returns for each service. For more information about the Get-Service
cmdlet, type Get-Help Get-Service. For more information about filtering, grouping,
and sorting in PowerShell commands, see Recipe 2.1.

The Get-Service cmdlet displays most (but not all) information about
running services. For additional information (such as the service’s start-
up mode), use the Get-WmiObject cmdlet:

$service = Get-WmiObject Win32_Service |
 Where-Object { $_.Name -eq "AudioSrv" }
$service.StartMode

In addition to supporting services on the local machine, the Get-Service cmdlet lets
you retrieve and manage services on a remote machine as well:

PS > Get-Service -Computer <Computer> |
 Sort-Object -Descending { $_.DependentServices.Count }

578 | Chapter 25: System Services

Status Name DisplayName
------ ---- -----------
Running RpcEptMapper RPC Endpoint Mapper
Running DcomLaunch DCOM Server Process Launcher
Running RpcSs Remote Procedure Call (RPC)
Running PlugPlay Plug and Play
Running nsi Network Store Interface Service
Running SamSs Security Accounts Manager
(...)

For more information about working with classes from the .NET Framework, see
Recipe 3.8. For more information about working with the Get-WmiObject cmdlet, see
Chapter 28.

See Also
Recipe 2.1, “Filter Items in a List or Command Output”

Recipe 3.8, “Work with .NET Objects”

Chapter 28, Windows Management Instrumentation

25.2 Manage a Running Service

Problem
You want to manage a running service.

Solution
To stop a service, use the Stop-Service cmdlet:

PS > Stop-Service AudioSrv -WhatIf
What if: Performing operation "Stop-Service" on Target "Windows Audio
(AudioSrv)".

Likewise, use the Suspend-Service, Restart-Service, and Resume-Service cmdlets to
suspend, restart, and resume services, respectively.

Discussion
The Stop-Service cmdlet lets you stop a service either by name or display name.

Notice that the solution uses the -WhatIf flag on the Stop-Service
cmdlet. This parameter lets you see what would happen if you were to
run the command but doesn’t actually perform the action.

25.2 Manage a Running Service | 579

For more information about the Stop-Service cmdlet, type Get-Help Stop-Service. If
you want to suspend, restart, or resume a service, see the help for the Suspend-Service,
Restart-Service, and Resume-Service cmdlets.

To configure a service (for example, its description or startup type), see Recipe 25.3.
In addition to letting you configure a service, the Set-Service cmdlet described in that
recipe also lets you stop a service on a remote computer.

See Also
Recipe 25.3, “Configure a Service”

Chapter 28, Windows Management Instrumentation

25.3 Configure a Service

Problem
You want to configure properties or startup behavior of a service.

Solution
To configure a service, use the Set-Service cmdlet:

PS > Set-Service WinRM -DisplayName 'Windows Remote Management (WS-Management)' `
 -StartupType Manual

Discussion
The Set-Service cmdlet lets you manage the configuration of a service: its name, display
name, description, and startup type.

If you change the startup type of a service, your natural next step is to verify that the
changes were applied correctly. Recipe 25.1 shows how to view the properties of a
service, including the WMI-based workaround to examine the startup type.

In addition to letting you configure services on the local computer, the Set-Service
cmdlet also offers the -ComputerName parameter to configure services on remote
computers.

See Also
Recipe 25.1, “List All Running Services”

580 | Chapter 25: System Services

CHAPTER 26

Active Directory

26.0 Introduction
By far, the one thing that makes system administration on the Windows platform
unique is its interaction with Active Directory. As the centralized authorization, au-
thentication, and information store for Windows networks, Active Directory automa-
tion forms the core of many enterprise administration tasks.

In PowerShell version one, the primary way to interact with Active Directory came
through its support for Active Directory Service Interface (ADSI) type shortcuts.

While PowerShell version two was under development, the Active Directory team cre-
ated an immensely feature-filled PowerShell module to manage Active Directory do-
mains. The Active Directory module includes a PowerShell provider
(Set-Location AD:\) and almost 100 task-specific PowerShell cmdlets.

Working with the Active Directory module has two requirements:

Support from the server
This module works with any domain that has enabled the Active Directory Web
Services feature. Windows Server 2008 R2 enables this feature by default on Active
Directory instances, and you can install it on any recent server operating system
from Windows Server 2003 on.

Support from the client
The module itself is included in the Windows 7 Remote Server Administration
Tools (RSAT) package. After downloading and installing the package, you can
enable it through the “Turn Windows Features On or Off” dialog in the Control
Panel.

If working with the Active Directory module is an option at all, import it and use its
commands. The Get-Command and Get-Help commands should be the two key steps you
need to get started. In addition to the help built into the commands, MSDN provides
a great task-based introduction to the Active Directory Module at http://go.microsoft
.com/fwlink/?linkid=168142.

581

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

If the Active Directory module is not an option, PowerShell provides fluid integration
with Active Directory through its [adsi] and [adsisearcher] built-in type shortcuts.
This chapter covers their use for most common Active Directory tasks.

26.1 Test Active Directory Scripts on a Local Installation

Problem
You want to test your Active Directory scripts against a local installation.

Solution
To test your scripts against a local system, install Active Directory Lightweight Direc-
tory Services (AD LDS) and its sample configuration.

Discussion
For most purposes, Active Directory Lightweight Services works as a lightweight ver-
sion of Active Directory. Although it doesn’t support any of Active Directory’s infra-
structure features, its programming model is close enough that you can easily use it to
experiment with Active Directory scripting. Until recently, Active Directory Light-
weight Directory Services was known as Active Directory Application Mode (ADAM).
AD LDS is not supported on Windows XP, and so the Microsoft Download Center
continues to provide a download of ADAM that supports Windows XP. To test your
scripts against a local installation, you’ll need to install either AD LDS or ADAM, and
then create a test instance.

Verify prerequisites

If you want to test AD LDS on a recent server operating system, simply enable it through
the Optional Component Manager.

If you want to install it on a client operating system, you have two options. If you have
Windows 7 or Windows Vista, download AD LDS. If you have Windows XP (or want
to install in Windows XP mode), download ADAM.

Install ADAM

To install AD LDS or ADAM, the first step is to download it. Microsoft provides both
free of charge from the Download Center. You can obtain either by searching for “Active
Directory Application Mode” or “AD LDS” at http://download.microsoft.com.

Once you’ve downloaded it, run the setup program. Figure 26-1 shows the ADAM
setup wizard on Windows XP.

582 | Chapter 26: Active Directory

http://download.microsoft.com

Create a test instance

From the ADAM menu in the Windows Start menu, select “Create an ADAM instance.”
On the Setup Options page that appears next, select “A unique instance.” On the In-
stance Name page, type Test as an instance name. On the Ports page, accept the default
ports, and then on the Application Directory Partition page, select “Yes, create an ap-
plication directory partition.” As the partition name, type DC=Fabrikam,DC=COM, as
shown in Figure 26-2.

In the next pages, accept the default file locations, service accounts, and administrators.

When the setup wizard gives you the option to import LDIF files, import all available
files except for MS-AZMan.LDF. Click Next on this page and the confirmation page
to complete the instance setup.

Open a PowerShell window, and test your new instance:

PS > [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"

distinguishedName

{DC=Fabrikam,DC=COM}

The [adsi] tag is a type shortcut, like several other type shortcuts in PowerShell. The
[adsi] type shortcut provides a quick way to create and work with directory entries
through Active Directory Service Interfaces.

Figure 26-1. ADAM’s post-installation screen

26.1 Test Active Directory Scripts on a Local Installation | 583

When you first try this shortcut, you may receive this unhelpful error
message:

format-default : The following exception occurred while retrieving
member "PSComputerName": "Unknown error (0x80005000)"

If you receive this error, ensure that you’ve capitalized the LDAP in
LDAP://localhost:389/.

Although scripts that act against an ADAM test environment are almost identical to
those that operate directly against Active Directory, there are a few minor differences.
ADAM scripts specify the host and port in their binding string (that is, localhost:
389/), whereas Active Directory scripts do not.

For more information about type shortcuts in PowerShell, see “Working with the .NET
Framework” on page 741.

See Also
“Working with the .NET Framework” on page 741

Figure 26-2. Creating a partition of a test ADAM instance

584 | Chapter 26: Active Directory

26.2 Create an Organizational Unit

Problem
You want to create an organizational unit (OU) in Active Directory.

Solution
To create an organizational unit in a container, use the [adsi] type shortcut to bind to
a part of the Active Directory, and then call the Create() method.

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$salesOrg = $domain.Create("OrganizationalUnit", "OU=Sales")
$salesOrg.Put("Description", "Sales Headquarters, SF")
$salesOrg.Put("wwwHomePage", "http://fabrikam.com/sales")
$salesOrg.SetInfo()

Discussion
The solution shows an example of creating a Sales organizational unit (OU) at the root
of the organization. You can use the same syntax to create OUs under other OUs as
well. Example 26-1 demonstrates how to create more sales divisions.

Example 26-1. Creating North, East, and West sales divisions

$sales = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$east = $sales.Create("OrganizationalUnit", "OU=East")
$east.Put("wwwHomePage", "http://fabrikam.com/sales/east")
$east.SetInfo()

$west = $sales.Create("OrganizationalUnit", "OU=West")
$west.Put("wwwHomePage", "http://fabrikam.com/sales/west")
$west.SetInfo()

$north = $sales.Create("OrganizationalUnit", "OU=North")
$north.Put("wwwHomePage", "http://fabrikam.com/sales/north")
$north.SetInfo()

When you initially create an item, notice that you need to use the Put() method to set
properties on the new item. Once you’ve created the item, you can instead use simple
property access to change those properties. For more information about changing
properties of an organizational unit, see Recipe 26.4.

To check that these OUs have been created, see Recipe 26.6.

Using the Active Directory module, the cmdlet to create an organizational unit is New-
ADOrganizationalUnit. For more information on how to accomplish these tasks through
the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.2 Create an Organizational Unit | 585

http://go.microsoft.com/fwlink/?linkid=168142

See Also
Recipe 26.4, “Modify Properties of an Organizational Unit”

Recipe 26.6, “Get the Children of an Active Directory Container”

26.3 Get the Properties of an Organizational Unit

Problem
You want to get and list the properties of a specific OU.

Solution
To list the properties of an OU, use the [adsi] type shortcut to bind to the OU in Active
Directory, and then pass the OU to the Format-List cmdlet:

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit | Format-List *

Discussion
The solution retrieves the Sales West OU. By default, the Format-List cmdlet shows
only the distinguished name of the group, so we type Format-List * to display all
properties.

If you know which property you want the value of, you can specify it by name:

PS > $organizationalUnit.wWWHomePage
http://fabrikam.com/sales/west

If you are having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the name property can be
accessed using the usual property syntax, the following example demonstrates the
alternative approach:

PS > $organizationalUnit.Get("name")
West

Using the Active Directory module, the cmdlet to get the properties of an organizational
unit is Get-ADOrganizationalUnit. For more information on how to accomplish these
tasks through the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=
168142.

586 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

26.4 Modify Properties of an Organizational Unit

Problem
You want to modify properties of a specific OU.

Solution
To modify the properties of an OU, use the [adsi] type shortcut to bind to the OU in
Active Directory. If the property has already been set, you can change the value of a
property as you would with any other PowerShell object. If you are setting a property
for the first time, use the Put() method. Finally, call the SetInfo() method to apply the
changes.

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit.Put("Description", "Sales West Organization")
$organizationalUnit.wwwHomePage = "http://fabrikam.com/sales/west/fy2012"
$organizationalUnit.SetInfo()

Discussion
The solution retrieves the Sales West OU. It then sets the description to Sales West
Organization, updates the home page, and then applies those changes to Active
Directory.

Using the Active Directory module, the cmdlet to modify the properties of an organi-
zational unit is Set-ADOrganizationalUnit. For more information on how to accomplish
these tasks through the Active Directory module, see http://go.microsoft.com/fwlink/
?linkid=168142.

26.5 Delete an Organizational Unit

Problem
You want to delete a specific OU.

Solution
To delete an OU, use the [adsi] type shortcut to bind to the OU in Active Directory.
Finally, call its DeleteTree() method to apply the changes.

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=North,ou=Sales,dc=Fabrikam,dc=COM"
$organizationalUnit.DeleteTree()

26.5 Delete an Organizational Unit | 587

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

Discussion
The solution retrieves the Sales North OU. It then calls the DeleteTree() method to
permanently delete the organizational unit and all of its children.

Using the Active Directory module, the cmdlet to remove an organizational unit is
Remove-ADOrganizationalUnit. For more information on how to accomplish these tasks
through the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=
168142.

26.6 Get the Children of an Active Directory Container

Problem
You want to list all the children of an Active Directory container.

Solution
To list the items in a container, use the [adsi] type shortcut to bind to the OU in Active
Directory, and then access the Children property of that container:

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"
$sales.Children

Discussion
The solution lists all the children of the Sales OU. This is the level of information you
typically get from selecting a node in the ADSIEdit MMC snap-in. If you want to filter
this information to include only users, other organizational units, or more complex
queries, see Recipe 26.9.

In PowerShell version one, this solution used to require that you access
$sales.PsBase.Children. This issue was resolved in PowerShell version two.

Using the Active Directory module, the Active Directory provider lets you get the chil-
dren of an organizational unit. For example:

PS > Set-Location 'AD:\ou=Sales,dc=Fabrikam,dc=COM'
PS > dir

For more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 26.9, “Search for a User Account”

588 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

26.7 Create a User Account

Problem
You want to create a user account in a specific OU.

Solution
To create a user in a container, use the [adsi] type shortcut to bind to the OU in Active
Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = $salesWest.Create("User", "CN=MyerKen")
$user.Put("userPrincipalName", "Ken.Myer@fabrikam.com")
$user.Put("displayName", "Ken Myer")
$user.SetInfo()

Discussion
The solution creates a user under the Sales West organizational unit. It sets the user
PrincipalName (a unique identifier for the user), as well as the user’s display name.

If this step generates an error saying, “The specified directory service
attribute or value does not exist,” verify that you properly imported the
LDIF files at the beginning of the ADAM installation steps. Importing
those LDIF files creates the Active Directory schema required for many
of these steps.

When you run this script against a real Active Directory deployment (as opposed to an
ADAM instance), be sure to update the sAMAccountName property, or you’ll get an
autogenerated default.

To check that these users have been created, see Recipe 26.6. If you need to create users
in bulk, see Recipe 26.8.

Using the Active Directory module, the cmdlet to create a user account is New-ADUser.
For more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 26.6, “Get the Children of an Active Directory Container”

Recipe 26.8, “Program: Import Users in Bulk to Active Directory”

26.7 Create a User Account | 589

http://go.microsoft.com/fwlink/?linkid=168142

26.8 Program: Import Users in Bulk to Active Directory
When importing several users into Active Directory, it quickly becomes tiresome to do
it by hand (or even to script the addition of each user one by one). To solve this problem,
we can put all our data into a CSV, and then do a bulk import from the information in
the CSV.

Example 26-2 supports this in a flexible way. You provide a container to hold the user
accounts and a CSV that holds the account information. For each row in the CSV, the
script creates a user from the data in that row. The only mandatory column is a CN
column to define the common name of the user. Any other columns, if present, repre-
sent other Active Directory attributes you want to define for that user.

Example 26-2. Import-ADUser.ps1

###
##
Import-AdUser
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Create users in Active Directory from the content of a CSV.

.DESCRIPTION

In the user CSV, one column must be named "CN" for the user name.
All other columns represent properties in Active Directory for that user.

For example:
CN,userPrincipalName,displayName,manager
MyerKen,Ken.Myer@fabrikam.com,Ken Myer,
DoeJane,Jane.Doe@fabrikam.com,Jane Doe,"CN=MyerKen,OU=West,OU=Sales,DC=..."
SmithRobin,Robin.Smith@fabrikam.com,Robin Smith,"CN=MyerKen,OU=West,OU=..."

.EXAMPLE

PS >$container = "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
PS >Import-ADUser.ps1 $container .\users.csv

#>

param(
 ## The container in which to import users
 ## For example:
 ## "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM)")
 [Parameter(Mandatory = $true)]

590 | Chapter 26: Active Directory

 $Container,

 ## The path to the CSV that contains the user records
 [Parameter(Mandatory = $true)]
 $Path
)

Set-StrictMode -Off

Bind to the container
$userContainer = [adsi] $container

Ensure that the container was valid
if(-not $userContainer.Name)
{
 Write-Error "Could not connect to $container"
 return
}

Load the CSV
$users = @(Import-Csv $Path)
if($users.Count -eq 0)
{
 return
}

Go through each user from the CSV
foreach($user in $users)
{
 ## Pull out the name, and create that user
 $username = $user.CN
 $newUser = $userContainer.Create("User", "CN=$username")

 ## Go through each of the properties from the CSV, and set its value
 ## on the user
 foreach($property in $user.PsObject.Properties)
 {
 ## Skip the property if it was the CN property that sets the
 ## user name
 if($property.Name -eq "CN")
 {
 continue
 }

 ## Ensure they specified a value for the property
 if(-not $property.Value)
 {
 continue
 }

 ## Set the value of the property
 $newUser.Put($property.Name, $property.Value)
 }

 ## Finalize the information in Active Directory

26.8 Program: Import Users in Bulk to Active Directory | 591

 $newUser.SetInfo()
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

26.9 Search for a User Account

Problem
You want to search for a specific user account, but you don’t know the user’s distin-
guished name (DN).

Solution
To search for a user in Active Directory, use the [adsi] type shortcut to bind to a
container that holds the user account, and then use the [adsisearcher] type shortcut
to search for the user:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=User)(displayName=Ken Myer))'
$userResult = $searcher.FindOne()
$user = $userResult.GetDirectoryEntry()
$user

Discussion
When you don’t know the full distinguished name (DN) of a user account, the [adsi
searcher] type shortcut lets you search for it.

You provide an LDAP filter (in this case, searching for users with the display name of
Ken Myer), and then call the FindOne() method. The FindOne() method returns the first
search result that matches the filter, so we retrieve its actual Active Directory entry. If
you expect your query to return multiple results, use the FindAll() method instead.
Although the solution searches on the user’s display name, you can search on any field
in Active Directory—the userPrincipalName and sAMAccountName are two other good
choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that Ken Myer is in the Sales OU, it would be better to bind to
that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.microsoft
.com for “Search Filter Syntax”.

592 | Chapter 26: Active Directory

http://msdn.microsoft.com
http://msdn.microsoft.com

Using the Active Directory module, the cmdlet to search for a user account is Get-
ADUser. While you can use a LDAP filter to search for users, the Get-ADUser cmdlet also
lets you supply PowerShell expressions:

Get-ADUser -Filter { Name -like "*Ken*" }

For more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.10 Get and List the Properties of a User Account

Problem
You want to get and list the properties of a specific user account.

Solution
To list the properties of a user account, use the [adsi] type shortcut to bind to the user
in Active Directory, and then pass the user to the Format-List cmdlet:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user | Format-List *

Discussion
The solution retrieves the MyerKen user from the Sales West OU. By default, the Format-
List cmdlet shows only the distinguished name of the user, so we type Format-List *
to display all properties.

If you know the property for which you want the value, specify it by name:

PS > $user.DirectReports
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=DoeJane,OU=West,OU=Sales,DC=Fabrikam,DC=COM

If you are having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the userPrincipalName
property can be accessed using the usual property syntax, the following example dem-
onstrates the alternate approach:

PS > $user.Get("userPrincipalName")
Ken.Myer@fabrikam.com

Using the Active Directory module, the cmdlet to retrieve a user account is Get-
ADUser. For more information on how to accomplish these tasks through the Active
Directory module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.10 Get and List the Properties of a User Account | 593

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

26.11 Modify Properties of a User Account

Problem
You want to modify properties of a specific user account.

Solution
To modify a user account, use the [adsi] type shortcut to bind to the user in Active
Directory. If the property has already been set, you can change the value of a property
as you would with any other PowerShell object. If you are setting a property for the
first time, use the Put() method. Finally, call the SetInfo() method to apply the
changes.

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user.Put("Title", "Sr. Exec. Overlord")
$user.SetInfo()

Discussion
The solution retrieves the MyerKen user from the SalesWest OU. It then sets the user’s
title to Sr. Exec. Overlord and applies those changes to Active Directory.

Using the Active Directory module, the cmdlet to modify a user account is Set-
ADUser. For more information on how to accomplish these tasks through the Active
Directory module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.12 Change a User Password

Problem
You want to change a user’s password.

Solution
To change a user’s password, use the [adsi] type shortcut to bind to the user in Active
Directory, and then call the SetPassword() method:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$user.SetPassword("newpassword")

Discussion
Changing a user password in Active Directory is a relatively straightforward operation,
requiring simply calling the SetPassword() method.

594 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142

Unfortunately, configuring your local experimental ADAM instance to
support password changes is complicated and beyond the scope of this
book.

One thing to notice is that the SetPassword() method takes a plain-text password as its
input. Active Directory protects this password as it sends it across the network, but
storing passwords securely until needed is a security best practice. Recipe 18.8 discusses
how to handle sensitive strings and also shows you how to convert one back to plain
text when needed.

Using the Active Directory module, the cmdlet to change a user password is Set-
ADAccountPassword. For more information on how to accomplish these tasks through
the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 18.8, “Securely Handle Sensitive Information”

26.13 Create a Security or Distribution Group

Problem
You want to create a security or distribution group.

Solution
To create a security or distribution group, use the [adsi] type shortcut to bind to a
container in Active Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management = $salesWest.Create("Group", "CN=Management")
$management.SetInfo()

Discussion
The solution creates a group named Management in the Sales West OU.

When you run this script against a real Active Directory deployment (as
opposed to an ADAM instance), be sure to update the sAMAccountName
property, or you’ll get an autogenerated default.

When you create a group in Active Directory, it is customary to also set the type of
group by defining the groupType attribute on that group. To specify a group type, use

26.13 Create a Security or Distribution Group | 595

http://go.microsoft.com/fwlink/?linkid=168142

the -bor operator to combine group flags, and use the resulting value as the group
Type property. Example 26-3 defines the group as a global, security-enabled group.

Example 26-3. Creating an Active Directory security group with a custom groupType

$ADS_GROUP_TYPE_GLOBAL_GROUP = 0x00000002
$ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_UNIVERSAL_GROUP = 0x00000008
$ADS_GROUP_TYPE_SECURITY_ENABLED = 0x80000000

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$groupType = $ADS_GROUP_TYPE_SECURITY_ENABLED -bor
 $ADS_GROUP_TYPE_GLOBAL_GROUP

$management = $salesWest.Create("Group", "CN=Management")
$management.Put("groupType", $groupType)
$management.SetInfo()

If you need to create groups in bulk from the data in a CSV, the Import-ADUser script
given in Recipe 26.8 provides an excellent starting point. To make the script create
groups instead of users, change this line:

$newUser = $userContainer.Create("User", "CN=$username")

to this:

$newUser = $userContainer.Create("Group", "CN=$username")

If you change the script to create groups in bulk, it is helpful to also change the variable
names ($user, $users, $username, and $newUser) to correspond to group-related names:
$group, $groups, $groupname, and $newgroup.

Using the Active Directory module, the cmdlet to create a group is New-ADGroup. For
more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 26.8, “Program: Import Users in Bulk to Active Directory”

26.14 Search for a Security or Distribution Group

Problem
You want to search for a specific group, but you don’t know its distinguished name
(DN).

596 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142

Solution
To search for a security or distribution group, use the [adsi] type shortcut to bind to
a container that holds the group, and then use the [adsisearcher] type shortcut to
search for the group:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=Group)(name=Management))'
$groupResult = $searcher.FindOne()
$group = $groupResult.GetDirectoryEntry()
$group

Discussion
When you don’t know the full distinguished name (DN) of a group, the [adsi
searcher] type shortcut lets you search for it.

You provide an LDAP filter (in this case, searching for groups with the name of
Management), and then call the FindOne() method. The FindOne() method returns the
first search result that matches the filter, so we retrieve its actual Active Directory entry.
If you expect your query to return multiple results, use the FindAll() method instead.
Although the solution searches on the group’s name, you can search on any field in
Active Directory—the mailNickname and sAMAccountName are two other good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that the Management group is in the Sales OU, it would be better
to bind to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.microsoft
.com for “Search Filter Syntax”.

Using the Active Directory module, the cmdlet to search for a security or distribution
group is Get-ADGroup. While you can use a LDAP filter to search for a group, the Get-
ADGroup cmdlet also lets you supply PowerShell expressions:

Get-ADGroup -Filter { Name -like "*Management*" }

For more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.15 Get the Properties of a Group

Problem
You want to get and list the properties of a specific security or distribution group.

26.15 Get the Properties of a Group | 597

http://msdn.microsoft.com
http://msdn.microsoft.com
http://go.microsoft.com/fwlink/?linkid=168142

Solution
To list the properties of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then pass the group to the Format-List cmdlet:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group | Format-List *

Discussion
The solution retrieves the Management group from the Sales West OU. By default, the
Format-List cmdlet shows only the DN of the group, so we type Format-List * to
display all properties.

If you know the property for which you want the value, specify it by name:

PS > $group.Member
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=MyerKen,OU=West,OU=Sales,DC=Fabrikam,DC=COM

If you are having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the name property can be
accessed using the usual property syntax, the following example demonstrates the
alternative approach:

PS > $group.Get("name")
Management

Using the Active Directory module, the cmdlet to get the properties of a group is Get-
ADGroup. For more information on how to accomplish these tasks through the Active
Directory module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.16 Find the Owner of a Group

Problem
You want to get the owner of a security or distribution group.

Solution
To determine the owner of a group, use the [adsi] type shortcut to bind to the group
in Active Directory, and then retrieve the ManagedBy property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group.ManagedBy

598 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142

Discussion
The solution retrieves the owner of the Management group from the Sales West OU. To
do this, it accesses the ManagedBy property of that group. This property exists only when
populated by the administrator of the group but is fairly reliable: Active Directory ad-
ministrators consider it a best practice to create and populate this property.

Using the Active Directory module, the cmdlet to find the owner of a group is Get-
ADGroup. This cmdlet does not retrieve the ManagedBy property by default, so you also
need to specify ManagedBy as the value of the -Property parameter. For more information
on how to accomplish these tasks through the Active Directory module, see http://go
.microsoft.com/fwlink/?linkid=168142.

26.17 Modify Properties of a Security or Distribution Group

Problem
You want to modify properties of a specific security or distribution group.

Solution
To modify a security or distribution group, use the [adsi] type shortcut to bind to the
group in Active Directory. If the property has already been set, you can change the value
of a property as you would with any other PowerShell object. If you are setting a prop-
erty for the first time, use the Put() method. Finally, call the SetInfo() method to apply
the changes.

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

PS > $group.Put("Description", "Managers in the Sales West Organization")
PS > $group.SetInfo()
PS > $group.Description

Discussion
The solution retrieves the Management group from the Sales West OU. It then sets the
description to Managers in the Sales West Organization, and then applies those
changes to Active Directory.

Using the Active Directory module, the cmdlet to modify the properties of a security
or distribution group is Set-ADGroup. For more information on how to accomplish these
tasks through the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=
168142.

26.17 Modify Properties of a Security or Distribution Group | 599

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

26.18 Add a User to a Security or Distribution Group

Problem
You want to add a user to a security or distribution group.

Solution
To add a user to a security or distribution group, use the [adsi] type shortcut to bind
to the group in Active Directory, and then call the Add() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Add($user)

Discussion
The solution adds the MyerKen user to a group named Management in the SalesWest OU.
To check whether you have added the user successfully, see Recipe 26.20.

Using the Active Directory module, the cmdlet to add a user to a security or distribution
group is Add-ADGroupMember. For more information on how to accomplish these tasks
through the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=
168142.

See Also
Recipe 26.20, “List a User’s Group Membership”

26.19 Remove a User from a Security or Distribution Group

Problem
You want to remove a user from a security or distribution group.

Solution
To remove a user from a security or distribution group, use the [adsi] type shortcut to
bind to the group in Active Directory, and then call the Remove() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Remove($user)

600 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

Discussion
The solution removes the MyerKen user from a group named Management in the Sales
West OU. To check whether you have removed the user successfully, see Recipe 26.20.

Using the Active Directory module, the cmdlet to remove a user from a security or
distribution group is Remove-ADGroupMember. For more information on how to accom-
plish these tasks through the Active Directory module, see http://go.microsoft.com/
fwlink/?linkid=168142.

See Also
Recipe 26.20, “List a User’s Group Membership”

26.20 List a User’s Group Membership

Problem
You want to list the groups to which a user belongs.

Solution
To list a user’s group membership, use the [adsi] type shortcut to bind to the user in
Active Directory, and then access the MemberOf property:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$user.MemberOf

Discussion
The solution lists all groups in which the MyerKen user is a member. Since Active Di-
rectory stores this information as a user property, this is simply a specific case of re-
trieving information about the user. For more information about retrieving information
about a user, see Recipe 26.10.

Using the Active Directory module, the cmdlet to retrieve a user’s group membership
is Get-ADUser. This cmdlet does not retrieve the MemberOf property by default, so you
also need to specify MemberOf as the value of the -Property parameter. For more infor-
mation on how to accomplish these tasks through the Active Directory module, see
http://go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 26.10, “Get and List the Properties of a User Account”

26.20 List a User’s Group Membership | 601

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

26.21 List the Members of a Group

Problem
You want to list all the members in a group.

Solution
To list the members of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then access the Member property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$group.Member

Discussion
The solution lists all members of the Management group in the Sales West OU. Since
Active Directory stores this information as a property of the group, this is simply a
specific case of retrieving information about the group. For more information about
retrieving information about a group, see Recipe 26.15.

Using the Active Directory module, the cmdlet to list the members of a security or
distribution group is Get-ADGroupMember. For more information on how to accomplish
these tasks through the Active Directory module, see http://go.microsoft.com/fwlink/
?linkid=168142.

See Also
Recipe 26.15, “Get the Properties of a Group”

26.22 List the Users in an Organizational Unit

Problem
You want to list all the users in an OU.

Solution
To list the users in an OU, use the [adsi] type shortcut to bind to the OU in Active
Directory. Use the [adsisearcher] type shortcut to create a searcher for that OU, and
then set its Filter property to (objectClass=User). Finally, call the searcher’s
FindAll() method to perform the search.

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$searcher = [adsisearcher] $sales

602 | Chapter 26: Active Directory

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

$searcher.Filter = '(objectClass=User)'
$searcher.FindAll()

Discussion
The solution lists all users in the Sales OU. It does this through the [adsisearcher]
type shortcut, which lets you search and query Active Directory. The Filter property
specifies an LDAP filter string.

By default, an [adsisearcher] searches the given container and all con-
tainers below it. Set the SearchScope property to change this behavior.
A value of Base searches only the current container, whereas a value of
OneLevel searches only the immediate children.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

Using the Active Directory module, the cmdlet to list the users in an organizational unit
is Get-ADUser. To restrict the results to a specific organizational unit, specify that or-
ganizational unit as the -SearchBase parameter. Alternatively, navigate to that path in
the Active Directory provider, and then call the Get-ADUser cmdlet. For more informa-
tion on how to accomplish these tasks through the Active Directory module, see http:
//go.microsoft.com/fwlink/?linkid=168142.

See Also
Recipe 3.8, “Work with .NET Objects”

26.23 Search for a Computer Account

Problem
You want to search for a specific computer account, but you don’t know its distin-
guished name (DN).

Solution
To search for a computer account, use the [adsi] type shortcut to bind to a container
that holds the account, and then use the [adsisearcher] type shortcut to search for the
account:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=Computer)(name=kenmyer_laptop))'
$computerResult = $searcher.FindOne()
$computer = $computerResult.GetDirectoryEntry()

26.23 Search for a Computer Account | 603

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

Discussion
When you don’t know the full distinguished name (DN) of a computer account, the
[adsisearcher] type shortcut lets you search for it.

This recipe requires a full Active Directory instance, as neither ADAM
nor AD LDS supports computer objects.

You provide an LDAP filter (in this case, searching for computers with the name of
kenmyer_laptop), and then call the FindOne() method. The FindOne() method returns
the first search result that matches the filter, so we retrieve its actual Active Directory
entry. If you expect your query to return multiple results, use the FindAll() method
instead. Although the solution searches on the computer’s name, you can search on
any field in Active Directory. The sAMAccountName and operating system characteristics
(operatingSystem, operatingSystemVersion, operatingSystemServicePack) are other
good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If you know that the computer is in the Sales OU, it would be better to bind
to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.microsoft
.com for “Search Filter Syntax”.

Using the Active Directory module, the cmdlet to search for a computer account is Get-
ADComputer. While you can use a LDAP filter to search for computer, the Get-
ADComputer cmdlet also lets you supply PowerShell expressions:

Get-ADComputer -Filter { Name -like "*kenmyer*" }

For more information on how to accomplish these tasks through the Active Directory
module, see http://go.microsoft.com/fwlink/?linkid=168142.

26.24 Get and List the Properties of a Computer Account

Problem
You want to get and list the properties of a specific computer account.

604 | Chapter 26: Active Directory

http://msdn.microsoft.com
http://msdn.microsoft.com
http://go.microsoft.com/fwlink/?linkid=168142

Solution
To list the properties of a computer account, use the [adsi] type shortcut to bind to
the computer in Active Directory and then pass the computer to the Format-List
cmdlet:

$computer =
 [adsi] "LDAP://localhost:389/cn=kenmyer_laptop,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$computer | Format-List *

Discussion
The solution retrieves the kenmyer_laptop computer from the Sales West OU. By de-
fault, the Format-List cmdlet shows only the distinguished name of the computer, so
we type Format-List * to display all properties.

This recipe requires a full Active Directory instance, as neither ADAM
nor AD LDS supports computer objects.

If you know the property for which you want the value, specify it by name:

PS > $computer.OperatingSystem
Windows Server 2003

If you are having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the operatingSystem
property can be accessed using the usual property syntax, the following example dem-
onstrates the alternative approach:

PS > $computer.Get("operatingSystem")
Windows Server 2003

Using the Active Directory module, the cmdlet to list the properties of a computer
account is Get-ADComputer. For more information on how to accomplish these tasks
through the Active Directory module, see http://go.microsoft.com/fwlink/?linkid=
168142.

26.24 Get and List the Properties of a Computer Account | 605

http://go.microsoft.com/fwlink/?linkid=168142
http://go.microsoft.com/fwlink/?linkid=168142

CHAPTER 27

Enterprise Computer Management

27.0 Introduction
When working with Windows systems across an enterprise, this question often arises:
“How do I do <some task> in PowerShell?” In an administrator’s perfect world, any-
body who designs a feature with management implications also supports (via Power-
Shell cmdlets) the tasks that manage that feature. Many management tasks have been
around longer than PowerShell, though, so the answer can sometimes be, “The same
way you did it before PowerShell.”

That’s not to say that your life as an administrator doesn’t improve with the introduc-
tion of PowerShell, however. Pre-PowerShell administration tasks generally fall into
one of several models: command-line utilities, Windows Management Instrumentation
(WMI) interaction, registry manipulation, file manipulation, interaction with COM
objects, or interaction with .NET objects.

PowerShell makes it easier to interact with all these task models, and therefore makes
it easier to manage functionality that depends on them.

27.1 Join a Computer to a Domain or Workgroup

Problem
You want to join a computer to a domain or workgroup.

Solution
Use the -DomainName parameter of the Add-Computer cmdlet to add a computer to a
domain. Use the -WorkGroupName parameter to add it to a workgroup.

PS > Add-Computer -DomainName MyDomain -Credential MyDomain\MyUser
PS > Restart-Computer

607

Discussion
The Add-Computer cmdlet’s name is fairly self-descriptive: it lets you add a computer to
a domain or workgroup. Since a domain join only takes effect once you restart the
computer, always call the Restart-Computer cmdlet after joining a domain.

Perhaps the most complex parameter of the Add-Computer cmdlet is the -Unsecure pa-
rameter. When you add a computer to a domain, a machine account is normally created
with a unique password. An unsecure join (as enabled by the -Unsecure parameter)
instead uses a default password: the first 14 characters of the computer name, all in
lowercase. Once the domain join is complete, the system automatically changes the
password. This parameter is primarily intended for unattended installations.

To remove a computer from a domain, see Recipe 27.2.

See Also
Recipe 27.2, “Remove a Computer from a Domain”

27.2 Remove a Computer from a Domain

Problem
You want to remove a computer from a domain.

Solution
Use the Remove-Computer cmdlet to depart a domain.

PS > Remove-Computer
PS > Restart-Computer

Discussion
The Remove-Computer lets you remove the current computer from a domain. Once you
do so, it reverts back to its default workgroup. Since domain changes only take effect
once you restart the computer, always call the Restart-Computer cmdlet after departing
a domain.

Once you remove a computer from a domain, you can no longer use domain credentials
to manage that computer. Before departing a domain, make sure that you know (or
create) a local administrator’s account for that machine.

To rejoin a domain, see Recipe 27.1.

See Also
Recipe 27.1, “Join a Computer to a Domain or Workgroup”

608 | Chapter 27: Enterprise Computer Management

27.3 Program: List Logon or Logoff Scripts for a User
The Group Policy system in Windows stores logon and logoff scripts under the two
registry keys HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy
\State\<User SID>\Scripts\Logon and HKLM:\SOFTWARE\Microsoft\Windows
\CurrentVersion\Group Policy\State\<User SID>\Scripts\Logoff. Each key has a subkey
for each group policy object that applies. Each of those child keys has another level of
keys that correspond to individual scripts that apply to the user.

This can be difficult to investigate when you don’t know the SID of the user in question,
so Example 27-1 automates the mapping of username to SID, as well as all the registry
manipulation tasks required to access this information.

Example 27-1. Get-UserLogonLogoffScript.ps1

##
##
Get-UserLogonLogoffScript
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the logon or logoff scripts assigned to a specific user

.EXAMPLE

Get-UserLogonLogoffScript LEE-DESK\LEE Logon
Gets all logon scripts for the user 'LEE-DESK\Lee'

#>

param(
 ## The username to examine
 [Parameter(Mandatory = $true)]
 $Username,

 [Parameter(Mandatory = $true)]
 [ValidateSet("Logon","Logoff")]
 $ScriptType
)

Set-StrictMode -Version Latest

Find the SID for the username
$account = New-Object System.Security.Principal.NTAccount $username
$sid =
 $account.Translate([System.Security.Principal.SecurityIdentifier]).Value

27.3 Program: List Logon or Logoff Scripts for a User | 609

Map that to their group policy scripts
$registryKey = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\" +
 "Group Policy\State\$sid\Scripts"

if(-not (Test-Path $registryKey))
{
 return
}

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Chapter 21, The Windows Registry

27.4 Program: List Startup or Shutdown Scripts for a Machine
The Group Policy system in Windows stores startup and shutdown scripts under the
registry keys HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Startup
and HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Shutdown. Each
key has a subkey for each group policy object that applies. Each of those child keys has
another level of keys that correspond to individual scripts that apply to the machine.

Example 27-2 allows you to easily retrieve and access the startup and shutdown scripts
for a machine.

Example 27-2. Get-MachineStartupShutdownScript.ps1

##
##
Get-MachineStartupShutdownScript
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

610 | Chapter 27: Enterprise Computer Management

<#

.SYNOPSIS

Get the startup or shutdown scripts assigned to a machine

.EXAMPLE

Get-MachineStartupShutdownScript -ScriptType Startup
Gets startup scripts for the machine

#>

param(
 ## The type of script to search for: Startup or Shutdown.
 [Parameter(Mandatory = $true)]
 [ValidateSet("Startup","Shutdown")]
 $ScriptType
)

Set-StrictMode -Version Latest

Store the location of the group policy scripts for the machine
$registryKey = "HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts"

There may be no scripts defined
if(-not (Test-Path $registryKey))
{
 return
}

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Chapter 21, The Windows Registry

27.4 Program: List Startup or Shutdown Scripts for a Machine | 611

27.5 Deploy PowerShell-Based Logon Scripts

Problem
You want to use a PowerShell script in a logon, logoff, startup, or shutdown script.

Solution
In Windows 7 (and Windows Server 2008 R2), simply add a new script in the Power-
Shell Scripts tab.

For other operating systems, open the Scripts tab, and click “Add a Script.” Use power
shell.exe as the script name, and the following as its parameters:

-NoProfile -NonInteractive -ExecutionPolicy ByPass -File "script" arguments

Discussion
Before PowerShell version two, launching a PowerShell script as a Group Policy script
was a difficult task. Although you could use the -Command parameter of powershell.exe
to invoke a command, the quoting rules made it difficult to specify the script correctly.
After getting the quoting rules correct, you still had to contend with the Execution
Policy of the client computer.

While PowerShell version two was under development, the situation improved signif-
icantly. First of all, Group Policy now supports PowerShell scripts as first-class citizens
for the four different user and computer scripts.

When Group Policy’s native support is not an option, PowerShell.exe includes two new
parameters that make it easier to control the execution environment:
-ExecutionPolicy and -File. For more information about these (and PowerShell’s
other) parameters, see Recipe 1.12.

See Also
Recipe 1.12, “Invoke a PowerShell Command or Script from Outside PowerShell”

27.6 Enable or Disable the Windows Firewall

Problem
You want to enable or disable the Windows Firewall.

Solution
To manage the Windows Firewall, use the LocalPolicy.CurrentProfile.FirewallEna
bled property of the HNetCfg.FwMgr COM object:

612 | Chapter 27: Enterprise Computer Management

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile.FirewallEnabled = $true
PS > $firewall.LocalPolicy.CurrentProfile.FirewallEnabled
True

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire-
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property provides
the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit http://msdn.microsoft.com and search for “Using Windows Firewall API.” The
documentation provides examples in VBScript but gives a useful overview of the func-
tionality available.

If you are unfamiliar with the VBScript-specific portions of the documentation, the
Microsoft Script Center provides a useful guide to help you convert from VBScript to
PowerShell. You can find that document at http://www.microsoft.com/technet/scriptcen
ter/topics/winpsh/convert/default.mspx.

For more information about working with COM objects in PowerShell, see Recipe 17.1.

See Also
Recipe 17.1, “Automate Programs Using COM Scripting Interfaces”

27.7 Open or Close Ports in the Windows Firewall

Problem
You want to open or close ports in the Windows Firewall.

Solution
To open or close ports in the Windows Firewall, use the LocalPolicy.CurrentPro
file.GloballyOpenPorts collection of the HNetCfg.FwMgr COM object.

To open a port, create a HNetCfg.FWOpenPort COM object to represent the port, and
then add it to the GloballyOpenPorts collection:

$PROTOCOL_TCP = 6
$firewall = New-Object -com HNetCfg.FwMgr
$port = New-Object -com HNetCfg.FWOpenPort

27.7 Open or Close Ports in the Windows Firewall | 613

http://msdn.microsoft.com
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx

$port.Name = "Webserver at 8080"
$port.Port = 8080
$port.Protocol = $PROTOCOL_TCP

$firewall.LocalPolicy.CurrentProfile.GloballyOpenPorts.Add($port)

To close a port, remove it from the GloballyOpenPorts collection:

$PROTOCOL_TCP = 6
$firewall.LocalPolicy.CurrentProfile.GloballyOpenPorts.Remove(8080, $PROTOCOL_TCP)

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire-
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property provides
the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit http://msdn.microsoft.com and search for “Using Windows Firewall API.” The
documentation provides examples in VBScript but gives a useful overview of the func-
tionality available.

If you are unfamiliar with the VBScript-specific portions of the documentation, the
Microsoft Script Center provides a useful guide to help you convert from VBScript to
PowerShell. You can find that document at http://www.microsoft.com/technet/scriptcen
ter/topics/winpsh/convert/default.mspx.

For more information about working with COM objects in PowerShell, see Recipe 17.1.

See Also
Recipe 17.1, “Automate Programs Using COM Scripting Interfaces”

27.8 Program: List All Installed Software
The best place to find information about currently installed software is actually from
the place that stores information about how to uninstall it: the HKLM:\SOFTWARE
\Microsoft\Windows\CurrentVersion\Uninstall registry key.

Each child of that registry key represents a piece of software you can uninstall—tradi-
tionally through the Add/Remove Programs entry in the Control Panel. In addition to
the DisplayName of the application, other useful properties usually exist (depending on
the application). Examples include Publisher, UninstallString, and HelpLink.

To see all the properties available from software installed on your system, type the
following:

$properties = Get-InstalledSoftware |
 Foreach-Object { $_.PsObject.Properties }

$properties | Select-Object Name | Sort-Object -Unique Name

614 | Chapter 27: Enterprise Computer Management

http://msdn.microsoft.com
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx

This lists all properties mentioned by at least one installed application (although very
few are shared by all installed applications).

To work with this data, though, you first need to retrieve it. Example 27-3 provides a
script to list all installed software on the current system, returning all information as
properties of PowerShell objects.

Example 27-3. Get-InstalledSoftware.ps1

##
##
Get-InstalledSoftware
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Lists installed software on the current computer.

.EXAMPLE

Get-InstalledSoftware *Frame* | Select DisplayName

DisplayName

Microsoft .NET Framework 3.5 SP1
Microsoft .NET Framework 3.5 SP1
Hotfix for Microsoft .NET Framework 3.5 SP1 (KB953595)
Hotfix for Microsoft .NET Framework 3.5 SP1 (KB958484)
Update for Microsoft .NET Framework 3.5 SP1 (KB963707)

#>

param(
 ## The name of the software to search for
 $DisplayName = "*"
)

Set-StrictMode -Off

Get all the listed software in the Uninstall key
$keys =
 Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

Get all of the properties from those items
$items = $keys | Foreach-Object { Get-ItemProperty $_.PsPath }

For each of those items, display the DisplayName and Publisher
foreach($item in $items)
{

27.8 Program: List All Installed Software | 615

 if(($item.DisplayName) -and ($item.DisplayName -like $displayName))
 {
 $item
 }
}

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Chapter 21, The Windows Registry

27.9 Uninstall an Application

Problem
You want to uninstall a specific software application.

Solution
To uninstall an application, use the Get-InstalledSoftware script provided in
Recipe 27.8 to retrieve the command that uninstalls the software. Since the Uninstall
String uses batch file syntax, use cmd.exe to launch the uninstaller:

PS > $software = Get-InstalledSoftware UnwantedProgram
PS > cmd /c $software.UninstallString

Alternatively, use the Win32_Product WMI class for an unattended installation:

$application = Get-WmiObject Win32_Product -filter "Name='UnwantedProgram'"
$application.Uninstall()

Discussion
The UninstallString provided by applications starts the interactive experience you
would see if you were to uninstall the application through the Add/Remove Programs
entry in the Control Panel. If you need to remove the software in an unattended manner,
you have two options: use the “quiet mode” of the application’s uninstaller (for ex-
ample, the /quiet switch to msiexec.exe) or use the software removal functionality of
the Win32_Product WMI class as demonstrated in the solution.

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 27.8, “Program: List All Installed Software”

Recipe 28.1, “Access Windows Management Instrumentation Data”

616 | Chapter 27: Enterprise Computer Management

27.10 Manage Computer Restore Points

Problem
You want to create a computer restore point, restore a computer to a previous restore
point, or manage the schedule for automatic restore points.

Solution
Use the Enable-ComputerRestore and Disable-ComputerRestore cmdlets to enable and
disable automatic computer checkpoints. Use the Get-ComputerRestorePoint and
Restore-Computer cmdlets to list all restore points and to restore a computer to one of
them, respectively. Use the Checkpoint-Computer cmdlet to create a new system restore
point.

PS > Get-ComputerRestorePoint |
 Select Description,SequenceNumber,RestorePointType |
 Format-Table -Auto

Description SequenceNumber RestorePointType
----------- -------------- ----------------
Windows Update 122 0
Windows Update 123 0
Scheduled Checkpoint 124 7
Scheduled Checkpoint 125 7
Windows Update 126 0
Scheduled Checkpoint 127 7
Scheduled Checkpoint 128 7
Windows Update 129 0
Scheduled Checkpoint 130 7
Windows Update 131 0
Scheduled Checkpoint 132 7
Windows Update 133 0
Manual Checkpoint 134 0
Before driver updates 135 0

PS > Checkpoint-Computer "Before driver updates"

Discussion
The computer restore point cmdlets give you an easy way to manage Windows’ system
restore points. You can use the Checkpoint-Computer to create a new restore point before
a potentially disruptive installation or system change. Figure 27-1 shows the Check
point-Computer cmdlet in progress. If you need to restore the computer to a previous
state, you can use the Get-ComputerRestorePoint cmdlet to list existing restore points,
and then use the Restore-Computer cmdlet to restore the computer to its previously
saved state.

27.10 Manage Computer Restore Points | 617

System restore points are finely tuned toward managing the state of the operating sys-
tem, and are not designed to protect user data. System restore points primarily protect
the Windows Registry, core operating system files, local user profiles, and COM and
WMI registration databases.

To conserve disk space, Windows limits the amount of space consumed by restore
points, and removes the oldest restore points as needed. If you plan to create manual
checkpoints more frequently than the ones automatically scheduled by Windows, con-
sider increasing the amount of space dedicated to system restore points. If you don’t,
you run the risk of being unable to recover from system errors that took you a long time
to detect.

By default, Windows schedules automatic restore points for your main system volume.
To enable or disable these automatic checkpoints for this (or any) volume, use the
Enable-ComputerRestore and Disable-ComputerRestore cmdlets.

On Windows 7, the Control Panel lets you configure how much space Windows re-
serves for restore points. To do this, open the System group in the Control Panel, and
then open System Protection. On Windows Vista, use the vssadmin.exe tool to manage
this policy.

Figure 27-1. Managing computer restore points

618 | Chapter 27: Enterprise Computer Management

27.11 Reboot or Shut Down a Computer

Problem
You want to restart or shut down a local or remote computer.

Solution
Use the Restart-Computer cmdlet to restart a computer:

PS > Restart-Computer -ComputerName Computer

Use the Stop-Computer cmdlet to shut it down entirely:

PS > Stop-Computer -ComputerName Computer

If you want to perform the same action on many computers, use the cmdlet’s throttling
support:

PS > $computers = Get-Content computers.txt
PS > Restart-Computer -ComputerName $computers -ThrottleLimit

Discussion
Both the Restart-Computer and Stop-Computer cmdlets let you manage the reboot and
shutdown process of a local or remote computer. Since they build on PowerShell’s WMI
support, they also offer the -ThrottleLimit parameter to let you control how many
machines should be controlled at a time.

By default, these cmdlets reject a restart or a shutdown if a user is logged on to the
computer. To restart the computer anyway, use the -Force parameter to override this
behavior.

While restarting a computer, you might sometimes want to have the
computer take some action after it comes back online. To do this, create
a new scheduled task (using the schtasks.exe application) with ONSTART
as the value of its schedule (/SC) parameter. For more information, see
Recipe 27.13.

Rather than shut down or restart a computer, you might instead want to suspend or
hibernate it. While neither the Restart-Computer nor Stop-Computer cmdlets support
this, you can use the System.Windows.Forms.Application class from the .NET Frame-
work to do so:

Add-Type -Assembly System.Windows.Forms
[System.Windows.Forms.Application]::SetSuspendState("Suspend", $false, $false)

Add-Type -Assembly System.Windows.Forms
[System.Windows.Forms.Application]::SetSuspendState("Hibernate", $false, $false)

27.11 Reboot or Shut Down a Computer | 619

This technique does not let you suspend or hibernate remote computers, but you can
use PowerShell Remoting to invoke those commands on remote systems.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Recipe 27.13, “Manage Scheduled Tasks on a Computer”

Chapter 29, Remoting

27.12 Determine Whether a Hotfix Is Installed

Problem
You want to determine whether a specific hotfix is installed on a system.

Solution
To retrieve a list of hotfixes applied to the system, use the Get-Hotfix cmdlet:

PS > Get-HotFix KB968930 | Format-List

Description : Windows Management Framework Core
FixComments : Update
HotFixID : KB968930
InstallDate :
InstalledBy : XPMUser
InstalledOn :
Name :
ServicePackInEffect : SP10
Status :

To search by description, use the -Description parameter:

PS > Get-HotFix -Description *Framework* | Format-List

Description : Windows Management Framework Core
FixComments : Update
HotFixID : KB968930
InstallDate :
InstalledBy : XPMUser
InstalledOn :
Name :
ServicePackInEffect : SP10
Status :

620 | Chapter 27: Enterprise Computer Management

Discussion
The Get-Hotfix cmdlet lets you determine whether a hotfix is installed on a specific
system. By default, it retrieves hotfixes from the local system, but you can use the
-ComputerName parameter to retrieve hotfix information from a remote system.

27.13 Manage Scheduled Tasks on a Computer

Problem
You want to schedule a task on a computer.

Solution
To manage scheduled tasks, use the schtasks.exe application.

To view the list of scheduled tasks:

PS > schtasks

TaskName Next Run Time Status
==================================== ======================== =============
Defrag C 03:00:00, 5/21/2007
User_Feed_Synchronization-{CA4D6D9C- 18:34:00, 5/20/2007
User_Feed_Synchronization-{CA4D6D9C- 18:34:00, 5/20/2007

To schedule a task to defragment C: every day at 3:00 a.m.:

schtasks /create /tn "Defrag C" /sc DAILY `
 /st 03:00:00 /tr "defrag c:" /ru Administrator

To remove a scheduled task by name:

schtasks /delete /tn "Defrag C"

Discussion
The example in the solution tells the system to defragment C: every day at 3:00 a.m. It
runs this command under the Administrator account, since the defrag.exe command
requires administrative privileges. In addition to scheduling tasks on the local com-
puter, the schtasks.exe application also allows you to schedule tasks on remote
computers.

On Windows Vista, the schtasks.exe application has been enhanced to support event
triggers, conditions, and additional settings.

Although the schtasks.exe application doesn’t support PowerShell scripts directly, you
can always use PowerShell’s command-line parameters to launch a script of your
choice. For example:

powershell -noprofile -noexit -windowstyle hidden
 -file e:\lee\tools\Start-Scheduler.ps1

27.13 Manage Scheduled Tasks on a Computer | 621

For more information about automating PowerShell from other applications, see
Recipe 1.12.

For more information about the schtasks.exe application, type schtasks /?.

See Also
Recipe 1.12, “Invoke a PowerShell Command or Script from Outside PowerShell”

27.14 Retrieve Printer Information

Problem
You want to get information about printers on the current system.

Solution
To retrieve information about printers attached to the system, use the Win32_Printer
WMI class:

PS > Get-WmiObject Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To retrieve information about a specific printer, apply a filter based on its name:

PS > $device = Get-WmiObject Win32_Printer -Filter "Name='Brother DCP-1000'"
PS > $device | Format-List *
Status : Unknown
Name : Brother DCP-1000
Attributes : 588
Availability :
AvailableJobSheets :
AveragePagesPerMinute : 0
Capabilities : {4, 2, 5}
CapabilityDescriptions : {Copies, Color, Collate}
Caption : Brother DCP-1000
(...)

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $device.VerticalResolution
600
PS > $device.HorizontalResolution
600

622 | Chapter 27: Enterprise Computer Management

Discussion
The example in the solution uses the Win32_Printer WMI class to retrieve information
about installed printers on the computer. While the Win32_Printer class gives access to
the most commonly used information, WMI supports several additional printer-
related classes: Win32_TCPIPPrinterPort, Win32_PrinterDriver, CIM_Printer,
Win32_PrinterConfiguration, Win32_PrinterSetting, Win32_PrinterController,
Win32_PrinterShare, and Win32_PrinterDriverDll. For more information about work-
ing with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

27.15 Retrieve Printer Queue Statistics

Problem
You want to get information about print queues for printers on the current system.

Solution
To retrieve information about printers attached to the system, use the
Win32_PerfFormattedData_Spooler_PrintQueue WMI class:

PS > Get-WmiObject Win32_PerfFormattedData_Spooler_PrintQueue |
Select Name,TotalJobsPrinted

Name TotalJobsPrinted
---- ----------------
Microsoft Office Document Image Wr... 0
Microsoft Office Document Image Wr... 0
CutePDF Writer 0
Brother DCP-1000 2
_Total 2

To retrieve information about a specific printer, apply a filter based on its name, as
shown in Example 27-4.

Example 27-4. Retrieving information about a specific printer

PS > $queueClass = "Win32_PerfFormattedData_Spooler_PrintQueue"
PS > $filter = "Name='Brother DCP-1000'"
PS > $stats = Get-WmiObject $queueClass -Filter $filter
PS > $stats | Format-List *

AddNetworkPrinterCalls : 129
BytesPrintedPersec : 0
Caption :
Description :

27.15 Retrieve Printer Queue Statistics | 623

EnumerateNetworkPrinterCalls : 0
Frequency_Object :
Frequency_PerfTime :
Frequency_Sys100NS :
JobErrors : 0
Jobs : 0
JobsSpooling : 0
MaxJobsSpooling : 1
MaxReferences : 3
Name : Brother DCP-1000
NotReadyErrors : 0
OutofPaperErrors : 0
References : 2
Timestamp_Object :
Timestamp_PerfTime :
Timestamp_Sys100NS :
TotalJobsPrinted : 2
TotalPagesPrinted : 0

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $stats.TotalJobsPrinted
2

Discussion
The Win32_PerfFormattedData_Spooler_PrintQueue WMI class provides access to the
various Windows performance counters associated with print queues. Because of this,
you can also access them through the .NET Framework, as mentioned in Recipe 17.3:

PS > Get-Counter "\Print Queue($printer)\Jobs" | Select -Expand CounterSamples |
 Select InstanceName,CookedValue | Format-Table -Auto

InstanceName CookedValue
------------ -----------
brother dcp-1000 usb 1

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 17.3, “Access Windows Performance Counters”

Recipe 28.1, “Access Windows Management Instrumentation Data”

27.16 Manage Printers and Print Queues

Problem
You want to clear pending print jobs from a printer.

624 | Chapter 27: Enterprise Computer Management

Solution
To manage printers attached to the system, use the Win32_Printer WMI class. By de-
fault, the WMI class lists all printers:

PS > Get-WmiObject Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To clear the print queue of a specific printer, apply a filter based on its name and call
the CancelAllJobs() method:

PS > $device = Get-WmiObject Win32_Printer -Filter "Name='Brother DCP-1000'"
PS > $device.CancelAllJobs()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 5

Discussion
The example in the solution uses the Win32_Printer WMI class to cancel all jobs for a
printer. In addition to cancelling all print jobs, the Win32_Printer class supports other
tasks:

PS > $device | Get-Member -MemberType Method

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Printer

Name MemberType Definition
---- ---------- ----------
CancelAllJobs Method System.Management.ManagementBaseObject Can...
Pause Method System.Management.ManagementBaseObject Pau...
PrintTestPage Method System.Management.ManagementBaseObject Pri...
RenamePrinter Method System.Management.ManagementBaseObject Ren...
Reset Method System.Management.ManagementBaseObject Res...
Resume Method System.Management.ManagementBaseObject Res...
SetDefaultPrinter Method System.Management.ManagementBaseObject Set...
SetPowerState Method System.Management.ManagementBaseObject Set...

For more information about working with WMI in PowerShell, see Recipe 28.1.

27.16 Manage Printers and Print Queues | 625

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

27.17 Program: Summarize System Information
WMI provides an immense amount of information about the current system or remote
systems. In fact, the msinfo32.exe application traditionally used to gather system in-
formation is based largely on WMI.

The script shown in Example 27-5 summarizes the most common information, but
WMI provides a great deal more than that. For a list of other commonly used WMI
classes, see Appendix G. For more information about working with WMI in Power-
Shell, see Recipe 28.1.

Example 27-5. Get-DetailedSystemInformation.ps1

##
##
Get-DetailedSystemInformation
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get detailed information about a system.

.EXAMPLE

Get-DetailedSystemInformation LEE-DESK > output.txt
Gets detailed information about LEE-DESK and stores the output into output.txt

#>

param(
 ## The computer to analyze
 $Computer = "."
)

Set-StrictMode -Version Latest

"#"*80
"System Information Summary"
"Generated $(Get-Date)"
"#"*80
""
""

626 | Chapter 27: Enterprise Computer Management

"#"*80
"Computer System Information"
"#"*80
Get-WmiObject Win32_ComputerSystem -Computer $computer | Format-List *

"#"*80
"Operating System Information"
"#"*80
Get-WmiObject Win32_OperatingSystem -Computer $computer | Format-List *

"#"*80
"BIOS Information"
"#"*80
Get-WmiObject Win32_Bios -Computer $computer | Format-List *

"#"*80
"Memory Information"
"#"*80
Get-WmiObject Win32_PhysicalMemory -Computer $computer | Format-List *

"#"*80
"Physical Disk Information"
"#"*80
Get-WmiObject Win32_DiskDrive -Computer $computer | Format-List *

"#"*80
"Logical Disk Information"
"#"*80
Get-WmiObject Win32_LogicalDisk -Computer $computer | Format-List *

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 28.1, “Access Windows Management Instrumentation Data”

Appendix G, WMI Reference

27.18 Renew a DHCP Lease

Problem
You want to renew the DHCP lease for a connection on a computer.

Solution
To renew DHCP leases, use the ipconfig application. To renew the lease on all
connections:

PS > ipconfig /renew

27.18 Renew a DHCP Lease | 627

To renew the lease on a specific connection:

PS > ipconfig /renew "Wireless Network Connection 4"

Discussion
The standard ipconfig application works well to manage network configuration op-
tions on a local machine. To renew the lease on a remote computer, you have two
options.

Use the Win32_NetworkAdapterConfiguration WMI class

In order to renew the lease on a remote computer, use the
Win32_NetworkAdapterConfiguration WMI class. The WMI class requires that you
know the description of the network adapter, so first obtain that by reviewing the
output of Get-WmiObject Win32_NetworkAdapterConfiguration -Computer ComputerName:

PS > Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, call its RenewDHCPLease() method:

$description = "Linksys Wireless-G USB"
$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.Description -match $description}
$adapter.RenewDHCPLease()

Run ipconfig on the remote computer

Another way to renew the DHCP lease on a remote computer is to use either PowerShell
Remoting or the solution offered by Recipe 29.2:

PS > Invoke-Command LEE-DESK { ipconfig /renew }
PS > Invoke-RemoteExpression \\LEE-DESK { ipconfig /renew }

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

Recipe 29.2, “Program: Invoke a PowerShell Expression on a Remote Machine”

628 | Chapter 27: Enterprise Computer Management

27.19 Assign a Static IP Address

Problem
You want to assign a static IP address to a computer.

Solution
Use the Win32_NetworkAdapterConfiguration WMI class to manage network settings for
a computer:

$description = "Linksys Wireless-G USB"
$staticIp = "192.168.1.100"
$subnetMask = "255.255.255.0"
$gateway = "192.168.1.1"

$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.Description -match $description}
$adapter.EnableStatic($staticIp, $subnetMask)
$adapter.SetGateways($gateway, [UInt16] 1)

Discussion
When you are managing network settings for a computer, the
Win32_NetworkAdapterConfiguration WMI class requires that you know the description
of the network adapter. Obtain that by reviewing the output of Get-WmiObject Win32_Net
workAdapterConfiguration -Computer ComputerName:

PS > Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, you can now call methods on that object
as illustrated in the solution. To enable DHCP on an adapter again, use the
EnableDHCP() method:

PS > $adapter.EnableDHCP()

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

27.19 Assign a Static IP Address | 629

27.20 List All IP Addresses for a Computer

Problem
You want to list all IP addresses for a computer.

Solution
To list IP addresses assigned to a computer, use the ipconfig application:

PS > ipconfig

Discussion
The standard ipconfig application works well to manage network configuration op-
tions on a local machine. To view IP addresses on a remote computer, you have two
options.

Use the Win32_NetworkAdapterConfiguration WMI class

To view IP addresses of a remote computer, use the Win32_NetworkAdapterConfigura
tion WMI class. Since that lists all network adapters, use the Where-Object cmdlet to
restrict the results to those with an IP address assigned to them:

PS > Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.IpEnabled }

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooste
 r v2 - Packet Scheduler Miniport
Index : 13

Run ipconfig on the remote computer

Another way to view the IP addresses of a remote computer is to use either PowerShell
Remoting or the solution offered by Recipe 29.2:

PS > Invoke-Command LEE-DESK { ipconfig }
PS > Invoke-RemoteExpression \\LEE-DESK { ipconfig }

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

Recipe 29.2, “Program: Invoke a PowerShell Expression on a Remote Machine”

630 | Chapter 27: Enterprise Computer Management

27.21 List Network Adapter Properties

Problem
You want to retrieve information about network adapters on a computer.

Solution
To retrieve information about network adapters on a computer, use the
Win32_NetworkAdapterConfiguration WMI class:

Get-WmiObject Win32_NetworkAdapterConfiguration -Computer <ComputerName>

To list only those with IP addresses assigned to them, use the Where-Object cmdlet to
filter on the IpEnabled property:

PS > Get-WmiObject Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.IpEnabled }

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooster
 v2 - Packet Scheduler Miniport
Index : 13

Discussion
The solution uses the Win32_NetworkAdapterConfiguration WMI class to retrieve infor-
mation about network adapters on a given system. By default, PowerShell displays only
the most important information about the network adapter, but it provides access to
much more.

To see all information available, use the Format-List cmdlet, as shown in Example 27-6.

Example 27-6. Using the Format-List cmdlet to see detailed information about a network adapter

PS > $adapter = Get-WmiObject Win32_NetworkAdapterConfiguration |
 Where-Object { $_.IpEnabled }

PS > $adapter
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooster
 v2 - Packet Scheduler Miniport
Index : 13

27.21 List Network Adapter Properties | 631

PS > $adapter | Format-List *

DHCPLeaseExpires : 20070521221927.000000-420
Index : 13
Description : Linksys Wireless-G USB Network Adapter with
 SpeedBooster v2 - Packet Scheduler Miniport
DHCPEnabled : True
DHCPLeaseObtained : 20070520221927.000000-420
DHCPServer : 192.168.1.1
DNSDomain : hsd1.wa.comcast.net.
DNSDomainSuffixSearchOrder :
DNSEnabledForWINSResolution : False
DNSHostName : Lee-Desk
DNSServerSearchOrder : {68.87.69.146, 68.87.85.98}
DomainDNSRegistrationEnabled : False
FullDNSRegistrationEnabled : True
IPAddress : {192.168.1.100}
IPConnectionMetric : 25
IPEnabled : True
IPFilterSecurityEnabled : False
WINSEnableLMHostsLookup : True
(...)

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $adapter.MacAddress
00:12:17:77:B4:EB

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

632 | Chapter 27: Enterprise Computer Management

CHAPTER 28

Windows Management
Instrumentation

28.0 Introduction
Windows Management Instrumentation (WMI) has long been a core management
feature in Windows. It offers amazing breadth, wide reach, and ubiquitous remoting.

What WMI lacked in the past, though, was a good way to get to it. Graphically, the
wbemtest.exe utility lets you experiment with WMI, its namespaces, and classes. It truly
is a testing tool, though, as its complex user interface makes it impractical to use for
most scenarios (see Figure 28-1).

A more user-friendly alternative is the wmic.exe command-line tool. The WMIC tool
lets you interactively query WMI—but more importantly, automate its behavior. As
with PowerShell, results within WMIC retain a great deal of their structured informa-
tion and let you write fairly detailed queries:

PS > WMIC logicaldisk WHERE drivetype=3 `
 GET "name,freespace,SystemName,FileSystem,Size"

FileSystem FreeSpace Name Size SystemName
NTFS 10587656192 C: 34357637120 LEEHOLMES1C23

The language is limited, however, and all of the data’s structure is lost once WMIC
converts its output to text.

By far, the most popular user interface for WMI has been VBScript, the administrator’s
traditional scripting language. VBScript offers much richer language facilities than
WMIC and retains WMI’s structured data for the entire duration of your script.

633

VBScript has its own class of usability difficulties, however. For example, generating a
report of the processes running on a computer often ends up looking like this:

strComputer = "atl-dc-01"
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" _
 & strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery _
 ("Select * from Win32_Process")
For Each objProcess in colProcessList
 Wscript.Echo "Process: " & objProcess.Name
 Wscript.Echo "Process ID: " & objProcess.ProcessID
 Wscript.Echo "Thread Count: " & objProcess.ThreadCount
 Wscript.Echo "Page File Size: " _
 & objProcess.PageFileUsage
 Wscript.Echo "Page Faults: " _

Figure 28-1. Using wbemtest.exe to retrieve a Win32_Process

634 | Chapter 28: Windows Management Instrumentation

 & objProcess.PageFaults
 Wscript.Echo "Working Set Size: " _
 & objProcess.WorkingSetSize
Next

It also requires that you write an entire script, and it offers no lightweight interactive
experience. The Microsoft Scripting Guys’ Scriptomatic tool helps make it easier to
create many of these mundane scripts, but it still doesn’t address one-off queries.

Enter PowerShell.

PowerShell elevates WMI to a first-class citizen for both ad-hoc and structured queries.
Since most of the template VBScript for dealing with WMI instances ends up being
used to display the results, PowerShell eliminates this step completely. The PowerShell
equivalent of the preceding VBScript is simply:

Get-WmiObject Win32_Process -Computer atl-dc-01

Or, if you want a subset of properties:

Get-WmiObject Win32_Process | Select Name,ProcessId,ThreadCount

By providing a deep and user-friendly integration with WMI, PowerShell puts a great
deal of functionality at the fingertips of every administrator.

28.1 Access Windows Management Instrumentation Data

Problem
You want to work with data and functionality provided by the WMI facilities in
Windows.

Solution
To retrieve all instances of a WMI class, use the Get-WmiObject cmdlet:

Get-WmiObject -ComputerName Computer -Class Win32_Bios

To retrieve specific instances of a WMI class using a WMI filter, supply an argument
to the -Filter parameter of the Get-WmiObject cmdlet. This is the WHERE clause of a WQL
statement, but without the WHERE keyword:

Get-WmiObject Win32_Service -Filter "StartMode = 'Auto'"

To retrieve instances of a WMI class using WMI’s WQL language, use the [Wmi
Searcher] type shortcut:

$query = [WmiSearcher] "SELECT * FROM Win32_Service WHERE StartMode = 'Auto'"
$query.Get()

28.1 Access Windows Management Instrumentation Data | 635

To retrieve a specific instance of a WMI class using a WMI filter, use the [Wmi] type
shortcut:

[Wmi] 'Win32_Service.Name="winmgmt"'

To retrieve a property of a WMI instance, access that property as you would access
a .NET property:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.StartMode

To invoke a method on a WMI instance, invoke that method as you would invoke
a .NET method:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

To invoke a method on a WMI class, use the Invoke-WmiMethod cmdlet. Alternatively,
use the [WmiClass] type shortcut to access that WMI class. Then, invoke that method
as you would invoke a .NET method:

Invoke-WmiMethod Win32_Process Create notepad

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

To retrieve a WMI class from a specific namespace, use its fully qualified name along
with the [WmiClass] type shortcut:

[WmiClass] "\\COMPUTER\Root\Cimv2:Win32_Process"

Discussion
Working with WMI has long been a staple of managing Windows systems—especially
systems that are part of corporate domains or enterprises. WMI supports a huge num-
ber of Windows management tasks, albeit not in a very user-friendly way.

Traditionally, administrators required either VBScript or the WMIC command-line
tool to access and manage these systems through WMI. While powerful and useful,
these techniques still provided plenty of opportunities for improvement. VBScript lacks
support for an ad-hoc investigative approach, and WMIC fails to provide (or take ad-
vantage of) knowledge that applies to anything outside WMIC.

In comparison, PowerShell lets you work with WMI just like you work with the rest of
the shell. WMI instances provide methods and properties, and you work with them
the same way you work with methods and properties of other objects in PowerShell.

Not only does PowerShell make working with WMI instances and classes easy once
you have them, but it also provides a clean way to access them in the first place. For
most tasks, you need only to use the simple [Wmi], [WmiClass], or [WmiSearcher] syntax
as shown in the solution.

636 | Chapter 28: Windows Management Instrumentation

Along with WMI’s huge scope, though, comes a related problem: finding the WMI
class that accomplishes your task. To assist you in learning what WMI classes are
available, Appendix G provides a helpful listing of the most common ones. For a script
that helps you search for WMI classes by name, description, property name, or property
description, see Recipe 28.5.

Some advanced WMI tasks require that you enable your security privileges or adjust
the packet privacy settings used in your request. All of PowerShell’s WMI cmdlets
support these options through built-in parameters.

When you want to access a specific WMI instance with the [Wmi] accelerator, you might
at first struggle to determine what properties WMI lets you search on. These properties
are called key properties on the class. For a script that lists these key properties, see
Recipe 28.4.

For more information about the Get-WmiObject cmdlet, type Get-Help Get-WmiObject.

See Also
Recipe 28.4, “Program: Determine Properties Available to WMI Filters”

Recipe 28.5, “Program: Search for WMI Classes”

Appendix G, WMI Reference

28.2 Modify the Properties of a WMI Instance

Problem
You want to modify the properties of a WMI instance.

Solution
Use the Set-WmiInstance cmdlet:

PS > $bootVolume = Get-WmiObject Win32_LogicalDisk |
 Where-Object { $_.DeviceID -eq 'C:' }

PS > $bootVolume

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : Boot Volume

PS > $bootVolume | Set-WmiInstance -Arguments @{ VolumeName = 'Vista' }

DeviceID : C:
DriveType : 3

28.2 Modify the Properties of a WMI Instance | 637

ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : Vista

Discussion
Although you can assign new property values to the objects output by Get-WmiObject,
changes you make ultimately are not reflected in the permanent system state, as this
example shows:

PS > $bootVolume = Get-WmiObject Win32_LogicalDisk |
 Where-Object { $_.DeviceID -eq 'C:' }

PS > $bootVolume

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : Vista

PS > $bootVolume.VolumeName = "Boot Volume"

PS > Get-WmiObject Win32_LogicalDisk |
 Where-Object { $_.DeviceID -eq 'C:' }

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587652096
Size : 34357637120
VolumeName : Vista

Instead, the Set-WmiInstance cmdlet lets you permanently modify values of WMI in-
stances. While the Set-WmiInstance cmdlet supports WMI instances as pipeline input,
you can also pass the fully qualified path to the -Path parameter:

Set-WmiInstance -Path "Win32_LogicalDisk.DeviceID='C:'" `
 -Argument @{ VolumeName="Vista" }

To determine which properties can be modified on an instance, you need to investigate
the WMI class that defines it. Each WMI class has a Properties collection, and each
property has a Qualifiers collection. If Write is one of the qualifiers, then that property
is writeable:

PS > [WmiClass] "Win32_LogicalDisk" | Select -Expand Properties

(...)
Name : VolumeName
Value :
Type : String

638 | Chapter 28: Windows Management Instrumentation

IsLocal : True
IsArray : False
Origin : Win32_LogicalDisk
Qualifiers : {CIMTYPE, MappingStrings, read, write}

Name : VolumeSerialNumber
Value :
Type : String
IsLocal : True
IsArray : False
Origin : Win32_LogicalDisk
Qualifiers : {CIMTYPE, MappingStrings, read}
(...)

To automatically see all writeable classes in the ROOT\CIMV2 namespace, simply run this
snippet of PowerShell script:

$writeableProperties = Get-WmiObject -List -Recurse |
 Select -Expand Properties |
 Where-Object { $_ | Select -Expand Qualifiers |
 Where-Object { $_.Name -eq "Write" } } | Select Origin,Name

Like all other WMI-related cmdlets, the Set-WmiInstance cmdlet lets you configure
impersonation, authentication, and privilege restrictions. For more information about
working with WMI classes, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

Appendix G, WMI Reference

28.3 Invoke a Method on a WMI Class

Problem
You want to invoke a method supported by a WMI class.

Solution
Use the Invoke-WmiMethod cmdlet:

PS > Invoke-WmiMethod -Class Win32_Process -Name Create -Args notepad.exe
(notepad starts)

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :

28.3 Invoke a Method on a WMI Class | 639

__NAMESPACE :
__PATH :
ProcessId : 3644
ReturnValue : 0

Discussion
As with .NET types, WMI classes describe the functionality and features of a related
set of items. For example, the Win32_Process class describes the features and behavior
of an entity called an operating system process. When WMI returns information about
a specific operating system process, that is called an instance.

As with static methods on .NET types, many WMI classes offer methods that relate
broadly to the entity they try to represent. For example, the Win32_Process class defines
methods to start processes, stop them, and more. To invoke any of these methods, call
the Invoke-WmiMethod cmdlet.

While you may already know the method you want to call, PowerShell also offers a way
to see the methods exposed by WMI classes on your system. Each WMI class has a
Methods collection, and reviewing that collection lists all methods supported by that
class. The following snippet lists all methods supported by all classes in the ROOT
\CIMV2 namespace:

Get-WmiObject -List -Recurse | Select -Expand Methods | Select Origin,Name

Like all other WMI-related cmdlets, the Invoke-WmiMethod cmdlet lets you configure
impersonation, authentication, and privilege restrictions.

In addition to the Invoke-WmiMethod cmdlet, the [WmiClass] type shortcut also lets you
refer to a WMI class and invoke its methods:

$processClass = [WmiClass] "Win32_Process"
$processClass.Create("notepad.exe")

This method, however, does not easily support customization of impersonation,
authentication, or privilege restrictions.

For more information about working with WMI classes, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

Appendix G, WMI Reference

28.4 Program: Determine Properties Available to WMI Filters
When you want to access a specific WMI instance with PowerShell’s [Wmi] type short-
cut, you might at first struggle to determine what properties WMI lets you search on.
These properties are called key properties on the class. Example 28-1 gets all the prop-
erties you can use in a WMI filter for a given class.

640 | Chapter 28: Windows Management Instrumentation

Example 28-1. Get-WmiClassKeyProperty.ps1

##
##
Get-WmiClassKeyProperty
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get all of the properties that you can use in a WMI filter for a given class.

.EXAMPLE

Get-WmiClassKeyProperty Win32_Process
Handle

#>

param(
 ## The WMI class to examine
 [WmiClass] $WmiClass
)

Set-StrictMode -Version Latest

WMI classes have properties
foreach($currentProperty in $wmiClass.Properties)
{
 ## WMI properties have qualifiers to explain more about them
 foreach($qualifier in $currentProperty.Qualifiers)
 {
 ## If it has a 'Key' qualifier, then you may use it in a filter
 if($qualifier.Name -eq "Key")
 {
 $currentProperty.Name
 }
 }
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

28.4 Program: Determine Properties Available to WMI Filters | 641

28.5 Program: Search for WMI Classes
Along with WMI’s huge scope comes a related problem: finding the WMI class that
accomplishes your task. To help you learn what WMI classes are available, Appen-
dix G provides a helpful listing of the most common ones. If you want to dig a little
deeper, though, Example 28-2 lets you search for WMI classes by name, description,
property name, or property description.

Example 28-2. Search-WmiNamespace.ps1

##
##
Search-WmiNamespace
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the WMI classes installed on the system for the provided match text.

.EXAMPLE

Search-WmiNamespace Registry
Searches WMI for any classes or descriptions that mention "Registry"

.EXAMPLE

Search-WmiNamespace Process ClassName,PropertyName
Searches WMI for any classes or properties that mention "Process"

.EXAMPLE

Search-WmiNamespace CPU -Detailed
Searches WMI for any class names, descriptions, or properties that mention
"CPU"

#>

param(
 ## The pattern to search for
 [Parameter(Mandatory = $true)]
 [string] $Pattern,

 ## Switch parameter to look for class names, descriptions, or properties
 [switch] $Detailed,

 ## Switch parameter to look for class names, descriptions, properties, and
 ## property description.
 [switch] $Full,

642 | Chapter 28: Windows Management Instrumentation

 ## Custom match options.
 ## Supports any or all of the following match options:
 ## ClassName, ClassDescription, PropertyName, PropertyDescription
 [string[]] $MatchOptions = ("ClassName","ClassDescription")
)

Set-StrictMode -Off

Helper function to create a new object that represents
a Wmi match from this script
function New-WmiMatch
{
 param($matchType, $className, $propertyName, $line)

 $wmiMatch = New-Object PsObject -Property @{
 MatchType = $matchType;
 ClassName = $className;
 PropertyName = $propertyName;
 Line = $line
 }

 $wmiMatch
}

If they've specified the -detailed or -full options, update
the match options to provide them an appropriate amount of detail
if($detailed)
{
 $matchOptions = "ClassName","ClassDescription","PropertyName"
}

if($full)
{
 $matchOptions =
 "ClassName","ClassDescription","PropertyName","PropertyDescription"
}

Verify that they specified only valid match options
foreach($matchOption in $matchOptions)
{
 $fullMatchOptions =
 "ClassName","ClassDescription","PropertyName","PropertyDescription"

 if($fullMatchOptions -notcontains $matchOption)
 {
 $error = "Cannot convert value {0} to a match option. " +
 "Specify one of the following values and try again. " +
 "The possible values are ""{1}""."
 $ofs = ", "
 throw ($error -f $matchOption, ([string] $fullMatchOptions))
 }
}

Go through all of the available classes on the computer

28.5 Program: Search for WMI Classes | 643

foreach($class in Get-WmiObject -List -Rec)
{
 ## Provide explicit get options, so that we get back descriptions
 ## as well
 $managementOptions = New-Object System.Management.ObjectGetOptions
 $managementOptions.UseAmendedQualifiers = $true
 $managementClass =
 New-Object Management.ManagementClass $class.Name,$managementOptions

 ## If they want us to match on class names, check if their text
 ## matches the class name
 if($matchOptions -contains "ClassName")
 {
 if($managementClass.Name -match $pattern)
 {
 New-WmiMatch "ClassName" `
 $managementClass.Name $null $managementClass.__PATH
 }
 }

 ## If they want us to match on class descriptions, check if their text
 ## matches the class description
 if($matchOptions -contains "ClassDescription")
 {
 $description =
 $managementClass.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }
 if($description -match $pattern)
 {
 New-WmiMatch "ClassDescription" `
 $managementClass.Name $null $description
 }
 }

 ## Go through the properties of the class
 foreach($property in $managementClass.Properties)
 {
 ## If they want us to match on property names, check if their text
 ## matches the property name
 if($matchOptions -contains "PropertyName")
 {
 if($property.Name -match $pattern)
 {
 New-WmiMatch "PropertyName" `
 $managementClass.Name $property.Name $property.Name
 }
 }

 ## If they want us to match on property descriptions, check if
 ## their text matches the property name
 if($matchOptions -contains "PropertyDescription")
 {
 $propertyDescription =
 $property.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }

644 | Chapter 28: Windows Management Instrumentation

 if($propertyDescription -match $pattern)
 {
 New-WmiMatch "PropertyDescription" `
 $managementClass.Name $property.Name $propertyDescription
 }
 }
 }
}

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Appendix G, WMI Reference

28.6 Use .NET to Perform Advanced WMI Tasks

Problem
You want to work with advanced features of WMI, but PowerShell’s access (through
the [Wmi], [WmiClass], and [WmiSearcher] accelerators) does not directly support them.

Solution
To interact with advanced features of WMI objects, access their methods and
properties.

Advanced instance features

To get WMI instances related to a given instance (its associators), call the
GetRelated() method:

$instance = [Wmi] 'Win32_Service.Name="winmgmt"'
$instance.GetRelated()

To change advanced scope options, access the Scope.Options property. While the
Invoke-WmiMethod cmdlet lets you enable privileges directly through a parameter, this
example provides another option:

$system = Get-WmiObject Win32_OperatingSystem
$system.Scope.Options.EnablePrivileges = $true
$system.SetDateTime($class.ConvertFromDateTime("01/01/2007"))

Advanced class features

To retrieve the WMI properties and qualifiers of a class, access the Properties property:

$class = [WmiClass] "Win32_Service"
$class.Properties

28.6 Use .NET to Perform Advanced WMI Tasks | 645

Advanced query feature

To configure connection options on a query, such as Packet Privacy and Authentica-
tion, set the options on the Scope property:

$credential = Get-Credential
$query = [WmiSearcher] "SELECT * FROM IISWebServerSetting"
$query.Scope.Path = "\\REMOTE_COMPUTER\Root\MicrosoftIISV2"
$query.Scope.Options.Username = $credential.Username
$query.Scope.Options.Password = $credential.GetNetworkCredential().Password
$query.Scope.Options.Authentication = "PacketPrivacy"
$query.get() | Select-Object AnonymousUserName

Discussion
The [Wmi], [WmiClass], and [WmiSearcher] type shortcuts return instances of .NET
System.Management.ManagementObject, System.Management.ManagementClass, and
System.Management.ManagementObjectSearcher classes, respectively.

As might be expected, the .NET Framework provides comprehensive support for WMI
queries, with PowerShell providing an easier-to-use interface to that support. If you
need to step outside the support offered directly by PowerShell, these classes in
the .NET Framework provide an advanced outlet.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

28.7 Improve the Performance of Large-Scale WMI Operations

Problem
You want to perform a large-scale WMI operation across many computers, and you
want to control how many computers should be managed at a time.

Solution
Use the -ThrottleLimit parameter on the cmdlet, and invoke that cmdlet as a job:

$computers = Get-Content computers.txt
Get-WmiObject Win32_OperatingSystem -Computer $computers -ThrottleLimit 10 -AsJob

Discussion
One problem with large-scale WMI operations against many computers is that most
scripts invoke them sequentially. If your script acts against 10,000 servers, it will usually
process the first computer, and then retrieve the results. Next, it will process the second

646 | Chapter 28: Windows Management Instrumentation

computer, and then retrieve its results. Since WMI operations are traditionally network-
bound, your script spends the vast majority of its time simply waiting for results from
remote computers.

A genesis for this feature was a sobering story we heard from one of our
large customers. The customer’s scripts had to deal with so many com-
puters that the customer would have to start a second script before the
first had finished!

The solution to this quandary comes from invoking the commands in parallel. Not
entirely in parallel, however, as most machines would buckle under the load of 10,000
active WMI queries. While it is possible to recognize the solution and pitfalls, actually
implementing it is something different altogether. Even with the proper skill set, a job
manager that supports automatic throttling is usually not high on an administrator’s
list of priorities when compared to the collection of fires the administrator needs to
put out.

Instead, PowerShell’s WMI cmdlets handle all of this complexity for you. For more
information about PowerShell’s job support, see Recipe 1.4.

See Also
Recipe 1.4, “Invoke a Long-Running or Background Command”

28.8 Convert a VBScript WMI Script to PowerShell

Problem
You want to perform a WMI task in PowerShell, but you can find only VBScript ex-
amples that demonstrate the solution to the problem.

Solution
To accomplish the task of a script that retrieves data from a computer, use the Get-
WmiObject cmdlet:

foreach($printer in Get-WmiObject -Computer COMPUTER Win32_Printer)
{
 ## Work with the properties
 $printer.Name
}

To accomplish the task of a script that calls methods on an instance, use the [Wmi] or
[WmiSearcher] accelerators to retrieve the instances, and then call methods on the in-
stances like you would call any other PowerShell method.

28.8 Convert a VBScript WMI Script to PowerShell | 647

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service | Invoke-WmiMethod -Name ChangeStartMode -ArgumentList "Manual"
$service | Invoke-WmiMethod -Name ChangeStartMode -ArgumentList "Automatic"

To accomplish the task of a script that calls methods on a class, use the
Invoke-WmiMethod cmdlet, or use the [WmiClass] accelerator to retrieve the class, and
then call methods on the class like you would call any other PowerShell method:

Invoke-WmiMethod Win32_Process Create notepad

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

Discussion
For many years, VBScript has been the preferred language that administrators use to
access WMI data. Because of that, the vast majority of scripts available in books and
on the Internet come written in VBScript.

These scripts usually take one of three forms: retrieving data and accessing properties,
calling methods of an instance, and calling methods of a class.

Although most WMI scripts on the Internet accomplish unique tasks,
PowerShell supports many of the traditional WMI tasks natively. If you
want to translate a WMI example to PowerShell, first check that there
aren’t any PowerShell cmdlets that might accomplish the task directly.

Retrieving data

One of the most common uses of WMI is for data collection and system inventory tasks.
A typical VBScript that retrieves data looks like Example 28-3.

Example 28-3. Retrieving printer information from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colInstalledPrinters = objWMIService.ExecQuery _
 ("Select * from Win32_Printer")

For Each objPrinter in colInstalledPrinters
 Wscript.Echo "Name: " & objPrinter.Name
 Wscript.Echo "Location: " & objPrinter.Location
 Wscript.Echo "Default: " & objPrinter.Default
Next

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a class.
The For Each block loops over all the instances, and the objPrinter.Property state-
ments interact with properties on those instances.

648 | Chapter 28: Windows Management Instrumentation

In PowerShell, the Get-WmiObject cmdlet takes care of most of that by retrieving all
instances of a class from the computer and namespace that you specify. The first five
lines of code then become:

$installedPrinters = Get-WmiObject Win32_Printer -ComputerName computer

If you need to specify a different computer, namespace, or query restriction, the Get-
WmiObject cmdlets supports those through optional parameters. If you need to specify
advanced connection options (such as authentication levels), simply specify those in
the -Impersonation and -Authentication parameters to the cmdlet.

In PowerShell, the For Each block becomes:

foreach($printer in $installedPrinters)
{
 $printer.Name
 $printer.Location
 $printer.Default
}

Notice that we spend the bulk of the PowerShell conversion of this script showing how
to access properties. If you don’t actually need to work with the properties (and only
want to display them for reporting purposes), PowerShell’s formatting commands sim-
plify that even further:

Get-WmiObject Win32_Printer -ComputerName computer | Format-List Name,Location,Default

For more information about working with the Get-WmiObject cmdlet, see Recipe 28.1.

Calling methods on an instance

Although data retrieval scripts form the bulk of WMI management examples, another
common task is to call methods of an instance that invoke actions.

For example, Example 28-4 changes the startup type of a service.

Example 28-4. Changing the startup type of a service from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colServiceList = objWMIService.ExecQuery _
 ("Select * from Win32_Service where StartMode = 'Manual'")

For Each objService in colServiceList
 errReturnCode = objService.ChangeStartMode("Disabled")
Next

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a class
and adds an additional filter (StartMode = 'Manual') to the query. The For Each block

28.8 Convert a VBScript WMI Script to PowerShell | 649

loops over all the instances, and the objService.Change(…) statement calls the
Change() method on the service.

In PowerShell, the Get-WmiObject cmdlet takes care of most of the setup by retrieving
all instances of a class from the computer and namespace that you specify. The first
five lines of code then become:

$services = Get-WmiObject Win32_Service -Filter "StartMode = 'Manual'"

If you need to specify a different computer or namespace, the Get-WmiObject cmdlet
supports those through optional parameters. If you need to specify advanced connec-
tion options (such as authentication levels), simply specify those in the
-Impersonation and -Authentication parameters to the cmdlet.

In PowerShell, the For Each block becomes:

foreach($service in $services)
{
 $service.ChangeStartMode("Disabled")
}

For more information about working with the Get-WmiObject cmdlet, see Recipe 28.1.

Calling methods on a class

Although less common than calling methods on an instance, it is sometimes helpful to
call methods on a WMI class. PowerShell makes this work almost exactly like calling
methods on an instance.

For example, a script that creates a process on a remote computer looks like this:

strComputer = "COMPUTER"
Set objWMIService = GetObject _
 ("winmgmts:\\" & strComputer & "\root\cimv2:Win32_Process")

objWMIService.Create("notepad.exe")

The first three lines prepare a WMI connection to a given computer and namespace.
The final line calls the Create() method on the class.

In PowerShell, the Invoke-WmiMethod cmdlet lets you easily work with methods on
a class. The entire segment of code then becomes:

Invoke-WmiMethod "\\COMPUTER\Root\Cimv2:Win32_Process" Create notepad.exe

For more information about invoking methods on WMI classes, see Recipe 28.3.

See Also
Recipe 28.1, “Access Windows Management Instrumentation Data”

Recipe 28.3, “Invoke a Method on a WMI Class”

650 | Chapter 28: Windows Management Instrumentation

CHAPTER 29

Remoting

29.0 Introduction
PowerShell’s support for local and interactive computer automation makes it an in-
credibly attractive platform for computer management and administration. Its rich,
object-flavored perspective takes even the simplest of management tasks to the next
level.

In version one, local administration was essentially the limit of where PowerShell ap-
plied its unique perspective. While it supported interaction with traditional remoting
technologies (SSH, FTP, Telnet, PsExec, and more), its support was no different than
that offered by any other shell.

In version two, the PowerShell and Windows Remote Management (WinRM) teams
worked together closely to create a combined release known as the Windows Manage-
ment Framework. Designing a rich remoting experience was one of the top focuses of
their collaboration. Starting with standard interactive remoting, PowerShell lets you
easily connect to a remote system and work with it one to one.

If you want to import the commands from that remote system (but still have them run
on the remote system), implicit remoting often lets you forget you are managing a remote
system altogether. Expanding on interactive and implicit remoting, large-scale fan-
out remoting is a natural next step. Fan-out remoting let you manage many computers
at a time in a bulk, command-based approach.

PS > Invoke-Command Lee-Desk { Get-Process -n PowerShell } -Cred Lee

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

As with the rest of PowerShell, fan-out remoting offers a unique, object-focused treat-
ment that elevates its experience past plain-text-based approaches.

651

29.1 Find Commands That Support Their Own Remoting

Problem
You want to find commands that let you access remote computers but that don’t require
PowerShell Remoting.

Solution
Use the Get-Command cmdlet to retrieve all cmdlets, and then access the Parameters
collection to find all commands that expose a -ComputerName parameter:

PS > Get-Command -CommandType Cmdlet |
 Where-Object { $_.Parameters["ComputerName"] }

CommandType Name Definition
----------- ---- ----------
Cmdlet Clear-EventLog Clear-EventLog [-LogName]...
Cmdlet Connect-WSMan Connect-WSMan [[-Computer...
Cmdlet Disconnect-WSMan Disconnect-WSMan [[-Compu...
Cmdlet Enter-PSSession Enter-PSSession [-Compute...
Cmdlet Get-Counter Get-Counter [[-Counter] <...
Cmdlet Get-EventLog Get-EventLog [-LogName] <...
Cmdlet Get-HotFix Get-HotFix [[-Id] <String...
Cmdlet Get-Process Get-Process [[-Name] <Str...
(...)

Alternatively, use the -Parameter parameter of the Get-Help cmdlet:

PS > Get-Help * -Parameter ComputerName

Name Category Synopsis
---- -------- --------
Get-WinEvent Cmdlet Gets events from event logs...
Get-Counter Cmdlet Gets performance counter da...
Test-WSMan Cmdlet Tests whether the WinRM ser...
Invoke-WSManAction Cmdlet Invokes an action on the ob...
Connect-WSMan Cmdlet Connects to the WinRM servi...
Disconnect-WSMan Cmdlet Disconnects the client from...
(...)

Discussion
While PowerShell Remoting offers great power and consistency, sometimes you might
need to invoke a command against a system that does not have PowerShell installed.
A simple Remote Desktop session is a common approach, but PowerShell still offers
plenty of remote management options that work independently of its core remoting
support.

Each command shown by the output of Get-Command and Get-Help that exposes a
-ComputerName parameter does so using its own built-in remoting technology. The WMI

652 | Chapter 29: Remoting

cmdlets use a WMI-specific form of DCOM-based remoting. The WSMan cmdlets use
SOAP-based remoting. Many of the other cmdlets offer RPC-based remoting.

By building on their own existing remoting protocols, these commands integrate easily
with environments that have already enabled WMI or event log management, for ex-
ample. Since these protocols are designed to handle only their specific technology, often
they can offer performance benefits as well.

Despite their benefits, commands that offer a -ComputerName parameter can’t replace a
generalized remoting technology for most purposes. Since each command builds on its
own protocol, using that command means managing firewall rules, services, and more.
Command-based remoting generally offers limited functionality as well, and something
as simple as alternate credentials is rarely supported.

For more information about enabling PowerShell Remoting, see Recipe 29.5.

See Also
Recipe 29.5, “Enable PowerShell Remoting on a Computer”

29.2 Program: Invoke a PowerShell Expression on a Remote
Machine
PowerShell version two includes great support for command execution on remote ma-
chines through its PowerShell Remoting features. These require that the remote system
have PowerShell version two available, though, which might not always be possible. If
PowerShell Remoting is not available on a remote machine, many commands support
their own remoting. If you want to do more than invoke a specific command, Exam-
ple 29-2 offers a useful alternative. It uses PsExec (from http://www.microsoft.com/tech
net/sysinternals/utilities/psexec.mspx) to support the actual remote command
execution.

This script offers more power than just remote command execution, however. As
Example 29-1 demonstrates, it leverages PowerShell’s capability to import and export
strongly structured data, so you can work with the command output using many of the
same techniques you use to work with command output on the local system. Exam-
ple 29-1 demonstrates this power by filtering command output on the remote system
but sorting it on the local system.

Example 29-1. Invoking a PowerShell expression on a remote machine

PS > $command = { Get-Process | Where-Object { $_.Handles -gt 1000 } }
PS > Invoke-RemoteExpression \\LEE-DESK $command | Sort Handles

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1025 8 3780 3772 32 134.42 848 csrss
 1306 37 50364 64160 322 409.23 4012 OUTLOOK

29.2 Program: Invoke a PowerShell Expression on a Remote Machine | 653

http://www.microsoft.com/technet/sysinternals/utilities/psexec.mspx
http://www.microsoft.com/technet/sysinternals/utilities/psexec.mspx

 1813 39 54764 36360 321 340.45 1452 iTunes
 2316 273 29168 41164 218 134.09 1244 svchost

Since this strongly structured data comes from objects on another system, PowerShell
does not regenerate the functionality of those objects (except in rare cases). For more
information about importing and exporting structured data, see Recipe 10.5.

Example 29-2. Invoke-RemoteExpression.ps1

##
##
Invoke-RemoteExpression
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invoke a PowerShell expression on a remote machine. Requires PsExec from
http://live.sysinternals.com/tools/psexec.exe. If the remote machine
supports PowerShell version two, use PowerShell remoting instead.

.EXAMPLE

Invoke-RemoteExpression \\LEE-DESK { Get-Process }
Retrieves the output of a simple command from a remote machine

.EXAMPLE

(Invoke-RemoteExpression \\LEE-DESK { Get-Date }).AddDays(1)
Invokes a command on a remote machine. Since the command returns one of
PowerShell's primitive types (a DateTime object), you can manipulate
its output as an object afterward.

.EXAMPLE

Invoke-RemoteExpression \\LEE-DESK { Get-Process } | Sort Handles
Invokes a command on a remote machine. The command does not return one of
PowerShell's primitive types, but you can still use PowerShell's filtering
cmdlets to work with its structured output.

#>

param(
 ## The computer on which to invoke the command.
 $ComputerName = "\\$ENV:ComputerName",

 ## The script block to invoke on the remote machine.
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $ScriptBlock,

654 | Chapter 29: Remoting

 ## The username / password to use in the connection
 $Credential,

 ## Determines if PowerShell should load the user's PowerShell profile
 ## when invoking the command.
 [switch] $NoProfile
)

Set-StrictMode -Version Latest

Prepare the command line for PsExec. We use the XML output encoding so
that PowerShell can convert the output back into structured objects.
PowerShell expects that you pass it some input when being run by PsExec
this way, so the 'echo .' statement satisfies that appetite.
$commandLine = "echo . | powershell -Output XML "

if($noProfile)
{
 $commandLine += "-NoProfile "
}

Convert the command into an encoded command for PowerShell
$commandBytes = [System.Text.Encoding]::Unicode.GetBytes($scriptblock)
$encodedCommand = [Convert]::ToBase64String($commandBytes)
$commandLine += "-EncodedCommand $encodedCommand"

Collect the output and error output
$errorOutput = [IO.Path]::GetTempFileName()

if($Credential)
{
 ## This lets users pass either a username or full credential to our
 ## credential parameter
 $credential = Get-Credential $credential
 $networkCredential = $credential.GetNetworkCredential()
 $username = $networkCredential.Username
 $password = $networkCredential.Password

 $output = psexec $computername /user $username /password $password `
 /accepteula cmd /c $commandLine 2>$errorOutput
}
else
{
 $output = psexec /acceptEula $computername `
 cmd /c $commandLine 2>$errorOutput
}

Check for any errors
$errorContent = Get-Content $errorOutput
Remove-Item $errorOutput
if($errorContent -match "(Access is denied)|(failure)|(Couldn't)")
{
 $OFS = "`n"
 $errorMessage = "Could not execute remote expression. "
 $errorMessage += "Ensure that your account has administrative " +

29.2 Program: Invoke a PowerShell Expression on a Remote Machine | 655

 "privileges on the target machine.`n"
 $errorMessage += ($errorContent -match "psexec.exe :")

 Write-Error $errorMessage
}

Return the output to the user
$output

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 29.1, “Find Commands That Support Their Own Remoting”

29.3 Test Connectivity Between Two Computers

Problem
You want determine the network availability of a computer or between two computers.

Solution
Use the Test-Connection cmdlet to perform a traditional network ping:

PS > Test-Connection leeholmes.com

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}

Alternatively, the ping.exe utility continues to work:

PS > ping leeholmes.com

Pinging leeholmes.com [66.186.25.131] with 32 bytes of data:
Reply from 66.186.25.131: bytes=32 time=38ms TTL=115
Reply from 66.186.25.131: bytes=32 time=36ms TTL=115
Reply from 66.186.25.131: bytes=32 time=37ms TTL=115
Reply from 66.186.25.131: bytes=32 time=41ms TTL=115

Ping statistics for 66.186.25.131:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 36ms, Maximum = 41ms, Average = 38ms

656 | Chapter 29: Remoting

Discussion
As a command-line shell, PowerShell of course continues to support traditional
command-line utilities. Ping.exe is one of the most common network diagnostic tools,
and it works as expected from PowerShell.

The Test-Connection cmdlet offers the same features as ping.exe plus a great deal of
additional functionality. Most ping utilities let you verify the connection between the
current computer and a target computer, but the Test-Connection cmdlet lets you also
specify the source computer for the network test.

Perhaps the most obvious benefit of the Test-Connection cmdlet is its object-based
output—making filtering, sorting, and analysis immensely easier. For example, a sim-
ple script to monitor the average response time of a cluster of domains:

$topTen = "google.com","facebook.com","youtube.com","yahoo.com",
 "live.com","wikipedia.org","blogger.com","baidu.com","msn.com",
 "qq.com"

Test all of the connections, grouping by address
$results = Test-Connection $topTen -ErrorAction SilentlyContinue | Group Address

Go through each of the addresses
$averages = foreach($group in $results)
{
 ## Figure out the average response time
 $averageResponse = $group.Group |
 Measure-Object -Average ResponseTime | Select -Expand Average

 ## Create a new custom object to output the Address and ResponseTime
 New-Object PsObject -Property @{
 Address = $group.Name;
 ResponseTime = $averageResponse }
}

Output the results
$averages | Sort ResponseTime | Select Address,ResponseTime

That script gives the following output:

Address ResponseTime
------- ------------
google.com 22
blogger.com 22.5
facebook.com 35.25
yahoo.com 37.5
youtube.com 86.25
wikipedia.org 99
baidu.com 203.25
qq.com 259.25

One thing to notice about this script’s output is that not all of the top 10 websites are
present. A ping request is a simple network-based handshake, but many websites block
them to conserve network bandwidth or for perceived security hardening. When the

29.3 Test Connectivity Between Two Computers | 657

Test-Connection cmdlet fails to make a connection, it generates the following error
message:

Test-Connection : Testing connection to computer 'bing.com' failed: Error
due to lack of resources

To verify connectivity to these resources, you can use the -Test parameter of the Send-
TcpRequest script given in Recipe 12.9:

PS > Send-TcpRequest bing.com -Test
True
PS > Send-TcpRequest bing.com -Test -Port 443
True
PS > Send-TcpRequest bing.com -Test -Port 23
False

For an effective use of the Test-Connection cmdlet to verify network resources before
trying to manage them, see Recipe 29.4.

See Also
Recipe 12.9, “Program: Interact with Internet Protocols”

Recipe 29.4, “Limit Networking Scripts to Hosts That Respond”

29.4 Limit Networking Scripts to Hosts That Respond

Problem
You have a distributed network management task, and want to avoid the delays caused
by hosts that are offline or not responding.

Solution
Use the -Quiet parameter of the Test-Connection to filter your computer set to only
hosts that respond to a network ping:

$computers = "MISSING",$env:ComputerName,"DOWN","localhost"
$skipped = @()

foreach($computer in $computers)
{
 ## If the computer is not responding, record that we skipped it and
 ## continue. We can review this collection after the script completes.
 if(-not (Test-Connection -Quiet $computer -Count 1))
 {
 $skipped += $computer
 }

 ## Perform some batch of networked operations
 Get-WmiObject -Computer $computer Win32_OperatingSystem
}

658 | Chapter 29: Remoting

Discussion
One difficulty when writing scripts that manage a large collection of computers is that
a handful of them are usually off or nonresponsive. If you don’t address this situation,
you are likely to run into many errors and delays as your script attempts to repeatedly
manage a system that cannot be reached.

In most domains, a network ping is the most reliable way to determine the responsive-
ness of a computer. The Test-Connection cmdlet provides ping support in PowerShell,
so the solution builds on that.

For more information about the Test-Connection cmdlet, see Recipe 29.3.

See Also
Recipe 29.3, “Test Connectivity Between Two Computers”

29.5 Enable PowerShell Remoting on a Computer

Problem
You want to allow remote management of a computer via PowerShell Remoting.

Solution
Use the Enable-PsRemoting cmdlet to enable PowerShell Remoting:

PS > Enable-PsRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable this machine for remote
management through WinRM service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service type to auto start
 3. Creating a listener to accept requests on any IP address
 4. Enabling firewall exception for WS-Management traffic (for http only).

Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): Y

WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.
Configured LocalAccountTokenFilterPolicy to grant administrative rights
remotely to local users.

WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on

29.5 Enable PowerShell Remoting on a Computer | 659

this machine.
WinRM firewall exception enabled.

Discussion
With the combined release of PowerShell and WS-Management (WSMan) into the
Windows Management Framework, we’ve heard the occasional question about wheth-
er it’s possible to install them independently. This concern is usually focused on
security.

Security is a natural concern with any technology that supports network connections,
and it is something that both teams took very seriously.

As a background, Windows Remote Management (WinRM) has been part of the op-
erating system since Windows Vista and Server 2008. WinRM does not listen to net-
work connections by default, and it must be explicitly activated.

Both PowerShell and WinRM advanced greatly during the release of version two—most
notably by working together to support a rich PowerShell-based remoting experience.
The Windows Management Framework download (PowerShell + WinRM) simply up-
dates the binaries on supported operating systems to bring them up to the same version
already included in Windows 7 and Windows Server 2008 R2. Investigating this con-
cern further, it usually comes down to worries about increased network attack surface
through automatically opening a network port to accept incoming connections.

Installing the Windows Management Framework does not enable any networking fea-
tures automatically. “Secure by Default” is a guiding principle of Windows Manage-
ment Framework, and of Microsoft as a whole. To help you manage your network
exposure, PowerShell Remoting must be explicitly enabled by an administrator of the
machine.

PowerShell Remoting does not require any specific configuration to let you connect to
a remote computer, but it does require a configuration step to allow connections from
remote computers.

Enable remoting on a single local machine

Once you’ve decided to enable remoting, PowerShell makes this a snap (after informing
you of the impact). Simply call Enable-PsRemoting from an elevated shell. The solution
demonstrates this approach. To bypass any user prompts or confirmation, also specify
the -Force flag.

As part of the Enable-PsRemoting process, PowerShell connects to the local WS-
Management service to create and configure a new endpoint. This is done through a
local network connection, so it is impacted by the Windows restrictions on network
connections. For example, Windows does not allow network connections to any ac-
count that has a blank password. If your administrator account has a blank password,
PowerShell will be unable to properly create and configure the WSMan endpoint.

660 | Chapter 29: Remoting

Enable remoting on a remote machine

Remotely enabling PowerShell Remoting offers many unique challenges. Although you
can certainly use Remote Desktop to connect to the system (and then essentially enable
it locally), Remote Desktop does not lend itself to automation.

Instead, you can leverage another remoting technology that does lend itself to auto-
mation: Windows Management Instrumentation (WMI). WMI is enabled on most do-
main machines, but it offers only a minor facility for remote command execution: the
Create() method of the Win32_Process. For more information about this approach, see
Recipe 29.7.

Enable remoting in an enterprise

If you want to enable PowerShell Remoting in an enterprise, Group Policy is the most
flexible and scalable option. Through Group Policy settings, you can enable automatic
configuration of WinRM endpoints and firewall rules. For more information about this
approach, type Get-Help about_remote_troubleshooting.

See Also
Recipe 29.7, “Program: Remotely Enable PowerShell Remoting”

29.6 Enable Remote Desktop on a Computer

Problem
You want to enable Remote Desktop on a computer.

Solution
Set the fDenyTSConnections property of the remote desktop registry key to 0:

$regKey = "HKLM:\SYSTEM\CurrentControlSet\Control\Terminal Server"
Set-ItemProperty $regKey fDenyTSConnections 0

Discussion
Remote Desktop is the de facto interactive management protocol, but can be difficult
to enable automatically. Fortunately, its configuration settings come from the Win-
dows Registry, so you can use PowerShell’s registry provider to enable it.

To disable Remote Desktop, set the fDenyTSConnections property to 1.

To enable Remote Desktop on a remote computer, use PowerShell Remoting to change
the registry properties, or remotely manage the registry settings directly. To see how to
manage remote registry settings directly, see Recipe 21.12.

29.6 Enable Remote Desktop on a Computer | 661

See Also
Recipe 21.12, “Work with the Registry of a Remote Computer”

29.7 Program: Remotely Enable PowerShell Remoting
As mentioned in Recipe 29.5, the Enable-PsRemoting cmdlet uses a local network con-
nection to create and configure its WS-Management endpoint.

Windows places many restrictions on remote commands that attempt to invoke other
remote commands—also known as the double-hop problem. If you attempt to call
Enable-PsRemoting from a remote system, your account privileges are disabled during
the WSMan configuration’s second hop.

Scheduled tasks offer one way to solve this problem, as they let you create a task with
the full credentials required to interact with network resources. Unfortunately, most
machines are not configured to support remote task management. Most are, however,
configured to support WMI connections. As a bootstrapping step, we can use the
Create() method of the Win32_Process class to launch an instance of PowerShell, and
then provide PowerShell with a script to create, launch, and delete a scheduled task
that ultimately configures PowerShell Remoting.

The script shown in Example 29-3 automates this cumbersome process.

Example 29-3. Enable-RemotePsRemoting.ps1

##
##
Enable-RemotePsRemoting
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Enables PowerShell Remoting on a remote computer. Requires that the machine
responds to WMI requests and that its operating system is Windows Vista or
later.

.EXAMPLE

Enable-RemotePsRemoting <Computer>

#>

param(
 ## The computer on which to enable remoting
 $Computername,

662 | Chapter 29: Remoting

 ## The credential to use when connecting
 $Credential = (Get-Credential)
)

Set-StrictMode -Version Latest
$VerbosePreference = "Continue"

$credential = Get-Credential $credential
$username = $credential.Username
$password = $credential.GetNetworkCredential().Password

$script = @"

`$log = Join-Path `$env:TEMP Enable-RemotePsRemoting.output.txt
Remove-Item -Force `$log -ErrorAction SilentlyContinue
Start-Transcript -Path `$log

Create a task that will run with full network privileges.
In this task, we call Enable-PsRemoting
schtasks /CREATE /TN 'Enable Remoting' /SC WEEKLY /RL HIGHEST ``
 /RU $username /RP $password ``
 /TR "powershell -noprofile -command Enable-PsRemoting -Force" /F |
 Out-String
schtasks /RUN /TN 'Enable Remoting' | Out-String

`$securePass = ConvertTo-SecureString $password -AsPlainText -Force
`$credential =
 New-Object Management.Automation.PsCredential $username,`$securepass

Wait for the remoting changes to come into effect
for(`$count = 1; `$count -le 10; `$count++)
{
 `$output = Invoke-Command localhost { 1 } -Cred `$credential ``
 -ErrorAction SilentlyContinue
 if(`$output -eq 1) { break; }

 "Attempt `$count : Not ready yet."
 Sleep 5
}

Delete the temporary task
schtasks /DELETE /TN 'Enable Remoting' /F | Out-String
Stop-Transcript

"@

$commandBytes = [System.Text.Encoding]::Unicode.GetBytes($script)
$encoded = [Convert]::ToBase64String($commandBytes)

Write-Verbose "Configuring $computername"
$command = "powershell -NoProfile -EncodedCommand $encoded"
$null = Invoke-WmiMethod -Computer $computername -Credential $credential `
 Win32_Process Create -Args $command

29.7 Program: Remotely Enable PowerShell Remoting | 663

Write-Verbose "Testing connection"
Invoke-Command $computername {
 Get-WmiObject Win32_ComputerSystem } -Credential $credential

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 28.1, “Access Windows Management Instrumentation Data”

Recipe 29.5, “Enable PowerShell Remoting on a Computer”

29.8 Configure User Permissions for Remoting

Problem
You want to control the users who are allowed to make remote connections to a
machine.

Solution
Create a new Windows group to define which users can connect to the machine, and
then use the Set-PsSessionConfiguration cmdlet to add this group to the permission
list of the endpoint:

PS > net localgroup "PowerShell Remoting Users" /Add
The command completed successfully.

PS > net localgroup "PowerShell Remoting Users" Administrators /Add
The command completed successfully.

PS > Set-PsSessionConfiguration Microsoft.PowerShell -ShowSecurityDescriptorUI

Discussion
Like many objects in Windows, the WS-Management endpoint that provides access to
PowerShell Remoting has an associated access control list. By default, this access con-
trol list provides access only to Administrators of the machine.

As you use PowerShell Remoting more often, you’ll likely want more fine-grained con-
trol than that—similar to the type of control that you get from the existing Remote
Desktop Users group. Enabling this control is a two-step process: first, create the group,
and then add the group to the access control list of the endpoint.

For a one-off configuration, the -ShowSecurityDescriptorUI parameter of the Set-
PsSessionConfiguration cmdlet lets you manage the access control list as you would
manage a file, directory, or computer share.

664 | Chapter 29: Remoting

To automate this process, though, you need to speak the language of security rules
directly—a language called SDDL: the Security Descriptor Definition Language. This
format is not really designed to be consumed by humans, but it is the format exposed
by the -SecurityDescriptorSddl parameter of the Set-PSSessionConfiguration cmdlet.
Although it is not user-friendly, you can use several classes from the .NET Framework
to create a security rule or SDDL string. Example 29-4 demonstrates this approach.

Example 29-4. Automating security configuration of PowerShell Remoting

Get the SID for the "PowerShell Remoting Users" group
$account = New-Object Security.Principal.NTAccount "PowerShell Remoting Users"
$sid = $account.Translate([Security.Principal.SecurityIdentifier]).Value

Get the security descriptor for the existing configuration
$config = Get-PsSessionConfiguration Microsoft.PowerShell
$existingSddl = $config.SecurityDescriptorSddl

Create a CommonSecurityDescriptor object out of the existing SDDL
so that we don't need to manage the string by hand
$arguments = $false,$false,$existingSddl
$mapper = New-Object Security.AccessControl.CommonSecurityDescriptor $arguments

Create a new access rule that adds the "PowerShell Remoting Users" group
$mapper.DiscretionaryAcl.AddAccess("Allow",$sid,268435456,"None","None")

Get the new SDDL for that configuration
$newSddl = $mapper.GetSddlForm("All")

Update the endpoint configuration
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $newSddl

For more information about working with the .NET Framework, see Recipe 3.8. For
more information about working with SDDL strings, see Recipe 18.16.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 18.16, “Manage Security Descriptors in SDDL Form”

29.9 Enable Remoting to Workgroup Computers

Problem
You want to connect to a machine in a workgroup or by IP address.

29.9 Enable Remoting to Workgroup Computers | 665

Solution
Update the TrustedHosts collection on the wsman:\localhost\client path:

PS > $trustedHosts = Get-Item wsman:\localhost\client\TrustedHosts
PS > $trustedHosts.Value += ",RemoteComputer"
PS > Set-Item wsman:\localhost\client\TrustedHosts $trustedHosts.Value

WinRM Security Configuration.
This command modifies the TrustedHosts list for the WinRM client. The
computers in the TrustedHosts list might not be authenticated. The client
might send credential information to these computers. Are you sure that
you want to modify this list?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

PS > Get-Item wsman:\localhost\client\TrustedHosts

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Name Value
---- -----
TrustedHosts Lee-Desk,RemoteComputer

Discussion
One of the main aspects of client-side security in any remoting technology is being able
to trust who you are connecting to. When you are at an Internet café, you can connect
to your bank’s website in a browser. If you use SSL, you are guaranteed that it’s really
your bank and not some fake proxy put up by an attacker who’s manipulating the
network traffic. This class of interception attack is called a “man-in-the-middle attack.”

PowerShell Remoting gives the same guarantee. When you connect to a computer in-
side of a domain, Kerberos authentication secures the connection. Kerberos authenti-
cation guarantees the identity of the endpoint—ensuring that no attacker can intercept
your connection. When you’re outside of a domain, SSL is the only standard way to
guarantee this, which is why https is such an important protocol on the Internet.

There are two situations where built-in authentication mechanisms can’t protect
against man-in-the-middle attacks:

• Connecting to a host by IP (inside a domain or not)

• Using any authentication mechanism except for Kerberos, SSL, or CredSSP

Workgroup remoting (or cross-forest remoting) is an example of this. When you try to
make a connection in either of these scenarios, PowerShell gives the error message:

PS > Enter-PsSession SomeComputer

Enter-PSSession : Connecting to remote server failed with the following
error message : The WinRM client cannot process the request. If the
authentication scheme is different from Kerberos, or if the client computer
is not joined to a domain, then HTTPS transport must be used or the destination

666 | Chapter 29: Remoting

machine must be added to the TrustedHosts configuration setting. Use
winrm.cmd to configure TrustedHosts. Note that computers in the TrustedHosts
list might not be authenticated. You can get more information about that by
running the following command: winrm help config. For more information,
see the about_Remote_Troubleshooting Help topic.

While wordy, this error message exactly explains the problem.

Since PowerShell can’t guarantee the identity of the remote computer in this situation,
it fails safe and generates an error. All remoting protocols run into this problem:

• Remote Desktop: “... cannot verify the identity of the computer you want to con-
nect to ...”

• SSH: “The authenticity of the host ‘....’ can’t be established ...”

The other protocols implement the equivalent of “I acknowledge this and want to con-
tinue,” but PowerShell’s experience is unfortunately more complex.

If you want to connect to a machine that PowerShell can’t verify, you can update the
TrustedHosts configuration setting. Its name is unfortunately vague, however, as it
really means, “I trust my network during connections to this machine.”

When you configure the TrustedHosts setting, you have three options: an explicit list
(as shown in the solution), “<local>” to bypass this message for all computers in the
domain or workgroup, or “*” to disable the message altogether.

For more information, type Get-Help about_Remote_Troubleshooting.

29.10 Interactively Manage a Remote Computer

Problem
You want to interactively work with a remote computer as though it were a local
PowerShell session.

Solution
Use the Enter-PsSession cmdlet to connect to a remote session and manage it
interactively:

PS > Enter-PsSession Lee-Desk
[lee-desk]: PS E:\Lee> Get-Process -Name PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 2834 14 85500 86256 218 ...22.83 8396 powershell
 421 12 39220 54204 189 7.41 9708 powershell

[lee-desk]: PS E:\Lee> exit
PS >

29.10 Interactively Manage a Remote Computer | 667

If your current account does not have access to the remote computer, you can use the
-Credential parameter to supply alternate credentials:

PS > $cred = Get-Credential LEE-DESK\Lee
PS > Enter-PsSession Lee-Desk -Cred $cred

Discussion
Like many traditional shells, PowerShell Remoting offers a simple, direct, interactive
management experience known simply as Interactive Remoting. Just as in your local
PowerShell sessions, you type commands and see their output. This remote PowerShell
is just as powerful as your local one; all of the filtering, pipelining, and integrated lan-
guage features continue to work.

Two aspects make an interactive remote session different from a local one, however.

The first thing to note is that your remote PowerShell sessions have no associated
desktop or graphical user interface. PowerShell will launch Notepad if you ask it to,
but the user interface won’t be displayed to anybody.

When you use your normal technique (i.e., PS > notepad.exe) to launch
an application in interactive remoting, PowerShell waits for it to close
before returning control to you. This ends up blocking your session, so
press Ctrl-C to regain control of your session. If you want to launch a
graphical application, use either the Start-Process cmdlet or command-
based remoting.

Also, if you launch a program (such as edit.com or ftp.exe’s interactive mode) that
directly interacts with the console window for its user interface, this program will not
work as expected. Some applications (such as ftp.exe’s interactive mode) detect that
they have no console window available and simply exit. Others (such as edit.com) hang
and cause PowerShell’s interactive remoting to become unresponsive as well. To break
free from misbehaving applications like this, press Ctrl-C.

The second aspect to interactive remoting is shared by all Windows network technol-
ogies that work without explicit credentials: the double-hop problem. Once you’ve
connected to a computer remotely, Windows gives you full access to all local resources
as though you were logged into the computer directly. When it comes to network re-
sources, however, Windows prevents your user information from being automatically
used on another computer. This typically shows up when trying to access either re-
stricted network shares from a remoting system or intranet websites that require im-
plicit authentication. For information about how to launch a remoting session that
supports this type of credential forwarding, see Recipe 29.13.

668 | Chapter 29: Remoting

In addition to supplying a computer name to the Enter-PsSession cmdlet, you can also
use the New-PsSession cmdlet to connect to a computer. After connecting, you can enter
and exit that session at will:

PS > $session = New-PsSession Lee-Desk -Cred $cred
PS > Get-PsSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- --------
 1 Session1 lee-desk Opened Microsoft.PowerShell ...lable

PS > Enter-PsSession $session
[lee-desk]: PS E:\Lee> Start-Process calc
[lee-desk]: PS E:\Lee> Get-Process -n calc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 5 4172 7272 44 0.06 7148 calc

[lee-desk]: PS E:\Lee> exit
PS > Get-Process -n calc
Get-Process : Cannot find a process with the name "calc". Verify the process
name and call the cmdlet again.

PS > Enter-PsSession $session
[lee-desk]: PS E:\Lee> Get-Process -n calc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 5 4172 7272 44 0.06 7148 calc

[lee-desk]: PS E:\Lee>

After creating a session, you can even combine interactive remoting with bulk,
command-based fan-out remoting. For more information about command-based re-
moting, see Recipe 29.11.

See Also
Recipe 29.11, “Invoke a Command on a Remote Computer”

Recipe 29.13, “Create Sessions with Full Network Access”

29.11 Invoke a Command on a Remote Computer

Problem
You want to invoke a command on one or many remote computer(s).

29.11 Invoke a Command on a Remote Computer | 669

Solution
Use the Invoke-Command cmdlet:

PS > Invoke-Command -Computer Lee-Desk,LEEHOLMES1C23 -Command { Get-PsDrive } |
 Format-Table Name,Used,Free,PSComputerName -Auto

Name Used Free PSComputerName
---- ---- ---- --------------
Alias lee-desk
C 44830642176 105206947840 lee-desk
E 37626998784 61987717120 lee-desk
F 126526734336 37394722816 lee-desk
G 93445226496 6986330112 lee-desk
H 1703936 0 lee-desk
I 349184 18099200 lee-desk
J 40442880 0 lee-desk
C 24018575360 10339061760 leeholmes1c23
D 0 leeholmes1c23
(...)

If your current account does not have access to the remote computer, you can use the
-Credential parameter to supply alternate credentials:

PS > $cred = Get-Credential LEE-DESK\Lee
PS > Invoke-Command Lee-Desk { Get-Process } -Cred $cred

Discussion
As shown in Recipe 29.10, PowerShell offers simple interactive remoting to handle
situations when you want to quickly explore or manage a single remote system. For
many scenarios, though, one-to-one interactive remoting is not realistic. Simple auto-
mation (which by definition is noninteractive) is the most basic example, but another
key point is large-scale automation.

Running a command (or set of commands) against a large number of machines has
always been a challenging task. To address both one-to-one automation as well as large-
scale automation, PowerShell introduces fan-out remoting: a command-based, batch-
oriented approach to system management.

Fan-out remoting integrates all of the core features you’ve come to expect from your
local PowerShell experience: richly structured output, consistency, and most of all,
reach. While a good number of PowerShell cmdlets support their own native form of
remoting, PowerShell’s support provides it to every command—cmdlets as well as
console applications.

When you call the Invoke-Command cmdlet simply with a computer name and script
block, PowerShell automatically connects to that machine, invokes the command, and
returns the results:

PS > $result = Invoke-Command leeholmes1c23 { Get-PSDrive }
PS > $result | Format-Table Name,Used,Free,Root,PSComputerName -Auto

670 | Chapter 29: Remoting

Name Used Free Root PSComputerName
---- ---- ---- ---- --------------
A 0 A:\ leeholmes1c23
Alias leeholmes1c23
C 24018575360 10339061760 C:\ leeholmes1c23
cert \ leeholmes1c23
D 0 D:\ leeholmes1c23
Env leeholmes1c23
Function leeholmes1c23
HKCU HKEY_CURRENT_USER leeholmes1c23
HKLM HKEY_LOCAL_MACHINE leeholmes1c23
Variable leeholmes1c23
WSMan leeholmes1c23

So far, this remoting experience looks similar to many other technologies. Notice the
PSComputerName property, though. PowerShell automatically adds this property to all of
your results, which lets you easily work with the output of multiple computers at once.
We get to see PowerShell’s unique remoting treatment once we start working with
results. For example:

PS > $result | Sort Name | Where { $_.Root -like "**" }

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
A A:\
C 22.37 9.63 C:\
cert \
D D:\

PS > $result[2].Used
24018575360
PS > $result[2].Used * 4
96074301440

Rather than transport plain text like other remoting technologies, PowerShell trans-
ports data in a way that preserves a great deal of information about the original com-
mand output. Before sending objects to you, PowerShell serializes them into a format
that can be moved across the network. This format retains the following “primitive”
types, and converts all others to their string representation:

Byte UInt16 TimeSpan SecureString

SByte UInt32 DateTime Boolean

Byte[] UInt64 ProgressRecord Guid

Int16 Decimal Char Uri

Int32 Single String Version

Int64 Double XmlDocument

29.11 Invoke a Command on a Remote Computer | 671

Perhaps most importantly, serialization removes all methods from non-
primitive objects. By converting these objects to what are called property
bags, your scripts can depend on an interface that won’t change between
PowerShell releases, .NET Framework releases, or operating system
releases.

When the objects reach your computer, PowerShell rehydrates them. During this proc-
ess, it creates objects that have their original structure and repopulates the properties.
Any properties that were primitive types will again be fully functional: integer proper-
ties can be sorted and computed, XML documents can be navigated, and more.

When PowerShell reassembles an object, it prepends Deserialized to its type name.
When PowerShell displays a deserialized object, it will use any formatting definitions
that apply to the full-fidelity object:

PS > $result[2] | Get-Member

 TypeName: Deserialized.System.Management.Automation.PSDriveInfo

Name MemberType Definition
---- ---------- ----------
ToString Method string ToString(), string ToString(stri...
Free NoteProperty System.UInt64 Free=10339061760
PSComputerName NoteProperty System.String PSComputerName=leeholmes1c23
PSShowComputerName NoteProperty System.Boolean PSShowComputerName=True
RunspaceId NoteProperty System.Guid RunspaceId=33f45afd-2381-44...
Used NoteProperty System.UInt64 Used=24018575360
Credential Property Deserialized.System.Management.Automati...
CurrentLocation Property System.String {get;set;}
Description Property System.String {get;set;}
Name Property System.String {get;set;}
Provider Property System.String {get;set;}
Root Property System.String {get;set;}

In addition to supplying a computer name to the Invoke-Command cmdlet, you can also
use the New-PsSession cmdlet to connect to a computer. After connecting, you can
invoke commands in that session at will:

PS > $session = New-PsSession leeholmes1c23 -Cred $cred
PS > Get-PsSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- --------
 1 Session1 leeholmes1c23 Opened Microsoft.PowerShell ...lable

672 | Chapter 29: Remoting

PS > Invoke-Command -Session $session { Get-Process -Name PowerShell }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSCompu
 Name terName
------- ------ ----- ----- ----- ------ -- -------- -------
 716 12 48176 65060 201 23.31 4684 power... leeh...

After creating a session, you can even combine commands with interactive remoting,
as shown in Recipe 29.10.

Using these techniques, you can easily scale your automation across many, many ma-
chines. For more information about this technique, see Recipe 29.16.

One of the primary challenges you will run into with fan-out remoting is shared by all
of the Windows network technologies that work without explicit credentials: the
double-hop problem. Once you’ve connected to a computer remotely, Windows gives
you full access to all local resources as though you were logged into the computer
directly. When it comes to network resources, however, Windows prevents your user
information from being automatically used on another computer. This typically shows
up when you try to access restricted network shares from a remoting system or intranet
websites that require implicit authentication. For information about how to launch a
remoting session that supports this type of credential forwarding, see Recipe 29.13.

See Also
Recipe 29.10, “Interactively Manage a Remote Computer”

Recipe 29.13, “Create Sessions with Full Network Access”

Recipe 29.16, “Invoke a Command on Many Computers”

29.12 Implicitly Invoke Commands from a Remote Computer

Problem
You have commands on a remote computer that you want to invoke as though they
were local.

Solution
Use the Import-PsSession cmdlet to import them into the current session:

PS > $cred = Get-Credential

PS > $session = New-PSSession -ConfigurationName Microsoft.Exchange `
 -ConnectionUri https://ps.outlook.com/powershell/ -Credential $cred `
 -Authentication Basic -AllowRedirection

PS > Invoke-Command $session { Get-OrganizationalUnit } |
 Select DistinguishedName

29.12 Implicitly Invoke Commands from a Remote Computer | 673

DistinguishedName

OU=leeholmes.com,OU=Microsoft Exchange Hosted Organizations,DC=prod,DC=...
OU=Hosted Organization Security Groups,OU=leeholmes.com,OU=Microsoft Ex...

PS > Import-PSSession $session -CommandName Get-OrganizationalUnit

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_1e510382-9a3d-43a5... Get-OrganizationalUnit

PS > Get-OrganizationalUnit | Select DistinguishedName

DistinguishedName

OU=leeholmes.com,OU=Microsoft Exchange Hosted Organizations,DC=prod,DC=...
OU=Hosted Organization Security Groups,OU=leeholmes.com,OU=Microsoft Ex...

Discussion
When you frequently work with commands from a remote system, the mental and
conceptual overhead of continually calling the Invoke-Command and going through
PowerShell’s remoting infrastructure quickly adds up. When you write a script that
primarily uses commands from the remote system, the majority of the script ends up
being for the remoting infrastructure itself. When pipelining commands to one another,
this gets even more obvious:

PS > Invoke-Command $session { Get-User } |
 Where-Object { $_.Identity -eq "lee@leeholmes.com" } |
 Invoke-Command $session { Get-Mailbox } |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
lee@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=lee@leeholm...

To address these issues, PowerShell Remoting supports the Import-PsSession cmdlet
to let you import and seamlessly use commands from a remote session. This is especially
helpful, for example, in scenarios such as Hosted Exchange. It’s not reasonable to install
an entire toolkit of commands just to manage your mailboxes in the cloud.

Once you’ve imported those commands, PowerShell enables implicit remoting on them:

PS > Import-PsSession $session -CommandName Get-Mailbox,GetUser

PS > Get-User | Where-Object { $_.Identity -eq "lee@leeholmes.com" } |
 Get-MailBox |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

674 | Chapter 29: Remoting

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
lee@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=lee@leeholm...

PS > Get-Help Get-User -Examples

NAME
 Get-User

SYNOPSIS
 Use the Get-User cmdlet to retrieve all users in the forest that match
 the specified conditions.

 -------------------------- EXAMPLE 1 --------------------------
 This example retrieves information about users in the Marketing OU.

 Get-User -OrganizationalUnit "Marketing"
(...)

Expanding on this further, PowerShell even lets you export commands from a session
into a module:

PS > $commands = "Get-Mailbox","Get-User"
PS > Export-PsSession $session -CommandName $commands -ModuleName ExchangeCommands

 Directory: E:\Lee\WindowsPowerShell\Modules\ExchangeCommands

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/19/2010 11:11 PM 13177 ExchangeCommands.psm1
-a--- 2/19/2010 11:11 PM 99 ExchangeCommands.format.ps1xml
-a--- 2/19/2010 11:11 PM 605 ExchangeCommands.psd1

When you import the module, PowerShell creates new implicit remoting commands
for all commands that you exported. When you invoke a command, it recreates the
remoting session (if required), and then invokes your command in that new session:

Windows PowerShell
Copyright (C) 2009 Microsoft Corporation. All rights reserved.

PS > Import-Module ExchangeCommands
PS > Get-User | Where-Object { $_.Identity -eq "lee@leeholmes.com" } |
 Get-MailBox |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

Creating a new session for implicit remoting of "Get-User" command...

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
lee@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=lee@leeholm...

29.12 Implicitly Invoke Commands from a Remote Computer | 675

For more information about command-based remoting, see Recipe 29.11. For more
information about PowerShell modules, see Recipe 1.24.

See Also
Recipe 1.24, “Extend Your Shell with Additional Commands”

Recipe 29.11, “Invoke a Command on a Remote Computer”

29.13 Create Sessions with Full Network Access

Problem
You want to create a PowerShell Remoting session (interactive, fan-out, or implicit)
that has full access to network resources.

Solution
Use the -Authentication parameter, and pick CredSSP as the authentication mechanism:

PS > Invoke-Command leeholmes1c23 {
 "Hello World"; dir \\lee-desk\c$ } -Authentication CredSSP -Cred Lee

Hello World

 Directory: \\lee-desk\c$

Mode LastWriteTime Length Name PSComputerName
---- ------------- ------ ---- --------------
d---- 2/5/2010 12:31 AM inetpub leeholmes1c23
d---- 7/13/2009 7:37 PM PerfLogs leeholmes1c23
d-r-- 2/16/2010 3:14 PM Program Files leeholmes1c23
(...)

Discussion
When connecting to a computer using PowerShell Remoting, you might sometimes see
errors running commands that access a network location:

PS > Invoke-Command leeholmes1c23 {
 "Hello World"; dir \\lee-desk\c$ } -Cred Lee

Hello World
Cannot find path '\\lee-desk\c$' because it does not exist.
 + CategoryInfo : ObjectNotFound: (\\lee-desk\c$:String)
 [Get-ChildItem], ItemNotFoundException
 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.
 GetChildItemCommand

When you remotely connect to a computer in a domain, Windows (and PowerShell
Remoting) by default use an authentication mechanism called Kerberos. While you

676 | Chapter 29: Remoting

have full access to local resources when connected this way, security features of Ker-
beros prevent the remote computer from being able to use your account information
to connect to additional computers.

This reduces the risk of connecting to a remote computer that has been compromised
or otherwise has malicious software running on it. Without these protections, the ma-
licious software can act on your behalf across the entire network—an especially dan-
gerous situation if you are connecting with powerful domain credentials.

Although this Kerberos policy can be managed at the domain level by marking the
computer “Trusted for Delegation,” changing domain-level policies to accomplish ad-
hoc management tasks is a cumbersome process.

To solve this problem, PowerShell supports another authentication mechanism called
CredSSP—the same authentication mechanism used by Remote Desktop and Terminal
Services. Because of its security impact, you must explicitly enable support on both the
client you are connecting from and the server you are connecting to.

From the client side, specify -Role Client to the Enable-WsManCredSSP cmdlet. You can
specify either specific computer names in the -DelegateComputer parameter or “*” to
enable the setting for all target computers.

PS > Enable-WSManCredSSP -Role Client -DelegateComputer leeholmes1c23

CredSSP Authentication Configuration for WS-Management
CredSSP authentication allows the user credentials on this computer to be
sent to a remote computer. If you use CredSSP authentication for a
connection to a malicious or compromised computer, that computer will have
access to your user name and password. For more information, see the
Enable-WSManCredSSP Help topic.
Do you want to enable CredSSP authentication?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

If you want to use CredSSP authentication within a workgroup (instead of a domain),
one additional step is required. Authentication within a workgroup uses a protocol
called NTLM, which doesn’t offer the same security guarantees that Kerberos does—
specifically, you can’t guarantee the identity of the computer you are connecting to.
This is the same caution that drives the TrustedHosts configuration requirement, as
discussed in Recipe 29.9. To enable CredSSP over NTLM connections, open
gpedit.msc, and then navigate to Computer Configuration → Administrative Templates
→ System → Credentials Delegation. Enable the “Allow Delegating Fresh Credentials
with NTLM-only Server Authentication” setting, and then add wsman/computername to
the list of supported computers. In the previous example, this would be wsman/lee
holmes1c23. As with the -DelegateComputer parameter, you can also specify wsman/* to
enable the setting for all target computers.

29.13 Create Sessions with Full Network Access | 677

From the server side, specify -Role Server to the Enable-WsManCredSSP cmdlet. You can
invoke this cmdlet remotely, if needed:

PS > Enable-WsManCredSSP -Role Server

CredSSP Authentication Configuration for WS-Management
CredSSP authentication allows the server to accept user credentials from a
remote computer. If you enable CredSSP authentication on the server, the
server will have access to the user name and password of the client computer
if the client computer sends them. For more information, see the
Enable-WSManCredSSP Help topic.
Do you want to enable CredSSP authentication?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Ironically, remotely configuring CredSSP runs into the very same issues that CredSSP
is designed to solve. To work around these, we can create a scheduled task to run the
Enable-WsManCredSSP cmdlet (Example 29-5), as done in Recipe 29.7.

Example 29-5. Enable-RemoteCredSSP.ps1

##
##
Enable-RemoteCredSSP
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Enables CredSSP support on a remote computer. Requires that the machine
have PowerShell Remoting enabled and that its operating system is Windows
Vista or later.

.EXAMPLE

Enable-RemoteCredSSP <Computer>

#>

param(
 ## The computer on which to enable CredSSP
 $Computername,

 ## The credential to use when connecting
 $Credential = (Get-Credential)
)

Set-StrictMode -Version Latest

Call Get-Credential again, so that the user can type something like
Enable-RemoteCredSSP -Computer Computer -Cred DOMAIN\user

678 | Chapter 29: Remoting

$credential = Get-Credential $credential
$username = $credential.Username
$password = $credential.GetNetworkCredential().Password

Define the script we will use to create the scheduled task
$powerShellCommand =
 "powershell -noprofile -command Enable-WsManCredSSP -Role Server -Force"
$script = @"
schtasks /CREATE /TN 'Enable CredSSP' /SC WEEKLY /RL HIGHEST ``
 /RU $username /RP $password ``
 /TR "$powerShellCommand" /F

schtasks /RUN /TN 'Enable CredSSP'
"@

Create the task on the remote system to configure CredSSP
$command = [ScriptBlock]::Create($script)
Invoke-Command $computername $command -Cred $credential

Wait for the remoting changes to come into effect
for($count = 1; $count -le 10; $count++)
{
 $output =
 Invoke-Command $computername { 1 } -Auth CredSSP -Cred $credential
 if($output -eq 1) { break; }

 "Attempt $count : Not ready yet."
 Sleep 5
}

Clean up
$command = [ScriptBlock]::Create($script)
Invoke-Command $computername {
 schtasks /DELETE /TN 'Enable CredSSP' /F } -Cred $credential

Verify the output
Invoke-Command $computername {
 Get-WmiObject Win32_ComputerSystem } -Auth CredSSP -Cred $credential

After completing these configuration steps, your remote sessions will have unrestricted
network access.

See Also
Recipe 29.7, “Program: Remotely Enable PowerShell Remoting”

Recipe 29.9, “Enable Remoting to Workgroup Computers”

29.13 Create Sessions with Full Network Access | 679

29.14 Pass Variables to Remote Sessions

Problem
You want to invoke a command on a remote computer but supply some of its infor-
mation as a dynamic argument.

Solution
Use the -ArgumentList parameter of the Invoke-Command cmdlet:

PS > $cred = Get-Credential

PS > $command = {
 param($cred)

 Invoke-Command leeholmes1c23 {
 "Hello from $($env:Computername)" } -Credential $cred
}

PS > Invoke-Command Remote-Computer $command -ArgumentList $cred -Credential $cred
Hello from LEEHOLMES1C23

Discussion
When processing commands on a remote system, you sometimes need dynamic infor-
mation from the local system—such as the value of a variable or something that changes
for each invocation. A perfect example of this is a credential, where hardcoding user-
names or passwords is a practice you should strive to avoid.

The solution gives an example of this approach. On a client computer, we request a
credential from the user. We make a connection to Remote-Computer using that creden-
tial and invoke a command. The command itself makes yet another connection—this
time to leeholmes1c23. That final command simply retrieves the computer name of the
remote system. Rather than hardcode a username and password (or request them
again), it uses the $cred variable passed in by the original call to Invoke-Command.

To support this, the Invoke-Command cmdlet offers the -ArgumentList parameter. Vari-
ables supplied to this parameter will be converted into a version safe for remoting,
which will then be made available to the commands inside of the -ScriptBlock
parameter.

Arguments that you supply to the -ArgumentList parameter go through
a serialization process before being sent to the remote computer. Al-
though their properties closely resemble the original objects, they no
longer have methods. For more information about PowerShell seriali-
zation, see Recipe 29.11.

680 | Chapter 29: Remoting

As with arguments in other scripts, functions, and script blocks, the script block used
in Invoke-Command can access arguments directly through the $args array, or through a
param() statement to make the script easier to read. Unlike most param() statements,
however, these parameter statements must all be positional. Named arguments (e.g.,
-ArgumentList "-Cred","$cred") are not supported, nor are advanced parameter at-
tributes (such as [Parameter(Mandatory = $true)]).

For more information about arguments and param() statements, see Recipe 11.11.

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 29.11, “Invoke a Command on a Remote Computer”

29.15 Configure Advanced Remoting Options

Problem
You want to configure compression, profiles, proxy authentication, certificate verifi-
cation, or culture information for a remote session.

Solution
For client-side configuration settings, call the New-PsSessionOption cmdlet and provide
values for parameters that you want to customize:

PS > $options = New-PSSessionOption -Culture "fr-CA"
PS > $sess = New-PsSession Lee-Desk -Cred Lee -SessionOption $options
PS > Invoke-Command $sess { Get-Date | Out-String }

20 février 2010 17:40:16

For server-side configuration settings, review the options under WSMan:\localhost
\Shell and WSMan:localhost\Service.

Set-Item WSMan:\localhost\shell\MaxShellsPerUser 10

Discussion
PowerShell lets you define advanced client connection options through two paths: the
New-PsSessionOption cmdlet and the $PSSessionOption automatic variable.

When you call the New-PsSession cmdlet, PowerShell returns an object that holds con-
figuration settings for a remote session. You can customize all of the values through
the cmdlet’s parameters or set properties on the object that is returned.

29.15 Configure Advanced Remoting Options | 681

Several of the options refer to timeout values: OperationTimeout, Open
Timeout, CancelTimeout, and IdleTimeout. These parameters are gener-
ally not required (for example, even when invoking a long-running
command), but they can be used to overcome errors when you encoun-
ter extremely slow or congested network conditions.

If you want to configure session options for every new connection, a second alternative
is the $PSSessionOption automatic variable:

PS > $PSSessionOption

MaximumConnectionRedirectionCount : 5
NoCompression : False
NoMachineProfile : False
ProxyAccessType : None
ProxyAuthentication : Negotiate
ProxyCredential :
SkipCACheck : False
SkipCNCheck : False
SkipRevocationCheck : False
OperationTimeout : 00:03:00
NoEncryption : False
UseUTF16 : False
Culture :
UICulture :
MaximumReceivedDataSizePerCommand :
MaximumReceivedObjectSize :
ApplicationArguments :
OpenTimeout : 00:03:00
CancelTimeout : 00:01:00
IdleTimeout : 00:04:00

If you don’t provide explicit settings during a connection attempt, PowerShell Remot-
ing looks at the values in this variable for its defaults.

From the server perspective, all configuration sits in the WSMan drive. The most com-
mon configuration options come from the WSMan:\localhost\Shell path:

PS > dir WSMan:\localhost\Shell

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Shell

Name Value
---- -----
AllowRemoteShellAccess true
IdleTimeout 180000
MaxConcurrentUsers 5
MaxShellRunTime 2147483647
MaxProcessesPerShell 15
MaxMemoryPerShellMB 150
MaxShellsPerUser 10

682 | Chapter 29: Remoting

See Also
Recipe 29.11, “Invoke a Command on a Remote Computer”

29.16 Invoke a Command on Many Computers

Problem
You want to manage many computers simultaneously.

Solution
Use the -ThrottleLimit and -AsJob parameters to configure how PowerShell scales out
your commands:

PS > $sessions = $(
 New-PsSession localhost;
 New-PsSession localhost;
 New-PsSession localhost)

PS > $start = Get-Date
PS > Invoke-Command $sessions { Start-Sleep 2; "Test $pid" }
Test 720
Test 6112
Test 4792
PS > (Get-Date) - $start | Select TotalSeconds | Format-Table -Auto

TotalSeconds

 2.09375

PS >
PS > $start = Get-Date
PS > Invoke-Command $sessions { Start-Sleep 2; "Test $pid" } -ThrottleLimit 1
Test 6112
Test 4792
Test 720
PS > (Get-Date) - $start | Select TotalSeconds | Format-Table -Auto

TotalSeconds

 6.25

Discussion
One of the largest difficulties in traditional networking scripts comes from managing
many computers at once. Remote computer management is typically network-bound,
so most scripts spend the majority of their time waiting for the network.

29.16 Invoke a Command on Many Computers | 683

The solution to this is to scale. Rather than manage one computer at a time, you manage
several. Not too many, however, as few machines can handle the demands of connect-
ing to hundreds or thousands of remote machines at once.

Despite the benefits, writing a networking script that supports smart automatic
throttling is beyond the capability of many and too far down “the big list of things to
do” of most. Fortunately, PowerShell Remoting’s main focus is to solve these common
problems, and throttling is no exception.

By default, PowerShell Remoting connects to 32 computers at a time. After running
your command on the first 32 computers in your list, it waits for commands to complete
before running your command on additional computers.

To demonstrate this automatic scaling, the solution shows the difference between call-
ing Invoke-Command with the default throttle limit and calling it with a throttle limit of
one computer.

When working against many computers at a time, you might want to continue using
your shell while these long-running tasks process in the background. To support back-
ground processing of tasks, the Invoke-Command cmdlet offers -AsJob, which lets you
run your command as a PowerShell Job.

For more information about PowerShell Jobs, see Recipe 1.4.

See Also
Recipe 1.4, “Invoke a Long-Running or Background Command”

Recipe 29.11, “Invoke a Command on a Remote Computer”

29.17 Run a Local Script on a Remote Computer

Problem
You have a local script and want to run it on a remote computer.

Solution
Use the -FilePath parameter of the Invoke-Command cmdlet:

PS > Get-Content .\Get-ProcessByName.ps1
param($name)

Get-Process -Name $name

PS > Invoke-Command -Computername Lee-Desk `
 -FilePath .\Get-ProcessByname.ps1 -ArgumentList PowerShell `
 -Cred Lee

684 | Chapter 29: Remoting

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

Discussion
For quick one-off actions, the -ScriptBlock parameter of the Invoke-Command cmdlet
lets you easily invoke commands against a remote computer:

PS > Invoke-Command Lee-Desk { Get-Process -n PowerShell } -Cred Lee

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

When these commands become more complicated, however, writing them all in a script
block becomes cumbersome. You have no syntax highlighting, line numbering, or any
of the other creature comforts offered by writing script-based execution.

To let you write scripts against a remote computer instead, PowerShell offers the
-FilePath parameter on the Invoke-Command cmdlet. When you use this parameter,
PowerShell reads the script from disk and invokes its contents on the remote computer.

In this mode, PowerShell makes no attempt to address dependencies during this proc-
ess. If your script requires any other scripts, commands, or environmental dependen-
cies, ensure that they are available on the remote computer.

For one option on how to transfer items to a remote computer, see Recipe 29.18.

See Also
Recipe 29.11, “Invoke a Command on a Remote Computer”

Recipe 29.18, “Program: Transfer a File to a Remote Computer”

29.18 Program: Transfer a File to a Remote Computer
When working with remote computers, a common problem is how to bring your local
tools and environment to that computer. Using file shares or FTP transfers is a common
way to share tools between systems, but these options are not always available.

As a solution, Example 29-6 builds on PowerShell Remoting to transfer the file content
over a regular PowerShell Remoting connection.

To do this, it reads the content of the file into an array of bytes. Then, it breaks that
array into one-megabyte chunks. It streams each chunk to the remote system, which
then recombines the chunks into the destination file. By breaking the file into large
chunks, the script optimizes the network efficiency of PowerShell Remoting. By limiting
these chunks to one megabyte, it avoids running into any quota issues.

29.18 Program: Transfer a File to a Remote Computer | 685

Example 29-6. Send-File.ps1

##
##
Send-File
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Sends a file to a remote session.

.EXAMPLE

PS >$session = New-PsSession leeholmes1c23
PS >Send-File c:\temp\test.exe c:\temp\test.exe $session

#>

param(
 ## The path on the local computer
 [Parameter(Mandatory = $true)]
 $Source,

 ## The target path on the remote computer
 [Parameter(Mandatory = $true)]
 $Destination,

 ## The session that represents the remote computer
 [Parameter(Mandatory = $true)]
 [System.Management.Automation.Runspaces.PSSession] $Session
)

Set-StrictMode -Version Latest

Get the source file, and then get its content
$sourcePath = (Resolve-Path $source).Path
$sourceBytes = [IO.File]::ReadAllBytes($sourcePath)
$streamChunks = @()

Now break it into chunks to stream
Write-Progress -Activity "Sending $Source" -Status "Preparing file"
$streamSize = 1MB
for($position = 0; $position -lt $sourceBytes.Length;
 $position += $streamSize)
{
 $remaining = $sourceBytes.Length - $position
 $remaining = [Math]::Min($remaining, $streamSize)

 $nextChunk = New-Object byte[] $remaining
 [Array]::Copy($sourcebytes, $position, $nextChunk, 0, $remaining)

686 | Chapter 29: Remoting

 $streamChunks += ,$nextChunk
}

$remoteScript = {
 param($destination, $length)

 ## Convert the destination path to a full filesytem path (to support
 ## relative paths)
 $Destination = $executionContext.SessionState.`
 Path.GetUnresolvedProviderPathFromPSPath($Destination)

 ## Create a new array to hold the file content
 $destBytes = New-Object byte[] $length
 $position = 0

 ## Go through the input, and fill in the new array of file content
 foreach($chunk in $input)
 {
 Write-Progress -Activity "Writing $Destination" `
 -Status "Sending file" `
 -PercentComplete ($position / $length * 100)

 [GC]::Collect()
 [Array]::Copy($chunk, 0, $destBytes, $position, $chunk.Length)
 $position += $chunk.Length
 }

 ## Write the content to the new file
 [IO.File]::WriteAllBytes($destination, $destBytes)

 ## Show the result
 Get-Item $destination
 [GC]::Collect()
}

Stream the chunks into the remote script
$streamChunks | Invoke-Command -Session $session $remoteScript `
 -ArgumentList $destination,$sourceBytes.Length

For more information about running scripts, see Recipe 1.1.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 29.11, “Invoke a Command on a Remote Computer”

29.18 Program: Transfer a File to a Remote Computer | 687

29.19 Determine Whether a Script Is Running on a Remote
Computer

Problem
You have a script that needs to know whether it is running on a local or remote
computer.

Solution
Review the output of the $host.Name property. If it is ServerRemoteHost, it is running
remotely. If it is anything else, it is running locally.

PS > $host.Name
ConsoleHost

PS > Invoke-Command leeholmes1c23 { $host.Name }
ServerRemoteHost

Discussion
While your scripts should work no matter whether they are running locally or remotely,
you might run into situations where you need to verify which environment your script
is being launched under.

The $host automatic variable exposes information about the current host, of which
PowerShell Remoting is one. When you access this variable in a remoting session, the
value is ServerRemoteHost. Although the value on the console host is ConsoleHost, you
should not depend on this as an indicator of a local script. There are many other
PowerShell hosts—such as the PowerShell Integrated Scripting Environment (Windows
PowerShell ISE Host), PowerGUI, PowerShell Plus, and more. Each has a customized
host name, but none is ServerRemoteHost.

For more information about the $host automatic variable, see Recipe 13.9.

See Also
Recipe 13.9, “Access Features of the Host’s User Interface”

29.20 Program: Create a Task-Specific Remoting Endpoint
In addition to its main feature of offering full and rich Remoting endpoints, PowerShell
lets you configure a session to the other extreme as well. This is through a mechanism
known as restricted runspaces.

688 | Chapter 29: Remoting

Restricted runspaces let you control which commands you expose to the user, create
proxy functions to wrap commands with more secure versions, and remove access to
the PowerShell language altogether.

The most typical implementation of a restricted runspace is a developer’s task: creating
a custom assembly, building an initial session state, and more. When you create an
initial session state, there are two types of commands: public and private. The main
distinction is that users can call only public commands, while public commands can
internally call both public and private commands. This lets you write a public function,
for example, that calls many private PowerShell cmdlets to accomplish its task.

For administrators, there is a relatively simple alternative to the developer’s approach:
creating a custom endpoint that uses a startup script for its configuration tasks.

The implementation of this startup script is still a challenge, though. Which commands
should you make public in order to support interactive remoting? Which parameters
should you remove from the commands that you do expose?

Fortunately, the developer’s API supports a command to answer this exact question.
The CreateRestricted() method on the InitialSessionState class creates a minimal
and secure startup environment. To create a startup script based on this information,
you can examine the commands in the InitialSessionState object and clone that in-
formation in your restricted session.

After importing all of the proxy functions, the last step is to configure their proper
visibility, disable access to scripts and applications, and then remove access to the
PowerShell language.

Once you’ve built a script that can restrict a PowerShell session, call the Register-
PSSessionConfiguration cmdlet to assign it a new endpoint name and configuration:

PS > Set-ExecutionPolicy RemoteSigned
PS > Register-PSSessionConfiguration -Name Inventory `
 -StartupScript 'C:\Program Files\Endpoints\Inventory.ps1'

Confirm
Are you sure you want to perform this action?
Performing operation "Register-PSSessionConfiguration" on Target "Name:
Inventory. This will allow administrators to remotely run Windows PowerShell
commands on this computer."
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): Y

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Plugin

Name Type Keys
---- ---- ----
Inventory Container {Name=Inventory}

Confirm
Are you sure you want to perform this action?

29.20 Program: Create a Task-Specific Remoting Endpoint | 689

Performing operation ""Restart-Service"" on Target "Name: WinRM".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): Y

Enter-PSSession -Computer leeholmes1c23 -ConfigurationName Inventory

As with the Microsoft.PowerShell remoting endpoint, you can configure permissions,
quotas, and more. For more information about endpoint configuration, see Recipes
29.8 and 29.15.

Example 29-7 gives an example of a startup script, building an endpoint that exposes
only a Get-Inventory command.

Example 29-7. Inventory.ps1

##
##
Inventory
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Serves as the configuration script for a custom remoting endpoint that
exposes only the Get-Inventory custom command.

.EXAMPLE

PS >Register-PsSessionConfiguration Inventory `
 -StartupScript 'C:\Program Files\Endpoints\Inventory.ps1'
PS >Enter-PsSession leeholmes1c23 -ConfigurationName Inventory

[leeholmes1c23]: [Inventory] > Get-Command

CommandType Name Definition
----------- ---- ----------
Function Exit-PSSession [CmdletBinding()]...
Function Get-Command [CmdletBinding()]...
Function Get-FormatData [CmdletBinding()]...
Function Get-Help [CmdletBinding()]...
Function Get-Inventory ...
Function Measure-Object [CmdletBinding()]...
Function Out-Default [CmdletBinding()]...
Function prompt ...
Function Select-Object [CmdletBinding()]...

[leeholmes1c23]: [Inventory] > Get-Inventory

SystemDirectory : C:\Windows\system32

690 | Chapter 29: Remoting

Organization :
BuildNumber : 6002
RegisteredUser : Lee Holmes
SerialNumber : 89580-433-1295803-71477
Version : 6.0.6002

[leeholmes1c23]: [Inventory] > 1+1
The syntax is not supported by this runspace. This might be because it is
in no-language mode.
 + CategoryInfo :
 + FullyQualifiedErrorId : ScriptsNotAllowed

[leeholmes1c23]: [Inventory] > Exit-PsSession
PS >

#>

Set-StrictMode -Off

Create a new function to get inventory
function Get-Inventory
{
 Get-WmiObject Win32_OperatingSystem
}

Customize the prompt
function Prompt
{
 "[Inventory] > "
}

Remember which functions we want to expose to the user
$exportedCommands = "Get-Inventory","Prompt"

The System.Management.Automation.Runspaces.InitialSessionState class
has a CreateRestricted() method that creates a default locked-down
secure configuration for a remote session. This configuration only
supports the bare minimum required for interactive remoting.
$issType = [System.Management.Automation.Runspaces.InitialSessionState]
$iss = $issType::CreateRestricted("RemoteServer")

Add the commands to a hashtable so that we can access them easily
$issHashtable = @{}
foreach($command in $iss.Commands)
{
 $issHashtable[$command.Name + "-" + $command.CommandType] = $command
}

Go through all of the functions built into the restricted runspace and add
them to this session. These are proxy functions to limit the functionality
of commands that we need (such as Get-Command, Select-Object, etc.).
foreach($function in $iss.Commands |
 Where-Object { $_.CommandType -eq "Function" })
{
 Set-Content "function:\$($function.Name)" -Value $function.Definition

29.20 Program: Create a Task-Specific Remoting Endpoint | 691

}

Go through all of the commands in this session
foreach($command in Get-Command)
{
 ## If it was one of our exported commands, keep it Public
 if($exportedCommands -contains $command.Name) { continue }

 ## If the current command is defined as Private in the initial session
 ## state, mark it as Private here as well.
 $issCommand = $issHashtable[$command.Name + "-" + $command.CommandType]
 if((-not $issCommand) -or ($issCommand.Visibility -ne "Public"))
 {
 $command.Visibility = "Private"
 }
}

Finally, prevent all access to the PowerShell language
$executionContext.SessionState.Scripts.Clear()
$executionContext.SessionState.Applications.Clear()
$executionContext.SessionState.LanguageMode = "NoLanguage"

For more information about running scripts, see Recipe 1.1. For more information
about proxy functions, see Recipe 11.23.

See Also
Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

Recipe 29.8, “Configure User Permissions for Remoting”

692 | Chapter 29: Remoting

CHAPTER 30

Transactions

30.0 Introduction
Transactions describe a system’s ability to support tentative or multistep changes.
When you make changes within the context of a transaction, the system provides four
main guarantees:

Isolation
To observers not participating in the transaction, the commands inside the trans-
action have not impacted the system.

Atomicity
Once you decide to finalize (commit) a transaction, either all of the changes take
effect or none of them do.

Consistency
Errors caused during a transaction that would cause an inconsistent system state
are dealt with in order to bring the system back to a consistent state.

Durability
Once the system has informed you of the transaction’s successful completion, you
can be certain that the changes are permanent.

As a real-world example of a transaction, consider a money transfer between two bank
accounts. This might happen in two stages: subtract the money from the first account,
and then add the money to the second account. In this situation, you have the exact
same goals for robustness and correctness:

Isolation
While the money transfer is taking place (but has not yet completed), the balance
of both bank accounts appears unchanged.

Atomicity
At some point in the process, it’s possible that we’ve subtracted the money from
the first account but haven’t added it yet to the second account. When we process

693

the money transfer, it’s critical that the system never show this intermediate state.
Either all of the changes take effect or none of them do.

Consistency
If an error occurs during the money transfer, the system takes corrective action to
ensure that it is not left in an intermediate state. Perhaps it accounts for a lack of
funds by adding an overdraft charge or by abandoning the money transfer alto-
gether. It should not, for example, take the funds from one account without de-
positing them into the second account.

Durability
Once the money transfer completes, you don’t have to worry about a system error
undoing all or part of it.

Although transactions are normally a developer topic, PowerShell exposes transactions
as an end-user concept, opening a great deal of potential for consistent system
management.

To start a transaction, call the Start-Transaction cmdlet. To use a cmdlet that supports
transactions, specify the -UseTransaction parameter. Being explicit about this param-
eter is crucial, as many cmdlets that support transactions can work equally well without
one. Because of that, PowerShell lets the cmdlet participate in the transaction only when
you supply this parameter.

In Windows Vista and later, PowerShell’s registry provider supports transactions as a
first-class concept. You can see this in action in Recipe 21.6.

PS > Set-Location HKCU:
PS > Start-Transaction

PS > mkdir TempKey -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey {}

PS > New-Item TempKey\TempKey2 -UseTransaction

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

PS > Get-ChildItem TempKey
Get-ChildItem : Cannot find path 'HKEY_CURRENT_USER\TempKey' because it
does not exist.

PS > Complete-Transaction
PS > Get-ChildItem TempKey

694 | Chapter 30: Transactions

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

Once you have completed the transactional work, call either the Complete-Transac
tion cmdlet to make it final or the Undo-Transaction cmdlet to discard the changes.
While you may now be tempted to experiment with transactions on other providers
(for example, the filesystem), be aware that only the registry provider currently supports
them.

30.1 Safely Experiment with Transactions

Problem
You want to experiment with PowerShell’s transactions support but don’t want to use
the Registry Provider as your playground.

Solution
Use PowerShell’s System.Management.Automation.TransactedString object along with
the Use-Transaction cmdlet to experiment with a string, rather than registry keys:

PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands that
get called with the -UseTransaction flag become part of that transaction.
PS >
PS > $transactedString = New-Object Microsoft.PowerShell.Commands.Management.
TransactedString
PS > $transactedString.Append("Hello ")
PS >
PS > Use-Transaction -UseTransaction { $transactedString.Append("World") }

Suggestion [2,Transactions]: The Use-Transaction cmdlet is intended for
scripting of transaction-enabled .NET objects. Its ScriptBlock should contain
nothing else.
PS >
PS > $transactedString.ToString()
Hello
PS >
PS > Complete-Transaction
PS >
PS > $transactedString.ToString()
Hello World
PS >

30.1 Safely Experiment with Transactions | 695

Discussion
PowerShell’s transaction support builds on four core cmdlets: Start-Transaction, Use-
Transaction, Complete-Transaction, and Undo-Transaction.

The Start-Transaction begins a transaction, creating a context where changes are visi-
ble to commands within the transaction, but not outside of it. For the most part, after
starting a transaction, you’ll apply commands to that transaction by adding the -Use
Transaction parameter to a cmdlet that supports it. For example, when a PowerShell
provider supports transactions, all of PowerShell’s core cmdlets (Get-ChildItem,
Remove-Item, etc.) let you specify the -UseTransaction parameter for actions against
that provider.

The Use-Transaction cmdlet is slightly different. Although it still requires the -UseTran
saction parameter to apply its script block to the current transaction, its sole purpose
is to let you script against .NET objects that support transactions themselves. Since
they have no way to supply a -UseTransaction parameter, PowerShell offers this generic
cmdlet for any type of transactional .NET scripting.

Other transaction-enabled cmdlets should not be called within the Use-
Transaction script block. You still need to provide the
-UseTransaction parameter to the cmdlet being called, and there’s a
chance that they might cause instability with your PowerShell-wide
transactions.

To give users an opportunity to play with something a little less risky than the Windows
Registry, PowerShell includes the Microsoft.PowerShell.Commands.Management.Trans
actedString class. This class acts like you’d expect any transacted command to act and
lets you become familiar with how the rest of PowerShell’s transaction cmdlets work
together. Since this is a .NET object, it must be called from within the script block of
the Use-Transaction cmdlet.

Finally, when you are finished performing tasks for the current transaction, call either
the Complete-Transaction or the Undo-Transaction cmdlet. As compared to the solu-
tion, here’s an example session where the Undo-Transaction cmdlet lets you discard
changes made during the transaction:

PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands that
get called with the -UseTransaction flag become part of that transaction.
PS >
PS > $transactedString = New-Object Microsoft.PowerShell.Commands.Management.Tra
nsactedString
PS > $transactedString.Append("Hello ")
PS >
PS > Use-Transaction -UseTransaction { $transactedString.Append("World") }

696 | Chapter 30: Transactions

Suggestion [2,Transactions]: The Use-Transaction cmdlet is intended for
scripting of transaction-enabled .NET objects. Its ScriptBlock should contain
nothing else.
PS >
PS > $transactedString.ToString()
Hello
PS >
PS > Undo-Transaction
PS >
PS > $transactedString.ToString()
Hello

For more information about transactions in the Windows Registry, see Recipe 21.6.

See Also
Recipe 21.6, “Safely Combine Related Registry Modifications”

30.2 Change Error Recovery Behavior in Transactions

Problem
You want to change how PowerShell responds to errors during the execution of a
transacted cmdlet.

Solution
Use the -RollbackPreference parameter of the Start-Transaction cmdlet to control
what type of error will cause PowerShell to automatically undo your transaction:

HKCU:\ >Start-Transaction
HKCU:\ >New-Item Foo -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 Foo {}

HKCU:\ >Copy IDoNotExist Foo -UseTransaction
Copy-Item : Cannot find path 'HKCU:\IDoNotExist' because it does not exist.

HKCU:\ >Complete-Transaction
Complete-Transaction : Cannot commit transaction. The transaction has been
rolled back or has timed out.

HKCU:\ >Start-Transaction -RollbackPreference TerminatingError

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------

30.2 Change Error Recovery Behavior in Transactions | 697

 0 0 Foo {}

HKCU:\ >Copy IDoNotExist Foo -UseTransaction
Copy-Item : Cannot find path 'HKCU:\IDoNotExist' because it does not exist.

HKCU:\ >Complete-Transaction
HKCU:\ >Get-Item Foo

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 Foo {}

Discussion
Errors in scripts are an extremely frequent cause of system inconsistency. If a script
incorrectly assumes the existence of a registry key or other system state, this type of
error tends to waterfall through the entire script. As the script continues, some of the
operations succeed while others fail. When the script completes, you’re in the difficult
situation of not knowing exactly what portions of the script worked correctly.

Sometimes running the script again will magically make the problems go away. Un-
fortunately, it’s just as common to face a painstaking manual cleanup effort.

Addressing these consistency issues is one of the primary goals of system transactions.

When PowerShell creates a new transaction, it undoes (rolls back) your transaction for
any error it encounters that is operating in the context of that transaction. When
PowerShell rolls back your transaction, the system impact is clear: no part of your
transaction was made permanent, so your system is still entirely consistent.

Some situations are simply too volatile to depend on this rigid interpretation of con-
sistency, though, so PowerShell offers the -RollbackPreference parameter on the Start-
Transaction to let you configure how it should respond to errors:

Error

PowerShell rolls back your transaction when any error occurs.

TerminatingError

PowerShell rolls back your transaction only when a terminating error occurs.

Never

PowerShell never automatically rolls back your transaction in response to errors.

For more information about PowerShell’s error handling and error levels, see
Chapter 15.

See Also
Chapter 15, Tracing and Error Management

698 | Chapter 30: Transactions

CHAPTER 31

Event Handling

31.0 Introduction
Much of system administration is reactionary: taking some action when a system service
shuts down, when files are created or deleted, when changes are made to the Windows
registry, or even on a timed interval.

The easiest way to respond to system changes is to simply poll for them. If you’re waiting
for a file to be created, just check for it every once in a while until it shows up. If you’re
waiting for a process to start, just keep calling the Get-Process cmdlet until it’s there.

This approach is passable for some events (such as waiting for a process to come or
go), but it quickly falls apart when you need to monitor huge portions of the system—
such as the entire Registry or filesystem.

An an alternative to polling for system changes, many technologies support automatic
notifications—known as events. When an application registers for these automatic no-
tifications, it can respond to them as soon as they happen, rather than having to poll
for them.

Unfortunately, each technology offers its own method of event notification: .NET de-
fines one approach and WMI defines another. When you have a script that wants to
generate its own events, neither technology offers an option.

PowerShell addresses this complexity by introducing a single, consistent set of event-
related cmdlets. These cmdlets let you work with all of these different event sources.
When an event occurs, you can let PowerShell store the notification for you in its event
queue or use an Action script block to process it automatically:

PS > "Hello" > file.txt
PS > Get-Item file.txt

 Directory: C:\temp

699

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2010 12:57 PM 16 file.txt

PS > Get-Process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 3 1140 6196 63 0.06 3240 notepad

PS > Register-WmiEvent Win32_ProcessStopTrace `
 -SourceIdentifier ProcessStopWatcher `
 -Action {
 if($EventArgs.NewEvent.ProcessName -eq "notepad.exe")
 {
 Remove-Item c:\temp\file.txt
 }
 }

PS > Stop-Process -n notepad
PS > Get-Item c:\temp\file.txt
Get-Item : Cannot find path 'C:\temp\file.txt' because it does not exist.

By building on PowerShell eventing, you can write scripts to quickly react to an ever-
changing system.

31.1 Respond to Automatically Generated Events

Problem
You want to respond automatically to a .NET, WMI, or engine event.

Solution
Use the -Action parameter of the Register-ObjectEvent, Register-WmiEvent, and Reg
ister-EngineEvent cmdlets to be notified when an event arrives and have PowerShell
invoke the script block you supply:

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action { $GLOBAL:lastRandom = Get-Random }

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
2 Timer.Elapsed NotStarted False

PS > $timer.Enabled = $true

700 | Chapter 31: Event Handling

PS > $lastRandom
836077209
PS > $lastRandom
2030675971
PS > $lastRandom
1617766254
PS > Unregister-Event Timer.Elapsed

Discussion
PowerShell’s event registration cmdlets give you a consistent way to interact with many
different event technologies: .NET events, WMI events, and PowerShell engine events.

By default, when you register for an event, PowerShell adds a new entry to the session-
wide event repository called the event queue. You can use the Get-Event cmdlet to see
events added to this queue, and the Remove-Event cmdlet to remove events from this
queue.

In addition to its support for manual processing of events, you can also supply a script
block to the -Action parameter of the event registration cmdlets. When you provide a
script block to the -Action parameter, PowerShell automatically processes events when
they arrive.

However, doing two things at once means multithreading. And multithreading? Thar
be dragons! To prevent you from having to deal with multithreading issues, PowerShell
tightly controls the execution of these script blocks. When it’s time to process an action,
it suspends the current script or pipeline, executes the action, and then resumes where
it left off. It processes only one action at a time.

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action { Write-Host "Processing event" }
$timer.Enabled = $true

PS > while($true) { Write-Host "Processing loop"; Sleep 1 }
Processing loop
Processing event
Processing loop
Processing event
Processing loop
Processing event
Processing loop
Processing event
Processing loop
(...)

Inside of the -Action scriptblock, PowerShell gives your script access to five automatic
variables:

eventSubscriber

The subscriber (event registration) that generated this event.

31.1 Respond to Automatically Generated Events | 701

event

The details of the event itself: MessageData, TimeGenerated, etc.

args

The arguments and parameters of the event handler. Most events place the event
sender and customized event information as the first two arguments, but this de-
pends on the event handler.

sender

The object that fired the event (if any).

eventArgs

The customized event information that the event defines, if any. For example, the
Timers.Timer object provides a TimerElapsedEventArgs object for this parameter.
This object includes a SignalTime parameter, which identifies exactly when the
timer fired. Likewise, WMI events define an object that places most of the infor-
mation in the $eventArgs.NewEvent property.

In addition to the script block that you supply to the -Action parameter, you can also
supply any objects you’d like to the -MessageData parameter during your event regis-
tration. PowerShell associates this data with any event notifications it generates for this
event registration.

To prevent your script block from accidentally corrupting the state of scripts that it
interrupts, PowerShell places it in a very isolated environment. Primarily, PowerShell
gives you access to your event action through its job infrastructure. As with other
PowerShell jobs, you can use the Receive-Job cmdlet to retrieve any output generated
by your event action:

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action {
 $SCRIPT:triggerCount = 1 + $SCRIPT:triggerCount
 "Processing Event $triggerCount"
 }
$timer.Enabled = $true

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Timer.Elapsed NotStarted False

PS > Get-Job 1

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Timer.Elapsed Running True

PS > Receive-Job 1
Processing Event 1
Processing Event 2

702 | Chapter 31: Event Handling

Processing Event 3
(...)

For more information about working with PowerShell jobs, see Recipe 1.4.

In addition to exposing your event actions through a job interface, PowerShell also uses
a module to ensure that your -Action script block is not impacted by (and does not
impact) other scripts running on the system. As with all modules, $GLOBAL variables are
shared by the entire session. $SCRIPT variables are shared and persisted for all invoca-
tions of the script block. All other variables persist only for the current triggering of
your event action. For more information about PowerShell modules, see Recipe 11.7.

For more information about useful .NET and WMI events, see Appendix I.

See Also
Recipe 1.4, “Invoke a Long-Running or Background Command”

Recipe 11.7, “Write Commands That Maintain State”

Appendix I, Selected Events and Their Uses

31.2 Create and Respond to Custom Events

Problem
You want to create new events for other scripts to consume or want to respond auto-
matically when they occur.

Solution
Use the New-Event cmdlet to generate a custom event. Use the -Action parameter of the
Register-EngineEvent cmdlet to respond to that event automatically.

PS > Register-EngineEvent -SourceIdentifier Custom.Event `
 -Action { Write-Host "Received Event" }

PS > $null = New-Event Custom.Event
Received Event

Discussion
The New-Event cmdlet lets you create new custom events for other scripts or event
registrations to consume. When you call the New-Event cmdlet, PowerShell adds a new
entry to the session-wide event repository called the event queue. You can use the Get-
Event cmdlet to see events added to this queue, or you can use the Register-
EngineEvent cmdlet to have PowerShell respond automatically.

31.2 Create and Respond to Custom Events | 703

One prime use of the New-Event cmdlet is to adapt complex events surfaced through
the generic WMI and .NET event cmdlets. By writing task-focused commands to sur-
face this adapted data, you can offer and work with data that is simpler to consume.

To accomplish this goal, use the Register-ObjectEvent or Register-WmiEvent cmdlets
to register for one of their events. In the -Action script block, use the New-Event cmdlet
to generate a new, more specialized event.

In this scenario, the event registrations that interact with .NET or WMI directly are
merely “support” events, and users would not expect to see them when they use the
Get-EventSubscriber cmdlet. To hide these event registrations by default, both the
Register-ObjectEvent and Register-WmiEvent cmdlets offer a -SupportEvent parameter.

Here is an example of two functions that notify you when a new process starts:

Enable process creation events
function Enable-ProcessCreationEvent
{
 $identifier = "WMI.ProcessCreated"
 $query = "SELECT * FROM __instancecreationevent " +
 "WITHIN 5 " +
 "WHERE targetinstance isa 'win32_process'"
 Register-WmiEvent -Query $query -SourceIdentifier $identifier `
 -SupportEvent -Action {
 [void] (New-Event "PowerShell.ProcessCreated" `
 -Sender $sender -EventArguments $EventArgs.NewEvent.TargetInstance)
 }
}

Disable process creation events
function Disable-ProcessCreationEvent
{
 Unregister-Event -Force -SourceIdentifier "WMI.ProcessCreated"
}

When used in the shell, the experience is much simpler than working with the WMI
events directly:

PS > Enable-ProcessCreationEvent
PS > calc
PS > Get-Event

ComputerName :
RunspaceId : feeda302-4386-4360-81d9-f5455d74950f
EventIdentifier : 2
Sender : System.Management.ManagementEventWatcher
SourceEventArgs :
SourceArgs : {calc.exe}
SourceIdentifier : PowerShell.ProcessCreated
TimeGenerated : 2/21/2010 3:15:57 PM
MessageData :

PS > (Get-Event).SourceArgs

704 | Chapter 31: Event Handling

(...)
Caption : calc.exe
CommandLine : "C:\Windows\system32\calc.exe"
CreationClassName : Win32_Process
CreationDate : 20100221151553.574124-480
CSCreationClassName : Win32_ComputerSystem
CSName : LEEHOLMES1C23
Description : calc.exe
ExecutablePath : C:\Windows\system32\calc.exe
(...)

PS > Disable-ProcessCreationEvent
PS > notepad
PS > Get-Event

ComputerName :
RunspaceId : feeda302-4386-4360-81d9-f5455d74950f
EventIdentifier : 2
Sender : System.Management.ManagementEventWatcher
SourceEventArgs :
SourceArgs : {calc.exe}
SourceIdentifier : PowerShell.ProcessCreated
TimeGenerated : 2/21/2010 3:15:57 PM
MessageData :

In addition to events that you create, engine events also represent events generated by
the engine itself. In PowerShell version two, the only defined engine event is Power
Shell.Exiting, which lets you do some work when the PowerShell session exits. For
PowerShell to handle this event, you must use the exit keyword to close your session,
rather than the X button at the top right of the console window. In the Integrated
Scripting Environment, the close button generates this event as well. For an example
of this, see Recipe 1.26.

PowerShell treats engine events like any other type of event. You can use the Register-
EngineEvent cmdlet to automatically react to these events, just as you can use the
Register-ObjectEvent and Register-WmiEvent cmdlets to react to .NET and WMI
events, respectively. For information about how to respond to events automatically,
see Recipe 31.1.

See Also
Recipe 1.26, “Save State Between Sessions”

Recipe 31.1, “Respond to Automatically Generated Events”

31.2 Create and Respond to Custom Events | 705

31.3 Create a Temporary Event Subscription

Problem
You want to automatically perform an action when an event arrives but automatically
remove the event subscription once that event fires.

Solution
To create an event subscription that automatically removes itself once processed, re-
move the event subscriber and related job as the final step of the event action. The
Register-TemporaryEvent command shown in Example 31-1 automates this for you.

Example 31-1. Register-TemporaryEvent.ps1

##
##
Register-TemporaryEvent
##
From Windows PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Registers an event action for an object and automatically unregisters
itself afterward.

.EXAMPLE

PS >$timer = New-Object Timers.Timer
PS >Register-TemporaryEvent $timer Disposed { [Console]::Beep(100,100) }
PS >$timer.Dispose()
PS >Get-EventSubscriber
PS >Get-Job

#>

param(
 ## The object that generates the event
 $Object,

 ## The event to subscribe to
 $Event,

 ## The action to invoke when the event arrives
 [ScriptBlock] $Action
)

Set-StrictMode -Version Latest

706 | Chapter 31: Event Handling

$actionText = $action.ToString()
$actionText += @'

$eventSubscriber | Unregister-Event
$eventSubscriber.Action | Remove-Job
'@

$eventAction = [ScriptBlock]::Create($actionText)
$null = Register-ObjectEvent $object $event -Action $eventAction

Discussion
When you provide a script block for the -Action parameter of Register-ObjectEvent,
PowerShell creates an event subscriber to represent that subscription, and it also creates
a job that lets you interact with the environment and results of that action. If the event
registration is really a “throwaway” registration that you no longer want after the event
gets generated, cleaning up afterward is a little complex.

Fortunately, PowerShell automatically populates several variables for event actions,
one of the most important being $eventSubscriber. This variable represents, perhaps
not surprisingly, the event subscriber related to this action. To automatically clean up
after the event is generated, pass the event subscriber to the Unregister-Event cmdlet,
and then pass the action’s job ($eventSubscriber.Action) to the Remove-Job cmdlet.

See Also
Recipe 31.1, “Respond to Automatically Generated Events”

31.4 Forward Events from a Remote Computer

Problem
You have a client connected to a remote machine through PowerShell Remoting, and
you want to be notified when an event occurs on that machine.

Solution
Use any of PowerShell’s event registration cmdlets to subscribe to the event on the
remote machine. Then, use the -Forward parameter to tell PowerShell to forward these
events when they arrive:

PS > Get-Event
PS > $session = New-PsSession leeholmes1c23
PS > Enter-PsSession $session

[leeholmes1c23]: PS C:\> $timer = New-Object Timers.Timer
[leeholmes1c23]: PS C:\> $timer.Interval = 1000
[leeholmes1c23]: PS C:\> $timer.AutoReset = $false
[leeholmes1c23]: PS C:\> Register-ObjectEvent $timer Elapsed `

31.4 Forward Events from a Remote Computer | 707

 -SourceIdentifier Timer.Elapsed -Forward
[leeholmes1c23]: PS C:\> $timer.Enabled = $true
[leeholmes1c23]: PS C:\> Exit-PsSession

PS >
PS > Get-Event

ComputerName : leeholmes1c23
RunspaceId : 053e6232-528a-4626-9b86-c50b8b762440
EventIdentifier : 1
Sender : System.Timers.Timer
SourceEventArgs : System.Management.Automation.ForwardedEventArgs
SourceArgs : {System.Timers.Timer, System.Timers.ElapsedEventArgs}
SourceIdentifier : Timer.Elapsed
TimeGenerated : 2/21/2010 11:01:54 PM
MessageData :

Discussion
PowerShell’s eventing infrastructure lets you define one of three possible actions when
you register for an event:

• Add the event notifications to the event queue.

• Automatically process the event notifications with an -Action script block.

• Forward the event notifications to a client computer.

The -Forward parameter on all of the event registration cmdlets enables this third
option. When you are connected to a remote machine that has this type of behavior
enabled on an event registration, PowerShell will automatically forward those event
notifications to your client machine. Using this technique, you can easily monitor many
remote computers for system changes that interest you.

For more information about registering for events, see Recipe 31.1. For more informa-
tion about PowerShell Remoting, see Chapter 29.

See Also
Chapter 29, Remoting

Recipe 31.1, “Respond to Automatically Generated Events”

31.5 Investigate Internal Event Action State

Problem
You want to investigate the internal environment or state of an event subscriber’s
action.

708 | Chapter 31: Event Handling

Solution
Retrieve the event subscriber, and then interact with the Subscriber.Action property:

PS > $null = Register-EngineEvent -SourceIdentifier Custom.Event `
 -Action {
 "Hello World"

 Write-Error "Got an Error"

 $SCRIPT:privateVariable = 10
 }

PS > $null = New-Event Custom.Event
PS > $subscriber = Get-EventSubscriber Custom.Event
PS > $subscriber.Action | Format-List

Module : __DynamicModule_f2b39042-e89a-49b1-b460-6211b9895acc
StatusMessage :
HasMoreData : True
Location :
Command :
 "Hello World"
 Write-Error "Got an Error"
 $SCRIPT:privateVariable = 10

JobStateInfo : Running
Finished : System.Threading.ManualResetEvent
InstanceId : b3fcceae-d878-4c8b-a53e-01873f2cfbea
Id : 1
Name : Custom.Event
ChildJobs : {}
Output : {Hello World}
Error : {Got an Error}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
State : Running

PS > $subscriber.Action.Error
Write-Error : Got an Error
At line:4 char:20
+ Write-Error <<<< "Got an Error"
 + CategoryInfo : NotSpecified: (:) [Write-Error], WriteError
 Exception
 + FullyQualifiedErrorId : Microsoft.PowerShell.Commands.WriteError
 Exception,Microsoft.PowerShell.Commands.WriteErrorCommand

Discussion
When you supply an -Action script block to any of the event registration cmdlets,
PowerShell creates a PowerShell job to let you interact with that action. When

31.5 Investigate Internal Event Action State | 709

interacting with this job, you have access to the job’s output, errors, progress, verbose
output, debug output, and warnings.

For more information about working with PowerShell jobs, see Recipe 1.4.

In addition to the job interface, PowerShell’s event system generates a module to isolate
your script block from the rest of the system—for the benefit of both you and the
system.

When you want to investigate the internal state of your action, PowerShell surfaces this
state through the action’s Module property. By passing the module to the invoke oper-
ator, you can invoke commands from within that module:

PS > $module = $subscriber.Action.Module
PS > & $module { dir variable:\privateVariable }

Name Value
---- -----
privateVariable 10

To make this even easier, you can use the Enter-Module script given by Recipe 11.9.

See Also
Recipe 1.4, “Invoke a Long-Running or Background Command”

Recipe 11.9, “Diagnose and Interact with Internal Module State”

Recipe 31.1, “Respond to Automatically Generated Events”

31.6 Use a Script Block as a .NET Delegate or Event Handler

Problem
You want to use a PowerShell script block to directly handle a .NET event or delegate.

Solution
For objects that support a .NET delegate, simply assign the script block to that delegate:

$replacer = {
 param($match)

 $chars = $match.Groups[0].Value.ToCharArray()
 [Array]::Reverse($chars)
 $chars -join ''
}

PS > $regex = [Regex] "\w+"
PS > $regex.Replace("Hello World", $replacer)
olleH dlroW

710 | Chapter 31: Event Handling

To have a script block directly handle a .NET event, call that object’s Add_Event()
method:

$form.Add_Shown({ $form.Activate(); $textbox.Focus() })

Discussion
When working with some .NET developer APIs, you might run into a method that
takes a delegate as one of its arguments. Delegates in .NET act as a way to provide
custom logic to a .NET method that accepts them. For example, the solution supplies
a custom delegate to the regular expression Replace() method to reverse the characters
in the match—something not supported by regular expressions at all.

As another example, many array classes support custom delegates for searching, sort-
ing, filtering, and more. In this example, we create a custom sorter to sort an array by
the length of its elements:

PS > $list = New-Object System.Collections.Generic.List[String]
PS > $list.Add("1")
PS > $list.Add("22")
PS > $list.Add("3333")
PS > $list.Add("444")
PS > $list.Add("5")
PS > $list.Sort({ $args[0].Length - $args[1].Length })
PS > $list
5
1
22
444
3333

Perhaps the most useful delegate per character is the ability to customize the behavior
of the .NET Framework when it encounters an invalid certificate in a web network
connection. This happens, for example, when you try to connect to a website that has
an expired SSL certificate. The .NET Framework lets you override this behavior through
a delegate that you supply to the ServerCertificateValidationCallback property in the
System.Net.ServicePointManager class. Your delegate should return $true if the certif-
icate should be accepted and $false otherwise. To accept all certificates during a de-
velopment session, simply run the following statement:

[System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }

In addition to delegates, you can also assign PowerShell script blocks directly to events
on .NET objects.

Normally, you’ll want to use PowerShell eventing to support this scenario. PowerShell
eventing provides a very rich set of cmdlets that let you interact with events from many
technologies: .NET, WMI, and the PowerShell engine itself. When you use PowerShell
eventing to handle .NET events, PowerShell protects you from the dangers of having
multiple script blocks running at once and keeps them from interfering with the rest of
your PowerShell session.

31.6 Use a Script Block as a .NET Delegate or Event Handler | 711

However, when you write a self-contained script that uses events to handle events in a
WinForms application, directly assigning script blocks to those events can be a much
more lightweight development experience. To see an example of this approach, see
Recipe 13.10.

For more information about PowerShell’s event handling, see Recipe 31.1.

See Also
Recipe 13.10, “Program: Add a Graphical User Interface to Your Script”

Recipe 31.1, “Respond to Automatically Generated Events”

712 | Chapter 31: Event Handling

PART V

References

Appendix A, PowerShell Language and Environment
Appendix B, Regular Expression Reference
Appendix C, XPath Quick Reference
Appendix D, .NET String Formatting
Appendix E, .NET DateTime Formatting
Appendix F, Selected .NET Classes and Their Uses
Appendix G, WMI Reference
Appendix H, Selected COM Objects and Their Uses
Appendix I, Selected Events and Their Uses
Appendix J, Standard PowerShell Verbs

APPENDIX A

PowerShell Language and
Environment

Commands and Expressions
PowerShell breaks any line that you enter into its individual units (tokens), and then
interprets each token in one of two ways: as a command or as an expression. The
difference is subtle: expressions support logic and flow control statements (such as if,
foreach, and throw), whereas commands do not.

You will often want to control the way that Windows PowerShell interprets your state-
ments, so Table A-1 lists the options available to you.

Table A-1. Windows PowerShell evaluation controls

Statement Example Explanation

Precedence
control: ()

PS > 5 * (1 + 2)
15
PS > (dir).Count
2276

Forces the evaluation of a command or ex-
pression, similar to the way that parenthe-
ses are used to force the order of evaluation
in a mathematical expression.

Expression
subparse: $()

PS > "The answer is (2+2)"
The answer is (2+2)

PS > "The answer is $(2+2)"
The answer is 4

PS > $value = 10
PS > $result = $(
 if($value -gt 0) { $true }
 else { $false })
PS > $result
True

Forces the evaluation of a command or ex-
pression, similar to the way that parenthe-
ses are used to force the order of evaluation
in a mathematical expression.

However, a subparse is as powerful as a
subprogram and is required only when the
subprogram contains logic or flow control
statements.

This statement is also used to expand dy-
namic information inside a string.

List evaluation:
@()

PS > "Hello".Length
5
PS > @("Hello").Length
1

Forces an expression to be evaluated as a
list. If it is already a list, it will remain a list.

715

Statement Example Explanation
PS > (Get-ChildItem).Count
12
PS > (Get-ChildItem *.txt).Count
PS > @(Get-ChildItem *.txt).Count
1

If it is not, PowerShell temporarily treats it
as one.

DATA evaluation:
DATA { }

PS > DATA { 1 + 1 }
2
PS > DATA { $myVariable = "Test" }
Assignment statements are not allowed in
restricted language mode or a Data section.

Evaluates the given script block in the con-
text of the PowerShell data language. The
data language supports only data-centric
features of the PowerShell language.

Comments
To create single-line comments, begin a line with the # character. To create a block (or
multiline) comment, surround the region with the characters <# and #>.

This is a regular comment

<# This is a block comment

function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;

Block comment ends
#>

This is regular script again

Variables
Windows PowerShell provides several ways to define and access variables, as summar-
ized in Table A-2.

Table A-2. Windows PowerShell variable syntaxes

Syntax Meaning

$simpleVariable =

"Value"

A simple variable name. The variable name must consist of alphanumeric characters.
Variable names are not case-sensitive.

${arbitrary!

@#@#`{var`}iable} =

"Value"

An arbitrary variable name. The variable name must be surrounded by curly braces, but
it may contain any characters. Curly braces in the variable name must be escaped with a
backtick (`).

${c:\file

name.extension}

Variable “Get and Set Content” syntax. This is similar to the arbitrary variable name syntax.
If the name corresponds to a valid PowerShell path, you can get and set the content of
the item at that location by reading and writing to the variable.

716 | Appendix A: PowerShell Language and Environment

Syntax Meaning

[datatype] $variable =

"Value"

Strongly typed variable. Ensures that the variable may contain only data of the type you
declare. PowerShell throws an error if it cannot coerce the data to this type when you
assign it.

$SCOPE:variable Gets or sets the variable at that specific scope. Valid scope names are global (to make
a variable available to the entire shell), script (to make a variable available only to the
current script or persistent during module commands), local (to make a variable avail-
able only to the current scope and subscopes), and private (to make a variable available
only to the current scope). The default scope is the current scope: global when defined
interactively in the shell, script when defined outside any functions or script blocks in
a script, and local elsewhere.

New-Item Variable:

\variable -Value value
Creates a new variable using the variable provider.

Get-Item Variable:

\variable

Get-Variable variable

Gets the variable using the variable provider or Get-Variable cmdlet. This lets you
access extra information about the variable, such as its options and description.

New-Variable variable
-Option option -Value
value

Creates a variable using the New-Variable cmdlet. This lets you provide extra infor-
mation about the variable, such as its options and description.

Unlike some languages, PowerShell rounds (rather than truncates) num-
bers when it converts them to the [int] data type:

PS > (3/2)
1.5
PS > [int] (3/2)
2

To have PowerShell truncate a number, see Chapter 6.

Booleans
Boolean (true or false) variables are most commonly initialized to their literal values of
$true and $false. When PowerShell evaluates variables as part of a Boolean expression
(for example, an if statement), though, it maps them to a suitable Boolean represen-
tation, as listed in Table A-3.

Table A-3. Windows PowerShell Boolean interpretations

Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Booleans | 717

Result Boolean representation

Nonempty string True

Empty string False

Empty array False

Single-element array The Boolean representation of its single element

Multi-element array True

Hashtable (either empty or not) True

Strings
Windows PowerShell offers several facilities for working with plain-text data.

Literal and Expanding Strings
To define a literal string (one in which no variable or escape expansion occurs), enclose
it in single quotes:

$myString = 'hello `t $ENV:SystemRoot'

$myString gets the actual value of hello `t $ENV:SystemRoot.

To define an expanding string (one in which variable and escape expansion occur),
enclose it in double quotes:

$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string or a double quote in a double-quoted
string, include two of the quote characters in a row:

PS > "Hello ""There""!"
Hello "There"!
PS > 'Hello ''There''!'
Hello 'There'!

To include a complex expression inside an expanding string, use a sub-
expression. For example:

$prompt = "$(get-location) >"

$prompt gets a value similar to c:\temp >.

Accessing the properties of an object requires a subexpression:

$output =
 "Current script name is: $($myInvocation.MyCommand.Path)"

$output gets a value similar to Current script name is c:\Test-

Script.ps1.

718 | Appendix A: PowerShell Language and Environment

Here Strings
To define a here string (one that may span multiple lines), place the two characters @"
at the beginning and the two characters "@ on their own line at the end.

For example:

$myHereString = @"
This text may span multiple lines, and may
contain "quotes."
"@

Here strings may be of either the literal (single-quoted) or expanding (double-quoted)
variety.

Escape Sequences
Windows PowerShell supports escape sequences inside strings, as listed in Table A-4.

Table A-4. Windows PowerShell escape sequences

Sequence Meaning

`0 The null character. Often used as a record separator.

`a The alarm character. Generates a beep when displayed on the console.

`b The backspace character. The previous character remains in the string but is overwritten when
displayed on the console.

`f A form feed. Creates a page break when printed on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are indicated entirely by the ̀ n character, so this is rarely
required.

`t A tab.

`v A vertical tab.

'' (two single quotes) A single quote, when in a literal string.

"" (two double quotes) A double quote, when in an expanding string.

`any other

character

That character, taken literally.

Strings | 719

Numbers
PowerShell offers several options for interacting with numbers and numeric data.

Simple Assignment
To define a variable that holds numeric data, simply assign it as you would other var-
iables. PowerShell automatically stores your data in a format that is sufficient to accu-
rately hold it.

$myInt = 10

$myInt gets the value of 10, as a (32-bit) integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of
precision), use the long and decimal suffixes:

$myLong = 2147483648L

$myLong gets the value of 2147483648, as a long integer.

$myDecimal = 0.999D

$myDecimal gets the value of 0.999.

PowerShell also supports scientific notation, where e<number> represents multiplying
the original number by the <number> power of 10:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on
the .NET data types of the same names.

Administrative Numeric Constants
Since computer administrators rarely get the chance to work with numbers in even
powers of 10, PowerShell offers the numeric constants of pb, tb, gb, mb, and kb to
represent petabytes (1125899906842624), terabytes (1099511627776), gigabytes
(1073741824), megabytes (1048576), and kilobytes (1024), respectively:

PS > $downloadTime = (1gb + 250mb) / 120kb
PS > $downloadTime
10871.4666666667

Hexadecimal and Other Number Bases
To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$myErrorCode = 0xFE4A

720 | Appendix A: PowerShell Language and Environment

$myErrorCode gets the integer value 65098.

The PowerShell scripting language does not natively support other number bases, but
its support for interaction with the .NET Framework enables conversion to and from
binary, octal, decimal, and hexadecimal:

$myBinary = [Convert]::ToInt32("101101010101", 2)

$myBinary gets the integer value of 2901.

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.

$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.

$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

See “Working with the .NET Framework” on page 741 to learn more
about using PowerShell to interact with the .NET Framework.

Arrays and Lists

Array Definitions
PowerShell arrays hold lists of data. The @() (array cast) syntax tells PowerShell to treat
the contents between the parentheses as an array. To create an empty array, type:

$myArray = @()

To define a nonempty array, use a comma to separate its elements:

$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:

$myList = ,"Hello"

Or, alternatively (using the array cast syntax):

$myList = @("Hello")

Elements of an array do not need to be all of the same data type, unless you declare it
as a strongly typed array. In the following example, the outer square brackets define a
strongly typed variable (as mentioned in “Variables” on page 716), and int[] represents
an array of integers:

[int[]] $myArray = 1,2,3.14

Arrays and Lists | 721

In this mode, PowerShell generates an error if it cannot convert any of the elements in
your list to the required data type. In this case, it rounds 3.14 to the integer value of 3:

PS > $myArray[2]
3

To ensure that PowerShell treats collections of uncertain length (such
as history lists or directory listings) as a list, use the list evaluation syntax
@(…) described in “Commands and Expressions” on page 715.

Arrays can also be multidimensional jagged arrays (arrays within arrays):

$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0, column 1.

$multiDimensional[1][3] returns 8, coming from row 1, column 3.

To define a multidimensional array that is not jagged, create a multidimensional in-
stance of the .NET type. For integers, that would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Array Access
To access a specific element in an array, use the [] operator. PowerShell numbers your
array elements starting at zero. Using $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

returns 1, the first element in the array.

$myArray[2]

returns 3, the third element in the array.

$myArray[-1]

returns 6, the last element of the array.

$myArray[-2]

returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:

PS > $myArray[0..2]
1
2
3

722 | Appendix A: PowerShell Language and Environment

returns elements 0 through 2, inclusive.

PS > $myArray[-1..2]
6
1
2
3

returns the final element, wraps around, and returns elements 0 through 2, inclusive.
PowerShell wraps around because the first number in the range is positive, and the
second number in the range is negative.

PS > $myArray[-1..-3]
6
5
4

returns the last element of the array through to the third-to-last element in array, in
descending order. PowerShell does not wrap around (and therefore scans backward in
this case) because both numbers in the range share the same sign.

Array Slicing
You can combine several of the statements in the previous section at once to extract
more complex ranges from an array. Use the + sign to separate array ranges from explicit
indexes:

$myArray[0,2,4]

returns the elements at indices 0, 2, and 4.

$myArray[0,2+4..5]

returns the elements at indices 0, 2, and 4 through 5, inclusive.

$myArray[,0+2..3+0,0]

returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

You can use the array slicing syntax to create arrays as well:

$myArray = ,0+2..3+0,0

Hashtables (Associative Arrays)

Hashtable Definitions
PowerShell hashtables (also called associative arrays) let you associate keys with values.
To define a hashtable, use the syntax:

$myHashtable = @{}

Hashtables (Associative Arrays) | 723

You can initialize a hashtable with its key/value pairs when you create it. PowerShell
assumes that the keys are strings, but the values may be any data type.

$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 = "Pi" }

Hashtable Access
To access or modify a specific element in an associative array, you can use either the
array-access or property-access syntax:

$myHashtable["Key1"]

returns "Value1".

$myHashtable."Key 2"

returns the array 1,2,3.

$myHashtable["New Item"] = 5

adds "New Item" to the hashtable.

$myHashtable."New Item" = 5

also adds "New Item" to the hashtable.

XML
PowerShell supports XML as a native data type. To create an XML variable, cast a string
to the [xml] type:

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties. When it does this,
PowerShell automatically groups children that share the same node type:

$myXml.AddressBook

returns an object that contains a Person property.

$myXml.AddressBook.Person

returns a list of Person nodes. Each person node exposes contactType, Name, and
Phone as properties.

724 | Appendix A: PowerShell Language and Environment

$myXml.AddressBook.Person[0]

returns the first Person node.

$myXml.AddressBook.Person[0].ContactType

returns Personal as the contact type of the first Person node.

Simple Operators
Once you have defined your data, the next step is to work with it.

Arithmetic Operators
The arithmetic operators let you perform mathematical operations on your data, as
shown in Table A-5.

The System.Math class in the .NET Framework offers many powerful
operations in addition to the native operators supported by PowerShell:

PS > [Math]::Pow([Math]::E, [Math]::Pi)
23.1406926327793

See “Working with the .NET Framework” on page 741 to learn more
about using PowerShell to interact with the .NET Framework.

Table A-5. Windows PowerShell arithmetic operators

Operator Meaning

+ The addition operator:

$leftValue + $rightValue

When used with numbers, returns their sum.

When used with strings, returns a new string created by appending the second string to the first.

When used with arrays, returns a new array created by appending the second array to the first.

When used with hashtables, returns a new hashtable created by merging the two hashtables. Since hashtable keys
must be unique, PowerShell returns an error if the second hashtable includes any keys already defined in the first
hashtable.

When used with any other type, PowerShell uses that type’s addition operator (op_Addition) if it implements
one.

- The subtraction operator:

$leftValue - $rightValue

When used with numbers, returns their difference.

This operator does not apply to strings.

This operator does not apply to arrays.

Simple Operators | 725

Operator Meaning
This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s subtraction operator (op_Subtraction) if it
implements one.

* The multiplication operator:

$leftValue * $rightValue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by appending the string to itself the number
of times you specify.

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself the number of
times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s multiplication operator (op_Multiply) if it imple-
ments one.

/ The division operator:

$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s division operator (op_Division) if it implements
one.

% The modulus operator:

$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s modulus operator (op_Modulus) if it implements one.

+=

-=

*=

/=

%=

Assignment operators:

$variable operator= value

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in the variable %= on
the lefthand side of the operator. It is a short form for

$variable = $variable operator value.

726 | Appendix A: PowerShell Language and Environment

Logical Operators
The logical operators let you compare Boolean values, as shown in Table A-6.

Table A-6. Windows PowerShell logical operators

Operator Meaning

-and Logical AND:

$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to $true. Returns $false otherwise.

You can combine several -and operators in the same expression:

$value1 -and $value2 -and $value3 …

PowerShell implements the -and operator as a short-circuit operator and evaluates arguments only if all arguments
preceding it evaluate to $true.

-or Logical OR:

$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to $true. Returns $false otherwise.

You can combine several -or operators in the same expression:

$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator and evaluates arguments only if all arguments
preceding it evaluate to $false.

-xor Logical exclusive OR:

$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates to $true, but not if both do.

Returns $false otherwise.

-not

!

Logical NOT:

-not $value

Returns $true if its righthand (and only) argument evaluates to $false. Returns $false otherwise.

Binary Operators
The binary operators, listed in Table A-7, let you apply the Boolean logical operators
bit by bit to the operator’s arguments. When comparing bits, a 1 represents $true,
whereas a 0 represents $false.

Table A-7. Windows PowerShell binary operators

Operator Meaning

-band Binary AND:

$leftValue -band $rightValue

Simple Operators | 727

Operator Meaning
Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at that position are
both 1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -band $int2
PS > [Convert]::ToString($result, 2)
10010010

-bor Binary OR:

$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand arguments at that
position is 1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
110110110

-bxor Binary exclusive OR:

$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand arguments at that
position is 1, but not if both are. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $boolean2 = "010010010"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $int2 = [Convert]::ToInt32($boolean2, 2)
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
100100100

-bnot Binary NOT:

-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that position is set to
1. All other bits are set to 0.

For example:

PS > $boolean1 = "110110110"
PS > $int1 = [Convert]::ToInt32($boolean1, 2)
PS > $result = -bnot $int1
PS > [Convert]::ToString($result, 2)
11111111111111111111111001001001

728 | Appendix A: PowerShell Language and Environment

Other Operators
PowerShell supports several other simple operators, as listed in Table A-8.

Table A-8. Other Windows PowerShell operators

Operator Meaning

-replace The replace operator:

"target" -replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the regular expression "pattern" has been
replaced with the replacement text "replacement".

By default, PowerShell performs a case-insensitive comparison. The -ireplace operator makes this case-
insensitivity explicit, whereas the -creplace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture groups, the replacement string may reference
those as well.

For example:

PS > "Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the -replace operator operates on each element of that array.

For more information on the details of regular expressions, see Appendix B.

-f The format operator:

"Format String" -f Values

Returns a string where the format items in the format string have been replaced with the text equivalent of the
values in the value array.

For example:

PS > "{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET
String.Format method.

For more details about the syntax of the format string, see Appendix D.

-as The type conversion operator:

$value -as [Type]

Returns $value cast to the given .NET type. If this conversion is not possible, PowerShell returns $null.

For example:

PS > 3/2 -as [int]
2
PS > $result = "Hello" -as [int]
PS > $result -eq $null
True

-split The unary split operator:

-split "Input String"

Simple Operators | 729

Operator Meaning
Breaks the given input string into an array, using whitespace (\s+) to identify the boundary between elements.
It also trims the results.

For example:

PS > -split " Hello World "
Hello
World

The binary split operator:

"Input String" -split "delimiter",maximum,options
"Input String" -split { Scriptblock },maximum

Breaks the given input string into an array, using the given delimiter or script block to identify the
boundary between elements.

Delimiter is interpreted as a regular expression match. Scriptblock is called for each character in the
input, and a split is introduced when it returns $true.

Maximum defines the maximum number of elements to be returned, leaving unsplit elements as the last item.
This item is optional. Use "0" for unlimited if you want to provide options but not alter the maximum.

Options define special behavior to apply to the splitting behavior. The possible enumeration values are:

• SimpleMatch: Split on literal strings, rather than regular expressions they may represent.

• RegexMatch: Split on regular expressions. This option is the default.

• CultureInvariant: Does not use culture-specific capitalization rules when doing a case-insensitive
split.

• IgnorePatternWhitespace: Ignores spaces and regular expression comments in the split pattern.

• Multiline: Allows the ^ and $ characters to match line boundaries, not just the beginning and end of
the content.

• Singleline: Treats the ^ and $ characters as the beginning and end of the content. This option is the
default.

• IgnoreCase: Ignores the capitalization of the content when searching for matches.

• ExplicitCapture: In a regular expression match, only captures named groups. This option has no
impact on the -split operator.

For example:

PS > "1a2B3" -split "[a-z]+",0,"IgnoreCase"
1
2
3

-join The unary join operator:

-join ("item1","item2",...,"item_n")

Combines the supplied items into a single string, using no separator. For example:

PS > -join ("a","b")
ab

730 | Appendix A: PowerShell Language and Environment

Operator Meaning
The binary join operator:

("item1","item2",...,"item_n") -join Delimiter

Combines the supplied items into a single string, using Delimiter as the separator. For example:

PS > ("a","b") -join ", "
a, b

Comparison Operators
The PowerShell comparison operators, listed in Table A-9, let you compare expressions
against each other. By default, PowerShell’s comparison operators are case-insensitive.
For all operators where case sensitivity applies, the -i prefix makes this case insensitivity
explicit, whereas the -c prefix performs a case-sensitive comparison.

Table A-9. Windows PowerShell comparison operators

Operator Meaning

-eq The equality operator:

$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are equal.

When used with arrays, returns all elements in $leftValue that are equal to $rightValue.

When used with any other type, PowerShell uses that type’s Equals() method if it implements one.

-ne The negated equality operator:

$leftValue -ne $rightValue

For all primitive types, returns $true if$leftValue and $rightValue are not equal.

When used with arrays, returns all elements in $leftValue that are not equal to$rightValue.

When used with any other type, PowerShell returns the negation of that type’s Equals() method if it
implements one.

-ge The greater-than-or-equal operator:

$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is greater than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than or equal to $right
Value.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number greater than or equal to zero, the operator returns $true.

-gt The greater-than operator:

$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is greater than $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than $rightValue.

Comparison Operators | 731

Operator Meaning
When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number greater than zero, the operator returns $true.

-lt The less-than operator:

$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.

When used with arrays, returns all elements in $leftValue that are less than $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number less than zero, the operator returns $true.

-le The less-than-or-equal operator:

$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to$rightValue.

When used with arrays, returns all elements in $leftValue that are less than or equal to $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number less than or equal to zero, the operator returns $true.

-like The like operator:

$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.

When used with arrays, returns all elements in $leftValue that match Pattern.

The -like operator supports the following simple wildcard characters:

?

Any single unspecified character

*

Zero or more unspecified characters

[a-b]

Any character in the range of a–b

[ab]

The specified characters a or b

For example:

PS > "Test" -like "[A-Z]e?[tr]"
True

-notlike The negated like operator:

Returns $true when the -like operator would return $false.

-match The match operator:

"Target" -match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful. Once
complete, PowerShell places the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match Regular Expression.

732 | Appendix A: PowerShell Language and Environment

Operator Meaning
The $matches variable is a hashtable that maps the individual matches to the text they match. 0 is the
entire text of the match, 1 and on contain the text from any unnamed captures in the regular expression,
and string values contain the text from any named captures in the regular expression.

For example:

PS > "Hello World" -match "(.*) (.*)"
True
PS > $matches[1]
Hello

For more information on the details of regular expressions, see Appendix B.

-notmatch The negated match operator:

Returns $true when the -match operator would return $false.

The -notmatch operator still populates the $matches variable with the results of match.

-contains The contains operator:

$list -contains $value

Returns $true if the list specified by $list contains the value $value, that is, if $item -eq
$value returns $true for at least one item in the list.

-notcontains The negated contains operator:

Returns $true when the -contains operator would return $false.

-is The type operator:

$leftValue -is [type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator:

Returns $true when the -is operator would return $false.

Conditional Statements
Conditional statements in PowerShell let you change the flow of execution in your
script.

if, elseif, and else Statements
if(condition)
{
 statement block
}
elseif(condition)
{
 statement block
}
else
{
 statement block
}

Conditional Statements | 733

If condition evaluates to $true, PowerShell executes the statement block you provide.
Then, it resumes execution at the end of the if/elseif/else statement list. PowerShell
requires the enclosing braces around the statement block, even if the statement block
contains only one statement.

See “Simple Operators” on page 725 and “Comparison Opera-
tors” on page 731 for a discussion on how PowerShell evaluates expres-
sions as conditions.

If condition evaluates to $false, PowerShell evaluates any following (optional)
elseif conditions until one matches. If one matches, PowerShell executes the statement
block associated with that condition, and then resumes execution at the end of the if/
elseif/else statement list.

For example:

$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell executes the statement block
associated with the (optional) else clause, and then resumes execution at the end of
the if/elseif/else statement list.

switch Statements
switch options expression
{
 comparison value { statement block }
 -or-
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

or:

switch options -file filename
{

734 | Appendix A: PowerShell Language and Environment

 comparison value { statement block }
 -or
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates expression against the
statements in the switch body. If expression is a list of values, PowerShell evaluates
each item against the statements in the switch body. If you specify the -file option,
PowerShell treats the lines in the file as though they were a list of items in expression.

The comparison value statements let you match the current input item against the pat-
tern specified by comparison value. By default, PowerShell treats this as a case-
insensitive exact match, but the options you provide to the switch statement can change
this, as shown in Table A-10.

Table A-10. Options supported by PowerShell switch statements

Option Meaning

-casesensitive

-c

Case-sensitive match.

With this option active, PowerShell executes the associated statement block only if the current input
item exactly matches the value specified by comparison value. If the current input object is a string,
the match is case-sensitive.

-exact

-e

Exact match

With this option active, PowerShell executes the associated statement block only if the current input
item exactly matches the value specified by comparison value. This match is case-insensitive. This
is the default mode of operation.

-regex

-r

Regular-expression match

With this option active, PowerShell executes the associated statement block only if the current input
item matches the regular expression specified by comparison value. This match is case-insensitive.

-wildcard

-w

Wildcard match

With this option active, PowerShell executes the associated statement block only if the current input
item matches the wildcard specified by comparison value.

The wildcard match supports the following simple wildcard characters:

?

Any single unspecified character

*

Zero or more unspecified characters

[a-b]

Any character in the range of a–b

[ab]

The specified characters a or b

This match is case-insensitive.

Conditional Statements | 735

The { comparison expression } statements let you process the current input item, which
is stored in the $_ variable, in an arbitrary script block. When it processes a { comparison
expression } statement, PowerShell executes the associated statement block only if
{ comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default state-
ment if no other statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input object
against each statement in the switch body, falling through to the next statement even
after one or more have already matched. To have PowerShell discontinue the current
comparison (but retry the switch statement with the next input object), include a
continue statement as the last statement in the statement block. To have PowerShell
exit a switch statement completely after it processes a match, include a break statement
as the last statement in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified"; break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code" }
}

produces the output:

Area code was specified
In the 555 area code
Area code was not specified

See “Looping Statements” on page 736 for more information about
the break statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options you
provide to the switch statement can change this.

Looping Statements
Looping statements in PowerShell let you execute groups of statements multiple times.

for Statement
:loop_label for (initialization; condition; increment)
{

736 | Appendix A: PowerShell Language and Environment

 statement block
}

When PowerShell executes a for statement, it first executes the expression given by
initialization. It next evaluates condition. If condition evaluates to $true, PowerShell
executes the given statement block. It then executes the expression given by
increment. PowerShell continues to execute the statement block and increment state-
ment as long as condition evaluates to $true.

For example:

for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

foreach Statement
:loop_label foreach (variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the pipeline given by
expression—for example, Get-Process | Where-Object {$_.Handles -gt 500} or
1..10. For each item produced by the expression, it assigns that item to the variable
specified by variable and then executes the given statement block. For example:

$handleSum = 0;
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target. In addition to the
foreach statement, PowerShell also offers the Foreach-Object cmdlet with similar ca-
pabilities. For more information, see Recipe 4.4.

while Statement
:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates the expression given by
condition. If this expression evaluates to $true, PowerShell executes the given

Looping Statements | 737

statement block. PowerShell continues to execute the statement block as long as
condition evaluates to $true. For example:

$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

do … while Statement/do … until Statement
:loop_label do
{
 statement block
} while(condition)

or

:loop_label do
{
 statement block
} until(condition)

When PowerShell executes a do … while or do … until statement, it first executes the
given statement block. In a do … while statement, PowerShell continues to execute the
statement block as long as condition evaluates to $true. In a do … until statement,
PowerShell continues to execute the statement as long as condition evaluates to
$false. For example:

$validResponses = "Yes","No"
$response = ""
do
{
 $response = read-host "Yes or No?"
} while($validResponses -notcontains $response)
"Got it."

$response = ""
do
{
 $response = read-host "Yes or No?"
} until($validResponses -contains $response)
"Got it."

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

Flow Control Statements
PowerShell supports two statements to help you control flow within loops: break and
continue.

738 | Appendix A: PowerShell Language and Environment

break

The break statement halts execution of the current loop. PowerShell then resumes ex-
ecution at the end of the current looping statement, as though the looping statement
had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

If you specify a label with the break statement—for example, break outer_loop—
PowerShell halts the execution of that loop instead. For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1

Looping Statements | 739

continue

The continue statement skips execution of the rest of the current statement block.
PowerShell then continues with the next iteration of the current looping statement, as
though the statement block had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0
Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

If you specify a label with the continue statement—for example, continue outer_loop—
PowerShell continues with the next iteration of that loop instead.

For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue outer_loop
 }

740 | Appendix A: PowerShell Language and Environment

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

Working with the .NET Framework
One feature that gives PowerShell its incredible reach into both system administration
and application development is its capability to leverage Microsoft’s enormous and
broad .NET Framework.

Work with the .NET Framework in PowerShell comes mainly by way of one of two
tasks: calling methods or accessing properties.

Static Methods
To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:

PS > [System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods
To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:

PS > $process = [System.Diagnostics.Process]::GetProcessById(0)
PS > $process.Refresh()

This stores the process with ID of 0 into the $process variable. It then calls the
Refresh() instance method on that specific process.

Working with the .NET Framework | 741

Static Properties
To access a static property on a class, type:

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static property that returns
the current time:

PS > [System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although this is rare, some types let you set the value of some static properties.

Instance Properties
To access an instance property on an object, type:

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

For example:

PS > $today = [System.DateTime]::Now
PS > $today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls the DayOfWeek instance
property on that specific date.

Learning About Types
The two primary avenues for learning about classes and types are the Get-Member cmdlet
and the documentation for the .NET Framework.

The Get-Member cmdlet

To learn what methods and properties a given type supports, pass it through the Get-
Member cmdlet, as shown in Table A-11.

Table A-11. Working with the Get-Member cmdlet

Action Result

[typename] | Get-Member
-Static

All the static methods and properties of a given type.

$objectReference | Get-
Member -Static

All the static methods and properties provided by the type in $objectReference.

742 | Appendix A: PowerShell Language and Environment

Action Result

$objectReference | Get-
Member

All the instance methods and properties provided by the type in $objectReference.
If $objectReference represents a collection of items, PowerShell returns the instances
and properties of the types contained by that collection. To view the instances and properties
of a collection itself, use the -InputObject parameter of Get-Member:

Get-Member -InputObject $objectReference

[typename] | Get-Member All the instance methods and properties of a System.RuntimeType object that repre-
sents this type.

.NET Framework documentation

Another source of information about the classes in the .NET Framework is the docu-
mentation itself, available through the search facilities at http://msdn.microsoft.com.

Typical documentation for a class first starts with a general overview, and then provides
a hyperlink to the members of the class—the list of methods and properties it supports.

To get to the documentation for the members quickly, search for them
more explicitly by adding the term “members” to your MSDN search
term:

classname members

The documentation for the members of a class lists their constructors, methods, prop-
erties, and more. It uses an S icon to represent the static methods and properties. Click
the member name for more information about that member, including the type of object
that the member produces.

Type Shortcuts
When you specify a type name, PowerShell lets you use a short form for some of the
most common types, as listed in Table A-12.

Table A-12. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEntry]

[AdsiSearcher] [System.DirectoryServices.DirectorySearcher]

[Float] [System.Single]

[Hashtable] [System.Collections.Hashtable]

[Int] [System.Int32]

[IPAddress] [System.Net.IPAddress]

[Long] [System.Collections.Int64]

[PowerShell] [System.Management.Automation.PowerShell]

Working with the .NET Framework | 743

http://msdn.microsoft.com

Type shortcut Full classname

[PSCustomObject] [System.Management.Automation.PSObject]

[PSModuleInfo] [System.Management.Automation.PSModuleInfo]

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSReference]

[Regex] [System.Text.RegularExpressions.Regex]

[Runspace] [System.Management.Automation.Runspaces.Runspace]

[RunspaceFactory] [System.Management.Automation.Runspaces.RunspaceFactory]

[ScriptBlock] [System.Management.Automation.ScriptBlock]

[Switch] [System.Management.Automation.SwitchParameter]

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

Creating Instances of Types
$objectReference = New-Object TypeName parameters

Although static methods and properties of a class generate objects, you will often want
to create them explicitly yourself. PowerShell’s New-Object cmdlet lets you create an
instance of the type you specify. The parameter list must match the list of parameters
accepted by one of the type’s constructors, as documented on MSDN.

For example:

$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

If the type represents a generic type, enclose its type parameters in square brackets:

PS > $hashtable = New-Object "System.Collections.Generic.Dictionary[String,Bool]"
PS > $hashtable["Test"] = $true

Most common types are available by default. However, many types are available only
after you load the library (called the assembly) that defines them. The MSDN docu-
mentation for a class includes the assembly that defines it.

To load an assembly, use the -AssemblyName parameter of the Add-Type cmdlet:

PS > Add-Type -AssemblyName System.Web

PS > [Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

744 | Appendix A: PowerShell Language and Environment

Interacting with COM Objects
PowerShell lets you access methods and properties on COM objects the same way you
would interact with objects from the .NET Framework. To interact with a COM object,
use its ProgId with the -ComObject parameter (often shortened to -Com) on New-Object:

PS > $shell = New-Object -Com Shell.Application
PS > $shell.Windows() | Select-Object LocationName,LocationUrl

For more information about the COM objects most useful to system administrators,
see Appendix H.

Extending Types
PowerShell supports two ways to add your own methods and properties to any type:
the Add-Member cmdlet and a custom types extension file.

The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods, properties, and more to an
object. It supports the extensions shown in Table A-13.

Table A-13. Selected member types supported by the Add-Member cmdlet

Member type Meaning

AliasProperty A property defined to alias another property:

PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member "AliasProperty" Count Length
PS > $testObject.Count
4

CodeProperty A property defined by a System.Reflection.MethodInfo.

This method must be public, static, return results (nonvoid), and take one parameter of type PsObject.

NoteProperty A property defined by the initial value you provide:

PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member NoteProperty Reversed tseT
PS > $testObject.Reversed
tseT

ScriptProperty A property defined by the script block you provide. In that script block, $this refers to the current
instance:

PS > $testObject = [PsObject] ("Hi" * 100)
PS > $testObject | Add-Member ScriptProperty IsLong {
 $this.Length -gt 100
 }
$testObject.IsLong

True

PropertySet A property defined as a shortcut to a set of properties. Used in cmdlets such as Select-Object:

PS > $testObject = [PsObject] [DateTime]::Now
PS > $collection = New-Object `
 Collections.ObjectModel.Collection``1[System.String]

Working with the .NET Framework | 745

Member type Meaning
$collection.Add("Month")
$collection.Add("Year")
$testObject | Add-Member PropertySet MonthYear $collection
$testObject | select MonthYear

Month Year
----- ----
 3 2010

CodeMethod A method defined by a System.Reflection.MethodInfo.

This method must be public, static, and take one parameter of type PsObject.

ScriptMethod A method defined by the script block you provide. In that script block, $this refers to the current
instance, and $args refers to the input parameters:

PS > $testObject = [PsObject] "Hello"
PS > $testObject | Add-Member ScriptMethod IsLong {
 $this.Length -gt $args[0]
 }
$testObject.IsLong(3)
$testObject.IsLong(100)

True
False

Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also
supports configuration files that let you customize all objects of a given type. For ex-
ample, you might want to add a Reverse() method to all strings or a HelpUrl property
(based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell in-
stallation directory. This file is useful as a source of examples, but you should not
modify it directly. Instead, create a new one and use the Update-TypeData cmdlet to load
your customizations. The following command loads Types.custom.ps1xml from the
same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.Custom.Ps1Xml"
Update-TypeData -PrependPath $typesFile

For more information about custom type extensions files, see Recipe 3.17.

Writing Scripts, Reusing Functionality
When you want to start packaging and reusing your commands, the best place to put
them is in scripts, functions, and script blocks. A script is a text file that contains a
sequence of PowerShell commands. A function is also a sequence of PowerShell com-
mands but is usually placed within a script to break it into smaller, more easily under-
stood segments. A script block is a function with no name. All three support the same
functionality, except for how you define them.

746 | Appendix A: PowerShell Language and Environment

Writing Commands

Writing scripts

To write a script, write your PowerShell commands in a text editor and save the file
with a .ps1 extension.

Writing functions

Functions let you package blocks of closely related commands into a single unit that
you can access by name.

function SCOPE:name(parameters)
{
 statement block
}

or:

filter SCOPE:name(parameters)
{
 statement block
}

Valid scope names are global (to create a function available to the entire shell),
script (to create a function available only to the current script), local (to create a
function available only to the current scope and subscopes), and private (to create a
function available only to the current scope). The default scope is the local scope,
which follows the same rules as those of default variable scopes.

The content of a function’s statement block follows the same rules as the content of a
script. Functions support the $args array, formal parameters, the $input enumerator,
cmdlet keywords, pipeline output, and equivalent return semantics.

A common mistake is to call a function as you would call a method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other commands, so
this should instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the items $item1 and
$item2 to the GetMyResults function.

A filter is simply a function where the statements are treated as though they are con-
tained within a process statement block. For more information about process statement
blocks, see “Cmdlet keywords in commands” on page 754.

Writing Scripts, Reusing Functionality | 747

Commands in your script can access only functions that have already
been defined. This can often make large scripts difficult to understand
when the beginning of the script is composed entirely of helper func-
tions. Structuring a script in the following manner often makes it more
clear:

function Main
{
 (...)
 HelperFunction
 (...)
}

function HelperFunction
{
 (...)
}

. Main

Writing script blocks

$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like unnamed functions and
scripts. Like both scripts and functions, the content of a script block’s statement block
follows the same rules as the content of a function or script. Script blocks support the
$args array, formal parameters, the $input enumerator, cmdlet keywords, pipeline
output, and equivalent return semantics.

As with both scripts and functions, you can either invoke or dot-source a script block.
Since a script block does not have a name, you either invoke it directly (& { "Hello"})
or invoke the variable (& $objectReference) that contains it.

Running Commands
There are two ways to execute a command (script, function, or script block): by in-
voking it or by dot-sourcing it.

Invoking

Invoking a command runs the commands inside it. Unless explicitly defined with the
GLOBAL scope keyword, variables and functions defined in the script do not persist once
the script exits.

748 | Appendix A: PowerShell Language and Environment

By default, a security feature in PowerShell called the Execution Policy
prevents scripts from running. When you want to enable scripting in
PowerShell, you must change this setting. To understand the different
execution policies available to you, type Get-Help about_signing. After
selecting an execution policy, use the Set-ExecutionPolicy cmdlet to
configure it:

Set-ExecutionPolicy RemoteSigned

If the command name has no spaces, simply type its name:

c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ...
Invoke-MyFunction parameter1 parameter2 ...

You can use either a fully qualified path or a path relative to the current location. If the
script is in the current directory, you must explicitly say so:

.\Invoke-Commands.ps1 parameter1 parameter2 ...

If the command’s name has a space (or the command has no name, in the case of a
script block), you invoke the command by using the invoke/call operator (&) with the
command name as the parameter.

& "C:\Script Directory\Invoke-Commands.ps1" parameter1 parameter2 ...

Script blocks have no name, so you place the variable holding them after the invocation
operator:

$scriptBlock = { "Hello World" }
& $scriptBlock parameter1 parameter2 ...

If you want to invoke the command within the context of a module, provide a reference
to that module as part of the invocation:

$module = Get-Module PowerShellCookbook
& $module Invoke-MyFunction parameter1 parameter2 ...
& $module $scriptBlock parameter1 parameter2 ...

Dot-sourcing

Dot-sourcing a command runs the commands inside it. Unlike simply invoking a com-
mand, variables and functions defined in the script do persist after the script exits.

You invoke a script by using the dot operator (.) and providing the command name as
the parameter:

. "C:\Script Directory\Invoke-Commands.ps1" Parameters

. Invoke-MyFunction parameters

. $scriptBlock parameters

When dot-sourcing a script, you can use either a fully qualified path or a path relative
to the current location. If the script is in the current directory, you must explicitly say so:

. .\Invoke-Commands.ps1 Parameters

Writing Scripts, Reusing Functionality | 749

If you want to dot-source the command within the context of a module, provide a
reference to that module as part of the invocation:

$module = Get-Module PowerShellCookbook
. $module Invoke-MyFunction parameters
. $module $scriptBlock parameters

Parameter splatting

Rather than explicitly providing parameter names and values, you can provide a
hashtable that defines them and use the splatting operator:

$parameters = @{
 Path = "c:\temp"
 Recurse = $true
}

Get-ChildItem @parameters

Providing Input to Commands
PowerShell offers several options for processing input to a command.

Argument array

To access the command-line arguments by position, use the argument array that
PowerShell places in the $args special variable:

$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

Formal parameters

To define a command with simple parameter support:

param(
 [TypeName] $VariableName = Default,
 ...
)

To define one with support for advanced functionality:

[CmdletBinding(cmdlet behavior customizations)]
param(
 [Parameter(Mandatory = $true, Position = 1, ...)]
 [Alias("MyParameterAlias"]
 [...]
 [TypeName] $VariableName = Default,
 ...
)

Formal parameters let you benefit from some of the many benefits of PowerShell’s
consistent command-line parsing engine.

750 | Appendix A: PowerShell Language and Environment

PowerShell exposes your parameter names (for example, $VariableName) the same way
that it exposes parameters in cmdlets. Users need to type only enough of your parameter
name to disambiguate it from the rest of the parameters.

If you define a command with simple parameter support, PowerShell attempts to assign
the input to your parameters by their position if the user does not type parameter names.

When you add the [CmdletBinding()] attribute, [Parameter()] attribute, or any of the
validation attributes, PowerShell adds support for advanced parameter validation.

Command behavior customizations

The elements of the [CmdletBinding()] attribute describe how your script or function
interacts with the system.

SupportsShouldProcess = $true

If $true, enables the -WhatIf and -Confirm parameters, which tells the user that
your command modifies the system and can be run in one of these experimental
modes. When specified, you must also call the $psCmdlet.ShouldProcess() method
before modifying system state. When not specified, the default is $false.

DefaultParameterSetName = name
Defines the default parameter set name of this command. This is used to resolve
ambiguities when parameters declare multiple sets of parameters and the user input
doesn’t supply enough information to pick between available parameter sets.
When not specified, the command has no default parameter set name.

ConfirmImpact = "High"
Defines this command as one that should have its confirmation messages (gener-
ated by the $psCmdlet.ShouldProcess() method) shown by default. More specifi-
cally, PowerShell defines three confirmation impacts: Low, Medium, and High.
PowerShell generates the cmdlet’s confirmation messages automatically whenever
the cmdlet’s impact level is greater than the preference variable. When not speci-
fied, the command’s impact is Medium.

Parameter attribute customizations

The elements of the [Parameter()] attribute mainly define how your parameter behaves
in relation to other parameters. All elements are optional.

Mandatory = $true

Defines the parameter as mandatory. If the user doesn’t supply a value to this
parameter, PowerShell automatically prompts him for it. When not specified, the
parameter is optional.

Position = position
Defines the position of this parameter. This applies when the user provides pa-
rameter values without specifying the parameter they apply to (e.g., Argument2 in
Invoke-MyFunction -Param1 Argument1 Argument2). PowerShell supplies these

Writing Scripts, Reusing Functionality | 751

values to parameters that have defined a Position, from lowest to highest. When
not specified, the name of this parameter must be supplied by the user.

ParameterSetName = name
Defines this parameter as a member of a set of other related parameters. Parameter
behavior for this parameter is then specific to this related set of parameters, and
the parameter exists only in the parameter sets that it is defined in. This feature is
used, for example, when the user may supply only a Name or ID. To include a
parameter in two or more specific parameter sets, use two or more
[Parameter()] attributes. When not specified, this parameter is a member of all
parameter sets.

ValueFromPipeline = $true

Declares this parameter as one that directly accepts pipeline input. If the user pipes
data into your script or function, PowerShell assigns this input to your parameter
in your command’s process {} block. When not specified, this parameter does not
accept pipeline input directly.

ValueFromPipelineByPropertyName = $true

Declares this parameter as one that accepts pipeline input if a property of an in-
coming object matches its name. If this is true, PowerShell assigns the value of that
property to your parameter in your command’s process {} block. When not speci-
fied, this parameter does not accept pipeline input by property name.

ValueFromRemainingArguments = $true

Declares this parameter as one that accepts all remaining input that has not oth-
erwise been assigned to positional or named parameters. Only one parameter can
have this element. If no parameter declares support for this capability, PowerShell
generates an error for arguments that cannot be assigned.

Parameter validation attributes

In addition to the [Parameter()] attribute, PowerShell lets you apply other attributes
that add additional behavior or validation constraints to your parameters. All validation
attributes are optional.

[Alias("name")]

Defines an alternate name for this parameter. This is especially helpful for long
parameter names that are descriptive but have a more common colloquial term.
When not specified, the parameter can be referred to only by the name you origi-
nally declared.

[AllowNull()]

Allows this parameter to receive $null as its value. This is required only for man-
datory parameters. When not specified, mandatory parameters cannot receive
$null as their value, although optional parameters can.

752 | Appendix A: PowerShell Language and Environment

[AllowEmptyString()]

Allows this string parameter to receive an empty string as its value. This is required
only for mandatory parameters. When not specified, mandatory string parameters
cannot receive an empty string as their value, although optional string parameters
can. You can apply this to parameters that are not strings, but it has no impact.

[AllowEmptyCollection()]

Allows this collection parameter to receive an empty collection as its value. This is
required only for mandatory parameters. When not specified, mandatory collec-
tion parameters cannot receive an empty collection as their value, although op-
tional collection parameters can. You can apply this to parameters that are not
collections, but it has no impact.

[ValidateCount(lower limit, upper limit)]
Restricts the number of elements that can be in a collection supplied to this pa-
rameter. When not specified, mandatory parameters have a lower limit of one el-
ement. Optional parameters have no restrictions. You can apply this to parameters
that are not collections, but it has no impact.

[ValidateLength(lower limit, upper limit)]
Restricts the length of strings that this parameter can accept. When not specified,
mandatory parameters have a lower limit of one character. Optional parameters
have no restrictions. You can apply this to parameters that are not strings, but it
has no impact.

[ValidatePattern("regular expression")]

Enforces a pattern that input to this string parameter must match. When not
specified, string inputs have no pattern requirements. You can apply this to pa-
rameters that are not strings, but it has no impact.

[ValidateRange(lower limit, upper limit)]
Restricts the upper and lower limit of numerical arguments that this parameter can
accept. When not specified, parameters have no range limit. You can apply this to
parameters that are not numbers, but it has no impact.

[ValidateScript({ script block })]

Ensures that input supplied to this parameter satisfies the condition that you supply
in the script block. PowerShell assigns the proposed input to the $_ variable, and
then invokes your script block. If the script block returns $true (or anything that
can be converted to $true, such as nonempty strings), PowerShell considers the
validation to have been successful.

[ValidateSet("First Option", "Second Option", ..., "Last Option")]
Ensures that input supplied to this parameter is equal to one of the options in the
set. PowerShell uses its standard meaning of equality during this comparison: the
same rules used by the -eq operator. If your validation requires nonstandard rules
(such as case-sensitive comparison of strings), you can instead write the validation
in the body of the script or function.

Writing Scripts, Reusing Functionality | 753

[ValidateNotNull()]

Ensures that input supplied to this parameter is not null. This is the default be-
havior of mandatory parameters, so this is useful only for optional parameters.
When applied to string parameters, a $null parameter value gets instead converted
to an empty string.

[ValidateNotNullOrEmpty()]

Ensures that input supplied to this parameter is not null or empty. This is the
default behavior of mandatory parameters, so this is useful only for optional pa-
rameters. When applied to string parameters, the input must be a string with a
length greater than one. When applied to collection parameters, the collection
must have at least one element. When applied to other types of parameters, this
attribute is equivalent to the [ValidateNotNull()] attribute.

Pipeline input

To access the data being passed to your command via the pipeline, use the input enu-
merator that PowerShell places in the $input special variable:

foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline input. Enumerators support
streaming scenarios very efficiently but do not let you access arbitrary elements as you
would with an array. If you want to process their elements again, you must call the
Reset() method on the $input enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following
command to convert the input enumerator to an array:

$inputArray = @($input)

Cmdlet keywords in commands

When pipeline input is a core scenario of your command, you can include statement
blocks labeled begin, process, and end:

param(...)

begin
{
 ...
}
process
{
 ...
}
end
{

754 | Appendix A: PowerShell Language and Environment

 ...
}

PowerShell executes the begin statement when it loads your command, the process
statement for each item passed down the pipeline, and the end statement after all pipe-
line input has been processed. In the process statement block, the $_ variable represents
the current pipeline object.

When you write a command that includes these keywords, all the commands in your
script must be contained within the statement blocks.

$MyInvocation automatic variable

The $MyInvocation automatic variable contains information about the context under
which the script was run, including detailed information about the command
(MyCommand), the script that defines it (ScriptName), and more.

Retrieving Output from Commands
PowerShell provides three primary ways to retrieve output from a command.

Pipeline output

any command

The return value/output of a script is any data that it generates but does not capture.
If a command contains the commands:

"Text Output"
5*5

then assigning the output of that command to a variable creates an array with the two
values Text Output and 25.

Return statement

return value

The statement:

return $false

is simply a short form for pipeline output:

$false
return

Exit statement

exit errorlevel

The exit statement returns an error code from the current command or instance of
PowerShell. If called anywhere in a script (inline, in a function, or in a script block), it
exits the script. If called outside of a script (for example, a function), it exits PowerShell.

Writing Scripts, Reusing Functionality | 755

The exit statement sets the $LastExitCode automatic variable to errorLevel. In turn,
that sets the $? automatic variable to $false if errorLevel is not zero.

Type Get-Help about_automatic_variables for more information about
automatic variables.

Help Documentation
PowerShell automatically generates help content out of specially tagged comments in
your command:

<#

.SYNOPSIS
Runs a ...

.EXAMPLE
PS > ...

#>

param(
 ## Help content for the Param1 parameter
 $Param1
)

Help-specific comments must be the only comments in a comment block. If PowerShell
discovers a nonhelp comment, it discontinues looking for comments in that comment
block. If you need to include nonhelp comments in a comment block, place them in a
separate block of comments. The following are the most typical help comments used
in a comment block:

.SYNOPSIS

A short summary of the command, ideally a single sentence.

.DESCRIPTION

A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each parameter you want to describe.
While you can write a .PARAMETER comment for each parameter, PowerShell also
supports comments written directly above the parameter. Putting parameter help
alongside the actual parameter makes it easier to read and maintain.

.EXAMPLE

An example of this command in use, with one for each example you want to pro-
vide. PowerShell treats the line immediately beneath the .EXAMPLE tag as the ex-
ample command. If this line doesn’t contain any text that looks like a prompt,

756 | Appendix A: PowerShell Language and Environment

PowerShell adds a prompt before it. It treats lines that follow the initial line as
additional output and example commentary.

.INPUTS

A short summary of pipeline input(s) supported by this command. For each input
type, PowerShell’s built-in help follows this convention:

System.String
 You can pipe a string that contains a path to Get-ChildItem.

.OUTPUTS

A short summary of items generated by this command. For each output type,
PowerShell’s built-in help follows this convention:

System.ServiceProcess.ServiceController
 Get-Service returns objects that represent the services on the computer.

.NOTES

Any additional notes or remarks about this command.

.LINK

A link to a related help topic or command, with one .LINK tag per link. If the related
help topic is an URL, PowerShell launches that URL when the user supplies the
-Online parameter to Get-Help for your command.

Managing Errors
PowerShell supports two classes of errors: nonterminating and terminating. It collects
both types of errors as a list in the $error automatic variable.

Nonterminating Errors
Most errors are nonterminating errors, in that they do not halt execution of the current
cmdlet, script, function, or pipeline. When a command outputs an error (via Power-
Shell’s error-output facilities), PowerShell writes that error to a stream called the error
output stream.

You can output a nonterminating error using the Write-Error cmdlet (or the
WriteError() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you control how PowerShell han-
dles nonterminating errors. It supports the following values, shown in Table A-14.

Managing Errors | 757

Table A-14. ErrorActionPreference automatic variable values

Value Meaning

SilentlyContinue Do not display errors.

Stop Treat nonterminating errors as terminating errors.

Continue Display errors, but continue execution of the current cmdlet, script, function, or pipeline. This is the
default.

Inquire Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one of these values to the
ErrorAction parameter.

Terminating Errors
A terminating error halts execution of the current cmdlet, script, function, or pipeline.
If a command (such as a cmdlet or .NET method call) generates a structured exception
(for example, if you provide a method with parameters outside their valid range),
PowerShell exposes this as a terminating error. PowerShell also generates a terminating
error if it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the throw keyword:

throw message

In your own scripts and cmdlets, generate terminating errors only when
the fundamental intent of the operation is impossible to accomplish.
For example, failing to execute a command on a remote server should
be considered a nonterminating error, whereas failing to connect to the
remote server altogether should be considered a terminating error.

You can intercept terminating errors through the try, catch, and finally statements,
as supported by many other programming languages:

try
{
 statement block
}
catch [exception type]
{
 error handling block
}
catch [alternate exception type]
{
 alternate error handling block
}
finally
{
 cleanup block
}

758 | Appendix A: PowerShell Language and Environment

After a try statement, you must provide a catch statement, a finally statement, or
both. If you specify an exception type (which is optional), you may specify more than
one catch statement to handle exceptions of different types. If you specify an exception
type, the catch block applies only to terminating errors of that type.

PowerShell also lets you intercept terminating errors if you define a trap statement
before PowerShell encounters that error:

trap [exception type]
{
 statement block
 [continue or break]
}

If you specify an exception type, the trap statement applies only to terminating errors
of that type.

If specified, the continue keyword tells PowerShell to continue processing your script,
function, or pipeline after the point at which it encountered the terminating error.

If specified, the break keyword tells PowerShell to halt processing the rest of your script,
function, or pipeline after the point at which it encountered the terminating error. The
default mode is break, and it applies if you specify neither break nor continue.

Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text
to make them suitable for human consumption. PowerShell supports several options
to help you control this formatting process, as listed in Table A-15.

Table A-15. PowerShell formatting commands

Formatting
command

Result

Format-Table

Properties

Formats the properties of the input objects as a table, including only the object properties you specify.
If you do not specify a property list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide advanced formatting statements:

PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}
 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with the keys Label and Expression (or any short
form of them). The value of the expression key should be a script block that returns a result for the current
object (represented by the $_ variable).

For more information about the Format-Table cmdlet, type Get-Help Format-Table.

Formatting Output | 759

Formatting
command

Result

Format-List

Properties

Formats the properties of the input objects as a list, including only the object properties you specify. If
you do not specify a property list, PowerShell picks a default set.

The Format-List cmdlet supports the advanced formatting statements as used by the Format-
Table cmdlet.

The Format-List cmdlet is the one you will use most often to get a detailed summary of an object’s
properties.

The command Format-List * returns all properties, but it does not include those that PowerShell
hides by default. The command Format-List * -Force returns all properties.

For more information about the Format-List cmdlet, type Get-Help Format-List.

Format-Wide

Property

Formats the properties of the input objects in an extremely terse summary view. If you do not specify a
property, PowerShell picks a default.

In addition to supplying object properties, you can also provide advanced formatting statements:

PS > Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or any short form of it).
The value of the expression key should be a script block that returns a result for the current object
(represented by the $_ variable).

For more information about the Format-Wide cmdlet, type Get-Help Format-Wide.

Custom Formatting Files
All the formatting defaults in PowerShell (for example, when you do not specify a
formatting command, or when you do not specify formatting properties) are driven by
the *.Format.Ps1Xml files in the installation directory in a manner similar to the type
extension files mentioned in Recipe 3.17.

To create your own formatting customizations, use these files as a source of examples,
but do not modify them directly. Instead, create a new file and use the Update-Format
Data cmdlet to load your customizations. The Update-FormatData cmdlet applies your
changes to the current instance of PowerShell. If you wish to load them every time you
launch PowerShell, call Update-FormatData in your profile script. The following com-
mand loads Format.custom.ps1xml from the same directory as your profile:

$formatFile = Join-Path (Split-Path $profile) "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath $typesFile

Capturing Output
There are several ways to capture the output of commands in PowerShell, as listed in
Table A-16.

760 | Appendix A: PowerShell Language and Environment

Table A-16. Capturing output in PowerShell

Command Result

$variable = Command Stores the objects produced by the PowerShell command into $variable.

$variable = Command |

Out-String

Stores the visual representation of the PowerShell command into $variable. This is the
PowerShell command after it’s been converted to human-readable output.

$variable =

NativeCommand

Stores the (string) output of the native command into $variable. PowerShell stores this
as a list of strings—one for each line of output from the native command.

Command -OutVariable

variable

For most commands, stores the objects produced by the PowerShell command into $var
iable. The parameter -OutVariable can also be written -Ov.

Command > File Redirects the visual representation of the PowerShell (or standard output of a native com-
mand) into File, overwriting File if it exists. Errors are not captured by this redirection.

Command >> File Redirects the visual representation of the PowerShell (or standard output of a native com-
mand) into File, appending to File if it exists. Errors are not captured by this redirection.

Command 2> File Redirects the errors from the PowerShell or native command into File, overwriting
File if it exists.

Command 2>> File Redirects the errors from the PowerShell or native command into File, appending to
File if it exists.

Command > File 2>&1 Redirects both the error and standard output streams of the PowerShell or native command
into File, overwriting File if it exists.

Command >> File 2>&1 Redirects both the error and standard output streams of the PowerShell or native command
into File, appending to File if it exists.

Common Customization Points
As useful as it is out of the box, PowerShell offers several avenues for customization
and personalization.

Console Settings
The Windows PowerShell user interface offers several features to make your shell ex-
perience more efficient.

Adjust your window size

In the System menu (right-click the title bar at the top left of the console window),
select Properties→Layout. The Window Size options let you control the actual window
size (how big the window appears on screen), whereas the Screen Buffer Size options
let you control the virtual window size (how much content the window can hold). If
the screen buffer size is larger than the actual window size, the console window changes
to include scrollbars. Increase the virtual window height to make PowerShell store more
output from earlier in your session. If you launch PowerShell from the Start menu,
PowerShell launches with some default modifications to the window size.

Common Customization Points | 761

Make text selection easier

In the System menu, click Options→QuickEdit Mode. QuickEdit mode lets you use the
mouse to efficiently copy and paste text into or out of your PowerShell console. If you
launch PowerShell from the Start menu, PowerShell launches with QuickEdit mode
enabled.

Use hotkeys to operate the shell more efficiently

The Windows PowerShell console supports many hotkeys that help make operating
the console more efficient, as shown in Table A-17.

Table A-17. Windows PowerShell hotkeys

Hotkey Meaning

Windows key-r, and then
type powershell

Launch Windows PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Page Up Display the first command in your command history.

Page Down Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line. If at the end of the line, inserts a
character from the text of your last command at that position.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Ctrl-left arrow Move the cursor one word to the left on your command line.

Ctrl-right arrow Move the cursor one word to the right on your command line.

Alt-space, e, l Scroll through the screen buffer.

Alt-space, e, f Search for text in the screen buffer.

Alt-space, e, k Select text to be copied from the screen buffer.

Alt-space, e, p Paste clipboard contents into the Windows PowerShell console.

Alt-space, c Close the Windows PowerShell console.

Ctrl-c Cancel the current operation.

Ctrl-break Forcibly close the Windows PowerShell window.

Ctrl-home Deletes characters from the beginning of the current command line up to (but not including) the
current cursor position.

Ctrl-end Deletes characters from (and including) the current cursor position to the end of the current
command line.

F1 Move cursor one character to the right on your command line. If at the end of the line, inserts a
character from the text of your last command at that position.

762 | Appendix A: PowerShell Language and Environment

Hotkey Meaning

F2 Creates a new command line by copying your last command line up to the character that you type.

F3 Complete the command line with content from your last command line, from the current cursor
position to the end.

F4 Deletes characters from your cursor position up to (but not including) the character that you type.

F5 Scan backward through your command history.

F7 Interactively select a command from your command history. Use the arrow keys to scroll through
the window that appears. Press the Enter key to execute the command, or use the right arrow key
to place the text on your command line instead.

F8 Scan backward through your command history, only displaying matches for commands that match
the text you’ve typed so far on the command line.

F9 Invoke a specific numbered command from your command history. The numbers of these com-
mands correspond to the numbers that the command-history selection window (F7) shows.

Alt-F7 Clear the command history list.

While useful in their own right, the hotkeys listed in Table A-17 become
even more useful when you map them to shorter or more intuitive
keystrokes using a hotkey program such as the free AutoHotkey
(http://www.autohotkey.com).

Profiles
Windows PowerShell automatically runs the four scripts listed in Table A-18 during
startup. Each, if present, lets you customize your execution environment. PowerShell
runs anything you place in these files as though you had entered it manually at the
command line.

Table A-18. Windows PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell sessions, including PowerShell
hosting applications for all users on the system

InstallationDirectory\profile.ps1

Customization of PowerShell.exe sessions for all users on the system InstallationDirectory\Microsoft.PowerShell_profile.ps1

Customization of all PowerShell sessions, including PowerShell
hosting applications

<My Documents>\WindowsPowerShell\profile.ps1

Typical customization of PowerShell.exe sessions <My Documents>\WindowsPowerShell

\Microsoft.PowerShell_profile.ps1

Common Customization Points | 763

http://www.autohotkey.com

PowerShell makes editing your profile script simple by defining the automatic variable
$profile. By itself, it points to the “current user, PowerShell.exe” profile. In addition,
the $profile variable defines additional properties that point to the other profile
locations:

PS > $profile | Format-List -Force

AllUsersAllHosts : C:\Windows\System32\WindowsPowerShell\v1.0\
 profile.ps1
AllUsersCurrentHost : C:\Windows\System32\WindowsPowerShell\v1.0\
 Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : E:\Lee\WindowsPowerShell\profile.ps1
CurrentUserCurrentHost : E:\Lee\WindowsPowerShell\Microsoft.PowerShell_
 profile.ps1

To create a new profile, type:

New-Item -Type file -Force $profile

To edit this profile, type:

notepad $profile

Prompts
To customize your prompt, add a prompt function to your profile. This function returns
a string. For example:

function Prompt
{
 "PS [$env:COMPUTERNAME] >"
}

For more information about customizing your prompt, see also Recipe 1.6.

Tab Completion
You can define a TabExpansion function to customize the way that Windows PowerShell
completes properties, variables, parameters, and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell defines by default,
though, so you may want to use its definition as a starting point:

Get-Content function:\TabExpansion

As its arguments, this function receives the entire command line as input, as well as the
last word of the command line. If the function returns one or more strings, PowerShell
cycles through those strings during tab completion. Otherwise, it uses its built-in logic
to tab-complete filenames, directory names, cmdlet names, and variable names.

764 | Appendix A: PowerShell Language and Environment

APPENDIX B

Regular Expression Reference

Regular expressions play an important role in most text parsing and text matching
tasks. They form an important underpinning of the -split and -match operators, the
switch statement, the Select-String cmdlet, and more. Tables B-1 through B-9 list
commonly used regular expressions.

Table B-1. Character classes: Patterns that represent sets of characters

Character class Matches

. Any character except for a newline. If the regular expression uses the SingleLine
option, it matches any character.

PS > "T" -match '.'
True

[characters] Any character in the brackets. For example: [aeiou].

PS > "Test" -match '[Tes]'
True

[^characters] Any character not in the brackets. For example: [^aeiou].

PS > "Test" -match '[^Tes]'
False

[start-end] Any character between the characters start and end, inclusive. You may include mul-
tiple character ranges between the brackets. For example, [a-eh-j].

PS > "Test" -match '[e-t]'
True

[^start-end] Any character not between any of the character ranges start through end, inclusive.
You may include multiple character ranges between the brackets. For example, [^a-
eh-j].

PS > "Test" -match '[^e-t]'
False

\p{character class} Any character in the Unicode group or block range specified by {character class}.

PS > "+" -match '\p{Sm}'
True

\P{character class} Any character not in the Unicode group or block range specified by {character
class}.

765

Character class Matches
PS > "+" -match '\P{Sm}'
False

\w Any word character. Note that this is the Unicode definition of a word character, which
includes digits, as well as many math symbols and various other symbols.

PS > "a" -match '\w'
True

\W Any nonword character.

PS > "!" -match '\W'
True

\s Any whitespace character.

PS > "`t" -match '\s'
True

\S Any nonwhitespace character.

PS > " `t" -match '\S'
False

\d Any decimal digit.

PS > "5" -match '\d'
True

\D Any character that isn’t a decimal digit.

PS > "!" -match '\D'
True

Table B-2. Quantifiers: Expressions that enforce quantity on the preceding expression

Quantifier Meaning

<none> One match.

PS > "T" -match 'T'
True

* Zero or more matches, matching as much as possible.

PS > "A" -match 'T*'
True
PS > "TTTTT" -match '^T*$'
True

PS > 'ATTT' -match 'AT*'; $Matches[0]
True
ATTT

+ One or more matches, matching as much as possible.

PS > "A" -match 'T+'
False
PS > "TTTTT" -match '^T+$'
True

PS > 'ATTT' -match 'AT+'; $Matches[0]
True
ATTT

? Zero or one matches, matching as much as possible.

766 | Appendix B: Regular Expression Reference

Quantifier Meaning
PS > "TTTTT" -match '^T?$'
False

PS > 'ATTT' -match 'AT?'; $Matches[0]
True
AT

{n} Exactly n matches.

PS > "TTTTT" -match '^T{5}$'
True

{n,} n or more matches, matching as much as possible.

PS > "TTTTT" -match '^T{4,}$'
True

{n,m} Between n and m matches (inclusive), matching as much as possible.

PS > "TTTTT" -match '^T{4,6}$'
True

*? Zero or more matches, matching as little as possible.

PS > "A" -match '^AT*?$'
True

PS > 'ATTT' -match 'AT*?'; $Matches[0]
True
A

+? One or more matches, matching as little as possible.

PS > "A" -match '^AT+?$'
False

PS > 'ATTT' -match 'AT+?'; $Matches[0]
True
AT

?? Zero or one matches, matching as little as possible.

PS > "A" -match '^AT??$'
True

PS > 'ATTT' -match 'AT??'; $Matches[0]
True
A

{n}? Exactly n matches.

PS > "TTTTT" -match '^T{5}?$'
True

{n,}? n or more matches, matching as little as possible.

PS > "TTTTT" -match '^T{4,}?$'
True

{n,m}? Between n and m matches (inclusive), matching as little as possible.

PS > "TTTTT" -match '^T{4,6}?$'
True

Regular Expression Reference | 767

Table B-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions

Grouping construct Description

(text) Captures the text matched inside the parentheses. These captures are named by number
(starting at one) based on the order of the opening parenthesis.

PS > "Hello" -match '^(.*)llo$'; $matches[1]
True
He

(?<name>) Captures the text matched inside the parentheses. These captures are named by the name
given in name.

PS > "Hello" -match '^(?<One>.*)llo$'; $matches.One
True
He

(?<name1-name2>) A balancing group definition. This is an advanced regular expression construct, but lets
you match evenly balanced pairs of terms.

(?:) Noncapturing group.

PS > "A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

PS > "A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

(?imnsx-imnsx:) Applies or disables the given option for this group. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(T e.st)'
False
PS > "Te`nst" -match '(?sx:T e.st)'
True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the
right, without actually performing the match.

PS > "555-1212" -match '(?=...-)(.*)'; $matches[1]
True
555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given pattern does not match
to the right, without actually performing the match.

768 | Appendix B: Regular Expression Reference

Grouping construct Description
PS > "friendly" -match '(?!friendly)friend'
False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the
left, without actually performing the match.

PS > "public int X" -match '^.*(?<=public)int .*$'
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match
to the left, without actually performing the match.

PS > "private int X" -match '^.*(?<!private)int .*$'
False

(?>) Nonbacktracking subexpression. Matches only if this subexpression can be matched
completely.

PS > "Hello World" -match '(Hello.*)orld'
True
PS > "Hello World" -match '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match, as its complete match
would be “Hello World”.

Table B-4. Atomic zero-width assertions: Patterns that restrict where a match may occur

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if the Multiline option
is in effect).

PS > "Test" -match '^est'
False

$ The match must occur at the end of the string (or line, if the Multiline option is in effect).

PS > "Test" -match 'Tes$'
False

\A The match must occur at the beginning of the string.

PS > "The`nTest" -match '(?m:^Test)'
True
PS > "The`nTest" -match '(?m:\ATest)'
False

\Z The match must occur at the end of the string, or before \n at the end of the string.

PS > "The`nTest`n" -match '(?m:The$)'
True
PS > "The`nTest`n" -match '(?m:The\Z)'
False
PS > "The`nTest`n" -match 'Test\Z'
True

\z The match must occur at the end of the string.

PS > "The`nTest`n" -match 'Test\z'
False

\G The match must occur where the previous match ended. Used with System.Text.Reg
ularExpressions.Match.NextMatch().

Regular Expression Reference | 769

Assertion Restriction

\b The match must occur on a word boundary: the first or last characters in words separated
by nonalphanumeric characters.

PS > "Testing" -match 'ing\b'
True

\B The match must not occur on a word boundary.

PS > "Testing" -match 'ing\B'
False

Table B-5. Substitution patterns: Patterns used in a regular expression replace operation

Pattern Substitution

$number The text matched by group number number.

PS > "Test" -replace "(.*)st",'$1ar'
Tear

${name} The text matched by group named name.

PS > "Test" -replace "(?<pre>.*)st",'${pre}ar'
Tear

$$ A literal $.

PS > "Test" -replace ".",'$$'
$$$$

$& A copy of the entire match.

PS > "Test" -replace "^.*$",'Found: $&'
Found: Test

$` The text of the input string that precedes the match.

PS > "Test" -replace "est$",'Te$`'
TTeT

$' The text of the input string that follows the match.

PS > "Test" -replace "^Tes",'Res$'''
Restt

$+ The last group captured.

PS > "Testing" -replace "(.*)ing",'$+ed'
Tested

$_ The entire input string.

PS > "Testing" -replace "(.*)ing",'String: $_'
String: Testing

770 | Appendix B: Regular Expression Reference

Table B-6. Alternation constructs: Expressions that let you perform either/or logic

Alternation construct Description

| Matches any of the terms separated by the vertical bar character.

PS > "Test" -match '(B|T)est'
True

(?(expression)yes|no) Matches the yes term if expression matches at this point. Otherwise, matches the no

term. The no term is optional.

PS > "3.14" -match '(?(\d)3.14|Pi)'
True
PS > "Pi" -match '(?(\d)3.14|Pi)'
True
PS > "2.71" -match '(?(\d)3.14|Pi)'
False

(?(name)yes|no) Matches the yes term if the capture group named name has a capture at this point.
Otherwise, matches the no term. The no term is optional.

PS > "123" -match '(?<one>1)?(?(one)23|234)'
True
PS > "23" -match '(?<one>1)?(?(one)23|234)'
False
PS > "234" -match '(?<one>1)?(?(one)23|234)'
True

Table B-7. Backreference constructs: Expressions that refer to a capture group within the expression

Backreference construct Refers to

\number Group number number in the expression.

PS > "|Text|" -match '(.)Text\1'
True
PS > "|Text+" -match '(.)Text\1'
False

\k<name> The group named name in the expression.

PS > "|Text|" -match '(?<Symbol>.)Text\k<Symbol>'
True
PS > "|Text+" -match '(?<Symbol>.)Text\k<Symbol>'
False

Table B-8. Other constructs: Other expressions that modify a regular expression

Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this expression. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(?sx)T e.st'
True

Regular Expression Reference | 771

Construct Description

(?#) Inline comment. This terminates at the first closing parenthesis.

PS > "Test" -match '(?# Match 'Test')Test'
True

[to end of line] Comment form allowed when the regular expression has the IgnoreWhitespace
option enabled.

PS > "Test" -match '(?x)Test # Matches Test'
True

Table B-9. Character escapes: Character sequences that represent another character

Escaped character Match

<ordinary characters> Characters other than . $ ^ { [(|) * + ? \ match themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular expression, \b denotes a word
boundary (between \w and \W characters) except within a [] character class, where
\b refers to the backspace character. In a replacement pattern, \b always denotes a
backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

\n A new line \u000A.

\e An escape \u001B.

\ddd An ASCII character as octal (up to three digits). Numbers with no leading zero are treated
as backreferences if they have only one digit, or if they correspond to a capturing group
number.

\xdd An ASCII character using hexadecimal representation (exactly two digits).

\cC An ASCII control character; for example, \cC is control-C.

\udddd A Unicode character using hexadecimal representation (exactly four digits).

\ When followed by a character that is not recognized as an escaped character, matches
that character. For example, * is the literal character *.

772 | Appendix B: Regular Expression Reference

APPENDIX C

XPath Quick Reference

Just as regular expressions are the standard way to interact with plain text, XPath is the
standard way to interact with XML. Because of that, XPath is something you are likely
to run across in your travels. Several cmdlets support XPath queries: Select-Xml, Get-
WinEvent, and more. Tables C-1 and C-2 give a quick overview of XPath concepts.

For these examples, consider this sample XML:

<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Table C-1. Navigation and selection

Syntax Meaning

/ Represents the root of the XML tree.

For example:

PS > $xml | Select-Xml "/" | Select -Expand Node

AddressBook

AddressBook

/Node Navigates to the node named Node from the root of the XML tree.

For example:

PS > $xml | Select-Xml "/AddressBook" | Select -Expand Node

Person

{Lee, Ariel}

773

Syntax Meaning

/Node/*/Node2 Navigates to the noded named Node2 via Node, allowing any single node in between.

For example:

PS > $xml | Select-Xml "/AddressBook/*/Name" | Select -Expand Node

#text

Lee
Ariel

//Node Finds all nodes named Node, anywhere in the XML tree.

For example:

PS > $xml | Select-Xml "//Phone" | Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

.. Retrieves the parent node of the given node.

For example:

PS>$xml | Select-Xml "//Phone" | Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

PS>$xml | Select-Xml "//Phone/.." | Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}
Business Ariel 555-1234

@Attribute Accesses the value of the attribute named Attribute.

For example:

PS > $xml | Select-Xml "//Phone/@type" | Select -Expand Node

#text

home
work

774 | Appendix C: XPath Quick Reference

Table C-2. Comparisons

Syntax Meaning

[] Filtering, similar to the Where-Object cmdlet.

For example:

PS > $xml | Select-Xml "//Person[@contactType = 'Personal']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

PS > $xml | Select-Xml "//Person[Name = 'Lee']" | Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

and Logical and.

or Logical or.

not() Logical negation.

= Equality.

!= Inequality.

XPath Quick Reference | 775

APPENDIX D

.NET String Formatting

String Formatting Syntax
The format string supported by the format (-f) operator is a string that contains format
items. Each format item takes the form of:

{index[,alignment][:formatString]}

index represents the zero-based index of the item in the object array following the
format operator.

alignment is optional and represents the alignment of the item. A positive number aligns
the item to the right of a field of the specified width. A negative number aligns the item
to the left of a field of the specified width.

PS > ("{0,6}" -f 4.99), ("{0,6:##.00}" -f 15.9)
 4.99
 15.90

formatString is optional and formats the item using that type’s specific format string
syntax (as laid out in Tables D-1 and D-2).

Standard Numeric Format Strings
Table D-1 lists the standard numeric format strings. All format specifiers may be fol-
lowed by a number between 0 and 99 to control the precision of the formatting.

Table D-1. Standard numeric format strings

Format
specifier

Name Description Example

C or c Currency A currency amount. PS > "{0:C}" -f 1.23
$1.23

D or d Decimal A decimal amount (for integral types). The precision
specifier controls the minimum number of digits in
the result.

PS > "{0:D4}" -f 2
0002

777

Format
specifier

Name Description Example

E or e Scientific Scientific (exponential) notation. The precision
specifier controls the number of digits past the dec-
imal point.

PS > "{0:E3}" -f [Math]::Pi
3.142E+000

F or f Fixedpoint Fixed point notation. The precision specifier controls
the number of digits past the decimal point.

PS > "{0:F3}" -f [Math]::Pi
3.142

G or g General The most compact representation (between fixed-
point and scientific) of the number. The precision
specifier controls the number of significant digits.

PS > "{0:G3}" -f [Math]::Pi
3.14
PS > "{0:G3}" -f 1mb
1.05E+06

N or n Number The human-readable form of the number, which in-
cludes separators between number groups. The pre-
cision specifier controls the number of digits past the
decimal point.

PS > "{0:N4}" -f 1mb
1,048,576.0000

P or p Percent The number (generally between 0 and 1) represen-
ted as a percentage. The precision specifier controls
the number of digits past the decimal point.

PS > "{0:P4}" -f 0.67
67.0000 %

R or r Roundtrip The Single or Double number formatted with a pre-
cision that guarantees the string (when parsed) will
result in the original number again.

PS > "{0:R}" -f (1mb/2.0)
524288
PS > "{0:R}" -f (1mb/9.0)
116508.44444444444

X or x Hexadecimal The number converted to a string of hexadecimal
digits. The case of the specifier controls the case of
the resulting hexadecimal digits. The precision speci-
fier controls the minimum number of digits in the
resulting string.

PS > "{0:X4}" -f 1324
052C

Custom Numeric Format Strings
You can use custom numeric strings, listed in Table D-2, to format numbers in ways
not supported by the standard format strings.

Table D-2. Custom numeric format strings

Format
specifier

Name Description Example

0 Zero
placeholder

Specifies the precision and width of a number string.
Zeroes not matched by digits in the original number
are output as zeroes.

PS > "{0:00.0}" -f 4.12341234
04.1

Digit
placeholder

Specifies the precision and width of a number string.
symbols not matched by digits in the input number
are not output.

PS > "{0:##.#}" -f 4.12341234
4.1

. Decimal point Determines the location of the decimal. PS > "{0:##.#}" -f 4.12341234
4.1

778 | Appendix D: .NET String Formatting

Format
specifier

Name Description Example

, Thousands
separator

When placed between a zero or digit placeholder
before the decimal point in a formatting string, adds
the separator character between number groups.

PS > "{0:#,#.#}" -f 1234.121234
1,234.1

, Number
scaling

When placed before the literal (or implicit) decimal
point in a formatting string, divides the input by
1000. You can apply this format specifier more than
once.

PS > "{0:##,,.000}" -f 1048576
1.049

% Percentage
placeholder

Multiplies the input by 100, and inserts the percent
sign where shown in the format specifier.

PS > "{0:%##.000}" -f .68
%68.000

E0

E+0

E-0

e0

e+0

e-0

Scientific
notation

Displays the input in scientific notation. The number
of zeroes that follow the E define the minimum
length of the exponent field.

PS > "{0:##.#E000}" -f 2.71828
27.2E-001

'text'

"text"

Literal string Inserts the provided text literally into the output
without affecting formatting.

PS > "{0:#.00'##'}" -f 2.71828
2.72##

; Section
separator

Allows for conditional formatting.

If your format specifier contains no section separa-
tors, the formatting statement applies to all input.

If your format specifier contains one separator (cre-
ating two sections), the first section applies to
positive numbers and zero, and the second section
applies to negative numbers.

If your format specifier contains two separators (cre-
ating three sections), the sections apply to positive
numbers, negative numbers, and zero.

PS > "{0:POS;NEG;ZERO}" -f -14
NEG

Other Other
character

Inserts the provided text literally into the output
without affecting formatting.

PS > "{0:$## Please}" -f 14
$14 Please

Custom Numeric Format Strings | 779

APPENDIX E

.NET DateTime Formatting

DateTime format strings convert a DateTime object to one of several standard formats,
as listed in Table E-1.

Table E-1. Standard DateTime format strings

Format
specifier

Name Description Example

d Short date The culture’s short date format. PS > "{0:d}" -f [DateTime] "01/23/4567"
1/23/4567

D Long date The culture’s long date format. PS > "{0:D}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567

f Full date/short
time

Combines the long date and short
time format patterns.

PS > "{0:f}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00 AM

F Full date/long
time

Combines the long date and long
time format patterns.

PS > "{0:F}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00:00 AM

g General date/
short time

Combines the short date and short
time format patterns.

PS > "{0:g}" -f [DateTime] "01/23/4567"
1/23/4567 12:00 AM

G General date/
long time

Combines the short date and long
time format patterns.

PS > "{0:G}" -f [DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

M or m Month day The culture’s MonthDay format. PS > "{0:M}" -f [DateTime] "01/23/4567"
January 23

o Round-trip
date/time

The date formatted with a pattern
that guarantees the string (when
parsed) will result in the original
DateTime again.

PS > "{0:o}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00.0000000

R or r RFC1123 The standard RFC1123 format
pattern.

PS > "{0:R}" -f [DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00 GMT

s Sortable Sortable format pattern. Conforms to
ISO 8601 and provides output suita-
ble for sorting.

PS > "{0:s}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00

t Short time The culture’s ShortTime format. PS > "{0:t}" -f [DateTime] "01/23/4567"
12:00 AM

781

Format
specifier

Name Description Example

T Long time The culture’s LongTime format. PS > "{0:T}" -f [DateTime] "01/23/4567"
12:00:00 AM

u Universal
sortable

The culture’s UniversalSorta
ble DateTime format applied to
the UTC equivalent of the input.

PS > "{0:u}" -f [DateTime] "01/23/4567"
4567-01-23 00:00:00Z

U Universal The culture’s FullDateTime for-
mat applied to the UTC equivalent of
the input.

PS > "{0:U}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 8:00:00 AM

Y or y Year month The culture’s YearMonth format. PS > "{0:Y}" -f [DateTime] "01/23/4567"
January, 4567

Custom DateTime Format Strings
You can use the custom DateTime format strings listed in Table E-2 to format dates in
ways not supported by the standard format strings.

Single-character format specifiers are by default interpreted as a stand-
ard DateTime formatting string unless they are used with other format-
ting specifiers. Add the % character before them to have them interpreted
as a custom format specifier.

Table E-2. Custom DateTime format strings

Format
specifier

Description Example

d Day of the month as a number between 1 and 31. Rep-
resents single-digit days without a leading zero.

PS > "{0:%d}" -f
 [DateTime] "01/02/4567"
2

dd Day of the month as a number between 1 and 31. Rep-
resents single-digit days with a leading zero.

PS > "{0:dd}" -f
 [DateTime] "01/02/4567"
02

ddd Abbreviated name of the day of week. PS > "{0:ddd}" -f
 [DateTime] "01/02/4567"
Fri

dddd Full name of the day of the week. PS > "{0:dddd}" -f
 [DateTime] "01/02/4567"
Friday

f Most significant digit of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:%f}" -f $date
0

ff Two most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ff}" -f $date
09

782 | Appendix E: .NET DateTime Formatting

Format
specifier

Description Example

fff Three most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fff}" -f $date
093

ffff Four most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffff}" -f $date
0937

fffff Five most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffff}" -f $date
09375

ffffff Six most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffffff}" -f $date
093750

fffffff Seven most significant digits of the seconds fraction
(milliseconds).

PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffffff}" -f $date
0937500

F

FF

FFF

(...)

FFFFFFF

Most significant digit of the seconds fraction
(milliseconds).

When compared to the lowercase series of 'f' specifiers,
displays nothing if the number is zero.

PS > "{0:|F FF FFF FFFF|}" -f
 [DateTime] "01/02/4567"
| |

%g or gg Era (e.g., A.D.). PS > "{0:gg}" -f [DateTime]
 "01/02/4567"
A.D.

%h Hours, as a number between 1 and 12. Single digits do
not include a leading zero.

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

hh Hours, as a number between 01 and 12. Single digits
include a leading zero. Note: This is interpreted as a
standard DateTime formatting string unless used with
other formatting specifiers.

PS > "{0:hh}" -f
 [DateTime] "01/02/4567 4:00pm"
04

%H Hours, as a number between 0 and 23. Single digits do
not include a leading zero.

PS > "{0:%H}" -f
 [DateTime] "01/02/4567 4:00pm"
16

HH Hours, as a number between 00 and 23. Single digits
include a leading zero.

PS > "{0:HH}" -f
 [DateTime] "01/02/4567 4:00am"
04

K DateTime.Kind specifier that corresponds to the
kind (i.e., Local, Utc, or Unspecified) of input date.

PS > "{0:%K}" -f
 [DateTime]::Now.ToUniversalTime()
Z

Custom DateTime Format Strings | 783

Format
specifier

Description Example

m Minute, as a number between 0 and 59. Single digits
do not include a leading zero.

PS > "{0:%m}" -f [DateTime]::Now
 7

mm Minute, as a number between 00 and 59. Single digits
include a leading zero.

PS > "{0:mm}" -f [DateTime]::Now
08

M Month, as a number between 1 and 12. Single digits do
not include a leading zero.

PS > "{0:%M}" -f
 [DateTime] "01/02/4567"
1

MM Month, as a number between 01 and 12. Single digits
include a leading zero.

PS > "{0:MM}" -f
 [DateTime] "01/02/4567"
01

MMM Abbreviated month name. PS > "{0:MMM}" -f
 [DateTime] "01/02/4567"
Jan

MMMM Full month name. PS > "{0:MMMM}" -f
 [DateTime] "01/02/4567"
January

s Seconds, as a number between 0 and 59. Single digits
do not include a leading zero.

PS > $date = Get-Date
PS > "{0:%s}" -f $date
7

ss Seconds, as a number between 00 and 59. Single digits
include a leading zero.

PS > $date = Get-Date
PS > "{0:ss}" -f $date
07

t First character of the a.m./p.m. designator. PS > $date = Get-Date
PS > "{0:%t}" -f $date
P

tt a.m./p.m. designator. PS > $date = Get-Date
PS > "{0:tt}" -f $date
PM

y Year, in (at most) two digits. PS > "{0:%y}" -f
 [DateTime] "01/02/4567"
67

yy Year, in (at most) two digits. PS > "{0:yy}" -f
 [DateTime] "01/02/4567"
67

yyy Year, in (at most) four digits. PS > "{0:yyy}" -f
 [DateTime] "01/02/4567"
4567

yyyy Year, in (at most) four digits. PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
4567

yyyyy Year, in (at most) five digits. PS > "{0:yyyy}" -f
 [DateTime] "01/02/4567"
04567

z Signed time zone offset from GMT. Does not include a
leading zero.

PS > "{0:%z}" -f [DateTime]::Now
-8

zz Signed time zone offset from GMT. Includes a leading
zero.

PS > "{0:zz}" -f [DateTime]::Now
-08

zzz Signed time zone offset from GMT, measured in hours
and minutes.

PS > "{0:zzz}" -f [DateTime]::Now
-08:00

784 | Appendix E: .NET DateTime Formatting

Format
specifier

Description Example

: Time separator. PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" -f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output with-
out affecting formatting.

PS > "{0:'Day: 'dddd}" -f
 [DateTime]::Now
Day: Monday

%c Syntax allowing for single-character custom formatting
specifiers. The % sign is not added to the output.

PS > "{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

Other Inserts the provided text literally into the output with-
out affecting formatting.

PS > "{0:dddd!}" -f [DateTime]::Now
Monday!

Custom DateTime Format Strings | 785

APPENDIX F

Selected .NET Classes and Their Uses

Tables F-1 through F-16 provide pointers to types in the .NET Framework that usefully
complement the functionality that PowerShell provides. For detailed descriptions and
documentation, search http://msdn.microsoft.com for the official documentation.

Table F-1. Windows PowerShells

Class Description

System.Management.

Automation.PSObject

Represents a PowerShell object to which you can add notes, properties, and
more.

Table F-2. Utility

Class Description

System.DateTime Represents an instant in time, typically expressed as a date and time of day.

System.Guid Represents a globally unique identifier (GUID).

System.Math Provides constants and static methods for trigonometric, logarithmic, and
other common mathematical functions.

System.Random Represents a pseudorandom number generator, a device that produces a
sequence of numbers that meet certain statistical requirements for
randomness.

System.Convert Converts a base data type to another base data type.

System.Environment Provides information about, and means to manipulate, the current envi-
ronment and platform.

System.Console Represents the standard input, output, and error streams for console
applications.

System.Text.

RegularExpressions.Regex

Represents an immutable regular expression.

System.Diagnostics.Debug Provides a set of methods and properties that help debug your code.

System.Diagnostics.EventLog Provides interaction with Windows event logs.

787

http://msdn.microsoft.com

Class Description

System.Diagnostics.Process Provides access to local and remote processes and enables you to start and
stop local system processes.

System.Diagnostics.Stopwatch Provides a set of methods and properties that you can use to accurately
measure elapsed time.

System.Media.SoundPlayer Controls playback of a sound from a .wav file.

Table F-3. Collections and object utilities

Class Description

System.Array Provides methods for creating, manipulating, searching, and sorting arrays,
thereby serving as the base class for all arrays in the Common Language
Runtime.

System.Enum Provides the base class for enumerations.

System.String Represents text as a series of Unicode characters.

System.Text.StringBuilder Represents a mutable string of characters.

System.Collections.

Specialized.OrderedDictionary

Represents a collection of key/value pairs that are accessible by the key or
index.

System.Collections.ArrayList Implements the IList interface using an array whose size is dynamically
increased as required.

Table F-4. The .NET Framework

Class Description

System.AppDomain Represents an application domain, which is an isolated environment where
applications execute.

System.Reflection.Assembly Defines an Assembly, which is a reusable, versionable, and self-describing
building block of a Common Language Runtime application.

System.Type Represents type declarations: class types, interface types, array types, value
types, enumeration types, type parameters, generic type definitions, and
open or closed constructed generic types.

System.Threading.Thread Creates and controls a thread, sets its priority, and gets its status.

System.Runtime.Interop

Services.Marshal

Provides a collection of methods for allocating unmanaged memory, copying
unmanaged memory blocks, and converting managed to unmanaged types,
as well as other miscellaneous methods used when interacting with un-
managed code.

Microsoft.CSharp.CSharp

CodeProvider

Provides access to instances of the C# code generator and code compiler.

788 | Appendix F: Selected .NET Classes and Their Uses

Table F-5. Registry

Class Description

Microsoft.Win32.Registry Provides RegistryKey objects that represent the root keys in the local
and remote Windows registry and static methods to access key/value pairs.

Microsoft.Win32.RegistryKey Represents a key-level node in the Windows registry.

Table F-6. Input and Output

Class Description

System.IO.Stream Provides a generic view of a sequence of bytes.

System.IO.BinaryReader Reads primitive data types as binary values.

System.IO.BinaryWriter Writes primitive types in binary to a stream.

System.IO.BufferedStream Adds a buffering layer to read and write operations on another stream.

System.IO.Directory Exposes static methods for creating, moving, and enumerating through
directories and subdirectories.

System.IO.FileInfo Provides instance methods for the creation, copying, deletion, moving, and
opening of files, and aids in the creation of FileStream objects.

System.IO.DirectoryInfo Exposes instance methods for creating, moving, and enumerating through
directories and subdirectories.

System.IO.File Provides static methods for the creation, copying, deletion, moving, and
opening of files, and aids in the creation of FileStream objects.

System.IO.MemoryStream Creates a stream whose backing store is memory.

System.IO.Path Performs operations on String instances that contain file or directory path
information. These operations are performed in a cross-platform manner.

System.IO.TextReader Represents a reader that can read a sequential series of characters.

System.IO.StreamReader Implements a TextReader that reads characters from a byte stream in a
particular encoding.

System.IO.TextWriter Represents a writer that can write a sequential series of characters.

System.IO.StreamWriter Implements a TextWriter for writing characters to a stream in a particular
encoding.

System.IO.StringReader Implements a TextReader that reads from a string.

System.IO.StringWriter Implements a TextWriter for writing information to a string.

System.IO.Compression.Deflate

Stream

Provides methods and properties used to compress and decompress streams
using the Deflate algorithm.

System.IO.Compression.GZipStream Provides methods and properties used to compress and decompress streams
using the GZip algorithm.

System.IO.FileSystemWatcher Listens to the filesystem change notifications and raises events when a
directory or file in a directory changes.

Selected .NET Classes and Their Uses | 789

Table F-7. Security

Class Description

System.Security.Principal.

WindowsIdentity

Represents a Windows user.

System.Security.Principal.

WindowsPrincipal

Allows code to check the Windows group membership of a Windows user.

System.Security.Principal.

WellKnownSidType

Defines a set of commonly used security identifiers (SIDs).

System.Security.Principal.

WindowsBuiltInRole

Specifies common roles to be used with IsInRole.

System.Security.SecureString Represents text that should be kept confidential. The text is encrypted for
privacy when being used and deleted from computer memory when no
longer needed.

System.Security.Cryptography.

TripleDESCryptoServiceProvider

Defines a wrapper object to access the cryptographic service provider (CSP)
version of the TripleDES algorithm.

System.Security.Cryptography.

PasswordDeriveBytes

Derives a key from a password using an extension of the PBKDF1 algorithm.

System.Security.

Cryptography.SHA1

Computes the SHA1 hash for the input data.

System.Security.Access

Control.FileSystemSecurity

Represents the access control and audit security for a file or directory.

System.Security.Access

Control.RegistrySecurity

Represents the Windows access control security for a registry key.

Table F-8. User interface

Class Description

System.Windows.Forms.Form Represents a window or dialog box that makes up an application’s user
interface.

System.Windows.Forms.FlowLayout

Panel

Represents a panel that dynamically lays out its contents.

Table F-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for the Bitmap and Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the pixel data for a graphics
image and its attributes. A bitmap is an object used to work with images
defined by pixel data.

790 | Appendix F: Selected .NET Classes and Their Uses

Table F-10. Networking

Class Description

System.Uri Provides an object representation of a uniform resource identifier (URI) and
easy access to the parts of the URI.

System.Net.NetworkCredential Provides credentials for password-based authentication schemes such as
basic, digest, Kerberos authentication, and NTLM.

System.Net.Dns Provides simple domain name resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWebRequest Provides an HTTP-specific implementation of the WebRequest class.

System.Net.WebClient Provides common methods for sending data to and receiving data from a
resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP network services.

System.Net.Mail.MailAddress Represents the address of an electronic mail sender or recipient.

System.Net.Mail.MailMessage Represents an email message that can be sent using the SmtpClient class.

System.Net.Mail.SmtpClient Allows applications to send email by using the Simple Mail Transfer Protocol
(SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs when processing web
requests.

Table F-11. XML

Class Description

System.Xml.XmlTextWriter Represents a writer that provides a fast, noncached, forward-only way of
generating streams or files containing XML data that conforms to the W3C
Extensible Markup Language (XML) 1.0 and the namespaces in XML
recommendations.

System.Xml.XmlDocument Represents an XML document.

Table F-12. Windows Management Instrumentation (WMI)

Class Description

System.Management.Management

Object

Represents a WMI instance.

System.Management.Management

Class

Represents a management class. A management class is a WMI class such
as Win32_LogicalDisk, which can represent a disk drive, or
Win32_Process, which represents a process such as an instance of
Notepad.exe. The members of this class enable you to access WMI data using
a specific WMI class path. For more information, see “Win32 Classes” in the
Windows Management Instrumentation documentation in the MSDN
Library at http://msdn.microsoft.com/library.

Selected .NET Classes and Their Uses | 791

http://msdn.microsoft.com/library

Class Description

System.Management.Management

ObjectSearcher

Retrieves a collection of WMI management objects based on a specified
query. This class is one of the more commonly used entry points to retrieving
management information. For example, it can be used to enumerate all disk
drives, network adapters, processes, and many more management objects
on a system or to query for all network connections that are up, services that
are paused, and so on. When instantiated, an instance of this class takes as
input a WMI query represented in an ObjectQuery or its derivatives, and
optionally a ManagementScope representing the WMI namespace to
execute the query in. It can also take additional advanced options in an
EnumerationOptions. When the Get method on this object is invoked,
the ManagementObjectSearcher executes the given query in the
specified scope and returns a collection of management objects that match
the query in a ManagementObjectCollection.

System.Management.Management

DateTimeConverter

Provides methods to convert DMTF datetime and time intervals to CLR-
compliant DateTime and TimeSpan formats, and vice versa.

System.Management.Management

EventWatcher

Subscribes to temporary event notifications based on a specified event query.

Table F-13. Active Directory

Class Description

System.DirectoryServices.

DirectorySearcher

Performs queries against Active Directory.

System.DirectoryServices.

DirectoryEntry

The DirectoryEntry class encapsulates a node or object in the Active
Directory hierarchy.

Table F-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.SqlClient.SqlCommand Represents a Transact-SQL statement or stored procedure to execute
against a SQL Server database.

System.Data.SqlClient.Sql

Connection

Represents an open connection to a SQL Server database.

System.Data.SqlClient.SqlData

Adapter

Represents a set of data commands and a database connection that are used
to fill the DataSet and update a SQL Server database.

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute against a data
source.

System.Data.Odbc.OdbcConnection Represents an open connection to a data source.

System.Data.Odbc.OdbcDataAdapter Represents a set of data commands and a connection to a data source that
are used to fill the DataSet and update the data source.

792 | Appendix F: Selected .NET Classes and Their Uses

Table F-15. Message queuing

Class Description

System.Messaging.MessageQueue Provides access to a queue on a Message Queuing server.

Table F-16. Transactions

Class Description

System.Transactions.Transaction Represents a transaction.

Selected .NET Classes and Their Uses | 793

APPENDIX G

WMI Reference

The Windows Management Instrumentation (WMI) facilities in Windows offer thou-
sands of classes that provide information of interest to administrators. Table G-1 lists
the categories and subcategories covered by WMI and can be used to get a general idea
of the scope of WMI classes. Table G-2 provides a selected subset of the most useful
WMI classes. For more information about a category, search the official WMI docu-
mentation at http://msdn.microsoft.com.

Table G-1. WMI class categories and subcategories

Category Subcategory

Computer system hardware Cooling device, input device, mass storage, motherboard, controller and
port, networking device, power, printing, telephony, video, and monitor

Operating system COM, desktop, drivers, filesystem, job objects, memory and page files, mul-
timedia audio/visual, networking, operating system events, operating sys-
tem settings, processes, registry, scheduler jobs, security, services, shares,
Start menu, storage, users, Windows NT event log, Windows product
activation

WMI Service Management WMI configuration, WMI management

General Installed applications, performance counter, security descriptor

Table G-2. Selected WMI Classes

Class Description

Win32_BaseBoard Represents a baseboard, which is also known as a motherboard or system
board.

Win32_BIOS Represents the attributes of the computer system’s basic input/output serv-
ices (BIOS) that are installed on a computer.

Win32_BootConfiguration Represents the boot configuration of a Windows system.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows computer system. Be aware that
the name of the drive does not correspond to the logical drive letter assigned
to the device.

795

http://msdn.microsoft.com

Class Description

Win32_ComputerSystem Represents a computer system in a Windows environment.

Win32_Processor Represents a device that can interpret a sequence of instructions on a com-
puter running on a Windows operating system. On a multiprocessor com-
puter, one instance of the Win32_Processor class exists for each
processor.

Win32_ComputerSystemProduct Represents a product. This includes software and hardware used on this
computer system.

CIM_DataFile Represents a named collection of data or executable code. Currently, the
provider returns files on fixed and mapped logical disks. In the future, only
instances of files on local fixed disks will be returned.

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user’s desktop. The properties
of this class can be modified by the user to customize the desktop.

Win32_DesktopMonitor Represents the type of monitor or display device attached to the computer
system.

Win32_DeviceMemoryAddress Represents a device memory address on a Windows system.

Win32_DiskDrive Represents a physical disk drive as seen by a computer running the Windows
operating system. Any interface to a Windows physical disk drive is a de-
scendant (or member) of this class. The features of the disk drive seen through
this object correspond to the logical and management characteristics of the
drive. In some cases, this may not reflect the actual physical characteristics
of the device. Any object based on another logical device would not be a
member of this class.

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes. A system administrator
can configure Windows to prevent further disk space use and log an event
when a user exceeds a specified disk space limit. An administrator can also
log an event when a user exceeds a specified disk space warning level. This
class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on a Windows computer
system. DMA is a method of moving data from a device to memory (or vice
versa) without the help of the microprocessor. The system board uses a DMA
controller to handle a fixed number of channels, each of which can be used
by one (and only one) device at a time.

Win32_Environment Represents an environment or system environment setting on a Windows
computer system. Querying this class returns environment variables found
in HKLM\System\CurrentControlSet\Control\Sessionmanager\Environment

as well as HKEY_USERS\<user sid>\Environment.

Win32_Directory Represents a directory entry on a Windows computer system. A directory is
a type of file that logically groups data files and provides path information
for the grouped files. Win32_Directory does not include directories of
network drives.

Win32_Group Represents data about a group account. A group account allows access
privileges to be changed for a list of users (for example, Administrators).

796 | Appendix G: WMI Reference

Class Description

Win32_IDEController Manages the capabilities of an integrated device electronics (IDE) controller
device.

Win32_IRQResource Represents an interrupt request line (IRQ) number on a Windows computer
system. An interrupt request is a signal sent to the CPU by a device or program
for time-critical events. IRQ can be hardware- or software-based.

Win32_ScheduledJob Represents a job created with the AT command. The Win32_Scheduled
Job class does not represent a job created with the Scheduled Task Wizard
from the Control Panel. You cannot change a task created by WMI in the
Scheduled Tasks UI.

Windows 2000 and Windows NT 4.0: You can use the Scheduled Tasks UI to
modify the task you originally created with WMI. However, although the
task is successfully modified, you can no longer access the task using WMI.

Each job scheduled against the schedule service is stored persistently (the
scheduler can start a job after a reboot) and is executed at the specified time
and day of the week or month. If the computer is not active or if the scheduled
service is not running at the specified job time, the schedule service runs the
specified job on the next day at the specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with bias
offset from Greenwich mean time (GMT), which means that a job can be
specified using any time zone. The Win32_ScheduledJob class returns
the local time with UTC offset when enumerating an object, and converts
to local time when creating new jobs. For example, a job specified to run on
a computer in Boston at 10:30 p.m. Monday PST will be scheduled to run
locally at 1:30 a.m. Tuesday EST. Note that a client must take into account
whether daylight saving time is in operation on the local computer, and if
it is, then subtract a bias of 60 minutes from the UTC offset.

Win32_LoadOrderGroup Represents a group of system services that define execution dependencies.
The services must be initiated in the order specified by the Load Order Group,
as the services are dependent on one another. These dependent services
require the presence of the antecedent services to function correctly. The
data in this class is derived by the provider from the registry key System

\CurrentControlSet\Control\ GroupOrderList.

Win32_LogicalDisk Represents a data source that resolves to an actual local storage device on
a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with a user logged on to
Windows NT or Windows 2000.

Win32_CacheMemory Represents internal and external cache memory on a computer system.

Win32_LogicalMemoryConfiguration Represents the layout and availability of memory on a Windows system.
Beginning with Windows Vista, this class is no longer available in the op-
erating system.

Windows XP and Windows Server 2003: This class is no longer supported.
Use the Win32_OperatingSystem class instead.

WMI Reference | 797

Class Description
Windows 2000: This class is available and supported.

Win32_PhysicalMemoryArray Represents details about the computer system physical memory. This in-
cludes the number of memory devices, memory capacity available, and
memory type (for example, system or video memory).

WIN32_NetworkClient Represents a network client on a Windows system. Any computer system
on the network with a client relationship to the system is a descendant (or
member) of this class (for example, a computer running Windows 2000
Workstation or Windows 98 that is part of a Windows 2000 domain).

Win32_NetworkLoginProfile Represents the network login information of a specific user on a Windows
system. This includes but is not limited to password status, access privileges,
disk quotas, and login directory paths.

Win32_NetworkProtocol Represents a protocol and its network characteristics on a Win32 computer
system.

Win32_NetworkConnection Represents an active network connection in a Windows environment.

Win32_NetworkAdapter Represents a network adapter of a computer running on a Windows oper-
ating system.

Win32_NetworkAdapter

Configuration

Represents the attributes and behaviors of a network adapter. This class
includes extra properties and methods that support the management of the
TCP/IP and Internetworking Packet Exchange (IPX) protocols that are inde-
pendent from the network adapter.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTLogEvent Used to translate instances from the Windows NT event log. An application
must have SeSecurityPrivilege to receive events from the security
event log; otherwise, “Access Denied” is returned to the application.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT events. The file is also
known as the event log.

Win32_OnBoardDevice Represents common adapter devices built into the motherboard (system
board).

Win32_OperatingSystem Represents an operating system installed on a computer running on a Win-
dows operating system. Any operating system that can be installed on a
Windows system is a descendant or member of this class. Win32_Opera
tingSystem is a singleton class. To get the single instance, use @ for the
key.

Windows Server 2003, Windows XP, Windows 2000, and Windows NT 4.0:
If a computer has multiple operating systems installed, this class returns
only an instance for the currently active operating system.

Win32_PageFileUsage Represents the file used for handling virtual memory file swapping on a
Win32 system. Information contained within objects instantiated from this
class specifies the runtime state of the page file.

Win32_PageFileSetting Represents the settings of a page file. Information contained within objects
instantiated from this class specifies the page file parameters used when
the file is created at system startup. The properties in this class can be

798 | Appendix G: WMI Reference

Class Description
modified and deferred until startup. These settings are different from the
runtime state of a page file expressed through the associated class
Win32_PageFileUsage.

Win32_DiskPartition Represents the capabilities and management capacity of a partitioned area
of a physical disk on a Windows system (for example, Disk #0, Partition #1).

Win32_PortResource Represents an I/O port on a Windows computer system.

Win32_PortConnector Represents physical connection ports, such as DB-25 pin male, Centronics,
or PS/2.

Win32_Printer Represents a device connected to a computer running on a Microsoft Win-
dows operating system that can produce a printed image or text on paper
or another medium.

Win32_PrinterConfiguration Represents the configuration for a printer device. This includes capabilities
such as resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a Windows application. Any unit of work
generated by the Print command of an application that is running on a
computer running on a Windows operating system is a descendant or mem-
ber of this class.

Win32_Process Represents a process on an operating system.

Win32_Product Represents products as they are installed by Windows Installer. A product
generally correlates to one installation package. For information about sup-
port or requirements for installation of a specific operating system, visit
http://msdn.microsoft.com and search for “Operating System Availability of
WMI Components”.

Win32_QuickFixEngineering Represents system-wide Quick Fix Engineering (QFE) or updates that have
been applied to the current operating system.

Win32_QuotaSetting Contains setting information for disk quotas on a volume.

Win32_OSRecoveryConfiguration Represents the types of information that will be gathered from memory
when the operating system fails. This includes boot failures and system
crashes.

Win32_Registry Represents the system registry on a Windows computer system.

Win32_SCSIController Represents a SCSI controller on a Windows system.

Win32_PerfRawData_PerfNet_Server Provides raw data from performance counters that monitor communications
using the WINS Server service.

Win32_Service Represents a service on a computer running on a Microsoft Windows oper-
ating system. A service application conforms to the interface rules of the
Service Control Manager (SCM), and can be started by a user automatically
at system start through the Services Control Panel utility or by an application
that uses the service functions included in the Windows API. Services can
start when there are no users logged on to the computer.

Win32_Share Represents a shared resource on a Windows system. This may be a disk drive,
printer, interprocess communication, or other shareable device.

WMI Reference | 799

http://msdn.microsoft.com

Class Description

Win32_SoftwareElement Represents a software element, part of a software feature (a distinct subset
of a product, which may contain one or more elements). Each software
element is defined in a Win32_SoftwareElement instance, and the
association between a feature and its Win32_SoftwareFeature
instance is defined in the Win32_SoftwareFeatureSoftware
Elements association class. For information about support or requirements
for installation on a specific operating system, visit http://msdn.microsoft

.com and search for “Operating System Availability of WMI Components”.

Win32_SoftwareFeature Represents a distinct subset of a product that consists of one or more software
elements. Each software element is defined in a Win32_Software
Element instance, and the association between a feature and its Win32_
SoftwareFeature instance is defined in the Win32_Software
FeatureSoftwareElements association class. For information about
support or requirements for installation on a specific operating system, visit
http://msdn.microsoft.com and search for “Operating System Availability of
WMI Components”.

WIN32_SoundDevice Represents the properties of a sound device on a Windows computer system.

Win32_StartupCommand Represents a command that runs automatically when a user logs on to the
computer system.

Win32_SystemAccount Represents a system account. The system account is used by the operating
system and services that run under Windows NT. There are many services
and processes within Windows NT that need the capability to log on inter-
nally, for example, during a Windows NT installation. The system account
was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a physical system
enclosure.

Win32_SystemSlot Represents physical connection points, including ports, motherboard slots
and peripherals, and proprietary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape drives are primarily
distinguished by the fact that they can be accessed only sequentially.

Win32_TemperatureProbe Represents the properties of a temperature sensor (e.g., electronic
thermometer).

Win32_TimeZone Represents the time zone information for a Windows system, which includes
changes required for the daylight saving time transition.

Win32_UninterruptiblePowerSupply Represents the capabilities and management capacity of an uninterruptible
power supply (UPS). Beginning with Windows Vista, this class is obsolete
and not available, because the UPS service is no longer available. This service
worked with serially attached UPS devices, not USB devices.

Windows Server 2003 and Windows XP: This class is available, but not usable,
because the UPS service fails. Windows Server 2003, Windows XP, Windows
2000, and Windows NT 4.0: This class is available and implemented.

800 | Appendix G: WMI Reference

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com

Class Description

Win32_UserAccount Contains information about a user account on a computer running on a
Windows operating system.

Because both the Name and Domain are key properties, enumerating
Win32_UserAccount on a large network can affect performance nega-
tively. Calling GetObject or querying for a specific instance has less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (electronic voltmeter).

Win32_VolumeQuotaSetting Relates disk quota settings with a specific disk volume. Windows 2000/NT:
This class is not available.

Win32_WMISetting Contains the operational parameters for the WMI service. This class can have
only one instance, which always exists for each Windows system and cannot
be deleted. Additional instances cannot be created.

WMI Reference | 801

APPENDIX H

Selected COM Objects and Their Uses

As an extensibility and administration interface, many applications expose useful func-
tionality through COM objects. Although PowerShell handles many of these tasks di-
rectly, many COM objects still provide significant value.

Table H-1 lists a selection of the COM objects most useful to system administrators.

Table H-1. COM identifiers and descriptions

Identifier Description

Access.Application Allows for interaction and automation of Microsoft Access.

Agent.Control Allows for the control of Microsoft Agent 3D animated characters.

AutoItX3.Control (non-default) Provides access to Windows Automation via the AutoIt admin-
istration tool.

CEnroll.CEnroll Provides access to certificate enrollment services.

CertificateAuthority.Request Provides access to a request to a certificate authority.

COMAdmin.COMAdminCatalog Provides access to and management of the Windows COM+ catalog.

Excel.Application Allows for interaction and automation of Microsoft Excel.

Excel.Sheet Allows for interaction with Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the management functionality of the Windows Firewall.

HNetCfg.HNetShare Provides access to the management functionality of Windows Connection Sharing.

HTMLFile Allows for interaction and authoring of a new Internet Explorer document.

InfoPath.Application Allows for interaction and automation of Microsoft InfoPath.

InternetExplorer.Application Allows for interaction and automation of Microsoft Internet Explorer.

IXSSO.Query Allows for interaction with Microsoft Index Server.

IXSSO.Util Provides access to utilities used along with the IXSSO.Query object.

LegitCheckControl.LegitCheck Provide access to information about Windows Genuine Advantage status on the
current computer.

MakeCab.MakeCab Provides functionality to create and manage cabinet (.cab) files.

803

Identifier Description

MAPI.Session Provides access to a Messaging Application Programming Interface (MAPI) ses-
sion, such as folders, messages, and the address book.

Messenger.MessengerApp Allows for interaction and automation of Messenger.

Microsoft.FeedsManager Allows for interaction with the Microsoft RSS feed platform.

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update.AutoUpdate Provides management of the auto update schedule for Microsoft Update.

Microsoft.Update.Installer Allows for installation of updates from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information related to Microsoft Update for the current system.

MMC20.Application Allows for interaction and automation of Microsoft Management Console (MMC).

MSScriptControl.ScriptControl Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email, calendar, contacts, tasks,
and more through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and automation of your email through Microsoft Outlook
Express.

PowerPoint.Application Allows for interaction and automation of Microsoft PowerPoint.

Publisher.Application Allows for interaction and automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSystemObject Provides access to the computer’s filesystem. Most functionality is available more
directly through PowerShell or through PowerShell’s support for the .NET
Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library (.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords. When possible, you should
avoid this, preferring the Read-Host cmdlet with the -AsSecureString
parameter.

SharePoint.OpenDocuments Allows for interaction with Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the Windows Explorer Shell application, such as
managing windows, files and folders, and the current session.

Shell.LocalMachine Provides access to information about the current machine related to the Windows
shell.

Shell.User Provides access to aspects of the current user’s Windows session and profile.

SQLDMO.SQLServer Provides access to the management functionality of Microsoft SQL Server.

Vim.Application (non-default) Allows for interaction and automation of the VIM editor.

804 | Appendix H: Selected COM Objects and Their Uses

Identifier Description

WIA.CommonDialog Provides access to image capture through the Windows Image Acquisition
facilities.

WMPlayer.OCX Allows for interaction and automation of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows environment, such as printers
and network drives, as well as computer and domain information.

WScript.Shell Provides access to aspects of the Windows Shell, such as applications, shortcuts,
environment variables, the registry, and the operating environment.

WSHController Allows the execution of WSH scripts on remote computers.

Selected COM Objects and Their Uses | 805

APPENDIX I

Selected Events and Their Uses

PowerShell’s eventing commands give you access to events from the .NET Framework,
as well as events surfaced by Windows Management Instrumentation (WMI).
Table I-1 lists a selection of .NET events. Table I-2 lists a selection of WMI events.

Table I-1. Selected .NET events

Type Event Description

System.AppDomain AssemblyLoad Occurs when an assembly is loaded.

System.AppDomain TypeResolve Occurs when the resolution of a type
fails.

System.AppDomain ResourceResolve Occurs when the resolution of a resource
fails because the resource is not a valid
linked or embedded resource in the
assembly.

System.AppDomain AssemblyResolve Occurs when the resolution of an
assembly fails.

System.AppDomain ReflectionOnlyAssemblyRe

solve

Occurs when the resolution of an
assembly fails in the reflection-only
context.

System.AppDomain UnhandledException Occurs when an exception is not caught.

System.Console CancelKeyPress Occurs when the Control modifier key
(CTRL) and C console key (C) are pressed
simultaneously (CTRL-C).

Microsoft.Win32.System

Events

DisplaySettingsChanging Occurs when the display settings are
changing.

Microsoft.Win32.System

Events

DisplaySettingsChanged Occurs when the user changes the dis-
play settings.

Microsoft.Win32.System

Events

InstalledFontsChanged Occurs when the user adds fonts to or
removes fonts from the system.

Microsoft.Win32.System

Events

LowMemory Occurs when the system is running out
of available RAM.

807

Type Event Description

Microsoft.Win32.System

Events

PaletteChanged Occurs when the user switches to an ap-
plication that uses a different palette.

Microsoft.Win32.System

Events

PowerModeChanged Occurs when the user suspends or re-
sumes the system.

Microsoft.Win32.System

Events

SessionEnded Occurs when the user is logging off or
shutting down the system.

Microsoft.Win32.System

Events

SessionEnding Occurs when the user is trying to log off
or shut down the system.

Microsoft.Win32.System

Events

SessionSwitch Occurs when the currently logged-in
user has changed.

Microsoft.Win32.System

Events

TimeChanged Occurs when the user changes the time
on the system clock.

Microsoft.Win32.System

Events

UserPreferenceChanged Occurs when a user preference has
changed.

Microsoft.Win32.System

Events

UserPreferenceChanging Occurs when a user preference is
changing.

System.Net.WebClient OpenReadCompleted Occurs when an asynchronous operation
to open a stream containing a resource
completes.

System.Net.WebClient OpenWriteCompleted Occurs when an asynchronous operation
to open a stream to write data to a re-
source completes.

System.Net.WebClient DownloadStringCompleted Occurs when an asynchronous resource-
download operation completes.

System.Net.WebClient DownloadDataCompleted Occurs when an asynchronous data
download operation completes.

System.Net.WebClient DownloadFileCompleted Occurs when an asynchronous file down-
load operation completes.

System.Net.WebClient UploadStringCompleted Occurs when an asynchronous string-
upload operation completes.

System.Net.WebClient UploadDataCompleted Occurs when an asynchronous data-
upload operation completes.

System.Net.WebClient UploadFileCompleted Occurs when an asynchronous file-
upload operation completes.

System.Net.WebClient UploadValuesCompleted Occurs when an asynchronous upload of
a name/value collection completes.

System.Net.WebClient DownloadProgressChanged Occurs when an asynchronous down-
load operation successfully transfers
some or all of the data.

808 | Appendix I: Selected Events and Their Uses

Type Event Description

System.Net.WebClient UploadProgressChanged Occurs when an asynchronous upload
operation successfully transfers some or
all of the data.

System.Net.Sockets.Socket

AsyncEventArgs

Completed The event used to complete an asyn-
chronous operation.

System.Net.Network

Information.NetworkChange

NetworkAvailabilityChanged Occurs when the availability of the net-
work changes.

System.Net.Network

Information.NetworkChange

NetworkAddressChanged Occurs when the IP address of a network
interface changes.

System.IO.FileSystem

Watcher

Changed Occurs when a file or directory in the
specified path is changed.

System.IO.FileSystem

Watcher

Created Occurs when a file or directory in the
specified path is created.

System.IO.FileSystem

Watcher

Deleted Occurs when a file or directory in the
specified path is deleted.

System.IO.FileSystem

Watcher

Renamed Occurs when a file or directory in the
specified path is renamed.

System.Timers.Timer Elapsed Occurs when the interval elapses.

System.Diagnostics.

EventLog

EntryWritten Occurs when an entry is written to an
event log on the local computer.

System.Diagnostics.Process OutputDataReceived Occurs when an application writes to its
redirected StandardOutput stream.

System.Diagnostics.Process ErrorDataReceived Occurs when an application writes to its
redirected StandardError stream.

System.Diagnostics.Process Exited Occurs when a process exits.

System.IO.Ports.SerialPort ErrorReceived Represents the method that handles the
error event of a SerialPort object.

System.IO.Ports.SerialPort PinChanged Represents the method that will handle
the serial pin changed event of a Seri
alPort object.

System.IO.Ports.SerialPort DataReceived Represents the method that will handle
the data received event of a Serial
Port object.

System.Management.

Automation.Job

StateChanged Event fired when the status of the job
changes, such as when the job has com-
pleted in all runspaces or failed in any
one runspace. This event is introduced
in Windows PowerShell 2.0.

System.Management.

Automation.Debugger

DebuggerStop Event raised when Windows PowerShell
stops execution of the script and enters
the debugger as the result of

Selected Events and Their Uses | 809

Type Event Description
encountering a breakpoint or executing
a step command. This event is intro-
duced in Windows PowerShell 2.0.

System.Management.

Automation.Debugger

BreakpointUpdated Event raised when the breakpoint is up-
dated, such as when it is enabled or dis-
abled. This event is introduced in Win-
dows PowerShell 2.0.

System.Management.

Automation.Runspaces.

Runspace

StateChanged Event that is raised when the state of the
runspace changes.

System.Management.

Automation.Runspaces.

Runspace

AvailabilityChanged Event that is raised when the availability
of the runspace changes, such as when
the runspace becomes available and
when it is busy. This event is introduced
in Windows PowerShell 2.0.

System.Management.

Automation.Runspaces.

Pipeline

StateChanged Event raised when the state of the pipe-
line changes.

System.Management.

Automation.PowerShell

InvocationStateChanged Event raised when the state of the pipe-
line of the PowerShell object changes.
This event is introduced in Windows
PowerShell 2.0.

System.Management.

Automation.

PSDataCollection[T]

DataAdded Event that is fired after data is added to
the collection. This event is introduced
in Windows PowerShell 2.0.

System.Management.

Automation.

PSDataCollection[T]

Completed Event that is fired when the Com
plete method is called to indicate that
no more data is to be added to the col-
lection. This event is introduced in Win-
dows PowerShell 2.0.

System.Management.

Automation.Runspaces.

RunspacePool

StateChanged Event raised when the state of the run-
space pool changes. This event is intro-
duced in Windows PowerShell 2.0.

System.Management.

Automation.Runspaces.

PipelineReader[T]

DataReady Event fired when data is added to the
buffer.

System.Diagnostics.

Eventing.Reader.

EventLogWatcher

EventRecordWritten Allows setting a delegate (event handler
method) that gets called every time an
event is published that matches the cri-
teria specified in the event query for this
object.

System.Data.Common.

DbConnection

StateChange Occurs when the state of the event
changes.

810 | Appendix I: Selected Events and Their Uses

Type Event Description

System.Data.SqlClient.

SqlBulkCopy

SqlRowsCopied Occurs every time that the number of
rows specified by the NotifyAfter
property have been processed.

System.Data.SqlClient.

SqlCommand

StatementCompleted Occurs when the execution of a Transact-
SQL statement completes.

System.Data.SqlClient.

SqlConnection

InfoMessage Occurs when SQL Server returns a warn-
ing or informational message.

System.Data.SqlClient.

SqlConnection

StateChange Occurs when the state of the event
changes.

System.Data.SqlClient.

SqlDataAdapter

RowUpdated Occurs during Update after a command
is executed against the data source. The
attempt to update is made, so the event
fires.

System.Data.SqlClient.

SqlDataAdapter

RowUpdating Occurs during Update before a com-
mand is executed against the data
source. The attempt to update is made,
so the event fires.

System.Data.SqlClient.

SqlDataAdapter

FillError Returned when an error occurs during a
fill operation.

System.Data.SqlClient.

SqlDependency

OnChange Occurs when a notification is received for
any of the commands associated with
this SqlDependency object.

Table I-2. Selected WMI Events

Event Description

__InstanceCreationEvent This event class generically represents the creation of instances in WMI
providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM __InstanceCreationEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance isa 'Win32_UserAccount'
Register-WmiEvent -Query $query

__InstanceDeletionEvent This event class generically represents the removal of instances in WMI
providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

$query = "SELECT * FROM __InstanceDeletionEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance isa 'Win32_UserAccount'
Register-WmiEvent -Query $query

__InstanceModificationEvent This event class generically represents the modification of instances in WMI
providers, such as Processes, Services, Files, and more.

A registration for this generic event looks like:

Selected Events and Their Uses | 811

Event Description
$query = "SELECT * FROM __InstanceModificationEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance isa 'Win32_UserAccount'
Register-WmiEvent -Query $query

Msft_WmiProvider_OperationEvent The Msft_WmiProvider_OperationEvent event class is the root
definition of all WMI provider events. A provider operation is defined as
some execution on behalf of a client via WMI that results in one or more calls
to a provider executable. The properties of this class define the identity of
the provider associated with the operation being executed and is uniquely
associated with instances of the class Msft_Providers. Internally, WMI
can contain any number of objects that refer to a particular instance of
__Win32Provider since it differentiates each object based on whether
the provider supports per user or per locale instantiation and also depending
on where the provider is being hosted.
Currently TransactionIdentifier is always an empty string.

Win32_ComputerSystemEvent This event class represents events related to a computer system.

Win32_ComputerShutdownEvent This event class represents events when a computer has begun the process
of shutting down.

Win32_IP4RouteTableEvent The Win32_IP4RouteTableEvent class represents IP route change
events resulting from the addition, removal, or modification of IP routes on
the computer system.

RegistryEvent The registry event classes allow you to subscribe to events that involve
changes in hive subtrees, keys, and specific values.

RegistryKeyChangeEvent The RegistryKeyChangeEvent class represents changes to a specific
key. The changes apply only to the key, not its subkeys.

RegistryTreeChangeEvent The RegistryTreeChangeEvent class represents changes to a key and
its subkeys.

RegistryValueChangeEvent The RegistryValueChangeEvent class represents changes to a single
value of a specific key.

Win32_SystemTrace The SystemTrace class is the base class for all system trace events. System
trace events are fired by the kernel logger via the event tracing API.

Win32_ProcessTrace This event is the base event for process events.

Win32_ProcessStartTrace The ProcessStartTrace event class indicates a new process has started.

Win32_ProcessStopTrace The ProcessStopTrace event class indicates a process has terminated.

Win32_ModuleTrace The ModuleTrace event class is the base event for module events.

Win32_ModuleLoadTrace The ModuleLoadTrace event class indicates a process has loaded a new
module.

Win32_ThreadTrace The ThreadTrace event class is the base event for thread events.

Win32_ThreadStartTrace The ThreadStartTrace event class indicates a new thread has started.

Win32_ThreadStopTrace The ThreadStopTrace event class indicates a thread has terminated.

Win32_PowerManagementEvent The Win32_PowerManagementEvent class represents power man-
agement events resulting from power state changes. These state changes

812 | Appendix I: Selected Events and Their Uses

Event Description
are associated with either the Advanced Power Management (APM) or the
Advanced Configuration and Power Interface (ACPI) system management
protocols.

Win32_DeviceChangeEvent The Win32_DeviceChangeEvent class represents device change
events resulting from the addition, removal, or modification of devices on
the computer system. This includes changes in the hardware configuration
(docking and undocking), the hardware state, or newly mapped devices
(mapping of a network drive). For example, a device has changed when a
WM_DEVICECHANGE message is sent.

Win32_SystemConfiguration

ChangeEvent

The Win32_SystemConfigurationChangeEvent is an event class
that indicates the device list on the system has been refreshed, meaning a
device has been added or removed or the configuration changed. This event
is fired when the Windows message ‘DevMgrRefreshOn<ComputerName>'
is sent. The exact change to the device list is not contained in the message,
and therefore a device refresh is required in order to obtain the current
system settings. Examples of configuration changes affected are IRQ set-
tings, COM ports, and BIOS version, to name a few.

Win32_VolumeChangeEvent The Win32_VolumeChangeEvent class represents a local drive event
resulting from the addition of a drive letter or mounted drive on the computer
system (e.g., CD-ROM). Network drives are not currently supported.

Selected Events and Their Uses | 813

APPENDIX J

Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax, for example, Get-
ChildItem. The official guidance is that, with rare exception, cmdlets should use the
standard PowerShell verbs. They should avoid any synonyms or concepts that can be
mapped to the standard. This allows administrators to quickly understand a set of
cmdlets that use a new noun.

To quickly access this list (without the definitions), type Get-Verb.

Verbs should be phrased in the present tense, and nouns should be singular. Tables
J-1 through J-6 list the different categories of standard PowerShell verbs.

Table J-1. Standard Windows PowerShell common verbs

Verb Meaning Synonyms

Add Adds a resource to a container or attaches an element to another
element

Append, Attach, Concatenate,
Insert

Clear Removes all elements from a container Flush, Erase, Release, Unmark,
Unset, Nullify

Close Removes access to a resource Shut, Seal

Copy Copies a resource to another name or container Duplicate, Clone, Replicate

Enter Sets a resource as a context Push, Telnet, Open

Exit Returns to the context that was present before a new context was
entered

Pop, Disconnect

Find Searches within an unknown context for a desired item Dig, Discover

Format Converts an item to a specified structure or layout Layout, Arrange

815

Verb Meaning Synonyms

Get Retrieves data Read, Open, Cat, Type, Dir,
Obtain, Dump, Acquire,
Examine, Find, Search

Hide Makes a display not visible Suppress

Join Joins a resource Combine, Unite, Connect,
Associate

Lock Locks a resource Restrict, Bar

Move Moves a resource Transfer, Name, Migrate

New Creates a new resource Create, Generate, Build, Make,
Allocate

Open Enables access to a resource Release, Unseal

Pop Removes an item from the top of a stack Remove, Paste

Push Puts an item onto the top of a stack Put, Add, Copy

Redo Repeats an action or reverts the action of an Undo Repeat, Retry, Revert

Remove Removes a resource from a container Delete, Kill

Rename Gives a resource a new name Ren, Swap

Reset Restores a resource to a predefined or original state Restore, Revert

Select Creates a subset of data from a larger data set Pick, Grep, Filter

Search Finds a resource (or summary information about that resource) in
a collection (does not actually retrieve the resource but provides
information to be used when retrieving it)

Find, Get, Grep, Select

Set Places data Write, Assign, Configure

Show Retrieves, formats, and displays information Display, Report

Skip Bypasses an element in a seek or navigation Bypass, Jump

Split Separates data into smaller elements Divide, Chop, Parse

Step Moves a process or navigation forward by one unit Next, Iterate

Switch Alternates the state of a resource between different alternatives or
options

Toggle, Alter, Flip

Unlock Unlocks a resource Free, Unrestrict

Use Applies or associates a resource with a context With, Having

Watch Continually monitors an item Monitor, Poll

Table J-2. Standard Windows PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination Join, Telnet

Disconnect Disconnects a source from a destination Break, Logoff

Read Acquires information from a nonconnected source Prompt, Get

816 | Appendix J: Standard PowerShell Verbs

Verb Meaning Synonyms

Receive Acquires information from a connected source Read, Accept, Peek

Send Writes information to a connected destination Put, Broadcast, Mail

Write Writes information to a nonconnected destination Puts, Print

Table J-3. Standard Windows PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data Save, Burn

Checkpoint Creates a snapshot of the current state of data or its configuration Diff, StartTransaction

Compare Compares a resource with another resource Diff, Bc

Compress Reduces the size or resource usage of an item Zip, Squeeze, Archive

Convert Changes from one representation to another when the cmdlet
supports bidirectional conversion or conversion of many data types

Change, Resize, Resample

ConvertFrom Converts from one primary input to several supported outputs Export, Output, Out

ConvertTo Converts from several supported inputs to one primary output Import, Input, In

Dismount Detaches a name entity from a location in a namespace Dismount, Unlink

Edit Modifies an item in-place Change, Modify, Alter

Expand Increases the size or resource usage of an item Extract, Unzip

Export Stores the primary input resource into a backing store or interchange
format

Extract, Backup

Group Combines an item with other related items Merge, Combine, Map

Import Creates a primary output resource from a backing store or inter-
change format

Load, Read

Initialize Prepares a resource for use and initializes it to a default state Setup, Renew, Rebuild

Limit Applies constraints to a resource Quota, Enforce

Merge Creates a single data instance from multiple data sets Combine, Join

Mount Attaches a named entity to a location in a namespace Attach, Link

Out Sends data to a terminal location Print, Format, Send

Publish Make a resource known or visible to others Deploy, Release, Install

Restore Restores a resource to a set of conditions that have been predefined
or set by a checkpoint

Repair, Return, Fix

Save Stores pending changes to a recoverable store Write, Retain, Submit

Sync Synchronizes two resources with each other Push, Update

Unpublish Removes a resource from public visibility Uninstall, Revert

Update Updates or refreshes a resource Refresh, Renew, Index

Standard PowerShell Verbs | 817

Table J-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems Attach, Diagnose

Measure Identifies resources consumed by an operation or retrieves statistics
about a resource

Calculate, Determine, Analyze

Ping Determines whether a resource is active and responsive (in most
instances, this should be replaced by the verb Test)

Connect, Debug

Repair Recovers an item from a damaged or broken state Fix, Recover, Rebuild

Resolve Maps a shorthand representation to a more complete one Expand, Determine

Test Verify the validity or consistency of a resource Diagnose, Verify, Analyze

Trace Follow the activities of the resource Inspect, Dig

Table J-5. Standard Windows PowerShell life cycle verbs

Verb Meaning Synonyms

Approve Gives approval or permission for an item or resource Allow, Let

Assert Declares the state of an item or fact Verify, Check

Complete Finalizes a pending operation Finalize, End

Confirm Approves or acknowledges a resource or process Check, Validate

Deny Disapproves or disallows a resource or process Fail, Halt

Disable Configures an item to be unavailable Halt, Hide

Enable Configures an item to be available Allow, Permit

Install Places a resource in the specified location and optionally
initializes it

Setup, Configure

Invoke Calls or launches an activity that cannot be stopped Run, Call, Perform

Register Adds an item to a monitored or publishing resource Record, Submit, Journal,
Subscribe

Request Submits for consideration or approval Ask, Query

Restart Stops an operation and starts it again Recycle, Hup

Resume Begins an operation after it has been suspended Continue

Start Begins an activity Launch, Initiate

Stop Discontinues an activity Halt, End, Discontinue

Submit Adds to a list of pending actions or sends for approval Send, Post

Suspend Pauses an operation, but does not discontinue it Pause, Sleep, Break

Uninstall Removes a resource from the specified location Remove, Clear, Clean

Unregister Removes an item from a monitored or publishing resource Unsubscribe, Erase, Remove

Wait Pauses until an expected event occurs Sleep, Pause, Join

818 | Appendix J: Standard PowerShell Verbs

Table J-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource Prevent, Limit, Deny

Grant Grants access to a resource Allow, Enable

Protect Limits access to a resource Encrypt, Seal

Revoke Removes access to a resource Remove, Disable

Unblock Removes a restriction of access to a resource Clear, Allow

Unprotect Removes restrictions from a protected resource Decrypt, Decode

Standard PowerShell Verbs | 819

Index

Symbols
(single-line) comment, 716
$ (variable name), 8, 94
$() expression subparse, 715
$? (“dollar hook”) Boolean variable, 382
$args array, 750
$_ current character, 153
$_ current object variable, 9
% (modulus) operator, 726
%= (modulus assignment) operator, 726
& (invoke) operator, 20, 261, 710
() precedence control, 715
* (multiplication) operator, 726
*= (multiplication assignment) operator, 726
+ (addition) operator, 725
+ (array range) separator, 723
+= (addition assignment) operator, 726
, (unary comma) operator, 116, 186
- (subtraction) operator, 725
-= (subtraction assignment) operator, 726
/ (division) operator, 726
/= (division assignment) operator, 726
0x (hexadecimal) prefix, 720
<# #> (multiline) comment, 716
@ (array cast) syntax, 721
@" "@ here string, 143, 719
@() list evaluation, 715
[] strongly typed variable or array, 717, 721
` (backtick) escape character, 144, 719
{ } script block, 64
| (pipeline character) pass output, 9

A
Abs() method, 173

accelerator key, 337
Accept script block parameters with local

variables, 284
Access a .NET SDK library, 436
Access and manage your console history, 46
Access and scope, control, 100
Access arguments of a script, function, or script

block, 276
Access elements of an array, 186
Access environment variables, 95
Access event logs of a remote machine, 565
Access features of the host’s user interface,

350
Access information about your command’s

invocation, 401
Access information in an XML file, 237
Access pipeline input, 295
Access user and machine certificates, 467
Access Windows API functions, 422
Access Windows Management

Instrumentation data, 635
Access Windows performance counters, 419
Access, full network, 676
ACL misconfiguration, getting, 506
ACL of a file or directory, set, 508
ACL of a registry key, get, 529
ACL of a registry key, set, 530
ACL of file or directory, get, 506
Active Directory

computer accounts, 603–605
containers, 588
importing users in bulk, 590
organizational units (OUs), 585–588, 602
security/distribution groups, 595–602
Service Interface (ADSI), 13, 581, 583

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

821

testing scripts, 582–584
user accounts, 589, 592–595
Web Services, 581

Active Directory container, get the children of
an, 588

Active Directory scripts on a local installation,
test, 582

Active Directory, creating users in, 590
Active Directory, import users in bulk to, 590
Add a graphical user interface to your script,

352
Add a pause or delay, 139
Add a site to an Internet Explorer security zone,

524
Add a user to a security or distribution group,

600
Add and remove certificates, 470
Add custom methods and properties to objects,

119
Add custom methods and properties to types,

125
Add custom tags to a function or script block,

292
Add extended file properties to files, 509
Add help to scripts or functions, 290
Add information to the end of a file, 55
Add inline C# to your PowerShell script, 434
Add item to tools menu, 481
Add PowerShell scripting to your own program,

440
Add validation to parameters, 280
Add() method, 481, 600
Add-ADGroupMember cmdlet, 600
Add-Computer cmdlet, 607
Add-ExtendedFileProperties script, 509
Add-History cmdlet, 47
Add-Member cmdlet, 119, 122, 125, 495, 745
Add-ObjectCollector script, 81
Add-RelativePathCapture script, 303
Add-Type cmdlet, 422–424, 428, 431–437,

505, 744
AddDays() method, 488
addition assignment operator (+=), 726
addition operator (+), 725
Adjust script flow using conditional statements,

133
Administrative constants, simplify math with,

180
administrative numeric constants, 720

administrative tasks, 8
ADSI (Active Directory Service Interface), 13,

581, 583
Advanced array tasks, use the ArrayList class

for, 195
advanced functions, 278, 287
advanced functions, invoking, 289
Advanced remoting options, configure, 681
Advanced WMI tasks, use .NET to perform,

645
alarm character (`a), 719
*-Alias cmdlet, 101
alias suggestions, getting, 42
aliases, 6, 42–46, 101
Aliases for common parameters, learn, 44
Aliases, learn for common commands, 42
AliasProperty, 128
Alternate culture settings, invoke a script block

with, 349
Analyze a script’s performance profile, 393
-and operator, 727
API calls, invoke simple Windows, 428
API functions, 422–431
API functions, access Windows, 422
API, invoking directly, 428
AppendChild() method, 245
appending, 55
Application associated with a document,

launch, 571
Application, uninstall, 616
Archive, create a ZIP, 513
$args array, 279
argument array, 750
argument splatting, 305
Arguments of a script, function, or script block,

276
arithmetic operators, 725
Arithmetic, perform complex, 173
Arithmetic, perform simple, 171
Array or list of items, create, 183
Array or list of items, sort, 189
array range separator (+), 723
Array, access elements of, 186
Array, create a hashtable or associative, 197
Array, create a jagged or multidimensional,

185
Array, determine whether it contains an item,

190

822 | Index

Array, find items greater or less than a value in,
194

Array, find items that match a value in, 192
Array, remove elements from, 193
Array, visit each element of, 188
ArrayList class, use for advanced array tasks,

195
arrays

accessing, 722
argument, 750
and array cast syntax, 721
ArrayList class for advanced tasks, 195
combining, 191
creating/defining, 183, 721
elements of, 721
finding items contained in, 190, 192, 194
hashtable/associative, 197, 723
jagged/multidimensional, 185, 722
ranges, 723
removing elements from, 193
slicing, 723
sorting, 189
strongly typed, 721

Arrays, combine two, 191
-as (type conversion operator), 729
assembly, 744
Assign a static IP address, 629
assignment, variable, 720
Associative array (hashtable), create, 197
associative arrays, 197, 723
associators, 645
atomicity, 693
Attributes of a file, manage and change, 490
auto-completion, 7
Automate data-intensive tasks, 74
Automate programs using COM scripting

interfaces, 415
Automatically capture pipeline output, 81
Automatically generated events, respond to,

700
automation, 74–77, 415

B
Back up an event log, 558
Background command, invoke, 24
backspace character (`b), 719
backtick (`) escape character, 144, 719
-band operator, 727
banker’s rounding, 172

Bases, convert numbers between, 181
batch files, 98
begin keyword, 754
BeginProcessing() method, 81
binary

data, 83–87
files, 224–227
numbers as, 177–180
operators, 132, 155, 727
representation, 721

Binary files, parse and manage, 224
binary join operator (-join), 155, 731
Binary process output, capture and redirect,

83
binary process, invoking, 83
binary split operator (-split), 730
Binary, work with numbers as, 177
Bing, fetching answers from, 316
Block scripts by publisher, path, or hash, 455
blocking by publisher, path, hash, 455
-bnot operator, 728
Boolean variables, 717
-bor operator, 728
break statement, 739
Breakpoint, create a conditional, 370
breakpoint, creating on error, 368
Breakpoint, set a script, 365
breakpoint, setting on last error, 369
breakpoints, 365–372
Build file paths out of their components, 411
-bxor operator, 728
byte order mark, 232

C
C#, adding to script, 434
calculated properties, 120, 251, 495
calculations (see math and calculations)
CancelAllJobs() method, 625
capitalization rules, 345
Capture and redirect binary process output,

83
Capture pipeline output automatically, 81
capturing binary process output, 83–87
capturing output, 760
carriage return character (`r), 719
Certificate store, search, 468
Certificate, create a self-signed, 452
certificates, 452, 455–458, 467–471
Certificates, add and remove, 470

Index | 823

Change a user password, 594
Change error recovery behavior in transactions,

697
Change the attributes of a file, 490
Change() method, 650
ChangeExtension() method, 228
Changes, monitor a file for, 497
Changes, watch an expression for, 375
characteristics of an executable, displaying,

225
Checkpoint-Computer cmdlet, 617
child scope, 100
Children of an active directory container, get

the, 588
Class names, reduce typing for long, 113
Class, define or extend a .NET, 431
Class, invoke a method on a WMI, 639
classes, 105
Classes, search for WMI, 642
cleanup after module removal, 274
Cleanup tasks when a module is removed, 274
Clear or maintain an event log, 563
Clear the content of a file, 489
Clear() method, 384
Clear-Content cmdlet, 489
Clear-EventLog cmdlet, 564–565
Clear-History cmdlet, 47
ClearLog() method, 565
clipboard, getting and setting, 204
Clipboard, read and write from, 203
Close ports in the Windows Firewall, 613
Cmdlet features, provide -WhatIf, -Confirm,

and other, 287
Cmdlet keywords, write pipeline-oriented

scripts with, 296
Cmdlet, create your own PowerShell, 438
Cmdlet, enhance or extend an existing, 304
CmdletBinding attribute, 278, 281, 751
cmdlets

creating new, 438–440
defined, 7, 24
enhancing/extending of existing, 304
full names and aliases, 42, 98
keywords, 296–300, 754
placement of formatting, 91
script, 278
in scripts and command line, 11
Verb-Noun pattern, 31, 256

code coverage, 377–379

code reuse, 255
Colorized script content, show, 209–214
Colors, customize text and user interface, 477
COM object, use, 115
COM objects, 14, 115, 416, 803–805
COM scripting interfaces, automate programs

using, 415
Combine related registry modifications, 522
Combine strings into a larger string, 154
Combine two arrays, 191
command breakpoints, 366
Command name, find a verb appropriate for,

260
Command or script, invoke from outside

PowerShell, 38
Command output, export as a web page, 326
Command output, filter items in, 64
Command output, interactively view and

process, 52
Command output, store into a file, 54
Command output, work with each item in, 72
command pane, 475
Command parameters, dynamically compose,

286
command script, invoking, 98
command wrappers, creating, 305
Command, determine the status of the last,

381
Command, find, 31
Command, invoke from your session history,

49
Command, invoke on a remote computer, 669
Command, invoke on many computers, 683
Command, measure duration of, 202
Command, run a Powershell, 23
Command, run a temporarily elevated, 463
Command, view the errors generated by, 383
commands

behavior customizations, 751
evaluation controls, 715
exporting from module, 271
finding, 31
help on, 32–36
providing input to, 750–755
retrieving output from, 755
running, 748
writing, 747

Commands from customized shells, use, 57
Commands that maintain state, write, 268

824 | Index

Commands that support their own remoting,
find, 652

Commands, compare the output of two, 543
Commands, extend your shell with additional,

56
Commands, implicitly invoke from a remote

computer, 673
Commands, invoke dynamically named, 303
Commands, learn aliases for common, 42
Commands, manage the error output of, 385
Commands, selectively export from a module,

270
Command’s invocation, access information

about your, 401
comments, 716
Common commands in a module, package,

265
Common scripting errors, prevent, 360
Common system paths, find the location of,

407
Compare the output of two commands, 543
Compare two lists, 193
Compare() method, 731
Compare-Object cmdlet, 193, 543–547
Compare-Property script, 68
Comparison and logical operators, make

decisions with, 131
comparison operators, 131, 731
Complete-Transaction cmdlet, 522, 695
Complex arithmetic, perform, 173
Components, safely build file paths out of their,

411
composable commands, 9
Compose command parameters dynamically,

286
Computer account, get and list the properties

of a, 604
Computer account, search for a, 603
Computer restore points, manage, 617
Computer, enable PowerShell remoting on,

659
Computer, enable remote desktop on, 661
Computer, join to a domain or workgroup,

607
Computer, list all IP addresses for, 630
Computer, manage scheduled tasks on, 621
Computer, reboot or shut down, 619
Computer, remove from a domain, 608

Computers, enable remoting to workgroup,
665

Computers, invoke a command on many, 683
Computers, test connectivity between two,

656
Conditional breakpoint, create, 370
conditional statements, 133–136, 733–736
Conditional statements, adjust script flow

using, 133
Conditional statements, manage with switches,

135
Configure a service, 580
Configure advanced remoting options, 681
Configure debug, verbose, and progress output,

387
Configure user permissions for remoting, 664
-Confirm parameter, 10, 287–289
-Confirm, -WhatIf, and other cmdlet features,

287
Connect to a remote computer, 479
Connect to a web service, 321–326
Connect-WebService script, 323–326
Connectivity between two computers, test,

656
consistency, 693
Console history, access and manage your, 46
console host, 351
console properties, customizing, 40
console settings, 761
constants, administrative, 180
-contains (contains operator), 190, 733
Contains() method, 149
Content of a file, clear, 489
Content of a file, get, 217
Content, show colorized script, 209
Content, view the hexadecimal representation

of, 233
Continue ErrorAction preference, 758
continue statement, 740
Control access and scope of variables and other

items, 100
Convert a string to upper/lowercase, 156
Convert a VBScript WMI script to PowerShell,

647
Convert numbers between bases, 181
Convert objects to XML, 242
convert temperatures, 265
Convert-TextObject script, 160
ConvertFrom-SecureString cmdlet, 458, 465

Index | 825

ConvertFrom-StringData cmdlet, 348
converting numbers, 721
ConvertTo-Csv cmdlet, 168, 247
ConvertTo-Html cmdlet, 168, 326
ConvertTo-SecureString cmdlet, 458, 465
ConvertTo-Xml cmdlet, 168, 242
Copy-History script, 48
Copy-Item cmdlet, 386
counted for loops, 137
Counters, access Windows performance, 419
Coverage, get script code, 377
Create a conditional breakpoint, 370
Create a directory, 501
Create a filesystem hard link, 511
Create a hashtable or associative array, 197
Create a jagged or multidimensional array,

185
Create a multiline or formatted string, 143
Create a registry key value, 520
Create a security or distribution group, 595
Create a self-signed certificate, 452
Create a string, 141
Create a task-specific remoting endpoint, 688
Create a temporary event subscription, 706
Create a temporary file, 227
Create a user account, 589
Create a ZIP archive, 513
Create an array or list of items, 183
Create an instance of a .NET object, 108
Create an organizational unit, 585
Create and initialize custom objects, 121
Create and respond to custom events, 703
Create or remove an event log, 560
Create scripts from session history, 48
Create sessions with full network access, 676
Create your own PowerShell cmdlet, 438
Create() method, 585, 589, 595, 650, 661
CreateRestricted() method, 689
Credentials, securely store on disk, 465
credentials, user, 461, 465
CredSSP, 677
CredSSP authentication, enabling, 678
criteria filters, 53
CSV/delimited files, 74, 247
Culture settings, invoke a script block with

alternate, 349
culture, running in chosen, 349
culture-aware scripts, 157, 344–346, 349
Culture-aware scripts, write, 344

Current location, determine, 486
Current location, get, 409
Currently running processes, list, 570
Custom events, create and respond to, 703
Custom formatting files, 760
Custom methods and properties, add to

objects, 119
Custom methods and properties, add to types,

125
Custom objects, create and initialize, 121
Custom tags, add to a function or script block,

292
Customize text and user interface colors, 477
Customize the shell to improve your

productivity, 40
Customize your shell, profile, and prompt, 28
Customized shells, use commands from, 57
customizing

cmdlets, 438
commands, 57
console settings, 761
events, 703
formatting, 760
ISE text/colors, 477
methods and properties, 119–129
profiles, 28, 763
prompts, 28, 764
shell, profile, and prompt, 28, 40
tab completion, 764
tags, 292–294
type extension files, 125, 746

D
data

comparing, 543–547
grouping and pivoting, 65–68
numeric, 720
returning from script/function, 263

Data in an XML file, modify, 243
Data source, query a SQL, 416
DATA { } evaluation, 716
Data, easily import and export your structured,

245
Data, group and pivot by name, 65
Data, Windows Management Instrumentation,

635
Data-intensive tasks, automate, 74
Date and time, get the system, 201

826 | Index

Date, find all files modified before a certain,
488

Date, format for output, 158
date/time

formatting, 158, 781–785
getting system, 201
measuring duration, 202

Debug a process, 575
Debug a script, 475
Debug a script when it encounters an error,

368
debug output, 388
Debug output, configure, 387
Debug-Process cmdlet, 575
debugging, 359–379

change error recovery behavior in
transactions, 697

configure debugging output of cmdlets/
scripts, 387

formatting errors, 340
generated errors, 383–387
handling warnings and errors, 389–393
investigating system state while, 372
invocation information, 403–406
managing errors, 757
nonterminating errors, 385, 757
preventing common scripting errors, 360
a process, 575
resolve errors calling native executables, 21
script code coverage, 377–379
setting conditional breakpoint, 370
setting script breakpoint, 365–368
setting watch expression, 375
status of last command, 381
terminating errors, 385, 758
tracing script execution, 362–365
trapping, 389–392
with ISE, 475

Debugging, investigate system state while, 372
decimal numbers, 721
Decisions, make with comparison and logical

operators, 131
Define or extend a .NET class, 431
Delay, add, 139
Delete an organizational unit, 587
DeleteTree() method, 587
Deploy PowerShell-based logon scripts, 612
Determine PowerShell version information,

412

Determine properties available to WMI filters,
640

Determine the current location, 486
Determine the differences between two files,

545
Determine the status of the last command,

381
Determine whether a hotfix is installed, 620
Determine whether a script is running on a

remote computer, 688
Determine whether an array contains an item,

190
DHCP lease, renew, 627
Diagnose and interact with internal module

state, 272
Differences between two files, determine the,

545
Digital signature of a PowerShell script, verify,

457
digital signatures, 457
directories

creating, 501
getting files in, 487
getting/setting ACL of, 506–509
moving, 504
removing/renaming, 502

Directory, create, 501
Directory, get ACL of, 506
Directory, get the files in, 487
Directory, move a file or, 504
Directory, remove, 502
Directory, rename, 502
Directory, set ACL of file or, 508
Disable the Windows Firewall, 612
Disable warnings for UNC paths, 449
Disable-ComputerRestore cmdlet, 617
Disable-PsBreakpoint cmdlet, 367
Discover registry settings for programs, 539
Disk usage information, get, 495
disk usage, getting, 495
Disk, securely store credentials on, 465
Display a menu to the user, 337
Display messages and output to the user, 339
Display the properties of an item as a list, 90
Display the properties of an item as a table, 92
Distribution group, add user to, 600
Distribution group, create, 595
Distribution group, modify properties of, 599
Distribution group, remove user from, 600

Index | 827

Distribution group, search for, 596
division assignment operator (/=), 726
division operator (/), 726
DLL or executable, get the version of, 497
do … while/do … until loops, 138, 738
Document, launch the application associated

with, 571
Domain, join a computer to, 607
Domain, remove a computer from, 608
DOS-style commands, 4
dot-sourcing, 749
double-hop problem, 662, 668, 673
Download a file from the Internet, 313
Download a web page from the Internet, 314
DownloadFile() method, 313
DownloadString() method, 314
*-Drive cmdlet, 101
durability, 693
Duration of a command, measure, 202
dynamic information, 144–146
Dynamic information, insert in a string, 144
Dynamic information, prevent a string from

including, 146
dynamic variables, 102–104
Dynamically compose command parameters,

286
Dynamically named commands, invoke, 303

E
Easily import and export your structured data,

245
Element of an array, visit each, 188
Elements of an array, access, 186
Elements, remove from an array, 193
elevated command, invoking, 463
else, elseif statements, 733
Email, send, 327–329
empty array, 721
Enable or disable the Windows Firewall, 612
Enable PowerShell remoting on a computer,

659
Enable remote desktop on a computer, 661
Enable remoting to workgroup computers,

665
Enable scripting through an execution policy,

446
Enable-BreakOnError script, 368
Enable-ComputerRestore cmdlet, 617
Enable-HistoryPersistence script, 59

Enable-PsBreakpoint cmdlet, 367
Enable-PsRemoting cmdlet, 659, 662
Enable-RemoteCredSSP script, 678
Enable-RemotePsRemoting script, 662
Enable-WsManCredSSP cmdlet, 677
EnableDHCP() method, 629
Encoding of a file, get, 231
End of a file, add information to, 55
Endpoint, create a task-specific remoting, 688–

692
EndProcessing() method, 81
Enhance or extend an existing cmdlet, 304
Enhanced Security Configuration mode

(Explorer), 450, 524
Enter-PsSession cmdlet, 667
enterprise computer management

adding/removing computer from domain,
607

assigning static IP address, 629
deploying logon scripts, 612
enabling/disabling Windows Firewall, 612–

614
listing hotfixes, 620
listing installed software, 614
listing IP addresses, 630
listing logon/logoff scripts, 609
listing network adapter properties, 631
listing startup/shutdown scripts, 610
managing computer restore points, 617
managing printers, 622–625
managing scheduled tasks, 621
renewing a DHCP lease, 627
security, 453
shutting down/rebooting computer, 619
summarizing system information, 626
uninstalling an application, 616

Enterprise, manage PowerShell Security in,
453

enumerators, 295
environment provider, 96, 400
Environment variables, access, 95
Environment variables, view and modify, 399–

401
-eq (equality operator), 731
Equals() method, 731
Error output of commands, manage, 385
error output stream, 757
Error recovery behavior in transactions,

change, 697

828 | Index

Error, debug a script when it encounters, 368
Error, resolve, 386
$errorActionPreference, 757
Errors generated by a command, view, 383
Errors, handle, 389
Errors, output, 392
Errors, prevent common scripting, 360
Errors, resolve calling native executables, 21
escape sequences (`), 144, 719
Escape() method, 152
evaluation controls

DATA { } evaluation, 716
expression subparse $(), 715
list evaluation @(), 715
precedence control (), 715

Event action state, investigate internal, 708
Event handler, use a script block as, 710
event handling

custom events, 703–705
internal event action states, 708
.NET events, 807–811
overview, 699
from a remote computer, 707
responding to automatically generated

events, 700–703
script block for, 710
temporary event subscriptions, 706
WMI events, 811–813

Event log entries, find by their frequency, 556
Event log entries, find with specific text, 552
Event log entries, retrieve and filter, 553
Event log entries, run a PowerShell script for,

562
Event log of a remote machine, access, 565
Event log, back up, 558
Event log, clear or maintain, 563
Event log, create or remove, 560
Event log, get the newest entries from, 551
Event log, list all, 549
Event log, write to, 561
event logs

accessing remotely, 565
backing up, 558
clearing/maintaining, 563
creating or removing, 560
finding/retrieving entries in, 552–558
generating entries to, 562
getting newest entry from, 551
listing, 549

writing to, 561
event queue, 701
Event subscription, create a temporary, 706
*-EventLog cmdlets, 549
Events, create and respond to custom, 703
Events, forward from a remote computer, 707
Events, respond to automatically generated,

700
Excel, managing command output with, 249
exception types, 759
Executable, get the version of, 497
execution policies, 446–449, 749
Execution policy, enable scripting through,

446
Execution, trace script, 362
-ExecutionPolicy parameter, 39
exit codes, 381
exit statement, 755
expanding strings, 142, 144, 718
Experiment safely with transactions, 695
Explorer security zone, 524
Export command output as a web page, 326
Export commands from a module, 270
Export your structured data, 245
Export-CliXml cmdlet, 47, 242, 245, 546, 559
Export-Counter cmdlet, 422
Export-Csv cmdlet, 249
Export-ModuleMember cmdlet, 271–272
Expression, watch for changes, 375
Extend a .NET class, 431
Extend an existing cmdlet, 304
Extend ISE functionality through its object

model, 479
Extend your shell with additional commands,

56
Extended file properties, add to files, 509
extended information, adding to file properties,

509
extending cmdlets, 304
extending shell, 56
extending types, 745

F
-f (format operator), 147, 729
$false (Boolean value), 717
Features of the host’s user interface, access,

350
file encoding, getting, 232
file hash, getting, 499

Index | 829

File or directory, move, 504
File or directory, set ACL of, 508
File paths, safely build out of their components,

411
file properties, adding extended information to,

509
file sets, 545
File sets, verify integrity of, 545
File, access information in an XML, 237
File, add information to end of, 55
File, clear the content of, 489
File, create a temporary, 227
File, download from the Internet, 313
File, get ACL of, 506
File, get the content of, 217
File, get the encoding of, 231
File, get the MD5 or SHA1 hash of, 498
File, manage and change the attributes of, 490
File, monitor for changes, 497
File, move or remove a locked, 504
File, remove, 502
File, rename, 502
File, search and replace text in, 228
File, search for text or pattern, 219
File, transfer to a remote computer, 685
files

appending to, 55
binary, 224–227
clearing content of, 489
comparing, 545
CSV/delimited, 247
current location of, 486
downloading from Internet, 313–318
encoding of, 231
extended properties, 509
getting content of, 217
hard links, 511
locked, 504
managing/changing attributes, 490
MD5 or SHA1 hash, 498–501
modification dates of, 488
monitoring for changes, 497
moving, 504
pattern matching of, 491–494
removing/renaming, 502, 504
searching for text/pattern, 219–221
sending, 685
special characters in name of, 494
structured, 237–253

temporary, 227
version information for, 497

Files in a directory, get, 487
Files that include special characters, 494
Files that match a pattern, find, 491
Files, determine differences between two, 545
Files, find all modified before a certain date,

488
Files, parse and manage binary, 224
Filesystem hard link, create, 511
Filter event log entries, 553
Filter items in a list or command output, 64
filtering

defined, 747
interactive, 70–72
items, 64

Find a command to accomplish a task, 31
Find a verb appropriate for a command name,

260
Find all files modified before a certain date,

488
Find commands that support their own

remoting, 652
Find event log entries by their frequency, 556
Find event log entries with specific text, 552
Find files that match a pattern, 491
Find items in an array greater or less than a

value, 194
Find items in an array that match a value, 192
Find the location of common system paths,

407
Find the owner of a group, 598
Find your script’s location, 406
Find your script’s name, 405
FindAll() method, 592, 597, 602
finding

commands, 31, 652
event log entries, 552, 556
files, 488, 491
group owner, 598
items in an array, 192, 194
script’s location, 406
script’s name, 405
verbs, 260

FindOne() method, 592, 597, 604
Firewall, enable or disable the Windows, 612
Firewall, open or close ports in the Windows,

613
flow control statements, 133, 738–740

830 | Index

for loops, 137
foreach loops, 137
Foreach-Object cmdlet, 72–80, 136–138, 165,

188, 263
Foreach-Object pipelines, simplify most, 78
form feed character (`f), 719
formal parameters, 750
Format a date for output, 158
Format-* cmdlet, 341
Format-Custom cmdlet, 92
Format-Hex script, 234
Format-List cmdlet, 31, 90, 92, 384, 480, 557,

586
Format-List* cmdlet, 760
Format-String script, 167
Format-Table cmdlet, 9, 92, 121, 187, 384,

759
Format-Wide cmdlet, 92, 760
Formatted information, place in a string, 147
Formatted output, search for a pattern, 51
Formatted string, create, 143
formatted strings, 143, 147
Formatting file, sign a PowerShell, 450
formatting output, 759
Forward events from a remote computer, 707
Frequency, find event log entries by their, 556
Function or script block, add custom tags to,

292
Function, access arguments of, 276
Function, return data from, 263
Function, write, 258
Function, write a pipeline-oriented, 300
functions

adding help to, 290
arguments of, 276–279
content of, 747
defining, 747
invoking advanced, 289
returning data from, 263
scope of, 101
writing, 258

Functions or scripts, add help to, 290
Functions, access Windows API, 422

G
-ge (greater-than-or-equal operator), 731
Generate a random number or object, 206
Generate large reports and text streams, 164

Generate source code and other repetitive text,
166–169

generic objects, 110–112, 185, 744
generic objects, creating new, 112
Get ACL of file or directory, 506
Get and list the properties of a computer

account, 604
Get and list the properties of a user account,

593
“Get and Set Content” variable syntax, 716
Get detailed documentation about types and

objects, 117
Get disk usage information, 495
Get help on a command, 32
Get properties of remote registry keys, 535
Get registry items from remote machines, 533
Get script code coverage, 377
Get the ACL of a registry key, 529
Get the children of an active directory

container, 588
Get the content of a file, 217
Get the current location, 409
Get the encoding of a file, 231
Get the files in a directory, 487
Get the MD5 or SHA1 hash of a file, 498
Get the newest entries from an event log, 551
Get the properties of a group, 597
Get the properties of an organizational unit,

586
Get the system date and time, 201
Get the version of a DLL or executable, 497
Get() method, 586, 593, 598, 605
Get-Acl cmdlet, 506, 529–531
Get-AclMisconfiguration script, 506
Get-ADComputer cmdlet, 604
Get-ADGroup cmdlet, 597–599
Get-ADGroupMember cmdlet, 602
Get-ADUser cmdlet, 593, 601, 603
Get-AliasSuggestion script, 42
Get-Answer script, 316
Get-AuthenticodeSignature cmdlet, 457
Get-Characteristics script, 225
Get-ChildItem cmdlet, 95, 164, 251, 487–494,

509
Get-Clipboard script, 204
Get-Command cmdlet, 10, 31, 46, 184, 652
Get-ComputerRestorePoint cmdlet, 617
Get-Content cmdlet, 74, 154, 184, 217, 224,

230, 497

Index | 831

Get-Counter cmdlet, 420
Get-Credential cmdlet, 460
Get-Date cmdlet, 107, 158, 201, 488
Get-DetailedSystemInformation script, 626
Get-DiskUsage script, 495
Get-Event cmdlet, 701, 703
Get-EventLog cmdlet, 549–559
Get-EventSubscriber cmdlet, 704
Get-FileEncoding script, 232
Get-FileHash script, 499
Get-Help cmdlet, 11, 33–35, 652
Get-History cmdlet, 12, 47–48
Get-Hotfix cmdlet, 620
Get-InstalledSoftware script, 615
Get-InvocationInfo script, 403
Get-Item cmdlet, 487, 498
Get-ItemProperty cmdlet, 518
Get-Job cmdlet, 25
Get-Location cmdlet, 410, 486
Get-MachineStartupShutdown script, 610
Get-Member cmdlet, 11, 115–119, 480, 742
Get-PageUrls script, 319
Get-ParameterAlias script, 44
Get-PfxCertificate cmdlet, 470
Get-PrivateProfileString, 422
Get-Process cmdlet, 8, 63, 89, 105, 184, 569–

571, 574
Get-PSDrive cmdlet, 126, 495
Get-Random cmdlet, 206
Get-RemoteRegistryChildItem script, 533
Get-RemoteRegistryKeyProperty script, 535
Get-ScriptCoverage script, 377
Get-ScriptPerformanceProfile script, 394
Get-Service cmdlet, 577
Get-UserLogonLogoffScript script, 609
Get-Variable cmdlet, 101, 717
Get-WinEvent cmdlet, 549, 552, 558, 773
Get-WmiClassKeyProperty script, 640
Get-WmiObject cmdlet, 135, 578, 635, 638,

647–650
GetEnumerator() method, 198
GetEnvironmentVariable() method, 401
GetFolderPath() method, 407
GetNetworkCredential() method, 459
GetNewClosure() method, 284
GetRelated() method, 645
GetSteppablePipeline() method, 305
GetTempFilename() method, 227
GetType() method, 117

GetValues() method, 407
Global environment, interact with

PowerShell’s, 411
global scope, 101
Graphical user interface, add to your script,

352
Greater or less than a value, find items in an

array, 194
greater-than-or-equal operator, 731
Grep, 160
Group and pivot data by name, 65
Group membership, list a user’s, 601
Group, find the owner of a, 598
Group, get the properties of a, 597
Group, list the members of a, 602
Group-Object cmdlet, 65–68, 556
grouping data, 65–68
-gt (greater-than operator), 731

H
Handle cleanup tasks when a module is

removed, 274
Handle warnings, errors, and terminating

errors, 389
Hard link, create a filesystem, 511
hard links, creating new, 511
Hash, block scripts by, 455
Hashtable or associative array, create, 197
Hashtable, sort by key or value, 198
hashtables, 197, 723
help information, 32–34, 290, 756
Help on a command, get, 32
Help, add to scripts or functions, 290
help, extended search, 35
here string, 143, 719
hexadecimal output, displaying, 234
hexadecimal representation, 233–236, 720
Hexadecimal representation of content, view,

233
History, access and manage your console, 46
history, copying, 48
History, create scripts from session, 48
history, saving command, 59
Host’s user interface, access features of, 350
Hotfix, determine whether it is installed, 620
hotfixes, 620
HTML, 36, 318–321
HTML help, view, 36
HTTP, 329

832 | Index

I
ID completion, 50
if, elseif, else statements, 134, 733
implicit remoting, 651, 674
Implicitly invoke commands from a remote

computer, 673
Import and export your structured data, 245
Import users in bulk to active directory, 590
Import-AdUser script, 590
Import-CliXml cmdlet, 47, 245, 559
Import-Counter cmdlet, 422
Import-Csv cmdlet, 75–77, 248
Import-LocalizedData cmdlet, 347
Import-PsSession cmdlet, 673
Improve the performance of large-scale WMI

operations, 646
IndexOf() method, 149
Information about your command’s

invocation, access, 401
Information, add to the end of a file, 55
information, getting detailed, 626
Information, retrieve printer, 622
initial session state, 689
initialization, 737
Initialize custom objects, 121
Inline C#, add to your PowerShell script, 434
inline C#, invoking, 434
input enumerator, 754
Input, access pipeline, 295
Input, read a key of user, 336
Input, read a line of user, 335
Inquire ErrorAction preference, 758
Insert dynamic information in a string, 144
installed software, getting, 615
Installed software, list all, 614
instance, 106
instance methods, 106
instance properties, 108
Integrated Scripting Environment (ISE), 473–

481
Integrity of file sets, verify, 545
Interact with internal module state, 272
Interact with Internet protocols, 329
Interact with PowerShell’s global environment,

411
Interact with UI frameworks and STA objects,

355
interactive remoting, 651
Interactive Shell, 4, 19

Interactively manage a remote computer, 667
Interactively view and process command

output, 52
Intercept stages of the pipeline, 80
Internal event action state, investigate, 708
Internal module state, diagnose and interact

with, 272
internationalization, 157, 347–349
Internet

downloading files from, 313
downloading web pages from, 314–318
protocols, 329–334

Internet Explorer Enhanced Security
Configuration mode, 450, 524

Internet Explorer security zone, add a site to,
524

Internet Explorer settings, modify, 526
Internet protocols, interact with, 329
Internet, download a file from, 313
Internet, download a web page from, 314
int[] integer array, 721
inventory script, 690
Investigate internal event action state, 708
Investigate system state while debugging, 372
Investigate the InvocationInfo variable, 403
Invocation, access information about your

command’s, 401–405
InvocationInfo variable, 403
InvocationInfo variable, displaying, 403
Invoke a command from your session history,

49
Invoke a command on a remote computer,

669
Invoke a command on many computers, 683
Invoke a long-running or background

command, 24
Invoke a method on a WMI class, 639
Invoke a PowerShell command or script from

outside PowerShell, 38, 748
Invoke a PowerShell expression on a remote

machine, 653
Invoke a script block with alternate culture

settings, 349
Invoke commands implicitly from a remote

computer, 673
Invoke dynamically named commands, 303
invoke operator (&), 20, 261, 710
Invoke simple Windows API calls, 428
Invoke-AddTypeTypeDefinition script, 431

Index | 833

Invoke-AdvancedFunction script, 289
Invoke-BinaryProcess script, 83
Invoke-CmdScript script, 98
Invoke-Command cmdlet, 25, 670, 672, 680,

684
Invoke-ElevatedCommand script, 463
Invoke-History cmdlet, 47, 50
Invoke-Inline script, 434
Invoke-Item cmdlet, 249
Invoke-Member script, 78
Invoke-RemoteExpression script, 654
Invoke-ScriptBlock cmdlet, 263
Invoke-ScriptBlockClosure script, 284
Invoke-SqlCommand script, 417
Invoke-WindowsApi, 428
Invoke-WmiMethod cmdlet, 636, 639, 648,

650
IP address, assign a static, 629
IP addresses for a computer, list all, 630
-is (type operator), 733
ISE (Integrated Scripting Environment), 473–

481
ISE functionality, extend through its object

model, 479
-isnot (negated type operator), 733
isolation, 693
Item in a list or command output, work with

each, 72
Item, add to tools menu, 481
Item, determine whether an array contains,

190
Item, display properties as a list, 90
Item, display properties as a table, 92
Items in an array, find greater or less than a

value, 194
Items in an array, find ones that match a value,

192
Items, sort an array or list of, 189

J
Jagged or multidimensional array, create, 185
Job completion, notify yourself of, 27
-join (join operator), 730
Join a computer to a domain or workgroup,

607
Join() method, 155
Join-Path cmdlet, 406, 410, 486
jump list, 34

K
Kerberos, 676
Key of user input, read, 336
Key or value, sort a hashtable by, 198
key properties, getting, 640
Key value, create a registry, 520
Key value, modify or remove a registry, 519
Key, get the ACL of a registry, 529
Key, remove a registry, 521
Key, set the ACL of a registry, 530
Key, view a registry, 518
key/value array pairs, 724
Keywords, write pipeline-oriented scripts with

cmdlet, 296
Kill() method, 8

L
Languages, support in script output, 347
languages, supporting different user, 344–349
Large conditional statements, manage with

switches, 135
Large reports and text streams, generate, 164
Large-scale WMI operations, improve the

performance of, 646
Last command, determine the status of, 381
Launch a process, 572
Launch PowerShell at a specific location, 37
Launch the application associated with a

document, 571
launching

associated application, 571
PowerShell, 4, 37
a process, 572

-le (less-than-or-equal operator), 732
Learn about types and objects, 115
Learn aliases for common commands, 42
Learn aliases for common parameters, 44
Learning about types, 742
Length property, 8
-like (like operator), 50, 64, 148, 192, 732
Limit networking scripts to hosts that respond,

658
Limit-EventLog cmdlet, 564
List a user’s group membership, 601
List all event logs, 549
List all installed software, 614
List all IP addresses for a computer, 630
List all running services, 577

834 | Index

List currently running processes, 570
List logon or logoff scripts for a user, 609
List network adapter properties, 631
List of items, create, 183
List of items, sort, 189
List or command output, work with each item

in, 72
List startup or shutdown scripts for a machine,

610
List the members of a group, 602
List the properties of a computer account, 604
List the properties of a user account, 593
List the users in an organizational unit, 602
List, display the properties of an item as, 90
List, filter items in, 64
List, measure statistical properties of, 175
lists

comparing, 193
creating, 183
filtering, 64
interactive filtering of, 70–72
item properties displayed as, 90–91
measuring statistical properties, 175
sorting, 189
using foreach command, 72

Lists, compare two, 193
literal strings, 142, 144, 718
-LiteralPath parameter, 494
LoadWithPartialName() method, 424
Local installation, test Active Directory scripts

on a, 582
local scope, 101
Local script, run on a remote computer, 684
Local variables, accept script block parameters

with, 284
Location of common system paths, find, 407
Location, determine the current, 486
Location, find your script’s, 406
Location, get the current, 409
Location, launch PowerShell at specific, 37
Locked file, move or remove, 504
locked files, moving, 505
logfiles, text-based, 222–224
logical operators, 132

and, 727
exclusive or, 727
not, 727
or, 727

Logical operators, make decisions with, 131

Logon or logoff scripts, list for a user, 609
logon or logoff, getting, 609
Logon scripts, deploy PowerShell-based, 612
Logs, list all event, 549
Long class names, reduce typing for, 113
Long-running or background command,

invoke, 24
Long-running tasks, provide progress updates

on, 342
loops, 136–138, 736–737
Loops, repeat operations with, 136
Lower/uppercase, convert a string to, 156
-lt (less-than operator), 732

M
Machine and user certificates, access, 467
machine startup or shutdown scripts, getting,

610
Machine, access event logs of a remote, 565
Machines, get registry items from remote, 533
mail message, sending, 328
Maintain an event log, 563
Make decisions with comparison and logical

operators, 131
Make text selection easier, 762
man-in-the-middle attacks, 666
Manage a running service, 579
Manage and change the attributes of a file,

490
Manage binary files, 224
Manage computer restore points, 617
Manage files that include special characters,

494
Manage large conditional statements with

switches, 135
Manage PowerShell security in an enterprise,

453
Manage printers and print queues, 624
Manage scheduled tasks on a computer, 621
Manage security descriptors in SDDL form,

471
Manage text-based logfiles, 222
Manage the error output of commands, 385
Managing errors, 757
mandatory parameters, 751
-match (match operator), 132, 148, 150, 192,

732
Match a pattern, find files that, 491
Match a value, find items in an array that, 192

Index | 835

math and calculations
complex arithmetic, 173
measuring list statistical properties, 175
numbers as binary, 177–180
simple arithmetic, 171

Math, simplify with administrative constants,
180

MD5 hash, 498–501
MD5 or SHA1 hash of a file, get, 498
Measure statistical properties of a list, 175
Measure the duration of a command, 202
Measure-Command cmdlet, 202
Measure-CommandPerformance script, 202
Measure-Object cmdlet, 175, 251
member, invoking, 78
Members of a group, list the, 602
Membership, list a user’s group, 601
_ menu shortcut, 481
Menu, display to the user, 337
Menu, search the Start, 208
message table, 347
Messages and output, display to the user, 339
Method, invoke on a WMI class, 639
methods

accessing, 8
custom, 119–129
defined, 105
instance, 741
static, 741

Methods and properties, add custom to types,
125

Microsoft Certificate Services, 455
Modify data in an XML file, 243
Modify environment variables, 399
Modify Internet Explorer settings, 526
Modify or remove a registry key value, 519
Modify properties of a security or distribution

group, 599
Modify properties of a user account, 594
Modify properties of an organizational unit,

587
Modify the properties of a WMI instance, 637
module cleanup tasks, 274
module manifest, 266
Module state, diagnose and interact with

internal, 272
Module, handle cleanup tasks when one is

removed, 274
Module, package common commands in, 265

Module, selectively export commands from,
270

Module, sign, 450
modules

exporting commands from, 270–272, 271
interacting with state of, 272
packing commands in, 265–268
removal of, 274

modulus assignment operator (%=), 726
modulus operator (%), 726
Monitor a file for changes, 497
Move a file or directory, 504
Move or remove a locked file, 504
Move-Item cmdlet, 76, 504
Move-LockedFile script, 505
MTA (multi-threaded apartment), 355
Multidimensional (jagged) array, create, 185
multiline (formatted) strings, 143, 147
Multiline or formatted string, create, 143
multiplication assignment operator (*=), 726
multiplication operator (*), 726

N
Name, group and pivot data by, 65
named capture, 220
namespace, 114, 322
Native executables, resolve errors calling, 21
Navigate the registry, 517
-ne (negated equality operator), 731
.NET class, define or extend, 431
.NET delegate or event handler, use a script

block as, 710
.NET framework

classes, 431–433, 787–793
DateTime Formatting, 781–785
delegates, 710
documentation, 117
events, 807–811
instance methods/properties, 741
objects, 104–112
static methods/properties, 741
string formatting, 777–779
support for, 8
types, 742–746
and WMI tasks, 645

.NET object, create an instance of, 108

.NET objects, work with, 104

.NET SDK library, access, 436

836 | Index

.NET, use to perform advanced WMI Tasks,
645

Network access, create sessions with full, 676
Network adapter properties, list, 631
Networking scripts, limit to hosts that respond,

658
New-ADGroup cmdlet, 596
New-ADUser cmdlet, 589
New-CommandWrapper script, 305
New-Dynamic Variable script, 102
New-Event cmdlet, 703
New-EventLog cmdlet, 560
New-FilesystemHardLink script, 511
New-GenericObject script, 112
New-Item cmdlet, 501, 524
New-ItemProperty cmdlet, 520, 524
New-ModuleManifest cmdlet, 266
New-Object cmdlet, 108, 115, 118, 183, 185,

744
New-PSDrive cmdlet, 270
New-PsSession cmdlet, 669, 672, 681
New-PsSessionOption cmdlet, 681
New-SelfSignedCertificate script, 452
New-Variable cmdlet, 717
New-WebserviceProxy cmdlet, 321–323
New-ZipFile script, 513
newline character (`n), 719
none keyword, 754
nonexpanding strings, 142, 144, 146
nonterminating errors, 757
-NoProfile parameter, 39
-not operator, 727
-notcontains (negated contains operator), 733
notifications, 27
Notify yourself of job completion, 27
-notlike (negated like operator), 732
-notmatch (negated match operator), 733
Now property, 742
NTLM, 677
null character (`0), 719
Number, generate a random, 206
numbers

assignment of, 720
bases, 181, 720
constants, 720

Numbers, convert between bases, 181
Numbers, work with as binary, 177

O
object model, 89, 480
Object Model, extend ISE functionality

through, 479
Object, create an instance of a .NET, 108
Object, generate a random, 206
Object, use a COM, 115
objects

converting text streams to, 160
converting to XML, 242
custom, 121–125
generic, 110–112
methods and properties of, 115–121
.NET, 89, 108
PowerShell's integration of, 8

Objects, add custom methods and properties
to, 119

Objects, convert to XML, 242
Objects, create and initialize custom, 121
Objects, get detailed documentation about

types and, 117
Objects, learn about types and, 115
Objects, STA, 355
Objects, work with .NET, 104
octal representation, 721
one-liners, 255
Open or close ports in the Windows Firewall,

613
operators

arithmetic, 725
binary, 727
comparison, 731
logical, 727
other simple, 729

Optional Component Manager, 582
-or operator, 727
Organizational unit, create, 585
Organizational unit, delete, 587
Organizational unit, get the properties of, 586
Organizational unit, list the users in an, 602
Organizational unit, modify properties of, 587
Organize scripts for improved readability, 301
OUs (organizational units), 585–588
Out-Default cmdlet, 81, 91, 303, 369
Out-File cmdlet, 54, 165, 230
Out-GridView cmdlet, 52
Out-Host cmdlet, 341
Out-String cmdlet, 51, 91, 150, 761
output

Index | 837

capturing, 760
displaying, 339
formatting, 759
retrieving, 755
storing, 54

Output of a command, store into a file, 54
output pane, 475
Output warnings, errors, and terminating

errors, 392
Output, capture and redirect binary process,

83
Output, display to the user, 339
Output, format a date for, 158
Output, interactively view and process

command, 52
-OutVariable parameter, 761
Owner of a group, find the, 598

P
P/Invoke (Platform Invocation Services), 424
Package common commands in a module, 265–

268
parameter splatting, 750
parameters

aliases, 44
attribute customizations, 751
automatic, 287
behavior of, 281
dynamic composition of, 286
formal, 750
validation attributes, 752
validation of, 280–284

Parameters, add validation to, 280
Parameters, dynamically compose command,

286
Parameters, learn aliases for common, 44
Parameters, script block with local variables,

284
parent scope, 100
Parse and manage binary files, 224
Parse and manage text-based logfiles, 222
Parse() method, 344
parsing

binary files, 224–227
text-based logfiles, 222
with XML, 315

Pass variables to remote sessions, 680
Password, change a user, 594

Passwords and usernames, securely request,
460

paste, 762
Path, block scripts by, 455
paths

building file, 411
locating system, 407

Paths, find the location of common system,
407

Pattern, find files that match, 491
Pattern, search a file for, 219
Pattern, search a string for, 148
Pattern, search formatted output for, 51
Pattern, split a string on, 152
patterns, searching for, 50, 148, 303, 491–494
Pause, add, 139
PE (portable executable) header, 225
Perform an XPath query against XML, 240
Perform complex arithmetic, 173
Perform simple arithmetic, 171
performance and productivity, improving, 40,

393–398
performance counters, 419–422
Performance counters, access Windows, 419
performance of commands, measuring, 202
Performance of large-scale WMI operations,

improve, 646
Performance profile, analyze a script’s, 393
performance, getting script, 394
Permissions, user, configure for remoting, 664
PersistentState script, 269
pipeline

accessing input of, 295
capturing output from, 81, 755
defined, 63
functions, 300
input, 754
intercepting stages of, 80
scripts, 296–300
simplifying foreach-object, 78–80

pipeline character (|), 9
Pipeline input, access, 295
Pipeline output, automatically capture, 81
Pipeline, intercept stages of, 80
Pipeline-oriented function, write, 300
Pipeline-oriented scripts with cmdlet

keywords, write, 296
Pipelines, simplify most Foreach-Object, 78
Pivot data by name, 65

838 | Index

Place formatted information in a string, 147
Place special characters in a string, 144
POP3 (receiving mail), 329
portable executable (PE) header, 225
Ports, open or close in the Windows Firewall,

613
positional breakpoints, 366
positional parameters, 7
Pow() method, 173
PowerBoots, 352
PowerShell

global environment, 411
and .NET, 104–108, 741–746
and objects, 89
operators, 727
overview, 3
running commands, 23, 748–757
scripts, 251–253, 440
SDK (software development kit), 438
version information, 412

PowerShell cmdlet, create your own, 438
PowerShell command, invoke from outside

PowerShell, 38
PowerShell command, run, 23
PowerShell expression, invoke on a remote

machine, 653
PowerShell prompt window, 4
PowerShell script, run for Windows event log

entries, 562
PowerShell script, sign, 450
PowerShell script, verify the digital signature of,

457
PowerShell scripting, add to your own program,

440
PowerShell security, manage in an enterprise,

453
PowerShell version information, determine,

412
PowerShell, convert from VBScript WMI script,

647
PowerShell, customize to improve your

productivity, 40
PowerShell, launch at a specific location, 37
PowerShell-based logon scripts, deploy, 612
PowerShell’s global environment, interact with,

411
Prevent a string from including dynamic

information, 146
Prevent common scripting errors, 360

Printer information, retrieve, 622
Printer queue statistics, retrieve, 623
printers, 622–625
Printers and print queues, manage, 624
private profile string, getting, 422
private session state, 689
process keyword, 754
Process, debug, 575
Process, launch, 572
Process, start as another user, 461
Process, stop, 573
processes, 569–576
Processes, list currently running, 570
processing command output, 53
ProcessRecord() method, 81
Productivity, customize the shell to improve

your, 40
Profile, customize your, 28
profiles, customizing, 28, 763
Program, add PowerShell scripting to your own,

440
Programs, automate using COM scripting

interfaces, 415
Programs, discover registry settings for, 539
Programs, run, 19–21
progress output, 388
Progress output, configure, 387
Progress updates, provide on long-running

tasks, 342
prompt window, PowerShell, 4
Prompt, customize your, 28
prompts, 28, 764
prompts, reading, 337
properties

comparing, 68
custom, 119–129
defined, 105
display as list, 90–91
display as table, 92–94
instance, 742
static, 742

Properties of a computer account, get and list
the, 604

Properties of a group, get the, 597
Properties of a security or distribution group,

modify, 599
Properties of a user account, get and list the,

593
Properties of a user account, modify, 594

Index | 839

Properties of a WMI instance, modify, 637
Properties of an organizational unit, get the,

586
Properties of an organizational unit, modify,

587
Properties of remote registry keys, get, 535
Properties of remote registry keys, set, 537
Properties, add extended file, 509
Properties, add to objects, 119
Properties, add to types, 125
Properties, determine ones available to WMI

filters, 640
Properties, list network adapter, 631
property bags, 123, 672
Protocols, interact with Internet, 329
Provide -WhatIf, -Confirm, and other cmdlet

features, 287
Provide progress updates on long-running

tasks, 342
providers, 14
proxies, 322
proxy command APIs, 305
*-PsBreakPoint cmdlet, 360, 363–365, 475
public session state, 689
Publisher, path, or hash, block scripts by, 455
Put() method, 585, 594, 599

Q
Query a SQL data source, 416
quick filters, 53
QuickEdit Mode, 762
quote characters, 142

R
Random number or object, generate, 206
Read a key of user input, 336
Read a line of user input, 335
Read and write from the Windows clipboard,

203
Read-Host cmdlet, 139, 335, 458
Read-HostWithPrompt script, 337
readability, 301
Readability, organize scripts for improved,

301
ReadAllText() method, 217, 230
ReadKey() method, 139, 336
Reboot or shut down a computer, 619
Receive-Job cmdlet, 25, 702

Record a transcript of your shell session, 55
Redirect binary process output, 83
Reduce typing for long class names, 113
regenerate configuration, 272
Register-EngineEvent cmdlet, 700, 703
Register-ObjectEvent cmdlet, 700, 704
Register-PSSessionConfiguration cmdlet, 689
Register-Temporary Event script, 706
Register-WmiEvent cmdlet, 700, 704
Registry Editor, Windows, 445
Registry items from remote machines, get, 533
Registry key value, create, 520
Registry key value, modify or remove, 519
Registry key, get the ACL of, 529
Registry key, remove, 521
Registry key, set the ACL of, 530
Registry key, view, 518
Registry keys, get properties of remote, 535
Registry keys, set properties of remote, 537
Registry modifications, safely combine related,

522
Registry of a remote computer, work with,

531
Registry settings for programs, discover, 539
Registry, navigate, 517
Registry, search the Windows, 527
registry, searching, 527
Registry, Windows

adding site to Explorer security zone, 524
combining related modifications, 522
keys, 517–521, 529
program settings, 539–542
on remote computers, 531–538
searching, 527

regular expressions, 149, 765–772
rehydrating, 672
relative path, capturing, 303
remote access to event logs, 565
Remote computer, connect to, 479
Remote computer, determine whether a script

is running on, 688
Remote computer, forward events from, 707
Remote computer, implicitly invoke commands

from, 673
Remote computer, interactively manage, 667
Remote computer, invoke a command on, 669
Remote computer, run a local script on, 684
Remote computer, transfer a file to, 685

840 | Index

Remote computer, work with the registry of,
531

Remote desktop on a computer, enable, 661
remote expressions, invoking, 654
Remote machine, access event logs of, 565
Remote machine, invoke a PowerShell

expression on, 653
Remote machines, get registry items from, 533
remote registry key, getting properties from,

535
remote registry keys, 533–538
Remote registry keys, get properties of, 535
Remote registry keys, set properties of, 537
remote registry, getting child items of, 533
Remote sessions, pass variables to, 680
Remotely enable PowerShell remoting, 662
remoting

advanced options, 681
configuring user permissions for, 664
creating sessions, 676–679
determining if script is running, 688
enabling of, 659–667
interactive management of, 667–669
invoking commands, 669–676
to many computers simultaneously, 683
networking only to responding hosts, 658
to non-PowerShell-enabled computers,

652–656
passing variables, 680
running local script on remote computer,

684
task-specific remoting endpoints, 688–692
testing connectivity between computers,

656
transfer file to remote computer, 685

Remoting on a computer, enable PowerShell,
659

Remoting options, configure advanced, 681
Remoting to workgroup computers, enable,

665
Remoting, configure user permissions for, 664
remoting, enabling, 662
Remoting, find commands that support their

own, 652
Remove a computer from a domain, 608
Remove a file or directory, 502
Remove a locked file, 504
Remove a registry key, 521
Remove a registry key value, 519

Remove a user from a security or distribution
group, 600

Remove an event log, 560
Remove certificates, 470
Remove elements from an array, 193
Remove() method, 600
Remove-ADGroupMember cmdlet, 601
Remove-ADOrganizationalUnit cmdlet, 588
Remove-Computer cmdlet, 608
Remove-Event cmdlet, 701
Remove-EventLog cmdlet, 560
Remove-Item cmdlet, 29, 502, 521, 525
Remove-ItemProperty cmdlet, 519
Remove-Job cmdlet, 25, 707
Remove-PsBreakpoint cmdlet, 367
Rename a file or directory, 502
Rename-Item cmdlet, 502
Renew a DHCP lease, 627
RenewDHCPLease() method, 628
Repeat operations with loops, 136
Repetitive text, generate, 166
-replace (replace operator), 151, 729
Replace text in a string, 151
Replace() method, 151, 711
Reports and text streams, generate large, 164
Reset() method, 754
Resolve an error, 386
Resolve errors calling native executables, 21
Resolve-Error script, 386
Resolve-Path cmdlet, 410, 486
Respond to automatically generated events,

700
Respond to custom events, 703
Restart-Computer cmdlet, 608, 619
Restart-Service cmdlet, 579
restore points, 617
Restore points, manage computer, 617
Restore-Computer cmdlet, 617
restricted runspaces, 688
Resume-Service cmdlet, 579
Retrieve and filter event log entries, 553
Retrieve printer information, 622
Retrieve printer queue statistics, 623
Return data from a script, function, or script

block, 263
return statement, 755
Reverse() method, 746
RSAT (Windows 7 Remote Server

Administration Tools), 581

Index | 841

Run a local script on a remote computer, 684
Run a PowerShell command, 23
Run a PowerShell script for Windows event log

entries, 562
Run a temporarily elevated command, 463
Run programs, scripts, and existing tools, 19
Running service, manage, 579
Running services, list all, 577
running Windows tools and applications, 6

S
Safely build file paths out of their components,

411
Safely combine related registry modifications,

522
Safely experiment with transactions, 695
Save state between sessions, 59
Save() method, 243, 245
scaling, 206
Scheduled tasks, manage, 621
Scope of variables and other items, control,

100
scope variables, 717
scope, controlling, 100
screen scraping, 315
script block, 64
Script block or function, add custom tags to,

292
Script block parameters with local variables,

accept, 284
Script block, access arguments of, 276
Script block, invoke with alternate culture

settings, 349
Script block, return data from, 263
Script block, use as a .NET delegate or event

handler, 710
Script block, write, 261
script blocks, PowerShell, 261

with alternate culture settings, 349
as event handlers, 710
invoke closure on, 284
parameters and local variables, 284

Script breakpoint, set, 365
script cmdlets, 278
Script code coverage, get, 377
Script execution, trace, 362
Script flow, adjust using conditional

statements, 133

Script for Windows event log entries, run a
PowerShell, 562

Script output, support other languages in, 347
script scope, 101, 302
Script, add a graphical user interface to your,

352
Script, debug, 475
Script, debug when it encounters an error, 368
Script, determine whether it is running on a

remote computer, 688
Script, invoke from outside PowerShell, 38
Script, return data from, 263
Script, verify the digital signature of a

PowerShell, 457
Script, write, 255
Scripting errors, prevent common, 360
Scripting interfaces, automate programs using

COM, 415
scripting pane, 474
Scripting, enable through an execution policy,

446
Scripting, PowerShell, add to your own

program, 440
ScriptMethod, 128
Scriptomatic tool, 635
ScriptProperty, 127
scripts

adding help to, 290
arguments of, 276–279
blocking, 455
creating from session history, 48
debugging of, 368
finding location of currently running, 406
finding name of currently running, 405
getting location of currently running, 409
getting performance characteristics of, 394
organizing for readability, 301
parsing and interpreting, 251–253
running, 19, 748
setting breakpoints in, 365–368
signed, 450
tracing execution of, 362–365
writing, 255–257, 747

Scripts for a machine, list startup or shutdown,
610

Scripts or functions, add help to, 290
Scripts, Active Directory, test on a local

installation, 582
Scripts, deploy PowerShell-based logon, 612

842 | Index

scripts, getting information on, 377
Scripts, logon or logoff, list for a user, 609
Scripts, organize for improved readability, 301
Scripts, pipeline-oriented, write with cmdlet

keywords, 296
Scripts, run, 19
Scripts, write culture-aware, 344
Script’s location, find your, 406
Script’s name, find your, 405
Script’s performance profile, analyze, 393
SDDL (Security Descriptor Definition

Language), 471
SDDL form, manage security descriptors in,

471
SDK (software development kit), PowerShell,

438
SDK (software development kits), 436
SDK library, access a .NET, 436
Search a file for text or a pattern, 219
Search a string for text or a pattern, 148
Search and replace text in a file, 228
Search for a computer account, 603
Search for a security or distribution group,

596
Search for a user account, 592
Search for WMI classes, 642
Search formatted output for a pattern, 51
Search the certificate store, 468
Search the Windows registry, 527
Search the Windows Start menu, 208
Search-CertificateStore script, 468
Search-Help script, 35
Search-Registry script, 527
Search-StartMenu, 208
Search-Twitter script, 315
Search-WmiNamespace script, 642
searching

formatted output, 51
text in files, 228–231
Windows Start menu, 208

Securely handle sensitive information, 458
Securely request usernames and passwords,

460
Securely store credentials on disk, 465
SecureString cmdlet, 459
security

disabling warnings for UNC paths, 449
distribution groups, creating, 595
in an enterprise, 453

overview of Windows, 445
script signing, 450
setting execution policy to enable scripting,

446–449
Security Descriptor Definition Language

(SDDL), 471
Security descriptors in SDDL form, manage,

471
Security group, add user to, 600
Security group, create, 595
Security group, modify properties of, 599
Security group, remove user from, 600
Security group, search for, 596
Security zone, add a site to an Internet Explorer,

524
Security, manage in an enterprise, 453
Sed, 160
seeding, 206
Select-FilteredObject script, 70
Select-GraphicalFilteredObject script, 352
Select-Object cmdlet, 80, 93, 122, 251, 498
Select-String cmdlet, 51, 219–221, 527, 765
Select-TextOutput script, 51
Select-Xml cmdlet, 240, 243, 773
selective execution, 474
SelectiveCommands script, 271
Selectively export commands from a module,

270
SelectNodes() method, 242
Self-signed certificate, create, 452
Send an email, 327
Send-File script, 685
Send-MailMessage, 328
Send-MailMessage cmdlet, 327
Send-MailMessage script, 328
Send-TcpRequest script, 330
Sensitive information, securely handle, 458
Service, configure, 580
Service, manage a running, 579
Services, list all running, 577
Session history, create scripts from, 48
Session history, invoke a command from your,

49
session, user’s, 285
sessions

with full network access, 676
history, 48–50
recording transcript of, 55

Sessions with full network access, create, 676

Index | 843

Sessions, save state between, 59
Set a script breakpoint, 365
Set properties of remote registry keys, 537
Set the ACL of a file or directory, 508
Set the ACL of a registry key, 530
Set-Acl cmdlet, 508, 530
Set-ADAccountPassword cmdlet, 595
Set-ADGroup cmdlet, 599
Set-ADOrganizationalUnit cmdlet, 587
Set-ADUser cmdlet, 594
Set-AuthenticodeSignature cmdlet, 450, 467
Set-Clipboard script, 204
Set-ConsoleProperties script, 40
Set-Content cmdlet, 230
Set-ExecutionPolicy cmdlet, 446, 749
Set-ItemProperty cmdlet, 519, 526
Set-Location cmdlet, 38, 517
Set-PsBreakpoint cmdlet, 365
Set-PsBreakpointLastError script, 369
Set-PsDebug cmdlet, 362–365
Set-PsSessionConfiguration cmdlet, 664
Set-RemoteRegistryKeyProperty script, 537
Set-Service cmdlet, 580
Set-StrictMode cmdlet, 361
Set-WmiInstance cmdlet, 637
SetEnvironmentVariable() method, 401
SetInfo() method, 587, 594, 599
SetPassword() method, 594
SH1 hash, 498–501
SHA1 hash of a file, get, 498
shell

associations, 572
customizing, 28
extending, 56

Shell session, record a transcript of your, 55
Shell, customize to improve your productivity,

40
Shell, customize your, 28
Shell, extend with additional commands, 56
ShouldContinue() method, 288
ShouldProcess() method, 751
Show colorized script content, 209
Show-ColorizedContent script, 210
Show-EventLog cmdlet, 550, 565
Show-HtmlHelp script, 36
Shut down a computer, 619
Shutdown scripts for a machine, list, 610
Sign a PowerShell script, module, or formatting

file, 450

SilentlyContinue ErrorAction preference, 758
Simple arithmetic, perform, 171
simple assignment, 720
Simple Windows API calls, invoke, 428
Simplify math with administrative constants,

180
Simplify most Foreach-Object pipelines, 78
single-threaded apartment mode (STA), 205,

355
Site, add to an Internet Explorer security zone,

524
slicing, array, 723
SMTP (sending mail), 329
Software, list all installed, 614
Sort a hashtable by key or value, 198
Sort an array or list of items, 189
Sort() method, 189
Sort-Object cmdlet, 9, 63, 189, 198
sorting

arrays and lists, 189
in English and other languages, 346
by key or value, 198

Source code and other repetitive text, generate,
166

Special characters, manage files that include,
494

Special characters, place in a string, 144
Specific text, find event log entries with, 552
splatting, 286, 305, 750
-split (split operator), 152, 729
Split a string on text or a pattern, 152
Split() method, 152
Split-Path cmdlet, 406
SQL data source, query, 416
SQL data sources, 416–419
SQL, invoking, 417
Sqrt() method, 173
STA (single-threaded apartment) mode, 205,

355
STA objects, interact with, 355
Stages of the pipeline, intercept, 80
Standard PowerShell verbs, 815
standard verbs, 31, 260, 815
Start a process as another user, 461
Start menu, search, 208
Start() method, 572
Start-Job cmdlet, 25
Start-Process cmdlet, 571–573
Start-ProcessAsUser, 461

844 | Index

Start-Sleep cmdlet, 139
Start-Transaction cmdlet, 522, 694, 696
Start-Transcript cmdlet, 56
Startup or shutdown scripts, list, 610
state, 59, 268, 372
state, maintaining, 269
State, save between sessions, 59
State, write commands that maintain, 268
Static IP address, assign, 629
static methods, 105
static properties, 107
Statistical properties of a list, measure, 175
Statistics, retrieve printer queue, 623
Status of the last command, determine, 381
step into/over/out, 374
steppable pipelines, 305
Stop a process, 573
Stop ErrorAction preference, 758
Stop-Computer cmdlet, 619
Stop-Job cmdlet, 25
Stop-Process cmdlet, 8, 573
Stop-Service cmdlet, 579
Store information in variables, 94
Store the output of a command into a file, 54
streaming behavior, 164, 218
strict mode, 360
String, convert to upper/lowercase, 156
String, create, 141
String, create a multiline or formatted, 143
String, insert dynamic information in, 144
String, place formatted information in, 147
String, place special characters in, 144
String, prevent from including dynamic

information, 146
String, replace text in, 151
String, search for text or a pattern in, 148
String, split on text or a pattern, 152
String, trim, 157
strings

converting text to objects, 160–163
converting to upper/lowercase, 156
creating, 141
dynamic information in, 144–146
expanding, 718
formatting, 167
here, 719
joining, 154
literal, 718
searching/replacing within, 148–152

special characters in, 144
splitting, 152
trimming, 157

Strings, combine into a larger string, 154
strongly typed arrays, 721
strongly typed variable, 717
structured commands (see cmdlets)
Structured data, easily import and export your,

245
subexpressions, 145
subtraction assignment operator (-=), 726
subtraction operator (-), 725
Summarize system information, 626
Support other languages in script output, 347
Suspend-Service cmdlet, 579
switch statements, 735
switches, 135
System date and time, get, 201
system information, getting, 626
System information, summarize, 626
System paths, find the location of common,

407
system processes, 569–576
system services, 577–580
System state, investigate while debugging, 372

T
tab character (`t), 719
tab completion, 764
Table, display properties of an item as, 92–94
Tan() method, 173
Task, find command to accomplish, 31
Task-specific remoting endpoint, create, 688
Tasks on a computer, manage scheduled, 621
Tasks, automate data-intensive, 74
Tasks, provide progress updates on long-

running, 342
TCP requests, sending, 330
Temperature script, 265
Temporarily elevated command, run, 463
Temporary event subscription, create, 706
Temporary file, create, 227
terminating errors, 758
Terminating errors, handle, 389
Terminating errors, output, 392
Test Active Directory scripts on a local

installation, 582
Test connectivity between two computers,

656

Index | 845

Test-Connection cmdlet, 656–659
Test-Path cmdlet, 413
Text and user interface colors, customize, 477
Text or pattern, search file for, 219
text streams, convert to objects, 160
Text streams, generate large, 164
Text, find event log entries with specific, 552
Text, replace in a string, 151
Text, search a string for, 148
Text, split a string on, 152
Text-based logfiles, parse and manage, 222
-ThrottleLimit parameter, 646
TidyModule script, 274
Time and date, get the system, 201
ToInt32() method, 177, 182
tokenization, 252
Tokenizer API, 46, 210, 377
tokens, 715
ToLower() method, 156
Tools menu, add item to, 481
Tools, run existing, 19
ToString() method, 159, 177, 182
ToUpper() method, 156
Trace script execution, 362
Trace-Command cmdlet, 107
transactions, 693–698
Transactions, change error recovery behavior

in, 697
Transactions, safely experiment with, 695
Transcript of your shell session, record, 55
Transfer a file to a remote computer, 685
Trim a string, 157
Trim() method, 157
$true (Boolean value), 717
Truncate() method, 172
truncation, 172
Turkish language capitalization, 157
Twitter, search, 315
type operator (-is), 733
type safety, 110
-TypeDefinition parameter of Add-Type

cmdlet, 431
types

adding custom methods/properties to, 125–
129

conversion, 729
create new instance of, 112
extending, 745
extensions, 125

getting info on, 115–119
loading, 110
shortcuts for, 109, 743

Types and objects, get detailed documentation
about, 117

Types and objects, learn about, 115
Types, add custom methods and properties to,

125
Types.custom.ps1xml, 746
types.ps1xml, 746
Typing, reduce for long class names, 113

U
UI frameworks and STA objects, interact with,

355
unary operators, 132

comma operator (,), 116, 186
join operator (-join), 154, 730
split operator (-split), 152, 729

UNC paths, disable warnings for, 449
Undo-Transaction cmdlet, 695
Unicode, 54, 87, 230, 345, 473
Uninstall an application, 616
Unix-style commands, 4
Unregister-Event cmdlet, 707
Update-FormatData cmdlet, 760
Update-TypeData cmdlet, 126, 746
Upper/lowercase, convert a string to, 156
Url Aliases, 746
URLs, getting, 319
Usage information, get disk, 495
Use .NET to perform advanced WMI tasks,

645
Use a COM object, 115
Use a script block as a .NET delegate or event

handler, 710
Use commands from customized shells, 57
Use hotkeys to operate the shell more

efficiently, 762
Use the ArrayList class for advanced array tasks,

195
Use-Culture script, 349
Use-Transaction cmdlet, 695
User account, create a, 589
User account, get and list the properties of a,

593
User account, modify properties of a, 594
User account, search for a, 592
User and machine certificates, access, 467

846 | Index

User input, read a key of, 336
User input, read a line of, 335
User interface colors, customize, 477
User interface, access features of the host’s,

350
User password, change a, 594
User permissions for remoting, configure, 664
User, add to a security or distribution group,

600
User, display a menu to, 337
User, display messages and output to, 339
User, remove from a security or distribution

group, 600
User, start a process as another, 461
Usernames and passwords, securely request,

460
users

access host interface, 350
credentials, 461
display to, 337–342
graphical interface for, 352
input from, 335–337
session variables, 284

Users in an organizational unit, list the, 602
Users, import in bulk to active directory, 590
User’s group membership, list a, 601
using directives, 114
utility tasks, 201–214

V
Validation, add to parameters, 280
validation, parameter, 278, 280–284
value from pipeline by property name, 76
Value, sort a hashtable by, 198
variable breakpoints, 367
*-Variable cmdlet, 101
variable type, creating a new, 102
Variable, investigate the InvocationInfo, 403
variables

assignment of, 720
Boolean, 717
controlling access and scope of, 100
dynamic, 102–104
environment, 95–99
“Get and Set Content” variable syntax, 716
numeric data, 720
passing to remote sessions, 680
scope, 717
scope of, 101

storing information in, 94
strongly typed, 717
syntax, 716

Variables, accept script block parameters with
local, 284

Variables, access environment, 95
Variables, control access and scope of, 100
Variables, pass to remote sessions, 680
Variables, store information in, 94
Variables, view and modify environment, 399
VBScript WMI script, convert to PowerShell,

647–650
Verb for a command name, find an appropriate,

260
verb-noun pattern, 7, 31, 256
verbose output, 340, 388
Verbose output, configure, 387
verbs, 260, 815–819
Verify integrity of file sets, 545
Version information, determine PowerShell,

412
Version of a DLL or executable, get, 497
vertical tab (`v), 719
View a registry key, 518
View and modify environment variables, 399
View PowerShell’s HTML help, 36
View the errors generated by a command, 383
View the hexadecimal representation of

content, 233
viewing

environment variables, 399–401
generated errors, 383
interactive, 52
registry keys, 518

Visit each element of an array, 188

W
Wait-Job cmdlet, 25
Wait-Process cmdlet, 574
Warnings, disable for UNC paths, 449
Warnings, handle, 389
Warnings, output, 392
Watch an expression for changes, 375
watch expressions, 375
Watch-Expression script, 375
Web page, download from the Internet, 314–

318
Web page, export command output as, 326
Web service, connect to, 321

Index | 847

web service, connecting to, 323
web, exporting command output to, 323
-WhatIf parameter, 10, 287–289
-WhatIf, -Confirm, and other cmdlet features,

provide, 287
Where-Object cmdlet, 9, 63, 68, 192, 251, 552–

555, 630
while loops, 138, 737
widening, 172
wildcards, 149
Window Size options, 761
Windows 7 Remote Server Administration

Tools (RSAT), 581
Windows API Calls, invoke simple, 428
Windows API functions, 422–431
Windows API functions, access, 422
Windows API, invoking directly, 428
Windows clipboard, read and write from, 203–

206
Windows event log entries, run a PowerShell

script for, 562
Windows Firewall, enable or disable, 612
Windows Firewall, open or close ports in, 613
Windows Management Framework, 4, 651,

660
Windows Management Instrumentation data,

access, 635
Windows performance counters, access, 419–

422
Windows registry, search, 527
Windows Start menu, search, 208
-WindowStyle parameter, 39
WMI (Windows Management

Instrumentation)
accessing data, 635
classes, 639, 642–645, 795–801
converting VBScript WMI script, 647–650
events, 811–813
improving performance of, 646
invoking a method, 639
and .NET, 645
overview, 633
properties, 637, 640

WMI class, invoke a method on, 639
WMI classes, search for, 642
WMI filters, determine properties available to,

640
WMI instance, modify the properties of, 637
WMI namespace, searching, 642

WMI operations, improve the performance of
large-scale, 646

WMI script to PowerShell, convert, 647
WMI tasks, use .NET to perform advanced,

645
Work with .NET objects, 104
Work with each item in a list or command

output, 72
Work with numbers as binary, 177
Work with the registry of a remote computer,

531
Workgroup computers, enable remoting to,

665
Workgroup, join a computer to, 607
Working with the .NET Framework, 741
WPK, 352
Write a function, 258
Write a pipeline-oriented function, 300
Write a script, 255
Write a script block, 261
Write commands that maintain state, 268
Write culture-aware scripts, 344
Write from the Windows clipboard, 203
Write pipeline-oriented scripts with cmdlet

keywords, 296
Write to an event log, 561
Write-Debug cmdlet, 340, 388
Write-Error cmdlet, 393, 757
Write-EventLog cmdlet, 561
Write-Host cmdlet, 29, 252, 340
Write-Output cmdlet, 264, 339
Write-Progress cmdlet, 342–343, 388
Write-Verbose cmdlet, 279, 340, 388
Write-Warning cmdlet, 393
WriteDebug() method, 388
WriteProgress() method, 388
WriteVerbose() method, 388
Writing scripts, reusing functionality, 746
WSMan cmdlets, 653

X
XML, 12, 237–245, 724
XML file, access information in, 237
XML file, modify data in, 243
XML, convert objects to, 242
-xor operator, 727
XPath, 240, 773
XPath query, perform against XML, 240

848 | Index

Z
ZIP archive, create, 513
ZIP files, creating, 513

Index | 849

About the Author
Lee Holmes is a developer on the Microsoft Windows PowerShell team, and he has
been an authoritative source of information about PowerShell since its earliest betas.
His vast experience with Windows PowerShell lets him integrate both the “how” and
the “why” into discussions. Lee’s involvement with the PowerShell and administration
community (via newsgroups, mailing lists, and blogs) gives him a great deal of insight
into the problems faced by all levels of administrators and PowerShell users alike.

Colophon
The animal on the cover of Windows PowerShell Cookbook, Second Edition, is a box
turtle (Terrapene carolina carolina). This box turtle is native to North America, specif-
ically northern parts of the United States and Mexico. The male turtle averages about
six inches long and has red eyes; the female is a bit smaller and has yellow eyes. This
turtle is omnivorous as a youth but largely herbivorous as an adult. It has a domed shell
that is hinged on the bottom and which snaps tightly shut if the turtle is in danger. Box
turtles usually stay within the area in which they were born, rarely leaving a 750 foot
radius. When mating, male turtles sometimes shove and push one another to win a
female’s attention. During copulation, it is possible for the male turtle to fall backward,
be unable to right himself, and starve to death.

Although box turtles can live for more than 100 years, their habitats are seriously
threatened by land development and roads. Turtles need loose, moist soil in which to
lay eggs and burrow during their long hibernation season. Experts strongly discourage
taking turtles from their native habitats—not only will it disrupt the community’s
breeding opportunities, but turtles become extremely stressed outside of their known
habitats and may perish quickly.

The cover image is from Dover Pictorial Images. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Foreword to the First Edition
	Glue, Enablers, and a WSH
	That Lee Guy

	Preface
	Who This Book Is For
	How This Book Is Organized
	Part I: Tour
	Part II: Fundamentals
	Part III: Common Tasks
	Part IV: Administrator Tasks
	Part V: References

	What You Need to Use This Book
	Conventions Used in This Book
	Code Examples
	Obtaining Code Examples
	Using Code Examples

	Comments and Questions
	Safari® Books Online
	Acknowledgments

	Part I. Tour
	A Guided Tour of Windows PowerShell
	Introduction
	An Interactive Shell
	Structured Commands (Cmdlets)
	Deep Integration of Objects
	Administrators as First-Class Users
	Composable Commands
	Techniques to Protect You from Yourself
	Common Discovery Commands
	Ubiquitous Scripting
	Ad Hoc Development
	Bridging Technologies
	Namespace Navigation Through Providers
	Much, Much More

	Part II. Fundamentals
	Chapter 1. The Windows PowerShell Interactive
 Shell
	1.0 Introduction
	1.1 Run Programs, Scripts, and Existing Tools
	Problem
	Solution
	Discussion
	See Also

	1.2 Resolve Errors Calling Native Executables
	Problem
	Solution
	Discussion
	See Also

	1.3 Run a PowerShell Command
	Problem
	Solution
	Discussion
	See Also

	1.4 Invoke a Long-Running or Background Command
	Problem
	Solution
	Discussion
	See Also

	1.5 Notify Yourself of Job Completion
	Problem
	Solution
	Discussion
	See Also

	1.6 Customize Your Shell, Profile, and Prompt
	Problem
	Solution
	Discussion
	See Also

	1.7 Find a Command to Accomplish a Task
	Problem
	Solution
	Discussion
	See Also

	1.8 Get Help on a Command
	Problem
	Solution
	Discussion
	See Also

	1.9 Program: Search Help for Text
	See Also

	1.10 Program: View PowerShell’s HTML Help
	See Also

	1.11 Launch PowerShell at a Specific Location
	Problem
	Solution
	Discussion

	1.12 Invoke a PowerShell Command or Script from Outside PowerShell
	Problem
	Solution
	Discussion
	See Also

	1.13 Customize the Shell to Improve Your Productivity
	Problem
	Solution
	Discussion
	See Also

	1.14 Program: Learn Aliases for Common Commands
	See Also

	1.15 Program: Learn Aliases for Common Parameters
	Problem
	Solution
	Discussion
	See Also

	1.16 Access and Manage Your Console History
	Problem
	Solution
	Discussion
	See Also

	1.17 Program: Create Scripts from Session History
	See Also

	1.18 Invoke a Command from Your Session History
	Problem
	Solution
	Discussion
	See Also

	1.19 Program: Search Formatted Output for a Pattern
	See Also

	1.20 Interactively View and Process Command Output
	Problem
	Solution
	Discussion
	Processing output

	See Also

	1.21 Store the Output of a Command into a File
	Problem
	Solution
	Discussion
	See Also

	1.22 Add Information to the End of a File
	Problem
	Solution
	Discussion
	See Also

	1.23 Record a Transcript of Your Shell Session
	Problem
	Solution
	Discussion

	1.24 Extend Your Shell with Additional Commands
	Problem
	Solution
	Discussion
	See Also

	1.25 Use Commands from Customized Shells
	Problem
	Solution
	Discussion
	Detecting loaded snapins
	Detecting loaded modules

	See Also

	1.26 Save State Between Sessions
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Pipelines
	2.0 Introduction
	2.1 Filter Items in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.2 Group and Pivot Data by Name
	Problem
	Solution
	Discussion
	See Also

	2.3 Program: Simplify Most Where-Object Filters
	See Also

	2.4 Program: Interactively Filter Lists of Objects
	See Also

	2.5 Work with Each Item in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.6 Automate Data-Intensive Tasks
	Problem
	Solution
	Discussion
	See Also

	2.7 Program: Simplify Most Foreach-Object Pipelines
	Problem
	Solution
	Discussion
	See Also

	2.8 Intercept Stages of the Pipeline
	Problem
	Solution
	Discussion
	See Also

	2.9 Automatically Capture Pipeline Output
	Problem
	Solution
	Discussion
	See Also

	2.10 Capture and Redirect Binary Process Output
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Variables and Objects
	3.0 Introduction
	3.1 Display the Properties of an Item as a List
	Problem
	Solution
	Discussion

	3.2 Display the Properties of an Item as a Table
	Problem
	Solution
	Discussion
	See Also

	3.3 Store Information in Variables
	Problem
	Solution
	Discussion
	See Also

	3.4 Access Environment Variables
	Problem
	Solution
	Discussion
	See Also

	3.5 Program: Retain Changes to Environment Variables Set by a Batch File
	See Also

	3.6 Control Access and Scope of Variables and Other Items
	Problem
	Solution
	Discussion
	Variables
	Functions
	Aliases and drives

	See Also

	3.7 Program: Create a Dynamic Variable
	3.8 Work with .NET Objects
	Problem
	Solution
	Discussion
	Static methods
	Instance methods
	Static properties
	Instance properties

	See Also

	3.9 Create an Instance of a .NET Object
	Problem
	Solution
	Discussion
	Load types from another assembly

	See Also

	3.10 Program: Create Instances of Generic Objects
	3.11 Reduce Typing for Long Class Names
	Problem
	Solution
	Discussion
	See Also

	3.12 Use a COM Object
	Problem
	Solution
	Discussion
	See Also

	3.13 Learn About Types and Objects
	Problem
	Solution
	Discussion
	See Also

	3.14 Get Detailed Documentation About Types and Objects
	Problem
	Solution
	Discussion
	Public constructors
	Public fields/public properties
	Public methods

	See Also

	3.15 Add Custom Methods and Properties to Objects
	Problem
	Solution
	Discussion
	Calculated properties

	See Also

	3.16 Create and Initialize Custom Objects
	Problem
	Solution
	Discussion
	See Also

	3.17 Add Custom Methods and Properties to Types
	Problem
	Solution
	Discussion
	Getting started
	Add a ScriptProperty
	Add an AliasProperty
	Add a ScriptMethod
	Add other extension points

	Chapter 4. Looping and Flow Control
	4.0 Introduction
	4.1 Make Decisions with Comparison and Logical Operators
	Problem
	Solution
	Discussion
	See Also

	4.2 Adjust Script Flow Using Conditional Statements
	Problem
	Solution
	Discussion

	4.3 Manage Large Conditional Statements with Switches
	Problem
	Solution
	Discussion
	See Also

	4.4 Repeat Operations with Loops
	Problem
	Solution
	Discussion
	See Also

	4.5 Add a Pause or Delay
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Strings and Unstructured Text
	5.0 Introduction
	5.1 Create a String
	Problem
	Solution
	Discussion
	See Also

	5.2 Create a Multiline or Formatted String
	Problem
	Solution
	Discussion
	See Also

	5.3 Place Special Characters in a String
	Problem
	Solution
	Discussion
	See Also

	5.4 Insert Dynamic Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.5 Prevent a String from Including Dynamic Information
	Problem
	Solution
	Discussion
	See Also

	5.6 Place Formatted Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.7 Search a String for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	5.8 Replace Text in a String
	Problem
	Solution
	Discussion
	See Also

	5.9 Split a String on Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	5.10 Combine Strings into a Larger String
	Problem
	Solution
	Discussion
	See Also

	5.11 Convert a String to Upper/Lowercase
	Problem
	Solution
	Discussion
	See Also

	5.12 Trim a String
	Problem
	Solution
	Discussion
	See Also

	5.13 Format a Date for Output
	Problem
	Solution
	Discussion
	See Also

	5.14 Program: Convert Text Streams to Objects
	See Also

	5.15 Generate Large Reports and Text Streams
	Problem
	Solution
	Discussion
	Creating large text reports

	5.16 Generate Source Code and Other Repetitive Text
	Problem
	Solution
	Discussion

	Chapter 6. Calculations and Math
	6.0 Introduction
	6.1 Perform Simple Arithmetic
	Problem
	Solution
	Discussion
	See Also

	6.2 Perform Complex Arithmetic
	Problem
	Solution
	Discussion
	Working with any root
	Working with degrees instead of radians

	See Also

	6.3 Measure Statistical Properties of a List
	Problem
	Solution
	Discussion

	6.4 Work with Numbers as Binary
	Problem
	Solution
	Discussion
	See Also

	6.5 Simplify Math with Administrative Constants
	Problem
	Solution
	Discussion
	See Also

	6.6 Convert Numbers Between Bases
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Lists, Arrays, and Hashtables
	7.0 Introduction
	7.1 Create an Array or List of Items
	Problem
	Solution
	Discussion
	See Also

	7.2 Create a Jagged or Multidimensional Array
	Problem
	Solution
	Discussion
	See Also

	7.3 Access Elements of an Array
	Problem
	Solution
	Discussion
	See Also

	7.4 Visit Each Element of an Array
	Problem
	Solution
	Discussion
	See Also

	7.5 Sort an Array or List of Items
	Problem
	Solution
	Discussion

	7.6 Determine Whether an Array Contains an Item
	Problem
	Solution
	Discussion
	See Also

	7.7 Combine Two Arrays
	Problem
	Solution
	Discussion
	See Also

	7.8 Find Items in an Array That Match a Value
	Problem
	Solution
	Discussion
	See Also

	7.9 Compare Two Lists
	Problem
	Solution
	Discussion
	See Also

	7.10 Remove Elements from an Array
	Problem
	Solution
	Discussion
	See Also

	7.11 Find Items in an Array Greater or Less Than a Value
	Problem
	Solution
	Discussion
	See Also

	7.12 Use the ArrayList Class for Advanced Array Tasks
	Problem
	Solution
	Discussion
	See Also

	7.13 Create a Hashtable or Associative Array
	Problem
	Solution
	Discussion
	See Also

	7.14 Sort a Hashtable by Key or Value
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Utility Tasks
	8.0 Introduction
	8.1 Get the System Date and Time
	Problem
	Solution
	Discussion
	See Also

	8.2 Measure the Duration of a Command
	Problem
	Solution
	Discussion
	See Also

	8.3 Read and Write from the Windows Clipboard
	Problem
	Solution
	Discussion
	See Also

	8.4 Generate a Random Number or Object
	Problem
	Solution
	Discussion
	See Also

	8.5 Program: Search the Windows Start Menu
	See Also

	8.6 Program: Show Colorized Script Content
	Discussion
	See Also

	Part III. Common Tasks
	Chapter 9. Simple Files
	9.0 Introduction
	9.1 Get the Content of a File
	Problem
	Solution
	Discussion
	See Also

	9.2 Search a File for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	9.3 Parse and Manage Text-Based Logfiles
	Problem
	Solution
	Discussion
	See Also

	9.4 Parse and Manage Binary Files
	Problem
	Solution
	Discussion
	See Also

	9.5 Create a Temporary File
	Problem
	Solution
	Discussion
	See Also

	9.6 Search and Replace Text in a File
	Problem
	Solution
	Discussion
	Work with files encoded in Unicode or another (OEM) code page
	Replace text using a pattern instead of plain text
	Replace text that spans multiple lines
	Replace text in large files

	See Also

	9.7 Program: Get the Encoding of a File
	See Also

	9.8 Program: View the Hexadecimal Representation of Content
	See Also

	Chapter 10. Structured Files
	10.0 Introduction
	10.1 Access Information in an XML File
	Problem
	Solution
	Discussion
	See Also

	10.2 Perform an XPath Query Against XML
	Problem
	Solution
	Discussion
	See Also

	10.3 Convert Objects to XML
	Problem
	Solution
	Discussion
	See Also

	10.4 Modify Data in an XML File
	Problem
	Solution
	Discussion

	10.5 Easily Import and Export Your Structured Data
	Problem
	Solution
	Discussion

	10.6 Store the Output of a Command in a CSV or Delimited File
	Problem
	Solution
	Discussion
	See Also

	10.7 Import CSV and Delimited Data from a File
	Problem
	Solution
	Discussion
	See Also

	10.8 Use Excel to Manage Command Output
	Problem
	Solution
	Discussion
	See Also

	10.9 Parse and Interpret PowerShell Scripts
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Code Reuse
	11.0 Introduction
	11.1 Write a Script
	Problem
	Solution
	Discussion
	See Also

	11.2 Write a Function
	Problem
	Solution
	Discussion
	See Also

	11.3 Find a Verb Appropriate for a Command Name
	Problem
	Solution
	Discussion
	See Also

	11.4 Write a Script Block
	Problem
	Solution
	Discussion
	See Also

	11.5 Return Data from a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	See Also

	11.6 Package Common Commands in a Module
	Problem
	Solution
	Discussion
	See Also

	11.7 Write Commands That Maintain State
	Problem
	Solution
	Discussion
	See Also

	11.8 Selectively Export Commands from a Module
	Problem
	Solution
	Discussion
	See Also

	11.9 Diagnose and Interact with Internal Module State
	Problem
	Solution
	Discussion
	See Also

	11.10 Handle Cleanup Tasks When a Module Is Removed
	Problem
	Solution
	Discussion
	See Also

	11.11 Access Arguments of a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	Supporting PowerShell’s common parameters
	Using the $args array

	See Also

	11.12 Add Validation to Parameters
	Problem
	Solution
	Discussion
	Defining parameter behavior
	Defining parameter validation

	See Also

	11.13 Accept Script Block Parameters with Local Variables
	Problem
	Solution
	Discussion
	See Also

	11.14 Dynamically Compose Command Parameters
	Problem
	Solution
	Discussion
	See Also

	11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features
	Problem
	Solution
	Discussion
	See Also

	11.16 Add Help to Scripts or Functions
	Problem
	Solution
	Discussion
	See Also

	11.17 Add Custom Tags to a Function or Script Block
	Problem
	Solution
	Discussion
	See Also

	11.18 Access Pipeline Input
	Problem
	Solution
	Discussion
	See Also

	11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords
	Problem
	Solution
	Discussion
	See Also

	11.20 Write a Pipeline-Oriented Function
	Problem
	Solution
	Discussion
	See Also

	11.21 Organize Scripts for Improved Readability
	Problem
	Solution
	Discussion
	See Also

	11.22 Invoke Dynamically Named Commands
	Problem
	Solution
	Discussion
	See Also

	11.23 Program: Enhance or Extend an Existing Cmdlet
	See Also

	Chapter 12. Internet-Enabled Scripts
	12.0 Introduction
	12.1 Download a File from the Internet
	Problem
	Solution
	Discussion
	See Also

	12.2 Download a Web Page from the Internet
	Problem
	Solution
	Discussion
	See Also

	12.3 Program: Get-PageUrls
	See Also

	12.4 Connect to a Web Service
	Problem
	Solution
	Discussion
	See Also

	12.5 Program: Connect-WebService
	See Also

	12.6 Export Command Output as a Web Page
	Problem
	Solution
	Discussion

	12.7 Send an Email
	Problem
	Solution
	Discussion
	See Also

	12.8 Program: Send-MailMessage
	See Also

	12.9 Program: Interact with Internet Protocols
	See Also

	Chapter 13. User Interaction
	13.0 Introduction
	13.1 Read a Line of User Input
	Problem
	Solution
	Discussion
	See Also

	13.2 Read a Key of User Input
	Problem
	Solution
	Discussion

	13.3 Program: Display a Menu to the User
	See Also

	13.4 Display Messages and Output to the User
	Problem
	Solution
	Discussion
	See Also

	13.5 Provide Progress Updates on Long-Running Tasks
	Problem
	Solution
	Discussion

	13.6 Write Culture-Aware Scripts
	Problem
	Solution
	Discussion
	Date, time, and number formats
	Complexity of user input and file content
	Capitalization rules
	Sorting rules
	Other guidelines

	See Also

	13.7 Support Other Languages in Script Output
	Problem
	Solution
	Discussion
	See Also

	13.8 Program: Invoke a Script Block with Alternate Culture Settings
	See Also

	13.9 Access Features of the Host’s User Interface
	Problem
	Solution
	Discussion

	13.10 Program: Add a Graphical User Interface to Your Script
	See Also

	13.11 Interact with UI Frameworks and STA Objects
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Debugging
	14.0 Introduction
	14.1 Prevent Common Scripting Errors
	Problem
	Solution
	Discussion
	See Also

	14.2 Trace Script Execution
	Problem
	Solution
	Discussion
	See Also

	14.3 Set a Script Breakpoint
	Problem
	Solution
	Discussion
	See Also

	14.4 Debug a Script When It Encounters an Error
	Problem
	Solution
	Discussion
	See Also

	14.5 Create a Conditional Breakpoint
	Problem
	Solution
	Discussion
	See Also

	14.6 Investigate System State While Debugging
	Problem
	Solution
	Discussion
	See Also

	14.7 Program: Watch an Expression for Changes
	See Also

	14.8 Program: Get Script Code Coverage
	See Also

	Chapter 15. Tracing and Error Management
	15.0 Introduction
	15.1 Determine the Status of the Last Command
	Problem
	Solution
	Discussion

	15.2 View the Errors Generated by a Command
	Problem
	Solution
	Discussion
	See Also

	15.3 Manage the Error Output of Commands
	Problem
	Solution
	Discussion
	See Also

	15.4 Program: Resolve an Error
	See Also

	15.5 Configure Debug, Verbose, and Progress Output
	Problem
	Solution
	Discussion
	See Also

	15.6 Handle Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	15.7 Output Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	15.8 Program: Analyze a Script’s Performance Profile
	See Also

	Chapter 16. Environmental Awareness
	16.0 Introduction
	16.1 View and Modify Environment Variables
	Problem
	Solution
	Discussion
	See Also

	16.2 Access Information About Your Command’s Invocation
	Problem
	Solution
	Discussion
	Scripts
	Functions
	Script blocks

	16.3 Program: Investigate the InvocationInfo Variable
	See Also

	16.4 Find Your Script’s Name
	Problem
	Solution
	Discussion
	See Also

	16.5 Find Your Script’s Location
	Problem
	Solution
	Discussion
	See Also

	16.6 Find the Location of Common System Paths
	Problem
	Solution
	Discussion
	See Also

	16.7 Get the Current Location
	Problem
	Solution
	Discussion
	See Also

	16.8 Safely Build File Paths Out of Their Components
	Problem
	Solution
	Discussion

	16.9 Interact with PowerShell’s Global Environment
	Problem
	Solution
	Discussion
	See Also

	16.10 Determine PowerShell Version Information
	Problem
	Solution
	Discussion

	Chapter 17. Extend the Reach of Windows PowerShell
	17.0 Introduction
	17.1 Automate Programs Using COM Scripting Interfaces
	Problem
	Solution
	Discussion
	See Also

	17.2 Program: Query a SQL Data Source
	See Also

	17.3 Access Windows Performance Counters
	Problem
	Solution
	Discussion

	17.4 Access Windows API Functions
	Problem
	Solution
	Discussion
	See Also

	17.5 Program: Invoke Simple Windows API Calls
	See Also

	17.6 Define or Extend a .NET Class
	Problem
	Solution
	Discussion
	See Also

	17.7 Add Inline C# to Your PowerShell Script
	Problem
	Solution
	Discussion
	See Also

	17.8 Access a .NET SDK Library
	Problem
	Solution
	Discussion
	See Also

	17.9 Create Your Own PowerShell Cmdlet
	Problem
	Solution
	Discussion
	Step 1: Download the PowerShell SDK
	Step 2: Create a file to hold the cmdlet source code
	Step 3: Compile the DLL
	Step 4: Load the module
	Step 6: Use the module

	See Also

	17.10 Add PowerShell Scripting to Your Own Program
	Problem
	Solution
	Discussion
	Step 1: Download the PowerShell SDK
	Step 2: Create a file to hold the hosting source code
	Step 3: Compile and run the example

	See Also

	Chapter 18. Security and Script Signing
	18.0 Introduction
	18.1 Enable Scripting Through an Execution Policy
	Problem
	Solution
	Discussion
	Execution policies are not user restrictions

	See Also

	18.2 Disable Warnings for UNC Paths
	Problem
	Solution
	Discussion
	See Also

	18.3 Sign a PowerShell Script, Module, or Formatting File
	Problem
	Solution
	Discussion
	See Also

	18.4 Program: Create a Self-Signed Certificate
	Discussion
	See Also

	18.5 Manage PowerShell Security in an Enterprise
	Problem
	Solution
	Discussion
	Apply PowerShell’s Group Policy templates
	Deploy Microsoft Certificate Services

	See Also

	18.6 Block Scripts by Publisher, Path, or Hash
	Problem
	Solution
	Discussion
	See Also

	18.7 Verify the Digital Signature of a PowerShell Script
	Problem
	Solution
	Discussion

	18.8 Securely Handle Sensitive Information
	Problem
	Solution
	Discussion
	See Also

	18.9 Securely Request Usernames and Passwords
	Problem
	Solution
	Discussion
	See Also

	18.10 Program: Start a Process as Another User
	See Also

	18.11 Program: Run a Temporarily Elevated Command
	See Also

	18.12 Securely Store Credentials on Disk
	Problem
	Solution
	Save the credential’s password to disk
	Recreate the credential from the password stored on disk

	Discussion
	See Also

	18.13 Access User and Machine Certificates
	Problem
	Solution
	Discussion
	See Also

	18.14 Program: Search the Certificate Store
	See Also

	18.15 Add and Remove Certificates
	Problem
	Solution
	Discussion
	See Also

	18.16 Manage Security Descriptors in SDDL Form
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Integrated Scripting Environment
	19.0 Introduction
	19.1 Debug a Script
	Problem
	Solution
	Discussion
	See Also

	19.2 Customize Text and User Interface Colors
	Problem
	Solution
	Discussion
	See Also

	19.3 Connect to a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	19.4 Extend ISE Functionality Through Its Object Model
	Problem
	Solution
	Discussion
	See Also

	19.5 Add an Item to the Tools Menu
	Problem
	Solution
	Discussion
	See Also

	Part IV. Administrator Tasks
	Chapter 20. Files and Directories
	20.0 Introduction
	20.1 Determine the Current Location
	Problem
	Solution
	Discussion

	20.2 Get the Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	20.3 Find All Files Modified Before a Certain Date
	Problem
	Solution
	Discussion
	See Also

	20.4 Clear the Content of a File
	Problem
	Solution
	Discussion
	See Also

	20.5 Manage and Change the Attributes of a File
	Problem
	Solution
	Discussion
	See Also

	20.6 Find Files That Match a Pattern
	Problem
	Solution
	Discussion
	See Also

	20.7 Manage Files That Include Special Characters
	Problem
	Solution
	Discussion

	20.8 Program: Get Disk Usage Information
	See Also

	20.9 Monitor a File for Changes
	Problem
	Solution
	Discussion

	20.10 Get the Version of a DLL or Executable
	Problem
	Solution
	Discussion
	See Also

	20.11 Program: Get the MD5 or SHA1 Hash of a File
	See Also

	20.12 Create a Directory
	Problem
	Solution
	Discussion

	20.13 Remove a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.14 Rename a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.15 Move a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.16 Program: Move or Remove a Locked File
	See Also

	20.17 Get the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.18 Set the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.19 Program: Add Extended File Properties to Files
	See Also

	20.20 Program: Create a Filesystem Hard Link
	See Also

	20.21 Program: Create a ZIP Archive
	See Also

	Chapter 21. The Windows Registry
	21.0 Introduction
	21.1 Navigate the Registry
	Problem
	Solution
	Discussion
	See Also

	21.2 View a Registry Key
	Problem
	Solution
	Discussion

	21.3 Modify or Remove a Registry Key Value
	Problem
	Solution
	Discussion

	21.4 Create a Registry Key Value
	Problem
	Solution
	Discussion

	21.5 Remove a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.6 Safely Combine Related Registry Modifications
	Problem
	Solution
	Discussion
	See Also

	21.7 Add a Site to an Internet Explorer Security Zone
	Problem
	Solution
	Discussion
	See Also

	21.8 Modify Internet Explorer Settings
	Problem
	Solution
	Discussion
	See Also

	21.9 Program: Search the Windows Registry
	See Also

	21.10 Get the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.11 Set the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.12 Work with the Registry of a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	21.13 Program: Get Registry Items from Remote Machines
	See Also

	21.14 Program: Get Properties of Remote Registry Keys
	See Also

	21.15 Program: Set Properties of Remote Registry Keys
	See Also

	21.16 Discover Registry Settings for Programs
	Problem
	Solution
	Discussion
	Launch and configure Process Monitor
	Prepare to manually set the configuration option
	Tell Process Monitor to begin capturing information
	Manually set the configuration option
	Tell Process Monitor to stop capturing information
	Review the capture logs for registry modification
	Automate these registry writes

	See Also

	Chapter 22. Comparing Data
	22.0 Introduction
	22.1 Compare the Output of Two Commands
	Problem
	Solution
	Discussion

	22.2 Determine the Differences Between Two Files
	Problem
	Solution
	Discussion

	22.3 Verify Integrity of File Sets
	Problem
	Solution
	Discussion
	See Also

	Chapter 23. Event Logs
	23.0 Introduction
	23.1 List All Event Logs
	Problem
	Solution
	Discussion
	See Also

	23.2 Get the Newest Entries from an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.3 Find Event Log Entries with Specific Text
	Problem
	Solution
	Discussion
	See Also

	23.4 Retrieve and Filter Event Log Entries
	Problem
	Solution
	Discussion
	Efficiently processing simple queries
	Automating GUI-generated searches
	Performing complex event analysis and correlation

	See Also

	23.5 Find Event Log Entries by Their Frequency
	Problem
	Solution
	Discussion
	See Also

	23.6 Back Up an Event Log
	Problem
	Solution
	Discussion

	23.7 Create or Remove an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.8 Write to an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.9 Run a PowerShell Script for Windows Event Log Entries
	Problem
	Solution
	Discussion
	See Also

	23.10 Clear or Maintain an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.11 Access Event Logs of a Remote Machine
	Problem
	Solution
	Discussion
	See Also

	Chapter 24. Processes
	24.0 Introduction
	24.1 List Currently Running Processes
	Problem
	Solution
	Discussion
	See Also

	24.2 Launch the Application Associated with a Document
	Problem
	Solution
	Discussion
	See Also

	24.3 Launch a Process
	Problem
	Solution
	Discussion
	See Also

	24.4 Stop a Process
	Problem
	Solution
	Discussion

	24.5 Debug a Process
	Problem
	Solution
	Discussion
	See Also

	Chapter 25. System Services
	25.0 Introduction
	25.1 List All Running Services
	Problem
	Solution
	Discussion
	See Also

	25.2 Manage a Running Service
	Problem
	Solution
	Discussion
	See Also

	25.3 Configure a Service
	Problem
	Solution
	Discussion
	See Also

	Chapter 26. Active Directory
	26.0 Introduction
	26.1 Test Active Directory Scripts on a Local Installation
	Problem
	Solution
	Discussion
	Verify prerequisites
	Install ADAM
	Create a test instance

	See Also

	26.2 Create an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	26.3 Get the Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	26.4 Modify Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	26.5 Delete an Organizational Unit
	Problem
	Solution
	Discussion

	26.6 Get the Children of an Active Directory Container
	Problem
	Solution
	Discussion
	See Also

	26.7 Create a User Account
	Problem
	Solution
	Discussion
	See Also

	26.8 Program: Import Users in Bulk to Active Directory
	See Also

	26.9 Search for a User Account
	Problem
	Solution
	Discussion

	26.10 Get and List the Properties of a User Account
	Problem
	Solution
	Discussion

	26.11 Modify Properties of a User Account
	Problem
	Solution
	Discussion

	26.12 Change a User Password
	Problem
	Solution
	Discussion
	See Also

	26.13 Create a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.14 Search for a Security or Distribution Group
	Problem
	Solution
	Discussion

	26.15 Get the Properties of a Group
	Problem
	Solution
	Discussion

	26.16 Find the Owner of a Group
	Problem
	Solution
	Discussion

	26.17 Modify Properties of a Security or Distribution Group
	Problem
	Solution
	Discussion

	26.18 Add a User to a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.19 Remove a User from a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.20 List a User’s Group Membership
	Problem
	Solution
	Discussion
	See Also

	26.21 List the Members of a Group
	Problem
	Solution
	Discussion
	See Also

	26.22 List the Users in an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	26.23 Search for a Computer Account
	Problem
	Solution
	Discussion

	26.24 Get and List the Properties of a Computer Account
	Problem
	Solution
	Discussion

	Chapter 27. Enterprise Computer Management
	27.0 Introduction
	27.1 Join a Computer to a Domain or Workgroup
	Problem
	Solution
	Discussion
	See Also

	27.2 Remove a Computer from a Domain
	Problem
	Solution
	Discussion
	See Also

	27.3 Program: List Logon or Logoff Scripts for a User
	See Also

	27.4 Program: List Startup or Shutdown Scripts for a Machine
	See Also

	27.5 Deploy PowerShell-Based Logon Scripts
	Problem
	Solution
	Discussion
	See Also

	27.6 Enable or Disable the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	27.7 Open or Close Ports in the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	27.8 Program: List All Installed Software
	See Also

	27.9 Uninstall an Application
	Problem
	Solution
	Discussion
	See Also

	27.10 Manage Computer Restore Points
	Problem
	Solution
	Discussion

	27.11 Reboot or Shut Down a Computer
	Problem
	Solution
	Discussion
	See Also

	27.12 Determine Whether a Hotfix Is Installed
	Problem
	Solution
	Discussion

	27.13 Manage Scheduled Tasks on a Computer
	Problem
	Solution
	Discussion
	See Also

	27.14 Retrieve Printer Information
	Problem
	Solution
	Discussion
	See Also

	27.15 Retrieve Printer Queue Statistics
	Problem
	Solution
	Discussion
	See Also

	27.16 Manage Printers and Print Queues
	Problem
	Solution
	Discussion
	See Also

	27.17 Program: Summarize System Information
	See Also

	27.18 Renew a DHCP Lease
	Problem
	Solution
	Discussion
	Use the Win32_NetworkAdapterConfiguration WMI class
	Run ipconfig on the remote computer

	See Also

	27.19 Assign a Static IP Address
	Problem
	Solution
	Discussion
	See Also

	27.20 List All IP Addresses for a Computer
	Problem
	Solution
	Discussion
	Use the Win32_NetworkAdapterConfiguration WMI class
	Run ipconfig on the remote computer

	See Also

	27.21 List Network Adapter Properties
	Problem
	Solution
	Discussion
	See Also

	Chapter 28. Windows Management Instrumentation
	28.0 Introduction
	28.1 Access Windows Management Instrumentation Data
	Problem
	Solution
	Discussion
	See Also

	28.2 Modify the Properties of a WMI Instance
	Problem
	Solution
	Discussion
	See Also

	28.3 Invoke a Method on a WMI Class
	Problem
	Solution
	Discussion
	See Also

	28.4 Program: Determine Properties Available to WMI Filters
	See Also

	28.5 Program: Search for WMI Classes
	See Also

	28.6 Use .NET to Perform Advanced WMI Tasks
	Problem
	Solution
	Advanced instance features
	Advanced class features
	Advanced query feature

	Discussion
	See Also

	28.7 Improve the Performance of Large-Scale WMI Operations
	Problem
	Solution
	Discussion
	See Also

	28.8 Convert a VBScript WMI Script to PowerShell
	Problem
	Solution
	Discussion
	Retrieving data
	Calling methods on an instance
	Calling methods on a class

	See Also

	Chapter 29. Remoting
	29.0 Introduction
	29.1 Find Commands That Support Their Own Remoting
	Problem
	Solution
	Discussion
	See Also

	29.2 Program: Invoke a PowerShell Expression on a Remote Machine
	See Also

	29.3 Test Connectivity Between Two Computers
	Problem
	Solution
	Discussion
	See Also

	29.4 Limit Networking Scripts to Hosts That Respond
	Problem
	Solution
	Discussion
	See Also

	29.5 Enable PowerShell Remoting on a Computer
	Problem
	Solution
	Discussion
	Enable remoting on a single local machine
	Enable remoting on a remote machine
	Enable remoting in an enterprise

	See Also

	29.6 Enable Remote Desktop on a Computer
	Problem
	Solution
	Discussion
	See Also

	29.7 Program: Remotely Enable PowerShell Remoting
	See Also

	29.8 Configure User Permissions for Remoting
	Problem
	Solution
	Discussion
	See Also

	29.9 Enable Remoting to Workgroup Computers
	Problem
	Solution
	Discussion

	29.10 Interactively Manage a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.11 Invoke a Command on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.12 Implicitly Invoke Commands from a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.13 Create Sessions with Full Network Access
	Problem
	Solution
	Discussion
	See Also

	29.14 Pass Variables to Remote Sessions
	Problem
	Solution
	Discussion
	See Also

	29.15 Configure Advanced Remoting Options
	Problem
	Solution
	Discussion
	See Also

	29.16 Invoke a Command on Many Computers
	Problem
	Solution
	Discussion
	See Also

	29.17 Run a Local Script on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.18 Program: Transfer a File to a Remote Computer
	See Also

	29.19 Determine Whether a Script Is Running on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.20 Program: Create a Task-Specific Remoting Endpoint
	See Also

	Chapter 30. Transactions
	30.0 Introduction
	30.1 Safely Experiment with Transactions
	Problem
	Solution
	Discussion
	See Also

	30.2 Change Error Recovery Behavior in Transactions
	Problem
	Solution
	Discussion
	See Also

	Chapter 31. Event Handling
	31.0 Introduction
	31.1 Respond to Automatically Generated Events
	Problem
	Solution
	Discussion
	See Also

	31.2 Create and Respond to Custom Events
	Problem
	Solution
	Discussion
	See Also

	31.3 Create a Temporary Event Subscription
	Problem
	Solution
	Discussion
	See Also

	31.4 Forward Events from a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	31.5 Investigate Internal Event Action State
	Problem
	Solution
	Discussion
	See Also

	31.6 Use a Script Block as a .NET Delegate or Event Handler
	Problem
	Solution
	Discussion
	See Also

	Part V. References
	Appendix A. PowerShell Language and Environment
	Commands and Expressions
	Comments
	Variables
	Booleans
	Strings
	Literal and Expanding Strings
	Here Strings
	Escape Sequences

	Numbers
	Simple Assignment
	Administrative Numeric Constants
	Hexadecimal and Other Number Bases

	Arrays and Lists
	Array Definitions
	Array Access
	Array Slicing

	Hashtables (Associative Arrays)
	Hashtable Definitions
	Hashtable Access

	XML
	Simple Operators
	Arithmetic Operators
	Logical Operators
	Binary Operators
	Other Operators

	Comparison Operators
	Conditional Statements
	if, elseif, and else Statements
	switch Statements

	Looping Statements
	for Statement
	foreach Statement
	while Statement
	do … while Statement/do … until Statement
	Flow Control Statements
	break
	continue

	Working with the .NET Framework
	Static Methods
	Instance Methods
	Static Properties
	Instance Properties
	Learning About Types
	The Get-Member cmdlet
	.NET Framework documentation

	Type Shortcuts
	Creating Instances of Types
	Interacting with COM Objects
	Extending Types
	The Add-Member cmdlet
	Custom type extension files

	Writing Scripts, Reusing Functionality
	Writing Commands
	Writing scripts
	Writing functions
	Writing script blocks

	Running Commands
	Invoking
	Dot-sourcing
	Parameter splatting

	Providing Input to Commands
	Argument array
	Formal parameters
	Command behavior customizations
	Parameter attribute customizations
	Parameter validation attributes
	Pipeline input
	Cmdlet keywords in commands
	$MyInvocation automatic variable

	Retrieving Output from Commands
	Pipeline output
	Return statement
	Exit statement

	Help Documentation

	Managing Errors
	Nonterminating Errors
	Terminating Errors

	Formatting Output
	Custom Formatting Files

	Capturing Output
	Common Customization Points
	Console Settings
	Adjust your window size
	Make text selection easier
	Use hotkeys to operate the shell more efficiently

	Profiles
	Prompts
	Tab Completion

	Appendix B. Regular Expression Reference
	Appendix C. XPath Quick Reference
	Appendix D. .NET String Formatting
	String Formatting Syntax
	Standard Numeric Format Strings
	Custom Numeric Format Strings

	Appendix E. .NET DateTime Formatting
	Custom DateTime Format Strings

	Appendix F. Selected .NET Classes and Their Uses
	Appendix G. WMI Reference
	Appendix H. Selected COM Objects and Their Uses
	Appendix I. Selected Events and Their Uses
	Appendix J. Standard PowerShell Verbs

	Index

